This is an author produced version of a paper published in:

Antimicrobial Agents and Chemotherapy

Cronfa URL for this paper:
http://cronfa.swan.ac.uk/Record/cronfa38876

Paper:
http://dx.doi.org/10.1128/AAC.01941-17

Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/
Title

In Vitro and In Vivo Efficacy of a Novel and Long Acting Fungicidal Azole, PC1244 on Aspergillus fumigatus Infection

1Pulmocide Ltd, London, UK, 2Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India, 3Institut Pasteur, CNRS, Molecular Mycology Unit, French National Reference Center for Invasive Mycoses & Antifungals, URA3012, Paris, 4Paris Diderot, Sorbonne Paris Cité University, Paris, France, 5Parasitology-Mycology Laboratory, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France, 6Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Wales, UK, 7School of Pharmacy, Nihon University, Chiba, Japan, 8Department of Microbiology, Royal Brompton Hospital, London, UK, 9National Heart and Lung Institute, Imperial College School of Medicine, London, UK, 10Department of Infectious Disease Epidemiology, Imperial College School of Public Health, St Mary’s Campus, London, UK, 11Syngnature Discovery Ltd, Nottingham, UK, 12CompChem Resource, Ledbury, UK, 13Alan Naylor Consultancy Ltd., Royston, UK.
Running title: Antifungal activity of novel inhaled azole PC1244

Key words: Aspergillus fumigatus, azole, inhalation, CYP51, azole resistant

Address correspondence to Kazuhiro Ito: kaz@pulmocide.com

¶ These authors contributed equally to this work.
The antifungal effects of the novel triazole, PC1244, designed for topical or inhaled administration, against A. fumigatus have been tested in a range of in vitro and in vivo studies. PC1244 demonstrated potent antifungal activities against clinical A. fumigatus isolates (N=96) with a MIC range of 0.016–0.25 μg/ml, whereas the MIC range for voriconazole was 0.25–0.5 μg/ml. PC1244 was a strong tight-binding inhibitor of recombinant A. fumigatus CYP51A and CYP51B (sterol 14α-demethylase) enzymes and strongly inhibited ergosterol synthesis in A. fumigatus with an IC₅₀ of 8 nM. PC1244 was effective against a broad spectrum of pathogenic fungi (MIC ranged from <0.0078–2 μg/ml), especially on Aspergillus terreus, Trichophyton rubrum, Candida albicans, Candida glabrata, Candida krusei, Cryptococcus gattii, Cryptococcus neoformans and Rhizopus oryzae. PC1244 also proved to be quickly absorbed into both A. fumigatus hyphae and bronchial epithelial cells, producing persistent antifungal effects. In addition, PC1244 showed fungicidal activity (MFC, 2 μg/ml), which was 8-fold more potent than voriconazole. In vivo, once daily intranasal administration of PC1244 (3.2 ~ 80μg/mL) to temporarily neutropenic, immunocompromised mice 24h after inoculation with itraconazole-susceptible A. fumigatus substantially reduced fungal load in the lung, galactomannan in serum and circulating inflammatory cytokines. Furthermore, 7 days extended prophylaxis with PC1244 showed superior in vivo effects when compared against 1 day of prophylactic treatment, suggesting accumulation of the effects of PC1244. Thus, PC1244 has the potential to be a novel therapy for the treatment of A. fumigatus infection in the lungs of humans.
INTRODUCTION

The incidence of fungal infections has increased substantially over the past two decades and invasive forms are leading causes of morbidity and mortality, especially amongst immunocompromised or immunosuppressed patients. In addition, chronic lung infections with Aspergillus, such as a previous infection with tuberculosis (1) or pulmonary inflammatory diseases, can leave patients with poor lung function, and extensive and permanent lung structural change (2-4).

Systemic triazole therapy is the basis for treating infections with pathogenic fungi but the adverse effects of itraconazole (ITC), voriconazole (VRC) and posaconazole (POS) are well characterised and thought to be a consequence of the pharmacological effects of the compounds in host tissues (5-9). It has been observed that up to 15% of patients treated with voriconazole experience raised transaminase levels in the liver, a site of triazole toxicity (10, 11). Serious unwanted effects in other organs have been reported after oral or systemic VRC and POS treatment, and exposure of the liver also results in significant drug interactions arising from triazole inhibition of hepatic P450 enzymes (12, 13), although recent azoles isavuconazole and VT1161 showed better risk-benefit profiles in clinical or preclinical tests (14, 15).

Administration of triazoles orally can lead to wide variations in patient response due to variable plasma concentrations, leading to compromised individual efficacy (16). Furthermore notable drug interactions for voriconazole due to the inhibition of hepatic P450 enzymes make clinical use challenging and indeed the variability in exposure of the triazoles via the oral route necessitates the need for close therapeutic drug monitoring and limits the use of triazole therapy prophylactically in at risk groups (13, 16). In addition, structural changes in the lung architecture, caused by chronic pulmonary disease or infection with tuberculosis, can lead to Aspergillus
colonisation of pre-existing cavities, limiting the efficacy of orally administered compounds which often struggle to penetrate into the pulmonary epithelial lining fluid (17). It is acknowledged that targeted administration to the lung, the primary point of infection, would prolong lung tissue residence and reduce systemic exposure, to display a better risk-benefit ratio. Recently, existing antifungal medications such as AMB, VRC and ITC have been repurposed in this manner to effectively prevent invasive disease (18-20).

In this report we disclose the in vitro and in vivo activities of a newly discovered azole class, antifungal agent: 4-(4-(4-(((3R,5R)-5-((1H-1,2,4-triazol-1-yl)methyl)-5-(2,4-difluorophenyl)tetrahydrofuran-3-yl)methoxy)-3-methylphenyl)piperazin-1-yl)-N-(((1S,2S)-2-hydroxycyclohexyl)benzamide, (referred to here as PC1244, Fig 1) (21). The compound demonstrates activities comparable to POS and superior to VRC against both ITC susceptible and resistant strains, and it has been designed to have physicochemical properties suitable for topical administration to the lung and promote long lasting tissue residency.
RESULTS

In vitro antifungal activity against laboratory adopted strains of *A. fumigatus*. The antifungal activity of test compounds against *A. fumigatus* strains (Itraconazole (ITC) susceptible-NCPF2010, AF294, AF293; ITC-resistant-AF72, AF91) were calculated from growth curves generated by spectrophotometric analysis and compared to positive and negative controls.

It was observed that significantly lower concentrations of PC1244 were needed for endpoints (50% inhibition (IC\textsubscript{50} [OD]) and 90% inhibition (IC\textsubscript{90} [OD]) than those of all reference compounds, including voriconazole (VRC), posaconazole (POS) and itraconazole (ITC), against ITC-susceptible *A. fumigatus* laboratory strains (NCPF2010, AF294, AF293, Table 1) (22, 23).

In addition, PC1244 was the most active test agent against known ITC-resistant *A. fumigatus* strains (AF72, AF91) (24, 25) (Table 1).

In vitro antifungal activity against clinically isolated *A. fumigatus*. The antifungal activity of PC1244 was further evaluated in 96 clinical isolates [obtained from the Saint Louis Hospital, Paris, France (50 isolates) and NW Mycology Centre, Manchester, UK (46 isolates)]. In this study, PC1244 was found to be 6.2-fold more potent than VRC and demonstrated comparable effects to POS based on their geometric means (Table 2, Fig 2). During this assay, the quality control strain *A. fumigatus* ATCC204305 was used for validation and posaconazole showed a MIC of 0.25 µg/ml, within the range set by the EUCAST guidelines.

In vitro assessment of antifungal activity using CLSI methodology. *A. fumigatus* growth inhibition by PC1244 was confirmed by the CLSI method as well as the EUCAST microdilution
method. Following the CLSI methodology guidelines (M38-A (26)), the growth of four ITC-susceptible laboratory *A. fumigatus* strains was assessed visually. PC1244 generated a MIC (0.063 μg/ml) which was comparable to POS (0.047 μg/ml) and 8-fold more potent than VRC (0.5 μg/ml).

CYP51 binding properties. Both PC1244 and POS produced type II difference spectra when titrated against purified recombinant *A. fumigatus* (AF293) CYP51A and CYP51B enzymes. PC1244 bound with similar affinities to the two isoenzymes as POS (CYP51A, *K*_d values 0.74 and 0.96 μM for PC1244 and POS, respectively; CYP51B, *K*_d values of 0.018 and 0.012 μM, respectively) (Fig 3A, B). The low-end accuracy limit for *K*_d determinations using the modified Morrison equation is ~0.5 to 1% of the enzyme concentration (27), i.e. 0.020 to 0.040 μM in this study. Consequently, calculated *K*_d values below 0.020 μM should be treated numerically as <0.020 μM.

Inhibitory activity against *A. fumigatus* CYP51 enzyme. The inhibitory activities of PC1244 against *A. fumigatus* sterol 14α-demethylases were determined using 0.5 μM *A. fumigatus* CYP51A and 0.5 μM CYP51B in the membrane fraction prepared from *Escherichia coli* expression clones, and compared to those of posaconazol. Both PC1244 and POS were strong tight-binding inhibitors of CYP51A and CYP51B *in vitro* activity (CYP51A IC₅₀ values for PC1244 and POS: 0.27 and 0.16 μM; and CYP51B IC₅₀ values of 0.23 and 0.17 μM, respectively), suggesting *K*_{i,app} values below 1 nM (27), with PC1244 being equally as effective as POS (Fig 3C, D). This data suggests that both agents share the same mode of action; by directly coordinating as the sixth axial ligand of the CYP51 heme iron.
Cell based *A. fumigatus* sterol composition and CYP51 assay. The sterol composition of *A. fumigatus* (NCPF2010) was determined for cells treated with 0, 0.0001, 0.001, 0.01, 0.1, and 1 \(\mu g/ml \) PC1244 and posaconazole. Sterols were extracted by saponification with KOH followed by extraction with *n*-hexane and TMS-derivatisation prior to analysis by GC/MS. Azole treatment of *A. fumigatus* resulted in the dose dependent accumulation of the 14 \(\alpha \)-methylated sterols (lanosterol and eburicol) and the corresponding depletion of the final sterol product: ergosterol (Table 3), characteristic of cellular CYP51 inhibition.

CYP51 enzyme inhibitory activity was also measured in a cell-based assay, as described previously (28). In this plate-based ergosterol quantification experiment, oxidation of ergosterol by cholesterol oxidase was determined by observing the conversion of the weakly fluorescent resazurin to the highly fluorescent resorufin, and was normalised using crystal violet staining (indicating cell number). Mirroring the inhibitory activity observed in the cell-free model of CYP51 and the sterol profiles of treated cells, PC1244 strongly inhibited ergosterol production (IC\(_{50} = 0.0055 \mu g/ml; 0.0080 \mu M\)) and was 12-fold more potent than VRC (IC\(_{50} = 0.067 \mu g/ml; 0.19 \mu M\)) and 2.2-fold more potent than POS (IC\(_{50} = 0.012 \mu g/ml; 0.017 \mu M\)).

In vitro determination of persistence of action. The duration of action of test agents within the hyphae of *A. fumigatus* has been determined using a resazurin-based microtiter assay (28). *A. fumigatus* hyphae were exposed to test agents for 16 h and the inhibition of fungal growth was measured, and the efficacy was compared with that obtained after contact with drug for only 20 minutes, followed by washout and incubation for the same period. As seen in Table 4, it was observed that PC1244 (IC\(_{50}: 0.00011 \mu g/ml\)) was 100 and 4.1-fold more potent than VRC and POS, respectively, at inhibiting hyphal *A. fumigatus* growth. In addition, the potency of VRC and
POS diminished markedly, after short contact and washout, by factors of >93-fold and 4.9-fold, respectively. In contrast, washout produced only a 2.4-fold reduction in the activity of PC1244 compared with continuous contact in this experimental paradigm (Table 4, Fig 4A and B).

In a second system, the persistence of action of the same three agents on A. fumigatus-infected bronchial epithelial cells was quantified using GM production in the culture supernatant as an index of fungal growth. BEAS2B cells were infected with A. fumigatus, and the effects of a 24 h washout period (media change) prior to infection were examined. A one hour contact time with PC1244 followed by 24 h washout resulted in a 5.4-fold loss of potency against A. fumigatus, compared with the control where there was no washout. POS showed a greater loss of its activity on washout (14.7-fold) and it was particularly notable that VRC was ineffective under the same test conditions (Table 4, Fig 4C and D). The pattern of effects mirror those seen in A. fumigatus hyphae (above) and imply that only a short contact period of bronchial epithelial cells with PC1244 would be required for the agent to exert a long duration of therapeutic action.

In vitro fungicidal activity against A. fumigatus. The MFC for each compound was calculated 48 h after supernatants from the MIC assay were transferred to agar plates, and determined to be the lowest concentration of compound that yielded 3 colonies or less (CFU-MFC). PC1244 exhibited the greatest CFU-MFC of all compounds tested (2 µg/ml), and was 2 and 8-fold stronger than POS and VRC, respectively. The ratios of CFU-MFC versus MIC were 32, 32 and 9.6 for PC1244, POS and VRC, respectively (Table 5).

In addition, the fungicidal effect of each compound was determined using an XTT based quantitative colorimetric analysis (XTT-MFC). Absorbance was measured at OD_{450-620}, 24 h after supernatant including compound was removed from the wells used for broth microdilution MIC assay. Again, PC1244 exhibited the greatest level of inhibition of all compounds tested with a
XTT-MFC of 0.14 µg/ml. In this system, PC1244 was 3-fold more potent than POS and >229-fold more potent than VRC. The maximum inhibition of fungicidal activities for PC1244, POS and VRC were 99.9% at 1 µg/ml, 100% at 2 µg/ml and 69.2% at 32 µg/ml, respectively. In addition, the ratios of XTT-MFC versus MIC were 2.2, 3.4 and >19 for PC1244, POS and VRC, respectively (Table 5, Fig 5).

In vivo antifungal activity on ITC susceptible A. fumigatus infection. To assess the in vivo activity of PC1244, temporarily neutropenic mice infected with A. fumigatus (ATCC13073 [strain: NIH 5233]) were used. MIC values of PC1244, POS, VRC and ITC against this strain were 0.063, 0.125, 0.5 and 0.5 µg/ml, respectively. An aqueous suspension of PC1244 in isotonic saline (0.0032, 0.016 and 0.08 mg/ml, 35µl, please see the table 6 for conversion to mg/mouse or approximately mg/kg) was dosed by intranasal injection once daily for 3 days post infection with ITC-susceptible A. fumigatus. This “late intervention” regimen was found to strongly inhibit fungal load (CFU) in the lung, the highest dose (0.08 mg/ml) administered exhibiting 97% inhibition, when compared to vehicle (Fig 6A). In comparison, POS, given at the same level of 0.08 mg/ml, achieved only 39% inhibition of lung fungal load and the ID_{Log10} value (the dose to reduce 1 log10 of CFU/g) was 2.0 mg/ml (70µg/mouse)) which was 143-fold higher than that of PC1244 (ID_{Log10} : 0.014 mg/ml (0.49µg/mouse)). PC1244 also decreased GM concentrations in BALF in a dose-dependent manner, showing ID_{50} value of 0.032 mg/ml (1.1 µg/mouse), which was 6.7-fold lower than that of POS (ID_{50}: 0.21 mg/ml (7.4 µg/mouse)) (Fig 6B). PC1244 decreased GM concentrations in serum in a dose-dependent manner, too (Fig 4C). Notably, 0.08 mg/ml (2.8 µg/mouse) of PC1244 produced marked inhibition (82% inhibition) of GM in serum, whereas POS, at the same dose, did not show any effect (-11% inhibition). In pilot study, we also measured A. fumigatus PCR products in lung tissue, and consistent with these data.
above, PC1244 inhibited the accumulation of PCR product (Supplement Fig 1B). In addition, PC1244 also reduced *A. fumigatus* infection dependent increase in CXCL1 in BALF (Fig 6D), IL-6 (Fig 6E) and TNFα levels (Fig 6E4D) in serum.

Extended prophylaxis with PC1244 [0.0032 mg/ml (0.11 μg/mouse); -7/0] achieved a high level of inhibitory effects on fungal load and biomarkers when compared to that observed in the late intervention study (Day 1-3 treatment) at the same dose (Fig 6A vs. 7A, Fig 6C vs. Fig 7B). Furthermore, a marked difference between extended prophylaxis (-7/0) and a shorter period of treatment (-1/0) was also observed on CFU in lung, galactomannan in serum and MDA (malondialdehyde, an oxidative stress marker) in BALF (Fig 7A, B and C).

As we indicated persistent action of PC1244 in the *in vitro* system earlier, the persistent action was also evaluated *in vivo*. As the MIC value on the *A. fumigatus* strain (ATCC13073) used in this study was 2-fold lower in PC1244 than POS, PC1244 at 0.4 mg/ml (14 μg/mouse) and POS at 0.8 mg/ml (28 μg/mouse) were intranasally administered 16 h before *A. fumigatus* inoculation, and the lungs were collected for GM and CFU assessment 8 h after *A. fumigatus* inoculation. As observed in Fig. 8A and B, PC1244 showed significant inhibition on both GM and CFU in the lung, but POS did not despite of administration at a 2-fold higher dose. Thus, in the *in vivo* system, persistent action of PC1244 was confirmed.

Antifungal activity against non-*A. fumigatus* species. The *in vitro* activity of PC1244 was compared with VRC, and POS against 23 pathogenic fungi (1–2 isolates each) and the results are displayed in Table 7. In all non-Aspergillus and non-Candida species tested, PC1244 was more potent or comparable in potency to POS and VRC. Of particular note, PC1244 was effective (MIC, 0.25 – 2 μg/ml) against species in which VRC and POS had no effect within the concentration range tested (MIC, >8 μg/ml), including *Gibberella zeae* (*Fusarium*)
graminearum), Lichtheimia corymbifera, Mucor circinelloides, Rhizomucor pusillus and Rhizopus oryzae. PC1244 was found to have antifungal activity against A. flavus, A. niger, and A. terreus, albeit with less potency than POS. Against Aspergillus carbonarius, PC1244 was equally potent to POS and more potent than VRC. Against all Candida species tested (Candida albicans, Candida glabrata, Candida krusei and Candida parapsilosis), PC1244 was more potent than VRC, and stronger or comparable in potency to POS in its inhibitory activity.

DISCUSSION

In this report, we present data demonstrating that: 1. the novel triazole PC1244 possesses both potent and persistent antifungal activity and significant fungicidal activity against ITC susceptible and/or ITC resistant A. fumigatus *in vitro*, 2. the antifungal activity was confirmed in clinical isolates from two geographical areas, 3. intranasal once-daily PC1244 treatment exhibited potent antifungal effects against A. fumigatus *in vivo*, in temporarily neutropenic mice, 4. PC1244 showed a broad range of antifungal activity when screened against a panel of pathogenic fungal organisms.

The proposed mechanism of action of PC1244 is inhibition of sterol 14α-demethylase (CYP51A1), the enzyme required to convert eburicol to 14-demethylated eburicol, an essential step in the ergosterol biosynthesis pathway in fungi. Type II binding spectra, which display an A_{max} at 423-430 nm and a broad trough at 386-412 nm arise through a specific interaction in which the triazole N-4 nitrogen (posaconazole) or the imidazole ring N-3 nitrogen coordinates as the sixth axial ligand with the heme iron to form a low-spin CYP51-azole complex (29, 30).

PC1244 produced type II difference spectra when titrated against purified recombinant ITC-susceptible A. fumigatus (AF293) CYP51A and CYP51B, and bound with a similar affinity to
both enzymes as posaconazole. Furthermore, the strong inhibition of CYP51A activity observed with both PC1244 and posaconazole, characteristic of tight-binding inhibitors (IC$_{50}$ value approximately half that of the enzyme concentration present), exceeded that predicted by the calculated K_d values from ligand binding studies using recombinant CYP51A, suggesting that the conformation of purified CYP51A in solution differs from that in cell membranes.

In sterol composition determinations, treatment with increasing concentrations of either PC1244 or posaconazole, from 0 to 1 µg/ml, resulted in an accumulation of the 14-methylated sterols, lanosterol and eburicol, and depletion of the final sterol product, ergosterol; this pattern of effect is consistent with CYP51 inhibition being the key pharmacological activity of both agents. In addition, a cell-based assay of ergosterol biosynthesis in *A. fumigatus* demonstrated that PC1244 was 12 and 2.2-fold more potent at inhibiting ergosterol production than voriconazole and posaconazole, respectively. Thus, the mechanism of action of PC1244, as for other triazole antifungals, is the inhibition of fungal sterol 14α-demethylase, resulting in the depletion of ergosterol in the fungal membrane so disrupting membrane structure and function and inhibiting growth of the pathogenic organism (31).

A highly desirable feature of topical medicines is a long duration of action ensuring that the desired therapeutic activity is maintained throughout the inter-dose period. This is particularly relevant to the treatment of pulmonary infection with *A. fumigatus*, which germinates in both extracellular environments and intracellular compartments. The duration of action of PC1244 was therefore considered an important property and was evaluated in a variety of *in vitro* systems. In *A. fumigatus* hyphae, the IC$_{50}$ value measured for PC1244 following a 20 minute contact period and washout for 16 h was reduced only 2.4-fold relative to that obtained following continuous contact with the drug for the same period without washout. Furthermore, in the BEAS2B cell line, washout for 24 h, after a 1 h contact period, resulted in only an approximate
5-fold loss of potency against *A. fumigatus* compared with control. These observed properties of rapid cellular penetration and persistence of action, in the absence of the pathogen, may be particularly valuable characteristics, which enhance the potential use of PC1244 in prophylaxis. The persistent action of PC1244 was also confirmed in the *in vivo* system when administered 16 h before *A. fumigatus* inoculation (Figure 5).

In the *in vivo* system, intranasal treatment of PC1244 showed better effects than posaconazole despite comparable MIC values in *in vitro* testing. We speculate that, firstly, persistence of the drug substance on bronchial cells, as shown in Figure 4, is likely to be a contributory factor to the amplification of the antifungal effects of PC1244 *in vivo* seen in the current once daily treatment regimen. Secondly, we have demonstrated here that a 7 day extended prophylactic treatment (using very low doses) produced much greater anti-*Aspergillus* activity than prophylactic treatment for 1 day, and also that the effects of 7 day prophylactic treatment are maintained if treatment ceased when *Aspergillus* is inoculated on day 0 (Fig. 7).

This is powerful pharmacodynamic evidence that the effects of PC1244 accumulate on daily dosing in mice and are maintained when dosing is terminated. Thirdly, Baistrocchi and colleagues published evidence of the accumulation of posaconazole in granulocyte type cells and demonstrated enhanced synergic antifungal effects (by exposure of *Aspergillus* to cellular posaconazole during phagocytosis) (32). Considering the persistent action of PC1244, it is likely that granulocytes/macrophages containing PC1244 contributed to further enhancement of the antifungal effect.

Determining whether an antifungal compound is “fungistatic” or “fungicidal” is complex and the clinical utility of such characterisation is the subject of much debate. Fungal infections of body compartments that are not easily accessed by host defences require agents that are fungicidal in nature, and this is especially true in immunocompromised patients (33). For an
antibiotic to qualify as bactericidal its minimum bactericidal concentration (MBC) must be no more than 2× to 4× the MIC, but the definition of “fungicidal” is yet to be standardised (33). MFC determination in filamentous fungi is not standardised either, but studies have shown that reproducible MFCs can be obtained by following standardised broth microdilution methods for MIC determination, followed by subculture onto agar (33, 34). Defining an MFC as the lowest drug dilution to yield less than 3 colonies to obtain 99% - 99.5% killing activity, Espinel-Ingroff et al determined the MFC₀ range of itraconazole (0.2 – 4 μg/ml), voriconazole (0.5 – 4 μg/ml) and posaconazole (0.06 – 2 μg/ml), in a number of A. fumigatus isolates (34). However, it is worth noting that the agar subculture methodology tests for fungicidal activity on planktonic Af growth only. Here we have used a combination of different methodologies to attempt to determine the fungicidal activity of PC1244 and clinically used triazoles accurately. Using subculture on agar (CFU-MFC) gave an MFC of 2 μg/ml for PC1244 with an MFC/MIC ratio of 32, and similar results were seen with posaconazole (MFC = 4 μg/ml, MFC/MIC = 32), whilst voriconazole exhibited a higher MFC (16 μg/ml) but a lower MFC/MIC ratio (9.6). As discussed above, this data would suggest voriconazole is a more fungicidal compound as it exhibits a lower MFC/MIC ratio. However, recent studies have shown that this technique likely overestimates the fungicidal activity of a compound as it does not factor in viable conidia attached to the base of test wells (35). To account for this phenomenon, a colorimetric method for assessing the fungicidal activity of a compound against sessile A. fumigatus was used (35). MFC determination by this microbroth colorimetric method (XTT-MFC) gave an MFC of 0.14 μg/ml for PC1244 with an MFC/MIC ratio of 2.2, which was superior to both posaconazole (MFC = 0.42 μg/ml, MFC/MIC = 3.4) and voriconazole (MFC = >32 μg/ml, MFC/MIC = >19). Therefore, with these data we provide evidence that PC1244 is a fungicidal compound with a similar or improved degree of potency to posaconazole.
As with any study there are limitations, especially the *in vivo* study. Firstly, the delivery system does not mimic clinical use. The advantage of intranasal instillation is being able to confirm that all the solution is delivered into the body, but we do not control the level of lung exposure or the exposure site (same as aerosolization). However, we carefully optimised the intranasal dosing volume, as it has been shown that approximately 60% of the administered dose will be deposited in the lung after intranasal treatment (36) and also we confirmed trachea/lung deposition after intranasal administration of 35 µL of methylene blue solution to A/J mice (data not shown). Aerosolization with close drug monitoring at the exposure site (rather than systemic) is ideal, but this is not easily achieved as special imaging equipment is required, as Miller *et al* demonstrated elegantly using whole-Animal Luminescent Imaging (37). Secondly, CFUs were determined in only whole left lobe. This will cause location bias of fungal load, and ideally we should test in homogenate from the whole lung. However, when we determined CFU and GM in right lobe and left lobe, we did not find any significant difference of these biomarkers between right lobe and left lobe (data not shown). In addition, to avoid this bias, we determined GM in BALF and serum. Thirdly, there was a lack of pharmacokinetic measurement of PC1244 in mice used for the *in vivo* study. PC1244 has been optimised for topical treatment to the lung to maximize local exposure and minimise systemic exposure. Systemic concentrations of drug are therefore not a useful surrogate marker to help explain the different antifungal efficacy of compounds. However, we have some data demonstrating that measurable levels of systemic exposure do occur. In preliminary studies using non-infected mice dosed intra-tracheally with 40 µL of a 2 mg/ml aqueous suspension of PC1244, it was shown that the plasma concentrations of PC1244 ranged from 111 ~ 303 ng/ml 2 hours post dose, and 249 ~ 339 ng/ml 8 hours post dose. But this had been reduced to 41.5 ~ 50.7 ng/ml 24 hours post dose despite decent *in vivo* effects after once daily treatment. Under the same conditions, the plasma concentrations achieved with
posaconazole were 15.6 ~ 125 ng/ml at 24 hours post dose, which was more variable but not too different from that of PC1244, although the in vivo activity of PC1244 was superior to that of posaconazole. As PC1244 has much less oral availability compared with posaconazole (unpublished data), the exposure results from absorption through the respiratory tract (not by accidental ingestion of compound during dosing). Furthermore, all compounds are water insoluble, and administered topically (exposed to respiratory tract directly). We do not, therefore, believe that water solubility is a key factor explaining the in vivo efficacies or topical exposure levels. Finally, we tested only limited isolates of azole resistant strains. Further study will be required with a wide range of clinical azole resistant isolates with different genotypes to determine its potency against recent A. fumigatus strains with TR34/L98H and TR46/Y121F/T289A mutations or other genetic cause(s) underlying resistance.

Thus, due to its superior or comparable activity against both azole susceptible and azole resistant A. fumigatus, persistent action, extended retention within the lung after topical treatment and broad repertoire of fungal targets, PC1244 has the potential to become a valuable new therapeutic agent for the treatment of A. fumigatus and other, difficult to treat, fungal infections in man.
MATERIALS & METHODS

Antifungal agents. PC1244 was synthesised by Sygnature Discovery Ltd (Nottingham, UK), and voriconazole (Tokyo Chemical Industry UK Ltd., Oxford, UK), posaconazole (Apichem Chemical Technology Co., Ltd., Zhejiang, China), itraconazole (Arkopharma, Carros, France), amphotericin B (Selleckchem, Munich, Germany) and caspofungin (Selleckchem, Munich, Germany) were procured from commercial sources. For in vitro antifungal assays, stock solutions of test agents were prepared in DMSO (2000 μg/ml). For in vivo studies, solid materials of test agents were directly suspended in physiological saline at 10 mg/ml, and diluted with physiological saline after sonication.

A. fumigatus CYP51 binding assay and enzyme inhibitory activity. A. fumigatus CYP51 binding properties were determined as previously reported (28, 38). Test agents were titrated against 4 μM recombinant A. fumigatus (AF293 strain) CYP51A or CYP51B proteins and binding saturation curves were constructed from the change in the absorbance between the spectral peak and the trough. A rearrangement of the Morrison equation was used to determine the dissociation constant (K_d) values when ligand binding was tight (39).

A CYP51 reconstitution assay system was used to determine 50% inhibitory (IC_50) concentrations (40). Test agent was added to a mixture of 0.5 μM CYP51, 1 μM A. fumigatus cytochrome P450 reductase isoenzyme 1 (AfCPR1), 50 μM eburicrol, 4% (v/v) 2-hydroxypropyl-β-cyclodextrin, 0.4 mg/ml isocitrate dehydrogenase, 25 mM trisodium isocitrate, 50 mM NaCl, 5 mM MgCl_2 and 40 mM 3-(N-morpholino)propanesulfonic acid (MOPS; pH ~7.2). The mixtures were then incubated at 37°C for 10 minutes prior to initiation with 4 mM β-NADPHNa_4 followed by shaking for 20 minutes at 37°C. Sterol metabolites were recovered by extraction.
with ethyl acetate followed by derivatisation with 0.1 ml \(N,O\)-
bis(trimethylsilyl)trifluoroacetamide : trimethylchlorosilane (99:1) and 0.3 ml anhydrous
pyridine prior to analysis by gas chromatography mass spectrometry.

\(A.\ fumigatus\) sterol analysis. A working suspension of \(A.\ fumigatus\) spores (NCPF2010) was
prepared in filter-sterilised MOPS RPMI-1640 (RPMI-1640 containing 2 mM L-glutamine, 2%
glucose, 0.165 M MOPS, buffered to pH 7 with NaOH) at a final concentration of 8 x 10^6 spores
ml\(^{-1}\). To each 100 mm Petri dish, 10 ml of the working suspension was added and the dishes
were incubated for 4 h at 35°C and 5% CO\(_2\). Samples for baseline determinations were collected
by scraping, pelleted by centrifugation at 2000 rpm for 5 minutes and stored at -80°C. Test
compounds or DMSO (50 µl) were added to the remaining dishes, which were subsequently
gently rocked by hand to disperse the compounds. Dishes were incubated for 2 h at 35°C and 5%
CO\(_2\). Samples were collected and processed as described above. Posaconazole and PC1244
concentrations of 0.0001, 0.001, 0.01, 0.1 and 1 µg ml\(^{-1}\) were tested. These samples were
prepared in the laboratory at Pulmocide Ltd., and sent to the laboratory in the Centre for
Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School,
for analysis.

Non-saponifiable lipids were extracted as previously reported (31) and were derivatised
with 0.1 ml \(N,O\)-bis(trimethylsilyl)trifluoroacetamide : trimethylchlorosilane (99:1) and 0.3 ml
anhydrous pyridine (2 h at 80°C) prior to analysis by gas chromatography mass spectrometry
(41). Sterol composition was calculated using peak areas from the gas chromatograms and the
mass fragmentation patterns compared to known standards were used to confirm sterol identity.
The sterol content of \(A.\ fumigatus\) (basal) and treated \(A.\ fumigatus\) (either DMSO, posaconazole
or PC1244) were determined in three biological replicates.
A. fumigatus cell based ergosterol assay. Growth medium (RPMI-1640, 2 mM L-glutamine, 2% glucose, 0.165 M MOPS, 0.5% BSA, pH 7.0) was added across a 96-well plate and test agents were added in duplicate. A. fumigatus (NCPF2010) conidia were added across the plate at a final concentration of 1 x 10^4 ml^-1. After incubation for 24 h at 35°C, media was removed from all wells and replaced with reaction buffer (Amplex red cholesterol assay kit, ThermoFisher, A12216) and Amplex red solution. Plates were incubated for 30 minutes at 37°C, protected from light, after which fluorescence was quantified using a spectrophotometer. Media was removed from all wells and replaced with crystal violet solution (1% v/v), and plates were incubated at room temperature on a shaker for 30 minutes. Plates were washed three times with PBS, and sodium dodecyl sulphate solution (0.1% v/v) was added across the plate to lyse the cells. After incubation at room temperature for 1 h, absorbance was measured at OD_{590} using a spectrophotometer.

In vitro antifungal activity against A. fumigatus. Assessment of antifungal activity against a selection of A. fumigatus laboratory/clinical strains (NCPF2010 [National Collection of Pathogenic Fungi (NCPF), Bristol, UK], AF72 [NCPF, Bristol, UK], AF91 [NCPF, Bristol, UK], AF293 [NCPF, Bristol, UK], AF294 [NCPF, Bristol, UK]) was performed using EUCAST methodology as previously reported (28), in a 384-well plate format as quadricates, in three independent experiments. Growth medium (RPMI-1640, 2 mM L-glutamine, 2% glucose, 0.165 M MOPS, 0.5% BSA, pH 7.0) was added across the plate, test agents were added in quadruplicate and the DMSO concentration was identical across the plates. Conidia were added across the plate at a final concentration of 1 x 10^5 ml^-1. Plates were incubated for 48 h at 35°C after which turbidity was assessed by measuring optical density (OD) at 530 nm using a...
spectrophotometer, and the IC$_{50}$ and IC$_{90}$ values were calculated from the concentration-response curve generated for each test compound using a four-parameter logistic equation (Dotmatics, Bishops Stortford, UK). *A. fumigatus* ATCC204305 was used as the assay control. Determination of antifungal activity against 50 *A. fumigatus* clinical isolates from St Louis Hospital (Paris, France) was performed with 96-well plates using the EUCAST method shown above (28) in duplicate. Antifungal susceptibility testing for 46 *A. fumigatus* isolates [obtained from the North West England Mycology Reference Centre] was performed as singlicate by Evotec (UK) Ltd (Manchester, UK) according to EUCAST guidelines. Assessment of the antifungal activity of four of the *A. fumigatus* strains (ATCC1028, ATCC10894, ATCC13073, and ATCC16424) was performed as singlicate according to M38-A methodology described by the Clinical and Laboratory Standards Institute (CLSI) (26) by Eurofins Panlabs Taiwan Ltd. (Taipei, Taiwan).

In vitro antifungal activity against other fungal species. For the measurement of activity against *C. gattii*, the method described in EUCAST definitive document EDef 7.2 was used and assay plates were incubated statically at 37°C in ambient air for 24 h (± 2 h) unless poor growth necessitated further incubation to 36 or 48 h (42). Antifungal potency against *Aspergillus flavus*, *Aspergillus niger* and *A. terreus*, was determined as set out in EUCAST definitive document EDef 9.2 and assay plates were incubated at 37°C for 48 h (43). These tests were conducted at Evotec (UK) Ltd (Manchester, UK). Measurement of activity against other fungi was performed by Eurofins Scientific according to methodology described by the Clinical and Laboratory Standards Institute (CLSI) (CLSI M38-A (26) or M27-A2 (44), www.eurofinspanlabs.com). The source or strain name of each fungus species was indicated in Table 6. The MIC against *C.*
albicans, C. parapsilosis and C. glabrata were determined using an azole endpoint, which indicates 50% inhibition of fungus growth.

In vitro fungicidal activity of PC1244 against A. fumigatus. The antifungal activity of PC1244 against A. fumigatus [NCPF2010] was determined in 96-well plates using the methodology described above as duplicates, in three independent experiments. After the MIC for each compound was recorded, fungicidal activity was determined as previously described (35). Briefly, media from each well (100 μl/well) was removed after pipetting up and down five times and sub-cultured onto 4% Sabouraud dextrose agar plates. The plates were incubated (35°C with ambient air) for 48 h and the colony forming units (CFU) were counted for each compound concentration. The minimum fungicidal concentration (MFC) was determined as the lowest compound concentration yielding 3 colonies or less.

After removal of media for culture-based CFU testing, the contents of all wells were carefully aspirated and warm PBS (200 μl/well) was added. After gentle agitation, the contents of all wells were aspirated and fresh medium added (200 μl/well). The plates were incubated (35°C with ambient air) for 24 h. A working solution of 0.5 mg/ml XTT and 125 μM menadione was prepared in PBS and added across the plate (50 μl/well). The plates were incubated (35°C with ambient air) for 2 h, after which plates were agitated gently for 2 min. The optical density (OD) of each well at 450 nm and 620 nm was measured using a multi-scanner (Clariostar: BMG, Buckinghamshire, UK). The MFC (XTT-MFC) was calculated from the concentration-response curve generated using a cut-off of 99% inhibition.

In vitro determination of persistence of action on A. fumigatus hyphae. The persistence of action of test agents was determined in A. fumigatus hyphae (NCPF2010) as previously reported
(28). Briefly, conidia diluted in growth media (RPMI-1640, 2 mM L-glutamine, 2% glucose, 0.165 M MOPS, pH 7.0) were added across a 384-well plate at a final concentration of 1×10^3/well. After incubation at 35°C for exactly 6 h, test and reference articles or neat DMSO (as vehicle) (0.5 µl/well) were added to the appropriate wells to give a final concentration of 0.5% DMSO. The plates were incubated for exactly 20 minutes at 35°C and 5% CO₂. After the incubation time had elapsed all wells on the designated washout plate were aspirated and growth media (100 µl/well) was added across the plate. For the non-washout plate, after compounds were added to hyphae, no media change was applied. Resazurin (0.04% diluted in growth media) was added to all wells of both non-washout and washout plates (5 µl/well) to give a final concentration of 0.002% resazurin. The plates were incubated at 35°C and 5% CO₂ for 16 h. Subsequently fluorescence in each well was measured at $\lambda_{ex}/\lambda_{em}$ 545/600 nm using a multiscanner (Clariostar: BMG, Buckinghamshire, UK). The percentage inhibition for each well was calculated and the IC₅₀ value was calculated from the concentration-response curve generated for each test compound using a four-parameter logistic equation (Dotmatics, Bishops Stortford, UK). This study was conducted in quadruplicates, in three independent experiments.

In vitro determination of persistence of action on bronchial epithelial cells. The persistence of action of test agents was evaluated in immortalised, bronchial, epithelial cells (BEAS2B) as previously reported (28). Each experiment consisted of one non-washout plate (96-well) and a parallel washout plate into which BEAS2Bs were seeded at a concentration of 3×10^4 cells/well in growth media (RPMI-1640, 2 mM L-glutamine, 10% FCS), and incubated for 24 h at 37°C, 5% CO₂. Test and reference articles or neat DMSO (as vehicle) (0.5 µl/well) were added to the appropriate wells of the washout plate to give a final concentration of 0.5% DMSO. The plate was incubated for exactly 1 h at 37°C and 5% CO₂. After the incubation time had elapsed all
wells on the washout plate were aspirated and growth media (100 µl/well) was added across the plate. After 24 h incubation at 37°C, test and reference articles or neat DMSO (as vehicle) (0.5 µl/well) were added to the appropriate wells of the non-washout plate to give a final concentration of 0.5% DMSO. The plate was incubated for exactly 1 h at 37°C and 5% CO₂ after which A. fumigatus conidia were added across both plates at a final concentration of 1 x 10⁷/well. Fungal growth was determined after a further 24 h incubation at 35°C, 5% CO₂, by measuring galactomannan (GM) concentrations, using Platelia GM-EIA kits (Bio-Rad Laboratories, 62794). The percentage inhibition for each well was calculated and the IC₅₀ value was calculated from the concentration-response curve generated for each test compound using a four-parameter logistic equation (Dotmatics, Bishops Stortford, UK). This study was conducted in triplicates, in three independent experiments.

In vivo antifungal activity against A. fumigatus infection. As previously reported (28), we tested antifungal effects of test articles on A. fumigatus infected, temporarily neutropenic mice. Specific pathogen-free A/J mice (male, 5 weeks old) were used for A. fumigatus infection as they have been described to be more susceptible to A. fumigatus infection previously (45). Animals (N=6 per group) were then dosed with hydrocortisone (Sigma H4881, 125 mg/kg, subcutaneously) on days 3, 2 and 1 before infection, and with cyclophosphamide (Sigma C0768; 250 mg/kg, intraperitoneally) two days before infection to induce temporary neutropenia. Both hydrocortisone and cyclophosphamide were diluted with physiological saline. To avoid bacterial infection during immunosuppression, drinking water was supplemented with tetracycline hydrochloride (Sigma T7660; 1 µg/ml) and ciprofloxacin (Fluka 17850; 64 µg/ml). Conidia of A. fumigatus (ATCC13073 [strain: NIH 5233]) were aseptically dislodged from the malt agar plates
and suspended in sterile distilled water with 0.05% Tween 80 and 0.1% agar. On the day of infection, 30 µl (15 µl in each nostril) of the conidia suspension (1.67 × 10⁸/ml in physiological saline) was administered intranasally under 3% isoflurane.

Test agents, suspended in physiological saline, were administered intranasally (35 µl, approximately 17.5 µl each in each nostril), once daily, on days 1, 2 and 3 post infection. To investigate extended prophylaxis, PC1244 was administered intranasally once daily, on days -7 to 0 and the effects were compared with treatment on days -1 to 0. As the injection volume was fixed and body weight was changed every day, especially after infection, the accurate dose unit was µg/mouse. However, as the average body weight after immunosuppression and just before infection was 20 g, we also calculated estimated dose as mg/kg. Therefore, 35 µl injections of 0.0032, 0.016, 0.08, 0.4, 2 mg/ml were equivalent to 0.11, 0.56, 2.8, 14, 70 µg/mouse, respectively, which were approximately 0.0056, 0.028, 0.14, 0.7, 3.5 mg/kg, respectively (Table 6).

A body weight loss of > 20%, compared with an animal’s weight on day 1, or a mouse death, were both defined as “drop-out” events. Animals that lost > 20% of their initial body weight were sacrificed. Animals were terminally anaesthetised 6 h after the last dose of drug was administered on day 3. The volume inserted intranasally is reported to achieve almost 60% deposition into the lung (36).

BALF was collected through cannulated tracheas using physiological saline (46), blood was then collected via cardiac puncture, and lung tissue was removed for homogenate preparation. The *Aspergillus* GM concentration in serum was determined with Platelia GM-EIA kits (Bio-Rad Laboratories, 62794). The value was provided as a “cut-off index” (COI) which was calculated by the formula: COI = OD in sample / OD in cut-off control, provided by the kit. For tissue fungal load, 100 mg of whole left lobe of lung tissue was removed aseptically and homogenized
in 0.2 ml of 0.1% agar in sterile distilled water as previously reported (28). We confirmed that
the CFU level was not significantly different between the right lung and left lung. Serially
diluted lung homogenates were plated on malt agar plates (50 μl/plate), and incubated at 24 ±
1°C for 72 to 96 h. The colonies of A. fumigatus on each plate were counted and the fungal titre
presented here as CFUs (x10^3) per gram of lung tissue.

Measurement of TNFα and IL-6 in serum and CXCL1 in BALF was performed using
Quantikine® mouse ELISA kit (R&D systems, Inc., Minneapolis, MN, USA). MDA
(malondialdehyde) analysis was also performed using OxiSelect® TBARS Assay Kit (MDA
Quantitation; Cell Biolabs Inc, San Diego, CA, USA). For quantitative PCR, DNA amplification
was performed with Premix Ex Taq™ (Takara Bio, Kusatsu, Japan) and analysed in 96-well
optical reaction plates, using the standard curve method. A. fumigatus 18S rRNA gene fragments
were amplified with the primer pair; 5'-GGCCCTTAAATAGCCCGGT-3' and 5’-
TGAGCCGATAGTCCCCCTAA-3’, and hybridization probe; 5’-FAM-
AGCCAGCGCCGGCAATG-TAMRA-3’. Each 25 μl reaction solution contained 50 ng of
DNA from mice lungs and 200 nM of probe. The PCR protocol was as follows: incubation at
50°C for 2 min and 95°C for 10 min; followed by 55 cycles of 65°C for 1 min and 95°C for 15
sec. The fluorescence was monitored at the end of each cycle to obtain a measure of the amount
of PCR product formed. The cycle numbers at which each sample reached the threshold were
determined and the amounts of A. fumigatus DNA in 50 ng of mice lung DNA was evaluated
from the standard curve with the cycle numbers and log2 concentrations of 0.05-50,000 pg of
DNA from A. fumigatus. All animal studies were approved by the Ethics Review Committee for
Animal Experimentation of Nihon University. A. fumigatus studies were approved by the
Microbial Safety Management Committee of Nihon University School of Pharmacy (E-H25-
001).
Statistical analysis. Results are expressed as means ± standard error of the mean (SEM). For comparison between groups either the ordinary one-way ANOVA with Tukey’s post hoc comparison or the Kruskal-Wallis ANOVA with Dunn’s post hoc comparison test were performed. Statistical significance was defined as $P<0.05$.
ACKNOWLEDGEMENTS

We are grateful to Mr. Marcus Hull and the Engineering and Physical Sciences Research Council National Mass Spectrometry Service Centre at Swansea University for assistance in GC/MS analyses. This work was in part supported by the European Regional Development Fund / Welsh Government funded BEACON research program (Swansea University). We are also grateful to Mr. Takahiro Nakaoki (Nihon University) for assistance in the in vivo study.
REFERENCES

24. EUCAST. 2015. EUCAST Antifungal agents breakpoint tables for interpretation of MICs. EUCAST.

Testing and the Need for Azeole Resistance in Aspergillus fumigatus.

microdilution minimum inhibitory concentrations of antifungal agents for conidia forming moulds. EUCAST.

FIGURE LEGENDS

FIG 1 Structure of PC1244

FIG 2 Inhibitory activity of PC1244 against 96 clinical isolates of *A. fumigatus* in France and UK. Each horizontal bar was presented as Geometric mean with 95% confidence interval.

FIG 3 Efficacy of PC1244 on sterol 14α-demethylase (CYP51) activity. (A, B) Type II azole binding spectra for *A. fumigatus* CYP51A (A) and CYP51B (B), each experiment was performed 4-6 times although only one replicate is shown, (C, D) Azole IC₅₀ determinations of posaconazole (●) and PC1244 (●), mean relative velocity values are shown with standard deviations for *A. fumigatus* CYP51A (C) and CYP51B (D).

FIG 4 Duration of action of PC1244 against *A. fumigatus*. (A, B) Persistence of action of PC1244 (A) and voriconazole (B) on *A. fumigatus* hyphae, mean values and SEM of 3 independent experiments (each experiment was conducted in quadruplicate), (C, D) Persistence of action of PC1244 (C) and voriconazole (D) on human bronchial cell lines (BEAS2B) infected with *A. fumigatus*, mean values and SEM of 3 independent experiments (each experiment was conducted in triplicate).

FIG 5 Colorimetric microbroth assessment of fungicidal activity of PC1244 against *A. fumigatus* [NCPF2010] *in vitro*. Mean values and SEM of 3 independent experiments.

FIG 6 Antifungal activity of PC1244 against *A. fumigatus in vivo*. PC1244 (0.0032, 0.0016 and 0.08 mg/ml aqueous suspension) and posaconazole (0.08, 0.4 and 2 mg/ml aqueous suspension)
were intranasally given on days 1, 2 and 3 post infection of *A. fumigatus* in temporary neutropenic immunocompromised mice, Fungal load (CFU/g lung tissue) in lung (A), galactomannan (GM) in BALF (B) galactomannan (GM) in serum (C), CXCL1 in BALF (D), IL-6 in serum (E) and TNFα in serum (F) were evaluated on day 3 post infection (N=5–6). (N=6). Each horizontal bar was presented as mean ± SD from 5–6 mice per group. * P<0.05, **P<0.01, ***p<0.001 vs. infected control. “+” dead before sample collection. Serum could not collected from dead mice.

FIG 7 Antifungal activity of extended prophylaxis treatment of PC1244 against *A. fumigatus* in vivo. Effects of 7 days extended prophylaxis with intranasal PC1244 was compared with that of 1 day prophylaxis treatment only on lung fungal load (CFU/g tissue) (A), GM (COI) in serum (B) and malondialdehyde (MDA) in BALF (C) of *A. fumigatus* infected immunocompromised mice (N=4–5). Each horizontal bar was presented as mean ± SD from 4–6 mice per group. * P<0.05.

FIG 8 Single prophylactic treatment of PC1244 and posaconazole against *A. fumigatus* in vivo. PC1244 at 0.4 mg/ml (14 µg/mouse) and posaconazole at 0.8 mg/ml (28 µg/mouse) were intranasally administered 16 h before *A. fumigatus* inoculation, and the lungs were collected for galactomannan (GM, COI) (A) and fungal load (CFU/g tissue) (B) assessment at 8 h after *A. fumigatus* inoculation. Each bar was presented as mean ± SD from 3–4 mice per group. * P<0.05.

<table>
<thead>
<tr>
<th>Strain</th>
<th>PC1244</th>
<th>Voriconazole</th>
<th>Posaconazole</th>
<th>Itraconazole</th>
<th>Amphotericin B</th>
<th>Caspofungin</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCPF2010</td>
<td>0.0017 (0.0022)</td>
<td>0.15 (0.21)</td>
<td>0.0070 (0.0084)</td>
<td>0.037 (0.054)</td>
<td>0.20 (0.62)</td>
<td>0.065 (>1)</td>
</tr>
<tr>
<td>AF294</td>
<td>0.0021 (0.0041)</td>
<td>0.083 (0.27)</td>
<td>0.0056 (0.011)</td>
<td>0.041 (0.052)</td>
<td>0.21 (0.79)</td>
<td>>1 (>1)</td>
</tr>
<tr>
<td>AF293</td>
<td>0.0026 (0.012)</td>
<td>0.25 (0.74)</td>
<td>0.010 (0.028)</td>
<td>0.032 (0.23)</td>
<td>0.24 (0.85)</td>
<td>>1 (>1)</td>
</tr>
<tr>
<td>AF72</td>
<td>0.0024 (0.026)</td>
<td>0.025 (0.066)</td>
<td>0.042 (0.30)</td>
<td>0.31 (>1)</td>
<td>0.12 (0.42)</td>
<td>0.065 (>1)</td>
</tr>
<tr>
<td>AF91</td>
<td>0.0037 (0.024)</td>
<td>0.14 (0.28)</td>
<td>0.038 (0.049)</td>
<td>0.22 (>1)</td>
<td>0.28 (0.75)</td>
<td>0.11 (>1)</td>
</tr>
</tbody>
</table>

IC₅₀ and IC₉₀ values were determined from optical density measurements.

All compounds have been tested in a range of concentrations (0.002 – 1 µg/ml). The data are from 3 independent experiments and each test was performed in quadricate.
TABLE 2 In *vitro* activities of PC1244, posaconazole and voriconazole against 96 clinically isolated *A. fumigatus* strains.

<table>
<thead>
<tr>
<th>Test Agent</th>
<th>MIC (μg/ml)</th>
<th>Range</th>
<th>Geometric mean</th>
<th>Mode</th>
<th>MIC<sub>50</sub></th>
<th>MIC<sub>90</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1244</td>
<td>0.008 – 2</td>
<td>0.067****</td>
<td>0.016</td>
<td>0.032</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td>0.06 – 4</td>
<td>0.42</td>
<td>0.50</td>
<td>0.50</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Posaconazole</td>
<td>0.016 – 2</td>
<td>0.10****</td>
<td>0.032</td>
<td>0.063</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

*a*All MIC were determined visually; MIC₅₀ and MIC₉₀ values represent the concentrations required to inhibit 50 and 90% of the strains tested.

*b****, P < 0.0001; versus the results for voriconazole (One way ANOVA with Tukey’s test).
TABLE 3 Mean percentage sterol composition of *A. fumigatus* treated with either posaconazole (A) or PC1244 (B) of three biological replicates (± standard deviation from the mean).

(A) Sterol compositions (posaconazole-treated [µg/ml])

<table>
<thead>
<tr>
<th>Sterol</th>
<th>DMSO</th>
<th>0.0001</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergosterol</td>
<td>100</td>
<td>94.5</td>
<td>87.2</td>
<td>74.7</td>
<td>67.8</td>
<td>67.4</td>
</tr>
<tr>
<td>Ergost-5,7-dienol</td>
<td>0</td>
<td>3.3</td>
<td>3.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lanosterol</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
<td>7.0</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Eburicol</td>
<td>0</td>
<td>2.2</td>
<td>5.9</td>
<td>18.3</td>
<td>23.4</td>
<td>23.8</td>
</tr>
</tbody>
</table>

(B) Sterol compositions (PC1244-treated [µg/ml])

<table>
<thead>
<tr>
<th>Sterol</th>
<th>DMSO</th>
<th>0.0001</th>
<th>0.001</th>
<th>0.01</th>
<th>0.1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergosterol</td>
<td>100</td>
<td>91.3</td>
<td>89.2</td>
<td>76.8</td>
<td>61.0</td>
<td>58.7</td>
</tr>
<tr>
<td>Ergost-5,7-dienol</td>
<td>0</td>
<td>4.6</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lanosterol</td>
<td>0</td>
<td>1.7</td>
<td>2.8</td>
<td>8.5</td>
<td>12.3</td>
<td>13.1</td>
</tr>
<tr>
<td>Eburicol</td>
<td>0</td>
<td>2.5</td>
<td>3.4</td>
<td>14.7</td>
<td>26.7</td>
<td>28.2</td>
</tr>
</tbody>
</table>
TABLE 4 Potencies and persistence of action of PC1244, posaconazole and voriconazole in *A. fumigatus* hyphae and in BEAS2B cells infected with *A. fumigatus*.

<table>
<thead>
<tr>
<th>Test Agent</th>
<th>IC₅₀ (µg/ml)</th>
<th>Hyphae</th>
<th>BEAS2B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No washout</td>
<td>Washout</td>
<td>Fold change</td>
</tr>
<tr>
<td>PC1244</td>
<td>0.00011*</td>
<td>0.00025</td>
<td>2.41</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>0.011</td>
<td>>1</td>
<td>>93</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>0.00045</td>
<td>0.0022</td>
<td>4.90</td>
</tr>
</tbody>
</table>

a* P < 0.05 for PC1244 versus the results for voriconazole (Kruskal-Wallis one-way ANOVA with Dunn’s test).

Data are from 3 independent experiments, and each assay was conducted in quadruplicate for hyphae assay and in triplicate for BEAS2B assay.
TABLE 5 Mean fungicidal activity of PC1244, posaconazole and voriconazole against *A. fumigatus* (NCPF2010) of three biological replicates (± standard deviation from the mean).

<table>
<thead>
<tr>
<th>Test Agent</th>
<th>MIC (μg/ml)</th>
<th>CFU/MFC</th>
<th>XTT/MFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1244</td>
<td>0.063 ± 0</td>
<td>2 [32]</td>
<td>0.14 [2.2]</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>1.67 ± 0.58</td>
<td>16 [9.6]</td>
<td>>32 [>19]</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>0.125 ± 0</td>
<td>4 [32]</td>
<td>0.42 [3.4]</td>
</tr>
</tbody>
</table>

Data are from 3 independent experiments, and each assay was conducted in duplicate.
Table 6: Conversion of units of dose given to mice in vivo study

<table>
<thead>
<tr>
<th>mg/ml aqueous suspension</th>
<th>mg/mouse</th>
<th>approx. mg/kg†</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0032</td>
<td>0.00011</td>
<td>0.0056</td>
</tr>
<tr>
<td>0.016</td>
<td>0.00056</td>
<td>0.028</td>
</tr>
<tr>
<td>0.08</td>
<td>0.0028</td>
<td>0.14</td>
</tr>
<tr>
<td>0.4</td>
<td>0.014</td>
<td>0.70</td>
</tr>
<tr>
<td>0.8</td>
<td>0.028</td>
<td>1.4</td>
</tr>
<tr>
<td>2</td>
<td>0.07</td>
<td>3.5</td>
</tr>
</tbody>
</table>

1. 20g is used for calculation as average body weight of used mice.
TABLE 7 Antifungal effects of PC1244, voriconazole and posaconazole on other fungal species.

<table>
<thead>
<tr>
<th>Species (Strain[s])</th>
<th>Strains tested</th>
<th>Culture method</th>
<th>MIC (μg/ml)</th>
<th>PC1244</th>
<th>Voriconazole</th>
<th>Posaconazole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus carbonarius (ATCC8740)</td>
<td>1</td>
<td>CLSI</td>
<td>0.063</td>
<td>0.5</td>
<td>0.063</td>
<td></td>
</tr>
<tr>
<td>Aspergillus flavus (ATCC204304)</td>
<td>1</td>
<td>CLSI</td>
<td>0.25</td>
<td>2</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Aspergillus flavus (AFL8; NRRC3357)</td>
<td>2</td>
<td>EUCAST</td>
<td>0.38</td>
<td>0.63</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Aspergillus niger (ATCC1015)</td>
<td>1</td>
<td>EUCAST</td>
<td>0.5</td>
<td>1</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Aspergillus terreus (AT49; AT7130)</td>
<td>2</td>
<td>EUCAST</td>
<td>0.38</td>
<td>1</td>
<td>0.093</td>
<td></td>
</tr>
<tr>
<td>Penicillium chrysogenum (ATCC9480)</td>
<td>1</td>
<td>CLSI</td>
<td>0.13</td>
<td>2</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Penicillium citrinum (ATCC9849)</td>
<td>1</td>
<td>CLSI</td>
<td>0.5</td>
<td>।</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Trichophyton rubrum (ATCC10218)</td>
<td>1</td>
<td>CLSI</td>
<td>0.031</td>
<td>0.063</td>
<td>0.031</td>
<td></td>
</tr>
<tr>
<td>Aureobasidium pullulans (ATCC9348)</td>
<td>1</td>
<td>CLSI</td>
<td>1</td>
<td>।</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cladosporium argillaceum (ATCC38013)</td>
<td>1</td>
<td>CLSI</td>
<td>0.25</td>
<td>0.5</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Candida albicans (20240.047; ATCC 10231)</td>
<td>2</td>
<td>CLSI</td>
<td>।</td>
<td>0.14</td>
<td>।</td>
<td></td>
</tr>
<tr>
<td>Candida albicans-AR c (20183.073; 20186.025)</td>
<td>2</td>
<td>CLSI</td>
<td>(0.25, <0.0078)</td>
<td>10</td>
<td>8.13</td>
<td></td>
</tr>
<tr>
<td>Candida glabrata (ATCC 36583; R363)</td>
<td>2</td>
<td>CLSI</td>
<td>(<0.0078, 0.13)</td>
<td>8.13</td>
<td>।</td>
<td></td>
</tr>
<tr>
<td>Candida kruusei (ATCC6258)</td>
<td>1</td>
<td>CLSI</td>
<td>0.13</td>
<td>0.25</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td>Candida parapsilosis (ATCC22019)</td>
<td>1</td>
<td>CLSI</td>
<td>0.25</td>
<td>NT</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Chaetomium globosum (ATCC44699)</td>
<td>1</td>
<td>CLSI</td>
<td>0.063</td>
<td>।</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>Gibberella zeae (Fusarium graminearum) (ATCC16106)</td>
<td>1</td>
<td>CLSI</td>
<td>1</td>
<td>।</td>
<td>।</td>
<td></td>
</tr>
<tr>
<td>Cryptococcus gattii (Clinical isolate)</td>
<td>1</td>
<td>EUCAST</td>
<td>0.5</td>
<td>0.125</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Cryptococcus neoformans (ATCC24067)</td>
<td>1</td>
<td>CLSI</td>
<td>0.016</td>
<td>0.016</td>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>Lichtheimia corymbifera (ATCC 7909)</td>
<td>1</td>
<td>CLSI</td>
<td>1</td>
<td>>8</td>
<td>>8</td>
<td></td>
</tr>
<tr>
<td>Mucor circinelloides (ATCC8542)</td>
<td>1</td>
<td>CLSI</td>
<td>2</td>
<td>>8</td>
<td>>8</td>
<td></td>
</tr>
<tr>
<td>Rhizomucor pusillus (ATCC16458)</td>
<td>1</td>
<td>CLSI</td>
<td>2</td>
<td>>8</td>
<td>>8</td>
<td></td>
</tr>
<tr>
<td>Rhizopus oryzae (ATCC11145)</td>
<td>1</td>
<td>CLSI</td>
<td>0.25</td>
<td>>8</td>
<td>>8</td>
<td></td>
</tr>
</tbody>
</table>

* Due to the limited number of strains tested, the mean of isolate MICs is presented.

*MIC indicates 50% inhibition of fungal growth as azole readout.

*AR, azole resistant (fluconazole and voriconazole).

*All details of isolate and assay protocol are described in https://www.eurofinspanlabs.com

*NT = not tested.
FIGURE 5

Inhibition (%) vs. Concentration (µg/ml)

- PC 1244
- Pozaconazole
- Voriconazole