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On determination of pre-stress and elastic properties of virus capsids

Ankush Aggarwal1, ∗

1Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, UK SA1 8EN
(Dated: February 28, 2018)

Virus capsids are protein shells which protect the virus genome, and determination of their me-
chanical properties has been a topic of interest because of their potential use in nanotechnology and
therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium
state, due to their construction. These stresses, termed “pre-stresses” in this study, closely affect the
capsid’s mechanical behavior. Three methods — shape-based metric, atomic force microscope in-
dentation, and molecular dynamics — have been proposed to determine the capsid elastic properties
without fully accounting for pre-stresses. In this paper, we theoretically analyze the three methods
used for mechanical characterization of virus capsids and numerically investigate how pre-stresses
affect the capsid’s mechanical properties. We consolidate all the results and propose that by using
these techniques collectively, it is possible to accurately determine both the mechanical properties
and pre-stresses in capsids.

PACS numbers: 87.10.Pq, 87.14.E-, 87.15.A-, 87.15.La
Keywords: Macromolecules, continuum properties, potential of mean force, reference configuration, virus
capsid

I. INTRODUCTION

The protein coat that protects the genome in viruses,
called the capsid, has fascinated biologists, physicists,
and mechanicians alike. Its varying mechanical proper-
ties during assembly and maturation indicate the impor-
tance of having the appropriate mechanical conditions
for the virus life-cycle. Thus, a better understanding of
capsid mechanics could provide new therapeutic targets
and advance their use in nanotechnology [1, 2].

Virus capsids are assembled from tens to hundreds
of similar proteins. Continuum theory is an attractive
choice for modeling them because, unlike molecular mod-
els, it can be used to simulate them over longer time
scales. Interestingly, isotropic continuum elasticity has
been successful in describing the mechanical behavior of
virus capsids [3–6], and multiple studies modeled capsid
as a shell surface [7–10].

There are several overarching questions about the va-
lidity of continuum theory at the scale of virus capsids
and appropriateness of isotropic versus anisotropic and
homogeneous versus heterogeneous treatment. In our re-
cent study, we tried to answer some of these questions
[11]. We showed that for continuum theory to be appli-
cable, the molecular level stresses need to be averaged to
zero, which also makes the shell continuum description
more appropriate than 3D continuum description [11].

The continuum models come with unknown elastic con-
stants. For example, in shell theory, the capsid has an
in-plane stiffness Y and Poisson’s ratio ν and a bend-
ing stiffness κ. In this study, we look at the practical
question of determining these elastic stiffnesses, so that
the mechanical behavior of capsids can be accurately de-
scribed. Many previous studies have proposed several
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different methods to this end. Here, we focus on three
methods: using the capsid shape [12], indentation us-
ing atomic force microscopy (AFM) [5, 6, 13–15], and
molecular dynamics [9]. All of these methods are limited
to isotropic and homogeneous models, which will remain
the remit of this study as well.

In addition to the elastic constants, continuum models
also make an inherent assumption about the “stress-free”
reference state, with respect to which stresses are calcu-
lated. In virus capsids, because of their construction,
their equilibrium state is not a stress-free state due to
the pre-existing stresses called “pre-stresses”. The ef-
fect of pre-stresses on the capsid shape has been studied
[7, 10, 12, 16]. However, their effect on the mechanical
behavior is not fully understood.

In this study, we aim to reconcile the above three ap-
proaches into a consistent framework that can accurately
determine the mechanical properties of virus capsids, as
well as identify the pre-stresses originating from two dif-
ferent sources. We hypothesize that in order to achieve
this, results from the three techniques need to be an-
alyzed simultaneously. Therefore, we theoretically and
computationally study the three techniques without fo-
cussing on determining the stiffness parameters of a spe-
cific capsid.

In the next section, we describe our mechanical model,
the cases considered, and the numerical discretization
used to solve the equations. Then, we present a sec-
tion on each of the three methods with a background
and our analysis. First, we briefly review the relation
between capsid shape and elastic parameters and pre-
stresses. Then, we present the results of numerically
simulated AFM indentation for varying elastic param-
eters and pre-stresses. Thirdly, we describe the relation
between molecular dynamics fluctuations and elastic pa-
rameters of a shell in a general case. For a spherical shell
without pre-stresses, we derive this relation analytically
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and verify numerically. For cases with pre-stresses, we
present the numerical results. Finally, we discuss consol-
idation of all of the results and insights obtained from
this study.

II. MODEL AND DISCRETIZATION

In order to calculate the mechanical response of a virus
capsid, we first present the details of its mechanical model
based on thin shell continuum theory.

A. Definition and Kinematics

We model the capsid as a closed elastic surface S ∈ R3

parameterized by curvilinear coordinates (s1, s2), which
map onto the surface. We consider three configura-
tions for the mapping: the stress-free configuration sα →
X̄(sα), the equilibrium configuration sα → X(sα), and
the deformed configuration sα → x(sα). Following the
standard definitions in differential geometry, the covari-
ant basis vectors are

Āα =
∂X̄

∂sα
, Aα =

∂X

∂sα
, and aα =

∂x

∂sα
, (1)

in the stress-free, equilibrium, and deformed configura-
tions, respectively. Contravariant basis vectors are de-
fined by relations aα · aβ = δβα, and metric tensor has
covariant components aαβ = aα ·aβ etc. In the deformed
configuration, the surface normal is calculated as

n =
a1 × a2

‖a1 × a2‖
, (2)

and the curvature tensor is [17]

b =

(
− ∂n
∂sα
· aβ

)
aα ⊗ aβ =

(
n · ∂aβ

∂sα

)
aα ⊗ aβ . (3)

From the curvature tensor, mean and Gaussian curva-
tures are obtained using relations H = 1

2 tr (b) = 1
2b
γ
γ

and K = det(b) = |bβα|, respectively.
The deformation gradient from stress-free to deformed

configuration is F = ∂x/∂X̄, which is calculated as F =
aα ⊗ Āα – a rank-2 tensor. The right Cauchy-Green
deformation tensor is C = F>F.

B. Elastic Energy

In the deformed configuration, the elastic energy of the
shell is split into bending and in-plane stretching compo-
nents and is written as an integral of the strain energy
density:

Ψ(x) = Ψb + Ψs =

∫

S

WdS. (4)

FIG. 1. Definition of the deformation gradient and strain
tensors between “stress-free” (X̄), equilibrium (X), and de-
formed (x) configurations.

We follow the commonly used assumption that the bend-
ing energy vanishes in the flat configuration [7, 12] and,
therefore, is only dependent on the curvature tensor after
deformation:

Ψb(b) =

∫

S

[
1

2
κ (2H)

2
+ κGK

]
dS. (5)

Furthermore, we only study closed shells which have the
same topology, and by Gauss-Bonnet theorem, the inte-
gral of Gaussian curvature remains constant. Thus, for
constant κG, the second term in the above energy term
remains constant under any deformation. Hence, effec-
tively, the bending energy depends only on the mean cur-
vature and bending stiffness κ. It is easy to see that for
a closed shell of a given surface area, the bending energy
by itself (5) is minimized for a spherical configuration.
For the in-plane stretching energy, we use a compressible
neo-Hookean model [7, 10, 18]

Ψs(C) =

∫

S

[
λ+ µ

2
(J − 1)

2
+
µ

2

(
tr(C)

J
− 2

)]
dS,

(6a)
where

J2 =
1

2

{
[tr(C)]

2 − tr(C2)
}
. (6b)

The Lamé parameters λ and µ are related to the 2D
Young’s modulus Y and Poisson’s ratio ν via relations

λ =
Y ν

1− ν2 and (7a)

µ =
Y

2(1 + ν)
. (7b)

Once linearized for the small displacement case, the neo-
Hookean model (6) is equivalent to the St. Venant Kirch-
hoff’s strain energy density function used in the literature
[19]. By definition, the equilibrium configuration is the
one that minimizes the elastic energy of the shell, i.e.

X = arg min
x

Ψ(x). (8)
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FIG. 2. (Color online) Depiction of the three cases considered
here and their stress-free configurations: (a) no pre-stress,
(b) CK pre-stress, and (c) conformational pre-stress. Shells
are colored by their radius to emphasize their shape.

C. Cases Studied

We study the following three cases for the stress-free
configuration X̄:

1. A perfect sphere of radius R is the stress-free con-
figuration (Fig. 2a).

2. A flat hexagonal lattice is the stress-free configu-
ration (Fig. 2b), which, following the Caspar-Klug
(CK) construction [20], closes into an icosahedron.

3. The stress-free configuration is obtained after ap-
plying a deformation gradient Fc (called conforma-
tional strain) to the flat hexagonal sheet (Fig. 2c).
We use a specific form of Fc observed in several
immature capsids [21–25], which is a piecewise con-
stant. That is, Fc = 1 + ηu1 ⊗ u2 for hexamers
(i.e. shear strain η along direction u1, with u2 be-
ing perpendicular to u1 and 1 = uα ⊗ uα being
the 2-D identity tensor) and Fc = 1 for pentamers.
As u1 varies from hexamer to hexamer, it leads to
a broken stress-free state [7]. We note that setting
η = 0 gives Fc = 1 everywhere (i.e. zero confor-
mational pre-stress) and reduces to the second case
above. Also, we specifically focus on η = 0.2 which
is the value of shear observed in bacteriophage pro-
capsids [10].

D. Discretization and Numerical Solution

For numerical calculation of the mechanical response
of the shell model, we divide the capsid surface into 26880
triangles with 13442 nodes. Therefore, we discretize the
position on the capsid surface at time point t as

x(sα; t) =

Nnodes∑

I=1

NI(s
α)xI(t), (9)

where xI is the position of node I and NI are the shape
functions corresponding to that node (capital indices are
used to denote node numbers). We use C1-continuous
subdivision finite element shape functions for the bending
energy Ψb (5) and C0-continuous linear Lagrange polyno-
mials for the stretching energy Ψs (6). Interested readers
are referred to the literature for more details on these nu-
merical methods [10, 26].

III. CAPSID SHAPE

One of the earliest indicators of stiffness parameters
was the capsid shape [12, 16], and it has been studied in
full for all the three cases presented. We present some of
the main results here for completeness. We quantify the
shape of capsid using asphericity defined as the deviation
from a perfect sphere [12]

A =
〈∆R2〉S
〈R〉2S

, (10)

where ∆R = R − 〈R〉S and angle brackets 〈·〉S denote
average over the shell surface. For our finite element
models, these averages are computed over the vertices of
the mesh. For reference, we note that A = 0 for a perfect
sphere and Â ≈ 0.0026 for a perfect icosahedron.

The first case we consider is trivial as the capsid shape
is a perfect sphere irrespective of its stiffness parameters,
i.e. A = 0. Since the bending energy is also minimized for
a spherical shape, the capsid’s equilibrium configuration
is also a perfect sphere with energy Ψ = 8πκ, irrespective
of its mechanical properties.

For the second case with CK construction, we note that
if we disregard the bending energy, the equilibrium shape
is a perfect icosahedron with A ≈ 0.0026. However, since
an icosahedron has infinite curvature at its edges (and
therefore infinite bending energy), the equilibrium con-
figuration lies somewhere between a sphere and an icosa-
hedron depending on the capsid’s stiffness parameters.
Specifically, it was shown that the asphericity depends
only the dimensionless Föppl von Kármán (FvK) number
γ = Y R2/κ (Y and κ are the in-plane and bending stiff-
nesses and R is the radius) [12]. The twelve pentamers
behave as disclination sites because of the construction
from a hexagonal lattice, resulting in pre-stressed pen-
tamers. We call these stresses the CK pre-stresses after
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the CK construction of icosahedral capsids [20]. Conse-
quently, the shell goes through a transition from spherical
to faceted shape for γ ≈ 500 (Fig. 3). Hence, the capsid
shape was proposed to indicate the ratio of its in-plane
and bending stiffnesses [12], and a similar result was ob-
tained for non-icosahedral capsids [16].

We recently demonstrated that a similar, and even re-
verse, shape transition can be driven without changing
the mechanical properties, but instead by shearing the
individual hexamer units [7], which is the third case.
The shear in hexamers, which is observed in several bac-
teriophage procapsids, adds another pre-stress (termed
as conformational pre-stress). This additional pre-stress
may release or enhance the CK pre-stress in pentamers.
Hence, it is possible to drive the capsid shape tran-
sition via a mechanism independent of its mechanical
properties, and this discovery has rendered the shape-
based indicator ineffective. Once the shear directions
have been fixed, the equilibrium configuration depends
on both FvK number γ and shear η. For η = 0.2, the
shape transition is delayed (at γ ≈ 5000) and severely

limited (A/Â = 0.2 only in contrast with 0.8 for Case
2). We have generalized these results to capsids with
different protein arrangements and shear directions [10].

0
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FIG. 3. Normalized asphericity of the capsid as a function
of FvK number γ: there is a buckling transition in Case 2,
which is significantly reduced in Case 3 with η = 0.2.

IV. AFM INDENTATION

A. Background

A popular experimental technique for estimating the
mechanical stiffness of capsids is indentation using atomic
force microscopy (AFM) [5, 6, 13–15], which determines
the force fz versus indentation depth δ response of the
whole capsid. Many capsids behave elastically, especially
for small indentations, and the effective capsid stiffness
is defined as the slope of the force-indentation curve:
kcap = fz/δ. In order to calculate the continuum elastic-
ity constants, we need to relate them with the effective

capsid stiffness.
It is not possible to determine this relation for a gen-

eral nonlinear elasticity case. For linearized shell the-
ory, kcap ∝

√
κY /R. In many studies, stiffnesses are

related to Young’s modulus E through shell thickness h
as Y ∼ Eh and κ ∼ Eh3, so that kcap ∝ Eh2/R [5, 6].
However, these relations between Y , κ, and E hold true
only if the material properties are uniform through the
shell thickness, which is not the case for highly hetero-
geneous molecular systems. As an example, in the case
of lipid bilayers, Y ≈ 0 but κ is finite with a finite shell
thickness.

Furthermore, the relation kcap ∝
√
κY /R comes from

linearized elasticity theory for a perfect sphere, and the
effect of pre-stresses—either CK or conformational—is
not included. The effect of CK pre-stress has only been
partially studied; for example, in the case of failure of
capsids [8] and release of pre-stresses [15]. However, its
effect on experimental predictions has not been described
in full, and the effect of conformational pre-stress has not
been studied. Next, we describe our numerical method
to determine these relations.

B. Method

The indentation of the capsid is solved as a quasi-static
problem. The substrate is modeled as a rigid flat plate
at the bottom and the AFM tip as a rigid hemisphere of
radius Rtip ≈ R/3 at the top (Fig. 4). For the spherical
stress-free state (Case 1), we indent along any arbitrary
axis because of the capsid’s spherical symmetry. How-
ever, following the CK construction, instead of spheri-
cal symmetry, the capsid has an icosahedral symmetry.
Therefore, in Cases 2 and 3, the capsid is indented along
2-fold, 3-fold, and 5-fold symmetry axes. As the AFM
tip and substrate (both modeled as rigid bodies) come
into contact with the capsid, constraint conditions on
the capsid boundary are introduced. The coefficient of
friction between the capsid and rigid bodies is set to be
high enough (µf = 1) to avoid any slipping.

(a) (b)

5

32

Y

Z

X
AFM tip

Substrate

FIG. 4. AFM indentation simulation for (a) spherically sym-
metric Case 1 and (b) Cases 2 and 3 with icosahedron sym-
metry using AFM tip radius Rtip ≈ R/3.

Under AFM indentation, the deformed configuration
is determined by numerically minimizing the elastic en-
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ergy (4) subject to constraints due to contacts between
the capsid and AFM tip and substrate. The contact con-
straint conditions are solved using the augmented La-
grange algorithm [27, Chapter 6]. The simulation is re-
peated for varying values of FvK number γ (between
O(10) and O(103)) and shear η (between −0.3 and 0.3).
Based on the linearized theory, the force along inden-
tation direction fz and indentation depth δ are non-
dimensionalized using

√
κY and R, respectively. Capsid

stiffness can be estimated by comparing the experimental
and theoretical force-indentation responses.

C. Results

1. Spherical case

Indentation of spherical shells has been investigated
in detail [28–30]. For small indentations, the force-

indentation relationship follows fz/
√
κY = αδ/R, where

α is a proportionality constant that depends on the fric-
tion and indentor tip size. Furthermore, the “drop” in
the force-indentation relation which denotes a buckling-
type event happens whenever the capsid loses contact
with the indentor tip or substrate. The number and
amount of drops depend on the indentor tip radius [28].
ForRtip ≈ R/3, which is commonly accepted for AFM in-
dentation of capsids, there is no drop (Fig. 5). For small
indentation α ≈ 3.3, independent of the FvK number,
which is consistent with previous results [31]. However,
we see that even a sphere without pre-stresses shows a
softening behavior at large indentations, which becomes
more pronounced as we increase γ.

0

3

0 1

Increasing γ

0.0

0.2

0.0 0.1

f z
/√

κ
Y

δ/R

FIG. 5. (Color online) Non-dimensionalized force-indentation
curves for a spherical shell (Case 1) with varying FvK number
γ. Inset shows zoom-in at small indentation, such that the
initial slope is independent of γ.

2. Effect of pre-stress

In order to study the effect of pre-stresses, we com-
bine Cases 2 and 3 and simulate indentation for varying
values of γ (CK pre-stress) and shear η (conformational
pre-stress). The results show that, in general, adding
pre-stresses makes the capsid softer at higher indenta-
tions compared to the spherical case (Fig. 6). The force-
indentation curve for η = 0 along 5-fold axis is different
from the 2-fold and 3-fold axes, and this difference be-
comes more prominent at higher γ (Fig. 6). At higher
FvK number, the shell goes through a buckling transi-
tion when indented along the 5-fold axis, but the buck-
ling transition is usually delayed or softened along 2- and
3-fold axes. Rather interestingly, the 2-fold, 3-fold, and
5-fold curves become almost indistinguishable at η = 0.2,
even at high γ. In general, the variation of shear η, at
any given FvK number γ, changes the relative difference
between different orientations minimizing at η = 0.2.

Furthermore, the initial slope of the non-
dimensionalized force-indentation curve for 2-fold
and 3-fold sites remains relatively constant for varying
γ and η (Fig. 7). However, the same is not true for the
5-fold axis, where the initial slope becomes more than
twice at higher FvK numbers. These results suggest that
the relation between effective capsid stiffness and elastic
constants depends on pre-stresses as well as orientation
of the indentation, and that a single proportionality
relation may lead to inaccurate elastic constants.

V. EQUILIBRIUM FLUCTUATIONS

A. Background

An alternative to using experimental measurements is
to calculate the elastic properties of capsid from molec-
ular interactions as proposed by May and Brooks [9].
However, May and Brooks analyzed only the simplest
case without any pre-stresses and ignored non-radial dis-
placements. As a result they could not fit the first two
modes, which resulted in inconsistent elastic parameters
[11]. Here we extend their approach to a general case and
include pre-stresses.

B. Theory

We assume that we have a molecular dynamics trajec-
tory of the capsid, where the atoms vibrate around the
equilibrium state exploring all the microstates. In order
to develop the relationship between molecular dynamics
trajectory and elastic properties of the capsid, we define a
deformation field u around the equilibrium configuration
as

x(X; t) = X + u(X; t). (11)
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FIG. 6. (Color online) Non-dimensionalized force-indentation curves (vertical axes are fz/
√
κY and horizontal axes are δ/R) for

an icosahedral shell with varying FvK number γ and shear η (Cases 2 and 3). Three orientations were simulated: 2-fold (red),
3-fold (green), and 5-fold (blue). The dashed line shows the response of a sphere without pre-stresses (Case 1) for comparison.
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FIG. 7. (Color online) Non-dimensionalized slope for small
indentation for an icosahedral shell with varying FvK number
γ and shear η (Cases 2 and 3)

For small displacements, such as those encountered in
thermal vibrations, we keep only the lowest (quadratic)
order displacement terms in the energy expression.
Therefore, the energy change with respect to the min-
imum energy (i.e. the equilibrium state) is written as

∆Ψ =
1

2

∫

S
u · ∂

2W

∂u2
· u dS. (12)

We use � to denote the inner product on surface S as

v �w =

∫

S

v ·w dS, (13)

and v ·w =
∑
i viwi represents the Cartesian inner prod-

uct. We can choose an orthonormal basis for the dis-
placement field U i, i.e. U i � U j = δij , so that the
displacement field is written in this basis as u(X; t) =∑
i ρi(t)U

i(X). An important observation is that if the
basis is chosen such that the energy expression can be
written as a quadratic sum

∆Ψ =
1

2

∑

i

ρ2iΛi, (14)

for some scalars Λi, it becomes possible to invoke the
theorem of equipartition. That is, the average value of
each term in the above summation equals kBT/2 energy.
Thereby, we obtain the expression for time-averaged
mode amplitude squared

〈
ρ2i
〉

=
kBT

Λi
, (15)

which allows us to relate the molecular dynamics tra-
jectory and elastic model. Comparing (12) and (14), it
is easy to see that the basis must be the eigenvectors
of ∂2W/∂u2 and Λi are the corresponding eigenvalues.
Therefore, in order to relate the thermal vibrations with
continuum elastic energy, we need to compute the eigen-
decomposition.

It is important to note that if there are repeated eigen-
values of multiplicity m corresponding to eigenmodes
that are degenerate (for example related by rotation of

the frame of reference), then that eigenmode–combining
all its degenerate versions–gets mkBT/2 energy. For ex-
ample, the rigid translation in three dimensions of any
elastic body has three zero eigenvalues, and the thermal
energy of the rigid translation is 3kBT/2. A similar argu-
ment holds for rigid rotations and other eigenmodes with
repeated eigenvalues.

For the discretized case with u(sα; t) =∑
I NI(s

α)uI(t), the energy change becomes

∆Ψ =
1

2

∑

I,J

u>I ·



∫

S

NI
∂2W

∂uIuJ
NJdS


 · uJ , (16)

and the orthonormality condition becomes

∑

I,J

Um
I ·



∫

S

NI(s
α)NJ(sα)dS


 ·Un

J = δmn. (17)

We solve this discretized generalized eigenvalue problem
numerically using a sparse FEAST solver [32] for γ vary-
ing in the range O(10) to O(104). For Case 3, the shear
is kept constant at a value of 0.2, as per the experimental
images of HK97 procapsid—a bacteriophage virus whose
hexamers are sheared [7]. The second derivative in (16)
is calculated using central finite difference method.

C. Spherical Harmonic Decomposition

Different cases may have different eigenfunctions. As
we will see that spherical harmonics are the eigenvectors
for the case without pre-stresses (Case 1), that is not true
for pre-stressed shells (Cases 2 and 3). In order to di-
rectly compare different cases, we use spherical harmon-
ics as the common basis to further decompose the equilib-
rium fluctuations of a general case. Spherical harmonics
Y lm of degree l = 0, . . . ,∞ and order m = −l, . . . , l are
defined as the eigenfunctions of Laplace-Beltrami opera-
tor ∇2 on a sphere of radius R

R2∇2Y lm = −l(l + 1)Y lm, (18)

and are orthogonal such that Y lm � Y l′m′
= R2δll′δmm′ .

The radial part [33] of a trajectory can be projected onto
the spherical harmonic (SH) basis as:

u(X; t) · r̂ =
∑

l,m

alm(t)Y lm(X). (19)

Therefore, we get

∑

i

ρi(t)U
i(X) · r̂ =

∑

l,m

alm(t)Y lm(X), (20)

and the SH amplitude

alm(t) =
∑

i

ρi(t)

(
U i(X) · r̂

)
� Y lm(X)

Y lm(X)� Y lm(X)
. (21)
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We use the fact that Brownian motion over the surface is
completely uncorrelated, i.e. the time-averaged 〈ρiρj〉 =
0 for i 6= j. Thus, we get a simplified expression for the
time-averaged value of the SH amplitude squared (also
called SH fluctuation):

〈
a2lm
〉

=
∑

i

〈
ρ2i
〉
[(
U i(X) · r̂

)
� Y lm(X)

Y lm(X)� Y lm(X)

]2
. (22)

Denoting the inner product of i-th eigenfunction with lm
SH

V lmi =

(
U i · r̂

)
� Y lm

Y lm � Y lm , (23)

using (15), and summing over order m = −l, . . . , l, we
get total fluctuation of SH mode with degree l:

〈
a2l
〉

=

l∑

m=−l

∑

i

kBT

Λi

[
V lmi

]2
. (24)

Hence, given the elastic properties of capsid, its SH fluc-
tuations under thermal excitation can be computed with-
out calculating a trajectory; one only needs to calculate
the eigenfunctions U i and corresponding eigenvalues Λi.
Alternatively, the MD trajectory can be directly decom-
posed to get these fluctuation values, as demonstrated by

May and Brooks [9]. A comparison of
〈
a2l
〉

from theory
and MD provides estimates of capsid elastic parameters
(Y , ν and κ).

D. Spherical Case

In this section, we describe the analytical expression
for the eigenvectors and eigenvalues for the first case of
sphere without any pre-stresses, as reported by Widom et
al. [19]. These expressions are then compared to numeri-
cal calculations for verification and also used to calculate
the spherical harmonic amplitude.

The displacement field on a perfectly spherical surface
of radius R can be written using vector spherical har-
monics as the basis [19]

u =
∑

l,m

(
ξLR ∇Y lm + ξTR r̂ ×∇Y lm + ξrY

lmr̂
)
.

(25)
When the displacement field (25) is used in (12), we get

∆Ψ =
∑

l,m

1

2

[
ξTR

2l(l + 1), ξLR
2l(l + 1), ξrR

2
]
· H · ξ,

(26)
where ξ = [ξT , ξL, ξr]

> and the expression for the matrix

H =



µ (l−1)(l+2)

R2 0 0

0 (λ+ µ) l(l+1)
R2 + µ (l−1)(l+2)

R2 (λ+ µ) 2
R2

0 (λ+ µ) 2l(l+1)
R2 (λ+ µ) 4

R2 + κ l(l−1)(l+1)(l+2)
R4


 (27)

is borrowed from Widom et al. [19]. Using the property
of vector spherical harmonics, the normalization condi-
tion becomes

ξ2TR
2l(l + 1) + ξ2LR

2l(l + 1) + ξ2rR
2 = 1. (28)

From the definition (23) we see that V lmi = ξrδll′δmm′ .

1. Radial displacement only

In order to compare our results with the previous work
by May and Brooks [9], we consider the special case when
in-plane deformation is restricted to be null ξT = ξL = 0
(i.e. only radial displacement is allowed). Thus, we get

∆Ψ =
∑

l,m

1

2

[
(λ+ µ)

4

R2
+ κ

l(l − 1)(l + 1)(l + 2)

R4

]
ξ2rR

2.

(29)
Therefore, we get the eigenvalues for this case:

Λl = (λ+ µ)
4

R2
+ κ

l(l − 1)(l + 1)(l + 2)

R4
, (30)

and, by orthonormality (28), ξr = V lmi = 1/R. Using
the relation between Y and µ (7b), the eigenvalues can
be non-dimensionalized as

ΛlR
2

µ
= 4

(
λ

µ
+ 1

)
+2(1+ν)

l(l − 1)(l + 1)(l + 2)

γ
. (31)

Furthermore, for ν = 1/3, we get λ = µ, and, thus,
ΛlR

2/µ = 8 + [8l(l − 1)(l + 1)(l + 2)] /3γ. These can
be plotted (Fig. 8) and we see that eigenvalues converge
ΛlR

2/µ→ 8 as γ →∞ ∀l.
Next, using these expressions for eigenvalues and V lmi

in (24), we get the SH fluctuation

〈
a2l
〉

=

l∑

m=−l

kBT

R2Λi
=

l∑

m=−l

kBT

(λ+ µ)4 + κ l(l−1)(l+1)(l+2)
R2

.

(32)
We note that the summand is independent of m. Thus,
rearranging we get (for ν = 1/3)[34]

〈
a2l
〉
µ

kBT
= (2l+ 1)

(
8 +

8l(l − 1)(l + 1)(l + 2)

3γ

)−1
. (33)
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FIG. 8. (Color online) Non-dimensionalized eigenvalues for
radial-only motion of a sphere (Case 1) versus FvK number γ
(lines are the analytical solution (31) and points are numerical
results showing an excellent fit)

An excellent agreement is obtained when analytical ex-

10−2

10−1
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101 102 103 104

µ
〈 a

2 l

〉

γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 9. (Color online) Spherical harmonic decomposition of
equilibrium fluctuations for radial-only motion of a sphere
(Case 1) versus FvK number γ (lines are the analytical solu-
tion (33) and points are numerical results)

pression is plotted with the numerical solution (Fig. 9).
We also note that

lim
γ→∞

〈
a2l
〉
µ

kBT
=

(2l + 1)

8
. (34)

2. All displacements allowed

For the general case when in-plane deformations are
also allowed, we split the normal modes into purely in-
plane modes (ξr = 0) and those with radial components
(ξr 6= 0). Only the latter contribute to the SH fluctua-
tions

〈
a2l
〉
. Since the equations involved are cumbersome,

the details are presented in Appendix A. Conveniently,
vector spherical harmonics are the eigenfunctions. Nu-

100

101

102

103

101 102 103 104

Λ
lR

2
/µ

γ

l = 0
l = 1

l = 2
l = 3

l = 4

0

0.5

1

101 102 103 104
R
V

lm i

γ

FIG. 10. (Color online) (Top) Eigenvalues of radial modes and
(bottom) their radial component for a sphere (Case 1) versus
FvK number γ (lines are the analytical solution (A1,A6,A9)
and points are numerical results).

merical and analytical solutions of the eigenvalues show
an excellent agreement (Fig. 10).

We note that the l = 0 degree mode retains its eigen-
value, and thus the fluctuations

〈
a20
〉

remain the same
as the previous purely-radial case (Figs. 9,11). However,
the eigenvalue of l = 1 degree mode increases by 50%
compared to the purely-radial case, and its equilibrium
fluctuations decrease. Also, the eigenvalues do not con-
verge to the same value at large γ (Fig. 10). Both l = 0
and 1 modes remain independent of the bending modulus
κ. Furthermore, there are two eigenvalues correspond-
ing to each degree l—one lower than the purely-radial
case and the other higher. Since contribution of each
mode to the equilibrium fluctuations is inversely propor-
tional to its eigenvalue,

〈
a2l
〉

is predominantly decided
by the lower frequency modes. As a result, the equilib-
rium fluctuations for l ≥ 2 increase. Hence, including
the in-plane deformations qualitatively changes the nor-
mal modes and equilibrium fluctuations.
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FIG. 11. (Color online) Spherical harmonic decomposition
of equilibrium fluctuations of a sphere (Case 1) versus FvK
number γ (lines are the analytical solution (A10) and points
are numerical results)
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FIG. 12. (Color online) Spherical harmonic decomposition
of equilibrium fluctuations of an icosahedron (Case 2) versus
FvK number γ (only numerical results, as analytical solution
could not be obtained)

E. CK Pre-stress

When we follow Caspar-Klug construction and incor-
porate the associated pre-stresses, it breaks the spher-
ical symmetry and an analytical solution of eigenfunc-
tions could not be obtained. Thus, we only calculate its
eigenvalues and eigenvectors numerically. We find that,
because of the lack of spherical symmetry, the eigenvec-
tors are not spherical harmonics (even at low γ), and the
eigenvectors cannot be classified into in-plane and radial.
In other words, there are no purely in-plane eigenvectors.
Therefore, it is difficult to represent the eigenvalues, and
we omit its plot for brevity. Nevertheless, we point out
one key difference: as γ increases, the lowest eigenvalues
do not converge to constant values. Instead, eigenval-
ues keep decreasing, likely caused by the pre-stresses at
the pentamers. This is reflected in the SH fluctuations

(Fig. 12), where µ
〈
a2l
〉

for l ≥ 2 keep increasing even at

γ = 104. Furthermore, the fluctuations for l = 0 and 1
are not constant over all values of γ. Instead, they show
a slight increase at around γ ≈ 103, which is close to the
transition from spherical to faceted shape.

F. Conformational Pre-Stress

10−2

10−1
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101

102

101 102 103 104

µ
〈 a

2 l

〉
γ

l = 0
l = 1

l = 2
l = 3

l = 4

FIG. 13. (Color online) Spherical harmonic decomposition
of equilibrium fluctuations of an icosahedron with conforma-
tional pre-stresses (Case 3) versus FvK number γ (only nu-
merical results, as analytical solution could not be obtained)

When we introduce conformational stresses because of
hexamer shearing, an analytical solution of eigenfunc-
tions could not be obtained. Thus, we calculate the eigen-
values, eigenvectors, and SH fluctuations numerically for
η = 0.2 (Fig. 13). Qualitatively, the results are similar
to the CK pre-stress case (Figs. 12, 13). The main dif-
ference is that the transition to higher fluctuation values
is shifted towards higher γ, which is consistent with the
shape transition also being shifted in this case (Fig. 3).

G. Comparison of Three Cases

To carefully consider the difference in equilibrium fluc-
tuations between the three cases, we plot them together.
First, we compare the µ

〈
a20
〉

(Fig. 14), which remains
constant for the spherical case. However, for Cases 2
and 3, it increases slightly at large γ. For Case 2, the
increase happens at γ ≈ 500, whereas for Case 3 it hap-
pens at γ ≈ 5000. Since the asphericity in Case 3 is less
sensitive to γ, we also plot the mode amplitude versus
the capsid asphericity (Fig. 14 inset).

Finally, we plot the ratio of fluctuations
〈
a2l
〉
/
〈
a20
〉

for
l ≥ 1 (Fig. 15). The results indicate that the radial only
solution gives significantly different results compared to
other cases. Therefore, it is important to account for non-
radial deformations in the theory, even if their magnitude
is small. Furthermore, the results for Cases 1 and 3 are
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FIG. 14. (Color online) SH amplitude of degree l = 0 is com-
pletely insensitive to the FvK number γ for spherical case,
whereas for other cases it increases slightly at high FvK num-
ber. Inset shows the amplitude as a function of capsid as-
phericity A normalized by that of a perfect icosahedron Â.

largely similar. The fluctuations for Case 3 deviate only
for large values of γ. In contrast, the fluctuations for
Case 2 deviate significantly at large γ and never plateau.
Lastly, we notice that the value of γ at which the relative
fluctuations plateau in Cases 1 and 3 increases as we
increase the degree l.
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FIG. 15. (Color online) SH decomposition of all cases for
degree l = 1, 2, 3, and 4, respectively, normalized by

〈
a20

〉

VI. DISCUSSION

A. Significance of Presented Results

In this study, we aimed to carefully analyze the three
methods used for determining the mechanical proper-
ties of virus capsids in the presence of pre-stresses.
The capsid shape had already been analyzed previously
[7, 10, 12], and the relevant results were summarized.
Clearly, in the presence of pre-stresses, the capsid shape
becomes an unreliable indicator of elastic properties.

AFM indentation has been used widely in virus capsid
research [5, 6, 13–15]. However, in determination of the
elastic modulus from force-indentation curves, effects of
pre-stresses have been ignored previously [6]. The ori-
entation dependence of the force-indentation curves has
been reported previously [5, 35]. However, the orienta-
tional dependence in those works was ascribed to the ge-
ometrical changes with orientation as the pre-stress was
not built into the model. The present results show that
pre-stresses – both CK and conformational – play a role
in the force-indentation behavior. Therefore, incorpo-
rating pre-stresses is important when computing elastic
modulus based on AFM indentation. Higher stiffness of
the force-indentation response along 5-fold axis could be
seen as an evidence of CK pre-stresses in virus capsids
(Fig. 7). Similarly, the extraneous softening at large
indentations may indicate conformational pre-stresses.
However, the effects of pre-stresses were found to be lim-
ited at small FvK values. Lastly, the results suggest that
if the initial slope of the force-indentation curve is used
to estimate the elastic moduli, the 2-fold and 3-fold axes
would provide a better estimate instead of the 5-fold axis
(because of the pre-stress concentrations).

For the equilibrium fluctuations, the presented analy-
sis shows that considering the non-radial displacements
qualitatively changes the results, and thus it is important
to take them into account. Furthermore, the thorough
analysis presented here resolves the issue of l = 0 and
l = 1 modes not fitting the MD results [9, 36]. As an
example, following the analysis presented here, we need
only a single set of elastic parameters for fitting all the
SH modes of the Sesbania Mosaic virus’s (SeMV) MD
trajectory (Fig. 16). The effect of pre-stresses on equilib-
rium fluctuations is limited, especially at γ < 5000, mak-
ing this approach robust (Fig. 15). These generalizations
make this approach an attractive choice for characteriz-
ing the capsid mechanics. Furthermore, the numerical
scheme presented here can be modified to directly simu-
late a symmetric unit of the capsid, and therefore inter-
mediary elastic network calculations will not be required
as proposed by May and Brooks [9].

B. Combining Three Methods

We analyzed three methods based on 1) shape of cap-
sid, 2) AFM indentation, and 3) the MD equilibrium fluc-
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FIG. 16. Case 1 with all displacements (A10) shows an ex-
cellent fit to the equilibrium fluctuations of SeMV obtained
via MD (taken from [9]) using a single set of parameters
(Y = 1096.4 kBT , κ = 694 kBT/nm

2, ν = 0.015 and
γ = 130.8)

tuations. It is clear from the results that all three meth-
ods have limitations in determining the elastic properties
of a capsid. The shape of a capsid was previously used
to obtain an estimate of its FvK number, however that
approach becomes ineffective in the presence of confor-
mational stress (Fig. 3). The slope of force-deflection
curve from AFM experiments has been extensively used
to determine capsid’s elastic properties. However, the
slope varies depending on the pre-stresses in the capsid
(Fig. 7). The equilibrium fluctuations allow us to deter-
mine elastic properties using MD, but they are largely
insensitive to small pre-stresses (Figs. 14, 15).

In order to remove the individual limitations of each
method, we combine these indicators as follows.

1. First, we determine the asphericity of the capsid. If
the capsid is highly aspherical (i.e. close to perfect
icosahedron), then it likely has CK pre-stress (Case
2) and/or has conformational pre-stress with nega-
tive η (Case 3). For small or intermediate aspheric-
ity, it could be any of the cases. If high resolution
image of the capsid is available, the value of shear
η could be estimated directly.

2. Second, we determine the FvK number γ and Pois-
son’s ratio ν from the comparison of

〈
a2l
〉
/
〈
a20
〉

be-
tween MD simulation and theoretical results. Since
the theoretical results are nearly same for all cases
with γ < 1000, it is possible to determine γ with-
out distinguishing different cases. However, we
note that these curves become relatively flat for
γ ' 5000 and it is difficult to differentiate FvK
values above 5000.

3. Next, by comparing the asphericity A and FvK
number γ determined from previous step, we de-
termine the conformational shear η [10]. We note
that this differentiation cannot be made at small
FvK values.

4. Next, we determine µ by comparing the fluctua-
tions

〈
a2l
〉

from MD simulation results with the

corresponding theoretical results. Using γ, ν and µ,
we determine the bending and in-plane stiffnesses
(κ and Y ).

5. Finally, we compare these properties with the ini-
tial slope of AFM force-indentation curve. If pos-
sible, we use the large indentation response and re-
lated softening to differentiate the cases at small
γ.

Some of the above steps may have alternatives or could
be adjusted based on the information available. Some of
the associated limitations are discussed next.

C. Limitations

The presented model does not account for geometric
details of the capsid, as those details can also result in
orientation dependence of indentation behavior. Incorpo-
rating the geometric details into a model with pre-stress
is a challenge that remains to be solved. The analysis
presented here is purely theoretical. Even though we
consider the practical nature of various methods, there
may be additional limitations in combining them. We
propose to use behavior at large indentations to identify
the conformational pre-stress. However, some capsids
might break before reaching large indentation, limiting
that step’s practicality. For capsids with γ > 5000 in
Cases 1 and 3, it remains challenging to accurately de-
termine γ as the

〈
a2l
〉
/
〈
a20
〉

curves plateau for high FvK
numbers.

Some parameters in this study were fixed, and more
simulations would be needed to determine their effect on
the results. For example, we only studied the confor-
mational pre-stresses in viruses of HK97 form, which is
a T = 7 capsid according to CK classification [20]. Al-
though we anticipate that changing the T number would
not change the qualitative nature of the results, this
needs to be verified. For thermal fluctuations with con-
formational pre-stresses, we fixed η = 0.2. Similarly, we
assumed tip radius Rtip ≈ R/3 and friction coefficient
µf = 1 in our AFM simulations. Even though these are
acceptable estimates, effect of these parameters on the re-
sults remains to be studied in order to obtain a complete
picture. Lastly, it will be an important step to imple-
ment this combined framework for a capsid. However,
since that requires both the MD trajectory and AFM
experiment, it will be carried out in the future.

D. Conclusion

In this study, we analyzed three different techniques
used for determining the elastic properties of virus cap-
sids. Instead of determining the elastic parameters of a
specific case, we focused on theoretically analyzing the
techniques and the effect of two different kinds of pre-
stress. The results show that using a single technique in
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isolation can provide contradicting results. Instead, we
propose to use them in combination, which can identify
not only the elastic properties but also the pre-stresses.
Similar strategies may be valuable to other areas as well,
where we combine different methodologies to arrive at
consistent and comprehensive results.
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Appendix A: Eigenvalues and equilibrium
fluctuations for a sphere

From (27), it is easy to see that the purely in-plane

modes with ξT = 1/R
√
l(l + 1), ξL = ξr = 0 have eigen-

values Λl = µ (l−1)(l+2)
R2 (independent of the bending mod-

ulus). However, since ξr = 0, these modes do not con-
tribute to the SH amplitude. Furthermore, for l = 0,
∇Y00 = 0, resulting in only radial motion u = Y00r̂.
Thus, we have a purely radial eigenvalue

Λl=0 = (λ+ µ)
4

R2
. (A1)

For l ≥ 1 and ξT = 0, we get

∆Ψ =
∑

l,m

1

2

[
ξLR

2l(l + 1), ξrR
2
]
· H · ξ (A2)

with ξ = [ξL, ξr]
> and

H =

[
(λ+ µ) l(l+1)

R2 + µ (l−1)(l+2)
R2 (λ+ µ) 2

R2

(λ+ µ) 2l(l+1)
R2 (λ+ µ) 4

R2 + κ l(l−1)(l+1)(l+2)
R4

]
. (A3)

Using λ+ µ = (1 + ν)/(1− ν)µ, the above equation can be re-written as:

H =
µ

R2

[
(1 + ν)/(1− ν)l(l + 1) + (l − 1)(l + 2) 2(1 + ν)/(1− ν)

2(1 + ν)/(1− ν)l(l + 1) 4(1 + ν)/(1− ν) + l(l − 1)(l + 1)(l + 2)γ−1µ

]
, (A4)

where, for simplifying the expression, we have defined γµ = µR2/κ = γ/2(1 + ν).

We note that for each l ≥ 1, we will get two eigenvalues
and eigenfunctions from (A3), each with both radial and
in-plane components.

For l = 1, the first eigenvalue is Λ− = 0—a rigid body
translation—and the second eigenvalue is Λ+ = (λ+µ) 6

R2

with eigenvector ξr = 2φ, ξL = φ and ξT = 0, where
the normalization factor is determined by (28): φ =

1/R
√
l2 + l + 4 = 1/R

√
6. We note that the l = 1 mode

has increased eigenvalue compared to the purely-radial
case, but is still independent of the bending modulus κ.

To determine the eigenvalues for l ≥ 2, in order to
simplify (A4), we rewrite as

H =
µ

R2

[
a c
d e+ bγ−1µ

]
, (A5)

where a = (1 + ν)/(1 − ν)l(l + 1) + (l − 1)(l + 2), b =
l(l−1)(l+1)(l+2), c = 2(1+ν)/(1−ν), d = 2(1+ν)/(1−
ν)l(l+1), and e = 4(1+ν)/(1−ν). Thus, defining a new

symbol A =
(
a− e− b

γµ

)
, the eigenvalues are

Λ±l R
2

µ
=

1

2

(
a+ e+

b

γµ
±
√
A2 + 4cd

)
. (A6)

We see that for large FvK number, the frequencies do
not converge to the same value like they did in the radial-
only case. Instead,

lim
γµ→∞

Λ±l R
2

µ
→ 1

2

(
a+ e±

√
(a− e)2 + 4cd

)
. (A7)

Furthermore, the eigenvector is

[
ξL
ξr

]
= φ

[
A±
√
A2 + 4cd
2d

]
, (A8)

where φ is determined by the condition (28). Thus,

R2ξ2r =
4d2

8d2 + 2A2l(l + 1)± 2Al(l + 1)
√
A2 + 4cd

.

(A9)

The equilibrium fluctuations for each mode will now
have contribution from two eigenfunctions corresponding
to Λ±. Thus, we get
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〈
a2l
〉
µ

kBT
= (2l + 1)


 8d2(

a+ e+ b
γµ

+
√
A2 + 4cd

) (
8d2 + 2A2l(l + 1) + 2Al(l + 1)

√
A2 + 4cd

)

+
8d2(

a+ e+ b
γµ
−
√
A2 + 4cd

) (
8d2 + 2A2l(l + 1)− 2Al(l + 1)

√
A2 + 4cd

)


 . (A10)
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