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 A novel numerical scheme for the interaction of incompressible fluid, flexible solids and 

solid-solid contact. 

 Immersed boundary methodology on hierarchical b-spline grids to deal with large solid 

displacements and topological changes. 

 Mixed Galerkin formulation with SUPG/PSPG stabilisation for incompressible fluid flow. 

 Second-order accurate time integration schemes along with second-order accurate staggered 

solution scheme. 

 A simple mapping technique for uncovering fluid degrees of freedom. 

Highlights (for review)
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A stabilised immersed framework on hierarchical b-spline grids for fluid-flexible
structure interaction with solid-solid contact

C. Kadapa∗, W. G. Dettmer, D. Perić

Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Fabian Way, Swansea SA1 8EN, Wales, UK.

Abstract

We present a robust and efficient stabilised immersed framework for fluid-structure interaction involving incompress-

ible fluid flow and flexible structures undergoing large deformations and also involving solid-solid contact. The

efficiency of the formulation stems from the use of second-order accurate sequential staggered solution scheme for

resolving fluid-solid coupling. Mixed Galerkin formulation, along with SUPG/PSPG stabilisation, is employed to

obtain the numerical solutions of the incompressible Navier-Stokes equations. The immersed formulation is based

on hierarchical b-spline grids, with unsymmetric Nitsche method employed to impose boundary as well as interface

conditions on the fluid domain, while ghost-penalty operators are applied to alleviate the numerical instabilities aris-

ing due to small cut cells. The solid is modelled using linear continuum elements with finite strain formulation to

facilitate the modelling of large structural deformations, and the contact between solids is modelled using the normal

frictionless node-to-segment contact elements with Lagrange multipliers. In order to deal with the issue of uncovering

for cut-cell based numerical schemes, a simple mapping technique is also introduced. Spatial and temporal conver-

gence studies of the proposed scheme are performed by studying a simple example of flow over a deformable beam

in cross flow. The robustness and accuracy of the proposed scheme are demonstrated by studying the benchmark ex-

amples of an oscillating beam in two-dimensions and flutter of a flexible simplified bridge deck in three-dimensions.

In order to demonstrate the applicability of the proposed framework to complex fluid-structure interaction problems,

the proposed methodology is used to simulate the fluid-structure interaction of a check valve with flexible valve plate.

Keywords: Fluid-structure interaction; Hierarchical b-splines; Immersed boundary methods; Staggered

scheme; Nitsche method; Check valve.

1. Introduction

Computer simulation of complex fluid-structure interaction is a challenging task due to numerous difficulties

associated with geometrical and physical characteristics of this multi-physics phenomenon. The foremost challenges

are: (a) complexity of the geometry of the structure, (b) large structural deformations, (c) topological changes in
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the fluid domain, (d) added-mass instabilities, and (e) achieving robustness and efficiency. A considerable amount

of research and development has been done addressing some of these difficulties to a reasonable extent, and some

numerical schemes are available in commercial software tools. However, many of the issues, for example, effectively

dealing with complex geometries and topological changes and staggered schemes with higher-order accuracies, are

still open and require to be addressed successfully in order for the efficient simulation of complex fluid-structure

interaction problems.

Despite their academic success and availability in commercial software tools, numerical schemes based on the

well-established arbitrary Lagrangian-Eulerian (ALE) formulation using body-fitted meshes, see [1–7] and references

therein, are not an ideal choice for simulating complex FSI problems where the structures undergo extremely large

deformations, with possible topological changes of simulation domain. The unavoidable requirement for re-meshing

techniques to solve complex FSI problems makes body-fitted based FSI schemes inefficient and, therefore, limits their

applicability. To overcome these difficulties and to model complex FSI effectively and efficiently, numerical schemes

based on immersed/embedded strategies are becoming the obvious alternatives.

In general, in the immersed boundary methods, the fluid is modelled in the Eulerian frame of reference while the

solid is described in the Lagrangian frame of reference. In these family of methods, the fluid grid does not have to

align with the fluid-solid interface. Therefore, the cumbersome process of generating body-fitted meshes and complex

re-meshing algorithms for dealing with large-structural deformations is completely avoided. However, because of the

fact that the fluid mesh does not align with the boundary of the solid, specialised techniques need to be employed in

order to enforce interface conditions on the fluid domain and to transfer the force between the fluid and solid domains.

Motivated by the pioneering work of Peskin [8], a variety of numerical schemes for FSI based on immersed/embedded

strategies have been proposed, see [9–16].

With the aim of addressing the difficulties associated with modelling complex FSI, our recent research efforts have

been focused on staggered solution schemes [6], isogeometric analysis [17, 18] and immersed boundary methods

[19–21]. Inspired by the recent CutFEM approach by Burman et al. [22], a preliminary study of our immersed

computational framework has been presented in Dettmer et al. [20], while its application to fluid-rigid body interaction

is presented in Kadapa et al. [21]. The present article is focussed on the application of this immersed framework to

fluid-flexible solid interaction.

The proposed computational framework is characterised by the following ingredients:

• The fluid problem is solved over a Cartesian grid discretised with b-splines. The hierarchical nature of b-

splines is exploited for generating computationally efficient grids with localised refinements in the vicinity of

the immersed solids.

• The solution of the fluid problem is obtained using mixed Galerkin formulation in combination with the well-

established SUPG/PSPG stabilisation [23–25].

• The interface conditions, as well as boundary conditions on the fluid domain, are enforced using unsymmetric

2
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Nitsche method.

• Edge-based ghost-penalty operators [26] are applied in order to overcome the instabilities due to small cut cells.

• Integration of cut cells is carried out using either sub-triangulation or adaptive integration, depending upon the

requirement.

• Solids are discretised with linear quadrilateral elements with finite-strain Fbar formulation [27]. Therefore, the

boundary of a solid is approximated using straight edges. It is important to point out that this is not a limitation

of the present framework; linear elements are chosen only for the sake of simplicity. The framework can be

easily extended to include solid geometries represented with higher-order elements, for example, NURBS, or

parametric equations.

• Solid-solid contact is assumed to be frictionless and modelled using node-to-segment contact elements with

Lagrange multipliers to impose the contact constraint.

• Second-order accurate generalised-α schemes are used for the time integration of both the fluid and solid prob-

lems, and a second-order accurate staggered scheme is employed for resolving the fluid-solid coupling. Thus,

the overall methodology is based on the second-order accurate time integration procedures. As the fluid and

solid subproblems are solved only once during each time step, the use of a second-order accurate staggered

solution scheme makes the overall FSI formulation computationally very efficient.

The outline of the article is as follows. In Section 2, we present a brief overview of the finite element formulation.

The coupling strategy, the staggered scheme, the aspects of force transfer and a mapping technique introduced to deal

with the issue of uncovering are discussed in Section 3. Finally, the accuracy and the robustness of the proposed

scheme are demonstrated using several numerical examples in Section 4. The summary and the conclusions are

provided in Section 5.

2. Formulation

2.1. Governing equations

2.1.1. Governing equations for the fluid problem

In the present work, the fluid is assumed to be laminar, viscous and incompressible. The corresponding Navier-

Stokes equations are given as,

ρf
∂vf

∂t
+ ρf(vf · ∇)vf −∇ · σf = gf in Ωf (1a)

∇ · vf = 0 in Ωf (1b)

vf = v̄f on Γf
D (1c)

σf · nf = t̄f on Γf
N , (1d)

3
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where, ρf is the density of the fluid, gf is the body force on the fluid domain, vf as the velocity of the fluid,

σf (= µf
[
∇vf + (∇vf )T

]
− p I) is the Cauchy stress tensor, µf is the dynamic viscosity of the fluid, p is the fluid

pressure, nf is the unit outward normal on the boundary Γf of the fluid domain Ωf . v̄f and t̄f are the prescribed

velocity and traction boundary conditions, respectively, on the Dirichlet boundary Γf
D and the Neumann boundaryΓf

N.

Here, Γf
D
⋃
Γf

N = Γf and Γf
D
⋂
Γf

N = ∅.

2.1.2. Governing equations for the solid problem

Governing equations for the elastic solids are given as,

ρs
∂2ds

∂t2
−∇ · σs = gs in Ωs (2)

ds = d̄s on Γs
D (3)

σs · ns = t̄s on Γs
N , (4)

where, ρs is the density of solid, ds is the displacement of the solid, σs is the Cauchy stress tensor, gs is the body

force acting on the solid domain, ns is the unit outward normal on the boundary Γs of the solid domain Ωs. d̄s and

t̄s are the displacement and traction boundary conditions prescribed, respectively, on the Dirichlet boundary Γs
D and

the Neumann boundary Γs
N. Here, Γs

D
⋃
Γs

N = Γs and Γs
D
⋂
Γs

N = ∅.

The Cauchy stress tensor depends upon the type of material model considered for the solid. In this work, we

have used two material models, namely Saint Venant-Kirchhoff and compressible Neo-Hookean, depending upon

the requirements in the numerical examples considered. With deformation gradient F, its determinant J , right

Cauchy-Green deformation tensor C, left Cauchy-Green deformation tensor b, Lagrangian strain tensor E, first

Piola-Kirchhoff stress tensor P and second Piola-Kirchhoff stress tensor S, the strain energy functions Ψ for Saint

Venant-Kirchhoff and Neo-Hooken material models are given respectively as,

Saint Venant-Kirchhoff model:.

Ψ =
1

2
λs(trE)2 + µsE : E (5)

Neo-Hookean model:.

Ψ =
µs

2
(trb− 3)− µs ln J +

λ

4
(J2 − 1)− λ

2
ln J (6)

where,

µs =
Es

2(1 + νs)
and λs =

Esνs

(1 + νs)(1 − 2νs)
(7)

4
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are Lamé’s constants, and Es and νs are the Young’s modulus and Poisson’s ratio, respectively.

2.1.3. Interface constraints

At the interface Γf−s between fluid and solid, two important conditions have to be satisfied. The first condition

is called the kinematic constraint, and it requires that the fluid-solid interface moves at the same velocity as that of

the boundary of the solid. The second condition requires the equilibrium of stresses along the interface. These two

interface conditions, in the absence of surface forces, can be written as,

Kinematic constraint: vf = vs on Γf−s (8a)

Stress equilibrium: σf · nf + σs · ns = 0 on Γf−s (8b)

2.2. Integration in time

In the present work, we use the generalised-α schemes for time integration of both the fluid and solid problems.

These time integration techniques are identical to the ones used for the fluid-rigid body interaction presented in Kadapa

et al. [21]. Therefore, we refer to [21], and references therein, for the detailed discussion of these time integration

schemes.

2.3. Finite element formulation for the fluid problem

The stabilised formulation for the fluid considered in the present work has been established in [20, 21]. Therefore,

we outline only the important aspects of the formulation, and refer the reader to [20, 21] for an in-depth discussion.

Numerical solutions of the fluid problem are obtained by employing mixed Galerkin formulation along with

SUPG/PSPG stabilisation, Nitsche’s method for imposing Dirichlet boundary conditions as well as interface con-

ditions on the fluid grid and ghost-penalty operators for alleviating the numerical instabilities arising due to small cut

cells. The complete variational statement for the fluid problem reads as follows: find the fluid velocity vf ∈ Sv and

the pressure p ∈ Sp such that for all functions wf ∈ Vv and q ∈ Vp,

Bf
Gal({wf , q}, {vf , p}) +Bf

Stab({wf , q}, {vf , p}) +Bf
Nitsche({wf , q}, {vf , p})

+Bf
GP({wf , q}, {vf , p}) = F f

Gal({wf , q}) , (9)

whereSv,Sp,Vv and Vp represent the appropriate b-spline approximation spaces. The expressionsBf
Gal({wf , q}, {vf , p})

andF f
Gal({wf , q}) consist of terms corresponding to the standard Galerkin formulation while Bf

Stab({wf , q}, {vf , p}),
Bf

Nitsche({wf , q}, {vf , p}), and Bf
GP({wf , q}, {vf , p}) are, respectively, the terms corresponding to the SUPG/PSPG

stabilisation, the Nitsche’s method and the ghost penalty operators.

5
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2.3.1. Standard Galerkin terms

The terms corresponding to the standard Galerkin formulation are given as

Bf
Gal({wf , q}, {vf , p}) =

∫

Ωf

wf · ρf
(
∂vf

∂t
+ vf · ∇vf

)
dΩf

+

∫

Ωf

µ∇wf :
[
∇vf + (∇vf )T

]
dΩf −

∫

Ωf

∇ ·wf p dΩf +

∫

Ωf

q∇ · vf dΩf (10)

F f
Gal({wf , q}) =

∫

Ωf

wf · gf dΩf +

∫

Γf
N

wf · t̄f dΓ . (11)

2.3.2. SUPG/PSPG stabilisation

The terms corresponding to SUPG/PSPG formulation are given as,

Bf
Stab({wf , q}, {vf , p}) =

nel∑

e=1

∫

Ωfe

1

ρf
[τSUPG ρf vf · ∇wf + τPSPG ∇q] · rM dΩf

+

nel∑

e=1

∫

Ωfe
τLSIC ρf (∇ ·wf ) (∇ · vf ) dΩf , (12)

where rM is the residual of the momentum equation and is given as

rM = ρf
∂vf

∂t
+ ρf (vf · ∇vf )−∇ · σf − gf . (13)

Following [23–25], the stabilisation parameters τSUPG, τPSPG and τLSIC are defined as

τSUPG =
(
vf ·Gvf + CI ν

2 G : G
)−1/2

(14)

τPSPG = τSUPG (15)

τLSIC = (trG τSUPG)
−1

, (16)

where, CI is a positive constant, independent of the mesh size, derived from an appropriate element-wise inverse

estimate, and G is the element contravariant metric tensor. In this work, we take CI = 7 for 2D problems and

CI = 10 for 3D problems. For cut cells, G is scaled based on the area/volume of the corresponding cell.

2.3.3. Nitsche’s method

The terms corresponding to the Nitsche’s method are given as,

Bf
Nitsche({wf , q}, {vf , p}) = γN1

∫

ΓD

wf · (vf − v̂) dΓD −
∫

ΓD

wf · (σ({vf , p}) · nf ) dΓD

− γN2

∫

ΓD

(σ({wf , q}) · nf ) · (vf − v̂) dΓD , (17)

6
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where, γN1
≥ 0 is a penalty parameter and the choice of γN2

= 1 results in symmetric Nitsche method while γN2
= −1

results in unsymmetric Nitsche method. The boundary ΓD is the union of boundaries of fluid grid where Dirichlet

boundary conditions are applied and fluid-solid interfaces, i.e., ΓD = Γf
D
⋃
Γf−s. Therefore, v̂ = v̄f on Γf

D and

v̂ = vs on Γf−s. The penalty parameter is computed using the following empirical formula.

γN1 =





a2

max(hx,hy)
for 2D

a2

max(hx,hy,hz)
for 3D

(18)

where, a is the order of the b-spline basis, and hx, hy and hz are the lengths of an element at the base level of the

background mesh. This empirical formula has been obtained by performing local eigenvalue analysis of background

grid elements without immersed solids. For hx = hy = hz , the value of γN1 computed using the above formula

is equal to the one obtained from the local eigenvalue problem. Even though the penalty parameter computed using

the above formula is smaller than its analytical value for a fluid element cut by the immersed solid, in our experi-

ence, it provides a sufficient stablisation for the unsymmetric Nitsche method when applied to fluid-flexible structure

interaction problems.

2.3.4. Cut cell stabilisation

It is now an established fact that the presence of small cut cells leads to system matrices with large condition

numbers and sub-optimal convergence rates. In order to overcome this issue, we have employed the ghost-penalty

operators in the present framework, see [20, 21], and references therein, for a comprehensive study of the performance

of ghost penalty terms in the context of b-spline grids. These ghost-penalty terms enforce a suitable amount of

continuity across the boundaries between cut cells and the active cells in the interior of the physical domain. In this

work, we apply ghost-penalty operators only on the boundaries of cut-cells, as shown schematically in Fig. 1.

The ghost penalty terms for the incompressible Navier-Stokes equations with velocity vf and pressure p as inde-

pendent variables are defined as,

Bf
GP({wf , q)}, {(vf , p)}) = γu

GP µG1(w
f ,vf ) + γp

GP
1

µ
g3(q, p) , (19)

where,

G1(w,v) :=

d∑

i=1

∑

F∈F
h2a−1

∫

F

[Dawi][D
avi] dF (20)

g3(w, v) :=
∑

F∈F
h2a+1

∫

F

[Daw][Dav] dF . (21)

where, [Dj(•)] denotes the jump of the normal derivative of (•) of order j on the face F , a is the order of the b-spline

basis function, h is element length scale of face F , and γu
GP and γp

GP are the dimensionless ghost penalty parameters for

7
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velocity and pressure, respectively. γu
GP and γp

GP can typically be chosen within a wide range of values spanning several

orders of magnitude, such that they are small enough not to jeopardise accuracy but sufficiently large to effectively

avoid excessive matrix condition numbers.

active cell

cut cell

inactive cell

ghost-penalty edge

immersed boundary

Figure 1: Active, inactive and cut cells for a typical scenario. Ghost penalty operators are applied only on the edges of the
background grid highlighted in blue color.

2.3.5. Integration of cut cells

In the present framework, we have implemented two techniques for the purpose of integration of cut cells: (i)

sub-triangulation, in which the active portion of the cell is subdivided into triangles and the quadrature points from

the triangles are used to integrate the cut cells, and (ii) adaptive integration, which is based on the simple uniform

subdivision of cut cells. These two techniques are demonstrated using a simple problem in Fig. 2. Each of these tech-

niques has its relative advantages and disadvantages. While sub-triangulation can result in the accurate integration

of cut-cells with fewer quadrature points, adaptive integration requires a large number of quadrature points in order

to obtain meaningful results. Nonetheless, sub-triangulation poses serious limitations on the nature of representation

of the immersed boundary, in the majority of the cases restricting the boundary to be represented (or approximated)

by straight edges. On the other hand, adaptive integration poses no such restrictions on the description of the bound-

ary. Adaptive integration is useful especially for 3D problems due to the fact that tetrahedralisation is much more

complicated than triangulation. An efficient adaptive integration procedure is presented in Dettmer et al. [20].

8
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(a) Sub-triangulation (b) Adaptive integration

Figure 2: Integration of cut cells using sub-triangulation and adaptive integration.

2.4. Finite element formulation for the solid problem

In the present work, we use the standard linear Lagrange polynomials with the F-bar formulation of de Souza Neto

et al. [27] for modelling the deformation behaviour of flexible solids. As this finite element formulation for the solid

problem is well established, we refer the reader to [27, 28] for the discussions on the F-bar formulation.

2.4.1. Contact formulation

In this work, contact between solids is modelled using the standard node-to-segment contact elements with La-

grange multipliers to impose the contact constraints. We point out that the proposed immersed framework does not

impose any limitations on the choice of contact formulation, and could be extended without any conceptual diffi-

culties to include the standard penalty formulation, various forms of purely Lagrangian and augmented-Lagrangian

approach, or the recent Nitsche based methodologies. Simple Lagrange multipliers based contact formulation that is

used in this work is ideally suited for a relatively simple applications of interest discussed here involving check valves,

in which a deforming solid interacts with rigid solid(s). This is designed primarily to demonstrate the feasibility of

the proposed immersed framework to handle the fluid-structure interaction problems involving solid-to-solid contact.

As this contact modelling technique is already well-established in the literature on computational contact mechanics,

we refer the reader to Zienkiewicz and Taylor [29] and Wriggers [30] for comprehensive details on the topic.

Contacts between solids are resolved during the solution of the solid sub-system by solving the resulting non-linear

problem using the classical Newton-Raphson scheme. As a staggered scheme is used for resolving the fluid-solid

coupling, the overall computational cost of contact modelling in the present work is negligible. This is due to the fact

that the contact modelling does not interfere with the solution of the fluid sub-system. Also, as the flexible solids are

modelled using finite strain formulation, the solid sub-system is already non-linear and, therefore, is solved using the

Newton-Raphson scheme.
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3. Fluid-solid coupling

Efficient resolution of fluid-solid coupling is an important aspect of numerical schemes for FSI since the way

fluid-solid coupling is resolved significantly affects the robustness, accuracy and efficiency of a numerical scheme for

FSI. In literature, numerous techniques are available for resolving the fluid-solid coupling, with each method having

its relative advantages and disadvantages. Among these techniques Dirichlet-Neumann coupling is the most widely

used, see [2, 3, 5, 6, 19, 31–41]. In this work, we use the staggered solution scheme based on Dirichlet-Neumann

coupling proposed by Dettmer and Perić [6] that is proven to be second-order accurate. For the purpose of clarity

and completeness, the pseudocode for the staggered scheme is illustrated in Algorithm 1. Here, β ∈ (0, 1) is a user-

defined parameter and will be referred to as the relaxation factor in the rest of the paper. Problems which feature

strong added-mass effects require a small value of β. However, for smaller values of β, the truncation error becomes

higher, thus requiring an increased number of time steps to retain the accuracy. Nonetheless, the amount of added-

mass in the examples selected in the present article is moderate, hence the chosen value of β does not affect accuracy

significantly. As demonstrated with the numerical examples, accurate numerical results are obtained without having

to use excessive number of time steps.

For every time step:

Step 1: predict force on the solid: FsP

n+1 = 2Fn − Fn−1

Step 2: solve the solid problem for ds
n+1 and vs

n+1 using FsP

n+1

Step 3: reposition immersed solid, activate/deactivate fluid degrees of freedom, update cut cell data

Step 4: solve the fluid problem to obtain force Ff
n+1

Step 5: average the interface force: Fn+1 = −βFf
n+1 + (1− β)FsP

n+1

Step 6: proceed to next time step

Algorithm 1: Staggered scheme applied to the present immersed methodology.

3.1. Force transfer from fluid to solid

The force on the immersed solids due to the surrounding fluid is computed by performing the integration over

its respective boundary. In the present framework, the boundary of the immersed solid matches exactly with the

boundary on which interface conditions are applied on the fluid grid. Therefore, there is no loss of force/momentum

when computing the force on the solid.

10
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Figure 3: Computation of force vector on the solid mesh. Square dots denote the nodes on the boundary of the solid mesh and
circular dots represent quadrature points.

The vector of forces on the j-th node of the solid mesh is computed as,

Fj =

nedge∑

e=0

nqp∑

i=0

Nb,j(x̂) t(x̂)WiJi (22)

where, nedge is the number of boundary edges along the immersed solid, nqp is the number of quadrature points per

each edge, Wi is weight of the quadrature point, Ji is the determinant of the Jacobian at the quadrature point, Nb,j is

the j-th basis function of the solid mesh and x̂ is the position vector at the quadrature point on the immersed edge. For

an immersed edge discretised with n points (xi, . . . , xi+n), the position vector x̂ is computed using the interpolation

relation

x̂ =
n∑

k=0

Nb,kxk (23)

and the traction vector t(x̂) is computed as,

t(x̂) = γN1 (v
s − vf (x̂)) + σf (x̂) · nf (x̂) (24)

3.2. The issue of uncovering fluid DOFs

Whenever the interface moves into an element that was not part of the fluid domain during the previous time step

all the DOFs corresponding to that element become active at the current time step. This leads to problems in evaluating

acceleration at the current time step which might cause the simulation to terminate when large time steps are used. For

fluid-rigid body interaction problems [21] we did not use any special techniques for treating uncovering of elements

during FSI simulation. For such DOFs, we chose the value available from the last time instant they were active as the

value for the previous time step. As the time steps selected were small, we have not observed any problems associated

11
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with the uncovering of the elements. However, for the sake of completeness, we have implemented a simple mapping

technique that does not require any matrix inversions, and is based on the assumption that the fictitious fluid inside

the solid domain moves at the same velocity as that of the solid domain. The pseudocode for the mapping technique

is described in Algorithm 2. This technique is applied between Step 3 and Step 4 of the staggered scheme described

in Algorithm 1 in Section 3. In this way, the fluid velocity DOFs that are completely inside the solid domain, and

hence, inactive in the current fluid domain, get the information from the solid velocity; and those that belong to the

cut cells get the velocity information once the fluid problem is solved at Step 4. As illustrated in Fig. 4, this technique

provides significantly better solution information for inactive DOFs at the current time step without having to spend a

significant amount of computational resources.

For every solid node i:

1. get the nodal position xs
n+1,i and velocity vs

n+1,i

2. find the fluid cell in which the node i lies

3. find the basis functions of the fluid grid that are active at the spatial location xs
n+1,i

4. replace the values of the velocity degrees of freedom of these active basis functions of the fluid
grid with the velocity of the solid node, vs

n+1,i

5. proceed to next node

Algorithm 2: Pseudocode for the mapping technique used for uncovering.
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0.18

0.00

0.20

velo Magnitude

(a) solution obtained without the mapping technique
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0.12

0.18

0.00

0.20
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(b) solution obtained with the mapping technique

Figure 4: Thick beam in cross flow: the effect of the mapping technique on uncovering for fluid DOFs.
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4. Numerical examples

The performance of the proposed scheme in terms of its accuracy and robustness is assessed by studying a number

of numerical simulations. The following problems are studied:

(i) cross-flow over a thick flexible beam

(ii) oscillating beam model by Turek and Hron [32],

(iii) flutter of a bridge deck, and

(iv) check valve with flexible plate.

For all the examples presented in this paper (a) unsymmetric Nitsche method is used for imposing boundary as

well as interface conditions, (b) the ghost penalty parameters are γGPu
= γGPp

= 0.01, unless otherwise specified,

(c) the solid is discretised with linear Lagrange elements modelled with F-bar formulation and (d) the spectral radii

values for generalised-α schemes for the fluid and solid solvers are ρf∞ = ρs∞ = 0.0.

4.1. Thick beam in cross flow

The geometry and boundary conditions of the problem, adopted from [42], are shown in Fig. 5. The density of

the fluid is ρf = 1.0 and its dynamic viscosity is µf = 0.01. The beam is modelled with Neo-Hookean material with

density ρs = 1.0, Young’s modulus Es = 200.0 and Poisson’s ratio νs = 0.3. A time-invariant parabolic velocity

profile vin = 20
6 y(0.6− y) is imposed on the inlet.

Spatial and temporal convergence studies are performed on the hierarchical mesh shown in Fig. 6. The beam

is discretised with 10 × 30 mesh. For each spatial discretisation, numerical results are obtained with three different

time steps, ∆t = {0.04, 0.02, 0.01}. A constant relaxation parameter β = 0.05 is used for all the simulations. The

horizontal displacement of point A at t = 5.0 tabulated in Table. 1 indicate clear spatial and temporal convergence

of the proposed scheme. The evolution of horizontal displacement of point A for a subset of the simulation cases is

illustrated in Fig. 7 and the contour plots of fluid velocity magnitude and fluid pressure at the last time step of the

simulation with the Level-2 linear b-spline (Q1) mesh and ∆t = 0.01 are shown in Fig. 8.
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Figure 5: Thick beam in cross flow: geometry and boundary conditions.
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Figure 6: Thick beam in cross flow: hierarchical b-spline mesh used for the simulation.

Level-1 Level-2

linear(Q1) quadratic(Q2) linear(Q1) quadratic(Q2)

Total DOFs 16689 17085 38034 38397

∆t = 0.04 0.1239 0.1305 0.1285 0.1292

∆t = 0.02 0.1249 0.1304 0.1284 0.1292

∆t = 0.01 0.1248 0.1304 0.1284 0.1292

Table 1: Thick beam in cross flow: horizontal displacement of point A at t = 5.0. Total DOFs reported are at the beginning
of the simulation and they remain approximately the same, for each discretisation, during the whole simulation.
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(a) Level-2 with linear(Q1) b-splines
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Figure 7: Thick beam in cross flow: horizontal displacement of point A.
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Figure 8: Vertical beam: contour plots of velocity magnitude and pressure at t = 5.0 obtained with Level-2 Q1 b-splines and
∆t = 0.01.

4.2. Turek benchmark problem

This problem, introduced by Turek and Hron [32], is widely used as a benchmark example to test the numerical

schemes for fluid-flexible solid interaction. The geometry and boundary conditions of the problem are shown in

Fig. 9(a). The physics of the problem is such that vortices start developing due to the asymmetry in the geometry

which cause the beam to oscillate. Once the vortices are fully developed, the beam will undergo periodic oscillations

in its second harmonic mode. In this example we consider the test case FSI2 from [32], for which fluid density and

viscosity are ρf = 103 and µf = 1, respectively; and solid density, Young’s modulus and Poisson’s ratio, respectively,

are ρs = 104, E = 1.4 × 106 and νs = 0.4. The beam is modelled with Saint Venant-Kirchhoff material model. A

parabolic velocity profile vin = 6
0.1681y(0.41− y) is applied at the inlet. The inlet velocity is increased sinusoidally

to vin in the time interval [0, 2] and then kept constant at vin for the rest of the simulation.

A hierarchical b-spline mesh shown in Fig. 9(b) is used with linear (Q1) and quadratic (Q2) b-splines. The beam

is discretised with 200 × 10 linear quadrilateral elements. The relaxation parameter is set to β = 0.1. Simulations

are performed with two different time steps, ∆t = 0.002 and ∆t = 0.001. The amplitude and the frequency of the

oscillation of the vertical displacement of point A obtained for all the simulations are tabulated in Table. 2. These

values indicate that the results obtained with the present scheme converge to the reference values as the discretisation

and time step is refined. Evolution of the vertical displacement of pointA obtained with Level-3 mesh and ∆t = 0.001

is displayed in Fig. 10. Typical contour plots of pressure and velocity magnitude at two time instants are presented in

Figs. 12 and 11, respectively.
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(a) Geometry and boundary conditions (not to scale).

(b) Hierarchical b-spline mesh for the fluid.

(c) Solid mesh for the beam.

Figure 9: Turek benchmark problem: geometry, boundary conditions and spatial discretisations of the fluid and solid.

DOF max(dsy × 103) fo

Turek and Hron [32] - Level-2, ∆t = 0.001 19488 1.18± 78.80 2.00

Turek and Hron [32] - Level-3, ∆t = 0.001 76672 1.25± 79.30 2.00

Turek and Hron [32] - Level-4, ∆t = 0.001 304128 1.23± 80.60 2.00

Present - Level-2, Q1, ∆t = 0.002 ≈ 26000 1.13± 73.33 2.00

Present - Level-2, Q2, ∆t = 0.002 ≈ 26000 1.21± 75.42 2.00

Present - Level-3, Q1, ∆t = 0.002 ≈ 70000 1.28± 75.37 2.00

Present - Level-3, Q2, ∆t = 0.002 ≈ 70000 1.23± 76.80 2.00

Present - Level-2, Q1, ∆t = 0.001 ≈ 26000 1.39± 75.92 2.00

Present - Level-2, Q2, ∆t = 0.001 ≈ 26000 1.25± 78.27 2.00

Present - Level-3, Q1, ∆t = 0.001 ≈ 70000 1.25± 78.32 2.00

Present - Level-3, Q2, ∆t = 0.001 ≈ 70000 1.22± 79.85 2.00

Table 2: Turek beam: summary of vertical displacement of point A (dsy) and frequency of oscillations (fo).
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Figure 10: Turek benchmark problem: vertical displacement of point A obtained with Level-3 mesh and ∆t = 0.001.
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Figure 11: Turek benchmark problem: contour plots of velocity magnitude.
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Figure 12: Turek benchmark problem: contour plots of pressure.

4.3. Flutter of an elastic bridge

This example is concerned with the flutter of an elastic bridge. Flutter is a dynamic instability of an elastic

structure subjected to fluid flow. This example represents a simplified model of the famous Tacoma Narrows bridge

which collapsed eventually after undergoing violent vibrations. This problem has been previously studied by Dettmer

and Perić [6] using body-fitted ALE approach and the staggered scheme used in the present work. The geometry and

boundary conditions of the problem are shown in Fig. 13(a). The bridge is of size 1× 4× 30 and clamped at its both

ends. The density and viscosity of the fluid are ρf = 1.0 and µf = 0.01, respectively. The properties of the bridge

material are: density ρs = 70.6, shear modulus µs = 823.2 and bulk modulus κs = 1783.6; and it material model

used is Neo-Hookean. Based on the inflow velocity of vin = 2.5 and the thickness of the bridge, the Reynolds number

is Re = 250.

The hierarchical mesh shown in Fig. 13(b), with linear b-splines, is used for the simulation. The fluid mesh

consists of 171212 DOFs at the first step of the simulation, and the beam is discretised with 3 × 2 × 10 linear

hexahedral elements. Three levels of adaptive integration are used for the integration of cut cells. The relaxation

parameter for the staggered scheme is β = 0.5. The ghost-penalty parameters are γu
GP = γp

GP = 0.0001. The inlet

velocity is ramped smoothly during first ten time units and then kept constant at vin. A constant time step of ∆t = 0.5

is used. The evolution of vertical displacement of the midpoint of the leading edge of the bridge is presented in Fig.

14, along with the value obtained with the body-fitted ALE approach proposed in [6]. This graph shows that the

solution obtained with the present scheme is, in terms of frequencies and amplitudes, in agreement with the solution

obtained in [6]. Differences are attributed to the relatively coarse discretisations in both simulations. Typical contour

plots of fluid pressure and streamlines, along with the deformed configuration of the beam, at two time instants are

shown in Figs. 15 and 16, respectively.
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Figure 13: Bridge flutter: (a) geometry and boundary conditions and (b) hierarchical mesh used for the analysis.
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Figure 14: Bridge flutter: vertical displacement of the midpoint of the leading edge.
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Figure 15: Bridge flutter: contour plots of pressure in the refined portion of the fluid grid.
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Figure 16: Bridge flutter: streamlines and the deformed configuration of the beam.

4.4. Check valve with elastic plate

In this example, we apply the proposed numerical methodology to simulate the fluid-structure interaction in a

check valve in which the valve plate is modelled as a flexible solid. This example demonstrates the applicability of the

proposed framework for problems consisting of complex geometries and evolving solid-solid contacts. The geometry

and boundary conditions of the problem are shown in Fig. 17(a). The density and viscosity of the fluid are ρf = 800.0

kg/m3 and µf = 500 cP, respectively. The beam is of thickness 0.25 mm and is modelled with Neo-Hookean material

with density ρs = 8000 kg/m3, Young’s modulus Es = 1.0 GPa and Poisson’s ratio νs = 0.3. The contact between

the bottom surface of beam and valve’s seat is modelling as a frictionless normal contact using Lagrange multipliers.

Simulations are performed on the hierarchical mesh shown in Fig. 17(b). With linear b-splines the fluid mesh

consists of 88416 DOFs at the first time step of the simulation. Integration of cut cells is performed using four levels

of adaptive integration. The relaxation parameter for the staggered scheme is β = 0.05. The inlet pressure is varied

sinusoidally with a frequency of 10 Hz; and a constant time step of ∆t = 1.0 ms is used. The vertical displacement

of the tip of the beam, total contact force and flow rate are displayed in Fig. 18, along with the input pressure profile.

These graphs illustrate that the closing of the valve when the flow is reveresed during the suction part of the pressure

cycle is captured well. The direct consequence of this can be observed in zero flow rate during the suction part.

Contour plots of velocity mangitude and pressure when the valve is its highest opening position are shown in Fig. 19.
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Figure 17: Check valve with elastic plate: (a) geometry and boundary conditions, (b) hierarchical mesh used for the analysis,
(c) discretisation around the left end of the beam and (d) discretisation around the right end of the beam. Cells shown in red
color are for the adaptive integration.
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Figure 18: Check valve with elastic plate: response diagram - input pressure pin = 10 sin(2πt/100) [bar], tip displacement dsy
[mm], total contact force Fc [N] and flow rate Q [ml/ms].
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Figure 19: Check valve with elastic plate: contour plots of velocity magnitude and pressure when the valve is in its highest
opening position.

5. Summary and conclusions

We have presented a robust and efficient numerical framework for the simulation of fluid-structure interaction

involving laminar viscous incompressible fluid, flexible solids and solid-solid contact. The promising feature of the

proposed framework is the efficiency resulting from the use of the staggered scheme in which fluid and solid sub-

problems are solved only once during a time step. Moreover, computationally efficient fluid grids that yield accurate

numerical results can be generated by exploiting the hierarchical property of b-splines.

The proposed scheme is applied to several benchmark examples. Spatial and temporal convergence studies of the

scheme are assessed by the studying the problems of cross flow over a flexible beam and vortex-induced oscillations

of a flexible beam. As demonstrated with the numerical examples, the results obtained with the proposed scheme are

in good agreement with reference values. Key advantages of the proposed methodology lie in the robustness and the

efficiency of the staggered scheme and the effective utilisation of the hierarchical property of b-splines. The example

of bridge flutter illustrates the robustness of the proposed scheme for three-dimensional problems where the solid

undergoes extremely large deformations, and the example of check valve clearly demonstrates the applicability of

the proposed scheme to complex industrial fluid-structure interaction problems involving solid-to-solid contacts. In

conclusion, the present framework based on the immersed finite element methodology proposed in [20, 21] has been

proven to be a robust and efficient numerical framework for the modelling of complex coupled fluid-structure inter-

action. The ongoing research effort focusses on extending the proposed framework to high-performance computing
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architectures and its application to large-scale industrial simulations.
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[2] W. G. Dettmer and D. Perić. A computational framework for fluid-structure interaction: Finite element formulation and applications.

Computer Methods in Applied Mechanics and Engineering, 195:5754–5779, 2006.
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[12] T. Rüberg and F. Cirak. A fixed-grid b-spline finite element technique for fluid-structure interaction. International Journal for Numerical

Methods in Fluids, 74:623–660, 2014.

[13] D. Kamensky, M. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. An immersogeometric

variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Computer Methods in Applied Mechanics

and Engineering, 284:1005–1053, 2015.

[14] F. Xu, D. Schillinger, D. Kamensky, V. Varduhn, C. Wang, and M. Hsu. The tetrahedral finite cell method for fluids: Immersogeometric

analysis of turbulent flow around complex geometries. Computers and Fluids, 141:135–154, 2016.

[15] E. Burman and P. Hansbo. Fictitious domain methods using cut elements III. A stabilized Nitsche method for Stoke’s problem. ESAIM:

Mathematical Modelling and Numerical Analysis, 48:859–874, 2014.

[16] Y. Wang, P. K. Jimack, and M. A. Walkley. A one-field monolithic fictitious domain method for fluid-structure interactions. Computer

Methods in Applied Mechanics and Engineering, 317:1146–1168, 2017.
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