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Benchmark results in the 2D lattice Thirring model with a chemical potential
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We study the two-dimensional lattice Thirring model in the presence of a fermion chemical potential.
Our model is asymptotically free and contains massive fermions that mimic a baryon and light bosons that
mimic pions. Hence, it is a useful toy model for QCD, especially since it, too, suffers from a sign problem in
the auxiliary field formulation in the presence of a fermion chemical potential. In this work, we formulate
the model in both the world line and fermion-bag representations and show that the sign problem can be
completely eliminated with open boundary conditions when the fermions are massless. Hence, we are able
accurately compute a variety of interesting quantities in the model, and these results could provide
benchmarks for other methods that are being developed to solve the sign problem in QCD.

DOI: 10.1103/PhysRevD.97.054501

I. INTRODUCTION

Traditional lattice calculations of quantum field theories
often encounter sign problems in the presence of a chemical
potential. An excellent example is QCD, in which it is
impossible to accurately compute quantities at a nonzero
baryon density, especially at low temperatures [1]. Over the
past decade, ideas like the complex Langevin approach [2]
and the Leftchetz thimble approach [3] have been proposed
as potential solutions to sign problems including QCD.
When these methods are tested on simple models in which
exact results are available [4–6], we not only find potential
pitfalls of the methods but also learn new directions to
avoid them [7–9]. While these ideas have also been able to
capture some of the qualitative features of more complex
field theories [10,11], in these cases, the numerical results
are not always compared with benchmark calculations
obtained with other methods in which the errors can be
controlled. An exception to this has been studies of bosonic
field theories at finite densities in which a controlled
Monte Carlo algorithm in the world line representation
free of sign problems is available [12,13]. Producing such
benchmark calculations that truly test the method, espe-
cially in fermionic quantum field theories with a sign
problem and similar to QCD in other aspects, would be
helpful and is the main motivation behind our work.
Recently, the Lefshetz thimble program got a boost when

it was shown that it may be possible to use holomorphic

flow in complex field space to sample multiple thimbles
rather than perform calculations on a single thimble as was
done in the past [14]. The focus has also turned to lattice
Thirring models as a prototype example of the physics of
QCD [14,15]. This model has also been studied earlier in
higher dimensions using stochastic quantization [16]. Also,
the recent work has computed the average fermion number
hNi on small but fixed spatial size LX as a function of the
chemical potential, which is much more sensitive to the
important physical scales in the problem, as compared to
local densities on large space-time lattices. As shown
schematically in Fig. 1, at low temperatures (or large
Lt), the plot of hNi as a function of the chemical potential
μ is expected to show a series of jumps at critical values of

FIG. 1. A schematic plot of the particle number as a function of
chemical potential for a fixed spatial size. We propose that the
values of μi and the corresponding Ni’s are easily calculable and
can be used as benchmark quantities to validate a method that
claims to solve a sign problem.
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the chemical potential, say μ1; μ2;…, where the average
particle number jumps to N1; N2;…. The values of μi ’s
and Ni’s are related to the physical scales of the problem
like binding energies and scattering lengths [17,18].
Calculations of μi andNi should become harder to compute
due to sign problems, especially as μi’s become large. Thus,
the ability to accurately measure these quantities can be
considered as a true benchmark for methods that are
designed to solve sign problems. Encouraged by the fact
that some of these quantitative features may be within
reach, recently efforts have turned toward speeding up the
calculations on larger lattices using machine learning
algorithms [19]. It would indeed be exciting if this program
is successful.
The motivation for our work is to help this program by

accurately computing the μi’s and Ni’s for a specific two-
dimensional lattice Thirring model constructed with stag-
gered fermions. Our model is asymptotically free, and a
continuum limit can be defined at zero coupling. At
nonzero couplings (finite lattice spacing), the fermion in
the theory is massive and mimics a baryon, while bosonic
excitations made with fermion-antifermion pairs are mass-
less and mimic pions. Thus, the similarities of our model
with QCD are striking. Of course, the ground state does not
break any symmetries, and the pions are not really
Goldstone bosons, as was explained by Witten long ago
[20], but the fermion mass generation is dynamical like in
QCD, and from the point of view of sign problems, the
bosons being lighter than the fermion is also similar to
QCD. Interestingly, we can solve the model in both the
fermion world line method and the fermion-bag approach.
In the world line approach, we argue in this work that the
sign problem is absent with open boundary conditions and
zero fermion mass. Thus, in this limit, we are able to study
large lattices and can accurately compute the critical μi’s
and Ni’s. These could provide a helpful benchmark to test
new ideas that claim to solve sign problems in problems
similar to QCD.
Our paper is organized as follows. In Sec. II, we discuss

the model we study and the various types of representations
that can be used to solve it. In particular, we show why the
model in the massless limit with open boundary conditions
has no sign problem in the world line formulation. In
Sec. III, we discuss our Monte Carlo methods, especially
the worm algorithm to update the world line representation
and the fermion-bag algorithm. In Sec. IV, we discuss the
results we have obtained. In particular, we define the
observables we measure and discuss our results in a variety
of parameter ranges. We present our conclusions in Sec. V.

II. MODEL

The lattice action of the model we study is given by

S ¼
X
x;y

χ̄xðMx;y þmδx;yÞχy þ U
X
x;ν

χ̄xχxþν χ̄xþνχx; ð2:1Þ

where the matrix M is the massless staggered fermion
matrix defined as

Mx;y ¼
X
ν

ηx;ν
2

ðeμδν;0δxþν;y − e−μδν;0δx;yþνÞ; ð2:2Þ

where μ is the chemical potential, m is the fermion mass,
and ηx;μ are the usual staggered phase factors [ηx;0 ¼ 1 and
ηx;1 ¼ ð−1Þx1]. The four-fermion coupling U can be inter-
preted as a current-current interaction on neighboring sites,
hence the name “lattice Thirring model.” When m ¼ 0, the
model contains the well-known Uð1Þ chiral symmetry of
staggered fermions. In the discussion below, LX denotes the
number of spatial sites, and LT denotes the number of
temporal sites in our two-dimensional square lattice.
Further, we always use antiperiodic boundary conditions
in time but study the effects of periodic, antiperiodic, and
open boundary conditions in space.
This model has a long history and has been studied

extensively in three space-time dimensions in the auxiliary
field formulation [21,22] and the fermion-bag approach
[23,24]. In three dimensions, the model withm ¼ 0 has two
phases: a weak coupling phase with massless fermions and
a strong coupling phase with spontaneously broken Uð1Þ
chiral symmetry, massive fermions, and light pions. These
phases are separated by a second order critical point, the
properties of which were studied in the earlier work. In two
dimensions, this critical point moves to the origin, and the
massless weak coupling phase disappears. Further, since a
continuous chiral symmetry cannot break in two dimen-
sions, the massive fermion phase becomes critical. Thus,
the two-dimensional model contains massive fermions and
critical bosons, in which the mass of the fermion can be
used to set the lattice spacing. The continuum limit is taken
by tuning U toward the origin. As far as we know, these
features of the two-dimensional model with m ¼ 0 were
never studied using the Monte Carlo method even at μ ¼ 0
where there is no sign problem. The similarity of the model
with QCD makes it an interesting toy model for studies at
nonzero chemical potential. At a large value of m, this was
done recently in two space-time dimensions [25].

A. Auxiliary field representation

The traditional approach to solving these models is by
rewriting the partition function using an auxiliary field
formulation so that it can be tackled by the Hybrid
Monte Carlo algorithm. More explicitly,

Z ¼
Z

½dχ̄dχ�e−S

¼
Z

½dχ̄dχ�
Z

½dA�e−Saux ; ð2:3Þ

where in the last step we have introduced a compact
auxiliary field 0 ≤ Ax;ν < 2π associated with the bonds
of the lattice and the auxiliary field action
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Saux ¼
X
x;ν

NF

g2
ð1 − cosAx;νÞ þ

X
x;y

χ̄xðM̃x;y þm0δx;yÞχy

ð2:4Þ

is now a Gaussian in the Grassmann fields. The Dirac
matrix M̃x;y is defined as

X
ν

ηx;ν
2

ðeiAx;νþμδν;0δxþν;y − e−iAy;ν−μδν;0δx;yþνÞ; ð2:5Þ

and the parameters U andm are related to g andm0 through
the relations

U ¼ 0.25

�I0ðNF
g2 Þ

I1ðNF
g2 Þ

�2

− 0.25; m ¼
�I0ðNF

g2 Þ
I1ðNF

g2 Þ

�
m0:

ð2:6Þ

Here, I0 and I1 are the Bessel function and the first modified
Bessel function. The sign problem in the auxiliary field
representation can be traced to the fact thatDetðM̃þm0Þ does
not have any symmetries and can be complex when μ ≠ 0,
like in QCD.

B. Fermion-bag representation

Can ideas of fermion bags help solve the sign problem
present in the auxiliary field approach? In this approach, we
do not introduce the usual auxiliary fields but try to regroup
fermion world lines differently. Unfortunately, this regroup-
ing is not unique and needs some thought. One possible
regrouping introduced earlier for the μ ¼ 0 case is based on
introducing a new set of variables, the dimers dx;ν for nearest
neighbor interactions and monomers nx for the mass terms
[23]. This naturally emergeswhenwe expand theGrassmann
exponential of the mass and interaction terms:

Z ¼
Z

dχ̄dχe−
P

x;y
χ̄xMx;yχy

×
Y
x

ð1 −m χ̄xχxÞ
Y
x;ν

ð1 − U χ̄xχxþν χ̄xþνχxÞ: ð2:7Þ

We then interpret the expression

ð1þm χ̄xχxÞ ¼
X
nx¼0;1

ð−m χ̄xχxÞnx ð2:8Þ

on each site, as introducing a monomer field [n] where
nx ¼ 0 takes values 0 and 1. The mass term ð−mχ̄xχxÞ is a
monomer (single site fermion bag). Similarly, the interaction
term can be rewritten using a dimer field [d] such that the
interaction term ð−Uχ̄xχxχ̄xþνχxþνÞ is the dimer (two site
fermion bag). The partition function then becomes the
sum over all configurations of [n] and [d]. Because of
the Grassmann nature of the fermion field, dimers and

monomers cannot touch each other. Grassmann fields
can be integrated over the monomer and dimer sites first,
and this does not introduce any signproblems.The remaining
Grassmann integral can then be performed on free sites [f]
that do not contain monomers or dimers. If we denote the
fermionmatrixM restricted to the free sites asWð½f�Þ, we can
write the partition function as

Z ¼
X
½d�;½n�

mNmUNdDetðWð½f�Þ: ð2:9Þ

For an illustration, we show a possible configuration of
dimers and monomers on a 4 × 4 block of lattice sites in
Fig. 2. The monomers are depicted as red circles spanning a
single site, and the dimers are depicted as blue links spanning
two sites. The figure depicts a configuration with two free
fermion bags that are isolated from each other by the dimers
and monomers. Due to this, the matrix Wð½f�Þ is block
diagonal with block matrices W1½f1� and W2½f2� defined
within the two independent free bags. The determinant of
Wð½f�Þ is then the product of two determinants detðWð½f�Þ ¼Q

i detðWið½fi�ÞÞ.
When μ ¼ 0, since the matrices Wð½f�Þ are always

antisymmetric, DetðWð½f�Þ ≥ 0, and the sign problem is
solved. However, in the case of μ ≠ 0, this property no
longer holds, and the determinants can be negative. This
may seem surprising since in two space-time dimensions
the fermion permutation sign is absent due to the fact that
fermions cannot cross each other. In our model, fermions
have a flavor, and they can change flavors while hopping.
This is encoded in the staggered phase factors, and this
leads to a sign problem. Empirically, we discovered that
this remaining sign problem depends on the boundary
conditions. While the sign problem is present with both
periodic and antiperiodic boundary conditions, it is absent
with open boundary conditions. This also means that on
large space-time lattices with LX ¼ LT the sign problem
essentially disappears, but for asymmetric lattices, it can
reemerge. In the most interesting case for our studies, in
which we fix the spatial lattice size LX and study very large
values of LT , the sign problem can become severe with
periodic and antiperiodic boundary conditions.

FIG. 2. An illustration of a possible configuration of dimers and
monomers in a 4 × 4 block of the lattice. The red circles represent
monomer sites, and the blue links represent dimers.
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C. World line representation

In order to get a better understanding of the origin of the
sign problem in our model, we look at the representation of
the fermion determinant DetðW½f�Þ inside free fermion
bags as a sum over their world lines. This representation
can be found by expanding the determinant back into the
Grassmann integral form,

det ðWð½f�ÞÞ

¼
Y
x∈½f�

�Z
d χ̄xdχx

�
e−
P

x;y∈½f� χ̄xMx;yχy

¼
Y
x∈½f�

�Z
d χ̄xdχx

� Y
x;xþν∈½f�

×

�
1 −

1

2
ηx;νeμδν;0 χ̄xχxþν þ

1

2
η†x;νe−μδν;0 χ̄xþνχx

�
:

ð2:10Þ

This product can be represented in terms of directed
fermion link variables lx;�ν ¼ 0;�1, where þ1 represents
the term χ̄xχx�ν and −1 represents the term χ̄xþνχx. The
determinant is replaced with a sum over all configurations
of directed links.
Configurations of links only have a nonzero weight

when one χ̄ and one χ are chosen at each site. Thus, each
site must have one directed link pointing into it and one
pointing out of it. The links will therefore form closed
loops. In Fig. 3, we show two valid configurations with the
directed links represented as arrows pointing from χ̄ to χ.
The weight of a configuration of fermion world lines is
given by the product of the weights in Eq. (2.10) and a
factor −1 for every closed loop arising from a reordering of
χx and χ̄x to match the ordering of the measure,

det ðWð½f�ÞÞ

¼
X
½l�

ð−1ÞNloops

Y
x;α

�
e−μlx;αδα;0

lx;αηx;α
2

�jlx;αj
; ð2:11Þ

where Nloops is the number of closed loops formed by the
directed links. It is easy to verify that there are valid
configurations with a negative weight. For example, the
configuration on the left in Fig. 3 has a positive weight, but
the configuration on the right has a negative weight.
Let us now prove that the sign problem disappears with

open boundary conditions in the massless limit because
configurations with a negative sign are absent at the world
line level. The weight of a configuration can be written as
the product of the weights of the closed loops of fermion
links

det ðWð½f�; μÞÞ

¼
X
½l�

Y
loop∈l

�
−

Y
x;α∈loop

e−μlx;αδα;0
lx;αηx;α

2

�
: ð2:12Þ

It is therefore sufficient to show that all loops that can exist
in a configuration have positive weight.
The sign of a loop can be computed as a product of the

four sign factors. The first sign factor ð−1ÞNb arises due to
the fact that forward and backward links have opposite
signs, where Nb is the number of links in the loop pointing
backward. The second factor ð−1ÞNt;odd comes from the
staggered fermion phase factor ηx;1, where Nt;odd is the
number of temporal links in the loop that occur on an odd
spatial site. The third factor ð−1ÞWt comes from the
antiperiodic temporal boundary conditions, where Wt is
the temporal winding of the loop. Finally, there is an extra
factor of ð−1Þ for every fermion loop. This arises due to the
reorganization of Grassmann variables in a closed loop
before performing the Grassmann integration. Thus, the
sign of the loop is given by ð−1ÞNs, where

Ns ¼ Nb þ Nt;odd þWt þ 1: ð2:13Þ

In the following discussion, we will focus on open spatial
boundary conditions where only three distinct topological
loops are allowed, namely, Wt ¼ 0; 1;−1.
Clearly, the parity of Ns determines the sign of the loop;

when it is even, the loops are positive, and when it is odd,
they are negative. Let us now see why massless staggered
fermions with open spatial boundary conditions can only
contain loops with an even Ns. Let us define the parity of a
space-time region as þ1 if it contains an even number of
lattice sites and −1 otherwise. The total number of sites in
space-time is always even in a staggered fermion formu-
lation. In the absence of a mass term, every loop by itself
always has an even number of sites associated with it and
divides space-time into two regions such that the combined
number of sites of the regions is also even. However, some
loops divide space-time such that each side has an odd
number of lattice sites. We will argue below that the parity
of regions on either side of the loop is equal to the parity of
Ns associated with the loop. This implies that loops with an

FIG. 3. Illustration of two fermion world line configurations
with along with dimers and monomers.
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odd value of Ns cannot be generated because that means
space-time regions with odd parity have been created. In
the massless limit, such space-time regions are not allowed
since they cannot be filled with loops, all of which have an
even number of sites. For example, in the Wt ¼ 0 sector,
loops with an odd Ns will enclose an odd parity region,
which is impossible. In the Wt ¼ �1 sectors, we can focus
on loops closest to the open boundary with an odd value of
Ns. Then, the space-time region connected to the boundary
will contain an odd number of sites which is again
impossible. Hence, loops with an odd value of Ns are
not allowed.
We still have to prove that the parity of Ns associated

with the loop is always equal to the parity of the space-time
regions on either side of it. For this purpose, let us consider
building an arbitrary loop from some elementary loops. It is
easy to see that all loops can be built from three elementary
loops:
(1) The first is the simple two site loop in the spatial

direction (a spatial dimer), which has Nb ¼ 1,
Nt;odd ¼ 0, and Wt ¼ 0. Hence, Ns ¼ 2, and the
loop has a positive sign.

(2) The second is the temporal winding loop that goes
up in time at an even site. Thus, in this case, Nb ¼ 0,
Nt;odd ¼ 0, and Wt ¼ 1. Thus, again, Ns ¼ 2, and
the loop is positive.

(3) The third is the reverse of the temporal loop defined
above; i.e., it travels backward in time on an even
site and wraps around the temporal boundary in the
negative direction. Thus, Nb ¼ LT , Nt;odd ¼ 0, and
Wt ¼ −1. Thus, now, Ns ¼ LT , which we always
take to be even. Thus, it also has a positive sign.

Note that each of these elementary loops divides space-time
lattice into two regions, both of which have an even parity.
Thus, we always begin with loops in which the parity of Ns

associated with the loop and the parity space-time regions
on either side of it are even.
We can construct any arbitrary loop in the three

topological sectors Wt ¼ 0;�1 beginning with one of
the elementary loops defined above in that sector and
performing a series of two simple local deformations which
we call the link-staple deformation and the corner-flip
deformation. These are shown in Fig. 4. Let us now study
the effect of each of these deformations on the value of Ns
and how they change the number of sites in the two regions
on either side of the loop. We will see that these two
features are correlated.
Consider first the link-staple deformations in which a

link in the loop is replaced by a staple or vice versa. These
deformations are depicted in Figs. 4(a) and 4(b). It is easy
to verify that these deformations always change Nt;odd by 1
and Nb by 1, and hence Ns changes by an even amount.
This implies that the link-staple deformations do not
change the parity ofNs. Also notice that these deformations
either grow the size of the loop by two sites or vice versa.

This means two lattice sites either get generated or
disappear from the remaining lattice. Most importantly,
both these sites appear on or disappear from the same side
of the loop and so preserve the even number of lattice sites
on each side.
Next, consider the corner-flip deformations in which a

corner formed by the bending of the loop is flipped to the
opposite site of the plaquette as shown in Figs. 4(c) and 4(d).
For these deformations, onlyNt;odd changes by 1, and hence
Ns also changes by 1. This means corner-flip deformations
do change the sign of a loop. However, notice that such
deformations do not change the size of the loop but move a
single lattice site from one side of the loop to the other.
Thus, these deformations create loopswith an odd number of
lattice sites on each side.
Since we can construct all loops with these two elemen-

tary deformations acting on the three positive elementary
loops, we note that loops with an odd value of Ns will
involve an odd number of corner-flip deformations and thus
divide the lattice into two regions with an odd number of
lattice sites on each side. Hence, as explained above, in the
massless limit with open boundary conditions, loops with
an odd value of Ns are not allowed. All loops are positive.
Clearly, the above arguments fail in the presence of a

nonzero mass, where single sites can be saturated with the
mass term. The arguments also fail when the spatial
boundary condition is not open and links or loops may
cross the boundary. An example of an allowed negative
signed loop is shown in Fig. 5 on the left, assuming the
lattice is periodic. With periodic and antiperiodic boundary
conditions, we can have other more complicated loops as
shown in Fig. 5 on the right. Thus, the sign problem can be
completely eliminated by open boundary conditions in the
spatial direction. This feature of the world line formulation
is well known and specific to two-dimensional models
[26–28]. In higher dimensions, the argument for the

(a) (b)

(c) (d)

FIG. 4. Deformations that can be used to link any two loops
with the same amount of spatial and temporal wrappings. In (a), a
link is replaced with a staple, and in (b), a staple is replaced with a
link. The sign of the loops does not change in either case. In (c)
and (d), a corner is flipped. The sign changes, and the number of
sites in the loop changes by 1.
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positivity of all fermion world line configurations fails, and
significant cancellations between world line configurations
will be necessary for alleviating the sign problem. The
fermion-bag approach can be helpful in this regard [25].
Before we end this section, we would like to comment on

the connection between our proof for the absence of the
sign problem here and the one given in Ref. [29] for the
massless Schwinger model. As shown in the previous
work, the presence of gauge fields allows us to absorb
the staggered fermion phase factors into the gauge fields.
This leads to a simple algebraic formula for the sign factor
for each configuration. In the previous work, it was then
argued that this sign factor is always positive. Due to the
absence of gauge fields in our work, we had to deal with
the staggered fermion phase factors directly. Hence, we
focused on an expression for the sign coming from each
loop and showed that only positive loops contribute by
understanding the topology associated with space-time
regions on either side of the loop. Interestingly, we can
also use our topological insight and argue for the absence of
the sign problem from the fermionic sector in the massless
Schwinger model. The argument is based on the fact that
with Uð1Þ gauge fields, fermion loops can only appear in
the sectors Wt ¼ 0; 1;−1. Open boundary conditions are
not necessary. Clearly,Wt ¼ 0 loops will be positive for the
same reason as we discuss above. Further, the Uð1Þ gauge
field forces every Wt ¼ 1 loop to be accompanied by a
neighboringWt ¼ −1 loop and vice versa. Thus, the region
between these two temporal winding loops must have
positive parity. This implies that everyWt ¼ �1 loop must
have Ns ¼ 0 and hence will be positive. Thus, again, only
positive fermion loops contribute.

III. MONTE CARLO UPDATES

Monte Carlo methods for updating both the world line
representation and the fermion-bag representations are by
now well developed [30–35]. We use a worm algorithm to
update the fermion lines and dimers, using updates like the
one illustrated in Fig. 6. To begin an update, we suggest

randomly changing some fermion link lx;ν. The update is
then accepted with the absolute value of the weight given in
Eq. (2.11). If the link is changed, two defects are generated
in the lattice configuration, which are allowed. The defects
are the head and tail of the worm. The head of the worm
then propagates by updating the neighboring links. When
the head returns to its tail, the worm closes, the defects
disappear, and the update is complete. The various steps
of how the defect propagates are shown in shown Fig. 6.
The configuration of dimers may also be updated during
the worm update. When this is done, we have to use the
weights of including or removing a dimer. Figure 7 shows
the steps for an update that changes the dimer number.
In contrast to the worm algorithm, we sample fermion-

bag configurations using a local Monte Carlo update that

FIG. 5. The figure on the left shows a negative sign fermion
loop that wraps along the temporal direction. Such a loop is
generated when an odd number of sites cross the fermion world
line as it is obtained through a series of deformations starting
from a straight temporal loop. The figure on the right shows a
loop with negative sign when the spatial boundary condition is
(anti)symmetric.

FIG. 6. An illustration of the worm update used in the world
line formalism. The solid dots represent the head and the tail of
the worm where the configuration has defects. At the end, the
defects disappear, and a new allowed configuration is generated.

FIG. 7. An illustration of the worm update that changes the
dimer number.
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involves adding or removing dimers or pairs of monomers.
Each proposal is accepted with the probability

Pacc ¼
mN0

mUN0
d det ðWð½f0�; μÞÞ

mNmUNd det ðWð½f�; μÞÞ ; ð3:1Þ

where the new configuration is denoted with primed
variables. The fact that one has to use ratios of fermion
determinants that are nonlocal helps to reduce autocorre-
lation times. We also can update large regions of space-time
by using a background field method used recently in
Ref. [35]. The sampling is made more efficient with a
move that switches the places of a monomer and a dimer if
the two are on neighboring sites. Since the weights of the
two configurations are the same, this update is very quick.

IV. NUMERICAL RESULTS

In this work, we compute three observables in order to
understand the physics of our model. The first is the chiral
condensate susceptibility χ, defined by the relation

χ ¼ U
V

X
x;y

hψ̄xψxψ̄yψyi: ð4:1Þ

We can use it to understand the physics of bosonic
excitations in our model. We also compute the chiral
charge winding number susceptibility, defined by the
relation

hQ2
χi ¼

U
V

X
x∈S;y∈S0

hJχα;xJχα;yi; ð4:2Þ

Jχα;x ¼ ϵxηx;α
2

½eδα;0μψ̄xψxþα − e−δα;0μψ̄xþαψ �; ð4:3Þ

where S and S0 are surfaces orthogonal to the direction α. In
the thermodynamic limit, the winding number susceptibil-
ity helps us understand the status of chiral symmetry as we
explain below. In the world line representation, the chiral
charge can be defined by the relation

qχxα ¼ ϵxðlx;α þ lxþα;−α þ 2dx;αÞ; ð4:4Þ

which means the susceptibility is simply

hQ2
χi ¼

��X
x∈αq

χ
xα

�
2
�

ð4:5Þ

since the chiral charge is conserved on each configuration.
Finally, we measure the average fermion number using the
relation hNfi ¼ hPx∈SJ0;xi, where the fermion number
current is given by

Jα;x ¼
ηx;α
2

½eδα;0μψ̄xψxþα − e−δα;0μψ̄xþαψx� ð4:6Þ

and S is a surface perpendicular to t̂. In the world line
representation, again, the fermion number is straightfor-
ward to calculate and is given by

hNfi ¼
X
x∈S

hlx;t̂ − lxþt̂;−t̂i: ð4:7Þ

In our definition, the fermion number is normalized to
count both the Dirac and flavor degrees of freedom from a
continuum limit perspective.
Using these observables, we first focus on the physics of

our model at μ ¼ 0 in order to bring out the similarities to
QCD. As we mentioned earlier, unlike in QCD, the Uð1Þ
chiral symmetry of the model cannot break in two dimen-
sions. However, the lightest boson in the model is critical
(i.e., it is massless but is not a Goldstone boson). Hence,
when LX ¼ LT ¼ L, we expect the chiral condensate
susceptibility to scale as χ ∼ L2−η for large values of L.
The exponent η depends on U like in the usual critical
phase of the two-dimensional XY model. Since the Thirring
model becomes a closed packed dimer model at infinite U,
we expect η ¼ 0.5 [36]. When U ¼ 0, the susceptibility
diverges logarithmically with L, and hence η ¼ 2. Our
results reproduce this and show how the exponent changes
continuously between these two limits. In Table I, we give
the values of 2 − η obtained at various values of U.
In a chirally symmetric theory with massive excitations,

the chiral charge winding number susceptibility hQ2
χi is

expected to vanish because the chiral charge cannot wind
across the spatial boundaries. However, when the phase is
critical like in our model, it is expected to be go to a
constant in the thermodynamic limit. Our results are
consistent with this expectation. The values we measured
for hQ2

χi at L ¼ 256 are given in Table I. These values are
found using open boundary conditions. Further, we find
that hQ2

χi ¼ 0.25 at U ¼ 0 and grows monotonically to the
value of roughly 1.2 at U ¼ ∞. All this is consistent with
the fact that the bosonic sector of our theory is critical.
In contrast to the bosons, fermions are massive for all

values of U > 0. We compute the fermion mass mf as a
function ofU using large square lattices ðLX ¼ LT ¼ LÞ as

TABLE I. The scaling dimension ν, chiral charge susceptibility
hQ2

χi, and the fermion mass measured on a square lattice.

U 2 − η hQ2
χi mf

0 0 0.25 0
0.1 0.90(1) 0.499(7) 0.0098(4)
0.2 1.201(4) 0.61(1) 0.081(1)
0.3 1.303(4) 0.780(8) 0.183(1)
0.4 1.371(7) 0.895(4) 0.290(1)
0.5 1.393(3) 0.972(3) 0.395(3)
0.6 1.423(4) 1.024(3) 0.491(1)
1.0 1.467(4) 1.128(2) 0.793(1)
∞ 1.5 1.208(8) ∞

BENCHMARK RESULTS IN THE 2D LATTICE THIRRING … PHYS. REV. D 97, 054501 (2018)

054501-7



follows. In the thermodynamic limit, we expect the average
fermion density hni ¼ hNfi/LX to be zero when μ ≤ mf

and rise linearly according to the relation

hni ¼ cðμ −mfÞ ð4:8Þ
for μ ≥ mf. This behavior should also be an excellent
approximation for sufficiently large lattices. To demon-
strate this, we show our results for hni atU ¼ 0.3with open
boundary conditions in Fig. 8. Selected values of these data
are also tabulated in Table II as a benchmark for future
calculations. As we can see for L ¼ 10, the curve does not
show the expected nonanalyticity, but for L ¼ 40 and
L ¼ 64, the curves show it clearly. We can fit our data

to the linear form which is shown as the dashed line in the
fit. In Table I, we report the value of mf found using this
method for several values of U. We used lattices of size of
L ¼ 64, except for U ¼ 0.1, where the lattice size used
was L ¼ 128.
The dynamical generation of fermion mass is an inter-

esting feature of our model. While similar to the phenome-
non of chiral symmetry breaking in QCD, the actual
dynamical breaking of continuous symmetries is forbidden
in two-dimensional models. Nevertheless, a fermion mass
can be generated, and a massless boson with critical
correlations can arise [20]. Finally, we note that four-
fermion couplings are expected to be marginal in two
dimensions, and in our case, it also happens to be margin-
ally relevant (i.e., asymptotically free). Thus, at small U,
the fermion mass mf is expected to vanish according to the
relation

mf ≈ C exp

�
−2π
b0U

�
; ð4:9Þ

where b0 ¼ 16 is the one-loop coefficient of the β function.
Figure 9 shows a plot of the fermion masses at various
values of U obtained using our method discussed above,
along with a solid line that shows the expected behavior of
Eq. (4.9). For purposes of illustration, we use C ¼ 0.49.
With these small masses, lattice volumes up to V ¼ 1024 ×
1024 were necessary. It is well known that such asymptotic
scaling fits do not work very well unless very large lattices
are used [37]. Here, we just use the scaling to illustrate
qualitatively that fermion masses do become exponentially
small as U becomes small.
Next, we turn to the physics of the finite chemical

potential. We first consider a small spatial lattice of LX ¼ 6
and LT ¼ 48 and study the sign problem in the traditional
auxiliary field approach with periodic boundary conditions

0 0.2 0.4 0.6 0.8
µ

0

0.1

0.2

0.3

0.4

<
n>

L=10
L=40
L=64

FIG. 8. The fermion number density hni as a function of the
chemical potential on a square lattice with open boundary
conditions. The dashed line shows a fit to the linear region at
L ¼ 64.

0.06 0.08 0.1 0.12 0.14 0.16 0.18
U

m
f

0

0.01

0.02

0.03

0.04

FIG. 9. Plot of the fermion mass as a function of U for
small values. We observe qualitatively the exponential scaling
expected. The solid line is the one-loop β function.

TABLE II. Selected values of hni plotted in Fig. 8.

μ hni μ hni μ hni
L ¼ 10

0.16 0.0276(2) 0.32 0.0948(4) 0.52 0.2397(5)
0.20 0.0396(2) 0.36 0.1204(4) 0.54 0.2582(5)
0.24 0.0545(3) 0.40 0.1472(5) 0.56 0.2740(5)
0.28 0.0729(3) 0.48 0.2074(5) 0.58 0.2926(5)

L ¼ 40
0.15 0.0016(1) 0.30 0.0742(4) 0.45 0.1753(4)
0.20 0.0103(2) 0.35 0.1082(4) 0.50 0.2100(5)
0.25 0.0387(4) 0.40 0.1425(4) 0.55 0.2456(4)

L ¼ 64
0.16 0.0004(1) 0.32 0.089(1) 0.52 0.221(1)
0.20 0.0062(4) 0.36 0.116(1) 0.54 0.236(1)
0.24 0.0309(6) 0.40 0.142(1) 0.56 0.250(1)
0.28 0.0618(6) 0.48 0.194(1) 0.58 0.264(1)
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and compare it with the sign problem in the fermion-bag
approach with both periodic and antiperiodic boundary
conditions. In Fig. 10, we plot the average sign as a
function of the chemical potential in the auxiliary field
approach at U ¼ 0.3 (left) and compare it with that of the
fermion-bag approach (right). We first wish to learn where
the sign problem becomes severe. In the auxiliary field
approach, the sign becomes severe around μ ≈ 0.4, while in
the fermion-bag approach with antiperiodic boundary
conditions, it becomes severe around μ ≈ 0.55. In the
fermion-bag approach with periodic boundary conditions,
the sign problem is never severe, although it is enhanced
both at μ ≈ 0.4 and then again at μ ≈ 0.9. Can we correlate
this behavior with some physics?
Let us now explore how the fermion chemical potential

“dopes” the system with fermions. We again focus first on a
small lattice, LX ¼ 6, LT ¼ 48 at U ¼ 0.3. In Table III, we
present all of our results for the total fermion number as a
function of the chemical potential for open (left), antiperi-
odic (center), and periodic boundary conditions (right). In
Fig. 11, we plot these results along with the results for free
fermions as solid lines. Due to the flavor degeneracy of
staggered fermions, we expect all states to be at least
doubly degenerate. With open periodic boundary condi-
tions, this means all jumps must be in steps of 2. This is
what is observed. With periodic and antiperiodic boundary
conditions, there is a symmetry between left- and right-
moving particles. With periodic boundary conditions, a
zero momentum state is allowed which is nondegenerate;
hence, the first jump in hNi near μ ≈ 0.4 is only by 2.
However, the second jump near μ ≈ 0.9 is by a factor of 4
since now nonzero momentum states are excited and each
state is doubly degenerate due to the two fermion flavors.
With antiperiodic boundary conditions, the lowest energy
state already has momentum and hence again should have
fourfold degeneracy. This is clearly seen as a jump of 4 in
the free theory around μ ≈ 0.5. Surprisingly, in the inter-
acting theory, this degeneracy of the lowest energy state
seems to be broken. We attribute this to the fact that bound
state bosons with zero momentum can emerge. The next

momentum state is nondegenerate for LX ¼ 6 since effec-
tively the lattice size is halved for staggered fermions. This
remains unchanged for the interacting theory as well, and
two additional states are added when μ > 1.
Note that the first step to hNfi ¼ 2 for both open and

periodic boundary conditions occurs around μ ≈ 0.4. This
coincides with the point where the sign problem becomes
severe in the auxiliary field approach and is somewhat
enhanced in the fermion-bag approach. The sign problem in
the fermion-bag approach disappears for large values of μ
until around μ ≈ 0.9 where there is the second jump of 4 in
the periodic case. The sign problem in the auxiliary field
approach, on the other hand, never recovers. In the case of
antiperiodic boundary conditions, the severity of the sign
problem coincides with the additional plateau at hNfi ¼ 2

which is absent in the free theory as discussed above. While
these correlations between sign problems and the under-
lying physics are not surprising, the fact that energies and
degeneracies of the lowest lying states can be influenced by
boundary conditions and interactions on small lattices
offers an excellent opportunity for methods that claim to
solve the sign problems to reproduce them.
Since the sign problem is absent with open boundary

conditions, we can use it to study the behavior of hNfi on
large asymmetric lattices (LX ≠ LT) so as to understand the
physics of fermion doping at a fixed LX. One of the main
results that our model shares with QCD is that fermions
become massive entirely due to interaction effects and the
value of the chemical potential where the first jump in hNfi
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<
si

gn
>

Antiperiodic

0 0.2 0.4 0.6 0.8 1
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<
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>

antiperiodic
periodic
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0.8

0
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1

FIG. 10. The average sign of detðWÞ atU ¼ 0.3 as a function of
the chemical potential with LT ¼ 48 and LX ¼ 6 in the auxiliary
field representation(left) and the fermion-bag representation
(right).

TABLE III. The average fermion number hNfi computed at
U ¼ 0.3 with periodic, antiperiodic, and open boundary con-
ditions with LX ¼ 6 and LT ¼ 48.

μ hNfi μ hNfi μ hNfi μ hNfi
Periodic

0.30 0(0) 0.36 0.13(1) 0.38 0.67(2) 0.40 1.52(2)
0.42 1.91(1) 0.50 2.0(0) 0.90 2.36(3) 0.92 2.87(2)
0.94 3.68(3) 0.95 4.03(3) 0.96 4.43(3) 0.97 4.86(2)
0.98 5.21(2) 0.99 5.47(2) 1.00 5.65(2) 1.10 5.98(2)

Antiperiodic
0.50 0.03(3) 0.54 0.19(3) 0.56 0.56(6) 0.58 1.17(5)
0.60 1.61(9) 0.61 1.71(5) 0.62 1.86(5) 0.63 1.90(4)
0.64 1.86(4) 0.65 1.97(2) 0.66 1.97(2) 0.67 2.07(2)
0.68 2.04(1) 0.69 2.11(1) 0.70 2.19(2) 0.72 2.50(3)
0.80 3.95(2) 0.90 4.00(0) 1.00 4.27(5) 1.10 5.94(2)

Open
0.20 0.000(0) 0.34 0.044(3) 0.36 0.122(5) 0.38 0.256(7)
0.42 0.755(8) 0.44 0.974(8) 0.46 1.218(7) 0.48 1.468(8)
0.50 1.715(8) 0.52 1.869(5) 0.54 1.941(3) 0.56 1.977(2)
0.58 1.992(1) 0.60 1.996(1) 0.62 2.000(0) 0.66 2.008(1)
0.68 2.022(2) 0.70 2.056(3) 0.72 2.125(5) 0.74 2.290(8)
0.80 3.298(6) 0.82 3.600(9) 0.84 3.825(6) 0.86 3.934(4)
0.88 3.992(2) 0.90 4.041(3) 0.92 4.117(6) 1.02 5.833(7)
1.04 5.937(4) 1.06 5.975(2) 1.08 5.991(1) 1.14 6.000(0)
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FIG. 11. The fermion number hNfi at U ¼ 0.3 as a function of the chemical potential with open, antiperiodic, and periodic boundary
conditions respectively for LX ¼ 6, LT ¼ 48. The solid line shows the value at U ¼ 0.
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FIG. 12. The fermion number hNi with open boundary conditions at U ¼ 0 as a function of the chemical potential. From left to right,
LX ¼ 12, 16, and 32.
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FIG. 13. The fermion number hNi with open boundary conditions at U ¼ 0.3 as a function of the chemical potential. The solid line
shows the behavior at U ¼ 0 and LT ¼ 256. From left to right, LX ¼ 12, 16, and 32.
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occurs will be this finite size fermion massmLX
f . In order to

see the effects of interactions, we plot hNfi as a function of
μ in the free theory (Fig. 12) and in the interacting theory
with U ¼ 0.3 (Fig. 13), both with open boundary con-
ditions. Selected data points have also been tabulated in
Tables IV, V, and VI for benchmark purposes.
We study three different lattice sizes LX ¼ 12 (left),

LX ¼ 16 (center), and LX ¼ 32 (right). For each of these
lattices, we study the effects of increasing LT . Note that
the critical value of μ where the first jump to hNfi ¼ 2

occurs shifts to lower values as LX increases in the free
theory. We expect this value to vanish in the large LX limit
since fermions are massless. However, in the interacting
theory, we note the jump change in the critical value is
smaller and should approach 0.183(1) (see Table I) as Lx
becomes large. Also, the jump becomes sharper as the
anisotropy (value of LT) is increased and approaches a
step function as expected. To quantify, the value of mLX

f

we measure hNfi for several values μ near the transition at
two different values of LT . In particular, with LX ¼ 12, we
use LT ¼ 64, 128, and with LX ¼ 32, we use LT ¼ 128,
256. We find the value of μ where hNfi measured with
different values of LT cross, using a linear fit near the
crossing. These values of μ are taken to be estimates of
m12

f and m32
f . These numbers for different values of U are

tabulated in Table VII. Similarly, by fitting the chiral
condensate susceptibility to the form

χ ¼ χ0 þ Be−m
LX
b LT ; ð4:10Þ

TABLE IV. Monte Carlo results for hNfi at U ¼ 0.3 with open
boundaries at selected values of μ and LT for LX ¼ 12. These data
are plotted in Fig. 13.

μ hNfi μ hNfi μ hNfi μ hNfi
LT ¼ 32

0.26 0.28(1) 0.33 1.06(1) 0.42 1.917(6) 0.54 2.90(1)
0.28 0.46(1) 0.34 1.16(1) 0.44 2.014(5) 0.56 3.14(1)
0.29 0.56(1) 0.36 1.419(10) 0.46 2.116(5) 0.58 3.401(9)
0.30 0.67(1) 0.37 1.528(9) 0.48 2.248(7) 0.60 3.604(8)
0.31 0.78(1) 0.38 1.632(8) 0.50 2.428(8) 0.62 3.805(7)
0.32 0.90(1) 0.39 1.683(9) 0.52 2.631(10) 0.64 3.955(6)

LT ¼ 64
0.26 0.059(5) 0.33 1.07(1) 0.42 1.988(2) 0.54 2.82(1)
0.28 0.20(1) 0.34 1.23(1) 0.44 2.000(1) 0.56 3.21(1)
0.29 0.31(1) 0.36 1.65(1) 0.46 2.014(2) 0.58 3.580(9)
0.30 0.51(2) 0.37 1.772(9) 0.48 2.048(4) 0.60 3.844(7)
0.31 0.64(2) 0.38 1.863(7) 0.50 2.178(8) 0.62 3.956(3)
0.32 0.86(1) 0.39 1.918(6) 0.52 2.45(1) 0.64 3.994(2)

LT ¼ 128
0.26 0.002(1) 0.33 1.059(5) 0.44 1.999(1) 0.54 2.81(1)
0.28 0.04(1) 0.34 1.302(5) 0.46 1.999(1) 0.56 3.27(1)
0.29 0.06(1) 0.36 1.87(1) 0.48 2.001(1) 0.58 3.84(1)
0.30 0.25(2) 0.37 1.957(6) 0.50 2.019(3) 0.60 3.98(1)
0.32 0.84(1) 0.39 1.992(4) 0.52 2.24(1) 0.64 4.0

LT ¼ 256
0.26 0.00 0.31 0.42(5) 0.36 2.00 0.54 2.91(1)
0.28 0.00 0.32 0.86(2) 0.40 2.00 0.56 3.20(2)
0.29 0.00 0.33 1.02(1) 0.50 2.00 0.58 3.97(1)
0.30 0.06(2) 0.34 1.31(7) 0.52 2.03(1) 0.64 4.00

TABLE V. Monte Carlo results for hNfi at U ¼ 0.3 with open
boundaries at selected values of μ and LT for LX ¼ 16. These data
are plotted in Fig. 13.

μ hNfi μ hNfi μ hNfi μ hNfi
LT ¼ 32

0.21 0.14(1) 0.28 0.80(1) 0.34 1.61(1) 0.44 2.65(1)
0.22 0.21(1) 0.29 0.94(1) 0.36 1.83(1) 0.46 2.89(1)
0.23 0.28(1) 0.30 1.09(1) 0.37 1.90(1) 0.48 3.17(1)
0.24 0.36(1) 0.31 1.22(1) 0.38 1.99(1) 0.50 3.43(1)
0.25 0.44(1) 0.32 1.37(1) 0.39 2.09(1) 0.52 3.68(1)
0.26 0.55(1) 0.33 1.49(1) 0.42 2.39(1) 0.54 3.91(1)

LT ¼ 64
0.22 0.04(1) 0.30 1.13(2) 0.38 2.002(3) 0.48 3.26(1)
0.24 0.09(1) 0.32 1.55(1) 0.42 2.17(1) 0.50 3.62(1)
0.26 0.27(1) 0.34 1.83(1) 0.44 2.46(1) 0.52 3.86(1)
0.28 0.64(2) 0.36 1.950(5) 0.46 2.85(1) 0.54 3.97(1)

LT ¼ 128
0.23 0.00 0.29 0.84(2) 0.34 1.98(1) 0.46 2.85(1)
0.26 0.07(1) 0.30 1.15(3) 0.35 1.99(1) 0.48 3.31(2)
0.27 0.20(3) 0.31 1.52(2) 0.40 2.00 0.50 3.88(1)
0.28 0.46(3) 0.32 1.83(1) 0.44 2.24(1) 0.54 4.00

LT ¼ 256
0.25 0.0 0.30 1.19(4) 0.42 2.00(1) 0.48 3.32(2)
0.28 0.18(5) 0.31 1.72(4) 0.44 2.02(1) 0.50 3.98(1)
0.29 0.89(3) 0.34 1.99(1) 0.46 2.87(2) 0.52 3.99(1)

TABLE VI. Monte Carlo results for hNfi at U ¼ 0.3 with open
boundaries at selected values of μ and LT for LX ¼ 32. These data
are plotted in Fig. 13.

μ hNfi μ hNfi μ hNfi μ hNfi
LT ¼ 32

0.22 0.67(2) 0.28 1.87(2) 0.36 3.64(2) 0.44 5.40(2)
0.24 1.03(2) 0.3 2.32(2) 0.38 4.11(2) 0.46 5.83(1)
0.26 1.43(2) 0.34 3.22(2) 0.4 4.52(1) 0.48 6.29(1)

LT ¼ 64
0.21 0.21(2) 0.26 1.44(2) 0.33 3.05(2) 0.4 4.47(1)
0.22 0.35(2) 0.28 1.90(2) 0.35 3.54(2) 0.42 4.93(1)
0.23 0.58(3) 0.29 2.10(2) 0.36 3.75(1) 0.44 5.43(1)
0.24 0.82(2) 0.31 2.50(2) 0.37 3.92(1) 0.46 5.85(1)
0.25 1.13(3) 0.32 2.76(2) 0.39 4.25(1) 0.48 6.21(1)

LT ¼ 128
0.21 0.019(6) 0.26 1.71(2) 0.33 3.04(3) 0.4 4.25(2)
0.22 0.08(2) 0.28 1.98(1) 0.35 3.77(2) 0.42 4.92(2)
0.23 0.25(4) 0.29 2.03(2) 0.36 3.92(2) 0.44 5.64(2)
0.24 0.68(5) 0.31 2.31(2) 0.37 3.97(1) 0.46 5.96(1)
0.25 1.27(5) 0.32 2.67(3) 0.39 4.06(1) 0.48 6.057(9)

LT ¼ 256
0.25 1.41(9) 0.28 1.96(4) 0.33 3.06(4) 0.42 4.90(3)
0.26 1.91(5) 0.31 2.06(2) 0.36 3.97(3) 0.44 5.87(3)
0.27 1.95(4) 0.32 2.61(4) 0.4 4.01(2) 0.48 5.99(1)
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we can also extract the finite size boson mass mLX
b .

These values are also given in Table VII for LX ¼ 12

and 32. We find that, while mLX
f increases sharply with U,

mLX
b decreases mildly.

V. CONCLUSIONS

In this work, we have studied the 1þ 1-dimensional
lattice Thirring model with staggered fermions at both zero

and finite densities. We showed that the model is free of
sign problems in the massless limit when open boundary
conditions are used. In this case, we used the world line
formulation to study the model. In the case of periodic and
antiperiodic spatial boundary conditions, the sign problem
is mild on square lattices but becomes severe when on
asymmetric lattices. However, the fermion-bag formulation
seems to alleviate the problem except at critical values of
the chemical potential where fermion number jumps. We
provide accurate estimates for the total particle number as a
function of the chemical potential for a few lattice sizes.
Our results could be used as a benchmark for future studies
by other methods that attempt to solve the sign problem.
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