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Teleoperation Control based on Combination of
Wave Variable and Neural Networks

Chenguang Yang, Xingjian Wang, Zhijun Li, Yanan Li, Chun-Yi Su

Abstract—In this paper, a novel control scheme is developed for
a teleoperation system, combining the radial basis function (RBF)
neural networks (NNs) and wave variable technique to simultane-
ously compensate for the effects caused by communication delays
and dynamics uncertainties. The teleoperation system is set up
with a TouchX joystick as the master device and a simulated
Baxter robot arm as the slave robot. The haptic feedback is
provided to the human operator to sense the interaction force
between the slave robot and the environment when manipulating
the stylus of the joystick. To utilize the workspace of the telerobot
as much as possible, a matching process is carried out between
the master and the slave based on their kinematics models. The
closed loop inverse kinematics (CLIK) method and RBF NN
approximation technique are seamlessly integrated in the control
design. To overcome the potential instability problem in the
presence of delayed communication channels, wave variables and
their corrections are effectively embedded into the control system,
and Lyapunov based analysis is performed to theoretically
establish the closed-loop stability. Comparative experiments have
been conducted for a trajectory tracking task, under the different
conditions of various communication delays. Experimental results
show that in terms of tracking performance and force reflection,
the proposed control approach shows superior performance over
the conventional methods.

Index Terms—Neural Networks; Teleoperation Control; Wave
Variable; Time-Varying Delay

I. INTRODUCTION

In the past decades, robotic technologies have been devel-
oped rapidly in a wide range of engineering fields. The teler-
obot operation as one of the most attractive and challenging
topic in robotics has been used in various applications such
as telesurgery, search and rescue, 3D game development and
so on [1]. A typical teleoperation system usually comprises 5
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parts: human operator, master device, communication chan-
nels, slave robot and environment [2]. Usually, the human
operator controls the motion of a master device, which is
physically in contact with human. The master device generates
commanding trajectories passed through the communication
channels, which are passed to the slave robot that acts on
the target environment and completes the task. The interaction
force between the slave robot and the environment is fedback
to the master, according to which the human operator could
control the robot more effectively.

In this paper, we use a Geomagicr TouchX as the master
device, which is designed by the SensAble Technologies Inc.
TouchX is a haptic feedback device including both hardware
drives and software packages (OpenHapticsr toolkit) [1]. The
TouchX arm includes 3 rotational joints, each joint is equipped
with a motor to generate the feedback force. A 3 degrees of
freedom (DOFs) gimbal joint stylus is installed at the end of
the manipulator to provide the orientation motion. As a slave
robot, there are 7 revolute joints in each arm of Baxter, which
make it easy to move in the 3-D space [3]. In order to grasp
and handle the objects, a rotational gripper is installed at the
end-effector of each arm. The MATLAB Robotics Toolbox [4]
is used to establish the kinematics and dynamics models of the
Baxter robot arm, which is used as the slave telerobot to test
the proposed method.

As we known, the communication channels play significant
roles in a teleoperation systems, and time delays in the
channels may cause system unstable in the presence of force
feedback [5]. Much effort has been made to handle the effect
of time delays [6], especially in the bilateral teleoperation
system [7], [8]. The notion of wave variable was proposed
and it has been established in [9] that the wave variable could
guarantee the stability of the communication with time delays.
The influence of time-varying delays to the stability of a
teleoperation system was studied in [10]. In [2], the method
of integrating the corrected wave was investigated to remove
the distortion caused by the transmission of wave variables. A
wave variable based control was proposed in [11] to handle
the problem in the bilateral time-varying system. Based on this
idea, a novel approach was presented for controlling the time-
varying delayed teleoperation system with a PD controller
[12].

Due to the existence of uncertainties in practical application-



s [13], the research on controlling the uncertain robot system
becomes significantly important. The adaptive control method
for robots has been studied in a considerable number of works
[14]–[16], which could be used in the situations of unknown
parameters and time-varying parameters in the robot model
[17], [18]. Time-varying delays and uncertainties of the robot
model have been studied together with adaptive control in
[19], [20]. In [21]–[23], adaptive fuzzy control was used for
identification of the unknown nonlinear control system. Fuzzy
control was used for studying uncertain nonlinear systems in
[24], [25]. In [26], fuzzy control was adopted to improve
the performance of the automobile cruise system. In recent
years, the applications of NN to the robot control system have
become increasingly popular [27]–[31], due to the fact that
the NN has the ability to emulate complicated nonlinearity
and uncertain functions [32]–[34]. The RBF NN is a highly
effective method and has been extensively used for control
design of uncertain robot systems [35]. Adaptive RBF NN
based control has been investigated in [36], [37] to deal
with the deadzone and uncertain robotic model. In [38], an
adaptive NN method was applied to achieve control of the
uncertain marine vessel system. In [39], a controller was
designed for dual-arm coordination of a humanoid robot based
on the adaptive neural control. The tracking performance of
the adaptive NN control for a discrete-time system was studied
in [40]. In [41], the effectiveness of the NN control was firstly
considered in the Prandtl-Ishlinskii (PI) hysteresis system. The
RBF NN was investigated in [42] as a compensator to solve
the non-linearities problem that a standard PD controller could
not handle. In [43], the RBF NN was used to learn the robot
behavior, and in [44] the RBF NN was investigated to improve
the behaviour of the non-linear actuator. In [45], trajectory
control of a fruit and vegetable picking robot was studied,
and in [46] the RBF NN was used to compensate for the
deadzone of the non-linear system. In [47], the RBF NN has
been discussed in detail for compensation for the tracking error
in controlling mobile robots. In this paper, a NN controller
based on the PD control is applied to the slave robot with
7 DOFs, which guarantees more accurate trajectory tracking
than the conventional PD controller.

The reminder of the paper is organized as follows: in Section
II, the computational model of the master-slave teleoperation
system is analysed. In Section III, the PD control on the master
and slave is first discussed, and the nonlinear uncertainties
of the model of the slave robot are then analysed. The
CLIK method is used for avoiding kinematic singularities and
numerical drifts. The RBF NN control is designed for the
slave robot. Finally, the convergence of the tracking error and
the stability of the teleoperation system with the time-varying
delays are established. Comparative experiments are carried
out in Section IV and conclusions and possible future work
are discussed in Section V.

Fig. 1. The system framework

Throughout this paper, the following notions are used
• 0m×n stands for an m× n dimensional zero matrix.
• ‖·‖ denotes the Euclidean norm of vectors and induced

norm of matrices.
• A := B means that B is defined as A.
• sup means the least upper bound of a partially ordered

set.
• λ(·) stands for eigenvalue of a matrix.
• <(·) stands for real part of a complex number.
• L2 is a function space and the functions in L2 are

quadratically integrable. L∞ is a function space and the
functions in L∞ are essentially bounded measurable.

• tr stands for trace of a matrix.

II. MATHEMATICAL MODEL OF TELEOPERATION
SYSTEM

A. Illustration of Teleoperation System

The teleoperation system in this paper is shown in Fig. 1.
As we see, the human operator holds the stylus of the haptic
device and drives the motion of the master device, which will
be regarded as position commands. Through processing by the
master computer, the new commands will be generated by the
master computer and then passed to the slave computer and
received by the slave controller. The Baxter robot will move in
accordance with the commands from the slave controller. The
manipulator end-effector interacts with the environment, and
the interaction force is passed to the haptic device to be sensed
by the human operator, which will lead to a new movement
and new control commands. In next five subsections we will
analyze the mathematical models of the components of the
teleoperation system.

B. Kinematics and Dynamics of Master Robot Arm

The haptic device Geomagic TouchX not only sends com-
mands of movement to the master device, but also returns the
interaction force between the telerobot and the environment,
and this is very useful for the operator to regulate the contact
force [48]. The mathematical model of the master includes the
kinematics model and the dynamics model.

The kinematics model of TouchX is built based on its
structure, as shown in Fig. 2. With 6 revolute joints, three
of them are equipped with motors, and the other three are
gimbal joint stylus considered as an end-effector, making it
flexible to move within the workspace. For more concrete and



Fig. 2. The structure of TouchX

Fig. 3. Comparison between two kinematics models of TouchX based on
standard DH parameters and modified DH parameters

intuitive representation of its structure, the Denavit Hartenburg
(DH) parameters are used to build the kinematics model [3].

There are two representations for DH parameters, the stan-
dard DH convention [49] and the modified DH convention
[50], and the latter representation is used for the kinematics
modelling of the TouchX joystick in this work. According to
the standard DH convention, the origins of the coordinates
relevant to joint 4 and joint 5 as shown in the left panel of
Fig. 3 are the same. Consequently, the simulated robot mod-
eled by the MATLAB Robotics Toolbox should be modified.
Specifically, ai−1 and di are used to represent the link length
and the link offset, respectively, where i represents the ith
joint of the master device. αi−1 and θi are used to represent
the joint twist angle and joint angle, respectively. All the 6
joints of the master device are revolute, and the modified DH
parameters of the TouchX are obtained in Tab. I.

The DH parameters in Tab. I represent the structure char-
acteristics of the master device, from which the kinematics
model could be obtained. According to [3], the homogeneous
transformation between two adjacent coordinates in Fig. 1

TABLE I
DH PARAMETERS (MODIFIED CONVENTION) OF THE MASTER DEVICE

Link i θi (angle limit(deg)) di ai−1 αi−1(rad)
1 q1(-60∼60) 0 0 0
2 q2(0∼105) 0 0 −π/2
3 q3(-180∼180) 0 Lm1 0
4 q4(-145∼145) Lm2 0 −π/2
5 q5(-70∼70) 0 0 −π/2
6 q6(-145∼145) 0 0 −π/2

could be formulated using DH parameters as follows:

i−1Ai(θi, di, ai, αi) =


cθi −sθicαi sθicαi aicθi
cθi cθicαi −cθicαi aisθi
0 sαi cαi di
0 0 0 1

 (1)

where “c” is short for trigonometric function “ cos ” and “s”

is short for “ sin ”.
Moreover, the relationship between the position of the end

effector and the base could be calculated as follows:

nX0 =0 A1
1A2...

n−1An ·Xn (2)

where n is 6 for the master device, X = [x, y, z, 1] represents
the position of the related joint, and iAi+1(i = 0, 1, ..., n− 1)

represents the adjacent coordinate in (1).
The dynamics model of the master device reveals the

relationship between the driving torque or related force and
joint motion, and could be represented as follows:

Mm(qm)q̈m + hm(qm, q̇m) = JT
mFh − τm + fm (3)

where

hm(qm, q̇m) = Cm(qm, q̇m)q̇m +Gm(qm) (4)

with the subscript “m” used to indicate master. For a robot
manipulator with n-DOF serial links and all the joints revolute,
qm, q̇m and q̈m ∈ Rn are the joint position, velocity and
acceleration, respectively. Mm(qm)q̈m ∈ Rn×n is the inertia
matrix. hm(qm, q̇m) represents the nonlinear coupling term
of the centripetal force, Coriolis force and the gravity force.
fm represents coulomb friction, load changes, time-delayed
jamming and other disturbances. Jm is the Jacobian matrix
and JT

m is its transpose. Fh is the force exerted by the human
operator and τm is the torque control signal, both of which
will be applied to the master device. The terms on the left
hand side of Eqs. (3) and (4) satisfy the following properties
[51]:

Property 1: The matrix Mm(qm) ∈ Rn×n is a symmetric
positive-definite matrix.

Property 2: The matrix Ṁm(qm)−2Cm(qm, q̇m) is a skew-
symmetric matrix, i.e., zT

(
Ṁm − 2Cm

)
z = 0, ∀z ∈ Rn.

Property 3: Mm(qm) and Gm(qm) are bounded, and
Cm(qm, q̇m) satisfies that ∀qm, q̇m ∈ Rn,∃Kcm ∈ R>0 such
that ‖Cm(qm, q̇m)‖ ≤ Kcm|q̇m|2.

C. Model of the Slave Robot

Fig. 4 shows the structure of the Baxter robot, which is
a dual-arm robot with 7-DOFs per arm. In this paper, the
simulated left arm of the Baxter robot is taken as the slave
telerobot.

The standard DH parameters are used to describe the
structure of the left arm of the Baxter robot, as shown in
Tab. II. The lengths mentioned in Fig. 4 and Tab. II are Ls0

= 0.27m, Ls1 = 0.069m, Ls2 = 0.364m, Ls3 = 0.069m, Ls4



Fig. 4. The structure of the Baxter robot

TABLE II
DH PARAMETERS (STANDARD CONVENTION) OF THE SLAVE ROBOT

Link i θi (anglelimit(deg)) di ai αi(rad)
1 q1(-97.5∼97.5) Ls0 Ls1 −π/2
2 q2 + π

2
(-123∼60) 0 0 π/2

3 q3(-175 ∼ 175) Ls2 Ls3 −π/2
4 q4(2.865 ∼ 150) 0 0 π/2
5 q5(-175.27 ∼ 175.27) Ls4 Ls5 −π/2
6 q6(-90 ∼ 120) 0 0 π/2
7 q7(-175.27 ∼ 175.27) Ls6 0 0

= 0.375m, Ls5 = 0.01m and Ls6 = 0.28m. According to Eqs.
(1) and (2), the forward kinematics model of the Baxter robot
could be obtained, and n used in (2) is 7.

In order to achieve a precise tracking of the position com-
manded by the master joystick, a workspace matching between
the master joystick and the slave telerobot is essential. The
Monte Carlo method used in [3] was applied to approximate
the workspace for the master and the slave. In order to make
sure that the transformed workspace of the master device is
constrained within that of the slave robot, the workspace of
the master is scaled in a fixed proportion [52]. Fig. 5 shows
the workspace of the master and that of the slave after the
matching process. The top left panel of Fig. 5 shows the
enveloped surface, generated as convex hull of the 3D clouds
of the workspaces of both master and slave after the matching
process. Similar to the workspace transformation developed in
[3] between the Baxter robot arm and the Omni joystick, in
this work, the workspace transformation between the Baxter
robot arm and the TouchX joystick is given as below:xsys
zs

 =

cosδ −sinδ 0

sinδ cosδ 0

0 0 1

×
Sx 0 0

0 Sy 0

0 0 Sz

xmym
zm

+

TxTy
Tz


(5)

where [xs, ys, zs]
T , [xm, ym, zm]T represent the Cartesian co-

ordinates of the end-effectors of Baxter and TouchX joystick,
respectively. δ is the rotation angle of Z axis for the base
of the master device, [Sx, Sy, Sz]T and [Tx, Ty, Tz]T are the
proportionality factors and offset correction terms about the
X, Y and Z axes, respectively. According to [3], the matching
parameters of (6) are given by

δ =
π

4
,

Sx

Sy

Sz

 =

0.0041

0.0040

0.0041

 ,
TxTy
Tz

 =

0.701

0.210

0.129


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Fig. 5. Workspace matching. (a) The 3-D envelope surface of the master and
the slave. (b) Workspace matching in the X-Y plane. (c) Workspace matching
in the X-Z plane. (d) Workspace matching in the Y-Z plane

The dynamics model of the telerobot could be represented
as follows

Ms(qs)q̈s + hs(qs, q̇s) = τs − JT
s Fe + fs (6)

hs(qs, q̇s) = Cs(qs, q̇s)q̇s +Gs(qs) (7)

where the subscript “s” is used to indicate slave. The denota-
tions of the components on the left hand side of Eqs. (6) and
(7) are similar to those of Eqs. (3) and (4). Fe is the interaction
force between the environment and the telerobot, and τs is the
control input to the slave.

D. Model of the Human Operator

Early studies have shown that the muscle property of
the human hand could be modelled as a spring. A more
complete mass spring damper model is proposed in [53]. In
the teleoperation system, the human hand holds the stylus of
the master joystick, and gives the corresponding position and
velocity commands. Even if the master device is subjected
to the environmental force transmitted from the slave, the
operator could also adjust the output of the hand to make the
master track the desired movement of the operator. Therefore,
the human hand could actually be regarded as controlled by
an intelligent proportional-integral (PI) controller, which could
adjust the output force of the hand according to the error
between the actual position xm and the desired position xmd

of the master described by

Fh = Khp(xmd − xm) +Khi

∫ t

t0

(xmd − xm)dt (8)

where Khp and Khi are the proportional gain and integral
gain of the human hand, respectively. The notations of t0
and t are the initial time instant and the current time instant,
respectively.



Fig. 6. Communication with wave variables

E. Model of the Environment

In this work, a simple mathematical model of the environ-
ment is considered. It describes the relationship between the
interaction force of the environment Fe and the slave robot
position xs, i.e.,

Fe = Ksp(xs − xe) +Ksdẋs (9)

where Ksp and Ksd are the parameters of the environment,
and xe is the position of the environment. In the free space
movement, Ksp = Ksd = 0m×n.

F. Model of the Communication Channels

The wave variable approach for the time-varying delayed
communication is used in this section. In the teleoperation
system shown in Fig. 6, the velocity ẋ and the force F of
both master and slave flow into the communication channels,
and are then transformed into the power variables u and v as
follows

um = (bẋm + Fm)/
√

2b , v̂m = (bẋm − Fm)/
√

2b (10)

ûs = (bẋs + Fs)/
√

2b , vs = (bẋs − Fs)/
√

2b (11)

where b is the wave impedance [54].
In the communication channels, the time-varying delays T1

and T2 between the wave variables could be represented as
follows

us(t) = um(t− T1(t)) (12)

vm(t) = vs(t− T2(t)) (13)

In Fig. 6, we see that the relationship between the wave
variables and the power variables is as follows:

ẋm = (um + v̂m)/
√

2b , Fm = (um − v̂m)/
√

2b (14)

ẋs = (ûs + vs)/
√

2b , Fs = (ûs − vs)/
√

2b (15)

The flowing power in the communication channels could be

calculated by the power variables and the wave variables

P (t) =ẋTmFm − ẋTs Fs

=
1

2
(uTmum − vTmvm − uTs us + vTs vs)

=
1

2
(uTmum − uTm(t− T1)um(t− T1) + vTs vs

− vTs (t− T1)vs(t− T1))

=
d

dt
(
1

2

∫ t

t−T1

uTmumdσ +
1

2

∫ t

t−T2

vTs vsdσ)

(16)

Under the condition of time delays, the energy E stored in the
communication could be calculated as follows

E(t) =

∫ t

0

(
ẋTmFm − ẋTs Fs

)
dσ

=
1

2
(

∫ t

t−T1

uTmumdσ +

∫ t

t−T2

vTs vsdσ)

(17)

where time delays T1 and T2 are constant and the energy
satisfies E > 0, such that the system shown in Fig. 6 is passive
[9]. When the delays are time varying, the proof for the system
passivity is nontrivial and far more complicated than (17). It
will be discussed in detail later in Section III.

To handle the time-varying delays in the communication
of the teleoperation system, the wave correction method is
employed [12], as shown in Fig. 6, which could be represented
as follows

ûs = um(t− T1(t)) + ∆us (18)

v̂m = vs(t− T2(t)) + ∆vm (19)

where ûs and v̂m are obtained by using the corrective waves
∆us and ∆vm represented as below [12]

∆us(t) =
√

2bλ [xmf (t) + xdh − xsd(t)] (20)

∆vm(t) =
√

2bλ [xsf (t) + xdh − xmd(t)] (21)

where λ > 0 is designed for the convergence of position.
The gravity factor, xdh, could be set as zero if not taken into
consideration [12]. The desired positions, xmd and xsd, are
given as follows:

xmd =

∫ t

0

(um + v̂m)/(
√

2b)dσ (22)

xsd =

∫ t

0

(ûs + vm)/(
√

2b)dσ (23)

Moreover, xmf and xsf are the fictitious positions described
as below

xmf (t) = (

∫ t−T1(t)

0

umdσ +

∫ t

0

vsdσ)/(
√

2b) (24)

xsf (t) = (

∫ t

0

umdσ +

∫ t−T2(t)

0

vsdσ)/(
√

2b) (25)



Fig. 7. Teleoperation control using the wave correction scheme with global neural controllers

From Eqs. (20) and (21), the corrective waves are pro-
portional to the difference between the desired and fictitious
positions, and the goals are to achieve

xsd(t)− xmd(t− T1(t))→ 1√
2b

∫ t

t−T1(t)−T2(t)

vsdσ → 0

xmd(t)− xsd(t− T2(t))→ 1√
2b

∫ t

t−T1(t)−T2(t)

umdσ → 0

When the waves become zero, the desired position difference
will converge to an ideal value [12], which will be particularly
useful for trajectory and force control. After applying the
correction method, in the next section the controller design
and the stability analysis of the teleopration system will be
discussed.

III. NEURAL CONTROL DESIGN BASED ON WAVE
VARIABLE

A. Basic PD control design

In this section, a control scheme is proposed using a torque
control based on the nominal model and a NN controller to
deal with the uncertainties. The control system on both the
master and the slave sides is first designed following basic
PD control technique. Consider the dynamics models of the
master device (3) and of the slave robot (6). The following
controllers are introduce for them, respectively.

τm = Kmem +Dmėm (26)

τs = −Kses −Dsės (27)

where ei = qi − qid is the tracking error, qid ∈ Rn is the
desired joint angle served as the reference command for the
local PD controller, K ∈ Rn×n and D ∈ Rn×n are the
symmetric positive definite matrices for the joint angle and
angular velocity gains. The subscript “i” stands for “m” and
“s”, which denote the master device and the slave robot,
respectively.

Define the generalized tracking error

evs = ės +Ks1es (28)

where Ks1 = D−1s Ks.

τs = −Dsevs (29)

Define qv = q̇d − Ks1es, and the dynamics of the slave (6)
and (7) can be rewritten as

Msėvs +Csevs +Gs +Msq̇v +Csqv = τs−JT
s Fe +fs (30)

By substituting (29) into (30), we have

Msėvs +Csevs +Dsevs = −JT
s Fe + fs−Gs +Msq̇v−Csqv

(31)
and the uncertain nonlinear dynamics with the input z could
be described by

F (z) = JT
s Fe + fs −Gs +Msq̇v − Csqv (32)

For trajectory tracking, if the dynamics of the robot is avail-
able, with appropriate selection of the angular position and an-
gular velocity gains K and D, the PD control could guarantee
the stability of the closed loop system. For uncertain models,
the conventional PD controller may not be able to guarantee
the global asymptotic stability [55]. As above mentioned, the
NN is of powerful function approximation ability, which could
be used for the identification of the uncertainties.

As indicated by Eq. (9), the model of the human operator
could be regarded as an intelligent PI controller, which could
adjust the output force and position in real time. In this work,
we focus on the accurate position control of the slave telerobot.

B. Task Space Position-to-Position Control

In this paper, the CLIK method is employed for position-
to-position control of the slave robot, which could avoid
kinematic singularities and numerical drifts when solving
inverse kinematics problem [3].



The desired slave joint velocity could be described in the
CLIK algorithm as below

qsd =

∫
KpJ

T
s (q)edσ (33)

where e = xsd − xs is the error between the desired slave
trajectory xsd and the actual slave trajectory xs, Kp is a
positive definite matrix adjusting the convergence rate [56]
and JT

s (q) is transpose of the Jacobian matrix. This method
may avoid the problems occurring in open-loop form and the
block diagram of the CLIK algorithm is given in Fig. 7.

C. RBF Neural Networks

RBF NN could be used to approximate the dynamics of the
robotic model with its local generalization network. It could
greatly accelerate the learning speed, avoid the local minimum
problem and improve the tracking accuracy of the robot
especially for those with complicated structures and large
numbers of DOFs [57]. The RBF NNs could be expressed
as below:

ϕi = exp(−‖z − ci‖
2

σ2
i

), i = 1, 2, ..., n (34)

F̂ (z) = ŴTϕ(z) (35)

where z ∈ Rn is the input vector and n represents the DOF
of the slave robot, which is 7 for the left arm of the Baxter
robot, F̂ (z) ∈ Rn is the output vector, ϕ = [ϕ1, ϕ2, ..., ϕn]T

is the output vector of the hidden layer, Ŵ ∈ RN×n is the
weight matrix which connects the hidden layer and the output
layer, and N represents the hidden nodes number, ci ∈ Rn and
σi > 0 are the center vector and width of the ith hidden node.
From Eq. (34) the output of the hidden nodes in the RBF NNs
are calculated by a radially symmetric function (e.g., Gaussian
function).

The adjustable parameters in the RBF NNs (34) and (35) are
the weight matrix Ŵ , the center vector ci and the width σi of
every hidden node. Usually, the values of ci and σi are chosen
according to the knowledge of the system or by pretreatment
training. The output of the network F̂ (z) is linear with respect
to weight matrix Ŵ , which greatly simplifies the analysis and
learning process of the RBF NNs.

In this paper, the RBF NNs are employed to approximate the
uncertain nonlinear function F (z) [57], [58], and the following
lemmas are given.

Lemma 1: The input vector of RBF NNs z ∈ X , where X
is a compact subset.

Lemma 2: Given a positive constant ε0 and a continuous
function F : z → Rn, there exists a weight matrix W ∗ ∈
RN×n, making the output of a RBF NN with N hidden nodes
F̂ (z) satisfy

max
z∈X
‖F̂ (z,W ∗)− F (z)‖ 6 ε (36)

where N is determined by the precision parameter ε0 and the
function F (z). F̂ (z,W ∗) is the estimate of the output F (z)

with the ideal weight matrix W ∗.
Lemma 3: The output of a RBF NN F̂ (z, Ŵ ) on its

arguments z, Ŵ is continuous.
Therefore, (30) could be rewritten as follows

Msėvs = −(Cs +Ds)evs + F̂ (z,W ∗) + η (37)

where η = F (z) − F̂ (z,W ∗) and W ∗ is the optimal weight
matrix corresponding to z ∈ X , i.e.

‖F (z)− F̂ (z,W ∗)‖ = min sup
z∈X
‖F (z)− F̂ (z, Ŵ )‖ (38)

where η is bounded by η0 := supz∈X ‖F (z)− F̂ (z,W ∗)‖.
According to the properties of the RBF NN, (36) could be

rewritten as

Msėvs = −(Cs +Ds)evs +W ∗Tϕ(z) (39)

With Lyapunov method it is easy to obtain the following
update law

˙̂
W = −Q−1ϕ(z)eTvs (40)

where Q is a symmetric positive definite matrix.

D. Controller Design

From (31) and (32), when F (z) 6= 0m×n, i.e., there exist
uncertainties in the robot model, and the PD controller (27)
could ensure the boundedness of the tracking error, but may
not make it convergent to zero. Therefore, the RBF NN control
is developed based on Lemmas 1−3.

The control torque is composed of two parts, as below

τs = τPD + τNN (41)

where τPD is the basic PD control and according to (27) and
(29)

τPD = −Kses −Dsės = −Dsevs (42)

while τNN is the NN compensation controller

τNN = F̂ (z) = ŴTϕ(z) (43)

Then the closed-loop system dynamics of the slave robot can
be written as

Msėvs + Csevs +Dsevs = Fz − F̂z (44)

E. Theoretical Analysis

(I) Convergence of the tracking error
Proof : Choose a candidate of Lyapunov function as follows

V1 =
1

2
eTvsMsevs +

1

2
tr(W̃TQW̃ ) (45)



Then, we have

V̇1 =
1

2
eTvsṀsevs + eTvsMsėvs + tr(W̃TQ

˙̂
W )

=
1

2
eTvsṀsevs − eTvsCsevs − eTvsDsevs

− tr[W̃T (ϕ(z)eTvs −QQ−1ϕ(z)eTvs)]

=− eTvsDsevs < 0

(46)

And we have∫ t

0

V̇1dσ = V1(t)− V1(0) =

∫ t

0

(−eTvsDsevs)dσ < 0 (47)

such that we see V̇1 is strictly negative definite. According
to [59], evs ∈ L2

⋂
L∞, ėvs ∈ L∞, thus when t → ∞, evs

converges to zero asymptotically.
Then we choose the value of Ks1 satisfying <[λi(−Ks1)] <

0, ∀i, such that when t → ∞, es and ės converge to zero
asymptotically and the detailed analysis could be found in
[59].

(II) Stability of the teleoperation system
The proper selection of Rvm and Rvs that satisfy

λm(Rvm(t)) >
(
|v̂m|2 − (1− Ṫ2)|vm|2

)
/2|ẋmd|2 (48)

λm(Rvs(t)) >
(
|ûs|2 − (1− Ṫ1)|us|2

)
/2|ẋsd|2 (49)

could guarantee the stability of the overall teleoperation sys-
tem.

Proof : We choose another Lyapunov function candidate as
below

V = Vc + Vw (50)

where

Vw =
1

2

∫ t

t−T1

uTmumdσ +
1

2

∫ t

t−T2

vTs vsdσ (51)

Vc =
1

2
q̇TmMmq̇m +

1

2
eTmKmem +

1

2
eTvsMsevs

+
1

2
tr(W̃TQW̃ )

(52)

According to [12], we have

V̇w =
1

2
(Ṫ1|us|2 + |δus|2 + 2uTs δus + Ṫ2|vm|2

+ |δvm|2 + 2vTmδvm)
(53)

Considering (47) and (48), we have

V̇w 6 −ẋTmdR
′

vmẋmd − ẋTsdR
′

vsẋsd (54)

where R
′

vm = Rvm − λ(Rvm)I and R
′

vs = Rvs − λ(Rvs)I .
As for the controllers on both the master and the slave sides,

assume that the operator and the environment are passive [12]
and could be written as∫ t

0

ẋTm(−Fh)dσ > Vh(t)− Vh(0)∫ t

0

ẋTs Fedσ > Ve(t)− Ve(0)

(55)

Fig. 8. The experiment platform of the master-slave teleoperation system
[photo take at South China University of Technology].

where Vh and Ve stand for the bounded storage functions. And
according to (45), then we have

V̇c = ẋTmFh − ẋTs Fe − q̇TmDmq̇m + V̇1 (56)

Considering Eqs. (47), (54) and (55), finally we could obtain

V (t)− V (0) 6
∫ t

0

(ẋTmFh − ẋTs Fe)

−
∫ t

0

(
ẋTmdR

′

vmẋmd + ẋTsdR
′

vsẋsd

)
dσ

+

∫ t

0

(
V̇1 − q̇TmDmq̇m

)
dσ

(57)
which guarantees boundedness of V under the condition of
passivity of the teleoperation system.

IV. EXPERIMENTS

The comparative experiments are performed for the follow-
ing purposes: i) to show that the RBF NN compensation is
effective to improve the tracking performance, in comparison
with typical PD control without compensation; ii) to demon-
strate that the wave variable technique enhanced master-slave
teleoperation system remains stable in the presence of various
time delays; and iii) to illustrate the seamless combination
of neural control scheme and wave variable technique for
teleoperation system.

A. Experiment Platform

The experimental platform is set up with the TouchX haptic
device and a computer connected to it, as well as the slave
robot Baxter simulated using MATLAB Robotics Toolbox (see
Figs. 8 and 9). The human operator moves the stylus of the
TouchX joystick, through which the desired trajectory is sent
to the simulated communication channels and the contact force
between the simulated robot and the environment is regulated.
Through the communication channels, the desired position of
the slave robot is passed to the simulated left arm of the Baxter
robot.



Fig. 9. The simulated slave robot.
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Fig. 10. The trajectory of the master device (solid) and the slave (dashed)
with the conventional PD controller.

B. Trajectory Tracking under Different Controllers

First the controller for the slave robot is designed as a
typical PD controller. A desired trajectory set by the master
device (TouchX) for the slave robot (simulated Baxter robot
arm) is designed, which requires the human operator to move
the stylus of the master joystick from an initial position to the
minimum value along the X direction, then to the maximum
value along the X direction and finally restore back to the
initial position, for a time span of 0 ∼ 3s. Then, the human
operator performs the same motion along the Y direction for
3 ∼ 6s, and along the Z direction for 6 ∼ 9s. The trajectory
tracking result for the slave robot with the conventional PD
controller is shown in Fig. 10.

Then, the RBF NN control is added on top of the basic PD
controller to compensate for the uncertain nonlinear dynamics.
In this experiment, the first 10s is reserved for NN training.
It is clear that the weights for different joints converge to
different values, among which the values of the normed
weights for joints S1, W0 and W2 are close to 0, for they
are almost not affected by gravity during the movement of the
robot. At 10 ∼ 19s the human operator repeats the process
of the last experiment. The weights of the NN are shown in
Fig. 11. In comparison to the tracking performance of two
experiments shown in Figs. 10 and 12, after adding the RBF
NN controller, the tracking performance of the slave robot is
much improved.
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Fig. 11. The norm of NN weights for each joint of the slave robot during NN
training.
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Fig. 12. The trajectory of the master device (solid) and the slave (dashed)
with the RBF NN compensation.

C. Trajectory and Force Reflection under Different Communi-
cations

Under the circumstances of time-varying delays, the system
is very likely to become unstable and uncontrollable. In this
section, we test the wave variables technique in the communi-
cation of the teleoperation system, and then perform compar-
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Fig. 13. Varying time delays T1 (solid) and T2 (dashed).
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Fig. 14. The trajectory of the master device (solid) and the slave (dashed)
with time-varying delayed communication, using wave variable technique.
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Fig. 15. The trajectory of the master device (solid) and the slave (dashed)
with time-varying delayed communication, without using the wave variable
technique.

ison with the other set of experiment without using the wave
variables. The added time delays T1 and T2 in the experiment
are illustrated in Fig. 13, and the force reflection to the human
operator in Fig. 7 is calculated by Ffb = Kfb(xs − xm).

The human operator is required to repeat the movement
twice of the last experiment, one with wave variables in the
communication channels and the other without. The trajectory
tracking performances of the two comparative experiments are
shown in Figs. 14 and 15. In the force reflection experiment, a
rigid workpiece similar to a wall is set up and installed along
the X direction, as shown in Fig. 9. In the first 3 seconds
both the master device and the slave robot are in free motion.
Then the master begins to move towards the place where the
slave will get in touch with the workpiece and the contact
will last for about 10s. During the contact with the workpiece,
the slave robot almost does not move, and the environmental
force applied on the slave robot converges to a set value,
and the operator holds the master device with a constant
force. Then, the operator moves the master joystick back in
free motion, and the slave robot leaves the workpiece and
tracks the master’s motion without the time-varying delays.
The trajectories along the X direction of the master device

0 500 1000 1500 2000 2500 3000

X
 d

ir
ec

-(
cm

)

-0.5

0

0.5

0 500 1000 1500 2000 2500 3000

E
n

vi
- 

F
o

rc
e 

(N
)

0

10

20

times (ms)
0 500 1000 1500 2000 2500 3000F

o
rc

e 
re

fl
ec

ti
o

n
 (

N
)

-40

-20

0

20

Fig. 16. (1) Top: the trajectories along the X direction of the master device
(solid) and of the slave (dashed) with time-varying delayed communication,
using wave variable technique. (2) Middle: the environmental force to the
slave robot. (3) Bottom: the force reflections to the master device along the
X direction with time-varying delayed communication, using wave variable
technique.

and of the slave telerobot and the force reflections with time-
varying delays and the wave variables are shown in Fig. 16.
The oscillation as can be seen is due to the process of force
feedback before and after the contact.

V. CONCLUSIONS

In this paper, a teleoperation control method has been inves-
tigated in the presence of time-varying delays and uncertain
robot dynamics. The RBF NN and wave variable technique
are effectively combined to solve the problems caused by
uncertainties and time delays. Rigorous theoretical analysis
has been performed to establish passive property and stability
of the teleoperation system. Comparative experiments have
been carried out to validate the proposed method. Studies of
teleopeation in an unknown environment will be conducted in
the future work.
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