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Structured abstract (184 words) 

 

Introduction 

Despite a burgeoning knowledge of the intricacies and mechanisms responsible for human 

disease, technological advances in medicinal chemistry, and more efficient assays used for 

drug screening, it remains difficult to discover novel and effective pharmacologic therapies.   

 

Areas covered 

By reference to the primary literature and concepts emerging from academic and industrial 

drug screening landscapes, we propose that this disconnect arises from the inability to scale 

and integrate responses from simpler model systems to outcomes from more complex and 

human-based biological systems.  

 

Expert opinion 

Further collaborative efforts combining target-based and phenotypic-based screening along 

with systems-based pharmacology and informatics will be necessary to harness the 

technological breakthroughs of today to derive the novel drug candidates of tomorrow. New 

questions must be asked of enabling technologies- whilst recognising inherent limitations- in a 

way that moves drug development forward. Attempts to integrate mechanistic and 

observational information acquired across multiple scales frequently exposes the gap between 

our knowledge and our understanding as the level of complexity increases. Here we offer our 

thoughts and some actionable items that we hope will inform directed evolution of the drug 

discovery process.  
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“Disease is not something personal and special, but only a manifestation of life under modified 

conditions, operating according to the same laws as apply to the living body at all times, from 

the first moment until death”.    Rudolf Virchow (Die Epidemien von 1848, 7) 

 

1. Introduction to complexity as the missing link in drug discovery 

Technological innovations and advances continue to provide more detailed and refined 

mechanistic information on diseases targeted for novel pharmacologic therapies.  There has 

been an explosion in approaches using human cell systems with disease-relevant genotypes 

and phenotypes (e.g. organ-on-a-chip, stem-cell derived models), advances in chemistry, new 

automated platforms for high-throughput, high-content screening, numerous ‘omics’ 

approaches, and advanced computational tools for visualising and deep-mining data to provide 

data regarding effects of novel drug candidates [1, 2].  Many of these advances provide 

enhanced tools for re-running ‘traditional assays in new formats, and thus allow us to take full 

advantage of screening vast compound libraries to derive tomorrow’s new drugs.  However, we 

are essentially asking the same questions of these platforms and as a result we continue to 

identify compounds that, more often than not, fail to translate into clinical utility. So far, we have 

failed to utilize these new technologies in truly transformative ways along the drug development 

process.   

 Part of the problem stems from the use of simpler model systems in which the outputs 

are easier to interpret and which themselves are more amenable to higher throughput 

screening approaches but which offer only restricted insights into the disease-causing process 

and/or the real mechanisms of drug effect.  There is still much regarding the multiple levels of 

organization and complexity in biology and disease that we do not understand.  Consider the 

use of stem cell-derived systems (e.g. embryonic- and induced pluripotent stem cell-derived 

cardiomyocytes and hepatocytes) increasingly being used in drug discovery.  The opinion that 

they are not the panacea for efficacy or safety studies may be true but they do offer some 

obvious advantages over non-human equivalents and represent a pragmatic choice of cell 

platform for studying “disease-in-a-dish” [3, 4, 5].  However, no cell model fully recapitulates all 

facets of the biology that occurs in vivo (hence the term “models), and it is legitimate to 

question whether such assays are “fit for purpose”.  Furthermore, data acquired from these 

preparations may be prone to misinterpretation if the limitations inherent in the models are not 

considered (see [6] for a specific example relating to the absence in stem-cell derived 

cardiomyocytes of a K+ channel that is critical in establishing human resting membrane 

potential (IK1)).  Whilst substantial efforts and resources are directed at modifying such cell 

preparations in order to mimic their behaviour in tissues in vivo, still many extrinsic factors that 

shape proper cellular form and function are missing from current experimental setups. The 

precise configurations of heterocellularity and interconnectedness, regional variability within 
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tissues, mechanical tensions, electrical and hormonal cues, nutrient availability and localised 

redox environments that may change dynamically in vivo- and which influence steady-state 

behaviour and biological responsiveness- are extremely difficult to recreate in vitro.  Such 

considerations have shifted the discussion from “how relevant is that mouse study to human 

findings” to “how relevant are human cell-derived model studies to human findings”.  

 It seems that in our efforts to understand the reasons behind the technical inadequacies 

of contemporary experimental platforms used in drug discovery we are fundamentally failing to 

grasp less tangible aspects that are intimately involved in shaping biological behaviour and 

responsivity.  What are those elements that evade easy quantification and which provide 

missing links enabling us to better translate “data richness” into improved clinical therapies?  

Here, we present the case that a key link presently missing- and one that is pivotal in moving 

drug development forward from preclinical models (using non-human cells) to ‘proclinical’ 

models (using human-derived cells in preclinical studies) and from there to clinical utility - is 

complexity.   

 We are not suggesting that drug hunters do not understand or appreciate the intricate 

complexities involved in normal physiology or diseased states [7].  In this this review, we posit 

that experimental tools and approaches used to probe complex human systems are imperfect 

and incomplete and as a consequence give rise to outputs that are difficult to properly 

synthesise and interpret. In section 2, we illustrate, with reference to examples, the requirement 

for integrating data from multiple models characterised by different levels of complexity. Section 

3 distils our thoughts on some of the factors that influence the ability to properly interrogate the 

component model systems that are used in building more complex systems. Lastly, Section 4 

briefly describes the need to consider the ‘physiologic gamut’ in order to appropriately 

contextualise biological range and complexity.  

 

 

2. The need for multiple models of different complexity  

Figure 1 depicts a schematised framework of “quantitative and systems pharmacology” (QSP) 

that integrates information emerging at multiple scales using the idea of ‘horizontal’ and 

‘vertical’ network architecture [8, 9].  Erwin Chargaff’s prediction in the context of genetic 

engineering that “If you can modify a cell, it’s only a short step to modifying a mouse, and if you 

can modify a mouse, it’s only a step to modifying a higher animal, even man” [10] may hold true 

conceptually, but it does not fully recognize the nature of all of the components- some 

quantifiable, some not- involved in ‘scaling up’.  There is an essential need to understand the 

basis of the increased complexity associated with transitions from the molecular scale through 

to organisms and beyond that reflects the fidelity of translation to the clinic; such transitions are 
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chasms, not short steps and not unlike the “Valley of Death” phrase used to describe the 

arduous transition of drugs from laboratory findings to successful human clinical trials. 

The tension created by considering how best to integrate information acquired at 

different scales of complexity is mirrored in the general approaches used to screen for new 

drugs. Swinney and Anthony’s review highlights the need to make two essential elements of 

the drug development toolkit work together in a more meaningful way to guide drug discovery 

efforts [11].  The first approach, labelled mechanistic- or target-based screening (TBS), usually 

involves the detailed characterization of lower-order complexity systems (e.g. molecule or 

signalling node) to resolve distinct molecular mechanism of action (MMOA).  The second 

approach, labelled phenotypic screening (PS), is defined by Swinney and Anthony as “all 

modes of assays in which a biological system (and the perturbation therein) can be faithfully 

recapitulated”.  PS seeks to quantify measurable changes in the behaviour of more complex 

systems in the absence of knowledge of the MMOA and thus describes empirical methods to 

evaluate integrated responses of biological systems of varying complexity (for example, 

pathways, cells, tissues, animals).  Arguably, PS has played a major role in discovering 

therapeutics with novel mechanisms of action (so-called first in class drugs) [11, 12]. Such 

successes have been attributed (at least in part) to preservation of systems complexity in 

experimental models and the ability to monitor relevant (and often integrated) endpoints. It 

could also be argued that PS involves more serendipity; others have offered views on how this 

might be systematized [13]. 

 In general, most drug discovery efforts are enabled by a newly-recognized 

understanding of a mechanism or pathway that plays a putative key role in a complex disease. 

For example, it is expected that by modifying a key receptor, enzyme, metabolic pathway, 

signaling cascade or expressed protein that disease progression is favorably altered or 

reversed. This ‘target-centric’ approach allows for a linear progression of stage gates that 

govern a wide range of discovery efforts that include lead identification and optimization, 

preclinical efficacy and safety testing, pharmacokinetic modeling and formulation, and early 

phase 1 (first in human) studies leading to subsequent pivotal clinical trials to test for efficacy.  

This strategy is most likely to succeed if the targeted mechanism a) plays a unique role in 

human disease progression b) is well understood within cellular, organ, and organism contexts, 

and c) if either more simplified models (including in silico, in vitro, ex vivo) and more complex 

models (including animal models) are available that faithfully recapitulate the disease or events 

leading to the disease.  The possible contribution of multiple on-target effects involving less 

recognized (or unknown) pathways to the overall efficacy of novel therapeutics may further 

complicate an understanding of a drug’s efficacy.  Further, a drug’s off-target (or side-effects) 

profile at exposures comparable to those defining efficacy may also confound understanding 
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drug efficacy.  It is more likely that phenotypic effects would detect off-target effects (as 

compared to TBS focused on MMOA).   

Unfortunately, most (if not all) of the three assumptions listed above are only partially 

fulfilled; if we knew everything about the disease, it would be much simpler to design and 

discovery appropriate chemistries from an ever-expanding list of approaches (spanning small 

molecules and biologics to delivered gene therapies) to affect pharmacologic endpoints.  For 

practical reasons that include speed, efficiency, cost, and clarity of interpretation, simpler model 

systems are generally used (and favored) for screening of chemical libraries in early discovery 

efforts.  If available, more complex models may be employed later in drug discovery to more 

fully evaluate efficacy (if such disease models exist) and safety (using non-diseased models).  

Absent of such models, biomarkers may be used as surrogate markers for efficacy, informing 

on target engagement.  These same biomarkers may also be used in early human studies to 

again test for target engagement, an essential first step in validating a therapeutic target in 

clinical studies. 

More recently, PS have been applied to safety studies using humanized models (e.g. 

human induced pluripotent stem cell-derived cardiomyocytes and hepatocytes [4, 5]), with the 

potential advantage that the human-derived biology under study more closely represents the 

clinical experience.  Patient-derived stem cell-based in vitro models (for either safety or efficacy 

studies) have also been described in which simpler human derived cells, or more complex co-

cultures, and organoids are used.  A major question for these “disease in a dish” studies is the 

extent to which the disease phenotype is faithfully (and reproducibly) replicated.  This is more 

likely to be achieved with monogenic inheritable diseases than with diseases resulting from 

multiple genetic and environmental influences.  More recent gene-editing tools provided by the 

discovery of CRISPR-Cas techniques hold promise for creating more complex humanized in 

vitro disease models provided that we understand better the underlying disease mechanisms.  

Of course, a fusion of both target- and phenotypic-directed experimental approaches can be 

used, depending on the understanding of the complex biology and our ability to recreate and 

monitor complex biological responses.   

A principle feature of PS is that the approach affords unbiased assessments of 

compound activity on a pre-defined aspect of system behaviour (e.g. reduced incidence of 

seizure or episodes of arrhythmia).  However, one of the drawbacks of PS is that because the 

assays are often necessarily more observational in nature, teasing out the underlying 

mechanism(s) may be difficult and prone to flawed interpretation.  The very nature of PS 

means that: 

 1) since any change likely involves networks and interactions between numerous components, 

the measured outcome may not be directly related to modulation of the presumed molecular 

target and 
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 2) any outcome may not be predictable from an understanding of the individual components 

involved (i.e. emergent behaviour).  

Such features can cause issues when retrospectively fitting mechanism (i.e. MMOA) to the 

phenomenological effects observed (i.e. the apparent MOA) in more complex systems.  From a 

more pragmatic perspective, detailed knowledge on the MMOA may be unnecessary when 

screening drug candidates. 

 To illustrate the difficulties in reverse-engineering data obtained from higher complexity 

systems, we consider the histories of three clinically used cardiovascular drugs.  Investigations 

on ranolazine and perhexiline, drugs that were originally developed as anti-anginal agents 

based on a blueprint of synthetic blockers of voltage-gated ion channels in the cardiovascular 

system [14], were founded on a presumed mechanism of action that involved direct alterations 

in metabolic substrate utilization [15, 16]. The endpoints of these clinical studies demonstrated 

the therapeutic benefit of the drugs under test and the data acquired from NMR on substrate 

utilization in situ was compatible with a mode of drug action on cellular metabolism.  However, 

in vitro studies in lower complexity systems revealed that the MMOA of ranolazine and 

perhexiline (with clinically relevant exposures) most likely occurred through voltage, frequency 

and tissue-dependent block of multiple ion channels involved in cardiovascular homeostasis 

[14, 17, 18]. Any effect on metabolism would be secondary to the inhibition of these ion 

channels.  We draw particular attention to perhexiline since its serves to highlight the potential 

for ascribing clinical efficacy to uncertain MMOA if ‘single mode’ assessments are considered 

in isolation from data obtained from other experimental platforms.  Any action of perhexiline on 

cellular metabolism (i.e. potent inhibition of carnitine palmitoyl transferase (CPT-1) [16]) was 

informed by investigations using an in vitro biochemical assay of CPT-1 inhibition in rat liver 

and heart homogenates [19].  Outputs from this assay cannot resolve the contribution of the 

drug’s interaction with other (more well-known) targets in vivo (e.g. ion channels) and extensive 

scrutiny from a medicinal chemistry perspective concluded that the clinical efficacy of this drug 

is unlikely to be primarily related to an inhibitory action on CPT-1 activity [14, 20].  In another 

example of the potential disconnection between therapeutic benefit and presumed MMOA, 

investigations on flecainide, a class Ic (Na+ channel blocking) anti-arrhythmic that is highly 

effective in the clinical management of genetic and idiopathic arrhythmia syndromes [21, 22], 

have produced data that prevent the unequivocal assignation of its MMOA [23, 24, 25]. To 

reconcile discrepant findings, a ‘triple mode’ mechanism of flecainide action has been proposed 

that considers direct and indirect effects of the drug on multiple targets (Na+ channel, 

sodium/calcium exchanger and ryanodine receptors) [26, 27, 28]. However, the harmonization 

of experimental data to fit to a ‘unifying’ MOA of flecainide has been precluded by findings from 

single molecule studies (i.e. an exemplar TBS) that contradict any direct effect on ryanodine 

receptors [29, 30, 31]. This narrative serves to emphasise the potential utility of lower-
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complexity systems to specifically resolve the nature of drug-target interactions.  These 

examples highlight the contributions of naming and identifying specific “on-target” actions 

without considering the full universe of possible drug effects either on individual key cellular 

components, or the consequences of such interactions across multiple networks and systems 

within and beyond cells (Figure 1).  

 The above examples attest to the difficulty of resolving MMOA from studies using more 

complex systems but also reveal the potential for being unable to delineate between ‘cause 

and effect’ by using systems of reduced complexity, especially if the data is considered in 

isolation from those emerging from complementary approaches.  To this end, there is much 

that can be learned from considering biology using the same principles of interdependency and 

interconnectedness that are inherent in other network structures.  We expand on this in 

sections 3 and 4, below.  The situation with biology (as compared to engineering with 

mathematical models, for example) is rendered more difficult by practical limitations; the 

success of resolving MMOA from rather observational effects is largely dependent on the 

availability of good quality reagents to probe the underlying biology (e.g. antibodies, specific 

antagonists etc.) and an understanding the networks involved.  New approaches that 

decompose complexity show promise in resolving the direct or consequential actions of a 

compound on the observed changes [32] and should help mitigate errors of interpretive bias in 

data emerging from complex platforms.  

 Although we focus on the need to consider complexity (mindful of the problems 

associated with doing so), we are not advocating an “anti-reductionist” agenda.  After all, the 

study of very low complexity systems (e.g. flecainide interaction with single ryanodine receptors 

[29, 30, 31]) is required to unequivocally resolve fundamental mechanisms of drug-protein 

interaction separate from any confounding complexity (i.e. the true MMOA).  Thus, TBS and PS 

are not ‘either-or’ options and there is an absolute need for the appropriate placement of TBS 

in the development pathway.  However, the connection between TBS and PS cannot be viewed 

as a ‘linear’ link in which one approach naturally follows the other; the deployment of these 

approaches should be matched to a given phase of the development pipeline and that the level 

of complexity is tractable and fit for purpose.  There is likely to be a need to revisit the approach 

again once one is armed with more knowledge gained from studies on models of different 

complexity.  We propose therefore to define a ‘next generation’ of screening frameworks thus: 

“complementary assays performed on systems of sufficient complexity that can resolve the 

contribution of discrete components to mechanism of action in vivo”.  Such capability will 

inevitably involve computational biology and require informatics support [33].  We consider 

these issues and other features of future frameworks that will be needed to fulfil these criteria in 

sections 3 and 4. 
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3. Exploring dynamical changes in system deterioration  

The ultimate goal of pre-clinical assays is to accurately predict a drug’s clinical therapeutic 

efficacy and safety.  As Swinney notes, “the more relevant the system is to physiology, the 

better it will predict the clinical success” [12].  The use of the term ‘physiology’ here is key; 

physiology represents the functional coalescence of interlocking biological processes in a 

network architecture that involves the multi-layering of components (Figures 2 and 3).  In this 

context, the prediction of outcome in response to a given drug treatment or pathological 

disruption is difficult since the network gives rise to a number of characteristics that define the 

non-linear behaviour of the linked processes (e.g. entrainment, emergence, resilience, 

robustness, fragility) [34, 35, 36, 37, 38, 39, 40, 41, 42].  It is not practically possible at present 

to take into account and measure all of the variables and connections that contribute to such 

system non-linearity.  In Figure 2, we use the example of β-AR signalling to illustrate a process 

where the output (i.e. downstream phosphorylation of multiple proteins) is dependent on 

multiple network connections.  Figure 3 depicts how the release of Ca2+ from the sarcoplasmic 

reticulum (SR) through intracellular Ca2+ release channels (ryanodine receptors) is enmeshed 

in the process of excitation-contraction coupling (ECC) [43] which is regulated by the alignment 

of ‘horizontal’ and ‘vertical’ network elements.  We return to the issue of network alignment in 

section 4. 

 In terms of attempting to untangle these networks in order to establish cause and effect, 

Verspignani paints a rather nihilistic picture of “complex systems for which it is generally 

impossible to abstract the global behaviour from the analysis of single components, especially 

under conditions of failure [and disaster]” [42].  One of the more paradoxical aspects of 

physiological complexity is that it is underpinned by the use of comparatively few core 

components.  Akin to a chef producing an array of food dishes from few key ingredients, 

complexity stems from differential configurations of macromolecular nodes, signalling modules 

and functional outputs [44, 45, 46, 47].  Given the network constraints imposed on the 

functionality of each of these interlocked components therefore, it is important to recognize that 

a fundamental limitation of those studies that model change (e.g. drug-induced toxicity) in more 

complex physiological systems where redundancy of components is also a key characteristic is 

that the most critical linkages between components are those that cannot change if the system 

is to remain operational.  Under these circumstances any measureable change may only 

directly reflect the consequential system adaptation and only indirectly the primary causal 

perturbation.  

 The notion that signalling components (e.g. G-protein coupled receptors) exist in 

different physical/functional states in normal and diseased states gives credence to those 

approaches that aim to assess drug effects only in the diseased state [11].  It is widely 
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appreciated that drugs developed using ‘normal’ models may fail to produce anticipated 

outcomes in the diseased state.  Whilst it is clear from our arguments above that it is difficult to 

develop experimental systems that mimic faithfully such disease-linked reconfigurations in such 

a way that we can fully understand the model outputs, there is presently huge efforts focussed 

on biased agonism of cell-surface receptors and in engineering functional receptor selectivity in 

drug binding studies [48].  Finally, it is essential to conduct preclinical studies in non-diseased 

models, as most drugs (cytotoxic oncology drugs being the major exception) are administered 

to normal individuals in early clinical safety studies (before putting patients at risk), and (absent 

personalized medicine) patients without the disease indication will likely encounter these drugs 

in clinical settings. 

 Extending the concepts above, it is necessary to consider the dynamic component of 

pathological processes and disease.  It is legitimate to question the relevance of relatively static 

assay modalities.  Indeed, one would likely expect different responses treating patients with 

different severity of disease in different settings (as well as different comorbidities).  Performing 

investigations in experimental systems that recreate some endpoint of disease fits with the 

concept of drugging the diseased state.  However, it would be advantageous to have 

preventative therapeutics to influence disease progression.  It is informative to consider this 

process as involving multiple transitions from a normal state through intermediate stages 

(termed “adaptive decline”19,35) into an abnormal (final) state.  According to this concept, the 

very early stages of disease are associated with changes in biological function that may not 

give rise to measureable alterations in a chosen model of disease.  Figure 4 considers this 

issue by depicting the inherent disequilibrium in the observable ‘steady states’ as the normal 

scenario becomes abnormal.  To illustrate this concept within the constraints of the present 

article, we have restricted our focus to the maladaptive ‘decline’ of a biological system i.e. the 

concept of disease progression as the manifestation of reduced complexity.  This view is 

corroborated by models of cellular and organ dysfunction [49, 50] but we should point out that 

the progression of some diseases (e.g. cancer) are associated with an increased tissue 

complexity (if one were to take the augmented degree of tumor heterogeneity as an index of 

complexity), unpredictable disease behavior, and reduced efficacy of therapy [7]. 

Figure 5 highlights how it is possible to configure assays (including the appreciation of 

the importance of frequent sampling) to probe and quantify changes in dynamic experimental 

systems that distinguish mechanisms of drug action.  Similar concepts may be applied towards 

understanding the increasing risk liabilities involved when considering the safety of novel drugs, 

which often involves multiple factors which together define overall safety.  The application of 

gene-engineering approaches should provide the ability to induce genetically-derived disease 

progression models to use for assessing a drugs’ effects on altered networks linked with 

disease progression.  Perhaps in the future the idea of drugging an established diseased state 



Gintant & George 
Harnessing complexity in drug development 

	 11 

will be considered as outdated, instead being replaced by pro-active, preventative regimes, 

based on an improved knowledge on the dynamics of disease progression.  

 A note about the configuration of components within networks.  The interaction of 

‘nodes’ and ‘hubs’ in a network is not endlessly configurable nor is the functionality of individual 

components.  By way of example, previous estimations have shown that, in principle, 

phosphorylation of a single (tetrameric) ryanodine receptor by CaMKII, if each monomer has up 

to eight independent CaMKII phosphorylation sites, could result in around 1010 different states 

[51].  It is not plausible that the vast majority of these configurations will exist in situ, nor that 

there will be a discrete functional response to the few phosphorylated configurations that will be 

achieved if phosphorylation represents a simple ‘on-off’ biological switch to regulate 

downstream targets. Networks constrain the function of key nodes to tolerable configurations 

that dictate how a particular system can behave.  We consider this in more detail in section 4. 

 

 

4. Defining the physiological gamut and systems limits.  

In section 3, we outlined some of the issues relating to the development of assays that can 

resolve the dynamic nature of pathogenesis.  Based on this, one might reasonably argue that 

we are at - or indeed, have already surpassed- the point of our ability to use simpler in vitro 

experimental systems to advance further our efforts to discover novel mechanism-based 

therapeutics.  Maybe we are now in a phase of diminishing returns?  Returning to the problems 

discussed in section 2 about bridging ‘scale’, complex interactions between the layers of 

genetic, epigenetic, metabolic and environmental factors cannot be replicated in constrained 

‘wet-lab’ experiments [33].  For example, in Figure 3 we schematized a normal state in which 

each component in the network is well-aligned and has normal functionality, and an abnormal 

state which is associated with misalignment within the network space but in which the 

components are (in isolation) within limits of functional normality.  Such a scenario could 

manifest as a changed ‘behaviour’ in a complex experimental system but elucidating this type 

of scenario is especially difficult.  It can only conceivably be achieved using future approaches 

dependent on more complex human-based systems (e.g. organ-on-a-chip models), in silico 

simulations and computer modelling that integrate an array of pre-clinical and clinical data.   

 Contemporary in silico simulations represent powerful adjunctive models for drug 

development that are reproducible and accurate.  However despite the accuracy of input 

parameters such models may yield outputs that may not be all that believable or physiologically 

relevant.  To this end, an appreciation of the ‘physiological gamut’, that considers variability and 

the operable range of biological processes under normal and diseased conditions [52, 53, 54] 

has permeated current thinking.  Most physiological processes exist with remarkably tight 

ranges (body temperature, pH, extracellular ion concentrations).  For example, systemic central 
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control of human body temperature [55]. involves a number of components whose function may 

fluctuate substantially but the ‘network’ physiological response is constrained to a normal value 

of approximately 37.5ºC.  Temperatures exceeding 40ºC are taken as a sign of high fever and 

those below 35 ºC hypothermic. Thus, the biologically relevant operable range of human body 

temperature that is compatible with a viable (i.e. living!) system is around 5ºC (± 2.5ºC; a gamut 

of 11% around the ‘normal’ value).  It is therefore appropriate to question whether incorporating 

data acquired from experimental systems at lower temperatures (e.g. room temperature (23ºC, 

32% outside of gamut) in computer simulations would provide misleading information rather 

than advance our mechanistic understandings [56].  Acutely aware of this problem, Windley 

and colleagues have recently proposed that data gathered at physiological temperatures 

should be used to constrain in silico models used for proarrhythmic risk prediction [57]. 

 It is already recognized that in silico models should not operate in out-of-gamut 

scenarios beyond the realms of physiological believability [58].  Conversely, there are 

arguments that data acquired in non-human animal models do not represent the full breadth of 

the ‘human gamut’.  For example, in-breeding has produced widely-used animal models of 

limited genetic diversity although there is strain-to-strain variation in phenotype [59, 60] and 

new resources exist to reconcile background genetic variation with biologic response [61]  

Moreover in animals, the underlying biology may occupy a different physiological space 

(different networks/systems) in which the mechanisms of regulation and control are distinctly 

different from those in human.  For example, mouse hearts beat much faster than human 

hearts (500-700 versus 50-70 bpm at rest), have different configuration of cellular ion pumps 

and exchangers for maintaining cellular ion fluxes during the cardiac cycle [62] and are 

resistant to ventricular fibrillation.  

 Approaches that incorporate the randomization of in silico parameters, non-linear 

modelling and chaos theory [63] together with the application of machine learning tools [64] and 

self-correcting parameterization [33] may lead to a better representation of ‘real world’ 

scenarios.  Drug development will also benefit from input data acquired from a broader palette 

of studies performed in humans e.g. new approaches to map to progression of sub-clinical 

cardiovascular disease [65, 66]. Factors that contribute to towards variability and mosaicism in 

in vitro platforms are being elucidated and may also help to explain why developing the next 

generation of drugs requires more than an understanding of the underlying biology [35, 67, 68, 

69, 70, 71, 72, 73]. 

 

Conclusions 

We are some way off fully being able to annotate, interrogate and quantify some of the most 

interesting aspects that underpin biological complexity. Clearly, understanding the strengths 

and limitations of in vitro and in vivo models in terms of their complexity and ability to 
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recapitulate key elements of a disease phenotype is essential to developing novel 

pharmacological therapeutics.  Werner Heisenberg is quoted as saying “….what we observe is 

not nature itself, but nature exposed to our method of questioning.” [74].  With regards to drug 

discovery efforts, selecting the most appropriate experimental models (which represent our 

“method of questioning”) and interrogating these models with the best available tools and 

relevant endpoints (how we expose and observe nature) is essential to discovering sorely 

needed novel therapeutics.  There is no one-size fits all solution; consideration of relevance 

and level of complexity in the context of selecting different models at different phases of the 

drug discovery process is essential as one proceeds from drug screening to drug testing in the 

ultimate and most relevant of complex systems, namely patients.  Complexity rules.    
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Figure Legends 

 

Figure 1. Horizontal and vertical network integration in quantitative and systems 

pharmacology.  

Horizontal integration is defined by Sorger and colleagues as the study of multiple receptors, 

signaling networks, metabolic pathways or cell types at the same time.  Vertical integration 

involves linking information together at multiple spatial and temporal scales and at different 

levels of biological complexity.  Figure is from [9] and is used under a CC-BY-SA3.0 licence.  

PK/PD, pharmacokinetics/pharmacodynamics. 

 

Figure 2. Complexity beyond signaling nodes at the cellular level. 

A cartoon scheme of the signaling events through which adrenaline (Adr) binding to the β-

adrenergic receptor (β-AR) results in the activation of physiological “fight-or-fight” mechanisms.  

The depiction of the β-AR activation cascade as a simplified linear ‘cause-and-effect’-type 

scheme though omits the complex regulation by feedback and feedforward events achieved by 

embedding this signaling node in a wider signaling context.  Interlocking processes that 

underpin cellular metabolism (green) and signaling (blue) illustrate the intricate linkage of 

biological components [75].  A detailed map of all of the components schematized here is 

available at http://biochemical-pathways.com/#/map 

Adr, adrenaline; AC, adenylate cyclase; Gα β γ, G-proteins; PKA, protein kinase A; reg, 

regulatory PKA subunit; cat, catalytic PKA subunit. 

 

Figure 3. Hierarchical network organization and perturbation. 

In this cartoon, network organization is given by the intrinsic modulation of excitation-

contraction coupling (ECC), the process by which electrical excitation of cardiac cells is 

transduced to the physical contraction of the myocardium [62].  Ca2+ release from intracellular 

sarcoplasmic reticulum stores (SR) is regulated by layered interaction with other processes of 

increasing complexity (e.g. metabolism, intercellular synchronization and subcellular 

ultrastructure).  Under normal conditions these regulated interactions are well-ordered but 

become disrupted in pathological states (disease) or when disrupted by toxic drugs.  This 

scheme also conceptualizes the idea that abnormal phenotypic states (i.e. disease or drug-

modified states) might be associated with the normal functional of individual processes but that 

they are misaligned relative to each other within the network space (or ‘gamut’ –see Section 4).  
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Figure 4. Mapping the trajectories of transitions between normal and abnormal states 

(A) Here we depict the increased perturbation of a system via the transition of a normal state 

into an abnormal state (N and A, respectively) that is associated with an intrinsic loss of 

complexity.  In the given scheme, progression between the start point (N) and end point (A) 

may occur via one of three different trajectories (orange, blue and red lines).  Perturbation in all 

three pathways is increased between times 1 and 2 (T1 and T2) and at each sampling point the 

extent of perturbation for orange, blue and red pathways is the same.  However the system 

complexity associated with each trajectory is reduced through different modalities where the 

rank order of complexity at both T1 and T2 is orange > blue > red.  

(B) A model in which the maladaptation of a biological system occurs via sequential transitions 

through dysfunctional homeostatic states of reduced complexity (‘pseudo-stable states’) 

precipitated by vertical crises has been proposed.[34, 51]  An expanded view of transitions 

through pseudo-stable states (i.e. a downward staircase) at T1 and T2 in each of the three 

trajectories shown in (A) is given.  The vertical points of transition may correspond to points of 

network fragility described by Verspignani [42].  The blue pathway is characterised by 

homogenous transitions between pseudo-stable states over the entire N-to-A transition. In 

contrast, the orange and red pathways proceed via heterogeneous transitions to reduced 

complexity states. 

 

Figure 5. Exploring complexity in a model of human cardiac cell signalling 

We illustrate the concepts described in Figure 4 using signals representing spontaneous Ca2+ 

oscillations in human cardiomyocytes exposed to drugs A and B and sampled at 5 times points 

(1-5).  Drugs A and B both elicit irregular beating and eventual cessation of calcium oscillations 

along with reductions in signal amplitude.  Sampling only at time point 5, it would be correct to 

conclude that drugs A and B produce the same phenotypic outcome (i.e. elimination of signal 

spikes).  However, more regular sampling would reveal that cells treated with drugs A and B 

exhibited comparable oscillatory behaviour at sampling times 1 and 2, which then had diverged 

by 3 and 4 only to re-converge on a common endpoint at 5.  Drugs A and B thus result in 

comparable outcomes (catastrophic perturbations in signalling) via different trajectories.  In (B), 

the differences in the signalling patterns of Ca2+ oscillation evoked by drugs A and B can be 

resolved using new methods for decoding cell signalling information [76, 77]. 
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Expert opinion (997 words). 

 

Calls for improved target-based screening and phenotypic screening to improve drug discovery 

and development are not new, nor are calls for more input from systems biology to assist in 

understanding the key elements in complexity that might be considered as mechanistic-based 

disease targets in the future.  The enabling technologies are becoming more sophisticated, but 

we must ask new questions of them whilst recognising their present limitations in a way that 

moves drug development forward.  Each approach must be applied at the proper time in the 

discovery/development pipeline (and with appropriate data) in order to provide holistic pre-

clinical assessments of drug safety and efficacy. Contextualization is key. For example, a 

generalized approximation of an organ's ‘physiologic state’ may be inferred from functional 

readouts, detailed information relating to cellular ultrastructural organization and tissue 

architecture and rich ‘omics’-level data (e.g. transcriptomic, genomic, proteomic and 

metabolomics).  However, at present, no single experimental model can provide these data in 

the correct context, at all levels of resolution and across all scales of complexity.  It would be 

expected though that in any chosen model system relevant component nodes and networks 

should exist (e.g. syncytial networks of stem-cell derived cardiomyocytes in vitro should 

possess functional β-AR signalling machinery (Figure 2), despite the (typical) lack of 

sympathetic innervation in culture).  Whether all of this information that emerges from different 

experimental models can be integrated holistically through ‘network inference’- based on the 

widely-held view that biological processes exist exclusively in ‘scale-free’ or ‘heavy-tailed’ 

networks consisting of multiple interconnected nodes- has been challenged by evidence that 

scale-free networks may not be all that prevalent in real-world scenarios [78, 79].   

 We have presented evidence that biological processes are complex on multiple 

horizontal and vertical levels of organization, and that popular target-centric approaches used 

in drug discovery efforts are incomplete in many aspects.  In addition, our understanding of 

even the simpler (cellular) levels of complexity is also often incomplete and inadequate.  Issues 

related to low throughput, and difficulties in properly interpreting results from more complex 

models hinders their use in early drug screening and efforts to replace simpler target-centeric 

screening.  Thus, despite continuing technological innovation, drug discovery efforts remain 

exceedingly difficult, time-consuming, and expensive.  In this article we have made the case 

that comprehensive drug screening requires a multi-scale approach encompassing all levels of 

complexity from reductionist investigations on single molecules to unequivocally resolve drug-

target interaction through to systems-level studies to interrogate ‘big data’ from populations of 

patients. We recognize that multi-faceted data almost always allows questions to be asked 

which the originators of the component datasets did not think to ask, perhaps because the 

requisite contextualisation (the “big picture”) was missing or that the full value of combining the 
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data with other datasets was not realised. Thus sharing good quality, structured datasets in 

searchable archives will be vital in allowing the events underpinning more complex 

biological scenarios to be properly synthesized. 

 None of this is all that disruptive; we have presented some actionable items which we 

consider to be a directed evolution rather than revolution.  A future challenge to drug discovery 

efforts is how best to blend the best output of systems biology approaches and experimental 

humanized models to guide discovery efforts.  This will entail greater communication between 

more traditional “wet lab” and “computational biologists” and informatics to enable/gain a better 

understanding of drug effects on normal and disease states.  From the present vantage point 

though, enthusiasm toward the improved power to crunch huge numbers should be tempered 

by an awareness that the outcomes may not be all that useful if we do not understand 

fundamental characteristics of the platforms that give rise to the numbers in the first place (“BIG 

DATA, little understanding).  We are optimistic that it is a matter of time until drug development 

emerges from a hinterland where “data rich” is often not very helpful, “stem cell” preparations 

are still evolving, and an appreciation of biology from a “network” perspective is still not very 

mainstream.  In order to help connect the data emerging from these evolving experimental 

models with computational modelling and forge new paths forward in understanding how 

complexity affects drug responses, the drug discovery process (and eventually, efficacy) will 

rely on enhanced use of informatics and applied statistics (e.g. mediation analysis [80]) which 

are absolutely necessary to untangle issues on inference and causality.  

 While efforts to adapt model systems continues, the pace of evolution though is 

probably too slow for some and drug hunters cannot wait.  Humanized integrated systems (in 

the form of human stem-cell derived preparations) offer an alternative to animal models with 

the potential benefit of providing more complex integrated systems that closely resembling 

human biology.  More recent work with such preparations have shown promise in modelling 

patient-specific diseases, with the cells (or engineered tissues) providing integration of signals.  

The extent to which such humanized systems (“proclinical studies”) replicate native responses 

will need to be constantly evaluated as these models evolve in engineered (and biological) 

complexity. It is worth emphasizing that by definition, no model is perfect, but some may be “fit 

for purpose”.  We would offer a note of caution also that the interpretation of outputs from 

humanized models needs to separate the ‘usability’ of the model from its usefulness. To this 

end, it is important that we make every effort to record and annotate as many aspects of the 

biology and phenotype as possible- especially those parameters that are more difficult to 

quantify but may unmask a new level of complexity and eventual understanding (e.g. the visible 

granularity of nuclei following exposure to drug).  We need to pre-empt retrospective mutterings 

of “if only we’d thought to record that at the time” wherever possible even though reconciling 

observation with underlying mechanism(s) remains a considerable challenge. 
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 Such demands will require a different type of scientific training and collaboration than is 

not demanded by typical reductionist approaches.  Perhaps a joint industry/governmental group 

could take up the challenge to guide such an educational initiative.  The industry, government 

regulators, and patients are waiting.  

 

 

Article highlights (182 words) 

 

- A lack of understanding of the complexity of biology in health and disease remains a 

key issue in limiting the discovery of novel pharmacologic therapeutics.  

- Systems-biology approaches and computational models provide alternative frameworks 

to test drugs (eventually beyond animal models). 

- Human stem cell-derived preparations represent an evolving experimental approach to 

interrogating drug efficacy and drug safety in the proclinical space (preclinical studies 

using human-derived “clinical-like” cells or tissues).  Further work is ongoing to define 

the minimum systems necessary to recapitulate the critical processes in healthy and 

diseased states (for safety and efficacy studies, respectively).  

- Experimental systems need to be configured and sampled in ways such that data 

output reflects the dynamic (temporal) changes underpinning disease-linked or drug-

toxicity evoked phenotypes. 

- The integration of multiple network- and systems-based responses should provide 

better and more comprehensive assessments of drug effects compared to more 

traditional target-centric approaches to drug discovery. 

- Phenotypic screening using human stem cell-derived cells and tissues represent a 

complementary approach to quantitative systems biology-based studies that include 

higher levels of integration and complexity for evaluating drug candidates.   
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