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Extended Greenwood-Williamson Models for Rough
Spheres

T. Zhao, Y. T. Feng∗

Zienkiewicz Centre for Computational Engineering, Swansea University, UK

Abstract

The current work aims to develop two Extended Greenwood-Williamson (GW) models
for spherical particles with surface roughness which can be incorporated into the discrete
element modelling (DEM) framework. The defects of the classic GW model when directly
adopted in DEM are fully addressed and illustrated by both theoretical and numerical
results. The first model, the Extended Elastic GW (E-GW) model, which evaluates the
elastic deformation of the asperities and the bulk substrate separately is developed to
consider the positive overlap involved in the contact problem. The capability of incorpo-
rating the Extended Elastic model into the DEM is illustrated by the comparison between
the classic and extended models. The second model, the Extended Elasto-Plastic GW
(EP-GW) model, is further developed to consider the plastic deformation of the asperities
which reduces the pressure increased by the surface roughness. Numerical comparisons
between the E-GW and EP-GW models are also conducted to demonstrate the effect
of the plastic deformation on the pressure and deformation distributions in the contact
region.

keywords: Surface roughness; Extended GW model; Elasto-plastic deformation, Normal
contact interaction law

1 Introduction

The discrete element method (DEM) is a powerful technology in simulating and predicting
the performance of particulate systems. The computational framework of the classic DEM
is essentially deterministic, in which the material and geometric properties and the loading
conditions are assumed to be known in prior. The results obtained from a deterministic
analysis are implicitly assumed to represent all the possible scenarios of the system. This
is, however, not true for most practical problems where a certain degree of uncertainties is
always involved, and therefore traditional deterministic approaches may not be able to treat
real problems adequately. A stochastic discrete element modelling methodology which is
intended to consider the influence of inherent uncertainties on particulate systems has been
developed in our previous work [1, 2].

The geometry variation of the particles is an important random factor in the particulate
system. Real granular materials have geometric irregularities at both macroscopic and mi-
croscopic levels. However, basic elements commonly used in DEM are regular geometric
entities with smooth surface. An increasing attention [3, 4, 5, 6] has been focused on the in-
fluence of geometric uncertainty on the mechanical behaviour of the particulate systems while
the related work is mostly concentrated on the macroscopic level [7, 8, 9, 10, 11, 12, 13, 14].
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The geometric irregularities at the microscopic level, also called the surface roughness, are
more difficult to be accounted for. The surface roughness can be considered by an interaction
law which estimates contact forces between particles. This issue is commonly treated by the
tangential contact model involving friction. Moreover, the surface roughness will affect the
rolling behaviour of particles, and this issue has been considered in the rotational resistance
model [15, 16, 17]. However, these methods treat the surface roughness in a deterministic way
[18]. Very few attempts have been reported to address the problem of geometric irregularities
in randomness. As currently used normal contact laws in DEM, such as the linear and the
Hertz contact models, are intended for contact between smooth particles, it may be significant
if surface roughness can be included in contact interaction laws in a statistic sense. A first
attempt has been made towards this goal in our previous work [1] where a novel random
normal interaction law has been proposed, and its application has been demonstrated in [2].

This novel interaction law is based on the classic Greenwood-Williamson (GW) model [19,
21, 20, 22] which is the pioneer work on solving the contact problem between rough surfaces
by regarding it as the contact results of a population of asperities. As the theoretical basis
of the stochastic approach mentioned, the GW model plays a crucial role in determining the
accuracy and rationality of the resulting interaction model. As the early work of treating
contact problem between rough spheres, the GW model with ideal assumptions reflects the
real contact results less accurately compared to other more recent contact theories [23, 24]
while the GW model is chosen as the theories basis because its parameters dependence fea-
ture makes it convenient to be incorporated into the discrete element modelling framework.
For the contact problem between a smooth sphere and a rough flat surface, the GW model
treats the contact between the asperities and the smooth sphere purely elastically and ne-
glects the substrate deformation under the asperities. These theoretical defects lead to some
unreasonable results when incorporating the classic GW model into DEM simulations [1].

The classic GW model assumes that the deformation of two interacting rough surfaces can
be described by the contacting asperities only. This assumption is valid when the separation
between the sphere and the flat surface is large, the asperities are made of the same material
as the bulk substrate, and the effects of the deformation of the bulk substrate in the contact
problem can be neglected. The contact problem of the material having hard asperities and
softer substrate is analysed in [25, 26] which state that the softer bulk deformation may
have considerable effects on the surface deformation. An improved contact stiffness model
[27] is proposed to resolve this issue in which the asperity and bulk substrate stiffnesses are
combined using two springs in series. To our best knowledge, however, no attempt has been
reported to solve the contact problem with positive overlap between two rough particles.
Therefore, an extended GW model, which can consider a positive overlap between particles
by evaluating the deformation of the asperities and the bulk substrate separately, is proposed
in the current work for the rough particle contact problem in DEM simulations.

The GW model is better suited for lightly loaded contacts with large separations where the
surface asperities deform elastically as the Hertz contact model is adopted for the contact
load calculation between the asperity and the sphere. When a positive overlap is involved in
the contact, it may be necessary to consider the plastic deformation of the surface asperities.
Over the last three decades, several elasto-plastic contact models have been developed for
rough surfaces. Based on the concept of volume conservation, Chang et al.[28] propose
the CEB model in which a critical interference (or overlap) divides the contact regime into
elastic and fully plastic components. By recognising the discontinuity involved in the average
contact pressure at the critical point of the plastic deformation in the CEB model, Zhao
et al.[29] present a new elastic-elasto/plastic-fully plastic model (termed the ZMC model)
which introduces two critical interferences and bridges the elastic and plastic behaviour of the
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Figure 1: Profile of the contact between a smooth sphere and a rough surface: δ ≤ 0

asperity using a cubic polynomial. In addition, based on the work of Kogut and Etsion[30, 31],
the finite element analysis has been applied to treat different deformation regimes under
which several useful empirical elasto-plastic models have been derived [32, 33]. In addition
to the above work that are mainly presented in the tribology literature to treat the plastic
deformation involved in contact problem of rough surfaces, there are also a number of elasto-
plastic models proposed for contacting (smooth) spheres in DEM [34, 35, 36, 37, 38, 39, 40,
41]. By considering both advantages and disadvantages of these models, an extended elasto-
plastic GW model is also developed in the current work to fully take into account the plastic
deformation of the asperities.

The paper is organised as follows. The classic GW model is briefly described in the next
section and its theoretical inconsistency when involving a positive overlap is identified. The
Extended Elastic GW (E-GW) model which can solve the (elastic) contact problem with
positive overlap is developed in Section 3 and the comparisons between the classic GW
model and the E-GW model are also presented. Following the review of existing elasto-plastic
contact models, the E-GW model is further improved in Section 4 leading to the Extended
Elasto-Plastic GW (EP-GW) model that can consider the plastic deformation of asperities.
The effects of the plastic parameters included in the model are discussed briefly, and the
comparison between the E-GW and EP-GW models is also conducted. The conclusion is
drawn in Section 5.

2 The classic GW model

In this section, the classic GW model is briefly reviewed first and then a simple extension to
general contact cases is described from which a theoretical inconsistency is identified which
leads to the development of the extended elastic GW model in the subsequent sections.

2.1 Basic formulation

A rough surface consists of a myriad of asperities or peaks that restrict the real contact area.
Due to the complexity of a rough surface, an appropriate mathematical expression is needed
to represent a real surface as a profile with asperities that their heights obey a particular
statistical distribution, for instance, the Gaussian distribution. This statistical approach to
mathematically representing rough surfaces is adopted in the original GW model. By further
combining with the Hertz theory, a solution to the contact between rough surfaces is derived.
The elaborated explanation of the GW model can be found in the original work [19, 20] or
other related work [1, 21, 22].

The contact between two rough spheres can be mathematically transformed into the contact
between a deformable smooth sphere and a nominal rigid flat rough surface as shown in
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Figure 1. The equivalent radius R and the equivalent standard deviation of the asperity
height distribution σ can be obtained by the radii and roughness parameters of the two
spheres as

1

R
=

1

R1
+

1

R2
; σ2 = σ2

1 + σ2
2 (1)

in which subscripts 1 and 2 indicate the sphere number.

Referring to Figure 1(a), δ is the separation or overlap between the non-deformed configu-
ration of the sphere and the mean line of the flat surface. To make it compatible with the
convention of the DEM, δ is assumed to be negative when the two surfaces are in separation,
and positive in overlap. The profile of the undeformed sphere (black dashed line) can be
described by

z(r) = δ − r2

2R
(2)

where r is the distance from the centre to the contact point. Then the separation between
the deformed sphere and the nominal flat surface at r is

d(r) = wG(r)− δ +
r2

2R
(3)

where wG(r) is the bulk deformation of the sphere. The overlap of the asperity of height zs
at r with the un-deformed sphere is

δ(r) = zs − d(r) (4)

When δ(r) > 0, the contact force between the sphere and the asperity can be computed by
the Hertzian theory

f(zs) =
3

4
Eβ1/2[zs − d(r)]3/2 (5)

in which β is the radius of the top of the asperity and is assumed to be the same for all
the asperities; and E is the equivalent Young’s modulus of the original two spheres. Further
assume that the distribution of the asperity heights obeys the following Gaussian probability
density function

φ(zs) =
1√

2πσ2
exp

(
− z2

s

2σ2

)
(6)

The probability of having a contact at any given asperity of height zs is thus

prob(zs > d(r)) =

∫ +∞

d(r)
φ(zs)dzs (7)

Then the contact pressure distribution between the sphere and the asperities over the entire
contact area can be expressed as

pG(r) = C

∫ +∞

d(r)

[
zs − d(r)

]3/2
φ(zs)dzs (8)

with the constant

C =
4

3
ENβ1/2 (9)

in which N is the number of summits in the nominal area. The corresponding deformation
wG(r) can be obtained from the solution to the axi-symmetric deformation of an elastic
half-space as follows [42]

wG(r) =
4

πE

∫ ā

0

t

r + t
pG(t)K(k)dt (10)
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where K(k) is the complete elliptic integral of first kind with elliptic modulus

k =
2
√
rt

r + t
(11)

and ā is the radius of the contact area. By integrating the pressure distribution over the
contact area, the total contact force PG between the sphere and the rough surface with
overlap δ can be obtained by

PG(δ, σ) =

∫ ā

0
2πr pG(r) dr (12)

However, it is numerically challenging to solve the above highly non-linear problem. A set
of computational procedures employed to effectively and accurately attain PG(δ, σ) has been
developed in [1].

2.2 A simple extension to positive overlap and theoretical inconsistency

Although the classic GW model has been validated (mainly qualitatively though), extended
and applied to many applications, see for instance [20, 28, 42, 43], it is not clear whether
the classic GW model is still valid or not for δ > 0, i.e. when there is a positive overlap
between the sphere and the nominal flat surface. In this subsection, the simple extension of
the GW model without any modification is considered and a theoretical inconsistency will be
identified which leads to the proposal of the extended elastic GW model in the next section.

For the convenience of later reference, the corresponding Hertzian solutions for the smooth
spheres with δ > 0 are given below:

Contact radius:
aH =

√
Rδ (13)

Pressure distribution pH (r):

pH (r) =

 pH0

(
1− r2

a2
H

)1/2

; pH0
=

2E

π

aH

R
; r ≤ aH

0; r > aH

(14)

Deformation distribution:

wH (r) =


wH0

(
1− r2

2a2
H

)
= δ − r2

2R
; wH0

= δ; r ≤ aH

a2
H

πR

[ r2

a2
H

− 1 +
(

2− r2

a2
H

)
sin−1

(aH

r

)]
; r > aH

(15)

Total force:

PH (δ) =
4

3
EaHδ =

4

3
E
√
Rδ3/2 (16)

Under the simple extension of the GW model, it is theoretically important that the GW
model can reduce to the Hertzian solution for smooth spheres when the roughness σ = 0.
However, this is not apparent. In fact, it is easy to verify that directly setting wG(r) to be
the Hertzian deformation wH (r) in (8) gives rise to a zero pressure distribution pG(r) = 0,
which is obviously incorrect when δ > 0.
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The issue has been fully explored in [1] which concludes that the classic GW model does
recover the Hertzian solution, but as the limit when σ → 0 if the parameter µ is assumed to
be fixed. The main findings are presented below.

Assuming that when σ is close to zero, both the pressure and deformation distributions of the
sphere are close to the Hertzian solutions for the smooth contact case, and can be expressed
as

pG(r) = pH (r)−∆p(r); with ∆p(r)� pH (r) (17)

and
wG(r) = wH (r)−∆w(r); with ∆w(r)� wH (r) (18)

Note that the minus signs on both the right hand sides of the above two expressions are
deliberately assumed and the implication will be highlighted at the end of this subsection.

It is found [1] that ∆w(r) can be approximately expressed as

∆w(r) ≈
[
pH (r)

C

]2/3

=

(
pH0

C

)2/3(
1− r2

a2

)1/3

(19)

and the maximum difference between ∆w(r) and wH (r) appears at r = 0 with

∆w(0) =

(
16
√

2

3πµ

σ

δ

)2/3

w0 (20)

For a given overlap δ > 0 and a fixed µ, it follows that

lim
σ→0

∆w(r) = 0 (21)

The linear relationship between w(r) and p(r) in (10) is also applicable to ∆w(r) and ∆p(r):

∆w(r) =
4

πE

∫ ā

0

t

r + t
∆p(r)K(k) dt (22)

It is argued [1] that the following approximation holds

∆p(r) ≈ ∆p(0) (23)

While from (22), it has

∆p(0) =
E

2a
∆w(0) (24)

so

∆p(r) ≈ E

2a
∆w(0) (25)

Thus it is concluded that the classic GW model converges to the Hertzian solution when
σ → 0:

lim
σ→0

wG(r) = wH (r); lim
σ→0

pG(r) = pH (r) (26)

The above theoretical argument is also numerically verified in [1].

Nevertheless, as pG and wG are approaching to pH and wH but from the negative side (refer
to (17) and (18), the following conclusion holds when δ is small

PG(δ) < PH (δ) (27)

Clearly this is not physical since the contact force for the two rough spheres cannot be smaller
than the smooth case for the same nominal overlap δ, thus revealing that the classic GW
model is not theoretically valid for δ > 0, at least for small σ.
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Figure 2: Profile of the contact between a smooth sphere and a rough surface: δ ≥ 0

3 The Extended Elastic GW model

The above analysis demonstrates that the GW model cannot handle the condition when
δ > 0, which is in accord with the general accepted conclusion that the classic GW model is
better suited for light contacts with large separations [28, 33]. This difficulty is due to the
assumption made in the GW model that the deformation of the interacting rough surfaces
is described by the contacting asperities only, and the bulk deformation under the surface
asperities has been ignored. A positive overlap between particles in DEM simulations will
definitely make contribution to the contact force. Therefore, the classic GW model cannot
be incorporated in the DEM modelling framework without modification.

To take full consideration of the positive overlap, the GW model is extended by evaluating the
contributions of both the asperities and the substrate to the deformation. As the asperity
deforms elastically in the classic GW model, the resulting extended model is termed the
Extended Elastic GW model or the E-GW model.

3.1 Model description

The contact of rough particles in the discrete element modelling can be described by two steps:
(a) the contact of the smooth particles with the overlap δ; and (b) an additional displacement
due to the surface roughness. Based on this observation, the rough (flat) surface is divided
into two parts: the nominal smooth surface and the associated rough asperities, and both
parts additively contribute to the deformation of the (smooth) sphere and the final contact
force. As shown in Figure 2, the profile in dashed represents the deformed sphere in contact
only with the smooth surface (i.e. the Hertizan part); while the profile in solid line represents
the final deformed configuration of the sphere in contact with the rough surface. The smooth
surface is taken as the datum (the solid central line in Figure 2) which is also the mean height
of the asperities.

The contact force due to the smooth part can be obtained from the Hertz law. The pressure
distribution pH (r), the deformation distribution wH (r) and the total force PG(δ) are given
by (14), (15) and (16) respectively.

The additional contact force caused by the asperities is determined by the classic GW model.
The profile in dashed green line can be regarded as the undeformed sphere without considering
the effect of the asperities which is described by

z(r) = wH (r) +
r2

2R
− δ (28)

Then the separation between the deformed sphere after contacting with asperities and the
deformed sphere after contacting with the smooth surface is

d(r) = wG(r) + z(r) (29)
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Figure 3: Comparison of non-dimensional total contact forces between the GW and E-GW
models for different degrees of roughness

The overlap between the asperity and the dashed green line is

δG(r) = zs − wG(r)− z(r) (30)

Then the contact pressure distribution pG(r) and deformation distribution wG(r) can be
expressed as

pG(r) = C

∫ +∞

d(r)

[
δG(r)

]3/2
φ(zs)dzs (31)

wG(r) =
4

πE

∫ ā

0

t

r + t
pG(t)K(k)dt (32)

The contact pressure is the sum of the Hertz pressure and the GW pressure. Thus the total
pressure distribution p(r) and deformation distribution w(r) of the sphere can be expressed
by

p(r) = pH (r) + pG(r) (33)

w(r) = wH (r) + wG(r) (34)

The total contact force P (δ, σ) is the summation of the Hertz force PH (δ) and the rough GW
contribution PG(δ, σ) defined by (12) as

P (δ, σ) = PH (δ) + PG(δ, σ) (35)

By utilising the fact that the Hertz contribution is zero when δ is negative, the above extended
GW model includes the classic case as a special case. For the rough part, pG can be set to
be zero when δ < −3σ because the probability that a summit zs lies in the range [−3σ,+3σ]
is 99.9%.

3.2 Comparison between the classic and the extended models

The classic GW model and the E-GW model are compared in this subsection. Unlike in the
traditional tribology where the interest is mainly focused on the evolution of the separation
and effective contact area under a varied normal load, the attention in the current work is
concentrated on the change of the total contact force with an increasing surface roughness
under the same overlap between particles. Therefore, the non-dimensional total contact
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force, the pressure distribution and the deformation distribution under the same overlap are
compared between the two models.

Figure 3 shows the relationship between the surface roughness σ and the non-dimensional
total contact force P ∗(= P/PH ) with a positive overlap δ = 0.01. The roughness σ increases
from 0 to 0.01 and three different values, 1, 4 and 10, are chosen for the non-dimensional
parameter µ. The rough surface is supposed to result in a larger normal contact force than
the smooth surface with the same overlap, which means the non-dimension total contact force
P ∗ should always be greater than 1 and should also increase with the increase of the degree
of roughness σ.

However, it is evident from Figure 3 that when σ is approaching to zero, the non-dimensional
contact forces P ∗ obtained from the GW model are smaller than 1, meaning the contact forces
of rough particles are smaller than those of smooth particles. This is physically incorrect and
is consistent with the theoretical predication presented in Section 2.2. On the other hand,
the extended model correctly captures the phenomenon that rougher surfaces produce larger
contact forces than smoother surfaces under the same overlap.

The pressure and deformation distributions based on the classic GW model and the E-GW
model are also compared and shown in Figure 4(a) and Figure 5(a) respectively. To make
the comparison more apparent, the differences of these distributions with the corresponding
Hertz solutions are depicted in Figure 4(b) and Figure 5(b). The results are obtained with
the same positive overlap δ = 0.01, the same non-dimensional parameter µ = 4 and three
different surface roughness levels σ = 10−5, 10−4, and 10−3.

The fact that the pressure and the deformation gradually approach to the Hertz solution as
σ decreases when the surface becomes smoother can be seen for both models but in different
fashions. The classic GW model achieves this from below the Hertz solution in most of the
contact region which is again conforming to the theoretical analysis in Section 2.2. Also the
surface asperities reduce the pressure and deformation in the original contact area between
the sphere and the smooth surface but lead to a significantly larger effective contact area. On
the contrary, the E-GW model approaches to the Hertz solution from above which reflects
the fact that, as the surface becomes rougher, both pressure and deformation increase inside
and outside the original contact area. The increase of pressure and deformation in the
original Hertz contact area is almost same because the sphere has conforming contact with
the smooth flat. There is a decreasing trend of the difference outside the original Hertz
contact area because the curved profile of the sphere again affects the overlap.

In DEM simulations, a positive overlap is defined between two smooth particles (for dry
mechanical contact only), the asperities added on the smooth surface should cause additional
pressure and deformation. Therefore, it can be concluded that the current extended model
is more realistic for the contact situation with a positive overlap.

4 The Extended Elasto-Plastic GW model

When a positive overlap exists between two rough particles, the asperities may undergo
substantial deformation. Therefore, the major assumption made in the classic GW model
that the asperity deforms elastically may no longer hold in this case. It is thus necessary to
consider the plastic deformation of asperities in the extended model.

As mentioned in Section 1, a number of plastic contact models have been developed both
for the contact problem of rough surfaces and for the single contact between two smooth
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Figure 5: Comparison of deformation distributions with over the contact zone

spheres. These plastic contact models can be classified into two categories: analytical [28,
29, 36, 37] and semi-analytical [30, 31, 32, 33]. Both categories have their own advantages
and disadvantages.

The analytical contact models are based on the general physical reality that materials can ex-
hibit different deformation behaviours during the contacting process which can be summarised
into different regimes. The earlier work only contains two regimes: elastic and plastic. While
the three regimes model (elastic, elasto-plastic, and fully plastic) are now more accepted. The
critical overlap is proposed to indicate the inception of each regime which can be defined by
the material properties. For the elastic regime, the force-displacement relationship is based
on the Hertz model obeying a power law with the exponent of 1.5. For the plastic regime,
a linear law is used for the force-displacement relationship. For the transition regime from
elastic to plastic, the power law for the elastic regime and the linear law for the plastic regime
are joined by some mathematical methods. The analytical models can be readily applied to
simulate different materials while the simple assumptions used in these models make it almost
impossible to fit experiments perfectly.

The semi-analytical models are based on experiments or numerical simulations which can pre-
dict the deformation behaviour of specific materials and geometries [44, 45], but the parame-
ters need to be re-calibrated by either time-consuming experiments or numerical calculations
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Figure 6: Force displacement relationships based on different contact models

for each material to be simulated.

To observe the deformation behaviour described by different elasto-plastic models, the force
displacement relationships for six contact models, denoted as CEB[28], ZMC[29], Thornton[36],
Vu-Quoc[38], MJG[46] and Hertz respectively, are depicted in Figure 6 for illustrative pur-
pose. The material and geometric parameters used to generate the curves are taken from [38],
and listed in Table 1. Note that the Vu-Quoc model is only valid for the specific material
and geometry.

Table 1: Parameters used in the contact models

Variable
Radius

(m)

Young’s
modulus
(GPa)

Poisson’s
ratio

Hardness
coefficient

Yield
stress
(MPa)

Yield force
coefficient

R E ν K σy AY
Value 0.1 76.923 0.3 0.6 100 1.61

The CEB, ZMC and Thornton models are analytical contact models, while the Vu-Quoc and
MJG models are semi-analytical. The CEB and Thornton models contain two deformation
regimes: elastic and plastic. As shown in Figure 6, the Thornton model predicts a much
smaller contact force than the other four elasto-plastic contact models. In the CEB model,
the force is even larger than that obtained from the Hertz model at the initial part of the
plastic regime. Compared to the CEB and Thornton models, the ZMC model with three
deformation regimes is closer to the semi-analytical models (Vu-Quoc and MJG).

To introduce an elasto-plastic contact model for the contact between rough surfaces, the
integral domain of the pressure distribution (Equation 8) needs to be divided into different
regions according to different critical overlaps. The contact forces between the asperities
and the sphere are evaluated by the corresponding force-displacement laws. No elasto-plastic
contact model is, however, widely accepted as the best choice at the moment. Considering
both generality and simplicity of the formulas, an analytical elasto-plastic model is desired
to be applied into our extended GW model. The resulting contact model is termed as the
Extended Elasto-plastic GW (EP-GW) model. In the current work, the ZMC model [29]
is adopted as it can predict the deformation behaviour more accurately compared to other
analytical models.
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In the ZMC model, the three deformation regimes are determined by two critical overlaps,
δep and δp. The first elasto-plastic critical overlap δep is defined at the point when the mean
contact pressure pa reaches KH and elasto-plastic deformation occurs, which yields

δep =

(
3πKH

4E

)2

β (36)

where H and K are respectively the hardness and hardness coefficient of the material con-
cerned. The second plastic critical overlap δp is defined at the point when the mean contact
pressure pa reaches H at which fully plastic deformation occurs. There is no theoretical
solution available for δp, however. Based on experimental results and a simple analysis, the
following relation is suggested in [29]

δp ≥ 54 δep (37)

When δ < δep, the asperity deforms elastically. The mean contact pressure pa e and the
contact area Ae are obtained from the Hertz theory

pa e =
4E

3π

√
δ

β
; Ae = πβδ (38)

When δ > δp, the asperity deforms fully plastically. The mean contact pressure remains
constant at H. The contact area, according to Abbott and Firestone [47], is equal to the
geometrical intersection of the flat surface with the original undeformed profile of the asperity.
Thus

pa p = H; Ap = 2πβδ (39)

When δep < δ < δp, the asperity deforms elasto-plastically. The mean contact pressure pa ep
and the contact area Aep as functions of the overlap δ become complex. The relation between
pa ep and δ is derived based on the results from Francis [48] which can be characterised by
a logarithmic function. Further considering the continuity of the mean pressure at the point
of δ = δep(pa = KH) and δ = δp(pa = H), the mean contact pressure in the elasto-plastic
regime is given by

pa ep = H

[
1− (1−K)

ln(δp/δ)

ln(δp/δep)

]
(40)

The relation between the contact area Aep and the overlap δ is derived by joining the expres-
sions for Ae = πβw and Ap = 2πβw smoothly using a cubic polynomial formula.

Aep = πβδ
[
1 + 3λ2

ep(δ)− 2λ3
ep(δ)

]
(41)

where

λep(δ) =
δ − δep
δp − δep

; λep(δep) = 0; λep(δp) = 1

Hence, the contact force of an asperity and the smooth sphere can be expressed as a function
of the overlap δ by

f(δ) = paA =


4

3
Eβ1/2δ3/2; δ ≤ δep

πHβ[1− (1−K)D1(δ)]D2(δ); δep < δ ≤ δp
2πHβδ; δ > δp

(42)

where

D1(δ) =
ln(δp/δ)

ln(δp/δep)

D2(δ) =
[
1 + 3λ2

ep(δ)− 2λ3
ep(δ)

]
δ

(43)
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Figure 7: Comparisons of the pressure distribution between different contact models

Then, similar to to (8), the pressure distribution pG(r) after considering the whole rough
surface can be expressed as

pG(r) = N

∫ +∞

d(r)
f(zs − d(r))φ(zs)dzs (44)

Or more explicitly

pG(r) = C

∫ d(r)+δep

d(r)

[
δG(r)

]3/2
φ(zs)dzs

+
3Cσ1/2

2Kψ

{∫ d(r)+δp

d(r)+δep

[1− (1−K)D1(δG(r))]D2(δG(r))φ(zs)dzs

+

∫ +∞

d(r)+δp

δG(r)φ(zs)dzs

} (45)

where ψ is the plastic index defined by Greenwood and Williamson[19] as

ψ = (δep/σ)−1/2 (46)

The critical overlap δep can be expressed as

δep =
σ

ψ2
(47)

Now this EP-GW model can consider the plastic deformation of the asperities by introducing
two more parameters, the plastic index ψ and the hardness coefficient K, compared to the
E-GW model. The EP-GW model recovers the E-GW model when ψ = 0 as δep =∞.

The Hertz, E-GW and EP-GW models are compared below. The effects of the roughness
parameters σ and µ on the contact features have been discussed in our previous work[1]. Only
the effects of the plastic parameters ψ and K are investigated here. The other parameters
are fixed and have the same values for all the models: δ = 0.01, σ = 0.001, µ = 4.

Figure 7(a) illustrates the pressure distribution for three different values of ψ = 2, 4 and 10
but the same value of K = 0.6. As can be seen, the pressure calculated from the E-GW
model (blue line) has the largest value as expected, which reflects the elastic effects of the
surface roughness. The increase of the plastic index reduces the pressure increased by the
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Figure 8: Comparisons of the force-displacement relationship between different contact mod-
els

surface roughness as more asperities deform plastically. Figure 7(b) illustrates the pressure
distribution for three different values of K = 0.4, 0.6 and 0.8 but a fixed value of ψ = 4.
Similar results can be observed that the increase of K reduces the pressure increased by the
surface roughness.

The force-displacement relationship is the most interested issue when a rough surface contact
model is applied to the DEM simulation. The relationships based on different models for
a particularly given set of parameter values are illustrated in Figure 8. As expected, the
increase of both ψ and K reduces the normal load increased by the surface roughness. Note,
however, that the underlay smooth particle contact is still assumed linearly elastic.

It can be observed from Figure 7 and Figure 8 that the effects of the plastic deformation are
not significant compared to the difference induced by the surface roughness between the Hertz
model and the E-GW model. It can be explained in two ways, when δ is small almost all the
asperities deform in the elastic region while when δ is large the deformation of the substrate
accounts for the main part compared to which the plastic deformation of the asperities is not
obvious.

5 Conclusion

The basic defects of the classic GW model when incorporated into the DEM have been fully
addressed in the current work by both theoretical analysis and numerical simulations. The
Extended Elastic GW model has been developed to consider a positive overlap by evaluat-
ing the deformation of the asperity and the substrate separately. The applicability of the
Extended Elastic GW model is illustrated by the comparison with the classic GW model.
By further considering the plastic deformation of the asperities using the ZMC elasto-plastic
model, the Extended Elasto-Plastic GW model has been established. The numerical results
show that the plastic deformation of the asperities reduce the pressure increased by the sur-
face roughness. Both extended GW models can now be applied to DEM simulations. It is
highlighted, however, that due to complex physical phenomena involved, significant assump-
tions made, and some mathematical approximation adopted, the two extended models may
need to be appropriately validated, which is beyond the scope of the current work.
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