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Revisiting Theory for the Design of Tasks:
Special Considerations for Digital
Environments

Marie Joubert

Abstract Teachers should and do design tasks for the mathematics classroom, with
specific mathematical learning as the objective. Completing the tasks should require
students to engage in dialectics of action, formulation and validation (Brousseau in
Theory of didactical situations in mathematics : didactique des mathematiques,
Dordrecht: Kluwer Academic Publishers, 1997) and to move between the
pragmatic/empirical field and the mathematical/systematic field (Noss et al. in
Educational Studies in Mathematics, 33(2), 203–233, 1997). In the classroom, stu-
dents act within a milieu, and where computers are part of this milieu, particular
considerations with respect to task design include questions about the mathematics
the student does and themathematics the computer does, and the role offeedback from
the computer. Whilst taking into account the role of the computer, the design of tasks
can also be guided by theoretical constructs related to obstacles of various kinds;
ontogenic, didactical and epistemological (Brousseau in Theory of didactical situa-
tions in mathematics : didactique des mathematiques, Dordrecht: Kluwer Academic
Publishers, 1997), and, whereas the first two should be avoided, the third should be
encouraged. An example of a task taken from empirical research in an ordinary
classroom is used to illustrate some of these ideas, also demonstrating how difficult
and complex it is formany teachers to design tasks that use computer software inways
that provoke the sort of student activity that would be likely to lead to mathematical
learning. Implications for teacher professional development are discussed.
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1 Introduction

This chapter outlines a theoretical approach to task design, where a ‘task’ is taken to
mean what the teachers ask the students to do (Christiansen and Walther 1986;
Joubert 2007; Monaghan and Trouche 2016). Activity is taken to mean what the
students actually do and the focus is on tasks for digital environments. Although
digital environments can change classrooms in significant ways, the theoretical
approach described here is equally applicable in all mathematics classrooms.

The chapter is underpinned by three key assumptions. The first is that teachers
should and do design or redesign tasks for their mathematics classrooms (Hoyles
et al. 2013; Watson et al. 2013) and that tasks are adapted and tweaked by teachers
to suit each context in which they give the task to students. The second assumption
is that teachers want the tasks they set to provoke mathematical learning and have
some understanding of the relationship between the task and the intended learning.
This may seem obvious, but, as Brousseau (1997) argues, the detail of the intended
learning is frequently not sufficiently well understood by teachers and as Watson
et al. (2013), state:

A distinct mathematical contribution can be made in understanding whether and how doing
tasks, of whatever kind, enables conceptual learning (p. 10).

The third assumption is that students in mathematics classrooms do no more than is
necessary to complete the task (Sierpinska 2004). The implication of these
assumptions, taken together, is that teachers should have a clear idea of the sorts of
activity their designed tasks will force the students to engage in and the mathe-
matics they will learn by doing so, as well as factors that might hinder or prevent
this activity taking place.

Digital technologies have the potential to contribute in significant ways to
learning in mathematics, but designing tasks that use digital technologies well is
complex and difficult (Joubert 2007; Laborde and Sträßer 2010) at least partly
because of the ability of the computer to ‘do’ some mathematics and to provide
mathematically relevant feedback. Importantly, the theoretical underpinnings of
good task design are no less relevant when digital technologies are brought into the
picture.

The chapter begins with a discussion of students’ mathematical activity, out-
lining the sorts of activity that might lead to mathematical learning; this is the kind
of activity a task for mathematical learning should provoke. It goes on to discuss
tools in the mathematics classroom, with a focus on computer software, empha-
sising how complex it is to really understand the role and potential of the software.
The chapter then turns to the notion of obstacles, suggesting that some obstacles
should be avoided because they get in the way of learning and some should be
encouraged because they require students to engage in the sorts of activity that
might lead to mathematical learning (as discussed previously). Obstacles provide a
framework for the analysis of tasks, allowing us to predict likely student activity
and hence mathematical learning. The chapter goes on to analyse of a
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teacher-designed task in which students work on computers. This has two purposes:
first it illustrates the ideas outlined in the chapter and second it emphasises the
importance of understanding the role and potential of digital technologies within
classroom mathematics tasks. Finally the implications are discussed.

2 Students’ Activity

Given the assumption that tasks in the mathematics classroom are designed to bring
about student activity that might lead to mathematical learning, it seems important
to understand how students engage with a task and what mathematical learning
might look like. Of course, students come to a task with different backgrounds and
the prior learning of students has been shown to be a key ingredient in determining
how they react to different situations, as argued in detail by Roschelle (1997).

When students engage in a task, they tend to operate under a ‘law of economy’
Sierpinska (2004) and they find the easiest and shortest way to complete the task.
Hillel (1992) explains that for many students, it is the end rather than the means that
is important. and Mavrikis et al. suggest that ‘students are inevitably focused on
task completion, bypassing any need to mobilize structural reasoning or algebraic
generalization’ (2013, p. 2). However, as Brousseau (op. cit.) suggests, it is perhaps
more likely that valuable and genuine mathematical learning will take place when
students are invested in, and committed to, a problem situation. He contrasts this
sort of motivation, mathematical motivation, with didactical motivation, where the
student aims to solve the problem because this is what they were asked to do.

In completing the task, the students interact with the milieu, or the environment.
In the case of tasks within digital environments, an important element of the milieu
will be the device used, such as the computer, smartphone, tablet or graphical
calculator. Together with the device, software ranging from networking capability,
to generic software such as web browsers and spreadsheet packages, to
mathematics-specific software such as computer-algebra systems (CAS) will be
used. The interactions between the student and the milieu can be conceptualised as a
dialogue between the student (or group of students) and the feedback from the
milieu (Brousseau 1997). The importance of feedback should not be underesti-
mated; as pointed out by Balacheff (1990):

The pupils’ behaviour and the type of control the pupils exert on the solution they produce
strongly depend on the feedback given during the situation. If there is no feedback, then the
pupils’ cognitive activity is different from what it could be in a situation in which the falsity
of the solution could have serious consequences (p. 260).

In the context of task design for digital environments, feedback from the milieu
can be particularly powerful and important (see, for example, Bokhove and Drijvers
2010). Understanding what form the dialogue between the students and the milieu
might take is crucial.
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2.1 The Modes of Production

Brousseau (1997) uses the notion of ‘modes of production’ to describe the different
types of dialectic interactions between students and the milieu; he suggests that as
they work through a mathematical task, they will engage in all or some of the
dialectics of action, formulation and validation. These are explained below.

2.1.1 Dialectic of Action

A dialectic of action involves the student constructing an initial solution to the
problem straight away, informed by her current knowledge and using strategies that
‘are, in a way, propositions confirmed or invalidated by experimentation in a sort of
dialogue with the situation’ (ibid, p. 9). For example, suppose the mathematical task
a student is given requires them to produce a graph, perhaps on a graphing cal-
culator, in a web-based graphing environment or in a specific graphing software
package. If the student knows how to do this, and types the equation in, and the
graph is produced on a big or small screen, this would be a dialectic of action. There
may be an argument that, in some cases, the feedback from the milieu seems to have
little or no role. However, as Brousseau argues, the student can be seen to be
anticipating the results of her choices or strategies, and in this sense the milieu
provides feedback, which can perhaps be seen as unrequested and as expected; it
does not require the student to adapt her strategies. In the example given above, for
example, the student would expect a graph to appear on the screen. She does not
have to adapt her strategy. On the other hand, feedback may occur from time to
time as the student works. For example, students may use a computer-based
homework package, such as ‘Mathspace’ to check answers as they go along, or they
may check answers to exercises in the back of the textbook or they could use
self-checking methods such as multiplying out factorised functions. Very com-
monly, the teacher provides feedback either by checking the students’ work as she
walks around the classroom or by going through answers in a whole-class dis-
cussion. In these cases, the dialectical nature of the student interactions is clearer,
and the feedback from the milieu can be seen as requested and as ‘a positive or
negative sanction relative to her action’ (Brousseau 1997).

Whereas a negative sanction could encourage the students to formulate new
strategies, it may also result in students simply trying something different but not
using the feedback to inform the guess; this approach is sometimes called a trial and
error approach (and is different to a trial and improvement approach which, it is
argued below, requires some formulation). However, it is also possible that,
although the task presents some mathematical challenges to the student (in other
words she does not know exactly what to do and how to do it), she will choose to
engage only in dialectics of action, perhaps by inventing easier ways to solve
problems or perhaps by adopting a trial and error approach, which can be seen as
didactically motivated rather than mathematically motivated (Sutherland 2007). It is
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possible that all dialectics between the student and the milieu in a given didactical
situation are dialectics of action; if, for example, the student knows what to do and
how to do it in order to complete the task. This would mean that, although she
completes the task, she does not need to extend her mathematical knowledge or
understanding to do so; ‘simple familiarity, even active familiarity … never suffices
to provoke a mathematization’ (Brousseau 1997, p. 211). To a large extent this can
be seen to depend on the demands of the task which in turn depends on the
student’s previous knowledge and understanding, as argued above.

2.1.2 Dialectic of Formulation

On the other hand, some action dialectics are necessary within any didactical
situation; and the suggestion is that it is when the action dialectics are motivated by
the mathematics rather than the didactics, these actions may lead to a sequence of
mathematical dialectical interactions which could include the development of
hypotheses, alternative strategies, justifications and proofs, as described below. As
suggested above, dialectics of formulation occur when students meet a difficulty or
problem as they engage in mathematical activity; Brousseau explains that when a
solution to a problem is inappropriate, the situation should feed back to the students
in some way, perhaps by providing a new situation. The means that the student may
become conscious of her strategies and begin to make suggestions. Brousseau
includes in this category ‘classifying orders, questions etc. …’ (p. 61). He goes on
to say that in these communications students do not ‘expect to be contradicted or
called upon to verify … information’ (p. 61). Formulations necessarily include
communication and have an explicit social dimension (Balacheff 1990) such as
detailed descriptions and designations of phenomena, statements of properties or
relationships, using and developing a language of a formal system. In making these
formulations the students construct and acquire explicit models and language,
which, as Christiansen and Walther (1986) argue, serves to make the learner
conscious of strategies: ‘actions become conscious for the learner’ (p. 268).

A key activity in mathematics classrooms, and very often seen in classrooms
where digital technologies are used, is ‘noticing’. In the context of research where
digital technologies are used, Martin and Pirie (2003) provide an example. In their
research, the teacher gives the students a printed sheet of a number of equations and
asks them ‘to see what they can notice and find out about the graphs in relation to
the printed equations’ (p. 176). When the didactical intention is that the student
should make some observations, or to notice, it is likely that the students will begin
to formulate choices; noticing requires the student to make conscious choices about
what to notice, which aspects to attend to, which to suppress (Mason 1989) and
how to express and articulate these. Whereas students can notice while remaining in
action dialectics, noticing can also lead to conjecturing and engaging more in
formulation dialectics.

Feedback has a variety of roles in formulation dialectics and can come from
other people or from other elements of the milieu. As with action dialectics, the
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feedback can be immediate or delayed. For example, in the context of Brousseau’s
example game ‘The Race to 20’, feedback would be delayed until the effect of the
chosen strategy can be seen (whether the student wins or not). Clearly, digital
technologies are able to provide unique, usually immediate, feedback and this is
discussed later in the chapter.

In the discussion above, the possibility of trial and error cycles of student
behaviour was proposed. In these trial and error dialectics, the role of the feedback
was seen to be only to inform the student that the strategy she had tried was
incorrect. However, depending on the nature of the problem, it is possible that the
feedback may also provide some clue for the student about how to improve her
strategy and she may formulate a new strategy; this ‘trial and improvement’ or ‘trial
and refinement’ approach is described by Sutherland (2007). She includes some
cautionary remarks about the value of such approaches, arguing that, in some cases,
trial and improvement may lead to a correct answer but perhaps not to the intended
learning.

2.1.3 Dialectic of Validation

Both action and formulation involve manipulating ‘moves in the game’ or math-
ematical objects; validation however involves manipulating ‘statements about the
moves’ (Sierpinska 2000, p. 6). Validation therefore takes place when an interaction
intentionally includes an element of proof, theorem or explanation and is treated
thus by the interaction partner, which could be the teacher, called the ‘interlocutor’
by Brousseau: ‘this means that the interlocutor must be able to provide feedback…’
(Brousseau 1997, p. 16). Brousseau argues that this interaction should be seen as a
dialectic; this, he suggests, is due to the presence of the interlocutor. Examples of
dialectics of validation include justification (perhaps of a procedure, a word, a
language or a model), organising theoretical notions, ‘axiomization’ (ibid, p. 216),
and a range of proofs.

Brousseau, while suggesting that all three modes of production are ‘expected
from students’, (ibid, p. 62) argues that it is through situations of validation that
genuine mathematical activities take place in the classroom. Romberg and Kaput
(1999) echo Brousseau’s sentiments in their vision of mathematics worth teaching:
“Students will develop the habit of making and evaluating conjectures and of
constructing, following and judging valid arguments” (p. 7). Brousseau suggests
that situations of validation do not occur very often and are unlikely to occur
spontaneously and it is probable that validation will not take place unless it is
explicitly called for. “In order to obtain the latter [validation], one must organize a
new type of didactical situation.” (ibid, p. 13) The implication from Brousseau’s
‘interlocutor’ (above) is that this interlocutor provides feedback. It is in discussion
with this interlocutor that the individual develops his or her arguments; it is unlikely
that feedback will come from any source in the milieu other than classmates or the
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teacher because of the need to convince someone else. Clearly, the teacher’s role is
crucial in encouraging students to engage in dialectics of formulation and partic-
ularly validation.

2.2 The Pragmatic/Empirical Field
and the Mathematical/Systematic Field

It can be that the mathematical activity of the students relates only to the physical or
concrete characteristics of the mathematical objects they work with. On the other
hand, students may relate their activity to mathematical notions underpinning the
objects. For example, on the one hand students may construct a tangent to a circle
by rotating a straight line so that it touches the circle, and on the other hand they
may use the geometrical property that the tangent is perpendicular to the radius to
construct the tangent (Laborde et al. 2004).

A range of mathematics education theorists from a variety of theoretical back-
grounds describe these different ways of working in different contexts; for Laborde
(1998) the distinction is between ‘spatio-graphical’ and ‘theoretical’ and for Sfard
(2000) it is between ‘actual reality’ and ‘virtual reality’. While the varying theo-
retical perspectives imply variations on these ideas, the point for all of them is that it
is useful to make the distinction and this chapter uses Noss et al. (1997) termi-
nology ‘pragmatic/empirical’ and ‘mathematical/systematic’. In addition to the
perceived need to distinguish between the ‘pragmatic/empirical’ and ‘mathematical/
systematic’ fields, there seems to be a consensus that a transition between the two
fields is required for mathematical learning to take place (Dörfler 2000; Laborde
1998; Mason 1989; Sfard 2000). Brousseau, for example, describes different types
of proofs, including contingent and experimental proofs and proofs by exhaustion.
These, he suggests, relate to implicit models students hold and therefore they are
likely to take place in the pragmatic/empirical field discussed above and not relate
explicitly to theoretical mathematical knowledge. However, for ‘mathematization’
to take place, according to Brousseau, mathematical proofs which relate to the
theoretical mathematics involved in the situation, are required. Similarly, Mariotti
(2000) claims that the solution of geometry problems requires continuous moves
between the two fields and Laborde (op. cit.) suggests that there is a need for
interactions between images and concepts.

The implication, in terms of the relationship between the students’ dialectics
(particularly of formulation and validation), and student learning is that, where these
dialectics remain in the pragmatic/empirical field, mathematical learning will be
limited; however, transitions into the mathematical/systematic field are likely to
lead to mathematical learning. This discussion about student activity has made
frequent reference to the milieu. It now turns to a key component of the milieu; the
tools used in the classroom.
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3 Tools (Especially Digital Tools) in the Mathematics
Classroom

It can be argued that mathematical activity, like all human activity, is mediated by
tools (Vygotsky 1980). In the mathematics classroom, some tools are designed
specifically for the teaching and learning of mathematics (Sutherland 2007) such as
Dienes blocks or Cuisenaire rods, and can be seen to embody specific mathematical
concepts. Other tools, such as matchsticks and mirrors are also frequently used in
practical classroom work. These differ from those designed specifically for the
teaching and learning of mathematics in that they do not embody mathematical
concepts in the same way. The literature suggests that there is often an expectation
or belief that these tools will support mathematical learning but that the effective
use of tools is more complex and difficult than it first seems (McNeil and Jarvin
2007; Orton and Frobisher 1996; Pimm 1995; Resnick 1984; Sutherland 2007).
Pimm (1995), for example, warns that objects cannot offer mathematical experience
or understanding in themselves, particularly when the students direct all their
attention to manipulating the equipment: ‘Pupils may end up just manipulating the
equipment’ (p. 13). McNeil and Jarvin (2007) go further, suggesting that the use of
such tools can actually hinder mathematical learning, stating that recent studies
“have suggested that manipulatives may not only be ineffective, but also detri-
mental to learning and performance in some cases” (ibid, p. 312).

The point is that the introduction of all tools into the classroom is a complex
issue and their use does not guarantee the desired mathematical learning, and that,
as argued convincingly by Sutherland (op. cit.), it is important for teachers to
understand the potential and the limitations of the tools and be clear about the role
of the tool in the mathematical activity. It can be argued that this is particularly true
for computer software, which has an ‘intrinsically cognitive character’ (Balacheff
and Kaput 1996, p. 469) which means first that for some software used in the
teaching and learning of mathematics, the software can perform some mathematical
processes or ‘do the mathematics’ (Bokhove and Drijvers 2010; Hoyles and Noss
2003; Sutherland 2007) for the user and second that it can provide mathematically
relevant feedback for the user (Bokhove and Drijvers 2011; Granberg and Olsson
2015).

In addition, the feedback is ‘quick and essentially unlimited…at ‘no cost’’ (Hillel
1992, p. 205). As argued above, built into the tools specifically designed for
teaching and learning mathematics, is a set of epistemological assumptions. In the
case of software, these assumptions are likely to be considerably more complex
than with non-digital tools, because of the ability of the software to do (some of) the
mathematics and to provide feedback.

24 M. Joubert



3.1 Computers Can Do the Mathematics

The ability of software to perform mathematical operations may have the potential
to make a significant contribution to the teaching and learning of mathematics. For
example, its use can enable mathematical experiences which, for example, allow
students to focus on patterns, to construct multiple representations and to interpret
representations (Ainley and Pratt 2002; Balacheff and Kaput 1996; Condie and
Munro 2007; Ruthven et al. 2004; Sutherland 2007). However, as Love et al.
(1995) caution, it is common for students to avoid the mathematical ideas intended
to be the focus of study by using the software in unintended ways.

It was argued above that teachers should be clear about the mathematics their
students should do as they complete a task that has been set for them. When
computers are used, however, working this out can be difficult, because much of the
mathematics curriculum is directed towards the learning of techniques, such as
finding areas of shapes, making calculations and plotting graphs. Completing the
technique is frequently seen as the end point of the task (Love et al. 1995; Schwarz
and Hershkowitz 2001). As Hoyles et al. put it, ‘digital representations change the
epistemological map’ (2013, p. 1058). If computers are able to do the ‘work’ for the
students, then what is the work of the students?

Monaghan and Trouche (2016) illustrate this idea. They contrast two tasks. In
the first, students are required to sketch a cubic graph: y = x3 – x2 + 2x – 1. In the
second, students are given three graphs of quadratic functions and asked to reflect
them in the x-axis. Monaghan and Trouche discuss the fact that, for the first task,
using a computer graphing package renders the task trivial but doing the task using
pencil and paper would be more difficult; for the second using the same software
would probably present a considerable challenge whereas the pencil and paper
approach would probably not be difficult.

Working out the intended mathematical processing to be performed by each of
the computer and the students relates to what the software is able to do and what
opportunities it offers the students in terms of doing mathematics. It is perhaps the
relationship between these that is particularly important; as Nevile et al. (1995)
suggest, it is important to look ‘at the software’ in tandem with looking ‘through the
software’ (ibid, p. 157). To understand this relationship, it is perhaps useful to think
in terms of the ‘epistemological domain of validity’ of the software which ‘refers to
the knowledge and the relation to knowledge which is allowed by a piece of
software’ (Balacheff and Sutherland 1994, p. 138).

In a well-known example, Balacheff and Sutherland (1994) explain this notion;
they compare the software Logo and Cabri in terms of what epistemological
opportunities they offer students engaged in constructing a parallelogram. They
point out that the environments differ significantly in terms of the mathematical
concepts students need to mobilise in order to make the construction. To create a
parallelogram in Logo, students need to use knowledge about the equality in length
of opposite sides and about the relationship between internal and external angles. In
Cabri, however, to construct the parallelogram, they need to understand that the
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parallelogram is completely determined either by one point and two directions or by
three points. While it may be necessary for teachers to understand these relation-
ships, it is sometimes very difficult, because of the complexity of much of the
software available for use in mathematics classrooms (Bokhove and Drijvers 2010).
Sutherland (2007) argues this case convincingly, suggesting that ‘many of these
tools are so powerful, have so much potential, that it is difficult for teachers to know
where to get started’ (p. 68). What this means is that, if the potential of the tool is
not thoroughly analysed, then it is difficult for teachers to work out what mathe-
matics it does and hence what mathematics they want the students to do.

The ability of software to do the mathematics also opens possibilities for tasks in
which students are able to work inductively, from the products of the software’s
mathematical processing, to develop conjectures and theories. It can perhaps be
argued that this is a more natural way to learn than the traditional deductive
approaches in classrooms. However, as Goldenberg (1988) suggests, these
approaches should be carefully thought out:

Put simply, a wrong theory is the most likely result of the casual introduction of an
inductive learning experience … into a curriculum that is not otherwise designed to make
use of the questions such an experience raises (p. 144).

In these cases, an understanding of the way the feedback offered by the envi-
ronment can support inductive working may also be very important in encouraging
students to develop and test their theories. An understanding of feedback is perhaps
crucially important in both these situations and more generally when computers are
used.

3.2 Feedback

In the example about creating parallelograms in Logo and Cabri above, Balacheff
and Sutherland also compare the feedback from the two environments. In both
environments, the students use the computer feedback to make a decision about
whether they have constructed what they intended to construct. In both cases, they
are able to determine whether they are correct or not by looking at the feedback on
the screen. However, the Cabri environment offers more; students are able to test
the correctness of their parallelogram more thoroughly by making sure that it resists
manipulation (dragging).

This highlights the important role played by the feedback and raises questions
about the role of feedback in computer based learning environments (see also, for
example, Bokhove and Drijvers 2012; Granberg and Olsson 2015; Monaghan and
Trouche 2016). The general conception of computer feedback seems to be that it is
beneficial in teaching and learning mathematics (e.g. Becta 2004). Feedback pro-
vides opportunities ‘to quickly test ideas, to observe invariants … and, generally, to
be bolder about making generalisations’ (Hillel 1992, p. 205). Further, there is
evidence (e.g. Hillel 1992) that with the quick availability of feedback, students are
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likely to engage with problems for longer, and with more persistence. However,
there is also considerable evidence to suggest that the effect of feedback needs
careful analysis. Säljö (1999), in his discussion about feedback, suggests that ‘it can
provoke active reflection on the part of the learner who has to consider alternatives,
manage concepts and representations and so on…’ (p. 154). The degree to which
the reflection provoked by the feedback is active, however, can perhaps be seen to
be, in part at least, dependent on the kind of feedback given by the software; as
Balacheff and Sutherland (1994) point out in their example above, the feedback
given by Logo provides a more fragile basis for students to decide whether the
parallelogram they have constructed is indeed the one they intended to construct,
whereas in Cabri the feedback can be seen to provide a more robust basis for such a
decision.

Students sometimes interpret feedback in unexpected ways, which may have a
negative or distracting impact on developing the understandings the teacher
intended (Hoyles and Noss 2003; Sutherland 2007), and which may lead to the
development of strategies which are at odds with the intended learning, such as trial
and error, trial and improvement and ‘intellectual passivity’ (Hillel 1992, p. 217).
This point is clearly made by Säljö:

…what technologies provide are experiences, but they do not guarantee a specific inter-
pretation of these experiences that would amount to learning what was intended. (1999,
p. 158)

The important point, perhaps, is that students do not always use feedback in the
ways in which it is intended and, further, teachers tend to overestimate students’
ability to use this feedback (Laborde 2002).

Feedback from the computer can be seen to have a major influence on students’
modes of production; action, formulation and validation. For example, as described
by Noss et al. (1997) students used a microworld to test a prediction about the
number of matchsticks in a given sequence. The feedback from the computer
allowed them to evaluate their prediction; negative feedback led to further sug-
gestions and, later, positive feedback led to the conclusion of the task. In these
cases, the feedback can be seen as the ‘dialectical partner’ in the milieu in situations
of formulation (and sometimes action). However, when the feedback allows the
students to test a prediction, the students may not make the transition to the
mathematical/systematic field, which, as argued above, is necessary for learning
mathematics. In terms of Brousseau’s modes of production, the feedback from the
computer could be seen to ‘validate’ the students’ predictions, and therefore the
students do not need to engage in the dialectics of validation.

In the example quoted above, the students can be seen to have some expectations
about the feedback. It is possible, however, that they have no expectations, and the
feedback takes the role of ‘oracle’ (Sutherland and Balacheff 1999) in scenarios
where the students explore. For example, Olivero (2003) describes how students,
working with figures in Cabri, use ‘wandering dragging’ which she describes as
‘moving the basic points on the screen randomly in order to discover configurations
or regularities in the figures’ (p. 98). The students did not seem to have any
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expectations about what would happen; they used the feedback to tell them. This
exploring activity, which can be seen as an action dialectic, however, is not pro-
ductive mathematically, unless it is accompanied by more focused explorations
(which would include ‘guided dragging’ Olivero 2003), in which conjectures are
made and tested (formulation dialectics) and include transitions between the
pragmatic/empirical field and the mathematical/systematic field (which may lead to
validations) (op cit). Further considerations on feedback provided by dynamic
geometry environments can be found in Chapters “Designing Assessment Tasks in
a Dynamic Geometry Environment”, “Designing Non-constructability Tasks in a
Dynamic Geometry Environment” and “The Planimeter as a Real and Virtual
Instrument that Mediates an Infinitesimal Approach to Area” of this book.

Computer feedback can be seen, to a greater or lesser extent, as complementing
the teacher’s role. Balacheff and Kaput (1996) use the notion of the ‘didactic
directiveness’ (p. 483) of feedback. They suggest that microworlds (such as
dynamic geometry software) and tutoring systems represent two extremes of
didactic directiveness; microworlds offer environments in which students can
explore freely but tutoring systems give ‘strong guiding feedback’ (p. 484). What is
useful about this way of conceptualising feedback is that it relates directly to the
intended role of the software and to the degree to which teachers can devolve a
problem to the students (in the sense of Brousseau). This highlights the importance
of taking into account the contribution of the software as a ‘third player’ in the
didactical situation; without it, the teacher is completely in charge of the degree of
devolution to the students, whereas now the computer has some influence as well.

4 Designing Tasks

This chapter has set out a theoretical framing of the relationship between student
activity in the mathematics classroom and mathematical learning. This theoretical
position suggests that student activity that includes dialectics of action, formulation
and validation with some movement between the pragmatic/empirical field and the
mathematical/systematic field is desirable. However, as pointed out above, the
assumption is that the students’ agenda is to complete the task (they are not con-
cerned about dialectics or movement between fields); and as a result a task should
be designed to require the mathematical thinking and reasoning that are ‘strictly
necessary and sufficient to complete the task’ (Sierpinska 2000, p. 12 italics in the
original) also forcing dialectics of action, formulation and validation and movement
between the pragmatic/empirical and mathematical/systematic fields. This notion is
discussed in detail by Brousseau, who thinks in terms of the need for students to
adapt strategies in order to reach target knowledge; and he suggests that they will
not do so unless the task forces them to do so.
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4.1 Obstacles

Such an adaptation may take place, Brousseau suggests, if the students encounter
and overcome ‘obstacles’ as they work through the task. He describes an obstacle
as:

a previous piece of knowledge which was once interesting and successful but which is now
revealed as false or simply unadapted (p. 82).

Obstacles can take a variety of forms; Brousseau, for example, identifies obstacles
of ontogenic origin, of didactical origin and of epistemological origin. The first of
these relates to the ‘student’s limitations’ (p. 86), and can also be described as
‘developmental’ limitations (Swan 2006). For example, the lack of prior learning
can be seen as an obstacle to completing the task because the student is in some way
not ready for the mathematics required to complete the task (Love and Mason
1992).

Obstacles of didactical origin ‘seem to depend on a choice or a project in an
educational system’ (Brousseau 1997, p. 86) and are seen as obstacles for the
students because of ill thought out presentation of subject matter, or ‘the result of
narrow or faulty instruction’ (Harel and Sowder 2005, p. 34). The example
Brousseau provides is of the way in which decimal numbers are taught by con-
vention in French elementary schools and Harel and Sowder give the example of
the didactical practice of teaching students to look for ‘key words’ in mathematics
problems (such as ‘altogether’ signals that addition is required).

Both ontogenic and didactical obstacles can be seen to inhibit mathematical
learning, and should and can be avoided (Brousseau 1997; Harel and Sowder
2005). The third type of obstacle, however, the epistemological obstacle, should not
be avoided and is, in fact, key to the design of good tasks. Brousseau’s episte-
mological obstacles are perhaps most clearly explained by Balacheff (1990, p. 264)
who discusses how mathematical concepts are learnt through their use as tools in
the process of problem solving with some content; this content is supported by the
students’ prior knowledge. However, although the old knowledge is a necessary
basis for the content, it may cause problems for the students as they work through
the problem; in other words it becomes an obstacle which causes the students to
stumble. If, in order to overcome the obstacle, the students are required to construct
the meaning of the new piece of knowledge, then this obstacle is an epistemological
obstacle. Brousseau provides examples: (a + b)2 = a2 + b2; 0.a = a, (0.2)2 = 0.4.
Harel and Sowder (2005) suggest that ‘MMB’ (multiplication makes bigger) can
often be seen as an epistemological obstacle.

It is also not always easy to distinguish between didactical and epistemological
obstacles. For example, as Harel and Sowder (2005) suggest, many obstacles have
elements of both. They provide examples and place them on a set of axes labelled
‘epistemological obstacle’ and ‘didactical obstacle’ as shown in Fig. 1 (taken from
their diagram on p. 47).
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The important thing about this idea is that the design of tasks needs to take these
dimensions into account, in order to minimise the effects of didactical obstacles.
Equally, an analysis of tasks should take both dimensions of obstacles into account
and should be grounded in whatever is known about the prior learning and
development of the students who complete the task.

The idea of obstacles is useful in thinking about relating the way a task is set up
to the mathematical activity of the students, and in particular to the dialectics of
action, formulation and validation. As students work on tasks, there will be stages
when they know what to do and they do it; this is a dialectic of action. If they
encounter an obstacle, however, they will be forced to change their approach and
will develop new strategies, make suggestions to one another, conjecture and test;
these are dialectics of formulation. If the obstacle has an epistemological dimension,
then these formulations will be related to the intended learning.

The section below illustrates these ideas by analysing a task designed by a
classroom teacher. The analysis brings together the expected student dialectics and
movement between fields, the role of the computer and the obstacles discussed in
this section. The example is given not as a ‘good’ example, as will be discussed
later, but in order to provide something concrete to demonstrate not only the
theoretical ideas above but also how complex it can be to design a computer-based
task for the classroom.

Fig. 1 Examples of obstacles as combinations of epistemological and didactical

30 M. Joubert



5 An Example: Noticing

In my doctoral research, for which the overall aim was to explore how computers
are used in ordinary mathematics classrooms, I observed a sequence of five or six
lessons taught by four different teachers. All lessons were designed completely by
the teachers themselves. In many lessons computers were used by the students.
A careful analysis of all the tasks used in the computer-based lessons, framed by the
notion of obstacles outlined above, reveals how the tasks were unlikely to provoke
mathematical thinking. Although the students engaged with the task and did as they
were asked, they were seldom encouraged to develop the sorts of reasoning that
might be evidenced by the formulation and testing of hypotheses or by validation of
these hypotheses.

I use one of the case studies to illustrate: an a priori analysis of a task given
within the case study provides insight, perhaps, into the hypothetical learning tra-
jectory of the students (Margolinas and Drijvers 2015).

The research took place in 2004 in an English classroom, with a class of about
twenty students, of about 12 years of age. The task they were asked to complete had
a number of questions. In each question the students were asked to use graphing
software to draw a set of straight line graphs of the form y = mx + c (or, in the last
question, y = c + mx) and then write down what they noticed.

5.1 Intended Learning

The teacher’s explicit learning intentions were that the students should make a
connection between the graphs and their equations. The sorts of ‘connections’ it
seems the teacher wanted the students to make were: to notice that the y-intercept is
the same as the c value in the equation, to notice that there is a relationship between
the m value and the gradient, perhaps that a bigger m yields a steeper graph or that
graphs sloping one way have a positive m and those sloping the other way have a
negative m value. In other words, she wanted them to move between the
pragmatic/empirical and the mathematical/systematic fields.

The questions in the task had three parts: drawing the graphs and noticing (which
includes finding the language needed to articulate features noticed) then reporting
what had been noticed. A priori, drawing the graphs can be seen as a dialectic of
action, with some limited feedback from the milieu as discussed below. Noticing
might involve dialectics of formulation, with students making suggestions and
perhaps hypothesising. However, there is nothing in the task that requires the
students to engage in dialectics of validation.

To complete the task, the students needed first to construct a set of graphs using
the software. In this task, creating the graphs can be seen as easy; the students had
been given the equations of the graphs they were required to draw and all they
needed to do was to type them in and press the Enter key. The graph is
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automatically drawn on the screen by the software. To create more graphs on the
same page, the students only had to repeat the process.

The students had been told that they would be working on straight line graphs; it
is likely that their expectations were that the on-screen graphs drawn would be
straight lines. It is unlikely that the lines they produced would not be straight lines
because to get a curved graph using this software the user has to use (for example)
the ‘squared’ or ‘cubed’ key, which is a deliberate choice (so it is unlikely to
happen by mistake), so unless they made a typing or copying error, the graphs will
be as intended by the teacher. The task did not call for any discussion of the
difference and similarities between the equations of the graphs, and nor did it call
for any predictions about what the graphs might look like.

Next the students needed to write down ‘what they noticed’ about the set of
graphs. Writing down ‘what you notice’ can be seen to have two distinct parts
(which may take place simultaneously); the first is the noticing and the second is the
writing down.

The question on the worksheet was ‘Write down what you notice about the set of
graphs’. The suggestion is that the way the question was phrased suggests a focus
on the set of graphs, which may encourage working in the visual field alone
because by looking students are able to notice many similarities and differences
between the lines. The stated objective, however, was concerned with connecting
individual graphs to their equations which would require transitions between the
visual and theoretical fields. Having sets of graphs on the screen could therefore be
seen to be a didactical obstacle, which may confuse the students and inhibit their
learning. The fact that the students did not plot points to obtain the graphs could
also be seen as a didactical obstacle because it means that they did not need to think
about the equation, apart from typing it in.

5.1.1 Set 1

The first set of functions, taking the form y = x + c, were: y = x, y = x + 1, y =
x + 4, y = x – 2 and y = x – 3. They were produced on the screen as shown in
Fig. 2. Each equation below the graph page is a different colour and the lines drawn
on the graph page are each the same colour as the corresponding equation.

When the graphs are produced using the software, the students may notice that
each of the five lines is a different colour, corresponding to the text colour in the
box below. They may also notice other things: that the blue and black graphs are
close together, that all the lines run from the bottom left towards the top right, that
the blue and black lines are the same distance apart as the purple and green lines,
and so on.

It is likely that the teacher wanted the students to notice that the graphs are
parallel. Difficulties involved in noticing the parallel-ness can be seen as an epis-
temological obstacle, but it does not, in itself, address the learning intentions of the
task unless students realise that the fact of being parallel means that something is
the same about the graphs, and then to look at the equations and notice that the
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m value is the same. However, here m is 1, so it is implied rather than being written
down. It could be that the students notice that the graphs are parallel, but that they
overcome the obstacles required to connect this parallel-ness to the (absent) m value
is much less likely. Without the experience of this sort of work and with very little
experience in working with straight line graphs, the suggestion is that these are
ontogenic and didactical obstacles.

The teacher may also have hoped that the students would notice some con-
nection between the intercepts and the value of c, perhaps that the y-intercept is
equal to the value of c or that the x-intercept is the same as -c. This, however,
assumes the prior knowledge and understanding that intercepts may be important,
but it may be that the students did not have this prior knowledge.

It also requires a different way of looking at the graphs; instead of looking at
what is the same about all the graphs, the students would need to focus on an
individual line, read off the value of the intercept, note the colour of the line, find
the equation in the same colour and notice that the c value in that equation is the
same as the intercept. They would then need to hypothesise that the intercept is the
same as the c value, and go and check that this is so for the other graph-equation
pairs. Although this process may seem complex, it is, I suggest, not beyond the
ability of the students, but I also suggest that it is more unlikely than noticing that
the graphs are parallel.

Fig. 2 Graphs for Question 1
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5.1.2 Set 2

The second set of equations are of the form y = mx, where m is positive, and are
shown in Fig. 3. Where in the previous question the m value is kept the same, here
the m value varies but the c value is kept the same. The assumption is that the
teacher thought that, by keeping one of the two variables in the equation constant,
the students’ attention would shift to the other.

In each of these functions, the c value in the equation y = mx + c is zero, and
therefore not included in the equation. Even though the students may notice that the
lines all go through the origin, to link the value of this point to the absent c value
would probably be more difficult and unlikely; this presents a didactical obstacle to
their learning.

A second observation the students may make is that the lines are in the first and
third quadrants (sloping from bottom left to top right). The teacher may have hoped
that they would link this positive gradient to the positive m value in the equations
but the suggestion is that, particularly with no negative m values with which to
make a comparison, it is unlikely that the students would make the link.

The third observation the students may make is that the steeper the graph is, the
higher the value of m is. This last observation is presumably what the teacher
wanted them to notice, but it would require the students to have a language for
steepness and to compare individual graphs by first noticing that one is steeper than
another, then identifying which equation goes with which graph and then observing
that the m value in the steeper graph is greater than the m value in the less steep
graph. The suggestion is that, with all the graphs already on the screen, the students

Fig. 3 Graphs for Question 2
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would be unlikely to pick out individual lines, compare them and then find the
equations. Further, with the question requiring them to notice things about the set of
graphs, it is probably more likely that they would focus on the whole set, looking
for what is the same about the lines rather than picking out individual lines.

Three further sets of graphs were given; again the students were required to draw
them and then ‘notice’. Overall, the intended learning for the task can be seen as
learning to make the transition between the visual and theoretical fields (here
between the graphical field and the algebraic) and hence to work out the connec-
tions between the graphical and algebraic representations of linear functions.
However, there was no mechanism built into the task to encourage this way of
working (such as making and a testing a prediction or conjecture, dialectics of
formulation) and, further, having a whole set of graphs on the screen may have
inhibited these transitions, as suggested above.

5.2 Discussion of the Task

This chapter is about the design of tasks, so the ways in which the students
responded to the task are not discussed here. Suffice it to say that they responded
very much in the way that is predicted by the analysis above. The interventions of
the teacher are perhaps more relevant as she provided some further explanations
and questioning during the lesson, thus in some way tweaking the design of the
task. Both the teacher and the students reported that, for them, it had been a
successful lesson. Certainly the students were engaged throughout and appeared to
be working, but as the analysis predicts, their mathematical learning was very
limited.

The example given above is not necessarily a badly designed task; as the dis-
cussion emphasised, the ontogenic obstacles got in the way of the students’
learning, because they had very little prior knowledge about straight line graphs and
it seems they did not have the experience to know that they should make con-
nections between the equations of the graphs and what they looked like on the
screen. However, students with some experience of working with graphs of straight
lines may have benefited more in terms of mathematical learning.

On the other hand, it could be argued that the task is also not well designed, both
in terms of the dialectics in which the students are forced to engage and movement
between the pragmatic/empirical field and the mathematical/systematic field. As
pointed out above, there is no requirement for students to engage in dialectics of
validation. Also as discussed, there is nothing in the task that requires the students
to move between fields by making connections between a graph and its equation.

The software is (almost) necessary to the task. It could be argued that in this
case, its power is that it can produce on-screen graphs very quickly, doing some of
the mathematics that students otherwise would have done and allowing them the
time to look for patterns and connections. This exploits its ability to do the
mathematics, but there is little in the way the task was designed that exploits the
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potential of the feedback from the software. It is perhaps not difficult to think of
better ways the computer’s power could have been used. One approach, as
implicitly suggested above, might be to require the students to predict the shape of
the graph before it is drawn by the computer, also justifying their predictions to
their partners. This would overcome some of the didactical obstacles discussed
above such as the difficulties of focusing on a graph rather than the set of graphs. It
would further have encouraged dialectics of formulation and, importantly,
validation.

More recent popular software, such as GeoGebra, could be used for a similar
task. Commonly modern software for graphing includes functionality such as
sliders, which allow users to change values incrementally. If GeoGebra had been
used by this teacher with this class, the teacher may have designed the task dif-
ferently to enable exploration of what changes and what stays the same as ‘m’ and
‘c’ are changed. However, improving the design of the task is not the point.

The point is that using computers in everyday or ordinary classrooms is perhaps
not yet well enough understood by teachers, as I found in my research. For
example, other tasks observed within the study suffered from similar difficulties. In
particular, they did not capitalise on the potential of the computer to enable students
to develop and test conjectures. Instead, there was an emphasis on the computer
performing mathematical processes, leaving little mathematics for the students to
perform. On the other hand, however, the teachers and the students seemed to think
that the lessons were successful, and so did I to some extent. Students were actively
engaged with the tasks they had been assigned and appeared to ‘learn’ what the
teachers intended, although in fact this mathematical learning was limited by both
the tasks and the teachers’ interventions. It seems that we all fell into the trap
described by Schoenfeld (1988) in his ‘disasters of well taught mathematics
courses’; the appearance of a successful mathematics lesson may be deceptive and it
is not enough for students to be engaged in activities which look like mathematics
unless they are learning mathematics (this is the purpose of mathematics teaching).
It was through the careful analysis of the likely and actual mathematical activity of
the students that shortcomings were revealed, particularly in terms of the students’
mathematical learning.

6 Conclusion

The theoretical background for task design outlined in this chapter is probably
already clearly understood by teachers and task designers, although sometimes
tacitly. Making the theory explicit, however, might have value in providing a
sort-of tick list against which designers of tasks can evaluate their tasks. For
example, does the task force students to engage in dialectics of formulation and
validation? Does it require the students to move between the visual and abstract
fields? Crucially, what mathematics will the students learn?
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The focus of this book is the use of digital technologies in mathematics task
design; this chapter argues that the introduction of computers adds significant
complexity to the work of task design, illustrating the point with the use of an
example taken from empirical research. The tick list might now include questions
such as ‘What mathematics will the student do and what mathematics will the
computer do?’ and ‘What is the role of feedback from the computer, and in which
ways might this affect the dialectics between the student and the milieu?’ This
suggests that teachers need to analyse the likely and actual student activity as they
work through the task. This sort of analysis is complex, particularly when com-
puters are introduced into the milieu, and teachers often do not have the time and
resources to develop the tools to help them make these analyses. This, perhaps, is a
key role for the teacher professional development required for the effective
embedding of computers in mathematics classrooms.

The arguments developed in this chapter imply that this professional develop-
ment should include a focus on the intended mathematical learning of the students,
the route the students might take through the task (and of the computer’s role in
determining the route), of the computer’s feedback and the students’ possible
responses to the feedback. Importantly, it needs to raise awareness of the potential
and role of the computer, emphasising the need to be clear about what mathematics
the computer is intended to do, what mathematics the students are intended to do. It
needs to make explicit the need to encourage dialectics of all three aspects, action,
formulation and validation, in both the pragmatic/empirical and mathematical/
systematic fields. Finally it should address the sorts of epistemological obstacles
that can be built into the task to promote the learning of students and discuss the
potential didactical obstacles that can be prevented. This sort of professional
development will help teachers design tasks to exploit the power of computer
software and, crucially, to plan their own interventions accordingly.
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