No Cover Image

Conference Paper/Proceeding/Abstract 231 views 25 downloads

Manifold modeling of the beating heart motion / Xianghua, Xie

Medical Image Understanding and Analysis, Volume: 894, Start page: 229

Swansea University Author: Xianghua, Xie

Abstract

We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data...

Full description

Published in: Medical Image Understanding and Analysis
ISBN: 978-3-319-95920-7 978-3-319-95921-4
ISSN: 1865-0929 1865-0937
Published: University of Southampton BMVA 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40803
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-06-23T19:33:38Z
last_indexed 2018-11-16T20:09:43Z
id cronfa40803
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-11-16T14:20:52.4885561</datestamp><bib-version>v2</bib-version><id>40803</id><entry>2018-06-23</entry><title>Manifold modeling of the beating heart motion</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-23</date><deptcode>SCS</deptcode><abstract>We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Medical Image Understanding and Analysis</journal><volume>894</volume><paginationStart>229</paginationStart><publisher>BMVA</publisher><placeOfPublication>University of Southampton</placeOfPublication><isbnPrint>978-3-319-95920-7</isbnPrint><isbnElectronic>978-3-319-95921-4</isbnElectronic><issnPrint>1865-0929</issnPrint><issnElectronic>1865-0937</issnElectronic><keywords>Manifold learning, medical image analysis, cardiac image analysis, shape analysis</keywords><publishedDay>10</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-07-10</publishedDate><doi>10.1007/978-3-319-95921-4</doi><url>https://www.springer.com/us/book/9783319959207</url><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><lastEdited>2018-11-16T14:20:52.4885561</lastEdited><Created>2018-06-23T15:25:32.4281666</Created><path><level id="1">College of Science</level><level id="2">Computer Science</level></path><authors><author><firstname>Paul</firstname><surname>Stroe</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><order>3</order></author></authors><documents><document><filename>0040803-23062018152630.pdf</filename><originalFilename>miua2018.pdf</originalFilename><uploaded>2018-06-23T15:26:30.4770000</uploaded><type>Output</type><contentLength>1589729</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2018-06-23T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents></rfc1807>
spelling 2018-11-16T14:20:52.4885561 v2 40803 2018-06-23 Manifold modeling of the beating heart motion b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 2018-06-23 SCS We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types. Conference Paper/Proceeding/Abstract Medical Image Understanding and Analysis 894 229 BMVA University of Southampton 978-3-319-95920-7 978-3-319-95921-4 1865-0929 1865-0937 Manifold learning, medical image analysis, cardiac image analysis, shape analysis 10 7 2018 2018-07-10 10.1007/978-3-319-95921-4 https://www.springer.com/us/book/9783319959207 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2018-11-16T14:20:52.4885561 2018-06-23T15:25:32.4281666 College of Science Computer Science Paul Stroe 1 Xianghua Xie 0000-0002-2701-8660 2 Adeline Paiement 3 0040803-23062018152630.pdf miua2018.pdf 2018-06-23T15:26:30.4770000 Output 1589729 application/pdf Accepted Manuscript true 2018-06-23T00:00:00.0000000 true eng
title Manifold modeling of the beating heart motion
spellingShingle Manifold modeling of the beating heart motion
Xianghua, Xie
title_short Manifold modeling of the beating heart motion
title_full Manifold modeling of the beating heart motion
title_fullStr Manifold modeling of the beating heart motion
title_full_unstemmed Manifold modeling of the beating heart motion
title_sort Manifold modeling of the beating heart motion
author_id_str_mv b334d40963c7a2f435f06d2c26c74e11
author_id_fullname_str_mv b334d40963c7a2f435f06d2c26c74e11_***_Xianghua, Xie
author Xianghua, Xie
format Conference Paper/Proceeding/Abstract
container_title Medical Image Understanding and Analysis
container_volume 894
container_start_page 229
publishDate 2018
institution Swansea University
isbn 978-3-319-95920-7
978-3-319-95921-4
issn 1865-0929
1865-0937
doi_str_mv 10.1007/978-3-319-95921-4
publisher BMVA
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Computer Science{{{_:::_}}}College of Science{{{_:::_}}}Computer Science
url https://www.springer.com/us/book/9783319959207
document_store_str 1
active_str 0
description We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types.
published_date 2018-07-10T13:00:22Z
_version_ 1650454033869045760
score 10.867679