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Summary 
The focus of this study was to gain further understanding on the thermodynamic behaviour of the dew 

and non-dew harvesting spines of cacti. Four species of cacti were chosen, three that were known to 

harvest dew on their spines and one that does not. The temperature gradient of the spines of the most 

efficient dew harvesting species, Copiapoa cinerea var. haseltoniana, and the IR emissivity of the 

cactus spines for all four species were determined.  When placed outdoors, around the hours of sunrise 

and sunset, the tips of the spines of C. cinerea appeared constantly warmer than their base or mid-

sections, even during the cooling hours of sunset. Also, the IR emissivities of the spines of the three 

dew harvesting cacti were higher than those of Ferocactus wislizenii, the cactus species which does not 

harvest dew. The highest spine IR emissivity was recorded for Mammillaria columbiana subsp. 

yucatanensis at 0.98 ± 0.016 followed by C. cinerea and Parodia mammulosa with IR emissivities of 

0.97 ± 0.007 and 0.93 ± 0.004 respectively. F. wislizenii, which does not harvest dew on its spines, was 

found to have the lowest spine emissivity of 0.89 ± 0.009. 
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Introduction 
This study forms part of a broader investigation looking into the possibilities of translating nature’s own 

methods for harvesting airborne moisture into a biomimetic moisture harvesting device. Here, infrared 

(IR) measurement was used to gain further understanding into the formation of dew on the surface of 

some of nature’s known dew harvesters (in this case cactus spines), since dew forms only on surfaces 

cooled below the dew point temperature. Four species of cacti were studied, three known to harvest 

dew on their spines and one that is known not to do so. Two of the three dew harvesting cacti, 

Mammillaria columbiana subsp. yucatanensis and Parodia mammulosa, were part of a previous study 

on dew harvesting cacti (i.e. prior exploratory investigations carried out during dewy weather in the 

UK), the third, Copiapoa cinerea var. haseltoniana was also part of this study but had additionally been 

reported in the literature to have dew harvesting capability [1]. The last of the four species, Ferocactus 

wislizenii, was likewise observed in this study but was chosen as a comparative species, with Shreve 

(1916 cited in Nobel [1]) finding it not to harvest airborne moisture on its spines.  

The aim of this paper was to study the thermal response of the cactus spines during sunrise and sunset, 

using thermal imaging cameras to gain insight into the dew harvesting mechanisms and to further 

determine the emissivity of the spine surfaces.. Cone shaped structures, such as cactus spines, have 

previously been identified as an important structure for harvesting airborne moisture [2]; it was thus 



deemed important to assess the spines in detail, using thermographic analysis to study their temperature 

gradient. Infrared Thermal Imaging (IRT) has previously been used to study plants and the nucleation 

of ice or frost on their surfaces [3-5] as well as signs indicating plant stress [6, 7] but not, to our 

knowledge, with regard to dew formation. 

Object emissivity values lie within the range of 0 to 1.0, with 1.0 being highly emissive and 

corresponding to that of a blackbody and 0 having no infrared energy emission. The emissivity of cacti 

has been reported in the literature for several different species, with values of at least 0.96 in a study of 

eight cactus species [8-10] but no figure for emissivity has been assigned to cactus spines per se. 

Establishing this was one of the principal aims of this study. 

. 

 

Methodology 
The methodology chosen was, firstly, to analyse the temperature gradient along a spine of the most 

efficient dew harvesting cactus, C. cinerea, by capturing temperature gradient data for the spine 

observed outdoors during the hours of sunrise and sunset. The second element of the methodology 

utilised a climate chamber to maintain a stable environment to measure the IR emissivity of cactus 

spines for three species known to harvest dew and to compare these emissivities with that of the species 

of cactus whose spines do not harvest dew.  

Thermographic data was captured using the Longwave Optris PI450 Infrared Camera to collect 

temperature data for the cactus spine of C. cinerea when placed outside around the hours of sunset and 

sunrise. The IR camera used had a spectral range of 7.5 to 13μm, enabling detection of infrared 

wavelengths whilst minimising atmospheric absorption and, as a consequence, increasing detail. The 

camera had a detector resolution of 382 x 288 pixels, frame rate of 80 Hz and a system accuracy of 

±2°C. The thermal sensitivity varied depending on which lens was used. For the 13° lens, the 

temperature resolution was 0.06K and for the 38° lens, the lens of choice for the key elements of this 

study, it was 40mK. The rainbow thermogram palette (the preferred choice in medicine [11]) was 

utilised throughout this study to provide a visual indication of the temperature (warmer areas are red 

and the cooler areas are blue).  

Temperature gradient of individual spines 

C. cinerea was placed outside on a night during which dew was likely to form, away from any objects 

such as buildings or trees that would obscure it from having full view of the night sky. This was achieved 

by placing it on a flat roof on top of a sheet of polystyrene to insulate it from below and raising it, using 

a plastic container, to a height that enabled the IR camera to focus on the cactus apex. The 38° lens was 

utilised to maximise the spatial resolution, imaging only the area of the single spine under investigation. 

Thus highly resolved thermographic data was captured to assess in detail the spine temperature gradient. 

The material of a spine is the same along its length and it is therefore possible to draw meaningful 

temperature gradient results using the technique outlined here. Different cacti species cannot be 

compared with each other unless their emissivity is calculated and used to obtain true temperature 

readings. 

 

A spine orientated horizontally was selected for monitoring and target measurement areas were 

identified and positioned using the software to capture the temperature at the base, mid-section and tip 

of the same spine (Figure  (b)). To ensure these target areas were accurately aligned over the area of the 



spine in focus and that background thermal data was minimised, a metal rod was used during the set up 

phase to increase the contrast of the spine against the background, allowing the target measurement area 

to be positioned accurately. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Digital microscope and IR images taken of C. cinerea 

(a) Digital microscope image of C. cinerea; (b) Infrared image of an areole of C. cinerea showing the target measurment 

areas on the spine (highlighted in the white box and showing the target area at the base, mid-section and tip), image is 

not of the same area as in (a). 

 

The average length of a spine from this plant was measured to be typically 8.6 mm ± 2.7 mm with an 

average spine base width of typically 0.4 mm ± 0.08 mm. As the tip of the spine tapered to a point, the 

measuring area at the tip was not positioned exactly on the spine tip but rather slightly below it, again 

to ensure no background thermal data was captured due to a larger measuring target area compared to 

the area of the narrow tip. 

The earth’s key source of surface energy is the sun’s shortwave radiation, with the hours around sunset 

seeing a cooling of the earth’s surface and heating occurring soon after sunrise [12]. Thus the periods 

around sunset and sunrise were chosen as times of interest for this study. The camera was set to run for 

one hour between 21:30 and 22:30 hours GMT as the sun was setting on 2 July 2014 (at approximately 

21:31 hours GMT) and again for an hour, between 04:50 and 05:50 hours GMT, as the sun was rising 

on 3 July 2014 (at approximately 05:08 hours GMT).  

Emissivity of Cactus Spines 

The spines of cacti occur in an array of different shapes, sizes and colours. As a consequence, this study 

did not generalise and the precise spine emissivity for each of the four species of cactus under 

investigation was measured, although, spine emissivity was assumed to be constant along a spines 

Areole  

(b) 

(a) 



length. The woody nature of the spines was likened to that of tree bark of which emissivity of certain 

species has been measured, with an average recorded value of 0.95 [13].  

The standard method of using a reference material as an aid in measuring the unknown emissivity of a 

material was employed [14]. Thus a thermocouple attached to a spine on each of the four species under 

investigation was used as a temperature reference (in the same manner in which a reference material 

would have been used) from which to compare the IR camera temperature readings at the target 

measurement area. To ensure that the target measurement area was positioned accurately on the spine 

and close to but not on the attached thermocouple, a metal rod was utilised once again in the set-up 

phase, to increase the contrast between the spine and the background. Furthermore, the thermocouple 

wires were made into a coil shape and wrapped tightly around the spine, ensuring there was good 

thermal contact with the spine along with adequate thermal mass from which to obtain an accurate 

temperature measurement from which to be used as a comparative reference. The emissivity settings on 

the IR camera were then adjusted until the spine temperature displayed on the camera matched the 

thermocouple temperature reading. Increasing the emissivity of the area in question caused a decrease 

in the measured temperature for that region [15], the relationship of which is given in Equation 1.1 in 

the next section.  

The measurements were taken at a temperature of 20°C and at 40% relative humidity. The presence of 

gas, dust, moisture and other atmospheric particles is known to cause absorption and scattering of 

radiation between the IR camera and the object being imaged [16]. Thus atmospheric attenuation of the 

measured infrared radiation was minimised by carrying out the measurements in a Sanyo MTH 2400 

climatic test chamber to keep dust and moisture particles low by maintaining a low humidity. 

 

Results and Discussion 

Outdoor spine temperature gradient experimental results and discussion 

Dew was observed to form on the spines of the cacti exposed to the night sky on the night chosen for 

the test. (i.e. on the planographic surface areas).  A thermogram and digital microscope images were 

captured as shown for M. columbiana (Figure 2). Dew droplets can be seen on the spines in both of 

these images. This led on to the temperature gradient estimate for individual spines being carried out 

on C. cinerea to enable a better understanding of this dew formation. 

 

      

Figure 2: Thermogram and digital microscope image of M. columbiana following a dewy night  

(a) Thermogram using the 13° lens, clearly showing dew droplets on a spine but no clear thermal difference and (b) 

the apex of the plant showing the dew that formed during the night. 

(b) (a) 

Dew droplets 



 

Following the recording of the thermograms around sunset and sunrise, the temperature-time diagram 

data was extracted from the images. The temperature at a spine tip, mid-section and base was recorded 

for C. cinerea (see Figure  and Figure ). This particular species of cacti was chosen as it was found in 

earlier experiments to be the most efficient at harvesting dew on its surface. It appears that, as expected, 

the spine cools as the sun sets and warms up as the sun rises.. 

The temperature differences over an object under investigation can be masked by the temperature 

achieved due to the heat energy flux variation during the daily cycle. So the hours of sunrise and sunset, 

during which the solar heat source changes and the temperature differences become evident, were 

chosen for this study. Equation 1.1 was used to calculate the amount of radiation emitted (QEmitted) from 

an object during radiative cooling to a background reference of 0K:  

𝑄𝐸𝑚𝑖𝑡𝑡𝑒𝑑 = 𝜀𝜎𝐴𝑇4  Equation 1.1 

Where ε is the emissivity of the object, σ is Stefan-Boltzmann constant equal to 5.669 x 10-8 W/m2.K4), 

A is the surface area of the object and T is the object’s absolute temperature. Thus, we hypothesise that 

the smaller the object’s surface area (i.e. smaller tip compared to the wider spine base), the less radiation 

is emitted from it and therefore the higher its temperature will be.  

At sunset the tip of the spine cools more slowly than the mid-section (Figure  (a)). This finding is in 

keeping with Equation 1.1 as well as with 3D simulation results by Fu et al. [17] who found that during 

cooling and for a wind velocity of 0.5 and 2.5 m/s, a cactus spine tip is warmer than its base for both 

wind velocities (although for the higher wind velocity, the spine was warmer as a whole). A three-

second section of the temperature-time data was selected to observe the temperature difference between 

the three sections of the spines in more detail (Figure  (b)). A similar temperature was measured at the 

base and mid-section of the spine. The base was marginally warmer than the mid-section for the first 

10 minutes around the hours of sunset, after which the mid-section became warmer than the base. It is 

also clear that, as the sun sets, there is no sudden temperature drop in the spine as a whole, with a 

gradual decrease in the spine temperature and with the tip taking longest to cool. We do not expect this 

to be due to internal thermal conduction from the body of the cactus to the spine because then the base 

of the spine would be expected to be warmer, although the plant stem and the arrangement of spines 

could create a microclimate around each plant. This, along with internal heat transfer, could be of 

interest in future studies.  

 



 

 
 

 

Figure 3: Spine temperature gradients at sunset for C. cinerea 

The temperature-time graph around sunset with readings for a spine’s base (Sbase), mid-section (Smid) and tip (Stip): (a) 

detailed graph for 1hr 45 minutes around sunset and (b) a three-second section of the detailed temperature-time data. 

 

 

Around the hours of sunrise (Figure ), the tip of the spine warmed most quickly with the base and mid-

section recording similar temperatures, and the mid-section recording a slightly warmer temperature 

than the base overall. During the first few minutes of sunset, similar temperatures were recorded at the 

tip, mid-section and base albeit the tip was marginally warmer. 

The tip was always warmer than the rest of the spine throughout the recorded hours around sunset and 

sunrise, which could explain why dew droplets were observed forming at the base and mid-sections of 

the spines before appearing at their tips. The recorded temperature gradient on the spine needs to be 

taken into account when considering droplet growth, as it is this gradient which could impact on the 

formation of dew on the spine. That is, the cooler spine areas will have a greater expected rate of 

condensation. However, even though this temperature difference is real, it is less than a degree, which 

may not be a significant enough to affect the dew formation rate along the spines. 

(a)Sunset 

(b)Sunset 



 

 

 
 

 

Figure 4: Spine temperature gradients at sunrise for C. cinerea 

The temperature-time graph at around sunrise with readings for a spine’s base (Sbase), mid-section (Smid) and 

tip (Stip): (a) detailed graph for 1hr 45 minutes around sunrise and (b) detail of a five-second section of the 

temperature-time data. 
 

 

Emissivity of Cactus Spines 

To facilitate detail thermal analysis, typified by that of Yu et al. [17], it is important to gain an accurate 

determination of the emissivity of the spines since this is absent from the literature. Five measurements 

were taken from the same point on the same spine (close to but not touching the attached thermocouple 

reference) of each of the four species in this study. The measurements obtained are given in Table 1, 

along with the mean (M) and standard deviation (SD). All the spines were found to be highly emissive, 

with the measurements of F. wislizenii found to be the least emissive at 0.89 ± 0.009. The spine 

(a) Sunrise 

(b) Sunrise 



emissivities of M. columbiana, C. cinerea and P. mammulosa were measured to be 0.98 ± 0.016, 0.97 

± 0.007 and 0.93 ± 0.004 respectively. The fact the spine emissivity of these four species of cacti are 

all high, does not explain the absence of dew on the spines of F. wislizenii compared to the other species. 

Other reasons, such as spine surface morphology, could play a role in inhibiting the nucleation of dew 

droplets on F. wislizenii which has a high density of tightly packed microstructures on its surface.   

 

Table 1: Mean spine emissivity for four species of cactus with the  five measurements taken at 
the same point on the same spine (close to the attached thermocouple reference) 

Emissivity C. cinerea F. wislizenii M. columbiana P. mammulosa 

Measurement 1 0.963 0.89 0.99 0.93 

Measurement 2 0.96 0.893 0.95 0.925 

Measurement 3 0.973 0.87 0.98 0.925 

Measurement 4 0.975 0.89 0.975 0.933 

Measurement 5 0.973 0.89 0.99 0.925 

Mean 0.97 0.89 0.98 0.93 

St. Deviation 0.007 0.009 0.016 0.004 

 

Whilst carrying out these measurements, all but F. wislizenii gave consistent readings on the IR camera 

and the emissivity of the measuring area could be adjusted until its temperature reading matched the 

thermocouple reading. Even though the standard deviation of the emissivity measurement for F. 

wislizenii was low, the IR camera gave fluctuating readings for this species, making it problematic to 

select an emissivity. 

It is known that backscattering is increased for rougher surfaces, increasing not only the measured 

spectral emissivity of an object but also fluctuation in this measurement [18]. Therefore, we suggest 

that the known surface microstructures on the spines of F. wislizenii could have caused the unstable 

readings on the IR camera. The surface scattering of infrared due to the spine’s microstructures is a 

consideration beyond the scope of this study.  

Conclusion 
For a single spine of C. cinerea, the tip always appeared hottest when placed outside and measured 

around the hours of sunrise and sunset. It is probable that the tip is warmer when placed outside to cool 

by nocturnal radiation due to its smaller surface area. These findings are in keeping with the 3D radiative 

cooling cactus spine simulations carried out by Yu et al. [17].  

The emissivity of the spines of F. wislizenii was found to be the lowest of the four cactus species at 0.89 

± 0.009. This was the only cactus in this study whose spines did not show any sign of encouraging dew 

droplets to nucleate on their surfaces. However, even though its spines had the lowest emissivity of the 

four species, they were still found to be highly emissive. As such, we conclude that the absence of dew 

nucleation on the spines of F. wislizenii cannot be explained by a lower emissivity but must be due to 

other reasons such as surface morphology. 

Even though limitations were found with this technology (i.e. within the optics and the thermal and 

spatial resolutions of the detector), in general these results indicate that infrared analysis is an important 

method which can assist in the comprehensive modelling of the moisture harvesting associated with 

cactus spines..  
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