

Numerical Simulation of Selected Two-Dimensional

and Three-Dimensional Fluid-Structure Interaction

Problems Using OpenFOAM Technology

Maimouna Said Al Manthari

Zienkiewicz Centre for Computational Engineering, College of Engineering,

Swansea University, Swansea, Bay Campus, Swansea, SA1 8EN

Thesis submitted to Swansea University in fulfillment of the requirements

for the Degree of Doctor of Philosophy

June 2018

i

Summary

Fluid-structure interaction (FSI) problems are increasing in various engineering fields. In

this thesis, different cases of FSI in two- and three-dimensions (2D and 3D) are simulated

using OpenFOAM and foam-extend. These packages have been used to create a coupling

between fluid and solid.

The vortex-induced vibration (VIV) phenomenon of flow past a circular cylinder is

studied using PIMPLE algorithm for pressure-velocity coupling. This VIV study is

restricted to incompressible flow simulation at a Reynolds number (Re) of 100. The

changes of drag and lift coefficient values depend on the study case and the spring-mass-

damper system for the flow past a free oscillatory cylinder. The free vibrating cylinder

examined in one-degree-of-freedom (1DOF) and two-degrees-of-freedom (2DOF)

systems with linear damping and spring properties. Both will affect the behaviour of the

cylinder within the flow with some noticeable differences. The response time of the

cylinder and the drag coefficient are the most affected by the spring and damper.

Besides the vortex-induced vibration test cases, the two-dimensional and three-

dimensional fluid-structure interaction benchmarking is also studied. A partitioned

solution method for strongly coupled solver with independent fluid and solid meshes for

transient simulation has been applied. The fluid domain dynamics is governed by the

incompressible Navier-Stokes equations; however, the structural field is described by the

nonlinear elastodynamic equations. Fluid and solid domains are discretised by finite

volume method (FVM) in space and time.

A strong coupling scheme for partitioned analysis of the thin-walled shell structure

exposed to wind-induced vibration (WIV) is presented. The achievement of the 3D

membrane roof coupling scheme is studied by applying the 2D model. Additionally,

numerical models for the slender shell structures coupling and the 3D flows indicate

possible applications of the presented work. The computational fluid dynamics (CFD)

simulation results revealed that even the flow is considered as a laminar, turbulence

modelling or more refined meshes should be used to capture the generation and release

of vortices.

A partitioned solution procedure for FSI problems in the building aeroelasticity area is

also studied. An illustrative real-world model on the coupled behaviour of membrane

structure under wind flow influence is given. A four-point tent subjected to wind motion

is a typical application of this work applying with various physical factors that are a

necessity for the thin membrane structure. The fluid domain is described by the

incompressible Navier-Stokes equations at a Reynolds number of Re = 3,750. However,

the motion of the solid field is modeled by total Lagrangian strategy for nonlinear elastic

deformation.

The FSI simulation, particularly 3D problems require in very long calculation time. Some

limitations of the FSI solver in foam-extend package called fsiFoam is discussed.

All solvers that used in this thesis are considered to be applied to a wide use of the

implementation of FSI models, despite some problems in parallelisation, particularly in

the latest FSI solver version. The analysis results are presented to demonstrate accuracy,

convergence, and stability.

ii

Declaration and Statements

DECLARATION

This work has not previously been accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed ………………………………………………. (candidate)

Date ………………………………………………….

STATEMENT 1

This thesis is the result of my own work and investigation, except where otherwise stated.

Where correction services have been used, the extent and nature of the correction is

clearly marked in a footnote(s).

Other sources have been acknowledged by giving explicit references. A bibliography is

appended.

Signed ………………………………………………. (candidate)

Date ………………………………………………….

STATEMENT 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside

organisations.

Signed ………………………………………………. (candidate)

Date ………………………………………………….

NB: Candidates on whose behalf a bar on access has been approved by the University

(see Note 7), should use the following version of Statement 2.

I hereby give consent for my thesis, if accepted, to be available for photocopying and for

inter-library loans after expiry of a bar on access approved by the Swansea

University.

Signed ………………………………………………. (candidate)

Date ………………………………………………….

iii

Table of Contents

Acknowledgements…………………………………………………………………...ix

List of Figures………………………………………………………………………….x

List of Table…………………………………………………………………………..xiii

Abbreviations…………………………………………………………………………xiv

Nomenclature.………………………………………………………………………...xvi

1. Introduction………………………………………………………………………….1

1.1 Introduction to Fluid-Structure Interaction ... 1

1.2 Introduction to OpenFOAM ... 2

1.3 Flow-Induced Vibration .. 3

1.4 Fluid-Flexible Structure Interaction .. 6

1.5 Fluid-Membrane Structure Interaction ... 8

1.6 Aim of the Thesis .. 11

1.7 Layout of the Thesis ... 14

2. Equations, Discretisation and Methodologies…………………………………….16

2.1 Governing Equations …………………………………………………………….16

2.1.1 Flow Equations .. ……………………………………………………………16

iv

2.1.2 Structural Equations ... 17

2.2 Introduction to Finite Volume Discretisation ... 18

2.2.1 Discretisation of the Computational Domain .. 18

2.2.2 Transport Equation Discretisation ... 19

2.2.3 Face interpolation .. 21

2.2.4 Discretisation of Spatial Terms .. 22

2.2.5 Temporal Discretisation ... 26

2.2.6 Pressure-Velocity Coupling .. 27

2.3 Fluid-Structure Interaction Problems in OpenFOAM and Foam-Extend 37

2.4 Finite Volume Method for Fluid-Structure Interaction with Large Structural

Displacements ... 39

2.5 OpenFOAM Library for Fluid-Structure Interaction .. 40

2.6 Partitioned Solver for Strongly Coupled Fluid-Structure Interaction 42

2.7 Arbitrary Lagrangian Eulerian Mapping .. 44

2.8 Fluid-Structure Coupling and Boundary Conditions .. 46

2.9 Numerical Method in FSI Library .. 47

2.10 Implicit Coupling Approach with Second-Order Predictor 48

2.11 Boundary Conditions Definitions in OpenFOAM .. 50

2.12 Chapter Summary ... 52

v

3. A Flow past a Two-Dimensional Cylinder and Vortex-Induced Vibration……54

3.1 Introduction to Flow around a Cylindrical Structure .. 54

3.2 Flow Regimes ... 55

3.3 Vortex Shedding ... 57

3.4 Hydrodynamic Forces ... 59

3.5 Vortex-Induced Vibration ... 61

3.6 Dynamics of One Degree of Freedom System and Solution to Vibration Equation

 .. 62

3.7 Reduced Velocity .. 63

3.8 Mesh Generation in OpenFOAM ... 65

3.9 Test Cases ... 65

3.9.1 2D Example of Flow past a Stationary Circular Cylinder 65

3.9.2 Vortex-Induced Vibration of the Circular Cylinder 75

3.9.3 Non-Resonance VIV Schematic Description .. 79

3.9.4 Forced Oscillation Cylindrical Structure ... 92

3.10 Chapter Summary ... 96

4. Two- and Three-Dimensional Benchmarking Models…………………………...99

4.1 2D Example of Flow-Induced Oscillations of a Flexible Tail behind a Block 99

4.1.1 Geometry and Boundary Conditions ... 99

4.1.2 Problem Definition .. 100

4.1.3 Mesh Generation .. 101

vi

4.1.4 Spatial and Temporal Discretisation .. 101

4.1.5 Post-Processing, Results and Discussions ... 103

4.2 3D Elastic Cantilever Plate Attached to a Solid Block 106

4.2.1 Model Geometry and Boundary Conditions .. 108

4.2.2 Mesh Generation .. 109

4.2.3 Case Implementation ... 112

4.2.4 Simulation Problems ... 113

4.2.5 Results and Discussions ... 113

4.3 2D Model of Hanging Membrane Roof Subjected to the Wind 118

4.3.1 Geometry, Material Properties, and Boundary Conditions 118

4.3.2 Mesh Generation .. 119

4.3.3 Post-Processing, Results and Discussion ... 119

4.4 3D Membrane Roof Benchmark ... 121

4.4.1 Model Geometry .. 123

4.4.2 Material Properties ... 123

4.4.3 Mesh Generation .. 123

4.4.4 Discretisation, Boundary Conditions, and Simulation Results 124

4.5 Chapter Summary ... 130

5. Wind-Membrane Interaction…………………………………………………….132

5.1 Numerical Example of Four-Point Tent Structure Subjected to the Wind 132

vii

5.1.1 Meshing Set-Up ... 132

5.1.2 Important Logic Notes ... 134

5.1.3 Simulation Set-Up .. 135

5.1.4 Tent Case Limitations .. 138

5.2 Learning from Membrane Structure Failure Cases ... 143

5.3 Chapter Summary ... 144

6. Conclusions and Future Research………………………………………………..147

6.1 Achievements Summary ... 147

6.2 Suggestions for Future Work .. 151

Bibliography………………………………………………………………………….152

Appendices…………………………………………………………………………...174

Appendix 2.A: OpenFOAM Computational Pointers ... 174

Appendix 3.A: Velocity (U) Boundary Conditions of the Circular Cylinder Case .. 177

Appendix 3.B: Pressure (p) Boundary Conditions of the Circular Cylinder Case ... 179

Appendix 3.C: controlDict File of the Circular Cylinder Case 181

Appendix 3.D: fvScheme File of the Circular Cylinder Case 185

Appendix 3.E: fvSolution File of the Circular Cylinder Case 187

Appendix 3.F: dynamicMeshDict File .. 190

Appendix 3.G: Free Vibration Case - Scenario 1 ... 191

Appendix 3.H: Free Vibration Case - Scenario 2 ... 196

viii

Appendix 3.I: Free Vibration Case - Scenario 3 ... 201

Appendix 3.J: Forced Vibration Case ... 206

Appendix 4.A: Mesh Generation- blockMeshDict of the 3D Elastic Cantilever Plate

Attached to a Solid Block Case .. 208

Appendix 4.B: Implementation structure of 3D Elastic Cantilever Plate Attached to a

solid Block .. 220

Appendix 4.C: oscillatingInlet of the 3D Elastic Cantilever Plate Attached to a Solid

Block Case .. 222

Appendix 4.D: changeDictionaryDict of the 3D Elastic Cantilever Plate Attached to a

Solid Block Case ... 224

Appendix 4.E: mappingFields File ... 225

Appendix 4.F: Allclean Script File ... 227

Appendix 4.G: Allrun Script File ... 228

Appendix 4.H: controlDict File .. 229

Appendix 5.A: Tent Case Structure .. 233

Appendix 5.B: Steps of Meshing the Fluid Region .. 234

Appendix 5.C: Steps of Meshing the Solid Region .. 243

Appendix 5.D: Allrun Script File ... 248

ix

Acknowledgements

I would like to thank Prof. Perumal Nithiarasu, my supervisor, for his invaluable

guidance, support and encouragement during all stages of this work.

I would like to thank the Zienkiewicz Centre for Computational Engineering, of Swansea

University as a whole for providing a very supportive and encouraging research

environment.

I would like to thank my husband Sulaiman sincerely for his support, understanding, and

patience, and for all the memorable days, which we spent in the beautiful countries of

United Kingdom.

I would like to thank my children, Aljuman, Mohammed, and Alreem for their support

and making life in Swansea more beautiful.

I am very grateful to my parents, brothers, and sisters for their unconditional and constant

support.

I would also like to send my special thanks to Bruno Santos for always guiding me with

the OpenFOAM and always tries his best to answer all of my questions.

Finally, the financial support, which I received from the Ministry of Higher Education of

Oman, is gratefully acknowledged.

x

List of Figures

Figure 2.1: Control volume……………………………………………………………..20

Figure 2.2: Storing variables options, (a) monolithic method and (b) partitioned

method…………………………………………………………………...22

Figure 2.3: Face interpolation…………………………………………………………..25

Figure 2.4: Arbitrary 2D finite volume grid with notations…………………………….29

Figure 2.5: Simple flow field by steady conditions…..........…………………………….30

Figure 2.6: Values at faces determined from the values at the cell

centers…………………………………………………….…………….31

Figure 2.7: Solving process of FSI using partitioned approach with weak and strong

coupling………………………………………………………………….38

Figure 2.8: Flowchart of algorithm of fsiFoam solver…………………………………..43

Figure 2.9: Partitioned solver for strongly coupled nonlinear fluid-structure interaction

flowchart…………………………………………………………………51

Figure 3.1: Vortex shedding phenomenon behind a cylindrical structure ……………..54

Figure 3.2: The shear layer of the flow over a cylinder …………………………………58

Figure 3.3: Strouhal number – Reynolds number relationship for a circular cylinder... 60

Figure 3.4: One-degree-of-freedom system models in cylinder ………………………...62

Figure 3.5: Feng’s experiment model ………………………………………………….64

Figure 3.6: Geometry and boundary conditions of flow over a cylinder ……………….67

Figure 3.7: Circular cylinder mesh visualized in ParaView …………………………….67

Figure 3.8: Schematic illustration for boundaries in laminar flow ……………………...69

Figure 3.9: Velocity profile for laminar flow with Re = 100 in ParaView ………………73

Figure 3.10: Pressure profile for laminar flow with Re = 100 in ParaView ……………..73

Figure 3.11: Drag coefficient of 2D cylinder at laminar flow of Re = 100 ……………...74

Figure 3.12: Lift coefficient of 2D cylinder at laminar flow of Re = 100 ……………….75

Figure 3.13: Drag coefficient of laminar flow at Re = 100, Re = 200, and Re = 100076

Figure 3.14: Lift coefficient of laminar flow at Re = 100, Re = 200, and Re = 1000 …...77

Figure 3.15: Directories and files for vortex-induced vibration case …………………...77

Figure 3.16: Schematic for the VIV non-resonance case ……………………………….80

Figure 3.17: Geometry and flow conditions of case with 4-springs ……………………81

Figure 3.18: Schematic of 2-springs and 2-dampers ……………………………………81

file:///C:/Users/Owner/Desktop/PhD-Thesis-2017/Thesis-first-draft-v4-Revised.docx%23_Toc494312071
file:///C:/Users/Owner/Desktop/PhD-Thesis-2017/Thesis-first-draft-v4-Revised.docx%23_Toc494312071
file:///C:/Users/Owner/Desktop/PhD-Thesis-2017/Thesis-first-draft-v4-Revised.docx%23_Toc494312076
file:///C:/Users/Owner/Desktop/PhD-Thesis-2017/Thesis-first-draft-v4-Revised.docx%23_Toc494312076

xi

Figure 3.19: (a) Drag and (b) lift coefficients for 1DOF and 2DOF …………………….83

Figure 3.20: (a) Drag and (b) lift coefficients for 1DOF system ………………………..85

Figure 3.21: (a) Drag and (b) lift coefficients for 2DOF system ………………………..88

Figure 3.22: (a) Drag and (b) lift coefficients for reduced damping case for 1DOF

 and 2DOF……………………..….…………….………………......................90

Figure 3.23: (a) Drag and (b) lift coefficients for reduced spring stiffness case for 1DOF

and 2DOF ………………………………………………………………..……..91

Figure 3.24: (a) Drag and (b) lift coefficients for 2DOF systems ……………..…...……93

 Figure 3.25: Force coefficient of forced oscillation cylinder case at laminar flow with Re=

100 …………………………...………...……………………………….....…....95

Figure 3.26 Vertical displacement and lift coefficient time histories of the forced

oscillation case ………………………………………….……...……..………….96

Figure 4.1: Computational domain and boundary conditions of tail behind block……..100

 Figure 4.2: 2D tail attached to solid support computational domain for refined mesh at

 (a) t = 0s and (b) t = 6s……………………………………………………………102

 Figure 4.3: Oscillation of a tail attached to a solid block at t =6s: (a) velocity and (b)

pressure/density………………………………………………………...……104

 Figure 4.4: Comparision results on the tip displacement, (a) coarse mesh (b) fine

mesh……………………………………………………………………..…...107

Figure 4.5: 3D flexible plate model: geometry and boundary conditions………….....108

Figure 4.6: 3D elastic plate case block levels…………………………………..……...110

Figure 4.7: 3D tail attached to solid block mesh in ParaView……………………...…110

Figure 4.8: Meshing representation of the plate and the solid block in ParaView…….111

Figure 4.9: 3D plate in wind: structural motion and stream-tube snapshots for some

simulation time……………………………………………………………....114

Figure 4.10: Perpendicular displacement in meter of flexible plate over simulation time

in second for points A = (0.10, 0.055, 0.07), B = (0.10, 0.055, 0.055) and C =

(0.10, 0.055, 0.04)…………………………………………………….……...116

 Figure 4.11: 2D membrane roof model: geometry, material properties, and boundary

conditions……………………………………………………………..……..118

Figure 4.12: Flow velocity in the 2D membrane roof………..……………...…………120

Figure 4.13: Meshing details: (a) coarse mesh (b) fine mesh…………………………120

Figure 4.14: Solution for the displacement at the interface: (a) coarse (b) fine……….121

xii

Figure 4.15: The maximum inflow speed for the 2D membrane roof model…………..121

Figure 4.16: Membrane roof deformation in x-direction………..……………………. 122

Figure 4.17 Membrane roof deformation in y-direction………………………………122

Figure 4.18: Geometrical properties and boundary conditions of 3D membrane roof…125

Figure 4.19: Meshing results for 3D membrane roof model…………………………...125

Figure 4.20: Maximum flow velocity for 3D membrane roof benchmark Figure 4.23: 3D

flexible membrane roof deformation over z-direction………………………..126

Figure 4.21: 3D membrane roof: (a) spatial (b) temporal inflow boundary conditions

variations………………………………………………………………….…127

Figure 4.22: 3D flexible membrane roof deformation over z-direction………………..128

Figure 4.23: Deformed structure of the 3D membrane roof case in z-direction……..…129

Figure 5.1: Geometry and dimension of the four-point tent structure………………….133

Figure 5.2: Maximum inflow velocity over simulation time…………………………..137

Figure 5.3: Response of the structure at different times with counter plot of the

displacement dz in meter…………………………………………………..…139

Figure 5.4: Deformation results along z-direction of four-point tent case in 6s simulation

time…………………………………………………………………………..140

xiii

List of Tables

Table 3.1: Flow regimes around a smooth circular cylinder in steady current…………..56

Table 3.2: Comparison of force coefficients from the simulation results with other

 studies………………………………………………………………………..74

Table 3.3: Flow regimes of forced vibration cylinder case using ParaView……………97

Table 4.1: Physical properties of the tail behind block model…………………………101

Table 4.2: Comparison present work results with other literature for the elastic tail

attached to the solid block……………………………………………………106

Table 4.3: Material properties of the 3D flexible plate attached to solid block………...109

Table 4.4: Comparing of fluid mesh properties………………………………………..110

Table 4.5: Comparing of structure mesh properties……………………………………112

Table 4.6: Results comparison for the 3D flexible plate attached to solid

 block model……………………………...…………………………..……….117

Table 4.7: 2D hanging roof meshing details…………………………………………...119

Table 4.8: Material properties of the 3D membrane roof model…………………...….123

Table 5.1: Material properties of the 3D four-point tent case……………………..…...136

xiv

Abbreviations

2D Two-Dimensional

3D Three-Dimensional

ADI Alternating Direction Implicit

ALE Arbitrary Lagrangian-Eulerian

BGS Block Gauss-Seidel

BN Block Newton

CCM Computational Continuum Mechanics

CFD Computational Fluid Dynamics

CM Control Mass

Co Courant number

CV Control Volume

CWE Computational Wind Engineering

DES Detached-Eddy Simulation

DIC Diagonal-based Incomplete Cholesky preconditioner

DILU Diagonal Incomplete Cholesky preconditioner for asymmetric matrices.

DOF Degree-of-Freedom

GAMG Generalized Geometric-Algebraic Multi-Grid or Geometric Agglomerated

Algebraic Multi-Grid

GGI General Grid Interface

FDIC Faster version of the DIC preconditioner

FEM Finite Element Method

FIV Flow-Induced Vibration

xv

FOAM Field Operation and Manipulation

FSI Fluid-Structure Interaction

FV Finite Volume

FVM Finite Volume Method

ICC Incomplete Cholesky Preconditioned Conjugate Gradient

IQN-ILS Interface Quasi-Newton iterations based on the Inverse Least Squares

approximation of the Jacobian

LES Large Eddy Simulation

MPI Message Passing Interface

NR Newton-Raphson

PbiCG Preconditioned Biconjugate Gradient

PCG Preconditioned Conjugate Gradient

PDEs Partial Differential Equations

PIMPLE PISO and SIMPLE algorithms

PISO Pressure Implicit with Splitting of Operator

PVC Polyvinylchloride

Re Reynolds number

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

St Strouhal Number

STL Stereolithography

VIV Vortex-Induced Vibration

WIV Wind-Induced Vibration

xvi

Nomenclatures

Latin Characters

a General vector property

Ka Matrix coefficient corresponding to neighbouring cell K

Pa Central coefficient

A/D Oscillating amplitude constant

CD Drag coefficient

DC Mean drag coefficient

CL Lift coefficient

Co Courant number

c Linear-viscous damping

D Cylinder diameter

dS Infinitesimal surface element with the normal of the associated outward

points on V

dm,f Fluid domain displacement

𝐝𝐬
Γ0 The solid displacement that formed by fluid-solid interface from the fluid

domain displacement

𝐝𝑖,𝑗
𝛤 Displacement interface at the time-step i and the iteration j


d
~

 Interface displacement predictor

Es Young Modulus

Fb Body force

FD Drag force

xvii

FL Lift force

Fr Frequency ratio

f control volume faces

fn Cylinder frequency

fv Vortex shedding frequency

xf The interpolation factor that is defined as the distance ratio between Kf

and KP

I Identity matrix

i,j Unit vectors

K Neighbour cell centre

k Spring stiffness

M Mesh motion solver

m Cylinder mass

P Computational point placed in the centre of the control volume

p Pressure

Q The mass flux through the face

Re Reynolds number



++ 1,1 jir Residual of the interface

S Outward-pointing face area vector

St Strouhal number

Sf Face area vector

𝑆∅ Source term

Sp Linear part of the source term

Su Constant part of the source term

xviii

Tv Vortex shedding period

t Time

tr Tensor trace

U, Uf Flow velocity

Us Solid displacement

u Stream-wise velocity

V Volume

V The closed surface that bounding the volume V

VP control volume around the point P

VR Reduced velocity

x Position vector

y Vertical displacement of the mass centre of a moving cylinder

Greek Characters

p Pressure based under-relaxation factor

U Under-relaxation factor

𝛼𝑖+1,𝑗+1 Relaxation parameter

 Diffusion coefficient

Γ0 Fluid-solid interface

t The time-step

x The mesh size

𝜀 Strain tensor

𝜆𝑠, 𝜇𝑠 Lame՜ constants

xix

𝜇𝑓 Dynamic viscosity

f Kinematic viscosity ()fff  =

 Density

f Fluid density

s Solid density

σs Cauchy stress tensor

τ Equilibrium traction

𝜐s Poisson’s ratio

 Scalar variable

Ωf,0 Internal fluid reference

1

Chapter 1

Introduction

1.1 Introduction to Fluid-Structure Interaction

Fluid-structure interaction (FSI) is very popular across different fields of engineering

such as civil, mechanical, biomedical, and aerospace engineering. In the following

paragraphs, some physical problems involving FSI are listed.

Civil engineering: The wind-induced vibration over thin-walled structures such as

bridges, membrane structures, and lattice towers often experience large deformation.

Some fatal failures can sometimes occur due to the oscillation at the natural frequency.

The 1940 Tacoma Narrows suspension bridge in the USA is considered a critical example

of the catastrophic failure of wind-induced vibration on unsuitable design. It was caused

by rotational and large transverse oscillations, which caused to collapse [1].

Mechanical engineering: The applications for mechanical engineering include

engineering, physics, the principles of material science, mechanical design, manufacture,

analyse, and maintain mechanical systems. In the design stage, some internal flow models

required a very accurate simulation in order to achieve a very high performance.

Biomedical engineering: Blood flow is one example of FSI in the human body. The blood

flow circulation through the heart, arteries, and veins shows the fluid motion with moving

boundaries. The design of medical devices such as micro-pumps depends on an

understanding of the fluid flow mechanisms.

Aerospace engineering: The vortex-induced vibration study and flutter are crucial in

understanding aircraft stability in flight.

Research interests in the field of FSI range from linear to the non-linear, and steady-state

to transient interactions. The underlying FSI concept is that when a flow pass a body, it

causes exchange of energy between the fluid and the structure, which in turn causes

significant changes in the physical behaviour of both. The physical changes are evidenced

from explosive structural loading, acoustics, liquid sloshing in open and closed vessels,

2

fluid-induced vibrations, building wind loads, bridge deck, and aerodynamic fluttering,

etc. [2]. A review of FSI is important because it enhances knowledge in engineering

design against wave stress effects on solids that may result in large deformations and

damages [3]. The extent and type of failures depend on velocity, density and size of fluid.

From an engineering perspective, the effects of wave stress greatly influence the solid

design and material selection. For instance, the choice of materials for turbines, pumps

and piping prone to cavitation requires an understanding of pressure fluctuations during

design and material strength to avoid collapse, erosion of movable parts, and structural

damages. Recent studies [4-5] show that more work is still needed in computational FSI.

This thesis investigates fluid-structure interaction in two- and three-dimensional

problems. Body geometry is often considered trivial, but fluid flow over a bluff body

remains a major challenging problem in a wide range of engineering applications. For

instance, cylindrical geometry is responsible for complex flow phenomena that are largely

Reynolds number (Re) dependent and generates unsteady vortex shedding (wake),

oscillation separation and stagnation points, and turbulence transitions of different flow

regimes that are Re-dependent [6].

In the last decade, many numerical and computational techniques for FSI simulation have

been developed. This work focuses on the implementation of two-dimensional and three-

dimensional FSI problems, using open-source software techniques; namely OpenFOAM

[7].

1.2 Introduction to OpenFOAM

The software used in the current study is OpenFOAM (Open Field Operation and

Manipulation). OpenFOAM is an open source object-oriented program for

Computational Fluid Dynamics (CFD) package. OpenFOAM libraries are written in C++

language and used to build the executable files. The applications of these libraries are

divided into two groups: solvers and utilities. Solvers provide the numeric and solutions

of the mechanical problems, and utilities work with other tasks that include meshing,

visualisation, and data manipulation [7].

3

Additionally, it has a general purpose of finite-volume simulation structure organized by

OpenCFD Ltd at an ESI Group [7], and it is distributed by OpenFOAM Foundation in

GNU General Public License. It usually covers a wide range of structures in geometrical

and physical modelling, and includes laminar and turbulence model varieties and several

functionalities of mesh modification.

The CFD tool is designed to solve continuum mechanics problems that are based on the

finite volume method (FVM). The FV discretisation approach is the essential procedure

for solving partial differential equations (PDEs) governing both the continuity and

momentum conservation laws. The continuous PDE variables must be transformed into

algebraic equation sets using finite volume procedure in order to describe the numerical

or discrete solution of the flow governing equations [8-9].

The parallelisation uses only MPI as it is based upon the domain decomposition strategy.

Both the computational structural mechanics (CSM) and the computational fluid

dynamics (CFD) are implemented in OpenFOAM.

In addition, foam-extend [10] version of OpenFOAM will be used in this thesis. It has a

branch of solid mechanics with implemented FSI and structural solvers along with the

original OpenFOAM version that is released for meshing and post-processing.

The main purpose of the Extend-Project is to integrate contributions from OpenFOAM

users and developers. In the late 1990s, early FSI work in OpenFOAM was carried out at

the Imperial College London. However, FSI solver in OpenFOAM became much easier

with the registration of the mesh-based field and multi-zonal support introduction.

1.3 Flow-Induced Vibration

Vortex-induced vibration (VIV) is a motion induced on a bluff body facing an external

fluid flow by periodical irregularities on this flow. Vortex-induced vibration phenomenon

of bluff bodies has been investigated for a long time because of its importance in both

engineering applications and academic research. In order to gain a better understanding

of this phenomenon, numerous computational and experimental studies have been

4

accomplished on this fluid-structure interaction problem covering from rigid cylinder(s)

to elastic cylinder(s).

Vortex-induced vibration for elastically or rigidly mounted circular cylinder in cross flow

has been subject to different investigations over the past years. The two scenarios are

flow-induced forces caused by vortices, and forced cylinder vibrations. These will be the

subjects of investigation.

Anagnostopoulos [11-12] focused on investigating the VIV by using a numerical method.

He studied the VIV behaviour in the 2D circular cylinder with two-degrees-of-freedom

at Re = 200. In 2D, the space-time finite element approach is used to solve the

incompressible Navier-Stokes equations, while the explicit integral method is used to

solve the motion of the cylinder. The VIV results demonstrated that there were different

trends of lift and drag coefficients at low mass damping.

Placzek et al. [13] studied the numerical simulation of free and forced vibrating cylinder

at Re = 100. A preliminary work of the study has exposed that for a stationary cylinder to

check the characteristics of the wake. The simulation of the forced oscillating cylinder

have been studied in the cross-flow direction to analyse different phenomena. The

simulation of the forced oscillating cylinder is characterised by the amplitude A and by

the frequency ratio (Fr = fn / fv), where fn is the cylinder frequency and fv is the vortex

shedding frequency. Then, the free vibrating cylinder simulation carried out. The cylinder

vibration is excited by the vortex shedding in the wake. Thus, in order to observe different

behaviours, the frequency and amplitude are studied in a wide range of reduced velocities.

In a different experimental study, Govardhan and Williamson [14] investigated response

profiles of free oscillating in terms of lift forces and near wake vorticity on a cylinder.

Deductions from this study further contributed towards an understanding of FSI and how

body motion is controlled, allowing wake response of the motion to be evaluated

separately.

In another numerical study, Williamson and Govardhan [29] presented new vortex wake

states in the map of vortex modes framework assembled from studies of a forced vibration

that caused a free vibration. The discussion and analysis focused on the relationship

between forced and free vibrations, and the relevance of the elastically mounted cylinder

flow to more complex systems.

5

A freely oscillating cylinder in the inline and cross-flow directions display altered

shedding patterns pointing to the viewpoint that variations in overall structural response

depend on the cylinder vibration directions [15-17,30]. The findings by Williamson and

Jauvtis [15] strongly indicated possible contributions of high harmonics to the lift force.

An investigation by Dahl et al. [18-19] using phase differences between inline and cross-

flow oscillations revealed a strong influence on cylinder trajectory regularity.

In the forced oscillating cylinder case, upstream vortices are responsible for the induced

vibration by simply applying mechanical force to induce cylinder vibration [20-21]. On

the other hand, imposed oscillation frequency dominates a perfectly rigid cylinder

exposed to forced vibration [22].

The forced oscillatory case uses analogous, but with different sets of parameters. For

example, a forced oscillating cylinder has oscillating amplitude constant (A/D where D is

a cylinder diameter), and its frequency (f0) vary at points where the ratio of f0 / fs = 1,

where f0 represents the natural frequency and fs shows the oscillation frequency.

Nonetheless, predicting flow-induced motion using forced oscillation still has several

unresolved challenges. The near wake structure and forces acting on a cylinder under

forced oscillation has been researched extensively [13,24-26].

The wake states for the forced oscillatory cylinder at low amplitude exhibits low and high

frequency depending on force properties and wake structures. As the oscillation

frequency passes through the natural Von Karman frequency (f0), a transition occurs

between two different wake modes namely, the low and high frequency. Transitions

between low and high frequency states cause a “jump” in both vortex lift forces acting on

the cylinder and the overall amplitude phase [23,27].

At higher oscillation amplitudes, a cylinder exposed to forced oscillations exhibits a third

wake state between low and high frequencies. Few studies had explored the existence of

a forced wake state at high amplitude until recently. This third forced wake which is also

known as “intermediate”, occurs at A/D = 0.5 to 0.6 (oscillation amplitudes). Despite the

limited availability of literature on intermediate branch existence, the large jumps

occurring at different phase transitions explains the vortex shedding problem in the forced

oscillating cylinder at higher mass-damping [28].

6

Conventionally, experiments using forced oscillation to investigate a broad array of

engineering problems assumed flow-induced oscillation could be represented adequately

by the sinusoidal oscillations, at a constant frequency and oscillation amplitude. However,

failure to establish the link between freely oscillating and forced oscillatory cases

rendered the historical approaches unsuitable in predicting flow-induced vibration

conclusively [31].

Moreover, a large body of literature on the vortex-induced vibration field covering

experimental and numerical investigations, from one to multi-degrees of freedom motion,

flexible and rigid motions, VIV phenomenon in water and air, are available [32-35].

Zhou et.al [36] studied a flow past a flexible circular cylinder at Re = 200. The motion of

the cylinder is modeled by a system of spring-damper-mass. One-degree-of-freedom and

two-degrees-of-freedom models were examined. The results obtained were compared

with previous computational and experimental results. The study results show that the

VIV for 1DOF system show only a good qualitative agreement with the 2DOF system.

The study by Li et al. [37] focused on studying the characteristics of VIV of a flexible

circular cylinder with one- and two-degrees-of-freedom models at a Reynolds number of

200. The results showed that there were similar trends between both models.

Moreover, the exponential results of 1DOF at a range of Re = [90, 150] were captured by

Anagnostopoulos and Bearman [38]. Additionally, the same experiment was conducted

by Kalak and Williamson [39]. For large density ratios, the results showed that the vortex

shedding frequency (fv) for the static cylinder and the cylinder frequency (fn) at resonance

were very close (fn / fv=1). However, this result was not applicable to small density ratios.

1.4 Fluid-Flexible Structure Interaction

Fluid-structure interaction (FSI) is defined as the interaction of some deformable or

moveable structures with a surrounding or internal fluid. Studying the interaction between

flow and flexible structures is an important stage towards the understanding of several

physical and engineering problems. Simulations of such models are computationally

7

challenging. Thus, attempts to develop more efficient and more sophisticated numerical

FSI models are relevant.

Many interesting FSI models are associated with fluid-structure coupling. Modelling the

coupled fluid and solid dynamics is a very complex topic and has attracted a lot of

attention. Coupling strategy is central in numerical analysis of flow over the bluff body

in FSI applications. Most commercially available computational software programs use

solvers in simulating fluid and solid interactions by imposing boundary conditions along

their interface. The velocity or displacement by solid domain serves as a fluid solver

boundary condition for the solid domain, while fluid domain relies on generated pressure

along the interface as the force boundary condition by the solid solver [40]. Governing

equations in each scenario cover mathematical variables such as density, pressure,

velocity, stress, etc.

The variables are classified into coupled and uncoupled variables. Coupled variables refer

to interface parameters that can be distinctively determined from both fluid and solid. On

the other hand, uncoupled variables cannot be distinctively determined at fluid-solid

interface hence require interfacial prediction. The main challenge is setting internal

boundary conditions for uncoupled variables. For example, for two-dimensional FSI

problems, normal pressure and velocity in the fluid is coupled with normal stress and

velocity of solid because it is assumed to be continuous across the interface [3]. However,

prediction of uncoupled variables such as tangential velocity and density of fluid, and

shear stress and tangential velocity of solid, is necessary in order to set internal boundary

conditions.

Generally, FSI problems define the strongly coupled fluid flow and flexible structure in

which traction forces are expended on the solid and then cause a body deflection which

finally affects the flow over moving boundaries. In spite of fluid and solid dynamics

governed by individual equations, are commonly used, the strongly coupled FSI solution

is currently an important topic of research.

In addition, the fluid and solid equations are solved separately in the implicit segregated

approach, and the strongly coupled FSI between flow and flexible structure is limited

only to their interface. Therefore, in order to handle the interaction between the fluid and

solid solvers, an iterative algorithm should be used. Additionally, this iterative algorithm

8

is also required to enforce the equilibrium on their interface. Thus, the flow and the solid

deformation are solved inside an interacting loop until the difference between the

solutions of fluid and structure, such as the displacement of the interface, is less than a

convergence criterion. The block Gauss-Seidel method also known the fixed-point

method is the most commonly used coupling method [41]. This fluid-flexible structure

interaction problem has been studied and discussed in a number of studies such as

Dettmer and Peric՛ [42-43], Scheven and Ramm study [44], and Habchi et al.[45].

1.5 Fluid-Membrane Structure Interaction

Membrane structure designs are becoming considerably popular in modern engineering.

These structures are also called tensile structures or fabric structures. They are considered

a modern structural system. They were developed in the middle of the 20th century with

a flexible and slender surface, that carries loads through tensile stresses without bending

or compression. Membrane structures are good examples of extremely and highly

optimised light-weight buildings.

The applications and demands for sustainable construction and the techniques of using

new building materials, gave improvement to slender and light-weight structures in the

field of civil engineering. With new materials being developed, the membranes have

become wider reaching from mobile structures and large span roofs to cladding materials.

As a result, for instance, the Millennium Dome (The O2 Arena) in London has become

the focus of public interest in spectacular public constructions.

Designing these types of structures require that they should resist external loadings. In

addition, more effort is also required to examine the structure’s behaviour, as it becomes

slender and lighter [46-47].

The strength of the material is used in an optimum way because of the steady stress

condition over the thickness. Membrane structures are considered as special types of

buildings due to their properties. They have very small or no bending stiffness. In

addition, membranes are high strength, durable, self-cleaning, sound insulation, heat

insulation, and low rate flammable.

9

The behaviour of the load carrying the membrane structures depends on tangential tension

stresses to their surface. In compression stressed tangential case, membranes lose their

stiffness and start to wrinkle. The external loading which is not tangential to the

membrane surface leads relatively to large deformation. Therefore, membranes are

designed to have doubly curved geometries, and pre-stress is applied for stabilisation to

prevent the existence of large deformations even for little external loads.

The flexibility and slenderness in membrane structure constructions and material bring

onward a high responsiveness to external loads. Membrane structures display high

susceptibility, particularly for wind loading. In contrast to other load cases on membrane

structures, such as snow or dead load, the wind load case cannot be assumed as a static

load, but in some cases, the loading dynamics and the structural response have to be

presumed. The wind load analysis on membrane structures is complicated in aeroelastic

behaviour cases, in which large deformations of structures can cause an interaction

between the structures and the wind flows [193-197].

In structural engineering, the typical approach to reducing the problem of the membrane

structure being subjected to wind includes the risk of neglecting main effects, which result

from the strong coupling of the wind and structural interaction [198-199].

Simiu and Scanlan [48] indicated that highly optimised buildings are an engineering task

designed to ensure the performance of membrane structures subjected to wind and it will

adequate from the first point during their anticipated life of serviceability and safety.

Consequently, membranes are using materials that are the most efficient because of their

load carrying behaviour [49-50].

Many studies have been carried out on the influence of wind flow on membrane structures

and thin-walled shells. Yang et al. [51] classified the interaction between wind flow and

structure into static and dynamic structures. The static interaction refers to the interaction

between the static air and the vibrating membrane, while the dynamic interaction refers

to the interaction between the wind flow and wind-induced vibrating structure. The static

interaction can be considered as a special and simple case of the dynamic interaction.

In an experimental study, Yang et al. [61] experimentally evaluated the static and

dynamic interaction by two parameters, aerodynamic damping and added mass. The study

includes the static and dynamic interaction and its effects on structural dynamics. For the

10

static interaction, it includes the relationship between the covered membrane structure

area and interaction parameters, while it contains the relationship between the wind

direction and speed, and the interaction parameters, for the dynamic interaction.

Experimental data represents that the dynamic interaction effect is substantial in the

analysis of wind-induced response, and cannot be ignored. Moreover, the study concluded

that the natural frequency of the structure is remarkably affected by the dynamic

interaction.

For certain types of construction, the safety proof under extreme wind-loads is considered

as one of the most demanding tasks in the field of construction engineering. For a simple

case, a rigid construction affects only the wind flow direction. The pressure distribution

performs a load on the structure surface [52]. The prediction of a dynamic interaction is

considered as the most difficult issue. The structure starts fluttering due to fluid flow.

This interaction can completely lead to structural failure.

Aerodynamic parameters have been studied by many researchers; however, additional

work is still required for better understanding. Elashkar and Novak [53] investigated the

requirements of aerodynamic parameters and its role in both free vibration and wind-

induced vibration. Some models on the free vibration characteristics of cable-membrane

structures have been carried out by Kawamura and Kiuchi [54], Takeda et al. [55], and

Ishii [56]. According to Daw and Davenport study [57], the model of a forced flexible

semi-cylindrical shell has been tested in a wind tunnel. This work concluded that the

coefficients of aerodynamics are dependent on the structural shape and the amplitude.

Novak and Kassem [58] experimentally studied the free vibration of light-weight, self-

supported large-span roofs supported by cavities with wall openings. The study

investigated the wall openings influence on the frequency and the total structural damping

and then compared it with a theory that they proposed. Finally, the results represented

that the motion of air through the wall openings related to the roof motion. In addition,

the air mass at the openings has a significant effect on the model damping and roof natural

frequencies.

The free vibration of membrane to an inflow stream is studied by Il'chenko and Temnenko

[59], where a numerical hydrodynamic system was used to analyse the effects of

aerodynamic damping and the structural response. Kawai et al. [60] presented the flutter

11

such as a cantilever roof vibration based on a test of an aeroelastic wind tunnel. It was

observed that the oscillations resulted in a particular wind velocity because of the low

natural frequency value, which was excited by the aerodynamic stiffness value and the

vortex-induced damping.

Experimental simulations in wind tunnels are general tools to examine dynamic effects

in wind engineering. For this experimental method, the correspondence of dynamic

behaviour between model and reality is considered as a basic requirement. However, this

requirement is difficult to meet for small-scale models, particularly for the aeroelasticity

analysis. As a result, wind tunnel experiments are expensive and complicated. According

to Williams [200], the state of the membrane structures analysis in the wind was described

as extremely complex due to no satisfying method of design, and it is an open question

of connecting between experience with similar structures and experiments with simple

theories.

Besides wind tunnel experimental methods, the Computational Fluid Dynamics (CFD)

numerical methods application becomes applicable for wind effects analysis. The use of

CFD methods in wind engineering is called Computational Wind Engineering (CWE).

Furthermore, the use of numerical simulations for the aeroelasticity phenomenon is a

guaranteed complement and improvement of experimental methods. The simulation of

aeroelastic effects is the proper combination of various numerical simulations which is

done by fluid-structure interaction approach [201-202].

1.6 Aim of the Thesis

The objective of this work is to study the vortex-induced vibration phenomena in different

fluid-structure interaction benchmarks, particularly in two-dimensional and three-

dimensional flow domains. The current study covers four main topics: the free and forced

vibration of a cylindrical structure, 2D and 3D models of flow-induced vibration of a

flexible tail attached to a solid block, 2D and 3D models of the membrane roof, and finally

wind- membrane interaction is studies.

The work done here is focused on the use of OpenFOAM and foam-extend, which are

two sibling open source software projects which provide a general purpose toolbox for

12

solving continuum mechanics problems, although it is mostly oriented towards

computational fluid dynamics, although it is mostly oriented towards Computational

Fluid Dynamics. Associated with the foam-extend project is an additional toolkit for

advanced fluid-solid interaction which was also used in this work [10].

The choice for these software projects was done based on the following criteria:

• The software had to be open source, in order to allow for future work on this

topic to not have to rely on costly software licenses, as well as allowing for

future work to freely perform open software development for research and

development of wind-interacting membranes, for which closed source

software often does not allow.

• To use software that was complete enough to model all of the fluid flow and

solid structure phenomena that can occur in real life; for example, with

OpenFOAM/foam-extend, it's possible to use Large Eddy Simulation (LES)

modelling of vortexes, with a higher accuracy than conventional Finite

Element Method software, such as Elmer-FEM which only has basic fluid

flow modelling.

• The software should allow for work well beyond the original scope of wind-

membrane modelling, such as the ability to account for real world environments,

such as weather storms, heat waves, acoustic effects, wear and tear, as well as the

respective response from electronic equipment and human presence to all of these.

For all of these, only OpenFOAM and foam-extend would fit the all of these criteria,

which would otherwise require one or more commercial software applications to perform.

However, given that this specific open source software is fairly complex to use, this

thesis provides the groundwork and necessary information on how the results were

achieved, what were the limitations when using these software projects, along with

an overview of how to conduct studies with them and what to expect as the work

progresses.

This is due to the nature of these open source projects that were used during this

thesis, given that they are in constant development, with new developments released

each year that either change completely how a particular feature is used and/or fix

critical bugs that were in previous versions. The following list provides an overview

of the versions that were used:

13

• OpenFOAM 2.2 was used for the free and forced vibration of a cylindrical

structure, because OpenFOAM 2.3 had changed how the controls for

springs, dampers and restricted movement were implemented, making it not

possible to use them when the study was done at the time. As for foam-

extend, neither of the existing versions provided the same level of control

as OpenFOAM 2.2.

• Two versions of foam-extend had to be used, namely 3.1 and 4.0, along with

the respective Fluid-Solid/Structure Interaction toolkit (the toolkit name

changed between versions), depending on the type of simulation that was

conducted. More specifically, the following foam-extend versions were

used for each study:

o foam-extend 3.1 version had been used for 2D and 3D models of the

membrane roof, and 2D model of flow-induced vibration of a

flexible tail attached to a solid block.

o However, foam-extend 4.0 version had been used to study 3D model

of flow-induced vibration of a flexible tail attached to a solid block

• Furthermore, neither versions of foam-extend allowed for the creation of a

complete mesh of the tent case (the last study); it was necessary to use

OpenFOAM 2.4.0 for generating the mesh that was then used to run the

simulations with foam-extend.

In addition, it establishes the need to rely on similar benchmark cases, hence starting

with the vortex-induced vibration of circular cylinder cases and continuing with the

more complex cases that exhibit an oscillatory interaction between the forces

exerted by fluid flow and solid motion. However, this task revealed itself to not

always be straight forward as well, given that:

• In some situations, the original benchmarks were not properly documented,

where one failed to specify the units to be in CGS, while another mixed up

units of both SI and CGS, therefore having to cross-reference with yet

another study of the same cases (when possible) in which greater effort in

unit documentation was upheld, which happened for the study on 2D and

3D models of flow-induced vibration of a flexible tail attached to a solid

block.

14

• Another benchmark case was too complex to recreate with

OpenFOAM/foam-extend, which happened for the final study.

Hopefully with the ground work done in this thesis, work on this topic can continue in

the future, but it will also strongly depend on how these software projects continue to

evolve in the future, which is expected to occur in the communities involved with them.

1.7 Layout of the Thesis

Chapter 2: All important equations, space and temporal discretisation, and methodology

to use the FSI solver in OpenFOAM and foam-extend technology are introduced. The FSI

solver used is based on a partitioned approach. The finite volume method (FVM) is

applied for the fluid flow discretisation on a moving grid in an arbitrary Lagrangian–

Eulerian (ALE) formulation. The St. Venant–Kirchhoff constitutive law is used to analyse

the structural elastic deformation for large non-linear deformations in a Lagrangian

formulation. The FVM is also used to discretise the solid structure in an iterative

segregated approach. The algorithm of the pressure-velocity coupling is applied to the

large time-steps in the moving boundary problem.

Chapter 3: A detailed description of the 2D vortex-induced vibration past a circular

cylinder is presented. The simulation of uniform flow over a stationary circular cylinder

is presented at different Reynolds numbers (100 ≤ Re ≤ 1000), and then the flow past a

free and forced oscillation of a cylinder is investigated. VIV simulations for the naturally

oscillating cylinder is studied with one- and two-degrees-of-freedom in a laminar flow

(Re = 100). In the VIV simulation, stiffness and damping of springs are changed to

investigate its effects on the VIV behaviour.

Chapter 4: The 2D and 3D space models and benchmarking of FSI examples are

presented. The strong coupling between fluid and solid solvers is performed, and the

equilibrium on the fluid-structure interface is achieved by using a fixed-point algorithm

with Aitken’s under-relaxation method or IQN-ILS. The solver of the automatic mesh

motion depends on the Laplace smoothing equation with mesh diffusion variable. The

fsiFoam solver is implemented for all cases in this chapter. This solver is validated on

15

two benchmarks in the 2D space and their extension to the 3D space. Several benchmark

and practical examples are presented.

Chapter 5: A 3D space membrane structure application is presented. This example is

more complex than the one discussed in the previous chapter due to the tension of the

structure. The tension structures cover many categories such as fabric membranes. In this

chapter, the four-point tent structure is a similar study to the behaviour of the thin

membrane subjected to wind flow. Designing the thin-walled membrane in such a way,

particularly in civil engineering, requires more effort to put into analysing the structural

behaviour, as it becomes lighter and slenderer.

Chapter 6: The summary of results and achievements obtained from the previous chapters

and finally suggestions for future work are discussed.

16

Chapter 2

Equations, Discretisation and Methodologies

In the fluid mechanics field, numerical procedures are employed to solve the Navier-

Stokes equations. Briefly, the method consists of splitting the computational domain into

finite discrete elements creating a mesh. The differential equations are discretised, over

these elements to produce a set of algebraic equations. The solution of the algebraic

system provides a set of values of variables at some determined locations in time and

space. The discretisation procedure can be classified into the solution domain

discretisation and equation discretisation [63,132].

The details of the flow and structural equations are described in Section 2.1. Section 2.2

presents the discretisation practice of the finite volume modelling and the classifications

of the discretisation procedure are discussed in detail. The details of OpenFOAM library

for fluid-structure interaction and coupling procedure are presented in the remainder of

this Chapter from Section 2.3 – 2.11.

2.1 Governing Equations

2.1.1 Flow Equations

The Navier-Stokes equations governed the flow field for incompressible viscous flow.

The continuity and momentum equations are

,0f = U. (2.1)

where
fU is flow velocity,

f is fluid density, p is pressure,
f is the kinematic viscosity

()fff  = , μf is the dynamic viscosity.

(2.2) () ()ff

f

f U.UU.
U

ff +


−=+







p

t

17

The mass and momentum conservation equations (2.1) and (2.2) are both satisfied in the

fluid reference domain Ωf,0. Such governing equations for the flows without moving mesh

can be discretised by considering the Eulerian description in which the mesh is fixed [64].

However, in the Lagrangian formulation, the mesh moves with the flow. Such types of

strategies are invalid for the computational domains that deform extremely in time. Often,

the Arbitrary Lagrangian- Eulerian (ALE) formulation [64] is utilised for handling the

equations of flow on a deformed mesh, as presented in Section 2.7.

2.1.2 Structural Equations

The balance of momentum for the structural body is

 (2.3)

Where Us is the displacement of the solid, s is the solid density. The force of the body

and the Cauchy stress tensor are denoted with Fb and σs, respectively.

The strain tensor 𝜀 in terms of Us is given by

 () ,
2

1 T

ss UU += (2.4)

The Hook’s law in terms of stress and strain tensors is defining by the following system

[54,66,81]

 (2.5)

where I is the identity matrix, tr is the tensor trace, 𝜇𝑠 and 𝜆𝑠 are the Lame՜ constants

which represent the elastic material characteristics. These constants are interlinked to the

Poisson’s ratio 𝑣𝑠 and the Young Modulus Es by the following

 (2.6)

()
.σ. bs2

s

2

F
U

s

s 


=−




t

() ,tr2 sss I +=

()()
,

211 ss

s

s





−+
= sE

18

 (2.7)

By substituting into Equation (2.3) yields

 (2.8)

2.2 Introduction to Finite Volume Discretisation

The aim of any discretisation method is to transform partial differential equations (PDEs)

into a system of algebraic expressions. This system obtains a set of values that correspond

to the solution of original equations solution at some determined locations in space and

time. Equation discretisation derives a system of algebraic equations from the differential

equations.

The first step in all computational fluid dynamics (CFD) procedures is splitting the

computational domain into a finite number of cells called mesh.

These discretisation procedures are further discussed in the sections below. As

OpenFOAM depends on the finite volume method (FVM), the discretisation that will

discuss in this chapter will follow the FV procedure.

2.2.1 Discretisation of the Computational Domain

The discretisation process of the solution domain can be subdivided into spatial

discretisation and temporal discretisation [68-69]. Spatial discretisation consists of

dividing the computational domain into a finite number of elements constituting a mesh

called control volumes (CVs). Control volumes are completely fill the solution domain.

Temporal discretisation is only applied to transient problems. It contains dividing the time

into finite intervals called time-steps.

()s

s
12 


+

= sE

()
() ()  .tr. bs

T

ss2

s

2

FUIUU
U

sss

s 


=++−



s

t

19

Figure 2.1 shows a typical control volume where the computational point P placed in the

centre of the CVs, such that:

() 0=− dV

PV

Pxx . (2.9)

In the control volume, the cell faces can be divided into internal faces which are between

two control volumes, and boundary faces that coincide with the domain boundaries. The

vector of the face area fS is created for each face in a way that it points outward from the

control volume with the lower label. It is normal to the face, and its magnitude is equal

to the face area. In Figure (2.1), the owner and neighbour cell centres are respectively

marked with P and K for the shaded face, as the vector of the face area fS points outward

from the P cell. For simplicity, all control volume faces will be denoted by f, which also

shows the point in the centre of the face.

In OpenFOAM, variables are principally stored at the centre of the element, although they

might be stored on vertices or faces. Generally, the size of the mesh is an important

process in CFD procedures. The fine mesh leads to high computational recourses, while,

the too coarse mesh may produce to wrong results.

2.2.2 Transport Equation Discretisation

A scalar variable is a variable or a field that holds only one variable at the time. It contains

a single component that assumes a range of values. The transport equation form for a

scalar variable ∅ reads:

() () ()


S
t

+=+



.U. , (2.10)

where  is density, U is velocity and  is the diffusion coefficient.

Temporal

derivative

Convection

term

Diffusion

term

Source

term

20

Since  and  are constants, and the source term is not essential in this study, Equation

(2.10) becomes

 () ()


=+



.U.

t
 (2.11)

This equation is a second-order equation because of the availability of the second

derivative of  in space in the diffusion term. Therefore, the discretisation that

implemented in this work is a second-order accurate in space and time and will be

illustrated in this Chapter. In addition, each term of the transport equation will be

presented separately.

Figure 2.1: Control volume

K
S

z

x

y

21

To apply the finite volume method, Equation. (2.11) should be integrated into each

control volume VP around the point P as in the following expression:

 () () VVV
t

VPVPVP

ddd  =+






.U. (2.12)

For unsteady problems, the last equation must be integrated over the interval  ttt +,

and then the integrated transport equation (2.11) will be expressed as

 () () .0=







−+




  

+

tdVdVdVd
t

tt

t V VVP PP

 .U. (2.13)

The discretisation method accuracy depends on space and time variation of the function

()t,x = around the point P. Therefore, the variation should be expressed in space

and time as follows

 () () ()
PPP  −+= .xxx , (2.14)

 ()
t

t

t
ttt 












+=+


 . (2.15)

Where ()PP x = and ()tt  = .

2.2.3 Face interpolation

It is very important to choose the domain locations where the variable values will be

stored before solving the governing equations. The most common selecting options are

shown in Figures below. Figure (2.2a) presents the method of storing the variables at the

centre of each cell and at the faces of the boundaries. This method is known as a collocated

22

method. While Figure (2.2b) illustrates the segregated method, which is storing the values

of all variables in the centroid of each face.

OpenFOAM applies the collocated method for storing the variables, and the discretisation

process of the Equation (2.13) will be discussed below.

Figure 2. 2: Storing variables options, (a) collocated method and (b) partitioned method

2.2.4 Discretisation of Spatial Terms

For the spatial terms discretisation, the Gauss divergence theorem will be applied through

the discretisation process involving the following identities

  =
V V

dVd a.Sa. , (2.16)

  =
V V

dVd  S . (2.17)

Interior

Boundary conditions

(a)
(b)

Figure 2.2: Storing variables options, (a) monolithic method and (b) partitioned method

23

In which a is a general vector property, V represents the closed surface that bounding

the volume V, and dS shows infinitesimal surface element with the normal of the

associated outward points on V .

Then, surface and volume integrals must be evaluated considering the prescribed 

variation over the control volume P as shown in Equation (2.17),

 () () ()  PP
V

PPP
V

VVdVd
PP

 =−+=  .xxx , (2.18)

where VP is the cell volume. The second integral term of the last equation equals to zero

because the point P located in the control volume centroid.

By considering terms under the divergence operator and the control volume is bounded

by a set of flat faces, then Equation (2.16) can be expressed by a sum of integrals overall

flat faces as

 (2.19)

For the face integral in Equation (2.19), the linear variation assumption of the function ∅

gives

() ()

.a.

a.xxa.a.

f

ff
ff

f f
ddd

S

SSS

=






 −+





=  

 (2.20)

By combining Equations (2.18) – (2.20), the form of the second order accurate of the

Gauss theorem is found

.a.

a.a

 

 






=

=


f
f

V V

d

dVd
P P

S

S.

24

 () =
f

fPV a.a S. (2.21)

In this case, f indicates the value of the variable in the middle of the face, and S is the area

vector of the outward-pointing face. In the structure of the current mesh, Sf points

outwards from P only if f is owner face to P, and for the neighbouring faces, Sf points

inward. Therefore, the sum over the faces is given by the following expression

  −=
neighbourowner

a.a.a. ff

f

f SSS . (2.22)

2.2.4.1 Convection Term

By using Equation (2.21), the convection term discretisation is given as

() ()

,

.

f

f

f

f

VP

Q

Vd









=

= USU.

 (2.23)

()
f

Q US .= is the mass flux through the face and it can be calculated from the interpolated

values of U.

Then, the convection differencing scheme is used to determine the face value of  from

the values in the centres of the cell.

2.2.4.2 Convection Differencing Scheme

The objective of the convection differencing scheme is to calculate the value of the

variable ∅ on the face from the values in the cell centres. Here, the differencing schemes

are limited by using only the nearest neighbours of the control volume because, in

unstructured meshes framework, it would not be possible to use any other values more

than P and K due to the storage associated with the additional information.

25

By assuming the linear variation between P and K of the variable ∅ is calculated from

 () .1 KxPxf ff  −+= (2.24)

Where, xf is the interpolation factor and is defined as the distance ratio Kf and KP ,

i.e.
KP

Kf
f x = .

Several variations have been developed for the central and upwind differencing schemes.

The users can discover all accessible interpolation schemes of OpenFOAM from the user

guide [125].

 K

 f

 P

2.2.4.3 Diffusion Term

By the same way applied for discretisation of the convective term, the discretisation of

the diffusive term is implemented as

() ()

() ..

.

f

f

f

f

VP

Vd





=

=





S

S.

 (2.25)

P f K

Figure 2.3: Face interpolation

26

2.2.5 Temporal Discretisation

The explicit and implicit procedures are considered as main classifications for time

derivative terms of discretisation method. The explicit method utilises the values from

the previous time-step while the implicit method can be solved iteratively and it includes

values from the next time-step. Therefore, the temporal integral can be performed by

using the explicit (forward Euler) and implicit (backward Euler) methods.

Using Equations (2.23) and (2.25) to discretise the transport equation (2.13)

 () .0d. =







−+












  
+

tQV
t

tt

t f f

ffP 


S (2.26)

This expression is called semi-discretised from the general form of the transport equation

[68]. Then, from the variation of the function ∅ in time, Equation (2.15), the discretisation

of the temporal integral and the time derivative can be calculated as:

tt

n

P

n

P

P


−
=












−1

, (2.27)

 () () ttdt
tt

t

nn +=
+

−  1

2

1
 (2.28)

Where ()tn  =−1
 and ()ttn += .

In the explicit method, the temporal discretisation of the transport equation can be

calculated using the old-time value.

 () 







−


+=  

−−−

f f

n

f

n

f

P

n

P

n

P Q
V

t 111 .  S . (2.29)

All terms on the right-hand-side of Equation (2.29) depend on the old-time level.

Therefore, the new value of P can be directly calculated. This explicit procedure is

27

unstable when the Courant number value (Equation (2.30)) is larger than 1. The Courant

number is defined as

x

tU
Co




= , (2.30)

where U is the flow velocity, x is the size of the mesh, and t represents the time-

step.

The implicit discretisation expresses values of the face in terms of the new-time level of

the cell values as follows

 () 







−


+=  −

f f

n

f

n

f

P

n

P

n

P Q
V

t
 .1

S . (2.31)

This procedure is unconditionally stable [68].

2.2.6 Pressure-Velocity Coupling

The solution of the conservation of mass and momentum equations (2.1) and (2.2)

displays the following issues:

o The convective term of the momentum equation contains non-linear quantities, 𝐔2.

o Continuity and momentum equations are essentially coupled because the velocity

component appears in both mass and momentum equations. However, the pressure

appears only in the momentum equation and no transport equation or other for the

pressure.

If the gradient of pressure is known, the method of discretizing equations for velocity

from the momentum conservation equation is similar to that for other scalars. However,

in flow calculations, it is essential to compute the pressure field as part of the solution.

Thus, the pressure gradient is not known beforehand. The pressure can be obtained from

the temperature and density by using the state equation ()Tpp ,= . For the

incompressible flow, the density is constant. Thus, this definition is not applicable.

28

Therefore, in this case, the coupling between velocity and pressure presents a limitation

on the flow solution. Particularly, applying the correct pressure field component in the

momentum equation leads to the velocity field satisfying the continuity equation. These

algorithms are known as SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

and PISO (Pressure Implicit with Splitting of Operators) OpenFOAM usually employs a

SIMPLE algorithm for the steady-state simulation and PISO algorithm for the transient

simulation [70].

To solve the non-linearity problem either employ a non-linear equation solver or linearise

the convection term. However, due to the difficulty of implementing the non-linear solver

and the computational cost required, the convection term linearisation is used here. The

convection term linearisation is given by the following expression

()







+=

=

=

K

KKPP

f

f

f

f

f

aa

Q

.

.

UU

U

UUSUU. 

 (2.32)

In which the mass flow rate Q, Ka is a matrix coefficient corresponding to neighbouring

cell K, Pa is a central coefficient, and S is the outward-pointing area vector of the face.

Note that Q, Ka and Pa are all functions of U.

The fluxes Q should satisfy the mass conservation equation, and mass and momentum

equations should be solved together. Linearisation of the convection term indicates that

an existing velocity (flux) field that satisfies continuity, and hence will be applied to

calculate 𝑎𝑃, and 𝑎𝐾.

The second part in the right-hand side given in the last expression in equation (2.32) is

explained by the net flux over the control volume boundary equals the sum of integrals

through the four control volume faces in 2D and six control volume faces in 3D. However,

the interpolation is used to determine since the integrand value is not available at the

control volume.

29

Figure 2.4: Arbitrary 2D finite volume grid with notations

To understand the discretisation of the conservation equations that used in computational

fluid dynamics, the example of the transport equation will be involved (incompressible

flow, constant density).

The transport equation form for a scalar variable ∅ in Equation (2.11) can be expressed

as

𝜕∅

𝜕𝑡
+

𝜕

𝜕𝑥𝑖
(𝐔∅) =

𝜕

𝜕𝑥𝑖
(

𝜕∅

𝜕𝑥𝑖
) (2.33)

This equation will be discretised for the simple flow field shown in the figure below by

assuming steady state conditions.

n

P

N

W E

S SE SW

NE NW

e w

s

δxw δxe

Δy

δyn

δys

Δx

30

Figure 2.5: Simple flow field by steady conditions

To find the balance over the control volume, the Equation (2.33) is given by

𝐴𝑒𝑢𝑒∅𝑒 − 𝐴𝑤𝑢𝑤∅𝑤 + 𝐴𝑛𝑣𝑛∅𝑛 − 𝐴𝑠𝑣𝑠∅𝑠

 (2.34)

= 𝐴𝑒
𝑑∅

𝑑𝑥
|𝑒 − 𝐴𝑤

𝑑∅

𝑑𝑥
|𝑤 + 𝐴𝑛

𝑑∅

𝑑𝑥
|𝑛 − 𝐴𝑠

𝑑∅

𝑑𝑥
|𝑠.

Where (Ae, Aw, An, As) indicate the area of the faces, (∅𝑒 , ∅𝑤, ∅𝑛, ∅𝑠) show the

concentrations at the faces, (∅𝐸 , ∅𝑊, ∅𝑁 , ∅𝑆) are concentrations at the cell centres, (ue, uw,

un, us, ve, vw, vn, vs) are velocities at the faces, and (uE, uW, uN, uS, vE, vW, vN, vS) present

velocities at the cell centres.

The last equation contains values at faces which need to be determined from the

interpolation form from the values placed at the cell centres.

Then, by using the first order upwind differencing to determine the values at the faces,

let’s assume that the value in the cell centre of the face is equal to the value in the centre.

∅𝑁

∅𝑊 ∅𝑃

∅𝑆

∅𝐸

31

Figure 2.6: Values at the faces determined from interpolation from the values at the cell centres

Therefore, the result is

𝐴𝑒𝑢𝑃∅𝑃 − 𝐴𝑤𝑢𝑤∅𝑤 + 𝐴𝑛𝑣𝑃∅𝑃 − 𝐴𝑠𝑣𝑠∅𝑠

 (2.35)

=
𝐴𝑒(∅𝐸−∅𝑃)

𝛿𝑥𝑒
−

𝐴𝑤(∅𝑃−∅𝑊)

𝛿𝑥𝑤
+

𝐴𝑛(∅𝑁−∅𝑃)

𝛿𝑦𝑛
−

𝐴𝑠(∅𝑃−∅𝑆)

𝛿𝑦𝑠
.

The last equation can be rearranged to show an expression at the cell centre P as a function

in the surrounding cells, the grid, and the flow field as follows

∅𝑃 (𝐴𝑛𝑣𝑃 + 𝐴𝑒𝑢𝑃 +
𝐴𝑤

𝛿𝑥𝑤
+

𝐴𝑛

𝛿𝑦𝑛
+

𝐴𝑒

𝛿𝑥𝑒
+

𝐴𝑠

𝛿𝑦𝑠
)

 (2.36)

 ∅𝑊 (𝐴𝑤𝑢𝑊 +
𝐴𝑤

𝛿𝑥𝑤
) + ∅𝑁 (

𝐴𝑛

𝛿𝑦𝑛
) + ∅𝐸 (

𝐴𝑒

𝛿𝑥𝑒
) + ∅𝑆 (𝐴𝑠𝑣𝑆 +

𝐴𝑠

𝛿𝑦𝑠
).

Now, this equation can be simplified to

𝑎𝑃∅𝑃 = 𝑎𝑊∅𝑊 + 𝑎𝑁∅𝑁 + 𝑎𝐸∅𝐸 + 𝑎𝑆∅𝑆 + 𝑏

(2.37)

= ∑ 𝑎𝐾∅𝐾 + 𝑏

𝐾

∅𝑁

∅𝑊

∅𝑃

∅𝑆

∅𝐸

𝐴𝑠∅𝑠

𝐴𝑤∅𝑤 𝐴𝑒∅𝑒

𝐴𝑛∅𝑛

32

Where K refers to the neighbouring cells. The coefficients 𝑎𝐾 and b will be different at

every iteration for every cell in the domain.

The linearisation process does not affect steady-state problems. However, for the

unsteady problems, two approaches can be implemented either to neglect the effects of

the lagged non-linearity or to use the iteration over non-linear terms. The iteration

procedure can significantly improve the computational cost, but only for the large time-

steps. Thus, the non-linear system is resolved for every time-step, where its size limitation

comes from the temporal accuracy. However, small time-steps are needed to resolve.

Thus, if the time-steps are small enough, the change between consecutive solutions will

also be small, and therefore it is likely to lag the non-linearity of the system without any

significant effect.

In OpenFOAM, the PISO algorithm was proposed by Issa [71] is usually used for

pressure-velocity coupling in transient calculations. However, for steady-state

calculations, the SIMPLE procedure developed by Patankar [72] is commonly employed

for pressure-velocity coupling.

In this thesis, the PISO algorithm is used in all cases in Chapters 4 and 5. Besides the

PISO algorithm, the PIMPLE procedure which is combined both PISO and SIMPLE

algorithms is applied in the study cases in Chapter 3.

2.2.6.1 Derivation of the Pressure Equation

In order to find the pressure equation, a semi-discretised form of the momentum

conservation equation will be used as follows [63]

() pa PP −= UHU . (2.38)

Where H (U) contains the rest terms of the momentum equation that are not given in

Equation (2.38). The pressure gradient term is not discretised at this stage [73]. Equation

(2.38) is found from the integral form of the momentum equation by applying the

discretisation process that described previously. It has been subsequently divided through

33

by the volume to allow face interpolation of the coefficients. H (U) in Equation (2.38) is

given as

() ()U
U

UUH −



+−=  .

t
a K

K

K . (2.39)

The H (U) term contains the transport part and the source part. The transport part consists

of coefficients of the matrix for all neighbours multiplied by all corresponding velocities.

The source part includes the source part of the unsteady term and all additional source

terms besides the pressure gradient. However, in this case, there are no additional source

terms.

The discretised form of the continuity Equation (2.1) gives

  ==
f

f 0.USU. . (2.40)

To substitute momentum conservation equation into continuity equation, UP is evaluated

by Equation (2.40) as

()
p

aa PP

P −=
1UH

U . (2.41)

Velocities on the faces are stated as the face interpolate of Equation (2.41)

()
()

f

fPfP

f p
aa









−








=

1UH
U . (2.42)

This expression will be applied later for the face flux calculation.

By substituting Equation (2.42) into Equation (2.40) the following pressure equation form

is obtained:

34

()

()
..

1

ff P

PP

a

a
p

a

 







=









=










UH
S

UH
..

 (2.43)

The final discretisation form of the incompressible Navier-Stokes equations reads

 () ()−=
f

fPP pa SUHU , (2.44)

 ()
()

ff Pf

f

fP a
p

a
 








=






















 UH
SS .

1
. . (2.45)

The face fluxes Q are calculated using Equation (2.42) as

()

()






















−








==

f

fPfP

f p
aa

Q
1

..
UH

SUS . (2.46)

When Equation (2.43) is satisfied, then the conservation of the face fluxes is guaranteed.

2.2.6.2 PISO, SIMPLE, and PIMPLE Algorithms

The discretised form of the Navier-Stokes equations for an incompressible flow that is

given by Equations (2.44) and (2.45) show a linear dependence of pressure on velocity

and vice-versa. Thus, a special treatment should be involved in this inter-equation

coupling.

o Simultaneous approach: this operates by solving the complete equation system over

the whole domain simultaneously. This procedure may be considered when the

computational points number is small, and the simultaneous equations number is not

too large. Therefore, the resulting matrix consists of the inter-equation coupling, and

it is larger than the computational points number. The computational cost of this

algorithm is great for both the operations number and memory requirements.

35

o Segregated algorithm: the equations are solved sequentially. A special dealing is

required to establish the inter-equation coupling system. SIMPLE [72], PISO [71] and

their derivatives are the most common approaches to treat with the coupling of the

inter-equation in the pressure-velocity system. Commonly, these are applied by

OpenFOAM and will be described in the following paragraphs.

The PISO algorithm for transient flows can be described as follows:

• Firstly, the momentum equation is solved. In this stage, the pressure gradient source

term is not defined. Thus, the pressure field component is used from the previous

time-step instead. This step is called the momentum predictor. The momentum

equation solution (Equation (2.44)) provides an approximation of the new velocity

field.

• The equation of pressure can be formulated, and the H (U) operator can be assembled

by using the predicted velocities. The pressure equation solution provides the first

estimation of the new pressure field. This stage is called the pressure solution.

• Equation (2.46) presents a set of conservative fluxes that is consistent with the new

pressure distribution. In addition, the velocity field component should be corrected as

a result of the new pressure field. An explicit manner is used to accomplish the

velocity correction using Equation. (2.41). This stage is called the explicit velocity

correction.

The velocity filed can be corrected explicitly by using Equation (2.41) due to having new

pressure field. It can be seen by observing Equation (2.41) that the velocity field

correction is depending on both the pressure gradient change term








 p

aP

1
 and on the

corrected velocity into the neighbouring cells
()










Pa

UH
. In this way, the explicit meaning

refers to use the predicted velocity field; U, in order to calculate H (U) term in Equation

(2.41) and the correction of the velocity is neglected. It is efficiently assumed that the

error in the velocity term is a result of the pressure term error. This is not true, so it is

important to correct H (U) term, the new pressure equation should be formulated and

repeat the procedure. The loop of PISO algorithm contains explicit velocity corrections

and an implicit momentum predictor that followed by pressure solutions. The PISO loop

36

is repeated until a determined tolerance is achieved. The number of the correction loops

in OpenFOAM is specified in the file fvSolution by defining nCorrectors [70,74].

Moreover, a new conservative flux set is available after each pressure solution. Therefore,

it would be possible to repeat the calculation of the coefficients in H (U) term. However,

this is not done because it is assumed that the pressure-velocity coupling is more

important than the nonlinear coupling, consistent with the momentum equation

linearisation. Thus, the coefficients in H (U) term are stayed constant through whole

correction stages and will be changed only in the following momentum predictor.

The SIMPLE algorithm is developed for the steady-state problems. If steady flow

problems are iteratively solved, it is not necessary to solve the linear pressure-velocity

coupling because the changes between the solutions are no longer small. In this case, the

non-linearity of the coupling system becomes more significant because the time-step is

much larger.

The SIMPLE approach by Patankar [72] is expressed for the following facts:

• The momentum equation (Equation (2.44)) is used to obtain the velocity field

approximation. The pressure gradient is calculated by the pressure distribution

from the previous time-step. The momentum equation is under-relaxed with the

velocity based under-relaxation factor U .

• The pressure equation is formulated and resolved to find the new pressure

distribution field by solving the mass equation (2.45).

• A set of conservative fluxes is obtained using Equation (2.46). It would be

essential to resolve the pressure equation to obtain a better approximation of the

corrected pressure field. However, the non-linearity effects are more significant

than in the transient case. It is enough to find the pressure field approximation and

calculate the H(U) coefficients using the new conservative fluxes set. Therefore,

the pressure solution is under-relaxed in order to take the correction of the velocity

field into account.

()oldoldnew pppp p

p −+=  . (2.47)

In which:

37

pold represents the pressure field component that used in the momentum predictor.

pnew is the pressure field approximation that will be used in the next momentum predictor.

pp indicates the pressure equation solution.

p is the pressure based under-relaxation factor, (0 < p < 1).

According to Peric՛ [75], the under-relaxation procedure analysis is discussed for the

second corrector in the PISO algorithm, 8.0=U for momentum, and 2.0=p for the

pressure are recommended.

In addition, the solution of the PIMPLE algorithm merged between both algorithms is

used in pimpleFoam and pimpleDyMFoam solvers in Chapter 3 of this thesis. It can be

summarised as follows:

• Momentum predictor: the momentum equation (2.44) is solved using the pressure

filed from the previous time-step since the exact pressure gradient is not known.

• Pressure solution: the solution of the discretised form of the equation (2.45) is

obtained using velocities found in the previous time-step, and this will be the first

estimation of the new pressure field.

• Velocity correction: the velocity field can be explicitly corrected using equation

(2.46) by applying the new pressure field.

2.3 Fluid-Structure Interaction Problems in OpenFOAM and Foam-Extend

OpenFOAM approaches for solving the interaction between the structure and the fluid

were presented by Hua-Dong Yao in 2014 during the third occasion of the “CFD with

OpenSource software” course [76].

The approaches of FSI simulation are also discussed in OpenFOAM course presentation

by Tuković and Jasak [77]. The methods are split into monolithic and partitioned

approaches. The solving procedure of the loosely and strongly coupling of the segregated

approach is presented sequentially in Figure 2.7 from solid to fluid in every time-step.

38

Michler’s et al. study [78] discussed the contrast between the numerical simulation for

the monolithic and the partitioned processes of the FSI problem. In terms of accuracy

computational cost, and stability, the two approaches were contrasted by using a simple

numerical piston in the experimental benchmark.

Although the monolithic approach has been widely used in the past, most researches agree

that it is impractical due to not only it is hard to implement but also it is a challenging

task to maintain the solver up-to-date with the latest modification in each various research

field [79-80]. Therefore, the partitioned scheme is developed to be the most popular

approach in different research fields.

Figure 2.7: Solving process of FSI using partitioned approach with weak and strong coupling [76]

The FSI package has applied the partitioned approach for fluid-solid coupling in foam-

extend. Here, there are two separate solvers for fluid and structure are required and a

coupling algorithm to couple fluid and solid solvers at their interface in time and space

by transferring data between that two solvers by using interpolation techniques. These

two separate solvers can be developed independently thus making the partitioned scheme

simpler and more agile.

The partitioned approach provides an implicit coupling method that is suitable for strong

interaction instead of the explicit coupling that only accounts for the weak interaction.

The major distinction among the explicit (weak) and implicit (strong) coupling is

Previous time-step Previous time-step

Weak Coupling

Structural solver Structural mesh update

Fluid mesh motion solver

Fluid solver

Next time step

Previous time-step Previous time-step

Strong Coupling

Structural solver Structural mesh

update

Fluid mesh motion solver

Fluid solver

Next time step

R
es

id
u
al

 >
 S

M
A

L
L

39

described that the second has an outer (external) loop in solution procedure. This external

loop is called fixed-point or sub-iterating.

In general, after each time-step, the mesh deformation (displacement) should be

consistent with applied dynamic and kinematic conditions at the fluid-solid interface. This

loop is called a sub-iteration or a fixed-point iteration. The difference between the two

partitioned coupling approaches is demonstrated in Yao’s work [76]. It is essential to

highlight that the Aitken adaptive under-relaxation technique and IQN-ILS are utilised to

accelerate the coupling procedure in this work.

2.4 Finite Volume Method for Fluid-Structure Interaction with Large Structural

Displacements

A natural platform for fluid-structure interaction (FSI) in OpenFOAM is a generic

Computational Continuum Mechanics (CCM) library in which both fluid and solid

solvers exist. It can deal with the structural analysis and fluid flow simulation for the

fluid-structure interaction (FSI). There is no further need for multithreaded simulation of

software for software coupling as doing a simulation into a single software. OpenFOAM

solvers and discretisation methods share the matrix support and the base mesh, and

furthermore different implementation of mesh-to-mesh mapping tools are already used

for further simplifying the related problems.

OpenFOAM utilised for building self-contained FSI solver that simulate the interaction

among St. Venant-Kirchhoff elastic solid and an incompressible Newtonian fluid.

Incompressible Navier-Stoke equations are used to model the fluid flow in Arbitrary

Lagrangian- Eulerian (ALE) formulation (Section 2.7) whereas the large structure

deformation is demonstrated by the geometrically nonlinear momentum equation in the

Lagrangian formulation.

Spatial discretisation is performed for fluid and solid models by using the second-order

accurate FVM, where the flow model is discretised on moving mesh [84-85], while the

structure model is discretised on the fixed mesh and the displacement is updated from the

previous time-step. The deformation of the fluid-solid interface is accommodated by

using the automatic mesh motion solver [86-87].

40

Coupling among these two models is performed by utilising a strongly-coupled staggered

algorithm in which the force stimulated into one direction and the displacement in the

opposite one.

According to Farhat et al. [88], the interface displacement predictor and force corrector

is designed in order to preserve the coupled solution second-order temporal accuracy.

The surface mapping tools are also provided by OpenFOAM. It is used for the data

mapping among surfaces directly or by using the second order interpolation. A numerical

experiment conducted for demonstrating the density ratio of fluid-solid limit on which

the strongly coupled algorithm is required [89].

2.5 OpenFOAM Library for Fluid-Structure Interaction

In the last twenty years, the finite volume method (FVM) has been established to be an

alternate to the finite element method (FEM) which was widely used for the numerical

stress analysis. The finite volume (FV) development, based on the stress analysis models,

gives a possibility to solve the coupling problems of fluid-structure interaction (FSI) by

using numerical approaches [90]. In this section, OpenFOAM library for partitioned

fluid-structure interaction solver will be discussed.

This library contains three classes which are flowModel, stressModel and

fluidStructureInterface. Both fluid and structure solvers are derived from flowModel and

stressModel classes. In addition, the exchange information between the fluid and the solid

solvers at the interface is defined by virtual functions. For Newtonian incompressible

fluid, icoFoam solver is used for unsteady laminar flow.

The Lagrangian formulation is the basis of the structural solver's implementation in which

unsTotalLagrangianStress solver for the total displacement and

unsIncrTotalLagrangianStress for incremental displacement.

The fluidStructureInterface class is used for both weak and strong coupling for fluid and

solid solvers. Fixed-point iteration scheme for the strong coupling will be performed. It

is used with the convergence acceleration by either the Aitken under-relaxation or by the

41

interface quasi-Newton procedure with an approximation for the inverse of the Jacobian

from least squares models (IQN-ILS) [79]. Furthermore, parallelisation of the fluid/solid

coupling is accomplished by using the fluid-solid interface that presented by a couple of

the general grid interface (GGI) zone to zone interpolation and the global face zones.

In addition, the latest foam-extend library for the FSI provides some numerical techniques

which were not available in the previous one until now for general use. High accuracy of

the face and cell displacement gradients are required in the finite volume stress analysis.

In order to calculate gradients of cell centre in OpenFOAM and foam-extend, one can use

either least-square method or cell-based Gauss method. The vertex-based Gauss method

is known to outperform the least-square method, but it carries on the vertex field accuracy.

It is used for polyhedral finite volume mesh calculation of face centre and cell centre.

Philip Cardiff [91] noticed that the vertex field calculation is not good enough by using

the simple weighted averaging. Thus the new parallel procedure called cell-to-vertex

interpolation is implemented. That is based on both the linear shape function and least-

square method.

Moreover, a new corrected scheme is performed for the face centre discretisation in the

normal direction. This implemented scheme corrects skewness and non-orthogonality. In

temporal discretisation of stress analysis, second-order displacement derivative is

employed. Finally, the backward scheme of second-order accuracy is used to allow flow

and structure models to discretise in time.

The fluid-structure interaction library numerical aspects are described by Tuković and

Tuković et al. [92-94]. The FSI solver in the FSI package in the extend project named

fsiFoam is used for strong fluid-solid coupling along with the implicit partitioned

approach. In this solver, the laminar flow of incompressible fluid is used the PISO

algorithm.

After creating a fluid and structural mesh, the next step is to set the case folder for the

simulation. Two separate directories are required inside the original case folder, called

fluid and solid. Both folders require all folders and files for the simulation. Additionally,

extra properties files are required in the fluid directory, which include all necessary

information for the mesh motion algorithm and the FSI. Furthermore, the faces that are

belonging to the fluid-structure interface need to be explicitly defined for both fluid and

42

solid grids. Thus, the GGI utility has the ability to determine which cell faces have to

interpolate and to where. This is by applying the utility tool, called setSet. This allows

the large selection, manipulation, and handling of point, cells and surfaces within the

computational domain.

Moreover, the dynamic mesh is applied due to the displacement of the fluid-solid

interface. In addition, when the fluid-structure interface moves, the internal fluid grids

adjust their position. Figure 2.8 illustrates the algorithm of the fsiFoam solver in foam-

extend tool.

2.6 Partitioned Solver for Strongly Coupled Fluid-Structure Interaction

The monolithic and partitioned approaches are two main numerical methods used for

solving FSI problems. The complete non-linear system in the monolithic approach

regarding the solid displacement equation and fluid flow are discretised and

simultaneously solved in the space and time using the similar manner [95-101]. Such a

direct approach or fully coupled approach is remarkable due to its highly stable and robust

for strong fluid-structure interaction [102-103]. In this way, the monolithic approach

requires more coding and indicates less modularity as compared to the partitioned method

that includes structure and flow equations solved through discretisation method and

independently using suitable algorithms [104-109].

However, the fluid and solid equations are solved separately in the partitioned approach,

and the coupling becomes limited to the fluid-solid interface [45]. For this reason, an

iterative algorithm should be utilised for handling communication between the flow and

structural solvers and for enforcing equilibrium onto the fluid-structure interface. This

indicated that the fluid flow and the structural deformation are successively solved in an

iterating loop until the fact that the difference among the structural and flow solution is

smaller compared to the convergence criterion such as the interface displacement.

43

Figure 2.8: Flowchart of algorithm of fsiFoam solver

Their coupling procedure that is being used in this work is the block Gauss-Seidel method

which also called fixed-point method [41,110-111]. Several studies have presented that

the fixed-point method usage along with the dynamic under-relaxation is easy to

implement into the partitioned approaches and it is highly efficient as compared to others

[105-106,109-110,112-115]. If the relaxation value of the parameter is not well selected,

then it might cause the divergence. This occurs due to the high-density ratio of fluid/solid

or low solid stiffness occurring when the coupling among the structural deformation and

fluid flow is strong. The Aitken under-relaxation method can be accelerated and stabilised

the fixed-point iteration where the parameter of relaxation is adopted by using two

previous iteration methods at each iteration [105,110,116].

Start

Step 1: Update mesh

Step 4: Update the

interface forces

Step 2: Move mesh

Step 3: Solve fluid

domain

Step 5: Solve solid

domain

Step 6: Apply

under-relaxation

Step 7: Compute

the residuals
Convergence?

End

No

Yes

44

The computational domain of fluid flow in the fluid-structure interaction problems is

deformed along with the fluid-structure interface displacement. Therefore, the Navier-

Stokes equations on that deforming mesh can be solved by the Arbitrary Lagrangian-

Eulerian (ALE) formulation [64,117-119].

The elastic structure deformations are solved by considering the simple linear formulation

through the constitutive model for Hookean structure [67,99]. Furthermore, it is

appropriate to use nonlinear formulation where St. Venant-Kirchhoff constitutive model

is used for structural analysis for larger displacement of the structure with high rates of

strain [65-66,106]. Jasak and Weller [67] discretised the problem of linear elastic

deformation as compared to the finite element method for the computational solid

mechanics [120-122] by optimised the finite volume method in the Lagrangian

formulation. Thus, the diffusion terms are discretised explicitly, and convection terms are

implicitly discretised which accelerates the final solution convergence as given in

Equation (2.8).

The third and last solver deals with internal mesh motion that might be computed by using

several numerical procedures. Such approaches depend on rotation, translation motion or

on both together as in [80,87,111,123-126]. The dynamic mesh motion solver is called

velocityLaplacian. It calculates the points displacement in the computational mesh with a

velocity that defined as the initial and boundary conditions of the Laplace smoothing

equation [80,87]. This solver takes the unknown equation of the mesh motion in the

internal fields and solves the boundary condition of the mesh motion at the fluid-solid

interface. The good mesh quality is maintained by using the variable mesh diffusivity

especially near moving boundary [45]. The diffusivity is defined to calculate the mesh

stiffness to the solver of motion depends on the inverse distance from the fluid-solid

interface.

2.7 Arbitrary Lagrangian Eulerian Mapping

In fluid mechanics, there are two algorithms for describing the motion of the fluid

particles, the Lagrangian and the Eulerian formulation.

45

The Lagrangian algorithm is this in which each computational node of the mesh is

associated with one or more fluid particles and follows the particle(s) motion during the

simulation time. This formulation gives the possibility to track free surfaces or moving

interfaces during the simulation time. However, it is unable to follow large distortions in

the computational mesh [119].

On the other hand, the Eulerian formulation employs a computational domain that is fixed

in space and enable large distortions in the motion at the expense of the interface and the

tracking boundary [119].

For a wide range of applications, both descriptions have positive and negative

characteristics since it is frequent that the situation demands positive aspects from both

algorithms to be presented in a single computational problem. In this case, working with

fluid-structure interaction, a solid domain has a displacement as a function of the original

mesh and the flow domain has a solution with respect to the present grid, the Euler

description. The no-slip condition is applied to the deformable domain like the Dirichlet

boundary condition, which provides the additional condition that the cells of fluid near

the interface, that share face with the solid cells, have the same velocity as the solid cells

that they share a face with. Thus, the fluid grid points move with the solid points on the

coupling interface.

The arbitrary Lagrangian-Eulerian (ALE) formulation [64,119] is widely used in the

description of fluid-structure interaction that involves the arbitrary deformation of the

boundary to avid a drag and static pressure issues in the thin boundary layer between the

fluid and the solid [117,127-129]. The Lagrangian description solved the convective flow

that is imposed by the motion of the interface which is near the moving structure. The

equations tend to be the Eulerian description because of the mesh velocity um,f becomes

zero away from the structure.

The fluid-solid interface Γ0 forms the solid displacement 𝐝𝐬
Γ0 from the fluid domain

displacement dm,f toward to the domain of the internal fluid reference Ωf,0. Hence, dm,f

= 𝐝𝐬
Γ0 on Γ0 and ∆ dm,f = 0 in Ωf,0. Crosetto et al. [98] define the ALE mapping as

 (2.48)

()).(

:)(

0000

,f0,f

xdxxx fm,+=

→

t

tt







46

The velocity of the fluid domain can be defined as

 (2.49)

The Navier-Stokes equations in the ALE formulation will be satisfied in the updated fluid

domain Ωf,t thus

 (2.50)

 (2.51)

where the convective term is (𝐔f − 𝐔𝐦,𝐟). The setting of ffm, UU = is given the

Lagrangian description, and the Eulerian description will be obtained when 0=fm,U with

fm,U mesh velocity for the fluid domain.

Therefore, using the ALE formulation allows the computational mesh to move and

preserve the cells orthogonality while keeping track of the free surfaces and moving

boundaries. Briefly, this algorithm enables the deformation of fluid mesh in response to

the structural mesh deformation. Thus, apply the traction vector on the structural domain

and then impose the displacement of the flow boundary, re-mesh and interpolate the

pressure and velocity on the new mesh.

2.8 Fluid-Structure Coupling and Boundary Conditions

Certain conditions should be followed in order to establish the equilibrium of the fluid-

structure interface Γ; which is the continuity of displacement d, equilibrium traction τ

and mesh velocity U.

 (2.52)

 (2.53)

,Γ

f

Γ

s dd =

.

00
xx

fm,

fm,

d
U

tt

t




=




=



,0. = fU

() ,. 2

f

f

f fffm,

f UUUU
U

+


−=−+







p

t

,Γ

f

Γ

s UU =

47

(2.54)

The variables at the fluid-structure interface are denoted by the superscripts Γ where

Equations (2.52) to (2.54) must be satisfied.

Furthermore, the traction τf is given by 𝝉𝐟 = 𝑝f𝐧 + 𝜇f∇𝐔𝐟 ∙ 𝐧 that represents the sum of

the pressure and the viscous force [127-128]. Equations (2.52) and (2.53) indicate the

fluid-structure interface quantities of the continuity of displacement and the velocity.

While Equation (2.54) represents the action-reaction principle which is dual quantities

equilibrium of the pressure and viscous stress.

The viscous forces and pressure of fluid flow are transferred toward solid at the fluid-

structure interface as boundary conditions to compute the stress field and the

displacement for the structural solver. The mesh motion is solved by the displacement

and velocity that is used as the input. Moreover, in the solid domain, the stress field is

transferred toward the flow field on the fluid-structure interface as a boundary condition.

Initially, both the solid and fluid domains are at the rest position and no-slip boundary

conditions implemented on the walls or the fluid-solid interfaces. Moreover, the outlet

conditions are set as zero for both Neumann for velocity and pressure, and the profile of

the parabolic velocity is set at the inlet in the flow domain. It is important to note that the

defined boundary conditions depends on the studied cases in Chapters 3-5.

2.9 Numerical Method in FSI Library

Moving solid boundaries with fluid-structure interaction problem require the third

coupled solver for automatic internal mesh motion. Consequently, the dynamic mesh

motion solver deforms internal fluid domain while maintaining deforming mesh validity

and quality. The fluid-structure interface displacement in the result of the structural solver

used for the mesh motion solver as a boundary condition. Many mesh motion solver can

be found into open literature [80,87,117,127-128] like Laplace smoothing [130].

The mesh deterioration and distortion occur when using the Laplace equation because the

mesh point movement will be large enough near to moving boundary [67,130]. The

.0=+ Γ

f

Γ

s ττ

48

quality of mesh for large boundary translation is maintained by the Laplace face

decomposition method along with an inverse method of quadratic diffusion coefficient

[87]. This method is used, and the diffusion coefficient depends toward on cell distance

for the nearest moving boundary.

2.10 Implicit Coupling Approach with Second-Order Predictor

A linear patch-to-patch interpolation [66-67,87] used for exchanging the information

between the fluid and structure domains at the fluid-structure interface. Furthermore, a

finite volume method is utilised for both the fluid and solid solvers where the data are

stored at the centre of the element of each field.

The communication among the three different solvers, i.e., mesh motion solver, fluid flow

solver, and structural deformation solver results in using the partitioned approach. The

dynamic relaxation [110,116] along with iterative implicit fixed-point algorithm is

utilised for accurate coupling of different solvers and for enforcing the equilibrium onto

the fluid-structure interface. Each time-step executed at the iterative algorithm, where

every iteration j, the fields of structure and fluid both solved until the convergence

criterion satisfied. The development of the flowchart of numerical procedures represented

in Figure 2.9.

Now 𝐝𝑖,𝑗
𝛤 is the displacement interface at the time-step i and the iteration j, the fluid solver

F, the mesh motion solver M, and the solid solver S. The solver performance and

convergence are improved by the help of interface displacement predictor 
d
~

for j=1 and

for each time-step.

 Order 0:


+ = Nii ,1,1

~
dd for i=1

 Order 1:


+ += NiNii t ,,1,1

~
udd  for i=2 (2.55)

 Order 2: ()

−



+ −+= NiNiNii

t
,1,,1,1 3

2

~
uudd


 for i ≥ 3

49

where N denotes that the last iterations number (j=1-N). The second step in Figure 2.9

initialised these equations.

The predicted interface displacement is used for moving the mesh as a boundary

condition, and then the new internal mesh motion is transferred to the fluid flow solver

after obtaining its velocity. After that, the ALE formulation is utilised to solve the fluid

flow problem for the pressure-velocity coupling by using PISO algorithm. The viscous

stress and pressure are both computed and then transferred as a boundary condition into

the fluid-structure interface for the solid solver. The predicted displacement

()

+



++ = jiji F ,11,1

~
S

~
dd  is executed by the solid solver. Additionally, when the ratio of the

fluid density to the solid density is very large and/ or the solid structure stiffness is small,

then the fluid flow impact on the solid structure will be important. In this way, the

displacement of the predicted interface does not relate to the result


+



++  jiji ,11,1

~
dd . Hence,

interface displacement should be used for iterative correction and the iterative approach

which can be indicated as:

𝐝𝑖+1,𝑗+1
Γ = 𝐝𝑖+1,𝑗

Γ + 𝛼𝑖+1,𝑗+1𝐫𝑖+1,𝑗+1
Γ (2.56)

where the relaxation parameter is 𝛼𝑖+1,𝑗+1 and


+



++



++ −= jijiji ,11,11,1

~
ddr is the residual of

the interface. The stopping criteria is required by the iterative procedure, then the interface

displacement residual for length scaled Euclidian norm 𝐫𝑖+1,𝑗+1
Γ as adopted from

[106,110,131] is defined for the relative error for the outer-loop:

 𝜉𝑖+1,𝑗+1
Γ =

∥𝐫𝑖+1,𝑗+1
Γ ∥max

√𝑛𝑞
 . (2.57)

In which nq is length of the vector 𝐫𝑖+1,𝑗+1
Γ . This type of equation is computed into the

step that is just before the test of convergence as mentioned in Figure 2.6. The outer-loop

iterations stopping value is given as fixed (𝜉𝑖+1,𝑗+1
𝛤 = 10−6). A new time-step begins and

the iterations stop below this value.

50

In order to re-write the Aitken under-relaxation factor, Irons and Tuck [116] introduced

the Aitken method for evaluating the dynamic relaxation parameter 𝛼𝑖+1,𝑗+1 in every

iteration j which is further revisited by Kuttler and Wall [110]. This particular method

utilises the previous two iterations for determining the present solution by considering



+



++



++ −= jijiji ,11,11,1

~
ddr and



++



++



++ −= 1,12,12,1

~
jijiji ddr , thus the relaxation parameter is

𝛼𝑖+1,𝑗+1 = −𝛼𝑖+1,𝑗

(𝐫𝑖+1,𝑗+1
Γ)

T
⋅(𝐫𝑖+1,𝑗+2

Γ −𝐫𝑖+1,𝑗+1
Γ)

⃒𝐫𝑖+1,𝑗+2
Γ −𝐫𝑖+1,𝑗+1

Γ ⃒
2 . (2.58)

The first under-relaxation cycle 𝛼𝑖+1,1 for the relaxation parameter cannot be calculated

as required by the previous two iterations. Furthermore, the previous time-step 𝛼𝑖,𝑁 of the

last relaxation parameter might be too small for using as the first value for next time-step.

It is suggested [110,116] to use 𝛼max as a constrained parameter

 𝛼𝑖+1,1 = max(𝛼𝑖,𝑁 , 𝛼max). (2.59)

The first step in Figure 2.9 initialized that previous equation.

The partitioned fluid-structure interaction problems utilised the Aitken acceleration

method because it is an easy and efficient way to show and produce accurate results and

reduce the simulation time [110,104,114].

2.11 Boundary Conditions Definitions in OpenFOAM

Each of the boundary conditions which is described mathematically in an equation has a

physical meaning, i.e., numerical methods have to be translated to the algebraic form. For

example, the inlet boundary condition describes the behaviour of the flow by using the

appropriate mathematical equation that expresses the physical conditions of the velocity

and pressure. These conditions include Dirichlet and Neumann conditions, which are

defined to connect to the boundary conditions and the mathematical model. Therefore,

51

No

No

Start at t =0: i =1, j =1

Initialise Aitken’s under-relaxation parameter ai,1 (Eq. 2.59)

Predict interface displacement

Solve mesh motion equation and compute new mesh

displacements (Eq. 2.52-2.54)

Solve fluid flow problem in ALE formulation (Eq. 2.48-2.49)

Transfer pressure and viscous stress to the fluid-structure

interface by patch-to-patch interpolation

 point-to-point interpolation

Solve non-linear structural displacement equation using the St.

Venant-Kirchhoff constitutive model (Eq. 2.3)

Compute interface displacement residuals (Eq. 2.55)

Convergence

???

Yes

Yes

i = T

End

Compute

Aitken’s under-

relaxation

parameter a i+1,

j+1 (Eq. 2.58)

i = i+1, j =1

j = j+1

R
el

ax
 i

n
te

rf
ac

e
d

is
p

la
ce

m
e
n
t

 (
E

q
.

2
.3

0
)

Figure 2.9: Partitioned solver for strongly coupled nonlinear fluid–structure interaction flowchart,

i is time- step from 1 to T, and j is Aitken iteration from 1 to N [45].

52

the mathematical terms or operators such as gradient, divergence and Laplacian will be

affected. In OpenFOAM, most of the boundary conditions definition saved into

src/finiteVolume/fields/fvPatchFields directory. That also includes the main boundary

conditions implemented “types” which are stored in basic, derived, constraint and

fvPatchField sub-directories and the brief description of each will be given in the

following paragraphs.

The first one is the fvPatchField directory which includes the general boundary conditions

definition that represents the basic class. All basic functions and data structures will be

defined, used and inherited by the certain classes.

The second is the basic directory which includes the basic boundary conditions that are

defined mathematically. For instance, of such types and their boundary conditions,

Dirichlet “fixedValue” Neumann “zeroGradient and fixedGradient” and Robin “mixed”

boundary conditions. Moreover, “coupled” boundary condition which implemented to

couple boundaries; i.e., two boundary patches are coupled together.

The next is the derived directory. This contains the derived boundary conditions from

Dirichlet, Neumann and Robin boundary conditions and these considered as the simple

types specialisations.

Finally, the constraint directory is implemented for the geometric boundary conditions

which derived from the coupled boundary. In this directory, each of the cells is depending

on the corresponding patch cell which treats to the boundary cells as the internal cells

[74,125].

2.12 Chapter Summary

The technique of the finite volume discretisation has been described. It uses the control

volume of the arbitrary topology, simplifying the mesh generation problem for complex

geometries. The discretisation of the spatial and temporal terms based on the face

interpolation procedure has been presented in Section 2.2. Moreover, in this section, the

discretisation technique for coupled systems of equations has been discussed. The

adopted treatment of the pressure-velocity system is based on the SIMPLE algorithm for

53

steady-state flows, the PISO approach for transient calculations, and PIMPLE algorithm

which is combined both SIMPLE and PISO algorithms. In addition, a sequence of

procedures for both steady and transient simulations have been summarised. PIMPLE and

PISO are only used for this thesis.

A partitioned solver is discussed in this chapter considering strong coupling fluid–

structure interaction problems by using the fixed-point implicit scheme with adaptive

based on Aitken under- relaxation scheme and IQN-ILS. Finite volume method is applied

to discretize the fluid flow and structural displacement in space and time. An Arbitrary

Lagrangian–Eulerian formulation is used to solve Navier–Stokes equations as the internal

mesh in the fluid flow region deforms with the flexible boundaries. The interaction

between the fluid and solid solvers is achieved on their interface. The solver of the mesh

motion uses the Laplace smoothing equation with mesh diffusivity. It takes the

displacement at the fluid–solid interface as a boundary condition and then solves the mesh

motion in the flow domain. This solver called fsiFoam which was developed by the open

source C++ library for foam-extend project.

54

Chapter 3

A Flow past a Two-Dimensional Cylinder and Vortex-Induced

Vibration

The objective of this chapter is to simulate a two-dimensional laminar flow past a circular

cylinder and a vortex-induced vibration investigation using OpenFOAM tool. The

pimpleFoam and pimpleDyMFoam solvers are used for stationary and moving cylinders,

respectively. These two solvers are using PIMPLE algorithm for pressure-velocity

coupling. There are three different cases which are studied in this chapter: flow past a

static circular cylinder, flow past a free vibration cylinder and flow past a forced vibration

cylinder. The results of the hydrodynamic forces (lift and drag) are discussed for each

case. The Strouhal number is also shown in this study.

3.1 Introduction to Flow around a Cylindrical Structure

The flow of a fluid past a cylindrical structure can generate some vortices in the wake.

These vortices will be shed later on as shown in Figure 3.1. This phenomenon is called

vortex shedding (see Section 3.3 for further explanation).

The phenomena of the vortex shedding might cause the continuous vibration, and this is

commonly called vortex-induced vibration (VIV) (see Section 3.5).

Figure 3.1: Vortex shedding phenomenon behind a cylindrical structure

Current Vortex shedding

55

The observations of the vortex shedding around the cylinder may result in better

understanding the VIV as it is the phenomena that generate the VIV on the cylinder.

Therefore, the observation of the vortex shedding will be studied for different flow

characteristics, which is represented by the Reynolds number (see Section 3.2) [37].

The vortex shedding behind a cylinder could be studied by either experiments or

simulations. The time consumption and financial cost of doing experiments are high, and

thus simulation plays an important role in design.

3.2 Flow Regimes

Stokes [133] was the first researcher to coin Reynolds number (Re) as a dimensionless

number whose ratio measures the inertia to viscous fluid force. The Reynolds number has

been widely used and many flow regimes will result in considerable Reynolds number

changes. The Reynolds number changes create flow separation in the cylinder wake

region and are named vortices. At low Reynolds number values (Re < 5), no separations

occur. However, when the Reynolds number increases, then the separations occur, and

flow becomes unstable and appears as vortex shedding phenomena, and that can be shown

in Table 3.1. A separation behind a circular cylinder surface from a fixed pair of

symmetrical vortices starts to appear as Re increases from 5 to 40 [134].

The separation at the cylinder surface, as Re gradually increases is characterised by

transitional successions from laminar to turbulence in different regions. These regions

include wake, boundary layer, and shear layer transitions. Usually, increase in Reynolds

number causes the first transition to occur, between 200 and 300 Reynolds number, in the

wake region as turbulence develops gradually spreading laterally across the wake. The

second shear layer transition occurs between 300 and 3×105 Re.

The local effects of Reynolds number in the boundary layer regime can be categorised

into three. The first has a smaller Reynolds number (< 3×105) and is known as the

subcritical range. The Re in this range features laminar boundary layer which is in the

early stages of separation layer transition and has a fully turbulent wake. Second is the

critical range with Re range from 3×105 to 3×106. In this range, gradual separation of the

boundary layer begins with reattachment of turbulent, development of separation bubble,

56

and eventually separation of the turbulent boundary layer. Increase in Reynolds numbers

beyond 3×106 results to a supercritical region which is characterised by a transition from

the laminar boundary layer to turbulent, then finally attaining the separation point.

Table 3.1: Flow regimes around a smooth circular cylinder in steady current. Figure by MIT OCW [135]

No. Flow Regimes Description Range of Re

a.

Creeping flow -

no separation

Re < 5

b.

Stable vortices

pair in the wake

5 < Re < 40

c.

Laminar vortex

street (Von

Karman vortex

street)

40 < Re < 200

d.

Laminar flow

boundary layer

up to the

turbulent wake

200 < Re < 300

Transition to

turbulence

300 < Re < 3 x 105

e.

Boundary layer

transition to

turbulence

3 x105 < Re < 3 x 106

f.

Turbulent

vortex street,

but the wake is

narrower than

in the laminar

case

3 x 106 < Re

57

Computational simulations using numerical methods are mostly implemented at the

subcritical Reynolds number range because at this transition stage as it is easy to resolve

a relatively thick laminar flow for the attached boundary layer using grids [8]. As the

Reynolds number increases to critical and supercritical regions, the boundary layer

becomes relatively thinner by almost six times compared to the subcritical region, making

it difficult to resolve for the attached turbulence [136]. This perhaps explains why there

are fewer CFD studies for flow over a circular cylinder at higher Re compared to those

of low Re.

It is critical to note that in OpenFOAM the Reynolds number is not defined itself, but it

is calculated when specifying the kinematic viscosity; . = Thus the Reynolds

number is calculated for simulation as



 UD
=Re . (3.1)

Where  is the fluid density, D is the cylinder diameter, U is the flow velocity, and 

is the dynamic viscosity.

3.3 Vortex Shedding

Vortex shedding or flow-induced vibration (FIV) is a phenomenon arising from FSIs and

continues to pose challenges in a broad range of engineering fields. They include valves,

piping systems, heat exchange tubing, stream generator tubing and other marine and civil

engineering structural components. The FIV loads significantly affect normal operational

functions of these critical engineering components. Most research interests in this area

focus on finding solutions that eliminate or mitigate the FIV phenomena.

The phenomenon of vortex shedding occurs when the stable vortex pairs are exposed to

very small disturbances and evolve into unstable at Reynolds number greater than 40.

This is an important feature for flow past a circular cylinder because it is responsible for

boundary layer separation. The separation is attributed to an imposed adverse pressure

gradient as the flow environment undergoes divergent geometry on other side of the

cylinder [134,137-139]. The divergent flow geometry generates vortices behind a circular

58

cylinder causing a periodic shear layer separation. The FIV problem occurs in almost all

engineering applications with severe to catastrophic damages. It is thus a major concern

to engineering designers in applications involving high fluid flow velocities and

centrifugal compressor projects, e.g., marine cables, heat exchanger tubes, flexible risers

used in the production of petroleum, chimney stacks, bridges, transmission lines, etc.

[140].

Therefore, the shear and the boundary layers are formed over the cylinder [17]. The

boundary layer consists of a vorticity, and this is fed into the shear layer that is formed

on the downstream of the separation point (refer to Figure 3.2a). In addition, this leads to

rolling up the shear layer into the vortex with an identical sign to the incoming vorticity

(refer to Figure 3.2b) [134].

From the previous section, it could be observed that the vortex shedding could occur at a

certain frequency. This is known as the vortex shedding frequency, fv and it is given by

fv= 1 / Tv , (3.2)

where Tv is the vortex shedding period.

The vortex shedding or FIV is represented by the Strouhal number (St), which is a vortex

shedding parameter indicating the conversion ratio from kinematic flow energy to

oscillatory flow energy [141-142]. This is expressed as:

Figure 3.2: The shear layer of the flow over a cylinder

Stagnation

point

(a)

Vorticity

Shear layer

U0
y

Boundary layer

(b)

59

St = fv . D/ U (3.3)

According to Koushan [143], the Strouhal number reveals that there is a relation between

the fixed cylinder or pipe vortex shedding frequency (fv) and the value of the free stream

velocity divided by the diameter of the cylinder or pipe (U/D). The relation between the

Reynolds number and Strouhal number for a cylinder is presented in Figure 3.3.

3.4 Hydrodynamic Forces

Fluid flow past a cylinder creates vortex shedding behind the cylinder and these forces

lead to the cylinder to vibrate in both the cross-flow and inline directions [143-147,149].

According to Feng’s study [148], parameters such as flow velocity, nondimensional

damping, non-dimensional mass, cylinder natural frequency, and support structures were

found to influence responses of the elastically-mounted cylinder in free oscillation. This

study revealed that when the vortex shedding frequency is very close to the natural

frequency that would cause the cylinder to vibrate.

The vortex shedding phenomena are due to the hydrodynamic forces that are acting on

the cylinder. The force in the cross-flow direction contains the lift force and added mass.

The lift force results in the pressure differences at the top and the bottom of the cylinder.

However, the added mass appears due to the body accelerating and deflecting volume of

the surrounding fluid. Therefore, if the structure does not move then the added mass does

not occur. On the other hand, the hydrodynamic force that occurs in the inline direction

results in the drag force. Drag force appears because of the pressure differences that are

induced between the upstream and downstream cylinder faces [143]. Drescher [208]

performed an experiment where the drag force (FD) and the lift force (FL) are traced and

measured from the pressure distribution, and that is cited by Sumer and Fredsøe [134].

According to Sumer and Fredsøe [134]

o The drag force that is acting in the inline direction of the cylinder has periodic

changes in the oscillating time through the mean drag.

o In spite of the symmetric flow is caused with respect to the cylinder axis, there

exists a nonzero force component with zero mean in the lift force (transverse

60

direction) and thus this force changes periodically with time.

Figure 3.3: Strouhal number – Reynolds number relationship for a circular cylinder. Data from [11,150].

Figure by MIT OCW [135]

Drag, mean drag and lift coefficients (CD, DC and CL, respectively) are non-dimensional

parameters for the drag and lift forces and are formulated as

DLU

C
2

D
D

2

F


=

2

D
D

2

F

UDL

C


=

DLU

C
2

L
L

2

F


=

where U, D, L and  are the flow velocity, cylinder diameter, cylinder length and the

fluid density, respectively.

Reynolds Number (Re)

S
tr

o
u

h
al

 N
u
m

b
er

 (
S

t)

St = 0.2
Rough surface

Smooth surface

(3.4)

(3.5)

(3.6)

61

3.5 Vortex-Induced Vibration

In vortex-induced vibration phenomenon, when the vortices are not symmetrically

formed around the bluff body, different lift forces are developed on each side of the body;

this leads to motion transverse to the flow. This motion changes the nature of the vortex

formulation in such a way as to lead to a limited motion amplitude.

Apart from the FIV, vortex-induced vibrations are another major cause of engineering

problems arising from FSI. It is caused by inherent self-excitation, self-regulation, and a

self-limiting phenomenon that is largely nonlinear in nature [151]. The Tacoma-Narrow

Bridge collapse (1940) resulting from wind-induced vibrations is a good example of a

structural failure that arises from the vortex-induced vibrations. Therefore, the VIV

phenomena have attracted a huge interest in both academia and industry for decades

[152].

Generally, the VIV phenomenon is encountered in the hydrodynamic systems where the

excitation occurs because of the vortex shedding that comes from bluff bodies. The

process of the vortex shedding will create asymmetric pressure distribution over a circular

cylinder, then eventually leads to the body movement. The body motion is nonlinear and

occurs through a range of frequencies and thus leads to increases in the strength of the

shed vorticity. Therefore, this phenomenon can increase the body fatigue and introduce

potential damage [36-37,147,153].

Vortex-induced vibrations generate wake regime patterns that are largely dependent on

vortex mode and oscillation amplitude [154]. Govardhan and Williamson [140,155]

investigated various vortex patterns generated from a rigid-cylinder system in vortex-

induced vibrations. The key parameters identified to influence vortex patterns include

mass damping, density ratio, and degrees of freedom.

In this chapter, the vortex induced vibration theory for the cylindrical structure will be

presented. It presents the solution to the forced oscillation equation and the free vibration

equation.

62

3.6 Dynamics of One Degree of Freedom System and Solution to Vibration Equation

The one degree of freedom system is presented in Figure 3.4, and it is called a spring-

mass-damper system. In which the spring has no mass or damping, the mass has no

damping or stiffness, and the damper has no mass or stiffness [156-157]. Moreover, a free

vibration of an elastically mounted circular cylinder is presented by a vibrating structure

description. Additionally, in this thesis, the mass movement is allowed to be in one

direction only and based on the vertical vibration of the cylinder is modeled as a one-

degree-of-freedom system.

The equation of motion for Figure 3.4 is given by

)(F)()()(ttyktyctym =++  , (3.7)

where m is the total cylinder mass, c indicates the linear-viscous damping, k is the spring

stiffness, F shows the forces that are acting on the mass points, and y is the vertical

displacement of the mass centre of a moving cylinder. The dots indicate the differentiation

over y with respect to time. The solution to Equation (3.7) is given by the sum of the

particular part (forced response) and a homogenous part (free response) [156]. For the

free vibration system, there are no external forces (F=0), then the solutions can be

differentiated into two conditions: with and without viscous damping.

For free vibrations with non-damped motion, i.e., no external forces applied, the equation

of motion follows

 0)()(=+ tyktym  . (3.8)

Figure 3.4: One-degree-of-freedom system models in cylinder

Fluid flow

Cylinder

F

y

c k

63

The non-damped system vibrates freely at its natural frequency n , where its unit is

radians per second, and it is formulated as

 mkn = (3.9)

 n

nnn TT





2
OR2. == (3.10)

Then the natural frequency fn is





2

1 n

n

n
T

f == . (3.11)

By substituting Equation (3.9) into Equation (3.8) the following is obtained

 0)()(2 =+ tyty n . (3.12)

The last equation has the following general solution since m and k are both positives,

)(sin)(cos tBtAy nn  += .
 (3.13)

In which A and B are determined by the initial condition: y (0) = 0 → A = 0. Therefore,

Equation (3.13) becomes

)(sin tBy n= . (3.14)

3.7 Reduced Velocity

The undisturbed flow distance is traveling over one cycle, U/f, which defines the steady

vibrations path length per cycle [143]. The reduced velocity, VR, produces the ratio

between the path length per cycle and the body width which is indicated by the cylinder

diameter, D, in this work. The reduced velocity is given as follows

64

Df

U
VR

.0

= . (3.15)

Where U is the speed of flow, and D is the cylinder diameter, and f0 indicates the cylinder

Eigen frequency in still water.

Feng [148] did an experiment where a D-section cylinder on vertical springs was

mounted, Figure 3.5 so that the system has only one-degree-of-freedom and then Feng

[148] exposed it to air flow with very small increments. All parameters, the oscillation

frequency fosc, vortex shedding frequency fv, the phase angle θ and the oscillation

amplitude A were measured in the experiment.

According to Feng’s study [148], the cross-flow vibration starts for the reduced velocity

VR is around 3, and it reaches a peak when VR is about 5. Afterward, 5 < VR < 7, the vortex

shedding frequency and Eigen frequency are equal; this phenomenon is called the “lock-

in.” At this range, the oscillation frequency and the vortex shedding frequency breakdown

into the natural frequency system. Finally, the ‘‘lock-in’’ phenomenon is also defined as

a response that displays the resonance.

In addition to ‘‘lock-in’’ phenomenon, it is important to note that despite the vortex

shedding frequency and the Eigen frequency are equal, the Eigen frequency would be

affected by the added mass change, and the vibration itself will affect the vortex shedding

frequency.

Figure 3.5: Feng’s experiment model [148]

65

Furthermore, the inline vibration is beginning for the reduced velocity value is about 1.5,

but it is usually small enough to be unconcern.

3.8 Mesh Generation in OpenFOAM

In OpenFOAM, the mesh can be generated using many ways. One of them is using the

dictionary file blockMeshDict which locates in the constant/polyMesh directory. After

setting up the blockMeshDict file, the mesh will be generated by launching the command

blockMesh in the terminal. Finally, it will interpret the dictionary to create the mesh and

then write out the data of the mesh to boundary, cells, faces and points files into the

blockMeshDict [158-159].

The blockMesh concept is to analyse the domain geometry into three-dimensional

hexahedral blocks. The block edges can be set up as arcs, straight lines, or splines. There

are eight vertices for each block one at each hexahedra corner. Later, they can be written

as a list and assessed using their label by OpenFOAM [158-159].

3.9 Test Cases

3.9.1 2D Example of Flow past a Stationary Circular Cylinder

Flow over a stationary cylinder is subject to parameters such as free stream velocity,

surface roughness, fluid density, etc. [160]. As previously mentioned in Section 3.2, the

different flow regimes depend on the Reynolds number range. For instance, flow

occurring between 0 < Re <5 show reattached streamlines similar to detached hence near

balanced upstream and downstream pressure, a phenomenon referred to as “Stokes flow.”

The next band 5< Re <40 feature wakes and separation that is symmetrical to the fluid

flow axis. Reynolds numbers higher than 40 leads to unsteady flow because the vortices

that were initially in fixed positions begins shedding in an alternate but regular fashion, a

condition known as “Von Karman Vortex Street” [161].

Simulation of flow past a stationary cylinder is mainly confined to numerical methods for

two-dimensional flow at extremely low Reynolds numbers. Experimental simulations at

66

low Reynolds number provided detailed insights of vortex dynamics and flows instability

[13,17,23,137,144,153,162].

3.9.1.1 Laminar Flow Domain

In this case, the circular cylinder with a diameter (D = 1m) is placed in the channel with

length 20D and width 8D. The flow velocity is 1 m/s at the inlet and is zero gradient at

the outlet. Zero pressure also defined at the outlet as shown in Figure (3.6). The cylinder

is assumed to be fixed. This means it will not move although it is subjected to some

hydrodynamic forces, and its centre coordinates are (0, 0, 0). This case is considered as

laminar flow case with Reynolds number equal to 100. By following Equation (3.1), Re

is defined by the kinematic viscosity value  in the transportProperties file which is, in

this case, s./m01.0 2=

The vortex-induced vibration (VIV) simulation of the static cylindrical structure was

applied for the laminar flow. The one-degree-of-freedom system or the spring-mass-

damper (refer to Figure 3.4) is represented [156]. In this case, there is no structural

damping in the cylinder’s motion, and it is considered that the damping is appeared due

to the fluid viscosity.

3.9.1.2 Mesh Generation

As mentioned previously, in OpenFOAM, the mesh can be generated using many ways.

In this case, the Gmsh software is used to produce this case mesh. After generating mesh

using Gmsh, then the gmshToFoam utility will write the mesh from Gmsh form to

OpenFOAM form, and the results will be shown in the constant/polyMesh directory

[158]. After generating the mesh, it has 92976 nodes and 45940 elements.

In this case, the static mesh is defined by Gmsh software, and its geometry was given in

Figure 3.7. The mesh that used in the above defined VIV case is described in the following

illustration. As seen in Figure 3.7, the mesh near the wall of the cylinder is built to be fine

enough and so that it could be easy to capture the vortex shedding that is important to

67

generate the cylinder’s motion. Additionally, in the other regions near the wall, the mesh

is generated to be coarse in order to save the simulation time.

Pa0=p

0=xdU

Figure 3.6: Geometry and boundary conditions of flow over a cylinder

Figure 3.7: Circular cylinder mesh visualised in ParaView

16 D 4 D

4 D

4 D

D = 1 m

68

3.9.1.3 Boundary Conditions

The static circular cylinder case is considered as the two-dimensional, incompressible and

there is horizontally uniform flow past it. The flow conditions are made by assuming that

the flow occurs in a rectangular channel with the circular cylinder which is symmetrically

placed between the two plane walls with slip boundary conditions as represented in Figure

3.8.

The inflow velocity boundary conditions for the unconfined cylinder is given as follows:

• At the inlet (inflow), the uniform flow conditions are

 Ux = U, Uy = 0 and Uz = 0. (3.16)

• At the outlet (outflow), the flow variables have zero diffusion which means that the

boundary conditions at the outlet are extrapolated from the domain to result in the

upstream flow conditions. The velocity and pressure are updated by the extrapolation

in the outflow. That consists of the assumption of the fully developed flow which is

no change in the area at the outlet boundary [163].

 0=



+





n

p
U

t

p
n . (3.17)

• At the upper and lower walls, the boundary slip conditions are assumed on the

walls where the viscous effects are negligible.

• On the cylindrical structure wall, the no-slip condition is applied where all the

velocity components on the cylinder surface will be zero due to the fluid viscous

effects.

In OpenFOAM, the velocity and pressure boundary conditions located in the time

directory named 0 and the examples of the velocity and pressure will be shown in

Appendix 3.A and Appendix 3.B, respectively.

69

Figure 3.8: Schematic illustration for boundaries in laminar flow

3.9.1.4 Time and Data Input/Output Controls

OpenFOAM solvers are run by setting up the input/output data [158]. The input

parameters such as time-step and output time interval are set up in the controlDict file.

The time-step must be adapted to reach the low Courant number and provides an accurate

solution, particularly for unsteady problems. When the flow velocity is increased, the

simulation time-step should be decreased in order to adjust the Courant number (refer to

Equation 2.30). In this work, the time-step is customized to the Courant number stays less

than 0.8.

In addition, there are some functions can be defined in the controlDict file to print out

some more information and results from the simulation. For example, forceCoeffs is one

of that additional functions. It is important to extract the hydrodynamic forces (drag and

lift) coefficients from the simulation. The controlDict directory for the laminar flow is

presented in Appendix 3.C.

3.9.1.5 Discretisation Scheme

Discretisation is very important in order to solve all equation terms. There are many

Upper wall

Lower wall

slip

slip

Inlet
Outlet

Cylinder

no-slip

Ux = U
p = 0

x

y

70

discretisation scheme options are available in OpenFOAM. The fvSchemes dictionary

placed in the system directory sets all the discretisation terms for the running applications.

The fvSchemes directory consists of many sub-dictionaries for different discretisation

terms as follows:

• ddtSchemes defines the terms of the first-time derivative. In this work, the backward

time derivative scheme is set which is unsteady and implicit schemes that have second-

order accuracy.

• divSchemes is considered as an essential discretisation scheme in the CFD and it

includes the divergence terms. In this discretisation scheme, the Gauss scheme method

is always used, and it requires the interpolation scheme selection for the dependent

field. Here, the interpolation schemes are assumed to be linear and limitedLinear for the

flux term and for the convection term, respectively. In one hand, both interpolation

schemes have second-order accuracy. On the contrary, the linear scheme is unbounded

while the limitedLinear scheme is bounded.

• gradSchemes estimates gradients at the cell centres. In this case, the Gauss

discretisation method is used, and the linear interpolation scheme is employed.

• snGradSchemes discretises the terms of the surface normal gradient and it defines as

the normal component to the cell face. In this work, the scheme is considered as a

corrected grad.

• laplacianSchemes uses to discretise the Laplacian terms, and the interpolation scheme

here should be determined by the diffusion coefficients. In this case, the Gauss

discretisation method is applied for all variables, the linear interpolation scheme is also

employed, and the surface normal gradient scheme is assumed as limited with a 0.5

corrected grade.

• interpolationSchemes uses to define the interpolation schemes at the cell faces. Here,

the linear interpolation method for the velocity is applied which is unbounded and has

the second order accuracy.

• fluxRequired defines the flux fields that are generated by the application. In this work,

fluxes are evaluated from the pressure equation [164].

71

The fvSchemes dictionary of this case is presented in Appendix 3.D.

3.9.1.6 Solution and Algorithm Control

The equation’s algorithms, solvers, and tolerances are all monitored in the fvSolution

dictionary located in the system directory. In this case, the solver that is used is GAMG

(Geometric-agglomerated Algebraic Multigrid, refer to Appendix 2.A) that requires the

positive definite, diagonally matrix. In this solver, smoothing is an essential part of the

multigrid method. The high-frequency error on the current mesh can be reduced as it

solves for both symmetric and asymmetric matrices. The GaussSeidel smoothing scheme

is applied in the solver which means that the smoothing depends on the Gauss-Seidel

method.

The pressure-velocity coupling algorithm in the laminar cases is PIMPLE algorithm. The

fvSolution directory for this example is shown in Appendix 3.E.

3.9.1.7 Laminar Flow Solver

Here, the pimpleFoam solver is chosen for the laminar flow simulation for the Newtonian

fluid which is a transient solver for the incompressible flow with a large time-step using

PIMPLE algorithm. The code is naturally transient and, initial and boundary conditions

are requiring [158,165-166].

3.9.1.8 Post-processing

The simulation output variables will be the velocity and pressure time directories and the

force coefficients. The drag and lift coefficients; the hydrodynamic force coefficients, can

be extracted from the controlDict dictionary by adding that under the keyword forceCoeffs

with some basic information such as cylinder diameter, free stream velocity, reference

area, and others that should be mentioned in order to get the correct force coefficients

(refer to Appendix 3.C). In addition to that, the simulation results visualisation such as

72

pressure, velocity, viscosity, etc. can be shown in ParaView by using the paraFoam utility.

Figure 3.9 presents the velocity simulation result of the static circular cylinder using

ParaView. The color difference describes the different velocities, blue presents the

smallest velocity value and the darker colors in the red range represents the increased

velocity values.

3.9.1.9 Laminar Flow with Re = 100 Simulation Results and Discussion

The velocity and pressure visualisation profiles for the laminar flow with Re = 100 are

presented in Figures 3.9 and 3.10, respectively.

From both Figures 3.9 and 3.10, it can be seen that the vortex shedding has appeared and

these results combine with the vortex shedding theories in Section 3.3 which stated that

the vortex street started to occur for flow with Re > 40. In this range, the wake will become

unstable, and ultimately it will result in the vortex shedding phenomena due to its

oscillation at a certain frequency.

From Figure 3.12, a Strouhal number obtained is 0.167, which is very close to the Strouhal

number obtained by other studies [22,167-169]. The lift coefficient in this simulation is

0.374, and the mean drag coefficient is 1.540.

The first part of the simulation time (<50s) shows the transient phase through the

generated perturbations arrives at the cylinder and then causes the shedding. The drag

coefficient oscillation is used to characterise the periodic state at twice of the lift

coefficient.

3.9.1.10 Results Summary and Discussions of Laminar Flow with Re = 100, 200,

and 1000

Some studies result for the mean drag and lift coefficients of Re = 100, 200, and 1000 are

summarised in Table 3.2. This table shows the comparison of hydrodynamic forces

coefficients gained from the past literature with the present study. It can be noticed that

the results are shown a big agreement with the previous literature at Re = 100 and 200.

73

However, at Re = 1000, there is a remarkable difference between the force coefficients

found by Frank et al. [172] and the current study. The significant difference between the

value of lift coefficient at Re = 1000 and other two at Re = 100 and 200 is found. This

may be due to transitional turbulence. Moreover, the drag coefficient at all studied cases

is systematically higher than one in the literature this is might be due to the differences

between the coarse and fine meshes.

In addition, Figures 3.13 and 3.14 presents the comparison results that are summarised in

Table 3.2. It can be seen that the amplitude of lift coefficient increases exponentially as

the Reynolds number increases.

Figure 3.9: Velocity profile for laminar flow with Re = 100 in ParaView

Figure 3.10: Pressure profile for laminar flow with Re = 100 in ParaView

74

Table 3.2: Comparison of force coefficients from the simulation results with other studies

Source Re = 100 Re = 200 Re = 1000

DC
LC

DC LC
DC LC

Mittal and Raghuvanshi [162] 1.402 0.355 - - - -

Berthelsen and Faltinsen [170] 1.38 0.34 1.37 0.7 - -

Calhoun [171] 1.33 0.298 1.17 0.668 - -

Franke, et al. [172] - - 1.31 0.65 1.47 1.36

Herfjord [173] 1.36 0.34 1.35 0.70 - -

Linnick and Fasel [174] 1.34 0.333 1.34 0.69 - -

Rajani, et al. [175] 1.335 0.179 1.337 0.424 - -

Russel and Wang [176] 1.38 0.30 1.29 0.5 - -

Xu and Wang [177] 1.42 0.34 1.42 0.66 - -

Tezduyar, et al. [178] 1.37 0.371 - - - -

Present work 1.540 0.374 1.560 0.727 1.693 1.123

Figure 3.11: Drag coefficient of 2D cylinder at laminar flow of Re = 100

75

Figure 3.12: Lift coefficient of 2D cylinder at laminar flow of Re = 100

3.9.2 Vortex-Induced Vibration of the Circular Cylinder

The vortex-induced vibration simulation over the cylindrical structure cases will be

discussed for the laminar flow with Re = 100. The system of spring-mass-damper will be

presented to show the one- and two-degrees-of-freedom motion as illustrated in Figure

3.4. However, the structural damping is generated from the fluid viscosity since there is

no cylinder motion is considered to produce the damping.

3.9.2.1 Mesh Generation

Since the vortex shedding allows the cylinder to move, the static and dynamic meshes are

required. The dynamic mesh can move along with the cylinder’s motion. Thus, there is a

dynamicMeshDict file located under the constant directory to define the mesh motion as

described in Figure 3.15.

76

As stated before, the dynamicMeshDict file is used to the dynamic mesh generation, and

its content will be shown in Appendix 3.F, and its content explanation will be presented

in the table on the same page. Whereas, the static mesh is generated by Gmsh software as

mentioned previously in Section 3.9.1.

3.9.2.2 Boundary Conditions

Both the initial and the boundary conditions for the pressure, velocity, and the position of

the cylinder should be defined. The pressure and velocity initial conditions were

discussed previously in sub-section 3.9.1.3, while the cylinder's position initial condition

will be defined in the pointDisplacement file (refer to Appendices 3.G, 3.H, and 3.I).

3.9.2.3 Time and Data Input/Output Controls

In order to get the accurate results, the time-steps should be adjusted by giving the

Courant number value is below 0.2. In this vortex-induced vibration case, the time-step

is set to be 0.001 for 100 s simulation time. This will lead to get low Courant number and

eventually the results will be accurate (refer to the controlDict file Appendix 3.C).

Figure 3.13: Drag coefficients of laminar flow at Re = 100, Re = 200, and Re = 1000

77

Figure 3.14: Lift coefficients of laminar flow at Re = 100, Re = 200, and Re = 1000

Figure 3.15: Directories and files for vortex-induced vibration case

<case>

constant

properties

dynamicMeshDict

polyMesh

blockMeshDict

system

controlDict

fvSchemes

fvSolution

Time directory

pointDisplacement

U

p

78

3.9.2.4 Discretisation Scheme

As mentioned previously in Section 3.9.1, the fvSchemes file is used to describe the

discretisation procedure of the case simulation and the sub dictionaries for the VIV

simulation.

• ddtSchemes defines Euler time derivative scheme which is bounded and first order

accuracy implicit.

• divSchemes uses the Gauss discretisation scheme, and the interpolation scheme for the

velocity, flux and convective terms is set to be linearUpWind, linear and limitedLinear,

respectively.

• gradSchemes estimates the Gauss discretisation method and the linear interpolation

scheme are employed.

• snGradSchemes discretises the uncorrected scheme which leads not to apply any of

the non-orthogonal corrections.

• laplacianSchemes uses to discretise the Laplacian terms, the Gauss discretisation

method is applied for all variables, the linear interpolation scheme is also employed,

and the surface normal gradient scheme is assumed as limited with a 0.5 corrected

grade.

• interpolationSchemes uses to define the interpolation method. Here, the linear

interpolation method for the velocity is applied which is unbounded and has the

second order accuracy.

• fluxRequired defines the flux fields that are resulted from the pressure. Thus, the fluxes

are calculated from the pressure equation [164].

3.9.2.5 Solution and Algorithm Control

The GaussSeidel algorithm is employed in the smoothing scheme solver. The PBiCG is

used for the velocity and the GAMG for both the point displacement and the pressure.

79

Additionally, the PIMPLE algorithm for the pressure-velocity coupling is used. By

referring to Appendix 3.E, the fvSolution directory for the simulation of the vortex

induced vibration is presented.

3.9.2.6 VIV Solver

The pimpleDyMFoam solver is implemented for the VIV simulations. This solver is using

the PIMPLE algorithm as the pimpleFoam solver. However, the differences between the

pimpleDyMFoam solver and the pimpleFoam solver are that the earlier uses the

dynamically moving mesh. In addition, they both have the same function and are using

the transient incompressible flow solver.

In the following section, the non-resonance VIV case model will be discussed.

3.9.3 Non-Resonance VIV Schematic Description

To implement the non-resonance VIV case, Figure 3.16 illustrates the basic idea of how

the circular cylinder will be fixed in such particular locations and allow to float around x-

and y-axes while applying some constraints. The case’s description is given as follows:

o There are four springs (S1, S2, S3, and S4) will be applied, and each of them has

its own damping and stiffness coefficients and initially, for simplicity, can give

all springs the same stiffness and the same damping values.

o All four springs are sharing the cylinder centre (O) and each of them has another

defined points at A1, A2, A3, and A4.

o For each spring, the rest length will be applied when there is no fluid flow and

gravity. Thus, the rest length will be the distance from that point to the cylinder

centre, namely A1-O, A2-O, A3-O, and A4-O.

o Therefore, there will be two forces will be acting over each axis; namely two

forces in the x-axis and another two forces in the y-axis. This will lead to such

problems because the forces vectors will be the same all over the time due to the

forces that are acting from the fluid flow around the cylinder.

80

Figure 3.16: Schematic for the VIV non-resonance case

3.9.3.1 Computational Domains Schematics

According to the previous schematic that described the basic concepts of cylinder motion

for the free oscillations cylinder case, there are two different computational domains will

be discussed for one- and two-degrees-of-freedom as given in the next sub-section.

3.9.3.2 Scenarios of the VIV with Four-Springs Case, and Two-Springs and Two-

Dampers Case

In the first schematic, both of 1DOF and 2DOF will be applied to study the vortex-

induced vibration. In the 1DOF, the cylinder is allowed to move in the transverse direction

(y-direction) only. However, for the second case, the cylinder is considered as free to

oscillate in both x- and y-axes (inline and transverse directions).

In this schematic case, there are three different scenarios will be discussed

1. Scenario 1: has applied for four springs (S1, S2, S3, and S4) (refer to Figure 3.16)

with damping effects. Thus, this means that there will be four forces are applied in

all springs which are produced by the spring effects and the damper will slow down

on all springs. Moreover, it is essential to note that all springs have the same size

A1 A3

A4

A2

S1

S2

S3

S4

Inlet

Outlet

Wall

Wall

O

81

and there is no rotation for the cylinder to rotate on its axis. The fluid flow is going

over the cylinder with nearly symmetrical forces on the top and bottom sides.

Technically this scenario is for the 2DOF system and will be presented in the

pointDisplacement file in Appendix 3.G.

2. Scenario 2: will be applied more constraints to the previous scenario, the result is

that the cylinder is forced to move only along the y-direction. This case is 1DOF

as will be presented in Appendix 3.H.

Figure 3.17: Geometry and flow conditions of case with 4-springs

Figure 3.18: Schematic of 2-springs and 2-dampers

4D

4D 16D

8D

D = 1m

4

D

4

D

16

D

8

D

D = 1m

82

3. Scenario 3: has applied for two springs and two dampers as shown in Figure 3.18.

This is also for the 2DOF system since the cylinder move in both in-line and

transverse directions as described in Appendix 3.I.

For all three scenarios, the cylinder mass value is assumed to be 9.97 kg, damping and

stiffness are 2 N.s/m and 4 N/m, respectively.

3.9.3.3 Results and Discussion of the VIV Simulation of 1DOF and 2DOF

The flow regime results around the free oscillating circular cylinder for the previously

discussed scenarios will be presented as follows:

• Drag and lift coefficients for 1DOF and 2DOF systems

From Figure 3.19, it can be observed that drag coefficient behaviour for the one-degree-

of-freedom system is very close to the static cylinder, while for the two-degrees-of-

freedom it is slightly different particularly in the simulation time between 10s and 20s.

Additionally, the drag coefficients for 1DOF is higher than the one for 2DOF, while the

lift coefficients for both 1DOF and 2DOF are nearly the same.

However, there is a slight delay in the response time, where the 2DOF system takes about

0.2 seconds longer to reach the similar amplitude peaks, for both the drag and lift forces.

This is related to how the 1DOF case can only move along the vertical direction, which

consequently forces it to react directly to any vortices that are created on the wake side.

On the other hand, on the 2DOF case, the cylinder can be dragged a bit longer towards

the right (in the direction of the wake), which results in the delay in responding to the

forces exerted by the vortices. In other words, the delay is directly associated with the

time it takes for the springs to restrain the cylinder on the rightmost location where it

starts to oscillate periodically.

Regarding the amplitude of the drag coefficient, when compared to the 1DOF, the 2DOF

case has a smaller amplitude which should be associated with the additional degrees of

freedom.

83

Figure 3.19: (a) Drag and (b) lift coefficients for 1DOF and 2DOF

(a)

(b)

84

Similarly, the lift coefficient has a slightly smaller amplitude on the 2DOF case, because

of how the cylinder is being dragged further along with the flow and is moving closer to

the paths of the vortices.

• Drag and lift coefficients results for 1DOF system

Figure 3.20 shows the drag and lift comparing results for the 1DOF system (scenario 2)

and its results when reduced damping and stiffness coefficients to 1. The results show that

the drag and lift amplitudes for the original case are higher than the ones when reduced

damping or spring stiffness.

In order to understand what is happening in the two variants of this case, it is necessary

first to revise how the spring and the damper work:

o The spring acts in direct proportion to the applied forces: Force = Stiffness 

Displacement. This means that the force induced by the spring is linearly proportional

to the stiffness value, in function of the displacement of the spring.

o The damper acts in direct proportion to the velocity of the displacement: Force =

Damping  Velocity. Which means that the faster the displacement occurs, the more

force the damper exerts.

Since these forces refer to the ability of the springs to react to the flow around them, these

relate directly to the drag forces. In other words, the forces exerted by springs will affect

the movement of the cylinder, as a direct response to the forces imposed by the flow;

given that the drag coefficient is calculated based on the forces applied to the cylinder,

therefore, this corresponds to the forces sustained by the springs

With these definitions in mind, it is possible to get a clearer understanding of what is

happening when the stiffness and damping are reduced:

1. All of these three cases are under-damped, namely, the damper is not strong enough

to stop the oscillation, which is why all three tend to have a uniform oscillation pattern

with a maximum amplitude.

85

Figure 3.20: (a) Drag and (b) lift coefficients for 1DOF system

(a)

(b)

86

2. All of these three cases have nearly the same drag coefficient for the initial 30s, given

that the motion trajectories are nearly the same for this initial period. The reduction

in the drag coefficient should be directly related to how the first vortex is being

generated and then released, with another being generated as the second vortex is

being generated.

3. The case with reduced damping has a reduced ability to respond with force in function

of velocity, resulting in:

o The higher drag coefficient from the 30s to around 63s, is due to the cylinder

being able to move faster for nearly the same forces exerted on the cylinder,

which results in larger vortices and displaced fluid as the cylinder moves; as an

analogy, it is as if the cylinder can more easily get in the way of the fluid going

around it.

o The lower drag coefficient after ~65s is related to the faster ability for the

cylinder to bob and weave as the vortices are generated in its wake.

4. The case with reduced stiffness consistently has a smaller drag coefficient after the

initial 30s period, given that it can be moved farther away for nearly the same forces

imposed by the flow around the cylinder. Given that it can have a longer displacement

on all springs (due to the smaller stiffness coefficient), it is then able to accommodate

better the periodic generation and release of the vortices.

5. As for the lift, the results are consistent with the ones observed when comparing the

1DOF case with the 2DOF case with 4 springs, given that the added ability for the

cylinder to move, will lead to a smaller amplitude in the lift, given that the vortices

can be generated and released with smaller dragging forces.

6. As a final comparison, it can be noted that the reduction in stiffness resulted in the

smaller amplitudes for drag and lift after the initial 30s period.

• Drag and lift coefficients results for 2DOF system

In comparison to the results given for 1DOF, the drag coefficients for the 2DOF system

(scenario 1) show different behaviour for the initial 30s period. As already observed with

87

the changes in damping and stiffness with the 1DOF case, during this initial period it can

be observed that:

1. The reduced damping relates to a faster movement (nearly the same force, smaller

damping coefficient, results in a higher velocity: Force = damping  velocity),

which consequently results in a faster response time for the cylinder to move with

the vortices at a higher rate than the other two variants, hence the peak amplitudes

for the first 30s being higher/lower than the reference 2DOF case.

2. The reduced stiffness results in the ability for the cylinder to move farther and

consequently generate smaller (less intense) vortices than the two other variants,

since it is able to be displaced by the fluid flow around the cylinder.

After this initial 30s period, the results are analogous to what was observed in the same

variants of the 1DOF case:

1. The reduced damping allows for a smaller drag coefficient than the reference case;

2. The reduced stiffness allows for the smallest drag coefficient;

3. Both variants have nearly the same frequency as the reference 2DOF case.

As for the lift, results are approximately the same, especially for reduced stiffness and

damping cases. Generally, the same as for 1DOF system the 2DOF shows higher

amplitudes for the original case than that for reduced spring stiffness or damping because

of the same reality reason which describes the forces effect leads to disappear the

oscillation after a while.

• Drag and lift coefficients results reduced damping for 1DOF and 2DOF systems

The drag coefficient in the reduced damping variants shows a significant difference

between 1DOD and 2DOF systems in the early simulation time. The drag coefficient

behaviour for the 1DOF is nearly identical to the reference 1DOF case, whereas the 2DOF

variant shows a more oscillatory pattern until about 35s of the simulation time. This is

due to the reduced damping, which allows for a faster reaction speed of the springs, as

well as letting the majority of the oscillatory effect be brought in by the stiffness of the

88

Figure 3.21: (a) Drag and (b) lift coefficients for 2DOF system

(b)

(a)

89

springs.

o When the oscillation becomes uniformly periodic for both cases, the result of 1DOF

shows a higher drag coefficient, comparable to the respective reference cases.

o As for the lift, the results are approximately the same, as already expected from the

results observed.

• Drag and lift coefficients when reduced spring stiffness for 1DOF and 2DOF

systems

1DOF drag results show the highest values for all simulation time, and the lift results

show the slightly higher results for 1DOF even it is not that much big difference.

For the most part, there is not much more to comment on these results that have not yet

been addressed in the previous sections, except for with one particular detail: the 2DOF

variant with reduced stiffness has the lowest drag coefficient in comparison to all other

cases and variants, throughout the whole profile over time, as well as the smallest

amplitude range during the uniform periodic time region. From a perspective of low

energy and interference on the fluid flow, this would be the best configuration to be used,

if further optimisation could not be done. Especially, this is because the lift performance

is similar to all other cases and variants.

• Drag and lift coefficients for 2DOF system in schematics of 4 springs, and 2

springs and 2 dampers

Figure 3.24 illustrates the comparing results of 2DOF systems (scenario1 that shows the

case of four springs attached to the cylinder and scenario3 which presents the cylinder is

hanging with 2 springs and 2 dampers).

So before observing the results, keep in mind that the scenario3 effectively represents the

2 dampers are not always aligned with the 2 springs, which will result in not having a

fully balanced system as the scenario1.

90

Figure 3.22: (a) Drag and (b) lift coefficients for reduced damping case for 1DOF and 2DOF

(a)

(b)

91

Figure 3.23: (a) Drag and (b) lift coefficients for reduced spring stiffness case for 1DOF and 2DOF

(b)

(a)

92

The drag results show a significantly different behaviour between both cases. For the case

with four springs, the drag coefficient decreases dramatically from about 1.73 at ~3s to

1.4 at around the 40s of the simulation time and then increase gradually till about 70s of

the simulation time to start the same fluctuating behaviour. Whereas, the 2DOF case with

two springs and two dampers takes the same fluctuating behaviour from the 30s of the

simulation time, instead of 70s.

On the other hand, the lift coefficient for the scenario1 has 0 lift till about 40s, while for

the other case model the lift results show fluctuation from nearly the start till the end of

the simulation time this is because of the dampers. Moreover, by the end of the simulation

time, both cases lift coefficients are nearly the same.

When revising the drag curves for both scenarios, the following can be assessed:

1. The asymmetry in damper/spring configuration is visible in the respective plot,

starting from the 25-30s mark; this is precisely because the dampers are not

always aligned with the springs, resulting in periods where the cylinder can move

faster or longer, depending on the location of the cylinder.

2. The maximum amplitude of the drag coefficient is smaller in the scenario3, as

expected when comparing to the results for the other scenarios and variants, given

that the stiffness for S3 and S4 has 0 value, and damping is 0 at S1 and S2.

3. The reduced damping can lead to a faster response time, which is effectively

observed here, given that it takes roughly 40s less to reach the periodic working

region.

3.9.4 Forced Oscillation Cylindrical Structure

In OpenFOAM, the file pointDisplacement is only needed in this case to set the ratio fn/fv

and the oscillation amplitude (A/D). Additionally, this file is using the motion solver

displacementLaplacian from the file constant/dynamicMeshDict. However, the file

pointMotionU is used when the motion solver uses velocity based motion calculations of

the point mesh. The idea is that the motion can either be done based on moving the cells

93

Figure 3.24: (a) Drag and (b) lift coefficients for 2DOF systems

(a)

(b)

94

themselves or move the points instead. Even though the mesh can move either based on

cells or points, the user can also (sometimes) do the motion calculations either based on

velocity “pointMotionU” or based on absolute (or relative) position “pointDisplacement”

(refer to Appendix 3.J)

3.9.4.1 Results and Discussions

This case example was simulated for the same Reynolds number (Re = 100). The

simulation results are presented in Figures 3.25 and 3.26 to present force coefficients. The

natural frequency (fn) result is 0.482 Hz. This case has a slightly high vertical

displacement as presented in Figure 3.26 and due to the extremely displaced mesh, the

simulation shows no movement at the beginning. This indicated that the cylinder is in the

resonance mode. The frequency ratio (Fr = fn / fv) where fn represents the natural frequency

of the cylinder and fv shows the vortex shedding frequency corresponding to the static

cylinder). Strouhal number is equal to 0.167, which means that the vortex shedding

frequency fv = 0.167 Hz. The natural frequency, fn, has the value 0.482 Hz. The cylinder

amplitude reaches the maximum value when fn / fv= 2.87.

The time history of the laminar flow regime is also presented in Table 3.3. The reduced

velocity can be calculated from Equation (3.15) and it is 5.988 in this case.

From the two graphs, it is possible to infer how the vortices are being generated and

released as the cylinder moves up and down. To make this inference, the following can

be observed:

1. From Figure 3.25 it can be seen that the maximum drag coefficient peaks match

the minimum and maximum lift peaks, as well as the minimum drag coefficient

peaks match the points at which the lift is zero.

2. Related to this, it can be observed in Figure 3.26 that the peaks in lift match the

peaks in the displacement of the cylinder. This means that the peaks in

displacement match the peaks in drag coefficient.

3. The zero-lift positions related to when the cylinder is passing the middle axis of

forced oscillation.

95

Therefore, from these plotted relations, it can be inferred:

1. When it is zero-lift, is when the vortex generating forces balance each other out,

as it can be visible in Table 3.3, at around 10s, which is when the wake near the

cylinder is almost aligned with the fluid flow which is going from the left to the

right.

2. When the drag and lift coefficients are maximum, it is when:

i. a region of high-velocity stream is going over the top of the cylinder when this

is at the top;

ii. or when the stream of high velocity is going to the cylinder, when this is at the

bottom, which can be observed at around 30s in Table 3.3.

3. These peaks of drag and lift coefficients are consistent with the behaviour of wings

and airfoils in similar working conditions, namely when comparing the maximum

value for those wings/airfoils [178].

Figure 3.25: Force coefficient of forced oscillation cylinder case at laminar flow with Re = 100

96

Figure 3.26: Vertical displacement and lift coefficient time histories of the forced oscillation case

3.10 Chapter Summary

Understanding the vortex-induced vibration phenomenon is important as it plays a critical

role in designing the fluid-structure interaction models. The behaviours of both static

cylinder and motion cylinder have been examined and discussed its inline and transverse

forces.

For the stationary circular cylinder case, both drag and lift coefficients represent a good

agreement compared to other studies at Reynolds number equals 100 and 200. However,

there is a significant difference at Re = 1000.

From the variously reported VIV simulations, it is possible to ascertain that:

• Both damping and stiffness will affect how the cylinder will behave within the flow,

where the main noticeable differences will be:

97

o response time, in regard to the initial speed with which the mechanism (cylinder

+ springs) reacts to the flow, as well as in regard to when it will stabilise at the

uniform periodic oscillation.

Table 3.3: Flow regimes of forced vibration cylinder case using ParaView

t = 10s

t = 30s

t = 100s

98

o the range of amplitudes of oscillation.

o maximum drag coefficient in the uniform periodic oscillation (after the system

has stabilised)

• Both the reduction of damping and stiffness will reduce the maximum drag and lift

coefficients after the flow has stabilised.

• However, for the 2DOF case:

o reduction of damping can result in a much higher drag coefficient during the initial

phase;

o while the reduction of the stiffness will reduce the highest drag coefficient during

the initial phase.

• The lift coefficient seems to be less affected by the changes in damping and stiffness

when compared to the scale of the change in the drag coefficient results. Based on

this assessment, it looks like the lift coefficient is mostly associated with the cylinder

geometry and the fluid properties, then the influence of the springs and dampers,

although it strongly depends on the cylinders ability to follow the vortices in its wake.

• Depending on the desired performance for this mechanism, the optimum design

decisions could be as follows:

o If the mechanism is meant to have as much drag as possible, then it would be best

for the dampers to be minimum or be removed, while having fairly stiff springs.

Although at this point, might as well fixate the cylinder in place, instead of using

springs.

o If the mechanism is meant to have minimum drag, then use moderate damping

values and fairly relaxed springs. Although, keep in mind that a complete study

wasn't conducted for this kind of scenario and there could be a fairly degraded

performance in case the springs were replaced with just having 4 dampers.

Finally, to avoid resonance, it is important to keep the reduced velocity value is less than

4.

99

Chapter 4

Two- and Three-Dimensional Benchmarking Models

In the previous chapter, the simulation of the flow over the two-dimensional rigid cylinder

and the vortex-induced vibration of the cylinder have been studied. However, the focus

on the fluid and solid behaviours were simply presented in the hydrodynamic forces. In

reality, the fluid-structure interaction problems display a strong coupling between the

fluid and the structure due to the forces acting from fluid to solid and then causing the

structural geometry deformation. This chapter discusses four strongly coupled fluid-

structure interaction numerical examples; two models are in two-dimensional space and

two are their extension in three-dimensional space.

4.1 2D Example of Flow-Induced Oscillations of a Flexible Tail behind a Block

This benchmark has been used for the fluid-structure interaction validation in many

studies started by Wall [179] and later by many others such as [42-43,45,106,180-187] to

examine the solution strategies for FSI problems.

4.1.1 Geometry and Boundary Conditions

As shown in Figure 4.1, this model problem consists of a flexible thin tail attached to a

square block support in the middle of the downstream face. This model example is

immersed in an incompressible fluid flow which is considered initially at the rest position.

The vortices in the square support wake communicate with the attached tail, and large

oscillations amplitude will excite. In other words, the vortices that separate from the

square bluff body corner will create the lift forces which cause the flexible plate

oscillation [106,188].

The fluid geometry is bounded by the inlet velocity, outlet pressure, and the walls. The

top and bottom walls are applied to the slip boundary conditions and no-slip conditions

are defined on the square block interface and the flexible tail. At the inlet, the uniform

100

flow is distributed with stream-wise mean velocity
2m/s=uu ; here

2m/s513.0=u .

Whereas at the outlet, the pressure is zero and the Neumann zero is considered for the

velocity.

4.1.2 Problem Definition

The physical properties of flow, fluid and solid are represented in Table 4.1 The critical

Reynolds number is less than the given Reynolds number value; i.e., 333. Thus, as

mentioned previously, the Von Karman vortex street will be produced by the flow

separation from the square support corner. This vortex behaviour of the pressure and

viscous stress near the block wake causes the vibrations of the attached tail. It is also

important to note that the tail density is 84.75 times larger than fluid density and the tail

length is 66.67 times more than its thickness.

Figure 4.1: Computational domain and boundary conditions of tail behind block

1.0

5
.5

5
.5

1
.0

.0
 1

2
.0

0
.0

6

p
 =

 0

v = 0

v = 0

4.5 4.0 10.0

19.5

101

4.1.3 Mesh Generation

Mesh for both fluid and solid domains are generated by using the blockMesh utility in

OpenFOAM. The fluid domain includes 18,010 hexahedral elements and the structure

domain contains 80 hexahedral cells. However, the fine mesh is created in order to

compare results between both. After refinement, the fluid domain consists of 157,110

cells and the structure domain contains 240 hexahedral elements. The fluid domain initial

fine mesh is shown in Figure 4.2a representing the mesh refined near the block wall and

the fluid-solid interface, and Figure 4.2b illustrates the deformed mesh at t = 6s where the

good quality of the mesh is preserved. This mesh quality is shown by the skewness value

given by checkMesh utility which is not exceeding 0.3, and this emphasizes a good mesh

quality.

4.1.4 Spatial and Temporal Discretisation

A second order implicit scheme is used to perform the temporal discretisation that is

unconditionally stable. The time-step is updated by defining the maximum value of

Table 4.1: Physical properties of the tail behind block model

Domain Parameter Value Unit

Fluid

f

f

1.18

1.54 x 10-5

Kg m-3

m2 s-1

Solid

s

s

Es

100

0.35

2.5 x 109

Kg m-3

-

Pa

Flow

u

Re

0.513

332.6

m s-1

-

102

Figure 4.2: 2D tail attached to solid support computational domain for refined mesh at

(a) t = 0s and (b) t = 6s

Courant number Comax= 0.2 (Equation 2.30). Therefore, by setting a fixed value of Comax,

then the time-step ∆t can be considered for all fluid cells.

For the symmetric matrices, the GAMG iterative solver along with GaussSeidel smoother

used in order to solve the pressure equation. The criterion of the convergence for the

pressure fixed as 10-6. For the asymmetric matrices, the PBiCG used for the

(a)

(b)

103

velocity-pressure coupling equation along with the DILU pre-conditioner and the criterion

of convergence for the velocity is 10-6.

The GAMG used for the mesh motion solver along with the GaussSeidel smoother and

convergence criteria is also given as 10-6. Further information on algorithms and

numerical schemes can be found in Kassiotis [128], Bos [117] and user guide of

OpenFOAM [125].

4.1.5 Post-Processing, Results and Discussions

Figure 4.3a shows the conventional flow pattern of the tail oscillation once the vibration

is fully formed. The velocity that is represented in the figure shows the unsteady flow

behaviour which leads to unsteady vibrations of the elastic tail. Consequently, these

vibrations cause in the flow velocity gradient, toward the tail tip, effect on the new

vortices generation. It could be examined that the Von Karman vortex street that is

generated by the solid block is distributed near the lower and upper regions because of

the elastic tail flapping. Figure 4.3b shows the pressure where the vortex shedding can be

presented downstream from the square block. The Von Karman vortex street is generated

by the bluff body which is distributed near the lower and upper walls due to elastic tail

flapping. Furthermore, the velocity gradient is generated by the tail oscillation at its tip.

When comparing this case with the cylinder simulations reported in the previous chapter,

this case is as if there were two cylinders: one stationary cylinder, but with a square

section, along with a second cylinder which has been flattened and is represented on the

second half of tail on the right. With this comparison in mind, it is possible to observe

that:

1. The stationary square cylinder is seeding the usual Von Karman street that is common

to this kind of flows.

2. When comparing to the springs on the oscillating cylinder cases, the non-fixed part of

the tail is oscillating with the generation, and release of the vortices with a solid

stiffness.

104

3. In addition, given the very small thickness of the tail, results in the tip forming a pattern

similar to the tip of a pen through sand.

4. As vortices are generated with greater intensity on one side of the elastic tail, the tail

will bend towards that direction, until it reaches the maximum deflection achievable

for the vortices which have generated and released on that side, similarly to when a

spring reaches the maximum compression/extension for the force applied to it.

5. The flexible tail moves in the opposite direction when the forces on that side become

large enough and have resulted in large enough vortices to pull the tail back towards

where it was originally.

Figure 4.3: Oscillation of a tail attached to a solid block at t =6s: (a) velocity and (b)

pressure/density

(a)

(b)

105

6. Effectively, the tail will bend one way or another, depending on the pressure balance

on each side of the elastic tail, for example, if the total pressure is smaller on the top

side than on the bottom, then the end of the tail will move upwards. Although keep in

mind that it will favour the pressure/forces exerted near the tip, since it is where the

highest moment-force can be imposed with the maximum displacement.

The maximum displacement and the vibration frequency are presented in Table 4.2. In

the present study, the maximum tip displacement is 0.8552 cm for the coarse mesh and

1.132 cm for the fine mesh. The tail oscillation frequency value is 4 s-1 and 3.5 s-1 for the

coarse and fine mesh, respectively. In comparison to other studies presented in Table 4.2,

the maximum tip tail motion values are within the range [0.95cm, 1.25cm], so more

refinement mesh is expected to be necessary to achieve the same range.

The simulation has been done for both coarse and fine meshes at s0.001tΔ = . Figure 4.4

shows the comparison of displacement results of the flexible tail attached to the square

bluff body.

The reason for such a strict dependency on mesh resolution has to do with the numerical

modelling which was used for these simulations. Given that the Reynolds number

indicates that the flow regime is laminar, it ended up revealing that there were

considerably sized vortices being generated, which consequently requires either:

• a properly refined mesh (in function of the level of precision that is aimed to be

reached);

• or requires a different numerical model, specifically a turbulence model which

could estimate the intensity of the vortices being generated, instead of having to

depend on the sizes of the cells.

Therefore, since laminar modelling was used for these simulations, the consequence was

that only after conducting an exhaustive battery of simulations for testing how much the

results changed in function of mesh resolution, could an accurate result be reached.

However, this was not conducted due to the computational requirements which would be

necessary, as well as the extensive simulation time it would take.

106

Table 4.2: Comparison present work results with other literature for the elastic tail attached to the solid

block

Literature Fluid flow Structural

deformation

Coupling

approach

Frequency

(s-1)

Displacement

(cm)

Dettmer &

Peric՜ [43]

Stabilised

FEM

FEM Partitioned

NR1

3.03 1.25

Habchi et al. [45] FVM FVM Partitioned

BGS3

3.25 1.02

Kassiotis et al. [106] FVM FEM Partitioned

BGS

2.98 1.05

Matthies &

Steindorf [182]

FVM FEM Partitioned

BN2

3.13 1.18

Oliver et al. [183] FVM FVM Partitioned

BGS

3.17 0.95

Walhorn et al. [189] Stabilised

FEM

FEM Partitioned

BGS

3.14 1.02

Wall [179] Stabilised

FEM

FEM Partitioned

BGS

2.99 1.22

Wood et al. [186] FVM FEM Partitioned

BGS

2.94 1.15

Yvin [188] FVM FVM Partitioned

BGS

3.16 1.20

Present work

(coarse mesh)

FVM FVM Partitioned

BGS

4.0 0.8552

Present work (fine

mesh)

FVM FVM Partitioned

BGS

3.5 1.132

1 Newton-Raphson
2 Block-Newton
3 Block Gauss-Seidal

4.2 3D Elastic Cantilever Plate Attached to a Solid Block

This three-dimensional numerical approach follows the two-dimensional example model

presented in the previous section. This test model is based on the studies done by Kassiotis

et al. [106,190] and von Scheven and Ramm [44]. There is an unstable manner could be

expected by this system like the sharp angles of the solid block which lead to high

vorticity in the fluid flow through the slender plate.

107

Figure 4.4: Comparision results on the tip displacement, (a) coarse mesh (b) fine mesh

(b)

(a)

108

4.2.1 Model Geometry and Boundary Conditions

The geometrical properties and the boundary conditions of the case are shown in Figure

4.5. This model problem consists of a light-weight and stiff elastic cantilever structure

fixed to the solid support and fully immersed in a fluid. The domain of the fluid is 20cm

 11cm 11cm. The structure’s domain includes the slender plate with dimensions of

4cm  3cm and its thickness is 0.06cm. This plate is attached to one end of the rigid block

with dimensions 3cm  3cm and 1cm thickness.

In this model example, the light wind should be applied to simulate the flapping of the

flexible plate and the displacement of the flexible body results in the uniform velocity

u

Figure 4.5: 3D flexible plate model: geometry and boundary conditions

slip

x

y

z

4.0 cm

3.0 cm

4.0 cm

C

B

A

no-slip

Solid

support

slip

In
fl

o
w

O
u
tf

lo
w

p = 0
slip

109

that gradually applied over time. To solve this fluid-structure interaction case

numerically, the plate weight should be neglected, and a moderate wind speed should be

only considered as 100 cm/s.

The material properties of the fluid and solid are presented in Table 4.3. The fluid

properties are corresponding to the air properties at 20o C.

4.2.2 Mesh Generation

Both fluid and solid domain meshes were generated by using blockMesh utility. It is quite

complicated to write this type of meshes in the blockMeshDict dictionary but divided the

domains into levels will help to make it much easier as illustrated in Figure 4.6 and the

way of writing points in the blockMeshDict file is shown in Appendix 4.A.

Then, the blockMesh results shown that the mesh in total contains 817,168 nodes and

785,700 hexahedral cells for the fluid domain, and 5,612 points and 2,700 hexahedral

Table 4.3: Material properties of the 3D flexible plate attached to solid block

Domain Parameter Value Unit

Fluid

f

f

1.18

1.54 x 10-5

kg m-3

m2 s-1

Solid

s

s

Es

2000

0.35

2.0 x 1010

kg m-3

-

Pa

Flow

u

Re

1.0

649.35

m s-1

-

110

elements for the solid domain as presented in Figure 4.8. For both fluid and solid domains,

the boundary conditions are the same, i.e. the inflow is being fixed, the pressure in the

outflow is also fixed at one point, and all other defined boundaries are slip (Figure 4.5).

Moreover, the solid block in the fluid domain is fixed with no-slip boundary conditions

and the elastic plate is chosen to be included as a part of the solid in the fluid-structure

interface.

Figure 4.6: 3D elastic plate case block levels

Figure 4.7: 3D tail attached to solid block mesh in ParaView

111

The mesh domain of fluid and solid is represented by ParaView and shown in Figure 4.7

and Figure 4.8 illustrates the mesh of the plate and the solid support inside the fluid

region.

Figure 4.8: Meshing representation of the plate and the solid block in ParaView

In comparison to other 3D plate attached to support block models, Tables 4.4 and 4.5

show the differences between this work case and other studies.

Table 4.4: Comparing of fluid mesh properties

Mesh Incompressible

fluid elements

D.O.F Solution

strategy

t

Kassiotis et. al

[106,190]

290 103 1159 103 Finite volume 0.001

Von Scheven

[191]

200  103 794  103

(total)

Finite

elements

0.01

Taylor [192]

Mpap1

166  103 751  103

(total)

Finite

elements

0.005

Present work

(blockMesh)

785,700

hexahedral

n/a Finite volume 0.001

1Multiphysics Analysis Program used to denote solvers in Taylor’s work [192]

112

4.2.3 Case Implementation

The 3D plate attached to the support solid block model was implemented to simulate

using fsiFoam solver in FluidSolidInteraction library in foam-extend 4.0 (the latest version

for fluid-structure interaction library). The implementation structures are shown in

Appendix 4.B. Additionally, different files related to the case implementation are shown

in Appendices 4.C - 4.H.

In the fluid domain where x is greater than 6.0 cm, the ALE formulation is employed for

the spatial discretisation and the temporal discretisation, 1,200 time-steps with

s001.0= t are used.

Table 4.5: Comparing of structure mesh properties

Mesh Solid elements D.O.F Solution

strategy

Coupling

strategy

Kassiotis et. al

[106,190]

300 27-Noded

Quadratic

7425 St. Venant

Kirchhoff

DMFT-BGS

with Aitken

relaxation

Von Scheven

[191]

432 7

Parameter

Shell

n/a St. Venant

Kirchhoff

BGS with

Aitken

relaxation

Taylor [192]

Mpap1

300 20-Noded

Quadratic

n/a Neo-Hooke

Elasticity

MN1 / GS2 /

WC3

Present work

(blockMesh)

2,700

hexahedral

n/a St. Venant

Kirchhoff

BGS with

IQN-ILS

1Monolithic Newton
2Gauss-Seidel
3Weakly coupled

113

4.2.4 Simulation Problems

Since the foam-extend 4.0 version is the latest version for FSI solvers, there are some

problems were faced during run that case as the following

o Still more than 1082h wall-clock time on only 1 core of CVC2EC remote

computer is required for the 1,200 time-steps.

o For foam-extend 4.0, running in parallel does not show any considerable

performance increase (does not seem to scale with 2-4 cores, for a mesh with more

than 300,000 cells). As regards speed up, the parallel efficiency of all OpenFOAM

and foam-extend solvers depends on the number of cells per processors; in this

case, it would Gauss that the solid has much fewer cells than the fluid.

o The speed-up is examined in some different cases where for example that solid

has a similar number of cells to the fluid.

o Increasing the number of cells in the solid region will unlikely to improve the time

needed to simulate in parallel.

o It is believed that the restart option was not of particular interest when developing

the FSI solver so it was never checked, though it should be possible to solve in

the code.

4.2.5 Results and Discussions

The simulation is carried out with 0.001s coupling time-step. The coupling scheme that

used is IQN-ILS which is presented in the fluidSolidInteraction library in foam-extend

4.0. The value of the initial relaxation is 0.50.

In the 3D flow for FSI problems, it is not easy to select the relevant results. Therefore,

Figure 4.16 illustrates the stream-tubes over three points (0.10, 0.055, 0.07), (0.10, 0.055,

0.055) and (0.10, 0.055, 0.04) along with the deformation of the plate shape to get an

approximate illustration of the results.

114

t = 5s

t = 10

t = 12s

Figure 4.9: 3D plate in wind: structural motion and stream-tube snapshots for some simulation time

Figure 4.9 displays the perpendicular displacement results obtained from the simulation.

After the initial deformation, the displacement of the elastic plate damps under the zero

value. The deformation of points A, B and C located at the free-end of the plate as

represented in Figure 4.5. These show the flexible plate motion corresponding to the

115

twisted form. It is important to note that it is not easy to find the exact solution for the 3D

flow with high Reynolds number. The results in [191] indicated that there are twisted

modes appear in the plate after some time and that is not validated in this work even with

the same geometrical and physical properties being used. In this work, the amplitude of

the motion is about 20 times more than the results obtained in [191].

The 3D plate model results are summarised in Table 4.6 along with other results obtained

in [44,106,190-192]. It could be noted that the results do not show full agreement between

the case model presentations. It is also important to note that the behaviour of the flexible

plate in this work and in [106,190] was tested with transitional displacement and no

rotation in the solid. However, the results obtained in [44,192] present the transitional and

torsional rotation.

The disagreement magnitude differences between the 3D plate model presentations do

not completely reflect the accuracy in different solution strategies. Furthermore, the time

intervals that are presented by Von Scheven [191] and Kassiotis et al. [106,190] could be

insufficient to define the final system response. There are two reasons for this deduction:

1. All 3 Taylors [192] simulations use extended simulation times, ranging from 20s

to 75s, while Von Scheven [191] and Kassiotis et al. [106,190] used only 6s and

12s respectively.

2. In order for torsion to occur, it is necessary that at some points in time the fluid

flow will create cross-over flow, in order for vortices to stop to be generated in a

synchronous way along the plate surface. For example, given that the surface area

near points A and C have a smaller contact resistance to the flow than point B, it

is expected that the dimensions of the vortices generated near A and C should

eventually have different shapes from those near point B.

As for the overall disagreement in the results between this work and the other studies, this

may very likely be related to what was diagnosed in the 2D plate simulations.

Specifically, it was assessed how closely tied is the mesh refinement/resolution to the

response time of the plate and that even though the fluid flow is laminar (Reynolds

numbers well below 1000), the presence of vortices indicates that a turbulence model

should still have been used for properly modelling their presence without the need to

116

increase drastically the mesh refinement/resolution. Therefore, in order to get better

results for this 3D plate case, it would be necessary to either:

• use a turbulence model for the same mesh;

• or use a more refined mesh, in order to have enough mesh resolution for vortices

to be revealed in the flow and to break the synchronous flow profile witnessed in

this case.

Furthermore, when correlating the results presented in Figures 4.9 and 4.10, it is possible

to see how much the fluid is deflecting the plate, as if it was a fully laminar flow, with no

vortices. This reinforces the reasoning regarding the need for turbulence modelling or

increased mesh resolution, given that the streamlines do not give any indication of

vortices being generated. When compared to the VIV simulations, the ability to oscillate

along with vortices will lead to the reduction of the amplitude of the displacement, which

would have benefited in this case.

Figure 4.10: Perpendicular displacement in meter of flexible plate over simulation time in second for

points A = (0.10, 0.055, 0.07), B = (0.10, 0.055, 0.055) and C = (0.10, 0.055, 0.04)

117

However, it was not possible to confirm if this reasoning, given how long it takes to run

each 3D simulation. As a reference, looking at the 2D plate case, the mesh refinement

was increased from the coarse mesh with 18,010 cells to 157,110 cells for the fine mesh,

in order to get results somewhat closer to the ones in the reference articles [106,190-191].

This meant that the total wall clock time needed to simulate increased in the same

proportion, nearly 9 times longer to simulate. Increasing the mesh resolution of this 3D

case could lead to simulations taking 5 to 10 times longer than the 45 days (1082h) it took

to conduct this 3D simulation. This due to the limitations of the software, as stated in

Section 4.2.4.

On the other hand, introducing a turbulence model would have required redoing all of the

work from the start, as well as fixing any additional issues that would likely occur, when

switching to the new workflow.

Table 4.6: Results comparison for the 3D flexible plate attached to solid block model

System Oscillation

frequency

(Hz)

Oscillation

amplitude

(cm)

Time

interval

(s)

Kassiotis et al. FSI [106,190] 4.0 0.5 6

Mpap 88k Fluid, 20N Solid [192]* 1.1 0.05 (damped

to 0)

20

Mpap 166k Fluid, 8N Fbar Solid

[192]*

2.1 0.07 75

Mpap 166k Fluid, 20N Solid [192]* 0.7 0.08 70

Von Scheven FSI [44,191] 0.9 or 10 (2

methods)

0.1 12

Present work FSI 0.87 0.55 12

*According to Taylor [192], three types of the solid mesh were studied He suggested that there is special

care should be taken to choose the type of the structural elements were utilised to represent the plate’s

behaviour. A structural test of the un-damped free plate vibration is presented by different types of the solid

elements. In both 166k mesh cases, the solid oscillation consists of a rotation and lateral displacement.

118

4.3 2D Model of Hanging Membrane Roof Subjected to the Wind

The structure is modeled as an elastic body. This model example is a model of an

introductory study of a 3D membrane roof subjected to wind loading presented in Section

4.4. The main purposes are to study the coupling of fluid-structure interaction problems

and demonstrate different applications of the solution techniques [44]. The membrane is

modelled and solved by the FSI solver in foam-extend.

4.3.1 Geometry, Material Properties, and Boundary Conditions

The model geometry and its material properties are presented in Figure 4.11. According

to Hübner [193], the exponential law applies to the velocity profile at the inflow edge

reads

() ()0.22

x /350y.m/s35yv = . (4.1)

Where the flow velocity in the roof height is given by the value () m/s6.770.2vx = (see

Figure 4.12). Thus, the Reynolds number for this model equals 270.8. The maximum fluid

flow inlet velocity maxû is linearly increased to reach about 0.6 m/s in 2s of the simulation

time as will be shown later in the simulation results in Figure 4.15 The simulation has

been done for 20 time-steps with s1.0t = .

Figure 4.11: 2D membrane roof model: geometry, material properties, and boundary conditions

slip

0.3 m 0.4 m 0.3 m

t = 0.002

m

no-slip

0.8 m

0.2 m

Fluid

Solid

119

4.3.2 Mesh Generation

The mesh is generated by the blockMesh utility in foam-extend 3.1 version, and both

coarse and fine meshes are performed to compare the deformation results. The finer mesh

for the fluid region is generated by dividing the coarse mesh elements into four as the

meshing results shown in Figures 4.13 (a) and (b) are also summarised in Table 4.7.

Table 4.7: 2D hanging roof meshing details

Mesh No. of nodes No. of elements

Coarse

Fine

24,522

97,242

12,000

48,000

4.3.3 Post-Processing, Results and Discussion

This case model is solved using block Gauss-Sidel iterations with Aitken relaxation using

fsiFoam solver. The deformed shape of the model example after 2s of the simulation time

is shown in Figure 4.14. At membrane roof corners for both grids, the displacement

represents steep gradient and the deformation coincides with the decrease in pressure in

the fluid flow area. Additionally, the two grids also provide the same behaviour of the

deformation of the building. In other words, the coarse grid has a good converged

indicator to the fine mesh solution, and for more clarification Figures 4.16 and 4.17 are

respectively presented to show the deformation for both grids in x and y-directions.

The steep way how the membrane bended into the building region, seems to be related to

how the case was defined in 2D. For example, in a 3D case, the fluid would have more

directions to spread out and around the building; whereas in 2D, the fluid is forced to

accelerate and increase pressure to account for the building (obstacle) which is reducing

the total volume within the domain, which results in a high deformation of the roof

membrane when said fluid could expand into the inside of the building. From Figure 4.16

it is possible to see more clearly how this 2D structure affects the passage of the fluid

120

Figure 4.12: Flow velocity in the 2D membrane roof

(a) (b)

Figure 4.13: Meshing details: (a) coarse mesh (b) fine mesh

flow over the building, given that the centre of the membrane is actually moving forward

due to the impact of the fluid when going over the building and down again into the

membrane and inside the building.

Figure 4.15 shows the coupling interface deformation at the top edge of the membrane

roof at the end of the simulation time. The calculation time for the one time-step is 1.17s

for the coarse mesh and 3.94s for the fine mesh.

121

(a) (b)

 Figure 4.14: Solution for the displacement at the interface: (a) coarse (b) fine

Figure 4.15: The maximum inflow speed for the 2D membrane roof model

4.4 3D Membrane Roof Benchmark

In the concluding section of this chapter, the three-dimensional membrane roof

characteristics will be studied. The 3D flexible membrane roof example is an extension

of the 2D model discussed in Section 4.2. The flexible structure is surrounded by the fluid

and therefore a relatively large fluid area is required in the simulation in order to detect

all the effects of the flow in the environment.

122

Figure 4.16: Membrane roof deformation in x-direction

Figure 4.17: Membrane roof deformation in y-direction

123

4.4.1 Model Geometry

Figure 4.18 shows the geometrical properties of both the fluid and the structure. The fluid

dimensional domain is 150m × 100m × 75m and is 10m × 10m × 5m for the rectangular

membrane roof.

4.4.2 Material Properties

In this case, the Newtonian fluid flow and the St. Venant-Kirchhoff structure are modeled.

The material parameters are represented in the table below. The Reynolds number given

in this case is larger than the critical Reynolds number for the laminar flow.

4.4.3 Mesh Generation

Following the same strategy of generating a mesh for 3D flexible plate attached to a solid

support in Section 4.3 by dividing the domain into levels, the 3D flexible membrane roof

mesh is generated and finally, the meshing result is illustrated in Figure 4.19.

Table 4.8: Material properties of the 3D membrane roof model

Domain Parameter Value Unit

Fluid

f

f

1.25

0.08

kg m-3

m2 s-1

Solid

s

s

Es

1000

0.0

1.0 x 109

kg m-3

Pa

Flow Re 8,900 -

124

4.4.4 Discretisation, Boundary Conditions, and Simulation Results

For the spatial discretisation, the meshing results show that the fluid domain consists of

36,858 nodes and 33,450 hexahedral elements and the solid domain contains 6,448 nodes

and 5,400 cells. The ALE formulation is applied to the area above the flexible membrane

boundary.

The membrane roof is extremely slender due to its thickness is 0.01 m which gives the

ratio of length/thickness equals 1000. Therefore, for temporal discretisation, s01.0= t

is selected for 500 time-steps.

The boundary conditions that used in this case model and shown in Figure 4.18 above

and taken from Hübner’s study [193]. The inflow velocity in x-direction is defined on the

boundary where x = 0 as

() () ()zututzu ztx
ˆ.ˆ.sm/0.100,ˆ = . (4.2)

Thus, the inflow velocity in z-direction is changing exponentially and sinusoidally until t

= 5s as shown in the two equations below and their plots are presented in Figure 4.21a

and b

() 22.0

350
ˆ 








=

z
zu z

 (4.3)

() ()5.0.15.0
0.5

sinˆ













+
















−=

t
tut  (4.4)

Therefore, at z = 75 m and after t = 5s, the maximum inflow velocity is 71.2 m/s as

presented in Figure 4.20 and this corresponds to Re = 8900 as mentioned in Table 4.8.

For the coupled problem, there are ten iterations in each time-step, and the Aitken scheme

is applied for convergence. About 20h wall-clock times for one core are required for the

500 time-steps.

The coupled FSI simulation represents very small vortices shedding at upper membrane

roof boundary. These vortices will move downstream through the membrane and will

cause the pressure vibration on the membrane. In addition, this leads to the 3D membrane

125

roof oscillation. However, the large vortices shedding occurs in the membrane roof wake

area.

Figure 4.18: Geometrical properties and boundary conditions of 3D membrane roof

Figure 4.19: Meshing results for 3D membrane roof model

x

y

z

75.0 m

slip

In
fl

o
w

O
u
tf

lo
w

no-slip

126

Figure 4.20: Maximum flow velocity for 3D membrane roof benchmark

Figure 4.22 represents the irregularity of the 3D oscillation of the flexible membrane roof

in the z-direction. This oscillation is very different from the related 2D simulation. It was

noted in the results section for that simulation that the absence of space around the

building was the critical reason as to why the membrane was deflecting so much in the

2D case. This 3D case and the results from Figure 4.22 are a clear indicator of how much

the deflection profile is different, namely the maximum displacement was of around

0.15m on the 2D case, and it is smaller than 0.09m in the 3D case, with the uniform

periodic region after 3s to be below 0.05m, making it roughly 3 times smaller than the 2D

case.

Associated with the smaller displacement, oscillations can more easily occur in this 3D

case, given that the fluid can more easily go over and around the building, along with

generating and releasing vortices, which did not occur in the 2D case.

The snapshots shown in Figure 4.23 should be repeated through the membrane after some

period. Von Scheven and Ramm [44] showed that the snaps repetition occurs after one

period of simulation time.

However, this 3D case was simulated by taking advantage of the 3D symmetry of the

domain and geometry, which allowed to reduce the total wall clock time to half the time

127

Figure 4.21: 3D membrane roof: (a) spatial (b) temporal inflow boundary conditions variations

Time (s)

()zuz
ˆ

z
(m

)

(b)

(a)

128

it would be necessary otherwise. But there is some concern that this 3D symmetry

modelling strategy should perhaps not have been used, given that the results for the 3D

plate in the reference articles [44,191] gave an indication that there should be some torsion

applied on the plate and that symmetry would have been broken. In other words, the

concern here is if fluid flow speed versus the building and membrane sizes, could have

led to a significant non-symmetrical pattern to the vortex generation and shedding, and

consequently changed the displacement pattern on the membrane considerably.

But then again, associated to this, the same modelling limitations which were diagnosed

for the previous cases would likely also need to be accounted in this case as well, although

this was not noticed in this case as significantly.

Figure 4.22: 3D flexible membrane roof deformation over z-direction

129

t = 4.1 s

t = 4.2 s

t = 4.3 s

t = 4.4 s

t = 4.5 s

t = 4.6 s

t= 4.7 s

t = 4.8 s

t = 4.9 s

t = 5.0 s

Figure 4.23: Deformed structure of the 3D membrane roof case in z-direction

130

4.5 Chapter Summary

Four benchmarking of two-dimensional and three-dimensional fluid-structure interaction

has been studied in this chapter. Firstly, the 2D elastic tail deformation is induced by Von

Karman vortex shedding from a square block. The results present a good agreement with

other literature. In addition, the analysis of the fluid flow represents that the interaction

between the fluid and the structure is done in both x- and y-directions. The periodic tail

deformation is excited by the unsteady vortices, which in turn interacts with the new

vortices that are generating from the neighbouring fluid at the tip of the flexible tail, and

then the Von Karman vortex shedding street is distributed from the path.

The second testing case model is a hanging roof in the 2D space. This case is simulated

for the wind flow effects on the slenderness structures. Taking into account that all needs

arising from the physical model, the fsiFoam solver is applied to both fluid flow and solid.

Then, in other two benchmarking, the 3D numerical models of the thin-walled structures

exposed to the aerodynamic flows. The first 3D model is the elastic cantilever plate

attached to a solid support and the second is the 3D case is an extension of the 2D hanging

membrane roof problem have been investigated.

Review of the past conducted simulations, all of the studied cases share a common trait:

oscillatory motion imposed by fluid flow on various shapes and sizes of solids, due to the

vortices which were generated and released in the wake of the flow, as the fluid interacted

with the solid and vice-versa.

However, there were some situations where the modelling limitations revealed that even

if the flow pattern is considered a laminar flow (due to the small Reynolds number and/or

due to the clear shaped vortices), turbulence modelling or fairly more refined meshes

should be used in order to properly capture the generation and release of vortices. This

could be seen in the 2D membrane roof top case and in the 3D stationary cylinder with a

fixed plate on one end. As proof, this was revealed by the 2D flexible tail behind a block,

when comparing the results of a coarse with a fine mesh, as well as in the VIV cases,

where the mesh was always fine enough to represent the vortices on all simulations.

131

Another trait which was revealed is the need to carefully choose the modelling strategies

which are implemented when performing simulations with fluid-solid interaction, when

the solid can be deformed by the forces imposed by the fluid. More specifically:

• When modelling with the 2D and 3D with a symmetry plane or when using a complete

3D simulation, revealed that:

o A 2D mesh/geometry should only be used for studying the main behaviour of a

solid, if and only if the influence of the flow in the missing 3rd dimension is not

relevant enough to the study, as witnessed with the 2D and 3D representations of

the flexible cantilever plate attached to a solid support.

o A full 3D simulation does not necessarily imply that it will always reveal non-

symmetrical flow profiles, as also revealed in the elastic cantilever plate attached

to the solid block, even though it should possibly have revealed that torsion should

have occurred.

• Using a more refined mesh can be fairly prohibitive, especially when the solver cannot

be used with parallelized processing, given how time consuming these types of

simulations can be.

• Simulations using the coarser meshes which were used, should possibly have been

performed with a turbulence model, instead of using laminar flow modelling.

However, that was beyond the scope of this thesis.

132

Chapter 5

Wind-Membrane Interaction

This chapter presents a systematic investigation and realization of numerical simulation

of fluid-structure interaction phenomena in the membrane structures case. A typical

application is the four-point tent structure subjected to wind flow. Due to their behaviour

of special load carrying, membranes are extremely light-weight and susceptible to flow

induced effects. Thus, they are characterised by their flexibility and light-weight which

makes them more sensitive to the wind. In this chapter, the flow-induced membrane

deformation in a smooth wind flow is studied.

5.1 Numerical Example of Four-Point Tent Structure Subjected to the Wind

In the following numerical model, a four-point tent structure is studied under the wind

loading as a common model in Oman. The tent structure example resembles a hyperbolic

surface shape of the 10m  10m membrane with 2.5 kN/m pre-stress. It is stabilised by

four cables with a pre-stress of 50kN and supported by two masts with a thickness of 6

mm and a diameter of 88.9 mm. The material of the membrane is a PVC coated-polyester

fabric of type I and its thickness is 1mm. The bracing contains two couples of cables

which have 13.8 mm diameter and 41 kN pre-stressed force [187]. The case model with

its dimensions is presented in Figure 5.1.

5.1.1 Meshing Set-Up

Planned on testing with the snappyHexMesh utility in OpenFOAM [158], but this has

ended with some issues when generating meshes around thin curved surfaces. The known

problems are as follows:

133

• Since the membrane is a thin surface, the meshing method can get a bit lost on

where the surface starts and ends, because there is no sharp corner, only a sharp

edge.

• Given the curvature of the tent surface; there would have been a lot of cells getting

either sliced or getting severely deformed in trying to snap to the surface of the

tent.

Along with these issues, the mesh is meant to be subjected to dynamic mesh motion, so

that the tent surface can change its surface with the forces of the fluid around it. This

meant that the majority of meshes done with snappyHexMesh would eventually result in

some critical issues, such as a cell being too skewed or squished to be properly morphed,

which would numerically corrupt the simulated flow fields.

Another mesh technique, cfMesh [203] was also a possibility for meshing, but it can suffer

from the same issues as snappyHexMesh.

Figure 5.1: Geometry and dimension of the four-point tent structure

Therefore, the solution chosen was to design the mesh using other less conventional tools

that OpenFOAM has got, namely:

10m
10m

Front view

Side view

Top view

4m

134

• Using blockMesh to design a simple mesh that could be easily deformed, while

also allow for it to adjust properly to the tent surface.

• Using moveDynamicMesh to morph the previous mesh onto the tent surface.

• Using any other tools that are necessary for finishing up the mesh, such as

mergeMeshes, stitchMesh, refineMesh and anything else that was needed to get

the job done.

The case structure is illustrated in Appendix 5.A and meshing steps for fluid and solid

regions are shown in Appendices 5.B and 5.C, respectively, will outline what has been

done and how it is currently working.

5.1.2 Important Logic Notes

There are a few important logic issues with this mesh set-up:

• The fluid region does not account for the solid thickness.

• This is because the fluid region was originally planned to only with the top of the

membrane; otherwise, it would be had to use even more insane methods to

manipulate the mesh.

• It was expected to work this way due to a previous case in Section 4.4 where only

the top of the membrane meshed in the fluid region.

• Although the solid thickness is set to 1cm at the start of the solid mesh generation,

specifically along the z-direction, which means that along the normal of the tent,

it is likely only 0.707 of that, namely () 2245cos o = .

• Only the membrane itself is modeled, while masts and cables influences are

neglected.

However, limitations on this meshing strategy were revealed when attempting to use the

solver with fluid-solid interaction turned on, which leads to the need to only mesh the

fluid region on top of the membrane, without any fluid passing through the membrane.

135

In addition to these limitations, it was only possible to fixate the 4 edges of the tent

membrane; it was not possible to fixate just the tips of the tent due to meshing limitations

and how boundary conditions are defined in OpenFOAM, specifically due to only

allowing the fixation of faces on the boundary mesh.

5.1.3 Simulation Set-Up

In this example, the transient analysis of a wind flow loaded tent is performed. The fluid

and membrane properties are presented in Table 5.1. The strongly coupled simulation of

a completely 3D set-up is accomplished using a hexahedral mesh for both fluid and solid.

Prism layers were originally used for refinement mesh at the bottom of the membrane,

but it was not possible to use the solver with those cells, due to a limitation on how the

cells were stitched together. More specifically:

• Since the mesh had to be generated in 3 parts (2 fluid and 1 solid), where each

part was meshed refined mostly independently, would result in not having the

cell order match properly between the two fluid mesh regions.

• It was not possible to solve this with any of OpenFOAM/foam-extend meshing

utilities, nor was it possible to use cyclic boundary conditions to artificially

connect the two fluid regions (top mesh with the bottom mesh), therefore it was

necessary to one of the mesh parts, which lead to discarding the bottom mesh.

• Furthermore, the only way to have a properly working solid region mesh, was to

extrude the respective membrane top patch on the top fluid part onto the solid

mesh part, so that the cells were properly ordered and matching; this was the

other problem with meshing the bottom fluid part, given that it was necessary to

extrude this mesh from the membrane bottom patch on the solid region.

The chosen fluid is air at 25oC, which enters the simulated region with a uniformly

distributed wind flow along space and oscillating with time (see Figure 5.2), with its main

flow direction is normal to inlet plane on the left side of the domain (bottom-left

perspective in Figure 5.1.

136

Table 5.1: Material properties of the 3D four-point tent case

Domain Parameter Value Unit

Fluid

f

f

1.25

0.08

kg m-3

m2 s-1

Solid

s

s

Es

1,300

0.4

4.0 x 109

kg m-3

-

Pa

Flow

Re

3,750

-

Besides examining the partitioned FSI approach, the aim of the tent structure simulation

is the assessment in a qualitative way of the occurring influences and their magnitude,

since the complete mesh could not be created and therefore, a direct comparison with the

reference articles could not be done.

The dynamic behaviour of the model was studied in an unsteady FSI simulation for a

wind flow in the y-direction. Regarding the fluid incompressibility and low mass of the

structure, which in sequence because of low wind speed, the coupled simulation was

studied in an implicit way. The stabilisation in the FSI partitioned approach between the

incompressible fluid flow and light-weight structures is already discussed in Chapter 2

and demonstrated in Chapter 4. Moreover, the Aitken based under-relaxation method is

applied to enhance the convergence.

Figure 5.2 behaviour shows that the deformed membrane is starting from the steady-state

solution at 20 m/s, and the maximum wind-speed is changed within the range [10 m/s, 30

m/s]. The deformation of the membrane structure followed the wind-speed variation

because of the little membrane mass and its pre-stress [187,204].

Given the limitations of the mesher and solver, the fluid could only go over and around

the tent membrane. Therefore, the vortices developing on top of the membrane develop

137

downward and upward forces as times pass, as shown in Figures 5.3 and 5.4.

The simulation has taken roughly 6h of the CPU time, around 1h for each simulated

second. The steps need for the simulation with fluid-solid interaction is all illustrated in

the script file Allrun (Appendix 5.D).

These results are fairly differenced from the reference papers [187,204], given that it was

not possible to mesh the fluid region below the tent membrane. This resulted in this

simulation only handling the interaction between the fluid travelling on top and around

the tent membrane, which associated to the 4 sides of the membrane being fixated,

resulted in only occurring upward and downward forces on the centre of the membrane.

In addition, the thickness of the membrane could not be specifically the 1mm thickness,

due to the limitations with fluid-solid interaction solver that was used.

Figure 5.2: Maximum inflow velocity over simulation time

138

5.1.4 Tent Case Limitations

This case was simulated with the fsiFoam solver. Given that the fluid is a lot more viscous

than air, then in order to get a distortion similar to using air, it would have been necessary

to reduce the stiffness of the solid properties, so that the tent membrane bends a bit more

than just roughly 2 millimeters or so. As already mentioned in the previous section, the

main problem with the case not running had to do with how the solid mesh was being

created. The current case is only working because of the following details:

o "membraneTop" is extruded from the fluid region onto the solid region;

o The fluid region below the membrane is removed;

o The four sides of the membrane are made to be fixed in their place;

o The wind profile is at the inlet, and the fluid domain is increased in all 5 directions:

North, South, East, West, and Top. This was specifically done so that it would be

similar to the previous 3D membrane case (Section 4.4) and would allow for the

alleviation of the flow around the tent and the pressure fields could be better

distributed around the tent.

o Not extending the fluid domain on all 5 directions would result in a flow profile

similar to having the tent tightly stored inside a pipe, which would consequently

increase drastically the fluid forces on top of the tent membrane; for example, the

membrane would be severely distorted as it happened with the previous 2D

membrane case in Section 4.2.

Otherwise, it was not possible to create a mesh in time for this to work as intended. This

is due to there still being several limitations with the current technology, namely how the

existing tools allowed the meshing to be done and how the fsiFoam solver works.

Having the fluid only going over the tent is not as accurate, but at least it can give

comparable results to the previous 3D membrane. In other words, given that it was not

possible to create a case identical to the reference articles [187,204], then it was attempted

to compare this case to the previously studied 3D membrane; this way, the fluid will flow

only over the top side of the membranes.

139

t = 0s

t = 1.5s

t = 2.5s

t = 3.5s

t = 5.5s

t = 6s

Figure 5.3: Response of the structure at different times with counter plot of the displacement dz in meter

It is very likely that the only way to easily generate a mesh for this case would be to use

commercial meshers, such as Pointwise’s mesh generators, which are fairly expensive for

commercial use and it was not confirmed what the prices for academic use are.

Furthermore, such a decision would have had to be taken a few months sooner than when

work started on this tent membrane model, in order to get access and to get properly

140

familiar with those commercial mesh generators, for creating the final meshes for this

model.

Figure 5.4: Deformation results along z-direction of four-point tent case in 6s simulation time

The current case only simulates the fluid flow over the tent membrane. This is because it

was not possible to add the mesh for the fluid region that was meant to be below the tent

membrane. Right now, it is not even certain how this can be achieved with OpenFOAM

or foam-extend, given that even cyclic boundary conditions would not work for

transferring flow between the top and bottom fluid regions. This means that this tent case

is working in a similar way to the 3D membrane case studied in Section 4.4. Specifically,

it is as if the building changed shape, but only the membrane roof was being simulated.

In other words, it is as if the 3D membrane case was rotated 45o along Z-axis and the new

North and South vortices of the membrane were lowered the ground, therefore morphing

the flat membrane into the complex surface of the tent case.

The fluid properties are the same as the 3D membrane case in Section 4.4. The solid

properties are the ones indicated for the PVC type I properties (Table 5.1). However, the

141

tent in this case, has a thickness of 1cm and not 1mm, because otherwise, the solver would

crash due to numerical errors. The possibility of simulation with 1 mm of thickness would

probably require a rather very well refined mesh on the solid region which was not

possible to achieve due to the limited time available for this study.

The membrane is expected to only float up and down, like the 3D membrane case, given

that there is no fluid flow going under the membrane and there is not enough deformation

on the tent surface to cause vortices to be generated.

More specifically, it is possible to compare the characteristics of these two membranes,

along with the fluid inlet velocity, to correlate the results reached in the two cases:

• The two membranes have similar surface areas (100 m2, when not distorted).

• The tent membrane is 4 times more rigid than the 3D membrane case, therefore it

is expectable from this that the tent membrane has a displacement 4 times smaller

than the achieved by the 3D membrane case.

• The inlet velocity for tent membrane has a maximum velocity of 30 m/s

(uniformly distributed in space), which the 3D membrane case has a maximum

velocity of 71.2 m/s (logarithmically distributed along the height), which leads to

the tent case only receiving 50% of the fluid speed as the intake in the 3D

membrane.

• The shape of the tent membrane allows for a substantial deflection of fluid flow

to flow down and around the membrane, therefore reducing the displacement

which would otherwise be necessary in the 3D membrane case, given that the

latter would require the fluid to push the membrane down further before being

able to flow back upwards and out of the membrane region.

• Therefore, taking these details into account, it could be expected to possibly have

a displacement of at least 8 times smaller in the tent case (4 times more rigid and

has at least half the fluid force imposed on it).

• In practice, the 3D membrane had a maximum displacement of roughly 0.045m

(after the flow profile around it became periodic, i.e. after 3s of simulation), versus

the 0.003m maximum which the tent membrane had, effectively making the tent

142

membrane displaced 15 times less than the 3D membrane.

• On the other hand, if the total displacement amplitude of the tent membrane is

accounted for, namely 0.005m, this makes the tent membrane be displaced 9 times

less than the 3D membrane, which is near the expected factor of 8 times.

The factor of 8 was aforementioned in the previous section, because the tent membrane

has 4 times more stiffness than the 3D membrane, along with the wind velocity at the

inlet on the 3D membrane is roughly twice faster than the maximum velocity at the inlet

in the tent membrane case, making it the 3D membrane subjected to the estimated 8 times

the scale of forces that are occurring in the tent membrane.

This analysis will be further addressed in Section 5.2, regarding the comparison of the two

configurations of membranes.

Going back the case setup, the inverted V surfaces that are connected to the bottom of the

fluid domain are defined with the slip boundary conditions. This was done because it was

the most approximate boundary condition could use to try and partially replace the missing

mesh underneath that region.

The fsiFoam solver and the Fluid-Structure Toolkit are still in development, and its

limitations have restricted the scope of the simulations performed for the current thesis.

o Specially, that the cases could not be fully reproduced due to the limitations

of both this toolkit and the experience that is needed to get these cases working

properly.

o The tent case could not be reproduced both to limitations with the meshing

requirements and solver limitations (foam-extend in this case as well).

o The reference case in [187,204] could not be 100% reproduced because the

studies that have conducted for this thesis are all for laminar flow and the

original model had the results for turbulence flow, which could not be

performed with this solver and toolkit.

143

5.2 Learning from Membrane Structure Failure Cases

Despite the wide use of membrane structure for the construction’s systems, some serious

accidents have occurred on the part of or whole membrane roofs, particularly due to

mistakes in the membranes design or improper installation process.

The flexibility behaviour of the membrane structure leads easily to induce instability in

whole or part of its surface due to heavy rain or the wind during installation process before

pre-tensioning. When it is raining, for example, if there is no good sloping pattern on the

membrane for water flow, this is possible to cause a water basin inside the membrane,

and that might exceed the designed load or stress. Then, the membrane structure may be

damaged or even failure [200,205-206]. This can be observed in the results achieved with

the tent membrane case and the 3D membrane case:

• When only air is flowing over the 3D membrane, the displacement plot reveals

that the membrane will mostly oscillate into the building (mostly positive

displacement), which will easily result in having a permanent water basin during

heavy rain, with little chance of the membrane being displaced outwards and

releasing the water.

• On the other hand, the tent membrane has two advantages, which will reduce or

eliminate the occurrence of water basins:

1. The centre of the membrane will oscillate in nearly equally proportion

between a maximum position above the initial position and the minimum

position below that initial centre position;

2. The tent membrane already has sloping shape, specifically a saddle shape,

which is nearly optimal for allowing for water and air to flow on top of the

membrane.

The installation process of the membrane should be accomplished with a lot of care. For

instance, during the installation step, the membrane surface had sometimes been poked

by metallic equipment, and this could lead to slightly damaged. Thus, in this case, specific

treatment must be immediately done because missing of that membrane surface treatment

will decrease its load bearing capacity and finally lead to failure [200,207]. This was not

possible to simulate with the tent case, but it could be tested in a future work.

144

In addition, mistakes in the membrane design or cutting pattern design can cause a higher

stress concentration in a part of its surface, and that may lead to membrane cracks or

failure. This is clearly demonstrated between the design of the 3D membrane versus the

tent membrane, where the stress was substantially reduced, given that the tent membrane

is displaced nearly half of the expected displacement in each direction (along Z). More

specifically, the tent membrane was displaced between 0.002m and -0.003m, while the

3D membrane was displaced 0.045m in just one direction.

• More specifically, it is estimated that the 3D membrane would be displaced

0.0056m (maximum displacement observed was 0.045m, divided by the estimated

factor of 8), if the 3D membrane was made of the same material as the tent

membrane and simulated with the same wind speed at the inlet.

• This effectively means that the 3D membrane is subjected to nearly twice as much

stress, than the tent membrane, when scaled accordingly, which would lead to a

faster breakdown of the material due to stress.

The factor of 8 was aforementioned in the previous section, because the tent membrane

has 4 times more stiffness than the 3D membrane, along with the wind velocity at the

inlet on the 3D membrane is roughly twice faster than the maximum velocity at the inlet

in the tent membrane case, making it the 3D membrane subjected to the estimated 8 times

the scale of forces that are occurring in the tent membrane.

It is not easy sometimes to design the membrane surface in a homogenous stress in a

service state. Therefore, in the design analysis results when this condition occurred, the

high stressed membrane area should be established with more care, particularly, that area

should be given by a local strengthening treatment [197,200]. This could possibly be

simulated in a future work, for example, for assisting in the design of pre-stress

distribution, when the membrane cannot be shaped directly to an optimum shape, such as

the saddle shape.

5.3 Chapter Summary

Membrane structures are categorised by their flexibility and light-weight, which make

145

them relatively sensitive to wind flow. The partitioned approach is proposed to simulate

this fluid-structure interaction problem. Moreover, due to the strong coupling in the

membranes case and the almost negligible structure’s mass, the Aitken based under-

relaxation method is applied to accelerate convergence through the implicit fixed-point

coupling.

The wind flow problem is presented by the incompressible Navier-Stokes equations while

the membrane structure is modelled by the nonlinear elastodynamics equations. Both

fluid and solid are simulated by the finite volume method (FVM), and an arbitrary

Lagrangian-Eulerian (ALE) formulation is applied to capture the motion of the mesh.

The fsiFoam solver environment is using for the simulation of the wind flow effects on

the slender membrane. The four-point tent case is taken as an example to present this

work. One main challenge of the numerical wind simulation on constructions is the exact

imitation of the natural wind conditions in the flow up-stream direction. This means that

the inflow conditions of the fluid domain should be defined in accordance with the

required task conditions. Generally, only the simplified wind profiles, which do not take

into account the natural atmospheric turbulence, is used. However, studies of the

experimental wind tunnel consist of these natural atmospheric turbulences.

For more application to wind-membrane interaction, the turbulence modelling such as

large-eddy simulation (LES) and detached-eddy simulation (DES) methods are not

available yet within fsiFoam solver in foam-extend.

Nonetheless, even though there were several limitations in the implemented models and

available simulation capabilities, it was still possible to create a workflow that can be

used for studying membrane designs, given that it was possible to achieve comparable

results between the 3D membrane cases versus the tent case. The results which were

achieved gave the clear result of why the tent membrane is overall a better design, given

that it has reduced stress during the whole simulation, as well minimising/neutralising the

occurrence of water basins on the membrane's surface.

Although, if time had permitted, intermediate simulations could have been performed for

more easily comparing direct results and analysing design choices. For example, having

both the tent membrane and the 3D membrane made of the same material, along with

146

having the same wind profile at the inlet, as well as having the 3D membrane rotated 45

degrees along the Z-axis, would have given a clear one-to-one comparison of the results.

147

Chapter 6

 Conclusions and Future Research

The aim of the work as outlined in Section 1.6 was to investigate the impact of vortex-

induced vibration (VIV) phenomena in two- and three-dimensional fluid-structure

interaction (FSI) models. The thesis objective was achieved by studying two- and three-

dimensional numerical models as discussed in Chapters 3 – 5. The partitioned approach

was used in this study to analyse the strong coupling between fluid and structure.

Different numerical models have been discussed in detail to demonstrate accuracy,

stability, and convergence. The following sections summarise the achievements of this

research effort, and present opportunities and directions for future work to improve upon

and develop the work presented here.

6.1 Achievements Summary

Three different cases have been studied for the 2D flow past a circular cylinder example

case; stationary cylinder, free vibrating cylinder, and forced vibrating cylinder. These

three cases are simulated using pimpleFoam solver for the static cylinder and

pimpleDyMFoam solver for the dynamic cylinder with PIMPLE algorithm in order to

achieve pressure-velocity coupling. The results of the analysis are given as follows:

• In contrast to other hydrodynamic force coefficients for the static circular cylinder,

both drag and lift coefficients represent a good agreement compared to open

literature at Reynolds number equals 100 and 200. However, there is a significant

difference in force coefficients at Re = 1000.

• An increasing of Reynolds number leads to an exponential increase of the lift

coefficient amplitude.

• Compared to other experimental results, the relationship between Reynolds

number and Strouhal number obtained from the simulation presents a good

agreement.

148

• The solid body motion (free vibrating cylinder) was tested in one- and two-

degrees-of-freedom system with linear spring and damping properties. Both

affected the behaviour of the cylinder within the flow with some noticeable

differences. More specifically, the response time of the cylinder and the drag

coefficient were the most affected by the stiffness and damping coefficients used

in the respective springs and dampers, where:

o Reduced stiffness would lead to a smaller working range for the drag

coefficient amplitude and take longer to reach to the periodic oscillation.

o Reduced damping would lead to a slightly smaller working range for the

drag coefficient amplitude, while also not working on the same exact

frequency as the reference cases.

• From all tested simulations of the free vibration cylinder model, it is not clear

what would happen if only 1 or 2 springs were used or if only one wire was used

to hold the cylinder.

• In the free vibrating cylinder simulations, it was clear that the lift coefficient is

barely affected by the springs and dampers, given that the cylinder would

accompany the forces generated by the vortices that were being created and

released in the cylinder's wake.

• With the forced vibrating cylinder simulation, it was clearer to infer how the drag

and lift coefficients would correlate with the cylinder displacement and the vortices

being generated in its wake, namely:

o When the drag and lift coefficients are at a maximum and/ or the cylinder

is at the extreme positions in displacement, and the flow is going over or

under the cylinder for the respective extreme position of positive or

negative displacements.

o The “lock-in” phenomena will occur when the reduced velocity value is

within the range [4, 12] and thus will cause the resonance.

A partitioned approach solver (fsiFoam) was applied to four models, two of them in the

two-dimensional space and another two are their extensions in the three-dimensional

space. In those four models, the strong coupling FSI was taken into account by applying

block Gauss-Seidel implicit scheme with adaptive Aitken’s under relaxation technique in

149

Sections 4.1, 4.2, and 4.4, and IQN-ILS technique in Section 4.3. That was essential

especially in the partitioned approach model due to the different fluid flow and structural

deformation solvers contact at the fluid-solid interface. The ALE formulation is applied

to solve the Navier-Stokes equations as the internal mesh in the fluid flow domain

deforms with the moving boundaries. Moreover, since the present benchmarking studies

deal with either elastic tail or flexible membrane interacting with the viscous fluid flows,

the Lagrangian formulation is used to discretise the St. Venant-Kirchhoff constitutive

model which is the hyperelastic material model.

On the fluid-structure interface, the interaction between both solvers of the fluid flow and

structure has been achieved. In addition, the solver of the mesh motion which uses the

mesh diffusivity in the Laplace smoothing equation solves the motion of the internal mesh

in the fluid flow domain and considers the displacement as the boundary condition at the

fluid-solid interface. The conservation of mass and momentum of fluid flow and solid are

provided by the coupling conditions for both velocities and boundary tractions. Space and

time FVM discretisation implemented for both fluid and structure leads to a consistency

of both continua.

The first benchmark that was used to validate the fsiFoam solver was the 2D flexible tail

attached to a solid support block. The tail deformation is induced by the Von Karman

vortex shedding from the solid square block. The analysis of the fluid flow displays the

interaction in both directions. The tail deformation is excited by the unsteady vertices

which in turn connect to the new vortices generating from the neighbouring fluid at the

tip of the tail, and distributing the Von Karman vortex shedding street aside from its path.

Light-weight structures such as shells, membrane roofs and tents are presented for other

examples models and applications. The well-known principle “great events often come

from little causes” is very relevant in this context. This could be expressed by small

changes in data causing an extremely important structural response. In the present work,

this has been demonstrated by selecting a thin-walled membrane roof and a plate of

medium slenderness (mass-less) ratio to show aerodynamic flow. The initial results

provided some information about the difficulties in coupling, and ways or strategies to

overcome them in the field of wind engineering.

150

A reliable structural design, such as a wind tunnel, is time-consuming and financially

costly. For a strongly coupled system, numerical simulations may develop more efficient

simulations, thereby reducing both time and cost. The presented frameworks are

developed to examine the interaction of viscous fluid flow and slender structures in order

to demonstrate the versatility and efficiency of the numerical scheme. The simulation

provides an opportunity to demonstrate the coupled systems phenomena, and to analyse

the reason for aeroelastic instabilities. For a viscous incompressible fluid, the natural wind

is modelled at 25 oC.

However, as shown in this study, care must be taken when trying to replace wind tunnels

with CFD simulation more so, when selecting meshing and modelling strategies, as well

as the software and tools needed in these experiments. More specifically:

• 2D modelling can be used for initial experimentation with prototypes. However,

this will unlikely fully represent real-life scenarios, given that a 2D simulation

assumes that it is similar to a fully symmetrical flow and solid structure,

happening in both directions of the third dimension. This was most visible in the

2D membrane case (Section 4.3) that was acting as a roof.

• Both 2D and 3D modelling requires that mesh studies are conducted, in order to

determine the level of accuracy that is needed for a specific type of simulation,

for example, for a specific flow profile at the inlet and a specific stiffness and

elasticity of the membrane, given that both will affect how much fluid flow will

interact with the solid membrane.

• Because of its limitation, turbulence modelling was not used in this study. This

could have substantially hindered the scope of the simulations that were

conducted. Namely, it could be possible to use coarser meshes for achieving

similar results.

• The fluid-solid interaction toolkit which was used for this thesis (specifically the

solver fsiFoam) was still a work in progress when this study was started. Thus,

the ability to properly conduct a wide range of simulations was restricted due to

being limited to a single CPU core when simulating. In other words, it was not

possible to reduce the wall-clock time when dividing the mesh into sub-domains

and assigning an independent CPU/core to each sub-domain, which is commonly

done for most CFD software applications.

151

• Proper modelling of complex structures, such as the 3D tent membrane, requires

advanced meshing software, which was not available during the time of this study.

More specifically, the available strategies of meshing fluid regions in parts were

used, then merging and stitching those parts together. This was a compromise, and

it resulted in reaching limitations in foam-extend handling of multi-region meshes

with fluid-solid interface surfaces as those in this study.

6.2 Suggestions for Future Work

In this study, the conducted investigations focused on Newtonian incompressible fluid

flows interacting with flexible structures. The results documented in this study are

significant. However, the following are suggestions and recommendations for future

research:

• The two-dimensional and three-dimensional tests models rendering of turbulent

and compressible flow.

• Applying the fluid-structure interaction modelling to more complex problems.

• Repeating the study accomplished in Chapter 5 using different membrane and

structures shapes such as cone shape, and then apply to the net cable model.

• If the same software is to be used, it is strongly advised to work more closely with

the developers of the foam-extend and the fluid-solid interaction toolkit projects,

with the objective of improving the ability to handle the meshes needed for these

types of simulations.

152

Bibliography

[1] Billah, K.Y. and Scanlan, R.H. (1991). Resonance, Tacoma Narrows bridge failure,

and undergraduate physics textbooks. American Journal of Physics,59(2), pp.118-

124.

[2] Schäfer, F., Uffinger, T., Becker, S., Grabinger, J. and Kaltenbacher, M. (2008). Fluid-

structure interaction and computational aeroacoustics of the flow past a thin flexible

structure. The Journal of the Acoustical Society of America, 123(5), pp.3570-3575.

[3] Gomes, J. and Lienhart, H. (2013). Fluid structure interaction-induced oscillation of

flexible structures in laminar and turbulent flows. Journal of Fluid Mechanics, 715,

pp.537-572.

[4] Peng, Y., Mittal, R., Sau, A. and Hwang, R. (2010). Nested Cartesian grid method in

incompressible viscous fluid flow. Journal of Computational Physics, 229(19),

pp.7072-7101.

[5] Pielhop, K., Klaas, M. and Schröder, W. (2013). Experimental analysis of the fluid

structure interaction in finite-length straight elastic vessels. European Journal of

Mechanics - B/Fluids, 50, pp.71-88.

[6] Bearman, P. (2011). Circular cylinder wakes and vortex-induced vibrations. Journal

of Fluids and Structures, 27(5-6), pp.648-658.

[7] ESI-OpenCFD. (2004). OpenFOAM. The Open Source CFD Toolbox. Available at:

http://www.openfoam.com/. Last accessed 21st July 2017.

[8] Apacoglu, B., Paksoy, A. and Aradag, S. (2011). CFD analysis and reduced order

modelling of uncontrolled and controlled laminar flow over a circular cylinder.

Engineering Applications of Computational Fluid Mechanics, 5(1), pp.67-82.

[9] Bayraktar, E., Mierka, O. and Turek, S. (2012). Benchmark computations of 3D

laminar flow around a cylinder with CFX, OpenFOAM and FeatFlow. International

Journal of Computational Science and Engineering, 7(3), pp.253-266.

http://asa.scitation.org/journal/jas
http://www.openfoam.com/

153

[10] The OpenFOAM Extend Project. (2014). Available at

https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/Fluid-structure_

interaction. Last accessed 21st July 2017.

[11] Anagnostopoulos, P. (1994). Numerical investigation of response and wake

characteristics of a vortex-excite cylinder in a uniform stream. Journal of Fluids and

Structures, 8(4), pp.367-390.

 [12] Anagnostopoulos, P. (2000). Numerical study of flow past a cylinder excited

transversely to the incident stream. Part I: Look-in zone, hydrodynamic forces and

wake geometry. Journal of Fluids and Structures, 14(6), pp.819-851.

[13] Placzek, A., Sigrist, J. and Hamdouni, A. (2009). Numerical simulation of an

oscillating cylinder in a cross-flow at low Reynolds number: Forced and free

oscillations. Computers & Fluids, 38(1), pp.80-100.

[14] Govardhan, R. and Williamson, C. (2000). Modes of vortex formation and frequency

response of a freely vibrating cylinder. Journal of Fluid Mechanics, 420, pp.85-130.

[15] Williamson, C. and Jauvtis, N. (2004). A high-amplitude 2T mode of vortex-induced

vibration for a light body in motion. European Journal of Mechanics - B/Fluids,

23(1), pp.107-114.

[16] Bourguet, R., Karniadakis, G. and Triantafyllou, M. (2011). Vortex-induced

vibrations of a long flexible cylinder in shear flow. Journal of Fluid Mechanics, 677,

pp.342-382.

[17] Mittal, S. (2005). Excitation of shear layer instability in flow past a cylinder at low

Reynolds number. International Journal for Numerical Methods in Fluids, 49(10),

pp.1147-1167.

[18] Dahl, J.M., Hover, F.S. and Triantafyllou, M.S. (2006). Two-degree-of-freedom

vortex-induced vibrations using a force assisted apparatus. Journal of Fluids and

Structures, 22(6-7), pp.807-818.

https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/Fluid-structure_%20interaction
https://openfoamwiki.net/index.php/Extend-bazaar/Toolkits/Fluid-structure_%20interaction

154

[19] Dahl, J.M., Hover, F.S., Triantafyllou, M.S. and Oakley, O.H. (2010). Dual

resonance in vortex-induced vibration at subcritical and supercritical Reynolds

numbers. Journal of Fluid Mechanics, 643, pp.395-424.

[20] Wang, X., Su, B. and Tan, S. (2012). Experimental study of vortex-induced

vibrations of a tethered cylinder. Journal of Fluids and Structures, 34, pp.51-67.

[21] Wang, Z.J. and Zhou, Y. (2005). Vortex-Induced Vibration Characteristics of an

Elastic Square Cylinder on Fixed Supports. Journal of Fluids Engineering., 127(2),

pp.241-249.

[22] Williamson, C. and Roshko, A. (1998). Vortex formation in the wake of an

oscillating cylinder. Journal of Fluids and Structures, 2(4), pp.355-381.

[23] Carberry, J., Sheridan, J. and Rockwell, D. (2005). Controlled oscillations of a

cylinder: forces and wake modes. Journal of Fluid Mechanics, 538, pp.31-69.

[24] Bearman, P.W. (2009). Understanding and predicting vortex-induced vibrations.

Journal of Fluid Mechanics, 634, p.1-4.

[25] Bearman, P.W. (2011). Circular cylinder wakes and vortex-induced vibrations.

Journal of Fluids and Structures, 27(5-6), pp.648-658.

[26] Schäfer, F., Uffinger, T., Becker, S., Grabinger, J. and Kaltenbacher, M. (2008).

Fluid-structure interaction and computational aeroacoustics of the flow past a thin

flexible structure. Journal of Acoustical Society of America, 123(5), pp.3570-3575.

[27] Brika, D. and Laneville, A. (1993). Vortex-induced vibrations of a long flexible

circular cylinder. Journal of Fluid Mechanics, 250, pp.481-508.

[28] Carberry, J., Sheridan, J. and Rockwell, D. (2003). Controlled oscillations of a

cylinder: a new wake state. Journal of Fluids and Structures, 17(2), pp.337-343.

[29] Williamson, C.H.K. and Govardhan, R. (2004). Vortex-induced vibrations. Annual

Review of Fluid Mechanics, 36, pp.413-455.

155

[30] Blackburn, H.M. and Karniadakis, G.E. (1993, January). Two-and Three-

Dimensional Simulations of Vortex-Induced Vibration Or a Circular Cylinder.

In The Third International Offshore and Polar Engineering Conference.

International Society of Offshore and Polar Engineers.

[31] Morse, T.L. and Williamson, C.H. (2009). Prediction of vortex-induced vibration

response by employing controlled motion. Journal of Fluid Mechanics, 634, pp.5-

39.

[32] Leong, C. and Wei, T. (2008). Two-degree-of-freedom vortex-induced vibration of

a pivoted cylinder below critical mass ratio. In Proceedings of the Royal Society A:

Mathematical, Physical and Engineering Sciences, 464(2099), pp.2907-2927.

[33] Srinil, N., Zanganeh, H. and Day, A. (2013). Two-degree-of-freedom VIV of circular

cylinder with variable natural frequency ratio: Experimental and numerical

investigations. Ocean Engineering, 73, pp.179-194.

[34] Xie, F., Deng, J., Xiao, Q. and Zheng, Y. (2012). A numerical simulation of VIV on

a flexible circular cylinder. Fluid Dynamics. Research, 44(4), p.045508.

[35] Xie, F.F, Jian, D.E. and Zheng, Y. (2011). Multi-mode of vortex-induced vibration

of a flexible circular cylinder. Journal of Hydrodynamics, Ser. B, 23(4), pp.483-490.

[36] Zhou, C.Y., So, R.M.C. and Lam, K. (1999). Vortex-induced vibrations of an elastic

circular cylinder. Journal of Fluids and Structures, 13(2), pp.165-189.

[37] Li, T., Zhang, J.Y., Zhang, W.H. and Zhu, M.H. (2009). Vortex-induced vibration

characteristics of an elastic circular cylinder. World Academy of Science,

Engineering and Technology, 60, pp.56-65.

[38] Anagnostopoulos, P. and Bearman, P.W. (1992). Response characteristics of a

vortex-excited cylinder at low Reynolds numbers. Journal of Fluids and

Structures, 6(1), pp.39-50.

[39] Khalak, A. and Williamson, C.H. (1997). Investigation of relative effects of mass

and damping in vortex-induced vibration of a circular cylinder. Journal of Wind

Engineering and Industrial Aerodynamics, 69, pp.341-350.

156

[40] Papadakis, G. (2009). Coupling 3D and 1D fluid-structure-interaction models for

wave propagation in flexible vessels using a finite volume pressure-correction

scheme. Communication Numerical Methods in Engineering, 25(5), pp.533-551.

[41] Tallec, P.L. and Mouro, J. (2001). Fluid-structure interaction with large structural

displacements. Computer Methods in Applied Mechanics and Engineering, 190(24-

25), pp.3039-3067.

[42] Dettmer, W.G. (2004). Finite Element Modelling of Fluid Flow with Moving Free

Surfaces and Interfaces Including Fluid-Solid Interaction. Ph.D. Thesis, School of

Engineering, University of Wales, Swansea.

[43] Dettmer, W.G. and Perić, D. (2006). A computational framework for fluid-structure

interaction: finite element formulation and applications. Computer Methods in

Applied Mechanics and Engineering, 195(41-43), pp.5754–5779.

[44] Von Scheven, M. and Ramm, E. (2011). Strong coupling schemes for interaction of

thin-walled structures and incompressible flows. International Journal for

Numerical Methods in Engineering, 87(1-5), pp.214-231.

[45] Habchi, C., Russeil, S., Bougeard, D., Harion, J.L., Lemenand, T., Ghanem, A., Della

Valle, D. and Peerhossaini, H. (2013). Partitioned solver for strongly coupled fluid–

structure interaction. Computers & Fluids, 71, pp. 306-319.

[46] Glück, M., Breuer, M., Durst, F., Halfmann A. and Rank, E. (2001). Computation of

fluid–structure interaction on lightweight structures. Journal of Wind Engineering

and Industrial Aerodynamics, 89(14), pp.1351–1368.

[47] Glück, M., Breuer, M., Durst, F., Halfmann A. and Rank, E. (2003). Computation of

wind-induced vibrations of flexible shells and membranous structures. Journal of

Fluids and Structures, 17(5), pp.739–765.

[48] Simiu, E. and Scanlan, R.H. (1996). Wind effects on structures: Fundamentals and

application to design. Book published by John Willey & Sons Inc, 605.

157

[49] Bagnéris, M. (2009). Innovative Surface Structures, Technologies and Applications:

A Review of Martin Bechthold's Book. International Journal of Space Structures,

24(1), pp.59-61.

[50] Bungartz, H.J., and Schäfer, M. eds. (2006). Fluid-Structure Interaction: Modelling,

Simulation, Optimisation (Vol. 53). Springer Science & Business Media.

[51] Yang, Q., Wang, J. and Wang L. (2003). Interaction of Wind with Fabric Structures.

Spatial Structures, 9(1), pp.20–24.

[52] Droll, P., Sieber, R., Cozzani, A. and Schafer, M. (2002). HAUPTAUFSATZE-

Numerical investigation of the performance of a deep space antenna under

environmental loads. Bauingenieur, 77(1), pp.7-11.

[53] Elashkar, I. and Novak, M. (1983). Wind Tunnel Studies of Cable Roofs. Journal of

Wind Engineering and Industrial Aerodynamics, 13, pp.407–419.

[54] Kawamura, S. and Kiuchi, T. (1986). An Experimental Study of a One-membrane

Type Pneumatic Structure –Wind Load and Response. Journal of Wind Engineering

and Industrial Aerodynamics, 23, pp.127–140.

[55] Takeda, T., Kageyama, M. and Homma, Y. (1986). Experimental Studies on

Structural Characteristics of a Cable-reinforced Air-supported Structure. Shells. In

Membrane and Space Frames, Proceedings of IASS Symposium, Osaka, pp.141–

148.

[56] Ishii, K. (1997). Membrane Structures in Japan —Technologies for Supporting

Membrane Structures. In IASS International Symposium on Shell & Spatial

Structures, Singapore, pp.15–26.

[57] Daw, D.J. and Davenport, A.G. (1989). Aerodynamic damping and stiffness of a

semi-circular roof in turbulent wind. Journal of Wind Engineering and Industrial

Aerodynamics, 32(1-2), pp.83-92.

[58] Novak, M. and Kassem, M. (1990). Free Vibration of Light Roofs Backed by

Cavities. Journal of the Engineering Mechanics Division, 116(3), pp.549–564. T,

158

[59] Il'chenko, A.V. and Temnenko, V.A. (1993). Oscillations of a membrane that is

orthogonal to a flow: Asymptotics of large stresses. Journal of Mathematical

Sciences, 65(2), pp.1521-1525.

[60] Kawai, H., Yoshie, R., Wei, R. and Shimura, M. (1999). Wind-induced Response of

a Large Cantilevered Roof. Journal of Wind Engineering and Industrial

Aerodynamics, 83, pp.263–275.

[61] Yang, Q., Wu, Y. and Zhu, W. (2010). Experimental study on interaction between

membrane structures and wind environment. Earthquake Engineering and

Engineering Vibration, 9(4), pp.523-532.

[62] Hessenthaler, A., Gaddum N. R., Holub, O., Sinkus, R., Röhrle, O. and Nordsletten,

D. (2017). Experiment for validation of fluid-structure interaction models and

algorithms. International journal for numerical methods in biomedical

engineering, 33(9).

[63] Jasak, H. (1996). Error Analysis and Estimation for the Finite Volume Method with

Applications to Fluid Flows. Ph.D. Thesis, University of London Imperial College.

[64] Donea, J., Huerta, A., Ponthot, J.P. and Rodriguez-Ferran, A. (2004). Arbitrary

Lagrangian – Eulerian Methods. In: Stein, E., de Borst, R., and Hughes, T. J.

Encyclopedia of Computational Mechanics. Chichester: John Wiley, pp.413-433.

[65] Olivier, M., Dumas, G. and Morissette, J. (2009). A fluid–structure interaction solver

for nano-air-vehicle flapping wings. In Proceedings of the 19th AIAA

Computational Fluid Dynamics Conference. San Antonio, USA, pp.1–15.

[66] Tuković, Ž. and Jasak, H. (2007). Updated Lagrangian finite volume solver for large

deformation dynamic response of elastic body. Transaction of FAMENA, 31(1),

pp.1-16.

[67] Jasak, H. and Weller, H.G. (2000). Application of the finite volume method and

unstructured meshes to linear elasticity. International Journal of Numerical

Methods Engineering, 48(2), pp.267-287.

159

[68] Hirsch, C. (2007). Numerical computation of internal and external flows: The

fundamentals of computational fluid dynamics. Butterworth-Heinemann.

[69] Muzaferija, S. (1994). Adaptive Finite Volume method for flow prediction using

unstructured meshes and multigrid approach, Ph.D. thesis, Imperial College,

University of London.

[70] Marić, T., Höpken, J. and Mooney, K. (2014). The OpenFOAM Technology Primer.

Germany: sourceflux UG (haftungsbeschränkt).

[71] Issa, R.I. (1986). Solution of the implicitly discretised fluid flow equations by

operator-splitting. Journal of Computers and Physics, 62(1), pp.40-65.

[72] Patankar, S.V. (1980). Numerical heat transfer and fluid flow. .Hemisphere, New

York, pp.25-73.

[73] Rhie, C.M. and Chow, W.L. (1983). Numerical study of the turbulent flow past an

airfoil with trailing edge separation. AIAA Journal (ISSN 0001-1452), 21, pp.1525-

1532.

[74] Moukalled, F., Mangani, L. and Darwish, M. (2016). The Finite Volume Method in

Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and

Matlab. Switzerland: Springer International Publishing Switzerland, pp.85-364.

[75] Peric՛, M. (1985). A Finite Volume Method for The Perediction of Three-dimensional

Fluid Flow in Complex Ducts. Ph.D. Thesis, University. of London.

[76] Yao, H.D. (2014). Simulation of Fluid-Structural Interaction using OpenFOAM.

Simulation, (1/37).

[77] Tuković, Ž. and Jasak, H. (2009). FVM for FSI with large structural displacements.

Available at: http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/FSIslides.

pdf. Last accessed 8th July 2017.

[78] Michler, C., Hulshoff, S.J., van Brummelen, E.H. and de Borst, R. (2004). A

monolithic approach to fluid–structure interaction. Computers & Fluids, 33(5-6),

pp.839-848.

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/FSIslides

160

[79] Degroote, J., Bathe, K.J. and Vierendeels, J. (2009). Performance of a new

partitioned procedure versus a monolithic procedure in fluid-structure interaction,

Computers & Structures, 87, pp.793-801.

[80] Jasak, H. and Tuković, Ž. (2010). Dynamic mesh handling in OpenFOAM applied

to fluid–structure interaction simulations. In Proceedings of the V European

Conference on Computational Fluid Dynamics ECCOMAS CFD. Lisbon, Portugal,

pp.14-17.

[81] Bonet, J. and Wood, R.D.(2005). Nonlinear Continuum Mechanics for Finite

Element . 6th ed. New York: Cambridge University Press.

[82] Yigit, S., Sternel, D.D. and Schäfer, M. (2007). Efficiency of fluid-structure

interaction simulations with adaptive underrelaxation and multigrid acceleration.

The International Journal of Multiphysics, 1(1), pp.85-99.

[83] Degroote, J., Haelterman, R., Annerel, S., Swillens, A., Segers, P. and Vierendeels,

J. (2009). An interface quasi-Newton algorithm for partitioned simulation of fluid-

structure interaction. In International Workshop on Fluid-Structure Interaction.

Theory, Numerics and Applications (p. 55). kassel university press GmbH.

[84] Bathe, K.J. and Baig, M.M.I. (2005). On a composite implicit time integration

procedure for nonlinear dynamics. Computers & Structures, 83(31-32), pp.2513–

2524.

[85] Dwight, R.P. (2006). Robust mesh deformation using the linear elasticity equations.

In: Deconinck, H. and Dick, E. Computational Fluid Dynamics. Berlin, Heidelberg:

Springer, pp.401-406.

[86] Jasak, H. and Tuković, Ž. (2006). Automatic mesh motion for the unstructured finite

volume method. Transaction of FAMENA, 30(2), pp.1–20.

[87] Jasak, H. and Tuković, Ž. (2007). Automatic mesh motion for the unstructured finite

volume method. Transaction FAMENA, 30(2), pp.1-18.

161

[88] Farhat, C., Van der Zee, K.G. and Geuzaine, P. (2006) Provably second-order time-

accurate loosely-coupled solution algorithms for transient nonlinear computational

aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 195(17),

pp.1973–2001.

[89] Forster, C., Wall, W.A. and Ramm, E. (2007). Artificial added mass instabilities in

sequential staggered coupling of nonlinear structures and incompressible viscous

flows. Computer methods in applied mechanics and engineering, 196(7), pp.1278–

1293.

[90] Vyzikas, T., Nilsson, H. and Andric, J. (2015). CFD with OpenSource software: The

implementation of interFoam solver as a flow model of the fsiFoam solver for strong

fluid-structure interaction.

[91] Cardiff, P. (2012). Development of the finite volume method for hip joint stress

analysis. Ph.D. Thesis, School of Mechanical and Materials Engineering, University

College Dublin, Dublin.

[92] Tuković, Ž. (2005). Finite volume method on domains of varying Ph.D. Thesis,

Faculty of mechanical engineering and naval architecture, University of Zagreb,

Croatia.

[93] Tuković, Ž., Cardiff, P., Karač, A., Jasak, H. and Ivankovic, A. (2014a). Parallel

unstructured finite- volume method for fluid-structure interaction. [Manuscript]. At:

Zagreb: Faculty of mechanical engineering and naval architecture, University of

Zagreb.

[94] Tuković, Ž., Cardiff, P., Karač, A., Jasak, H. and Ivankovic, A. (2014b). OpenFOAM

library for fluid-structure interaction. In 9th OpenFOAM workshop (Vol. 2014)

Faculty of mechanical engineering and naval architecture, University of Zagreb,

Croatia.

[95] Badia, S., Quaini, A. and Quarteroni, A. (2008). Modular vs. non-modular

preconditioners for fluid–structure systems with large added-mass effect. Computer

Methods in Applied Mechanics and Engineering, 197, pp.4216-4232.

http://www.sciencedirect.com/science/journal/00457825
http://www.sciencedirect.com/science/journal/00457825

162

[96] Bazilevs, Y., Takizawa, K. and Tezduyar, T.E. (2013). Computational Fluid-

Structure Interaction. Methods and Applications. United Kingdom: John Wiley &

Sons Ltd.

[97] Causin, P., Gerbeau, J.F. and Nobile, F. (2005). Added-mass effect in the design of

partitioned algorithms for fluid–structure problems. Computer Methods in Applied

Mechanics and Engineering, 194, pp.4506-4527.

[98] Crosetto, P., Reymond, P., Deparis, S., Kontaxakis, D., Stergiopulos, N. and

Quarteroni, A. (2011). Fluid-structure interaction simulation of aortic blood flow.

Computers & Fluids, 43(1), pp.46-57.

[99] Greenshields, C.J. and Weller, H.G. (2005). A unified formulation for continuum

mechanics applied to fluid–structure interaction in flexible tubes. International

Journal of Numerical Methods Engineering, 64(12), pp.1575-1593.

[100] Heil, M., Hazel, A. and Boyle, J. (2008). Solvers for large–displacement fluid–

structure interaction problems: segregated versus monolithic approaches.

Computers & Mechanics, 43, pp.91-101.

[101] Walhorn, E., Kolke, A., Hubner, B. and Dinkler, D. (2005). Fluid–structure

coupling within a monolithic model involving free surface flows. Computers &

Structures, 83(25–26), pp.2100-2111.

[102] Cirak, F., Deiterding, R. and Mauch, S.P. (2007). Large-scale fluid–structure

interaction simulation of viscoplastic and fracturing thin-shells subjected to shocks

and detonations. Computers & Structure, 85(11–14), pp.1049-1065.

[103] Karac, A., Blackman, B.R.K, Cooper, V., Kinloch, A.J., Sanchez, S.R., Teo, W.S.

and Ivankovic, A. (2011). Modelling the fracture behaviour of adhesively-bonded

joints as a function of test rate. Engineering Fracture Mechanics, 78(6), pp.973-989.

[104] Degroote, J. Haelterman, R., Annerel, S., Bruggeman, P. and Vierendeels, J. (2010).

Performance of partitioned procedures in fluid-structure interaction. Computers &

Structures, 88(7–8), pp.446-457.

163

[105] Gerbeau, J.F., Vidrascu, M. and Frey, P. (2005). Fluid–structure interaction in

blood flows on geometries based on medical imaging. Computers & Structures,

83(2–3), pp.155-165.

[106] Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H. (2011a).

Nonlinear fluid-structure interaction problem. Part I: implicit partitioned algorithm,

nonlinear stability proof and validation examples. Computers & Mechanics, 47,

pp.305-323.

[107] Olivier, M. and Dumas, G. (2009). Non-linear aeroelasticity using an implicit

partitioned finite volume solver. In Proceedings of the 17th Annual Conference of

the CFD Society of Canada. Ottawa, Canada.

[108] Patankar, S. and Spalding, D. (1972). A calculation procedure for heat, mass and

momentum transfer in three-dimensional parabolic flows. International Journal of

Heat and Mass Transfer, 15(10), pp.1787-1806.

[109] Wall, W.A., Genkinger, S. and Ramm, E. (2007). A strong coupling partitioned

approach for fluid–structure interaction with free surfaces. Computers & Fluids,

36(1), pp.169-183.

[110] Kuttler, U. and Wall, W. (2008). Fixed-point fluid–structure interaction solvers

with dynamic relaxation. Computers & Mechanics, 43, pp.61-72.

[111] Wood, C., Gil, A., Hassan, O. and Bonet, J. (2010). Partitioned block-Gauss–Seidel

coupling for dynamic fluid–structure interaction. Computers & Structures, 88(23–

24), pp.1367-1382.

[112] Fernández, M.A. and Moubachir, M. (2003). An exact Block-Newton algorithm for

the solution of implicit time discretised coupled systems involved in fluid–structure

interaction problems. In Bathe, K.J. Computational Fluid and Solid Mechanics,

Oxford: Elsevier Science Ltd, pp.1337-1341.

[113] Fernández, M.A. and Moubachir, M. (2005). A Newton method using exact

Jacobians for solving fluid–structure coupling. Computers & Structures, 83, pp.127-

142.

164

[114] Gallinger, T. and Bletzinger, K. (2010). Comparison of algorithms for strongly

coupled partitioned fluid–structure interaction – efficiency versus simplicity. In

Proceedings of the V European Conference on Computational Fluid Dynamics

ECCOMAS CFD. Lisbon, Portugal, pp.1-20.

[115] Yvin, C. (2010). Partitioned fluid-structure interaction with open-source tools.

12ème Journées de l’Hydrodynamique. Nantes, France.

[116] Irons, B.M. and Tuck, R.C. (1969). A version of the Aitken accelerator for computer

iteration. International Journal of Numerical Methods Engineering, 1(3), pp.275-

277.

[117] Bos, F. (2010). Numerical simulations of flapping foil and wing aerodynamics –

mesh deformation using radial basis functions. Ph.D. Thesis, Technical University

of Delft, Netherlands.

[118] Donea, J., Giuliani, S. and Halleux, J.P. (1982). An arbitrary Lagrangian–Eulerian

finite element method for transient dynamic fluid–structure interactions. Computer

Methods in Applied Mechanics and Engineering, 33, pp.689-723.

[119] Souli, M., Ouahsine, A. and Lewin, L. (2000). ALE formulation for fluid–structure

interaction problems. Computer Methods in Applied Mechanics and Engineering,

190(5), pp. 659-675.

[120] Bathe, K. and Hahn, W. (1979). On transient analysis of fluid–structure systems.

Computers & Structures, 10(1–2), pp.383-391.

[121] Razzaq, M., Damanik, H., Hron, J., Ouazzi, A. and Turek, S. (2012). FEM multigrid

techniques for fluid-structure interaction with application to hemodynamics.

Applied Numerical Mathematics, 62(9), pp.1156-1170.

[122] Sathe, S., Benney, R., Charles, R., Doucette, E., Miletti, J., Senga, M., Stein, K.

and Tezduyar, T.E. (2007). Fluid–structure interaction modelling of complex

parachute designs with the space–time finite element techniques. Computers &

Fluids, 36(1), pp.127-135.

165

[123] Bos, F., van Oudheusden, B.W. and Bijl, H. (2008). Moving and deforming meshes

for flapping flight at low Reynolds numbers. Delft University of Technology, 2, p.19.

[124] Kassiotis, C. (2009). Nonlinear fluid-structure interaction: a partitioned approach

and its application through component technology. Ph.D Thesis, Université Paris-

Est, France.

[125] OpenFOAM Foundation. (2013). OpenFOAM User Guide, version 2.2.2.

[126] Weller, H.G., Tabor, G., Jasak, H. and Fureby, C. (1998). A tensorial approach to

computational continuum mechanics using object-oriented techniques. Computers

& Physics, 12, pp.620-631.

[127] Jasak, H., Jemcov, A. and Tukovic, Z. (2007). OpenFOAM: a C++ library for

complex physics simulations. In International workshop on coupled methods in

numerical dynamics (Vol.1000). IUC Dubrovnik, Croatia, pp.1-20.

[128] Kassiotis, C. (2009). Nonlinear fluid-structure interaction: a partitioned approach

and its application through component technology. Ph.D Thesis, Université Paris-

Est, France.

[129] Kassiotis, C., Ibrahimbegovic, A. and Matthies, H. (2010). Partitioned solution to

fluid–structure interaction problem in application to free-surface flows. European

Journal of Mechanics – B/Fluids, 29(6), pp.510-521.

[130] Lohner, R. and Yang, C. (1996). Improved ale mesh velocities for moving bodies.

Communication Numerical Methods Engineering, 12(10), pp.599-608.

[131] Deparis, S. (2004). Numerical analysis of axisymmetric flows and methods for fluid-

structure interaction arising in blood flow simulation. Ph.D. Thesis, EPFL,

Lausanne.

[132] Ferziger, J.H. and Perić, M. (2012). Computational Methods for Fluid Dynamics.

Springer Science & Business Media.

[133] Stokes, G.G. (1851). On the effect of the internal friction of fluids on the motion of

pendulums (Vol. 9, p. 8). Cambridge: Pitt Press.

166

[134] Sumer, B.M. and Fredsøe, J. (1997). Hydrodynamics Around Cylindrical

Structures. World Scientifid.

[135] Techet, A.H. (2005). 13.42 Lecture: Vortex Induced Vibrations. Massachusetts

Institute of Technology, Open Courseware, 21.

[136] Lo, S., Hoffmann, K. and Dietiker, J. (2005). Numerical Investigation of High

Reynolds Number Flows Over Square and Circular Cylinders. Journal of

Thermophysics and Heat Transfer, 19(1), pp.72-80.

[137] Friehe, C.A. (1980). Vortex shedding from cylinders at low Reynolds numbers.

Journal of Fluid Mechanics, 100(2), pp.237-241.

[138] Mittal, S. and Tezduyar, T. (1992). A finite element study of incompressible flows

past oscillating cylinders and aerofoils. International Journal for Numerical

Methods in Fluids, 15(9), pp.1073-1118.

[139] Anagnostopoulos, P. (2000). Numerical study of the flow past a cylinder excited

transversely to the incident stream. Part 1: Lock-in zone, hydrodynamic forces and

wake geometry. Journal of Fluids and Structures,14(6), pp.819-851.

[140] Govardhan, R.N. and Williamson, C.H. (2006). Defining the modified Griffin plot

in vortex-induced vibration: revealing the effect of Reynolds number using

controlled damping. Journal of Fluid Mechanics, 561, pp.147-180.

[141] Raghavan, K. (2007). Energy extraction from a steady flow using Vortex Induced

Vibration. Ph.D Thesis, University of Michigan, Ann Arbor.

[142] Raghavan, K. and Bernitsas, M. (2011). Experimental investigation of Reynolds

number effect on vortex induced vibration of rigid circular cylinder on elastic

supports. Ocean Engineering, 38(5-6), pp.719-731.

[143] Koushan, K. (2009). Vortex Induced Vibrations of Free Span Pipelines. Ph.D.

Thesis, Norwegian University of Science and Technology, Trondheim, Norway.

[144] Mittal, S. and Kumar, V. (1999). Finite element study of vortex-induced cross-flow

and in-line oscillations of a circular cylinder at low Reynolds numbers. International

Journal for Numerical Methods in Fluids, 31(7), pp.1087-1120.

167

[145] Norberg, C. (2001). Flow around a circular cylinder: aspects of fluctuating lift.

Journal of Fluids and Structures, 15(3-4), pp.459-469.

[146] Okajima, A., Nakamura, A., Kosugi, T., Uchida, H. and Tamaki, R. (2004). Flow-

induced in-line oscillation of a circular cylinder. European Journal of Mechanics -

B/Fluids, 23(1), pp.115-125.

[147] Ribeiro, J.D. (1992). Fluctuating lift and its spanwise correlation on a circular

cylinder in a smooth and in a turbulent flow: a critical review. Journal of Wind

Engineering and Industrial Aerodynamics, 40(2), pp.179-198.

[148] Feng, C.C. (1968). The measurement of vortex induced effects in flow past

stationary and oscillating circular and d-section cylinders Ph.D. Thesis, University

of British Columbia.

[149] Rahman, M.M., Karim, M.M. and Alim, M.A (2007). Numerical investigation of

unsteady flow past a circular cylinder using 2-D finite volume method. Journal of

Naval Architicture and Marine Engineering, 4(1), pp.27-42.

[150] Lienhard, J.H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid

circular cylinders (Vol. 300). Technical Extension Service, Washington State

University.

[151] Diana, G., Falco, M., Cigada, A. and Manenti, A. (2000). On the measurement of

overhead transmission lines conductor self-damping. IEEE Transactions on Power

Delivery, 15(1), pp.285-292.

[152] Blackburn, H., Govardhan, R. and Williamson, C. (2001). A complementary

numerical and physical investigation of vortex-induced vibration. Journal of Fluids

and Structures, 15(3-4), pp.481-488.

[153] Gonçalves, R.A., Teixeira, P.R.D.F. and Didier, E.L. (2012). Numerical

simulations of low Reynolds number flows past elastically mounted cylinder.

[154] Reynolds, O. (1894). On the dynamical theory of incompressible viscous fluids and

the determination of the criterion. Proceeding of the Royal Society of London,

56(336-339), pp.40-45.

http://www.sciencedirect.com/science/article/pii/S0045793008000297#bbib30

168

[155] Govardhan, R. and Williamson, C. (1999). Vortex-induced vibrations of a sphere.

Journal of Fluid Mechanics, 531, pp.11-47.

[156] Gavin, H.P. (2014). Vibrations of single degree of freedom systems. Department

of Civil and Environmental Engineering, Duke University.

[157] Khalak, A. and Williamson, C. (1999). Motions, forces and mode transitions in

vortex induced vibrations at low mass-damping, Journal of Fluids Structures, 13,

pp.813–851.

[158] Greenshields, C.J. (2014). Openfoam user guide. OpenFOAM Foundation Ltd,

version, 2.2.x

[159] CFD Direct. (2017). Mesh generation with blockMesh. Available at:

http://cfd.direct/openfoam/user-guide/blockmesh/. Last Accessed 6th June 2017.

[160] Anderson, J. D. (2001). Fundamentals of aerodynamics. 3rd edn. Boston: McGraw-

Hill Series in Aeronautical and Aerospace Engineering.

[161] Park, D.S., Ladd, D.M. and Hendricks, E.W. (1994). Feedback control of von

Kármán vortex shedding behind a circular cylinder at low Reynolds

numbers.Physics of fluids, 6(7), pp.2390-2405.

[162] Mittal, S. and Raghuvanshi, A. (2001). Control of vortex shedding behind circular

cylinder for flows at low Reynolds numbers. International Journal for Numerical

Methods in Fluids, 35(4), pp.421-447.

[163] Patnana, V.K., Bharti, R P., and Chhabra, R.P. (2009). Two-dimensional unsteady

flow of power-law fluids over a cylinder. Chemical Engineering Science, 64(12),

pp.2978-2999.

[164] Lamas, I.M, Rodriguez, C.G. (2014). CFD with OpenFOAM. [Lecture to Technical

Courses, Spain], 15th January 2014.

[165] The OpenFOAM Foundation. (n.d). Standard solvers. Available at:

http://www.openfoam.org/features/standard-solvers.php. Last accessed 15th June

2017.

http://cfd.direct/openfoam/user-guide/blockmesh/
http://www.sciencedirect.com/science/article/pii/S0045793008000297#bbib20
http://www.openfoam.org/features/standard-solvers.php

169

[166] OpenFOAMWiki. (2009). pimpleFoam. Available at: https://openfoamwiki.net/

index.php/PimpleFoam. Last accessed 10th May 2017.

[167] Fey, U., König, M., Eckelmann, H. (1998). A new Strouhal–Reynolds-number

relationship for the circular cylinder in the range 47< Re < 2.105 Physics of Fluids,

10(7), pp. 1547-1549.

[168] Norberg, C. (2003). Fluctuating lift on a circular cylinder: review and new

measurements. Journal of Fluids and Structures, 17(1), pp.57-96.

[169] Pastò, S. (2008). Vortex-induced vibrations of a circular cylinder in laminar and

turbulent flows. Journal of Fluids and Structures, 24(7), pp.977-993.

[170] Berthelsen, P.A. and Faltinsen, O.M. (2007). A local directional ghost cell approach

for incompressible viscous flow problems with irregular boundaries. Journal of

Computational Physics, 227(2008), pp.4354–4397.

[171] Calhoun, D. (2002). A Cartesian grid method for solving the two-dimensional

stream function-vorticity equations in irregular regions. Journal of Computational

Physic, 176(2), pp.231–275.

[172] Franke, R., Rodi, W. and Schönung, B. (1990). Numerical calculation of laminar

vortex sheddin flow past cylinders. Journal of Wind Engineering and Industrial

Aerodynamics, 35, pp. 237-257.

[173] Herfjord, K. (1996). A study of two-dimensional separated flow by a combination

of the finite element method and Navier–Stokes equations. Ph.D. Thesis, Department

of Marine Hydrodynamics, Norwegian Institute of Technology, Trondheim:

Norway.

[174] Linnick, M.N and Fasel, H.F. (2005). A high-order immersed interface method for

simulating unsteady compressible flows on irregular domains. Journal of.

Computational Physics, 204(1), pp.157–192.

[175] Rajani, B. N., Kandasamy, A. and Majumdar, S. (2009). Numerical simulation of

laminar flow past a circular cylinder. Journal of Applied Mathematical Modelling,

33(3), pp.1228-1247.

https://openfoamwiki.net/%20index.php/PimpleFoam
https://openfoamwiki.net/%20index.php/PimpleFoam
http://www.sciencedirect.com/science/article/pii/S0045793008000297#bbib14

170

[176] Russell, D. and Wang, Z. (2003). A cartesian grid method for modelling multiple

moving objects in 2D incompressible viscous flow. Journal of Computational

Physics, 191(1), pp.177-205.

[177] Xu, S. and Wang, Z.J. (2006). An immersed interface method for simulating the

interaction of a fluid with moving boundaries. Journal of Computational Physics.

216(2) pp.454–493.

[178] Meyers, J.M., Fletcher, D.G. and Dubief, Y. (n.d). Lift and Drag of an Airfoil. ME

123: Mechanical Engineering Laboratory II: Fluids.

[179] Wall, W.A. (1999). Fluid–struktur interaktion mit stabilisierten finiten elementen.

Ph.D. Thesis, Institut fur Baustatik und Baudynamik, Universitat Stuttgart,

Germany.

[180] Dettmer, W.G. (2004). Finite Element Modelling of Fluid Flow with Moving Free

Surfaces and Interfaces Including Fluid-Solid Interaction. Ph.D. Thesis, School of

Engineering, University of Wales, Swansea.

[181] Hübner, B., Wallhorn, E. and Dinkler, D. (2004). A Monolithic Approach to Fluid-

Structure Interaction Using Space-Time Finite Elements. Computer Methods in

Applied Mechanics and Engineering, 193(23), pp.2087-2104.

[182] Matthies, H.G. and Steindorf, J. (2003). Partitioned strong coupling algorithms for

fluid–structure interaction. Computers & Structures, 81(8), pp.805-812.

[183] Olivier, M., Dumas, G. and Morissette, J. (2009). A fluid–structure interaction

solver for nano-air-vehicle flapping wings. In Proceedings of the 19th AIAA

computational fluid dynamics conference, San Antonio, USA. pp.1–15.

[184] Razzaq, M. Hron, J. and Turek, S. (2010). Numerical Simulation of Laminar

Incompressible Fluid-Structure Interaction for Elastic Material with Point Advances

in Mathematical Fluid Mechanics, pp.451-472.

[185] Wall, W.A. and Ramm, E. (1998). Fluid-structure interaction based upon a

stabilized (ALE) finite element method. E and S Idelsohn. Eds. In IV World

Congress on Computational Mechanics (Vol. 170).

http://www.sciencedirect.com/science/article/pii/S0045793012004367#bb0325
http://www.sciencedirect.com/science/article/pii/S0045793012004367#bb0335

171

[186] Wood, C. Gil, A., Hassan, O. and Bonet, J. (2010). Partitioned block-Gauss–Seidel

coupling for dynamic fluid–structure interaction. Computers & Structures, 88(23),

pp.1367-1382.

[187] Wüchner, R., Kupzok, A., and Bletzinger, K.U. (2007). A framework for stabilized

partitioned analysis of thin membrane-wind interaction. International Journal for

Numerical Methods in Fluids, 54(6-8), pp.945-963.

[188] Yvin, C. (2010). Partitioned fluid-structure interaction with open-source tools.

12ème Journées de l’Hydrodynamique, Nantes, France.

[189] Walhorn, E., Hübner, B. and Dinkler, D. (2002). Space-time finite elements for

fluid-structure interaction. PAMM, 1(1), pp.81-82

[190] Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H.G. (2011b).

Nonlinear fluid-structure interaction problem. Part II: Space discretization,

implementation aspects, nested parallelisation and application examples.

Computational Mechanics, 47(3), pp.335-357.

[191] Von Scheven, M. (2009). Effiziente Algorithmen f¨ur die Fluid-Struktur-

Wechselwirkung. Ph.D. Thesis, Institut für Baustatik und Baudynamik, Universität

Stuttgart, Germany.

[192] Taylor, R. (2013). Finite Element Modelling of Three Dimensional Fluid-Structure

Interaction. Ph.D. Thesis, School of Engineering, Swansea University.

[193] Hübner, B. (2003). Simultane analyse von Bauwerks-Wind-Wechselwirkungen. PhD

Thesis. Institut für Statik, Technische Universität Braunschweig.

[194] Forster, B. and Mollaert, M. (2004). European Design Guide for Tensile Surface

Structures: TensiNet.

 [195] Michalski, A., Kermel, P.D., Haug, E., Lohner, R., Wüchner, R. and Bletzinger,

K.U. (2011). Validation of the computational fluid–structure interaction simulation

at real-scale tests of a flexible 29 m umbrella in natural wind flow. Journal of Wind

Engineering and Industrial Aerodynamics journal homepage, 99(4), pp.400–413.

172

[196] Kupzok, A.M. (2009). Modelling the Interaction of Wind and Membrane Structures

by Numerical Simulation. PhD Thesis. Technical University of Munich, Germany.

[197] Schweizerhof, K. and Ramm, E. (1984). Displacement dependent pressure loads in

nonlinear finite element analyses. Computers & Structures, 18(6), pp.1099–1114.

[198] Rank, E., Halfmann, A., Scholz, D., Glück, M., Breuer, M., Durst, F. Kaiser, U.,

Bergmann, D. and Wagner, S. (2005). Wind loads on lightweight structures:

Numerical simulation and wind tunnel tests. GAMM-Mittellungen, 28(1), pp.73–89.

[199] Valdés, J.G., Oñate, E. and Miquel, J. (2016). Nonlinear analysis of orthotropic

membrane and shell structures including fluid-structure interaction. Monographs of

the International Centre for Numerical Methods in Engineering (CIMNE).

[200] Williams, C.J.K. (1997). The structural design of fabric structures to resist wind

loading. Research Paper-Health and Safety Executive London, 38, pp.74-82.

[201] Farhat, C. (2004). CFD-based nonlinear computational aeroelasticity. In

Encyclopedia of Computational Mechanics. Stein, E., De Borst, R., and Hughes,

T.J.R (eds.). pp.459–480.

[202] Hartmann, S., Meister, A., Schäfer, M. and Turek, S. (2009). International

Workshop on Fluid-Structure Interaction Theory, Numerics and Applications.

Kassel: Kassel University press GmbH, Germany.

[203] Juretić, F. (2015). cfMesh User Guide. Creative Fields, Zagreb.

[204] Bletzinger, K.U., Wüchner, R. and Kupzok, A. (2006). Algorithmic treatment of

shells and free form-membranes in FSI. Fluid-structure interaction, pp.336-355.

[205] Hadipriono, F.C. (1985). Analysis of events in recent structural failures. Journal of

structural engineering, 111(7), pp.1468-1481.

[206] Supartono, F.X., Li, Z. and Wang, X. (2011). Membrane structure: A modern and

aesthetic structural system. In Seminar dan Pameran HAKI.

173

[207] Beccarelli, P. (2015). The design, analysis and construction of tensile fabric

structures. In Biaxial Testing for Fabrics and Foils. Springer International

Publishing. pp.9-33.

[208] Drescher, H. (1947). Model Testing Techniques. II. 6. Measurements of unsteady

pressure. AVA monographs D2. (Translation: Aero. Res. Counc. Rep. no. 11, 391).

174

Appendices

Appendix 2.A: OpenFOAM Computational Pointers

The OpenFOAM structure of the linear algebraic solver starts by defining the classes that

established from each solvers type of the algebraic matrix. These classified into three

groups: solvers, preconditioners, and smoothers. Both preconditioners and smoothers are

related to the differentiated fixed-point smoothers and then embedded them in the

preconditioners framework. The linear algebraic solver's source codes in OpenFOAM

located in “…/src/OpenFOAM /matrices/lduMatrix” for solvers, preconditioners, and

smoothers sub-folders [74].

Firstly, solvers folder in OpenFOAM includes the following iterative solvers main codes

• diagonalSolver is a diagonal solver which used for symmetric and asymmetric

matrices.

• GAMG named as a Generalized geometric-algebraic multi-grid solver or

geometric agglomerated algebraic multi-grid solver. This solver applies the

principle of creating a quick solution on a grid with the number of a small cell,

mapping the solution onto a finer mesh; applying it as an initial presumption on

the fine mesh to find an accurate solution.

• ICC defined as an incomplete Cholesky preconditioned conjugate gradient solver.

This described for backward-completely and for its preference the PCG solver

must utilise.

• PCG is a preconditioned conjugate gradient solver for symmetric LDU matrices.

• PbiCG is a preconditioned biconjugate gradient solver for asymmetric LDU

matrices.

• smoothSolver is an iterative solver that is using smoother for both symmetric and

asymmetric matrices depend on preconditioners.

The second folder is the preconditioners which consist of the different diagonal ILU

implementations that denoted by

175

• diagonalPreconditioner is a diagonal preconditioner for both symmetric and

asymmetric matrices. In spite of this preconditioner is not offer that faster

propagation help through the grid, it is very good and easy for the first step.

• DIC and DILU are the diagonal-based incomplete Cholesky preconditioner for the

symmetric and asymmetric matrices, respectively.

• FDIC is the faster version of the DIC preconditioner for the symmetric matrices

where the preconditioned diagonal reciprocal and the upper coefficients of the

matrix divided by the diagonal are both calculated and then stored.

• GAMG this is the Generalized geometric-algebraic multigrid preconditioner.

• noPreconditioner defines null preconditioner for symmetric and asymmetric

matrices.

The last folder is the smoothers, and it contains

• DIC and DILU are simplified the diagonal-based incomplete Cholesky smoother

for symmetric and asymmetric matrices, respectively.

• DICGaussSeidel and DILUGaussSeidel are combined smoother of DIC and DILU-

Gauss-Seidel for both symmetric and asymmetric matrices where their smoothing

is followed by Gauss-Seidel in order to ensure that if any “spikes” are created by

their sweeps will be smoothed out.

• DILU also defined the LU smoother of a diagonal-based incomplete for

asymmetric matrices.

• GaussSeidel is the Gauss-Seidel method that is used to solve both symmetric and

asymmetric matrices. This method is considered as the improved method of the

Jacobi method. It is defined on non-zero diagonal matrices, and its convergence

is guaranteed by either diagonally predominant or symmetric and positive well-

definite.

In OpenFOAM, those three classes which wrap the three categories are defined in the

lduMatrix class as shown in the lduMatrix.H file listing in Figure 2.A.

176

Figure 2.A: lduMatrix.H file in OpenFOAM for solver, smoother, and preconditioner classes

class lduMatrix

{

 // private data

 //- LDU mesh reference

 const lduMesh& lduMesh_;

 //- Coefficients (not including interfaces)

 scalarField *lowerPtr_, *diagPtr_, *upperPtr_;

…

public:

 //- Abstract base-class for lduMatrix solvers

 class solver

 {

 protected:

…

 //- Abstract base-class for lduMatrix smoothers

 class smoother

 {

 protected:

…

 //- Abstract base-class for lduMatrix preconditioners

 class preconditioner

 {

 protected:

…

177

Appendix 3.A: Velocity (U) Boundary Conditions of the Circular Cylinder Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 3.0 |

| \\ / A nd | Web: http://www.extend-project.de |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volVectorField;

 location "0";

 object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 bottom

 {

 type empty;

 }

 outlet

 {

 type pressureInletOutletVelocity;

 value uniform (0 0 0);

 }

178

 top

 {

 type empty;

 }

 inlet

 {

 type fixedValue;

 value uniform (1 0 0);

 }

 walls

 {

 type slip;

 }

 cylinder

 {

 type fixedValue;

 value uniform (0 0 0);

 }

}

// *** //

179

Appendix 3.B: Pressure (p) Boundary Conditions of the Circular Cylinder Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 3.0 |

| \\ / A nd | Web: http://www.extend-project.de |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class volScalarField;

 object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

 bottom

 {

 type empty;

 }

 outlet

 {

 type fixedValue;

 value uniform 0;

 }

180

 top

 {

 type empty;

 }

 inlet

 {

 type zeroGradient;

 }

 walls

 {

 type slip;

 }

 cylinder

 {

 type zeroGradient;

 }

}

// *** //

181

Appendix 3.C: controlDict File of the Circular Cylinder Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.6 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// * * * * * * //

application pimpleFoam;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 100;

deltaT 0.001;

writeControl adjustableRunTime;

writeInterval 1.0;

purgeWrite 0;

writeFormat binary;

writePrecision 12;

writeCompression compressed;

182

timeFormat general;

timePrecision 12;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.2;

maxDeltaT 1.0;

functions

{

 forces

 {

 type forceCoeffs;

 functionObjectLibs ("libforces.so");

 outputControl timeStep;

 outputInterval 1;

 patches

 (

 cylinder

);

 directForceDensity no;

 pName p;

 UName U;

 rhoName rhoInf;

 log true;

 rhoInf 1000;

 CofR (0.160 0 0); // origin for moment calculations

183

 liftDir (0 1 0); // lift direction (Parallel to U_inf)

 dragDir (1 0 0); // drag direction (Normal to U_inf)

 pitchAxis (0 0 0); // rotational moment axis

 magUInf 1.0; // relative velocity between cylinder and fluid

 lRef 1.0; // cylinder length (radius for cylinder) --> reference length

 Aref 1.0; // reference area

 }

 fieldAverage1

 {

 type fieldAverage;

 functionObjectLibs ("libfieldFunctionObjects.so");

 enabled true;

 outputControl outputTime;

 fields

 (

 U

 {

 mean on;

 prime2Mean on;

 base time;

 }

 p

 {

 mean on;

 prime2Mean on;

184

 base time;

 }

);

 }

}

// *** //

185

Appendix 3.D: fvScheme File of the Circular Cylinder Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object fvSchemes;

}

// * * * * * * * //

ddtSchemes

{

 default Euler;

}

gradSchemes

{

 default Gauss linear;

 grad(p) Gauss linear;

 grad(U) Gauss linear;

}

divSchemes

{

 default none;

 div(phi,U) Gauss linearUpwind grad(U);

186

 div(phi,k) Gauss limitedLinear 1;

 div(phi,omega) Gauss limitedLinear 1;

 div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

 default Gauss linear limited corrected 0.5;

}

interpolationSchemes

{

 default linear;

}

snGradSchemes

{

 default corrected;

}

fluxRequired

{

 default no;

 pcorr ;

 p;

}

// *** //

187

Appendix 3.E: fvSolution File of the Circular Cylinder Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object fvSolution;

}

// * //

solvers

{

 pcorr

 {

 solver GAMG;

 tolerance 0.02;

 relTol 0;

 smoother GaussSeidel;

 nPreSweeps 0;

 nPostSweeps 2;

 cacheAgglomeration on;

 agglomerator faceAreaPair;

 nCellsInCoarsestLevel 10;

 mergeLevels 1;

 }

188

 p

 {

 $pcorr

 tolerance 1e-7;

 relTol 0.01;

 }

 pFinal

 {

 $p;

 tolerance 1e-7;

 relTol 0;

 }

 "(U|k|omega)"

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-06;

 relTol 0.1;

 }

 "(U|k|omega)Final"

 {

 $U;

 tolerance 1e-06;

 relTol 0;

 }

 cellDisplacement

 {

 solver GAMG;

 tolerance 1e-5;

 relTol 0;

 smoother GaussSeidel;

189

 cacheAgglomeration true;

 nCellsInCoarsestLevel 10;

 agglomerator faceAreaPair;

 mergeLevels 1;

 }

}

PIMPLE

{

 correctPhi yes;

 nOuterCorrectors 2;

 nCorrectors 1;

 nNonOrthogonalCorrectors 0;

}

relaxationFactors

{

 fields

 {

 p 0.3;

 }

 equations

 {

 "(U|k|omega)" 0.7;

 "(U|k|omega)Final" 1.0;

 }

}

cache

{

 grad(U);

}

// **//

190

Appendix 3.F: dynamicMeshDict File

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object motionProperties;

}

// * * * * * * * * * * * * * * * * * * * * * //

// **//
Table 3.F: dynamicMeshDict content explanation

Symbol Definition

A Automatic mesh motion where the mesh topology does not change

B The simplest mesh motion solver type where the interval points

motion is solved by using both the boundary conditions and the

diffusivity models

C The cell motion equations are solved based on the Laplacian on the

cell displacement and on the diffusivity. The cell displacement is

defined in the pointDisplacement file located in the time directories

folder

D One or more boundaries are specified and the diffusivity is based

on the distance inverse from that boundary

E Determines the way of the points movement when the cell equation

is solved for each time-step

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver displacementLaplacian;

displacementLaplacianCoeffs

 {

}

diffusivity

 inverseDistance (cylinder);

A

B

C

E

D

191

Appendix 3.G: Free Vibration Case - Scenario 1

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class pointVectorField;

 location "0.01";

 object pointDisplacement;

}

// * * * * ** //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 cylinder

 {

 type sixDoFRigidBodyDisplacement;

 centreOfMass (4 0 0.5);

 momentOfInertia (1.4539 1.4539 1.24625);

 mass 9.97;

 orientation

 (

192

 1 0 0

 0 1 0

 0 0 1

);

 velocity (0 0 0);

 acceleration (0 0 0);

 angularMomentum (0 0 0);

 torque (0 0 0);

 gravity (0 -9.81 0);

 rhoName rhoInf;

 rhoInf 1024;

 report on;

 restraints

 {

 S1

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (3.5 0 0.5); //A1

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S2

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

X

Rest length
Spring, S1

Anchor, A1

Restrain

attachement

point

193

 {

 anchor (4 0.5 0.5); //A2

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S3

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4.5 0 0.5); //A3

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S4

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4 -0.5 0.5); //A4

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

194

 }

 }

 constraints

 {

 maxIterations 500;

 DontMoveOverZ

 {

 sixDoFRigidBodyMotionConstraint fixedAxis;

 tolerance 1e-06;

 relaxationFactor 0.7;

 fixedAxisCoeffs

 {

 axis (0 0 1);

 }

 }

 }

 value uniform (0 0 0);

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 ".*"

 {

195

 type fixedValue;

 value uniform (0 0 0);

 }

}

// ** //

196

Appendix 3.H: Free Vibration Case - Scenario 2

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class pointVectorField;

 location "0.01";

 object pointDisplacement;

}

// * //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 cylinder

 {

 type sixDoFRigidBodyDisplacement;

 centreOfMass (4 0 0.5);

 momentOfInertia (1.4539 1.4539 1.24625);

 mass 9.97;

 orientation

 (

197

 1 0 0

 0 1 0

 0 0 1

);

 velocity (0 0 0);

 acceleration (0 0 0);

 angularMomentum (0 0 0);

 torque (0 0 0);

 gravity (0 -9.81 0);

 rhoName rhoInf;

 rhoInf 1024;

 report on;

 restraints

 {

 S1

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (3.5 0 0.5); //A1

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S2

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

198

 anchor (4 0.5 0.5); //A2

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S3

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4.5 0 0.5); //A3

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

 S4

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4 -0.5 0.5); //A4

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 2;

 restLength 0.5;

 }

 }

199

 }

 constraints

 {

 maxIterations 500;

 DontMoveOverZ

 {

 sixDoFRigidBodyMotionConstraint fixedAxis;

 tolerance 1e-06;

 relaxationFactor 0.7;

 fixedAxisCoeffs

 {

 axis (0 0 1);

 }

 }

 moveOnlyAlongY

 {

 sixDoFRigidBodyMotionConstraint fixedLine;

 tolerance 1e-9;

 relaxationFactor 0.7;

 fixedLineCoeffs

 {

 refPoint (4 0 0.5);

 direction (0 1 0);

 }

 }

 }

 }

 }

 value uniform (0 0 0);

 }

200

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 ".*"

 {

 type fixedValue;

 value uniform (0 0 0);

 }

}

// *** //

201

Appendix 3.I: Free Vibration Case - Scenario 3

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class pointVectorField;

 location "0.01";

 object pointDisplacement;

}

// * //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 cylinder

 {

 type sixDoFRigidBodyDisplacement;

 centreOfMass (4 0 0.5);

 momentOfInertia (1.4539 1.4539 1.24625);

 mass 9.97;

 orientation

 (

202

 1 0 0

 0 1 0

 0 0 1

);

 velocity (0 0 0);

 acceleration (0 0 0);

 angularMomentum (0 0 0);

 torque (0 0 0);

 gravity (0 -9.81 0);

 rhoName rhoInf;

 rhoInf 1024;

 report on;

 restraints

 {

 S1

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (3.5 0 0.5); //A1

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 0;

 restLength 0.5;

 }

 }

 S2

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

203

 {

 anchor (4 0.5 0.5); //A2

 refAttachmentPt (4 0 0.5);

 stiffness 4;

 damping 0;

 restLength 0.5;

 }

 }

 S3

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4.5 0 0.5); //A3

 refAttachmentPt (4 0 0.5);

 stiffness 0;

 damping 2;

 restLength 0.5;

 }

 }

 S4

 {

 sixDoFRigidBodyMotionRestraint linearSpring;

 linearSpringCoeffs

 {

 anchor (4 -0.5 0.5); //A4

 refAttachmentPt (4 0 0.5);

 stiffness 0;

 damping 2;

 restLength 0.5;

 }

204

 }

 }

 constraints

 {

 maxIterations 500;

 DontMoveOverZ

 {

 sixDoFRigidBodyMotionConstraint fixedAxis;

 tolerance 1e-06;

 relaxationFactor 0.7;

 fixedAxisCoeffs

 {

 axis (0 0 1);

 }

 }

 }

 value uniform (0 0 0);

 }

 top

 {

 type empty;

 }

 bottom

 {

 type empty;

 }

 ".*"

 {

205

 type fixedValue;

 value uniform (0 0 0);

 }

}

// ** //

206

Appendix 3.J: Forced Vibration Case

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 3.0 |

| \\ / A nd | Web: http://www.extend-project.de |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class pointVectorField;

object pointDisplacement;

// ** //

dimensions [0 1 0 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 inlet

{

 type fixedValue;

 value uniform (0 0 0);

}

 outlet

{

 type fixedValue;

 value uniform (0 0 0);

207

}

 top

{

 type empty;

}

 bottom

{

 type empty;

}

 walls

{

 type slip;

}

 cylinder

{

 type oscillatingDisplacement;

 amplitude (0 0.25 0);

 omega 1.04929; // 2*Pi*f0 (f0 = 0.167 Hz)

 value uniform (0 0 0);

}

}

// *** /

208

Appendix 4.A: Mesh Generation- blockMeshDict of the 3D Elastic Cantilever Plate

Attached to a Solid Block Case

Figure 4.A: 3D elastic plate case points in blockMeshDict dictionary

209

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2.2.2 |

| \\ / A nd | Web: www.OpenFOAM.org |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object blockMeshDict;

}

// * //

convertToMeters 0.01;

vertices

(

// First level

 (0 0 0) //0

 (5 0 0) //1

 (6 0 0) //2

 (10 0 0) //3

 (20 0 0) //4

 (20 5 0) //5

 (10 5 0) //6

 (6 5 0) //7

 (5 5 0) //8

 (0 5 0) //9

 (0 5.47 0) //10

 (5 5.47 0) //11

 (6 5.47 0) //12

210

 (10 5.47 0) //13

 (20 5.47 0) //14

 (20 5.53 0) //15

 (10 5.53 0) //16

 (6 5.53 0) //17

 (5 5.53 0) //18

 (0 5.53 0) //19

 (0 6 0) //20

 (5 6 0) //21

 (6 6 0) //22

 (10 6 0) //23

 (20 6 0) //24

 (20 11 0) //25

 (10 11 0) //26

 (6 11 0) //27

 (5 11 0) //28

 (0 11 0) //29

// Second level

 (0 0 4)

 (5 0 4)

 (6 0 4)

 (10 0 4)

 (20 0 4)

 (20 5 4)

 (10 5 4)

 (6 5 4)

 (5 5 4)

 (0 5 4)

 (0 5.47 4)

 (5 5.47 4)

 (6 5.47 4)

 (10 5.47 4)

 (20 5.47 4)

 (20 5.53 4)

 (10 5.53 4)

211

 (6 5.53 4)

 (5 5.53 4)

 (0 5.53 4)

 (0 6 4)

 (5 6 4)

 (6 6 4)

 (10 6 4)

 (20 6 4)

 (20 11 4)

 (10 11 4)

 (6 11 4)

 (5 11 4)

 (0 11 4)

// Third level

 (0 0 7)

 (5 0 7)

 (6 0 7)

 (10 0 7)

 (20 0 7)

 (20 5 7)

 (10 5 7)

 (6 5 7)

 (5 5 7)

 (0 5 7)

 (0 5.47 7)

 (5 5.47 7)

 (6 5.47 7)

 (10 5.47 7)

 (20 5.47 7)

 (20 5.53 7)

 (10 5.53 7)

 (6 5.53 7)

 (5 5.53 7)

 (0 5.53 7)

 (0 6 7)

212

 (5 6 7)

 (6 6 7)

 (10 6 7)

 (20 6 7)

 (20 11 7)

 (10 11 7)

 (6 11 7)

 (5 11 7)

 (0 11 7)

// Fourth level

 (0 0 11)

 (5 0 11)

 (6 0 11)

 (10 0 11)

 (20 0 11)

 (20 5 11)

 (10 5 11)

 (6 5 11)

 (5 5 11)

 (0 5 11)

 (0 5.47 11)

 (5 5.47 11)

 (6 5.47 11)

 (10 5.47 11)

 (20 5.47 11)

 (20 5.53 11)

 (10 5.53 11)

 (6 5.53 11)

 (5 5.53 11)

 (0 5.53 11)

 (0 6 11)

 (5 6 11)

 (6 6 11)

 (10 6 11)

 (20 6 11)

213

 (20 11 11)

 (10 11 11)

 (6 11 11)

 (5 11 11)

 (0 11 11)

);

blocks

(

// Bottom blocks

 hex (0 1 8 9 30 31 38 39) (26 25 23) simpleGrading (0.16 0.154 0.2) //0

 hex (1 2 7 8 31 32 37 38) (15 25 23) simpleGrading (1 0.154 0.2) //1

 hex (2 3 6 7 32 33 36 37) (60 25 23) simpleGrading (1 0.154 0.2) //2

 hex (3 4 5 6 33 34 35 36) (34 25 23) simpleGrading (11.4 0.154 0.2) //3

 hex (6 5 14 13 36 35 44 43) (34 7 23) simpleGrading (11.4 1 0.2) //4

 hex (7 6 13 12 37 36 43 42) (60 7 23) simpleGrading (1 1 0.2) //5

 hex (8 7 12 11 38 37 42 41) (15 7 23) simpleGrading (1 1 0.2) //6

 hex (9 8 11 10 39 38 41 40) (26 7 23) simpleGrading (0.16 1 0.2) //7

 hex (10 11 18 19 40 41 48 49) (26 1 23) simpleGrading (0.16 1 0.2) //8

 hex (11 12 17 18 41 42 47 48) (15 1 23) simpleGrading (1 1 0.2) //9

 hex (12 13 16 17 42 43 46 47) (60 1 23) simpleGrading (1 1 0.2) //10

 hex (13 14 15 16 43 44 45 46) (34 1 23) simpleGrading (11.4 1 0.2) //11

 hex (16 15 24 23 46 45 54 53) (34 7 23) simpleGrading (11.4 1 0.2) //12

 hex (17 16 23 22 47 46 53 52) (60 7 23) simpleGrading (1 1 0.2) //13

 hex (18 17 22 21 48 47 52 51) (15 7 23) simpleGrading (1 1 0.2) //14

 hex (19 18 21 20 49 48 51 50) (26 7 23) simpleGrading (0.16 1 0.2) //15

 hex (20 21 28 29 50 51 58 59) (26 25 23) simpleGrading (0.16 6.5 0.2) //16

 hex (21 22 27 28 51 52 57 58) (15 25 23) simpleGrading (1 6.5 0.2) //17

 hex (22 23 26 27 52 53 56 57) (60 25 23) simpleGrading (1 6.5 0.2) //18

 hex (23 24 25 26 53 54 55 56) (34 25 23) simpleGrading (11.4 6.5 0.2) //19

// Middle blocks

 hex (30 31 38 39 60 61 68 69) (26 25 45) simpleGrading (0.16 0.154 1)

 hex (31 32 37 38 61 62 67 68) (15 25 45) simpleGrading (1 0.154 1)

 hex (32 33 36 37 62 63 66 67) (60 25 45) simpleGrading (1 0.154 1)

 hex (33 34 35 36 63 64 65 66) (34 25 45) simpleGrading (11.4 0.154 1)

 hex (36 35 44 43 66 65 74 73) (34 7 45) simpleGrading (11.4 1 1)

214

 hex (37 36 43 42 67 66 73 72) (60 7 45) simpleGrading (1 1 1)

 hex (39 38 41 40 69 68 71 70) (26 7 45) simpleGrading (0.16 1 1)

 hex (40 41 48 49 70 71 78 79) (26 1 45) simpleGrading (0.16 1 1)

 hex (43 44 45 46 73 74 75 76) (34 1 45) simpleGrading (11.4 1 1)

 hex (46 45 54 53 76 75 84 83) (34 7 45) simpleGrading (11.4 1 1)

 hex (47 46 53 52 77 76 83 82) (60 7 45) simpleGrading (1 1 1)

 hex (49 48 51 50 79 78 81 80) (26 7 45) simpleGrading (0.16 1 1)

 hex (50 51 58 59 80 81 88 89) (26 25 45) simpleGrading (0.16 6.5 1)

 hex (51 52 57 58 81 82 87 88) (15 25 45) simpleGrading (1 6.5 1)

 hex (52 53 56 57 82 83 86 87) (60 25 45) simpleGrading (1 6.5 1)

 hex (53 54 55 56 83 84 85 86) (34 25 45) simpleGrading (11.4 6.5 1)

// Top blocks

 hex (60 61 68 69 90 91 98 99) (26 25 23) simpleGrading (0.16 0.154 5)

 hex (61 62 67 68 91 92 97 98) (15 25 23) simpleGrading (1 0.154 5)

 hex (62 63 66 67 92 93 96 97) (60 25 23) simpleGrading (1 0.154 5)

 hex (63 64 65 66 93 94 95 96) (34 25 23) simpleGrading (11.4 0.15 5)

 hex (66 65 74 73 96 95 104 103) (34 7 23) simpleGrading (11.4 1 5)

 hex (67 66 73 72 97 96 103 102) (60 7 23) simpleGrading (1 1 5)

 hex (68 67 72 71 98 97 102 101) (15 7 23) simpleGrading (1 1 5)

 hex (69 68 71 70 99 98 101 100) (26 7 23) simpleGrading (0.16 1 5)

 hex (70 71 78 79 100 101 108 109) (26 1 23) simpleGrading (0.16 1 5)

 hex (71 72 77 78 101 102 107 108) (15 1 23) simpleGrading (1 1 5)

 hex (72 73 76 77 102 103 106 107) (60 1 23) simpleGrading (1 1 5)

 hex (73 74 75 76 103 104 105 106) (34 1 23) simpleGrading (11.4 1 5)

 hex (76 75 84 83 106 105 114 113) (34 7 23) simpleGrading (11.4 1 5)

 hex (77 76 83 82 107 106 113 112) (60 7 23) simpleGrading (1 1 5)

 hex (78 77 82 81 108 107 112 111) (15 7 23) simpleGrading (1 1 5)

 hex (79 78 81 80 109 108 111 110) (26 7 23) simpleGrading (0.16 1 5)

 hex (80 81 88 89 110 111 118 119) (26 25 23) simpleGrading (0.16 6.5 5)

 hex (81 82 87 88 111 112 117 118) (15 25 23) simpleGrading (1 6.5 5)

 hex (82 83 86 87 112 113 116 117) (60 25 23) simpleGrading (1 6.5 5)

 hex (83 84 85 86 113 114 115 116) (34 25 23) simpleGrading (11.4 6.5 5)

);

edges

215

(

);

patches

(

 patch inlet

 (

 (9 0 30 39)

 (39 30 60 69)

 (69 60 90 99)

 (10 9 39 40)

 (40 39 69 70)

 (70 69 99 100)

 (19 10 40 49)

 (49 40 70 79)

 (79 70 100 109)

 (20 19 49 50)

 (50 49 79 80)

 (80 79 109 110)

 (29 20 50 59)

 (59 50 80 89)

 (89 80 110 119)

)

 patch outlet

 (

 (4 5 35 34)

 (34 35 65 64)

 (64 65 95 94)

 (5 14 44 35)

 (35 44 74 65)

 (65 74 104 95)

 (14 15 45 44)

 (44 45 75 74)

 (74 75 105 104)

 (15 24 54 45)

216

 (45 54 84 75)

 (75 84 114 105)

 (24 25 55 54)

 (54 55 85 84)

 (84 85 115 114)

)

 patch back

 (

 (28 29 59 58)

 (58 59 89 88)

 (88 89 119 118)

 (27 28 58 57)

 (57 58 88 87)

 (87 88 118 117)

 (26 27 57 56)

 (56 57 87 86)

 (86 87 117 116)

 (25 26 56 55)

 (55 56 86 85)

 (85 86 116 115)

)

 patch front

 (

 (0 1 31 30)

 (30 31 61 60)

 (60 61 91 90)

 (1 2 32 31)

 (31 32 62 61)

 (61 62 92 91)

 (2 3 33 32)

 (32 33 63 62)

 (62 63 93 92)

 (3 4 34 33)

 (33 34 64 63)

 (63 64 94 93)

217

)

 patch top

 (

 (90 91 98 99)

 (91 92 97 98)

 (92 93 96 97)

 (93 94 95 96)

 (96 95 104 103)

 (97 96 103 102)

 (98 97 102 101)

 (99 98 101 100)

 (100 101 108 109)

 (101 102 107 108)

 (102 103 106 107)

 (103 104 105 106)

 (106 105 114 113)

 (107 106 113 112)

 (108 107 112 111)

 (109 108 111 110)

 (110 111 118 119)

 (111 112 117 118)

 (112 113 116 117)

 (113 114 115 116)

)

 patch bottom

 (

 (0 1 8 9)

 (1 2 7 8)

 (2 3 6 7)

 (3 4 5 6)

 (6 5 14 13)

 (7 6 13 12)

 (8 7 12 11)

 (9 8 11 10)

 (10 11 18 19)

218

 (11 12 17 18)

 (12 13 16 17)

 (13 14 15 16)

 (16 15 24 23)

 (17 16 23 22)

 (18 17 22 21)

 (19 18 21 20)

 (20 21 28 29)

 (21 22 27 28)

 (22 23 26 27)

 (23 24 25 26)

)

 wall plate

 (

 (43 42 72 73)

 (46 43 73 76)

 (47 46 76 77)

 (42 43 46 47)

 (73 72 77 76)

)

 wall cylinder //block

 (

 (38 41 71 68)

 (41 48 78 71)

 (48 51 81 78)

 (37 38 68 67)

 (42 37 67 72)

 (52 47 77 82)

 (51 52 82 81)

 (38 37 42 41)

 (41 42 47 48)

 (48 47 52 51)

 (67 68 71 72)

219

 (72 71 78 77)

 (77 78 81 82)

)

);

mergePatchPairs

(

);

//**//

220

Appendix 4.B: Implementation structure of 3D Elastic Cantilever Plate Attached to

a solid Block

In order to implement that case in foam-extend 4.0, three different folders will be in the

main case folder and discussed as follows:

• initialize

o This is the primary case that runs for 2 seconds with coupled off.

o It uses the boundary condition oscillatingInlet (Appendix 4.C), which has

been custom made to use the inlet function that is defined in page 21 of

the article [190].

o Essentially this case does time = -2 to 0 seconds simulation that the article

states, with the exception that the case was configured to run from 0 to 2

seconds, to avoid any possible errors associated with negative times, given

that it's rare to do these kinds of simulations.

o The folder "0.org" is only there as a backup, in case something happens to

the time directory "0". This to say that the folder "0" is not deleted by the

Allrun or Allclean scripts.

• oscillatingInlet

o This has the source code library used for the boundary condition

oscillatingInlet (see Appendix 4.C).

o It's built automatically by the script Allrun that is in the previous case's sub-

folder fluid.

o It uses the function they mention in [190], but it had to adjust to the

different start time, so the function changed the term "(t+1)" to "(t-1)".

• solidMotion

o This is the second case, which will run for 12 seconds, with coupled on.

o The fluid and solid properties were set in this case folder.

221

o The inlet boundary condition is fixed to 1.0m/s using changeDictionary

(Appendix 4.D) and the file system/changeDictionaryDict, but the

velocity U and pressure p fields are first mapped from the time-step 2 from

the first case (initialize), onto 0 on this case as presented in Appendix 4.E.

o The folder 0 is deleted by the Allclean and Allrun scripts for this case

(Appendix 4.F and Appendix 4.G, respectively), because of how the case

is set-up. Therefore, if ever need to change the initial boundary conditions,

must change the files inside the folder 0.org.

o The file fluid/system/controlDict was changed the monitoring point. It now

has three monitoring points, two at the two ends tip of the plate and another

at the middle-end of the plate (Appendix 4.H).

o In both cases, the Allrun and Allclean scripts have been changed to properly

handle each case.

222

Appendix 4.C: oscillatingInlet of the 3D Elastic Cantilever Plate Attached to a Solid

Block Case

/*---*\|

 \\ / F ield | foam-extend: Open Source CFD

 \\ / O peration |

 \\ / A nd | For copyright notice see file Copyright

 \\/ M anipulation |

License

 This file is part of foam-extend.

foam-extend is free software: you can redistribute it and/or modify it under the terms of

the GNU General Public License as published by the Free Software Foundation, either

version 3 of the License, or (at your option) any later version.

foam-extend is distributed in the hope that it will be useful, but WITHOUT ANY

WARRANTY; without even the implied warranty of MERCHANT ABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for

more details.

You should have received a copy of the GNU General Public License along with foam-

extend. If not, see <http://www.gnu.org/licenses/>.

---/

#include "oscillatingInletFvPatchField.H"

#include "addToRunTimeSelectionTable.H"

#include "fvPatchFieldMapper.H"

#include "volFields.H"

#include "surfaceFields.H

// * //

namespace Foam

{

 scalar oscillatingInletFvPatchVectorField::calculate()

223

{

 //Note: the formula in the paper is (t+1), but it's meant to be use for t = [-2,0]

 // We need t = [0,2], there for we substract the 2 seconds and get (t-1)

 return

 0.5

 * (

 sin(mathematicalConstant::pi*(this->db().time().value()-1.0)/2.0)

 + 1.0

)

// * /

224

Appendix 4.D: changeDictionaryDict of the 3D Elastic Cantilever Plate Attached to

a Solid Block Case

/*-----------------------------*- C++ -*-------------------------------*\

| | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 3.1 |

| \\ / A nd | Web: http://www.extend-project.de |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object changeDictionaryDict;

}

// *** //

dictionaryReplacement

{

 U

 {

 boundaryField

 {

 inlet

 {

 type fixedValue;

 value uniform (1.0 0 0);

 }

 }

 }

}

// *** //

225

Appendix 4.E: mappingFields File

/*---*\

| ========= | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 4.0 |

| \\ / A nd | Web: http://www.foam-extend.org |

| \\/ M anipulation | For copyright notice see file Copyright |

---/

Build : 4.0-6de4e266aa6e

Exec : mapFields -consistent ../../initialize/fluid -sourceTime 2.0

Date : Feb 14 2017

Time : 11:07:34

Host : pnnode03

PID : 4923

CtrlDict….:"/eng/cvcluster/egalmanthm/foam/egalmanthm-

4.0/FluidSolidInteraction/run/fsiFoam/1stFeb/solidMotion11/fluid/system/controlDict"

Case…/eng/cvcluster/egalmanthm/foam/egalmanthm-

4.0/FluidSolidInteraction/run/fsiFoam/1stFeb/solidMotion11/fluid

nProcs : 1

SigFpe : Enabling floating point exception trapping (FOAM_SIGFPE).

// * //

Source: "../../initialize" "fluid"

Target: "/eng/cvcluster/egalmanthm/foam/egalmanthm-

4.0/FluidSolidInteraction/run/fsiFoam/1stFeb/solidMotion11" "fluid"

Create databases as time

Source time: 2

Target time: 0

Create meshes

226

Source mesh size: 785700 Target mesh size: 785700

Consistently creating and mapping fields for time 2

 interpolating p

 interpolating U

 interpolating U_0

 interpolating cellMotionU

End

227

Appendix 4.F: Allclean Script File

#!/bin/sh

Source tutorial clean functions

. $WM_PROJECT_DIR/bin/tools/CleanFunctions

cleanCase

\rm -f constant/polyMesh/boundary

\rm -rf history

\rm -f constant/solid/polyMesh/boundary

\rm -rf constant/solid/polyMesh/[c-z]*

\rm -rf ../solid/VTK

\rm -f *.ps

\rm -f *.pdf

\rm -rf 0

wclean libso ../hronTurekReport

wclean libso ../../pointHistoryMod

228

Appendix 4.G: Allrun Script File

#!/bin/sh

Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

Get application name

application=`getApplication`

rm -rf 0

cp -r 0.org 0

ln -s ../../solid/0 0/solid

runApplication -l log.blockMesh.solid blockMesh -region solid

runApplication -l log.setSet.solid setSet -case ../solid -batch ../solid/setBatch

runApplication -l log.setToZones.solid setsToZones -case ../solid -noFlipMap

runApplication blockMesh

runApplication setSet -batch setBatch

runApplication setsToZones -noFlipMap

Build hronTurekReport function object

#wmake libso ../hronTurekReport

Build the modified point monitorin library

wmake libso ../../pointHistoryMod

runApplication mapFields -consistent ../../initialize/fluid -sourceTime 2.0

cp 0.org/pointMotionU 0/

rm 0/U_0* 0/cellMotionU*

runApplication changeDictionary

runApplication $application

-- end-of-file

229

Appendix 4.H: controlDict File

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | foam-extend: Open Source CFD |

| \\ / O peration | Version: 3.0 |

| \\ / A nd | Web: http://www.extend-project.de |

| \\/ M anipulation | |

---/

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 location "system";

 object controlDict;

}

// * * //

application fsiFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 12;

deltaT 1e-3;

writeControl runTime;

writeInterval 0.01;

230

purgeWrite 0;

writeFormat binary;

writePrecision 6;

writeCompression compressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep no;

maxCo 0.2;

functions

(

 pointHistoryCentre

 {

 type pointHistory;

 functionObjectLibs

 (

 "libpointHistory.so"

);

 region solid;

 refHistoryPoint (0.10 0.055 0.055);

 }

 pointHistoryTop

 {

 type pointHistory;

231

 functionObjectLibs

 (

 "libpointHistory.so"

);

 region solid;

 refHistoryPoint (0.10 0.055 0.07);

 }

 pointHistoryBottom

 {

 type pointHistory;

 functionObjectLibs

 (

 "libpointHistory.so"

);

 region solid;

 refHistoryPoint (0.10 0.055 0.04);

 }

 hronTurekReport

 {

 type hronTurekReport;

 functionObjectLibs

 (

 "libhronTurekReport.so"

);

 solidNames (cylinder plate);

 timeToActivateCoupling 0;

 }

232

 disableMeshMotionOnSolidForContinuingSim

 {

 type disableMeshMove;

 functionObjectLibs

 (

 "libdisableMeshMove.so"

);

 region solid;

 }

);

// *** //

233

Appendix 5.A: Tent Case Structure

The case structure was planned as follows:

“case_tent_v?” - the main case folder is versioned, so that it’s easier to tell apart from

previous iterations what has changed.

• “mesh” – case folder where the fluid and solid region meshes are created.

o “fluid” – this is the base case folder for the fluid region, where the top part of the

mesh is generated and then is assembled with the other fluid region to create the

complete region.

o “fluidBottom” – this is the case folder where only the mesh below the tent is

generated. The case folder “fluid” will use the mesh generated here.

o “solid” – this is the case folder where the solid region is meshed.

• “initialize” – case folder where the fluid region will have the flow initialized around

the tent, to avoid sudden bursts of energy into the domain, which would blow the tent

away.

• “solidMotion” – case folder where the fluid region uses the final data from “initialize”

and has the solid region is operational with FSI.

234

Appendix 5.B: Steps of Meshing the Fluid Region

The steps was done inside the script file “mesh/fluid/Allrun” are provided with images in

the following:

1. The folder “0.mesh.step1” contains the file “pointDisplacement”, which is

explained better in step regarding moveDynamicMesh. The copy of this folder to

“0” is so that the 0 folder is ready to be used when the time comes.

2. This step is divided into three staged

a. blockMesh is executed and creates the mesh shown below. There are 9 blocks

drawn in this mesh and in the middle is the shape of the tent surface. The mesh

only has 1 cell of thickness, because moveDynamicMesh was not able to properly

move the mesh if it had cells along Z. Those will be added at a later step.

235

b. The figure below is a top view to make it easier to see the mesh overlaid on the

tent surface (in blue). The red surfaces are the extensions to the tent surface, on

top of which was can move this mesh onto it.

c. The figure below is shown what the surfaces look like. These are in the file

“constant/triSurface/version6.stl”. Without the red surfaces, would not be able to generate

a mesh, because would not be able to attach other mesh blocks onto the block that is going

to be morphed onto the tent.

236

3. moveDynamicMesh is then executed to morph the mesh onto the surfaces, which

as shown below, it does a perfect job.

The file “0/pointDisplacement” is used for this step and inside it is the boundary

conditions for how the boundaries should be moved or fixated, namely:

• The top boundary stays where it is.

• The side boundaries are a special slip condition, where they can

stretch/move/morph only along Z.

• The bottom boundaries moved so that they would snap onto the STL surface.

The mesh motion is time based, namely the bottom boundaries move at a maximum

velocity of 10 m/s until they hit the surface. That is why the final mesh is then placed in

the time folder “2”.

4. This command:

cp 2/polyMesh/points* constant/polyMesh/

is for copying the points of the mesh that were moved by moveDynamicMesh.

The time-step folders “2” and “0” are then deleted, because they are no longer needed.

237

5. Next step is to mesh along Z, given that the mesh only has 1 cell of thickness at

the moment. This is done in 4 iterations of refinement, by using refineMesh to split

the cells in half along Z each time, resulting in 16 cells at the end.

The command setSet is used for selecting all cells of the mesh by relying on the file

“setSet.selectAll.c0”, so that the associated selection name can be indicated to refineMesh

in the file “system/refineMeshDict”.

The resulting mesh looks like as shown below, when seen from the bottom view. As it

can be seen, this only handles the mesh on top. The next step is to do the mesh on the

bottom side.

6. The next step is to run the script “mesh/fluidBottom/Allrun”, inside which the first

step is to run blockMesh.

As shown below, this mesh only has 5 blocks and they are shaped so that the edges to the

North and South of the mesh (left and right of this image) are squished. In other words,

the cells on those edges are not hexahedrons and are instead triangle prisms.

This is so that the mesh can connect directly with the previous mesh, given that the bottom

of the tent is fixed to the ground directly and does not give enough space for hexahedron

cells.

238

And again, this mesh only has 1 cell thickness along Z.

7. The next step is run moveDynamicMesh, which relies on the boundary conditions

file “0/pointDisplacement”, similarly to as explained for the top region.

Notice the prism cells on the bottom edges to the North and South (left and right in the

image).

And again, the resulting mesh is placed in the folder “2”.

239

8. The “points” file is also copied from “2” to “constant” and the folder “2” is deleted.

a. The mesh is then refined along Z, but in a somewhat different way from before.

Instead of selecting all cells of the mesh, only some regions of the mesh are

selected and refined, namely so that more elongated cells are divided in half more

times than the shorted cells.

This is done by using the files “setSet.selectAll.c0.?” with setSet mesh, where each file

has a selection box that reduces the North/South limits with each step.

Below is the result for the first step.

b. Below is the result of the second step. Notice that to the North and South (left and

right edges) the cells on the edges are not as refined.

240

c. Then, the next step is shown below

d. The final refinement step is in the next figure. Notice that on the middle axis, the

refinement ended up with 16 cells along Z, as done for the top region.

This completes the generation of the bottom mesh.

241

10.

a. Next, continue with the original script “mesh/fluid/Allrun”. The application

mergeMeshes is used for getting the mesh from “mesh/fluidBottom” into the mesh in

“mesh/fluid”.

b. But this is not yet completed, because this only means that the two meshes are now in

the same case, but they still have the old top and bottom boundaries that they had in the

original states, as shown in the image below.

Notice that there are lines on the red surface within the mesh.

242

11. This step will now stitch some of the bottom boundaries from the original “fluid”

mesh with some of the top boundaries that came from on the “fluidBottom” mesh.

As shown in the next image, this is the resulting mesh. There are a few rendering artifacts

at the inclined-bottom of the mesh, but those are only some mild rendering issues with

ParaView’s interpretation of the mesh and they can be ignored.

12. Finally, the time folder “0” is deleted once again, because some files were created

there during the latest meshing operations, which can be ignored.

243

Appendix 5.C: Steps of Meshing the Solid Region

The following steps refer to the script “mesh/solid/Allrun”:

The very first step is the definition of the thickness of the tent. It was originally defined

as 4 mm = 0.004m as an experimental thickness, until we could figure out what should

be the correct thickness while also being able to simulate the case.

The idea is that the previous STL file (created using SolidWork) would be then copied

and translated with a motion along Z with this thickness, so that we can have the mesh

for the tent defined in-between.

However, since the tent surface has to be fixated at the tips, it was necessary to create

another STL (shown below) for this case folder, so that the morphed mesh would have

cells that would be horizontally fixated. More details in the steps below.

surfaceTransformPoints is executed next, to do the copy and translation along Z of 4mm,

as indicated in the previous step.

The next step is to run blockMesh.

244

Shown below is the resulting mesh. The different colors show that the mesh is divided

into 5 odd-looking blocks. This is because will be doing several changes to the blocks in

the diagonal corners, namely North-West, North-East, South-West and South-East.

The next step uses the dictionary file “system/topoSetDict.removeExcessCells”, by

running the topoSet utility with the “-dict” option. This will select all of the cells that

want to keep in this mesh and create a cell set named “mainCellSet” that keeps the cells

that matter.

The idea is that will be keeping 8 cells on the tips of the tent surface, 2 on each tip.

The application subsetMesh will then use that cell set to create a new mesh that only has

the cells wanted, as shown in the below figure.

This seemingly insane strategy is because it’s not possible to create this mesh this way

directly with blockMesh.

245

The 8 cells (2 each) on the tips will be the cells that will be holding the tips of the tent in

place.

The next step is to use topoSet with “-dict system/topoSetDict.fixtures” to select the

North, West, East and South faces on the 8 cells on the tips. It will be clearer in the next

step what’s going on here.

Now the faces that were selected in the previous step are converted to patches with

createPatch and the dictionary file “system/createPatchDict”.

4 patches are created this way:

westFixture

eastFixture

northFixture

southFixture

As shown below, the red and light blue faces are the South and West faces that have been

created with the help of the previous step and this step. These faces will be fixated and

will hold the tent tips in place.

However, this is not yet the final mesh, since it does not yet have the shape of the tent.

246

The folder “0.meshMotion” contains the file “pointDisplacement”, which is explained

better in step regarding moveDynamicMesh. The copy of this folder to “0” is so that the

zero folder is ready to be used when the time comes.

The next step is run moveDynamicMesh, which relies on the boundary conditions file

“0/pointDisplacement”, similarly to as explained for the fluid region.

Below is the resulting mesh. There is a bit of a rendering glitch, since the tips look

weird, but the idea that matters is that the patches created in a previous step are

horizontal and can hold the tent tips in place

247

The next steps are nearly identical to those done for the top fluid mesh, namely:

“points” files are moved from “2” to “constant”.

The mesh is refined along Z, but only split into 4 cells along Z (2 refinement iterations).

It’s not yet clear if this is enough or too much.

Finally, the “0” folder is deleted.

248

Appendix 5.D: Allrun Script File

#!/bin/sh

Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

Get application name

application=`getApplication`

../removeSerialLinks ./

(

 cd ..

 ./makeSerialLinks fluid solid

)

rm -rf 0

cp -r 0.org 0

ln -s ../../solid/0 0/solid

Need to copy the meshes generated with OpenFOAM 2.4.*

if [-e ../../mesh/fluid/constant/polyMesh/points]

then

 cp -r ../../mesh/fluid/constant/polyMesh/* constant/polyMesh/

else

 echo "Error: Need the 'fluid' mesh to be generated first in the case folder '../../mesh/'"

 exit 1

fi

if [-e ../../mesh/solid/constant/polyMesh/points]

then

 cp -r ../../mesh/solid/constant/polyMesh/* constant/solid/polyMesh/

else

 echo "Error: Need the 'solid' mesh to be generated first in the case folder '../../mesh/'"

 exit 1

fi

runApplication -l log.setSet.solid \

setSet -case ../solid -batch ../solid/setBatch

runApplication -l log.setToZones.solid \

249

setsToZones -case ../solid -noFlipMap

runApplication setSet -batch setBatch

runApplication setsToZones -noFlipMap

runApplication mapFields ../../initialize/fluid -sourceTime 5.0

cp 0.org/pointMotionU 0/

rm 0/U_0* 0/cellMotionU*

runApplication $application

--- end-of-

