

 Swansea University E-Theses ___

Property preserving development and testing for CSP-CASL.

Kahsai, Temesghen

 How to cite: ___
Kahsai, Temesghen (2009) Property preserving development and testing for CSP-CASL.. thesis, Swansea

University.

http://cronfa.swan.ac.uk/Record/cronfa42217

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42217
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Property Preserving Development and
Testing for CSP-CASL

Temesghen Kahsai

Subm itted to the University o f Wales in fu lfillm en t
o f the requirements for the degree o f

Doctor o f Philosophy

Swansea University
Prifysgol Abertawe

Department of Computer Science
Swansea University

May 2010

ProQuest Number: 10797919

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te manuscript
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te will ind icate the deletion .

uest
ProQuest 10797919

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

LI3RARY

Declaration

This work has not been previously accepted in substance for any degree and is not being
concurrentlv submitted in candidature for any degree.

Signed ... (candidate)

 olh.LL.lpJo.......Date

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is ap­
pended.

Signed (candidate)

Date QLmJlOjO...............

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside organ­
isations.

Signed ° *............ T.... (candidate)

Summary

This thesis describes a theoretical study and an industrial application in the area of for­
mal systems development, verification and formal testing using the specification language
Csp-Casl. The latter is a comprehensive specification language which allows to describe
systems in a combined algebraic / process algebraic notation. To this end it integrates the
process algebra Csp and the algebraic specification language Casl.

In this thesis we propose various formal development notions for Csp-Casl capable of
capturing informal vertical and horizontal software development which we typically find
in industrial applications. We provide proof techniques for such development notions and
verification methodologies to prove interesting properties of reactive systems.

We also propose a theoretical framework for formal testing from CSP-CASL specifications.
Here, we present a conformance relation between a physical system and a Csp-Casl spec­
ification. In particular we study the relationship between Csp-Casl development notions
and the implemented system.

The proposed theoretical notions of formal system development, property verification and
formal testing for Csp-Casl, have been successfully applied to two industrial application:
an electronic payment system called ep2 and the starting system of the Br725 Rolls-
Royce jet engine control software.

Acknowledgements

This thesis would not have been possible without the support of a number of people who
directly or indirectly influenced my work during the last four years in Swansea. I am very
grateful to all these people. Especially I would like to thank my supervisor Dr. Markus
Roggenbach for his constant encouragement, guidance, patience and support. I appreciate
all his contributions of time, ideas and funding to make my Ph.D experience productive
and stimulating. I thank Prof Holger Schlingloff, for valuable lessons on how important is
to apply formal methods in real world systems and for hosting me many times in Berlin.

I am very grateful to my external examiner Prof Hans-Jorg Kreowski and my internal
examiner Dr. Monika Seisenberger. Their valuable comments made this thesis better.

I am grateful to all members of the Department of Computer Science as whole. Special
thanks goes to the theory research group; in particular Prof Faron Moller for his encourge-
ment, and my second supervisor Dr Ulrich Berger.

I also would like to thank past and present members o f 'Processes and Data' research group:
Andy Gimblett, Liam O'Reilly, Gift Samuel and Philip James, who have been a pleasure
working with you. Within this context I am also grateful to Erwin R. Catesbeiana (Jr) for
preserving my sanity in the last four years.

My time in Swansea was made enjoyable in large part due to the many friends; special
thanks goes to Ben Spencer (for being an awesome cubical mate) and all the resident tutors
at HSV. I am also grateful to all my Eritrean friends and relatives in London; special thanks
to Sara and Tiblez.

My final words are reserved to my family: my mother Abrehet, my sisters Yordanos, Sela-
mawit, Lidia, my brother Efrem and my two nieces Alex and Yoram. Although I am so far
away from them, their continuous support and unconditional love has been vital, thank
you very much.

Temesghen Kahsai

Contents

Introduction 1

1 Introduction 3
1.1 Formal software development and te s tin g .. 3
1.2 Project aims and contributions of this th e s is ... 6
1.3 S y n o p s is ... 8
1.4 P ub lications... 10

1 Background 13

2 Csp 15
2.1 Csp - fundamental concep ts.. 15
2.2 Csp - denotational semantic model ... 20

3 Casl 31
3.1 Casl - fundamental concep ts ... 31
3.2 Casl - the institutional fram ew ork.. 34
3.3 Refinement based on model class in c lu s io n ... 40

4 Csp-Casl 45
4.1 Csp-Casl - fundamental c o n c e p ts .. 45
4.2 Csp-Casl - semantical co n stru c tio n ... 48

5 Related approaches 59
5.1 Combining processes and data specification... 59
5.2 System development n o t io n s ... 62
5.3 Specification based te s t in g ... 63

II A theory of development notions for Csp-Casl 65

6 Csp-Casl developm ent notions 67
6.1 Theory of Csp-Casl refinement notion ... 67

6.2 Theory of Csp-Casl enhancement n o tio n .. 84
6.3 S um m ary... 86

7 Proof support for Csp-Casl 87
7.1 Proof support for Csp-Casl re fin em en t... 87
7.2 Proof support for Csp-Casl enhancem ent.. 91
7.3 Sum m ary ... 96

8 Property verification in Csp-Casl 97
8.1 Deadlock analysis in Csp-Ca s l .. 97
8.2 Livelock analysis in CSP-CASL .. 100
8.3 Sum m ary ..103

III Csp-Casl based testing 105

9 Theory of testing from Csp-Casl 107
9.1 Challenges for Csp-Casl based testing ..107
9.2 Test case evaluation ... 110
9.3 Syntactic characterization for colouring Csp-Casl test c a s e s112
9.4 Test case e x e c u tio n ..120
9.5 Sum m ary ..123

10 Testing a n d Csp-Casl d ev e lo p m en t notions 125
10.1 Testing and Csp-Casl refinem ent..125
10.2 Testing and C sp-Casl enhancem en t..129
10.3 Case study: remote control u n i t .. 133
10.4 Sum m ary ..145

IV Industrial applications 147

11 The e lectron ic p ay m en t system ep2 149
11.1 Introducing the ep2 payment sy stem ...149
11.2 Modelling ep2 in Csp-Ca s l ..153
11.3 Property verification of E P 2 ..164
11.4 Testing framework for E P 2 ...174
11.5 Summary and evaluation of the project ... 183

12 Rolls-Royce Br725 starting system 187
12.1 Introducing the Rolls-Royce Br725 starting sy s te m 188
12.2 Modelling Br725 starting system in Cs p ... 190
12.3 Property verification of Br725 starting s y s te m ... 197
12.4 Testing Br725 starting sy stem ...198
12.5 Summary and evaluation of the project ... 201

Conclusion 203

13 Conclusions and further work 205
13.1 Sum m ary ... 205
13.2 Further w o rk ... 207

Appendices 209

C sp-C a sl d e v e lo p m e n t n o tio n a n d te s tin g 211
A.l Proof of Csp-Casl reduct property ..211
A.2 Binary calculator refinement p r o o f .. 228
A.3 Coloring a test case in C s p -C a s l -P r o v e r .. 229

M od ellin g Ro lls-Ro yce Br 725 starting sy ste m 231
B.4 Normal (automatic) ground s t a r t ..231

Modelling and testing of e p2 in C s p -C a sl 237
C.5 Modelling e p2 in C s p -C a s l ...237
C.6 Test verdict generated by TeV ... 245

References 249

List of Figures

2.1 Syntax of basic Csp processes.. 17
2.2 Standard Csp notation.. 19
2.3 Semantic clauses for the traces model T .. 21
2.4 Semantic clauses for the stable failure model JF.. 23
2.5 Semantic clauses for the failures/divergences model N 26

3.1 The institutional framework... 35

4.1 Channel declaration - syntactic encoding... 46
4.2 Csp notation in Csp-Casl- c.f. [Gim08]... 47
4.3 Binary Calculator... 47
4.4 Csp-Casl 2-step semantics.. 49
4.5 Evaluation according to Ca s l ... 50
4.6 Introduction of process names in Multi-process C sp -C asl................................. 56

6.1 Csp-Casl refinement with change of signature... 69
6.2 Property preserving translation.. 71

7.1 Decomposition theorem of Csp-Casl refinement... 90
7.2 Binary calculator refinement in Csp-Casl-Prover.. 90

9.1 Local refusal test...116
9.2 Direction of test events.. 121
9.3 Csp-Casl validation triangle...123

10.1 Basic remote control u n i t ... 133
10.2 Remote control unit in Csp-Casl specifications d e v e lo p m e n t.........................136

11.1 Overview of the ep2 system... 151
11.2 Overview of ep2 document structure... 152
11.3 EP2 specification at different level... 153
11.4 EP2 get configuration activity diagram - terminal part... 156
11.5 ep2 get configuration activity diagram - service center part................................ 157
11.6 ep2 message parameters for terminal configuration data..................................... 160

11.7 ep2 sequence diagram 'request configuration data '.. 160
11.8 ep2 data elements for <^Config data R equests ..160
11.9 EP2 refinement verification in Csp-Casl.. 165
11.10EP2 process transaction..169
11.11ep2 deadlock analysis in Csp-Casl...170
11.12Hardware in the loop testing for ep2...178
11.13TeV - architecture..179
11.14TeV- test case protocol.. 181
11.15EP2 testing framework in action...182

12.1 Rolls-Royce Br725 jet engine...188
12.2 Rolls-Royce Electronic Engine Controller Architecture....................................189
12.3 Rolls-Royce starting system component architecture....................................... 191
12.4 Rolls-Royce activity diagram for manual ground start.................................... 193
12.5 Csp-M data types for BR725.. 197
12.6 Screenshot of Fdr2 for verification..198
12.7 Screenshot of ProBe for simulation.. 199
12.8 F d r2 test script to check green test case...199
12.9 F dr2 test script to check red test case.. 200

13.1 EP2 observational refinement in Csp-Casl... 208

2 Rolls-Royce activity diagram for normal ground s ta r t....................................232

To
yeshareg, Abrehet & Azieb Qhebremariam.

Introduction

(CHAPTER ...1)

Introduction

Contents
1.1 Formal software developm ent and testing 3
1.2 Project aims and contributions o f this th e s is 6
1.3 Synopsis... 8
1.4 Publications.. 10

T HIS thesis describes a theoretical and industrial application in the area of formal
systems development, verification and formal testing using the specification lan­
guage Csp-Casl.

Csp-Casl [Rog06] integrates specification of data and processes in order to describe in
an expressive way reactive systems. Typically, process algebra have paid little atten­
tion to modelling data, whereas algebraic specification languages have not directly sup­
ported the modeling of concurrent process behavior. Csp-Casl integrates the process
algebra CSP [Hoa85, Ros98, AJS05, Hoa06] with the algebraic specification Casl [Mos04,
ABK+02]. The general idea is to describe reactive systems in the form of processes based
on Csp operators, where the communications of these processes are the values of data
types, which are loosely specified in Casl.

This chapter provides an introduction to the main body of this thesis. We first give a gen­
eral introduction to the notions of formal vertical and horizontal development as well as
the notion of formal testing. We then present the main contribution of this thesis. Finally,
we conclude this chapter by giving the outline of the thesis and the list of articles in which
parts of this work have been published.

1.1 Formal software development and testing

The theoretical aspect of this thesis is concerned with the notions of vertical and hori­
zontal development for Csp-Casl. Vertical development means to change the level of

3

4 Chapter 1 Introduction

abstraction, i.e., from an abstract specification to a concrete specification. Horizontal de­
velopment means to enlarge the system with new feature - staying in the same level of
abstraction.

We study new development notions for Csp-Casl capable of capturing informal vertical
and horizontal software development which we typically find in industrial applications.
We provide proof techniques for such development notions and verification methodolo­
gies to prove interesting properties of reactive systems. We present also a theoretical
framework for formal testing from Csp-Casl specifications. Here, we provide a confor­
mance relation between a physical system and a Csp-Casl specification. In particular we
study the relation between Csp-Casl development notions and the implemented system.

In the next two subsections we give a brief introduction to the two main theoretical aspects
that this thesis is concerned with: property preserving system development and formal software
testing.

1.1.1 Property preserving system development

In a vertical development, a system is developed vertically in a step-by-step fashion. Such
an approach has been central to software engineering at least since Wirth's seminal paper
on program development [Wir'71] in 1971. Such a development starts with an abstract
specification, which defines the general setting, e.g., it might define the components and
interfaces involved in the system. In several design steps this abstract specification is
then further developed towards a design specification which can be implemented directly.
In each of these steps some design decisions are taken and implementation issues are
resolved. A design step can for instance refine the type system, or it might set up a basic
dialogue structure. It is essential, however, that these design steps preserve properties.
This idea is captured by the notion of refinement. Refinement is typically performed in
several steps, and at each step we verify that any behavior of the refined model is allowed
by the previous model, thus ensuring that the final detailed model is correct with respect
to the original system-level model. For a notion of refinement to be useful, it should reflect
the ways in which we might want to make concrete our abstract specification.

In the other development direction, horizontal system development, new functionality
or features are added to an existing system. For the corresponding software development
process, this means that the specification of an advanced product is developed by enhance­
ment and combination of basic specifications. Such a concept allows one to capture the
notion of software product lines.

Today, very few software systems are developed from scratch; most systems are derived
by extending or enhancing previous versions. Thus, traditional engineering approaches,
in which a complete system is derived from a given set of informal or formal specifications,
are only partially adequate. This holds in particular for software product lines, where a set
of similar products is targeted. The CMU SEI defines a software product line to be a "set
of software-intensive systems that share a common, managed set of features satisfying the

1.1 Formal software development and testing 5

specific needs of a particular market segment or mission and that are developed from a
common set of core assets in a prescribed way" [CMU]. Thus, the individual products in a
product line have a similar "look-and-feel", however, they differ in that one product may
offer more functionality than the other one. In a product line, there are low-end products
with a basic set of features, specialized products for particular markets, and high-end
products which combine many features.

1.1.2 Formal software testing

Dijkstra observed that a major limitation of software testing is that it can only show the
presence of faults, and not their absence [DDH72]. Despite this obvious limitation, soft­
ware testing is recognized as a necessary means of system verification. Even when other
program verification techniques such as static analyses and formal proofs are employed,
testing is still considered necessary to complement such techniques, and to build greater
confidence in the system being developed. In "Testing: A Roadmap" [HarOO], M.J. Har-
rold points out that software quality will become the main criteria for success in the soft­
ware industry. She refers to software testing as the critical element in software quality.

It is well accepted that formal specifications can be useful for software testing. M-C Gaudel,
in the article "Testing can be formal too" [Gau95], gives a first formal treatment of testing.
For other pioneering papers survey we refer to [BGM91, BCFG86, Bri88, Cho78, GMH81,
LY94]. On the other side Brinksma in [Bri99] illustrates an overview that formal testing can
be successfully applied to industrial applications.

Systematic testing is the most important quality assurance method in software and sys­
tems design. Testing can be done at all stages during the design, e.g., on unit-, integration-
and system level. System tests often are conceived as black-box-tests, where the inner
structure of the system is hidden from the observer's view. In contrast to formal verifica­
tion, black-box-testing is concerned with all parts of a computational system - software,
middleware and hardware. The 'black box' view abstracts from the actual implementa­
tion details and considers the observable behaviour of the system only. The main purpose
of testing is: on one side to determine that the system under test (SUT) conforms to the
specified intended behaviour; and on the other side to determine whether or not the SUT
contains errors, where an error is a deviation of the actual behaviour from the intended
behaviour of the SUT. If in a systematic test no errors are found, this can increase the
confidence that the system is apt for its intended use.

The computational behaviour of a system can be denoted in a formal way, e.g., as a set
of sequences of input/output events which occur at a certain point of control and obser­
vation (PCO). Such sequences are called traces of the SUT. Testing then becomes the task
of comparing specified and traceable behaviour of a computational system, i.e., checking
whether all intended behaviour is realised by traces, no unintended behaviour can be ob­
served, and other behaviour is neither forced on the system nor inhibited.

6 Chapter 1 Introduction

1.2 Project aims and contributions of this thesis

The aims set at the beginning of this Ph.D project can be summarized as follows:

• To define and investigate formal development notions that are capable of mirroring
typical informal development relations as are present in industrial application.

• To provide tool support for analysing Csp-Casl specifications, e.g., to prove dead­
lock freedom, as well as for verifying the formal development relations between
them.

• To set up a testing approach that relates the formal specifications in Csp-Casl with
real world systems.

The main contributions of this thesis are summarised in the following three subsections.

1.2.1 Property preserving development notions for C s p -C a sl

We have developed two directions of development notions for C sp-C asl capable of mir­
roring typical vertical and horizontal developments.

For the vertical development, we propose refinement notions based on model ciass in­
clusion with arbitrary change of signature. Our notions of refinement for C sp-C asl are
based on refinements developed in the context of the single languages CSP and C asl. In
the context of algebraic specification, e.g., [EK99] provides an excellent survey on differ­
ent approaches. For Csp, each of its semantical models comes with a refinement notion
of its own. There are for instance traces refinement, failure /divergences refinement, and
stable failures refinement [Ros98]. For system development one is often interested in liberal
notions of refinements, which allow substantial changes in the design. For system verifica­
tion, however, it is important that refinement steps preserve properties. The latter concept
allows one to verify properties already on abstract specifications - which in general are
less complex than the more concrete ones. The properties, however, are preserved over
the design steps. These two purposes motivate our study of various refinement notions.

We also develop proof support for the proposed development notions of Csp-Casl. For
the refinement notion, we decompose a Csp-Casl refinement into a refinement over Csp
and a refinement over CASL alone. We show how to use existing tools to discharge the
arising proof obligations. Reactive systems often exhibit the undesirable behaviour of
deadlock or divergence (livelock), which both result in lack of progress in the system.
Here, we develop proof techniques based on refinement for proving deadlock freeness
and divergence freeness.

For the horizontal development, we have developed a notion of enhancement for CSP-
CASL. In a horizontal development new functionality or features are added to an exist­
ing system. For the corresponding software development process, this means that the
specification of an advanced product is developed by enhancement, which allows for the

1.2 Project aims and contributions of this thesis 7

combination of basic specifications. Such concept allows to capture the notion of software
product lines. Here, we have identified some enhancement patterns that are capable of
capturing some basic horizontal development step. Using such patterns we prove an en­
hancement relation between Csp-Casl specifications.

1.2.2 Testing theory for C s p -C a sl

We propose a theory for the evaluation of test cases with respect to the specification lan­
guage Csp-Casl. In a formal systems development process, an abstract specification can
be refined to a concrete implementation, where all design decisions have been fixed and
which has a deterministic behaviour. In our approach, we can build test suites for any
level of abstraction in this process. It is possible that test cases are constructed either from
the specification or independently from it. Therefore, it is possible to structure a test suite
according to the features of the system under test (SUT). Each test case checks the correct
implementation of a certain feature according to a particular specification. The specifica­
tion determines the alphabet of the test suite, and the expected result of each test case. The
expected result is coded in a colouring scheme of test cases. If a test case is constructed
which checks for the presence of a required feature (according to the specification), we de­
fine its colour to be green. If a test case checks for the absence of some unwanted behaviour,
we say that it has the colour red. If the specification does neither require nor disallow the
behaviour tested by the test case, i.e., if an SUT may or may not implement this behaviour,
the colour of the test case is defined to be yellow. During the execution of a test on a partic­
ular SUT, the verdict is determined by comparing the colour of the test case with the actual
behaviour. A test fails, if the colour of the test case is green but the SUT does not exhibit
this behaviour, or if the colour is red but the behaviour can be observed in the SUT. The
execution of a yellow test case yields an inconclusive verdict. Otherwise, the test passes.

Moreover, we develop a theoretical framework to relate the evaluation of test cases with
the notion of vertical and horizontal development in Csp-Casl . In particular for the ver­
tical development we show that test cases developed for abstract specification preserve
their colour under a well-defined refinement notion. This approach ensures that test cases
which are designed at an early stage can be used without modification for the test of a
later development step.

As for horizontal development, we show that test cases developed for a basic specifica­
tion preserve their colour after the enhancement step. In a horizontal development, the
advanced product incorporates features from more basic versions. Even if all features of
the basic products have been thoroughly tested, it is necessary to validate that these fea­
tures still work correctly in the enhanced version. Usually the design and testing of the
basic version is completed before the advanced version is begun; in this case, for all basic
features elaborate test cases are available. Our approach allows to re-use the test cases of
the basic specification in a test suite for the enhanced specification.

8 Chapter 1 Introduction

1.2.3 Industrial applications

The presented theoretical framework have been successfully applied to two 'real' world
systems. Those are:

Electronic payment system ep2. The ep2 system is an electronic payment system and it
stands for 'EFT/POS 2000', short for 'Electronic Fund Transfer/Point Of Service
2000'. This is a joint project established by a number of (mainly Swiss) financial insti­
tutes and companies in order to define EFT/POS infrastructure for credit, debit, and
electronic purse terminals in Switzerland (www. e f tp o s 2 0 0 0 . ch). The system con­
sists of seven autonomous entities: CardHolder, Point of Service, Attendant, POS
Management, Acquirer, Service Center and Card. These components are centered
around an ep2 Terminal. The ep2 specification consists of twelve documents, each
of which describe the different components or some aspect common to the compo­
nents. The way that the specifications are written is typical of a number of similar
industrial application. C sp-C asl is able to match such a document structure by a
library of specifications, where the informal design steps of the EP2 specification
are mirrored in terms of a formal refinement relation defined in the previous sec­
tions. A first modeling approach of the different levels of ep2 in C sp-C asl has
been described in [GRS05]. Here, we have extended the modeling in more detail by
carrying out the specification of the various EP2 components at different levels of ab­
straction. We have systematically proven the refinement steps of the various level of
specification using C sp -C asl-P ro v er [OIR09]. Moreover, we have proven that the
interaction of the ep2 components is deadlock free. Again this is done systematically
using C sp -C asl-P rover.

For the testing part, we evaluate test cases using C sp-C asl-P rover. Moreover, we
present a testing framework for a EP2 payment terminal. Such testing framework,
tests the ep2 payment terminal in a hardware-in-the-loop testing fashion.

Rolls-Royce jet engine Here, we apply the theory of testing from C sp-C asl to the
starting system of the jet engine R o lls-R oyce Br725 control software. The Br725
is a newly designed jet engine for ultra-long-range and high-speed business jets. It
is part of the Br700 family. We model the starting system in Csp and validate our
model using the Csp simulator ProB e [Ltd03]. We then evaluate the test suites
against the formal model. Such evaluation is done using the model checker
F dr2 [Ltd06]. We execute our test suite in an in-the-loop setting on the so-called
"rig".

1.3 Synopsis

The rest of the thesis is organized as follows. Chapters 2 to 5 describe the background
material of this thesis.

1.3 Synopsis 9

• Chapter 2 and 3 introduces the specification languages Csp and Casl respectively.
Here, we outline their key features and present different notions of refinement for
both languages. Both languages are the key ingredient of the specification language
we will concentrate on in this thesis.

• Chapter 4 describes the combination of Csp and Casl to form the specification lan­
guage named Csp-Casl.

• Chapter 5 contains references to approaches which define the context of this thesis
and provides short characterisations of the cited work. Here, we give an overview
of different approaches and formalisms which combines data and process specifi­
cations, as well as notions of system developments. We also give an overview of
related approaches in the area of specification based testing.

Chapters 6 to 8 describe the theoretical framework of property preserving development
notions for CSP-CASL.

• Chapter 6 presents a theory of Csp-Casl refinement and Csp-Casl enhancement.

• Chapter 7 illustrates proof support for CSP-CASL refinement and CSP-CASL enhance­
ment.

• Chapter 8 describes how we can verify interesting properties using the newly intro­
duced refinement notion for Csp-Casl, namely analysis of deadlock and livelock
freedom.

Chapter 9 introduces the theoretical framework of testing from Csp-Casl specifications.

• Section 9.1 illustrates the challenges for Csp-Casl based testing and reasonable ex­
pectations for specification based testing.

• Section 9.2 describes the notion of a Csp-Casl test process and the expected result
of a Csp-Casl test process with respect to a Csp-Casl specification.

• Section 9.4 describes how we execute test cases on the SUT as well as the derivation
of test verdicts.

• Section 10.1 illustrates the relation between Csp-Casl refinement and test evalua­
tion.

• Section 10.2 illustrates the relation between the Csp-Casl enhancement and test
evaluation. In particular we illustrate the notion of test case reuse in the setting of
software product lines.

Chapters 11 and 12 present two industrial applications of the theoretical framework pre­
sented in the previous chapters.

• Chapter 11 introduces an electronic payment system called ep2. Here, we illustrate
the modeling of ep2 in Csp-Casl; we prove the refinement of the different level of
abstraction. We analyze ep2 for deadlock and livelock freedom. We also present the
tool TeV - a testing framework for ep2.

10 Chapter 1 Introduction

• Chapter 12 describes the work done by the author during a two months internship
at Rolls-Royce part of the Br725 system verification team. The work concentrates
on the specification-based testing in the context of control software for the jet engine
Rolls-Royce Br725.

Finally, in Chapter 13 we summarize the overall contribution of this work and conclude
the thesis by considering possible future work.

Publications

Some parts of this thesis have been published in the following articles:

1. Temesghen Kahsai, Greg Holland, Markus Roggenbach, and Bernd-Holger Schlin-
gloff.
T o w ard s f o r m a l te s t in g o f je t en g in e R o lls-R oyce Br725. In Proceedings
of the 18th International Conference on Concurrency, Specification and Programming,
pp. 217-229, 2009.

2. Temesghen Kahsai and Markus Roggenbach.
P ro p e r ty p re se rv in g re fin e m en t n o t io n s f o r Csp-Casl. In Recent Trends in
Algebraic Development Techniques, LNCS 5486, pp. 206-220, 2009.

3. Temesghen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
S p ec ifica tio n -b ased te s t in g f o r s o f tw a re p ro d u c t lines. In Software Engi­
neering and Formal Methods 2008, IEEE Computer Society, pp. 149-159, 2008.

4. Temesghen Kahsai, Markus Roggenbach, and Bernd-Holger Schlingloff.
S p ec ifica tio n -b ased te s t in g f o r re fin em en t. In Software Engineering and For­
mal Methods 2007, IEEE Computer Society, pp. 237-247, 2007.

My main contribution to these papers are respectively:

1. The work described in this paper is the result of my two months internship at Rolls-
Royce. I have done most of the specifications (M. Roggenbach helped in the spec­
ification of one activity diagram - Section 3.2). I have done all the proofs of test
case evaluation and the execution of test cases in the rig (Section 4). Overall, I have
written most of the paper.

2. I wrote the whole introduction section and most of the other sections. Specifically
I have done most of the technical proofs: proof of the decomposition theorem (The­
orem 1), proof of deadlock analysis (Lemma 1 and Theorem 2, 3), proof of livelock
analysis (Lemma 2 and Theorem 4, 5). I wrote the whole section on ep2 (Section 4);
here, I have done all the proofs of refinement, deadlock and livelock freedom.

3. I contribute to the Csp-Casl specification of the remote control unit product line
(Section 3). I wrote the detailed proofs of Lemma 3.1, 3.3 and Theorem 3.5, 4.1. I
have done the detailed proofs of refinement and enhancement of the remote control

1.4 Publications 11

unit. I contributed in proving the colour of the test cases and implemented the SUT
as well as the implementation of the testing environment for the remote control unit
(Section 5).

4. I contributed to the technical proof of well-behaved development notion of data
and process refinement (Section 5.2). I wrote the whole section on specification, im­
plementation and testing of the binary calculator example, as well as the colouring
proof of the various test cases (Section 6).

This thesis contains more results than the one published in the aforementioned papers.
For each paper we indicate the extra results included in this thesis.

1. Nothing more added. (See Chapter 12).

2. The following are new results which are reported in Chapters 6, 7, 8,11:

• New definition of refinement with arbitrary change of signature in the traces,
stable failure and failures/divergences CSP models (c.f. Lemma 6.1.3, 6.1.4,
6.1.5, 6.1.6, Theorem 6.1.8 and Definition 6.1.9).

• Proof of that process and data refinement with change of signature are special
cases of Csp-Casl refinement (c.f. Definition 6.1.10, 6.1.11 and Lemma 6.1.12).

• Decomposition theorem with change of signature (c.f. Theorem 7.1.1).

• Deadlock analysis with change of signature (c.f. Theorem 8.1.2).

• Livelock analysis with change of signature (c.f. Theorem 8.2.2).

3. Nothing more added. (See Chapters 6, 7 and Sections 10.2,10.3.).

4. The following are new results which are reported in Chapter 9 and Section 10.1:

• Detailed proof of the syntactic characterization for the traces condition (c.f. The­
orem 9.3.1).

• New syntactic characterization for the failures condition (c.f. Definition 9.3.2,
Theorem 9.3.3, Corollary 9.3.4, Corollary 9.3.5).

• Complete syntactic characterization to prove green, red and yellow test cases.

• Testing with new refinement notion based on arbitrary change of signature (c.f.
Theorem 10.1.1, Theorem 10.1.2).

Moreover the thesis contains some results which are not published yet. Those are related
to the specification, verification and testing of the industrial case study ep2.

PART I

Background

(CHAPTER ...2)

C o m m u n ica t in g Sequentia l Processes
(Csp)

Contents
2.7 Csp - fundamental c o n ce p ts 75
2.2 Csp - denotational semantic m odel 20

T h e process algebra C sp [Hoa85, Ros98, AJS05, Hoa06] - Communicating Sequential
Processes - is a well established and widely used formalism. In C s p - C a s l it is
deployed for the description of the reactive/process part. In this chapter we in­

troduce the language and give an overview of its key features, syntax and semantics. We
present the different denotational models of C sp , namely the traces model, stable-failure
model and failures/divergences model. Each of these semantical model comes with a refine­
ment notion. We also discuss how each semantical model are deployed for the verification
of some interesting properties of concurrent systems.

2.1 Csp - fundamental concepts

Process algebras have proved to be a valuable mathematical tool to reason about the be­
haviour of concurrent and communicating systems. The process algebra CSP is one of a
number of formalisms for modelling and verifying concurrent reactive systems, i.e., systems
are described in terms of interactions with other systems in a concurrent way.

C sp is one of the three process algebras which have historically dominated the field; the
others are C c s (Calculus of Communicating Systems) [Mil89] and A c p (Algebra of Commu­
nicating Processes) [BW90]. Some recent developments of particular interest includes: tc -

calculus [Mil99] which introduces the notion of process mobility; spi-calculus [AG97] a
variant of the n-calculus that includes cryptographic features to reason about security pro­
tocols; ambient-calculus [CG98], which introduces the notion of explicit locations.

15

16 Chapter 2 C sp

C sp has been deployed successfully in the industrial context, often applied in areas as
varied as distributed databases [Ros98], parallel algorithms [IRG05], train control systems
[BS99], fault-tolerant systems [BKS97], and analysis of security protocols [RSG+01].

The basic units of abstraction in C sp are processes, the set of communication events or alphabet
of communication and a logic on the alphabet. Here, processes are named entities which
live in some environment. Communications are instantaneous, atomic synchronisations
between processes, and usually carry some semantic content, for instance a value which
could be regarded as a 'message'. Another assumption about communication events is
that an event occurs only when all its participants are ready to execute it. Communication
names may be prefixed, this is represented by the use of channels. For example, the event
button.1 conceptually represents communication of the value ' 1 ' over the channel button.
Here, we are just communicating the value but ton. 1 which intuitively could mean the
pressing of a button that transmits the value '1'. Semantically however, channels are just
syntactic sugar - very useful one. A set of communications is called an alphabet; A refers
to the 'total' alphabet of communications over which a system of processes is defined. We
will devote much discussion to the alphabet of communication in Chapter 4, where we
introduce C s p - C a s l .

A process equation binds a process to a name, which may be referenced by other processes.
Such names may be parameterised; a parameterised process represents a family of pro­
cesses, one for each possible combination of parameter values. In the next sub-section
we describe the syntax of C sp process operators.

2.1.1 C s p -Syntax

Figure 2.1 illustrates the basic CSP processes P. It involves elements a G A as communica­
tions, subsets X, Y C A as synchronization sets in parallel operators or for hiding certain
communications, uses binary relations R C A x A in order to describe renaming, and
allows non-further specified formulae (p in its conditional.

Let us discuss some of the operators reported in Figure 2.1.

Primitive processes The process SKIP represents successful termination: it never communi­
cates anything in the alphabet, however signals successful termination. Conversely,
STOP represents deadlock: it represents a process which has entered a state in which
is not able to communicate. We also have DIV, representing divergence, which also
is in a state of perpetual non-communication; however the reason for doing so is
different from STOP. The process DIV represents livelock: it is engaging in an infi­
nite sequence of internal, non-observable actions. We will discuss more about such
process in the coming sections.

Action prefix: The process P = a —> SKIP, offers the communication a and then behaves
like SKIP, hence it terminates successfully.

2.1 C sp -fundam ental concepts 17

P ::= STOP
SKIP
DIV
a —> P
? x : X ^ P
P°9P
P D P
p n p)
P\[X]\P
P | [x | y] | P
p II p
p in p
p \ x
p i m
if <p then P else P

%% deadlock process
%% terminating process
%% divergence process
%% action prefix
%% prefix choice
%% sequential composition
%% external choice
%% internal choice
%% generalized parallel
%% alphabetized parallel
%% synchronous parallel
%% interleaving
%% hiding
%% relational renaming
%% conditional

o G A and X ,Y C A and R C A x A
<p : formulae.

Figure 2.1: Syntax of basic CSP processes.

Let X be a set of communications, then ?x : X —► P(x) is a process which will com­
municate any value x G X and then behaves like P(x). Such operator allows a choice
of values to be communicated. We can use a 'channeled' version in the following
way: c?x —> P(x), here we communicate c.x. In case we would like to send a value
over a channel, we write clx —► P(x) which is a syntactic sugar for c.x —» P(x). Here,
the sending process is just the process of choosing which value is to be synchronized
on.

Sequential composition The process P % Q is a process which behaves like P. Should P
terminates, it behaves like Q. It is very useful for composing named processes, hence
useful for modularity. For example:

PI = a —> SKIP
P2 = c -> SKIP
Comp = PI § P2

The process Comp is equivalent to a —> c —> SKIP.

Choice operators External choice operator: The process P □ Q offers the environment the
choice of the first communication of P and Q, and then behaves accordingly. For
example:

ExtC = a-> SKIP D b ^ STOP

if the environment offers 'a', the process ExtC will communicate 'a' and then success­
fully terminate. Otherwise, if the environment offers 'b', ExtC will communicate 'b'

18 Chapter 2 C sp

and then deadlock. If both sides offer the same communication, the choice of which
side is taken internally.

Internal choice operator: The process P n Q behaves either like P or like Q. Here, the
choice is made internally to the process; this means for the environment point of
view the choice is made in a nondeterministic way. For example:

IntC = a-> SKIP n b -> STOP

If the environment offers 'a', the process IntC may choose to communicate ’b' and
then there is a deadlock between the environment and IntC. Only if the environment
offers both 'a' and 'b' the process IntC is obliged to communicate, because it must
choose one of the alternatives.

Parallel operators Generalized parallel: In the process P | [X] | Q, both P and Q synchronize
on all events in X, and for events outside X both processes proceed independently.
For example:

GenPl = a -> SKIP n c SKIP
GenP = GenPl | [{b, c}] \ GenPl

The process GenPl can choose internally whether to communicate 'a' or 'c'; putting
two GenPl in a generalized parallel, both processes must synchronize on everything
in {b,c}. If one of GenPl chooses to communicate ‘c’, they must both do so. Clearly,
then GenP can deadlock, if one side offers 'a' and the other side offers 'c'.

Alphabetized parallel: Let X and Y be sets of communications, then in the process
P |[X | Y]| Q, P is allowed to communicate in the set X, while Q communicates
in the set Y. However, they must agree on events in the intersection X ft Y. Thus,
P | [X | Y] | Q is equivalent to P | [X D y] | Q.

Synchronous parallel: The process P 11 Q behaves like P and Q in which every event
of P and Q are totally synchronized; that is, it only communicates events on which
they both agree. Thus, P 11 Q is equivalent to P | [A] | Q (or P | [A \ A) \ Q), where A
is the alphabet of communications.

Interleaving: The process P 11 [Q is a process where P and Q run in parallel, indepen­
dent of one another; if the environment offers a communication which both P and Q
could engage in, exactly one does so, the choice being nondeterministic. Thus, we
have that P 111 Q is equivalent to P | [{ }] | Q. For example:

IntP = a - > b ^ SKIP ||| c -> a -> SKIP

The process IntP can initially engage in 'a' or 'c'; supposing it engages in 'a', it may
still engage in ‘c’ subsequently: it presents a choice of 'b' and 'a'. Otherwise, if it
initially engages in 'c', then it can subsequently only engage in 'a', but after that it
might offer 'a' and 'b', or 'a' and 'c', depending on the (internally) chosen 'a'.

Hiding Let X be a set of communications then P \ X is a process which behaves like P
except that any event in X is not observable from outside P \ X.

2.1 C s p -fundam ental concepts 19

Renaming Let R C A x A be a relation over the alphabet of communication, then the
process P[[R]\ behaves like the process P where all the events x of P are renamed in
y for [x,y) G R. For example, let R = {(a,d), (b,j)} be a relation:

PI = a —* STOP □ & -> c -> SKIP
Ren = P1[[R]]

The process Ren is equivalent to d —> STOP □ ; —> c —> SKIP.

Csp introduces recursion in the form of systems of process equations. Parameterised pro­
cesses are defined in terms of basic process expressions including also process names (see
Figure 2.1):

P ::=
| PName
| PName(x \ , . . . , x n)

Here x \ , . . . , x n are variables over A. A CSP process equation is of the form:

Qsv-equation ::= PName = P
| PName(xi, . . . ,x n) = P

Moreover in the Csp literature, two further processes are presented: R U N and C H A O S .

R U N X = ? x : X - ^ R U N X
C H A O S x = S T O P n {?x : X -> C H A O S x)

For a set of events X e A, the process R U N x can always communicate any member of X
desired by the environment. The process C H A O S x can always choose to communicate or
reject any member of X.

Before illustrating the various semantical notion of C sp , in Figure 2.2 we report some
standard C sp notation that will be used in the upcoming sections. For a full glossary of
mathematical notation used in the context of C sp , the reader can refer to [Ros98].

x \ y Difference (= {a G x \ a £ y}).
P(x) Power set {= {y \ y C x}).

0 Empty sequence
(a-[f . . . ,an) The sequence containing a\ , . . . , an in that order.

/~N .
S t Concatenation of two sequences .

tfs Length of s.
s \ X Hiding all members of X deleted from s.
s \X Restriction s \ (E^ \ X).
s < t prefix order (= 3 u.s ^ u = t) .

Figure 2.2: Standard CSP notation.

20 Chapter 2 C sp

2.2 Csp - denotational semantic model

Csp offers a number of approaches to semantics. A process written in CSP may be un­
derstood in terms of operational semantics (where the process is transformed to a labelled
transition system, with transitions representing communications); or in terms of algebraic
semantics (where properties of a process — such as equivalence to some other process
— may be deduced by syntactic transformations on the process text following a set of al­
gebraic laws); or in terms of denotational semantics (where the process corresponds to a
value in some mathematical model, typically a complete partial order or a complete metric
space). The latter is the dominant one, and of particular interest for our work. In the next
subsections we describe three denotational models.

2.2.1 Traces model - T

The traces model T , denotes a Csp process according to its traces, which are the set of
sequences of communications in which the process is willing to engage.

Let A*'/ = A* U {s ^ (/) | s € .4*} be the alphabet of communications, where / ^ A
represents the event of successful termination. Formally in the traces model each process
is identified by a set T C A* ̂ that satisfies the following healthiness conditions:

T l. T is nonempty; i.e., it always contains the empty trace ().

T2 . T is prefix-closed; i.e., if s ^ t G T then s G T.

Given a Csp process P, the traces of P are denoted as traces(P). In Figure 2.3 we report the
semantic clauses of the basic processes in the traces model T.

STOP never communicates anything: its set of traces consists only of the empty trace ();
the traces of an action prefix process are the traces of the prefixed process P, each prefixed
with the event a first communicated and the empty trace added. In the clause of the prefix
choice ?x : X —> P, which is the only way to introduce a variable x, every free occurrence
of x in the process P is syntactically substituted by a communication.

As an example let us consider the following processes:

P = a b STOP
R = a -> b -► SKIP \[{a}]\ a -> c -> SKIP
Q = (a —> SKIP) □ (b —► c —» STOP)

Then, the trace set of P, R and Q are given by:

traces(P) = {(), (a), (a,b)}
traces(R) = { {), (a), {a, b), (a, b, c), (a,c), {a,c, b), {a, b ,c ,S), {a, c, b, /) }
traces(Q) = {(), (a), (a ,S), (b), (b,c)}

2.2 C sp - denotational semantic model 21

traces(STOP)
traces(SKIP)
traces (DIV)
traces(a —> P)
traces(Ix : X -
traces(P%Q)

P)

traces(P □ Q)
traces(P n Q)
traces(P \ [X]\ Q)
traces(P |[X |Y]| Q)

traces (P || Q)
traces(P ||| Q)
traces(P \ X)
traces (P[[R}\)

traces (if cp then P else Q)

s G traces(P)}
s G f r a c e s (P [f l / x]) , f l G X }

= «) }
= {<>, </ >}
= {(>}

= «>}U{<ars
= (traces(P) n A*'

U {s ^ t | s ^ (/) G traces(P),t G traces(Q)}
= traces(P)Utraces(Q).
— traces(P) U traces(Q).
= U {s |[X]| f I s £ traces(P) A t e traces(Q)}
= j s G (XU Y)* 7 | s f X U { / } G traces(P) A

s f Y U { /} G traces(Q) }
= traces(P) D traces(Q)
— (J {s HI f | s G traces(P) A t e traces(Q)}
= {s \ X j s G traces(P)}
= {t | 3s e traces(P) .sR*t}

traces (P); <p if evaluates to true
traces(Q); <p if evaluates to false

Figure 2.3: Semantic clauses for the traces model T .

D efinition 2.2.1 (Traces Refinement) Let P, Q be arbitrary Csp processes. P is a trace
refinement ofQ written as Q CT P if and only if: traces(P) C traces(Q).

Two processes P and Q are traces-equivalent, P =j- Q, if P C j Q and P Q, i.e.,
traces(P) = traces(Q). The process STOP is the most refined process in the traces model,
i.e., P C j STOP for all processes P.

The refinement notion in CSP (independent of the semantic model) has many properties
that can be exploited, for example it is transitive:

P Q Q A Q Q T ^ P Q T

and monotone: if C[.] is any process context, namely a process definition with a slot to put
a process in, then

P E Q => C[P] c C[Q]

The refinement P C Q is also expressible as the equality P n Q = P. The following lemma
proves such equality.

Lemma 2.2.2 Let P and Q be arbitrary Csp processes. Then,

P Q t Q «=► P = j P n Q

Proof. The trace refinement P Q holds if and only if traces(Q) C traces(P). The trace
inclusion could be rewritten as traces(P) U traces(Q) = j traces(P). Thus, by the definition
of the trace set of n we have that P = r P n Q. ■

22 Chapter 2 C sp

The model T is the weakest of the three denotational models of Csp that we consider. In
fact, the traces of internal and external choice are indistinguishable. This indicates that
traces (P) does not give a complete description of P, since we would like to be able to
distinguish between P n Q and P □ Q. For example, the process a —» SKIP guarantees
that if the environment is prepared to engage in the event a and then terminate, then it
can engage in the event a and terminate successfully. However, a —> SKIP n a —>■ STOP
does not guarantee that it can engage in the event a and terminate successfully if the
environment is ready to engage in the event a and terminates. The traces model identifies
both processes as they have the same traces. However, one of them guarantees that it will
terminate successfully, but the other does not guarantee.

In terms of verification, the traces model can be deployed for the verification of safety
conditions. That is, a process Q which is a trace refinement of a process P, will perform
traces already defined in P and nothing more, i.e., traces(Q) C traces(P). Safety conditions
are concerned with the exclusion of traces only.

2.2.2 Stable failure model - T

The stable failure model gives a finer information about processes. For instance it allows
us to distinguish between internal and external choice (and much else besides). In partic­
ular, it allows us to detect deadlocked processes. A failure of a process is a pair (s, X), that
describes sets of communications X which a process can fail to accept after executing the
trace s. The set X is called the refusal set; the process can not perform any event in the set
X no matter how long it is offered.

Formally, in the stable failures model, each process is modelled by a pair (T,F) where
T C and F C A *y x P(*4^), satisfying the following healthiness conditions:

Tl. T is non-empty and prefix closed.

T2. V s, X : (s, X) G P ==> s G T. This asserts that all traces performed by the failures
should be recorded in the traces component T. In other words it establishes consis­
tency between the traces component and the failures component.

T3. V s, X : s ~ (/) G T = > (s ^ (S) ,X) G P. If a trace terminates successfully by
producing / , then it should refuse all events in A ^ at the stable state after s ^ (/) .

F2. V s, X : (s,X) g P A Y C X =>■ (s, Y) G P. This asserts that in a stable state if a set X
is refused, then any subset Y of X should also be refused.

F3. Vs, X, Y: (s,X) GPAVf l G Y .s^(fl) £ T (s,XUY) G P.

This asserts that if a process P can refuse the set X of events in some stable state,
then the same state must also refuse any set of events Y that the process can never
perform after s.

2.2 C sp - denotational semantic model 23

failures(STOP)
failures (SKIP)
failures(DIV)
failures (a —> P)

failures(?x : X —> P)

failures(P % Q)

failures(P □ Q)

failures(P n Q)
failures(P\[X]\Q)

failures(P \ X)
failures(P[\R]])

failures(ii (p then P else Q)

= { «) , X) |X C ^ }
= {(<>,X) I X C i} U { ((/) ,X) I X C / }
= 0
= { « > ,X) |^ X }

U{((fl)"s,X) | (s,X) £failures(P)}
= {(<),x) | A nx = 0}

\J{((x)~s,X) | (s,X) £failures(P([a/x])),x £ A}
= {(s,X) I s E A*, (s,XU-{V}) £ failures (P)}

U{(s~f,X) | s ~ (/) £ traces(P), (t,X) Efailures(Q)}
= {(<>,X) | ((),X) £failures(P) nfailures(Q)}

U{(FX) | (t,X) £failures(P) Ufailures(Q),t ± ()}
U{(0/X) | X C A A (/) E traces(P) U traces(Q)}

= failures(P) Ufailures(Q)
= {(w,YUZ) | Y -(X U { /}) = Z -(X U { /}),

3s,f. (s, Y) £ failures(P),(t,Z) £ failures(Q),
u £ s\[X]\t}

= {(f \X,Y) | (f#YUX) Efailures(P)}
= {(f,X) | 3f'.(f',f) E P*, (f '^ -^ X)) E/az7wres(P)}
_ J failures(P); cp evaluates to true

\ failures(Q); evaluates to/fl/se

Figure 2.4: Semantic clauses for the stable failure model F.

F4. Vs s ~ (/ > E T (s,.A) e F.

This asserts that if we have any terminating trace s ^ (/) , these should refuse A at
the stable state after s.

Similar to the trace semantics, Figure 2.4 illustrates the clauses to determine the failures of
the various processes.

In the failures of the renaming operator, (X) = {a \ 3 a' £ X . (a,a') £ X} is the set of
all events that map to X under R.

As an example let us consider the following processes over the alphabet {a, b}:

R = a -> STOP n b -> STOP
Q = a STOP □ b -> STOP

The stable failure set of R and Q are given by:

failures(R) = {((), Y), ((),Z), ((a),X), «b),X) | X C {*,& ,/}, Y C { « ,/} ,Z C { b ,/} }
failures(Q) = { (() ,{ /}) , «fl),X), ((b), X) | X C { a ,b ,/} }

Here, R and Q have different failures, i.e., the stable failure model F can distinguish be­
tween internal and external choice.

D e f i n i t i o n 2 .2 .3 (S t a b l e f a i l u r e r e f i n e m e n t) Let P, Q be arbitrary C sp processes. P
is a stable failure refinement of Q written as Q C j r P if and only if: traces(P) C traces(Q) A
failures(P) C failures(Q) .

24 Chapter 2 C sp

In other words, if every trace s of Q is possible for P and every refusal after this trace is
possible for P. Q can neither accept an event nor refuse unless P does. Two processes P and
Q are stable failure-equivalent, P =jr Q, if P \Zjr Q and P Ojr Q, i.e., traces(P) = traces(Q)
and failures (P) = failures(Q). The bottom element in Cjr is (^4*^, A* ̂ x P(^4^), while its
top element is (() ,0).

2.2.2.1 Deadlock analysis in C sp

Deadlock is a phenomenon pertaining to networks of communicating processes which
occur when two processes can not agree to communicate with each other, thus the whole
system becomes permanently frozen. This is potentially catastrophic in safety-critical com­
puting applications. A network which can never exhibit deadlock is said to be deadlock-
free.

The deadlock problem was first identified by Dijkstra [Dij02] in the early days of multi­
user operating systems. Early work focused on the scenario of user-resource networks,
where a collection of user processes compete for allocation of a set of shared resources,
without any direct communication between the user processes.

In CSP deadlock is represented by the process STOP, and it has

({()}/{«> /*) I x c a '}) x P (^ xP(A 'O)

as its denotation in T , i.e., the process STOP can perform only the empty trace, and after
the empty trace the process STOP can refuse to engage in all events. In Csp, a process P is
considered to be deadlock free, if the process P after performing a trace s never becomes
equivalent to the process STOP.

D e f i n i t i o n 2 .2 .4 A process P is deadlock-free in C sp iff

Vs G A *.(s,A ^) £ failures(P).

This definition is justified, as in the model T the set of stable failures is required to be
closed under the subset-relation: (s, X) e failures(P) A Y C X => (s, Y) G failures(P). In
other words: Before termination, the process P can never refuse all events; there is always
some event that P can perform. Moreover, the stable failure refinement notion preserves
the deadlock-freeness of a process. That is, if P is deadlock free and P Qjr Q, then Q is
deadlock free.

T h e o r e m 2 .2 .5 Let P and Q be processes such that P is deadlock free and P Cjr Q. Then Q is
deadlock free.

PROOF. Let P Q jr Q and let Q be a deadlocked process. We show that also P is a dead­
locked process. Let Q have a deadlock, i.e., there exists s G A* with (s ,^*^) G failures{Q).
From the stable failure refinement (Cjr) arguments, we know that failures (Q) C failures(P).
Hence, (s, A*^) E failures(P) and P is a deadlocked process. ■

2.2 C sp - denotational semantic model 25

Deadlock analysis in C sp has been studied in [Ros98], and an industrial application has
been described in [BKS97]. Tools for deadlock analysis are developed in [IRG05, IR].

2.2.3 Failures divergences model - N

This model has long been taken as the 'standard' model for CSP. Here, the processes are
represented by two sets of behaviors: the failures and the divergences. The divergences of
a process are the finite traces on which the process can perform an infinite sequence of
internal actions. In this model each process P is modeled by the pair1

(failures-1 (P), divergences (P))

where:

• failures1 (P) is the set of all stable failures (s,X) (where s is a trace and X is a set of
actions that the process can refuse in some stable state after s (unable to perform t
or /) , or results from state after s which can perform / and X C A), together with
all the pairs of the form (s, X) for s G divergences (P).

• divergences(P) is the (extension-closed) set of traces s on which a process can diverge.

In such model, if s is a trace that process P can perform then either P diverges after s or
reaches a stable state or one that can perform / .

Formally the failures/divergences model J\f is defined to be the pairs (F1,D) satisfying
the following healthiness condition (where s, t range over A*1 and X, Y over P(.4^)):

F.l traces1 (P) = {t | (t ,X) G F} is non-empty and prefix closed.

F.2 Vs,X : (s,X) G F and Y C X then (s,Y) G F.

F.3 Vs,X : (s,X) G F and Va G Y : s A (fl)^ traces1 (P) implies (s,X U Y) G F.

F.4 Vs : s ^ (/) G traces1 (P) then (s,*4) G F.

D .l V s : s G D n ^ * and t G A*1 then s ^ t G D.

D.2 V s : s G D then (s, X) G F.
This adds all divergences-related failures of F.

D.3 V s : s ~ (/) G D then s G D.
This ensures that we don't distinguish between how processes behaves after success­
ful termination.

Figure 2.5 illustrates the clauses to determine the divergences of some processes.

Tn the standard CSP literature the failure set in the failures/divergences model is denoted as failures j_(P).
However, in this thesis will be denoted as fa ilures-1 (P). This is to avoid, later in the thesis, confusion with
notation out of the context in algebraic specification.

26 Chapter 2 C sp

divergences(STOP)
divergences (S KIP)
divergences (DIV)
divergences(a —> P)
divergences (?x : X —» P)
divergences(P § Q)

divergences(P □ Q)
divergences (P n Q)
divergences(P |[X] | Q)

divergences(P \ X)

divergences (P [[P]])

divergences (it f then P else Q)

s G divergences(P)}
s G dzmgm:es(P[fl/x]),fl G X}

= 0
= 0
=

= { < > } U { < «) ~ s

= «)}U {(a)^s
= divergences (P)
U { s ^ f | s ^ (/) G traces1 (P),t G divergences(Q) }

= divergences(P) U divergences(Q).
= divergences(P) Udivergences(Q).
= I 3 s G traces1 (P),t G traces^iQ).

ue (s \ [x } \ t) nA*
(s G divergences(P) V t G divergences(Q))}

= {(s \ X) ^ t | s G divergences (P)}
U { (« \ X) ^ f | « G A (u \ X) finite

A V s < u . s G traces1- (P)}
= { s ' ^ f | 3 s G divergences(P) D *4*.sJR*f}

{idivergences (P); 99 evaluates to frwe
divergences (Q); cp evaluates to false

Figure 2.5: Semantic clauses for the failures/divergences model N .

D e f i n i t i o n 2 .2 .6 (F a i l u r e s / d i v e r g e n c e s r e f i n e m e n t) LetP, Q be arbitrary C sp pro­
cesses. P is afailures-divergences refinement ofQ zvritten as Q P if and only if: failures1 (P) C
failures1 (Q) A divergences(P) C divergences(Q).

2.2.3.1 Livelock analysis in Csp

A process is said to diverge or livelock if it reaches a state from which it may forever com­
pute internally through an infinite sequence of invisible actions. This is clearly a highly
undesirable feature of the process, described by some as "even worse than deadlock"
[Hoa85]. Livelock may invalidate certain analysis methodologies, and is often caused
by a bug in the modeling. However the possibility of writing down a divergent process
arises from the presence of two crucial constructs: hiding and ill-formed recursive processes.
Hiding turns a visible action into an invisible one. For example, let us consider the process
P = a —> P, which performs an infinite stream of a's. If one now conceals the event 'a' in
this process

P = (a -> P) \ {«}

it no longer becomes possible to observe any behaviour of this process.

The Csp process DIV represents this phenomenon: immediately, it can refuse every event,
and it diverges after any trace. DIV is the least refined process in the model. The
process DIV has

(A * ' x P (^) M ^) G P (A * ' x P (A^)) x P (^* /)

2.2 C sp - denotational semantic model 27

as its semantics over J\f. Then, a process is said to be free of divergence (or livelock free)
if after carrying out a sequence of events, its denotation is different from DIV.

D e f i n i t i o n 2 .2 .7 A process P is said to be livelock free iff one of the following conditions holds:

Cl. Vs G A*.{(t,X) | (s ^ t , X) efailures(P)} ± A * ' x V (A ^)

C2. Vs G A*.{t | (s ^ t) G divergences (P)} / A*'*'.

The failures/divergences refinement notion preserves the livelock freeness of a process.
That is, if P is livelock free and P Q, then Q is livelock free.

T h e o r e m 2 .2 .8 Let P and Q be processes such that P is livelock free and P Q. Then Q is
livelock free.

PROOF. Let P Q and Q be a livelocked process. We show that also P is a live-
locked process. Let Q have a livelock due to C.2, i.e., for all s G A* with {t | (s ^ f) G

divergences(P)} = A*y . From the failures/divergences refinement (C_v) definition, we
know that divergences(Q) C divergences(P). Hence, {t | (s ^ t) G divergences(P)} = A*y
and P is a livelocked process. We can draw the same conclusion following the failures
argument, w.r.t., C.l of Definition 2.2.7. ■

Livelock analysis in CSP has been applied to an industrial application in [SPK99].

.4 Analysing C sp recursion

In this section we briefly present how the semantics of recursive processes is defined in
C sp. The semantics of recursive processes in C sp is determined in terms of fixed points.
C sp offers two standard approaches to deal with fixed points: complete partial orders (cpo)
or complete metric spaces (cms). These two approaches follow a similar pattern: the first step
consists of proving that the domain of a given C sp model is a cms or a cpo, respectively. As
a particularity of CSP, metric spaces are introduced in terms of so-called restriction spaces.
The second step consists of proving that the various CSP operators satisfy the pre-requisite
properties, namely contractiveness for cms and continuity for cpo.

In the case of cms, Banach's fixed point theorem is employed, while for the cpo approach
Tarski's fixed point theorem is used. Banach's theorem leads to a unique fixed point, while
Tarski's theorem does not guarantee uniqueness. Here, the least fixed point is chosen in
the CSP models T and J\f, while the largest fixed point is chosen for the model T .

In order to prove properties of a recursive process in CSP, for example that Q refines P,
both the cms and the cpo approach offer as a technique the so-called fixed point induction.

In the C sp literature recursive processes are written in an equational style, for example:

28 Chapter 2 CSP

The Tarski fixed point theorem guarantees that a solution exists to the equations X = F(X),
for X an element in some domain T>.

Let P = exp(P) be a process equation in Csp. CSP defines for each equation exp an un­
derlying f u n c t i o n o n the domain. Given f exp, in the traces domain the semantics of the
above process equation is defined as

traces(P = exp(P)) = (J {/^(-L) | n > 0}
wgn

As all Csp operators are continuous in the traces domain, such a solution always exists.
This means that the trace set of P is determined by iteratively applying the function f exp
starting with the minimal element _L of T. As illustrated previously, in the case of the
traces model the minimal element is identified by the process STOP.

For example, let us consider the trace set of the process Beep = beep —> Beep. The induced
semantic function F(Beep) is {() U { (beep) ^ t \ t e Beep}. The successive iterations F(Beep)
yields:

F0(J.) = X = {<)}
F '(±) = F(F°(±)) = {{beep),{)}
F2(±) = F(F’ (X)) = {(beq>,beep), {beep), ()}

Taking the union of all the values yields the trace semantic of Beep; thus, traces(Beep) =
{tr | tr < beep*}, i.e., the prefixed closed set of traces. Here, beep* is a regular expression
where * denotes Kleene's star.

2.2.5 Tools for Csp

Csp 's practical success is founded on well developed tool support. Here we describe some
successful tools developed for C sp. In order to support some of these tools, a machine
readable version of C sp (Csp-M) is introduced, this is described in detailed in [Ros98,
Sca98].

Data in CSP-M is defined using a purely functional programming language with a strong
static type system, requiring explicit type declarations for channels and data types. For a
concrete example, let us consider the following specification taken from the Fdr2 distri­
bution (www. f s e l . c o m /so ftw a re . htm l).

— F i r s t , th e s e t o f v a lu e s t o be com m unicated
d a ta ty p e FRUIT = a p p le s | o ran g es I p e a r s

— Channel declarations
channel left,right,mid : FRUIT
channel ack

2.2 C sp - denotational semantic model 29

-- The specification is simply a single place buffer
COPY = left ? x -> right ! x -> COPY

— The implementation consists of two processes
SEND = left ? x -> mid ! x -> ack -> SEND
REC = mid ? x -> right ! x -> ack -> REC

— These components are composed in parallel
— and the internal communication is hidden
SYSTEM = (SEND [| {| mid, ack |} |] REC) \ {| mid, ack |}

— Checking that "SYSTEM" is correct implementation of "COPY"
assert COPY [FD= SYSTEM

— In fact, the processes are equal, as shown by
assert SYSTEM [FD= COPY

This example specifies a single-place buffer implemented over two channels, left and
right. It includes two specifications of such a buffer, and asserts that they are equivalent.
First an enumerated type is defined: FRUIT. Channels left, right and mid communi­
cate values of type FRUIT. The channel ack is singleton-typed. The abstract specification
COPY, states that a buffer's behaviour is to repeatedly read some value on channel left,
bind it to the local variable x, and then write it out on the channel right. Then SYSTEM
is a concrete specification; here the receiving and sending parts are separate processes, i.e.,
SEND and REC. Those processes they synchronise on the channel mid and uses the channel
ack to proceed in lockstep. The channels mid and ack are then hidden from everything
outside the process SYSTEM. Finally, we assert that over the failures/divergences model
([FD =), the processes COPY and SYSTEM are equivalent.

We now list some successful tools developed for C sp:

Fdr2 [Ltd06] is a model checking tool developed by Formal Systems (Europe). Specif­
ically, it allows us to check whether or not a process refines another, in each of the
three semantic models. It also performs checks for determinism, deadlock-freedom
and divergence-freedom. The tool takes as input a text file containing process de­
scriptions written in CSP-M.

ProBe [Ltd03] is an animator developed by Formal Systems (Europe). P r o B e allows
you to load a C sp script file, then simulate some arbitrary C sp process description
and interact with it. In some sense, this tool allows the user to act as the environment
and to choose how much control he wants over the process.

Csp-Prover [IR05, IRG05, IR06, IR07, IR08] is an interactive theorem prover built upon
Isabelle/HOL [NPW02] . C s p - P r o v e r is dedicated to refinement proofs within the
process algebra C sp . It is generic in the models of CSP that can be used. Currently
the trace model T and the stable-failures model T are available. C s p - P r o v e r pro-

30 Chapter 2 C sp

vides a deep-encoding of C sp within Isabelle/HOL; this means that the syntax and
semantics of C sp processes have been encoded within the logical framework of Is­
abelle/HOL. C s p - P r o v e r supports three methods for allowing the user to prove
process refinements, namely syntactical, semantical and semi-automatic proofs.

(CHAPTER . . . 3)

C o m m o n A lgebra ic Specification
L a n g u a g e (C a s l)

Contents
3.1 Casl - fundamental c o n c e p ts 31

3.2 Casl - the institutional fram ew ork 34

3.3 Refinement b a se d on m odel class inclusion40

C ASL stands for Common Algebraic Specification Language. It's a specification lan­
guage designed by the Common Framework Initiative for algebraic specification and
development (CoFI). In this chapter we describe the main features of C a s l follow­

ing [BM04, Mos04]. Section 3.1 describes the fundamental concepts of C a s l , while in
Section 3.2 we describe the institutional framework of C a s l . Here, we illustrate some
institutions of C a s l . Finally, in Section 3.3 we present some notions of refinement for
C a s l .

3.1 Casl - fundamental concepts

The aim of the CoFI project was to design a Common Framework for Algebraic Specification
and Development — an attempt to create a de facto standard framework for algebraic spec­
ification, providing a family of languages which are coherent, and are extensions or re­
strictions of some main algebraic specification language. This was motivated by the ex­
istence of a number of competing algebraic specification languages developed over the
years, with varying levels of tool support and industrial uptake; major examples include
ACT-ONE/TWO [EM85, CEW93], OBJ [GWM+93] and functional CafeOBJ [DF98], Extended
ML [KST97], Larch [GH93], ASF [BHK89], ASF-SDF [Kli93, DHK96] and Maude [MFS+07].

31

32 Chapter 3 C a s l

3.1.1 O verview o f C a s l

Casl provides basic specifications consisting of many-sorted signatures with subsorting,
partial functions, sort generation constraints and axioms written in first order logic with
equality.

Casl consists of several layers, including basic (unstructured) specifications, structured
specifications and architectural specifications. We give a brief overview of the constructs
for writing basic specifications in Casl. A detailed description of the Casl language and
its semantics can be found in the "Casl Reference Manual" [Mos04].

A CASL basic specification consists of a set of declarations of symbols (i.e., names) for sorts
(the data types of the specification), symbols and profiles for operations (total and partial
functions on the sorts), symbols and profiles for predicates (relations on the sorts), and a
set of axioms and constraints which restrict the interpretations of the declared symbols. As
noted below, such specifications may be named for reference in structured specifications
and named specifications may be generic, i.e., include parameterised elements. The ax­
ioms are formulas in two-valued first order logic with equality (FOL=), with the usual
connectives and universal quantifiers; furthermore, they may make assertions regarding
definedness (e.g. of the results of partial functions) and subsorting.

Casl includes sort generation constraints to further control the contents of the L-algebras'
carrier sets. The models of a loose specification (the default interpretation) include all
those with the properties defined by the specification's axioms, without further restraint
on the carrier sets (so for example trivial carriers such as singletons will tend to be in­
cluded); Casl also allows for generated and free datatypes. If a sort is declared as a gener­
ated datatype, values of the sort are built only using the sort's provided constructors ('no
junk' - this provides an induction proof principle on such types); if a sort is declared as
a free datatype, it is generated and furthermore, values denoted by different constructor
terms are necessarily distinct ('no confusion').

We now illustrate some of the concepts mentioned above through the following example:
monoid specification in Casl.

spec Monoid =
sort Element
ops n : Element; Element x Element —» Element;
axioms

vars x ,y ,z : Element
. n@x = x
. x@n = x
. (x@y)@z = x@(y@z)

%(left unit 1)%
%(right unit 1)%
%(associativity)%

end

This example illustrates: a sort name declaration, two operations, one of which is 0-ary
and hence defines a constant, and three axioms on the items declared. The semantics

3.2 C a s l -fundam ental concepts 33

of such a specification consists of a a many-sorted signature E(Monoid), and a class of
'L(MONOlD)-algebras corresponding to interpretations of the signature in which the ax­
ioms and constraints are satisfied. The E-algebra contains carrier sets corresponding to
E's sorts, and functions and relations corresponding to E 's operations and predicates. In
the monoid example, the class of E-algebras forming this specification model includes the
natural numbers under multiplication with an identity of 1 , the natural numbers under
addition with an identity of 0 , and lists under concatenation with an identity of the empty
list.

A basic CASL specification may include declarations of subsorts. Subsorts are interpreted
by arbitrary embeddings (1-1 functions) between the sorts' corresponding carrier sets. In
the following example, we illustrate a subsort declaration in Casl.

spec Vehicle =
free type Nat ::= 0 | suc(Nat)
sorts Car, Bicycle < Vehicle
ops speed : Vehicle —» Nat;

engine : Car —> Nat
end

The above example introduces three sorts, Car, Bicycle and Vehicle. It declares both Car and
Bicycle to be subsorts of Vehicle. A subsort declaration entails that any term of a subsort is
also a term of the supersort, so here, any term of sort Car is also a term of sort Vehicle. Here
we can apply the operation speed to it. But we can also define operations on the subsorts,
for instance the operation engine can only be applied to Car.

Structured Casl specifications These are specifications which are built on basic specifi­
cations by allowing them to be combined into larger and more complex specifica­
tions with the same underlying semantics. Specifically, a structured specification
can combine basic specifications, references to named specifications, and instances of
generic (i.e., parameterised) specifications, using constructs of extension, union, hiding
and renaming. Like a basic specification, the semantics of a structured specification
consists of a signature E and a class of E-algebras. Structured specifications allow us
to build complex specifications out of simpler ones; architectural specifications explic­
itly describe the intended structure/composition of a system in terms of its compo­
nents; they target the design phase of development, in which the decomposition of a
system into components/modules for further development and implementation in
target languages is considered. We do not consider architectural specifications any
further in this work.

Casl Libraries These are "named collections of named specifications", and provide the
highest-level organizational mechanism in Casl, collecting specifications into li­
braries identified by name and version number, with the aim of promoting reuse
of specifications.

34 Chapter 3 C a s l

Casl - the institutional framework

Casl integrates subsorts, partiality, first-order logic and induction (known also as sort
generation constraints). In this section, we present the institutional framework of many-
sorted partial first-order logic with sort generation constraints and equality PCFOL=, and
SubPCFOlr which adds subsorting. We first give a general description of institutions.

Institutions capture the nature of logic systems and are the language used to define Casl
and Csp-Casl. Institution were introduced by Joseph Goguen and Rod Burstall in the late
1970's in order to deal with the large volume of logical systems being used to developed
in various subjects in computer science. The use of institutions allows to create specifica­
tion languages, proof calculus and tools which are independent of the underlying logical
system. The institutional framework allows one to relate and translate institutions with
other institutions.

Informally, an institution consists of a collection of signatures with signature morphisms
and for each signature a collection of sentences, models and a satisfaction relation between
the sentences and models such that the satisfaction condition holds. The satisfaction condi­
tion ensures that if one translates a sentence under a signature with a signature morphism,
then the satisfaction of a translated sentence and a model is preserved.

The formal definition of institutions rely on category theory. An institution I as defined by
Mossakowski in [Mos02], is a quadruple (SIGN, sen, mod, |=) where:

• SIGN is a category.

• sen : SIGN —> SET is a functor.

• mod : (SIGN)0̂ —»• CAT is a functor.

• |m od(£)| x sen(£), for each £ : SIGN,

such that the satisfaction condition holds: for every cr : £ —>£' in SIGN,

mod((7')(M/) \=z cp ^ M' f=jy sen(£7)(<p)

holds for every cp G sen(£) and for every M' £ |m od(£') |.

The category SIGN denotes the collection of signatures and signature morphism which
map symbols in a compatible way.

The functor sen : SIGN —> SET gives for each signature £ : SIGN, the set of sentences
sen(£) over the signature £, and for each signature morphism cr : £ —» £ ', the map
sen(cr) : sen(£) —> sen(£ ') which translates sentences built over £ to sentences built over
£ ' .

The functor mod : (SIGN)op —> CAT gives for each signature £ : SIGN, the category
of models for that signature m od(£), and for each signature morphism a : £ —> £ ', the
reduct functor mod(cr) : m od(£') —» m od(£) which reduces models over the signature

3.2 C a s l - the institutional framework 35

SIGN SET

sen(E')'sen(E)sen

CAT
mod

mod(E/)mod(E)

M' M'

Figure 3.1: The institutional framework.

TJ to models over the signature E. Figure 3.1 illustrates the overall framework of an insti­
tution.

Some basic shorthand notations that are often used when dealing with institutions: we
write a(f) for sen(a)((p), and M' \a for mod(£r)(M'). Flence, for each a : E —» E' in SIGN,
the satisfaction condition becomes

M '|a |=z (p ^ M ! [=£/ a(q>)

for each M' G |mod(E')| and cp G sen(E).

Given an arbitrary fixed institution, we can define the usual notion of logical consequence
or semantical entailment. Given a set of E-sentences T C sen(E) and a E-sentences cp G
sen(E), we say

r [= 2 cp iff for all E models M G |mod(E)|,M | = 2 T implies M [= 2 cp

where M [= 2 T means M [= 2 V7 ôr every ip G T.

36 Chapter 3 C a s l

3.2.1 The institution PCFOL~

Here, we present the institution of the many-sorted partial first-order logic with sort gen­
eration constraint and equality PCFOL=.

Signatures A many-sorted signature £ = (S, TF, PF, P) consists of

• a set S of sorts,

• two S* x S-sorted families TF = (T F lV/S) w e s*,seS and P F = (PFWiS) w e s \ s e s of total
function symbols and partial function symbols, respectively, such that T FW/S D P F W/S = 0
for each (w, s) G S* x S, and

• a family P = (Pw)wes* of predicate symbols.

Given a function / : A —> B, let/* : A* —» B* be its component-wise extension to finite
strings. Given two signatures £ = (S,TF,PF,P) and £ ' = (S',TF',PF',P'), a many-sorted
signature morphism a : £ —» £ ' consists of

• a map crs : S —> S',

• a map : T F WfS U PFW/S -> T F ' ^ ^ ^ U PF'as - {u>)ias {s) preserving totality, for each
w G S*,s G S, and

• a map ap : Pu, —+ P as* (a;) •

Models Given a many-sorted signature £ = (S, TF, PF, P), a many-sorted 'L-model M con­
sists of

• a non-empty carrier set Ms for each s e S,

• a partial function (f w , s) M '• Mw —> Ms for each function sym bol/ G TFlV/S U PFu,iS, the
function being total for/ e TFW/S, and

• a relation (pw)m G for each predicate symbol p G P-̂ .

A many-sorted 'L-homomorphism h : M —> N is a family of functions /i = (/ts : Ms —» Ns)ses
with the property that for all / G TFW/S U PFW/S and (aj , . .. ,an) G Mw with (f-a, , s) M (a^,... ,an)
defined, we have

hs((fio,s)M(al / • • • /an)) = (fw,s)N(hs-\ (#1)/•••/ hŝ (an)),

and for all p E P W and (ai, G Mw,

(« !,... ,a„) G (pa,)M implies (feSl (fli),. . . ,frSl («„)) G (pw)N .

Let cr : £ —» £ ' be a a many-sorted signature morphism, M' be a £'-model. Then the reduct
M' \a=: M of M' is the £-model with

• M s := for all s G S,

3.2 C a s l - the institutional framework 37

• (fw,s)M := m1 for all/ € TFW/S U PFW/S, and

• (Fw)m := (o£(p))m' for allp G Pw.

Given a many-sorted E'-homomorphism h' : M' —> N', its reduct h! 1̂ : M f \a^ N ' is
defined by (h' |cr)s := ^ s (s) f°r aH s £ S.

Sentences Given a many-sorted signature E = (S, TF,PF,P), a variable system over E is
an S-sorted, pairwise disjoint family of variables X = (Xs)ses. The sets T^(X)S of many-
sorted L-terms of sort s,s £ S, with variables in X are the least sets satisfying

• x G Te(X)S/ if x G XS/ and

• fw,s{t 1/ / In) C T e (X) s,
if tj G TI:(X)si (i = 1 . . . n), f G FFIt,/S U PFW/S, w = s i...s„ .

Given a total variable valuation v : X —> M, the fenrz evaluation : Tz(X) —>?M is induc­
tively defined by

• Vg(x) := v(x) for all x G Xs and all s G S.

• t/f (fio,s{i'\/ • • • / f«)) ; —
f (/hvOmOJ, (fi)/ • • - / vjn(f„)) if vj(f/) defined (z = 1 . . . n) and
\ (fw,s)M(v |,(fi) , . . . , i/|„(t„)) defined
[undefined otherwise

for all/ G TFW/S U PFW/S and tj G Tz(X)Sj (i = 1 . . . n), where w = s i . . . s„. Note that
iA can be undefined. That's the reason why we add '?' in its profile.

The set AFz(X) of many-sorted atomic L-formulae with variables in X is the least set satisfying
the following rules:

1- Pw{i\/• • • in) £ -AFx(X), if tj G Tz(X)Sj, pw G Py;, w = S \ . . . sn G S*,

2. fi = f2 G AFs(X), if fi,*2 £ Tz(X)S/s G S (existential equations),

3. fi = f2 £ AFe(X) if fi,f2 £ Tz(X)S/s G S (strong equations),

4. de/f G AFz(X), if t G Te(X) (definedness assertions),

The set FOe(X) of many-sorted first-order 'L-formulae with variables in X is the least set satis­
fying the following rules:

1. AFZ{X) C FO e (X),

2. F G FOe (X) (read: false),

3. f Alp £ FOz(X), if cp, ip G FOe(X),

4. => ip G FOe(X), if (p,ip £ FOz(X),

5. Vx : s • cp £ FOe(X), if (p G FOe(X U {x : s}),s G S,

38 Chapter 3 C a s l

A many-sorted E-sentence is a closed many-sorted first order formula over E. Concern­
ing the definition of the translation of many-sorted E sentences along a many-sorted E-
morphism we refer to [Mos02].

Satisfaction The satisfaction of a many sorted first-order formula cp G FOe(X) relative
to a valuation v : X —> M is defined inductively over the structure of cp :

• v lb pw{h, . . . t n) if and only if is defined (/ = 1 . . . n) and (v^(t\) , . . . ,i^(f„)) G
(P z o) m -

• v lb t\ = t2 if and only if v^(fi) and (̂ 2) are both defined and equal.

• v lb t\= t2 iff vtf(fi) and are either both undefined, or both are defined and
equal.

• v lb deft if and only if v$(t) is defined.

• not v lb F.

• v lb (p A ip if and only if v lb (p and v lb tp.

• v lb cp => ip if and only if v lb cp implies v lb ip.

• 1/ lb V x : s • if and only if for all valuations £ : X U { * : s} —> M with £(y) = v(y)
for y 7 ̂x : s, y G X, we have £ lb cp.

M \= q) holds for a many-sorted E-model and a many-sorted formula cp, iff v lb cp for all
variable valuations v into M. [Mos02] proves the satisfaction condition of PCFOL=.

3.2.2 The institution SubPCFOL=

Signatures A subsorted signature E = (S /T F^F ,?, <) consists of a many-sorted signa­
ture (S, TF,PF,P) together with a reflexive and transitive subsort relation <s C S x S. The
relation < 5 extends point-wise to sequences of sorts. We drop the subscript S when it is
obvious from the context.

For a subsorted signature E = (S, TF, PF, P, <) we define overloading relations and ~p for
function and predicate symbols, respectively. Let / : w\ —;► sj, / : u>2 S2 E TF U PF.
Then / : W\ —> Si ~ f / : W2 —> S2 if and only if there exist w G S*,s G S such that
w < w \,w < W2 ,S\ < s, and S2 < s. Let p : W\,p : W2 G P. Then p : w\ ~p p : w?2 if and only
if there exists w G S* such that w < w\ and w < W 2 -

A s u b s o r te d s ig n a tu r e m o rp h is m <j : E —> E' is a many-sorted signature morphism that
preserves the subsort relation and the overloading relations1, i.e., for cr holds:

P i si < S2 implies (7s (si) < c s (s2) for all S],S2 G S

^ o t e that, thanks to preservation of subsorting, the preservation of the overloading relations can be sim­
plified.

3.2 C a s l - the institutional framework 39

p2 / : wi -► si / : w2 -► s2 implies £t£1;Si (/) = ct£ 2/S2 (/)
for a l l / G TF U PF

p3 p : wj ~p p : w2 implies (p) = cr̂ 2(p) for all p G P

With each subsorted signature E = (S, TF, PF, P, <) we associate a many-sorted signature
E = (S, TF, PF, P), which extends the underlying many-sorted signature (S, TF, PF, P) with

• a total injection function symbol in j : s —» s' for each pair of sorts s <s s',

• a partial projection function symbol p r : s' ^ ? s for each pair of sorts s <s s', and

• an unary membership predicate symbol ess, : s' for each pair of sorts s <s s'.

Given a subsorted signature morphism cr : E —> E', we can extend it to a many-sorted sig­
nature morphism a : E —> E' by just mapping the injections, projections and memberships
in £ to the corresponding injections, projections and memberships in E'.

Models Subsorted E-models are many-sorted E-models satisfying in PCFOL= the follow­
ing set of axioms /(E) (all variables are universally quantified):

1. in j s,s(x) = x for s G S.

2. i n j s s/(x) = i n j sy(y) => x = y for s < s'.

3. in j s/y /(in j S/S'(x)) = i n j S/S//(x) for s < s' < s".

4. p r s/ s((in j S/S'(*)) = x for s < s'.

5. p r s//S(x) = p r s/s(y) =>■ x = y for s < s'.

6 . 6 *,(x) <̂> defprsr/S(x) for s < s'.

7. in j s'/S (/<,',s '(in j Sl,s'(* i), • ••, in (*«))) =
i n j s",s ifw",s" (i n j si y/ (*1) / • • •' js„,s" (■*•»))) for fivf,s' fw" ,s" >
where w < w', w", w = si . . . sn,w ' = s [. . . s'n, w" = s" . . . s”, s', s" < s.

8 . Pa/(in j Sl/S/ (x\) , . . . , i n j S(i/Sji (xn)) <£>
Vw"(in j Sl/s"(xi),•••, in j Stl/s"(*n)) for Pw' ~P VW'r
where w < w', w", w = s \ .. .sn,w ' = s \ . . . s'n, w" = s" . . . s".

Sentences The Subsorted formulae over E are the many-sorted first order formulae over E.
A sub-sorted "L-sentence is a many-sorted first order sentences over E.

Satisfaction The satisfaction relations v II- cp and M (= cp are defined as in PCFOL=.
Again, for the proof of the satisfaction condition we refer to [Mos02].

40 Chapter 3 C a s l

Refinement based on model class inclusion

The standard development paradigm of algebraic specification [EK99] postulates that de­
velopment begins with a formal requirement specification Dq - extracted from a software
project's informal specification. Such specification fixes only expected properties but ide­
ally says nothing about implementation issues. This is to be followed by a number of refine­
ment steps that fix more and more details of the design until specification D„ is obtained.
Dn is detailed enough that its conversion into a program P is relatively straightforward:

Do D i ^ Dn

In the context of algebraic specification, [EK99] provides an excellent survey on different
refinement approaches. In the following paragraph we summarize the main concept high­
lighted in the survey.

Refinement and Implementation described in [EK99]. Let D] and D2 be two specifica­
tions. A refinement of Di by D2 is a 5-tuple (D, e, cr, k, a), where:

• D is the intermediate specification,

• € : D2 —► D is an enrichment,

• a : £(D i) —» 21(D) is a signature morphism,

• k : Mod(D2) —»■ Mod(D) is a constructor,

• a. : Mod(Di) —> Mod(E(Dj)) is an abstractor.

A refinement of a specification Di into a specification D2 consists of a constructive part and
an abstraction part. The constructive part enriches D2 to D such that we find the signature
of D] in D immediately or after some renaming. The abstraction part states which £(D i)-
models are acceptable as realizations of any Di -model.

A constructor k is a mapping from D2-models to D-model classes. An abstractor a is a
mapping from D] models to £(D i) models, that has to satisfy the reflexivity and transitiv­
ity conditions:

• A £ a(A) for all A £ Mod(Di)

• A\ £ &(Ai) and A2 £ a (A3) => A\ £ oc{Af), for all A\ £ M od(£(Di)) and A2,A3 £
Mod(D!)

Intuitively the enrichment e brings all the syntactic features that are needed in the refined
specification D2 . However, if in Di the needed signature is already specified, we can as­
sume Di is the intermediate specification D. Constructor and abstractor relate the models
of D, Di and Di.

A refinement is said to be correct if it is consistent and complete :

3.3 Refinement based on model class inclusion 41

(consistent) 7c(Mod(D2)) \aQ fl(Mod(Di))
(complete) x:(Mod(D2)) \a Doc(A) / 0 for every A G Mod(Di)

Intuitively a correct refinement step relates possible and acceptable representations in a
suitable way. A consistent refinement means that every possible representation is accept­
able, and a complete refinement requires that every algebra of the refined specification
(implemented specification) is realized by the algebra of the specification to be refined
(implementing specification), up to abstraction.

In the literature one finds a vast number of implementation approaches: [Hoa76], [GTW78],
[EKP80], [Ehr82] and [ST97]. Mossakowski et.al. in [MST04] present a simple refinement
language for Casl.

The primary use of specifications is to describe programs, nevertheless Casl abstracts
away from all details of programming languages and programming paradigms. This is
common with most work on algebraic specification. Aspinall et.al. in [AS02] studies the re­
lationship between Casl and programming languages. The connection with programs is
indirect, via the use of partial first-order structures or similar mathematical models of pro­
gram behavior. Let E(P) be the Casl signature of a program P, and let [Pj G A/g(E(P))
be the partial first-order structure of the program P, i.e., the semantical denotation of P.
Then P is regarded as satisfying a specification Sp if E(Sp) = E(P) and |PJ G [Sp]] where
E(Sp) and [[Sp]] C Alg(L(Sp)) are given by the semantics of CASL.

The simplest form of refinement is just model class inclusion. In the following we give some
definitions and examples for refinement based on model class inclusion.

D efinition 3.3.1 (Model class inclusion) Given a signature E, and two model classes
C] and C2. We say that C\ refines to C2, written as C\ ^ C2 if and only if C2 C C\, for
Ci,C2 CM od(E).

Example 3.3.2 As a first example we consider the refinement of the Monoid specifica­
tion to the specification of a commutative monoid.

spec Com mMonoid =
sort Element
ops n : Element; Element x Element —> Element;
axioms

vars x ,y ,z : Element
. n@x = x %(left unit)%
. x@n = x %(right unit)%
. (x@y)@z = x@(y@z) %(assoc)%
. (x@y) = (y@x) %(comm)%

end

Let Cm and of Ccm be model classes of M ono id and Com m M onoid respectively, we
show that Cm ^ C cm • This trivially holds as every model of C cm is a model of Cm-

42 Chapter 3 C a s l

The notion of model class inclusion over the same signature is not enough to capture
realistic refinement steps. For instance, let us consider the specification of a Ring.

spec R ing =
sort R
ops 1 : R; 0 : R ; + : R x R -> R ; * : R x R —» R
axioms

vars x, y, z : R
. l * x = x %(leftunit 1)%
. x *1 = x %(right unit 1)%
. (x * y) * z = x * (y * z) %(assoc)%
. 0 + x = x %(left unit 0)%
. x + 0 = x %(right unit 0)%
• (* + y) + 2 — x + (y + z) %(assoc2)%
. x + y = y + x %(comm)%
. x * (y + z) = (x * y) + (x * z) %(distribl)%
. (x + y) * z = (x * z) + (y * z) %(distrib2)%

end

Very rarely in the process of program development does the user work with just a single
signature: operations and sorts of data are renamed, added and hidden as the need arises.
This is captured by the signature morphism. A signature morphism a : E —» E' maps the
sorts and operations of E to those in E'. This results in a translation of any E-equation (p to
a E'-equation cr(<p), and on semantic level, a translation of any E'-algebra A' G M od(E')
to its reducts A' \aC Mod(E).

D e f in it io n 3.3.3 Let a : E —> E' be a signature morphism. Let C\ and C2 , be model classes
o/E and E' respectively. A refinement based on model class inclusion with change of signature is
defined as follows:

Ci C2

if and only z/C2 \a Q C-\,for C\ C Mod(E) and C2 C Mod(E').

Example 3.3.4 Let Cm,Cr be the model classes of Monoid and Ring respectively. We
show that Cm Cr, where a : E(M on o id) —* E(R in g) is a signature morphism such
that

a(Elem) := R cr{@) := * a(n) := 1.

Let A £ C r , then:
A |= \ /x ,y ,z : R. ((x * y) *z) = (x * (y * z))
A | = V x : R . x * l = x
A \= y x : R. l * x = x.

We first consider the assoc axiom. This holds by definition if and only if Vv : X —> A:
v lb ((* * y) * z) = {x * (y * z)). Here, v is a total variable evaluation and X = {x : R,y :

3.3 Refinement based on model class inclusion 43

R,z : R} is a variable system. This is the case if and only if v#((x * y) * z) = v#(x * (y * z)).
For the left hand side we compute:

i/#((:r * y) * z) = A(*)(v#(x * y), v#(z))
= i t (.) (A (*) (v * (*) / v*(y)) ,v*(z))

Same computation is done also for the left hand side of the left unit axiom:

v # (l * x) = A(*)(v # (l) , v # (x))

and right unit axiom:
v#(x*l) = A(*)(v#(;r), v#(l))

= y4(*)(l/#(*),/l(l))
Similar result holds also for the right hand side of each axioms. Now let B 6 Cm then:

B 1= Vx,y,z : Element. ((x@y)@z) = (x@(y@z))
B \=\/x : Element. x@n = x
B |= V x : Element. n@x = x.

is required to hold for all y : {x : Element,y : Element, z : Element} —» B.

We have to show that A |p6 Cm- Let a : {x,y,z} —> A \a be a variable evaluation. Corre­
sponding to o l we define a variable evaluation ft : {x : R,y : R,z : R} —► A as follows:

P(x) := ol(x) p (y) := oc{y) p(z) := oc(z)

Consider (A\a (@))((A \a (@))(a(x : Element), a(y : Element), oc(z : Element))), it follows:

(>4 (cr(@)) ((>4 (cr) (@)) (a (jc : a (Element)), o l (y : cr (Element))), o l (z : a (Element)))
= A(*)(y4(*)(a(x : a (Element)), o l (y : a (Element))), a (z : a (Element)))
= : R),/% : R)), f}(z : R)).

Same evaluation holds also for the left unit and right unit axioms:

(A \a (@))((A 1̂ (n)),a(x : Element))
= A(cr(@))(A(cr(n)),oc(x : a (Element)))
= A(*) (A(l) , p (x : R))

Again similar result holds also for the right hand side of each axioms. Hence, we have
that Cm Cr , i.e., M o n o id Ring. ■

3.3.1 H e ts - tool for C a s l

The Heterogeneous Tool Set (Hets)[MML07] is a parsing, static analysis and proof man­
agement tool for various specification languages centered around Casl. H ets is an inter­
active system with a graphical user interface and also facility to be called on a command
line.

44 Chapter 3 C a s l

H ets is a system which keeps track of open proof goals (which are caused by theorems
which have not yet been proven) and closed proof goals (which are caused by theorems
which have been proven or disproven). H ets reads a specification text possibly including
open proof goals, parses it, and then performs static analysis on it. After this, a graph
of the structure of the specification is displayed in its user interface. Within this graph,
the user can see which goals are open and which are closed. The user can also perform
various operations on each node in the graph, for instance requesting the theory of such a
node, H ets will then display the relevant information.

HETS can interface with different theorem provers, including Isabelle [NPW02] and
Spass [spa]. H ets can call theorem provers with proof obligations and axioms given by
specifications in order to discharge open proof goals. This allows the user to pass control
over to a theorem prover to discharge open proof obligations.

(CHAPTER . . . 4)

P rocesses a n d D ata: C s p -C a sl

Contents
4.1 Csp-Casl - fundamental c o n c e p ts 45
4.2 Csp-Casl - semantical construction 48

T he specification language Csp-Casl integrates data specification in Casl and pro­
cess specification in Csp. Following [Rog06], we present the language's main fea­
tures and its fundamental concepts. In Section 4.2 we describe the semantical con­

cepts of CSP-CASL and a simple refinement notion. As a running example we use a binary
calculator (taken from [KRS07]), to illustrate the various concepts.

4.1 Csp-Casl - fundamental concepts

Csp-Casl [Rog06] is a specification language which combines processes written in CSP
with the specification of data types in Casl [Mos04]. The general idea is to describe reactive
systems in the form of processes based on CSP operators, where the communications of
these processes are the values of data types, which are loosely specified in Casl. All stan­
dard CSP operators are available, such as multiple prefix, the various parallel operators
and operators for non-deterministic choice, communication over channels (see Chapter 2).
Concerning Casl features, the full language is available to specify data types, namely
many-sorted first order logic with sort-generation constraints, partiality, and sub-sorting.
Furthermore, the various Casl structuring constructs are included, where the structured
free construct adds the possibility to specify data types with initial semantics (see Chap­
ter 3).

Syntactically, a Csp-Casl specification with name Sp consists of a data part D, which is
a structured Casl specification, an (optional) channel part Ch to declare channels, which
are typed according to the data part, and a process part P written in Csp.

ccspec Sp = data D channel Ch process P end

45

46 Chapter 4 C s p - C a s l

In the process part P, the Casl terms are used as communications - Casl sorts denote
sets of communications, relational renaming is described by a binary Casl predicate, and
the Csp conditional construct uses Casl formulae as conditions.

In the process part, recursive process definitions may be written using systems of process
equations, binding processes to process names. Processes can also be parameterised with
variables typed by Casl sorts.

The channel part Ch is just a syntactic encoding over the data part. A Csp-Casl specifica­
tion with channel declaration can be translated into one without a channel declaration as
presented in Figure 4.1.

..----------- N syntactic encoding ^ - - x
[(DrCKPY; --------------------- - ------► [(D then DCh/P ' \

Figure 4.1: Channel declaration - syntactic encoding.

Here, Dch is a data specification fragment, which monomorphically extends the data part
D to a CASL specification D then Dch• This construction neither adds new diversity nor
removes interpretation of the data part. The process P is rewritten to a form P' without
channels.

The definition of Csp-Casl is generic in the choice of a specific Csp semantics. For ex­
ample, all denotational Csp models mentioned in Chapter 2, are possible parameters. In
Csp-Casl the data type (specified in C asl) not only provides the values of the alphabet
of communication, but they also provide certain test functions. For instance, as reported
in [Rog06], in Csp-Casl the following tests are possible:

• Test on equality for arbitrary CASL terms - Can two communications synchronize?

• Test on membership for a Casl term concerning a Casl sort - Does a communica­
tion belong to a certain subset of the alphabet of communications?

• Test whether a binary predicate holds between two Casl terms - Are the terms in a
renaming relation?

• Satisfaction of a Casl first order formula - Is the formula of the conditional construct
true?

Tool support for Csp-Casl consists of: A parser and static analyzer described in [Gim08];
A prover for process and data refinement, described in [OIR09].

We now give a concrete instance of Csp-Casl specification syntax through an example of
a binary calculator specification. We first give a note on syntax in Csp-Casl. The syntax of
CSP used in Csp-Casl, is slightly different than the one presented in Chapter 2. Figure 4.2
illustrates the different syntax of the Csp operators. This change of concrete syntax is
required to resolve overlaps in the syntax of CSP and Casl.

4.1 C s p -C a s l -fundam ental concepts 47

Process Type Im plem ented in C s p - C a s l C s p syntax
External prefix choice ?x :: s P \x : s —> P
Internal prefix choice Ix :: s —> P ?x : s ^ P

Channel send c'.t -* P c'.x -> P
C hannel nondeterm inistic send c\x :: s —> P clx : s —> P

C hannel nondeterm inistic receive c?x :: s —* P c?x : s —> P

Figure 4.2: C s p notation in C s p - C a s l - c.f. [Gim08].

Example 4.1.1 O ur binary calculator (Figure 4.3) has tw o in p u t bu ttons and can com ­
p u te the addition function only. In the end, the im plem ented b inary calculator has the
following characteristics: w henever one of the bu ttons is p ressed , the in teg ra ted control
circuit d isplays the corresponding digit on the display. After pressing a second bu tton , the
corresponding add ition result is d isp layed and the calculator re tu rn s to its initial state.

Oo
Figure 4.3: Binary Calculator.

In a first high-level specification w e abstract from the control flow and just specify the
interface of the system .

ccspec B C a l c O =
data sort Number

ops 0, 1 : Number;
 : Number x Number —*? Number

channels Button : Number;
Display : Number

process P0 : Button, Display ;
P0 = Button ? x :: Number —>P0 n Display ! y :: Number —>P0

end

In this specification, 0 and 1 are constan ts of sort Number, and + is a partia l function from
pairs of type Number to Number. In the channel part, the statem ent Buttoiv.Number and
Display'.Number declares tw o channels Button and Display of sort Number. In the process
part, w e first declare the process nam e P0, w hich is typed over the events that it co m m u ­
nicates.

The calculator receives values of type Number on the channel Button, w hile it sends val­
ues of type Number over the channel Display. The process B uttonlx :: Number —> Pq is

48 Chapter 4 C s p - C a s l

willing to receive any value of type Number over the channel Button, stores this value of
type Number in x, and behaves like PO. This corresponds to a user input. The process
Display\y —» PO chooses an arbitrary value y of type Number, sends this value over the
channel Display, and behaves like PO. This corresponds to the computed output of the
calculator. The process PO as a whole repeatedly chooses one of the two above processes
in a non-deterministic way, which corresponds to an arbitrary interleaving of inputs and
outputs.

In the next section, we will present a more refined specification of BCalcO. ■

4.2 Csp-Casl - semantical construction

In this section we describe the semantical construction of Csp-Casl. We illustrate how the
alphabet of communication is constructed and a simple refinement notion of Csp-Casl
specification presented in [Rog06]. As a consequence of Casl's loose semantics, semanti­
cally, a Csp-Casl specification Sp = (D, P) is a family of process denotations for a Csp
process P, where each model of the data part D gives rise to one process denotation.

In Chapter 3 we have presented different institutions for Casl. Csp-Casl as described in
[Rog06], requires an additional institution: the institution FinCommSubPFOLr.

The definition of the institution FinCommSubPFOL= provides the data-logic of the process
part of a Csp-Casl specification. It is a specialisation of the institution SubPCFOLz=: Only
sub-sorted-signatures with finitely many sorts are allowed. Also, the notion of a model
is changed: A data-logic FL-model M is the strict extension M := ext(C) of an ordinary
many-sorted model C over E = (S, TF,PF,P) which satisfies in PCFOL= the set of axioms
/(E). For the carrier sets, this extension is defined as: M s = ext(Cs) = Cs U {_L} for all
s £ S, where _L ^ Cs for all s £ S. Given a model C, its extension ext(C) = M is uniquely
determined. Forgetting the strict extension results again in C.

Alphabet construction The purpose of the alphabet construction is to transform a Casl
model into a set for use as an alphabet of communication in the process algebra CSP.

Let Sp = (D,P) be a Csp-Casl specification, and let model M over the data D signature
E = (S,TF,PF,P, ^) , with local top elements, i.e., for all u,u',s £ S the following holds:
if u,u' ^ s then there exists t £ S with t > u,u'. The alphabet of communications is
constructed as follows: Relatively to a model M, the alphabet

(*)

is constructed by disjointly uniting all carrier sets extended by a bottom element _L, but
identifying carriers along subsort injections. The latter is captured by the equivalence
relation ~ m- The relation is an equivalence relation for any model M. is defined
as follows:

(s,x) (s',*')

4.2 C s p - C a s l - semantical construction 49

if and only if either

• x = x' = Jl and

• there exists u e S such that s < u and s' < u,

or

• x 7 ̂ _L, x' _L,

• there exists u G S such that s < u and s' < u, and

• for all u G S with s < u and s' < u the following holds:

for s, s' G S,x G MS/x’ G Ms/.

The semantics of Csp-Casl is defined in a two-step approach, see Figure 4.4.

Sp - (D, Ch, P)- - - (Sp ' - (D then Ch, P')

Let Sp = (D,Ch,P) be a Csp-Casl specification, i.e., D is a Casl specification, Ch is the
(optional) channel declaration and P is a Csp process.

We first obtain a Csp-Casl specification Sp' = (D ',P '), without the channel declaration;
here D' = (D then Oz). In the first step, the evaluation according to CASL, we translate D'
into a Mod(D')-indexed family of CSP processes:

Here, we define for each model M of D' a Csp process P"(Alph(f$(M))) over the alphabet
of communication Alph(ft(M)) induced by M. This alphabet is constructed by first obtain­
ing a model jS(M), in which partial functions of M are totalized. Then, we use the alphabet
construction Alph as described in (*).

We now present the evaluation of Casl terms, sorts, formulae, and relations occurring
in P". In order to do this, an evaluation function | J is defined, which takes a Csp-
Casl process specification and an evaluation v : X —> /3(M) and yields a Csp process

Evaluation according to C a s l

▼

Csp semantics
^M)M eM od (D)j

Figure 4.4: Csp-Casl 2-step semantics.

(.P"{Alph (P(M)))) m 6 Mod (D ') •

50 Chapter 4 C s p - C a s l

[SKiP]v = SKIP
[STOP]„ = STOP
IDIV 1„ = DIV
[f - P]v = p]v -* [P]v
[?* :: s -> P]„ = ?x:: [s]v - . IP](Az.v)
I'.x :: s -» P]„ = \x :: [s]]v IP1 (A2.v)
|[P?Qlv = iPle § IQlo
[P □ Qlv = IPIv D I Q I v
[p n Q]„ = IPJv n [Q]|„
iPIMIQlv = IPJv I [[s]v] I [Q]i/
IP |[Sll«2]| Q1 = IPJv II [silv | [s2lv] | IQJv
IP II Q]v = [PlvHIQl,
IP III Q]v = IPJv III [Q]v
IP \ S)v = [Pl.ANv
I P[[P]]]v — IPLIlWv]]
[if <p then P else Q] = if Iflv then [P[v else [Q]

Figure 4.5: Evaluation according to C a sl

over Alph(f$(M)). Here, the evaluations v deal with CSP binding. Figure 4.5 illustrates
definition of the variable evaluations v necessary to model the CSP binding. In Figure 4.5,
the clause for prefix choice turns the current environment v into a function (A z.v) which
takes a substitution as its argument:

II ! / \ Z.V I /* / -* -] • II— 1 V [fl/x]

Here, v[a/x]{y) \= v{y) for y ^ x and v[a/x](x) := a. Substitutions are the way how the
various CSP semantics model the binding concept of the prefix choice operator.

In the evaluation according to C s p , we apply point-wise a denotational C sp semantics.
This translates a process P"(Alph({$(M))) into its denotation in the semantic domain of
the chosen CSP semantics. We will indicate as IP^q- . ^ ^ m) to denote the process notation
with empty evaluation 0 , i.e., P has no free variables.

As an example of C s p -C a sl semantical construction, we revisit the example of the binary
calculator (Example 4.1.1).

Ex a m p l e 4 .2 .1 (S e m a n t ic a l c o n s t r u c t i o n) We consider the specification of the bi­
nary calculator presented in the last section. Here, we construct the semantical model of
BC a l c O. Let BC a l c Oc be the equivalent of B C a l c O without the channel declaration, i.e.,
Sp = BC a l c O and Sp' = BC a l c Oc in Figure 4.4.

4.2 C s p - C a s l - semantical construction 51

ccspec B C a l c Oc =
data sort Number

ops 0,1 : Number;
 + : Number x Number —»? Number

then free type Button ::= butt(n : Number)
free type Display ::= disp(m : Number)

process POc : Button, Display;
POc = (? * : : Button —> POc) n (! y :: Display —> POc)

end

The data signature of BC a l c Oc , which is a subsorted C a sl signature, is composed of:

L (B C a l c Oc) = ({Number, Button, Display}, {0,l,butt,disp,n,m}, { + } , 0 , 0)

Let A4 be a C a sl m od el such that:

M(Number) = {H,L} M(O) = L M(1) = H
M(Button) = {b.H,b.L} M(Display) = {d.H,d.L}

Here, M(butt)(x) = b.x and M(disp)(x) = d.x where x e {H,L}. We totalize the m odelM
by adding the bottom element for each sort:

^(M)(Number) = M(Number) U {-̂ -Number}
P(M)(Button) = M(Button) U {±Button}
ft(M)(Display) = M(Display) U {±Display]

The C sp -C a sl semantics construct the alphabet of communication. Here, as there is no
subsorting, the equivalence relation is the identity relation. Thus, the alphabet of
communication for the process POc is:

Alph(ft(M)) = ft(M)(Number) U ft(M)(Button) U ft(M)(Display)
= {H, L, _LNumber} C {b.H,b.h, J-Button} C {d.H, d.L, J-Display}

We now construct the process denotation in the traces model:

traces([POcJm) = {tr \ tr < (bud)*, b e M(ButtOn) and d e M(Display)}

Here, (b U d)* is the regular expression, using /U/ for choice between two regular lan­
guages and * for Kleene's star operator. ■

4.2.1 C s p -C a s l s im p le r e f i n e m e n t n o t io n

As described in the previous section, for a denotational Csp model with domain V, the
semantic domain of C sp-C asl specification Sp = (D,P) consists of the Mod(D)-indexed
families of process denotations £ D, i.e.,

(d - M)MeMod(D) •

52 Chapter 4 C s p - C a s l

A refinement notion for Csp-Casl is defined over these elements. Csp-Casl refinement
is based on refinements developed in the context of the single languages Csp and Casl.
Intuitively, a refinement step, which we write here as reduces the number of pos­
sible implementations. Concerning data, this means a reduced model class, concerning
processes this mean less non-deterministic choice:

D e f in it io n 4 .2 .2 For families (divi)MeMod(D) and of process denotations we
write

Here, Mod(D') C Mod(D) denotes inclusion of model classes over the same signature,
and Cp is the refinement notion in the chosen Csp model V. In the traces model T , as
described in Chapter 2, we have P Q r P' ^ traces(Pf) C traces(P), where traces(P) and

refines to P' is written as P Cp P', i.e., the more specific process is on the right-hand side of
the symbol. The definitions of Csp refinements for V e { T , N ,T] , c.f. Chapter 2, which
are all based on set inclusion, yield that C sp-C asl refinement is a preorder.

Given C sp-C asl specifications Sp = (D,P) and Sp' = (D ',P '), by abuse of notation we

if the above refinement notion holds for the denotations of Sp and Sp', respectively.

On the syntactic level of specification text, we additionally define the notions of data re­
finement and process refinement in order to characterize situations, where one specifica­
tion part remains constant. In a data refinement, only the data part changes:

Here, £(D) denotes the CASL signature of D. As in a data refinement the process part
remains the same, there is no need to annotate data refinement with a specific process
model: all CSP refinements notions are reflexive. In a process refinement, the data part is
constant:

Here, [\x> is the evaluation according to the CSP denotational semantics V C {T , T , J\f],
and 0 : 0 —> j6 (M) is the empty evaluation into the model /3(M).

(d] V l) M e M o d (D) (^M')M'GMod(D')

Mod(D') C Mod(D) A VM' e Mod(D') : dM> Cv d'A

traces(P') are prefixed closed sets of traces. Here we follow the Csp convention, where P

also write
Sp Sp'

1.E(D) = £ (D ') ,
2. M od(D') C Mod(D)

for all M G Mod(D) :
llPi<Z):<Z>-*p(M)lv Qv IP3!®:®—

Clearly, both these refinements are special forms of Csp-Casl refinement in general.

4.2 C s p - C a s l - semantical construction 53

Le m m a 4 .2 .3 Let Sp = (D,P), Sp-d = (D ',P), Sp-p = (D',P') be C s p - C a s l specifications.
Then, for all C sp models V C {T , T , N) it holds:

1. S p d̂ a S p u d implies S p S p u d , and

2. Sp Sp-p implies Sp Sp~p.

P r o o f . Let (dM)MeMod{D), « f W M o d (D ') and (^) MeMod(D) be the families of process
denotations of Sp, Spud and Sp-p respectively. We prove the implication in (1) and (2).

1. We need to show that:

(^m) m gMod(D) ^ D (^M')M'eMod(D')

This holds if Mod(D') C Mod(D) and VM' € Mod(D').dM1 Qv d'M,. The data re­
finement: (dM)MeMod(D) (^M/)M'eMod(D/) establishes the inclusion of the model
classes, i.e., Mod(D') C Mod(D), where L(D) = E(D'). For the process refinement
we have: VM' G Mod(D'). d'M =x> d'M,. Hence, (dM)MeMod(D) (^ M 'W c M o d p ')/
i.e., Sp ^x> Sp'.

2. Again, here we need to show that:

(^M)MeMod(D) ^ V Mod(D)

Here, we work with the same model classes Mod(D). From the process refinement
i d M) M e M o d (D) ^ v (^M)MeMod(D) we have: VM G Mod(D). d M Q v d Hence,
{ d M) M e M o d (D) ^ V i d M ')m ;eMod(D')' i e ' $ P $ V ' ■

Ex a m p l e 4 .2 .4 In this example, we show a refinement of the binary calculator specified
in Example 4.1.1. A first refinement, could require that the pressing of buttons and the
display of digits strictly alternate 1.

ccspec BCalcI =
data sort Number

ops 0,1 : Number;
 + : Number x Number —»? Number

channels Button : Number;
Display: Number

process PI : Button, Display;
PI = Button ? x :: Number —>Display ! y :: Number —>PI

end

1In the process part of B C a lc I , we write down explicitly the sort type (N um ber) in the channel nondeter­
ministic receive (But ton? x :: Number). This is a design decision taken in the development of the parser and
static analyzer of CSP-CASL [Gim08]. However, as this case shows, typing can be unique and the current
design of CSP-CASL forces the user to give superfluous type information.

54 Chapter 4 C s p - C a s l

We show by fixed point induction that BCalcO BCalcI.

Button?x :: Number —> PO n Displayly :: Number —► PO)

1. = jr (Buttonlx :: Number —*• ((Button?x :: Number —» PO)
n (Displayly :: Number —> PO)) n (Displatly :: Number —»• PO)

2. Cjf Button?x :: Number —> ((Button?x :: Number —> PO)
n (Displayly :: Number —» PO))

3. Button?x :: Number —> Displayly :: Number —»■ PO

The proofs use standard Csp algebraic step laws: In step 1, we unwind the recursion at the
first occurrence of PO. In step 2, we leave out the second branch of the last internal choice,
i.e., P n Q Cjr P. Finally, in step 3, we select the second branch of the internal choice.

Again, we refine furthermore the specification BCalcI. Here, we require that the first
displayed digit is echoing the input, and the second displays the result of the computation.

ccspec BCalc2 =
data sort Number

ops 0,1 : Number;
 + : Number x Number —»? Number

channels Button : Number;
Display : Number

process P2 : Button, Display;
P2 = Button ? x :: Number —> Display ! y :: Number

—> Button ? y :: Number —> Display I (x + y) P2
end

We show that BCa lcI BCalc2.

Button?x :: Number —» Displayly :: Number —* PI

1. = jr Button?x :: Number —> Displayly :: Number —> Button?x' :: Number
—► Displayly :: Number —> PI

2. Cjf Button?x :: Number —> Displaylx Button?x' :: Number
—> Displaylx' —» PI

3. Button?x :: Number —» Displaylx —> Button?y :: Number
—► Displayl(x + y) —> PI

Again, in step 1, we unwind the recursion of PI. As PI is independent of x we can rename
x into In step 2, choosing the specific values x and (x + *') for the two occurrences of

4.2 C s p - C a s l - semantical construction 55

(.Displayly :: Number) is a refinement. Finally, renaming x' into y preserves the semantics
of the process.

So far we have refined the process part, what about the data part? For instance in P2 it
is still open the value of x + y shall be. We haven't specified the arithmetic properties of
addition. In Csp-Casl, we express this functionality by adding some suitable axioms.

ccspec BCalc3 =
data sort Number

ops 0,1 : Number;
 + : Number x Number —>? Number

axioms
• 0 + 0 = 0
• 0 + 1 = 1
• 1 + 0 = 1

channels Button : Number,
Display: Number

process P3 : Button, Display;
P3 = Button ? x :: Number —>Display ! y :: Number

—» Button ? y :: Number —> Display ! (x + y) —>• P3
end

Here, we have that BCALC2 d̂ a BCALC3. Adding axioms to a signature without chang­
ing the process part always results in a data refinement.
I.e., E(BCalc2Data) = £(BCalc3Data), where BCalc2Data and BCalc3Data is
the data part of BCalc3 and BCALC2 respectively, then we have that
Mod(BCALC3DATA) C Mod(BCALC2DATA). BCALC3 has models which satisfy the ax­
ioms 0 + 0 = 0, 1 + 0 = 1 , 1 + 0 = 0 and is undefined for 1 + 1 . As the axioms stated in
BCalc3 hold, e.g., for the natural numbers, the data part is consistent. ■

Often we study a more elaborated theory of Csp-Casl, which is called Multi-process Csp-
Casl. In such theory we allow the definition of several processes in the Csp part. In the
following subsection we illustrate how the Csp-Casl original theory as presented in this
chapter differs from Multi-process Csp-Casl.

4.2.2 Multi-Process Csp-Casl

In Csp-Casl, as designed in [Rog06], one specification denotes one unnamed system, see
e.g., specification CspCaslSpec in Figure 4.6.

The semantics of this specification is given as one family of process denotations. Over
the Csp traces model T, this family has the following structure: In C a s l models M with
M \= a = b, the terms a and b can synchronize, and we obtain the denotation {(), (M(a))}.
Here, M(a) is the communication corresponding to the interpretation of the constant a

56 Chapter 4 C s p -C a s l

ccspec CspCaslSpec =
data

sort s
ops a,b : s

process

logic CspCASL
ccspec M ultiCspCaslSpec =

data
sort s
ops a,b : s

let P(x : s) =x —* STOP process

end

Q = b ^ STOP
in P(a) || Q

P(s) : s; Q : s; System : s
p(x) =x -* STOP
Q =b STOP
System =P(a) || Q

end

Figure 4.6: Introduction of process names in Multi-process Csp-Casl.

in the model M. It is this point, where Csp-Casl differs from the pure CSP approach:
Csp-Casl interprets terms relatively to a model, pure Csp works with communications
without using an interpretation. In CASL models N with N f= ~̂ a = b, the terms a and
b cannot synchronize, thus the process part is in a deadlock situation and we obtain the
denotation {()}. Overall, the semantics of the CspCaslSpec is

Here, DcspCaslSpec denotes the data part of CspCaslSpec . Clearly, the process names P
and Q are only used to determine how the system behaves, they do not appear on the
semantical level.

In contrast to this, the specification MultiCspCaslSpec binds denotations to process
names. Rather than representing one system, it provides a collection of components. The
specification MultiCspCaslSpec in Fig. 4.6, is a 'semantically equivalent' version to Csp-
CaslSpec .

Its models are pairs (M ,/), where M is a Casl model and / is a 'process model'. Such a
process model J maps process names to process denotations over the alphabet of commu­
nications derived from M.

Over the traces model T , we obtain as semantics for M ultiCspCasl: For a CASL model
M with M |= a = b, the process model / is the map

Here, /3(M) denotes the extension of the Casl model M by bottom elements, and

j8 (M)(s) is the set of communications that is obtained from the carrier set of s in
Note, that this carrier set includes an element _L representing undefinedness, which leads

{^£M od(D csi> C /jk5L̂ |>E:C‘) I — b}

U ({ 0 }) n €{XeMod(DCsl,cASLs,.1c) I •

](Q) = {(),{M(fc))}
/ [System) = {{)}

4.2 C s p - C a s l - semantical construction 57

to a valid communication. For a Casl model N with N (= ~̂ a — b, the process model I is
the map

I(P (S)) = { () } U { < f l) , | a e f l N X i) }

/(Q) = { () , m b)) }
l (System) = {(>,<N(«))}

Note that the type of the functions I and / depends on the models M and N, respectively:
the process P takes a value of type s as a parameter; thus, the carrier set of the sort s deter­
mines the typing of the process interpretation. The overall model class of MultiCspCasl
is finally

{(A4,/) | M G Mod(DMuLTiCspCASLSPEc)/M |= a = b}
U {(N,f) | N G Mod(DjyiuLTiCspCASLSPEc) /N |= ~• a = b}.

The specification MultiCspCaslSpec simply adds process name information: hiding the
information concerning the system's components, in our example the processes P and Q,
leads back to the original semantics of the specification CspCaslSpec .

In practice, it often comes handy to work with process names. Semantically, the treatment
of process names is a straightforward extension. However, in order to avoid notational
complexity, we develop our theoretical results using the original setting.

(CHAPTER . . . 5)

R e la ted a p p ro a c h e s

Contents
5.1 Combining processes and da ta specification 59
5.2 System developm ent notions 62
5.3 Specification b a sed testin g 63

THE work presented in this thesis is related to various general research areas, includ­
ing the combination of process and data specification, system development no­
tions using different formal specification languages as well as specification based

testing. This chapter contains references to approaches which define the context of this
thesis.

5.1 Combining processes and data specification

Combination of process algebra and algebraic specification to form new formalisms have
been studied since the early 80's. Astesiano et. al in [ABR99] presents a survey of method­
ologies of how algebraic specification can be used to describe concurrent systems. They
distinguish four kinds of approaches:

Process algebra Use algebraic specification at the metalevel, for instance, in the defini­
tion or in the use of specification languages. A specification will then involve def­
inition of one or more expressions of the language, representing one or more sys­
tems. Examples of such approach are for instance: ACP [BK84], C cs [Mil89], and
Csp [Hoa85, Ros98].

Process calculi plus algebraic specifications of static data types A particular specification
language for concurrent systems is complemented with the possibility of specifying
abstract data types using algebraic specification. Examples of such approach are Lo­
tos [IS089] (and later became E-Lotos [JTC01]) and Psf [MV90]. We will describe
LOTOS later on in this section.

59

60 Chapter 5 Related approaches

P sf [MV90] which stands for Process Specification Formalism, is a specification lan­
guage which combines process description based on ACP and algebraic specification
of data based on Algebric Specification Formalism [BHK89] (A sf). A P sf specifica­
tion consists of data modules and process modules. Data modules uses algebraic
specification with initial semantics and equational logic with total algebra. Process
modules are just ACP specifications of processes. The atomic actions in the process
part may have as components some values of the specified data types. An extensive
toolset has been developed for PSF (see, e.g., [MV92, PSF]).

Algebraic specification of dynamic-data types Use of particular algebraic specifications
that have "dynamic sorts". Those are sorts whose elements correspond to concurrent
systems. In this approach there is only one "algebraic model" (for instance a first-
order structure or algebra) in which some elements represent concurrent systems.
As an example of this technique, the authors presents an approach based on label
transition systems called Label Transition Logic (Ltl)[AR01].

Algebraic specification of dynamic data-types In this approach (abstract) data types are
specified, which dynamically changes with time. Here, different "algebraic" models
corresponds to different states of the system. The specialty of this approach is the
presence of data types which are dynamic. A comprehensive summary of these
approach can be found in [EOOl].

There are several combinations of a process algebra with a state-based formalism; a few
examples are discussed in [Abr03, Sto97, TA97, Fis98, Smi99, TS99, But99, FisOO, MD00]. In
[SAA02a], a formal foundations is presented to make a generic combination of one process
algebra language and one algebraic specification language.

Closely related to C sp -C a sl are the specification languages Lo t o s , ^ C rl and to a certain
extent CIRCUS. In the following, we give a brief description of their main features.

L o to s and E -L otos The Language of Temporal Ordering Specification-l o t o s [IS089,
BSS87, BB88] was the first internationally known (since 1984), algebraic specification
formalism for concurrency. Lo to s is a specification language developed within ISO
(International Standards Organization). Although originally developed for the formal
specification of open distributed systems, and in particular for those related to the
Open Systems Interconnection (OSI) computer network architecture it is applicable
to distributed, concurrent systems in general. Lo t o s is very similar to PSF; in the
sense that it adds algebraic specifications into a language for concurrency. However,
Lo t o s uses A c t-O n e [EM85] instead of A sf in the data part; while on the process
part uses an extension of CCS instead of the process algebra ACP. In some sense PSF
is an improvement of Lo t o s (see a discussion in [MV90]), since it allows more free­
dom in the definition of synchronization mechanism and supports of import/export
of action/processes, thus becoming more flexible for stepwise development.

E-LOTOS [JTC01] (Enhanced Lo to s) is a new version of Lo t o s . This new version
enhances the data part with new built-in data types, and on the process part adds
the interleaving semantics, plus real time and priorities features. Moreover it adds

5.1 Combining processes and data specification 61

modularity of specifications.

Lo to s has been used in several practical applications and comes with an extensive
tool set. E u c a l y p t u s [Gar96], which stands for European/Canadian Lo t o s Protocol
Tool Set, is a tool set developed for LOTOS. The tool comprises among others: a static
analyzer, a simulator, a model generator, a model verifier (detection of deadlock and
livelock), a C-code generator, a model displayer, a trace analyzer and a test case
generator.

As mentioned earlier, in Lo t o s , data are specified using A c t -O n e , which uses equa-
tional specification of data types with initial algebra semantics. For a relation be­
tween C a s l and A c t -O n e we refer to [Mos02], which defines a representation of
the institution underlying A c t-O n e in first order logic with equality, a sub-language
of C a sl (see Chapter 3). Furthermore, Lo t o s uses initial semantics, while C a s l pro­
vides both, initial and loose semantics. A c t-O n e does neither includes sub-sorting
nor partiality.

p C R L [GP95] (micro CRL), where CRL stands for Common Representation Language, it
is a specification language developed to study processes and data. Here, data types
are specified using equational logic with total function. On the process part contains
processes described in the usual process algebraic style, in particular the syntax is
taken from ACP [BK84]. Processes are represented by process terms, which describe
the order in which the actions from a set A may happen. A process term consists of
action names and recursion variables combined by process algebraic operators.

Each pCRL specification determine a labelled transition system, which is defined by
the structural operational semantics of pCRL [GP95]. The labelled transition system
consist of states which are process terms and the edges are labelled with parame-
terised actions. Equivalence relations on the states in labelled transition systems
is established using branching bisimulation [vGW96], which is sound for the proof
theory of p.CRL [GP94].

^ C rl2 is an improved version of p C R L . On the data side, ^ C rl2 contains a pre­
defined higher order data types, A- calculus expressions and various other language
constructs. The p C R L toolset (see h t t p : / / www. cwi . n l / ~mcr 1) supports the anal­
ysis and manipulation of pCRb specifications.

CIRCUS [WC01, WC02] combines data operation specified in Z [WD96] and interaction
specified in CSP, plus a refinement theory [CSW03]. The main motivation behind
the development of such language was the need for a language for refinement which
can describe programs but also capable of specifying high level models and designs.
Programs in CIRCUS are declared as a sequence of paragraphs, which can either be a
Z paragraph, a declaration of channels, a channel set declaration, or a process decla­
ration. The semantics of CIRCUS is based on the Unyfing Theories of Programming
(UTP) [HJ98] .

The declaration of process is composed by its name and its body specification. A pro­
cess may be explicitly defined or composed in terms of other processes. An explicit

62 Chapter 5 Related approaches

process definition contains a sequence of process paragraphs and a distinguished
nameless main action, which defines its behaviors. Process paragraphs include Z
paragraphs and declaration of actions. An action can be a schema, a primitive action
like SKIP, a guarded command, an invocation to another action, or a combination of
these constructs using Csp operators.

There are various approaches of reactive C a sl extensions. The definition of C sp-C a s l ,
like C c s-C a sl [SAA01, SAA02b] or C a sl -C h a r t [RROO], combines C a sl with reactive
systems of a particular kind. All these approaches result in specification frameworks able
to model actual reactive systems. C a sl -Ltl [RACOO] and C o c a sl [MRS03] take a more
fundamental approach: they extend C asl internally. In the case of C a s l -Ltl , the logic
is extended by temporal operators, while C o c a sl dualizes the CASL by co-algebraic con­
structions.

System development notions

Formal development by stepwise refinement is one of the most prominent approaches
in formal program development. In the literature, one finds an amazing number of ap­
proaches, methodological claims and pragmatical claims of stepwise refinement. Here,
we mention some of them and give an overview of system development notions for the
languages presented on the last section e.g., LOTOS, pCRL and CIRCUS.

LOTOS allows the specification of systems at different descriptive levels. The relation­
ships between different LOTOS specification at different level of abstraction is studied by
using a notion of equivalence, proposed in [Par81] and used for a Ccs-like calculus in
[Mil84]. This equivalence, known as observational equivalence, is based on the idea that the
behaviour of a system is determined by the way it interacts with external observers. Ex­
amples of stepwise refinement in Lo to s can be found in [MV91, PS91], while in [DBBS96]
a comparison between Lo t o s and Z refinement notion is investigated.

A refinement notion for CIRCUS is described in [SWC02]. It starts from an abstract speci­
fication, and gradually, by iterations, it yields an implementation. Each iteration decom­
poses one process and typically includes three steps: a simulation that replaces the state
components of the single abstract process with the components of all the distributed pro­
cess to be derived; action refinement [vGGOO] that partitions the concrete state and actions
in such a way that actions from one partition access only its components; and finally, a
process refinement that transforms the partitions in individual processes.

Horizontal development in terms of software product line, has received a great deal of
attention for its potential in fostering reuse of software artifacts across the development
phases. The concept of a software product lines (SPL) was introduced in the late 1990's'
(see e.g., [CW98, JRvdLOO]), and extensively studied subsequently in [CN01, PBvdL05],
with annual conferences and a huge body of engineering literature in [SPLb, SPLa].

5.3 Specification based testing 63

Specification based testing

Traditionally formal methods and software testing have been seen as rivals. That is, they
largely failed to inform one another and there was very little interaction between the
two communities. In recent years, however, a new consensus has developed. Under
this consensus, these approaches are seen as complementary [BBC+02, Hoa96]. A gen­
eral overview of using formal specification to support software testing can be found in
[HBB+09]. In this article, the authors explore the many ways in which the presence of a
formal specification can support testing.

The work that will be presented in Chapter 9 on specification based testing for C sp-C a sl
builds on previous work, mainly in the area of Lo t o s , see e.g., [IS089, GJ99, BHT97]. A
first formal treatment of testing was given by M-C. Gaudel [Gau95]. In [Mac99, MacOO], P.
Machado presents the work of testing from structured algebraic specification. The main
issue investigated here is the so-called oracle problem, that is, whether a decision proce­
dure can be defined for interpreting the results of tests according to a formal specification.
In the context of testing from algebraic specification, this consists in checking whether
specification axioms are satisfied by programs.

Many research activities have been directed at finding appropriate theories and algo­
rithms to derive test cases from formal specifications such that certain correctness proper­
ties can be guaranteed if the system under test passes all test cases of a test suite. Early
attempts were contributes by E. Brinksma [Bri88] using the specification language LOTOS.
Other approaches to generate test data have been investigated by J. Tretmans [Tre92]. The
latter, studies the conformance testing of asynchronous communicating systems, based on
general labelled transition systems. A general overview of approaches for the testing of
transition systems including an annotated bibliography can be found in E. Brinksma and
J. Tretmans [BT01].

Automatic generation of test data from formal specifications, is not the topic of this thesis;
however, in the literature, one finds a large body of approaches, see e.g., [BJK+05, UL06,
BBP96, Bin99].

In [CG07] M-C. Gaudel and A. Cavalcanti presents a model-based testing using Csp. Here,
the authors are concentrated on testing for traces and failures refinement. In [Pel96], J.
Peleska presents a pioneering work on Csp-based testing.

Testing for software product lines was investigated in [PM06, McGOl] and others; the main
focus of these papers is the informal or formal derivation of test cases from requirement
and feature models.

PART II

\ theory of development notions for
C s p - C a s l

(CHAPTER . . . 6)

C sp-C a sl d e v e l o p m e n t n o tio n s

Contents
6 .7 Theory of C sp-C asl refinement notion . .
6.2 Theory of C sp-C asl enhancem ent notion
6.3 Sum m ary ..

67
84
86

I N Chapter 4 w e h ave reported a sim ple notion of refinem ent for C sp -C a sl based on
m od el class inclusion over the sam e signature. H ow ever, in a refinem ent step , it is
often the case that the signature changes. In this chapter w e form ulate tw o directions

of system developm ent: a refinem ent (or vertical development) n otion for C sp-C a s l ; and
an enhancem ent (or horizontal development) n otion for C s p -C a sl specifications.

These new notions of C s p -C a sl refinement and C sp-C a sl enhancement allow to change
the signature of the data part. Such change of signature, however, does not " touch" the
processes. The notion of process signature has been described in [MR07]; but is far for be­
ing a stable notion yet. Thus, we propose C sp-C a sl refinement and C sp-C a sl enhance­
ment notions with change of signature for the data part only.

The results presented in this chapter have been published in [KR09] and [KRS08].

In this section we define a general refinement notion for C sp -C a s l . Such refinement no­
tion is based on the original C sp-C a sl theory [Rog06]. There, a specification describes
only one unnamed process. Our notions of refinement for C sp-C a sl are based on refine­
ments developed in the context of the single languages C sp and C a s l . In the context of
algebraic specification, e.g., as mentioned in Chapter 3, Ehrig et al in [EK99] provide an
excellent survey on different approaches. For C s p , each of its semantical models comes
with a refinement notion of its own. There are for instance traces refinement, failure/di­
vergences refinement, and stable failures refinement, see Section 2.2.

6.1 Theory of C sp-C asl refinement notion

67

68 Chapter 6 C s p - C a s l development, notions

We now give an example to illustrate the type of refinement we would like to capture
in Csp-Casl. Later, we define formally a notion of Csp-Casl refinement with arbitrary
change of signature.

Example 6.1.1 Let us consider the following two Csp-Casl specifications:

ccspec A bstractService =
data

sort T
ops rl, r2,sl,s2 : T

process
AbsSer(x:T) =

r l —> si —» AbsSer(x)
n r2 —> s2 —» AbsSer(x)

end

ccspec ConcreteService =
data

sort U
ops r3, r4, ser : U
axiom ->(r3 = r4)

process
ConcSer(x:U) =

if (x = r3)
then r3 —» ser —> ConcSer(rA)

else r4 —> ser —>• ConcSer(r3)

end

Intuitively, the specification A bstractServjce specifies a system which provides a ser­
vice after a certain type of request has been made. That is, the process AbsSer(x : T)
behaves nondeterministically between choosing to offer the service si after a request rl,
or offering the service s2 after a request r2. The order of r l and r2 is left open. Only the
additional specification of a scheduling mechanism would enforce that. This is done in
the specification ConcreteService. Here, a scheduling mechanism is introduced using
the if-then-else constructs of Csp.

The refinement step from AbstractServjce to ConcreteService contains several as­
pects. On the data part we have change of signature: Let E and E' be the signature of the
data part of A bstractService and ConcreteService respectively, then a : E —> E' be
a signature morphism such that:

crs (T) = U, crF(rl) = r3, crF(r2) = r4, trF(sl) = ser, aF(s2) = ser

Here, we notice that we have a non injective renaming of the unary operations si and
s2. Moreover the class of models of ConcreteService shrinks with respect to the model
classes of AbstractService; and this is due to the axiom —i(r3 = r4).

On the process side, the internal non-determinism is resolved by adding a scheduling
mechanism. On the Csp traces model, this means that the trace set of ConcreteService
is included in the trace set of A bstractService. ■

Intuitively a Csp-Casl refinement describes the following development process: On the
data part, the possible interpretations (or model classes) are reduced by adding new infor­
mations about the data. The refined model classes are then used to construct the alphabet
of communications for the process behavior. On the process part, the refined process

6.1 Theory of C s p - C a s l refinement notion 69

description is less internally non-deterministic. That is, the environment in which the
process is defined has more control of the process.

In Figure 6.1 we summarize the overall idea of Csp-Casl refinement that we would like
to define. Here, the circles denote the model classes of the two data signatures L and £ '.
The small circle (I1) is included in the bigger circle (7) after applying the reduct to I'. This
denotes the inclusion of the model classes, thus data refinement.

Csp-Casl semantics constructs the alphabet of communication. Here, every model M ' E
I' and M'\a gives rise to an alphabet Alph(M') and Alph(Mf\a)- Those are used to construct
the CSP semantic domain V £ {T, T ,K f} (see Section 2.2); hence we obtain V(Alph{M'))
and V(Alph(M'\a)). We need to define a mapping ap : V(Alph{M'\a)) —> V{Alph{M'))/
and an inverse mapping kp '■ T>(Alph(M')) —» V(Alph(M' \a)). The latter represents a
reduct definition over the process denotations.

Let d'M, E V(Alph(M>)) and d'M,| E V{Alph(M '\a)) be two process denotations. In order
to “compare" these two process denotations for refinement, we apply an inverse mapping
ocj) to d'M,. Finally, we compute the process refinement on these objects - dM,\a \ZV &v (d'M,).

M'

dM% c P diV{d'M,) <------------ L-----------, d>M G v(Mph{M'))

Figure 6.1: Csp-Casl refinement with change of signature.

From the above illustration, there are a number of concepts that we need to address; some
of them are:

• definition of signature morphism a for Csp-Casl,

• proof that the mapping a-p is well defined and injective, and

70 Chapter 6 C s p - C a s l development notions

• proof that the inverse mapping preserves the healthiness condition of the seman­
tical domain.

We start by giving a formal definition of the Csp-Casl data logic signature morphism,
following [Rog06], however w ith a slight modification.

D e f in it io n 6 .1 . 2 Let Z = (S, TF, PF, P, <) and E' = (S', TF', PF' , P', < ') he two Casl data
logic signatures. A Csp-Casl data logic signature morphism cr : E —> Z' is a many-sorted
signature morphism that preserves the subsort relation and the overloading relations, i.e., for cr
holds:

P i si < S2 implies as (s\) < as {s2) for all S\,S2 G S

p2 f : w} ^ S! ~ Ff : w2 s2 implies crJ1/Sl (f) = a[,2rS2 (f)
for all f eTF U P F

p3 p : w i ~ P p \ w 2 implies (p) = v^,2(p) for allp e P

refl crs (si) < crs (s 2) implies si <s S2 for all si, S2 G S (reflection of the subsort relation) and

weak non-extension S] 7 ̂ S2 and as (s]) <s' u> and crs (s2) <s> u' implies that there exist a
sort t G S with si < t,S2 < t and c s (t) < u'.

See Chapter 3 for details about the overloading relations. While the first three condi­
tions come from the CASL subsorted signature morphism., the conditions refl and weak
non-extension are required by Csp-Casl construction. The refl condition allows to reflect
the subsort relation after the signature morphism. The weak non-extension condition al­
lows to make sure that the subsort relation is extended, however, such extension must be
restricted. Note that we differ here from the original definition as given in [Rog06]. The
weak non extension property by [Rog06] implies the one given here, i.e., here we are more
general.

Let us consider the following two examples of data specification:

spec D = spec D' ■
sort S, T sort S,T < U
ops a : S; b : T ops a : S; b : T

end end

In D the Csp-Casl alphabet construction yields that in all Z-models M for the correspond­
ing events M(a) 7 ̂M(b) hold. However, in D ', where S and T have a common supersort,
it depends on the model M whether M(a) — M(b) or M(a) 7 ̂ M(b). The weak non- ex­
tension condition ensure that the alphabet transformation over the Csp-Casl data logic
signature morphism is injective and well-defined.

In [MR07] it is shown that injectivity of alphabet translation is necessary in making sure
that the CSP process properties are preserved after the translation.

The definition of CSP-CASL data logic signature morphism restricts how we can extend the
data signature. The restrictions are chosen in a way that the imposed alphabet translation

6.1 Theory o f C s p - C a s l refinement notion 71

behave properly. If we consider the 2-step semantics of Csp-Casl defined in Section 4.2,
we obtain the picture shown in Figure 6.2.

Sp' = (D', P')

Sp = (D, P)

t

(.P(Alph (M)))MeMod(D) (^M)MeMod(D)

Figure 6.2: Property preserving translation.

Let us for instance consider the following two simple CASL specifications.

spec Old --
sort T

end

spec N ew -
sort Q < U

end

Let E and E' be the signature of O ld and New. Let a : E —» E' be a C sp-C asl data logic
signature morphism, such that crs (T) = Q. Let M' be a E'-model such that M'(Q) = {1,2}
and M '(U) = {3,4 ,5 ,6 }, with the following injection in j (Q,u) (1) — 3 and in j(Q/u)(2) =
4. In this setting, we have M'\a (T) = {1,2}. The alphabet construction over M '^ and M'
yields:

Mph(p(M' I*)) = {[(T,l)],[(T,2)],[(r,l)]}
A i p h (p (M ')) = { [(Q , l) , (U , 3) } , [(Q , 2) , (U , 4) } , W , 5) } , [(U , 6) } , [(Q , ±) , (U , ±) } } .

Here, we can observe that Alph(fi(M')) contains more and different symbols. Our aim
is to define a translation from Alph(fi(M' |p-)) to Alph(f(M ')) which is injective. In the
following we illustrate that an alphabet translation along a Csp-Casl data logic signature
morphism is well defined and injective.

Lemma 6.1.3 Let a : E —> E' be a C sp-C asl data logic signature morphism. Let M' he a E'-
model. Then

Alph{M' I,) -* Alph(Mr)

72 Chapter 6 C s p - C a s l developm ent notions

is well-defined and injective. Furthermore, we have for all s E S

• (i n ®) =

where ($(M)(s) {[(s,x)]~M | x G j3(M)}, i.e., f>(M) in which partial functions of M are
totalized.

P ro o f . We now prove the well-definedness property of the alphabet transformation. We
show that if (s,x) (t,y) then O s (s),x) ~ M/ (crs (t) ,y).

Let (s,x) ~ M/^ (t,y). Following the definition of defined in Section 4.2, there are
two cases to consider:

Case 1. [x = y = _L]. As (s,x) (Ly) holds, then there exists u G S with s < u and
t < u. Thanks to p i we obtain as (s) < ' crs (u) and <JS(t) < ' as (u).

Case 2. [x 7 ̂ _L,y 7 ̂ _L]. We need to show that the following two conditions hold:

1. 3 u' G S' such that crs (s) < ' u' and crs (t) < ' n'.

2. for all u' G S' with <rs (s) < ' w' and o"s (f) < ' w' the following holds:

For condition \, the proof is identical to the one under Case 1.

For condition 2, we consider the situation in which s = t and s 7 ̂ t.

• In the case of s = t, we set u = s and obtain:

(»V(s,s))m>\Ax) = (inj(s,s))M%(y)

This has as a consequence that x = y. Consequently we obtain

(inj{crs{s),u'))M'(x) = ifxij(aS(s),u'))M' (y)m

• In the case of s / t, we show that for all u' G S' with crs (s) < ' w' and ds {t) <' u1,
the following holds:

(inj(aS(s) ,u'))M' (x) = { i n j {as {t)iUl))M {y) (**)

Let u' G S' with crs (s) < ' w' and crs (t) < ' w'. Using the inoflfc non extension we
know that there exists v G S such that s < v, t < v and v s (t) < ' w'. For s, t and
v we know that

Thus,
j (a s (s) , a s (v))) M ' { 's (t ;)))M '(l /) -

From the third axiom of inj 1, it follows:

(*’m7Vs(s),w'))m'(*) = (ini(aHi),u'))M'(y)'

1 (7n/s',s")m ((ntys,s')m W) = (w/s,s")m for x e MS/s < s' < s".

6.1 Theory o f C s p -C a s l refinement notion 73

For the injectivity proof, we show that if [(^ (s) ,*)]^ , = [{cs (t),y)]~M// then

I (S ' *)] ~ M ' | , r = [(^ y)] ~ M ' | < r / l ' Q ' '

((7S(s),x) ~ M, (crS(t),y) => (s,x) (t,y).

Again, following the definition of there are two cases to consider:

Case 1 [x = y = ±]. Here, we consider the situation in which s = t and s ^ f.

• In the case of s = t, its enough to set u = s.

• In the case s ^ t, we use the weak non-extension property. Let (crs (s),_L)
(t7s (f), _L). Then there exists a u' G S' such that as {s) <’ u' and c s (t) < ' u'.
Then there exists a v G S such that s < v and t < v. Thus, (s,_L) (f,_L).

Case 2 [x ^ _L,t/ 7 ̂ _L]. Let (crs (s),x) (crs (f-),y). Then we know that 3 u! G S' such
that crs (s) < ' w' and crs (f) < ' w', and for all u' G S' with crs (s) < ' 2/ and crs (f) < ' «'
the following holds:

(in)(aS(s),u'))M>(x) = (7’M7Vs(0»w'))M/(y)-

We show that the following two conditions hold:

1. 3w G S such that s < u and t < u, and

2. for all u G S with s < u and t < u the following holds:

In order to prove condition 1, we consider the situations in which s = t and s / t.

• In the case of s = t its enough to set u = s.

• In the case of s 7 ̂ f, we use the weak non-extension property. As there exists
u' G S' such that crs (s) < ' w', as (t) < ' w' and s 7 ̂ f, there exists v £ S such that
s < v and t < v.

For condition 2, we show that for all u G S with s < u the following holds:

(i n j (s ,u))M%(x) = (i n j (t/U)) M % (y) -

Let u G S with s < u. Here, we a p p ly the model reduct definition on both sides:

W (s ,«)W M = ("v'm W i.M

(i n j (a s (s) , c r S (u))) M ' { x) = {crs {t), a s (u)))M ' (] /) •

Thanks to the preservation property of C sp-C a sl data logic signature morphism a,
it follows that crs (s) <' as (u). We also know from ~ M, that:

{ ^ i (a s (s),as(u)))M'(x) ~ (crs (t) ,as (u))) M' (]/)

Hence, we obtain (injM)M%(x) = (inj(tiU))M>lcr(y).

74 Chapter 6 C s p - C a s l developm ent notions

We extend the map dl canonically to four maps in the following way.

• To include the termination symbol / . (x/ : Alph(M'\(r)'/ —> Alph(M')'/ , defined as:

f a(a) if a G Mph(M%)
\ / if a = /

Here, Alph(M)v' = Alph(M) U { /} .

• To extend it to strings a* : Alph(M'\a)* —► Alph(M')*, defined as:

« • « » - o
a*(a^t) I—> oc(a)^a*(t)

where () is the empty string and a ^ t is the concatenation of a with the string t.

• To extend it to strings and termination symbol : Alph(M'la)*^ —> Alph(M')*'/ ,
defined as:

a*^(s) = a*(s)

Where s 6 Mph(M%)*. Here, AlphiM)*^ = Alph(M)* U { s ^ (/) | s G Alph(M)*}.

• To extend it to the power domain, : F(Alph(M' \aY) —> P (Alph(M/)'/), defined
as:

x {ol̂ {%) | x g x}.

• Finally, to apply it to elements of the semantical domains:

ocv : V(Alph(M'\a)) -> V(Alph(M'))

where V is one of the C sp semantic models studied in our context, i.e., V C {T , T , M }.

- In the traces model; OLq- • T(Alph(M'\a)) —> T (Alph(M ')), defined as:

I t e \a}-

- In the stable failure model; ccjr : F(Alph(M'\a)) —► Jr(Alph(M')), defined in
the following way: Let G JF(M; 1̂). We define how the translation
goes for the single failures: a(t,X) = t) ,a ^ (X)) for (f,X) G FM>\p, then

^(Tm 'I^/Fm 'iJ = PO) | (f/X) G FM,\a}).

- In the failures/divergences model; a.j\f : J\f(Alph(M'\a)) —> Af (Alph(M'))f de­
fined in the following way: Let (F^,| ,D M'|r) G N{Alph(M' |cr)). We define
how the translation goes for the single failures: a(f,X) = (a*^(t),a^ (X)) for

(f' X) S FM'„' then

= ({ («*^(t)-< (X)) | (f,X) € I,} ,{«*'(<*) | d e Dm, |J) .

6.1 Theory of C s p -C a s l refinement notion 75

While oc allow us to translate the alphabet generated by a model M of an abstract data spec­
ification to an alphabet generated by a refined model M', we need to define also a mapping
that goes the other way around. Given an injective alphabet translation oc : Alph(M' |cr) —>
Alph(M') we define the partial inverse

oc : Alph(M') ->? Alph(M'\a)

[(s'*) 1~mV ; if [(s'*)]~mv £ AlPh(M U

as:

undefined; otherwise

In the same way as the alphabet transformation oc we extend the inverse translation 6c to
four maps:

• To include the termination symbol / . oĉ : A lp ^ M ') ^ —»? Alph{M,\a)'/' , defined as:

oc(a') if 6c(a') is defined
•/ if a' = /
undefined otherwise

• To extend it to strings oc* : Alph(M')* —>? Alph{M'\a)*, defined as:

« * « » - o
6c*{a'^t') i—> < if &W) anc ̂^ (0 are defined

1 undefined otherwise

• To extend it to strings and termination symbol; 6c* ̂ : A lp^M ')*^ —>? Alph(M'\a)*^,
defined as:

8c*S(s) = oc*(s)
& * '{s~ {S)) = * * (s)~ (/>

for s e Alph(M')*.

• To extend it to the power domain, ocp : W>(Alph(M,)'/') —>? F(Alph(M/\a)'/), defined
as:

{ x e Alph{M'\ay | ct'(x) e X}.

• Finally, to apply it to elements of the semantical domain:

6cv : V(Alph(M')) ->? V(Alph(M'\a))

where V is one of the C sp semantic model studied in our context, i.e., P C {T,6F,J\f}.

- In the traces model; ocj : T (Alph{M')) —>? T(Alph(M'\o-)) is defined as:

M Tm O = { ^ Alph{M' I e t m,}

76 Chapter 6 C s p - C a s l developm ent notions

- In the stable failure model; cl? : Jr(Alph(M/)) —►? Ar(Alph(M,\cr)), defined as:

^(T m '/Fm ') = ({f ^ ^4/p/i(M'|(7)*/ | ci*^(t) G TM/},
{(t,X) G Alph(M%)*s X F(Alph{Mf\ay) \
exists (t ' ,X ') G FM' witha*^(£) = t' and Ap (X) = X 1 n a(^4/p/i(M/|0-))})

- In the failures/divergences model; a_A/ : Af(Alph(M')) —>? Af (Alph(Mf |cr)),
defined as:
= {(f,X) g x n A l p h (M ' \ ay) |

exists (F,X') G F^, with a*'/'(t) = F and Ap(X) = X' n ^(.A/p^M'lp-))},
{d G | «*(d) G DM/}).

The definition of the inverse map in the three semantical domains (k j , ccct^r) defines the
notion of reduct of process denotation.

Note that our definitions subtly differ from the concept of eager abstraction and lazy ab­
straction as discussed, e.g., in [Ros98]. Eager and lazy abstractions hide the new events in
all traces - our approach, however, ignores traces that include new events.

For the definition of the process reduct, we need to prove that such translation is well
behaved. That is the healthiness condition of the various semantical model are still valid
after the translation. This is necessary when the signature of the data part changes in a re­
finement step we have to make sure that the semantics of the processes behaves well. For
instance, when moving to a larger alphabet of communications the processes defined be­
fore the refinement step may only use the "old" alphabet letters. In the next three lemmas,
we show that the inverse translation fcq-, k j r and preserve the healthiness conditions
of the traces (T), stable failure (J7) and failures/divergences (J\f) model respectively.

In the following lemmas, let a : X —» E' be the C sp-C asl data logic signature morphism
and M' G Mod (O') be the model of the data part D'.

Le m m a 6.1.4 Over the traces model T the following holds:

T' G T(Alph(M')) => dlt (T') g T(Alph(M'\a)).

P r o o f . We prove that fcq- : T(Alph(M')) —>? T(A lph(M ' \a)) preserves the healthiness
conditions of the traces model T.

T.l We show that fcq~(T') G T (Alph(M '\a)) is non empty and prefix closed. We know that
() G V . We have that &*(()) = (); it follows () G f c q r (T) .

Let T = fcq-(T'). Let f G T, then there exists F G T with a*(F) = t. Let s < t,
then ol*(s) < oc*(t) as V is prefixed closed i.e., a*(s) G V . Thus, a*(a*(s)) G T, i.e.,
&*(a*(s)) = s. Hence, s G T.

■

Le m m a 6.1.5 Over the stable failure model T the following holds:

(T',F') G Jr(Alph(M1)) => ccjr(T',P) G Jr(Alph(M'\a)).

6.1 Theory o f C s p -C a s l refinement notion 77

P r o o f . We prove that f c? : ^ (A lp ^ M ')) —»? F (Alph(M' \a)) preserves the healthiness
conditions of the stable failure model T .

T.l ar(T') is non-empty and prefix closed by Lemma 6.1.4.

T.2 Let (T',F') G ^{AlphiM ')). Let (s,X) G a(F'). We show thats G ccr{T').

As (s,X) G a(F'), there exists (s',X') G F' such that a* (s') = s, a^(X ') = X. We
know that Jr(Alph(M ')) fulfills T.2, i.e., (s',X') G F' implies s' G T'. It follows that

(s') = s G a r (T'). Thus, dcjr^iAlphiM '))) fulfills T.2.

T.3 Let (T',F') G Jr(Alph(M1)). Let s ~ (/) G ar (T'). We show that (s ~ < /),X) G a(F')
for all X C dc(Alph{M!y).

As s ^ (/) G CiTiT'), there exists (s' ^ (/)) G T' such that &*/ (s' ^ (/)) = s ^ (/) .
We know that ^ (A lp ^ M ')) fulfills T.3, i.e., if s' ^ (/) G T implies (s' ^ (/) , X') G
F' for all X' C Alph(M,)'/ . Then, it follows that (s ^ (/) ,a p (X')) G a(F') for all
&p(X') C fc(Alph{M’y) . Hence, ajr(Jr (Alph(M1))) fulfills T.3.

F. 2 Let (T',F') G T(Alph{M')). Let (s,X) G a(F') and Y C X. We show that (s, Y) G a(F').

As (s,X) G a(F'), there exists (s', X') G F' such that a*(s') = s and a^ (X') = X. We
know that ^ (A lp l^M ')) fulfills F.2, i.e., if (s',X') G F' and Y' C X' then (s', Y') G F'.

Let Y C ftp (X'), then there exists Y' C X' with &p (Y') = Y. It follows that (s, Y) G
a(F'). Hence, a^(^(^ /p /z(M '))) fulfills F.2 .

F.3 Let (T',F') G Jr(Alph(M')). Let (s,X) G a(F') andV a G Y : s^ (a) £ olj{V). We show
that (s,X U Y) G a(F').

As (s,X) G a(F'), then there exists (s',X') G F', such that a* (s') = s and &p (X') = X.

We know that T(Alph(M')) fulfills the F.3, i.e., if (s',X') G F' and Vo' G Y' : s' ^
(«') ^ V then (s',X'UY') G F'.

Let \/a e Y : s ^ (a) <£ dLj{V), there exists Y' such that ftp (Y') = Y. It follows that
(s,X U Y) G a(F'). Hence, &r(F(Alph(M'))) fulfills F.3.

F.4 Let (T',F') G ^ (A l p y M 1)). L e ts^ (/) G dir(T'). We show that (s, Alph(M')) G a(F').

As s ^ (/) G ar (T'), then there exists s' ^ (/) G T' such that a*/ (s' ^ (/)) =
s ^ (/) . We know that J: (Alph(M')) fulfills the F.4, i.e., if s' ^ (/) G F' then (s' ^
(■/) ,A lp h (M ')) G F'. Then it follows that (dc*(s'),dc(Alph(M'))) = (s,^4//??z(M'|(7-)) G
a(F'). Hence, a.jr(Jr(Alph(M'))) fulfills F.4.

Le m m a 6 .1 .6 Over the failures/divergences model A f the following holds:

(.F ' \ D ') G Af(Alph(M')) =* a^(F'-L,D') G ^ (^ (M V)) .

78 Chapter 6 C sp -C a s l development notions

PROOF. We show that a preserves the healthiness conditions of the failures/divergences
model N .

F.l, F.2, F.3 and F.4. See the proofs of Lemma 6.1.5.

D .l Let (F '\D ') G N(Alph(M')). Lets e &(D') n &{Alph(M')*) and t e Sc(Alph(M,)*'/r).
We show that s ^ f G a(D ').

Ass G a(D') fl&(AIph(M')* and t G 6i(Alph(M,)*'/'), there exists s' G D' n Alph(M')*
and t' G Alph(M/)*'^ such that oc*(s') = san d a* ^ (t1) = t. We know that J\f (Alph(M'))
fulfills D .l, i.e., if s' G D' Pi Alph{M'Y and t' G Alph(Mr)*^ then s ' t' G D'. It fol­
lows that a*(s') ^ DL*(t') = s ^ f G a(D'). Hence, dcj^(J\f(Alph(M'))) fulfills D.l.

D.2 Let (F '^ D ') G N{Alph{M')). Lets G a(D '). We show that (s,X) G &(F').

As s G a :(D'), then there exists s' G D 'such that a* (s') = s. We know that J\f{Alph(M>))
fulfills D.2, i.e., if s' G D' then (s',X') G F'. Then it follows that (a* (s'), Ap(X')) =
(s,X) G a(F'). Hence, dc^{M{Alph{M'))) fulfills D.2.

D.3 Let (Ff l ,D r) G N{Alph{M')). L e ts^ (/) G a(D '). We show that then s G a(D').

A ss ^ (/) G 3:(D'), then there exists s' ^ (/) G D' such that a* ̂ (s '^ (/)) = s ^ (/) .
We know that J\f (Alph(M')) fulfills D.3, i.e., if s ' (/) G D' then s' G D'. Then it
follows that a*(s') — s G D. Hence, kjKf{fC{Alph{Mr))) fulfills D.3.

We now define the translation of C sp processes operators on the syntactical level.

D e f i n i t i o n 6 .1 .7 (P r o c e s s t r a n s l a t i o n) Let a : X(D) -> L(D') he a C sp-Ca sl data
logic signature morphism. We define p to denote the translation of process operators defined as
follows:

p(STOP) = STOP
p(SKIP) = SKIP
P(DIV) = DIV
p(t - P) = <r(t) P(P)
p(?x :: s —» P) = ?x :: a(s) —* p(P)
p(!x :: s P) = Ix :: cr(s) —> p(P)
p(P?Q) = p(p)°,p(Q)
p(P □ Q) = p (P)a p(Q)
P(P n Q) = p (P)n P(Q)
p(P\[s}\Q) = p(p) lk (s)M Q)
p(P |[sl|s2]| Q) = P(P) |[£ (̂sl) |cr(s2)]| p(Q)
p(P||Q) = p(P) \ \ p (Q)
P(-P III Q) = p(p) III p(Q)
p{P \ s) = p(P) \ ^(s)
p (P M }) = P(P)HP)]]
p(if <p then P else Q) = if a(<p) then p(P) else p(Q)

6.1 Theory o f C s p -C a s l refinement notion 79

In the next theorem we prove that the reduct property holds over the CSP models. This
ensures that the semantics of a process is frozen when translated to a larger context.

T h e o r e m 6 .1 .8 (R e d u c t p r o p e r t y o v e r t h e C sp m o d e l s) Let P be an arbitrary Csp
process of a Csp-Casl specification Sp = (D,P). Moreover, let cr : E —> Z' be a CSP-CASL data
logic signature morphism and M' a £ '-model. Then,

traces(lP}v:X̂ M%) = ccT (traces(lp(P)] ^ (x)-»m'))
failures(\P\v.x ^ M%) = ^(failures(lp(P)j0:a{x)^ M>))
divergences ([P]) = oc^ (divergences ((p(P)

where X is the set of free variables inP ,v : X —»• and v : cr(X) M' are variable evaluations
with

v(x : s) = v(x : v(s)).

PROOF. The proof is by structural induction on the Csp process operator P. Here, we
show for each semantical model, how the proof is carried out for a primitive Csp operator
such as STOP and for the action prefix operator (t —> P). The proof for the other CSP
process operators is reported in Appendix A.I.

Traces model For the primitive process STOP we need to prove the following:

traces(lSTOP^v) = ccr(traces(lp(STOP)l{>)).

We unfold the left hand side of the equation. Here, we calculate the trace set, which is
{()}. Applying the inverse translation of the traces domain ctj-, we obtain &*({()}),
i.e., &r (traces (Ip (STOP)^)). Thus, traces(lSTOP}v) = £7-(traces (Jp(STOP)]</))•

For the action prefix process t —* P we need to prove the following:

traces (It -> P}v) = ocT (traces(\p(t -» P)]f?)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces([f]v -► lPjv).

We then calculate the trace set:

| q e traces(lPjv)}.

We now unfold the definition of the variable evaluation f t jv (details of this definition
can be found in [Rog06]):

■ Mv = [M (0)]~mV

In [Rog06] (Lemma 5) proves that v$(t) — v^(c(t)). Applying the alphabet transla­
tion oc we obtain:

«([(sy(0)]~MV) = 1 (o-s (s),vt(a(t)))]M>.

80 Chapter 6 C s p - C a s l developm ent notions

We now apply the inverse alphabet translation of the traces domain ocj and using
the induction hypothesis on traces([P]v), we obtain:

u {ft*^([(<^(s)/tfV(0))]M ') "'q I q e dcT (traces{lp{P)}v)).

Pulling out the oc from the above trace set, we obtain:

dcT {traces(\p{t P)]<?)).

Thus, traces(lt —»■ P]v = dcq-(traces(Ip(t —> P)]]f/)).

Stable failure model For the primitive process STOP we need to prove the following:

(traces{ lSTOP}v),failures(lSTOPjv))
= ccjr(traces(lp(STOP)h)Jailures{ip(STOP)h)).

The trace component is identical to the one presented for the traces model. For the
failures component we prove the following:

failures (lSTOP^v) = 8cjr(failures(lp(STOP)\t)).

We unfold the left hand side of the equation. Here, we calculate the failures set:

{ Q , X \ X C A l p h (M ' \ < , y } .

We now apply the well-defined and injective alphabet translation
oc, and we obtain:

{[<}]]p,x I X C

Applying the inverse translation of the stable failure domain kjr, we obtain:

{ &' ({)) , ~4(X) \ X C A l p h (M Y } -

I.e., dcj:(failures(lp(STOP)lv)). Thus,/<ri/ures([STOP] v) = dcf(failures(lp(STOP)}fi)).

For the action prefix process t —> P we need to prove the following:

(;traces{\a —> P}v), failures (fa —> P] v))
= &r{traces(lp(a P)}t),failures^(a -> P)] v)) .

The trace component is identical to the one presented for the traces model. For the
failures component we prove the following:

failures(§t —> P]v) = &{failures(^p(t — > P)]o)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures (It j v -> [P]v).

6.1 Theory o f C s p -C a s l refinement notion 81

We then calculate the failures set and we obtain:

{(U)lv ,y) l M v £ y f r e n M p h (M f\ay) }
u { (< M v r* ,Y) I (T y) € failures (IPJV)} .

We now unfold the definition of the variable evaluation, i.e., | f |v = [(s, .

Thanks to Lemma 5 from [Rog06] we have that tfl(t) — v$(a(t)). We now apply the
inverse alphabet translation of the stable failure domain ccjr and using the induction
hypothesis on failures we obtain:

{^([O loW O O I &([(^(s)^‘W0))]m') i & p y) .K V) e r(Mph(MY)}
U {&*- (̂[((rs (s)/ i/«((7-(f)))]M, ^ 1j)/ &|j:(Y) | (q,Y) e a(/ni7«res([p(P)]o)}.

Pulling out the & from the above failure set, we obtain:

di(failures(\p(t —> P)]]p)).

Putting together the trace set and the failures set, we obtain the stable failure deno­
tation of a (traces (ftp (a —> P)^) , failures (Ip (a —> P)J v)) •

Failures/divergences model For the primitive process STOP we need to prove the follow­
ing:

(failures1 (jSTOP]v), divergences(lSTOP}v))
= &N (failures± (lp(STOP)}o), divergences (Ip (STOP)^v)).

For the failures component we follow the same argument as in the stable failure
model, and obtain:

failures1 (lSTOP}v = 6c ? (failures1 (^p(STOP)lt)).

For the divergences component we prove the following:

divergences (lSTOP^v = a jr (divergences (^p(STOP)}o)).

This trivially holds, as the divergence set for the process STOP is the empty set.

For the action prefix process t —> P we need to prove the following:

(failures1 ({a —> P^y), divergences ({a —> P]v))
= (failures1 (Ip (a —► P)}#), divergences (Ip (a —> P)]o)).

For the failures component we follow the same argument as above, and obtain:

failures1 (It -> Pjv = oc? (failures1 (Jp(£ -> P)]f>))-

For the divergences component we prove the following:

divergences^ —> P]„ = a (divergences (Ip (t —> P)lv))-

82 Chapter 6 C s p - C a s l developm ent notions

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences(lt}v -*■ [P]v).

We then calculate the divergence set:

<7 G divergences(lPjv)).

We now unfold the definition of the variable evaluation, i.e., |[fjv = [(s,
Again, thanks to Lemma 5 in [Rog06] we have that v$(t) = v**(c7'(f)). We apply the
alphabet translation a and obtain: tf([(s, = [(crS(s)'^**(cr(0))]M/-

We now apply the inverse alphabet translation otj f̂ of the failures/divergences model
and using the induction hypothesis on divergences ([Pjv), we obtain:

{a*/ ([((7S(s),i/!i((7(f)))]M') ~ q I q 6 &(divergences(lp(P)jy)).

Pulling out the cc from the above divergence set, we obtain:

oc (divergences (\p (t —> P) J $)).

Putting together the failures set and the divergences set, we obtain the failures /d i­
vergences denotation of di^ (failures1 (lp(a —> P)}y), divergences (Ip (a —► P)]*>)).

This insights allow us to define a refinement notion based on a general data logic signature
morphism for CSP-CASL.

D e f i n i t i o n 6 .1 .9 Let a : E —> E' be a C sp-C asl data logic signature morphism as defined
in Definition 6.1.2. Let (dM)Mei and {d'Mi)M'er be families of process denotations over E and E',
respectively. Then,

^ v (^m')m'gi' 1 A VM' G /' : d M^a dcx>(d'MI).

Here, I1 \a= {M' \a \ M' G I1}, and Cp denotes Csp refinement in the chosen semantic,
where V C

Given Csp-Casl specifications Sp = (D ,P) and Sp' = (D',P'), by abuse of notation we
also write (Sp refines to S p ')

Sp Sp'

if the condition of the model class inclusion and the set inclusion of the process denotation
holds for Sp and Sp', respectively (see Definition 6.1.9).

On the syntactic level, we additionally define the notion of data refinement and process
refinement in order to characterize situations, where one specification part remains con­
stant.

6.1 Theory o f C s p - C a s l refinement notion 83

D e f i n i t io n 6 .1 .10 (D a ta R e f i n e m e n t) Let (D,P) and (D',p(P)) be two specifications and
a : X(D) —»• S(D') 0 C sp-C asl cfafa logic signature morphism. C sp-C asl data refinement is
defined as follows:

(D,P) (D > (P)) i/Mod(D')|rC Mod(D).

D e f i n i t io n 6 .1 .11 (P r o c e s s R e f i n e m e n t) Let (D,P) and (D,P') te to o specifications.
C sp-C asl process refinement is defined as follows:

(D,P) K2£ (D,P') iJVM 6 Mod(D) : [[P]0:0^ (m)]d Ed [[P 'k ^ M)] ®

fo r a l lV e

Clearly, both these refinements are special forms of Csp-Casl refinement in general.

Le m m a 6 .1 .12 Let Sp = (D,P), Sp-d = (D',p(P)) and Sp-p = (D ,P ') be C sp-C asl specifi­
cations. Let cr : L(D) —> L(D') is f/ze C sp-C asl data logic signature morphism and p the process
translation. Then, for all V G { T , N } ,

1. Sp Sp-d implies Sp Sp-d, and

2. Sp ^ °t> Sp-p implies Sp Sp-p.

PROOF. Let (^M)MeMod(D)/ W eM od(D ') a n d (dM)MeMod(D) be the families of process
denotations of Sp, Sp-d and Sp-p respectively. We prove the implication in (1) and (2).

1. We need to show that:

(dM)M€Mod(D) ^ V (^mOm'GMod(D')-

This holds if Mod(D')|(TC Mod(D) and for all M' G Mod(D') it holds
dm'\c The data refinement (dM)MeMod(D) ^o- (dM')M'eMod(D') estab­
lishes the model class inclusion, i.e., Mod(D')|crC Mod(D).

Let M' G Mod(D') and d'M, be the denotation of [p(P)]]m'- Then, thanks to the reduct
property we have that

d'm'\c ~ &v{d'MI).

Thus, d'M,^ Cp &D(d'M,). Hence, {dM) MeMod(D) (dM/)M'eMod(D/)' therefore
Sp Sp^d.

2. Again we need to show that:

(dM)MeMod(D) {d'lVl)Me.Mod(D') •

Here, we work with the same model classes Mod(D). From the process refinement
(dM)MGMod(D) (^M)MGMod(D') we have: VM G Mod(D). dM d Thus,
{dm)MeMod(D) (dM')M'GMod(D')' therefore, Sp Sp'.

84 Chapter 6 C s p - C a s l developm ent notions

Theory of Csp-Casl enhancement notion

In the last section we have presented a general theory for the refinement of Csp-Casl
specifications. Such theory allows to capture the vertical development of systems. That is,
we have a tower of specifications:

So Si S„_1 Sn-

Here, So is the abstract specification - it contains basic information about the system. In
Csp-Casl, this is captured by a loosely specified data and a nondeterministic process
description. Such specification is then refined step by step. This means, on the data part, a
reduction of the model classes; and on the process part, we have a process behavior which
is less nondeterministic. Finally the specification Sn contains a detailed description of the
system.

We are now interested in capturing a horizontal development of systems. In a horizontal
development new functionality or features are added to an existing systems. For the corre­
sponding software development process, this means that the specification of an advanced
product is developed by enhancement and combination of basic specifications. Such con­
cept allows to capture the notion of software product lines.

In this section we elaborate and present a theory of enhancement for Csp-Casl specifi­
cations. Here, we would like to capture the notion of horizontal development. That is,
how we can extend basic CSP-CASL specifications with new functionality and form new
elaborated Csp-Casl specifications.

In Csp-Casl we use the notion of conservative extension defined in the context of algebraic
specification. Intuitively speaking, an extension is conservative if it does not 'specify away'
any models, i.e., if each model of the original specification can be enlarged to a model of
the extended specification [Sho67].

D e f in it io n 6.2.1 We say that a signature E = (S,TF,PF,P, <) is embedded into a signature
E' - (S',TF',PF',P', <•) if S C S', TF C TF', PF C PF', P C P', and the following conditions
regarding subsorting hold:

preservation and reflection < = < ' fl (S x S).

weak non-extension Si / S2 and crs (si) <s' u> and c S(s2) <s! u' implies that there exist a
sort t e S with s\ < t,S2 < t and as (t) < u'.

We write i : E —» YJ for the induced map from E to E', where is (s) = s,iTF[JPF(f) = f , i p(p) = p
for all sort symbols s e S, functions symbols f e TFUPF and predicate symbol p e P.

Obviously, such induced map i is both, a Casl signature morphism and a Csp-Casl data
logic signature morphism. We carry over the notion of a conservative extension to our set­
ting.

D e f in it io n 6.2.2 Let D and D' be two C a s l specifications, with signatures E and E' respec­
tively, where E is embedded into E'. D' conservatively extends D ifMod(D) = Mod(D') |,.

6.2 Theory o f C s p - C a s l enhancement notion 85

Therefore, an extension is conservative when no models are lost: every model of the spec­
ification being extended is a reduct of some model of the extended specification. CASL
provides annotations such as: %implies, %def, and %cons to denote that the model class
is not changed, that each model of the specification can be uniquely extended to a model
of the extended specification, or that the extension is conservative, respectively. Such an­
notations have no effect on the semantics of a specification: a specifier may use them to
express his intentions, tools may use them to generate proof obligations [RS02].

Extensions with new symbols are not necessarily conservative. For example, consider the
following specifications Bas and Ext, where the new symbol c in Ext imposes a constraint
on the symbols a and b inherited from Bas. Thus, models with M(a) ^ M(b) of Bas are
not included in Mod(EXT) |, and Ext is not a conservative extension of Bas.

[RS02] compiles a comprehensive set of proof rules to establish that one specification con­
servatively extends another. For instance, the extension by the Casl construct 'operation
definition' is conservative.

In the semantical construction of Csp-Casl, signature embeddings lead to alphabet em­
beddings, exactly as proven in Lemma 6.1.3.

Now we define the central notion of enhancement between Csp-Casl specifications.

D e f in it io n 6.2.3 Let Sp = (D,P) and Sp' = (D1 ,P ') be C sp-C asl specifications, and let £
and £ ' be the signatures of D and D', respectively. Let i and cx be the induced mapping. We say
Sp' is an enhancement of Sp, denoted by Sp^>Sp', if

1. £ is embedded into £ ',

2. Mod{D) = Mod(D') h, and

3. for all M' G Mod(D') it holds that:

Intuitively, a Csp-Casl enhancement notion asserts that: the meaning of old symbols
are preserved (condition 1 and 2) and new process symbols use old symbols only without
change the meaning. For the latter let us consider the following Csp-Casl specifications.

spec Bas =
sort S
op a, b : S
end

spec Ext =
sort S < T
ops a,b : S; c : T
axioms c = a; c = b
end

traces ([PJ0 :0 ^ (m ')) = M ^ c c sQ P ']® .® ^ ^ /)))
/flz7wrcs([P]0 :0^ (M)) = ^(/az7M rgs([P /]j0 :0_>̂ (M/))).

86 Chapter 6 C s p -C a s l development notions

ccspec Hugo =
data

free type s a
process

P = a ^ SKIP
end

ccspec Erna =
data

process
P = « -> SKIP

free type s ::= a
free type t ::= b

ccspec H ermine =
data

free type s ::= a
free type t ::= b

process
P = 0 —> SKIP

n b - ^ SKIPQ = b - ^ P
end Q = b ^ P

end

Here, we have that HUGO E rn a . That is, on the data part we have the embedding of
the symbols E (H ugo) C E (E rn a) and its a conservative extension, i.e., Mod(DHuco) =
Mod(D£RNA) \t. On the process side the added new symbols don't interfere with the
old process denotation, i.e., traces (H u g o) = dir (traces (E rn a)) and failures (H u GO) =

ocr (failures (E rn a)).

However, we have that -i(H ugo>- H erm ine). Here, on the process part the old process
behavior uses the new added data. We have that traces(H ugo) = A7-(fraccs(HERMiNE)),
however failures (H u g o) / dc? (failures (H e r m i n e)) .

In this chapter we have presented two directions of system development: a refinement (or
vertical development) notion for Csp-Casl; and an enhancement (or horizontal development)
notion for CSP-CASL specifications.

For the refinement part, we have defined a new notion based on model class inclusion
with arbitrary change of signature in the data part. Intuitively a Csp-Casl refinement
describes the following development process: On the data part, the model classes are
reduced by adding new informations about the data. On the process part, the refined
process description is less internally non-deterministic. That is, the environment in which
the process is defined has more control of the process.

We also presented a theory of enhancement for Csp-Casl. Intuitively a Csp-Casl en­
hancement notion asserts that: the meaning of old symbols are preserved and new pro­
cess symbols use old symbols only without change the meaning. This theory will allow
us to capture the notion of horizontal development, in which new features (or functions) are
added to existing systems.

Summary

(CHAPTER ...7)

Proof su p p o rt for C s p -C a sl d e v e lo p m e n t
notions

C o n te n ts
7.1 Proof support for Csp-Casl refinement.......................... 87
7.2 Proof support for Csp-Casl enhancem ent 97
7.3 Summary... 96

I N this chapter we present techniques to discharge proof obligation that arises when
proving a development step (vertical or horizontal) between Csp-Casl specifications.
In Section 7.1 we present a proof support for Csp-Casl refinement. Such proof sup­

port is based on a decomposition theorem of Csp-Casl refinement. This will allow us
to re-use existing tools for Csp and Casl refinement. In Section 7.2 we illustrate a proof
support for Csp-Casl enhancement. Here, we provide two enhancement patterns that
allow us to prove enhancement relation between Csp-Casl specifications.

The results presented in this chapter have been published in [KR09] and [KRS08].

7.1 Proof support for Csp-Casl refinement

Proof support for Csp-Casl refinement is based on a decomposition theorem. This decom­
position theorem gives rise to a proof method for Csp-Casl, namely, we study Csp-Casl
refinement in terms of Casl refinement and Csp refinement separately. With regards to
Csp-Casl refinement, data turns out to dominate the processes: While any Csp-Casl re­
finement can be decomposed into first a data refinement followed by a process refinement,
there is no such decomposition result possible for the reverse order, i.e., first Csp refine­
ment and then Casl refinement. This insight is in accordance with the 2-step semantics
of Csp-Casl, where in the first step we evaluate the data part and only in the second step
apply the process semantics.

87

88 Chapter 7 Proof support for C s p -C a s l

T h e o r e m 7 .1 .1 (C s p - C a s l r e f in e m e n t d e c o m p o s i t i o n) Let (D,P), (Df,p(P)) and
(D' ,P') he C sp-C asl specifications and a : £(D) —> £(D ') he a C sp-C asl data logic signature
morphism. Then, for all V £ {T ,T ,J \ f} ,

(D,P) (D',p(P)) and (D',p(P)) (D',P ')
implies

(D,P) (D ',P ').

PROOF. Let (D, P) have denotations (^M)MeMod(D)/ (C,/,p(P)) have denotations
(^M')M'eMod(D')' and (D // p /) have denotations Mod(D')- W e n e e d to s h o w that:

(^M)MeMod(D) (^M')M'eMod(D')-

This holds if M od(D/)|(JC Mod(D) and VM' £ Mod(D'). Cp ^{d '^ ,) .

The data refinement) immediately gives the required model class inclusion. That is,
Mod(D/)|trC Mod(D).

Let M' £ Mod(D') and d'M, be the respective denotation. Then, thanks to the reduct
property we have that dMi^ = ccp(d'M,).

The process refinement (~»x>) yields:

VM' £ Mod(D'). d'M, Ov d%.

Thanks to the monotonicity of the alphabet translation dip w.r.t. the process refinement,
we apply the inverse translation dip : T>(Alph(M' \a)) —»? V(Alph{M')) to both sides of
the process denotation:

VM' £ Mod(D'). M 4 ') E v

This allows us to conclude that

VM' £ Mod(D'). (dM% =v dip{d'MI)) Cp M O -

Thus, the refinement (rfM)MeMod(D) p idM>)M'eMod(D>) holds, i.e., {D,P) ^ (D ',P').

■

This result forms the basis for the Csp-Casl tool support developed in [OIR09]. In order
to prove that a Csp-Casl refinement (D, P) ^ p (D', P') holds, first one uses proof support
for Casl [MML07] alone in order to establish Mod(D') I^C Mod(D). Independently of
this, one has then to check the process refinement P Op P', for all V £ { T , In
principle, the latter step can be carried out using CSP-Prover, see e.g. [IR05]. The use of
CSP-Prover, however, requires the Casl specification D' to be translated into an alphabet
of communications. The tool CSP-CASL-Prover [OIR09] implements this translation and
also generates proof support for theorem proving in Csp-Casl.

7.1 Proof support for C s p - C a s l refinement 89

Changing the order in the above decomposition theorem, i.e., to first perform a process
refinement followed by a data refinement, however, is not possible in general. Often,
process properties depend on data, as the following counter example illustrates, in which
we have

(D,P) (D’,P') but (D,P) W d (D,P ').
Consider the three Csp-Casl specifications A bs, M id and Con c , where Mid consists of
the data part of Abs and the process part of CONC:

ccspec Abs =
data

sorts S
ops a,b : S;

process
P = a -> STOP

end

ccspec Mid =
data

sort S
ops a,b : S;

process
Q = a —> Stop I f a

b —> STOP
end

ccspec Conc =
data

sort S
ops a,b : S;
axiom a = b

process
R = a —> STOP |[g

b -> STOP

end

Let N be a Casl model of the data part Dabs of A bs with N(S) = {#,*}, N(fl) =
N(b) = *. Concerning the process denotations in the traces model T relatively to N, for
A bs we obtain the denotation1 ^abs — {()/(#)}• io Mid , the alphabetized parallel operator
requires synchronization only w.r.t. the event a. As N |= ~̂ a = b, the right hand side of the
parallel operator, which is prepared to engage in b, can proceed with b, which yields the
trace (*) in the denotation. The left hand side, however, which is prepared to engage in
a, does not find a partner for synchronization and therefore is blocked. This results in the
denotation dMiD = {()/ (*)}■ As ^mid £ ^abs/ we have A bs M id .

In Conc , the axiom a = b prevents N to be a model of the data part. This makes it possible
to establish Abs Conc over the traces model T. Using Theorem 7.1.1, we first prove
the data refinement: Conc adds an axiom to A bs - therefore, Dabs refines to Dconc with
respect to Casl; concerning the process refinement, using the equation a = b and the step
law for generalized parallel, we obtain

a -> STOP\[a]\b —> STOP = a -► STOP\[a]\a -> STOP
= T a —» (STOP \ [a} \ STOP)
= T a -» STOP

Thus, over Dqonc the process parts of Abs Conc are semantically equivalent and there­
fore in refinement relation over the traces model T. Figure 7.1 illustrates the overall de­
composition of Csp-Casl refinement.

In the following example we illustrate how we prove a refinement step of the binary cal­
culator example, using the decomposition theorem implemented in Csp-Casl-Prover.
More challenging refinement steps proof will be presented in Chapter 11.

1 For the sake of readability, we write the element of the carrier sets rather than their corresponding events
in the alphabet of communications.

90 Chapter 7 Proof support for C s p -C a s l

(D ,P)
d a t a

p r o cdâ

Figure 7.1: D ecom position theorem of C s p - C a s l refinem ent.

Exam ple 7.1.2 H ere, we show the follow ing refinem ent of the b inary calculator:

B C a l c O B C a l c 3

In o rder to p rove this refinem ent w e state, using the keyw ord v i e w , how the refinem ent
goes:

v i e w Refinement: B C a l c O t o B C A L C 3

A view is a convenien t w ay in C a s l to relate tw o specifications; here, w e use it to state the
refinem ent. In general, a view is used in C a s l to state a specification m orphism (induced
by a sym bol m ap) from a (source) specification to an (target) specification.

Figure 7.2 Illustrates a screenshot of C S P - C A S L - P R O V E R for the refinem ent B C a l c O

B C a l c 3 .

Devtlojxnem Cioph for tCakO

.3 . f \ HOuDriwiGnpi-.) 11.1 - OMlopmMU Ciiph tor BGiicC

|* 3 H (BCalcO)

£
E
33
~ —i

C““) @
E§1frl

M H
E

;jlfe

Dtv*

I111II
Selected GeaHs)

(O h p ^) (Prove) (~S

No Prover Running

Sublogic of Currently Selected Theory

CtpCASL

PVk Theorem Prover

f Select an) (OtMtKi all)

(Select open 90*11 N (More ftne gr 1

Fine grained composition of theory
Axioms to include Theorems to include if proven
ptoTUl
’drtuoo

(Select a lQ (Deselect all >

(Sh—vtheoryV Shaev selected theory") (Goto)

Figure 7.2: B inary calculator refinem ent in C s p - C a s l - P r o v e r .

7.2 Proof support for C s p - C a s l enhancement 91

The left hand side shows the development graph of our specifications. Here, the back dia­
gram shows the refinement to be proven between the specification BCalcO and BCALC3;
specifically the red arrow indicates the existence of proof obligations. Csp-Casl imple­
ments the decomposition theorem and this makes the data refinement to be automatically
discharged by H ets. The front diagram illustrates the state of the overall refinement af­
ter the data refinement has been proved. Here, the red bubble indicates the presence of
a proof obligations to be discharged using Csp-Prover. To this end, in the right hand
side we choose Csp-Casl-Prover. Here, the tool automatically constructs the alphabets
of communications for the process part and generates a theory file2 in which the process
description is translated to the input language of Csp-Prover. At this point we use Csp-
Prover to interactively prove the process refinement. The Isabelle proof script can be
found in the Appendix A.2.

Proof support for Csp-Casl enhancement

In order to prove an enhancement step in C sp-C asl, we have identified some enhancement
patterns. Such patters captures the notion of adding new features to an existing system.

C sp-C asl enhancement guarantees preservation of behaviour up to the first communica­
tion that lies outside the original alphabet. This observation is captured in the following
proof principle:

T h eo re m 7.2.1 (E x te r n a l c h o ic e e n h a n c e m e n t) Let Sp = (D,P =?x :: s —► P'), let
Sp' = (D ',P —lx :: s —» P' D?y :: t' —» Q'), and let E and E ' he the signatures ofD and D ' ,
respectively, let S be the set of sorts in E. If

1. His embedded into E ', Mod(D) = Mod(D') \u and

2. for all u E S it holds that D' (=jy V x : u,y : t ' . x ^ y,

then Sp^>Sp'.

Proof. The first two conditions of the enhancement definition hold by assumption. We
prove the third condition, that is for all M' € M od(D') we have

traces(\[P =?x :: s —> P l v:x^/3(M'|,)) = &t (twees ({P =?x :: s —» P'
□ ?y :: t' —>

failures{[P =?x :: s —► P/l v:x^/S(M'|,)) = (failures(IP =?x :: s —> P'
□?y :: t' —► Q/]v/:x-^^(m/)))-

For the traces condition, the trace set of the process P =?x :: s —> P' is given by

{(>} U { (a) ^ q | q £ traces([P'[a/x]l,:X̂ m i)), a e

2A theory file is a Isabelle file, in which using different tactics we interactively discharge proof obligations.

92 Chapter 7 Proof support for C s p -C a s l

Here, [s]̂ , } is the set of values in the alphabet generated by the sort symbol s relatively
to the model The trace set for the extended process P =?x :: s —» P' □?]/:: t' —» Q'
is given by:

{<)} U {(a) ~ t \ t e traces(lP,[a/x]}vl:X̂ {Ml) \ a €
U {(b) ^ q | q G traces(lQ'[b/y]]v, x^ m), b G [q] - ^ }

Applying the reduct definition to the trace set of the extended process
dcT (traces(lP =?x :: s —> P' D?y :: t' —► QX'jX -^m '))) we obtain:

{()} U {(a) ~ t | t G tmces{lP'[a/x}]v:X̂ {MV), a G [s]^(M/|i)}.

Thus, we have that:

traces(lP =?x :: s -> P 'J^x -^A n)) = «r(hm es([P =?x :: s -*• P'
0?y :: t' —> Q l v':x- /̂3(M/)))

For the failures condition, the failure set of the process ?x :: s —» P' is given by:

{ « > , x) | [s] ^ |i)n x = 0}
U {(<fl) ~ p ,X) I (p,X) efailures(lP'([a/x])}v.x ^ fi{m))f a G [s] - ^ }

and the failure set of ?y :: F —> Q' is given by:

U { ((b)~ q ,Y) | fa, Y) efailures(lff([b/y])lv':X̂ m), b G [F] - ^ }

The failure set for the extended process P =?x :: s —> P' □?]/:: F —> Q' is given by:

| [i n f i x ' = 0 and [F] ^ n X ' - 0 }
u {(<«') "p '/X ') I (p',X') G /f lz te s d P 'd f l '/x]) !® ^ ^ ^)) , <F G [s] ^ , }

u {((^) ^ ^ //X /) | fa',X') efailures(lQ e>:<z>—p(M'))/ ^ e
U { (0 ,X) |X C [s] ^ M/)U [P]^ (M/)

and (/) G traccs([?x :: s -> P']Ux-/j(M')) U traces(l?y :: t' -> Q 'J^ x ^ M '))}

We now apply the reduct definition Ajf of the above failure set. The last set is empty as
(/) is not in the traces. For the first set we obtain:

M { «) / V) | nx' = 0and nx' = 0})
= {«>,*) I «(<)) = (>,«(X) = x ' n ^ A i p h ^ l M ' U))),[S]^(M() nx' = 0, nx' =
= {(<>/X) | [s]~WMI|i)n x = 0}

For the second set we obtain:

{((a) ~ p ,X) | (p,X) efailures(\P'([a/x})\v,x _,m %))fa G [s] - ^ } .

Putting these failures together we obtain the failures of P =?x :: s —> P', i.e.,

failures ([P = lx :: s —> P/1V:X-*̂ (M/|,)) — &f-(/0 z7ures([[P =?* :: s —> P'
□?y :: F -* Q lv/:X /̂3(M')))-

Hence, we have that Sp^>Sp'. m

0168

7.2 Proof support for C s p - C a s l enhancement 93

Often a specification Sp is enhanced by a specification Sp' by using the overloading func­
tionalities and by adding supersorts. To capture this technique by a characterization the­
orem, we introduce an extension operation, first on C a s l signatures, then on CSP-CASL
processes.

D e fin it io n 7.2.2 Given a mapping £ : S —> S' on sort names, w e define

• £(/") = / : £(si) x • • • x £(s*) —» £(s) fo r a function symbol f : si x • • • x —> t,

• £(p) = p : £(si) x • • • x £(sjt) for a predicate symbol p : si x • • • x s*,

• £(x : s) = x : £(s) fo r a variable x of type s and

• Z (f (h , ~ , t k)) = € (f) (Z (h) , . . . , £ (t k) fo r a C a s l term f (h , . . . , t k).

E is embedded into E' w ith a mapping £ : S —> S' z/E is embedded into E', TF' = TF U £(TF),
PF' = PF U £(PF), P' — TF U £(P), azzd < ' is f/ze minimal subsort relation w ith < C < ' zmd
M W) £<'•

The setting of Definition 7.2.2 ensures that any new function and predicate symbols in E'
are in overloading relation with the old symbols of E. For Csp-Casl processes, £ is the
identity with the exception:

. S (t - P) = ? (0 - £ (P)

. f(?x :: s P) =?* :: g(s) -> £(P).

And now we show that enhancement via extension of data using overloading functions
and supersorts leads to enhancement of Csp-Casl specifications.

Theorem 7.2.3 (S u p ersort en h an cem en t) Let Sp = (D,P) and Sp ' = (D ',P ') fee Csp-
C a s l specifications, let E and E' fee tfee signatures o f D and D', respectively. Let S and S' be the
sets o f sorts in E and E', respectively, let £ : S —► S' fee a mapping on sort names. If

1. E zs embedded into E' w ith the mapping £,

2. M o d (D) = M o d (D ') \ i , and

3. P' = £(P),

tfeen Sp^>Sp'.

Proof. The first two conditions of Csp-Casl enhancement definition holds by assump­
tion. We prove the third condition, that is for all M' G Mod(D') it holds that:

t ra c e s (lP }v.X-,^M>\,)) = ^ T (t r a c e s (l^ (P) } v,:Xf^ {MI)))
f a i lu r e s (lP jv:X^ p m i)) = & r (ja i lu r e s (l£ (P) lv,:X, _ p m)).

First, we show that in the enhanced setting we only have to consider variable bindings
to values in the original subsorts. The only introduction of bindings is via the multiple
choice operator ?x :: s —» P(x). The reduct operator removes traces starting with the value

94 Chapter 7 Proof support for C s p - C a s l

not present in the original setting:

&T (tmces(l?x :: £(s) -► £(P)(x : £(s))Jvf:x'->0 (M'))
- aT {traces{px :: s -> £(P)(x : s) W - / 5(M'))) (*)

where v' : X! —> jS(M') is an arbitrary variable evaluation. This holds as s <' £(s) and
therefore [s]^(M,} C [£(s)]^(M/). Furthermore, for b G [£(s)]^(M,} fl [s]~^(Af#) we have b £
OL(Alph(fi(M' |t))).

We now prove by structural induction on the process operator P that the following holds:

traces ([P J v;x-^(m' |,)) = ^r{traces(U(P)lvl:Xl̂ ^ MI))).

where v'{x : £(s)) = oc(x : s), i.e., v' evaluates only to values reachable under oc.

On the Csp-Casl process operator, the mapping £ is defined as the identity, with the
exception of two operators mentioned above.

Let P =?x :: s —> P. Then P' =?x :: £(s) —» £(P). We now show the following:

traces(l>x :: s -> PJUx^/km'I,)) = &t (traces(I?x :: £(s) £(P) W -^ (M ')))-

By the argument illustrated in (*), we can replace the right hand side:

traces(l?x :: s -> Pj„:x^/3(An)) = &T{traces(l?x :: s -> £(P)(x :

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to C asl, and we obtain:

fraces([?x :: s]v.x_p(M'|() ~ * P]v:X->/3(M'|,))-

We then calculate the trace set:

{()} U { (a)~ t | t G traces{lP[a/x]}v:X̂ iMV),a G [s]^(M/1))}•

We unfold the right hand side of the equation, and we obtain:

M {(> } U {(a) ~ t | t G traces{l€{P)[a/x]}v,:X, ^ (i{M')),a G [s]~p(A1/)})-

The claim follows by induction hypothesis and applying the reduct definition.

Let P = t —> P. Then we have that P' = £(f) —» £(P). We prove the following:

traces ([f -* P ly;x^(M '|,)) = M fraces([£(f) -+ £ (P) W - ^ (m')))-

As all symbols in t and £(f) are in overloading relation, and v’ is restricted to values in the
original setting, we have that

y'\= t = ?(()■
The claim follows by induction hypothesis and applying the reduct definition.

7.2 Proof support for C s p - C a s l enhancement 95

The reduct operator over the failures set (ajr) removes the failures which are not present
in the original setting:

&r(failures(l?x :: £(s) £(P)(x : ^(s))]]))
= f c r (f aUur es (px: : s ^>£(P) (x : s) b : X' - +f i (M'))) (**)

where v' : X' —> f>(M') is an arbitrary variable evaluation. This is a consequence of the
condition presented in the traces condition (see (*)) - the healthiness conditions of the
stable failure model requires that the trace component in the failures needs to be present
in the traces.

For the failures condition, we show the following by structural induction on the process
operator P:

faUures(lP}v:X̂ m i)) = ^(failures(l^(P)}v,.x^ m)).

where v'(x : £(s)) = a.(x : s), i.e., v' evaluates only to values reachable under oc.

Again we consider the two cases: Let P =?x :: s —> P. Then P' =?x :: £(s) —> £(P). We
show the following:

failures{l?x :: s -* Pjv:X̂ p(M'\,)) = (failures (I? x :: £(s) -»• ^(P)b-.x^p(M')))-

By the argument in (**) we unfold the right hand side, and obtain

failures(l?x :: s -> P ^ x ^ M 'l ,)) = ^(fa ilu res (px :: s -* £(P)(x : s)W ^ (M '))) -

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to Casl, and we obtain:

failures (I?x :: ~ > Mv:X-»/3(m'|,))*

We then calculate the failures set and we obtain:

{(O.x) | [«]~fW nx = 0}
U { ((a) ' q , X) I (q, X) € f a i l u r e s i [P ([a / x]) ,« 6 [s]~WM,|a }

The claim follows by induction hypothesis and applying the reduct definition.

For the other case, we show the following:

failures([t -> P b . x ^ m ,)) = (failures (l£(t) -> £(P)b-.x^p(M')))-

We unfold the left hand side of the equation. Here, we first apply the evaluation according
to Casl, and we obtain:

fa i lu re s (l tb .x -> p {M '\ ,)

We then calculate the failures set and we obtain:

{(IOl0:0^j3(M/) '^) I Mv:X->0 (M'|,) ^ ^ ^ e F(Alph(M' |,)^)}
u I 0 ?/^) £failures(lP}V:X^ p {M v)}-

96 Chapter 7 Proof support for C s p - C a s l

We unfold the right hand side and calculate the failures set:

^ ({ ([() L ' : X ^ j 3 (M ') '^ /) I E (0Jv':X -»0(M ') ^ Y' , Y ' G F(Alph(M')'/)})
u M { « [£ (0]] v ' : X - /3 (M ')) ^ ^ y f) I (^ /y /) e/ai/wrcs([P]v/:X̂ (M0)}).

As above for the traces condition we have that a v ' [=£ = £(£). Then the claim follows by
induction hypothesis and applying the reduct definition. ■

In Section 10.3 we will illustrate, through a case study, how we use the enhancement
patterns introduced in this section.

Summary

Establishing the theoretical framework for Csp-Casl development notions is not useful
in practice if not accompanied by tool support. In this chapter we have presented tech­
niques to discharge proof obligations that could arise from the development notions of
Csp-Casl.

On the refinement side of CSP-CASL specifications, we established an approach based on
a decomposition theorem. Such decomposition theorem allows us to prove Csp-Casl re­
finement, first by reasoning about data refinement and then by process refinement. Based
on this approach we are able to re-use existing tools to discharge proof obligations.

On the enhancement side of Csp-Casl specifications, we have proposed two enhance­
ment patterns that allow us to capture the notions of adding new features to existing
specifications.

(CHAPTER . . . 8)

Property verification in C s p -C a s l

Contents
8.1 Deadlock analysis in Csp-Ca s l 97
8.2 Livelock analysis in Csp-Ca s l100
8.3 Sum m ary103

I N this chapter we present techniques to prove interesting properties of CSP-CASL
specifications. In particular we study deadlock and livelock analysis in the Csp-Casl
context. We show how we use the Csp-Casl refinement notion to prove that proper­

ties specified in the abstract specification are inherited by the refined specification.

Throughout this chapter, on the syntactical level we make the following assumption: Let
Sp = (D,P) and Sp = (D',P') be two Csp-Casl specifications and a : L(D) —* L(D') be
the Csp-Casl data logic signature morphism. Let Alphabet (P) and Alphabet (P') be the set
of the communication alphabets used in the processes P and P' respectively. We assume
that Alphabet(P') C a (Alphabet (P)), where ol is the alphabet translation (see Section 6.1).
Such assumption is necessary in order to make sure that the inverse translation k is always
defined. We call such property the alphabet condition.

8.1 Deadlock analysis in Csp-Casl

In this section we show how to analyze deadlock freeness in the context of Csp-Casl.
To this end, first we recall how deadlock is characterized in CSP (see Section 2.2). Then,
we define what it means for a Csp-Casl specification to be deadlock free. Finally, we
establish a proof technique for deadlock freeness based on Csp-Casl refinement, which
turns out to be complete.

We recall that in the Csp context, the stable failures model T is best suited for deadlock
analysis. Deadlock is represented by the process STOP. Let A be the alphabet. Then the

97

98 Chapter 8 Property verification in C s p - C a s l

process STOP has denotation

({<>}/{(() /X) I X C / ^ g P ^ x P ^ x P ^))

in the stable failure model T , i.e., the process STOP can perform only the empty trace, and
after the empty trace the process STOP can refuse to engage in all events. In CSP, a process
P is by definition deadlock free if and only if

Vs G £ failures(P).

In other words: Before termination, the process P can never refuse all events; there is
always some event that P can perform.

8.1.1 Deadlock definition in Csp-Casl

A Csp-Casl specification has a family of process denotations as its semantics. Each of
these denotations represents a possible implementation. We consider a Csp-Casl spec­
ification to be deadlock free, if it enforces all its possible implementations to have this
property. On the semantical level, we capture this idea as follows:

D e f i n i t i o n 8 .1 .1 Let (d ^ M e / be a family of process denotations over the stable failures model,
i.e.,dM = (Tm,Fm) e T(A lph(M)) for all M e 1.

• dM is deadlock free if (s,X) € Fm m d s € Alph(M)* implies that X ^ A lp h (M Y .

• is deadlock free if for all M E l it holds that dM is deadlock free.

Deadlock can be analyzed trough refinement checking; that is an implementation is dead­
lock free if it is the refinement of a deadlock free specification.

T h e o r e m 8 .1 .2 Let Sp = (D, P) and Sp = (D',P') be two C sp-Casl specifications. Let
Sp Sp'. Let the alphabet condition holds, i.e., Alphabet(P') C a (Alphabet (P)). If Sp is
deadlock-free, then so is Sp'.

PROOF. Let (d M) m e Mod (d) a n d (^ M 'W eM od p ') fa m ily o f process denotations of
Sp = (D ,P) and Sp = (D',P ') respectively. The proof is carried out by contraposition.

Let (d'M,)M’eMod(D') contains a denotation with deadlock. From the refinement argument
we know that:

Mod(D')|crC Mod(D)
and VM' G Mod(D'). dM% = (TM%,FM' | J ^)•

We show that dM>\a = (Fm'I^-Fm' |r) contain a denotation with deadlock. Let M e l ' such
that dL- = (J'—'FLP) with (s', Alph(M)^) G PC, i.e., dC is a deadlocked process denotation.
We unfold the reduct definition over the stable failure model T\

= ({s G Aiph(M'\ay s | a* / (s) G r _ }/
{(s, X) G Alph(M'\a)*s x F(Alph(M'\ay) \
exists (s',X ') G P ^ with a*^(s) — s' and tfp(X) = X' D tx.(Alph(M'\a))}).

8.1 Deadlock analysis in C s p - C a s l 99

Since dC is a deadlocked process denotation, we have that X' = A lph(M)^. Unfolding the
definition of stable failure refinement we have that

&t (TLj) C Tjj^ a n d &(F'M) C

It follows that (s, Alph(M) this means that dC is a deadlocked process denota­
tion. Hence, (d^M ei contains a denotation with deadlock. ■

Following an idea from the Csp context, we formulate the most abstract deadlock free CSP-
C a s l specification over a subsorted C a s l signature E = (S, TF, PF, P, <) - see [Mos04] for
the details - with a set of sort symbols S = {si,. . . ,s„}, n > 1 :

ccspec DFs =
data

. . . declaration of Z . . .
process

DFS = n s;S(!x :: s -► DFS) n SKIP
end

Here, the process DFs can either internally choose to successfully terminate, or behave
like \x :: s —» DF$. The latter, internally chooses an element x from the sort s, engages in it,
and then recursively behaves like DFs• We observe:

Lemma 8.1.3 DFs is deadlock free.

P ro o f . Let (<2/m)m€7 be the denotation of DFs over the stable-failures model,
where df^ = (Tm ,Fm)• For all M G I holds:

Tm = Alph(M)*s
Fm = {(t,X) | t e Alph(M)*, X C Alph(M) V 3 a e Alph(M). X C A lph{M Y - {«}}

U { (f~ (/) ,Y) | t e Alph(M)*,Y C A lph{M Y).

That is after a non-terminating trace t, DFs never has AlphlM)^ as its refusal set. Hence,
DFs is deadlock free. ■

This result on DFs extends to a complete proof method for deadlock freeness in Csp-
Casl:

T h eo re m 8.1.4 A C sp-C asl specification (D,P) is deadlock free if and only if
DFs {D,P)-

PROOF. Let (rf/M)McMod(E) aRd (^M')M'eMod(D) be the family of process denotations of
DFs and (D,P) respectively. We show both sides of the equivalence:

=>) Let (^M')M'GMod(D) be deadlock free. We apply the decomposition theorem (Theo­
rem 7.1.1) and prove first the data refinement and then the process refinement. The
data refinement holds, as the model class of DFs consists of all Casl models over
E.

100 Chapter 8 Property verification in C s p -C a sl

For the process refinement we show that for all M' 6 Mod(D) it holds that:

dfM = (Tm'/Fm') Ejf = dM>

To this end we show that VM, C Tm1 and F'M, C FM> holds. The trace inclusion is
trivial, as VM = A lp h (M 'y ^ , i.e., the set of traces of DF^ consists of all possible
traces. The inclusion of the failures set holds for the similar reason: In the case of
t being a non-terminating trace, i.e, t e Alph(M')*/ then the refusal set X needs to
be a proper subset of Alph{M’Y ~ otherwise (^)M'eMod(D) contains a deadlocked
denotation.

Thus, the failure set is also included in the failure of DF^.

^=) If DFs (D,P), Lemma 8.1.3 and Theorem 8.1.2 imply that (D,P) is deadlock free.

Livelock analysis in Csp-Casl

For concurrent systems, divergence (or livelock) is regarded as an individual starvation,
i.e., a particular process is prevented from engaging in any actions. As described in Chap­
ter 2, in CSP, the failures/divergences model M is considered best to study s)^stems with
regard to divergence. The CSP process DIV represents this phenomenon: immediately, it
can refuse every event, and it diverges after any trace. DIV is the least refined process in
the C-jsj- model.

In the failures/divergences model JV, a process is modeled as a pair (F, D). Here, P repre­
sents the failures, while D collects all divergences. Let A be the alphabet. The process DIV
has

x P(A^),A*^) e P(A*/ x P(A’O) x P(A*^)

as its semantics over the failure/divergences model A f .

Following these ideas, we define what it means for a Csp-Casl specification to be diver­
gence free: Essentially, after carrying out a sequence of events, the denotation shall be
different from DIV.

D efinition 8.2.1 Let (dM)Mei he a family of process denotations over the failure divergence
model, i.e, dM = (F m , F) m) £ A f (Alph(M)) for all M e l .

• A denotation dM is divergence free if and only if:

C.l Vs e Alph(M)*.{(t ,X) I (s~ f,X) e F m } y Alph{M)*s x P (A lph(M Y) or

C.2 Vs e Alph(M)*.{t | (s ^ t) e Dm} ± Alph{M)*^.

• (^m)mg/ is divergence free if for all M e I it holds that dM is divergence free.

As in the case of analysis for deadlock freeness, also the analysis for divergence freeness
can be checked trough refinement, this time over the model Af.

8.2 Livelock analysis in C s p -C a sl 101

Theorem 8.2.2 Let Sp = (D ,P) and Sp — (D',P') be two C s p - C a s l specifications. Let
the alphabet condition holds, i.e., Alphabet(Pr) C a(Alphabet(P)). Let Sp Sp'. If Sp is
divergence free, then Sp' is divergence free.

PROOF. Let (^m)mgmocI(d) aRd (^mOm'sMocKd') be the family of process denotations of
Sp = (D,P) and Sp = (D', P') respectively. The proof goes by contraposition.

Let (rfJw,)M/eMod(D/) contains a denotation with divergence, i.e., there exists a model M G
Mod(D') such that rfC = (F* DC) is divergent. Then, conditions C .l and C.2 do not hold
for dLr.M

We show that { d M) M e M o d (D) contains a denotation with divergence, i.e., there exists a
model N G Mod(D') 1̂ such that djj = is divergent. From the refinement ar­
gument we know that:

Mod(D')|c7C Mod(D)
and VM' G Mod(D'). dM% = (F^V DM,|J Qm = &js(d'M,).

Let M G Mod(D') such that dC = (F ^ D C) is divergent, i.e., there is s' G Alph(M) with

{(F,X') | (s 'A l',X ') G &(F^)} = M ph(M)* ' x P(^/p/i(M)/)
and {F | (s '^ F) G &(DC)} = Alph(M)*'/'.

Such trace s should already exist in d ^ , due to the refinement argument. Hence, in d ^
there exist s G Alph(M |p-) with a*/ (s') = s, a / *(F) = t and (X') = X such that

{(f,X) | (s~ f,X) G F ^ } = Alph(M M * ' x P(Vl/p/z(M \ay)

and { t \ { s ^ t) e D ^ a} = A lph(M \CTy ^) .

Here, the translation a. gives the full alphabet, thanks to the reduct property (Theorem 6.1.8).
Therefore, (^M)MeMod(D) contains a divergent process denotation.

As for the analysis of deadlock freeness we formulate the least refined divergence free CSP-
C a s l specification over a C a s l signature X with a set of sort of symbols S — { si,. . . ,s„}
with n > 1.
ccspec DivF̂ =

data
. . . declaration of £ . . .

process
DivF = (STOP n SKIP) n (n s.s ! ̂ :: s -> DivF)

end

DivF may deadlock at any time, it may terminate successfully at any time, or it may per­
form any event at any time, however, it will not diverge.

^ O '

LIBRARY

102 Chapter 8 P roperty verification in C s p - C a s l

Le m m a 8.2.3 DivF^ is divergence free.

PROOF. Let be the semantics of DivFe over the failures/divergences model N
w heredM = (F^,D M) e Af{Alph(M)).

We compute the failures and divergence component of Here, we need to compute the
fixed point of DlvFg. For the model J\f this is given by the componentwise intersection

n s = ({nF | (f , d) e s } , { n D | (f ,d) e s})

S is the directed set of process under the refinement in the model J\f. For the failures
component, we have for all models M that: F^ = Alph(M)*^ x ¥(A lph(M)^). As for
the divergences component the intersection gives the empty set. Hence, we have that
d-M — (Alph(M)*''' x P (Alph(M)'/'),<Z)). Such a denotation fulfills the condition C.2 of the
divergence free definition. Thus, DjvFe is divergence free. ■

Putting things together, we obtain a complete proof method for divergence freedom of
Csp-C asl specifications:

T h e o r e m 8.2.4 A C sp-Casl specification (D ,P) is divergence free if and only if
DivFe (D, P). Here E is the signature ofD.

PROOF. We show both directions of the equivalence:

=£>) Now let (D,P) be divergence free. Assume that DivFe 7^ ^ (D,P). As the data part
of DivFj: refines to D, with our decomposition Theorem 7.1.1 we can conclude that
(D, DivF) W m (D ,P).

Let (dM)MeMod(D) be the semantics of (D,DivF), where dM = {Fm,Dm), and
(^mWmocKD) be the semantics of (D,P), where d'M = (F'M,D 'M). By definition of
process refinement there exists a model M E Mod(D) such that F'M F m or D!M %
Dm-

As Fm = Alph(M)*^ x F(Alph(M)'/r), see the proof of Lemma 8.2.3, we know that
F'm Q Pm holds. Therefore, we know that D'M % Dm- As Dm = 0 , there exists a trace
t E D'm not ending with / , as the healthiness condition D3 of the failures/diver­
gences model asserts that for any trace u' = u ^ { /) E D'M also u E D'M. Applying
healthiness condition D1 we obtain E D'M for all t' E Alph(M)*^. With healthi­
ness condition D2 this results in

{ (f ~ f ' ,X) | f 'E i /p / i (M)* / , X E P (^ (M) /) } C F ; .

Hence, d'M is not divergence free, as D'M violates C.2 - contradiction to (D,P) diver­
gence free.

<=) If DIVFE (D, P), Lemma 8.2.3 and Theorem 8.2.2 imply that (D ,P) is divergence
free.

8.3 Summary 103

Summary

In this chapter we have presented proof techniques for the verification of properties of
Csp-Casl specifications. Specifically, we have shown that refinement over certain CSP
denotational models preserve some properties. This concept allows to verify properties
already on abstract specifications - which in general are less complex than the more con­
crete ones. The properties, however, are preserved over the design steps.

We have illustrated how to analyze deadlock and livelock freeness in the context of Csp-
Casl. To this end, we have first defined what it means for a Csp-Casl specification to
be deadlock or livelock free . Finally, we have established a proof technique for deadlock
and livelock freeness based on Csp-Casl refinement, which turns out to be complete.

PART III

C s p - C a s l based testing

(CHAPTER ...9)

Theory of testing from C s p -C a sl

C o n te n ts __
9.1 Challenges for Csp-Casl b a se d testing ...107
9.2 Test ca se e v a lu a tio n ..110
9.3 Syntactic characterization for colouring Csp-Casl test cases 112
9.4 Test ca se execution ..120
9.5 Sum m ary .. 123

IN this chapter we describe the theory of testing from Csp-Casl specifications. We first
illustrate the general idea of our approach. Here, we present the 'main challenges'
of setting up the theory for Csp-Casl using the example of a binary calculator. In

Section 9.2 and 9.4 we describe the theoretical framework of our approach.

The notions and results presented in this chapter have been published in [KRS07].

9.1 Challenges for Csp-Casl based testing

Software testing is recognized as a necessary means of program verification. Even when
other program verification techniques such as static analyses and formal proofs are em­
ployed, testing is still considered necessary to complement these techniques, and to build
greater confidence in the system being developed.

In contrast to the approaches mentioned in the background Chapter 5, here we are using a
specification language w ith loose semantics which allows under-specification, refinement
and enhancement. Hence, a proper testing theory which exploits such aspects is needed.

When dealing with testing based on formal specifications, there are some inherent chal­
lenges to be solved. We believe that these challenges are common to all sufficiently ab­
stract specification formalisms. In order to illustrate such challenges, we consider as an
SUT the binary calculator example described in Section 4.1 (Example 4.1.1). Here, the
abstract specification (BCalcO) is step by step refined to a more concrete specification.

107

108 Chapter 9 Theory of testing from C s p - C a s l

A testing framework should be capable to deal with incomplete and nondeterministic
specifications. Basically, for C s p -C a sl based testing we shall define:

• what is a C s p -C a s l test case,

• the expected result of a test case with respect to a C s p -C a s l specification (the test
evaluation), and

• the execution result of a test cases with respect to a (black box) SUT (the test verdict).

A first challenge is to therefore to define these notions such that the evaluation of test
cases reflect the development notions of C s p -C a sl specifications. This means that test
suites can be incrementally extended and refined according to the development notions as
presented in Chapter 6 .

For the calculator example, we recall the first high-level specification (specified in Chap­
ter 4):

ccsp ec B C a l c O =
d a ta s o r t Number

o p s 0,1 : Number;
 + : Number x Number —>? Number

c h a n n e ls Button : Number;
Display: Number

p ro cess P0 : Button, Display ;
P0 = Button ? x :: Number —>P0 n Display ! y :: Number —>P0

e n d

Even for such loosely specified systems we would like to be able to derive meaningful
tests. For example, we could design test cases which are used for setting up the interface
between testing system and SUT. The testing framework should be able to cope with such
a situation.

A more refined specification could require that the pressing of buttons and the display of
digits strictly alternates:

PI = Button?x :: Number —» Displayly :: Number —» PI

In the process PI each input is directly followed by some output. For such a specification,
we would like to be able to test exactly the mentioned property, namely that after each
press of a button some digit is displayed.

An even more refined version requires that the first displayed digit is echoing the input,
and the second displays the result of the computation:

P2 = Button?x :: Number —> Displaylx —> Button?y :: Number
— Display! (x + y) —► P2

Here, we would like to test for instance that after input of x the display shows x, and if
after input of x and y the display shows the value of the term x + y. Such refinement

9.1 Challenges for C s p - C a s l based testing 109

steps could occur, for example, when use cases which are derived from customer's wishes
are integrated into the formal specification. Ideally, we would like to be able to re-use
test cases on a more detailed level which have been designed for a more abstract level;
since the refined specification is more precise than the abstract one, the outcome of testing
should also be more precise. In particular, each test case developed for PI should be
reusable for P2.

In P2 it is still left open what the value of x + y shall be. We haven't yet specified the
arithmetic properties of addition. Such situations of under-specifications occur, e.g., in
object-oriented design. Here, it is often the case that library functions are used whose ex­
act functionality is specified at a later stage. As presented in Chapter 4 (Example 4.2.4),
we add some suitable axioms to the data part.

ccsp ec BC a l c 3 =
d a ta so r t Number

o p s 0,1 : Number;
 + : Number x Number —»? Number

a x io m s '0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1
c h a n n e ls Button : Number;

Display : Number
p ro c e ss P3 : Button, Display;

P3 =Button?x :: Number —> Displaylx
—» Buttonly :: Number —> Display](x + y) —>■ P3

e n d

In BCALC3, the specification does not constrain the SUT in the result of the + operator.
This is because we haven't specified yet what happened in the case of 1 + 1. Such a situ­
ation might for example arise when the functionality of border cases or exceptions is not
constrained in the basic specification. E.g., in many programming languages the value of
an integer variable in case of overflow is not defined. However, we want to design test
cases which cover the normal, non-exceptional behaviour, and to re-use these test cases
later on. With such a specification, we expect to be able to test whether the calculator
behaves correctly, e.g., for the input of 0 and 1.

Taking the standard arithmetic CARDINAL from the CASL library of Basic Datatypes [Mos04],
we specify a one bit calculator where 1 + 1 is seen as an arithmetic overflow and therefore
is an undefined term,
ccsp ec BC a l c 4 =

d a ta CARDINAL [op WordLength = 1 : Nat]
w ith so r t CARD INAL > Number

c h a n n e ls Button : Number;
Display : Number

p ro c e s s P3 : Button, Display;
P3 =Button?x :: Number —> Displaylx

—* Buttonly :: Number —> Display](x + y) —► P3
e n d

110 Chapter 9 Theory o f testing from C s p -C a sl

For this specification all models of the data part are isomorphic, and in the process part
there is no internal non-determinism. Such a specification can be completely tested.

Test case evaluation

As mentioned in the previous section each test case reflects some intentions described in
the specification. Here, we introduce a colouring scheme to reflect the intentions of test
cases. Intuitively, green test cases reflect required behaviour of the specification. Red test
cases reflect forbidden behaviour of the specification. A test is coloured yellow if it depends
on an open design decision, i.e., if the specification does neither require nor disallow the
respective behaviour.

D e f i n i t i o n 9.2 .1 Let Sp = (D,P) be a C s p -C a s l specification such that D is consistent, and
let X = (Xs)ses be a variable system over the signature E of the data part D. A test case T is any
C s p -C a s l process in the signature of Sp and the variable system X. The colour of a test case T
with respect to Sp is a value c E {green, red,yellow}, such that

• colour sp(T) = green iff for all models M E Mod(D) and all variable evaluations
v : X —> M it holds that:

1. (Traces condition) traces(lTjv) C fracpsdJPJ®.®^^)) and

2. (Failures condition) for all tr — (t\ , . . . tn) E traces (fT^v) and for all 1 < i < n it
holds that:

{(ti, . . . ,) ,{ t i})£ failures{ IP]®;®-^(M))

• coloursp(T) = red iff for all models M E Mod(D) and all variable evaluations
v : X —> M it holds that:

traces(lTjv) £ fraces([P[0;0_^(M))

• coloursp(T) = yellow otherwise.

In other words: a test case T is green, if all models agree (1) that all its traces are possible
system runs, and (2) the execution of such traces can't be refused. A test case T is red,
if all models agree that not all of its traces are possible system runs and, finally, a test
case T is yellow, if the execution of some possible system run can also lead to failure, or
the process T has a trace which some models consider as a possible system run while
others don't. In analysing red test cases, we only consider the traces condition, because the
C sp semantics only consider refusals for possible system runs. A C s p -C a sl specification
with an inconsistent data part D does not reflect any intention, and, consequently, such a
specification does not lead to any colouring of test cases. The following proposition lists
some simple properties of our colouring scheme.

P r o p o s i t i o n 9 .2 .2 Let Sp = (D,P) be a C s p -C a s l specification. The following holds:

1. coloursp(STOP) = green.

9.2 Test case evaluation 111

2. With the specification Sp = (D, STOP) all test cases different from STOP are coloured red.

3. IfT and T' are test cases such that colour$V{T) = c, colour sp> {T') = d , and
traces([T ']v) C traces(\T\v) for all models M G Mod(D) and all variable evaluations
v : X —► M, then c = green implies c' = green and d = red implies c = red.

P r o o f .

1. The test process STOP gives rise to the empty observation (). Hence, the conditions
for the green colour, (1) and (2) trivially hold.

2 . The trace set of Sp = (D,STOP) is {()}, hence [STOP]v %t Pllv for any
T i=-j STOP. Here, T being semantically different from STOP over the traces model
(=t), carries over also to the other Csp models; i.e., and •

3. For all models M G Mod(D) and all variable evaluations v : X —> M:

• If c = green, i.e., traces(lT}v) C traces(lP}<z>:<z>-*p(M))- Then, it follows

traces(p%) C traces([T y C traces

For every tr = (ti,...t„) G tracesdT'^y), we have tr G traces(IT^), so that
((f] , . .. , tj- i) ,{ tj}) <£ j B t e d P] ^ ^)) follows for every 1 < j < k. Thus
d = green.

• If d = red, then there exists tr G tracesdT']]v) such that tr £ tracesdPl<z>:<z>̂ >p(M))•
But then, since tracesdT'Jv) Q tracesdT^v), we have tr G tracesdT^v) and
traces (IT],,) ^ traces dP}<z>:<z>-+p(M))- Thus, c = red.

We now discuss the main sources of yellow test cases. Typical examples of open design
decisions which lead to yellow test cases are the following:

Internal nondeterminism This means, that one action may have multiple outcomes. Let
us consider the following C s p -C a s l specification:

ccspec N o n D e t e r m in is m =
data sort S

ops a ,b : S
process

Choice = a —> STOP n b —> STOP
end

The order of a and b as a first action is left open. Consider the test case T = a —> STOP.
The traces condition holds, as traces (|[r]v) C traces ([C/zozce]]0 :0 _^(M)). However,
at the first step of Choice neither the execution of a nor the execution of b can be
guaranteed. This is due to the fact that Choice has the failure ((), {«}), this means
that it can refuse to run the event a of T; hence the colour of T is yellow.

112 Chapter 9 Theoiy o f testing from C s p - C a s l

Loose specification In the same way, a heterogeneous model class of the data part can
lead to a yellow test. Take for example the following Csp-Casl specification:

ccspec Loose =
data sorts Signal, Number

ops / : Number —» Number;
0 ,1 : Number;
continue, shutDown : Signal

process
p = if/(0) = 1

then continue —» SKIP
else shutDown —> STOP

end

Here, the signal continue is sent in models where / is, e.g., the successor function.
In other models, / might be the predecessor function and shutDown is sent. If the
interpretation of / is still an open design decision in the current specification, there
are two correct implementations behaving differently.

The second example illustrates also that the classification of a test process as green, red, or
yellow is in general undecidable, as C asl includes full first order logic and arbitrary Casl
predicates are allowed in case distinctions. As mentioned in Section 5.3, this is called the
test oracle problem (see e.g., [Mac00][Mac99]).

9.3 Syntactic characterization for colouring Csp-Casl test cases

Using techniques originally developed in the context of full abstraction proofs for CSP
[Ros98], the semantical definition of colouring test processes presented in the previous
section has an equivalent syntactical characterisation for certain test processes. Here, we
first show a syntactic encoding for the traces condition and then for the failures condi­
tion. Finally, we illustrate some properties of such syntactic encodings in the context of
colouring Csp-Casl test cases.

9.3.1 Traces condition

A test processes T is called linear if it can be written as T = —» . . . —>• tn —> STOP.
Concerning trace inclusion with respect to a linear test process T of length n > 0, we
define the following system of process equations:

9.3 Syntactic characterization for colouring C s p - C a s l test cases 113

Checkr

count(n : Nat)

((P II T)PS1]]---[[RSJ]
IPH

count(n)) \ {A}

if n = 0

then OK -*■ STOP
else a —> count(n — 1)

Here, h ^ 0 is the number of sorts in which T can possibly communicate.

To make this a valid process part of a C sp-C asl specification, we take the original data
part and extend it conservatively, i.e., without losing any model of the data part. To this
end we add a datatype Nat with the standard operations, a free type A consisting only
of the constant a, a free type OK consisting only of the constant OK, and for each of the
finitely many sorts S j . . . S/, in which T could possibly communicate a renaming predicate
RSj : Sj x A with the axiom V x : s,- • R(x,a).

The following Casl specification illustrates how we extend the data specification in order
to make Checkr a valid C sp-Casl specification. We first import the N at specification from
the CASL library. DATA is the data specification of P, with only one sort S.

from Basic /N umbers get N at

spec CheckTData =
N at and Data

then %cons
free type A ::= a
free type OK ::= ok
pred R: S x A
• V x : S • R(x, a)

end

The idea behind Checkr definition is as follows: The synchronous parallel operator || forces
P and T to agree on all communications. Should P agree to execute the communications
t \ , . . . , t n of T in exactly this order, this results in a sequence of n communications. All
these communications are renamed into a via the predicates RSi,A- The process count com­
municates OK after the execution of n a's. Hiding the communication a makes only this
OK visible.

We now show that in order to check the first condition for the green test case we need to
prove that Checkr = r OK —> STOP.

T h eo re m 9.3.1 Given a model M G Mod(D) and a variable evaluation v : X —> M, then the

114 Chapter 9 Theoiy of testing from C s p - C a s l

following holds:
fraces(IT]v) C (races([P]0:0^ WM))

{Checkr}v = r [OK -» STOP]„

PROOF. We prove both direction of the equivalence:

=>) Let M be the model and v : X —> M be the variable evaluation such that traces([T]]v) C
traces() • Then the trace set of the synchronous parallel in Checkr is given
by the intersection of the traces of T and P.

Using the assumption traces ([Tji/) C traces [PJ0 :0 _>£(m))/ we have that,

traces{p}v || [P J W ^ m)) = traces(pjv).

Clearly, traces(p^v\\Rs,}}... [[PSJD = STOP. Thus, we have that,
n tim es

traces (l(T[[Rŝ]\. . . [[Rs J]) \[A]| count (n)]v) = traces ([[a —» „ . —» a -> OK —> STOPjjy).
» tim es

The next step is to hide all the a's; it follows that,

traces(l(a —» . . —>■ a —> OK —> STOP) \ {fljjv) = traces(lOK —> STOP]!,).
?7 tim es

Hence, traces(iCheckrJv) = traces(lOK —> STOPji,).

<=) The proof is done by contraposition. LetM be the data model such that traces{ |T]]i/) £
traces(|P]]0;0^^(M)) for some variable evaluation v : X —> M.

We have that traces([T]v) = {p | p < ([fijv, • • • / Pn]v)}- Then there exists a k e N
such that 0 < k < n with ([fi]v, . . . , [fjJv) G traces ([P j0:0^ (M))
and (p ijv / • • • / fc+i]y) £ tracesdPl<z>:(Z)̂ p(M))- This means in the synchronous paral­
lel we have:

traces([T]v || [P j0:0^ (M)) = traces{\h t* -» STOPjv).

Applying the renaming operators we obtain,

fraces(([T]v || [P]0 :0 -^(m))[[^si]] • • • 1 M) = traces ([a -» STOP}v).
k tim es

Thus, we have that,

k tim es

traces (fa —► —► a —> STOP \[A]\count(n)}v) — fraces([STOP]|v).

Hence, lSTOP}v [OK -> STOP}v.

9.3 Syntactic characterization for colouring C s p - C a s l test cases 115

9.3.2 Failures condition

Concerning the characterisation of the failures condition, we assume that the traces con­
dition for the linear test process T already has been established. Here, we use a technique
based on a refinement checking between two process equations to establish if each event
in the test case is refused or not by a Csp-Casl process.

Let Sp = (D ,P) be a Csp-Casl specification and T = t\ —> . . . —> tn —» STOP a liner test
process. Here, we assume the trace condition holds; that is for all M G Mod(D) and all
variable evaluation v : X —> M it holds traces(pJv) C traces[P]® :® ^^))- Let Alph(M) be
the alphabet of communication constructed over the model M G Mod(D). The main idea
is to test locally if each event tj of the test case T is accepted or refused by the process P.
We call this test Local Refusal Test (Lrt).

In order to perform a local refusal test at position i of the test case T defined over a Csp-
Casl specification Sp = (D ,P), 1 < i < n, we construct the following processes:

T S T O P

RTest, = (P || P re te s t ,) || Tj
P reT est, = ti —> . . . —» f,-_i -* RUNd

CHECKERf(n) = if n = 1
then tj —> S TO P

______________ else((I lqf-s x :: s —> Checkerj(n — 1)) f~l ST O P)

The process Tj represents the so far tested events of T. This mean that the trace (t \ , . . . ,ti- i)
is a possible trace of P and that each event t\ , . . . , f,_\ is not in the refusal set of P. Now,
the purpose is to test if the event f, is refused or not by P. In order to do this, we need
to check the refinement C hecker,(/) RTest,. If the refinement holds, it means the
event tj cannot be refused by P otherwise the event tj is in the refusal set of P.

In RTest, we run the process P in parallel with PRETEST/ and the process Tj. The process
P reT est, allow us to make progress in the process P until the point we would like to
perform the local refusal test. Here, the process RUNd is of the form:

RUNd = n seS?x :: s RUND □ SKIP

It is a process which is always prepared to communicate an event from s G S or to termi­
nate successfully. The process CHECKER, (n) is parameterised by the trace length n of the
test case T. Such process, recursively chooses internally an event x :: s and engages in it;
otherwise, it has the possibility to internally choose to deadlock. Here S is the sort set of
the signature E of the data part D.

Assuming the traces condition for the test case T holds, the local refusal test is determined
by the decision procedure described in Figure 9.1.

116 Chapter 9 Theory o f testing from C s p - C a s l

for(i = 1 , i ^ n,i + +){
if (Checker, (/) RTest,- holds)

th en ((fi,. . . , f,_i), {tj}) £ failures(P)

else((fi,. . . , f, — 1), {tj}) 0 failures(P)
i __

Figure 9.1: Local refusal test - Lrt.

D efinition 9.3.2 (Successful Lrt) We say that a local refusal test (Lrt) of a test case T
for a Csp-Casl process P is successful, if for all events tj ofT the refinement Checker,- (i)
RTest,- holds. We say an Lrt of a test case T for a Csp-Casl process P is not successful if exists
an event tj o fT such that the refinement Checker,- (i) RTest,- doesn't hold.

In the following theorem, we prove that in order to check for the failures condition of a
test case we need to check the local refusal test. Here, we illustrate for a single event f, at
the position i of the test case.

T heorem 9.3.3 Let Sp = (D,P) be a Csp-Casl specification.
Let T — L —> f„ —> STOP be a C sp-C asl test case for Sp. Then for all 1 < i < n, the
folloiving holds:

(D, Checker,-(z)) (D, RTest,-)

for all M £ Mod(D) and v : X —* M. ((f i,. . . ,f,_ i), {tj} ^ failures (IP]\(z>:<Z)-+p(M))-

PROOF. We show both directions of the equivalence.

==>) (By contradiction.) Let (D, CHECKER,•(/)) (D, RTest,-). LetM £ Mod(D) and
variable evaluation v : X —> M. Then, from the process refinement over the stable
failure model we havefailures([[RTest,-]]„) C failures(lCHECKERj(i)^v) .

We now calculate the failures set of Checker,-(i):

f a i l ures (l CHECKERj (i) l v) = Ui</<,-2 {((«i/• • -,ah l)t X) \ {al f . . . , a h l) £ Alph(M)*
and X C Alph(M)^}

U { ((f l i , . . . , X) | £ Alph(M)*
and tj <£X C AlphlM)^}

U { ((« i,... ,aj-i,tj),X) | £ Alph(M)*
and X C Alph(M)'/ }

We have that ((fi,. . . ,), {£,-}) & failures([RTest,-JV/ since we have that
failures([[RTest,-]|v) C failures([[Checker,-(z)]v) and the event tj is not in the refusal
set of Checker,-(z).

9.3 Syntactic clmracterization for colouring C s p - C a s l test cases 117

Assume that ((t \ , . . . , £,_ f), {£,-}) G failures([P]®:®—̂ (m))/ then it follows that
((fi , . . . , {£,}) G /fli/wres([RTest,-]]v). The latter is a contradiction to our earlier
assertion. Hence, ({h , . . . , {£,-}) £ failures{\P\(Z),(Z)̂ M)).

) (By contradiction.) Let ((v # ^) , . . . , v**(̂ I-_1))/ {v#(f,-)}) £/«z/wres([[Pj0:0_ ^ (M)).

Assume that (D, Checker,-(z)) (D, RTest,). It follows that
failures ([[RTest,|v) failures (lCHECKERj(i)}v). This means that there is a failure set
in RTest, which is not present in the failures set of Checker,-(z).

This is the case, when ((t\ , . . . , £,-_i), {£,-}) G failures^[RTest,-]„). It follows that
((fi , . . . , f i), {£,-}) G /«i/wrcs([P]0 .0 _̂ (̂M)), which contradicts our assertion. Hence,
(D ,C hecker,(z)) (D,RTest,-).

From the above theorem we obtain the following corollary, which basically states that
checking for the failures condition boils down to test the 'successfulness' of all local refusal
test.

C o r o l l a r y 9.3.4 Let Sp = (D,P) be a Csp-Casl specification.
LetT = to —» . . . —> f„ —> STOP be a C sp-C asl test case for Sp. Let the traces condition holds
for T, i.e., for all M e Mod(D) and all variable evaluation v : X —> M it holds traces(|T]]i/) C
traces ([PJ0 :0 -̂ /3(m))- Then the following holds:

1. Lrt is successfid if and only if colour $p{\T \v) = green.

2. Lrt is not successful if and only if colour sp(lT}v) = yellow.

The following corollary summarizes the colouring of a Csp-Casl test process using the
syntactic characterization introduced in the last sections.

C o r o l l a r y 9.3.5 Let Sp = (D ,P) a Csp-Casl specification. Let T = fi —> . . . —► tn —»
STOP be a linear test process for Sp, and let Var{T) — {x\ : s i , . . . ,x k : sk} be the variables
occurring in T. Then the colour of T is:

• Green iff the following two conditions holds:

a) ({CheckTData then op x\ : s i, . .. ,x k : sk},Checkj)
= T

({CheckTData then op* i : s i , . . . , x k :sk} ,O K —► STOP)
and

b) a) => (D, Checker,-(z)) (D, RTest,-) holds for all 1 < z < n.

118 Chapter 9 Theory o f testing from C s p -C a s l

• Yellow iff the following two conditions holds:

a) ({CheckTData then op x-i : s i , . . . ,xk : sk], Checkr)
= r

({CheckTData then op xi : s i , . .. ,xk : sk},OK —> STOP)
and

h) a) =>■ exists an i such that (D, Checker,■(/)) t&jt (D, RTest,).

Moreover, for a monomorphic data D, the colour ofT is:

1. Green iff the following two conditions holds:

a) ({C heckT D ata then op x\ : s-^,... ,xk : sk}, Checkr)
= T

({CheckTData then o p x\ : s \ , . . . , x k : sk},OK -> STOP)
and

b) a) =>- (D, Checker,•(/)) (D, RTest,) holds for all 1 < i < n.

2. Red iff the following condition hold:

a) ({CheckTData then op ^ : s i , . . . , xk : s/t), Checkr)

({C heckT D ata then op x\ : s \ , . . . , x k : ŝ -}, OK —> STOP)

3. Yellow iff the following two conditions holds:

a) ({CheckTData then op x\ : s \ , . . . ,x k : sk},Checkr)
= T

({CheckTData then op X] : s \ , . .. ,xk : sk},OK —» STOP)
and

b) a) => exists an i such that (D, Checker,-(/)) 7^ (D, RTest,).

Having a monomorphic data specification and a deterministic process, test cases for such
specifications are coloured either green or red and not yellow. Intuitively this means that
the specification has already resolved all the open design decisions, and for the process
part means we do not have an internal non-determinism.

Colouring a test case is performed using Csp-Casl-Prover. Here, we use syntactic en­
coding for the traces and failures condition to prove the colour of a test case with respect to
a Csp-Casl specification. In the following example we illustrate a colouring proof script
in Csp-Casl-Prover. Here, we use the binary calculator specification.

Example 9.3.6 Let us consider BCalc4, and the following test case Tl:

T1 = ButtonlO —» Displayl0 —» ButtonW —> Display'. 1 —> STOP

9.3 Syntactic characterization for colouring C s p - C a s l test cases 119

We show a script of Csp-Casl-Prover that proves colourBCaM{T3) = Green. For the latter
we need to show that the traces condition and the failures condition holds.

For the traces condition, we use Theorem 9.3.1 to prove the traces condition. Here, we
need to show:

Checkr = t OK -> STOP

In order to encode the syntactic encoding Checkr, we enrich the event set by adding the
events 'A' and 'OK':

| d a ta typ e Event = Button Number I D isp la y Number I A I OK

Here, Button Number and Display Number are the two channels used for the communica­
tion. In the following we encode Checkr:

c o n sts CheckT :: "('p , Event) proc"
d efs CheckT_def : " TestC olour ==

(((P3 I I T1) [[MyRenaming]])
l[{A}]l

Count4) — {A)"

Here, MyRenaming = {(x ,A) \ x € L} is the process which renames every event to 'A',
and Counts :

I co n s t s Count4 :: "('p , Event) proc"
d efs Count4_def: " Count4 == A —> A —> A —> A —> OK —> STOP"

The equations Checkr =r OK —» STOP can be shown by systematically proving some
auxiliary lemmas:

1) P3 || T1 = T T1 Parallel_one
2) Tl[[MyRenaming]] = 7- A - > A - * A —>A^> STOP Renaming
3) A —> A —> A A —> STOP = r CountA Parallel-two
4) CountA \ {A} = 7- OK —> STOP Hiding

In step 1, we prove that indeed the process P3 agree on the events prescribed in the test
case Tl. In step 2, we rename all the actions to A's. In step 3, the process CountA verifies
that there are four agreed actions and communicates the event OK. In the last step we
hide all the A's in order to make the event OK visible.

All these steps are formalized in Csp-Casl-Prover in the following script:

theorem T raceC ondition : "CheckT =T OK —> STOP"
a p p ly (simp add: CheckT_def)
apply (cspT_simp P a r a l l e l _ o n e)
a p p ly (Simp add: T l_ d e f)
a p p ly (cspT_simp Renaming)
apply (simp add: Count4_def)
apply (cspT_simp P a r a l l e l _ t w o)
apply(cspF _sim p H iding)

done

120 Chapter 9 Theory o f testing from C s p -C a sl

The proof is discharged using tactics developed in the context of Csp-Prover. Such tactics
use Csp algebraic laws in order to prove the equivalence of processes and the process
refinement by syntactically rewriting process expressions.

In theorem TraceCondition, the command (simp add:__) allows us to unfold the defini­
tion of the different processes, e.g., CheckT_def. The tactic (cspT_simp) takes care of
the rewriting process. This tactic takes as a parameter the name of a lemma to be applied,
e.g., Parallel-one. These four lemmas can be proven following a systematic approach. The
Csp-Prover tactic (cspT_simp) is usually able to prove simple equations. Adding a
'+ ' to a proof command triggers its repeated execution till it fails. The detailed proof script
of these lemmas is reported in Appendix A.3.

We then prove that the failures condition holds. Here, we have to make sure that the
Lrt for each event is successful. Let us consider the Lrt for the first event (Buttonl0), the
following proof script illustrate the steps to prove that the Lrt is successful.
theorem LRT_ButtonO: "Check_ButtonO <=F RTest_ButtonO"

ap p l y (u n f° ld Check_ButtonO_def RTest_ButtonO_def)
a p p ly (cspF_a u t° I auto I cspF_hsf I ru le cspF_decompo) +
apply (r u le c s p F _ rw _ r ig h t)
apply (r u le cspF_decompo)
apply (simp)
apply (r u le cspF_IF)
apply (cspF_auto I auto I ru le cspF_decompo I ru le c s p F _ I n t _ c h o i c e _ l e f t l) +

done

Here, in Check_ButtonO and RTestJButtonO we encode the processes Checker and RTest
respectively for the Lrt of the first event. ■

Test case execution

Here, we define the execution of a test process with respect to a particular SUT. The test
verdict is obtained during the execution of the SUT from the expected result defined by
the colour of the test process.

A point of control and observation (PCO) V = (A , ||...||, V) of a SUT consists of

• an alphabet A of primitive events which can be communicated at this point,

• a mapping || • || : A — ► 7e(X) which returns for each a £ A a term (usually a
constant) over L, and

• a direction D : A — > {tslsut, sutlts}.

tslsut stands for signals which are sent from the testing system to the system under test,
and sut2ts stands for signals which are sent in the other direction. In telecommunications,
the mapping ||...|| is called a coding rule. For the data type definition language ASN.l
(Abstract Syntax Notation One) [DubOO] there are standardized coding rules for many
frequently used PCOs. In Section 12.4 we show a concrete use of ASN.l as coding rules.

9.4 Test case execution 111

We now define conditions for a test case to be executable.

D e f i n i t i o n 9 .4 .1 (Ex e c u t a b l e t e s t c a s e) A test case T is executable at a PCO V with
respect to a specification Sp = (D, P), if

1. for each term t occurring in T there is exactly one at e A such that at and t are equal,

2. for a, b G A , if \\a || equals \\b\\ then a and b are the same primitive event.

Condition 1 ensures that each term in the test case corresponds to some observable or
controllable event in the SUT. This is the case if at and t are of the same sort and

D |= (VX.IMI = t)

Here, X is a variable system including all variables of ||fl/|| and t. Since in general equal­
ity of C a sl terms is undecidable, in general it is undecidable if an arbitrary test case is
executable with respect to a PCO. However, for all practical purposes equality is easily
decidable. Condition 2 ensures that different observations or control events represent dif­
ferent values.

For test execution, we consider the SUT to be a process over the alphabet A, where the
internal structure is hidden. Hence, the SUT can engage in communications at the PCO.
Communications a with D(a) = sutlts are initiated by the SUT and are matched by the
testing system with the expected event from the test case. Communications a with D(a) =
tslsut are initiated by the testing system and cannot be refused by the SUT. Figure 9.2
illustrate the notion of test direction.

\ S U tltS s' x

Test Environment

tslsut

SUT
V_____

Figure 9.2: Direction of test events.

If the SUT sends an event without a stimulus, the SUT deviates from the specified be­
haviour. If the SUT internally refuses some communication, this can only be observed by
the fact that it doesn't answer, i.e., the testing system waits for some event sutlts, but this
event does not happen. Testing is concerned w ith safety properties only; thus we say that
in such a case a timeout happens.

The test verdict of a test case is defined relatively to a particular C sp -C a sl specification and
a particular SUT. The verdict is either pass, fail or inconclusive. Intuitively, the verdict pass
means that the test execution increases our confidence that the SUT is correct with respect
to the specification. The verdict fail means that the test case exhibits a fault in the SUT, i.e.,
a violation of the intentions described in the specification. The verdict inconclusive means
that the test execution neither increases nor destroys our confidence in the correctness of
the SUT.

122 Chapter 9 Theory o f testing from C s p -C a sl

Let T = (ti —» t2 —> ■ ■ ■ —> t„ —» STOP) be a linear test case. Assume colour(T) = c
with respect to a specification (D,P). Assume further that T is executable at a PCO V =
(A, 11 — 11, T>). The test verdict of the test case T with colour c at the PCO V relatively to an
execution of the SUT is defined inductively as follows:

• If n = 0 the colour c of the test case yields the test verdict as follows: if c — green
the test verdict is pass, if c = red the test verdict is fail, if c = yellow the test verdict is
inconclusive.

• If n > 0, let a be the primitive event with ||a|| equals f]. Assume that the colour c is

- green: If the direction D(a) = sut2ts and we receive a, then we inductively de­
termine the test verdict by continuing to execute the SUT against the remaining
linear test case (t2 —> . . . —> tn —> STOP).

If the direction D(a) = sutlts and we receive some b different from a or if a
timeout occurs, then the test verdict is fail.

If the direction D(a) — tsltsut and we receive an event from the SUT within the
timeout period, then the test verdict is fail.

If the direction D(a) = tslsut and we do not receive an event during the timeout
period, then we send a to the SUT and obtain the test verdict by continuing to
execute the SUT against the remaining linear test case (£2 STOP).

- red: If the direction D(a) = sutlts and we receive a we obtain the test verdict
by continuing to execute the SUT against the remaining linear test case (£2 —>
. . . —> £„ —» STOP). If the direction D(a) = sutlts and we receive some b
different from a or if a timeout occurs, then the test verdict is pass.

If the direction D(a) = tsltsut and we receive an event from the SUT within the
timeout period, then the test verdict is pass.

If the direction D(a) = tslsut and we do not receive an event during the timeout
period, then we send a to the SUT and obtain the test verdict by continuing to
execute the SUT against the remaining linear test case (£2 —> . . . —>£« —> STOP).

- yellow: the test verdict is inconclusive.

The verdict of a yellow test case is always inconclusive and does not require any execution
of the SUT. Recall that a yellow test case reflects an open design decision. Consequently,
such a test case can neither reveal a deviation from the intended behaviour, nor can it
increase the confidence that the system is apt to its intended use. After taking this de­
sign decision, however, i.e., turning the property into an intended or a forbidden one, the
colour of the test will change and we will obtain pass or fail as a verdict.

9.5 Summary 123

Summary

In this chapter, w e have presen ted a theory for the eva lua tion of test cases w ith respect to
C s p -C a s l specifications. The m ajor innovations are the separation of the test oracle and
the test evaluation problem by defining:

• the expected resu lt {green, red and yellow) and ,

• the verdict {pass, fail and inconclusive) of a test case.

The C sp-C asl specification determ ines the alphabet of the test suite, and the expected
result of each test case. The expected resu lt of a test case, in term s of the co louring schem e,
is p roved using C sp -C a sl -P r o v e r .

The test verdict is ob tained du rin g the execution of the SUT from the expected resu lt d e­
fined by the colour of the test processes. Here, we have defined an algorithm w hich allow s
to determ ine the verdict of the test case on the fly. F igure 9.3 illustra te the general overv iew
of our testing approach.

i Specification ^

determ ines
colour of

are constructed
Test C asesj

w ith respect to

Im plem entation

Figure 9.3: C s p -C a s l validation triangle.

Specification, Implementation and Test Cases are m u tu a lly related artifacts. Specifications and
Test Cases are w ritten in C s p -C a s l, the Implementation is treated as a black box. Test cases
can be constructed either from the specification - as show n in the triangle - or in d ep en ­
dently from it. The specification determ ines the a lphabet of the test suite, and the expected
result of each test case. The expected result is coded in a colouring schem e of test cases.
If a test case is constructed w hich checks for the presence of a required feature (according
to the specification), w e define its colour to be green. If a test case checks for the absence
of som e unw anted behaviour, w e say that it has the co lour red. If the specification does
neither require nor d isallow the behav iou r tested by the test case, i.e., if a SUT m ay or m ay
not im plem ent this behaviour, the colour of the test case is defined to be yellow. H ere, w e

124 Chapter 9 Theory o f testing from C s p -C a sl

have defined a syntactic characterization in order to colour a Csp-Casl test process. The
colouring of a Csp-Casl test process is done in Csp-Casl-Prover.

During the execution of a test on a particular SUT, the verdict is determined by comparing
the colour of the test case with the actual behaviour. A test fails, if the colour of the test
case is green but the SUT does not exhibit this behaviour, or if the colour is red but the
behaviour can be observed in the SUT. The execution of a yellow test case yields an incon­
clusive verdict. A test passes, if the colour is green and the SUT exhibit this behavior, or if
the colour is red and the SUT doesn't exhibit this behavior.

(CHAPTER

Testing a n d C s p -C a sl d e v e lo p m e n t
notions

. . . 10)

Contents
10.1 Testing and C sp-Casl re fin e m e n t 125
10.2 Testing and C sp-Casl e n h a n c e m e n t 129
10.3 Case study: rem ote control u n i t 133
10.4 Sum m ary .. 145

I N this chapter we study how the CSP-CASL testing theory relates to the notion of
vertical and horizontal development of Csp-Casl specifications. In Section 10.1 we
study how refinement of specifications and testing relate to each other. In Section 10.2

we illustrate how the notion of specification enhancement relate to testing and how we can
re-use test cases in a software product line. In Section 10.3 we illustrate these notions with
a simple case study of remote control unit for home appliances.

The notions and results presented in this chapter have been published in [KRS07] and
[KRS08].

10.1 Testing and C sp-C a s l refinement

In this section, we show the relation between Csp-Casl refinement notion and the evalua­
tion of test cases. In particular we show the preservation of the colour of a test case under
a well-behaved refinement notion.

Let < be a binary relation over Csp-Casl specifications such that (D,P) < (D ' , P We
call such a relation to be < well-behaved, if, given specifications (D,P) < (D’ ,P’) with con­
sistent data parts D and D' and a variable system X over the signature of D, the following
holds for any test process T over D:

1. colour(D/p)(T) = green implies colour^DtP̂ (T) = green, and

125

126 Chapter 10 Testing and C s p - C a s l development notions

2. colour(D/P){T) = red implies c o l o u r = red.

Interpreting < as a development step, this means: If a test case T reflects a desired be­
havioural property in (D, P), i.e., colour^ (T) = green, after a well-behaved development
step from (D, P) to (D', P') this property remains a desired one and the colour of T is green.
If a test case reflects a forbidden behavioural property in (D,P), i.e., colour^/P>)(T) = red,
after a well-behaved development step from (D,P) to {D',P') this property remains a for­
bidden one and the colour of T is red. A well-behaved development step can change only
the colour of a test case T involving an open design decision, i.e., c o l o u r (T) = yellow.

In the following, we study for various refinement relations if they are well-behaved.

T h e o r e m l O . l . l (D ata r e f i n e m e n t is w el l - b e h a v e d) Let Sp = (D , P) and
Sp' = (D',p(P)) be C sp-C asl specifications such that Sp Sp' hold via data refinement,
i.e., Mod(D')\crC Mod(D). Then, is well-behaved in the chosen CSP model D C {T, T , N } .

P r o o f . We need to show that the colour of a test case T over Sp remains unchanged over
Sp' after a data refinement.

Let a : Li —> TJ be the Csp-Casl data logic signature morphism. We consider the cases of
the green and Red test cases.

• Let coloursp{T) — green. We show that colour sp'{p{T)) = green.

Let M' e Mod(D'). From the data refinement argument we know that Mod(D')|crC
Mod(D). This implies that M' is also a model of D. For all models of D, the traces and
failures conditions for a green test case hold by assumption. For the traces condition
we have that:

traces(m v:X̂ {M%)) C t r a c e s (I P ^ . ^ ^ ^) .

Thanks to the reduct property (Theorem 6.1.8) we have that:

traces(lT}v:X_+p{M,\(r)) = &T(traces{ip(T)}v:X_p{M,))
tracesC lP jw ^^M ^) = aT {traces (^p(P) J0:0_^(M'))-

This implies that &T(traces(lp(T)]v:X̂ p(M')) C aT (traces(lp{P)J0:0^(m '))- Elimi­
nating the inverse alphabet translation dcj from both sides we obtain:

traces{lp{T)^v:X̂ m C fraccs([jo(P)]|0:0_+̂ (M/). (*)

For the failures condition we have that for all tr = (L ,. . . t„) G traces(lT}v.x->p(M'\a))
and for all 1 < i < n it holds that:

((fi,. • - , t i - i) , { t j }) ^/fltfttres([P]0:0_p(M'|<r)).

Thanks to the reduct property we have that:

failures{lP}Q>.<z>̂p(M'\(r)) = ^{failures(lp{P)l<z>.(Z>̂ M,))).

10.1 Testing and C s p -C a s l refinement 127

This implies that for all tr = (fi, ...fn) £ &T(frflC£s([p(T)Jv:x_>p(Ai'))) and for all
1 < i < n it holds that:

(<fi/ . . . , f 2_ 1) / {fI}) £ &r(failures{lp{P)j(Z).(Z)̂ li{M,\(T))). (**)

Putting together the results of the traces (*) and failures (**) condition it follows that
colour sv>(p(T)) = green.

Let coloursp(T) = red. We show that colourSp>(p(T)) = red.

Let M' € Mod(D'). From the data refinement argument we know that Mod(D/)|crC
Mod(D). This implies that M' is also a model of D. Moreover, we know that:

traces ([T] :X_ ^ (M/ ̂) £ fraces([P]]0:0^ (M)).

Thanks to the reduct property we have that:

traces(p]v:X̂ {M%)) = &T(traces(lp{T)}v:X̂ m)
traces (flP] 0:0_̂ ̂ (m' | „)) = M frflces([p(P)]0:0^ (MO).

Then it follows that &T(traces(ip(T)}v:X_p{MI)) £ &r(fraces(||p(P)]0:0^ (M/)). Thus,
fraces([p(T)]v:X̂ (M) £ fracas([p(P)]]0:0^ (MO, i.e., colour Sp,{p(T)) = red.

10.1.1 Model T : Process refinement is not well-behaved

As the Csp trace refinement does not guarantee the preservation of behaviour, it is to
be expected that the Csp-Casl notion of process refinement based on T fails to be well-
behaved. This is illustrated by the following counter-example:

ccspec D oO neA = ccspec D o N o th in g =
data data

sorts S sort S
op a : S; op a : S;

process process
P = a -> STOP STOP

end end

As STOP refines any process in the CSP traces model T , we have:

Do On eA Do N othing

Let us consider the following test case:

T = a -> STOP

The colour of T with respect to D oO neA is green. However, T is coloured red over
D o N o th in g , i.e., traces(lTjv) £ traces([D o N o th in g]0.0_^(M)), for all models M e
Mod(D) and all variables evaluations v : X —> M, where D is the data specification of
D o N o th in g .

128 Chapter 10 Testing and C s p -C a sl development notions

10.1.2 Models T and N : Process refinement is well-behaved for divergence-free
processes

Here, we show that Csp-Casl process refinement based on Csp models T and H is well-
behaved, provided the processes involved are divergence-free.

T h eo re m 10.1.2 Let Sp = (D,P) and Sp' = (D,P') be two C sp-C asl specifications, with
Sp Sp'. Then, and are well-behaved provided the processes are divergence-free.

P ro o f . Concerning T and N it is sufficient to prove this for T only, as failures/diver­
gences refinement and stable failures refinement are equivalent on divergence-free pro­
cesses.

We need to show that the colour of a test case T over Sp remain unchanged over Sp' after
a process refinement. Let (D, P) (D,P'), we consider the cases of the green and red
test cases.

Green Let the test process T be green with respect to Sp. Let M be a model and
v : X —► /3(M) be a variable evaluation. We prove the two conditions:

1. We prove by induction on the length n of traces t G traces ([[T]] t,) that
t G traces([[P'D

For n = 0, this is obviously the case. Lett = (fl7. . . , tn, f,;+]) G h«ccs([[P]]0;0^ (A,f)).
Then (t\ , . . . , tn) G fraces([P])0:0_^(M)) and thus by induction hypothesis also
(h , . . . , t n) G tracesdP'1(Z).(Z)̂ p(M)).

Let us assume that (f i,. . . , t„, tn+1) ^ As a divergence-free
process, P' has the failure ((h , . . . ,f„),(Z>). Thus, by healthiness of the stable
failures domain1, P' has also failure ((f],. . . , tn), {f„+1}) .
This is a contradiction to f a i l u r e s ^ P '^ . ^ ^ ^) C failures(ttPl0;0- >/3(M)) an<̂
{{h , . . . , t j 7), {f„+i}) ^/flz7wrcs([P]0:0^ (M)).

2. We show that for all tr = {t\,. . . tn) G traces ([[T]]x/) and for all 1 < i < n it holds
that:

((fi, . . . ,tj_i), {tj}) & failures

This trivially holds, as failuresdP'}®.®^^^) C failures and by
assumption we know that:

((f i,. . . {f,-}) ^/«f/wrcs([[P]|0:0_̂ (̂M)).

Red Let the test process T be red with respect to Sp. Let M be a model, and v be a vari­
able evaluation. We prove the non-inclusion of the traces of T with respect to Sp'.
We show that exists a trace t G traces (IT) such that t £ f ra c c sQ P ']]^ ^ ^))-
This follows directly, since we know that there exists t G traces ([[Tj,,) such that
t £ tracesdP'jw^frM)) and frflces([P/]]0:(ZM/J(M)) C traces([P]0 :0 ^ (M))-

specifically the healthiness condition F3, see Chpater2.

10.2 Testing and C s p - C a s l enhancement 129

Besides the question whether refinements are well behaved with respect to test case colour­
ing, one can also ask the other way round: Is there a refinement between the specification and
the test processes? Here, we have the relation: Given a green test T over a Csp-Casl speci­
fication (D,P). Then (D,P) (D, T), i.e. every green test process is a Csp-Casl process
refinement with respect to the traces model T.

Le m m a 10 .1 .3 Let Green^DP ̂ be the set of all green test processes with respect to (D ,P). Then
(D,P) (D ,n GreeniDtP)).

P r o o f . We show that VM e Mod(D) : [[P]m]t Q t [[[I I G reen^lr-
As the traces(\[n G reen^) is the union of all the green traces; all of which are subsets of
traces{lP}M), we have tr aces ({H Green} M) C traces (I P ^ ® . ^ ^) .
Thus, (D,P) *3 r (D, n Green(DP)). ■

10.2 Testing and Csp-Casl enhancement

In Section 6.2 we have defined the notion of enhancement or horizontal development of
Csp-Casl specifications. Here, we show that such enhancement relations allow the re­
use of results established w.r.t. the original specification. That is, test cases preserve their
colour after an enhancement step. Therefore, test cases which have been designed for basic
features can be re-used whenever a more advanced product is conceived which includes
these features.

T h e o r e m 1 0 .2 .1 Let Sp = (D, P) and Sp' = (D',P ') be Csp-Casl specifications with
Sp^Sp'. Let T be a test process over Sp. Then, colour$V{T) = colourspr{T).

PROOF. Let T be a test case over Sp. Let signature £ and £ ' be the signature of the data
part D and D' respectively. Let i : £ —>£ ' be the induced mapping from Z to £ '. We
consider the cases of the green, red and yellow test cases.

For green test cases we show the following:

coloursp(T) = green coloursp>{T) = green.

We prove both direction of the equivalence.

==>■) Let coloursp{T) = green, i.e.,

1. For all M e Mod(D) and all variable evaluations v : X —> f>{M) we have
traces(lT}v) C traces([P fc^-^M))-

2. For all tr = (L , . .. t„) E traces(lT^v) and for all 1 < i < n i t holds that:

130 Chapter 10 Testing and C s p -C a s l development notions

We show that coloursp>(T) = green, i.e.,

1. For all M' G Mod(D') and all variable evaluations v' : X' —> j6(M') it holds
traces(m v>) C traces

2. For all tr = (f j,. . . tn) G traces ([[Tfli,/) and for all 1 < i < n it holds that:

((f i , . . . , {f/}) & failures(lP,}<Z):(Z>̂p(Mi)).

Let M' G Mod(D'). From the enhancement argument we know that there exists
M G Mod(D) such that M = M' |,. Let a : Alph(ft(M' |,)) —> Alph((5(M')) be
the injective alphabet translation. For the traces condition, we apply the alphabet
translation on both sides:

ocT (traces(lT}v.x ^ {MV)) C a:r (fraces(|[P]0;0^ (M/|())).

This results in, fraces([T]v/:X_^(M')) Q traces(lPl®:<z>̂ p(M'))- From the enhancement
argument we know that:

traces ([P]0:<z>-̂ 3(M')) = (t races ([P']]0:0^s(m')))-

It follows that traces([T J ^ x ^ m ')) Q traces(lp l<z>:0 ^^M'))-

The same argument holds for the failures condition. Again, we apply the alphabet
translation and obtain/zn7izres(|Pj0;0_^(M/)). From the enhancement argument we
know that:

/flz7w7'cs([Pj0;0_^(MO) = ocjr (failures ([[P l^o -^M '))) •

It follows that for all tr = (t \ , . . . tn) G traces (lT}vi.x ^,p(M')) aRd for all 1 < i < n it
holds that:

((fi,. • ■ , t \ - 1), {f/}) ^ f a i l u r e s .

Hence the traces and failures condition holds for coloursp> (T) — green.

--) Let colour Sv> (T) = green, i.e.,

1. For all M' G Mod(D') and all variable evaluations v' : X —> jS(M') we have
t r a c e s C traces ([[P ^ . ^ ^ ,)) .

2. For all tr = (t \ , . . . t„) G traces([T]],/') and for all 1 < i < n it holds that:

((f i,.. . , t i - 1), {f/}) £ failures(\P'

We show that coloursP{T) = green, i.e.,

1. For all M G Mod(D) and all variable evaluations v : X —> jS(M) we have
traces(p}v) C fraccs([Pl0:0^ ^ (M)).

2. For all fr = (t \ , . . . tn) G t r a c e s and for all 1 < i < n it holds that:

{ti}) & failures ([P Jo ^ ^ m))-

10.2 Testing and C s p -C a s l enhancement 131

Let M G Mod(D). Again, from the enhancement argument we know that there
exists M' G Mod(D') such that M = M' |,.

Then, for the traces condition we apply the reduct over the processes on both sides:

ciT { t r a c e s { l T ^ &r(^flcgs([P/]0;<Z)_>̂ (M/))).

From the enhancement argument we have

tracesdPl& a^M ^) = A:T(fraccs([P']0:0^^(M|())).

It follows that
traces(pjv:X̂ {MV) C fraccs([[P]]0;0^ (An)).

For the failures condition we directly obtain that for all
tr = (t\ , . . . tn) G traces(lT^v:X_^^Mi\^) and for all 1 < i < n it holds that:

((fi,.. . , t j - i) , {f,-}) £ failures(lP^<Z):(Z)̂ p(M'\i)).

This follows by applying the reduct and the enhancement argument, i.e.,

failures i)) = ^(/flz/urcs([P ']0:0^ (M,]())).

Thus, the traces and failures condition holds for coloursP(T) = green.

For red test cases, we show the following:

coloursp(T) = red colour Sp>(T) = red

We prove both direction of the equivalence.

= >) Let coloursv{T) = red, i.e., VM G Mod(D) and all variable evaluations v : X —> M it
holds traces ([T jv) % traces ([P]0:0_ ^ (M)).

We show that coloursp>(T) = red, i.e., VM' G Mod(D') and all variable evaluations
v' : X' -> M! it holds traces ([Tjv/) £ fraces([P']]0 :0 _^(Mq).

Let M' G Mod(D'). From the enhancement argument we know that there exists
M G Mod(D) such thatM = M' |,.

We show that exists a trace t' G traces() such that F ^ traces(P]0 :0 —0 (m'))

We know that there exists a t G traces([Tjv:x—►/3(ai/h)) such that t £ traces([P]0 :0 ^ (m '|,))
Let a * (f) = t', where a: : Alph(M' |,) —> Alph(M') is the injective alphabet transla­
tion. From the enhancement argument we have

traces ([P]]0:0^ (MO) = M fraces([P /]0 :0 _>p(M/))).

Thus, it follows that t' G traces (lT}vi.x_ ^ M̂) and t’ £ traces ([P ']0:0^ (M/)). Hence,
traces(lTjv':X->/3(M')) % traces(lP'l&:0^ ^ M/}), i.e., colourSp'(T) = red.

132 Chapter 10 Testing and C sp-C a sl development notions

<=) Let coloursv'{T) = red. We show that coloursp{T) — red, i.e., VM G Mod(D) and all
variable evaluations v : X —► M it holds f races ([Tflv) %. frflces(|Pj0;0^ (M)).

Let M G Mod(D). Again, from the enhancement argument we know that there
exists M' G Mod(D') such that M = M' |,.

We show that exists a trace t G traces ([[Tji,) such that t <£ traces ([■P]<z):0 -^(m))- This
follows directly, since we know that there exists t G traces ([T1]],/) such that t £
traces (P5!®:®— and from the enhancement argument we have that

traces ([P] 0 :0 ^ (M')) = M ^ ^ s ([P] 0:0_ ^ (m,))).

Hence, traces([T]v/) £ traccs([P/l 0:0_ i3(M/)), i.e., colourSp(T) = red.

For yellow test cases, we show the following equivalence holds

coloursp{T) = yellow <=> coloursp>{T) = yellow

In both direction of the equivalence, for the trace condition, the same proof argument as
in the case of green test case holds. Here, we show how it goes for the failures condition.

Let coloursp(T) = yellow, i.e., for all M G Mod(D) and variable evaluations v : X —> M the
following holds: for all tr = {t\ , . . . tn) G traces(lTjv) and for all 1 < z < n it holds that:

((f i , . . . ,f|_i), {t/}) G/az/z^rcs([[I:,]0;0_^(M)).

We show that coloursp>(T) = yellow i.e., for all M' G Mod(D') and variable evaluations
v' : X' —► M' the following holds: for all tr = (t \ , . . . tn) G traces([[T]] v/) and for all 1 < i < n
it holds that:

((h , . . .,f/_i), {f,-}) C failures(lP,}(Z).(Z)_ ^ M/)).

Let M' G Mod(D'). From the enhancement argument we know that there exists M G
Mod(D) such thatM = M'\t. Let a : Alph(^(M>\,)) —» Alph(ft(M')) be the injective alpha­
bet translation. We apply the alphabet translation on the failures: ocj: (failures))•
This results in,/az7wras([[P]]0.0^ (M/)). From the enhancement argument we know that:

f a i lu r e s i lP } ^ ^ ^) = OL^{failures{lP%.^m))).

Then, we directly obtain, that for all tr = { t \ , . . . tn) G traces and for all
1 < i < n it holds that:

((ti , . . . , h_i), {f/}) £ failures

Hence, coloursp>{T) = yellow.

■

Summarizing, the enhancement notion developed for Csp-Casl allows us to re-use test
cases developed for basic specification, to experiment the same behavior in enhanced spec­
ification. That is, green, red and yellow test cases remain unchanged after an enhancement
step.

10.3 Case study: remote control unit 133

10.3 C ase study: remote control unit

In this section w e develop an exam ple from the em b ed d ed system s dom ain: an infrared
rem ote control un it used for hom e appliances such as TV, VCR, DVD p layer etc. H ere w e
give abstract and concrete specifications and show the various C sp -C asl specifications
at different levels of abstraction. We show how the refinem ent and enhancem ent of the
various C sp-C asl specifications influence the testing p rocedure of such device.

10.3.1 S p ecification of a rem ote control unit

Figure 10.1: Basic Rem ote C ontrol U nit (BRCU)

O n an abstract level, a rem ote control un it (RCU) can be described as follows: there are a
nu m b er of buttons w hich can be pressed (one at a time), and a light em itting d iode (LED)
w hich is capable of sending signals (bitvectors of a certain length). The RCU has an in ternal
table w hich signal correspond to w hich button . W henever a b u tto n is pressed , it sends a
corresponding signal via the LED. Such an A bstract Rem ote C ontrol U nit can be specified
in C sp-C asl as follows:

ccspec A bsRCU =
data

sort Button, Signal
op codeOf : Button —> Signal;

process
AbsRCU = ?x : Button -> codeOf (x) -» AbsRCU

end

Basic rem ote control un its (BRCU) as they w ere p roduced in the 1970's had e.g., 12 b u t­
tons

134 Chapter 10 Testing and C s p - C a s l development notions

(i.e., bo . . . b9, bonop bMute)/ where the corresponding signals are 16-bit key-codes; for exam­
ple:

0000.01010.0000001 is a signal for b\

There are various standards for remote controls; one of these defines that the first 4 bits
identify the company ID, the next 5 bits represent the device ID (i.e., TV, DVD, etc.), while
the last 7 bits identify which button was pressed. This can be specified in Csp-Casl as
follows:

ccspec BRCU =
d a ta

so rt Button, Signal
o p s b o M ,. . . , b9/bonop bMute: Button;
f re e ty p e Bit ::= 0 | 1
th e n L lST[sort Bit]

th e n
so rt Signal = {I : List [Bit] • #1 = 16}
o p codeOf : Button —> Signal;

prefix : List[Bit] = [0000] + +[01010]
ax io m s

codeOf (bo) = prefix + + [0000000];

codeOf (bf) = prefix + + [0001001];
codeOf (bMute) = prefix + + [0001111];
codeOf(bonOff) — prefix + + [1111111];
\/b : Button • 31 : List[Bit] • codeOf (b) = prefix + + /

p ro c e ss
BRCU = Ix : Button —» codeOf (x) —» BRCU

e n d

Soon after the first generation, the market demanded more comfortable devices with more
functionality and, thus, more buttons. Modern remote control units have about 50-200
buttons. For the example, we assume that in the Extended specification the buttons bvojup
and bvojdn for controlling the volume and bc]mp and bcj^n for zapping though channels were
added, with appropriate key-codes. In Csp-C asl, such an extension can be specified by
defining a sort EButton which is an extension (superset) of sort Button. Of course, in the
extended specification, the domain of operation codeOf must be suitably extended. Here
is the abstract version of an extended remote control unit:

ccsp ec AbsERCU =
d a ta

so rts Button < EButton; Signal
o p s codeOf : Button —> Signal;

codeOf : EButton Signal

10.3 Case study: remote control unit 135

p ro c e s s
AbsERCU = ?x : EButton —> codeOf (x) —> AbsERCU

e n d

For a concrete implementation of the abstract extended specification, we use the super­
sorting and overloading features built into CASL. To this end, we import the data part
of BRCU, named BRCU D ata, and define a supertype EButton of Button, which includes
four new buttons. The function codeOf : EButton —» Signal is in overloading relation with
the function codeOf : Button —> Signal. Therefore, the CASL semantics ensure that both
functions yield the same result for elements of type Button.

ccsp ec ERCU =
d a ta B R C U D a ta th e n

fre e ty p e EButton : : = so r t Button \ bvoIup \ bvoMn \ bchup \ bchd„
o p codeOf : EButton —> Signal
a x io m s

codeOf (bvolup) = prefix + + [0010000];
codeOf \bvoidn) = prefix + + [0100000];
codeOf (btfmp) = prefix + + [1000000];
codeOf(bchdn) = prefix ++[1100000];

p ro c e ss
ERCU = ?x : EButton —» codeOf (x) —» ERCU

e n d

If more and more functions are added to a device, buttons need to be reused. That is,
some buttons have a main and alternate inscription and there is a special button bait; if this
button is pressed the key-code of the subsequently pressed button changes according to
the alternate inscription. Basically, the button bajt serves as a modifier of the next button.
This enhancement differs from the previous one, since it requires the device to distinguish
between two states (whether the baif modifier button has been pressed or has not been
pressed), and it enforces a modification in the process part of the specification. The en­
hancement from BRCU to ERCU makes use of overloading ,and added supersorts. The
following is an (abstract) specification of a RCU with Modifier enhancing the extended
RCU. To this end, we import the data part of ERCU, named ERCU D ata.

ccsp ec MERCU =
d a ta E R C U D a ta th e n

fre e ty p e MButton ::= s o r t EButton \ bajt
s o r t AltButton = {x : MButton • x = bait}
o p codeOfAlt: EButton —> Signal

p ro c e ss
MERCU = ?x : EButton codeOf (x) —> MERCU

n ^Ait : EButton —> codeOf Alt (x) —> MERCU
e n d

As the codeOf Alt is not in overloading relation with codeOf, after pressing the button b^n

136 Chapter 10 Testing and C s p - C a s l development notions

the remote control can send out different signals for the buttons pressed. The specification
MERCU is abstract in so-far, as the functionality of codeOfAlt is not further specified. In
order to demonstrate the integration of features in a software product line development,
we show how to reuse specification modules. A universal remote control is a device which
can be used for TV, VCR, and DVD players. For this purpose, it has a button mode, which
allows the user to cycle through the three operation modes (TV, VCR, DVD). The specifica­
tion URCU builds onto the specification ERCU, as well as on similar built specifications
ERCUDDVD and ERCUVCR.

ccspec URCU =
d a ta { ER C U D ata a n d ERCUDataDVD a n d ERCUDataVCR }

th e n so r t NewButton
o p mode : NewButton

p ro cess
le t TV =?x : Button —> codeOf (x) —» TV

□ mode —> DVD
DVD=?x : Button —> codeOfDVD(x) —> DVD

□ mode —> VCR
VCR =?x : Button codeOJVCR(x) -> VCR

□ mode —> TV
in TV

e n d

10.3.2 R e f in e m e n t a n d e n h a n c e m e n t o f t h e r e m o t e c o n t r o l unit

Here, we formally relate all the specifications described in the previous section. Fig­
ure 10.2 summarizes the development of the remote control unit specification in Csp-
Casl.

A bsRCU
>

AbsERCU

d a t a

BRCU
>

d a ta

ERCU
J

f \
MERCU

V______ J

f \

URCU
V)

Figure 10.2: Remote control unit in Csp-Casl specifications development

10.3 Case study: remote control unit 137

In the following lemmas we prove each of the development notion (refinement or enhance­
ment) illustrated in Figure 10.2.

Le m m a 10.3.1 The following holds: AbsRCU ^ BRCU and AbsERCU ERCU.

P roof. AbsRCU BRCU holds if Mod (D b r c u) IaQ Mod(DAbsRcu), where
a : X^D^srcu) — > Z (D b r c u) is the signature morphism. This trivially holds as every
model of Dbrcu is a model of DabsRCU- The same arguments holds for AbsERCU
ERCU. Both data refinements are simply proved using H ets. ■

Le m m a 10.3.2 The following holds: AbsRCU AbsERCU.

Proof. The process AbsERCU communicates in a richer data structure. Here, we observe
that all models of the data part DabsRCU of AbsRCU can be extended to models of the data
part DAbsERCU of AbsERCU:

Mod(DA&SRcu) = M °d(DAfeERCu)|(

where i : 'L{DAbsRCU) -► T,(DAbcERCu) is the induced map from the signature of DAbsRCU to
DAbcERcu- Here, the signature of DAbsRcu is embedded into the signature DAbcERcu / i-e-/

Z(DAbsRCu) = ({Signal,Button},{codeOfButtonxSignai},®,®,®)
C

'£{DAbsERCu) = ({Signal,Button,EButton}, {codeOfButt0„x Signalf CodeOfEButton x Signa l} >

® / 0 / { ^ B u t t o n , E B u t t o n })

Here, we use the supersort enhancement pattern (Theorem 7.2.3) to show that
AbsRCU^AbsERCU. To this end we define a mapping g : S —> S' from the set of sorts
of Z(Da r) to the set of sort of Z(DER), which is simply the identity with the exception:

£(Button) = EButton

As we define codeOf only for the new values, we have a conservative model extension.
Obviously, £ maps the process of AbsRCU to the process AbsERCU, i.e., we map the
process name £(AbsRCU) = AbsERCU, and we obtain:

£(AbsRCU) = ?x : £(Button) -+ £(codeOf(x)) £(AbsRCU)
= ?x : EButton —» codeOf (x) —> AbsERCU

This proves the three conditions for supersort enhancement pattern. Therefore, we have that
AbsRCU » AbsERCU. ■

Le m m a 10.3.3 The following holds: BRCU ERCU.

PROOF. Here again we use the supersort enhancement pattern to prove that BRCU^ERCU:
To this end we define the map £ to be the identity on all sorts with the exception of
£ (Button) = EButton. Clearly, the signatures are embedded with £. As we define codeOf
only for the new values, we have a conservative model extension. Obviously, £ maps the
process of BRCU to the process of ERCU. Thus, all three conditions are true and therefore
BRCU»ERCU. ■

138 Chapter 10 Testing and C s p -C a s l development notions

Le m m a 10.3.4 The following holds: ERCU >> MERCU.

PROOF. Here, we use the external choice enhancement patter (Theorem 7.2.1) to prove that
ERCU^M ERCU. First, we have to adjust the process part of MERCU to the syntactic
pattern stated in the theorem. To this end, we use the following law:

(*) a —> R =?x : { a } —> R

This allows us to make the following transformation:

MERCU = ?x : EButton —> codeOf (x) —» MERCU
□ b^it —>?y : EButton —> codeOfAlt{y) —> MERCU

MERCU = ?x : EButton —► codeOf (x) —> MERCU
□?z : AltButton —>?y : EButton —> codeOfAlt{y) —> MERCU.

Concerning the data part, MERCU is a conservative extension of ERCU, as all added
symbols are new, and, if they relate to old ones, they follow a definitional extension pat­
tern. Thanks to the CASL free type bajf is different from all values of EButton. Thus, both
conditions of the external choice enhancement pattern hold, hence ERCU>>MERCU. ■

Le m m a 10.3.5 The following holds: ERCU^>URCU.

P ro o f . Again, we use external choice enhancement pattern to establish ERCU^URCU. Us­
ing the rule (*), we adjust the process part of URCU, and we obtain the following process:

let TV =?x : Button —> codeOf (x) —> TV
□ ?y : ModeButton —>■ DVD

DVD=?x : Button —> codeOfDVD(x) —> DVD
□?y : ModeButton —> VCR

V CR=?x : Button —> codeOJVCR(x) —» VCR
□ ?y : ModeButton —> TV

in TV

On the data part, we have that ^(D ercu) Q £ (Durcu)• The added symbol in Durcu
don't interfere with the old symbols, hence M od(DERcu) — M od(DURCu) \u where l is the
induced mapping. ■

10.3.3 Testing the remote control unit

In this section we design some test cases for the RCU specifications and show the re-use
of test cases as well as the preservation of colours described in the previous section. The
first set of test cases is designed to test AbsRCU:

10.3 Case study: remote control unit 139

Ao : u : Button —► codeOf (u) —► STOP
A \ \ u \ Button —> v : Signal —> STOP
A 3 : u : Button —> : Button —» STOP

Here, w, u and zv are variable over the indicated sorts.

Thanks to the refinement and the enhancement results summarized in Figure 10.2, test
cases T over AbsRCU are also test cases over all the other specifications. With respect to
their colouring we obtain e.g., the following inheritance relations:

• colourabsercu(T) = colourabsrcu (T) thanks to AbsRCU AbsERCU.

• colour b r c u (T) = colour absrcu (T) thanks to AbsRCU d̂ a BRCU.

• co/owfERcuCn — C0̂ wrABsRCU (T), where we can either use the connection over
BRCU or over AbsERCU.

This means for our three test cases Ao,A\ and A 2 that their colour is the same in all speci­
fication mentioned in Figure 10.2, where their colouring can be determined by looking at
AbsRCU only, i.e., the specification with the smallest number of axioms. For the colouring
we obtain the following result respect to AbsRCU:

Ao A\ A 2

AbsRCU Green Yellow Red

A next set of test cases is designed to test BRCU:

T0 : STOP
Ti : h -> STOP
T2 : b\ —» codeOf (bf) —» be —» codeOf (b^) —» STOP
T3 : bj -> b6 -> STOP
T4 : b0 -> (prefix + + [0000101]) -* STOP

The following table shows how these test process are coloured with respect to BRCU.

To Ti t 2 t 3 t 4

BRCU Green Green Green Red Red

The empty observation Tq is green with respect to all specifications (see Proposition 9.2.2).
T] is green for BRCU as BRCU cannot refuse the event b\ after the empty trace. The same
holds for T2, since BRCU cannot refuse the signal of b-\ after the event of b\. T3 consists
of a sequence of two button presses and therefore is red for BRCU. T4 however is red for
BRCU due to a wrong signal event, i.e., codeOf (bo) / codeOf (bs). Similarly to the result
above, these test cases preserve these colours w.r.t. ERCU, MERCU and URCU.

In order to test the new features available in a the product line, new test cases have to be
designed which use the new symbols. E.g., for ERCU the following test cases do this:

140 Chapter 10 Testing and C s p -C a sl development notions

T5 '■ b\ > codeOf (bi) —> byoiup codeOf (by0mp) —■* STOP
T6 ’ bchUp codeOf [bchup] STOP
T7 ' bchDn codeOf (bchDn) ~ > b\ —> STOP
T8 ' bchUp ~ > bvolDn STOP
T9 '■ bchUp codeOf (bVoiup) —> STOP

These test process are coloured with respect to ERCU in the following way:

t 5 Te Ty t 8 t 9
ERCU Green Green Green Red Red

These test cases preserve these colours w.r.t. MERCU and URCU.

As BRCU ERCU, the colour of the test cases To ... T4 over ERCU is inherited from
their colour w.r.t. BRCU. As ERCU^MERCU, the colour of the test cases To ... T9 over
ERCU is inherited from their colour w.r.t. ERCU. However, the testing of the new features
of MERCU requires new test cases, for instance:

T10 : bi —> codeOf (bi) —> bA]i b2 —> codeOfAlt(b2) —» STOP
T11 ' bj\it —* bi —*► codeOfAlt(bi) —> STOP
T12 ' b2 —> codeOfAlllbf) —> STOP
T 1 3 ■ byut —> by0]Dn CodeOf (bVo]o„) —> STOP

The following table shows how these test process are coloured with respect to MERCU:

T10 T11 T12 T13
MERCU Green Green Red Red

Again, we design test cases to experiment the new features specified in URCU:

7 i4 : bi —> codeOf (bi) —> mode —> b2 —> codeOfDVD(b2)
—> mode —> bs —> codeOfVCR(bs)
—»■ mode —> &7 —> codeOf (by) —» STOP

T15 : mode —» bi —> codeOfDVD(bi) —> STOP
Ti6 : h -► codeOJVCR(b2) -> STOP
T17 : mode -» bVoIDn —> codeOf (bVoIDn) —► STOP

And their colour:

Tu Tl5 Tie Tiy
URCU Green Green Red Red

10.3 Case study: remote control unit 141

10.3.3.1 Test case evaluation and execution

In this section we consider the evaluation of test cases w.r.t. Csp-Casl specifications from
an implementation point of view. We also demonstrate how we run test cases on an imple­
mentation of the remote control. Our testing framework essentially consist of two parts
which all have tool support:

1. We use CSP-CASL-prover [OIR09] to verify the colour of a test case. To this end we
use the syntactic characterization of the test colouring as defined in Section 9.3. We
also verify that a test case T is executable for the chosen PCO, see Section 9.4 for the
definition.

2. Given a coloured test case and a particular SUT, our Test Execution and test Verdict
program (TeV), automatically runs a test against the SUT and automatically deter­
mines the test verdict.

In terms of executing tests against the SUT, we have implemented in Java some of the
remote control specifications discussed in the previous sections. In the following we illus­
trate the essential parts of the Java implementation for the BRCU.

p ub l ic c l a s s Bas icRemoteControl ex tends JFrame
implements A c t io n L is t e n e r {

pub l ic BasicRemoteControl () { / / Constructor

j lbOutput = new JTe xtF ie ld (1 2) ;
j l b O u t p u t . s e t E d i t a b l e (f a l s e);

jbnButtons = new J B u t to n [1 3 j ;

for (i n t i= 0; i <=9; i++){ / / Create numeric Jbut tons
jbnButtons [i] = new JButton (S tr ing . va lu eOf(i)) ;

11

p ubl ic void ac t io n P er fo r m e d (Act ionEvent e) { / / P e r f o rm ac t i on
for (i n t i=0; i c jb nButtons . l e n g t h ; i++){

i f (e . getSource () == jbnButtons [i]) (
s w i t c h (i) {

case 0:
codeOf("0000010100000000")

b r e a k ;
case 1:

codeOf("0000010100000001");
b r e a k ;

vo id codeOf(Str ing s) { / / Set the s i g n a l
j l b O u t p u t . set Text (s);

}

p ub l ic s t a t i c vo id m a in (S tr in g a r g s []) { / / Main method
Bas icRemoteControl brc = new Bas icRemoteControl () ; . . . } }

142 Chapter 10 Testing and C s p - C a s l development notions

Let V brcu — { A brc u , 11 — 11/£*)/ be the PCO of BRCU with respect to the Java program
BasicRemoteControl.java, in Listing 2.1. Here, the alphabet A brcu of primitive events which
can be communicated at this point are the various AWT components of the buttons and
the text field where the signal is shown, e.g.,

A brcu = {jplOutput,jbnButtons[0\,jpnButtons[T\ , . . . ,jpnButtons[9]}.

We establish the following mapping:

\\jplOutput\\ = Signal, \\jbnButtons[0]\\ =bo, . . . \\jbnButtons[9]\\ = bg

In order to make the connection between the SUT and the testing system we use ab b o t [abb],
which is a Java package that enables to test Java AWT components. Here we establish also
the direction of testing T>.

In order to make such connection, we develop a new program called TeVBRCU which re­
sides in the package of the BRCU Java implementation (BasicRemoteControl.java). TeVBRCU
is able to make the connection with the SUT, in this case BasicRemoteControl and to access
the different objects to be tested. Moreover, in TeVBRCU we program the decision proce­
dure to determine the verdict of a test case (see Section 9.4).

In the initial part of the TeVBRCU class, we declare private objects which are going to be
tested.
p ub l ic c l a s s TeVBRCU extends ComponentTestFixture {

p r i va t e BasicRemoteControl b r c ;
p r i va t e JTe xtFie ld d i s p l a y ;
p r i va t e JButton buttonO , but ton l , button2 , button3 , button4 , button5 ,

button6 , button7 , button8 , but ton9
p r i va t e JBut tonTester btO , b t l , bt2 , bt3 , bt4 , bt5 , bt6 , b t 7 , bt8 , bt9
pr iv a t e JT e xt F i e l d T e s t e r d;
boolean hasEventOccured = f a l s e ;

pr iv a t e S tr ing Colour = / / colour of t e s t case
pr iv a t e Timer t imer; / / l ength of t imeout

p u b l i c TeVBRCU(Str ing name) {
super (name) ;

}

/ * Set up the SUT and Run t e s t c a s e s * /

}

Here, ComponentTestFixture is an abstract class which extends the TestCase class of JUnit2.
ComponentTestFixture ensures proper setup and cleanup for a GUI environment, it pro­
vides methods for automatically placing a GUI component within a frame and properly
handling window showing/hiding operations. In this initial part we declare two type of

2h t t p : / /www. j u n i t . org/

10.3 Case study: remote control unit 143

objects: objects that refers to the actual SUT, e.g., display, buttonO etc; and objects that will
be used to stimulate the SUT, e.g., btO, btl, etc. Here, we declare also the colour of a test
case as a string.

In a second part of the program, we setup a method that initialize the system under test, in
our case the Java program BasicRemoteControl. Here, we make sure that the SUT is visible:

protec ted vo id setUp () throws Exception {
brc = new BasicRemoteControl () ;
brc . s e t S i z e (2 4 1 , 217) ;
brc . pack ();
brc . s e tL o c a t io n (400 , 250) ;
brc . s e t V i s i b l e (t rue);
showWindow(brc, n u l l , f a l s e) ;

The a b b o t t package allows us to find automatically the components of the system to be
tested. In the case of the remote control unit it finds the different buttons. For instance,
the following code finds button 1, and binds it to the private object buttonl:

b ut ton l = (JB u t to n) getF inder () .
f ind (new ClassMatcher (JButton . c l a s s) {

publ ic boo lean matches (Component c) {
return c i n s t a n c e o f JButton &&

((J Bu t to n) c). getText () . equa l s (" 1 ") ; })) ;

The same procedure we adopt to find the text field where the signal is displayed:

disp l ay = (J T e x t F i e l d) ge tF inder () .
f ind (new ClassMatcher (JT ext F ie ld . c l a s s)) ;

di sp l ay . addCaretLis tener (new C are tL is t en er () {
pub l ic vo id care tUpdate (CaretEvent car e t E v e nt) {

hasEventOccured = t r u e ;
}

}) ;

In order to execute test cases we instantiate robot-like objects, which automatically stimu­
late the SUT.

btO = new JBut tonTester () ; bt9 = new JBut tonTester ();
d l = new J T e x tF i e ld T e s te r () ;

Here, the objects btO of JButtonTester() provides action methods and assertion for objects
declared as JButton.

Our decision procedure for determining the verdict of a test case, makes use of the timeout
in order to make sure certain events can really happen. In our program we make use of
the Java class Timer (import java.util.Tim er;) in order to set a timeout and make sure that
events are performed within this timeout.

144 Chapter 10 Testing and C s p - C a s l development notions

For the execution of a test, we set a timeout of 1 secs as the period of time in which a
signal is expected from the RCU. Depending on the colour of the test case and the response
from the SUT, TeV determines automatically the test verdict. Here, we have encoded the
verdict algorithm within each test case.

The decision procedure for determining the verdict of a test case is encoded with in each
test case. In our a program, a test case is a unit test, e.g, testFirstCase(). In the following
test units we encode some test cases developed for BRCU.

• Ti = i?! -> STOP
p ub l ic vo id t e s t F i r s t C a s e () throws Exception {

co l our = "Green";
System . o u t . p r in t l n (" Star t time of Test Case: " + g e t T i m e ()) ;

b t l . ac t i o n C l i c k (b u t t o n l); / / c l i c k button 1 — t s 2 s u t
System . o u t . p r i n t l n (" Button 1 pressed at: " + g e t T i m e ()) ;

i f (hasEventOccured) {
System . o u t . p r i n t l n (" Has Event Occured : " + hasEventOccured);
System . o u t . p r in t l n (" S i g n a l " + d i sp lay . getText ()

+ "showed at:" + ge t T i m e ()) ;
System . o u t . p r in t l n (" Test Resu l t : FAIL");

) e l s e {
System . out pr in t l n (" Test Resu lt : PASS");

1
hasEventOccured = f a l s e ;

• T2 = h\ —> codeOf (bi) —> be —» codeOf (be) —> STOP
p ub l i c vo id tes tSecondCase () throws Exception {

co l our = "Green";
System . o u t . p r i n t l n (" Star t t ime of Test Case: " + g e t T i m e ()) ;

b t l . a c t io n C l i c k (b u t to n l); / / c l i c k button 0 — t s 2 s u t
System . o u t . p r i n t l n (" Button 0 pressed at: " + g e t T i m e ()) ;

i f (hasEventOccured
&& d is p l a y . getText () . eq ua l s (" 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 ")) {
System . o u t . p r in t l n ("Has Event Occured: " + hasEventOccured);
System . o u t . p r i n t l n (" S i g n a l " + d i sp la y . getText ()

+ "showed at:" + g e t T i m e ()) ;
/ / proceed to t e s t but ton 6
t e s t B u t t o n 6 ();

} e l s e {
System . o u t . p r in t l n (" Test Resu l t : FAIL");

}
hasEventOccured = f a l s e ;

}

p ub l i c vo id t e s t Bu t to n 6 () throws Exception {
bt6 . a c t io n C l i c k (button6); / / c l i c k but ton 6 — t s 2 s u t
System . o u t . pr i n t l n (" Button 6 pressed at: " + g e t T i m e ()) ;

10.4 Summary 145

i f (hasEventOccured
&& d is p l a y . getText () . equa ls (" 00 0 0 01 0 1 0 00 0 0 110")){

System . o u t . p r i n t l n ("Has Event Occured: " + hasEventOccured);
System . o u t . p r i n t l n (" S i g n a l " + d i s p l a y . getText ()

+ "showed at :" + g e t T i m e ()) ;
System . o u t . p r in t l n (" Test Resu lt : PASS");

} e l s e {
System . o u t . p r i n t l n (" Test Resu lt : FAIL");

}
hasEventOccured = f a l s e ;

}

10.4 Summary

In this chapter, we have demonstrated the connection between the testing framework pre­
sented in Chapter 9 and the Csp-Casl development notion presented in Chapter 6. The
major innovations are:

Testing and vertical development In our approach, we can build test suites for any level
of abstraction in this process. In particular, test cases can be constructed already in
the very beginning, as soon as the first loose specifications are written. Our approach
ensures that test cases which are designed at an early stage can be used without mod­
ification for the test of a later development stage. Ergo, test suites can be developed
in parallel with the SUT, which reduces the overall development time and helps to
avoid ambiguities and specification errors.

Testing and horizontal development We have proved that our notion of enhancement
(or horizontal development) for C sp-C asl allows the preservation of expected result
of test cases. Therefore, this notions allow to reuse test cases throughout a product
line. In particular, test cases preserves their colour.

We have illustrated the overall framework of testing and Csp-Casl development with the
example of a remote control units for home appliances.

PART IV

Industrial applications

■

(CHAPTER ... 11)

The e lec tro n ic p a y m e n t system e p 2

Contents___
7 7.7 Introducing the e p 2 paym en t s y s te m .. 149
11.2 Modelling ep2 in C sp-Casl ... 153
11.3 Property verification of e p 2 ... 164
11.4 Testing framework for ep2 .. 174
11.5 Summary and evaluation of the p r o je c t ..183

IN this chapter we demonstrate that the so far presented theoretical results are applica­
ble in an industrial setting. Namely, we apply our technique to an electronic payment
system called ep2. In the next section, we will introduce ep2 and discuss the speci­

fication structure and style of ep2. We demonstrate how we capture in a faithful way
such specification in Csp-Casl. We prove the formal refinement of the different levels
of abstraction. We analyze deadlock and livelock freedom, and finally we show a testing
framework for an ep2 payment system.

A first modelling approach in Csp-Casl of the ep2 specification has been presented in
[GRS05]; while in [KR09] a refinement verification as well as deadlock and livelock analy­
sis of ep2 has been carried out.

11.1 Introducing the e p 2 payment system

The ep2 system is an electronic payment system and it stands for 'EFT/POS 2000', short
for 'Electronic Fund Transfer/Point Of Service 2000', it is a joint project established by a
number of (mainly Swiss) financial institutes and companies in order to define EFT/POS
infrastructure for credit, debit, and electronic purse terminals in Switzerland1. EP2 builds
on a number of other standards, most notably EMV 2000 (the Europay/M astercard/Visa
Integrated Circuit Card standard2) and various ISO standards. The ep2 project began in

1 w w w .eftpos2000.ch
2w w w .emvco.com

149

150 Chapter 11 The electronic payment system EP2

October 2000, and was officially completed on May 31 2003. The latest version (eplspec
V5.0.0) of the ep2 standard was released on October 2008.

The ep2 system, as illustrated in Figure 11.1, consists of seven autonomous entities:

Acquirer: A system for processing electronic payment transactions.

Card: Payment utility opened by a specific cardholder.

Point Of Service (POS): A system where a cardholder may purchase goods and /or ser­
vices.

POS Management System (PMS): System that allows the merchant to administrate his
terminal population.

Service Center: A system component used for configuration and maintenance of a termi­
nal.

Terminal: A system used for processing transactions.

These components are centered around an EP2 Terminal. The different entities communi­
cate with the Terminal and, to a certain extent, with one another via XML-messages in a
fixed format over TCP/IP. The messages contain information about authorisation, finan­
cial transactions, as well as initialisation and status data. The state of each component
heavily depends on the content of the exchanged data. Each component is a reactive sys­
tem defined by a number of use cases. Thus, there are both reactive parts and data parts
which need to be modelled. Both these parts are heavily intertwined.

11.1.1 e p 2 d o c u m e n t s tru c tu re a n d s p e c if ic a t io n s ty le

The ep2 specification consists of twelve documents, each of which describe the different
components or some aspect common to the components. Figure 11.2 illustrates a general
overview of the ep2 document structure. Different books are concerned with a particular
aspect of the system.

• ep2 system book: Contains general information on EP2 as well as chapters which are
common interest in all ep2 specification documents.

• ep2 component book: Contains information about the functional and non-functional
requirements of each component, i.e., Acquirer, Service Center, etc.

• EP2 interface book: Contains the specification of the communication interfaces of the
ep2 system, i.e., blue lines in Figure 11.1.

• ep2 data dictionary book: Contains a detailed description of the various XML message
formats exchanged between the different ep2 components.

• ep2 security book: Contains information regarding the the ep2 security mechanism.
It contains the format and management of the various public key, i.e., as well as

11.1 Introducing the e p 2 payment system 151

Cardholder

Point of Servici

Cardholder

Terminal
CUI-Cardholder

B E-B ackEni

FE -F ron tE nd

PB I-PO S B ookkeeping\
\

Bookkeeping

t '
M B I-PO S M gm t. | \ \

AUl-AttendanrX BookkeeP,ng

P l-P roduc t I

PU I-PM S Utfer

Merchant,

A B I-A cqu irer B ookkeeping

SE I-Settlem ent

Center
N F lI-F inance Institu te

\ \

C ll-C ard Issuer
Part o f the Specification
ep2 (detailed)

Card
Issuer

Part o f the Specification
ep2 (overview)

Part of the Specification
ep2 (detailed)
Part of the Specification
ep2 (user interface)

Finance
Institute

_ _ _ Not part of the Specification
ep2

Figure 11.1: The EP2 system [ConOS].

152 Chapter 11 The electronic payment system EP2

ep2 System book

I
^ ------------------- S

ep2 Component book
• general
• functional (kernel)

tp2 Component bool
Suppl. bookData Dictionary Interfaces

Figure 11.2: O verview of EP2 docum ent structure. [Con08].

specification of the cryptographic algorithms used for authentication and financial
transaction.

• ep2 component book (supplementary book): C ontains additional inform ation on the var­
ious EP2 com ponent.

One of the characteristics of such a docum ent structu re is that, w hen considering a p ar­
ticular d ialogue betw een tw o (or m ore) EP2 com ponents, the inform ation required to u n ­
derstand that aspect is contained in several different books; each of w hich describe the
d ialogue from different po in ts of view. In order to u n d ers tan d one particu la r d ialogue
betw een tw o ep2 com ponents, one has to look at the ind iv idual com ponent book, the
interface book and the data d ictionary book.

Each docum ent is com prised of a num ber of different specification notations: p lain En­
glish; UM L-like graphics (use cases, activity d iagram s, m essage sequence charts, class
m odels, etc.); p ictures; tables; lists; file descriptions; encoding rules, etc.

The top level EP2 docum ents prov ide only an overview of the d ata involved, w hile the
presen tation of fu rth e r details for a specific type is delayed to separate low-level docu­
ments.

C sp-C asl is able to m atch such a docum ent s tructure by a library of specifications, where
the informal design steps of the EP2 specification are mirrored in terms of a formal refine­
m ent relation. S tructuring the C sp-C asl specifications in the sam e w ay as the original
EP2 docum ents allows to exhibit some ambiguities, omissions and contradictions in the
documents.

C sp-C a s l 's loose specification of data types plays an im portan t role. Usually, the top
level EP2 docum ents provide an overview of the data involved, while the presentation of

11.2 Modelling ep2 in C s p - C a s l 153

fu rth e r details for a specific type is delayed to separate low-level docum ents. In the next
section we illustra te how w e m atch the inform al specification of EP2 in C sp-C a s l .

11.2 Modelling ep2 in C sp-C as l

In this section w e describe the m odelling of the various levels of the EP2 specification in
C sp-C a s l . We have m odeled three levels of abstraction of the EP2 specification. Those
are: the architectural level, the abstract component level and the concrete component level.
F igure 11.3 illustra te the different levels of specification.

Architectural
Level

Abstract
Component

Level

Concrete
Component

Level

Figure 11.3: EP2 specification at different level.

O n the architectural level w e cap tu re the overall system as dep icted in Figure 11.1. O n the
abstract component level, w e m odel the in teraction betw een tw o EP2 com ponents. Here,
w e m odel the use cases of the different functionality of the EP2 com ponents, e.g., configu­
ra tion of the term inal, in itialization different services, processing paym ents, etc. In som e
sense, at this level, w e narrow d o w n the m odelling exercise to an abstract view of the in­
teraction betw een the d ifferent com ponents. O n the concrete component level w e refine the
abstract view of each com ponen t by m odelling w hich specific values the d ifferent com po­
nen ts are going to send and receive. Here, w e m odel the behav io r of each co m p o n en t to
be stateful. That is, each com ponen t will behave according to w hat kind of m essage it is
receiving or sending.

In the next subsections, w e illustra te the EP2 specifications in C sp -C asl on the different
levels. We first give an exp lanation of how the inform al EP2 specification describes the
vario u s com ponents and the d ifferent m ethodologies used to specify them . Subsequently ,
w e w ill show how w e cap tu re these aspects in C sp -C a s l .

*

154 Chapter 11 The electronic payment system ep2

11.2.1 Architectural specification

The architectural specification of EP2 portraits the general overview of the system. An
overview of the ep2 architectural level is illustrated in Figure 11.1. It specifies, at a high
level, each of the nine interfaces represented by solid blue lines in Figure 11.1 (CAI-Card,
Sl-Config, COI-Config, Sl-lnit, FESrontEnd, M lSubm , MIJRec, BE-BackEnd, EI-ECR).

The data specification (Arch_EP2_Data) defines sorts describing the data communi­
cated on each of the interfaces listed above; this is loose specification, where in fact all
we are doing is defining a name for each sort.

spec Arch_EP2_Data =
sorts CAI-Card; Sl-Config; COI-Config; Sl-lnit; FE-FrontEnd;

Ml-Subm; MI-Rec; BE-BackEnd; El-ECR
end

The Csp-Casl specification of th architectural level (Arch_EP2), begins by declaring
channels representing each of the interfaces; each channel's sort comes from the data part.
The value of each data is communicated over channels; data of sort CAI-Card is inter­
changed over on a channel C-CAI-Card linking the Card and the Terminal. For each line of
communication (or interface) we introduce a new channel. For instance, the Acquirer com­
municates with the Terminal and the PMS on the M lSubm interface. Here, we model by
introducing two different channels over the same interface; namely C-PMSAcq-Ml-Subm
typed over Ml-Subm and CJTerAcq-MlSubm typed over Ml-Subm.

Each process is declared with the appropriate alphabet, consisting of the channels over
which it may communicate. The Card process may communicate only on the C-CAI-Card
channel.

This is followed by process equations defining the behaviour of each component's pro­
cess as a Csp-Casl process term. Here, each process is modeled as the RUN process,
i.e., they are always prepared to communicate any event from their alphabet. For ex­
ample, the ServiceCenter process can communicate all values of channel CSl-Config and
C-COI-Config. Finally, we declare and define the process ArchEPl, which represent the
entire system at the architectural level. Its communication alphabet consists of all the
channels we have defined.

The Terminal, is at the center of the system, and communicates with the 'rest of the sys­
tem' over the different channels; except C-COl-Config and CJMl-Rec. The 'rest of the
system' is then modelled as three processes interleaved: the Card, the POS, and a process
in which the communications between the ServiceCenter, Acquirer and PMS are restricted
using alphabetized parallel; for instance here the ServiceCenter cannot communicate with
the PMS.

ccspec Arch_EP2 =
data Arch_EP2_Data
channels C-CAI-Card : CAI-Card; CSI-Config : Sl-Config;

11.2 Modelling ep 2 in C s p - C a s l 155

C-COI-Config : COI-Config; C S I - In it: Sl-lnit;
C-FE-FrontEnd : FESrontEnd; C-TerAcq-MISubm : Ml-Subm;
C SM SA cq-M ISubm : Ml-Subm; C-MI-Rec : MI-Rec;
C-BESackEnd : BESackEnd; C -E ISC R : E1SCR

process Card : C-CAI-Card;
ServiceCenter : C-SI-Config, C-COI-Config;
Acquirer : C-COI-Config, C S l-ln it, CSESrontEnd,

C-PMSAcq-MISubm, C-TerAcq-MISubm, C-M I-Rec;
PMS : C-BE-BackEnd, C-MI-Rec, CSM SAcq-M ISubm ;
POS : C -E IS C R ;
Terminal: C-CAI-Card, CSI-Config, C-SI-Init, C SESrontEnd,

C-TerAcq-MISubm, C SESackEnd, C S I S C R ;
ArchEP2 : C-CAI-Card, CSI-Config, C SI-In it, CSESrontEnd,

C-BESackEnd, C S IS C R , C-COI-Config, C-PMSAcq-MISubm,
C-TerAcq-MISubm, C -M lS e c ;

Card = RUN(C-CAI-Card)
ServiceCenter = RUN (CSI-Config, C-COI-Config)
Acquirer = RUN (C-COI-Config, C S IS n it, CSESrontEnd,

CSM SAcq-M ISubm,C-TerAcq-M ISubm, C -M IS e c)
PMS = RUN (C-BESackEnd, C SM SAcq-M ISubm , C -M ISec)
POS = RUN (C S IS C R)
Terminal = RUN (C-CAI-Card, CSI-Config, C S IS n it, C SESrontEnd,

C-TerAcq-MISubm, C-BE-BackEnd, C S I S C R)
ArchEP2 -
Terminal \[C-CAI-Card, CSI-Config, C SI-In it, C SESrontEnd,

C-TerAcq-MISubm, C-BESackEnd, C S IS C R] \
(Card
HI (ServiceCenter |[CSI-Config, C-COI-Config

11 C-COI-Config, C SI-Init,C SE SrontE nd,
CSerAcq-M ISubm , C SM SAcq-M ISubm , C -M ISec]|
Acquirer |[CSI-Config, C-COI-Config, C S l-ln it,

C SESrontE nd, C-TerAcqSAISubm,
C SM SAcq-M ISubm , C -M ISec
11 C SM SAcq-M ISubm , C -M ISec,

C SE SackE nd]| P M S)
III P O S)

e n d

This very first specification in Csp-Casl mirrors the informal architectural specification of
ep2, portrayed in Figure 11.1. It is, a very abstract view of the system — but certainly not
a trivial one. Even from such an abstract specification, we would like to verify interesting
properties (see Section 11.3); and design meaningful test cases (see Section 11.4).

156 Chapter 11 The electronic payment system EP2

11.2.2 Abstract c o m p o n e n t level

At this level we m odel the activity diagram of the different functionality of the ep2 com po­
nents. For the sake of good understand ing , in this section we will p resent the details of the
m odelling of the in teraction betw een two com ponents, nam ely the ServiceCenter and the
Terminal. In this interaction, bo th com ponents exchange m essages in order to configure
the Terminal capabilities.

The get configuration use case describes how the ServiceCenter inform s and m ain tains the
Terminal configuration data. This com m unication is carried out over the Sl-Config channel.
This interface is a bidirectional m essage flow. The Terminal acts as com m unication m aster
and the ServiceCenter as com m unication slave. The interface is used for the dow nload
of term inal specific configuration param eters; for instance inform ation about the Acquirer
in itialisation server data. The ServiceCenter m ay optionally request inform ation about the
term inal configuration and initialisation data.

/Wait for Next Configura­
tion Message

[no actions)

[read]
[remove)[reset

terminal)
Receive "Config Data

Requests Message
deceive "Reset Terminal
Notifications Message

Receive (.Remove Con-
fig Data Notifications

Message (remove)
Receive "Config Data
Notifications Message

Send "Config Data Re­
sponses Message

iend "Activate Config
Data Acknowledge*

Message
Send «Config Data Ac­
knowledge* Message send "Remove Config

Data Acknowledge*
Message

Figure 11.4: EP2 Get configuration activity d iagram - Terminal part [ConOS].

For both the Terminal and the ServiceCenter, activity d iagram s are given describing the

11.2 Modelling ep2 in C s p - C a s l 157

flow of control on the receipt of m essages. F igure 11.4 and 11.5 show s the d iagram s of the
Terminal and ServiceCenter com ponen t in the context of exchanging the configuration data.

[activate |

[reset
terminal |

[rem ove]

end «Actrvite Config
Data Notifications
Message (activate) .

"Send "Config Data Re­
quests Message (read)

Send "Reset Terminal
Notification*) Message

cod "Remove Config
Data Nonficanons
Message (remove)

Receive "Config Data
Responses Message

'Receive "Activate CocL
fig Data Acknowledges

Message ,
Message.

Recave "Config Data 'Receive "Remove Coo-
fig Data Acknowledges

Message

Figure 11.5: EP2 Get configuration activ ity d iagram - ServiceCenter p a rt [Con08].

At this level, the data specifications are refined by in troducing a type system on m essages.
In CASL, this is realised by in troducing subsorts of the various d ata sorts in troduced in
A r c h _EP2, e.g., CAI-Card, . . . , El-ECR.

O n the data p art (D _ A C L _ G etC o n f i g), w e in troduce suitable subsort w hich corresponds
to the various m essages w hich are sen t betw een the ServiceCenter and the Terminal. In the
case of the get configuration d ialogue, those are the m essages w hich appear in the activity
d iagram (see Figure 11.4): Session start, Config data request, Config data response, etc. Here,
we have to m ake su re that the various m essages are different by ad d in g som e suitable
axioms.

spec D _ A C L _ G etC o n f ig =
sorts SessionStart, SessionEnd, Config Da ta Request, ConfigDataResponse,

ConfigNotif, ConfigAck, TerminalClearNotif, TerminalClearAck,
RemoveConfigNotif, RemoveConfigAck, ActivateConfigNotif,
ActivateConfigAck < D S l-C o n fig

V x : SessionEnd; y : ConfigDataRequest • -i x = y

158 Chapter 11 The electronic payment system ep2

V x : SessionEnd; y : ConfigNotif • x = y
V j : SessionEnd; y : TerminalClearNotif • -> x = y
V x : SessionEnd; y : RemoveConfigNotif • -i x = y

V x : RemoveConfigNotif; y : ActivateConfigNotif • ~>x = y
end

On the process part (A C L -G etC o n fig u ra tio n), the process RUN from the architectural
specification is refined without changing the overall communication structure. In the case
of the get configuration dialogue, we specify how the Terminal and the ServiceCenter reacts
to the sending and receiving of the various messages.

ccspec A C L _ G etC o n fig u ra tio n =
data D _A C L _G etC onfig
channel CSI-Config : DSl-Config
process
TerminalConfiguration = TerJConfig |[CSI-Config }\ SC-Config
Ter-Config = CSI-Config ! sesStart:: Sessions tart —*Ter-Mgm
TerS/lgm = CSI-Config ? configMess :: DSI-Config —»

if configMess G DSl-ConfigSessionEnd then SKIP
else if configMess G ConfigDataRequest

then C S L C o n f ig ! resp :: ConfigD ataR esponse ^ T erJ V lg in
else if configMess G ConfigNotif

then CSI-Config ! ack :: ConfigAck—̂ Ter-Mgm
else if configMess G TerminalClearNotif

then CSI-Config ! ackT :: TerminalClearAck —» Ter-Mgm
else if configMess G RemoveConfigNotif

then CSI-Config ! ackR :: RemoveConfigAck —> TerJMgm
else if configMess G ActivateConfigNotif

then CSI-Config ! acL4 :: ActivateConfigAck —>Ter-Mgm
else STOP

SC-Config = CSI-Config ? sesStart:: SessionStart —> SC-Mgm
SC-Mgm = CSI-Config ! scM :: SessionEnd —> SC-Config

n CSI-Config ! cdrM :: ConfigDataRequest —»
CSI-Config ? response :: ConfigDataResponse —> SC-Mgm

n CSI-Config ! cdnM :: ConfigNotif —>
CSI-Config ? confAck :: ConfigAck —> SC-Mgm

n CSI-Config ! tclearM :: TerminalClearNotif —»
CSI-Config ? tclearAck :: TerminalClearAck —> SC-Mgm

n CSI-Config ! rcdnM :: RemoveConfigNotif —>
CSI-Config ? rmConfAck :: RemoveConfigAck —> SC-Mgm

n CSI-Config ! acdnM :: ActivateConfigNotif —>
CSI-Config ? act Ack :: ActivateConfigAck —> SC-Mgm

end

11.2 Modelling ep 2 in C s p - C a s l 159

The process TerminalConfiguration models the interaction between the terminal (Ter-Config)
and the service center (SC-Config), which runs in parallel via the channel CSlJConfig. The
process Ter-Config initiates the dialogue by sending a message of type
DSI-Config-SessionStart; on the other side the process SC-Config receives this message.
The process SC-Config takes the internal decision either to end the dialogue by sending
the message of type D-SlJConfigSessionEnd or to send another type of message, for ex­
ample a message of type DSl-ConfigJConfigRequest. This is modelled using the internal
choice operator (n) of CSP. On the other side the process Ter-Config, depending on what
kind of message the process SC-Config has requested, engages in a data exchange. For
example, if it receives a message of type ConfigDataRequest it will send a message of type
ConfigDataResponse.

This model captures in a faithful way the activity diagram of the Terminal and the Service
Center represented in Figure 11.5 and 11.4.

11.2.3 Concrete component level

In the abstract component level we have captured the activity diagram of the various
components as depicted in the original EP2 specification. Here, for each state of the activity
diagram, a verbal description is given of which message parameters are admissible in this
state, and what appropriate response messages are composed of. For example, in the
activity diagram of the ServiceCenter (Figure 11.5), the state "Send <€.Config data Requests
Message" is accompanied by the following verbal description:

The service center shall send the message Config data Request Message to the
terminal. The service center shall set < Config Data Object > to the configuration
data object, which the service center is interested in. For CPTD, TACD and CAD the
service center shall specify with an AID respectively ...

The parameter values of the various configuration data objects, such as CPTD, TACD etc,
are informally described in another table. Figure 11.6 illustrates an excerpt from such
table.

For the concrete encoding of the various messages, we have to look in to two other books:
the EP2 interface book and the EP2 data dictionary book. For instance in the interface book,
we find the sequence diagram for the various activity. Figure 11.7 illustrate the sequence
diagram for requesting the configuration data.

Moreover, in such documents, we find details of the data elements. For instance, for the
message <^Config data Requests we find the data elements reported in Figure 11.2.3. Here,
the table presents the various XML tags and some conditions. The condition for Acquirer
Identifier asserts that this data element should only be present in the case the requested
data object is of type ACD and AISD and is optional in the case of a data object of type
LAID.

160 Chapter 12 The electronic payment system Ep2

<Config
Data Ob­
j e c t value

Object Name Additional Data Ele­
ment

Returned by Terminal

ACD Acquirer Config Data <Acquirer Identifier* One ACD object o f the
requested acquirer

AISD Acquirer Init Srv Data <Acquirer Identifier* One AISD object of the
requested acquirer

CAD Certification Auth Data <Registcred Applica­
tion Provider Identifier
(RID)>

One CAD object of the
requested RID.

CPTD Card Profile Table Data <Application Identifier
(AED)>

One CPTD object of the
requested AID.

LAID List of AlD’s - A list of all AID’S sup­
ported by this terminal

LAID List of AID’s <Aoquirer Identifier* A list of all AID’s sup­
ported by this acquirer

TACD Terminal Application
Config Data

<Application Identifier
(a iB)>

One TACD object o f the
requested AID.

TCD Terminal Config Data - The TCD object

Figure 11.6: M essage param eters for term inal configuration data [Con08].

terminal service cen­
or ter

PSP system

«Session Start»

«Config Data Request» 1... *
----------------- ►

1

1 «Config Data Response» 1... * 1

«Session End» ---------------- 1

Figure 11.7: Sequence diagram 'Request configuration d ata ' [Con08].

Name XML-Tag Condition
<Acquirer Identifier* ep2:AcqID only for ACD and AISD, optional

for LAID
<Application Identifier (AID)> ep2:AID only for TACD and CPTD
<Config Data Object* ep2:ConfDataObj
<Registered Application Provid­
er Identifier (RID)*

ep2:RID only for CAD
not applied for e-commerce (PSP)

<Service Center Identifier* ep2:SCID
<Terminal Identification* ep2:TrmID

Figure 11.8: Data elem ents for <^Config data R eq u ests [Con08].

O n the concrete com ponent level, we m odel w hich specific values the different ep2 com ­
p o n en ts are going to send and receive. It is at this level, the processes becomes stateful.
H ere, the state is represen ted by a pair:

p : Pair[State][Trigger]

State represents the EP2 Terminal's memory, while Trigger represents what kind of m es­
sages initiate the com m unication (e.g., configuration m anagem ent in the case of the get
configuration data).

11.2 Modelling ep 2 in C s p - C a s l 161

The data part (D_CCL_GetConfig) becomes more elaborated and detailed. In order to
model the state of the processes, we import from the Casl standard library the specifica­
tion of Pair and M aybe. The latter, is necessary to model the fact that in the data models
certain elements are optional (See Figure 11.2.3). The following illustrate the MAYBE spec­
ification:

spec MAYBE[sort S] =
sort Maybe[S]
ops nothing : Maybe[S];

ju s t: S —» Maybe[S];
getjust: Maybe[S] —»? S

pred defined: Maybe[S]
• -l def getJust(nothing)
• V x : S • getjust(just(x)) — x
• V x : Maybe[S] • defined(x) def get Just (x)

end

Finally, we import the data specification from the abstract component level of the get
configuration (D_ACL_GetConfig). We then extend the data with new sorts, i.e., Ac-
quirerlD, AID 3 etc.

spec D_CCL_GetConfig =
Pair [sort State fit sort S i—► State] [sort Trigger fit sort T ■—» Trigger]
and Maybe [sort ACD]
and MAYBE[sort AISD]
and M aybe [sort CAD]
and Maybe [sort CPTD]
and MAYBE[sort CAD]
and M aybe [sort TACD]
and MAYBEfsort TCD]
and M aybe [sort AcqlD]
and Maybe [sort AID]
and MAYBE[sort RID]
and D_ACL_GetConfig

then sorts AcquirerlD, AID, RID, TerminalRangelD, TerminalUnitID, ServiceCenterlD, ...

The concrete value of each message triggers a specific behavior in the process part. Thus,
it is necessary to specify the data types up to representation. Specifically, at this level we
would like to capture the data elements such as those in Figure 11.6. These messages can
be modelled by a CASL free type, and we can make concrete what data is involved in
each message. In the following for instance, we specify what type of elements the config­
uration data object (Config Data Obj) contains. Those are exactly the elements specified in

3AID: stands for Application Identifier. RID: stands for Registered Application Identifier. Terminal-
RangelD is the a unique number assigned to a terminal by the EP2 registration authority. TerminalUnitID
is a unique identifier assigned to a terminal by the merchant. Both the TerminalRangelD and the TerminalU­
nitID constitutes a unique identfier for a particular terminal.

162 Chapter 11 The electronic payment system ep2

Figure 11.2.3.

free type ConfigDataObj ::= ACD \ AISD \ CPTD \ CAD \ TACD \ TCD

The specific message for requesting data configuration (ConfigDataRequest) is then speci­
fied as follows:

free type ConfigDataRequest ::=
mk-ConfigDataRequest(get-AcqID : Maybe[AcqID];

get^A lD : Maybe[AID];
geDreq : ConfigDataObj;
get-R ID : Maybe[RID];
get-SCID : ServiceCenterlD;
get-TrmlD : TerminallD)

We now have to add some suitable axioms in order to capture the conditions specified
in the data elements of Figure 11.2.3. For example, in the following we specify the con­
dition that if the requested message is of type ACD the Acquirer ID is defined while the
application identifier (AID) and the registered application provider identifier (RID) are
not defined.

V cdr: ConfigDataRequest
• get-req(cdr) = ACD => defined(getu\cqlD(cdr)) A -> defined(get^AID(cdr))

A -i defined(get-RlD(cdr))
• get_req(cdr) = AISD => defined(get^AcqJD(cdr)) A -i defined(get_AID(cdr))

A -i defined(get^RID(cdr))
• get_req(cdr) = CPTD => -« defined(get-AcqID(cdr)) A defined(get^AID(cdrj)

A -i defined(get-RID(cdr))
• get_req(cdr) = CAD => -i defined(get_AcqID(cdr)) A -i defined(get-AID(cdr))

A defined(getJlID(cdr))
• get^req(cdr) = TACD => -> defined(get-AcqID(cdr)) A defined(get_AID(cdr))

A -i defined(get.JRID(cdr))
• get-req(cdr) = TCD => -> defined(get^AcqID(cdr)) A -i defined(get^AID(cdr))

A -i defined(get-RID(cdr))

Once the Terminal receives a request for a configuration data from the ServiceCenter, the
response of the terminal is dependent of what kind of message the ServiceCenter has re­
quested. The data response from the Terminal has the following format:

type ConfigDataResponse
mk-ConfigDataResponse(get-SCID : ServiceCenterlD;

getJTrmID: TerminallD;
get-ACD : Maybe[ACD];
get-AISD : Maybe[AISD];
get_CAD: Maybe[CAD\,
getJCPTD : Maybe[CPTD];
getJTACD : Maybe[TACD];
getJTCD: Maybe[TCD])

11.2 Modelling ep2 in C s p - C a s l 163

In order to compute the correct data response for the configuration data request, we de­
clare a function which takes the ConfigDataRequest and the State of the terminal and com­
putes the ConfigDataResponse.

op msg-DataResp : ConfigDataRequest x State —> ConfigDataResponse

Which specific value should the data response contain is stated by adding some axioms.
For example, in the following we specify that if the data request contains the message
ACD, then the terminal should retrieve the data elements of ACD.

V cdr : ConfigDataRequest; s : State
• get_req{cdr) = ACD defined{get-ACD{msgJDataResp{cdr, s)))

A -i defined(get-AISD(msg-DataResp(cdr, s)))
A -i defined(get-CAD(msg-ConfigDataResponse(cdr, s)))
A -i defined(get-CPTD(msg-DataResp(cdr, s)))
A -i defined(get-TACD(msg-DataResp(cdr, s)))
A -i defined{get-TCD(msgJDataResp(cdr, s)))

On the process part, we have that at the concrete component level, the activity of the
ServiceCenter remains unchanged. Basically it is the same as specified in the abstract com­
ponent level (see A C L _G etC o n f ig u r a t io n). However, the Terminal's reactive behavior
changes completely. Here, we would like to capture the fact that the Terminal is stateful,
i.e., it depends on the pair State x Trigger.

ccspec C C L _G etC o n f ig u r a t io n =
data D _C C L _G e t C o n fig
channel C SlJC onfig : DSl-Config
process
TerminalConfiguration(Pair [State,Trigger]): C SI-C onfig;
Ter-Config(Pair[State,Trigger]): CSlJConfig ;
Ter_Mgm{Pair [State, Trigger]): C SI-Config;

TerminalConfiguration(p) = Ter-Config (p) |[CSI-Config }\ SC-Config

Ter-Config(p) = CSI-Config ! msgsessionStartConf (second(p)) —>• TerJMgm{p)

Ter-Mgm(p) = CSI-Config ? configMess :: DSI-Config —>
if configMess G DSI-ConfigSessionEnd then SKIP
else if configMess G ConfigDataRequest

then CSI-Config ! msg-DataResp (configMess as ConfigDataRequest, first (p))
—>Ter-Mgm{p)

else if configMess G ConfigNotif
then CSI-Config ! msg-ConfigAck (configMess as ConfigNotif, first(p))
—>Ter-Mgm (pair ((st-ConfigAck (configMess as ConfigNotif, first (p))),

second(p)))
else if configMess G TerminalClearNotif

then CSI-Config ! msg-clearlearNotif (configMess as TerminalClearNotif, first(p))

164 Chapter 11 The electronic payment system ep 2

-^Ter-Mgm (pair((st-terClearNotif (configMess as TerminalClearNotif, first{p))),
second(p)))

else if configMess G RemoveConfigNotif
then CSI-Config ! msg-removeAck (configMess as RemoveConfigNotif, first (p))
—> Ter-Mgm (pair((st-removeAck(configMess as RemoveConfigNotif, first (p))),

second(p)))
else if configMess G ActivateConfigNotif

then CSI-Config ! msg-actConfDataAck(configMess as ActivateConfigNotif, first(p))
—> Ter-Mgm (pair ((st-actConfAck (configMess as ActivateConfigNotif, first (p))),

second(p)))
else STOP

(... Service Center process specification ...)
end

In C C L _G etC o n f ig u r a t io n the process TerminalConfiguration is dependent on the pa­
rameter Pair[State, Trigger], i.e., TerminalConfiguration (Pair [State, Trigger}). On the terminal
side (Ter-Config), a message configMess is received from the ServiceCenter over the chan­
nel CSI-Config. Depending on the type of configMess, different answers are sent back to
the ServiceCenter and the internal state of the Terminal changes. For example, in the case
configMess is of type ConfigDataRequest, the terminal replies with the current configuration
message. The function msg-DataResp (configMess as ConfigDataRequest, first (p)) computes
the right data elements requested; here, in configMess as ConfigDataRequest we need to
downcast the type, since configMess is of type DSl-Config and ConfigDataRequest is a sub­
sort of DSl-Config (see [Gim08]). The activity of requesting configuration data from the
Terminal doesn't change the internal state of the Terminal; thus we don't model the change
of the state.

In the case ServiceCenter informs the Terminal of some changes, that is when configMess is
of type ConfigNotif, the internal state of the Terminal changes. This is computed by the
function st-ConfigAck(configMess as ConfigNotif, first(p)).

The complete specification of the get configuration dialogue at the three levels of abstraction
can be found in the Appendix C.5.

11.3 Property verification of e p 2

In this section we prove some interesting properties of EP2. Namely we show that re­
finement steps from the different layers of specification hold. Furthermore, for selected
dialogue of e p2 components we prove the absence of deadlock and livelock. Here we take
a single dialogue, namely the get configuration dialogue between the service center and the
terminal, to illustrate how the verification is done in C sp-C a s l .

11.3 Property verification of ep2 165

11.3.1 Ref inement

O ur notion of C sp-C asl refinem ent p resen ted in C hap ter 6 is capable of cap tu ring the
vertical developm en t steps p resen ted in the p rev ious section. Sum m arizing the vertical
developm en t of EP2: the first system design sets u p the interface betw een the com ponents
(architectural level), then these com ponen ts are developed fu rth e r to cap tu re the d ialogue
betw een the com ponen ts (abstract com ponen t level), in the next level the system becom es
stateful and heavily d ep en d en t on the specific m essages exchanged betw een the parties.
Figure 11.9 show s the overall idea how the refinem ent verification is carried out.

Arch i t e c tur a l
Level

Ab s t r ac t
C o m p o n e n t

Level

Co nc re t e
C o m p o n e n t

Level

EP2 D esign
Process

F o rm a lis a t io n

F o rm a lis a t io n

F o rm a lis a t io nh-

C sp-C asl

D esign
Process

C s p -C a s l Spec
ArchJGetConfig

C s p -C a s l Spec
ACLJGetConfig

C s p -C a s l Spec
CCL_GetConfig

In tu itiv e R efinem en t Form al R efinem ent

Figure 11.9: EP2 refinem ent verification in C sp-C a s l .

In order to p rove the refinem ent from the arch itectural level to the abstract com ponent
level for the get configuration d ialogue, w e in troduce som e in term ed iate specifications and
refinem ent proofs.

In the first step, w e restrict the EP2 architectural specification (A rc h _ E P 2) to include only
the com m unication over the SI-Config channel betw een the ServiceCenter and the Terminal.
This is cap tu red in the follow ing specification:

166 Chapter 11 The electronic payment system ep2

ccspec Arch_GetConfig =
data D S l-C o n fig
channel C S I -C o n fig : D S l-C o n fig
process

let ServiceCenter = EP2RUN Terminal = EP2RUN
in Terminal \ [C-S I-C onf ig] | ServiceCen ter

end

The EP2RUN process is specified as:

EP2RUN - (CSI-Config ?x : DSl-Config -> ConfigSU N) □ SKIP

Such process is always prepared to communicate an event from DSl-Config or to termi­
nate successfully. We now prove the following lemma:

L e m m a 11 .3 .1 EP2RUN =T EP2RUN | [CSI-Config}\ EP2RUN.

Proof. The proof is done in C sp-C asl-P rover. ■

Then, we introduce a new specification Seq._GetConfig , Such specification is a sequen­
tial version of the get configuration dialogue:

ccspec Seq_GetConfig =
data D_ACL_GetConfig
channel C SI-C onfig: DSl-Config
process
SeqStart = CSI-Config ! sesStart:: SessionStart SC-Mgm
Seq-Mgm = CSI-Config ! seM :: SessionEnd —> SC-Config

n CSI-Config ! cdrM :: ConfigDataRequest —>
CSI-Config ! response :: ConfigDataResponse —» Seq-Mgm

n CSI-Config ! cdnM :: ConfigNotif —>
CSI-Config ! confAck :: ConfigAck —> Seq-Mgm

n CSI-Config ! tclearM :: TerminalClearNotif —>
CSI-Config ! tclearAck :: TerminalClearAck Seq-Mgm

n CSI-Config ! rcdnM :: RemoveConfigNotif —>
CSI-Config ! rmConfAck :: RemoveConfigAck —> Seq-Mgm

n CSI-Config ! acdnM :: ActivateConfigNotif —>
CSI-Config ! act Ack :: ActivateConfigAck —> Seq-Mgm

end

We prove that S eq_G etC onfig is equivalent over the stable failure model to A c l_ G etC o n fig 4.

L e m m a 11 .3 .2 A cl_ G e tC o n fig = ? Seq_G etC onfig.

4A similar proof methodologies have been applied in [OIR09]

11.3 Property verification of ep2 167

PROOF. The proof is done in C sp -C asl-P ro v er. Here, both processes uses the same data
specification. The following is a snippet of the Isabelle proof script.
theorem G e tC on fig_S eq : " Acl_G etC onfig =F Seq_GetConfig"

ap p l y (Simp add: A cl_G etC onfig_def S eq _G etC on fig_d ef)
apply (r u le c s p F _ fp _ in d u c t_ r ig h t [o f _ _ "Seq_To_Config"])
apply (s i m p _ a l l)
apply (s im p)
apply (in d u c t_ ta c procName)
apply (csp F _auto I cspF _h sf I ru le cspF_decompo) +

done

We first unfold the definitions of Acl_GetConf ig and Seq_GetConf ig. Next, we apply
(metric) fixed point induction on the rhs and make a case distinction over the process
names, here encoded as induct_tac procName. In the last step we apply powerful
C sp -P ro v er tactics which combines three basic tactics. The result of which rewrites the
processes to head normal form (cspf_hsf), and applies simplification (cspF_auto and
cspF_decompo) in terms of CSP step laws in order to equate processes. CSP-PROVER
tactics are explained in details in [IR]. ■

Finally we prove the main refinement proof:

T h e o r e m 11 .3 .3 A rc h _ G e tC o n fig A cl_ G etC o n fig .

PROOF. Having established some equivalence in Lemma 11.3.1 and 11.3.2, we now use
C sp -C asl-P ro v er to establish this refinement.

We want to prove that EP2RUN Seq_GetConfig . To this end we apply the decom­
position theorem presented in Section 7.1. Using H ets, we automatically prove the data
refinement D_Arch_GetConfig D_ACL_GetCon fig .

Now, we have formed the specification (D _A .CL_G etConfig,PsEq_getConfig)-
Where P s e q _ G etC o n f ig denotes the process part of Seq_G etC onfig . Next we show in
C sp -C asl-P ro v er that, over the traces model T , the refinement R U N _G etC onfig
S eq_G etC onfig holds. Here, we show a snippet of the Isabelle proof script for the re­
finement proof.

theorem Arch_ACL_GetConfig : "EP2RUN <=T Seq_Start"
apply (u n fo ld EP2RUN_def S e q _ S t a r t _ d e f)
apply (r u l e c s p T _ fp _ in d u c t_ r ig h t [of _ _"SeqToRun"])
apply (in d u c t_ ta c procName)

apply (r u le c sp T _rw _le f t I ru le cspT_decompo) +

a p p ly (c s pT_auto I auto)
a p p ly (Simp add: c s p T _ se m a n t ic s)
apply (r u l e)
a p p ly (Simp add: in _ t r a c e s)
apply (au to simp add: tr a c e _ n i l_ o r _ T ic k _ o r _ E v)
apply (a u to simp add: S e s s i o n S t a r t _ d e f Sess ionE n d _def . . .)

done

168 Chapter 11 The electronic payment system ep2

We first unfold the definitions of Config_Run and Seq_Start. Next, we apply (metric)
fixed point induction on the rhs and make a case distinction over the process names, here
encoded as induct_tac procName. After rewriting and decomposing both of the pro­
cesses we compute the trace semantics (cspT_semant ics) and check that there is indeed
an inclusion of traces (in_traces); here, we need to add the definition of the various
sorts (SessionStart_def etc). ■

As illustrated in Figure 11.9 the refinement from the architectural level to the abstract com­
ponent level doesn't hold over the stable failure model T . We recall that refinement in T
holds if and only if there is an inclusion of the trace and the failure set. In our case, how­
ever the process EP2RUN has less refusal set than the process part of Se q _ G e t C o n f i g ,
i.e.,/az7ures(SEQ_GETCONFiG) £ failures(EF2RUN).

We now prove the refinement step from the abstract component level to the concrete com­
ponent level, in the context of the get configuration dialogue.

T h e o r e m 11 .3 .4 A c l _ G e t C o n f i g ^ C c l _ G e t C o n f i g .

P r o o f . Again we use the decomposition theorem to first establish the data refinement
D _ A c l _ G e t C o n f i g D _ C c l _ G e t C o n f i g . Such proof is discharged automatically
in H e t s . N ow , we have formed the specification (D _ C C L _ G e t C o n f i g , P c c l _ g e t C o n f i c) -

Where P c c l _ G e t C o n f i c denotes the process part of C c l _ G e t C o n f i g . Next we show in
C s p - C a s l -P r o v e r that, over the stable failure model T , the refinement

A c l _ G e t C o n f i g C c l _ G e t C o n f i g

holds. The proof in C s p -C a s l - P r o v e r is relatively substantially longer than the proof of
Theorem 11.3.3. Here, we illustrate the main snippet of the Isabelle proof script.
theorem ACL_TO_CCL: "!!p . ACL_GetConfig <=F CCL_GetConfig p"

a p p ly (simp add: ACL_Configuration_def C CL_Configuration_def)
apply (r u le cspF_decompo)
apply (simp)

(* Refinement on the Terminal s id e *)

apply (r i i le c s p F _ f p _ in d u c t _ le f t [of _ "ACL_TO_CCL"])
apply (s im p _ a l l)
apply (ru le c s p F _ R e p _ in t_ c h o ic e _ le f t)
apply (simp)
apply (r u le _ ta c x="p" in e x l)
apply (simp)
apply (simp add: c o n f ig _ g e n e r a l)

(* Refinem ent on the S erviceC enter s id e *)

apply (r u le c s p F _ f p _ in d u c t _ le f t [of _ "ACL_TO_CCL"])
apply (s im p _ a l l)
apply (simp)
apply (simp add: c o n f ig _ g e n e r a l)

done

2 2.3 Property verification o f ep2 169

We first unfold the defin itions of ACL_GetConf ig and CCL_GetConf ig. The latter p ro ­
cess is param eterised by P, w hich is pair of State and Trigger (See Section 11.2). The proof
of refinem ent is done first on the Terminal side and then on the ServiceCenter side. On both
sides, w e app ly (m etric) fixed po in t induction on the rhs and ap p ly sim plification tactics.

11.3.2 D e a d lo c k analysis

M ost of ep2 com ponents in teract w ith each o ther over som e channels (see Figure 11.1).
As illustra ted in Section 11.2, this is m odeled as a parallel com position, in w hich both
com ponen ts com m unicate over a channel, i.e., in C sp this is realized using the generalized
parallel operato r P | [C] | Q.

In such in teraction it is possible that the deadlock p h enom enon could occur. Furtherm ore,
processes like TerJsAgm of the specification A c l _ G etC o n f ig includes the CSP process
STOP w ith in one branch of its conditional. Should this b ranch of Tcr_Mgm be reached, the
w hole system will be in deadlock. This is of course an undesirab le situation, especially in
the case of paym en t transaction , i.e., com m unication betw een the Terminal and the Acquirer
over the FE_FrontEnd in o rder to au thorize a paym en t (see F igure 11.10). H ence, an early
analysis of such undesirab le behav io r is very beneficial for the overall verification of the
e p2 system .

«Authorisation Request»
«Reversal Notifications

FE-FrontEnd

«Authorisation Response»
((Reversal Acknowledge))

Figure 11.10: EP2 process transaction[C on08].

In this subsection w e illustra te how the deadlock analysis is carried ou t in the get configu­
ration d ialogue. Such analysis is done at the abstract com ponen t level.

In Lem m a 11.3.2 w e have p roven that the Get configuration d ia logue is equ ivalen t on the
stable failure m odel to its sequential version (Se q _ G etC o n f i g). By syntactic characteriza­
tion such process is deadlock free. H ere, w e p rove that indeed Se q _ G etC o n f ig is d ead ­
lock free. To this end w e establish in C s p -C a sl -P ro v e r th a t DF Se q . G etC o n f i g ,
w here DF is the least refined deadlock free process described in Section 8.1.

Lemma 11.3.5 D F ^ J r Se q _ G etC o n f i g u a r t i o n .

P ro o f . The proof is done in C sp-C a sl -P r o v e r , here w e give the m ain sn ippet of the
Isabelle proof script:

170 Chapter 11 The electronic payment system ep2

theorem G e t C o n f i g u r a t i o n _ I s _ D F : "DF <=F S e q _ G e t C o n f i g "
apply (u n f o l d S e q _ G e t C o n f i g _ d e f DF_def)
a p p ly (r u le c s p F _ f p _ i n d u c t _ r i g h t [o f _ _ "Seq_ to_DF "])
apply (s i m p _ a l l)
apply (s imp)
apply (i n d u c t _ t a c p rocName , a u t o)
a p p ly (c s p F _ a u t o) +
apply (ru le c s p F _ l n t _ c h o i c e _ l e f t l)
apply (r u l e c s p F _ d e c o m p o _ r e f)
apply (c s p F _ a u t o 1 a u t o) +
apply (r u l e c s p F _ I n t _ c h o i c e _ l e f t 2)
apply (c s p F _ a u t o I a u t o) +

a p p l y f r u l e c s p F _ l n t _ c h o i c e _ l e f t 1 I r u l e c s p F _ d e c o m p o _ r e f
I c s p F _ a u t o I a u t o) +

done

First the m ain goal is unfo lded , then we apply the (metric) fixed point induction is ap ­
plied; here w e have defined a m apping from the process SeqJCetConfig to the process DF.
Next, the involved recursive processes are proven to be guarded using the Isabelle sim pli­
fication tactics. Then, w e m ake a case distinction over the process nam es (i n d u c t _ t a c
p r o c N a m e) . At this point, w e have seven subgoals of the following form:

x G SessionFnd => DF C j CSI-Config x —» SKIP

Each of these subgoals corresponds to the internal choice branching of the S e c c G e t C o n f i g
In o rder to discharge these subgoals we use C s p - P r o v e r tactics, which m ake use of sev­
eral CSP step laws, i.e., the tactic c s p F _ I n t _ c h o i c e _ l e f t 1 allow s to m ake the follow ­
ing step P] Cp Q => P-i n P2 Cjr Q. ■

We have now established that Aci G e t C o n f i g is deadlock free. In Theorem 11.3.4 we
have proven that the refinem ent AcL G etC o n fig C c l _G etC o n fig holds. The sta ­
ble failure m odel preserves deadlock freeness of processes (see Section 8.1). Therefore, we
can conclude that C c l _ G etC o n fig is deadlock free. Figure 11.11 illustrates the overall
idea of deadlock analysis of the get configuration dialogue.

[DI J

G etConfig

C SI'-L

— T
Se q_G etConfig |

| C c l _ G etConfigJ

Figure 11.11: EP2 deadlock analysis in C sp-C a sl .

11.3 Property verification o f EP2 171

We have carried out deadlock analysis of several other dialogues between EP2 compo­
nents. Basically, these analysis follow the same kind of approach as presented for the get
configuration dialogue.

11.3.3 L ivelock A nalysis

As described in Section 8.2 livelock freeness is best analysed in the failures/divergences
model J\f. The model J\f has not been implemented in C sp -C asl-P ro v er. However, in
the following, we prove using basic step and distributivity laws of Csp that the dialogue
between the Terminal and the ServiceCenter is livelock free.

We first show that the sequential version of the get configuration dialogue is livelock free. To
this end, we use Theorem 8.2.4 to prove that the refinement DivF Seq_GetConfig
holds. Here, DivF is the least refined livelock free process:

ccspec DivF =
data D_Acl_GetConfig
process

DivF = (STOP n SKIP) n (ns.s!x : s -► DivF)

end

The sort S contains all the sorts declared in D_Acl_GetConfig . For simplicity, in the
Seq_GetConfig specification we consider only a process nucleus. That is, only one
branch of the internal choice operator, i.e.,

SeqStart = CSI-Config ! sesStart:: SessionStart —> SC-Mgm
Seq-Mgm = CSI-Config ! seM :: SessionEnd —> SC-Config

n CSI-Config ! cdrM :: ConfigDataRequest —»
CSI-Config ! response :: ConfigDataResponse —» Seq-Mgm

T h e o r e m 11.3.6 DivF Seq_GetConfig.

P r o o f . This is basically a process refinement over the failures/divergence model, i.e.,
DivF Cj^f Seq_GetConfig. This can be transformed into

DivF =jy DivF n Seq_G etC onfig

We now apply CSP step laws to prove the equivalence:

DivF = j\f DivF n Seq-GetConfig
(by symmetry) |

DivF n Seq-GetConfig =_\r DivF
(unfolding) |

172 Chapter 11 The electronic payment system ep2

(distributivity of fl)

(n — step law)

(n — step law)

(fl —rewriting)

((STOP n SKIP) n f ll !x :: s -> DivF))
n
SeqStart = CSI-Config ! sesStart:: SessionStart —» Seq-Mgm
Seq-Mgm = CSI-Config ! seM :: SessionEnd —> SKIP

n CSI-Config ! crfrM :: ConfigDataRequest
—> CSI-Config ! response :: ConfigDataResponse
—+ Seq-Mgm

((fl s!* :: s -> DzuF) n SX7P) n (f lc.c!x :: s -» DzuF) n STOP))
s:S

n
SeqStart = CSI-Config ! sesStart:: SessionStart —> Seq-Mgm
Seq-Mgm = CSI-Config ! seM :: SessionEnd —> SK/P

n CSI-Config ! cdrM :: ConfigDataRequest
—> CSI-Config ! response :: ConfigDataResponse
—> Seq-Mgm

((f1s.s!x :: s -> D/uF) n SKIP) n (fl :: s DroF) n STOP))

SeqStart = CSI-Config ! sesStart:: SessionStart —> Seq-Mgm
Seq-Mgm = CSI-Config ! s<?M :: SessionEnd —> SX7P

((n ,s !r :: s D/uF) n STOP)

SeqStart = CSI-Config ! sesStart:: SessionStart —> Seq-Mgm
Seq-Mgm = CSI-Config ! seM :: SessionEnd —» SK/P

((n c!a: :: ss:S
D;uF) n STOP)

■sKS^onSf^onE^}^ " S ^ R SX/P

DI17F) n (STOP n SX/P) = DivF

This proves that DivF = x DivF fl Seq-GetConfig.

(distributivity of n)

n
n

(I- ! Jx :: sx s:S

Now that we have proved Seq_GetConfig is livelock free, we proceed to verify that
the actual dialogue between the Terminal and the ServiceCenter is livelock free. To this
end, we use the property that the failures/divergences model preserves livelock freeness.
We show that the sequential version is equivalent over the failures/divergences model
to the actual dialogue. For simplicity, in the Acl_GetConfig specification we consider
only a nucleus process nucleus. That is, one branch of the activity diagram presented in
Figure 11.5, i.e.,

TerminalConfiguration = Ter-Config \[CSI-Config]\ SC-Config
Ter-Config = CSI-Config ! sesStart:: SessionStart —*Ter-Mgm
TerSAgm = CSI-Config ? configMess :: DSl-Config —>

if configMess € DSI-ConfigSessionEnd then SKIP

11.3 Property verification o f EP2 173

else if configMess 6 ConfigDataRequest
then CSI-Config ! resp :: ConfigDataResponse —̂TerJMgm

else if configMess e ConfigNotif
then CSI-Config ! ac/c:: Config Ack—> TerJMgm

SC-Config = C-SI-Config ? sesStart:: SessionStart —> SC-Mgm
SC-Mgm = C-SI-Config ! seM :: SessionEnd —> SC-Config

n C-SI-Config ! cdrM :: ConfigDataRequest —>
C-SI-Config ? response :: ConfigDataResponse —> SC-Mgm

T h e o r e m 11.3.7 A c l_ G e tC o n fig S eq_G etC onfig .

P r o o f . We apply CSP step laws to prove the equivalence. We start from the lhs:

CSI-Config ! sesStart:: SessionStart —> Ter-Mgm
| [C-Sl-Config] |

CSI-Config ? sesStart: SessionStart —> SC-Mgm
(II step) |

CSI-Config ! sesStart:: SessionStart —»
('TerJMgm \ [CSI-Config} \ SC-Mgm)

(unfold) |
CSI-Config ! sesStart:: SessionStart —>
(CSI-Config ? configMess —*•

(if (configMess in DataRequest)
then CSI-Config ! resp : ConfigDataResponse —» Ter-Mgm

else if (configMess in SessionEnd) then SK/P else STOP)
\[C-SI-Config]\

CSI-Config ! seM :: SessionEnd —> SKIP
n CSI-Config ! cdrM :: ConfigDataRequest

—v CSI-Config ! response :: ConfigDataResponse —» SC-Mgm
(|| —distrib) \

CSI-Config ! sesStart:: SessionStart —>
(CSI-Config ! seM :: SessionEnd —> SK/P

| [CSI-Config} |
(CSI-Config ? configMess —> (if . . .))

n
CSI-Config ! cdrM :: ConfigDataRequest

—> CSI-Config ! response :: ConfigDataResponse —» SC-Mgm
| [CSI-Config] |

(CSI-Config ? configMess —> (if ...)))
(if - step) |

CSI-Config ! sesStart:: SessionStart —»
(CSI-Config ! seM :: SessionEnd —» SKIP)

n
CSI-Config ! cdrM :: ConfigDataRequest

—> CSI-Config ! response :: ConfigDataResponse —» SC-Mgm

The last z/ — sfcp is applied twice, i.e., one per n branch. By doing a process renaming and
re-structuring, we obtain Seq_Config , i.e,

174 Chapter 11 The electronic payment system ep 2

SeqStart = CSI-Config ! sesStart:: SessionStart —► SC-Mgm
SeqSAgm = CSI-Config ! seM :: SessionEnd —> SC-Config

n CSI-Config ! cdrM :: ConfigDataRequest —»■
CSI-Config ! response :: ConfigDataResponse —* Seq-Mgm

Similarly to the deadlock analysis, we have carried out livelock analysis of several other
dialogues between ep2 components. This analysis follow the same kind of approach as
presented for the get configuration dialogue.

11.4 Testing framework for e p 2

In this section we describe how the testing process of EP2 has been carried out. Here, we
show how we select the test cases to be executed. We evaluate the test cases using Csp-
C a s l-P ro v e r; for this, we use the syntactic encoding of colouring test cases presented in
Section 9.3.

Moreover, we introduce the EP2 Testing Evaluator tool (TeV). This is an on-the-fly testing
framework for an ep2 terminal. Such a tool will allow us to run test cases in a hardware-
in-the-loop testing fashion. Here, we describe its architecture and its basic features.

11.4.1 Test case selection and evaluation

Selection of test cases is done using some general guidelines based on the informal EP2
specification and the C sp-C asl specifications. In selecting the test cases we adopt three
general test purposes:

Main functionality of the EP2 components: Here, the purpose is to test the various func­
tionality of the ep2 components prescribed in the various ep2 specification books.
For instance, functionality like: configuration of the terminal by the service cen­
ter; payment authorization performed by the acquirer; book keeping and logging
of transaction performed by the POS management system, etc.

For such purpose, we select most of the test cases from the activity diagram of the
various components. For instance, for the get configuration activity diagram (see Fig­
ure 11.4), we design at least one test case for each branch of the activity state.

Security features: ep2 uses the latest cryptographic techniques, which are very complex.
Those techniques are built upon the combination of various cryptographic concepts
such as cryptographic algorithms, mode, padding, hashing, Message Authentication
Code (MAC) and Key exchange. The ep2 security specification prescribes three levels
of security for exchanging messages between the components:

11.4 Testing framework for ep2 175

• Level 0: Has the lowest security with no cryptographic property. Messages at
this level are sent in plain.

• Level 1: It enhances the security of the communication by introducing a MAC
into the header of the message. This provides a message integrity check.

• Level 2: This is the highest security level. At this level, messages not only have
a MAC for integrity check, but also the whole message is encrypted.

Depending on the message type the EP2 components are exchanging, one of the
three level of security is applied. For instance, when an authorization for a payment
transaction is sent from the terminal to the acquirer, level 2 is used. The acquirer
replies to the terminal with a message which uses only level 1. In case of an error
message, level 0 is used.

For such purpose, we select test cases that experiments the right level of security is
used during the interactions.

Re-use of test case: Here, the purpose is to select test cases in order to illustrate our ap­
proach of re-using test cases in a vertical development as described in Chapter 10.

In the following we describe a sample of test cases that illustrate the overall approach of
testing from C sp-C asl specifications. The first set of test cases are designed to experiment
the ep2 system at the architectural level. As described in Section 11.2, the architectural
specification of ep2, portraits the general overview of the system. Here, we design test
cases which mainly will be used for setting up the test environment and the EP2 terminal
system. In the following, we describe three C sp-C asl test cases:

To = C S I-ln it\x :: D_SI-lnit —> C-SIJinitly :: D_SI-lnit —> STOP
Ti = x :: D_BE-3ackEnd —» STOP

Here, x and y are variable over the indicated sorts.

To : Experiments a secure communication between the acquirer and the terminal. Even
with such simple test case, we can experiment various features described in the spec­
ification. On the functionality level, To experiments the bidirectional communication
between the terminal and the acquirer. Using such test, we can ensure a successful
communication between the test environment and the SUT.

On the security level, here we can test for the authenticity of a particular acquirer.
In fact the ep2 security specification prescribes that the service center is responsible
of informing the terminal of the acquirer data. This information includes the ip and
port address and the public key of the acquirer allowed to communicate with the
terminal. The public key is then used to calculate the MAC data of a message. In the
case of a fake acquirer the control for message integrity would fail. Therefore, this
test case experiment a required behavior of the ep2 system; thus is colored green.

Ti : Experiments a communication between the terminal and the PMS. Here, we don't
specify the channel of the communication. With this test we want to test that com­

176 Chapter 11 The electronic payment system EP2

munication happens in designated channels. Therefore, this test case experiments a
forbidden behavior of the system; hence is colored red.

We now illustrate a set of test cases designed to experiment the ep2 system at the abstract
and concrete component level. The following are the Csp-Casl test cases:

T2 = C-FE-FrontEnd ! authReq :: AuthRequest
—> C-FE-FrontEnd ! authRes :: AuthResponse —> STOP

T3 = C -SI-ln it! sesStart:: SessionStart —> C -SI-In it! notif :: DataNotif
—> C -S l-ln it! sesEnd :: Session —» STOP

T4 = C JSl-ln it! sesStart:: SessionStart —> C -S l-ln it! notif :: RemoveNotif
—» C -SI-ln it! notif :: Remove Ack —> C -S l-ln it! actNotif :: ActivationNotif
—> C -S l-ln it! act Ack :: ActicationAck —> C -S l-ln it! sesEnd :: Session —> STOP

T5 = C-SI-Config ! sesStart :: SessionStart —» C-SI-Config \ req :: ConfigDataRequest
—> C-SI-Config ! res :: ConfigDataResponse —> CSI-ConfiglsesEnd :: SessionEnd

STOP

Here we give a brief explanation of:

T2 Experiments a communication between the acquirer and the terminal in the context of
payment transaction. Here, the terminal sends a message to the acquirer to authorize a
payment for a purchased goods. The acquirer authorize the transaction by sending a
message of type AuthResponse. This is a required behavior of the system, as specified
in the EP2 terminal (and acquirer) book [Con08].

T3 Experiments a communication between the acquirer and the terminal in the context
of the initialization of the terminal data. Here, the acquirer informs the terminal
what type of credit card are acceptable at this point. This is done by sending a
notification message to the terminal. However the communication ends without an
acknowledgment from the acquirer. This is a forbidden behavior, as all message
exchanges needs to be acknowledged.

T4 Experiments a communication between a acquirer and the terminal in the contest of
initialization of the terminal data. The acquirer informs the terminal that a payment
transaction using a particular type of cards (e.g., Maestro cards) are no longer accept­
able. This is done by sending a message of type remove config data to the terminal.
Then, by sending an activation message in order to make the initialization message
active on the terminal. The data specified at the abstract component level, does not
prescribe what kind of data the message remove config data has. At this point of the
vertical development this decision is still left open.

T5 Experiments a communication between a service center and the terminal in the contest
of get configuration data use case. Here, we experiment the retrieval of some config­
uration data from the terminal. The service center sends a message of type config
data request and is interested to retrieve the configuration data of a non existent ac­
quirer. Again, at the level of the abstract component level, the details of the message
config data request is left open. Only in the concrete component level will make this
message concrete.

11.4 Testing framework for EP2 177

The color of the test cases T3, . . . , T& is as follows:

Spec. Level t 2 t 3 Ta t 5
ACLJEP2 GREEN RED YELLOW YELLOW
CCL_EP2 GREEN RED GREEN RED

11.4.2 Testing framework for ep2

Here, we describe the architecture of the testing framework for ep2- Testing EValuator
(TeV). TeV is a hardware-in-a-loop on-the-fly testing framework, designed to test an ep2
terminal.

Hardware-in-a-loop testing (HIL) is a well established approach to validate complex sys­
tems, where the correct integration of software with its underlying hardware is essential.
HIL has been deployed in defense and aerospace industry as early as the 1950s [NBAR04],
nowadays it is an established testing technique. HIL is heavily used in verifying criti­
cal system in projects such as the power and thermal control unit of the X-ray satellite
"ABRIXAS" [SMH99] and for cabin management controllers for Airbus families [Pel02]
and more.

The general architecture of TeV was originally designed in [Chu05]. The designed ar­
chitecture has been only tested with a simulator of ep2 messages, called CEPTEST ep2
developers test tool. The latter has been developed by CELSI AG5, which is a member
of the EP2 consortium. CEPTEST allows developers of any ep2 components to be able to
create and send messages through any message oriented ep2 interface.

The author of this thesis have made significant changes to the architecture in order to be
able to interface with the 'physical terminal'- cCredit Terminal Software provided by Six
Card Solutions6. Here, we list the changes and new features implemented:

• Interface with the actual software of cCredit Terminal Software.

• Ability to test multiple ep2 components in a single run of a test case.

• Implementation of new security features as described in the EP2 standard version 4.0.

• Implementation of the test evaluation algorithm described in Section 9.4.

Figure 11.12 illustrate the hardware-in-the-loop testing framework for EP2.

As described in Section 11.1, the EP2 standard involves various technologies, such as cryp­
tography, XML, and TCP/IP. The testing framework has to mirror such a complex system
that involves different technologies. Hence, a well-structured testing architecture is re­
quired. Figure 11.13 illustrate TeV's architecture.

5h t t p : / / w w w . c e l s i . ch/
6www. s i x - c a r d - s o l u t i o n s . com

178 Chapter 77 The electronic payment system EP2

EP2 Test Environment

EP2 Test Driver and Monitor

Figure 11.12: H ardw are in the loop testing for EP2.

TeV is w ritten in Java and uses several APIs and libraries: For cryptographic operation:
JCA (Java C ry p tog raphy A rchitecture)' and JCE (Java C ryptography Extension)*, for m a­
n ipulation of XML docum ents: SAX (Simple API for XML)4, JDOM (Java D ocum ent O b­
ject M odel)10, X M L U nit]], FOP(Form at Objects Processor)12; and other logging utility li­
braries such as log4ju .

TeV is com posed of a num ber of layers. Each layer provides a set of functions for the trans­
m ission and m an ipu la tion of the EP2 data. Here, we explain each layer in Figure 11.13:

• Test Applications: This layer is the basic interface of TeV. The tester interacts w ith the
functionality p rov ided in this layer in order to create, execute and get the verdict of
test suites. It is com posed by three stand-alone applications:

- T e V C r e a t o r : A utom atically generates a test case protocol in an XML format.

- T eV M a n a g e r : It runs automatically the chosen test cases and evaluates on
the fly the verdict of a test case.

- TeV R e p o r t e r : A utom atically generates test verdicts in a readable form at (ps,
pdf, etc.)

• EP2 Components: This layer im plem ents the various EP2 com ponents w hich will be
used by the test m anager.

7http://java.sun.com/j2se/1.4.2/docs/guide/security/CryptoSpec.html
8http: / /java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
9http://www.saxproject.org/
http://www.jdom.org/

^ http://xmlunit.sourceforge.net/
12http://xmlgraphics.apache.org/fop/
13http://logging.apache.org/log4 j

10

11.4 Testing framework for ep2 179

Test Applications

Ep2 Components

t Conversation (XML)

z Cryptography

u Network

Figure 11.13: TeV - architecture [Chu05].

• Conversation: This layer deals with the manipulation of the ep2 XML messages. At
this level most of the test verdict algorithm is implemented.

• Cryptography: This layer implements the necessary cryptographic operations for the
encryption and decryption of EP2 data.

• Network: This layer deals with the network communication protocol between EP2
components.

Figure 11.4.2 illustrate a typical test case protocol of ep2. After the user inputs the nec­
essary information, such file is automatically generated by the tool TeVCreator. The
structure of the test case protocol consists of six parts:

• meta (line 3-7): contains basic information of the test case.

• ccTest (line 8-14): illustrates the Csp-Casl test process.

• pcolnfo (line 15-20): contains information about the PCO, the level of abstraction of
the specification and the name of the Csp-Casl specification.

• testcaseEvallnfo (line 21-25): contains information about the test case evaluation, i.e.,
color of test case, location of the colouring proof and timeout information.

• componentList (line 26-50): contains information about the EP2 components which
are involved in this specific test run. For instance in this test case, the Aquirer and
the Terminal are involved. Here, for each component we specify: in which interface
(channel) they communicate (e.g., FEFrontEnd), the level of security in which the
interaction happen (e.g., Level 2), in which communication mode the component is
communicating (e.g., server). Here, we can add as many ep2 components as we like
to test.

• testSequence (line 51-72): contains the actual test sequence run. Here, we specify how
the test environment interact with the SUT. Here, the event section of the test se-

180 Chapter 11 The electronic payment system ep2

quence represent one test run. Within each event we specify the conversation between
the parties, i.e., recieve and send. Moreover, at this level we specify the expected
message for each message sent from the SUT.

TeVManager takes as input a test case protocol, execute the test case and compute the
test verdict. The latter is then written in an XML file. TeVManager is also responsible
to simulate the EP2 component(s) which is interacting with the cCredit Terminal Software.

In the next section we describe the scenario of a typical test case execution of EP2.

11.4.3 Test case execution

The test verdict is obtained during the execution of the SUT from the expected result de­
fined by the colour of the test process. Here, we need to first establish a PCO. Here we
consider a PCO, which connects test cases derived from the Csp-Casl abstract compo­
nent level specification. For instance, let us consider the Csp-Casl test case T2 described
above. T2 experiments the authorization of a payment transaction between the terminal
and the acquirer. The following is the concrete XML message that the terminal send for
the authorization:

XMT, massacre for authorization request 11
1 <?xml version="1.0" encoding="UTF-8"?>
2 <ep2:message xmlns:ep2="http://www.eftpcs2000.ch" specversions"0400">
3 <ep2:authreq msgnum="7222">
4 <ep2:AcqID>00000000004</ep2:AcqID>
5 <ep2:TrmID>TERM1234</ep2:TrmID>
6 <ep2:TrxDate>2 0100223</ep2:TrxDate>
7 <ep2:TrxTime>130842</ep2:TrxTime>
8 <ep2:TrxSeqCnt>24551</ep2:TrxSeqCnt>
9 <ep2:AmtAuth>50</ep2:AmtAuth>
10 <ep2:TrxCurrC>756</ep2:TrxCurrO
11 <ep2:Track2Dat>0ZYbmsV80DZ3EC3vY4z9yA==</ep2:Track2Dat>
12 <ep2:TVR>AAAAgAA=</ep2:TVR>
13 <ep2:CVMRes>HgAA</ep2 :CVMRes>
14 <ep2:POSEntry>90</ep2 :POSEntry>
15 <ep2:TrxTypeExt>3</ep2:TrxTypeExt>
16 <ep2:AID>oAAAAVcAIA== </ep2:AID>
17 </ep2:authreq>
18 </ep2:message>

In order to establish the PCO we develop an equivalence relation which allows us to
abstract some aspects of the primitive events, such as the message number (msgnum).
In general, for each interface of communication between EP2 components (blue lines in
Figure 11.1) we establish an equivalence relation of the XML messages exchanged, i.e.,
^ S I —C onfig/ ~ S I - I n i t / • • • / ~ F E -F r o n tE n d -

As an example, we show a PCO in order to execute test case T2:

Alphabet The alphabet of primitive events are all the possible XML messages that are
communicated over the interface FEJFrontEnd, such as the XML message reported
above. We denote the set of these XML messages as XML-FE-FrontEnd, e.g., [ep2 :

1
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

A Testing framework for ep2 181

<?xml version="1.0" encoding="UTF-8"?>
<test>

<meta>
<result>resources/TestVerdict/PaymentTestResuit.xml</result>
<description>Test Case 7 - Authorization for payment transaction</description>
<name>Process Transaction Test</name>

</meta>
<ccTest>

<testCase number="T7">
T7 = C_FE_FrontEnd ! authreq::D_FE_FrontEnd_AuthReq

-> C_FE_FrontEnd ! authresp::D_FE_FrontEnd_AuthRes
-> STOP

</testCase>
</ccTest>
<pcoInfo>
<pcoFile>resources/PCO/PCO.xml</pcoFile>
<SpecificationLevel>Abstract Component Level</SpecificationLevel>
<SpecificationFile>ACL_ProcessTransaction</SpecificationFile>
<Timeout>10ms</Timeout>

</pcoInfo>
<testcaseEvalInfo>
<ep2Dialogue>ProcessTransaction</ep2Dialogue>
<color>GREEN</color>
<colorProofDir>resources/ColorProof/GREEN/T8</colorProofDir>

</testcaseEvalInfo>
<componentList>

<component class="Acquirer">
<namespace>http://www.eftpos2000.ch</namespace>
<templatePath>resources/template/FEFrontEnd/</templatePath>
<serverlp>192.168.1.l</serverlp>
<encoding>l</encoding>
<AcqID>00000000004</AcqID>
<prefix>ep2</prefix>
<interfaceName>FEFrontEnd</interfaceName>
<serverPort>6625</serverPort>
<name>Acquirer</name>
<communicationMode>server</communicationMode>

</component>
<component class="Terminal">

<namespace>http://www.eftpos2000.ch</namespace>
<templatePath>resources/template/FEFrontEnd/</templatePath>
<encoding>2</encoding>
<TrmID>TERM1234</TrmID>
<prefix>ep2</prefix>
<interfaceName>FEFrontEnd</interfaceName>
<port>6625</port>
<ip>192.168.1.2</ip>
<name>cCredit Terminal</name>

</component>
</componentList>
<testSequence>
<event source="Acquirer" target="cCredit Terminal">
<conversation>

<receive>
<type>authreq</type>
<AcqID>00000000004</AcqID>
<TrmID>TERM1234</TrmID>

</receive>
<expected>

<type>authreq</type>
<filename>authreq.xml</filename>

</expected>
<send>

<AcqID>00000000004</AcqID>
<type>authrsp</type>
<TrmID>TERM1234</TrmID>
<filename>authrsp.xml</filename>

</send>
</conversation>

</event>
</testSequence>

</test>

182 Chapiter 11 The electronic payment system e p 2

authreq] £ XM L-FE-FronEnd w here [ep2 : authreq] denote the XML m essage p re ­
sented above.

M a p p i n g In T2 w e have tw o events, those are m apped as follows:

\\[ep2 : authreq] || = C-FE-FrontEnd.authReq
|| [ep : authres] || = C-FE-FrontEnd.authRes

D i r e c t i o n For each linear test case w e determ ine the direction of the particu lar test case.
In the case of To w e have that, C-FE-FrontEnd.authReq is of type sut2ts. The acquirer
is sim ulated by TeV, th u s the direction of CJFE-FrontEnd.authRcs is of type ts2sut.

The test execution is conducted in a netw ork environm ent, w here tw o different m achines
are connected w ith a crossed E thernet cable. Figure 11.15 illustrate this setting. H ere, the
ep2 term inal softw are is ru n n in g on the black lap top (W indow s OS), w here a Pinpad is
attached on the serial port. TeV is runn ing on the w hite lap top (Mac OS).

In order to perform experim ents regard ing the paym ent transaction (test cases like T2), we
use m agnetic stripe test cards of different financial institutes: Visa, MasterCard, Maestro]4
etc.

Figure 11.15: EP2 testing fram ew ork in action.

For the execution of the test cases, w e define 10ms as the period of tim e in w hich w e expect
a response from the EP2 paym en t term inal. Executing the test cases To,. . . , results in
the following test verdict:

14Courtesy of Six Card Solutions.

11.5 Summary and evaluation o f the project 183

Spec. Level To Ti t 2 t 3 T4 t 5

Arch_EP2 PASS PASS - - - -
ACL_EP2 - - PASS PASS Not executed Not executed
CCL_EP2 - - PASS PASS PASS PASS

The automatically generated test verdict for test case T3 can be found in the Appendix C.6 .

11.5 Summary and evaluation of the project

In this chapter we have described the modelling, verification and testing of the electronic
payment system ep2. A first modeling approach of the different levels of ep2 in Csp-
Casl has been described in [GRS05]. Here, we have extended the modeling in more
detail by carrying out the specification of the various ep2 components at different levels
of abstraction. We have systematically proven the refinement steps of the various level
of specification using Csp-Casl-Prover [OIR09]. Moreover, we have proven that the
interaction of the EP2 components is deadlock free. Again this is done systematically using
Csp-Casl-Prover. For some selected interaction of ep2 components we have proven to
be livelock free.

For the testing part, we have evaluated test cases using Csp-Casl-Prover. Moreover, we
have presented a testing framework for a ep2 payment terminal. Such testing framework,
tests the EP2 payment terminal in a hardware-in-the-loop testing fashion.

The overall experience of modeling, verification and testing ep2 in Csp-Casl was positive.
In the following we evaluate how the three activity have been conducted:

Modeling of EP2 Formalizing ep2 in Csp-Casl leads to the partial or complete resolu­
tion of some of the ambiguity or inconsistency problems, described in [GRS05]. For
instance, in the EP2 specification inconsistency arises from the fact that certain as­
pects of the system are described in multiple books. For example, in order to under­
stand how the payment transaction works, one has to look at the terminal and the
acquirer books for the functionality and then the interface and data dictionary books
in order to get the specific messages exchanged at this point. Csp-Casl enables us
to specify the data involved only one and - via Csp-Casl's library mechanism - use
it then in different contexts.

Identifying the three level of abstraction was rather straightforward; this was al­
ready done in [GRS05]. The modeling of the architectural and the abstract compo­
nent level was relatively easy. Although, at the abstract component level, we had
to take decisions of which information to formalized at this point or leave it open
for the next level of abstraction. For this two levels we have pretty much followed
the semi-formal description present in the EP2 specifications. Those are, the activity
diagram, UML-like diagrams and use cases.

At the concrete component level, one has to deal with more unresolved and unclear

184 Chapter 11 The electronic payment system ep2

descriptions (mostly presented as text), and decide which information must be for­
malized and what details should be ignored at this point.

As for C sp-C asl's expressive power in formalizing EP2, both the data types and the
reactive behavior present in EP2 was adequately formalized. In modeling the data
types, C a s l 's subsorting feature and the CASL standard library were quite helpful.
In modelling the process part the different operators of Csp allowed us to capture
precisely certain aspects of the system. For example, at the architectural level, the
interleaving and the generalized parallel operator allowed us to capture the fact that
some e p 2 components interact with each other or they simply run independently.

Verification of EP2 The benefit of specifying ep2 in Csp-Casl is that it makes it possible
to establish properties by formal proofs. Here, we have shown formal proofs of
refinement, deadlock and livelock analysis.

The refinement proof from the architectural level to the abstract component level
was quite straightforward. This is thanks to the introduction of intermediate spec­
ification, i.e., the sequential version of the dialogues. The overall proof script for
discharging the refinement proof is fairly long, this is due to the fact that at some
point of the proof we needed to calculate the semantics of the processes. Conversely,
as expected, the refinement verification from the abstract component level to the con­
crete component level was more complicated and the proof script was rather long.

The verification of deadlock freedom has been done by considering each individual
dialogue between the e p 2 components, i.e., the communication between terminal
and acquirer, etc. Although this give us a good insight in the verification of deadlock
freeness, still deadlock could occur when we consider the whole system. This could
be analaysed using new theories for compositional reasoning of reactive systems.

Testing of EP2 In testing EP2, we could clearly see the impact of our testing theory of
re-using test cases in a vertical development. Test cases developed from the archi­
tectural level allowed us to set up the interface with the testing framework. Later, at
each stage of the vertical development we were able to re-use the green and red test
cases.

The presented testing framework was capable of running test cases in an efficient
and convincing way. However, there is still several aspects that haven't been under­
taken. Firstly, although in principle our testing framework presents several benefits,
a 'formal' comparison between our approach and the current testing practice at SIX
Card Solutions is needed. Secondly, since payment systems like ep2 rely heavily on
cryptographic based security features; here there is a need of a novel strategy to test
such features. Finally, only a sample of test cases have been executed on the SUT. In
order to increase our confidence that the SUT is conform with the specification we
need to run more meaningful test cases. The latter could be achieved by studying
new concepts of test converges from Csp-Casl specifications.

Overall this industrial application, demonstrates the feasibility of modeling, verification
and testing in Csp-Casl. This includes many aspects:

11.5 Summary and evaluation of the project 185

• Scalability: It is possible to completely model a non trivial system like ep2.

• Expressiveness: Csp-Casl is expressive enough to capture the different aspect of such
system. The reactive behavior and the complex data types.

• Clarity: Csp-Casl is able to mirror the informal specification and to capture the
different level of abstraction. The refinement between the different levels are then
proven using Csp-Casl-Prover.

• Verification and Testing: Having a formal specification made it possible to prove inter­
esting properties of the system.

(CHAPTER . . .1 2)

R o l l s - R o y c e Br725 starting system

C o n te n ts __
72. 7 Introducing the Rolls-Royce Br725 starting s y s te m188
12.2 Modelling Br725 storting system in C s p ... 190
12.3 Property verification of Br725 starting s y s te m .. 797
72.4 Testing Br725 starting s y s te m ..198
12.5 Summary and evaluation of the p r o je c t ...201

I N this chapter we report on a successful applications of the theoretical framework of
testing based on C sp-C asl presented in Chapter 9. In particular we apply this theory
to the starting system of a ROLLS-ROYCE Br725 1 software control. The Br725 is a

newly designed jet engine for ultra-long-range and high-speed business jets. We model
the starting system in Csp; specifically we use Csp-M - the machine readable version of
Csp. Here, we have chosen Csp-M instead of C sp-C asl due to the nature of the system
specification we formalize. These specifications do not require loosely specified data or
complex data structures. Csp-M is able to capture the data type that we require. Moreover,
using Csp-M we can use the F d r2 - model checker for CSP and P ro B e- simulator of CSP
specifications.

We validate our model using the CSP simulator ProBe. We then evaluate the test suites
against the formal model. Such evaluation is done using the model checker Fdr2. Part
of the test suites is inspired by existing test cases of the Br700 family jet engines. We
execute our test suite in an in-the-loop setting on the so-called "rig". This puts the engine
control system through test scenarios identical to those carried out in engine test stand
testing, however with considerably lower cost, reduced risk, and less burden on human
and mechanical resources.

We first describe a control system of a jet engine in general, continuing to concentrate on
the starting system of the Br725 jet engine. In Section 12.2 we show how we model the
Br725 starting system in CSP. In Section 12.3 we illustrate the verification of interesting

]In the rest of the chapter we will refer to this engine type simply as Br725.

187

188 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

properties of the m odeled system . Subsequently, in Section 12.4 w e show how w e ev a l­
uate and execute test cases. In Section 12.5 w e conclude this chapter by eva lua ting the
advan tages and d isadvan tages of this experience.

The results presen ted in this chap ter have been pub lished in [KHRS09].

12.1 Introducing the R o l l s - R o y c e Br725 starting system

Form al m ethods offer m any advan tages for the developm ent and testing of control soft­
w are for jet engines. They can help to achieve high reliability, and they can be used to
p rov ide evidence of reliability claim s w hich can then be subjected to external scrutiny.

Jet engines belong to the safety critical system s of an airplane. Their control softw are
can be classified as a reactive system : it accepts com m ands from the pilot, receives s ta tu s
m essages from the airfram e and the engine sensors, and issues com m ands to the engine.
ROLLS-ROYCE is one of the leading com panies in the p roductions of jet engines of different
sizes and for different purposes. H ere w e study the Ro l l s -R o y c e B r725 jet engine. The
B r 725 is a new jet engine for u ltra-long-range and high-speed business jets. It is p a r t of the
B r700 family. Figure 12.1 show s the Br 725 jet engine and its electronic engine controller.

Fuel
Flow
Meter
(FFM)

HP Fuel
Filter

(HPFF)
Aft mounting ring

LP Fuel Igniter box
Filter 2

(LPFF)
Cooled

Oil
Cooler

(FCOC)

Metering
Unit

(FMU)

Figure 12.1: R o l l s -R o y c e B r725 jet engine - C ourtesy of R o l l s -R o y c e .

The m ain com ponent of the control system of a jet engine is the Electronic Engine Controller
(EEC). A sim plified view of the B r725 EEC architecture and its interfaces w ith the engine
is show n in Figure 12.1. The EEC encapsulates all signaling aspects of the engine; it con­
trols, protects, and m onitors the engine. In o rder to p rov ide fault-tolerance, the EEC is
realised as a dual-channel system . Its control loop involves: reading data from sensors
and other com puter system s in the aircraft, receiving com m ands from the pilot, calculat­
ing new positions of the engine actuators, and issuing com m ands to the engine actuators.

12.1 Introducing the R o l l s - R o y c e B r7 2 5 starting system 189

In its m onitoring function it transm its data abou t the engine condition an d in form ation on
any failures d iagnosed on the electronics back to the aircraft. In this p ap e r w e concentrate
on the Starting System, one of the m any functionalities the EEC provides.

Ignitors
Engine
sen so rs

Engine
P ressu res

Oil System —

Pneum atics —

Starter I
Generator

System

Channel A

Electronic Engine Controller

 Channel 6

Inter-Channel Bus

Fuel | Aircraft | Thrust
system | Reverser

Engine
Monitoring

Unit

Test
Equipt

Figure 12.2: Electronic Engine C ontroller A rchitecture - C ourtesy of Ro l l s -Ro y c e .

12.1.1 Control system at R o l l s - R o y c e

The control system team at Ro l l s-Ro yce is responsible for design ing , develop ing , veri­
fying, testing and certifying the hardw are and softw are com ponen ts of the EEC. A typical
team for each type of jet engine is com posed by the follow ing teams:

• System design: responsible for the design, deve lopm en t and certification of the h a rd ­
w are part.

• Software development: responsible for the design , developm en t and certification of
the softw are part.

• System verification: responsible for overall system (hardw are + softw are) testing, i.e.,
black-box testing.

The au tho r w as p art of the system verification team for the Br725 controls system s. The
team is responsible for carrying out system level testing. H ere, a black-box view is taken
of the w hole system .

The softw are developed by Ro l l s -Ro yce executes on an Electronic Engine Controller (EEC)
w hich is part of an engine control system com prising m any electronic and m echanical
com ponents; this system is a p art of an engine w hich is, in tu rn , a com ponen t of an aircraft.

A Real-Time Engine Model (RTEM) sim ulates the behav iou r of the eng ine and is used to
test p ro to type softw are bu ilds in a PC-based env ironm ent. Later in the dev e lo p m en t life­
cycle the im plem ented code is executed on the EEC in a H ardw are-In-T he-L oop (HIL) test
environm ent. The process continues th rough a chain of "test vehicles", w ith each vehicle

190 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

providing an environment which is ever closer to reality. Examples of vehicles are hy­
dromechanical rigs which incorporate sensors and actuators with real fluids (oil, air and
fuel), real engine tests (on-ground and in altitude test facilities) and "fying test beds".

12.2 Modelling Br725 starting system in Csp

The jet engine Br725 can be started in both, on-ground and in-flight situations. Further­
more, the pilot can select between Automatic or Manual starting mode.

The detected situation (on-ground or in-flight) together with the selected starting mode
(automatic or manual) results in four different control flows in which the EEC controls
the engine. Cranking adds two further flows of the EEC, namely dry and wet cranking
(i.e., without and with fuel on respectively). Dry cranking is usually used to remove any
residual fuel in the combustor or jet pipe that remains from a previous failed start. Wet
cranking is used to push the inhibiting fluid through the fuel system until sufficient fuel
can be metered to the combustor for ignition. The functionalities provided for the starting
system are the following:

Normal (automatic) Ground Start: provides an automatic start mode available on ground.
The start sequencing is fully controlled by the EEC after being initiated by the pilot.

Manual Ground Start: provides the pilot to start the engine manually on ground. We
will study this function in detail in the rest of the section.

Normal (automatic) Flight Start: this function is provided in order to reduce the pilot
workload in-flight.

Manual Flight Start: this function enables the pilot to start the engine manually in-flight.

Cranking: this function provides a way to test the rotation of the windmill when the jet
engine is on ground and is not ignited.

For automatic on-ground starts, a start sequence may include a maximum of two start
attempts. A start sequence in-flight has as many attempts as necessary to successfully
start the engine. There are three essential steps during a normal (i.e., anomaly-free) on­
ground start sequence, which commences when both the fuel and start switch are in the
"On" position:

• The starting system commands the starter motor on. The motor, mechanically cou­
pled to an engine shaft, starts to rotate the engine.

• When the shaft has reached a sufficient rotational speed, and FOC (Fuel-On Condi­
tions) are met, the starting system commands the fuel SOV (Shut-Off Valve) open,
allowing fuel to flow to the combustion chamber. At this point the starting system
also commands ignition on and, if there are no anomalies, the engine lights up.

• When the rotational speed of the engine reaches a threshold the starting system de­
tects that the start is complete and commands both the starter motor and ignition

12.2 M odelling B r7 2 5 starting system in C sp 191

off.

Figure 12.2 show s an abstraction of the basic system architecture of a ROLLS-ROYCE jet
engine starting system . The m ain signals transm itted betw een the com ponen ts are as
follows. In the C ockpit the pilo t has a start sw itch in o rder to in itiate the starting sequence;
the p ilot also has a fuel sw itch. The A irfram e inform s the EEC if the p lane is in-flight or
on-ground. The EEC can sw itch the S tarter O n and Off, can O pen an d Close the fuel SOV
(Shut-O ff Valve), and can tu rn the Ignition O n and Off. The engine reports back to the EEC
inform ation abou t the shaft speed and the TGT (Turbine Gas Temperature). For B r725 the

Airframe

Engine
Cockpit

O F F . ON Starter ON/OFF
(To engine

shaft 2)

SOV Open/Close

OFF, ON

ignition On/Off

N2 (shaft speed)

TGT

Start Switch

Fuel Switch

Fuel SOV

Ignition
S ystem

Starter

EEC
(Electronic Engine Controller)

(Turbine Gas Temp)

Figure 12.3: S tarting system com ponent architecture.

Ro l ls-Royce Starting Subsystem Definition Document (SSDD) m akes the S tarting System
w ithin the EEC specific to this engine. This docum ent describes all aspects of the S tarting
System: it gives an overview of the S tarting System in general, it p resents so-called activity
d iagram s and explains them in plain English. In the follow ing w e give an exam ple of such
an activity d iagram and its accom panying text.

Figure 12.4 show s the internal logic of the m anual g round sta rt in the form of an activity
diagram . These activity d iagram s are form ulated in an inform al, g raphical specification
language. This language w as specifically developed by Ro l l s-Ro y c e in o rder to describe
engine controllers. An exam ple of an accom panying text w ould be the following:

13005/1 When NH reaches the required speed, the pilot switches the Fuel Control to run.

N ote that every specification line is identified w ith a un ique num ber, in ou r exam ple w ith
/3005/1. Ro l l s -Ro yce m akes use of this d u rin g the testing process as a coverage cri-
terium : it is required that there is at least one test case for every line in the specification.

192 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

The graphical specification language of the activity d iagram show n in Figure 12.4 uses
sym bols in the follow ing way:

• Start po int of the activity d iagram
<•> End point of the activity d iagram

Error state
f " 1 Box - Used for encoding states as well as activities

J K __ Switch in the cockpit

I Switch in the cockpit, ignored by this activity d igram
i__i D isplayed signal in the cockpit

■ V -

Control flow in the EEC

Transition - checks for conditions

In terrup t of a flow

Tim eout

F igure 12.4 show s the M anual G round Start (MGS) functionality w hich allow s the pilo t to
start the engine m anually. The flow from the sta rt po in t to the second transition show s
that the MGS can only be initiated w hen the aircraft is on the ground and the engine is not
ru n n in g , starting or cranking. In this situation the p ilo t can initiate the MGS by selecting
the follow ing control switches: Master Crank to On, Continuous Ignitions to On, and Engine
Start to On.

U pon sw itch ing the Engine Start to On, the EEC w ill com m and the S tarter Air Valve (SAV)
to be opened an d the starter m otor is activated. If the pilot now sw itches the Fuel Control
Switch to Run the EEC com m ands the fuel to flow. If at this po in t the Continuous Ignitions
is still On the EEC ignites the m otor (not show n in the Figurel2.4) and begins to m onitor
the shaft speed of the engine. Should this speed reach a certain threshold the starting
p roced u re is com plete. W hile the starting procedure is active w ith in the EEC, the pilot
can abort it by sw itch ing the Master Crank or the Fuel Control to Off. If the pilot sw itches
the Continuous Ignitions to Off the starting p rocedure ends in an erro r state.

12.2.1 M odeling of th e starting system in C sp-M

O u r m ain objective is to cap tu re in a faithful w ay the original specification of the Starting
System . To this end , w e m odel the system in a w ay that a natu ra l m app ing can be d raw n
betw een the original specification (SSDD activity d iagram s) and the CSP-M m odel. In the
fo llow ing w e describe som e aspects of the m odeling in CSP-M of the m anual on-ground
s ta rting procedure.

12.2 M odelling B r7 2 5 starting system in CSP 193

Aicraft CondlKn Inhibit Start
Isatsled]

Check
Enone Condlton

[satisfied]

SI aft mitoted)

Fu* C©nr©l$t<
R U N

ATS is started

Command
Fuel ON

Command
IGN ONi

Monttcy
Starter Disengagement Speed

[Sfreed readied)

Command
SAVCkteel

^ Monitcy
Achievng of Idle ^ C c n t IgnMoij

[satisfied]
Command
IGN OFF

Start Completed

Figure 12.4: A ctivity d iagram for m anual g ro u n d start.

We have m odeled the system in a tw o step approach: first w e form alize the 'n o rm a l7 ex­
ecution pattern of the system . O nly in a second step w e ad d the h and ling of error cases
such as in terru p tin g the start by sw itching Continuous Ignitions to Off. CSP-M su p p o rts
such a com positional approach of m odelling via its in te rru p t operator.

194 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

In the following we describe some of the patterns which we have identified in the m od­
eling process. We first describe some patterns and discuss then how their combination
results in the overall control-flow.

S w itc h B u tto n s have two states: ON and OFF. Pressing a button in state OFF will turn it
ON, releasing a button in state ON will turn it OFF.
channel press, release
ButtonOFF = press -> ButtonON
ButtonON = release -> ButtonOFF

We instantiate ButtonON and ButtonOFF to form the different switch buttons avail­
able in the Cockpit for the Starting System. This is done by simply using the CSP
renaming operator, e.g., for MasterCrank:
channel mc_press, mc_release
MasterCrank = ButtonOFF[press <- mcjpress

release <- mc_release]

All button processes run in an interleaved way. This corresponds to arbitrary press
/ release operations in the Cockpit. Note how this specification covers in an obvious
way part of the activity diagram in Figure 12.4.

I Buttons = MasterCrank ||| MasterStart
I|| EngineStartON ||| FuelControl ||| Contlgnition

Here, we have leave out the code of the EngineStartON which as a push button
has no state.

A ctiv e w a it in g The starting sequence can only proceed when the following events hap­
pens: (1) the checks for Aircraft and Engine condition has been successful, (2) the
pilot has issued the necessary starting commands. This is captured in the CSP-M
model in the following way:
InteractEEC=(CheckConditions [|{synchStart}I] CrankAndlgnite)

\ {synchStart}
; FuelAndSAV
; Masterldle

where CheckConditions is the process that checks for the Aircraft and Engine con­
dition.
channel aircraftCondition:Bool
channel engineCondition:Bool
channel inhibitStart, startOK
CheckConditions = aircraftCondition ? ac

-> engineCondition ? ec -> Checking(ac,ec)
[] engineCondition ? ec
-> aircraftCondition ? ac -> Checking(ac,ec)

Checking(ac,ec) = if (ac and ec)
then startOK -> SKIP

else InhibitStart

InhibitStart = inhibitStart -> Idle

12.2 Modelling B r7 2 5 starting system in C sp 195

C r a n k A n d lg n it e is the process that hand les the input of the pilot; nam ely the
cranking and the ign ition com m ands. C h e c k C o n d it io n s and C r a n k A n d lg n it e
synchronize on the s y n c h S t a r t event, on ly w h en the synchron ization is successfu l
the process F u ela n d S A V takes over. The F u e la n d S A V and M a s t e r l d l e processes
capture the rest o f the starting sequence.

datatype SAVMode = open | close
channel sav:SAVMode
channel commandFuelON, commandlgnON, started
SPEED1 = 15 SPEED2 = 65
channel readNH:{0..100}

FuelandSAV = sav.open -> fc_press -> Fuel
[] fc_press -> sav.open -> Fuel

Fuel = commandFuelON -> commandlgnON -> MasterSpeed
[] commandlgnON -> commandFuelON -> MasterSpeed

MasterSpeed = readNH ? x -> (if (x>SPEEDl)
then SpeedReached

else MasterSpeed)

SpeedReached = sav.close -> SKIP

Masterldle = readNH ? x -> (if (x>SPEED2)
then StartCompleted

else Masterldle)

StartCompleted = started -> Idle

SPEED1 and SPE ED 2 are the percentage threshold of the overall sp eed to be reached.

In terleaving o f d ec is io n s A t different points of the activity d iagram there are decisions
that happen in an in terleaved way. We m odel this scenario u sin g the external choice
operator in the fo llow in g way:

I CrankAndlgnite = rac_press -> ci_press -> InitStartOK
[] ci_press -> mc_press -> InitStartOK

Here, in order to h ave state nam es available, w e ch oose the sem antically equivalent
encod ing of in terleaving in term s of external choice and action prefix. The process
C r a n k A n d lg n it e offers the to first sw itch M a ste r C r a n k or C o n t I g n i t i o n .

The w h o le m anual on-ground start sequence is represented b y the process MGS. The pro­
cesses I n t e r a c t EEC and B u t t o n s runs in an alphabetized parallel. This corresponds to
the interaction of the p ilot (trough the C ockpit sw itches) and the EEC.

MGS_Core = InteractEEC I I Buttons

In the second step of the m od elin g process w e have identified and handled the error
cases. O bserving the activity d iagram s, at different p o in ts o f tim e during the starting
sequence the p ilot has the ability to abort the sequence b y releasing the F u e lC o n t r o l or

196 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

the Cont ignition. We model this procedure using the CSP interrupt operator - P A Q -
the progress of the process P can be interrupted on occurrence of the first event of Q.

channel commandlgnOFF, abort, error
InterruptFC = fc_release -> abort -> SKIP
InterruptCI = ci_release -> commandlgnOFF -> Error

MGS_ErrorHandling = MGS_Core /\ (InterruptFC [] InterruptCI)

The abortion due to releasing of the MasterCrank is only available after the Command
Fuel ON event has occurred and prior reaching the Starter Disengagement Speed. In a picto­
rial way in Figure 12.4, this is identified by the dotted box.

In Appendix B.3 we report the full Csp-M specification for the normal (automatic) ground
start.

12.2.2 Shortcomings

Rolls-Royce uses activity diagrams such as shown in Figure 12.4 as memos. The engi­
neers share common knowledge on jet engines, the activity diagrams merely trigger ideas
how the control software works. Here, we list some of the shortcomings that we encoun­
tered during the modeling and reading process of the SSDD specification document.

• Although the Engine Start is a momentary button and Master Crank is a push button
with two states both are shown with the same symbol in the activity diagram. That
the Engine Start is a momentary button becomes clear from the textual description
of the activity diagram. This explains also why there is no interrupt related to this
button.

• We identically modeled both boxes which monitor speed (Monitor Starter Disengage­
ment Speed, Monitor Achieving of Idle) relatively to the signal NH, while in the activity
diagram the first box has no self-loop and the second box has a self-loop.

• Although the commands IGN ON and IGN OFF appear at first sight to be related,
they are not: the command IGN ON is given by the pilot in the cockpit while the
command IGN OFF is sent by the EEC to the engine. Therefore, we model these
commands as two different events.

• As there is a command FUEL ON one would expect command FUEL OFF to appear
in the activity diagram, e.g., when aborting the start. However, this is not the case.

12.2.3 C sp-M vs C sp -C a s l

As described in Chapter 2, Csp-M is the machine readable version of CSP. Data in CSP-
M are defined using a purely functional language with a strong type system , requiring

12.3 Property verification o f B r7 2 5 starting system 197

explicit type declarations for channels and data types,
define higher order functions.

In CSP-M it is also possible to

In Csp-Casl data are specified in Casl. Here, data are specified in an algebraic way.
Casl has different type of semantics, where loose semantics is the standard one.

Confronting the two approaches: On one side we have data specified in Casl that allows
us to specify data in a loose way, therefore suitable for step-wise development. On the
other side we have the data specification in Csp-M where loose specification of data is
not possible, however we are allowed to use all the features present in a typical functional
language.

In this project we choose Csp-M instead of Csp-Casl due to the nature of the system spec­
ifications we formalize. These specifications do not require loosely specified data or com­
plex data structures. Instead, they use simple data types only; mostly they speak about
booleans and finite subranges of numbers. Data types used in modeling Br725, are avail­
able in the type system of Csp-M, and they can also be modeled within Casl (Figure 12.5).
The following table illustrate, data specification in CSP-M and the corresponding version
in CASL:

Csp-M Casl

channel press
datatype savMode = open \ close
channel sav : savMode

free type press ::= press
free type savMode ::= open \ close
free type sav ::= sav(s : savMode)

Csp-M datatypes

Casl datatypes

Br725 datatypes

Figure 12.5: Csp-M data types for Br725.

12.3 Property verification of B r 725 starting system

We have verified that our model is deadlock and livelock free. This is done using the
model checker Fdr2. In Figure 12.6 we illustrate a screenshot of Fdr2 performing the
verification of our model. Furthermore, we have verified that our model is determinis­
tic. The screenshot presents Fdr2 after successfully proved the three properties. This

198 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

is illustrated by the green tick (/) sym bol next to the m ain CSP-M process definition
(ManualGroundStart). For the different p roperty verification w e choose the ap p ro p ria te
CSP m odel in w hich to perform the verification: for deadlock analysis the m odel T , for
livelock and determ in ism analysis the m odel M .

eoe X FDR 2.12

EUe Assert frocess Options irrj yelp

Refinement | Deadlock j Livelock | Determinism | Evaluate |

Deadlock:
Implementation Model
f»||ManualGroundStaf j | Failures -<

Check

✓ ManualGroundStart deadlock tree [F]
✓ ManualGroundStart livelock free
✓ ManualGroundStart deterministic [FD]

Clear

ButtonOFF
ButtonON
Buttons

N___________________________
ession: AJsers/Teme/Documents/SVNREPOSITORY/csp2009/MGS_

Figure 12.6: Screenshot of F d r 2 for the verification of o u r m odel.

S im ulations w ith the C sp an im ator P r o Be, d iscussions w ith the Ro l l s -Ro y c e verifica­
tion team , and - last bu t not least - the structu ra l correspondence w ith the activity d ia ­
gram validate o u r form al m odel. Figure 12.7 show s a screenshot of P r o Be s im ulating the
CSP specification of the m anual on-ground starting functionality.

The screenshot show s a sim ulation of the m anual on-ground starting C s p -M m odel. Here,
the user acts as the environm ent and chooses the different events possible at certain in ­
stance of the process definition. In the figure, for instance as a first event we choose
aircraftCondition.true, and then the event engineCondition.true follow ed by depress.

12.4 Testing B r 7 2 5 starting system

In this section w e describe the evaluation of test cases, how we establish the PCO and
execute the test cases in the hardw are-in-the-loop rig.

12.4.1 Test c a s e evaluation

We use the syntactic encoding, presen ted in Section 9.3 to check the colour of a CSP-M
test case T w.r.t. a CSP-M specification P. In the follow ing we show how the test case

72.4 Testing B r7 2 5 starting system 199

B Q B B E B B B & B B S 9
pie Edit Search Irnce

m
|MariualGrouidSl*1

tfeLE! it
I ► me pre»»

(JvaircratlCoodftiontrue
4 (•notn*CoodHlon?»o>Ch#

I hd .press
I hmejjrejs
(t-engtneCondluontrue

» (Checklnottrue.trueX
I hdjiress

^(Chect<jno(tfue,trueXi..J|Nai^CpressV_);Sta
B-mc_press

th engine Condiuon.false
fe-aircrartCondltton.taise
I hengineCondlUon trve
B-engmeCon(ttion lalse

Figure 12.7: Screenshot of P r o Be for the sim ula tion of ou r m odel.

TCI is coloured green. TCI experim ent a successful on-ground m anual start. F igure 12.8
illustrates the in p u t test script to check the trace condition. H ere, CheckT encode the trace
condition. Equality checking in F d r2 is done by refinem ent checking on both sides, i.e.,
E t a ^ —x-

TCI = aircraftCondition.true -> engineCondition.true -> MC_press -> CI_press
-> engineStartON -> sav.open -> FC_press -> commandFuelON -> commandlgnON
-> readNH.17 -> sav.close -> readNH.68 -> started -> STOP

channel OK, a
GREEN = OK -> STOP

CheckT = (((MGS [{|aircraftCondition.true,...,started|} I] TCI % Parallel
) [[aircraftCondition.true <- a, ...,started <-a]] % Renaming

) [| [a) |] a -> ... -> a -> OK -> STOP % Parallel
) \ { obs } % Hiding

assert CheckT [T= GREEN assert GREEN [T= CheckT % Assert Check T

Figure 12.8: F d r 2 test script to check Green test case.

Since ou r m odel is determ inistic and uses m onom orph ic data specifications, there is no
need to check for the failures condition, w.r.t, green coloring of test cases.

For red test cases we prove that CheckT d o esn 't hold. We sim ply negate the assertion
of the traces condition CheckT (see Figure 12.9). For instance, TC2 experim ent a m anual
on -g round start sequence, how ever the first NH value is less than the prescribed threshold
(15). Therefore, TC2 is colored red.

200 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

TC2 = aircraftCondition.true -> engineCondition.true -> MC_press -> CI_press
-> engineStartON -> sav.open -> FC_press -> commandFuelON -> commandlgnON
-> readNH.10 -> sav.close -> readNH.68 -> started -> STOP

assert not GREEN [T= CheckT assert not CheckT [T= GREEN

Figure 12.9: Fdr2 test script to check Red test case.

12.4.2 Establishing a PCO

The test verdict is obtained during the execution of a test case in the HIL rig. Rolls-
Royce uses a propetary scripting language in order to write test scripts; a snippet of such
script is shown below:

Set("MasterCrankCnd",1) 7 Set ("REngStartCnd",0)
WaitTime(2) 8 WaitUntil("NHP>15")
Se t ("REngContinuousIGN",1) 9 Set("MasterLever",0)
WaitTime(2) 10 WaitUntil("LIT==1")
Se t ("REngStartCnd",1) 11 Set ("FlightStatus",1)
WaitTime(2) 12

13

WaitUntil("NHP>65",60)

Line 1,3/5 are commands to switch the Master Crank, Continuos Ignition and Fuel Control
switch to ON respectively. The time delay, in between commands, is necessary in order to
capture the signal, and store it in a log for an offline analysis.

We now establish a PCO V = (A, ||...||, V) in the following way:

• The alphabet of primitive events: A = { MasterCrankCnd,...,Flight Status}.
• We use ASN.l (Abstract Syntax Notation One) [DubOO] to map the primitive events

to Csp events.

MasterCrankCnd ::= ENUMERATED{
MC_press (1)
MC_release (0)

}

MasterLever ::= ENUMERATED{
FC_press (1)
FC_release (0)

}

For example, we describe MasterCrankCnd and MasterLever as the ASN.l type
ENUMERATED; MasterCrankCnd can take only the values specified in the list, e.g.,
the value 0 stands for MC_press.

• The direction of primitive events are defined as follows: ts2RIG stands for signals
which are sent from the testing software to the HIL rig. For instance, set (...)
in the test script are of type tslRIG. The other direction RIGlts, which stands for
signals which are sent from the HIL rig to the testing software. Those are captured
by different logging system; for instance Log_HST (. . .) : logs primary variables
of the EEC, Log_Mod (. . .) : logs simulation parameters and Log_HST (. . .) : logs

12.5 Sum m ary and evaluation o f the project 201

aircraft discretes. The following are examples of such logging system:

Log_HST("mstrstrtswtchsncckpt") ;Master Start Switch - EEC variable
Log_Mod("P30") ;Engine pressure simulation parameters
Log_ARINC("IL27 0_DAU2_LA_2_B2 0") ;SAV discretes

After running the test case in the HIL rig, the analysis of the test result is done "offline",
by analyzing the different logs. Such "offline" analysis is carried out using tools provided
within MatLab. Basically, in this process the systems engineer analysis the behaviour of
the different signals (captured in the log files).

12.5 Summary and evaluation of the project

In this chapter we have described a work completed in cooperation with the Rolls-
Royce system verification team. We have applied the theory of formal testing based
on Csp-Casl, to the starting system of Rolls-Royce Br725 control software. We have
modeled the system in Csp, evaluate test suites against the formal model using the model
checker Fdr2. We executed the test suites in an in-the-loop setting of the SUT. The SUT
did not show any deviation from the intended behaviour, i.e., the testing process increased
the trust in its correctness.

The modeling and testing of such systems worked successfully on the chosen of abstrac­
tion. Overall, modeling the system in Csp was quite. On the positive side, various Csp
operator came very handy in the modeling process. The interleaving operator, the sequen­
tial composition, the hiding operator and the interrupt allowed us to capture many system
aspects in an elegant way. On the negative side, the global state approach of C sp forced us
to explicitly have one process name per transition (arrow in the activity diagrams). This
allowed us to take care of or ignore state changes of the buttons while following the con­
trol flow of the activity diagram. Overall, however, Csp served well in modeling such a
controller. On the tool side, Fdr2 and ProBe coped quite easily in discharging the proof
obligations, w.r.t, test coloring and deadlock/livelock/determinism check.

In general this case study demonstrates the applicability of our testing theory to indus­
trial systems: it scales up to real world applications and it potentially fits into current
verification practice at Rolls-Royce. Due to time restriction, the decision procedure to
determine the test verdict on the fly, by running the tests on the rig, has not been im­
plemented. As described earlier, the test verdict is determined off-line (using tools like
MatLab), by analyzing the different signals and log files.

On the other side, our approach gave new insights to the Rolls-Royce Br725 system ver­
ification team. As a first point we mention that the ability of our approach to formally link
the outcome of a test case with the specification by means of coloring technique, could par­
tially help the engineers in the certification process. In particular, the engineers could use
our coloring technique to trace which test case comes from which part of the specification.

202 Chapter 12 R o l l s - R o y c e B r7 2 5 starting system

In fact, engineers are required to explicitly illustrate from which part of the specification a
certain test case has been designed - this is formally know as the traceablity aim.

As a second point we mention, that our approach gave a new insight in designing nega­
tive test cases. That is, test cases that experiment for properties that are not specified in
the specification. More often the test engineers designs test cases which experiments the
intended behavior prescribed in the specification.

Conclusion

(CHAPTER ... 13)

Conclusions a n d further work

Contents
73.7 Summary................. . 205
13.2 Further w o rk 207

T HE final chapter of this thesis present a short summary of the work and highlights
its scientific contributions. In Section 13.2 we give an overview of possible future
work in the area of systems development notion for C sp-C asl and specification

based testing for Csp-C asl.

13.1 Summary

In this thesis we have described a theoretical and industrial application in the area of for­
mal systems development, verification and formal testing using the specification language
Csp-Casl. The latter is a comprehensive specification language which allows to describe
systems in a combined algebraic/ process algebraic notation. To this end it integrates the
process algebra Csp and the algebraic specification language Casl.

The thesis has proposed various formal development notions for Csp-Casl capable of
capturing informal vertical and horizontal software development which we typically find
in industrial applications. Here, we have presented two directions of system develop­
ment: a refinement (or vertical development) notion for Csp-Casl; and an enhancement (or
horizontal development) notion for Csp-Casl specifications.

For the refinement part, we have defined a new notion based on model class inclusion with
arbitrary change of signature in the data part. We also presented a theory of enhancement
for Csp-Casl. This theory allows us to capture the notion of horizontal development, in
which new features (or functions) are added to existing systems.

We have provided proof techniques for the Csp-Casl development notions and verifi­
cation methodologies to prove interesting properties of reactive systems. Here, we have

205

206 Chapter 13 Conclusions and further work

presented techniques to discharge proof obligations that could arise from the development
notions of Csp-Casl.

On the refinement side of Csp-Casl specifications, we established an approach based on
a decomposition theorem. Such decomposition theorem allows us to prove Csp-Casl re­
finement, first by reasoning about data refinement and then by process refinement. Based
on this approach we are able to re-use existing tools to discharge proof obligations.

On the enhancement side of Csp-Casl specifications, we have proposed three enhance­
ment patterns that allow us to capture the notions of adding new features to existing
specifications.

We have proposed proofs techniques for the verification of properties of Csp-Casl speci­
fications. Here, we have illustrated how to analyse deadlock and livelock freeness in the
context of Csp-Casl. We have established establish a proof technique for deadlock and
livelock freeness based on Csp-Casl refinement, which turns out to be complete.

We have also proposed a theoretical framework for formal testing from Csp-Casl specifi­
cations. Here, we have presented a conformance relation between a physical system and a
Csp-Casl specification. In particular we have studied the relation between Csp-Casl de­
velopment notion and the implemented system. The major innovations are the separation
of the test oracle and the test evaluation problem by defining:

• the expected result (green, red and yellow) and,

• the verdict (pass, fail and inconclusive) of a test case.

The Csp-Casl specification determines the alphabet of the test suite, and the expected
result of each test case. The expected result of a test case, in terms of the coloring scheme,
is proved using Csp-Casl-Prover.

The test verdict is obtained during the execution of the SUT from the expected result de­
fined by the colour of the test processes. Here, we have defined an algorithm which al­
lows to determine the verdict of the test case on the fly. Moreover, we have presented a
link between Csp-Casl development notion and the testing theory. Such link allow us to
perform testing at all stages in a system's design, and to re-use test cases. For the latter,
in the case of enhancement we showed that test cases which have been designed for basic
features can be re-used whenever a more advanced product is conceived which includes
these features.

The proposed theoretical notions of formal system development, property verification and
formal testing for Csp-Casl, have been successfully applied to two industrial application:
an electronic payment system called EP2 and the starting system of the Br725 Rolls-
Royce control software.

13.2 Further work 207

13.2 Further work

There are a number of questions which arise from this work that could be undertaken
to follow on from this project. In the following subsections, we address some of these
aspects.

13.2.1 New development notions for C s p -C a s l

Regarding development notions for Csp-Casl, for both directions we identify some direc­
tion for future works:

Vertical development In terms of vertical development notions, more "sophisticated" re­
finement notions for Csp-Casl could be studied. In [BST08], Bidoit et al., presents a
refinement notion based on observational interpretation of Casl specifications.

The study of the behavioural refinement [BST06, BH05], notions is motivated by the
fact that, in general an implementation does not need to satisfy strictly the proper­
ties outlined in the abstract specification but it can be considered as correct if this
implementation respects the observable consequences of the specification to be im­
plemented. Often there are models that do not satisfy the axioms in a strictly way
but in which all observations nevertheless deliver the required results.

Following the work of Bidoit et al., one can develop observational refinement for
C sp-Casl. In the context of EP2 such refinement would be required in order to
capture the relations between the more detailed levels. That is, in order to capture
the XML level of the ep2 system we need a more 'sophisticated' refinement notion.
The XML level in ep2 is the a further refinement of the concrete component level. On
the data part, one would model in C a s l the various constructs of the XML messages.
Figure 13.2.1 illustrate this idea.

Horizontal development For the horizontal development in Csp-Casl, there are other
notions of enhancement which are not covered by our definition. For example, in
object-oriented systems, re-use is by inheritance of signatures and methods: The
enhances version of a software product may inherit certain fields and classes, and
redefine others. It would be intresting to study such notions also for Csp-Casl.

13.2.2 Testing theory for C s p -C a s l

Regarding future work for formal testing from Csp-Casl we mention:

Automatic tool support for coloring test cases We have developed a convincing proof strat­
egy in Csp-C asl-Prover to discharge proof obligations for the coloring of test cases.
However, one could develop new strategy in order to discharge such proofs in a
(semi)automatic fashion, for instance by incorporating automated provers.

208 Chapter 13 Conclusions and fu rth er work

Architectural
Level

Abstract
Component

Level

Concrete
Component

Level

XML
Component

Level

EP2 D esign
Process

F orm alisation

F orm alisation

F orm alisation

F orm alisation

XML

C sp -C asl

Design
Process

C s p -C asl Spec
ArclwGetConfig

C s p -C asl Spec
ACL-GetConfig

T,c

C s p -C asl Spec
CCL-GetConfig

abeervational re finem en t^observations

C s p -C asl Spec
XM L-GetConfig

In tu itive R efinem ent Form al R efinem ent

Figure 13.1: EP2 observational refinem ent in CSP-CASL.

Test coverage In this thesis, w e h av en 't addressed the topic of test coverage criteria. In
the literature one finds a sheer am o u n t of test coverage m etrics, e.g., [WRHM06]. It
w ould be in teresting to include a coverage criteria in ou r testing theory.

Automatic test case selection M any research activities have been directed at finding ap ­
p rop ria te theories and algorithm s to derive test cases from form al specifications such
that certain correctness properties can be g u ran teed if the system u n d er test passes
all test cases of a test suite. Early attem pts w ere contributes by B rinksm a [Bri88]
using the specification language LOTOS. Here, one could study new theories for
the autom atic test case selection from C sp-C asl specification based on a predefined
coverage criteria.

Appendices

(APPENDIX . . . A)

C sp -C a s l d e v e l o p m e n t n o tio n a n d te s t in g

In this appendix we report proofs from Chapter 6 , 7 and Section 10.3.

A. 1 Proof of C s p - C a s l reduct property

In the following we give a full proof of Theorem 6.1.8.

Reduct property over the CSP models Let P be an arbitrary CSP process of a CSP-CASL
specification Sp = (D, P). Moreover, let a : 2L —> Z' be a CSP-CASL data logic signature
morphism and M' a Z'-model. Then,

traces{lP}v.x^ M%) = aT (fraces([p(P)]M x)_ M/))
failures ([P] 1/:x->m' |r) = ^(failures(lp(P)}p:a{x)^Mf))
divergences ([P] |„) = OLN{divergences{\p{P)]p;cr(x)-.M'))

where X is the set of free variables in P, v : X —> M'\a and v : cr(X) —> M' are variable
evaluations with

v(x : s) = v(x : o'(s)).

Proof. The proof is by structural induction on the CSP process operator P. Here, we
show for each semantical model, how the proof is carried out for each CSP process oper­
ator. The proofs for the primitive process STOP and action prefix a —» P can be found in
Section 6.1.

Traces model

• SKIP : We need to prove the following:

traces(lSKIPjv) = ocT (traces ([p (SKIP)]*)).

211

212 Appendix A C s p - C a s l development notion and testing

We unfold the left hand side of the equation. Here, we calculate the trace set, which
is {(), (/) } . Applying the inverse translation of the traces domain k j we obtain
&*/ ((>/ (S)) , i e-/ kr(traces(lp(SKIP)]*>)).

Thus, traces(ISKIP}V) = kr(traces(lp(SKIP)}{f)).

• DIV : We need to prove the following:

traces ([DIVjv) = k.T(traces(lp(DlV)}^)).

We unfold the left hand side of the equation. Here, we calculate the trace set, which
is {()}. Applying the inverse translation of the traces domain k j we obtain &*(()),
i.e., kr(traces(Ip(DIV)]</)). Thus, traces(lDIVlv) = kT{traces(lp(DIV)^i))).

• Ix :: s —> P : We need to prove the following:

traces(l?x :: s —> P}v) = kq-(traces(|[p(?x :: s —* P)Jtf)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces(?x :: [s],, [P^z.v)-

We then calculate the trace set:

{(>} U{(fl) | t £ traces{lP]\v\a/x]), a E [s]t/}.

We now unfold the definition of the variable evaluation [[s]]v (details of this definition
can be found in [Rog06]):

Applying the alphabet translation a. we obtain a([s]~M,) = [^ (s)]^ /, which is equal
to [ĉ s (s)|p. We now apply the inverse alphabet translation of the traces domain k r
and using the induction hypothesis on traces (lP^v), we obtain:

{&*((»} (a) ~ t | t E k r i t r a c e s d p iP)^ / ^)) , a e ^ ([^ (s) ^)} .

Pulling out the k from the above trace set, we obtain kq-(traces(lp(?x :: s —► P)]p)).
Thus, traces (I?x :: s —► P]v = kj-(traces(Ip(?x :: s —► P)]j?)).

• \x :: s —> P : The same procedure as in the case of Ix :: s —> P.

• P 9 Q : We need to prove the following:

traces(lP$Q}v) = kT {traces ([p(P$Q)]]i>)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces{lP}v $lQ}v).

A .l Proof o f C s p -C a s l reduct property 213

We then calculate the trace set:

traces([P jv) D Alph(M'\ay
U { s ~ t \ s ~ (/) G traces ([P]v),f E traces(lQ^v)} .

Applying the inverse alphabet translation of the traces domain kq- and using the
induction hypothesis on traces(lP}v) and traces(lQ^v), we obtain:

cir(traces(^p(P)lc)) n k* (Alph(M')*)
U { s ^ t | s ~ (/) e &T(traces(lp{P)h>)),t € &T(traces(lp{Q)h>))}.

Pulling out the k from the above trace set, we obtain kq- (traces (Ip (P % Q)]tf)). Thus,
traces(lP°9 Q}v = k T (traces (ftp (P °9 Q)]*)).

• P □ Q : We need to prove the following:

traces^P □ Q jv) = kT (traces([p(P □ Q)]v)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces ([P]v □ [Q]v).

We then calculate the trace set:

traces(lP^v) U traces([Ql„).

Applying the inverse alphabet translation of the traces domain k j and using the
induction hypothesis on traces(|P]V) and traces(lQ^v), we obtain:

kT (traces(lp(P)li>)) U kT (traces(lp(Q)}p)).

Pulling out the cl from the above trace set, we obtain kq-(traces(|p (P □ Q)Jtf)). Thus,
tracesUP □ Q[v = kT {traces([p(P □ Q)]p)).

• P n Q : The same procedure as in the case of P □ Q.

• P | [s] | Q : We need to prove the following:

traces(lP\[s]\Q}v) = kT (traces(lp(P\[s]\Q)li>)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces(lPjv |[[s]v]| [Q]v).

We then calculate the trace set:

w I n e traces(lP}v) A f2 G traces (lQ}v)}.64

214 Appendix A C s p - C a s l development notion and testing

We now unfold the definition of the variable evaluation, i.e., flsjv = [S]~M/|(T * Apply­
ing the alphabet translation cc we obtain a([s]~M,) = [crS(s)]M'/ which is equal to
[^s(s)lo.

We now apply the inverse alphabet translation of the traces domain k j and using
the induction hypothesis on traces (^P]|v) and traces(| Q] v) , we obtain:

U { f l | [& ([^ s (s)] v)] | f 2 | f l e k r (traces(I p (P) } y))

A f2 € kT (traces(\p(Q)\i>))}. (p i)

In order to pull out the inverse translation k from the above trace set, we need to
show the following equality:

* 1 1 []\t2 = k(t l \[[<rs (s)]]t>] | f2) . (p2)

This is done by induction on the trace length n and m of the trace f l and f2. Let
[fl]v G l(Ts (s)b and ^ As a base case we consider the following cases:

0 0 = H Q |[[^(»)]#]| <» = {<>}
0 P (L s (s)]»)]| (M «) - = * (0 II II (MM) = {}
0 P (M s(s)]M]| <M») = H Q <[% » = {<M»>}-

Let the equality p2 holds for a trace length n — 1 and m — 1. We now consider the
following cases (here, let ql,q2 e k ^ (traces (Ip (P)^))):

1. Let f l = ([fljtf) ^ ql and ^ q2, then for the left hand side we have:

(Mt>) ~</l P ([^ (s)] i>)] | (M v) ~ q 2
= { (lbh) I <7 e (l a W q l p ([v S(s)h)]\q 2 }.

By induction hypothesis for the right hand side we obtain:

= { (M M ' P I 9 e i ((H P ? i |[[(7s (s)]f]|<)2)}.

2. Let f l = ^ ql and ([«]{/) ^ q2, then for the left hand side we have:

(M P d ^ O O M l I
= W * b) \<i G f t P d ^ M M P 2}-

By induction hypothesis for the right hand side we obtain:

&(([MM ^ f i \ l l v s (s)h}\ <IMM ~*72)
= {(MW k(ql |[lo-s (s)h]\ql)}-

A .l Proof o f C s p - C a s l reduct property 215

3. Let t l = 1 and (M o) ~ q2, where \a']* G [crs (s)]p and [aj^ ± {a%.
Then for the left hand side we have:

<H#> P([<^(s)li>)]l <Mo> "<?2 = {}.

By induction hypothesis for the right hand side we obtain:

K (M t) ~ q 1 \[lvs (s) b] \ (l a'b)~< i2) = {}•

4. Let fl = ^ ql and (M W ^ q2, where Mltf <£ [[crs (s)Jp. Then for the left
hand side we have:

(b b) ~ f i IM(Ms0) M ll (M e)
= { (lbb) I q £ <?i P (M s(s)M ll (M M " > 2I

u { (M M I q e (M o) " V P (M s 0) M] k 2}-

By induction hypothesis for the right hand side we obtain:

&((I«M ~<?i |[M S(S)M I (M o) ~ q 2

= {(M o) * { f i \ l k s {s)h}\ (W b) ~ q 2 }
u { (W ? I q e &((Mo) "<?! l[M s (s)MI<?2)}-

Thus, we have that fl | [&([[crS(s)]]v)]| — oc{tl |[MS(S)M I 2̂)- We now can pull
out &7- from the trace set in pi, and we obtain dcj-(traces([p(P |[s]| Q)M)- Hence,
traces{lP\[s]\Q}v) = (traces(Ip(P |[s]| Q)]o))-

• P | [si | s2] | Q: Here, since P |[s l |s 2] | Q = P | [si fl s2] | Q, the proof follows the
same procedure as in the case of the generalized parallel.

• P 11 Q : Here, since P 11 Q = P \ [Alph(M)] \ Q, the proof follows the same procedure
as in the case of the generalized parallel.

• P III Q : Here, since P ||| Q = P |[{ }] |Q , the proof follows the same procedure as in
the case of the generalized parallel.

• P \ s : We need to prove the following:

tracesdP \ s]„) = OLT (traces{\p{P \ s)]<>)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces{lPjv \ [s]v).

We then calculate the trace set:

{f \ [sjv | f G traces(lPjv)}.

216 Appendix A C s p - C a s l development notion and testing

We now unfold the definition of the variable evaluation, i.e., [s]v = Apply­
ing the alphabet translation cl we obtain a([s]~M,) = [<Js(s)]m', which is equal to

We now apply the inverse alphabet translation of the traces domain k j and using
the induction hypothesis on traces {^P]]v), we obtain:

{t \ tf([<7 s (s)]tf) | t e kT(traces(lp(P)}{>))}. {hi)

In order to pull out the inverse translation k from the above trace set, we need to
show the following equality:

t \ tf([^s (s)]v) = k(t \ [<xs (s)]p). {hi)

This is done by induction on the trace length n of t. For n = 0, we have that

0 \ = H i) \ = 0

Let the equality in {hi) holds for a trace q of length n — 1. Now let t = ([fljtf) ^ q
where q E kj{traces{ Hp(P)Jf/))- Here for the left hand side we have:

H M o) ~ (<? \ &([^s (s)]i0) if Ht> £ k s (s)lf'

q \ & ([^(s)]p) otherwise.

By induction hypothesis, for the right hand side we have that:

f H Wf? ~ {q \ k s(s)]rO) if & k s(s)lv
a« M v) ^ \ I ^ (s)Ip) := <

I \ [[crS(s)]]i>) otherwise.

Thus, we have that t \ &(|crs (s)]]t>) = k{t \ [^(s)]]#). This allow us to pull out the k
from the trace set in {hi), and we obtain k j {traces([p(P \ s)]]#)). Hence, traces{lP \
sjv) = kT {traces{lp{P \ s)]<>)).

P[[p]\ : We need to prove the following:

traces{lP[\p]]^v) = kT (traces(\p(P\\p]])li,)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

traces {{Pimply]]) .

We then calculate the trace set:

{t | 3s e traces{lP}v) .slp*}vt}.

A . l Proof o f C s p - C a s l reduct property 217

We now unfold the definition of the variable evaluation [p*]v (details of this defini­
tion can be found in [Rog06]):

IPsUih = {([sl,*]~MV,[s2,y]„MV) | {x,y) G

Applying the alphabet translation a we obtain:

{ (ft([si,*]) / a ([s2/y \~m/|(t)) | (x,y) G a((Psis2)M'|J}
= { ([^ S (s l) ^] ~ M/ / k S(s 2) / l /] ~ ^) I (* / y) e (P£tS(s1)(7S(s2))m ' }
= { { l (r S { s l) , x } t , l a s { s l) , y] t) I (x ,y) G (/ V (s1)£7s (s2))m '}

We now apply the inverse alphabet translation of the traces domain ocj- and using
the induction hypothesis on traces(lP}v), we obtain:

{t | 3s G &T {traces {lp{P)jc).s &{&*]$) t}. (rl)

In order to pull out the inverse translation cc from the above trace set, we need to
show the following equality:

s& flb io) t = &(s t). {rl)

This is done by induction on the trace length n of t. For n = 0: we have

0 0 = &(()lp*b 0) = 0

Let the equality in {rl) holds for a trace length of n — 1. Now let t = ([ajo) ^ q where
q G a?{traces{\p{P)^{>)). Here for the left hand side we have:

f a (H f ') ~ (&(s)&([[p*]]p) %)) if lah £ k s (s)lo
s&(lp*b) ((M v) ~ q) "■= Iy a(s)A:([(7s (s)]|i)))A:(^) otherwise.

By induction hypothesis, for the right hand side we have that:

(H M t ~ (sb*]|v q)) if Wp £ k S(s)lv
&(s Ip*Jp -= Iy a(s[c7-s (s)]]tf)g) otherwise.

Thus, we have that a{s) a ([p*b) &(t) — &(s §P*b t). This allow us to pull out the a
from the trace set in (rl), and we obtain dcr{traces{lp{P[\p]])Jo)).
Hence, traces([P[[p]]]t/) = ocT {traces {lp{P[\p]})}t)).

• if cp then P else Q: We need to prove the following:

traces ([if cp then P else Qjv)
= {traces {{[p{ii cp then P else Q)Jc>))-

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces{if [<p]|v then JP]V else [Qjv).

218 A ppen dix A C s p - C a s l developm ent notion and testin g

We then calculate the trace set:

J traces (|Pflv); [[^]v if evaluates to true
\ t races ([[Qjv); [<pjv if evaluates to false.

We now unfold the definition of the variable evaluation lcp^v (details of this defini­
tion can be found in [Rog06]):

n- n _ J true if v II- cp
m v ' — [false if not 1/ lb cp

In [Rog06] (Theorem 6 - Generalized satisfaction condition) proves that:

v lb c (c p) iff v lb a .

Applying the alphabet translation a we obtain:

We now apply the inverse alphabet translation of the traces domain cl7- and using
the induction hypothesis on traces(HP]]i/) and traces(\Q\v), we obtain:

Pulling out the cc from the above trace set, we obtain:

(traces(Ip(if cp then P else Q)Dv))-
Thus, traces(p f cp then P else Q jv) = dlt(traces(|p (if cp then P else Q)|f/))-

Stable failure model

For each process operator, the trace component is identical to the one presented for the
traces model. Here, we illustrate how the proves goes for the failures component.

• SKIP : We need to prove the following:

failures(lSKIP^v) = &(failures(lp(SKIP)^)).

We unfold the left hand side of the equation. Here, we calculate the failure set:

Pulling out the cc from the above failure set, we obtain cc (failures (p^SKIPl)). Thus,

dcT (traces(lp(P)l{>)); if i? lb cp
olt (traces(Ip(Q) j o)) ; if not v lb cp.

{((),X) I X C A}ph(M’\c) } { J { ({ /) , X) I X C A lp h (M % y } .

Applying the inverse translation of the stable failure domain cij? we obtain:

{(& *«»,Sjr(X)) I & p X)C & (M ph(M '))}
U { (r / ((/» ,a IP(x)) I &P(x) c & 'A ip h (M 'V } .

failures(lSKIP^v) = &(failures(lp(SKlP)]c)).

A .l Proof o f C s p - C a s l reduct property 219

• DIV : We need to prove the following:

failures (lDIV}v) = k r (failures (^p(DIV)^)) .

This trivially holds as the failure set for DIV is the empty set.

• 7x :: s —► P : We need to prove the following:

failures(l?x :: s —> P]v) = k(failures(lp(?x :: s —> P)Jf?)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures(?x :: [s]v -> [P]A2.V)-

We then calculate the failure set:
{ (() ,Y) | Alph(M'\a) H Y = 0 , Y e¥(Alph(M' \ay) }

U {((«) Y) | (t, Y) e failures(lP}v[a/x]), a G [sjv}.

We now unfold the definition of the variable evaluation, i.e., [sflv — [s]~M,|pp. Apply­
ing the alphabet translation a. we obtain = [^s (s)]m'/ which is equal to
[^S(s)]p.

We now apply the inverse alphabet translation of the stable failure domain kjr and
using the induction hypothesis on failures(|P]]V), we obtain:

{ (* * « » ,«£(Y)) \Mph(.M.'\r)n&*(Y) = <Z>, &p{Y) e V(Alph(M'\„y)}
U ,&£{Y)) | (f,Y) e &(jailures(lp(P)}t fc/x})), a € &(|[ĉ s (s)]o)}.

Pulling out the k from the above failure set, we obtain k(failures(\p(lx :: s —> P)Hv))•
Thus,failures([[?x :: s —»• P]v = k (failures (Ip (?x :: s —> P)]]p))-

• P 9 Q : We need to prove the following:

failures(lP%Q}v) = k(failures(\p(P%Q)'\{))).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures(lP\v %lQ\v).

We then calculate the failure set:
{(f,X) 11 € Alph(M%)‘, (f,XU { /}) efmlures(lP]v)}

u {(f ~ q ,x) I t ~ (/) G traces(lP]v),(q,X) G failures(lQ}v)}.

Applying the inverse alphabet translation of the stable failure domain k? and using
the induction hypothesis on failures (lP}v), traces([[Pj v) and failures ([Q jv), we obtain:

{(f,X) | t G k*(Alph(M')*), (f ,X U { /}) G k(failures(§p(P)}i>))}
U { (t^c j ,X) | f ~ (/) G kT (traces(lp(P)}v)),(q,X) G k (failures (^ (Q)}^))} .

Pulling out the k from the above failure set, we obtain k(failures(^p(P% Q)}p)). Thus,
failures(lP°9 Q}v = k(failures(Ip(P°9 Q)Jt?)).

220 Appendix A C s p - C a s l development notion and testing

• P □ Q : We need to prove the following:

failures (IP □ Q]v) = & (failures (Ip (P □ Q) !<?)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

traces (IP} v □ [Q jv).

We then calculate the failure set:

{ (()/X) I (0 /X) efailures(lP}v)nfailures(lQ}y)}
U {(f/X) | (f,X) G failures (IP} v) U failures(\Q}v),t ^ ()}
(J {((>,X) | X C Alph(M'\cr) A (/) G traces(lP}v) U traces(lQ}v)}.

Applying the inverse alphabet translation of the stable failure domain a? and using
the induction hypothesis on failures ([[P] v) failures ([Q] v), traces ({P} v) and traces ([Q J „)
we obtain:

{(<),X) | «),X) G & (failures ([p (P)}c)) n & (failures(^p(Q)}o))}
u {(f,X) I (t,X) G &(failures(lp(P)}i>))U&(failures(lp(Q)}p)),t ± ()}
IJ {(<),X) | (X) C x(Alph(M%)) A < /) G cc^races^P)} ,))

U &(traces(lp(Q)}t))}.

Pulling out the cc from the above failure set, we obtain: Sc (failures (Ip (P □ Q)]](>)).
Thus, failures(\P □ Q]v = & (failures (^ (P □ Q)Ji?)).

• P n Q : We need to prove the following:

failures(\P n Q]v) = cc (failures (Ip (P n Q)]o)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures(lP}v n fQ]v).

We then calculate the failure set:

failures ([P]v) U failures ([Q] v).

Applying the inverse alphabet translation of the stable failure domain oc? and using
the induction hypothesis on failures (lP}v) and failures (lQ}v), we obtain:

&T (failures(lp(P)}i>)) U dlt (failures(Ip(Q)}^)).

Pulling out the cc from the above failure set, we obtain cc (failures (Ip (P n Q)]]#))• Thus,
failuresdP n Q]v = a (failures (Ip (P n Q)]*))-

A. 1 Proof of C s p - C a s l reduct property 221

• P | [s] | Q : We need to prove the following:

failures(lP\{s]\Q\v) = dc(failures(§p(P\[s]\Q)]t)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures(lPjv \[ls}v]\ [Q],,).

We then calculate the failure set:

{ (u , Y UZ) | Y — (Js]v U { /}) = Z — ([s]t, U { /}) ,
3t,q. (t,Y) 6 failures<JPJv),(q,Z) 6 failures(JQjv),
« e f |[Mv]\q, Y e P{Mph(M,\aV), z e r(Alph(M'\cy) } .

We now unfold the definition of the variable evaluation, i.e., [[5]]v = Apply­
ing the alphabet translation a we obtain a([s]^M,) = [<j 5(s)]m/, which is equal to

[<rs (s)]o-

We now apply the inverse alphabet translation of the stable failure domain h? and
using the induction hypothesis on failures(lP^v) and failures (IQIV) we obtain:

{(u, Y U Z) I y - (&([[(7S(s)]]p) U { /}) = Z - (a([t7s (s)]|i)) U { /}) ,
3 t,q. (1,Y) G 8t(failures(ip(P)]p)),(q,Z) G a(/az7wres(]p(Q)]o)),
u G 1 P d ^ W j j i O l k &i(Y) G

&((Z) eF { A lp h (M % Y)} .

Here, we can pull out cc from the above failure set. This is thanks to
11 |[a([Gs (s)]p)]| 12 = <x(tl |[[crs (s)]p]| 12) (see proof in the traces model). Conse­
quently, we obtain 6c (failures (lp(P |[s]| Q)Jf>)). Thus,

failures (IP |[s]| Q |t,) = 6c{failures{\p(P |[s]| Q)M)-

• P \ s : We need to prove the following:

failures(\P \ s jv) = cc{failures(\p(P \ s)]*>)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

failures (IP j v \ [s]|v).

We then calculate the failures set:

{ (1 \ [s]v,Y) | (l,[s]vU Y) efailures(lP}v)}.

We now unfold the definition of the variable evaluation, i.e.,|[sjv = . Apply­
ing the alphabet translation cc we obtain a:([s]^M/|̂) = [crs (s)]^7, which is equal to
l v s (s)b-

222 Appendix A C s p - C a s l development notion and testing

We now apply the inverse alphabet translation of the stable failure domain kjr and
using the induction hypothesis on failures (lP}v), we obtain:

{0 \ & (k S(s)]]t>),y) I (M a(I^ S(s)]v)u y) G k(failures(lp(P)}t))}.

Here, we can pull out cl from the above failure set. This is thanks to t \ cl([[cts (s)]]{>) =
cc(t\ [crs (s)|p) (see proof in the traces model).

Consequently we obtain cc (failures (Ip (P \ s)]#)). Thus,

failures (IP \ s]„) = cc(failures($p(P \ s)]*>)).

• P[\p]} : We need to prove the following:

failures(lP[\p\]\v) = &T (failures(\p(P[\p]]]\o)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

Jdilures(lP}v[[lpjv]\).

We then calculate the failure set:

{(t,X) I 3t'. e [?•]„, (f . p - ^ X)) e failuresdPl,).

We now unfold the definition of the variable evaluation §p*^v:

b s i s z lv = {([sl,x]~MV,[s2,y]~M/|J | (x,y) G (psis2)M%}-

Applying the alphabet translation cc as illustrated in the traces model we obtain:

{ ([(7 S (s l) , x] f/,|[(7S (s2) ,y] |p) | (x , y) G (pa s (s1)£tS(s2))m'}

We now apply the inverse alphabet translation of the stable failure domain kjr and
using the induction hypothesis on traces ([[P]]i/), we obtain:

{(f,X) | 3t'. (f',f) G k(lp*h), (f',p_1 (X)) G &r(failures(lp(P)]t)).

Here, we can pull out cl from the above failure set. This is thanks to t a([[p*]]t?) t' =
&(t lp*}c t') (see proof in the traces model).

Consequently, we obtain kj(failures(\p(P[\p\[)\f)). Thus,

failures(lP[\p\}\v) = fcT (failures (Ip (Plty]])^)).

• if cp then P else Q: We need to prove the following:

failures([[if cp then P else Q |v)
= fc(failures(\p(i{ cp then P else Q)]v)).

A. 1 Proof o f C s p - C a s l reduct property 223

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

We then calculate the failures set:

f failures(lP}v); if evaluates to true
\ failures l<p̂ v if evaluates to false.

We now unfold the definition of the variable evaluation

 ̂ ^ f true if v lb cp
m v '— [f a l s e if no tv lb cp

In [Rog06] (Theorem 6 - Generalized satisfaction condition) proves that:

v lb cr(cp) iff v lb (7.

Applying the alphabet translation a we obtain:

We now apply the inverse alphabet translation of the failures domain ctjr and using
the induction hypothesis on failures(|P]]i/) and failures (lQ^v), we obtain:

Pulling out the a from the above failures set, we obtain
a (failures (Ip (ii cp then P else Q)lr>)) - Thus,

failures{\\i cp then P else Q]]v) = & (failures (\p (if cp then P else Q)]#)).

Failures/Divergences model

For each process operator, the failures component is identical to the one presented for
the stable failures model. Here, we illustrate how the proves goes for the divergences
component.

• SKIP : We need to prove the following:

failures(ii [<p]v then [P]v else [Q]v).

(failures(Ip(P)^{>)); if v lb cp
DiT {failures{lp{Q)y)); if not v lb cp.

divergences (IS KIP} v) = (divergences ([p(SK/P)Jt?)).

This trivially holds as the divergence set of SKIP is the empty set.

224 Appendix A C s p - C a s l development notion and testing

• DIV : We need to prove the following:

divergences (lDIV}v) = (divergences (\p (DIV)}$)).

We unfold the left hand side of the equation. Here, we calculate the divergence set,
which is Alp^M'la)*^ . Applying the inverse translation of the failures/divergences
domain cljv, we obtain cc*'1 (Alph(M')*'1), i.e., ccj^(divergences(lp(DIV)1v)). Thus,
divergences (iDIV^p) = dc ̂ (divergences (|o (DiV)] *>)).

• ?x :: s —> P : We need to prove the following:

divergences (I? x :: s —» P]v) = cc* (divergences (Ip (?x :: s —> P)]<?))-

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

divergences(?x :: [sjv -► [PJaz.i/)-

We then calculate the divergence set:

{(>}U{<fl}~f | t G divergences([P]^/*]), fl G [s]v}.

We now unfold the definition of the variable evaluation, i.e., [[s|v = . Apply­
ing the alphabet translation cc we obtain a([s]~M,) = [<7S(s)]m', which is equal to
k S(s)]v.

We now apply the inverse alphabet translation of the failures/divergences domain
&j\f and using the induction hypothesis on divergences ([[PJ v), we obtain:

{£*(())} U{(fl) ^ t | t G a * (divergences (Ip (P)]] p [fl/*])), a. G &([[(7S(s)]]r/)}.

Pulling out the dc from the above divergence set, we obtain: cc* (divergences (Ip (?x ::
s —> P)]v)). Thus, divergences (I? x :: X —► P[v = cc* (divergences ([p (?x :: s —> P)]i>)).

• \x :: s —> P : The same procedure as in the case of ?x :: s P.

• P 9 Q : We need to prove the following:

divergences ([P^Q],,) = cc* (divergences(lp(P°9 Q)^)) .

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

divergences (IP j v % [Q jv).

We then calculate the divergence set:

divergences (lP^v)
U {s ^ t | s ^ (/) G traces1 ([P |v), t G divergences (IQ^V)}.

A. 1 Proof o f C s p - C a s l reduct property 225

Applying the inverse alphabet translation of the failures /divergences domain cĉ f
and using the induction hypothesis on traces1 ([P]]v) and divergences ([[Q] v), we ob­
tain:

ocn (divergences (\p (P) J p))
U { s ^ t | (/) G &T (traces{lp(P)}i>))t t G 6c*(divergences(^p(Q)}o))}.

Pulling out the 6c from the above divergence set, we obtain:a*(divergences (Ip (P £
Q)]]*)). Thus, divergences^ §Q}V = cc* (divergences([[^(P§ Q)]]^)).

• P □ Q : We need to prove the following:

divergences (IP □ Q]„) = cc* (divergences (Ip (P □ Q)]^)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences(\P\v □ [Q]„).

We then calculate the divergence set:

divergences ([P] v) U divergences (]QJ v).

Applying the inverse alphabet translation of the failures/divergences domain ccĵ f
and using the induction hypothesis on divergences(lP^v) and divergences(|Q]jv), we
obtain:

6c*(divergences(Ip(P)Jo)) U oc*(divergences(Ip(Q)Jo)).

Pulling out the 6c from the above trace set, we obtain 6c*(divergences(Ip(P □ C2)lr>))-
Thus, divergences({P □ Q]v = cc*(divergences([p(P □ Q)]]o))-

• P n Q : The same procedure as in the case of P □ Q.

• P | [s] | Q : We need to prove the following:

divergences ([P | [s] | Qfl „) = 6c* (divergences ([p I [s] I Q) 1)) •

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

divergences(lP\v |[[s]v]| [Q]v).

We then calculate the divergence set:

{ u ^ v | 3t G traces1 (lP^v),q G traces1 ([Q j v)

u € (M [Mv] I <?) n Alph(M'\ay
A(t G divergences(lP}v) V q G divergences([[Q|v))}.

We now unfold the definition of the variable evaluation, i.e., [[s]]v Apply­
ing the alphabet translation oc we obtain ft([s]~M,|(T) = [crS(s)]M'/ which is equal to

226 Appendix A C s p - C a s l development notion and testing

We now apply the inverse alphabet translation of the failures/divergences domain
dcĵ f and using the induction hypothesis on traces1 dP}v), divergences dP]]v) and
divergences ([QJ „, we obtain:

{ u ^ v | 3 t e &T {traces± dp(P)}t)) ,q G (traces1 (Ip(Q)lp))
u G (t\[&(lors (s)h>)]\q)n&iMph(M,y)
A(t G dc*(divergences((p(P)}y)) V *7 G cc* (divergences d p (Q)}y)))}-

Here, we can pull out a. from the above divergence set. This is thanks to
f l | [a(Jc7"s] | f2 = dc(tl |[[[^(s)]]^]| t2) (see proof in the traces model).

Consequently, we obtain dc* (divergences d p (P |[s]| Q)]]v))* Thus,

divergences([P | [s] | QJv) = a* (divergences(|o (P | [s] | Q)] 0)).

• P \ s : We need to prove the following:

divergences(\P \ s]„) = a*(divergencesdp(P \ s)]^)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to Casl, and we obtain:

divergencesdPiv \ |[s]v).

We then calculate the divergence set:

{{P \ (MM ~ t | p G divergencesdPjv)}
U {(w \ [sjv) ^ t | u G Alph{M'\a)w A (u \ [sjv) finite

A Vp < u . p G traces1 dP} v)}

We now unfold the definition of the variable evaluation, i.e., [s]v = [s]~JVI,|(T- Apply­
ing the alphabet translation oc we obtain a([s]^M,) = [<rs (s)]M'/ which is equal to

We now apply the inverse alphabet translation of the failures/divergences domain
dcjsf and using the induction hypothesis on traces1 dP}v) and divergences d P j v), we
obtain:

{(P \ &((MS(s)]M) | p G oc*(divergencesdp{P)b)) }
U {(« \ ^ ([^ (s)Ji/)) ^ t | u G cc(Alph(M')w) A (u \ &((Ms(s)]M) finite

A Vp < u . p G ocT (traces1 dp (P) l d) }

Here, we can pull out oc from the above divergence set. This is thanks to
dc{t) \ a((Ms (s)]M = cc(t \ [^ (s)]*).

Consequently we obtain 6c* (divergences d p (P \ s)]]#)). Thus, divergences(\P \ s]]v) =
dc* (divergencesdp(P \ s)]p)).

A. 1 Proof o f C s p - C a s l reduct property 227

• P[[p]] We need to prove the following:

divergences(lP[\p]]}v) = dc* (divergences ([p (P [[p]]) J d)) •

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

dwergences(lPjv[[^pjv}}).

We then calculate the divergence set:

{f | 3s e divergences(\P\v) .s§p*]vt}.

We now unfold the definition of the variable evaluation |p*}v'-

iPslsllv = {([sl,x]„M%,[s2,x]~M,w) I (x,y) G (Ps1s2)m%}-

Applying the alphabet translation oc we obtain:

{([(7s (sl),xjp,[[frs (s2),i/]i>) | (x,y) G (^ s (sl)£rs (s2)) M' }

We now apply the inverse alphabet translation of the failures/divergences domain
CLjyr and using the induction hypothesis on divergences([[P]] v), we obtain:

{t | 3 s G &*(divergences(lp(P)}o) . s t } .

Here, we can pull out dc from the above divergence set. This is thanks to
&(s) &([p*]d) d c (t) = dc{s Ip*Jo t) .

Consequently we obtain dĉ (divergences (Ip (P [\p]]) J p)). Thus, divergences (JP [[p]] | v) =
oc* (divergences ([p (P[[p]])]<>)).

• if cp then P else Q: We need to prove the following:

divergences([[if q> then P else Q]v)
= oc*(divergences([p(if cp then P else Q)]o)).

We unfold the left hand side of the equation. Here, we first apply the evaluation
according to CASL, and we obtain:

divergences(if {<p] v then [P]v else [Q]v).

We then calculate the divergence set:

j divergences ([P] v); [<p] v if evaluates to true
\ divergences (IQ]]v); l<plv if evaluates to false.

We now unfold the definition of the variable evaluation [<pjv:

rr ,, _ J frwe if v II- <p
» 1 false if notv II- q>

228 Appendix A C s p - C a s l development notion and testing

In [Rog06] (Theorem 6 - Generalized satisfaction condition) proves that:

v II- a(<p) iff v lh cr.

Applying the alphabet translation oc we obtain:

We now apply the inverse alphabet translation of the failures/divergences domain
fctf and using the induction hypothesis on divergences (IP} v) and divergences (lQ}v),
we obtain:

J dc*(divergences(Ip(P)^v)); i fv\\- (p
\ dc* (divergences(\p{Q)\o))', if not v II- cp.

Pulling out the dc from the above divergence set, we obtain
dc* (divergences (Ip (if cp then P else Q)]p)). Thus, divergences ([[if cp then P else Q]v) =
dc*(divergences(Ip(if q> then P else Q)]t>))-

Binary calculator refinement proof

The following is the Isabelle proof script for the BCalc refinement proof. Specifically we
prove, BCalcO BCalc3.
theorem BCalcRefinem entl : "BCalcO <=F BCalc3"

(* u n fo ld in g *)
apply (u n fo ld BCalcO_def BCalc3_def)

(* cms f ix e d p o in t in d u ct io n *)
apply (r u le c s p F _ f p _ in d u c t _ le f t [of BCalc3_to_BCalcO "])

(* s i m p l i f i c a t i o n *)
apply s im p _a ll
apply simp

(* in d u c t io n over p rocess names *)
a p p ly (in d u c t _ ta c p)

(* unwinding p ro ce ss names *)
a p p ly (csp F -a u to I auto)

(* I~I —ref in em en t law — choose f i r s t l e f t branch of the l~l ch o ice *)
apply (ru le c s p F _ I n t _ c h o i c e _ l e f t l)

(* p ro ce ss r e w r i t in g and d ecom p osit ion *)
apply (r u le c sp F _ rw _ r ig h t)
apply (r u le cspF_decompo)
apply simp
apply (cspF_auto I auto I cspF_hsf I ru le cspF_decompo) +

(* I~I —ref in em en t law — choose second l e f t branch of the l~l ch o ice *)
apply (ru le c s p F _ I n t _ c h o ic e _ le f t 2)
apply (r u le cspF _rw _right)
apply (r u le cspF_decompo)
apply simp

A .3 Coloring a test case in C s p - C a s l - P r o v e r 229

(* repeat the I~I—ref in em en t law 3 t im es *)

done

Coloring a test case in Csp-Casl-Prover

In this section we report proofs from the Csp-Casl based testing chapter. In particular we
report the proof script from the coloring of test case of the binary calculator example (see
Section 9.3) We now show how the four lemmas are proved.

• Parallel_one:
lemma P a r a l l e l _ o n e : "P3 II T1 =T Tl"

apply (u n fo ld P3_def T l_ d e f)
apply (cspF_auto I auto simp add: c s p _ p r e f ix _ s s _ d e f

im a g e _ i f f in j_ o n _ d e f) +
a p p ly (a u to simp add: l i f t i n g l Axl)
apply (cspF_auto I auto) +

done

lemma P a r a l le l_ o n e _ B u t to n :
"(Button ?x —> P(Button x)) II (Button y —> Q)

=T
Button y —> (P(Button y) I I Q)"

by(cspT _auto I auto simp add: c s p _ p r e f ix _ s s _ d e f
im a g e _ i f f in j_ o n _ d e f) +

lemma P a r a l le l_ o n e _ D is p la y :
"Display x —> P II D isp la y x —> Q

=T D isp la y x —> (P II Q)"
by(cspT _auto I auto) +

lemma P a r a l le l_ o n e _ S to p :"SKIP II STOP =T STOP" b y(cspT _auto I auto) +

• Renaming:
lemma Renaming :

"Tl [[MyRenaming]] =T a —> a —> a —> a —> STOP"
apply (simp add: T l_ d e f)
apply(cspT_sim p Rename_Button I auto) +
apply (cspT_simp Rename_Display I auto)+
apply (espT-Simp Rename_Button I auto) +
a p p ly (cspT_simp Rename_Display I auto)+
apply (cspT_simp Rename_STOP I auto) +

done

lemma Rename_Display : " ((D isp la y z) — > P) [[MyRenaming]]
=T a —> (P [[MyRenaming]]) "

by (simp add: MyRenaming_def I cspT_auto I auto) +

lemma Rename^Button : " ((B u tton z) — > P) [[MyRenaming]]
=T a —> (P [[MyRenaming]])"

230 Appendix A C s p - C a s l development notion and testing

by (simp add: MyRenaming_def I cspT_auto I auto)+

lemma Rename_STOP : "STOP [[MyRenaming]] =T STOP"
by (simp add: MyRenaming_def I cspT_auto I auto)+

• Parallel-two:
lemma P a r a l le l_ tw o :

"a—>a—>a—>a—>STOP I [{a}] I a—>a—>a—>a— >OK—> STOP"
=T a—>a—>a—>a—>OK—> STOP"

a p p ly (cspT_simp P a r a l le l_ w ith _ a I auto) +
by(cspT_sim p Paralle l_w ith_O K I auto)

lemma P a r a l le l_ w it h _ a :
"(a —> P) I [{a}] I a —> Q =T a —> (P I [{a}] I Q)" b y (cspF _au to I auto) +

lemma Paralle l_w ith_O K :
"STOP I [{a)] I OK - > STOP =T OK - > STOP" b y(cspF _au to I auto) +

In order to prove the second parallel execution, we consider two basic generalized
parallel which synchronize on the event 'a'. In lemma Parallel-ivith^a we use the
process name 'P' as a variable, which later can be instantiated with an arbitrary
process.

• Hiding:
lemma Hiding: "(a—>a— >a—>a— >OK—>STOP) — {a} =T OK —> STOP"

a p p ly (cspT_simp Hide_a I auto) +
a p p ly (cspT_simp Hide_OK I auto)
by(cspT_sim p hide_STOP I auto) +

lemma H id e_a:"(a —> P) — [a] =T P — [a]" b y(cspT _auto I auto) +

lemma Hide_OK:"(OK —> P) — {a} =T OK —> (P — {a})" by(cspT _auto I auto) +

lemma Hide_STOP:"STOP — [a] =T STOP" b y(cspT _auto I auto) +

In order to prove the hiding lemma, we consider three basic cases: the hiding of 'a',
the hiding of 'OK' and hiding applied to STOP. In hide 'a' we use the process name
'P' as a variable, which later can be instantiated with an arbitrary process.

(APPENDIX . . . B)

M o d ellin g R o l l s - R o y c e Br 725 starting
sy s tem

In this appendix we report the full Csp-M specification of the Rolls-Royce Br725 start­
ing system. Specifically we report the specification for the normal (automatic) ground
start functionality. Figure 2 illustrate the activity diagram for this specific functionality.

Normal (automatic) ground start

— — ★ Cockpit Buttons ★★★★★★★★★★★★★★★★★★★★★★
channel press, release

— general purpose buttons

ButtonOFF = press -> ButtonON
ButtonON = release -> ButtonOFF

— Instantiate the general ButtonON ButtonOFF for the individual buttons:

channel mcjpress, mc_release
MasterCrank = ButtonOFF [[press <- mc_press, release <- mc_release]]

channel ms_press, ms_release
MasterStart = ButtonOFF [[press <- ms_press, release <- ms_release]]

channel engineStartON
EngineStart = engineStartON -> EngineStart

channel fc_j?ress, fc_release
FuelControl = ButtonOFF [[press <- fc_press, release <- fc_release]]

channel ci_press, ci_release
Contlgnition = ButtonOFF [[press <- ci_j?ress, release <- ci_release]]

—— ★ All Buttons ★★★★★★★★★★★★★

231

A ppendix B M odelling R o l l s - R o y c e B r7 2 5 starting system

Buttons

act Normal Ground Start
Check

A* craft Cord bon

ATS a *an&<r

sun

Montor
Starter Disengagement Speed

UghtUpKangSta
Tmer aooue 1 Start

TGT

Figure 2: A ctivity d iagram for norm al g round start

= MasterCrank |I| MasterStart
I | | EngineStart I I I FuelControl
I|| Contlgnition

** Checking for the aircraft and engine condition *******

BA Normal (automatic) ground start 233

channel aircraftCondition:Bool
channel engineCondition:Bool
channel inhibitStart, startOK

CheckConditions = aircraftCondition ? ac -> engineCondition ? ec
-> Checking (ac,ec)

[] engineCondition ? ec -> aircraftCondition ? ac
-> Checking (ac,ec)

Checking(ac,ec) = if (ac and ec)
then startOK -> SKIP

else InhibitStart

InhibitStart = inhibitStart -> Idle

— * * * * * * * * IDLE Process * * * * * * * * * * * * *

channel idle
Idle = idle -> Idle

— * * * * * * * * * * Monitoring the Fuel Condition * * * * * * * * * * * * * * * *

datatype SAVMode = open | close
channel s av:SAVMode

— event indicating the start of the fuel on timer
channel fuelOnTimer

-- the fuel condition depends on the NH and the TGT values
channel readNH:{0..100}

— TGT ranges between 1200 to 80
channel readTGT:{-80..12 00)

channel fuelOnCondition: Bool
channel fuelCondSat

— NH value for the fuel on condition monitor
NHFuelMonitor = 20

— TGT value for the fuel on condition monitor
TGTFuelMonitor = 60

— * * * * * * * * * * * * * * * * Light Up and schedule fuel ********

datatype Mode = ON | OFF

channel commandlgn : Mode.{1..2}
channel commandFuelON

— ******** Monitor Starter disengagement Speed ***********

channel lhsTimer — lightUp, hang and stall timer
SPEED1 = 15 -- this is the percentage of the max speed

234 Appendix B Modelling R o l l s - R o y c e B r7 2 5 starting system

SPEED2 = 65 — this is the percentage of the max speed

— ************** Error Handling ********************

InterruptMS = ms_release -> AbortStart
InterruptFC = fc_release -> AbortStart
AbortStart = abort -> Idle

— *********** Time out Handling ***********

channel fuelTimerExp, lightUpTimerExp, startDutyExp, abort
channel ignAttempt : { 1 ..2}

FuelTimer = fuelTimerExp -> AbortStart

LightUpTimer = ignAttempt ? x -> (if(x==l)
then LightUpBox

else lightUpTimerExp -> AbortStart)

StarterDutyTimer = startDutyExp -> AbortStart

— ***************** Successful Starting **********************

— event to indicate the successful start of the engine
channel started

StartCompleted = started -> Idle [] engineStartON -> StartCompleted

— ****** Initiating Interaction with the EEC ***********

StartlnteractionEEC = ms_press -> NowESpress
[] engineStartON -> NowMSpress

NowESpress = engineStartON -> InitStartOK
NowMSpress = ms_press -> InitStartOK

InitStartOK = startOK -> SKIP

Main Process of the Normal Ground Start

NormalGroundStart = (((CheckConditions [I {|startOK|) |] StartlnteractionEEC)
) \ { startOK }; FuelBox

) /\ InterruptFC
[I { mcjpress, mc_release,ms_press, ms_release, engineStartON,

fc_press, fc_release, ci_press, ci_release}
I] Buttons

— *********** Monitoring the Fuel Condition **************

FuelBox = sav.open -> fuelOnTimer -> MonitorFuel

B.4 Normal (automatic) ground start 235

[] engineStartON -> FuelBox
[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

MonitorFuel = readNH ? x -> readTGT ? y ->
if (x>NHFuelMonitor and y>TGTFuelMonitor)

then fuelOnCondition.true -> FuelFlow
else fuelOnCondition.false -> MonitorFuel

[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

SynchFuel = fuelCondSat -> SKIP

Fuel = fc_press -> fuelCondSat -> SKIP

FuelFlow = (((Fuel [|{|fuelCondSat|}|] SynchFuel) \ (fuelCondSat)
) ; LightUpBox)

[] engineStartON -> Fuel
[] FuelTimer
[] StarterDutyTimer
[] InterruptMS

— ******************** Light Up and schedule fuel *******************

datatype Mode = ON | OFF

channel commandlgn : Mode . { 1 . . 2 }
channel commandFuelON

LightUpBox = commandFuelON -> NowCommandlgnOn
commandlgn.ON .1 -> NowFuelOn
engineStartON -> LightUpBox
LightUpTimer
StarterDutyTimer

InterruptMS

NowCommandlgnOn = commandlgn.O N.1 -> MonitorSpeedBox
[] engineStartON -> NowCommandlgnOn
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

NowFuelOn = commandFuelON -> MonitorSpeedBox
[] engineStartON -> NowFuelOn
[] LightUpTimer
[] StarterDutyTimer
[] InterruptMS

— *********** Monitor Starter disengagement Speed **************
MonitorSpeedBox = LHSTimer -> MasterSpeed

[] LightUpTimer

236 Appendix B Modelling R o l l s - R o y c e B r7 2 5 starting system

[] StarterDutyTimer
[] InterruptMS

MasterSpeed = readNH ? x -> if (x>SPEEDl)
then SpeedReached

else MasterSpeed

SpeedReached = sav.close -> NowIgnOFF
commandlgn.OFF.1 -> NowSAV
engineStartON -> SpeedReached
LightUpTimer
StarterDutyTimer
InterruptMS

NowIgnOFF = commandlgn.OFF.1 -> Masterldle
[] engineStartON -> SpeedReached
[] LightUpTimer
[] StarterDutyTimer

NowSAV = sav.close -> Masterldle
[] engineStartON -> SpeedReached
[] LightUpTimer
[] StarterDutyTimer

Masterldle = (readNH ? x -> if (x>SPEED2)
then StartCompleted

else Masterldle)
[] LightUpTimer

 'k'k'k'k'k'k'k'k'k'k'k'kic'k'k'k'k End ★

(APPENDIX ...C)

M o d ell in g a n d te s t in g o f e p 2 in C s p -C a s l

In this appendix we report the modeling and testing of ep2 in Csp-Casl.

C.5 Modelling ep2 in Csp-Casl

The following is a complete specification in C sp-C asl of the get configuration functionality
of ep2.
l i b r a r y GetConf igurat ion
l o g i c CASL

% % = = = = = = = = = = = = = = = = = = ! =

%% DATA SPECIFICATION
0/ 0% =

%% Arch l e v e l ---------

spec D_Arch_GetConfig =
sor t D_SI_Config

end

%%-------- ACL ---------

spec D_ACL_GetConfig =
so r t s S es s i o n S ta r t , SessionEnd , C on f ig R eq u e s t , Conf igResponse ,

C on f i gN ot i f , ConfigAck , Te rmin a lClearNot i f , TerminalClearAck ,
RemoveConfigNoti f , RemoveConfigAck , A c t i v a t e C o n f i g N o t i f ,
ActivateConf igAck < D_SI_Config

f o r a l l x : SessionEnd ; y : ConfigReques t . not (x=y)
f o r a l l x : Se ss i o nE n d ; y : C o n f ig N o t i f . not (x=y)
f o r a l l x : S es s i o nE n d ; y : Te rm in a l C lea rN ot i f . not (x=y)
f o r a l l x : SessionEnd ; y : RemoveConfigNot if . not (x=y)
f o r a l l x : SessionEnd ; y : A c t i v a t e C o n f i g N o t i f . not (x=y)
f o r a l l x : C o nf ig R eq ue s t ; y : C o n f ig N o t i f . not (x=y)
f o r a l l x : C on f i gR eq ue s t ; y : Te rm in a lC lea rN ot i f . not (x=y)
f o r a l l x : C on f i gR eq ue s t ; y : RemoveConf igNot if . not (x=y)
f o r a l l x : C on f i gR eq ue s t ; y : Act iva t e C o n f i g N o t i f . not (x=y)

237

238 Appendix C Modelling and testing of ep 2 in C s p - C a s l

f o r a l l x : C o n f ig N ot i f ; y : RemoveConfigNoti f . not (x=y)
f o r a l l x : C o n f ig N ot i f ; y : Te rmin a lClearNot i f . not (x=y)
f o r a l l x : C o n f ig N ot i f ; y : Acti va teConf i g N o t i f . not (x=y)
f o r a l l x : Term ina lClea rN ot i f ; y : RemoveConfigNoti f . not (x=y)
f o r a l l x : T e r m in a lC le a r N o t i f ; y: A c t i v a t e C o n f i g N o t i f . not (x=y)
f o r a l l x : RemoveConf igNot i f ; y: A c t i v a t e C o n f i g N o t i f . not (x=y)

end

%%----------------------- Pair and Maybe--------------------------

spec Pair [s o r t S] [s o r t T] =
sor t P a ir [S , T]
ops pa ir: S * T —> P a ir [S , T];

f i r s t : P a ir [S , T] —> S;
second : P a ir [S , T] —> T ;

axiom f o r a l l p : P a i r [S , T] e x i s t s s : S ; t : T . p a i r (s , t) = p
f o r a l l s l , s 2 : S ; t : T . p a i r (s l , t) = p a i r (s 2 , t) => s i = s2 ;
f o r a l l s : S ; t l , t 2 : T . p a i r (s , t l) = p a i r (s , t 2) => t l = t 2 ;
f o r a l l s : S ; t :T . f i r s t (p a i r (s , t)) = s;
f o r a l l s : S ; t : T . second (p a i r (s , t)) = t

end

spec Maybe [s o r t S] = °/<mono
sor t Maybe[S]
ops nothing : Maybe[S];

j u s t : S —> Maybe [S];
g e t j u s t : Maybe[S] —>? S

pred de f i ned : Maybe[S]
axiom not (def (ge t Jus t (noth ing)))
axiom f o r a l l x:S . (g e t j u s t (j u s t (x))) = x
axiom f o r a l l x:Maybe[S] . d e f in e d (x) <=> def (g e t j u s t (x))

end

%%----- CCL —

spec D_CCL_GetConfig =
P a i r [s o r t Sta te f i t sor t S I—> State]

[s o r t Tr igger f i t sor t T I—> Tr igger]
and Maybe[sort ACD] and Maybe[sort AISD] and Maybe[sort CAD]
and Maybe[sort CPTD] and Maybe[sort CAD] and Maybe[sort TACD]
and Maybe[sort TCD] and Maybe[sort AcqlD] and Maybe[sort AID]
and Maybe[sort RID] and D_ACL_GetConfig

then
[s o r t s A cq ui re r lD , AID, RID, TerminalRangelD ,Termina lUni t ID,

ServiceCenter lD , Time, Date
f re e type ConfigObj ::= ACD I AISD I CPTD I CAD I TACD I TCD
f re e type Terminal lD ::= terlD (range : TerminalRangelD ; u n : Termina lUni t ID)
f re e type ConfigDownloadMode ::= 0 I 1

ops ge t_ Te rm in a l I D : Sta te —>? TerminallD;
get_Ser v ic eCe nte rI D : State —>? Serv ic eCe nte r l D;

C.5 Modelling ep2 in C s p - C a s l 239

get_AISD: Sta te —>? AISD;
set_AISD: Sta te * AISD —> S ta t e ;
get_TCD: State —>? TCD;
set_TCD: State * TCD —> State

vars s: S ta t e ; aisd:AISD; ted : TCD
. get_AISD(set_AISD(s , a isd)) = a isd
. get_AISD(set_TCD(s , ted)) = ge t_AISD(s)
. get_TCD(set_AISD(s , a isd)) = get_TCD(s)
. get_TCD(set_TCD(s , ted)) = ted

fre e type Conf igRequest :: =
mk_ConfigRequest (

get_AcqID: Maybe [AcqlD];
get_AID: Maybe [A D] ;
get_req : Conf igObj;
ge t_RID: Maybe [RID];
get_SCID: S erv ic eC en ter lD ;
get_TrmID: TerminallD

)

axiom f o r a l l c d r : Conf igRequest . g e t _ r e q (c d r) = ACD =>
def ined (get_AcqID (cdr)) / \
not (def ined (get_AID (cdr))) / \
not (def ined (get_RID (cdr))) %[ACD_Arguments]%

axiom f o r a l l cdr: Conf igRequest . g e t _ r e q (c d r) = AISD =>
def ined (get_AcqID (cdr)) / \
not (def ined (get_AID(cdr))) / \
not (de f ined (get_RID (cdr))) %[AISD_Arguments]%

axiom f o r a l l cdr: Conf igRequest . g e t _ r e q (c d r) = CPTD =>
not (de f ined (get_AcqID (cdr))) / \
def ined (get_AID (cdr)) / \
not (de f ined (get_RID (cdr))) %[CPTD_Arguments]%

axiom f o r a l l cdr: Conf igRequest . g e t _ r e q (c d r) = CAD =>
not (de f ined (get_AcqID (cdr))) / \
not (de f ined (get_AID (cdr))) / \
def ined (get_RID (cdr)) %[CAD_Arguments]%

axiom f o r a l l cdr: Conf igReques t . g e t _ r e q (c d r) = TACD =>
n o t (d e f i n e d (ge t_AcqID(cdr))) / \
def ined (get_AID (cdr)) / \
not (de f ined (get_RID (cdr))) %[TACD_Arguments]%

axiom f o r a l l cdr: Conf igReques t . g e t _ r e q (c d r) = TCD =>
not (de f ined (get_AcqID (cdr))) / \
n o t (d e f i n e d (g e t _ A I D (c d r))) / \
not (de f ined (get_RID (cdr))) %[TCD_Arguments]%

type Conf igResponse :: =
mk_ConfigResponse (

240 Appendix C Modelling and testing of ep2 in C s p - C a s l

)

get_SCID:
get_TrmID:
get_ACD:
get_AISD :
get_CAD:
get_CPTD:
get_TACD:
get_TCD:

Ser v iceCenter lD
Te rminal lD;
Maybe [ACD];
Maybe [AISD] ;
Maybe [CAD];
Maybe [CPTD];
Maybe [TACD];
Maybe [TCD]

f re e type D_SI_Ini t_Sess ionEnd
mk_sessionEnd (

get_SCID: Ser v iceC enter lD ;
get_TrmID: TerminallD;
get_LocDate : Date;
get_LocTime: Time

)

f re e type D _ S I_ I n i t _ S e ss i o n S ta r t :: =
m k_ se ss i on Sta rt (

get_SCID: S erv iceCen ter lD;
get_TrmID: TerminallD;
get_ConfDlMode: ConfigDownloadMode

)

f ree type C o n f i g N o t i f :: =
mk_conf igNot i f (

get_AISD: Maybe [AISD];
get_SCID: S erv iceCen ter lD;
get_TCD: Maybe [TCD];
get_TrmID: TerminallD

)

f re e type ConfigAck =
mk_configAck (

get_SCID: Serv iceCenter lD;
get_TrmID: TerminallD

)

f re e type Termina lClearNot i f :: =
mk_terClearNot i f (

get_SCID: S erv i ceCenter lD ;
get_TrmID: TerminallD

)

f re e type TerminalClearAck :: =
mk_terClearNot i f (

get_SCID: Se rv i ceCenter lD;
get_TrmID: TerminallD

)

f ree type RemoveConfig :: =
mk_removeConfig (

get_AID : Maybe [AID];

C.5 Modelling ep 2 in CSP-CASL 241

get_RID: Maybe [RID];
get_AcqID : Maybe [AcqlD]

)

axiom f o r a l l r e d : RemoveConfig .
(de f ined (get_AID(red)) / \ not (de f ined (get_RID(red)))

/ \ not (de f ined (get_AcqID (red))))
V (not (de f ined (ge t_AID(red))) / \ de f ined (get_RID(r e d))

/ \ not (de f ined (get_AcqID (red))))
\ / (not (de f ined (get_AID(red))) / \ n o t (d e f i n e d (g e t _ R I D (r c d)))

/ \ def ined (get_AcqID(red)))

f re e type RemoveConfigNot if :: =
mk_removeConf igNot if (

get_SCID: S er v i ce C e nt er lD ;
get_TrmID: Terminal lD;
get_remcfgdata : RemoveConfig

)

f ree type RemoveConfigAck :: =
mk_removeConfigAck (

get_SCID: S e r v i c e C e n t e r l D ;
get_TrmID: Terminal lD

)

f ree type A c t i v a t e C o n f i g N o t i f :: =
mk_actConfNoti f (

get_SCID: S e r v i c e C e n t e r l D ;
get_TrmID: Terminal lD

)

f re e type Act ivateConf igAck :: =
mk_actConf Ack (

get_SCID: S e r v i c e C e n t e r l D ;
get_TrmID: TerminallD

)

ops msg_configResponse : Conf igRequest * S tate —> C on f i gR es po n se ;

axiom f o r a l l cdr: Conf igReques t ; s: S tate . g e t _ r e q (c d r) = ACD =>
d ef i ne d (ge t _ACD(msg_conf igResponse(cdr , s))) / \
not (de f ined (ge t _AISD(msg_conf igResponse (cdr , s)))) / \
not (de f ined (get_CAD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_CPTD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_TACD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_TCD(msg_configResponse (cdr , s))))

axiom f o r a l l cdr: Conf igReques t ; s: S tate . g e t _ r e q (c d r) = AISD =>
not (de f ined (get_ACD(msg_configResponse (cdr , s)))) / \
def ined (get_AISD (msg_configResponse (cdr , s))) / \
not (de f ined (get_CAD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_CPTD(msg_conf igResponse (cdr , s)))) / \
not (de f ined (get_TACD(msg_configResponse (c d r , s)))) / \
n o t (d e f i n e d (get_TCD(msg_configResponse (cdr , s))))

242 Appendix C Modelling and testing of ep 2 in C s p - C a s l

axiom f o r a l l cdr: Conf igReques t; s: S tate . g e t _r eq (c d r) = CPTD =>
not (de f ined (get_ACD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_AISD (msg_conf igResponse (cdr , s)))) / \
def ined (get_CAD(msg_configResponse (cdr , s))) / \
not (de f ined (get_CPTD(msg_configResponse (cdr , s)))) / \
not (de f ined (get_TACD(msg_conf igResponse (cdr , s)))) A
not (def ined (get_TCD(msg_conf igResponse (cdr , s))))

axiom f o r a l l cdr: Conf igReques t; s : S t a t e . ge t _ r eq (c dr) = CAD =>
not (de f ined (get_ACD(msg_conf igResponse (cdr , s)))) / \
not (de f in ed (get_AISD (msg_configResponse (cdr , s)))) / \
not (de f ined (get_CAD(msg_configResponse (cdr , s)))) / \
de f ined (get_CPTD(msg_configResponse (cdr , s))) / \
not (de f ined (get_TACD(msg_conf igResponse (cdr , s)))) / \
not (de f ined (get_TCD(msg_configResponse (cdr , s))))

axiom f o r a l l cdr: Conf igReques t; s : S t a t e . g e t _ r eq (c d r) = TACD =>
not (d e f i n ed (get_ACD(msg_configResponse (cdr , s)))) / \
not (def ined (get_AISD (msg_configResponse (cdr , s)))) / \
not (de f ined (get_CAD(msg_configResponse (cdr , s)))) / \
not (def ined (get_CPTD(msg_conf igResponse (cdr , s)))) / \
def ined (get_TACD(msg_configResponse (cdr , s))) / \
n o t (d e f i n e d (get_TCD(msg_config Response (cdr , s))))

axiom f o r a l l cdr: Conf igReques t; s : S t a t e . g e t _r eq (c d r) = TCD =>
not (de f ined (get_ACD(msg_conf igResponse (cdr , s)))) / \
not (def ined (get_AISD (msg_configResponse (c d r , s)))) / \
not (def ined (get_CAD(msg_conf igResponse (cdr , s)))) / \
not (def ined (get_CPTD(msg_configResponse (c d r , s)))) / \
not (de f ined (get_TACD(msg_configResponse (cdr , s)))) / \
def ined (get_TCD(msg_conf igResponse (cdr , s)))

ops msg_configAck: C on f ig N o t i f * S ta te —> Conf igAck;
s t_con f igAc k : C o nf ig N o t i f * S tate —> S ta te ;

f o r a l l cdn : C on f i gN o t i f ; s : S t a t e
get_TrmID(cdn) = get_TerminalID (s) / \
get_SCID (cdn) = ge t_Ser v ice Cen ter ID (s) / \
def ined (get_AISD(cdn)) =>

s t_co nf i gAc k (cdn , s) = se t_AISD(s , g e t j u s t (get_AISD(cdn)))

f o r a l l cdn : C o n f i g N o t i f ; s: S ta te
get_TrmID (cdn) = get_TerminalID (s) / \
get_SCID(cdn) = g e t _ S e r v ic e C e n t e r I D (s) A
def ined (get_TCD(cdn)) =>

s t_con f igAck (cdn, s) = set_TCD(s , g e t j u s t (get_TCD(cdn)))

ops m sg_ ter C le arN ot i f : Termin a lC lea rN ot i f * State —> TerminalClearAck;
s t _ t e r C l e a r N o t i f Term ina lClea rN ot i f * S tate —> State

ops msg_removeConfigAck : RemoveConfigNot if * S tate —> RemoveConfigAck;
st_removeConfigAck : RemoveConfigNot if * Sta te —> S t a t e ;

C.5 Modelling ep2 in C s p - C a s l 243

ops msg_actConfAck : A c t i v a t e C o n f i g N o t i f * S ta te —> A c t iv a t e C o n f ig A c k ;
st_actConfAck : A c t i v a t e C o n f i g N o t i f * Sta te —> S ta t e ;

ops m sg _se ss ion S ta rtC on f : Tr igger —> S e s s i o n S t a r t
}

end

% % =

%% CspCASL SPECIFICATION
% % =

l o g i c CspCASL

%----- Arch -----

ccspec Arch_GetConfig =
data D_Arch_GetConfig
channel

C_SI_Config : D_SI_Config
process

TerminalConf ig : C_SI_Config;
SC_Config : C_SI_Config;
TR_Config : C_SI_Config;

SC_Config = RUN(C_SI_Config)
TR_Config = RUN(C_SI_Config)
TerminalConf ig = SC_Config [I C_SI_Config I] TR_Config

end

%----- ACL-----

ccspec ACL_GetConfig =
data D_ACL_GetConfig
channel

C_SI_Config : D_SI_Config
process

TerminalConf ig: C_SI_Config;
Ter_Config: C_SI_Config;
Ter_ConfMgm: C_SI_Conf ig ;
SC_Config: C_SI_Config;
SC_ConfMgm: C_SI_Config;

TerminalConf ig = Ter_Config [I C_SI_Config I] SC_Config

Ter_Config = C_SI_Config ! s e s s i o n S t a r t :: S e s s i o n S t a r t —> Ter_ConfMgm
Ter_ConfMgm = C_SI_Config ? conf igMess :: D_SI_Config —>

(i f (conf igMess in Sess ionEnd) then
Ter_Config

e l s e (i f (con f igMess in Conf igReques t)
then C_SI_Config ! resp :: Conf igResponse —> Ter_ConfMgm

e l s e (i f (con f igMess in C o n f ig N o t i f)
then C_SI_Config ! ack :: ConfigAck —> Ter_ConfMgm

244 Appendix C Modelling and testing of ep 2 in C s p - C a s l

e l s e (i f (conf igMess in Te rm ina lC learNot i f)
then C_SI_Config ! ackT :: TerminalClearAck —> Ter_ConfMgm

e l s e (i f (conf igMess in RemoveConfigNoti f)
then C_SI_Config ! ackR :: RemoveConfigAck —> Ter_ConfMgm

e l s e (i f (conf igMess in A c t i v a t e C o n f i g N o t i f)
then C_SI_Config ! ackA :: Act ivateConfigAck —> Ter_ConfMgm

e l s e ST OP))))))
SC_Config = C_SI_Config ? s e s s i o n S t a r t :: S e s s i o n S t a r t —> SC_ConfMgm
SC_ConfMgm = C_SI_Config ! seM:: SessionEnd —> SC_Config

l~l C_SI_Config ! cdrM :: Conf igRequest
—> C_SI_Config ? response :: Conf igResponse—> SC_ConfMgm

l~l C_SI_Config ! cdnM :: C on f i gN ot i f
—> C_SI_Config ? confAck :: ConfigAck —> SC_ConfMgm

l~l C_SI_Config ! tclearM :: Termina lClearNot i f
—> C_SI_Config ? t c l earAck :: TerminalClearAck —> SC_ConfMgm

l~l C_SI_Config ! rcdnM :: RemoveConfigNoti f
—> C_SI_Config ? rmConfAck :: RemoveConfigAck —> SC_ConfMgm

l~l C_SI_Config ! acdnM :: A ct iv a t e C o n f ig N o t i f
—> C_SI_Config ? acknowledge :: Act ivateConf igAck —> SC_ConfMgm

end

% CCL-----

ccspec CCL_GetConfig =
data D_CCL_GetConfig
channel
C_SI_Config : D_SI_Config
process
TerminalConfig (Pair [Sta te , T r i g g e r]) : C_SJ_Config ;
Ter_Config (Pair [State , T r i g g e r]) : C_SI_Config;
Ter_ConfMgm(Pair [State , T r i g g e r]) : C_SI_Config;
SC_Config: C_SI_Config;
SC_ConfMgm: C_SI_Config;

TerminalConfig (p) = Ter_Config (p) [I C_SI_Config I] SC_Config

Ter_Config (p) = C_SI_Config ! msg_ ses s io nS ta rtC on f (second (p))
—> Ter_ConfMgm (p)

Ter_ConfMgm(p) = C_SI_Config ? conf igMess :: D_SI_Config —>
(i f (configMess in Sess ionEnd) then

SKIP
e l s e (

i f (configMess in Conf igRequest)
then C_SI_Config ! msg_configResponse (conf igMess as Conf igReques t ,

f i r s t (p))
—> Ter_ConfMgm (p)

e l s e (
i f (con f igMess in C on f ig N o t i f)

then C_SI_Config ! msg_configAck (conf igMess as C o n f ig N o t i f ,
f i r s t (p))

—> Ter_ConfMgm(pair ((s t_conf igAck
(con f igMess as Co nf igNot i f , f i r s t (p))) , second (p)))

e l s e (

C.6 Test verdict generated by TeV 245

i f (co nf igM ess in Term in a lC lea rN ot i f)
then C_SI_Config ! m sg _t er C le arN ot i f (conf igMess as Te rm in a l C lea rN ot i f ,

f i r s t (p))
—> Ter_ConfMgm(pair ((s t _ t e r C l e a r N o t i f

(con f igMess as Termina lClearNot i f , f i r s t (p))) , s e c o n d (p)))
e l s e (

i f (conf igMess in RemoveConfigNot if)
then C_SI_Config ! msg_removeConfigAck (conf igMess as RemoveConf igNoti f ,

f i r s t (p))
—> Ter_ConfMgm(pair ((s t_removeConfigAck

(con f igMess as RemoveConf igNot i f , f i r s t (p))) , s e c o n d (p)))
e l s e (

i f (con f igMess in A c t i v a t e C o n f i g N o t i f)
then C_SI_Config ! msg_actConfAck (conf igMess as A c t i v a t e C o n f i g N o t i f ,

f i r s t (p))
—> Ter_ConfMgm(pair ((s t_actConfAck

(conf igMess as Acti va teConf i g N o t i f , f i r s t (p))) , second (p)))
e l s e SKIP
))))))

SC_Config = C_SI_Config ? s e s s i o n S t a r t :: S e s s i o n S t a r t —> SC_ConfMgm
SC_ConfMgm = C_SI_Config ! seM :: SessionEnd —> SC_Config

C_SI_Config
- > C_SI_Conf
C_SI_Config
- > C_SI_Conf
C_SI_Config
—> C_SI_Conf
C_SI_Config
—> C_SI_Conf
C_SI_Config
—> C SI Conf

cdrM :: Conf igRequest
I ? response :: Conf igResponse—> SC_ConfMgm
cdnM :: C o n f ig N ot i f

; ? conf Ack : ConfigAck —> SC_ConfMgm
tclearM :: Te rmin a lClearNot i f

; ? t c l earAck :: TerminalClearAck —> SC_ConfMgm
rcdnM :: RemoveConfigNot if

; ? rmConfAck :: RemoveConfigAck —> SC_ConfMgm
acdnM :: A c t i v a t e C o n f i g N o t i f

5 ? acknowledge :: Act ivateConfigAck —> SC_ConfMgm
end

C.6 Test verdict generated by TeV

In the following we report the complete test verdict generated by TeV for the test case T2 .

We recall that the test case T2 experiments a communication between the acquirer and
the terminal in the context of payment transaction. Here, the terminal sends a message to
the acquirer to authorize a payment for a purchased goods. The acquirer authorize the
transaction by sending a message of type AuthResponse. This is a required behavior of the
system, as specified in the EP2 terminal (and acquirer) book [Con08].

Test Information
• result = resources/TestVerdict/PaymentTestResult.xml
• description = Test Case 7 - Authorization for process transaction
• name = Process TransactionTest

CSP-CASL Test Case
17
T7 = C_FE_FrontEnd ! authreq:D_FE_FrontEnd_AuthReq

-> C_FE_FrontEnd ! authresp: D_FE_FrontEnd_AuthRes
-> STOP

PCO and TimeOut Information
• pcoFile = resources/PCO/PCO.xml
• SpecificationLevel = Abstract Component Level
• SpecificationFile = ACL_ProcessTransaction
• Timeout = 10ms

Test Case Evaluation Information
• ep2Dialogue = ProcessTransaction

color = GREEN
• colorProofDir = resources/ColorProof/GREEN/T8

EP2 Components
Acquirer

• namespace = http://www.eftpos2000.ch
• templatePath = resources/template/FEFrontEnd/
• serverlp = 192.168.1.1
• encoding = 3

AcqlD = 00000000004
• prefix = ep2
• interfaceName = FEFrontEnd
• serverPort = 6625
• name = Acquirer
• communicationMode = server

Term inal
• namespace = http://www.eftpos2000.ch
• templatePath = resources/template/FEFrontEnd/
• encoding = 3

TrmID = TERM1234
• prefix = ep2
• interfaceName = FEFrontEnd
• port = 6625

ip = 192.168.1.2
• name = cCredit Terminal

Test Sequence

(source = Acquirer) > (target = cC red it Terminal)

Conversation 1
receive message (Type: authreq)
<?xml version="l.0" encoding="UTF-8"?>
<ep2:message xmlns:ep2="http://www.eftpos2000.ch" specversion="0400">

<ep2:authreq msgnum="2 910">
<ep2:AcqID>0 000 000 0004</ep2:AcqID>
<ep2:TrmID>TERM1234</ep2:TrmID>
<ep2:TrxDate>20100224</ep2:TrxDate>
<ep2:TrxTime>015553</ep2:TrxTime>
<ep2:TrxSeqCnt>24546</ep2:TrxSeqCnt>
<ep2:AmtAuth>5 0 </ep2:AmtAuth>
<ep2:TrxCurrC>756</ep2:TrxCurrC>
<ep2:Track2Dat>CVeTmEkE8d7N02FpLCCCTQ==</ep2:Track2Dat>
<ep2:TVR>AAAAgAA=</ep2:TVR>
<ep2:CVMRes>HgAA</ep2:CVMRes>
<ep2:POSEntry> 90</ep2:POSEntry>
<ep2:TrxTypeExt>3</ep2:TrxTypeExt>
<ep2:AID>oAAAAVcAIA==</ep2:AID>

</ep2:authreq>
</ep2:message>

send message (Type: authrsp)
<?xml version="1.0" encoding="UTF-8"?>
<ep2:message xmlns:ep2="http://www.eftpos2000.ch" specversion="0400">

<ep2:authrsp msgnum="2 911" >
<ep2:AcqlD> 000 000 00004 </ep2:AcqID>
<ep2:AmtAuth>5 0</ep2:AmtAuth>
<ep2:AuthC> 00964 6 </ep2:AuthC>
<ep2:TrxSeqCnt >24 54 6 </ep2:TrxSeqCnt>
<ep2:AuthRespC>00</ep2:AuthRespC>
<ep2:AuthReslt > 0</ep2:AuthReslt>
<ep2:TrmID>TERM1234</ep2:TrmID>

</ep2:authrsp>
</ep2:message>

Test Analysis Between Expected Message and Received Message:
MATCH
Difference(s): 3
1 Expected text value '20100223' but was '20100224'
2 Expected text value '130842' but was '015553'
3 Expected text value '0ZYbmsV80DZ3EC3vY4z9yA==' but was

'CVeTmEkE8d7N02FpLCCCTQ=='

ON THE FLY TEST VERDICT
On the fly test verdict result:
PASS

Timeout Information:
NO-TIMEOUT

References

[abb] Abbot Java Gui Test Framework, h t t p : / / a b b o t . s o u r c e f o r g e . n e t .

[ABK+02] Egidio Astesiano, Michel Bidoit, Helene Kirchner, Bernd Krieg-Briickner, Pe­
ter D. Mosses, Donald Sannella, and Andrzej Tarlecki. CASL: The common
algebraic specification language. Theoretical Computer Science, 286(2), 2002.

[ABR99] Egidio Astesiano, Manfred Broy, and Gianna Reggio. Algebraic specifica­
tion of concurrent systems. In Egidio Astesiano, Hans-Joerg Kreowski, and
Bernd Krieg-Briickner, editors, Algebraic Foundations of Systems Specification.
Springer, 1999.

[Abr03] Jean-Raymond Abrial. B#: Toward a synthesis between Z and B. ZB 2003:
Formal Specification and Development in Z and B, pages 629-629, 2003.

[AG97] Martin Abadi and Andrew D. Gordon. A calculus for cryptographic proto­
cols: The spi calculus. In Fourth ACM Conference on Computer and Communica­
tions Security, pages 36-47. ACM Press, 1997.

[AJS05] Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors. Communicating
Sequential Processes: The First 25 Years, Symposium on the Occasion of 25 Years of
CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume 3525 of LNCS.
Springer, 2005.

[AR01] Egidio Astesiano and Gianna Reggio. Labelled transition logic: an outline.
Acta Informatica, 37:831-879, 2001.

[AS02] David Aspinall and Donald Sannella. From specifications to code in CASL.
Algebraic Methodology and Software Technology, pages 11-40, 2002.

[BB8 8] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO specification
language Lotos. Computer Networks, 14(l):25-59,1988.

[BBC+02] Jonathan P. Bowen, Kirill Bogdanov, John Clark, Mark Harman, Robert Hi-
erons, and Paul Krause. FORTEST: Formal methods and testing. In Proceed­
ings of 26th Annual International Computer Software and Applications Conference
(COMPSAC 02, pages 91-101. IEEE Computer Society Press, 2002.

249

250 REFERENCES

[BBP96]

[BCFG8 6]

[BGM91]

[BH05]

[BHK89]

[BHT97]

[Bin99]

[BJK+05]

[BK84]

[BKS97]

[BM04]

[Bri8 8]

[Bri99]

[BS99]

Stephane Barbey, Didier Buchs, and Cecile Peraire. A theory of specification-
based testing for object-oriented software. In EDCC-2, pages 303-320, Lon­
don, UK, 1996. Springer-Verlag.

Luc Bouge, N. Choquet, Laurent Fribourg, and Marie-Claude-C. Gaudel. Test
sets generation from algebraic specifications using logic programming. Sys­
tems and Software, 6(4):343-360,1986.

Gilles Bernot, Marie-Claude Gaudel, and Bruno Marre. Software testing
based on formal specifications: a theory and a tool. Software Engineering,
6(6):387-405,1991.

Michel Bidoit and Rolf Hennicker. Externalized and internalized notions of
behavioral refinement. Theoretical Aspects of Computing -ICTAC 2005, pages
334-350, 2005.

Jan A. Bergstra, Jan Heering, and Paul Klint. The algebraic specification for­
malism ASF. Algebraic specification, 1989.

Ed Brinksma, Lex Heering, and Jan Tretmans. Developments in testing tran­
sition systems. In Workshop on Testing Communicating Systems, pages 143-166.
Chapman & Hall, 1997.

Robert V. Binder. Testing object-oriented systems: models, patterns, and tools.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and
Alexander Pretschner. Model-Based Testing of Reactive Systems: Advanced Lec­
tures (Lecture Notes in Computer Science). Springer-Verlag New York, Inc., 2005.

Jan A. Bergstra and Jan Willem Klop. Process algebra for synchronous com­
munication. Information and Control, 60(1-3):109-137,1984.

Bettina Buth, Michel Kouvaras, and Hui Shi. Deadlock analysis for a fault-
tolerant system. In AMAST'97, LNCS 1349. Springer, 1997.

Michel Bidoit and Peter D. Mosses. CASL User Manual, volume 2900 of LNCS.
Springer, 2004.

Ed Brinksma. A theory for the derivation of tests. Protocol Specification, Testing,
and Verification, VIII(63-74), 1988.

Ed Brinksma. Formal methods for conformance testing: Theory can be prac­
tical. Computer Aided Verification, pages 687-687,1999.

Bettina Buth and Mike Schronen. Model-checking the architectural design of
a fail-safe communication system for railway interlocking systems. In FM'99,
LNCS 1709. Springer, 1999.

[BSS87] Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS Specifications,

REFERENCES 251

[BST06]

[BST08]

[BT01]

[But99]

[BW90]

[CEW93]

[CG98]

[CG07]

[Cho78]

[Chu05]

[CMU]

[CN01]

[Con08]

[CSW03]

[CW98]

their Implementations, and their Tests. In Protocol Specification, Testing and
Verification, pages 349-360. Elsevier, 1987.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational interpre­
tation of CASL specifications. Research Report LSV-06-16, Laboratoire Speci­
fication et Verification, ENS Cachan, France, 2006.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Observational inter­
pretation of CASL specifications. Mathematical Structures in Computer Science,
18(2), 2008.

Ed Brinksma and Jan Tretmans. Testing transition systems: An annotated bib­
liography. Modeling and Verification of Parallel Processes, pages 187-195,2001.

Michael J. Butler. CSP2B: A practical approach to combining CSP and B. In
EM '99: Proceedings of the Wold Congress on Formal Methods in the Development
of Computing Systems-Volume I, pages 490-508. Springer-Verlag, 1999.

J. C. M. Beaten and W. P. Weijland. Process Algebra. Number 18 in Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

Ingo Classen, Hartmut Ehrig, and Dietmar Wolz. Algebraic specification tech­
niques and tools for software development: the ACT approach. World Scientific
Publishing Co., Inc., 1993.

Luca Cardelli and Andrew D. Gordon. Mobile ambients. In FoSSaCS, pages
140-155,1998.

Ana Cavalcanti and Marie-Claude Gaudel. Testing for refinement in CSP.
Formal Methods and Software Engineering, pages 151-170,2007.

T. S. Chow. Testing software design modeled by finite-state machines. IEEE
Trans. Softw. Eng., 4(3):178—187,1978.

Lim Beng Chuan. Towards hardware-in-a-loop testing for an international
standard of an electronic payment system. M aster's thesis, University of
Wales Swansea, 2005.

Software Engineering Institute, Carnegie Mellon.
http://www.sei.emu.edu.

Paul Clements and Linda M. Northrop. Software product lines: practices and
patterns. Addison-Wesley, 2001.

EP2 Consortium. EFT/POS 2000 specification, version 4.0.0, 2008. Project
Overview available at http://www.eftpos2000.ch.

Ana Cavalcanti, Augusto Sampaio, and Jim Woodcock. A refinement strategy
for Circus. Formal Aspects of Computing, 15(2):146—181,2003.

Paul C. Clements and Nelson Weiderman. Second international workshop

252 REFERENCES

[DBBS96]

[DDH72]

[DF98]

[DHK96]

[Dij02]

[DubOO]

[Ehr82]

[EK99]

[EKP80]

[EM85]

[EOOl]

[Fis98]

[FisOO]

on development and evolution of software architectures for product families.
Technical Report CMU/SEI-98-SR-003, Carnegie Mellon University, 1998.

John Derrick, Howard Bowman, Eerke Boiten, and Maarten Steen. Compar­
ing Lotos and Z refinement relations. In FORTE/PSTV'96, pages 501-516.
Chapman & Hall, 1996.

Ole Johan Dahl, Edsger W. Dijkstra, and C. A. R. Hoare, editors. Structured
programming. Academic Press Ltd., 1972.

R&zvan Diaconescu and Kokichi Futatsugi. CofeOBJ Report: The Language,
Proof Techniques, and Methodologies for Object-Oriented Algebraic Specification,
volume 6 of AMAST Series in Computing. World Scientific, 1998.

Arie Van Deursen, Jan Heering, and Paul Klint, editors. Language Prototyping:
An Algebraic Specification Approach: Vol. V. World Scientific Publishing Co.,
Inc., 1996.

Edsger W. Dijkstra. Cooperating sequential processes. The origin of concurrent
programming: from semaphores to remote procedure calls, pages 65-138, 2002.

Oliver Dubuisson. ASN.l communication between heterogeneous systems. ISBN
0-12-6333361-0. Morgan Kaufmann, September 2000.

Hartmut Ehrig. On the theory of specification, implementation, and
parametrization of abstract data types. J. ACM, 29(1):206—227,1982.

Hartmut Ehrig and Hans-Joerg Kreowski. Refinement and implementation.
In Egidio Astesiano, Hans-Joerg Kreowski, and Bernd Krieg-Briickner, edi­
tors, Algebraic Foundations of Systems Specification. Springer, 1999.

Hartmut Ehrig, Hans-Jorg Kreowski, and Peter Padawitz. Algebraic imple­
mentation of Abstract Data Types: Concept, syntax, semantics and correct­
ness. In Proceedings of the 7th Colloquium on Automata, Languages and Program­
ming, pages 142-156. Springer-Verlag, 1980.

Hartmut Ehrig and B. Mahr. Fundamentals of Algebraic Specification. Springer-
Verlag New York, Inc., 1985.

Hartm ut Ehrig and Fernando Orejas. Dynamic abstract data types: an infor­
mal proposal in 1994. Current trends in theoretical computer science: entering the
21st century, pages 180-191, 2001.

Clemens Fischer. How to combine Z with process algebra. In ZUM '98: Pro­
ceedings of the 11th International Conference of Z Users on The Z Formal Specifica­
tion Notation, pages 5-23. Springer-Verlag, 1998.

Clemens Fischer. Combination and Implementation of Processes and Data: from
CSP-OZ to Java. PhD thesis, Fachbereich Informatik Universit'at Oldenburg,
2000.

REFERENCES 253

[Gar96]

[Gau95]

[GH93]

[Gim08]

[GJ99]

[GMH81]

[GP94]

[GP95]

[GRS05]

[GTW78]

[GWM+93]

[HarOO]

[HBB+09]

H. Garavel. An overview of the eucalyptus toolbox. Technical report, Univer­
sity of Maribor, 1996.

Marie-Claude Gaudel. Testing can be formal, too. In TAPSOFT '95: Proceed­
ings of the 6th International Joint Conference CAAP/FASE on Theory and Practice
of Software Development, pages 82-96. Springer-Verlag, 1995.

John V. Guttag and James J. Horning. Larch: languages and tools for formal
specification. Springer-Verlag New York, Inc., 1993.

Andy Gimblett. Tool support for CSP-CASL, 2008. MPhil Thesis, Swansea
University, 2008.

Marie-Claude Gaudel and Perry R. James. Testing algebraic data types and
processes : a unifying theory. Formal Aspects of Computing, 1999.

John Gannon, Paul McMullin, and Richard Hamlet. Data abstraction, im­
plementation, specification, and testing. ACM Trans. Program. Lang. Syst.,
3(3):211-223,1981.

Jan Friso Groote and Alban Ponse. Proof theory for ^CRL: A language for
processes with data. In Proceedings of the International Workshop on Semantics
of Specification Languages (SoSL), pages 232-251. Springer-Verlag, 1994.

Jan Friso Groote and Alban Ponse. The syntax and semantics of pCRL. In
A. Ponse, C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicat­
ing Processes '94, Workshops in Computing. Springer, 1995.

Andy Gimblett, Markus Roggenbach, and Bernd-Holger Schlingloff. To­
wards a formal specification of an electronic payment systems in C sp-Casl.
In WADT'04, LNCS 3423. Springer, 2005.

Joseph A. Goguen, James W Thatcher, and Eric G. Wagner. An initial alge­
bra approach to the specification, correctness, and implementation of abstract
data types. Current Trends in Programming Methodology, IV:80-149,1978.

Joseph Goguen, Timothy Winkler, Jose Meseguer, Kokichi Futatsugi, and
Jean-Pierre Jouannaud. Introducing OBJ. In Joseph Goguen, editor, Appli­
cations of Algebraic Specification using OBJ. Cambridge University Press, 1993.

Mary Jean Harrold. Testing: a roadmap. In ICSE '00: Proceedings of the Confer­
ence on The Future of Software Engineering, pages 61-72. ACM, 2000.

Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Ranee Cleave-
land, John Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh
Kapoor, Paul Krause, Gerald Liittgen, Anthony J. H. Simons, Sergiy Vilkomir,
Martin R. Woodward, and Hussein Zedan. Using formal specifications to
support testing. ACM Comput. Surv., 41(2):1—76, 2009.

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice Hall,
1998.

254 REFERENCES

[Hoa76] C. A. R. Hoare. Proof of correctness of data representation. In Language Hier­
archies and Interfaces, International Summer School, pages 183-193, London, UK,
1976. Springer-Verlag.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[Hoa96] C. A. R. Hoare. How did software get so reliable without proof? FME'96:
Industrial Benefit and Advances in Formal Methods, pages 1-17,1996.

[Hoa06] C. A. R. Hoare. Why ever CSP? Electronic Notes in Theoretical Computer Science,
162:209-215, September 2006.

[IR] Yoshinao Isobe and Markus Roggenbach. Webpage on CSP-Prover.
http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.

[IR05] Yoshinao Isobe and M. Roggenbach. A generic theorem prover of CSP refine­
ment. In TACAS 2005, LNCS 3440. Springer, 2005.

[IR06] Yoshinao Isobe and Markus Roggenbach. A complete axiomatic semantics
for the CSP stable-failures model. In Christel Baier and Holger Hermanns,
editors, CONCUR 2006, LNCS 4137. Springer, 2006.

[IR07] Yoshinao Isobe and Markus Roggenbach. Proof Principles of CSP - CSP-
Prover in Practice. In Hans-Dietrich Haasis, Hans-Jorg Kreowski, and Bernd
Scholz-Reiter, editors, LDIC 2007. Springer, 2007.

[IR08] Yoshinao Isobe and Markus Roggenbach. CSP-Prover - a proof tool for the
verification of scalable concurrent systems. Journal of Computer Software, Japan
Society for Software Science and Technology, 25, 2008.

[IRG05] Yoshinao Isobe, Markus Roggenbach, and Stefan Gruner. Extending CSP-
Prover by deadlock-analysis: Towards the verification of systolic arrays. In
FOSE 2005, Japanese Lecture Notes Series 31. Kindai-kagaku-sha, 2005.

[IS089] ISO 8807. Lotos — a formal description technique based on the temporal
ordering of observational behaviour, 1989.

[JRvdLOO] Mehdi Jazayeri, Alexander Ran, and Frank van der Linden. Software archi­
tecture for product families: principles and practice. Addison-Wesley Longman
Publishing Co., Inc., 2000.

[JTC01] JTCI/CS7/WG14. The E-LOTOS Final Draft International Standard, 2001.

[KHRS09] Temesghen Kahsai, Greg Holland, Markus Roggenbach, and Bernd-Holger
Schlingloff. Towards formal testing of jet engine Rolls-Royce BR725. In Conc-
curency, Specification and Programming, pages 217-229, 2009.

[Kli93] Paul. Klint. A meta-environment for generating programming environments.
ACM Trans. Softw. Eng. Methodol, 2(2):176-201,1993.

[KR09] Temesghen Kahsai and Markus Roggenbach. Property preserving refinement
notions for CSP-CASL. In WADT 2008, LNCS 5486, pages 206-210, 2009.

REFERENCES 255

[KRS07]

[KRS08]

[KST97]

[Ltd03]

[Ltd06]

[LY94]

[Mac99]

[MacOO]

[McGOl]

[MDOO]

[MFS+07]

[Mil84]

[Mil89]

[Mil99]

[MML07]

[M os02]

Temesghen Kahsai, Markus Roggenbach, and Bemd-Holger Schlingloff.
Specification-based testing for refinement. In Mike Hinchey and Tiziana Mar-
garia, editors, SEFM 2007, pages 237-247. IEEE Computer Society, 2007.

Temesghen Kahsai, Markus Roggenbach, and Bemd-Holger Schlingloff.
Specification-based testing for software product lines. In SEFM 2008, pages
149-159. IEEE Computer Society, 2008.

Stefan Kahrs, Donald Sannella, and Andrzej Tarlecki. The definition of ex­
tended ML: a gentle introduction. Theoretical Computer Science, 173(2):445-484,
1997.

Formal Systems (Europe) Ltd. Process Behaviour Explorer — the ProBE User
Manual. Formal Systems (Europe) Ltd., 2003.

Formal Systems (Europe) Ltd. Failures-Divergence Refinement — the FDR2 User
Manual. Formal Systems (Europe) Ltd., 2006.

D. Lee and M. Yannakakis. Testing finite-state machines: State identification
and verification. IEEE Trans. Comput., 43(3):306-320,1994.

Patricia D. L. Machado. On oracles for interpreting test results against alge­
braic specifications. In AMAST'99, LNCS 1548, pages 502-518. Springer, 1999.

Patricia D. L. Machado. Testing from Structured Algebraic Specifications: The
Oracle Problem. PhD thesis, University Edinburgh, 2000.

John D. McGregor. Testing a software product line. Technical Report
CMU/SEI-2001-TR-022, Carnegie Mellon University, Software Engineering
Institute, December 2001.

Brendan Mahony and Jin Song Dong. Timed communicating Object Z. IEEE
Trans. Softw. Eng., 26(2):150-177, 2000.

Clavel Manuel, Duran Francisco, Eker Steven, Lincoln Patrick, Marti-Oliet
Narciso, Meseguer Jose, and Talcott Carolyn. All about Maude - A High-
Performance Logical Framework, volume XXII. Springer, 2007.

Robin Milner. A complete inference system for a class of regular behaviours.
J. Comput. Syst. Sci., 28(3):439-466,1984.

Robin Milner. Communication and concurrency. Prentice-Hall, Inc., 1989.

Robin Milner. Communicating and mobile systems: the rc-calculus. Cambridge
University Press, 1999.

Till Mossakowski, Christian Maeder, and Klaus Liittich. The Heterogeneous
Tool Set, HETS. In TACAS 2007, LNCS 4424. Springer, 2007.

T. Mossakowski. Relating Casl with other specification languages: the insti­
tution level. Theoretical Computer Science, 286:367-475, 2002.

256 REFERENCES

[Mos04]

[MR07]

[MRS03]

[MST04]

[MV90]

[MV91]

[MV92]

[NBAR04]

[NPW02]

[OIR09]

[Par81]

[PBvdL05]

[Pel96]

[Pel02]

P. D. Mosses, editor. CASL Reference Manual. LNCS 2960. Springer, 2004.

Till Mossakowski and Markus Roggenbach. Structured CSP - A Process Al­
gebra as an Institution. In WADT 2006, LNCS 4409, 2007.

Till Mossakowski, Markus Roggenbach, and Luth Schroder. C oc ASL at work
— Modelling Process Algebra. In Coalgebraic Methods in Computer Science, vol­
ume 82 of Electronic Notes Theoretical Computer Science, 2003.

Till Mossakowski, Donald Sannella, and Andrzej Tarlecki. A simple refine­
ment language for CASL. In WADT 2004, LNCS 3423. Springer, 2004.

S. Mauw and G. J. Veltink. A process specification formalism. Fundam. Inf,
13(2):85—139,1990.

Eric Madelaine and Didier Vergamini. Specification and verification of a slid­
ing window protocol in Lo t o s . In Formal Description Techniques, IV, volume
C-2 of IF IP Transactions. Elsevier Science Publishers B.V. (North-Holland, pages
495-510,1991.

Sjouke Mauw and Gert J. Veltink. A proof assistant for PSF. In CAV '91: Pro­
ceedings of the 3rd International Workshop on Computer Aided Verification, pages
158-168. Springer-Verlag, 1992.

Syed Nabi, Mahesh Balike, Jace Allen, and Kevin Rzemien. An overview of
hardware-in-the-loop testing systems at Visteon. SAE Technical Paper Series,
2004.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A
Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

Liam O'Reilly, Yoshinao Isobe, and Markus Roggenbach. CSP-CASL-Prover
- a generic tool for process and data refinement. Electronic Notes in Theoretical
Computer Science, 250(2):69-84, 2009.

David Park. Concurrency and automata on infinite sequences. In Proceed­
ings of the 5th Gl-Conference on Theoretical Computer Science, pages 167-183.
Springer-Verlag, 1981.

Klaus Pohl, Gunter Bockle, and Frank J. van der Linden. Software Product Line
Engineering. Foundations, Principles, and Techniques, volume XXVI. Springer,
2005.

Jan Peleska. Test automation for safety-critical systems: Industrial application
and future developments. FME'96: Industrial Benefit and Advances in Formal
Methods, pages 39-59,1996.

Jan Peleska. Hardware /software integration testing for the new airbus air­
craft families. In TestCom '02: Proceedings of the IFIP 14th International Confer­
ence on Testing Communicating Systems XIV. Kluwer, B.V., 2002.

REFERENCES 25 7

[PM06]

[PS91]

[PSF]

[RACOO]

[Rog06]

[Ros98]

[RROO]

[RS02]

[RSG+Ol]

[SAAOl]

[SAA02a]

[SAA02b]

[Sca98]

[Sho67]

[SMH99]

Klaus Pohl and Andreas Metzger. Software product line testing. Commun.
ACM, 49(12):78-81,2006.

Luis Ferreira Pires and Wanderley Lopes de Souza. Step-wise refinement
design example using LOTOS. In FORTE '90: Proceedings of the IF1P TC6/WG6.1
Third International Conference on Formal Description Techniques for Distributed
Systems and Communication Protocols, pages 255-262,1991.

PSF toolkit manual pages, h t t p : / / s t a f f . s c i e n c e . u v a . n l / p s f / .

Gianna Reggio, Egidio Astesiano, and Christine Choppy. C a s l -Ltl — a
C a s l extension for dynamic Reactive Systems — Summary. Technical Report
DISI-TR-99-34, Universita di Genova, 2000.

Markus Roggenbach. CSP-Casl - A new integration of process algebra and
algebraic specification. Theoretical Computer Science, 354, 2006.

A.W. Roscoe. The theory and practice of concurrency. Prentice Hall, 1998.

Gianna Reggio and Lorenzo Repetto. CASL-CHART: a combination of state-
charts and of the algebraic specification language C a s l . In Algebraic Method­
ology and Software Technology, volume 1816 of LNCS, pages 243-257. Springer,
2000.

Markus Roggenbach and Lutz Schroder. Towards trustworthy specifications:
Consistency checks. In WADT'01, LNCS 2267. Springer, 2002.

Peter Ryan, Steve Schneider, Michael Goldsmith, Gavin Lowe, and Bill
Roscoe. The Modelling and Analysis of Security Protocols: the CSP Approach.
Addison-Wesley, 2001.

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. A formalism com­
bining CCS and C a s l . Technical Report 00.14, University of Nantes, 2001.

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. A method to com­
bine any process algebra with an algebraic specification language: the p-
calculus example. In COMPS AC '02: Proceedings of the 26th International Com­
puter Software and Applications Conference on Prolonging Software Life: Develop­
ment and Redevelopment, pages 385-392. IEEE Computer Society, 2002.

Gwen Salaiin, Michel Allemand, and Christian Attiogbe. Specification of an
access control system with a formalism combining CCS and C a s l . In Parallel
and Distributed Processing, pages 211-219. IEEE, 2002.

Bryan Scattergood. The Semantics and Implementation of Machine-Readable
CSP, 1998. DPhil thesis, University of Oxford.

Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.

Bernd-Holger Schlingloff, Oliver Meyer, and Thomas Hiilsing. Correctness

258 REFERENCES

[Smi99]

[spa]

[SPK99]

[SPLa]

[SPLb]

[ST97]

[Sto97]

[SWC02]

[TA97]

[Tre92]

[TS99]

[UL06]

[vGGOO]

[vGW96]

[WCOl]

analysis of an embedded controller. In DASIA'99, esa SP-447, pages 317-325,
1999.

Graeme Smith. The Object-Z Specification Language. Kluwer Academic Pub­
lishers, 1999.

SPASS: An Automated Theorem Prover for First-Order Logic with Equality.
www.spass-prover.org.

Hui Shi, Jan Peleska, and Michel Kouvaras. Combining methods for the anal­
ysis of a fault-tolerant system. In AMAST'98. Springer, 1999.

International Workshop on Software Product Line Testing 2007.
http://www.biglever.com/split2007.

Software Product Line Conference 2008. http://www.lero.ie/SPLC2008.

Donald Sannella and Andrzej Tarlecki. Essential concepts of algebraic specifi­
cation and program development. Formal Aspects of Computing, 9(3):229-269,
1997.

Bill Stoddart. An introduction to the event calculus. ZUM '97: The Z Formal
Specification Notation, pages 10-34,1997.

Augusto Sampaio, Jim Woodcock, and Ana Cavalcanti. Refinement in Circus.
FME 2002:Formal Methods - Getting IT Right, pages 1-15, 2002.

K. Taguchi and K. Araki. The state-based ccs semantics for concurrent z spec­
ification. In 1CFEM '97: Proceedings of the 1st International Conference on Formal
Engineering Methods, page 283. IEEE Computer Society, 1997.

Jan Tretmans. A formal approach to conformance testing. PhD thesis, University
of Twente, Haag, The Netherlands, 1992.

Helen Treharne and Steve Schneider. Using a process algebra to control b op­
erations. In IFM '99: Proceedings of the 1st International Conference on Integrated
Formal Methods, pages 437-456. Springer-Verlag, 1999.

Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools Ap­
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2006.

Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence
notions for concurrent systems. Acta Inf., 37(4-5):229-327,2000.

Rob van Glabbeek and Peter Weijland. Branching time and abstraction in
bisimulation semantics. J. ACM, 43(3):555-600,1996.

Jim Woodcock and Ana Cavalcanti. A concurrent language for refinement.
In A. Butterfield and C. Pahl, editors, IWFM'01: 5th Irish Workshop in Formal
Methods, BCS Electronic Workshops in Computing, 2001.

REFERENCES 259

[WC02] Jim Woodcock and Ana Cavalcanti. The semantics of Circus. In D. Bert, J. P.
Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifica­
tion and Development in Z and B, LNCS 2272, pages 184—203. Springer-Verlag,
2002.

[WD96] Jim Woodcock and Jim Davies. Using Z - Specification, Refinement, and Proof.
Prentice Hall, 1996.

[Wir71] Niklaus Wirth. Program development by stepwise refinement. Communica­
tions of the ACM, 14(4), 1971.

[WRHM06] Michael W. Whalen, Ajitha Rajan, Mats P.E. Heimdahl, and Steven P. Miller.
Coverage metrics for requirements-based testing. In ISSTA '06: Proceedings of
the 2006 international symposium on Software testing and analysis, pages 25-36.
ACM, 2006.

