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Summary

Ray tracing is a popular rendering method with built in visibility determination. However, the
computational costs are significant. To reduce them, there has been extensive research leading to
innovative data structures and algorithms that optimally utilize both object and image coherence.
Investigating these from a visibility determination context without considering further optical ef-
fects is the main motivation of the research.

Three methods ~ one structure and two coherent tree traversal algorithms — are discussed. While
the structure aims to increase coherence, the algorithms aim to optimise utilization of coherence
provided by ray tracing structures (kd-trees, octrees).

RBSP trees — Restricted Binary Space Partitioning Trees — build upon the research in ray tracing
with kd-trees. A higher degree of freedom for split plane selection increases object coherence
implying a reduction in the number of node traversals and triangle intersections for most scenes.
Consequently, reduced ray casting times for scenes with predominantly non-axis-aligned triangles
is observed.

Coherent Rendering is a rendering method that shows improved complexity, but at an absolute
performance that is much slower than packet ray tracing. However, since it led to the creation of
the Row Tracing algorithmn, it is described briefly.

Row Tracing can be considered as an adaptation of Coherent Rendering, scanline rendering or
packet ray tracing. One row of the image is considered and its pixels are determined. Similar to
Coherent Rendering, an adapted version of Hierarchical Occlusion Maps is used to identify and
skip occluded nodes. To maximize utilisation of coherence, the method is extended so that several
adjacent rows are traversed through the tree.

The two versions of Row Tracing demonstrate excellent performance, exceeding that of packet
ray tracing. Further, it is shown that for larger models (2 million+ triangles), Row Tracing and
Packet Row Tracing significantly outperform Z-buffer based methods (OpenGL). Row tracing
shows scalability over scene sizes leading to a rendering method that has fast rendering times
for both large and small models. In addition it has excellent parallelisation properties allowing
utilisation of multiple cores with ease. Thus, the Row Tracing and Packet Row Tracing algorithms
can be considered as the significant contributions of the Ph.D.

These data structures and algorithms demonstrate that ray tracing data structures and adaptations
of ray tracing algorithms exhibit excellent potential in a visibility context.
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Description

Integrated development environment — A tool that allows easy develop-
ment of applications.

k discrete oriented polytope — A polytope created by the intersection of
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Kilo Byte — A measure of the amount of data. A Kilo Byte equals 1024
bytes.

k Dimensional Tree — A generalised form of a binary space partitioning
tree where the splitting planes are aligned according to one of the X, Y or
Z axes.

Longest Common Traversal Sequence — The longest sequence of nodes
traversed by all the rays in a group of rays.

Mega Byte — A measure of the amount of data. A Mega Byte equals 1024
Kilo Bytes.

Maximum Intensity Projection — A volume rendering method that
projects the voxel with the maximum intensity onto the image plane to
create the image.

Multi Level Ray Tracing Algorithm — A high performance ray tracing
algorithm that uses frustum culling and interval arithmetic to trace a group
of rays.

An OpenGL extension introduced by NVIDIA on their Geforce 3 graph-
ics cards.

Oriented Bounding Boxes — are boxes, or cuboids, that need not be
aligned along the coordinate axes. Due to the freedom allowed, these
boxes more closely wrap the model.

Octree for ray tracing — A structure similar to a normal octree, i.e. one
in which an internal node has eight child nodes, but where the subdi-
visions are adaptive. The adaptive nature means that splits need not be
placed evenly along the axes. This allows the octree to use the surface
area heuristic so that it is better suited for ray tracing.

Object Order Ray Casting — A volume rendering method that shows con-
stant complexity according to number of primitives.

Open Graphics Library — A standard for developing graphics applications.

Quad Bounding Volume Hierarchy — A bounding volume hierarchy where
each internal node has four child nodes.
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Notation

RBSP Tree

RGB

S-kd-tree

SAH

SIMD

SSE

VRML

XML

Z-buffer

Description

Restricted Binary Space Partitioning Tree — A form of binary space par-
titioning tree that allows the splitting plane to be selected by using a pre-
determined set of axes.

Red Green Blue — A format to represent colours where a colour is given
as a combination of the colours red, green and blue

Spatial kd-trees — A structure similar to bounding interval hierarchies.
The difference is that the S-kd-tree selects the splitting planes using the
surface area heuristic.

Surface Area Heuristic — A heuristic to select the split position popu-
larly used to build hierarchical structures for ray tracing (e.g., kd-trees or
BVHs).

Single Instruction Multiple Data — Instruction sets that are popularised
recently that allow operating on multiple data using a single instruction.
Streaming SIMD Extensions — Intel’s set of instructions that allows sev-
eral (four) calculations (either floating point or integer) with one instruc-
tion

Virtual Reality Modelling Language — A language using which 3D scenes
are modelled.

eXtensible Markup Language — A markup language that allows users to
define their own parameters.

Depth Buffer — indicated as Z-buffer as in graphics, the Z axis represents
depth in a scene
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Chapter 1

Introduction

Computer Graphics are an integral part of modern life. Computer Graphics is defined as — “Most
simply, pictures that are generated by a computer” [Hil00]. The most visible uses of Computer
Graphics are in computer games and movies. However, they are also extensively used in areas
such as automobile engineering, architecture, photography, newspaper and magazines, medical
industry, etc. The predominance means that accuracy and performance are very important.

Rendering is the process of generating images from a model. The model normally represents a
3D object based on a physical entity. To render this model implies generating the image of the
model from a particular viewpoint. The rendering may either be a photo realistic rendering —
which produces images that aim to be close to reality, a non photo realistic rendering — which aim
to have more artistic or stylistic properties, or an interactive rendering — that sacrifices realism for
high interactive frame rates [PHO4].

Depending on the type of renderings desired, the methods used to generate the rendering vary
accordingly. Photo realistic renderings use physical properties of surfaces, materials and light to
produce images that are very close to reality.

Ray tracing — which is the basis for several methods that generate photo realistic renderings —
utilises the principles based on the physical properties of light. In its most basic form, as given
by Appel [App68], it is a technique whereby rays are generated and traced, usually backwards —
from the eye / camera through the image plane to the model, to find the closest object that each ray
intersects. When all the rays corresponding to all the pixels of the image undergo a similar process,
the image is generated. The image thus generated does not include any shadows, reflections or
refractions. These additional physical effects are computed through further rays that are generated
at the point of intersection [Whi80].

Although ray tracing is physically based, it does not model indirect lighting — i.e., light that is
dispersed by other objects in the scene. Global Illumination is the name given to the class of
techniques that model both direct and indirect lighting — i.e., lighting that is reflected by diffuse
surfaces — in order to generate images that are highly photo realistic. Images generated with
global illumination look very realistic. Radiosity [GTGB84] was one of the first techniques to
model diffuse indirect reflections.

Rasterisation is the other major technique used to render images. It consists of taking the set of
polygons of the model and mapping them onto the pixels of the screen to generate the image. Since
it is not based on physical properties, optical features like shading, reflections and refractions are




generated with artificial techniques and are not as accurate as ray tracing. However, it is extremely
fast, making it highly suitable for use when interactive to real time frame rates are necessary. Due
to the high frame rates achieved, it is very popular and is used extensively in computer games.

Motivation and Aims

Irrespective of the rendering method used, the first major step of all rendering methods is to find
the visible surface. Methods that solve this problem are known as visible surface determination
methods or just visibility methods. Very simply, it can be considered as the process of finding the
closest object at every pixel of the image.

There have been several methods like Z-buffer, Area subdivision, BSP tree method, etc., to solve
the problem [FvDFHO90]. Ray tracing / ray casting can also be considered as a visibility determina-
tion method when only primary rays are traced. Due to the fact that ray tracing is a very expensive
operation, several innovative structures and algorithms have been developed to improve its perfor-
mance. The underlying principle of most algorithms and data structures is to create coherence and
optimally utilise this coherence.

One of the best structures for ray tracing, especially for static scenes are kd-trees. The Surface
Area Heuristic to construct them has shown to create trees that significantly reduce the number of
ray—node traversals and ray-primitive intersections than naive construction heuristics. Kd-trees,
and other structures built on the scene, improve and allow utilisation of object coherence by group-
ing closer objects into closer nodes creating coherence by ordering / sorting the scene.

The other form of coherence, more widely used in recent times together with object coherence,
is the use of image coherence by tracing groups of neighbouring rays through the structure. This
method is popularly called packet ray tracing. It works on the basis that rays that are closer in the
image traverse a similar path down the structure. The combination of object and image coherence
has resulted in impressive results. If the visibility problem is considered as a searching problem,
packet ray tracing is using a basic result from searching algorithms that searching & neighbouring
elements in a tree can be achieved in log{N) + k steps [Ben79]. With this, the number of steps
needed to render the image are reduced significantly leading to accelerated performance.

For the visibility problem, finding only the first intersection for all the pixels is necessary. This
makes it possible to maximise the utilisation of the coherence provided by the structure and the
image. Investigating methods to maximise the coherence provided by ray tracing structures to the
visibility problem is the motivation of the thesis.

Thus, the aims of the research are to develop and investigate new visibility / rendering algorithms
that build upon and utilise the coherence of structures and algorithms currently popular for ray
tracing and to investigate them in that context.

Contributions of the Research

The main contributions of the research are:

e the development and study of a structure that aims to minimise the number of ray—node
traversals and ray—triangle intersections by providing a closer fitting structure — i.e., a struc-
ture that improves object coherence.




o the development and study of an algorithm that utilises the entire coherence provided by a
kd-tree and investigates empirically the complexity of this algorithm.

o the development and study of a new algorithm that utilises the coherence provided by a kd-
tree or octree by using a single row at a time — similar to scanline algorithms. The method
is extended so that groups of rows can be traced to maximise coherence utilisation.

Thesis Outline

The thesis starts off with this chapter — Introduction — that introduces the main motivations, aims
and contributions of the thesis.

Chapter 2 — describes the previous and related work in ray tracing. It also describes briefly the
popular visibility methods of the other popular method of rendering — rasterisation.

Chapter 3 - introduces and describes Restricted Binary Space Partitioning Trees (RBSP Trees) in
detail. It describes the motivation, the heuristics to construct them, the algorithms to traverse them
for producing images and finally compares it to kd-trees.

Chapter 4 — Introduces the concept of Coherent Rendering, develops the algorithm and investigates
it from the point of view of empirical complexity.

Chapter S — introduces the algorithm — Row Tracing — and its packet variant — Packet Row Tracing
—in detail and provides the results when the algorithm is used to generate an image.

Chapter 6 — briefly summarises the contributions of the thesis. It will also provide a brief list of fu-
ture work that can be attempted to realise the potential of the introduced structure and algorithms.

Publications

The following are the publications and technical reports achieved during the course of the Ph.D.
The thesis describes the methods and results of these these publications in greater detail.

Kammaje, R.P.; Mora, B., “A Study of Restricted BSP Trees for Ray Tracing,” IEEE Symposium
on Interactive Ray Tracing, 2007. RT ’07., pp.55-62, 10-12 Sept. 2007. [KMO7] — Chapter 3 is
based on this publication. It describes the structure and the methods described in the paper in
greater detail. The chapter also provides additional traversal methods, one of which significantly
improves upon the results presented in the paper.

Benjamin Mora, Ravi Kammaje and Mark W. Jones, “On the Lower Complexity of Coherent
Renderings,” Swansea University, Technical Report, 2008. [MKJO08] — Chapter 4 provides the al-
gorithm in greater detail with the results pointing to the possibility of a lower complexity followed
by a discussion regarding the complexity of the algorithm.

Kammaje, Ravi P.; Mora, Benjamin, “Row tracing using Hierarchical Occlusion Maps,” IEEE
Symposium on Interactive Ray Tracing, 2008. RT '08., pp.27-34, 9-10 Aug. 2008. [KMOg] —
Chapter 5 describes the Row Tracing algorithm presented in this paper in much greater detail.
Row Tracing traverses a kd-tree or octree using an entire row of the image at a time to maximise
coherence. A 1D version of Hierarchical Occlusion Maps is used to determine occluded nodes
and occluded parts of triangles. Hierarchical Occlusion Maps are shown to be responsible for both



accurate visibility determination as well as acceleration of performance. To maximise coherence
and performance, an adapted version of the algorithm that traces groups of rows is also developed
and investigated.




Chapter 2

Ray Tracing — Algorithms and Data
Structures

Contents
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26 DynamicRayTracing . . .. .. .. .0 i i it ittt e it nnas 36
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28 SUMMAIY . . . . . o o e e e e e e e e e e e e e 42

While rendering from a viewpoint, the first step is to determine the objects that are visible from the
viewpoint. There have been several algorithms and data structures that have been used to achieve
this and these are grouped into the class of visibility determination methods. Ray tracing / ray
casting can be considered as a visibility determination method when only primary rays are traced
to determine the closest object at each pixel. There has been extensive research in ray tracing lead-
ing to the development of many data structures and algorithms to efficiently perform ray tracing.
The other main form of rendering — rasterisation, also has several visibility determination meth-
ods. In this chapter, the data structures and algorithms for ray tracing will be described followed
briefly by other visibility determination methods.

2.1 Ray Tracing

Ray tracing as a method to determine visible surfaces was introduced by Appel [App68]. The
method introduced by Appel is more commonly known as ray casting. Ray tracing is the rendering
method introduced by Whitted [Whi80], in which a ray from the eye / camera for each pixel of
the image is cast and the first object in the scene that intersects the ray is found. Upon finding this
intersection, further rays — a shadow ray from the intersection point to the light source, a reflection
ray determined by the rule that its angle is equal to the angle of incidence, and if the object is
transparent a refraction ray whose direction is found based on Snell’s law — are spawned and a
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tree of rays is formed (Figure 2.1). The shader then traverses this ray tree, finds the intersection of
each secondary ray and gathers the contribution of each secondary ray to ultimately shade the pixel
in consideration. Due to the method's close similarity to physical reality, the images generated are
of excellent quality. However, ray tracing as described models only direct illumination - specular
and refracted components. In order to he more realistic, indirect illumination also needs to be
modelled and the methods to generate such images are classified under the group of methods

known as Global Illumination.

An observation to he noted is that the rays in ray tracing, in contrast to physical reality, originate
from the camera rather than the light source itself. This allows only the set of relevant rays to be
considered. Also, several objects may be occluded by objects in front of them - in which case the
rays are blocked by other objects in front. Thus, tracing these rays is unnecessary and wasteful.
Only the rays of interest - rays initially originating from the camera and passing through the image

plane - are traced.

reflected ray refracted ray

intersected object

shadow ray

viewpoint

light source

Figure 2.1: Ray tracing. The ray tracing method whereby a ray is traced from the viewpoint
through the pixel to find the first intersected object. At the object of intersection, additional rays

are spawned to generate reflections, refractions and shadows.

The rendering times to generate a few images, 44 mins, 74 mins and 122 mins, are specified by
Whitted. The algorithm was implemented in C on a VAX-11/780 computer running UNIX and
the images had a resolution of 480 x 640 with 9 bits per pixel. This relatively poor performance
was due to the hardware limitations as also due to the fact that it was a new algorithm with a
very large number of calculations performed. Appel used simple spheres as bounding volumes of
the objects to simplify intersection calculations. However, it was revealed that for simple scenes,
intersection calculations formed 75% of the time spent by the ray tracer. This was exacerbated for
more complex scenes for which the intersection calculations formed upto 95% of the time spent,
tending to 100% as the number of objects increase to a very large number. However, the images
generated by the method were of a very high quality, engendering immense interest in accelerating

ray tracing to generate similarly high quality images, but with a faster performance.

The identification of ray intersections as the main cause of the poor performance of ray tracing led
to extensive research - both in accelerating the actual objecl-ray intersections and in the use of

acceleration structures to reduce the number of objecl-ray intersections. As Section 2.3 will show,
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numerous acceleration structures have been invented and researched and are of varying quality
with respect to ray tracing performance. For a particular scene, the number of object intersections
that a ray tracer has to perform is highly dependent on the acceleration structure used. However,
irrespective of the acceleration structure used, the ray has to be intersected with the objects at
some stage of the algorithm. Hence, fast object—ray intersection calculations are imperative.

2.2 Ray Intersections

A ray is a semi-infinite line and can be represented by its parametric form as

r(t) =o+td 2.1

where o — origin of the ray
t — is the parameter and mostly £ > 0
d - direction of the ray

For primary rays, the origin is the viewpoint from which the scene is to be rendered. For secondary
rays, it is the intersection point of the primary ray and the object. Since the ray travels only in
one direction — forwards — objects that are behind the origin are discarded. The direction is given
by the vector from the source of the ray to one of the points that it passes through. It is usually
normalised. In case of primary rays, the direction of the ray, d, is given by normalizing the vector
from the viewpoint to the pixel being considered.

The problem of finding the intersection reduces to finding the parameter, ¢, at which the ray hits
an object in the scene. Several objects may intersect the ray along its path. But, only the first
object that it hits is relevant. This is determined by selecting the object with the minimum positive
intersection parameter. A negative intersection parameter indicates that the intersection is behind
the viewpoint and hence such intersections are disregarded.

Scenes are most commonly represented using triangles. Most popular acceleration structures use
boxes / rectangular cuboids. Hence, fast methods to intersect the ray with triangles and boxes are
important. One of the most popular acceleration structures — the kd-tree — uses an axis-aligned
plane and hence intersections between a ray and an axis-aligned plane are also considered. Finally,
spheres, in addition to being a common primitive, have also been used as bounding volumes in the
first ray tracers and hence ray—sphere intersections are also discussed.

2.2.1 Ray-Triangle intersections

In a majority of scenes, objects consist exclusively of triangles. They are the simplest possible
polygon and can be compactly represented. Other polygons can be easily broken down into trian-
gles. Complex objects with curved surfaces can be approximated to fine detail depending on the
number of triangles used [SB87]. Thus, they are the predominant primitive in ray tracing scenes.
In many ray tracers (as in ours) triangles are the only primitive supported. Pharr et al. [PKGH97]
use a similar approach of rendering only triangle based scenes and found that any disadvantages
of this approach was outweighed by the advantages. The predominance of triangles is both the
cause and effect of extensive research in efficient ray—triangle intersections.
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The most obvious ray—triangle intersection method intersects the ray with the plane of the triangle
and determines whether the intersection point is within the triangle [Bad90] [ray]. Haines [Hai94]
gives a few strategies to determine if a point is within a polygon.

One of the strategies to verify if a point is inside the triangle is given by Arenberg [Are88]. It
computes two of the three barycentric coordinates of the intersection point by using the triangle’s
normal — computed either at intersection time or pre-computed and stored earlier. Due to the
properties of barycentric coordinates, it is only necessary to verify if they are both positive and
their sum is less than one.

Moller [MT97] provides a method that eliminates the need for the triangle’s plane equations by
computing the barycentric coordinates and the intersection parameter ¢ by translating the triangle
onto the Y Z plane with the ray along the X axis and then transforming it to a unit triangle. As this
method does not need the plane equation of the triangle, this method can be used when memory
consumption is a priority.

Wald. in his thesis [Wal04], provides a similar method that is also an optimisation of the barycen-
tric coordinate test. The method first computes the intersection between the triangle’s plane and
the ray. Then the barycentric coordinates are computed by projecting the triangle onto the axis-
aligned plane on which the triangle projects the maximum area. By mathematically simplifying
the expressions for the barycentric coordinates of the intersection point, a few per triangle con-
stants are identified. By pre-computing these constants, the number of operations for the test are
reduced to a small number (worst case: 10 multiplications, 1 division and 11 additions, best case:
4 multiplications, 5 additions and 1 division). The method is shown to be easily vectorised us-
ing SSE instructions (Intel’s Streaming SIMD Extensions) [Int08] [SSE09b] to intersect four rays
with one triangle.

Another method used for the intersection is the use of Plucker coordinates. It has been used
extensively to determine the ray-triangle intersections [Eri97] [Sho98] [TH99] [Jon00]. Plucker
coordinates are a mapping of a 3D line into a 5D coordinate system. The coordinates of the 5D
system are found by a cross product of the two end points and a subtraction of the two points. It
provides a simple method to determine the orientation of one line with respect to the other with an
inner product of the vectors. By considering the three edges of the triangle and the ray as vectors,
the intersection of the ray to the triangle is found.

Segura and Feito [SFO1] provide a method that is faster than either Méiler’s [MT97] or Badouel’s
[Bad90] that has been shown to be mathematically equivalent [O’R98] [KS06] [Eri07] to the
intersection test with Plucker coordinates with a better efficiency. The scalar triple product — rep-
resenting the signed volumes of the parallelepipeds defined by three vectors — is used to determine
if there is an intersection or not. By eliminating complex operations, the algorithm is simple, fast
and robust. As provided, the method only determines if there is an intersection or not and does
not calculate the actual point of intersection. However, if there is an intersection, the barycentric
coordinates and the intersection points are easily determined by the values calculated as a part of
the algorithm.

The scalar triple product can be defined as a function of three vectors, sign3D and can be given
as:

sign3D(p,q,r) = p.(q X r) 2.2)

where
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p. q and r are vectors

The symbols . and x indicate a vector dot product and a vector cross product respectively.

If o and d represent the viewpoint and the direction of the ray being traced and a. b and c are
the three vertices of the triangle, the intersection can be determined as shown by the pseudocode

below:

side3 = w[2] > O
side! = w[0] > O
if (side3==sidei)

side2 = w([l] > O
if (side3-— side2)

return true;

return false;

Listing 2.1: Triangle-ray intersection using scalar triple products

If there is an intersection, the barycentric coordinates of the intersection point are given by the
values in w. Using these, the actual intersection point can be easily computed as shown by the
pseudocode below:

intersect ionPoint[0]=w [0]*a[X]+w[1l]*b [X]+w [2] *c [X]

intersectionPoint [n=w[0]*a[Y]+w[l]*b[Y]+w[2]*c[Y]
intersectionPoint[2]=w[0]*a[Z]+w[l]*b[Z] >w[2]*c[Z]

Listing 2.2: Computing the ray-triangle intersection point using the barycentric coordinates

calculated in Listing 2.1.

Due to the simplicity of the method, it is used in our implementation to intersect with triangles.
The method has been vectorised using SSE instructions when packet ray tracing is used to intersect
four rays with one triangle. When larger packets are used, the packets are split into groups of four

rays and intersected using the SSE version.

Closer observation of the above intersection pseudocode, intersectionRayTriangie, reveals
that there exist a few optimisations in the process like computing the values of (a —o0). (b —
0). (¢ —o0) just once in the method. Further reductions in the number of calculations are also

possible using the property of scalar products and cross products given below.
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e p(gxr)=q.(rxp)=r(pxq)
epXxXq=-qxp

In addition, when triangle meshes are used, the vertices and edges of a triangle are shared by other
triangles pointing to the possibility of several pre-computations as Amanatides and Choi [AC97]
suggest. By sharing these computations, they could reduce the worst case computations from 51
flops to 33 flops. However, in our implementation, these optimisations have not been applied as
we concentrate more on reducing the number of intersections performed.

In addition to the simplicity of triangles, the availability of several efficient intersection methods
has popularised the use of triangles as primitives. However, for a few other primitives like spheres
and boxes, efficient intersection methods are available that make it cheaper to intersect them as
whole primitives instead of splitting them into triangles.

2.2.2 Ray-Sphere intersections
Spheres are a common primitive in a few scenes. In addition, they can be used as bounding
volumes to accelerate ray tracing as ray—sphere intersections are reasonably fast.

The mathematical method to intersect a sphere with a ray, as given in Realtime Rendering [AMHO02],
uses the implicit mathematical equation of the sphere:

flp)=lp-cll-r=0 (2.3)

where

c — is the center of the sphere
7 — 1s the radius of the sphere
p — is a point on the sphere

At the intersection point, both the ray’s parametric equation and the sphere’s equation should hold.
Substituting the ray equation into the sphere equation at this point gives:

fe) = |r@)—c|-r=0

expanding the parametric equation of a ray in the sphere equation provides the following at the
point of intersection.

lo+td—c|| = 7
(o+td—c).(o+td—c) = 72
?’d? + 2t(d.(o-¢c))+ (0 —c).(o—c)—-r% = 0 (2.4)

If we consider
b= (d.(o—c))

c=(0o-c)lo—c)—r?
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and when d is normalised, d? = 1

then, Equation 2.4 reduces to

24+2th+c = 0

adding b? to both sides and simplifying, we have

t242b+b0%4¢ = b
242+ b = b —¢
t+0)? = v -¢
t+b = Vb2 -c¢

t = —-btVbh2-c¢c (2.5)

If the solutions are real, then the ray intersects the sphere and if the solutions are imaginary, then
the ray does not intersect. This can be easily computed by determining if b2 — ¢ < 0 or not. Thus,
if as in the case of bounding spheres, it is only necessary to determine if the sphere is intersected
or not, then determining whether b? — ¢ < 0 is sufficient.

The book also discusses a geometric solution as given by Haines [Hai89] that uses the geometric
method rather than the algebraic method. The geometric solution considers the various cases
where a ray may not intersect and tries to determine these cases with minimal calculations resulting
in a more efficient method when the ray misses the sphere. However, in cases where the ray
intersects the sphere and the intersection points are necessary, the computations are of similar cost
to the algebraic method.

Although ray—sphere intersections are fairly fast, normally scenes in computer graphics do not
consist of many spheres. Also, using them as bounding volumes is not very efficient as they do
not closely fit most objects in the scene.

2.2.3 Ray-Plane intersections

The ray—plane intersection is used by ray tracers either as a part of the ray—triangle intersections or
to determine if a ray intersects a node when a Binary Space Partitioning tree(BSP Tree) or kd-tree
is used. The mathematical equations of the ray and the plane are used to achieve the intersection.

If the plane to be intersected is given by

fP)=n.(p-po) =0

where n - is the normal to the plane
Po — is a point on the plane

then, at the intersection point, both the ray’s parametric equation and the plane’s equation should
hold. Hence, the equation of the ray can be substituted for the value of p to give:
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fx(t)) = n.(x(t) — po) =

expanding the above equation gives

n.((o+td) —po) =0

solving this equation gives the solution for the parameter ¢ at which the ray intersects the plane as

t = n.po —n.0 (2.6)
n.d
that can be factorised to
;— n(Po—o) @7
n.d

2.2.3.1 Ray-Axis-Aligned Plane Intersections

Geometrically. a dot product indicates the projection of one vector onto the other. When only
axis-aligned planes are considered, the coordinate axes themselves are the normals of the plane.
The dot product of a vector with the axis (the projection of a point on to an axis) is just the
corresponding coordinate. For eg., the projection of point (1,2, 3) onto the X axis is 1, onto the
Y axis is 2 and onto the Z axis is 3. Using this result, Equation 2.6 reduces to:

bint = Pazis — Oaxis (2.8)
da.ﬂls
where
tint — is the parameter of intersection
Paxis — 18 the point’s coordinate along axis
Ouzis — 18 the corresponding coordinate of the ray’s origin
daqis — 18 the corresponding coordinate of the normalised direction of the ray

As the equation shows, it is a very efficient method.

This simple and efficient intersection method between a ray and plane is one of the causes for the
popularity of the kd-tree — that consists entirely of axis-aligned split planes. In addition, it is also
used for one of the more popular ray-box intersection methods.

2.2.4 Ray-Box Intersections

One of the most popular methods to intersect a ray with a box is the method proposed by Kay [KK86],
more popularly called the slabs method. A pair of planes along an axis is defined as a slab. For
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each slab, the parameters, t.,;r, at which the ray enters the slab, and t..;; at which the ray exits the
slab, is computed using the ray plane intersection method given by Equation2.7 (If the plane is axis
aligned, then Equation 2.8 can be used instead). The interval given by tcpnry and te.;; determines
if the ray intersects the slab. If t.piry < teqit, then there is an intersection between the ray and the
slab in consideration. A bounding volume is the intersection of several slabs and consequently, the
intersection of the ray with the bounding volume is the intersection of the intersection intervals.
Hence, the ray intersects the volume if — maa(teniry of all slabs) < min(tegs of all slabs). For
an axis aligned bounding box, this method is shown by the set of Equations 2.10.

It is a very simple method that calculates the intersection of the ray with the six planes of the box
and determines intersection by using the values of the intersection parameters. Additionally, it
also provides the intersection parameters at which the ray enters and exits the box.

The method has been improved by Williams et al. [WBMSO05] by eliminating degenerate intervals
caused due to floating point values of —0.0. They also propose pre-computing the results of the
division operation to optimise it. However, it still has branches whose misprediction can be quite
detrimental. Hence, a branch-less version using the min and max operations provided by the SIMD
instruction set can result in much faster intersection with boxes [GMO03] [BP04] [BPOS].

The intersection between a ray and an axis-aligned plane is given by Equation 2.8. However, it
is well known that division is an expensive operation [SL96], even on modern CPUs, and thus
minimizing it is imperative. It may be observed that the term dL is a constant for a ray that can
be pre-computed and stored as d,.. . The intersection operation can thus be rewritten as

bint = (paa:is - Oa,atis)drec (2.9)

At the root node, the parameters for the six planes — one entry plane and one exit plane along each
axis — of the bounding box / root node are computed as below.

1 = (bb[zeniry] — 02)drec
125 = (bb[xezz‘t] - Oz)drec
ty = (bb[Yentry] — 0y)drce
ty = (bb[Yexit] — 0y)drec
|12 = (bb[zentry] — 0z)drer
t = (bb[zexit]) — 0z)drec
tentry = mazx(t; -ty itz )
terit = min(tz .ty Stz ) (2.10)

where

bb - is an array of the six coordinates representing the maximum and minimum coordinate along
each axis ordered axis-wise, i.e., first two values are the minimum and maximum values for the X
axis, the next two are values for the Y axis and the final two are values over the Z axis

Tentry, Texits Yentry, Yezit, Zentry, Zezit — are the indices of the entry and exit coordinates along
each axis.

Tentry and gy — ¢ parameters at which the ray enters and exits the box
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. <
For ray, tm'Xry "

=> no intersection => ray intersects box

Figure 2.2: Ray-box intersection, ray! does not intersect the box as tentry > lent- ray?2
intersects the box as tcntry < texl(.

Once the tentry and texjt parameters are computed, the ray-box intersection is determined by
simply comparing the two. If ttniry > texu, then there is no intersection, otherwise there is an
intersection with the ray entering at zcntry and exiting the box at texiz- Figure 2.2 shows this in
2D.

The entry and exit coordinates along each axis depends on the direction of the ray - determined by
the sign of drec . If drtc 1is positive, the ray is said to traverse in the positive direction, otherwise it
is said to traverse in the negative direction. The direction of the ray determines the order in which
the ray enters and exits the box. Normally in a ray tracer, these are pre-computed and stored in
a variable with 1 indicating that the ray is travelling in the positive direction and 0 indicating a

negative direction for the ray.

Other methods of ray-box intersections have been researched. One of the methods is to compute
the intersection by Plucker coordinates [Mah05] IMWO04J. The method has the advantage in that
it does not need divisions when the intersection point is not needed. Most of the computations
of this method are vector operations that allow optimisation using SSE instructions. The method
can be used efficiently for traversing BVH trees where the intersection distance is not normally
necessary. Woo [Wo0090] proposed a method that identifies the back-facing planes of the box,
reducing the number of planes to be tested to three. Another recently proposed method for axis-
aligned bounding boxes (AABBs) projects the ray and the AABB onto the three axis-aligned
planes and determines intersection using the slopes of the projected ray [EGMMO07J. The method
reduces the 3D problem to a 2D problem and is division free. The authors claim a performance
advantage of 18% over the fastest method. However, the method does not determine the actual

intersection distances that need to be determined with additional calculations if necessary.

In spite of the several methods available, the slabs method appears to be the most popular method
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to intersect a ray with a box. This is mostly due to it being simple. It is also a method that can
be easily vectorised with SSE. In addition, the method provides the intersection distances without
additional calculations.

2.3 Acceleration Structures

Although very fast primitive-ray intersection methods exist, intersecting every primitive with ev-
ery ray to determine each pixel of the image is prohibitive. Thus, divide and conquer methods by
which it is possible to determine the primitive at each pixel by intersecting the corresponding ray
against a small subset of primitives are used. The structures that facilitate this — acceleration struc-
tures — are classified into two main classes: object subdivision structures and space subdivision
structures.

Acceleration structures work on a simple principle. The structure subdivides the scene — either
the space or the objects — into several groups of either uniform or varying granularity. Each
subdivision, called a node for tree structures, usually contains (either fully or partly) a few objects.
If a ray does not intersect the enclosing structure, then the objects enclosed are also not intersected
by the ray. On the other hand, if the ray intersects the subdivision, then the ray may intersect
one of the objects in the node. Thus, only objects in intersected subdivisions need to be tested.
Acceleration structures allow reduction of the number of primitives that the ray has to intersect to
a very small number.

However, tracing a ray through an acceleration structure adds additional computation to ray trac-
ing. The cost of ray tracing is given by Weghorst et al. [WHG84] as

Ry=NprxCpr+ Np;xCpy 2.11)

where R; — is the rendering time

Nt - is the number of node (or bounding volume) traversals

C7 - is the computational cost of traversing a node (or bounding volume)
Npj —is the number of primitive intersections

Cpy — is the computational cost of a primitive intersection

If acceleration structures are not used, the first term would be zero. However, the second term
would be very large resulting in an impractical cost for ray tracing any scene consisting of more
than a few primitives. Hence, acceleration structures for ray tracing — that increase the first term,
but reduce the second term significantly — are necessary.

One class of acceleration structures — space subdivision structures — divide the space in a scene
into sub-spaces and classify the primitives as being included in any of the subspaces. A few of the
space subdivision structures that are used to accelerate ray tracing are BSP trees, kd-trees, octrees
and grids. Some of the more popular methods to construct these structures along with the ray
tracing method using them will be described briefly in the following sections.
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triangles

arbitrarily aligned
split planes

Figure 2.3: A 2D BSP Tree. The splitting planes (lines in 2D) are selected so that they are

aligned according to the edges of triangles.

2.3.1 Binary Space Partitioning Trees (BSP Trees)

BSP trees - Binary Space Partitioning trees are hierarchical structures - more widely used in
hidden surface algorithms (FKN80] [Thi87] [GC91). BSP trees partition space into two parts. In
their most general form, these trees can partition space along any arbitrary axis. The partitioning
axis is normally selected from amongst one of the planes of the scene. The potential of BSP trees
to effectively separate triangles and empty space to create a structure that closely iits the scene is

quite clear. Figure 2.3 shows a BSP tree in 2D.

One of the only known early implementations of ray tracing on BSP trees [Thi87] states that it
can provide improvements over ray tracing performed without partitioning. It uses a median cut
scheme that generates balanced trees. However, the efficiency of the structure with respect to ray
tracing is in doubt as a comparison against more popular structures is not provided. Recently, Ize
et al. [IWPO8] show that the use of arbitrarily aligned planes can be useful for ray tracing. Their
method will be described in further detail in Chapter 3.

Other than that. BSP trees in their general form have not been used for ray tracing. Most often,
the stated reason is the difficulty in constructing a tree that is good for ray tracing. In addition, the
fact that the planes can be arbitrary makes storage and traversal more expensive [ChaOl ]|SF90].
Instead, kd-trees - a class of BSP trees that restricts the splitting planes to be axis-aligned - are
used frequently. Another subset of the BSP tree, that in many ways is similar to kd-trees, is
Restricted BSP trees investigated by us [KMO07]. This structure and associated methods to ray
trace with it will be detailed further in Chapter 3.
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2.3.2 Kd-trees

The most popular space subdivision structure for ray tracing has been the k dimensional tree,
more popularly known as the kd-tree. It was invented as a search structure by Bentley [Ben75].
It was adapted to ray tracing by Kaplan [Kap85] (calling them bintrees) and then by Fussel and
Subramanian [FS88] who referred to it by the current name. It was adapted using the existing
research on BSP trees. The first implementation preferred well balanced kd-trees to reduce the
depth of the tree. The implementation used splitting planes placed either at the space median — the
mid-point between the minimum and maximum points or the object median — a split with which
half of the objects are on either side of the splitting plane.

2.3.2.1 Construction

The main criteria for rendering performance with the kd-tree is the quality of the trees constructed.
A well constructed tree can be several times faster for ray tracing than a poorly constructed tree
and hence most research has concentrated on improving the quality of kd-trees.

A kd-tree is a recursive structure where every node can be considered as the root node of the sub-
tree below it. Naturally, construction of a kd-tree is undertaken in a recursive manner. It is a top
down process where initially the entire space is considered. A bounding box is created for all the
primitives lying in this space by taking the minimum and maximum coordinates of the primitives
along each axis. One among the X, Y and Z axes is selected and space is split along that axis by
placing a plane, that is normal to the axis, at the selected point. The primitives are then classified
as being on one of the sides of the plane. Some primitives could lie on both sides of the plane and
in this case, the triangles are generally included in both the space partitions. Another solution to
this problem could be to clip the triangles at the splitting plane. However, in our implementation,
the first approach is used. Subsequently, each partition of space is a node of the tree containing
the triangles lying in that part of space.

At each node, the space represented by the node is again partitioned into two by selecting an axis
and a point on this axis where the splitting plane is placed. The primitives are classified again and
the two space partitions created are made into child nodes. The process is recursively continued
until predetermined criteria — called the termination criteria — are met. At this point, the node is
made into a leaf node that is not divided further. The two termination criteria normally used are:
the depth of the tree of the node, and the number of primitives contained in the node.

The pseudocode below and Figure 2.4 show the recursive construction process.

constructKDTree (Node node, int[]nodeTriangles)
{
//If depth of the tree reaches the termination depth
//or if the number of triangles in the node is less than
//a small predetermined number, make it into a leaf node
if (depth==MAX_DEPTH
or nodeTriangles.size <= MIN_NODE_TRIANGLES )
{
//Make the node a leaf node.
node.leafNcde = true;
node.noOfTriangles = nodeTriangles.length;
//The index where the triangles in this node start from
//1is the last index before the triangles are added
node.triangleIndex = leafNodeTriangles.length;
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//Add the triangles to the global leaf node triangle list
leafNodeTriangles.add (nodeTriangles) ;
return;
5/Find the split axis and position to split the node
node.splitAxis = findSplitAxis();
node.splitPosition = findSplitPosition {);

//Classify the triangles into left part and right part

int[] leftTriangles = findLeftTriangles(splitAxis, splitPosition);
int[] rightTriangles = findRightTriangles(splitAxis, splitPosition);
//Recursively construct left and right parts

constructKDTree (node.leftNode, leftTriangles);

constructKDTree (node.rightNode, rightTriangles);

Listing 2.3: Recursive kd-tree construction algorithm.

<
A A - ~

primitives

Split pie

bounding bo x"*

%k

Figure 2.4: Kd-tree Construction with the Space Median heuristic and with termination criteria -

maximum triangles in leaf node = 2.

The main challenge in the construction of a good kd-tree for ray tracing is finding a good splitting
plane to partition the space in the given node. The position of this plane determines the quality of

the tree for ray tracing. Several methods have been proposed to find this split position.

The simplest method used is to place the splitting plane in the centre of the two bounding planes
of a node along one of the three axes |[Kap85] |[FS88] Using the mid-pointl as the splitting
plane's position is not very efficient for ray tracing. Since a ray can skip traversing empty nodes,

it is preferable to identify empty spaces and create empty nodes. In addition, ray tracing can be

Mid-point here means the spatial median. Since, the splitting planes are indicated by a point and a normal (axis),

a plane placed at the mid-point of the extent along an axis divides the space into two equal halves.
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accelerated by effective separation and classification of triangles to create a kd-tree that closely fits
the scene. The Surface Area Heuristic (SAH) aims to do this and was introduced by MacDonald
and Booth [MB90] to kd-trees, adapted from the Bounding Volume Hierarchy construction method
by Goldsmith and Salmon [GS87].

The SAH is a heuristic to determine a locally optimal split position at a node. It takes advantage of
the property of kd-trees that the splitting plane can be placed arbitrarily between the minimum and
maximum point along an axis. Its conception propelled kd-trees to be the preferred data structure
for ray tracing. The SAH has been widely used [MB90] [SF90] [Sub91] [Wal04] [Wal05] [PHO4]
to accelerate ray tracing.

The SAH is based on the probability of a ray hitting a node and the cost of computing the inter-
sections to the geometry within it [MB90]. The probability of an arbitrary ray intersecting a node
is dependent on the surface area of the node itself. This is quantised into a cost that indicates
the cost of ray tracing if the split in consideration is used. The cost takes into consideration the
probability that the split node is hit and the number of objects contained by it. The intersection
cost of each primitive in the node is considered to be a constant. Similarly, node traversal cost
is also considered a constant. This is not unreasonable for ray tracers that use solely triangles as
primitives. This cost to be calculated at each potential split point is given by:

SA(leftNode)LT + SA(right Node) RT
S A(node)

Cost = T.+1, (2.12)
where

Tc — Cost of traversing a node

Ic — Cost of intersecting a triangle

SA(left Nodc) — Surface area of the left node formed by this split plane

S A(right Node) — Surface area of the right node formed by this split plane

S A(Node) — Surface area of the node being split

LT — Number of triangles in the left node

RT — Number of triangles in the right node

SA(node) — Surface area of the node

The cost is computed as per the above equation at each potential split point along all the axes and
the point with the minimum cost — the locally optimal split position — is selected?. The split plane
is placed at this point and the primitives are classified accordingly.

It may be observed that there can potentially be an infinite number of split points along an axis.
MacDonald and Booth derive the property that the split point with the minimum cost has to be
between the object median and the space median. In addition, they observe that the SAH cost can
only differ significantly at the limits of each primitive (Figure 2.5). Considering only these points
reduces the number of SAH costs to be calculated to a manageable number.

The most expensive part of computing the SAH cost is the process of classifying the primitives as
being on either side or both sides of the splitting planes and counting them. The naive method to do
this is to scan through the entire list of N primitives at each potential split point and classify them.
This is a very expensive method leading to a cost in the order of O(N?). An improved version of
this method is to sort the primitives along the splitting axis at each node SAH step [PH04] [Sze03].

T and I are constants in our implementation where only triangles are used as primitives. Hence, using them does
not affect the selection of the split plane position using the SAH.
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Figure 2.5: SAH potential split positions. The potential split positions are shown as blue points.
For every triangle, the two extremeties of the triangle with respect to an axis are considered as

potential SAH split positions.

Since the sorting is done at each step, and the number of primitives can be assumed to reduce loga-
rithmically with the depth of the tree, the order of this computation is, on average, G(Nlocj~(N)).
This has been refined so that it can be achieved with a complexity of 0 (Nlog(N)) [WHO06] by

sorting once at the beginning and maintaining this order through the construction process.

Classification of primitives is also complicated by the kd-trees’s property that primitives can lie
on both sides of a split. The property causes problems in counting the number of primitives as
well as in the selection of a split point. Using the end points of the primitives leads to incorrect
split points as Figure 2.6 shows. To alleviate this problem, clipping the primitives has been pro-
posed [HB02] [HKRSO02] so that only parts of primitives inside the node arc included - as shown
in Figure 2.6.

Clipping also eliminates the counting problem - shown in Figure 2.7 - that occurs when the end
points of primitives are used. As can be seen from the figure, if large triangles are not clipped, they
can be incorrectly included in a node leading to erroneous counts. Clipping ensures that primitives
outside the node are excluded so that the SAH cost is more accurate. The operation is simplified
- as shown in Figure 2.7 - where only the position of the potential split points with respect to the
split plane are counted to get an accurate count of the number of primitives. It is also possible to

ensure that the count is accurate by using a fast triangle-AABB overlap method (AMO1 ].

The cost function can be also be used to favour certain conditions such as empty voxels / nodes
[HKRS02] [WHO06]. Empty voxels are favourable as rays intersecting them can immediately stop
the traversal of the empty node allowing it to skip large portions of space. Thus, if a certain split
results in one of the two child nodes to be empty, then the condition is favoured in the SAH cost

by biasing it so that the cost is more probable to be less than if the split resulted in two non-empty
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Figure 2.6: SAH potential split positions, showing possible incorrect split positions (in red) if

triangles are not clipped.

nodes. In [HKRS02] [WHO06] the cost is reduced to 80% of the original cost to add in this bias,

resulting in just a 5% improvement in performance.

Termination criteria - One of the factors in the construction of a kd-tree is to determine when a
node is made into a leaf node and is not split further. It is the point at which the construction of the
tree is stopped as further subdivision would not be advantageous. The two criteria that are usually
used are the depth of the tree at a node and the number of triangles in the node at which the node is
considered a leaf node. A primitive count of two or fewer is a reasonable point at which the node
should be considered a leaf node. The depth of the tree at the node in consideration is also used
in conjunction. This criterion makes every node at this depth into a leaf node irrespective of the
number of primitives it contains. The depth is normally related to the number of primitives in the
scene. One heuristic suggested by Havran IHBO02] is to use a termination depth of 1.2/>1/2A7+ 2.

This heuristic is found to work well with most scenes with our implementation as well.

Automatic Termination Criteria - Although these termination criteria work very well, they
require some prior knowledge of the models and user input. Using the SAH cost to determine an
automated termination point was analysed [SF91] and the termination point was determined as
the point at which the cost begins to increase. The automatic termination method suggested by
Havran [HBO02] achieves this by using the SAH cost to determine instances where further splits
may not actually help. The SAH cost of the parent is compared to the SAH cost when the parent
node is split. When this cost is above a certain percentage, the split is determined as not helpful
and thus construction stops here. Another criterion suggested is when the cost indicates a very
small probability of the node being hit. At this point, the probability of the node in consideration

being hit by a ray is very small and hence splitting the node would be pointless.
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Figure 2.7: Potential for incorrect primitive counts. If the triangles are not clipped, then they can
be incorrectly counted. The two triangles would be considered as being on both sides, if they are

not clipped.

Improving Construction Performance - Even though the construction of SAH based kd-trees
has been shown to be in the order of O0(N/og(N)), the constants associated with the construc-
tion are quite high, making the process quite slow. Accelerating the construction has thus been
an active area of research. It has led to algorithms that base themselves on finding the approxi-
mate minimal cost point instead of the exact split point with the minimum SAH cost [PGSS06]
[HMSO06] [SSKO07]. This is achieved by sampling the SAH cost at a few points and approximating
the minimal cost by mathematically interpolating the cost between the sampled locations. Hunt
et al. [HMS06) refine this by taking further samples in the interval in which the minimum point
occurs. On the other hand, Popov et al. [PGSS06] use a higher number of samples to determine
a better approximation. Using the sampling method along with parallelisation of the process was

also investigated by Shevtsov et al. [SSKO07] to further accelerate the construction process.

Once the tree is constructed, the scene can be ray traced by traversing every ray through the tree.

2.3.2.2 Traversal

Kd-trees are an efficient structure to traverse. The traversal of kd-trees has been an area of active
research [SS92] [HKBv97] [Arv88]. A kd-tree is a binary tree enabling simple determination of
the next node to traverse. The child node to traverse can be determined with just one plane-ray

intersection. This is a major advantage for a kd-tree leading to a cheap per node traversal cost.

Another advantage ofkd-trees, as of most space subdivision structures, is that they can be traversed
in a true front-to-back order. When such a traversal is used, the objects in this node are guaranteed
to be intersected before objects in nodes that are intersected at a later time (the exception being
objects that span more than one node. As long as the / parameter of the object intersection is

between the node's ientry and lexit, the object intersection is within the node and hence correct).
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Figure 2.8: Kd-tree Construction with the Surface Area Heuristic and termination criteria -

maximum triangles in leaf node = 2.

This property of space subdivision structures that allows rays to stop their traversal upon finding an
intersection - called early ray termination - saves several traversal steps and object intersections

due to occlusion in the scene.

Initially, it is to be determined whether the ray intersects the bounding box of the scene - or in
other words, the root node of the kd-tree. This is determined by using the slabs method described
in Section 2.2.4. The method also provides the values for tentry an(J texit - the entry and exit
parameters of the ray. If there is an intersection, then the ray intersects the root node and hence
has to be traversed down the tree. Otherwise, the ray misses the root node and hence the entire

scene.

If a ray intersects the root node, then it has to traverse the tree in a front-to-back order. Another
property of space subdivision structures is that if a ray intersects the parent node, then it has to
intersect at least one of the two child nodes. There may be cases when the ray traverses only
one child node. The traversal order is determined by calculating the intersection parameter at the
split plane, tspuf, and comparing it to the values of tmur and tmnx mIsplit is computed as given in

Equation 2.8, i.e., by using the term below.

I'splrt = (SpHtaxis Oaxis)drec (2.13)

If Isplit > t-min* then the ray intersects the left child node. Similarly if Isput < tmax* the right
node of the tree is traversed. If both conditions are true, then the kd-tree first traverses the left
child and then the right child node. As Figure 2.10 and Listing 2.4 shows, the three possible cases
- ray traverses only the left node, ray traverses only the right node or ray traverses both nodes -

arc handled by just these two conditions.
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(a) Space median kd-tree for Dragon (b) SAH kd-tree for Dragon

Figure 2.9: Space median and SAH kd-trees constructed on the Dragon model. The SAH kd-tree

more closely wraps the model and reduces the void area.

Aspindm in Asplt < max AspM t<dmax
Ray intersects left node Ray intersects both left node Ray intersects left node
and right node

Figure 2.10: Kd-tree ray traversal.

If a ray traverses the tree and reaches a leaf node, then the ray has a chance of hitting one of the
primitives contained by the leaf node. The ray then has to be intersected with each primitive and
the closest object - as determined by the object with the smallest ¢ intersection parameter less than
tmax ~ is the first object that the ray intersects in the scene. The object can then be used to shade
the corresponding pixel and spawn additional reflection, refraction and shadow rays as necessary.

The pseudocode below shows the kd-tree traversal.

int RecursiveRayTraversal (node, tmin, tmax)

{
if (node is a leaf node)

if (node is empty)
return -1;
return ProcessLeafNode (node);

)
currentAxis = GetAxis (node);
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splitPos = GetSplitPosition(node);
t_sp = (splitPos - rayOriginfaxis])+*rayDirectionReciprocalfaxis];
if ((t_sp > tmin))
{
i = RecursiveRayTraversal (node~>leftNode, tmin, min(tmax,t_sp));
if(i !'= -1)
return i;
}
if((t_sp < tmax))
{
i = RecursiveRayTraversal (node->rightNode, max(tmin, t_sp), tmax);
}
return i;

}

Listing 2.4: Recursive Ray traversal algorithm. Algorithm computes ray-split plane intersection
parameters of the ray and traverses only the left node, only the right node or both child nodes, as
shown in Figure 2.10.

The traversal of the kd-tree is simple and efficient — as shown by the pseudocode.

Research has concentrated on comparing several data structures with kd-trees and it was deter-
mined by Havran [Hav01] that statistically, at the time of writing his thesis, kd-trees were the best
structures available for ray tracing static scenes. Recently, for some applications like dynamic ren-
dering and incoherent rays, BVHs [WBS07] [DHKO8] are said to be a better structure. However,
it is a fact that kd-trees are among the best structures for ray tracing, especially for static scenes.

A disadvantage of space partitioning techniques is that the primitives may occur in more than one
leaf node. This can lead to a ray being intersected against a primitive several times. One of the
proposed solutions is mailboxing [APB87] [KA91] [AW87] — a technique that maintains a list of
already intersected primitives by the ray and avoids duplicate intersections. It is debatable as to
the advantages provided by mailboxing. The overheads associated with maintaining and checking
the list leads to a situation where for scenes with largely simple primitives like triangles it may
actually be preferable to intersect with the primitive again [Hav02]. Hunt [HunO8] suggests a
simple modification to the SAH cost when mailboxing is included. A significant reduction in
intersections is shown when using the method, but the performance gained is still in the range of
5% with a maximum improvement of around 10% for one particular scene, leaving the usefulness
of mailboxing in doubt.

2.3.3 Octrees

Introduced by Glassner [Gla84], octrees were one of the first space subdivision structure used. An
octree splits space into eight regular sub-spaces and the primitives in the scene are classified into
these sub-spaces. Since space is proportionally divided, the primitives may span more than one
sub-space. Figure 2.11 shows an octree structure in 2D. In 2D, since space is divided only in two
dimensions, each node is divided twice and is divided into four sub spaces. The structure is thus
called a quadtree.

The root node of an octree is a cube, and hence all child nodes of the octree are also cubes. For
ray tracing, the fact that the splits are even and are not according to the primitives in the scene can
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Figure 2.11: 2D version of an Octree (Quadtree). Space is split at even locations and along all
the axes (in 2D).

he a serious disadvantage. As shown by kd-trces, effective separation of primitives can make a big

difference in the number of nodes traversed as well as the number of objects intersected.

The traversal of octrees is slightly complicated by the fact that each non-leaf node of the octree
has eight child nodes. Hence, to maintain the front-to-back order, the traversal order of these eight
child nodes has to be considered. The uniformity of the subdivision also allows the use of Three
Dimensional Digital Differential Analyser like algorithms |Sun91 ] more popular for grids. Thus,
the traversal of octrees has been researched extensively and several methods of traversal have been
published [Hav99]|.

The traversal of octrees can be in one of cither forms. It can be a top down approach where the
traversal starts from the root node and descends to the child nodes in a particular order until the
intersection is found [AGL91] [GA93]. Or, it could be a bottom up approach where the traversal
starts in the tirst node intersected by the ray and traverses the neighbouring voxels [Sam89] of this

node until it finds an intersected object.

The algorithm for octree traversal by Revelles et al. [RULOO] is a top down traversal method that
uses the parametric form of the ray and by comparisons of this parameter, decides the next voxel
to traverse. Each voxel of the octree is indicated by an integer from 0 to 7. Each plane is indicated
by a bit and by setting or clearing these bits. The bits are set or cleared based on the value of the
t intersection parameter. The integer obtained by the bit operations determines the order in which
the octree is traversed. The results provided show that for densely packed uniform scenes, the
octree is a more efficient structure than a space median kd-tree as an octree is of lesser depth and

hence there are fewer vertical tree traversals.

Applying the SAH to octrees has resulted in a structure called Octree-R [WSC+95]. In the Octree-
R. a cost function based on MacDonald and Booth's SAH function is used to determine the split
planes along the X, V and Z axis. This results in a more complex structure - one with better
separation of primitives. The authors claim a speed-up 0f4% to 47% compared to normal octrees.

As expected the construction of the Octree-R is more involved leading to slower construction
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times. However, they compare the Octree-R only to a normal octree and not to other structures
like an SAH kd-tree or a BVH.

2.3.4 Grids

Grids partition the space into small subdivisions [FTI86J LCWS88]. They were first applied to
accelerate ray tracing by Fujiinoto et al. [FTI86J. A Three Dimensional Digital Differential Anal-
yser (3DDDA) traversal algorithm is developed for the traversal of rays through the grid. A faster
traversal - also a variant of the DDDA algorithm - has also been used to traverse grids [AWS87],
In this algorithm, the next voxel to travel is decided based upon the values of the ¢ parameter of
the ray. Initially, it computes the three entry ¢ parameters and an increment value for each axis
that corresponds to the length equal to the voxel’s dimension along that particular axis. It re-
sults in a fairly simple algorithm that decides the next voxel to traverse with simple additions and

comparisons.

<41 1 S
Figure 2.12: 2D version of a uniform grid. The entire bounding volume of the scene is divided

into many smaller even spaces.

As with kd-trees. grids arc a space subdivision structure in which objects can exist in more than
one cell / voxel. To solve the problem of multiple intersections with the same object, Ama-
natides [AW87] uses the mailboxing technique described earlier. Each ray is given a ray/D and
for each object, the ray that most recently intersected it is maintained and checked. If the raylD
is the same, then the object has already been intersected with the object and does not need to be

intersected again. Otherwise, the intersection is carried out and the rayl/D is updated.

Ize et al. [ISP07) analyze grid creation strategies theoretically and empirically. Using simplified

assumptions, a theory is developed. It is then tested empirically. The assumptions are that
e There are N primitives that are all points.
* All rays hit the bounding box of the scene - a cube.
* Each atomic function’s cost can be treated as a constant.
* Mathematical operations rather than memory performance, etc., dominate performance.
* The grid has m'l = M cells.

Using these assumptions, for uniform grids, they deduce that the minimum time to trace a ray is
given when the number of cells, 3/, in the grid is given as
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M = o Linterseetion (2.14)
Tstep

where

M - is the number of grid cells to create

N - is the number of primitives in the scene
Tintersection — 1 the cost of intersection with a primitive
Tstep — is the cost of traversing a grid cell

Ray tracing performance on a grid with Af cells, calculated according to the equation above,
is shown to be very close to the performance with the optimal grids selected empirically. The
variation is in the range of 1% — 5% even for scenes like the conference room scene [GW09] for
which the assumptions are far off. They also calculate the optimal number of cells when the scene
is composed of triangles with poor aspect ratio and for multi-level grids that work reasonably
well. To conclude, they also state that empirically, M = O(N 7/ 9 and M = O(N 4/3) produced
the perfect results for manifold-like models with compact triangles and triangles with poor aspect
ratio respectively.

Uniform grids work well for scenes that are uniform with primitives distributed evenly. How-
ever, for scenes that are non-uniform, they are not particularly well suited. This has led to the
development of hierarchical grids and adaptive grids.

Jevans and Wyvill [JW89] initially create a uniform grid over the scene. These are then examined
and in spaces where the object density is high, they subdivide those particular voxels into several
(i.e., N3) sub-voxels. The structure is very similar to an octree with the main difference being
the number of subdivisions in the voxel. Cazals et al. [CDP95] create a hierarchy of uniform grids
by finding clusters in the scene and dividing space occupied by each cluster into further uniform
grids. Klimaszewski and Sederberg [KS97] create an adaptive grid structure by first constructing a
BVH using Goldsmith and Salmon’s algorithm. The boxes are then divided into voxels containing
uniform grids to create the adaptive grid structure. Although a comparison with grids is provided,
and the adaptive structure is shown to perform better, a comparison with BVHs is not provided.

Due to the simplicity, uniform grids are normally used instead of the adaptive and hierarchical ver-
sions. The simplicity reflects in the ease and speed of construction as well as traversal. Although
the average traversal time per pixel can be slower than a kd-tree, a uniform grid can be constructed
in a fraction of the cost leading to its use in rendering dynamic scenes as Section 2.6 will show.

The traversal of an individual grid cell by a ray is inexpensive and among the cheapest. How-
ever, the penalty for this is that there are a larger number of cell traversals if the cells are small
enough. If the cells are large, then the average number of objects in each cell may be very high.
The average complexity of ray tracing a scene with scattered compact primitives using grids is
O(\/]V ) [CW88] [ISPO7], if N is the number of triangles in the scene. As the scene sizes increase,
there is a greater increase in ray tracing times than in hierarchical structures like the kd-tree.

2.3.5 Object Subdivision

Object subdivision structures are a method of subdividing the scene based on the objects and prim-
itives. These primitives are enclosed by simple bounding volumes so that they are only intersected
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when their bounding volume is hit by the ray.

This type of structure was first described by Clark [Cla76], though not specifically for ray trac-
ing. A structure that grouped objects into hierarchies of bounding volumes was used by Whit-
ted [Whi80]. In his first implementation of ray tracing, spheres were used as bounding volumes
as they lead to very simple construction and traversal methods.

These structures can either be flat or more often hierarchies. In a flat object subdivision structure,
bounding volumes are not organised as a hierarchy. However, it is advantageous to organise the
bounding volumes into hierarchies. If a ray can skip bounding boxes higher up in the hierarchy,
larger parts of the scene do not have to be tested. Hierarchies also allow smaller subsets of the
primitives to be tested. Hence, most ray tracers use hierarchies of bounding volumes rather than
flat bounding volumes. The hierarchical structure is more commonly referred to as a bounding
volume hierarchy ( BVH). Several different types of bounding volumes have been used.

2.3.5.1 Shapes of Bounding volumes

Spheres were one of the first bounding volumes used as they are very cheap to intersect with a
ray [Whi80]. A method to create spheres that closely fit the volume was provided by Ritter [Rit90].
However, spheres do not bound most volumes very closely [WHG84]. Thus, they result in a
hierarchy with a large number of bounding volumes resulting in higher traversals and primitive
intersections.

Slabs of arbitrarily aligned planes were used as bounding volumes by Kay and Kajiya [KK86]. The
arbitrarily aligned planes provided a very close fitting structure. However, the cost of intersection
was quite high leading to higher ray tracing costs.

The most popular kind of bounding volumes are axis-aligned bounding boxes [WHGS84] [Gut84]
[BCG*96]. Axis-aligned bounding boxes (AABB) are rectangular boxes that, as the name sug-
gests, are aligned along a coordinate axis (one of X, Y or Z axes). Trees consisting of AABBs
were called R-trees [Gut84] in the context of spatial searching. Due to their abundance, the name
bounding volume hierarchies normally refers to a hierarchy of AABBs. As Weghorst [WHG84]
demonstrates through the introduction of the concept of void area, AABBs have a relatively low
intersection cost and at the same time fit the model reasonably closely. This compromise results
in a very effective shape for bounding volumes in the context of ray tracing.

Oriented bounding boxes (OBBs) [GLM96] [Got00] are another kind of bounding volumes. Their
alignment is decided by the alignment of their component objects so that they fit the scene more
closely than their axis-aligned counterparts [RW80]. However, they are expensive to construct,
traverse and store.

2.3.5.2 Construction

The first bounding volume hierarchies were constructed manually by user input [RW80]. This is
of limited use as human construction is both tedious and prone to selecting non optimal options,
especially when the scene consists of a large number of triangles. An automated approach was
hence necessary. Kay and Kajiya [KK86] propose a few automated object grouping criteria. One
of them is to group objects as they occur in the scene representation. This approach depends
largely on the way the scene is represented. If the scene is represented so that closer objects are
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in succession, then the scheme results in good BVHs, otherwise the BVHs can be quite poor.
Another proposed scheme is the median cut scheme whereby the objects are sorted according to
proximity, either on one axis or according to all axis (through the use of an auxiliary structure like
an octree or a kd-tree). The objects are then grouped into bounding slabs according to the median.
This scheme results in reasonably good trees.

The SAH approach, proposed by Goldsmith and Salmon [GS87] aims to take the automated ap-
proach further by considering the probabilities of uniformly distributed rays hitting a bounding
volume. The objects are inserted into the tree similar to insertion of data into a search tree and
determined if the insertion was a good one or not by calculating the surface area of the new node.
The order in which the objects are inserted is important as the node created depends on this order.
They attempt inserting the objects in the order present in the model or in a randomised manner.
This does not result in better trees, mainly due to the bottom up approach rather than the SAH
itself [WMG™]. Although, the SAH for BVHs was not widely used, it led to the SAH for kd-trees
that, as already discussed, was the major catalyst to accelerate ray tracing speeds to interactive /
real time performance.

The main challenge with SAH for BVHs is to find the locally optimal bounding box, as there are
O(2") ways to split a set of primitives into two subsets [WBS07]. Miiller [MF00] suggests a top
down SAH construction method that is very similar to a kd-tree construction method. They use
an SAH heuristic that has potential split positions at the two end points of the triangle along an
axis and selects the box with the minimum cost. Similar to the kd-tree process, each split point
along each axis is tested and the box with the minimal cost is selected. Masso and Lopez [ML03]
use a different cost model and apply that using a Goldsmith and Salmon tree building approach
with objects selected using another BVH built earlier using the object median or the approach
suggested by Muller [MF00]. Ng and Trifonov [NTO03] apply random perturbations to the split
points and also investigate evolutionary approaches to improve the original tree generated. The
method provides only marginal improvements on the original tree while adding computational
overhead.

Wald et al.’s approach to building BVHs {[WBS07] using the SAH is to find a good instead of
optimal partition. They investigate evenly spaced candidate planes, the bounding sides of each
triangle as candidate planes and planes placed at the centroid of each triangle. Unexpectedly,
all approaches resulted in similar performance. The centroid based approach was ultimately pre-
ferred. The triangles were classified as being in either sub-node based on the position of the
triangle’s centroid.

As with kd-trees, the use of SAH makes the construction relatively slow. However, similar to the
kd-tree heuristics, approximate SAH builds [Wal07] have been suggested to accelerate the build
process. With better quality BVHs available interest has significantly increased, especially for
deformable and dynamic scenes [WBS07] [LYMTO06] [WMG™]. There has also been interest in
BVHs to trace incoherent rays [DHKO08] [WBBO08] for which BVHs consisting of more than two
child nodes at each level are shown to be an excellent structure, making efficient use of SIMD
packets.

A problem with BVHs is that the bounding volume of large triangles can be very large, leading to
a large empty space, especially for non-axis-aligned triangles with a poor aspect ratio. A solution
to this problem is to split the triangles with one of the two approaches that have been proposed.
The first solution, proposed by Ernst and Greiner [EG07], is to clip the larger triangles (based
on the surface area) with axis-aligned planes to create smaller triangles prior to construction of
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Figure 2.13: Bounding Volume Hierarchy. Each lower level consists of bounding volumes that
enclose smaller parts of the model until the leaf node level where each bounding volume has a
single primitive.

the BVH. This allows the bounding boxes to be closely aligned and reduces empty space in these
boxes. The results show that it is effective for non-homogeneous scenes like the Powerplant scene.
Another solution, proposed by Dammertz and Keller [DKO08], is to split triangles along the longest
side to create smaller triangles. A threshold that determines the number of triangles generated
is determined by using a term called edge volume defined as the fraction of the volume of the
bounding box. The resulting BVH shows significantly improved performance for problematic

scenes without adding further triangles for scenes that do not benefit from subdivision.

2.3.5.3 Traversal

Depending on the shape of the bounding volume, the traversal of the BVH structure changes
accordingly. For BVHs with spheres, the traversal consists mainly of intersecting the ray with
the sphere for the particular node. Similary for AABBs, OBBs and slabs, intersection methods
are used to determine whether a ray is to be traversed through a bounding volume or not. AABB
based BVHs - the most popular BVH used - have a variety of intersection methods available
as described in Section 2.2.4. One of the most frequently used intersection methods is the slabs
method |[KK86] which essentially intersects the ray with the component planes of the volume. It
is a general solution that works irrespective of the orientation of the component planes. As applied
to AABBs the six bounding planes of the box are intersected with the ray to determine if there is

an intersection.

The slabs method has been optimised [WBMS()S] [GM03] [BP04] [BPO0S5] and is used by most
recent ray tracers [DHKO8] using BVHs. Although per node traversals are reasonably fast, it
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has the disadvantage of being slower than that of kd-trees. With the kd-tree, each traversal step
involves only one ray—plane intersection. For BVHs, all the six planes of the box have to be
intersected.

Another disadvantage of BVHs is that they cannot be traversed in a true front-to-back order. Con-
sequently, early ray termination — used when a ray hits a primitive in a kd-tree leaf node — cannot
be used. Since the child nodes are not ordered spatially, it is necessary to traverse all of them.
Hence, for static scenes, kd-trees are better structures for ray tracing.

The traversal of the BVH can be described by the pseudocode below:

RecursiveRayTraversal (node)
{
if (node is leaf node)
{
return closest object intersecting the ray

}
if(ray intersects first child node)
{
closestTrInFirstChild = RecursiveRayTraversal (first child node)

)

if (ray intersects second child node)
{

closestTrInSecondChild =RecursiveRayTraversal (second child node)

}
return ClosestObject (closestTrInFirstChild, closestTrInSecondChild)

}

Listing 2.5: BVH traversal. Ray has to descend down both branches (all branches if the tree has
more than two branches) until the leaf nodes and select the closest triangle.

2.3.54 Advantages of BYHs

Although each step of a BVH’s traversal is more expensive than that of a kd-tree, it has several
advantages that make it competitive.

One advantage is that in a BVH, the objects are not duplicated. Hence, it is ensured that a ray
intersects a particular object just once. In a kd-tree, an object may occur in several leaf nodes
and consequently, if mailboxing is not used, a ray may have to compute the intersection with
one particular object several times during the traversal process. Mailboxing, that eliminates these
duplicate ray—object intersections does it at the cost of further overheads, making the advantages
minimal. Hence, the property of a BVH that it inherently eliminates duplicate intersections is
significant. This property also brings about a memory requirement advantage. Since objects are
not duplicated in the leaf nodes, the memory footprint is much smaller than that of kd-trees.

Another advantage is that BVHs create a box at each sub-node, whereas kd-trees separate space
only in one dimension. BVHS can, in theory, identify and separate empty space faster. This leads
to trees that are shallower resulting in fewer traversal steps and lower memory requirements.

The major advantage of BVHs is realised when they are applied to dynamic rendering wherein
geometry changes from one frame to the next. As described by Wald [WBS07], updating a BVH
when a part of the geometry deforms is possible with relative ease. In extreme cases, a full rebuild
maybe necessary. However, a full rebuild of a BVH would be faster than a kd-tree rebuild due to
faster construction methods for BVHs.
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Acceleration structures like grids, kd-trees and BVHs have been responsible for significant in-
crease in ray tracing performance. Acceleration structures are one way of reducing the number of
traversals and intersections per pixel. Although tracing a single ray through a well built BVH or a
kd-tree performs reasonably well, in recent times, the observation that several rays follow a simi-
lar path through the tree has been used extensively to accelerate ray tracing. This method, called
packet ray tracing, has enabled ray tracing to be competitive with the fastest rendering methods
available for static scenes.

2.4 Packet Ray Tracing

Observation of the path a ray takes through an acceleration structure reveals that neighbouring
rays take similar paths. In some cases, the neighbouring rays even intersect the same primitive.
This property — called image coherence — has been used along with acceleration structures (that
utilise object coherence) to accelerate ray tracing. This idea of image coherence is demonstrated
well by Benthin [Ben06].

The use of image coherence to accelerate ray tracing has been attempted from very early on
during the development of ray tracing algorithms and structures. The idea is to group several
neighbouring rays into a packet and traverse them together through the structure.

Earlier attempts to utilise image coherence traced groups of rays with different boundary shapes.
Heckbert and Hanrahan [HH84] traced beams — groups of rays with the actual primitives as bound-
ary shapes — through the scene. When there was a high level of coherence in the scene, the beam
tracer was shown to be much faster than standard ray tracers. They also showed that beam tracers
could achieve anti-aliasing and further ray tracing effects like reflection and refraction — which can
be a major problem with packet ray tracing. Shinya et al. [STN87] trace a group — or pencil — of
rays using a paraxial ray and a system matrix to represent the group of rays. Shaft culling [HW91]
that classifies objects as being inside or outside a shaft is another way coherence has been used
to accelerate ray tracing. Pyramidal clipping by Zwaan et al. [ZRJ95] traces a pyramidal group
of rays through a kd-tree and a grid by intersecting a convex polyhedron with a solid as given by
Greene [Gre94].

It was determined that supercomputers with vector operations were well suited to ray trace pack-
ets of rays [PB85] as far back as 1985 when only advanced supercomputers of the time pro-
vided vector instructions. The idea has been very popular in recent times with the introduc-
tion of vector instructions for general purpose CPUs available in almost all current architectures.
Wald [WBWSO01] popularised this concept of tracing packets of rays using SIMD instructions. In
addition to amortizing the calculations amongst the number of rays in the packet, Wald pointed
out that cache and memory efficiency also improved with packet ray tracing as fewer nodes were
accessed.

The SIMD instructions used were Intel’s SSE instructions [SSE09b] [SSE09a] introduced in the
Pentium III [Int08] processors. The introduction gave Pentium III and later processors eight SSE
registers and several new instructions. The SSE registers were 128 bits wide allowing four floating
point numbers to be in the register at a time. To complement this, the new instructions allowed
these four floating point numbers in the registers to participate in arithmetic operations. As can
be seen, this allows four floating point operations to be undertaken with a single instruction. Most
of the instructions have performance comparable to the respective single floating point operation.
Thus, the use of SSE instructions and registers are a good way to accelerate operations that can
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be parallelised — like ray tracing. Additionally, to ease development, the compilers provided
intrinsics [ VCI0O9] [Int09] that allow access to SSE instructions without the use of assembly code.

The use of SIMD instructions to trace packets is a brute force approach where all the rays are
traversed through the tree. However, several other methods where only a few rays or representative
boundary volumes of packets are traced have also been popular. The longest common traversal
sequence [HBOO] algorithm, stores the traversal history of a set of boundary rays and constructs
the longest common traversal sequence (LCTS) from these. This LCTS is a set of nodes that each
ray in the node traverses and thus the number of traversal steps can be reduced.

Beam tracing, introduced by Heckbert and Hanrahan [HH84], uses beams to intersect with prim-
itives. However the fact that they do not use a hierarchical structure had results in relatively slow
performance. Overbeck et al. [ORMO07] recently published a similar algorithm that uses similar
beams but traverses a kd-tree to show greatly accelerated performance. They start off with the en-
tire viewing frustum as a beam and progressively sub-divide the beams according to the primitive
boundaries. These beams are then traversed through the kd-tree using a frustum proxy method
similar to the LCTS and the Multi Level Ray Tracing Algorithm [RSHO5] ( MLRT, MLRTA). The
algorithm is extended for soft shadows and performance is shown to be much faster than previous
methods.

The Multi Level Ray Tracing Algorithm [RSHOS5], traces a hierarchical beam of rays through a
kd-tree constructed with parameters specialised to the algorithm to realise speeds that are almost
real-time making it probably the fastest method of ray tracing. The entire scene is considered as a
beam and by splitting these beams into tiles of various sizes depending on the nodes traversed, a
hierarchical beam tree is built. Using this hierarchical beam tree, entry points deep inside the tree
are found enabling a large part to be disregarded. An inverse frustum culling where the frustum is
culled by the axis-aligned planes of the kd-tree is used to determine if a group of rays intersects
an AABB or not.

Another important contribution of the paper is the application of interval arithmetic to perform
packet ray tracing. Packet ray traversal with interval arithmetic works so that the traversal for
the entire group can be determined using just one interval computation. The interval represents
overestimates for the entire group and is a conservative computation. Partly due to this fact and
partly due to reduced probability of the entire packet (all rays in a packet) hitting a node for larger
packets, they cannot consist of a large number of rays. Reshetov et al. [RSHO5] mention optimal
packet sizes of 4 x 4. In our implementation, a packet size of 8 x 8 provided the best performance.

A very similar but slightly modified version of this traversal is used in our implementation. In
order to trace a packet of rays, the rays with the earliest entry point and the latest exit point for each
axis are selected. Using these six rays, the entire packet is traversed. If rEntry[X], rEntry[Y],
rEntry(Z], rExit [X], rExit [Y], rExit [2] are the six rays, then the packet is traversed as shown
by the following pseudocode:
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char RecursiveRayTraversailnterval (node, trnin, tmax)

¢
if (node is a leaf node)

{
if (node is empty)
return 03
Proc.essLeafNode (nodeindex) ;
if (allRaysIntersected)
return true;

)
axisCur= GetAxis (node);
rayDirection = dtaxisCur] > 0;

temp = splitPointlaxis] - o[axisCur];
tSpMin = temp*dRec[rEntrylaxisCur]];
tSpMax - temp*dRec([rExit [axisCur]];

if (tSpMax > tmin)

allRaysIntersected = RecursiveRayTraversallnterval (node->leftNode, tmini,
MIN (tmaxi, tSpMax));
if (allRaysIntersected)
return allRaysIntersected;

if (tSpMin < tmax)

{

allRaysIntersected = RecursiveRayTraversallnterval (node->rightNode, MAX (
tmini, tSpMin), tmaxi);
}
return allRaysIntersected;

Listing 2.6: Recursive ray packet traversal algorithm using interval arithmetic. Algorithm
computes ray-split plane intersection parameters of two boundary rays (as shown in Figure 2.14)

and determines if the entire packet traverses the node or not.

As the pseudocode shows, the traversal method is similar to the single ray traversal. The only
distinction is in the calculation of the 7 parameter and the traversal termination. Whereas only
one ray is to be considered in the single ray version, the packet version uses the two rays that
enter and exit the planes along the axis in consideration. It is to be noted that these rays are
predetermined for the packet and hence no additional computation or determination is necessary
during the traversal. The two rays, rEntrylaxis] and rExit [axis], are intersected with the split
plane to get the two parameters, tSpMin and tSpMax. These parameters are substituted instead
of the single ¢ parameter used in the single ray version to determine the nodes to be traversed.

Figure 2.14 shows the node traversal with further clarity.

Once the packet is traversed through the tree, at the leaf node the rays are decomposed into their
individual components and tested against the primitives. However, to use SSE, the component
rays in the packet are decomposed into groups of four and intersected against the primitives to
generate the final image. Similar to single ray tracing, packet ray tracing can also use early ray
termination with the difference being that all the component rays in the packet have to have found

an intersection.

Packet ray tracing has brought about a major performance gain resulting in interactive to real
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Figure 2.14: Kd-tree packet traversal.

time performance for ray tracing. However, a major disadvantage of packet ray tracers is that
when the rays are not coherent, i.e., when the directions are not similar - frequently occurring
for secondary rays like shadow, reflection and refraction rays, packet ray tracing cannot yield the
same performance henelits as it can for primary rays. This problem is significant, as secondary

effects are imperative for generation of high quality images.

2.5 Anti-Aliasing and Incoherent Rays

Since ray tracers trace only one ray per pixel, aliasing can occur at the edges of objects. There
have been several solutions proposed to alleviate this problem. One of the simplest methods is to
super-sample and trace more than one ray (4 to 16 rays) per pixel. This increases the resolution of
the rendered image and significantly reduces aliasing artifacts. On the other hand, tracing several

rays per pixel is computationally expensive. Hence, other methods have been attempted.

Adaptive sampling [Whi80] works by considering more samples at locations w'here aliasing can
be most prominent. Rays are cast at the four corners of the pixel and if one or more intensities
differ significantly from the others, then more rays are cast inside this area. Once the rays are
traced, the weighted intensities are found and the pixel's colour is determined. This method adds

further rays leading to additional cost.

Amanatides [Ama84] proposes representing a pixel as a rectangular area leading to the rays being
pyramidal. However, for simpler calculations, approximating the pyramidal volume to a conical
volume is proposed. Due to the fact that the conical ray covers a larger area of the pixel, the
hard edges are reduced leading to a reduction in aliasing artifacts. How'ever, tracing conical rays

implies intersecting the acceleration structure and primitives with cones, which is expensive.

Another method proposed is stochastic sampling which adds random perturbations / jitter to the

ray locations in a pixel [C0086] to reduce the effects of aliasing. Several rays that pass through
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non-uniformly jittered positions inside the pixel are traced. The colour of the pixel is then de-
termined by applying a resampling filter that calculates the value at the pixel. The idea borrows
heavily from the workings of the human eye. Even though the eye uses a limited number of pho-
toreceptors, it is not prone o aliasing. The method can be combined with super-sampling and
adaptive sampling to reduce the effects of aliasing. Cook et al. [CPC84] use stochastic sampling
for further physical effects such as motion blur and depth of field.

Although packet tracers with kd-trees are very fast, the coherence when tracing secondary rays
like shadow, reflection and refraction rays is significantly reduced. The solution proposed is to
return to tracing single rays, but optimizing the algorithm by making use of the SIMD instructions
to traverse multi branching bounding volume hierarchies. QBVHs [DHKO08] are BVHs that have
four children at each node. These are constructed by collapsing a binary BVH to a quad BVH. This
reduces the memory storage and memory bandwidth requirements by requiring fewer nodes. At
the same time traversal is achieved using SIMD instructions that allow the same ray to be traced
through the four child nodes simultaneously. In effect, this is opposite to SIMD packet tracing
where four rays are traced through one node. The new Larrabee architecture from Intel [SCS*08]
proposes SIMD registers that are more than 4 wide, i.e., 16 wide, and hence multi-BVHs with
more than 4 children have also been investigated [WBBO§].

2.6 Dynamic Ray Tracing

Ray tracing dynamic scenes — i.e., scenes that change between frames is an area that is currently
being heavily researched. With advanced methods available for ray tracing static scenes, the speed
of ray tracing has reached interactive to real time performance. However, as discussed, most of
this speed-up is due to the use of sophisticated data structures — mostly kd-trees built using the
SAH. Unfortunately, construction takes a significant amount of time. Even though the creation of
the SAH kd-tree has been achieved in O(Nlog(N)) time, it is still too slow if the tree needs to be
created before rendering each frame. In addition, it is extremely difficult to update a kd-tree when
triangles in a scene move.

Even then, there have been instances when kd-trees have been used for ray tracing dynamic
scenes. Algorithmically, it was shown that kd-trees could be built in O(Nlog(N)) [WHO06].
However, the constants associated with it are too high for dynamic rendering. Thus, approxi-
mation techniques where a few samples are used to find a reasonably good SAH split have been
attempted [HMSO06] [PGSS06]. In addition, due to increased popularity of multi-core proces-
sors, parallelizing the kd-tree building has also been attempted with two [Ben06] and four threads
[SSK07] so that dynamic rendering could be achieved using kd-trees. However, in recent times,
other structures have been used more frequently for dynamic ray tracing.

In a dynamic scene, either the entire structure has to be rebuilt from scratch at each frame or the
data structure is built once at the beginning and updated as and when the scene changes. The
second approach only works when the component triangles of the scenes do not change — i.e.,
triangles only move but triangles are not added or deleted from the scene.

If the data structure has to be rebuilt from scratch, the effective rendering time is the sum of the
structure construction time and rendering time. It is generally believed that when more time is
spent in creating a high quality structure, the rendering time decreases. Thus, an optimal structure
would be one that is relatively easy to create and at the same time efficient to traverse.
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One of the simplest data structures to create are grids and have been used for dynamic ray tracing
effectively [WIK*06]. Since grid construction is very quick, they can be very effective when used
to ray trace dynamic scenes. An algorithm that is not based on the 3DDDA traversal algorithm
is developed for grids, due to the inability of the 3DDDA algorithm to be effective when used
with packets. The algorithm combines packet ray traversal, SIMD instruction usage and frustum
culling. Instead of testing against a single cell of the grid, it intersects a slice of a grid with
the packet to get all the intersected cells. In order to enable fast primitive intersection tests, the
triangles are culled against the frustum formed by the packet. Mailboxing is used to ensure that
intersection tests are not repeated. The combination of these methods enable grids to be used as
an effective method for dynamic ray tracing.

Another class of structures that combines kd-trees and bounding volume hierarchies has also been
investigated. These structures are called Bounding Interval Hierarchies (BIH) by Wachter and
Keller [WKO06] and Spatial kd-trees (S-kd-tree) by Havran et al. [HHS06]. Both these structures
concentrate on creating kd-tree like structures but with faster construction. They use two split
planes that effectively form a bounding volume to create a partition. The split planes fully enclose
the primitives so that they are similar to bounding volume hierarchies. They are shown to be
fast to create and traverse leading to an effective structure for ray tracing dynamic scenes. The
differences between BIH and S-kd-tree are in that the BIH used a spatial median-like splitting
method whereas the S-kd-tree used an SAH-like splitting method to identify good partitions.

In recent times, BVH:s are also used to achieve dynamic ray tracing [WBS07] [LYMT06] [WMG™].
Compared to kd-trees, BVHs are faster to create. In addition, it is relatively simple to update the
BVH when a part of the scene moves. By applying packet ray tracing concepts developed for
kd-trees, BVHs are shown to be an effective structure for dynamic ray tracing.

The vast research in ray tracing shows continued interest in new techniques to effectively under-
take ray tracing. As a visibility determination method, ray tracing can be one of the methods
used, and can be especially beneficial for very large scenes where it shows a logarithmic average
complexity per pixel. However, rasterisation based methods are normally faster than ray tracing
based methods, possibly due to simpler calculations and effective hardware implementations. A
few of the more widely used and relevant methods of visibility determination in rasterisation will
be described. However, since this thesis is mainly concerned with ray tracing like algorithms and
structures, not all rasterisation based methods will be described.

2.7 Other Visibility Methods

Rasterisation, as defined by Hill [Hil00], is the process of taking high-level information like posi-
tions and colours of vertices to determine the colours of many pixels in the frame buffer. Visibility
determination in rasterisation has been achieved using a variety of methods. In most scenes it is
highly likely that there are several objects that overlap a pixel. The first object along the pixel oc-
cludes other objects. Thus, visibility / occlusion determination is very important to obtain accurate
images. Since occluded objects do not contribute to the final image, they need not be rendered.
Thus, by accurate and fast occlusion detection, performance can be improved by processing only
the set of objects that are visible. A few methods to determine visibility [FvDFH90] [HB97] are
by using area subdivision, scanline algorithms, Z-buffer, depth sorting, BSP trees, octrees, occlu-
sion queries and Hierarchical Occlusion Maps. Some of these methods will be described in brief
in the following sections.
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2.7.1 Area Subdivision Methods

Area subdivision methods follow a divide-and-conquer strategy to determine visibility. Areas of
the image are considered and if the polygons projected onto this area can be determined unam-
biguously, then they are drawn. Otherwise, the area is divided into smaller areas until the polygons
can be unambiguously determined.

Warnock’s [War69] area subdivision method divides each area into four smaller areas. At each
stage, each area can be classified into one of the cases below.

e The area is surrounded by a single polygon — If there is a single polygon projection that
completely surrounds the area, then the area can be filled with this polygon’s colour. This
is the polygon that is visible from all the pixels in the area being considered.

e Area contains or intersects a single polygon — In either case, the area is first filled with the
background colour. If a single polygon intersects, then the intersecting part of the polygon
is filled with the polygon’s colour. If the polygon is contained by the area, the polygon is
rendered.

¢ The area is disjoint from the polygons — The polygons have no effect on the area and hence
the area is given the background colour.

e More than one polygon intersects, is contained by, or surrounds the area, but the closest
polygon is a polygon containing the area — In this case, the area is given the colour of the
closest surrounding polygon.

e More than one polygon intersects, is contained by, or surrounds the area, but a closest
surrounding polygon cannot be identified — In this case, the area is further subdivided into
four smaller areas and recursively tested for the above cases until either the determination
can be made or until the pixel level is reached. If, even at the pixel level, the polygon cannot
be identified, the Z values of the polygons at this point are calculated and the polygon with
the closest Z value is selected.

While Warnock’s method handled only polygons, Catmull [Cat74] introduces a subdivision method
that handles curved surfaces. By subdividing the curved surfaces themselves into smaller patches,
until a patch only covers a single pixel, the pixels occupied by the surface were identified. A no-
ticeable difference between the two algorithms is that while Warnock’s method subdivides screen
space, Catmull’s method subdivides the object.

While subdivision methods considered subdivided parts of the screen or objects, scanline algo-
rithms processed the objects one scanline at a time. These methods have been quite popular due
to their simplicity.

2.7.2 Scanline Algorithms

One of the earliest methods of visible surface determination was through the scanline method
[WREEG67] [Bou70] [Wat70]. Scan conversion is the process of converting a polygon from the
world space to image space one scanline at a time. The methods described in the above papers
are similar and the method introduced by Wylie et al., who generate images of objects created
with triangles, will be described in brief. The view plane is considered as being made up of a
series of scanlines. Initially, the triangles in the scene are projected to get their screen coordinates.
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The vertices of each triangle are sorted according to the Y coordinate and Y -entry and exit tables
are created. Using these, for every triangle, a Y occupied flag is maintained that indicates if a
given triangle occupies a Y coordinate. Once this is done, the scanlines are considered one by
one. For each scanline, the triangles intersected are obtained by checking the Y -occupied flag.
The X -values of the intersection of the scanline with the projected triangle are calculated, sorted,
and X -entry and X -exit tables are created. The individual pixels along the scanline are considered
next. Similar to a Y-occupied table, an X -occupied table is created. If at a pixel, there is more than
one triangle, the distances between the viewpoint and the triangle in world space are calculated
and the closest triangle is selected to get the triangle for the pixel.

While the scanline method does not involve preprocessing, researchers have also investigated
visibility determination methods whereby the scene is preprocessed. Two of these methods are the
Depth Sorting method and the BSP tree method that essentially provide a priority to the objects in
which they are to be rendered.

2.7.3 Visibility Determination by Depth Sorting

The depth sorting method was developed by Newell, Newell and Sancha [NNS72]. As described -
by Foley et al. [FvDFH90], it is a simple method wherein the polygons are first sorted according to

farthest depth. When the depths overlap the polygons are split to resolve ambiguities. In the final

step, the polygons are drawn back-to-front, i.e., according to decreasing depth. This determines

accurate visibility by overwriting objects further away from the viewpoint with closer objects.

2.7.4 Visibility Determination using a BSP Tree

A BSP tree was used by Fuchs et al. [FKN80] to undertake visibility determination. They propose
a new solution to the approach followed by Schumaker et al. [SBGS69]. The use of the BSP tree
eliminates distance calculations to polygons. A scene containing polygons is taken as input and
a binary tree — called a Binary Space Partitioning Tree (BSP tree) — is built. A simple building
process is used whereby a splitting plane is selected and the polygons are classified as being on
one side or the other of the splitting plane. If a polygon lies on both sides, it is split by the splitting
plane. The first splitting plane is made as the root node. The process is recursively followed until
each node has just one polygon. In order to determine visibility using this tree, a back-to-front
traversal (achieved by an in-order traversal of the tree) determines the polygons that are written.
The order ensures that polygons of lower priority are written before higher priority ones. In other
words, polygons that are farther away are overwritten by polygons closer to the viewpoint to
ensure that the right polygon is written to the right pixel. To handle one of the drawbacks — that
there might be an increase in the number of polygons — a split plane that causes the least number
of splits is selected.

The back-to-front traversal in the above method means that polygons cannot be skipped even if
a closer polygon fully occludes farther polygons. To alleviate this, Gordon and Chen [GC91]
traverse the BSP tree in a front-to-back manner. A scanline method is used to render the polygons
and an auxiliary structure called the dynamic screen is used to identify areas of the screen that can
be rendered over. The structure represents unlit (not yet rendered) pixels of each scanline. The
pixels that the polygon can write to are identified by a merge process. This simple modification is
shown to make rendering more efficient for scenes with a higher number of polygons.
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2.7.5 Z-buffer

The Z-buffer method of visibility determination is a simple technique. An additional buffer with
the closest Z value at each pixel is stored. As the rendering progresses, the Z-buffer is updated to
maintain the Z value of the closest object at that point. When a new object is being rendered, if its
Z value on a certain pixel is determined as being closer than the existing value, this object projects
onto the pixel and the pixel’s Z value is updated. It was first described by Catmull [Cat74]. Due
to its simplicity, the Z-buffer has been one of the most popular methods to determine visibility.
The simplicity also means that it is easily implemented in graphics hardware.

The main problem with the Z-buffer is that it can only determine visibility of a polygon at one
pixel. This implies that each polygon that is being rasterised has to be processed to the single pixel
level. It also means that a polygon cannot be determined as being occluded until it reaches the
pixel level. This is a major disadvantage, as significantly larger number of polygons are processed
in cases where occlusion is high. Compared to ray tracing — that processes very few occluded poly-
gons — this approach to rasterisation appears very primitive. To alleviate some of the problems,
hierarchical visibility methods have been proposed

2.7.6 Hierarchical Methods

Hierarchical Z-Buffer

Greene et al. [GKM93] introduce a technique called Hierarchical Z-buffer visibility. The tech-
nique described by them uses a ray tracing structure — an octree, and an adaptation of the tradi-
tional Z-buffer — a hierarchical Z pyramid. The Z pyramid is a hierarchical structure where the
lowest level consists of the normal Z-buffer. Each higher level represents the farthest Z value of
the four values it represents. Whenever a polygon is rasterised, the Z pyramid is updated to keep
the values current. To further improve the speed, the octree nodes are rasterised and checked for
visibility. If the octree node is not visible, then the polygons in it are also not visible and need not
be processed. When the polygons have to be rasterised, the polygon is tested with the appropriate
Z pyramid level by comparing the polygon's closest Z to the value in the pyramid. If it cannot
be definitively answered, then the pyramid’s next level is checked, again with the closest Z of the
polygon. Although the closest Z of the polygon in the quadrant can be used, it is stated that this
Z value is expensive to compute and hence the simpler approach is used.

Hierarchical Polygon Tiling with Coverage Masks

Another similar method is the use of coverage masks [Car84]. Coverage masks indicate areas of
the screen that are covered by a polygon. Greene [Gre96] uses a modified version of coverage
masks to accelerate visibility determination. The underlying idea of coverage masks is that for a
given edge, all possible tiling patterns crossing a grid of samples can be pre-computed and later
retrieved — indexed by the points of intersection. By anding all the coverage masks of all edges
of a polygon, the coverage mask for the polygon can be found. Similarly, by compositing all
previously rendered polygons, the coverage mask for the image can be found. Greene modifies
the coverage mask so that it indicates three states of the edge. A given sample is either inside
the edge — indicated by a state of Covered in the mask, outside the edge — status of Vacant in the
mask, or intersecting the edge — status of Active in the mask. These new masks are called Triage
coverage masks.
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Using these triage coverage masks, a coverage pyramid for the entire image is built. In the finest
level, one bit coverage masks (indicating only Covered and Vacant states) are used. Thus, for a
512 x 512 image with 8 x 8 oversampling, the finest level of the pyramid consists of 512 x 512 one
bit coverage masks. The higher levels of the pyramid consist of triage masks containing 64 x G4,
8 x 8 and 1 x 1 values. Each of the masks represent the corresponding area of the image. When a
pixel is rendered, the lowest level of the mask is updated and the change is propagated upwards.

A BSP tree as described by Fuchs et al. [FKN80] is created and the polygons are processed in
front-to-back order. Each of the polygons are rendered using a Warnock style subdivision method
to make use of the logarithmic search properties of the subdivision method. At each step of the
subdivision, the coverage mask is tested to see if the area being investigated is covered. The cov-
erage mask of the polygon is found by using the pre-computed edge tables. By compositing the
polygon’s coverage mask and the corresponding mask in the coverage mask pyramid, it can be
determined if the polygon is entirely hidden, entirely visible or its visibility is uncertain. When
cells are entirely hidden, they can be ignored. If they are entirely visible, they can be displayed.
When their visibility is uncertain, then they are recursively subdivided. Whenever a pixel is dis-
played, the coverage mask and the pyramid are updated. When all the polygons are recursively
subdivided in a front-to-back manner, the image is generated.

To make the process faster, Greene also proposes to organise the scene into an octree of BSP trees.
An octree is built on the scene in the first stage. In the second stage, at each leaf node of the octree,
a BSP tree is built. First the octree is traversed in a front-to-back manner and the visible nodes are
tested against the coverage masks to determine if they are visible. At a leaf node, the BSP tree is
traversed in a front-to-back manner to render the polygons in the right order. By this process, only
polygons with a high possibility of being visible are tiled, making optimum usage of coverage
masks.

Hierarchical Occlusion Maps

Another hierarchical method to determine visibility is Hierarchical Occlusion Maps (HOMs)
[ZMHH97] [Zha98]. HOMs are adapted for two of the algorithms described in the thesis — Co-
herent Rendering and Row Tracing.

An occlusion map is a gray scale image of the parts of the scene rendered. Using this, a pyramid
or hierarchy of images are created. In this hierarchy, each pixel in each image represents a part
of the image. The pixels indicate whether the corresponding area is occluded. As described, the
benefit of HOMs over coverage masks is that HOMs are generated using graphics hardware.

Prior to rendering, the method selects a set of occluders that are an estimate of the objects that
are likely to be visible. For static scenes, they are selected based on a few criteria like the size of
the object, spatial locality (i.e., the bounding boxes are small compared to the size of the scene
and the bounding boxes should have small aspect ratios — bounding boxes that are too big or
ill-shaped would cause problems for the depth estimation), rendering complexity (simple objects
with low polygon count) and redundancy (objects attached to other objects are not considered).
For dynamic scenes, the occluders are selected at run time. One of the methods used is to select
objects based on their distance from the viewpoint and until a particular object count is reached.
Once occluders are selected, they are rendered and the occlusion maps are created.

To perform the occlusion test, the HOMs created earlier are used. There are two parts to the
occlusion test. The first part tests if an object overlaps an area occupied by the occluders. If the
first test is positive, the second part ensures that the depth of the object being rendered is greater
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than the occluders. i.e., the occluders are fully in front of the object.

The overlap test checks if the region occupied by the object overlaps an area occupied by the
occluder objects. For this test, the area covered by the object is necessary. This can be achieved
by projecting the object onto the screen. However, this is very prohibitive as the object may be
quite complex. Hence, the bounding box’s eight vertices are projected and the extent is used as
the area to be tested. The traversal of the HOM is started at a level where the bounding box is
enclosed by a pixel (corresponding length and breadth represented by the pixel is just greater than
the bounding box’s). If the pixel identified is opaque then the bounding box and consequently the
object overlaps an area occupied by the occluders.

Once it has been identified that an object overlaps an area cumulatively overlapped by the occlud-
ers, it implies that the object may be occluded if it is completely behind the occluders. This is
tested by a depth estimation buffer. The image area is divided into smaller areas and for each area,
the farthest Z value is stored in the pixel. For each overlapped object, the buffer is tested. If the
object’s nearest depth is greater than the value in the depth buffer, it is occluded.

Coherent Hierarchical Culling

The Coherent Hierarchical Culling [BWPP04] method makes use of occlusion queries supported
by recent graphics hardware. Hardware occlusion queries allow determination of whether a given
object is occluded or not. The query takes the given object as input and the GPU returns the
visible fragments of the object. The main problem, however, is that there is an associated latency.
One kind of query is an NV _occlusion_query, an OpenGL extension introduced by NVIDIA on
their Geforce 3 graphics cards. The NV_occlusion_query returns the number of visible pixels of
the object. In addition, the NV Query also allows queuing queries before asking for the results.
Bittner et al. aim to utilise this feature to improve visibility performance.

In the simplest method, a kd-tree is used and is traversed front-to-back. The bounding boxes of
the kd-tree nodes are sent to the GPU to test for occlusion. The result is awaited and depending on
the outcome, the tree is traversed. However, due to the latency of the query, this is not an efficient
method. To overcome this, temporal coherence is used to reduce the number of occlusion queries.
Also, the queries are issued and stored in a queue until done by the GPU. This allows interleaving
occlusion determination instructions with instructions to show visible polygons. A breadth first
traversal of the kd-tree based on a priority queue is also proposed to optimize utilization of oc-
clusion queries. The nodes are prioritised according to the inverse of the minimal distance of the
viewpoint to the node’s bounding box. The use of temporal coherence is shown to be an effective
method to accelerate visibility determination when a walk-through of a large model is attempted.

The above hierarchical methods are just a few of the methods that have been used to determine
visibility efficiently in rasterisation. The popularity of hierarchical methods imply that they are
useful for fast determination of visibility.

2.8 Summary

Due to the use of acceleration structures ray tracing has become a viable form of visibility de-
termination / rendering. Acceleration structures enable ray tracing by intersecting with only a
fraction of the primitives in a scene. Furthermore, intelligent structure creation strategies like the
SAH have further improved the performance of ray tracing. The SAH, introduced initially for
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BVHs, when adapted to kd-trees produces the best structure for ray tracing static scenes. Further
performance benefits, especially for primary rays (relevant for visibility), have been brought about
by making efficient use of image coherence (tracing a group of rays together). Through the use
of SSE, four rays have been traced simultaneously. Groups of rays have also been traced using
frustums or by using interval arithmetic. The introduction and development of packet tracing has
culminated in ray tracing primary rays being considered almost a solved problem. Recent re-
search, focusing more on incoherent rays and dynamic rendering has shown that intelligently built
BVHs can be very competitive with kd-trees — even for static scenes. In addition, BVHs with their
ability to be quickly built and partially rebuilt are believed to be a better structure for ray tracing
dynamic scenes.

At the same time, several other visibility algorithms have also been developed. The Z-buffer
algorithm is widely used due to its availability on most graphics hardware. Hierarchical methods
combining ray tracing structures (kd-trees, octrees, etc) with hierarchical occlusion information
(hierarchical Z-buffer, HOMs, coverage masks, etc) — are also widely researched.

In addition to algorithmic advances, recent hardware developments like SSE and multiple cores
have enabled ray tracing — a highly parallelisable algorithm — to be a feasible alternative to raster-
isation. The investigation of ray tracing structures and algorithms for visibility is thus believed to
merit further consideration.
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This chapter introduces and studies a new structure based on kd-trees and BSP trees. The structure
uses several arbitrarily aligned splitting directions to create a space partitioning structure that more
closely wraps the scene. The structure is shown to reduce the number of node traversals as well
as the number of triangle intersections and results in a more efficient structure for ray tracing.
Part of the work in the chapter has been published as — Kammaje, R.P.; Mora, B., “A Study of
Restricted BSP Trees for Ray Tracing,” IEEE Symposium on Interactive Ray Tracing, 2007. RT
2007., pp.55-62, 10-12 Sept. 2007. [KMO7]

Ray tracing is one of the most researched areas of Computer Graphics and the use of innovative
data structures and algorithms has made it a feasible, even preferable, rendering method. How-
ever, due to the expensive nature of computations for each ray, single ray tracing is not very
frequently used as a visibility method. The most frequent use of ray tracing is when realistic op-
tical effects are desired. At the same time, it is also acknowledged that ray tracing is scalable,
with an average complexity of log(N) per pixel (where N is the number of primitives in the
scene) [HBOO] [Hur05] [WSS05] [HHS06] [YLMO06] [WBWSO01] as compared to a much higher
N x s (where s is the average projection size (in pixels) per triangle) per pixel complexity of Z-
buffer algorithms. Wald et al [WBWSO01] show the linear and logarithmic complexities of Z-buffer
based and ray tracing algorithms respectively. Due to this, and ray tracing’s built in occlusion de-
termination property — early ray termination, as the number of primitives in the scene increase, the
complexity advantage of ray tracing manifests itself. For very large models a significant perfor-
mance advantage over the brute force approach of hardware rasterisation based techniques may
be obtained, even for visibility determination.

45
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The complexity advantage of ray tracing is realised through data structures like kd-trees, octrees
and BVHs. Restricted Binary Space Partitioning trees, henceforth referred to as RBSP Trees, are
introduced as a new addition to this class of data structures. They are binary trees that subdivide
space into two partitions at each step and classify the primitives into one of the two partitions. The
structure attempts to achieve better ray tracing performance by combining advantageous concepts
of general BSP trees and kd-trees.

3.1 Motivation

The primary motivation for the existence of RBSP trees is rooted in the concept of void area. As
defined in [WHGB84], void area is the difference in projected areas of the bounding volume and the
actual model. For ray tracing, the void area indicates the space in which the rays miss the scene,
but still have to be processed. Reducing the void area results in a decrease in the number of these
rays, thus improving the efficiency of ray tracing.

Although, the concept of void area is described for bounding volumes, it is equally applicable
to space subdivision structures like the kd-tree. Each node of a space subdivision structure can
be thought of as a bounding volume for the triangles enclosed by the node. Similar to bounding
volumes, the number of rays that miss the triangles in the node, but still hit the node is given by
the void area. Hence the concept, and the complimentary result pertaining to rays, is also believed
to apply to space subdivision structures like kd-trees, octrees, and BSP trees.

It is also one of the reasons for the efficacy of the Surface Area Heuristic (SAH) for kd-trees.
Although the SAH for kd-trees very effectively reduces the void area of kd-trees, it is limited
by the kd-tree’s property that splits can only be along the X, Y or Z axes. For scenes that
predominantly consist of triangles that are axis-aligned (e.g. architectural scenes), the kd-tree’s
split axes are highly customised to the scene. Compared to general BSP trees, it also results in
the structure being relatively easy and quick to build. This is due to the fact that the selection of a
split plane requires significantly fewer SAH calculations.

Other kinds of scenes, in which the triangles are more arbitrarily aligned, expose the kd-tree’s
limitation. As Figure 3.1 shows, the difference between the projected areas of the kd-tree and the
actual scene (i.e., the void area) is quite considerable even at lower tree depths. Having potential
split axes that are arbitrary in alignment and number could potentially create a structure with a
smaller void area. This is one of the main motivations for the introduction and study of the RBSP
tree.

The RBSP tree can consist of split planes that are very close to the component triangles’ alignment.
As Figure 3.2 shows, compared to Figure 3.1, the RBSP tree has a considerably smaller void area
than kd-trees. Thus, a study is warranted to explore the promise of better rendering performance
provided by the use of RBSP trees.

Along with the concept of void area, Weghorst et al. [WHG84] also quantise the rendering time in
Equation 2.11 which indicates that the rendering time varies according to four variables. A con-
siderable increase in any of the four variables can significantly affect performance. On the other
hand, efficient structures that reduce the number of bounding volume and primitive intersections
can be very efficient. In addition to the number of intersections, the cost of this intersection is also
a prominent variable with the possibility of increasing the ray tracing cost significantly. Hence, a
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(a) Kd-tree for Bunny (b) Kd-tree for Armadillo

Figure 3.1: Kd-trees on scenes with predominantly non-axis-aligned triangles. Even though the
SAH kd-trees converge to the model quickly, their void area is still significant. This is because

kd-trees are restricted to using axis aligned splitting planes.

structure that reduces the number of intersections while being computationally cheap to traverse

would be very efficient.

Determining a ray-kd-tree node intersection is computationally very cheap. However, prior to the
introduction of the SAH, the kd-tree was not widely accepted as one of the fastest structures for
ray tracing. The number of ray-node traversals and ray—primitive intersections with a non-SAH
kd-tree was high. However, the SAH |[MB90] - a heuristic that effectively reduces void area and
separates empty spaces - changes this. The kd-tree thus built, results in a much lower number of
intersections for ray tracing. The reduced number of intersections coupled with the cheap traversal

cost realises the true potential of kd-trees - resulting in a significant performance increase.

BSP trees - in which the split axes can be aligned arbitrarily - are the general form of kd-trees.
In its general form, the BSP tree has several disadvantages that make it unfeasible for ray trac-
ing [FS88]. One among them is the cost of intersecting a BSP tree node. At each traversal step,
the computationally expensive planc-ray intersection is necessary. However, if the other disad-
vantages were overcome, the advantage a BSP tree provides is that its splitting planes are selected
from the scene itself. The BSP tree can. in theory, he a structure with the lowest void area pos-
sible. This would imply considerably reduced number of intersections that could, even with the

increased traversal cost of BSP trees, be more efficient than kd-trees.

The high degree of difficulty in constructing a good BSP tree is one of the main drawbacks hinder-
ing it from being a feasible structure for ray tracing. The main advantage of the BSP tree - that its
splitting planes are drawn from the scene - turns out be a major disadvantage in practice. The fact
that there are as many potential splitting axes as there are triangles in the node being split means
that the best splitting plane can be along any of these axes. The large number of potential split
positions that need to be examined leads to very high construction costs. Another disadvantage of
the BSP tree is that the splitting plane - indicated by four floats - has to be stored in its entirety

at each node. The increased memory requirements brought about by this are significant - at least
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(a) RBSP tree for Bunny (b) RBSP tree for Armadillo

Figure 3.2: RBSP trees on scenes with predominantly non-axis-aligned triangles. The use of
several additional splitting axes allows the RBSP tree to more closely wrap the model and

minimise void area.

4x that required for a kd-tree node. It also leads to degraded performance due to increased cache
misses. Because of these drawbacks, the BSP tree is generally not considered as a viable structure

for ray tracing.

Irrespective of these disadvantages, the promise of reduced void area, resulting in a structure
with significantly reduced intersection numbers, is hard to ignore. If a structure can combine the
reduced intersection cost of a kd-tree with the reduced number of intersections of a general BSP
tree while being simpler to construct, it could be the ideal structure for ray tracing. RBSP trees are

an attempt at such a structure.

3.2 RBSP Trees Concept

RBSP trees are a specialised form of BSP trees in which the splitting planes are selected from a
restricted set of predetermined planes that can be arbitrarily aligned. The reduced set of planes
provides the opportunity to reduce the cost of intersection in addition to compact representation.
In comparison to kd-trees, RBSP trees can have a wider selection of splitting planes available

resulting in a reduced number of intersections.

The use of a structure with non-axis-aligned planes is not new to RBSP trees. Kay and Ka-
jiya [KK86] investigate a structure that uses slabs of non-axis-aligned planes to build bounding
volume hierarchies. However, bounding volume hierarchies are more expensive to traverse than
space partitioning techniques. In addition, the limitation of hardware meant that they could only
test it with a limited number of axes. It is also stated that additional axes would be very advan-
tageous. The RBSP tree addresses these by being a space partitioning technique with a cheaper

traversal cost and with the possibility of a larger set of splitting axes.

The splitting planes are predetermined as a set of axes, that are normals to the actual splitting
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planes. Subsequently, each splitting plane can be represented as a point on one of these axes.
Further, if the minimum and maximum points along an axis for the scene are known, then any
point along the axis between these two points can be represented by a discretisation enabling an
easy and compact representation of the splitting plane. If the X, ¥ and Z axes are used as the set
of axes for RBSP tree construction, a kd-tree is obtained. Thus, an RBSP tree is a more general

form of a kd-tree.

Scene
Root Node boundaries' ajX+bjy+c.

Figure 3.3: A 2D RBSP tree: In 2D, the splitting planes (lines) can directly be used instead of
the normals (as done in 3D). Hence, the potential set of partitioning planes arc shown (labelled

1.2.3,4). Using this set of axes, a tree that partitions space into two parts at each step is built.

Figure 3.3 shows a 2D RBSP tree and Figures 3.1 and 3.2 show kd-trees and RBSP trees built on
the Bunny and Armadillo models. The figures reveal the potential of RBSP trees. For scenes that
consist of predominantly non-axis-aligned triangles, the RBSP tree appears to reduce the empty

space immensely. The splitting planes are more closely aligned with the planes in the scene.

The use of non-axis-aligned planes is not unique to RBSP trees. As described in Section 2.3.3.1,
the structure developed by Kay and Kajiya [KK86] is one of the structures that uses non-axis-
aligned planes. However, the structure proposed by them is a bounding volume hierarchy in
contrast to the space subdivision nature of RBSP trees. This is an advantage for the RBSP tree
as it needs just a linear interpolation or, at worst, a plane-ray intersection at each traversal step,
whereas the BVH requires a ray-bounding-volume intersection at each traversal step. Klosowski
et al. [KHM+98| detail a similar structure with more planes but investigate its use for collision
detection. Kay and Kajiya limit the number of plane normals used as they had limited hardware,

however increasing the number of plane normals is mentioned to be beneficial.

The number of splitting planes that the RBSP tree can use is flexible, and theoretically not re-
stricted to any number. However, as Section 3.4 will show, increasing the number of split axes
significantly increases the construction time to obtain a good RBSP tree and thus becomes a lim-

iting factor. In practice, it is necessary to restrict the number of split axes to around 24. Even so,
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this is significantly more than what Kay and Kajiya used and allows a range of alignments to be
easily investigated.

In brief, the construction and use of the RBSP tree can be described as follows. Initially, a number
for the split axes is fixed. Depending on the number, the actual split axes are determined, either
manually or using some heuristic. Subsequently, the actual tree is constructed using planes along
these axes. The scene is now ready for ray tracing using the constructed RBSP tree. To ray trace,
the individual rays are traversed through the tree to find the closest intersection and the image is
rendered.

An important feature of RBSP trees is the flexibility provided. RBSP trees can be used to simulate
a kd-tree or a general BSP tree. They can be used both to accelerate ray tracing and also to study
BSP trees. Due to the difficulty of constructing good BSP trees, RBSP trees can be used as a good
substitute.

Geometrically, the RBSP tree has nodes formed by the intersection of a number of planes. Hence-
forth, since the number of splitting axes is vartable, it will be represented by m. This implies that
the number of planes is 2m. Due to the planes being arbitrarily aligned, the nodes have a variable
number of faces with a variable number of edges. Since m is the number of splitting axes used,
the maximum number of faces that a node may possibly have is 2m. However, a node need not
have faces corresponding to all the planes. A given node may be missing either one or both the
faces corresponding to a particular plane. This is an important distinction from a kd-tree where
the nodes always consist of six rectangular faces and leads to several distinctions in the creation of
the tree. The mid-point calculation undertaken during the space median heuristic is more involved
to ensure that the mid-point of the two bounding points along the axis is inside the node. During
the SAH process, the calculation of the surface area and the counting of triangles in a node is more
complex. At the same time these geometric properties also ensure that the object is more closely
wrapped by the node.

Although RBSP trees are conceptually simple, sufficient thought must be put into the implemen-
tation for it to be competitive with the extremely well researched kd-tree structure. The main parts
are the data structure representation, construction heuristics and finally ray—structure traversal —
each of which will be discussed in detail in the following sections.

3.3 Data Structure

Representing the RBSP tree in a compact and easy manner is important if RBSP trees are to be a
viable alternative to kd-trees. It was noted that one of the main drawbacks of the general form of a
BSP tree was its increased memory requirements due to the nodes’ data. In order for RBSP trees to
be an efficient structure for ray tracing, a compact representation is imperative. The RBSP tree has
three pieces of information — information that is common to all the nodes, the nodes themselves,
and a list of triangle pointers contained by all leaf nodes.

The header contains the common data for the tree and consists of the following information.

e List of Predetermined Split Axes — The axes determined prior to construction are stored in
the header as an array of axes. The axes are normal vectors and are represented by three
floating point values. Once the array is stored, the index of the axis in this array is used to
indicate every node’s split axis.
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¢ Information needed only when loading or saving the tree.

— Number of Split Axes.

— Number of Nodes.

— Number of Triangles — The number of triangle pointers contained by all the leaf nodes
in the tree.

Compactness is an important attribute for representing nodes as it can affect the performance and
memory requirement of the tree. In order to obtain the most compact representation, a node is
represented by 8 bytes (64 bits). Table 3.1 indicates the exact structure of a node.

Represents Bits used
A unique pointer to children 32
Index to split axis 16
Quantised value of split position 14
Leaf node flag 1
Unused bit 1

Table 3.1: RBSP tree node structure

The tree is stored as an array of nodes with each node pointing to its children through an index.
Since the two child nodes are adjacent, only the index to the first node (ordered front-to-back along
the axis used) is stored. The second child node is implicitly addressed by adding one to the stored
index. Using the array form for representing the tree improves cache performance as the nodes and
its children are closer in memory with this representation than if the pointer / tree representation
were to be used. Also, it enables better memory efficiency through the use of implicit second child
addressing.

With the child node pointer taking up 32 bits, it is important that the remaining data of a node is
represented as efficiently as possible. Normally, the split position is stored using a single floating
point value. However, this requires a further 32 bits which is prohibitive. The split position is the
point along the axis selected where a plane that is normal to the axis splits the node into two parts.
It is a point that lies between the extents of the parent node along this axis. Thus, if this distance
between the end points of the node along the axis is discretised into a certain number of values,
it is possible to use fewer bits to indicate the split point. For an RBSP ftree, a discretisation of the
distance into 2'# — 1(16383) points provides a good result — both in terms of memory usage and
precision of the split point. Thus, the split point can be indicated in the node with just 14 bits.
Although, there is an unused bit available to increase the accuracy of the discretisation, the current
precision was found to produce good results and hence only 14 bits are used.

-Since the header consists of all the potential split axes for the tree, the node’s split axis can be
indicated by just the index to the axis. Even though 16 bits are allocated for representing the
index, the practical limit for the number of split axes is about 32 which can be represented by 5
bits. However, the only other piece of information needed in the node is a flag — requiring just one
bit — to indicate if it is a leaf node. Hence, using 16 bits for the axes allows the data to be easily
accessible.
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When the construction heuristic determines that a node is a leaf node, the structure represents
different information. The information stored in a leaf node is indicated by Table 3.2

Represents Bits used
A pointer to the start of the triangle list 32
The number of triangles in the leaf node 16
Leaf node flag 1
Unused bits 15

Table 3.2: RBSP tree leaf node structure

The leaf node consists of a certain number of triangles. The triangles contained by all the leaf
nodes are stored in a separate list. Each non empty leaf node has an index that indicates the first
triangle contained by it. Together with the number of triangles, the index is used to obtain the
triangles in this node. Figure 3.4 shows this diagramatically.

e %/////

—

0|3|9|24{27|33(42| 0 (99]72(66|60{63|54{30|33| 9 {18|27|21|81

Leaf node triangle list

Figure 3.4: Leaf nodes and pointers to their component triangles. Nodes in green are leaf nodes
that point to an index in a global list of leaf node triangles.

As shown, the data for a node (both internal as well as a leaf node) requires just 8 bytes. This is
the same amount of memory required for a kd-tree node. Thus one of the claims of the RBSP tree
—that it is compact to represent — is fulfilled. Having described the compact data structure to store
the tree in memory, the construction process itself can be described.

3.4 Construction

The RBSP tree is a recursive structure in which every internal node can be considered as the
root node of the corresponding subtree. A recursive tree construction process is thus the natural
method to construct the structure. The following pseudocode describes the high level RBSP tree
construction algorithm.
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constructRBSPTreeMain ()

{
Vector[] splitAxes = findSplitAxesForTree();
constructRBSPTree (root, allTriangles);

Listing 3.1: High level RBSP tree construction. First, the axes for the tree are selected and
subsequently the tree is constructed in a recursive manner.

Before the actual construction of the tree, it is necessary to determine the directions of the potential
split axes. One method to determine the axes automatically is to have them evenly distributed
across space. This is achieved by a heuristic that uses evenly spaced points on a sphere [PSA07].
Once the number of axes that the RBSP tree will use is selected, the same number of evenly
distributed points on a unit sphere with the origin as its center are found. The normalised vectors of
the lines connecting the origin to these points provide a set of vectors that are aligned evenly across
3D space. These vectors are chosen as the potential split axes. However, due to the proliferation
of scenes consisting of predominantly axis-aligned planes, it is desirable to include the X, Y and
Z axes as potential axes. The axes that are closest in alignment to the three coordinate axes are
replaced by the X, Y and Z axes.

The recursive RBSP tree construction algorithm, construct RBSPTree, is the same as the construc-
tion of a kd-tree, shown in Listing 2.3. The methods utilised for findSplitAxis, findSplitPosition,
findLeftTriangles, findRightTriangles is where it differs from the kd-tree construction al-
gorithm.

The methods findsplitaxis and findSplitPosition select an axis and a split position along
this axis. These methods vary according to the heuristic used. On the other hand, counting and
classifying the number of triangles on each side of the split plane is independent of the heuristic
used. It is more involved than the process followed in the construction of the kd-tree, complicated
by the fact that each node can have a variable number of polygons that themselves have a variable
number of sides. A very straightforward method is used to achieve this. All the triangles in the
node are clipped by all the component planes of the node to find the parts of the triangles that are
contained by the node. Only triangles that have some part within the node are counted as being
inside the node. Clipping the triangles ensures that each node is attributed only those triangles
that have at least some part of themselves in the node.

The construction could be optimised by storing the clipped parts of the triangles for each node
as the construction progresses down the tree. However, since the main aims are to investigate
the advantages offered and to study the RBSP tree’s applicability for ray tracing, the construction
process has not been optimised.

Initially, the extremal points of the root node are found for every split axis and stored as a list of
points. The split point at which a node is split becomes the minimum point for one of the child
nodes and the maximum point for the other. The list of node extremities are updated accordingly.
This ensures that the bounding planes for the current node being processed is accurate. These
bounding planes are the clipping planes for the triangles inside the node.

Two heuristics — Space Median and Surface Area Heuristic — to determine the split axis and split
position are investigated. Both have been adapted from their well researched kd-tree versions and
will be discussed in greater detail in Sections 3.4.1 and 3.4.2.

When the split plane for a node is found, the node is split and the triangles are clipped and clas-
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sified. The process is continued down the tree until a termination criteria is met. When a node
satisfies a termination criteria, it is considered as a leaf node. For the RBSP tree, only two termi-
nation criteria are used — the depth of the node in the tree and the number of triangles in the node.
If the depth reaches a predetermined depth or if there are less than or equal to a certain number
of triangles in the node, the node is made into a leaf node and the recursion stops. The number
of triangles in a node at which it is made into a leaf node is fixed at 2. For the RBSP tree, the
maximum depth is calculated as a function of the number of triangles in the scene. The term given
by Havran and Bittner in [HB02] for kd-trees is used even for RBSP trees. It is:

dmaz = kllogz(N) + ko 3.1

where d,,,, — is the maximum depth of the tree
N —is the number of triangles in the scene
k1 and k; — are constants chosen to achieve critical performance.

Havran and Bittner [HB02] use the values of k; = 1.2, k; = 2 that is also used for RBSP trees.

3.4.1 Space Median Construction

The simplest heuristic for building kd-trees is the space median, in which the axis is selected either
on a round robin basis or the longest axis basis and the mid-point along this axis is selected as the
split point. The same concept can be applied to RBSP trees. If there are m axes, then one of these
axes is selected on a round robin basis. The mid-point along this axis is selected to obtain the split
plane for the node.

Finding the mid-point along arbitrarily aligned axes is slightly more challenging. With kd-trees,
the mid-points along the X, Y or Z are easily found as they are half of the sum of the minimum and
the maximum value of the X', Y and Z coordinates of the node’s bounding box. In comparison,
to find the mid-point along the potential split axes, the bounding box’s eight vertices are projected
onto the axes to find the minimum and maximum projection point of the bounding box along each
axis. The center point between these two extremities gives the necessary point along the axis to
place the split plane.

Figure 3.5 shows that the space median construction results in poor trees, especially for the pur-
pose of ray tracing. The reasons for this are quite obvious. The splits are aligned and placed
arbitrarily. Due to the fact that a round robin scheme is being used for selecting the axes, there is
no relation between the particular node and the splits. The problem is compounded by the split
plane being placed at the mid-point of the axis with no consideration of the location of the trian-
gles in the node. The poor quality of the trees created necessitate a better heuristic to realise the
potential of multiple differently aligned planes.

3.4.2 Surface Area Heuristic

The Surface Area Heuristic (SAH) that results in kd-trees better suited for ray tracing is adapted
to construct RBSP trees. It is based on the hypothesis that the probability of a ray hitting a node’s
triangles is directly proportional to the surface area of the node and the number of triangles in
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(a) Space median RBSP tree for Bunny (b) Space median RBSP tree for Armadillo

Figure 3.5: Space median RBSP trees on scenes with predominantly non-axis-aligned triangles.
The split planes are not intelligently placed and hence the space median method to construct
RBSP trees is not beneficial.

the node. This probability provides a cost function, given by Equation 2.12, that incorporates the
probability of a ray hitting the node as well as the cost of intersecting the geometry in it. The axis
and point at which the cost is a minimum provides the locally optimum split point for the node.
Minimising this cost while selecting each split plane forms the essence of the SAH. The heuristic

for kd-trees is very effective and increases the performance of ray tracing substantially.

For the RBSP tree, a heuristic like the SAH is even more important. It adds intelligence to the
selection of a split axis and the placement of the split plane. As Figure 3.6 shows, RBSP trees
built with the intelligence provided by the SAH are much better than those built with the space
median heuristic. They have splits that arc aligned and placed in relation to the contents and

properties of the nodes.

Adapting the SAH to the RBSP tree construction is conceptually straightforward as Equation 2.12
can be used for the cost. However, calculating the cost is complicated by the necessity to examine

several axes instead ofjust three.

The main purpose of the SAH. when applied to the RBSP tree, is to select the best axes among
the numerous axes, and the best split point along that selected axis. All potential axes have to be
considered as the optimum cost can be along any of the potential axes. There are an infinite number
of potential split points along any axis. However as the SAH for the kd-tree does, the number of
split points to be investigated can be limited to a finite number. Every triangle is first clipped by
the bounding box of the node to obtain an accurate list of triangles contained in the node. Since
the number of triangles can only differ at the two extremities of the clipped triangle along an axis,
only these two points are added to the list of potential split points. The extremities along an axis
are found by projecting the vertices of the clipped triangle onto the axis. By following this process

for every triangle in the node, a list of possible split positions along the axis is found. Figure 3.7
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(a) RBSP tree for Bunny (b) RBSP tree for Armadillo

Figure 3.6: SAH RBSP trees on scenes with predominantly non-axis-aligned triangles. Using the

intelligence provided by the SAH, the RBSP tree constructed is of better quality.

shows the process with more clarity.

Once all the potential split points along an axis are determined, the SAH cost at each of these
points is calculated. To calculate the SAH cost, the surface area of the left and right node created
by a split plane placed at the point in consideration and the number of triangles in these nodes are
to be determined. By using the list of projected end points, it is simple to determine the number

of triangles on either side of a potential split point.

Computing the surface area of the two nodes created by the split is not as straightforward. This
is compounded bv the fact that the only values stored for a node arc the extremities along each
split axis. To calculate the surface area the node’s actual polyhedron - found by clipping every
bounding plane of the node (given by the split axis and an extremity along the axis) with every
other bounding plane - is determined. The clipping process results in a list of polygons - the
faces of the node’s bounding volume. These faces are then clipped with the splitting plane in
consideration to obtain the faces of the two split nodes that would be created with this split. Also,
the splitting plane itself is clipped with each of the bounding planes to obtain the splitting plane’s
polygon. The polygons thus found can then be decomposed into triangles to calculate the surface

areas of the two nodes potentially created by the split plane in consideration.

Plugging in the values for the number of triangles and the surface area in Equation 2.12, the SAH
cost at each potential split point along each potential split axis is ascertained. The SAH also allows
biasing the cost. Empty nodes are beneficial for ray tracing as they identify empty space allowing
the rays hitting them to be skipped. This is considered in the heuristic for RBSP tree building by
reducing the cost to 80% of the original cost if a potential split creates an empty node. The axis

and the point with the minimum weighted cost is selected as the splitting plane for the node.

It is to be noted that while the SAH provides a method to create fairly good trees, the tree is not
optimal. The cost calculated for each split is the local optimum that applies only to that node

irrespective of earlier and future splits.
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Node bounding volume

Triangle outside
boun‘cyng volume

Triangle end points

Potential split axis

Figure 3.7: Potential split points for SAH along an axis. Projecting the end points of the clipped
triangles onto the axis in consideration gives the potential split plane positions. The SAH cost at
these potential points are calculated and the minimum point is selected as the locally optimal
split position.

3.5 RBSP Tree Traversal

Constructing the tree prepares the scene for ray tracing. Each individual ray is traversed down
the tree in a front-to-back order until it is determined if the ray misses the scene completely or
intersects a primitive. When a ray hits a primitive, the pixel corresponding to the ray is shaded
using the primitive’s properties.

Using the parametric equation of the ray, given by Equation 2.1, the ray can be traversed through
the tree using different methods — each with its own advantages and disadvantages. Each of these
methods are described subsequently.

3.5.1 Algorithm 1.1 - Traversal by Linear Interpolation of Ray—Plane Intersection
Parameter

This method for ray traversal is based on the kd-tree traversal [SS92] adapted to the RBSP tree.
The high level algorithm can be given by the following two methods described in pseudocode.
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Figure 3.8:

58
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RBSP tree ray traversal (2D). Similar to the kd-tree traversal - if tsput > tentry the

left node is traversed, and if Isput < texit the right node is traversed. If both conditions hold, as in

the figure, both nodes are traversed.

int rayTraverse|

{

tMin = INFINITY;

tMax = -INFINITY;

//Compute the intersection parameters

//to the entry and exit planes

//along each axis

for (each split axis index, 1)

{
tEntry[i] = findTEntryBoundingPlane (i) ;
tExit[i] = findTExitBoundingPlane (i);

tMin = maxVal (tEntry, tMin[i]);
tMax = minVal (tExit, tMax[i]);
i}f(tMin > tMax)
return -1; // There is no intersection
// with the bounding volume
// of the node

return recursiveRayTraversal (root, tEntry,

tExit, tMin, tMax);

Listing 3.2: High Level RBSP tree traversal algorithm. The algorithm intersects the ray with each

plane of the bounding volume of the tree. If there is no intersection, it terminates. Otherwise, the

ray is recursively traversed down the tree.
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int. recursiveRayTraversal (RBSPNode node,
float [JtEntry, £float [JjtExit,
float tMin, float tMax)

if (tMin > tMax //ray does not intersect node
or tMax < 0) //intersection is behind origin
return -1;
if (node is a leaf node)

{
if (any triangle intersects the ray)
return index of first triangle hit by the ray;
return -1;

H
tSplit = findSplitParameter (node, tEntry, tExit);
if (tSplit > tMin)
//Recursively traverse the left node
trianglelndex=recursiveRayTraversal (node.left, tEntry, tExit,
miin (tSplit, tMin), tMax);
if (trianglelndex != 1 )

return trianglelndex;

}
if (tSplit < tMax)

(
//Recursively traverse the right node

return recursiveRayTraversal (node.right, tEntry, LExit,
tMin, max(tSplit, tMax));

Listing 3.3: Recursive RBSP tree traversal algorithm.

As the pseudocode shows, there are two main components that make up the tree traversal. The
first step is to calculate the intersection parameters for the minimum and maximum bounding plane
along each axis. Losing these, the ray’s entry and exit parameters. ¢(ntry and tCXt, with respect to
the bounding volume of the tree are found. If it is determined that the entry parameter is greater
than the exit parameter, the ray does not intersect the tree and hence need not be processed further.

Otherwise the ray is traversed down the tree.

The ray traversal begins at the root node and descends down the tree in a front-to-back order.
At each internal (non-leaf) node, the ray's intersection parameter with the split plane of the node
is calculated. It is important to consider the direction of the ray - indicated by the sign of the
dot product between the ray and the split axis - during the calculation of the ray-split-plane
intersection parameter, /«>*< Since the entry and exit parameters along each axis has already been
calculated. tspilf can be quickly calculated by linear interpolation of the corresponding parameters.
It is also to be noted that the node stores a discretisation of the distance between the entry and exit
planes and hence has to be converted back to the actual value. The conversion back to actual

values and the linear interpolation can be calculated as follows:
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float findSplitParameter (node, £float []Jtmin, £float []tmax)

{
tSplit = node.splitPosVal* (1/16383);

//signRDirRec[axis] - Indicates ray direction along the split axis
tEntty = signRDirRec[axis] ? tmin[i] : tmax([i];
tExit = signRDirRec[axis] ? tmax[i] : tmin[i];

return (tEntry + tSplit* (tExit-tEntry));

Listing 3.4: Listing shows the calculation of the ray-split-plane intersection parameter by linear

interpolation.

It is to be ensured that the right values of ¢nXis and taxiS parameters are selected depending
on the sign, or direction, of the ray. Another implementation detail is that the value of (1/16383)
(214 — 1 as 14 bits are used to store the quantisation. Sec Table 3.1) is not calculated at each step,
but is stored as a constant. Thus, the entire process of finding tspnt is achieved with two multiplies,

one addition and one subtraction.

As shown by Figure 3.8. the location of the split plane in relation to the node - mathematically
represented by the value of ¢spnt in relation to ¢/litry and tcxit - determines the nodes traversed. If
the t$nt parameter is greater than the fcntry parameter, it indicates that the split plane is located
at a point along the axis that is after the point where the entry plane is located. In this case, the
first node along the axis is traversed. If the split plane is located at a point before the exit plane,
ie., if the ray hits the second node along the axis and the node is traversed. If both
the cases are true, as in Figure 3.8, then the ray first traverses the first node. If it does not hit a

triangle in the first node, the second node is traversed.

The tree traversal continues dowrn the tree until a leaf node is reached. At a leaf node, the ray may
hit one of the triangles contained in the node. As the triangles in the ray are not sorted according
to the ray’s path, it is necessary to test all the triangles for intersection. The intersection parameter
is found for all triangles in the node using the method by Segura and Feito fSFOI], If the ray hits
more than one triangle, the triangle with the lowest / parameter - the first triangle in the ray’s path
- is selected. On the other hand, the ray may miss all the triangles in the leaf node in w'hich case,

the tree traversal continues.

The method, as described, is a direct adaptation of one of the best kd-tree traversal methods.
However, as the results show, the performance of this method depreciates w'hen the number of
splitting axes used is increased. This is despite the fact that, as expected, the number of node
traversals and number of triangle intersections shows a consistent decrease. This depreciation of
performance is attributed to the first method RayTraverse. Specifically, it can be traced to the
calculation of entry and exit parameters for all the split axes. If in is the number of split axes used,
then 2m ray-plane intersections are necessary. Calculating the entry and exit ¢ parameters for each
plane requires three dot products and one divide operation resulting in a large computational cost.
Also, in cases where the depth of the tree is less than 2in, the number of ray-plane intersections
would be more than if the node were to be intersected individually. The RayTraverse method thus

depends on m as much as it does on /og(N) (the order of the tree's depth).

To overcome this problem and realise the true potential of RBSP trees, alternate traversal methods

are thought of and are described in the following sections.
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3.5.2 Algorithm 1.2 - Traversal using SSE

SSE instructions allow four computations to he performed in parallel and are used to address the
problem of decreased performance. The previously identified problematic part of the traversal -
the initial entry and exit plane intersection calculation - is converted to SSE so that four entry
and exit parameters arc computed simultaneously in one iteration, thus reducing the cost of this

process. The relevant part of the code in RayTraverse converted to SSE is

for (each split axis index, 1)

{
tMin[i] findTEntryBcundingPlane (i) ;
tMax[i] = findTExitBoundingPlane(i);

Listing 3.5: Part of code from RayTraverse that is computed using SSE.
It is changed so that every four split axes are handled in one iteration ofthe loop and can be written
using SSE as shown below.
rayDirSSEX = load rayDirX into all 4 SSE components;
rayDirSSEY - lead rayDirY into all 4 SSE components;

rayDirSSEZ = lead rayDirZ into all 4 SSE components;

for (each 4 split axes starting at index, i

{
splitAxesX = X coordinate of the 4 split axes
splitAxesY

Y coordinate of the 4 split axes
splitAxesZ = Z coordinate of the 4 split axes

tMinSSEfi/4] = findTEntryBoundingPlaneSSE();
tMaxSSE[i/4] - findTExitBoundingPlaneSSE();

-

Listing 3.6: Using SSE to accelerate RBSP traversal. Instead of computing ray-split plane
intersections individually, SSE is used to compute four entry plane and four exit plane

intersections.

To obtain the best performance with SSE instructions, it is preferable to load the individual com-
ponent coordinates of each ray and each split axis into separate SSE variables. With this, dot
products require fewer instructions. Upon conversion to SSE. the calculations of the entry and
exit parameters are achieved with fewer iterations and reduce the detrimental effect of increasing
the number of planes. Results show that this method of optimising the traversal is very effective
as long as the number of axes is relatively small (between 12 and 16). The advantage of SSE
cannot mask the computational cost for larger number of axes. However, the results do show that
that method realises the potential of RBSP trees better and achieves improved performance over
an SAH kd-tree.

3.5.3 Alternate Traversal - Ray-Plane Intersection at Each Node

The performance of the two traversal methods described earlier is dependent on the number of split
axes used. However, if possible, it is preferable for the traversal performance to be independent of

the number of axes. To achieve this, the ray-split-plane intersection parameter calculation uses the
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ray-plane intersection, as shown in Listing 3.8, instead of linear interpolation used by the earlier
method, as shown in Listing 3.4, to obtain the intersection parameter. Although the performance
is worse for RBSP trees constructed with a small number of split axes, it makes the rendering time
a function of the depth of the tree rather than the number of split axes. This method would thus
be very useful to study and understand the effect of number of split axes on RBSP trees. The new

high level algorithm can be given as:

int rayTraverse ()

{

//Determine two planes of bounding volume
//at which the ray enters and exits
findEntryPiane (entryPlanePoint, entryAxis);
findExitPlane (exitPlanePoint, exitAxis);

//Find the entry and exit

//ray-plane intersection parameters

tEntry = findRayPlaneintersection (ray, entryPlanePoint, entryAxis);
tExit = findRayPlanelntersection(ray, exitPlanePoint, exitAxis);

if (tEntry > tExit)
return -1; //There 1is no intersection
//between the ray and the
//node's bounding volume

return recursiveRayTraversal (root, tMin, tMax, tEntry, tExit);

Listing 3.7: High level algorithm for Alternate RBSP traversal. In this method, the entry and exit
planes arc determined using either the OpenGL method (described in Section 3.5.3.1) or the
recursive divide method (described in Section 3.5.3.2). Code in blue shows the modifications

compared to the earlier high level algorithm (given by Listing 3.2)

Compared to the high level algorithm described in Section 3.5.1, the main difference (shown
in blue in Listing 3.7) is that alternate methods are necessary to determine the entry and exit
planes, as we do not want to compute ray-plane intersections for all 2m planes. Consequently,
the calculation of the ray-split plane intersection parameter, tSplit cannot be done using linear
interpolation and is now achieved using a ray-plane intersection as shown by the pseudocode

below:

float findSplitParameterPlaneRaylntersection (node)
( //Get the split position of the node along the axis
tSplit = node.splitPosVal* (1/16383);
//Find actual split point using linear interpolation
splitPoint = bvPointFront[axis]
+ tSplit * (bvPointBack [axis] - bvPointFront[axis));
//Intersect the ray with the plane
// (plane is given by the normal and the splitpoint)
tSplit = findRayPlanelntersection(ray, splitPoint, planeNormals[axis]);
return tSplit;

Listing 3.8: Calculating the ray-split plane intersection by using a full ray-plane intersection.
This is necessary as linear interpolation of the ray cannot be performed as starting and ending

points have not been calculated earlier.
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Other than the computation of the tSplit parameter, the ray traversal is the same as shown by
Listing 3.3.

3.53.1 Algorithm 2.1 - Entry and Exit Plane Determination with OpenGL

It is not straightforward to determine the entry and exit planes of the root nodes without intersect-
ing the ray with each bounding plane of the root node. The first alternative is to employ OpenGL
to find these planes. OpenGL or rasterisation methods are very quick if the number of rendered
triangles is very small. The faces of the root node are found by clipping every bounding plane
against every other bounding plane. Each face is assigned a unique colour for identification. The
entry planes and exit planes are separately rendered with OpenGL. For the particular pixel be-
ing ray traced, the entry and exit planes can be determined by checking the pixel’s colour in the

rendered images. Figure 3.9 shows the entry planes being easily identifiable by their colours.

Figure 3.9: RBSP tree root node for the Bunny with each plane coloured differently.

Once the entry and exit planes are determined for a particular ray (pixel), the ray-plane intersection
is used to calculate 7(ntry and tex,i for the ray. The method is very quick and the projection of
the bounding planes is performed just once at the beginning of ray tracing. The method works
very well for scenes where the viewpoint is always outside the bounding volume of the root node.
When the viewpoint moves inside the scene, the entry planes are behind the viewpoint causing

OpenGL projection to fail. Hence, an alternate method is necessary.
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3.5.3.2 Algorithm 2.2 - Entry and Exit Plane Determination by Recursive Divide

A recursive process is formulated as a solution to the problem of finding the entry and exit planes.
The method uses the property that in a convex polyhedron, if four boundary pixels of a rectangular
region lie on the same face, then all the pixels that lie within these four pixels also lie on the same
face. The process to find the entry and exit planes is very similar and hence only the process to

determine the entry plane is described in greater detail.
determineEntryPlane (RectImageRegion 1)

if(r does not contain any pixels within)
return;
//Find the entry plane indices for
//the four boundary pixels of r
int entryPlanel, entryPlane2,
entryPlane3,entryPlane4;

entryPlanel = findEntryPlane(r.cornerl);
entryPlane2 = findEntryPlane (r.corner2);
entry?lane3 = findEntryPlane (r.corner!);
entryPlane4d = findEntryPlane(r.cornerd);
if (entryPlanel == entryPlane2 and
entryPlar>e2 == entryPlane3 and
entryPlane3 == entryPlaned)

//Set the entry plane indices of
//all the pixels inside r
setAllEntryPlanes (x) ;

return;

¥

else

{ /
rectImageRegion rl, r2, 3, r4;
spl it.Reg: on Int oFour (r, rl, r2, r3, rd) ;
determineEntryPlane (rl);
determineEnt ryPlane (r2);
determineEntryPlane (r3);
determineEnt ryPlane (r4);

Listing 3.9: Determining the entry plane for a group ofrays using a recursive process.

The entry plane of the four corner pixels is calculated by finding the intersection of the ray with
all the bounding planes of the node. If they are the same, then each ray that corresponds to a pixel
within this rectangular region has the same entry plane. When the entry planes are different, the
region is split into four smaller rectangular regions and a similar process is recursively followed
until the entry planes of all the pixels have been found. It may appear that a significant number
of entry and exit planes have to be found. However, the entry and exit planes of very few pixels
need to be determined and this method is found to be very efficient. It is slightly slower than the
OpenGL projection method, but is better than calculating all the entry planes for all the rays. It is
also accurate for all viewpoints of all scenes and is therefore preferred. Figure 3.10 shows a few

steps of the recursive method.
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Figure 3.10: RBSP tree bounding volume / root node of the Bunny with each bounding plane
coloured differently illustrating the recursive divide method. If the four corner pixels of a
rectangular region have the same colour, then all the pixels inside this region have the same entry
plane. Otherwise, the region is subdivided into four smaller regions and the four corner pixels are

tested again.

3.6 Data Structure Visualised for Various Models

To visualise the data structure as built on various models, the non empty nodes at a particular
depth are shown. Leaf nodes that are at this or higher depths are also shown. This visualisation

enables identification of nodes traversed by the rays at the given depth.

Figure 3.11 shows this visualisation for RBSP trees built on the Bunny. The non empty nodes and
leaf nodes are shown at various depths to show the traversed nodes. It is clear that trees built with
more splitting axes more closely wrap the model, indicating that fewer rays traverse through each

level as the number of splitting axes rise.

For a few other models, the same (non empty and leaf) nodes are shown in Figure 3.12, but only at
a depth of 16. The figure shows a similar result to those seen in the Bunny. As the number of axes
increase, the tree more closely wraps the model resulting in a reduction in the number of rays that
traverse through the structure. This points to reduced node traversals and triangle intersections to

ray trace the image. This fact is corroborated by the results in Section 3.7.
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Figure 3.11: RBSP tree on the Bunny using 3,8,16 and 24 planes at various depths. Images show
the non-empty nodes at the given depth and leaf nodes at higher depths. The visualisation shows
that RBSP trees built with more axes converge to the model more quickly than those built with

fewer axes.

3.7 Results

The aim of the new data structure is to enable efficient rendering performance by reducing the
number of node traversals and the number of triangle intersections. Thus, these numbers in addi-
tion to the rendering times using the various traversal methods described will be presented in this

section.

To accurately represent real world performance, several scenes are ray traced using the RBSP
tree. For each scene used, several viewpoints are chosen and the images are generated from this

viewpoint. Table 3.3 shows the models and the viewpoints used.
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Scene Sponza Bunny Armadillo Dragon Happy Buddha

Views

Table 3.3: Scenes and viewpoints used to benchmark RBSR trees.
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Figure 3.12: Images showing the bounding box and the RBSP tree using 3,8,16 and 24 planes for
few other models. Images show the non empty nodes at depth 16 and leaf nodes at higher depths.
As more axes are used to build the RBSP trees, their quality improves.

3.7.1 Node Traversals and Triangle Intersections

The graphs in Figures 3.13 and 3.14 show the number of node traversals and triangle intersections
respectively for various models using RBSP trees built with varying numbers of split axes. RBSP
trees with 3, 4, 8, 12, 16, 20 and 24 planes have been built to compare the effect of using variably
aligned and numbered splitting planes. For non-axis-aligned scenes, the advantage provided by
RBSP trees is very clear. As the number of splitting axes rise, there is a reduction in the number of
node traversals and triangle intersections. Section 3.6 visually demonstrated the reduction in void
area of RBSP trees as number of axes used to build them increase. The figures provide statistical
support by showing reduced intersection and traversal numbers. If this reduction is translated to

performance terms, RBSP tree would be a very good data structure for ray tracing.

They also reveal that it is not a very good structure for scenes consisting of predominantly axis-
aligned triangles. The availability of differently aligned planes causes selection of splitting planes
that arc not closely aligned with the triangles. This aspect reveals a problem with the split plane

selection heuristic - the SAH. It also suggests the suitability of kd-trees for such scenes as the
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Figure 3.13: Variation of node traversals per pixel over number of split axes used to build the
RBSP tree for ray tracing several models. The more the number of axes, the lower the number of

node traversals (except for the Sponza scene).
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Figure 3.14: Variation of triangle intersections per pixel over number of split axes used to build
the RBSP tree for ray tracing several models. As the number of axes used increase, the number of

triangle intersections decrease.

availability of several splitting alignments is not advantageous and could in fact be detrimental

due to more expensive traversals.

On the other hand, the advantages arc clearly revealed by the results on the Sphere model. For this
model, the split axes arc perfectly aligned, as they are chosen by using evenly spaced points on a

sphere. These axes are almost customised to a sphere and hence as the number of axes increase,
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the tree becomes more closely wrapped to the model. The RBSP tree for this model is very close
to a BSP tree built on the model as the splitting planes are actually drawn from the model. This
also suggests that if the splitting axes are chosen so that they are in close alignment to the scene
triangles’ alignment, the RBSP tree would be an even better structure for ray tracing.

3.7.2 Rendering Times

Scene Name Rendering times with various methods and various number of axes

Avg Rendering Times D3p D4p B8p D12p B16p D20p B24p

2000
1000
Rendering
time in ms
11 Algorithm using linear interpolation 2 1 Algorithm using OpenGL
. 12 - Algorithm using SSE 2 2 - Algorithm using Recursive divide
Armadillo
2000 Avg Rendering Times D3p 0 4p m Sp 012p B16p D20p B24p
1000
Rendering L1 12 21 20
time in ms 1 1 Algorithm using linear interpolation 2 1 Algorithm using OpenGL
1.2 - Algorithm using SSE 2 2Algorithm using Recursive divide

Bunny
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Avg Rendering Times D3p D4p B8p D12p B16p D20p B24p

2000

1000

Rendering

ime in ms 1.1 1.2 2.1 2.2
It 1 1+ Algorithm using linear interpolation 2 1 Algorithm using OpenGL
I 12 - Algorithm using SSE 2 2 Algorithm using Recursive divide

Dragon

2000 Avg Rendering Times o3p ocd4p m8p o 12p m 16p o0 20p m 24p

1000

Renderin

rendering 11 12 21 2.2
time in ms 1 1 Algorithm using linear interpolation 2 1 Algorithm using OpenGL

2 - Algorithm using SSE 2 2 Algorithm using Recursive divide

Happy Buddha L _ _ _

13Avg Rendering Times m D3p D4p B8p o 12p m 16p D20p B24p

3000
2000
1000
Renderin
~endering 11 12 21 2.2
time in ms 1 1-Algonthm using linear interpolation 2 1 Algorithm using OpenGL
12 Algorithm using SSE 2 2 Algorithm using Recursive divide

Sphere
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Avg Rendering Times o3pod4p m8p o 12p m 16p 0 20p m 24p

3000
2000
1000
Renderin
rendering L1 1.2 2.1 2.2
time in ms 1 1 - Algorithm using linear interpolation 2 1 Algorithm using OpenGL
12 Algorithm using SSE 2 2 - Algorithm using Recursive divide

Sponza

Table 3.4: Ray tracing times with different methods on RBSP trees with different number of
splitting axes for various scenes. The various algorithms are:
Algorithm 1.1- Traversal by Linear Interpolation of Ray-Plane Intersection Parameter.
Algorithm 1.2 - Traversal using SSE.
Algorithm 2.1 - Entry and Exit Plane Determination with OpenGL.
Algorithm 2.2 - Entry and Exit Plane Determination by Recursive Divide.

Section 3.5 described four different methods to traverse the RBSP tree. In order to evaluate the
merits of each of these methods for ray tracing, the scenes have been rendered with the trees using
all the four different traversal methods.

Algorithm 1.1 - Traversal similar to kd-tree traversal by using a linear interpolation at each step.
The results for this method reveal the problem discussed in the earlier section. In this method,
initially an intersection parameter calculation for each axis is necessary. This calculation is quite
expensive, involving three dot products and a divide for each axis. As the number of axes used
increase, these calculations dominate the rendering times. Thus, the rendering times increase as
the number of axes used increase even though there is a decrease in the number of traversals and

intersections.

Algorithm 1.2 - Traversal using SSE for initial calculations. This method realises the potential
of RBSP trees. In this method, the initial calculations are computed in groups of four with SSE
instructions. Hence, as the number of axes rise, initially there is a noticeable improvement in
performance. However, the performance deteriorates when the number of axes rise above a certain
number. This is similar to Method 3.5.1, but it just takes more axes for these to dominate. It is to
be noted that this method results in a very fast ray tracing method - even better than on kd-trees.
As long as the number of axes used is below a certain threshold - possibly 12 - this rendering

method results in the best performance for ray tracing with RBSP trees.

Algorithms 2.1 and 2.2 - These are essentially the same method with slightly different ap-
proaches to finding the entry and exit planes. However, the methods of finding the entry and exit
planes are quite efficient for both these methods, with the recursive divide method being slightly
slower, as shown by the results. The graphs for these two methods are very similar showing that
the performance increases as the number of axes increase. The performance increase directly re-

flects the improved numbers of intersections and traversals. The disadvantage of these methods
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is that they are generally slower than either method 3.5.1 or 3.5.2 due to increased number of

ray-plane intersections.

As with the intersection number results, performance results show that RBSP trees provide ex-
ceptional performance for the Sphere model where the axes are perfectly aligned to the model.
Results for method 3.5.2 show that significant performance increase is possible with RBSP trees.
They reiterate the fact, that if properly adapted to the scene, RBSP trees produce trees that are bel-
ter than kd-trees for ray tracing scenes with non-axis-aligned triangles. The results for the Sponza
scene show that for scenes with predominantly axis-aligned triangles, RBSP trees constructed with

the current SAH is worse than kd-trees.

3.7.3 Construction Times

60(101) - Bunrn
*- Armadillo
50000 Dragon
Happy Buddha
° — Sphere
% 40000 Sponza
= 30000
0
= 20000
o
° 10000

10 15 20

Number of splitting axes

Figure 3.15: Variation of construction times of RBSP trees over number of split axes for various
models. From the data graphed it was deduced that empirical complexity of RBSP tree
construction is O (m JeNIog2(N)).

The construction times for RBSP trees is shown to be highly dependent on the number of splitting
axes used to build the trees. The graphs for every model is identical and closer inspection reveals
that the empirical complexity of tree construction appears to be approximately O (??716Nlog2(N))
1 where m is the number of directions used and N is the number of triangles in the scene. This
complexity makes it highly impractical to use more than 24 split axes as the time necessary for

construction becomes prohibitive.



3.8 Further Research on Structures with Non-Axis-Aligned Splitting Planes 74

Armadillo
Bunny
— Dragon
-m Happy Buddha
— Sphere

— Sponza
6 06 P

604

602

Figure 3.16: Faces per node of RBSP trees with various number of split axes for various models.
The number of faces per node appears to be very close to six. irrespective of the number of

splitting axes used.

3.7.4 Number of Faces in Node

Examining the average number of faces of all the nodes of RBSP trees with different number of
splitting axes, reveals that it is very close to six irrespective of the number of axes. This is an
interesting result. During construction of the tree, it implies that only six planes are relevant and

this result may be used to reduce the complexity of construction.

3.8 Further Research on Structures with Non-Axis-Aligned Splitting
Planes

The introduction of the RBSP tree in [KMO07] has sparked interest in structures that use non-axis-
aligned splitting planes [BCNJ08] [IWPO08]. Budge et al. [BCNJ()8] attempt to address some of
the problems already mentioned in this chapter like slow construction times. Having noticed the
potential of using numerous non-axis-aligned splitting planes in RBSP trees, Ize et al. [IWPOS|
attempt to use the even more general form of BSP trees that allows arbitrarily aligned planes. The
main contributions of these two publications and comparisons to our work will be described in

brief in the sections below.

3.8.1 Accelerated Building and Ray Tracing of Restricted BSP Trees - Budge et al.

Budge et al. [BCNJO08] present algorithms for building and ray tracing with RBSP trees. Our paper
highlighted the slow' construction of RBSP trees. In addition, in [KMO07], w'e present only traversal
method 3.5.3.2 - that, in this chapter, has been shown as the slowest traversal method. Budge el
al. attempt to address the problems of RBSP trees as presented in [KMO07],

The empirical complexity has been calculated using the observed construction times, graphed in Figure 3.16.
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In [KMO7] it was said that an empirical complexity of O(m!$ Nlog?(N)) was observed for con-
structing RBSP trees. Budge et al. reduce this to O(m?* + (mNlog(N))). The main reason for the
high complexity was that the polyhedron of the node was found by clipping each plane with every
other non parallel plane. This resulted in the observed high complexity. Budge et al. identify that
the SAH is a problem that can be solved with dynamic programming to reduce this complexity.

The construction process in [BCNJO08] is an SAH heuristic with changed intersection and traversal
costs of 500 and 1 respectively. An O(Nlog?(N)) approach, in which the triangles are sorted at
each SAH step, is used. However, instead of using a normal O(Nlog(V)) sorting method at each
construction step, a radix sort is used to achieve an O(Nlog(N)) construction complexity (for
kd-trees). Each k-DOP (the term used for a node’s polyhedron along the lines of Klosowski et
al. [KHM*98]) is represented by an edge-soup — made of line segments. Each line segment also
has a pair of indices identifying the two faces to which the edge belongs. This representation is
said to be compact, efficient to maintain during splits and is sufficient to compute the surface area
of a k-DOP. No other information is stored for the k-DOPs.

Dynamic programming is a method used to solve problems with overlapping sub-problems. It
works by first dividing the problem into several sub-problems that are again split until the sub-
problems are simple to solve. The solutions from these are then combined to obtain the solution
to the problem. In the surface area heuristic, along an axis, if the split points are sorted, then the
surface areas of the first potential sub-node (of the two potential sub-nodes created due to the split)
at these points are increasing. The surface area at the first point is found. The surface area at the
second point is found by using the first solution and so on to reduce the calculation time. Using
this approach, the expression for the areas is given as below.

) ,
Areaiepiopspit = Coiltgyu — t2) + Criltsprit — ti) + Si
Arearighiofsplit. =  ATeQigral — AT€ae 101 Split
Areagpny = Kzitzpm + Kiitsplie + Ko

i <= tgpit < lit1

where Cs;, Cv;, Ko;, K1; and Ky, are coefficients initialised for each face. The details of calcu-
lating these are provided in [BCNJO08].

Budge et al. state that the traversal method in [KMO7], Section 3.5.3.2 is not the best method. A
method similar to the standard slabs method is proposed. Initially, the bounding box rather than
the bounding volume is intersected by the ray. The ray origin and the ray direction reciprocal are
pre-computed and the traversal is continued. SSE is used for accelerating the pre-computations.

If the traversal is performed without pre-computation, a general decrease in rendering times is
noticed. However, they state that in this case, the trends are not clear. As stated earlier, we believe
that the rendering times depend on the number of axes used. In case the number of axes are
greater than the depth of the tree, not pre-computing can lead to a cheaper traversal, owing to
fewer ray—plane intersections.

The traversal method is shown to be faster than the presented (unoptimised) times by a factor of
10. When the bounding box is used instead of the bounding volume, fewer triangle intersections
but greater number of node traversals are seen. This is a disadvantage of using boxes in cases when
the viewpoint is outside the model. A closer fitting bounding volume can mean that numerous rays
can be terminated at the root node level itself.



3.8 Further Research on Structures with Non-Axis-Aligned Splitting Planes 76

They observed problems with the RBSP tree constructed for scenes like the Sibenik scene, and
attributed the problems to the fact that due to increased empty space culling, the tree is deeper.
However, we believe that the problem lies in the selection of planes to build the tree. The problem
is similar to the problems with the Sponza scene which is dominated by axis-aligned triangles. A
heuristic in which the directions are customised to the scene for which the tree is being built is
suggested as one of the solutions. An approach used by Coming and Staadt [CS08] to achieve this
customisation is suggested. This is an important benefit of RBSP trees — that the directions can be
arbitrarily chosen. However, to take maximum advantage of RBSP trees, the directions have to be
carefully selected. When that is done, RBSP trees may significantly outperform kd-trees.

Comparison of Traversal Methods The traversal methods described by Budge et al. are similar
to methods 3.5.1 and 3.5.2 detailed in this chapter. The main difference is the use of the bounding
box by Budge et al. rather than the bounding volume. In addition, since the ray’s intersection
parameters are pre-computed, a linear interpolation approach can be used to compute the #,;
parameters. These are believed to increase efficiency, especially in cases where the viewpoint is
outside the model. Also, while they state that their heuristic is not faster than the kd-tree, our
approach - detailed in Section 3.5.2 — for tracing single rays is faster for RBSP trees than for
kd-trees.

3.8.2 Ray Tracing with the BSP Tree - Ize et al.

Ize et al. [IWPOS8] take a more generalised approach. So far, it was believed that using arbitrary
non-axis-aligned planes does not lead to a good structure for ray tracing. While a restricted set
was used to make the problem more solvable, Ize et al. use a general BSP tree using popular ray
tracing concepts — like the SAH - shown to be applicable for non-axis-aligned planes by the study
on RBSP trees.

One of the main problems of using arbitrarily aligned planes is the construction of an effective
structure for ray tracing. Ize et al. attempt this by reducing the number of split planes used at
each split step. The SAH, with a polytope area calculation similar to ours — by clipping the node’s
polytope with the splitting plane and then computing the area by summing the areas of the faces,
is used to select the best split position from among a set of planes. Ize et al. limit the number of
planes at each triangle by using the triangle’s properties. For each triangle the split planes used
are

o The plane that defines the triangle face.
o The three planes that lie on the edges of the triangle and orthogonal to the triangle face.
e The same six axis-aligned planes used by the SAH for the kd-tree.

Restricting the planes as above limits the number of planes to be tested to O(N). At each split
plane, since triangles are not sorted along the axis, a helper structure — a bounding sphere hierarchy
—is used to count the triangles at either side of the potential plane leading to a log(N) cost for the
search and an O(Nlog?(N)) construction heuristic.

Another adjustment is made during the construction process to the SAH intersection cost. The cost
for intersecting a ray with a plane aligned along one of the coordinate axes is less than intersecting
with an arbitrarily aligned plane. Due to this, two costs, Cysp and Cyq_yyee — indicating the cost
of intersecting with an arbitrary plane and an axis-aligned plane respectively, are used during the
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SAH process. For arbitrary planes, it is deduced that the cost linearly varies with the number of
triangles in the node. Thus, the values of Cy, is given as

Cbsp = aCi(N ~ 1) + Cra—tree

where o — is a user tunable parameter (a value of 0.1 was used in the paper for ).

If, after investigating all split planes, it is determined that the cost of splitting is not better than
making this a leaf node, then a fixed cost is used for Cy,;, and the SAH is process is run again.

The two modifications to the SAH cost computation — using two different costs and considering
the cost of intersecting the non-axis-aligned planes as being linearly dependent on the number of
triangles in the node — are interesting. The application of these ideas to the RBSP tree construction
process is worth investigating. It may ensure that good trees are created for problematic scenes.

The traversal is a modified kd-tree algorithm. A bounding box is used to ensure that the ray has a
good probability of hitting the scene. Each split plane is then intersected using the standard ray—
plane intersection test — involving two dot products and a floating point division. However, due
to limited floating point precision, an epsilon value is used and rays with intersection distances
within an epsilon value of the split plane traverse both nodes. The BSP node traversal is roughly
1.75x slower than the kd-tree node traversal. Hence, a standard kd-tree plane intersection test is
used when the planes are axis-aligned. Another idea used is that in the nodes, the splitting plane
may actually be the triangle itself. In these cases, the intersection need not be recalculated.

A disadvantage of using arbitrary planes instead of a restricted set is that each node requires 20
bytes, instead of 8 bytes for a kd-tree or an RBSP tree node. This leads to a significant increase in
memory usage.

Ize et al. observe good results with the BSP tree. When single ray tracing with secondary rays
are used, the structure outperforms the kd-tree. The single ray tracer is faster on the BSP tree than
on the kd-tree. With SIMD, ray tracing on the BSP tree is as fast or faster than on the kd-tree.
Due to increased traversal costs, a pure BSP tree is not as effective if axis-aligned planes with
faster intersection methods are not used. In contrast to the RBSP tree where there is a decrease
in both traversals and intersections, the BSP tree only brings about a decrease in the number of
intersections.

When the viewpoint is outside, the RBSP tree would be able to terminate more inactive rays due
to a better fitting bounding volume. This is supported by Ize et al. when an RBSP built for the
top level is suggested. The number of planes are limited and investigating more split points —
in the order of O(N3) — is believed to make the BSP tree more effective. However, using such
a large number of split points is not viable. The memory requirement of general BSP trees is
also quite high. When single rays are traced, they state that their structure is the fastest structure.
This corroborates our belief that the use of more than three non-axis-aligned axes leads to a better
structure for ray tracing than kd-trees, especially for single ray tracing. A point to be noted though
is that Ize el al. have not tested the performance of their structure against RBSP trees, which could
be faster due to faster traversal methods and cheaper memory requirements.
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3.9 Summary

RBSP trees are an attempt to combine the best features of kd-trees and BSP trees as applicable to
ray tracing. It can also be thought of as an experiment to determine the usefulness of arbitrarily
aligned splitting planes. It has been assumed that the general form of BSP trees would not be a
very effective structure for ray tracing. However, it is hard to ignore the promise of BSP trees being
a structure that very closely wraps the scene being rendered to reduce the number of intersections
and traversals. RBSP trees are a subset of BSP trees that can be built to be very similar to BSP
trees. Thus, RBSP trees, in addition to being an excellent structure themselves, also enable the
study of BSP trees for ray tracing.

RBSP trees are compact to represent, have relatively simple construction methods, and have ef-
ficient traversal methods. The efficiency advantage of having a greater choice in number and
alignment of splitting axes is realised for scenes that pre-dominantly consist of non-axis-aligned
triangles. The results show that for these scenes, as predicted, RBSP trees do reduce the number of
intersections and traversals significantly, compared to kd-trees. This advantage is translated to a
performance advantage when the right traversal method is used so that RBSP trees can be a faster
method to ray trace a scene. The best traversal method is an SSE version similar to the kd-tree
traversal method.

The introduction of RBSP trees has sparked interest in the use of space subdivision structures with
non-axis-aligned splitting planes. Budge et al. [BCNJ08] attempt to address the problem of slow
construction times through the use of dynamic programming to obtain a faster method to calculate
the surface areas. Ize et al. [[WPOS8] apply some of the results from the RBSP trees to the more
general BSP trees with arbitrary planes. Both of them show very good results confirming the belief
that the use of non-axis-aligned planes is worthy of further study.

The study also reveals that for scenes that are dominated by axis-aligned triangles, the construction
heuristic results in trees that are not as good as kd-trees. On the other hand, for scenes like the
Sphere scene, where the splitting axes are essentially drawn from the scene, the heuristic constructs
trees that are significantly better than kd-trees. Another disadvantage is that the construction times
are significantly higher than that of a kd-tree and depend highly on the number of splitting planes
used. Both these problems can be solved by future work enabling intelligent selection of available
planes for the SAH upon investigation of the scene’s component triangles’ alignment. Using a
customised set of directions would allow reducing the number of splitting axes to a manageable
number. The optimum number of planes is found to be between 8-12.

As a method for visibility determination, the use of RBSP trees with single rays is probably not
practical. However, when large number of incoherent rays are to be traced, as in global illumina-
tion methods, the RBSP trees are thought to be especially useful. This is also an area of research
worth pursuing as part of the future work.
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This chapter discusses a visibility / rendering algorithm that attempts to demonstrate that trian-
gle mesh based scenes can be rendered at a lower complexity per pixel. The volume rendering
algorithm that shows a constant complexity per pixel motivates the investigation. It is research
undertaken as a part of the EPSRC grant that funded the investigation of lower complexity algo-
rithms.

This chapter expands and describes in detail the methods and results reported in the technical re-
port — Benjamin Mora, Ravi Kanunaje and Mark W. Jones, “On the Lower Complexity of Coherent
Renderings,” Swansea University, Technical Report, 2008. [MKIO0S].

The main algorithm, due to its similarity to his earlier work [MJC02] [MEO5], was implemented
by Dr. Benjamin Mora. However, a lot of the background work (e.g., the kd-tree construction for
the algorithm, ray tracing implementations against which Coherent Rendering is compared with,
etc.) as well as refinement to ensure that its application to triangle meshes is accurate has been
undertaken by me. The technical report, due to the fact that it was a submission to a conference
was limited in length. Hence, it is mainly concerned with the analysis of the complexity results
and does not delve into the details of the workings of the algorithm. This chapter details the
algorithm in full detail, using which the algorithm can be reproduced. Producing the benchmarks
for the complexity results has been another of my contributions. Finally, I am responsible for the
comparison to ray tracing and packet ray tracing in Section 4.6.2 and an analysis of the absolute
performance using profilers, as seen in Section 4.7.2. The analysis has led to the Row Tracing
algorithm, detailed in Chapter 5 which has resulted in a highly accelerated rendering method.
Thus, though Dr. Mora was the first author of the report, I have been responsible for a significant
part of the project, leading it to be an integral part of my PhD, and consequently the thesis.
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4.1 Motivation

RBSP trees proved to be an effective method to reduce the number of node traversals and triangle
intersections necessary for ray tracing by utilising the spatial coherence of objects in the scene.
Another method of achieving fewer traversals and intersections per ray is to use image coherence
—i.e., tracing the rays in groups and amortising the number of intersections and traversals over the
group. The method, called packet ray tracing / packet tracing, has been very effective to accelerate
ray tracing. As described in Chapter 2, packet tracing traverses groups of rays through the accel-
eration structure and intersects the component rays with the primitives. Several different forms of
packets like frustum based, pyramidal and rectangular packets have been used to accelerate ray
tracing.

The best performance for ray tracing has been observed by the MLRTA [RSHO5] — a form of
frustum based packet ray tracing that found entry points deep inside the tree to begin tracing the
individual rays. They also detail a packet traversal method based on interval arithmetic that is
relatively easy to implement. This method has been used to intersect packets through a variety of
structures and primitives [Ben06] [BWS06] [WBSO07].

As the packet tracer traverses through the tree, several rays in the packet may not intersect the
node. Even in these cases, the nodes need to be traversed since a few rays intersect the node.
This reduces the coherence and the amortisation' provided by traversing the tree with packets.
Consequently, the packet cannot consist of a large number of rays. At the same time, larger sized
packets lead to maximum amortisation of traversal costs, particularly when a large majority of
the rays traverse the nodes. Thus, a packet size that is optimal reduces the number of inactive
rays in the packet. In our implementations, a packet size of 8 x 8 was found to provide the best

performance?.

A packet size of 8 x 8 implies that a 1024 x 1024 image needs to traverse 16384 packets which
is still quite a large number of packets. Obviously, the number of packets increases as the image
size increases. Thus, an alternate method that uses larger packets could be even more effective.

The largest packet that can be used is one with rays through all the pixels of the image. The
method introduced in this chapter, Coherent Rendering, is an algorithm that considers all the
pixels of the image. The concept is adapted from object order ray casting [MJC02] — a high
performance volume rendering method that produces excellent images. Adapting this to triangle
meshes, providing a good implementation and subsequently studying the properties of such an
algorithm is the motivation for the rendering method called Coherent Rendering. The use of
the entire image as the packet is expected to produce an algorithm that potentially reduces the
complexity of rendering. The reasons for this belief will be described in the following section.

4.1.1 Average Complexity

The average complexity of rendering is important as scene sizes increase. Z-buffer based rasteri-
sation has an average complexity of (N x s) where N is the number of triangles in the scene and

amortisation in the context of packet ray tracing refers to the cost of node traversals being shared by the number
of rays in the packet. For most scenes, it can be observed that several neighbouring rays traverse the same path down a
tree. Thus, traversing the same nodes for each of the rays is wasteful. When packets are traversed, the node is traversed
just once and the cost is divided. or amortised, amongst the component rays, as long as they intersect the ray.

In our implementations. packet sizes of 4 x 4, 8 x 8. 16 x 16 and 32 x 32 were used. Of these. the performance
was the best when packet sizes were 8 x 8, followed closely by packet sizes of 16 x 16.
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s is the average projection size of the triangles. A better logarithmic complexity per pixel using
graphics hardware has however been shown by Wand et al. [WFP f01]. On average, ray tracing -
through the use of hierarchical data structures like the kd-tree or the BVH - has a complexity of
(){luy{N)) per pixel [HB00] [Hur05] [WFMS05] [WSS05] [HHS06] [YLMO06]. A simpler data
structure like the grid is shown to have a relatively slower complexity of 0 (N 1/4) [CW 88], It has
also been shown that worst case complexity of ray tracing is 0(log(N)) per pixel at 0 (N 1+ ¢)
memory and preprocessing cost (where ¢ > 0) [BHO+94j. However, this memory and prepro-

cessing cost is prohibitive and average case complexity is lent more importance.

Finding the closest triangle at a pixel (i.e., the closest triangle intersecting the ray corresponding
to a pixel) can be considered as a special case of a searching algorithm. This implies that results
obtained for search algorithms should hold for ray tracing. Hence, it may be difficult to improve
upon the logarithmic complexity per pixel when searching for a single element in the tree. Bent-
ley [Ben79] shows that if instead of searching for one element in the tree, £ neighbouring elements
are to be found, it can be achieved in O(log(N) + k) time, where Tv is the number of elements in
the tree. Thus, for sufficiently large values of k, the search complexity would be proportional to &

instead of log(N).

Nodes .
traversed bv 1 Nodes tiaverscd

a single ray j b> mulliPle ra>s

i] Traversed Nodes

2nd quadtree level

I'lquadtree level

(a) Dataset (b) (©)

Figure 4.1: Naive recursive ray tracing example on a 4 x 1voxelized grid. The number of
distinctly traversed nodes is a geometric series (1 + 2 + .... + N/2 + Tv = 27v - 1).

Packet ray tracing is one method that utilises this result to significantly accelerate ray tracing.
Packet ray tracing attempts to find the closest intersection for a small set of pixels. The fact that
the number of rays in the packet cannot be arbitrarily large (due to reasons of coherence mentioned
before) implies that k£ is small enough to not make a significant difference to the complexity.
Rendering times for packet ray tracing, hence, still appear to be logarithmic [WFMS05] [Hur05].
However, if k£ can be made significantly larger - by increasing packet sizes to very large sizes
(entire image), then it would overshadow the term /og(N) and as k approaches very large numbers,
the complexity would depend entirely on £ providing a constant complexity per pixel. This result
has been used by Jensen [JenOl] to search for photons in a photon map. Utilising this result to
investigate if a better complexity for rendering could be achieved is the basis for the Coherent

Rendering.

The application of Bentley's search result to 3D rendering is obviously not trivial at this point, even
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(a) Sponza scene - Left side rendered with Coherent (b) Average number of intersections and nodes traversed
Rendering and right side showing the wireframe by a ray tracer for the Sponza scene with space median
and SAH kd-trees. Average node traversals appears to be
logarithmic whereas the number of triangle intersections

appears to converge to a constant.

Figure 4.2: Ray tracing the Sponza scene

if it is highly probable that the intersection points of the different rays composing the image are
coherently located in the search space. Figure 4.1 illustrates the application to the domain better
by showcasing a 4x4 voxelised 2D world containing a ID flat surface that will be ray traced. In
the figure, rays and surfaces are axis-aligned and the generalisation of the same case toa N x N
voxelisation will be discussed (N being a power of 2). To speed-up rendering, two quadtree
levels (log2(N) levels in the general case) are constructed from the voxelised scene, indicating
non-empty spaces. Figure 4.1(a) indicates the nodes (numbered by traversal order) traversed by
a simple top-down recursive ray tracer for a single ray. In this example, three node traversals
(log2(N) + 1) are needed before hitting the surface, which happens immediately after reaching
the first leaf node. If the same simple recursive ray tracer is called for four (i.e, ») different but
similarly aligned rays as depicted in Figure 4.1(b), a recursive ray tracer would traverse 4x3
nodes (i.e, r(log2(N) + 1)). However, it is noticeable that some of them are traversed several
times (nodes 1. 2 and 5 in Figure 4.1(b)). Hence, if only distinct nodes traversed by the algorithm
are counted, only seven nodes (2N —1= 1+ 2+ 4--..+ N/2 + N) are traversed by four (i.e,
r) rays.

Therefore, if an algorithm manages to traverse every node just once, the complexity of tree traver-
sal would be reduced from logarithmic per ray to a constant per ray. This is the principle behind

Coherent Rendering.

The assumption is that the logarithmic complexity of a regular recursive ray tracer is due to the
tree traversal itself, and not due to the intersection tests. The average number of intersections
per ray by a regular recursive ray tracer tends to a constant, provided the tree is well constructed.
Ray tracing the Sponza scene 4.2(a) with an SAH kd-tree, shows that the average number of
intersections per pixel tends to 2. At the same time, the number of traversal steps increases with
maximum depth. This strongly supports the belief that the per-pixel logarithmic complexity of a
regular ray tracer is mainly due to the tree traversal, and the intersection complexity is 0(1) and

indicates that efforts should concentrate on lowering the number of tree traversals.

The volume rendering method - Object Order Ray Casting (OORC) by Mora et al. [MJCO02] -
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demonstrates an O(1) complexity per pixel. This method and its main results will thus be detailed
in brief before the Coherent Rendering algorithm is detailed.

4.1.2 Object Order Ray Casting

Object Order Rav Casting by Mora et al. [MJCO02] is an object order method for volume ren-
derings. However, instead of tracing a ray through the volume, cells of the volume / voxels were
projected onto the screen. Since only orthogonal projections were considered, the voxels projected
onto a similar area (hexagon) on the screen. By just displacing the mid-point of a pre-computed
projection, a voxel’s projection is found very efficiently. In addition, a min-max octree was used
to identify and skip transparent regions of the volume. Using the octree also allows the front-to-
back visibility order determination. Combined with Hierarchical Occlusion Maps, the visibility
of a voxel / octree cell is determined. The combination of these structures for rendering is very
efficient. A very similar Maximum Intensity Projection (MIP) algorithm [MEQS5] has been shown,
both mathematically and empirically, to have an average complexity of O(N?) for an N? image
of an N volume leading to an O(1) complexity per pixel. It is to be noted that since the algorithm
renders only orthogonal projections, one dimension of the image and the volume are the same (/V)
leading to the aforementioned complexity result.

The important results from the OORC algorithm will be briefly described in order to demonstrate
the O(1) complexity that motivates us to adapt it to a mesh rendering context.

Four widely used datasets have been resampled from 64% to 700? voxels. The datasets are Aneurism
(originally 256%), UNC head (256 x 256 x 225), Bonsai (256%) and Neghip (64%). All renderings
produce a 1024 x 1024 image using orthogonal projection (current code does not allow perspec-
tive projection). For all renderings other than the Bonsai dataset, the zoom value has been fixed
to 1, which means that an axis-aligned projection of a voxel will have a 1 x 1 pixel footprint. The
zoom has been reduced to 0.8 for the Bonsai dataset because the 700? dataset’s isosurface would
otherwise not fit the screen space.
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Figure 4.3: Object Order Ray Casting rendering times

Rendering times represent the average contribution of 30 different viewpoints. Finally, signifi-
cant effort has been put into optimising the OORC algorithm, using a profiler and SIMD SSE

instructions as well.

Figure 4.3(a) shows the rendering times according to the volume size. In order to demonstrate
the complexity better, the preprocessing time is subtracted from these rendering times before
dividing it by the number of pixels in the image(Figure 4.3(b)). The preprocessing time is the time
required to initialise a few rendering parameters and the 1024 x 1024 image (which is oversized
when rendering small volumes). Thus, only the tree traversal and the access to the relevant pixels

of the image are taken into account, which demonstrates the convergence slightly sooner.

After analysing Figure 4.3(b), it appears that the curves are flat enough in the j196™ - 700 'J voxels
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Wald et al. Mora et al.
Processor Dual Opteron 1.8 GHz, IMB  Athlon 64 X2 2GHz, 512KB
Cores used 2 1
Bonsai 5.2 fps 8.2 fps
Aneurism 6.2 fps 20 fps

Table 4.1: Comparison with ray tracing approach

range to validate the 0 (N 2) complexity, especially when compared to a theoretical logarithmic
curve in Figure 4.3(b). It is thought that the low efficiency of the algorithm for models smaller
than 1961 may be due to the overestimation used during the visibility process. A more accurate

estimation of visibility could well lead to an earlier convergence.

Rendering times in Figure 4.3(b) are divided by the percentage of non-black pixels in each render-
ing to obtain rendering times per non black pixels (shown in Figure 4.3(c)), since some volumes
like the Aneurism are rendered much faster as they have fewer affected pixels. One can see that
rendering times per non-black pixel are now much closer. Only the Bonsai dataset has a slightly

higher cost per non-black pixel, probably due to the different voxel/pixel aspect ratio used.

Finally, the rendering times for the Aneurism and Bonsai datasets are compared with the very
interesting ray tracer by Wald et al. (WFMS05). This algorithm - shown to be logarithmic - has
been optimised using SIMD instructions as well, and unlike OORC. is able to perform perspective
projection. The same isosurface, the same processor family, and the same image size (512%) has
been used. While it is necessary to be very careful while such comparisons are made since many
parameters like shading and viewpoints may not be the same, this comparison will give us a good
idea of the order of efficiency of the OORC algorithm. Results summarised in Table 4.1 show that
the level of performance obtained with just single thread by the OORC algorithm is much better
even for small volumes. It is likely that the performance advantage is more pronounced as the

volumes get larger due to the better complexity.

The method is a very efficient method to undertake volume rendering, showing significantly higher
performance than previous methods. Analyzing the complexity of this method reveals that it has
an average complexity of 0(1) per pixel. This led to the belief that if a similar algorithm could
be implemented for triangular meshes, similar performance and computational complexity could
be achieved. However, the algorithm for volumes was to be adapted for use with meshes. In
addition, perspective projections - more popular in triangular mesh renderings - was necessary to
be considered. Coherent Rendering is the adaptation of this object ray casting method to render

triangular meshes.

4.2 Coherent Rendering - Concept and High Level Algorithm

As mentioned. Coherent Rendering is an adaptation of the Object Order Ray Casting method. It
is an attempt to consider the entire viewing frustum as a packet of rays. However, in order to
achieve this, concepts from both rasterisation and ray tracing are used. In addition, to perform the
occlusion testing - achieved easily lor single rays through early ray termination - the concept of
Hierarchical Occlusion Maps [ZMHH97] [Zha98] is adapted.

The high level algorithm of Coherent Rendering first considers the root node of the kd-tree and
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determines if it is visible. If it is, then its children are considered in a front-to-back order with
respect to the viewpoint. This is continued until either the node is determined as being not visible
or a until the leaf node is reached. A node can be determined as being not visible if it is either
outside the frustum or if it is occluded by already rendered parts of the scene. Once the traversal
reaches the leaf node, it implies that some of the geometry in the leaf node may be visible. Thus,
each triangle is tested for visibility and rasterised if it is visible. In this manner, the entire scene is
considered as a packet and at the end of the process, each pixel is shaded accordingly.

The high level algorithm can be written as shown below.

CoherentRender ()

{
InitialiseConstants();
TraverseTreeCoherent (rootNode) ;
Shade Pixels

Listing 4.1: High Level Coherent Rendering algorithm.

One of the differences between rasterisation and Coherent Rendering is the use of a ray tracing
structure like the kd-tree to achieve a better complexity for rendering. The front-to-back traversal
of the structure ensures that geometry that is closer is processed prior to geometry that is further
away from the viewpoint. Using this property, occlusion is detected for nodes (including the
geometry in them) by using Hierarchical Occlusion Maps that are adapted to the algorithm.

The fact that in this method each node is traversed just once at most, is important to attain an
improved rendering complexity. In addition, the triangles are not shared by too many nodes as
long as a good tree can be built. Thus, except in cases where a good tree cannot be built, the
number of triangles to rasterise is minimal. Minimising the number of these two operations —
responsible for almost all of the computational time in a rendering system — is expected to lead to
a very efficient method.

While the main traversal algorithm is well-known, the primary goal is mainly to ensure correct
implementation of the entire pipeline and to observe the complexity improvement. Many papers
/ software are already using similar algorithms for rendering [{Gre96] [ZMHH97]. For example,
Bittner et al. [BWPP04] described a similar traversal using occlusion queries to test for occluded
cells. However, the visibility function must actually perform a constant (O(1)) number of opera-
tions to ensure that the global average O(1) complexity holds. One way to perform the test would
be to query all rays intersecting the node and to check whether they are already opaque. However,
even this would not be an O(1) algorithm. The use of HOMs, that allow occlusion determina-
tion in constant time per pixel, is the main component in the attempt to obtain an O(1) rendering
method.

In the high level algorithm, there is an initialisation process whereby several important variables
and constants necessary for the rendering process are initialised. Subsequently, the tree is traversed
to determine the triangle that contributes to each pixel of the image. Finally, using the triangle and
the position of the viewpoint and the lights, the pixel is shaded accordingly.

Of the three steps, the tree traversal including the leaf node processing constitutes the main com-
putations in the algorithm. These methods including a few important auxiliary methods will be
described in detail in the following sections.
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4.3 Tree Traversal

Once the several variables and constants for this viewpoint have been computed, the tree is to
be traversed to render the image. The traversal considers the nodes of the kd-tree structure in a
front-to-back visibility order starting from the root node. It can be written using the pseudocode

below.

TreeTraverseCoherent (node)

(

Project node onto image
if ( node not within frustum or
isOccluded (node) or
node is fully between 4 pixels)
return;
if (isLeaf (node) )

(
FrocessLeafNode (node) ;
return;

)

side - viewpointlaxis] > splitpos;
if (side > 0)

frontNode = node.leftNode;
back.Node = node.rightNode;

}

else

frontNode = node.rightNode;
backNode = node.leftNode;

}

TreeTraverseCoherent (frontNode) ;
TreeTraverseCoherent (backNode) ;

Listing 4.2: Tree traversal using the entire frustum. If the frustum intersects the root node, the
tree is traversed in a front-to-back order until the leaf nodes where the triangles contributing to

the image are determined.

Coherent Rendering, at the highest level, as shown by the pseudocode above, is a recursive al-
gorithm that considers each node in a front-to-back order with respect to the viewpoint. At each
node, the algorithm determines the node's visibility. If the node is visible, its child nodes are
considered. The process continues until a leaf node is reached or until the node is determined as

being occluded.
The main steps to determine if a node is visible or not are as follows:
* Project node onto the image.
* Determine frustum visibility.
* Test node for Occlusion.
* Test to see if node is too small.

Except the occlusion test - that will be described in much greater detail in Section 4.4 - the other

operations will be detailed in the following subsections.
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4.3.1 Node Projection

Projecting a node onto the image plane implies determining the bounding rectangle of the node.
This is achieved by transforming the eight vertices of the node to image space. The vertices are
multiplied by the global transformation matrix to first transform them (with pixels in the range of
-1.0 to 1.0) and then to get the actual pixels occupied by them by multiplying and adding the half
image width to the X components and half image height to the ¥ components. Once the pixels
of the node’s vertices are found, the maximum and minimum A' and Y coordinates are selected to

get the bounding rectangle of the node. Figure 4.4 shows the node projected onto the image space.

image plane

viewpoint*
node projection

Figure 4.4: Node projection. Coherent Rendering projects all the eight vertices of the node onto

the image plane to obtain the node projection for the root nodes.

The computations to convert a vertex from model space to image space can be given as:

P =pi*M

Px = (Px/Pw)*half Width + halfWidth

Py — (Py/Pw) *halfHeight + halfHeight

Pz = (Pz/Pw) (4.1)

where pi - the vertex to be projected

M - the global transformation matrix

p - the vertex after projection

Px?PyjPz ~ AT, Y, and Z coordinates of the point on the image

pw- homogeneous coordinate

halfWidth, halfHeight - Half of the image’s width and height respectively

The above terms provide the calculations necessary to convert one point / vertex from model space
to image space. Hence, to find the projection of the node on the image space, the eight vertices

arc transformed using the above calculations.

The above terms show that projecting a single point requires several expensive calculations - one

matrix multiplication, one division and several additions and multiplications. Thus, the entire
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process of projecting a node onto the image is a very expensive operation.

In order to reduce a few calculations, the observation that when a kd-tree node is split, only four
new vertices are created, is used. Thus, when a node is split into two, the eight vertices are divided
into two sets of four vertices - one set for each child node. The other four vertices for the two
child nodes are shared and are defined by the four vertices formed by intersecting the split plane
with the node. Figure 4.5 shows this. Thus, instead of projecting all eight vertices of a node, four
vertices of the split plane are projected and the list of projected vertices is maintained through the

traversal process.

image plane

viewpoint®
node projection node

Figure 4.5: Node projection - projecting only the split plane. For non-root nodes. Coherent

Rendering projects only the split plane to reduce computations.

Once the node has been projected onto the screen, it can be subjected to the visibility tests.

4.3.2 Frustum Visibility and Node Size Test

An unoccluded node is determined as not visible if it lies outside the frustum or if its projection
falls between four neighbouring pixels (2 vertical and 2 horizontal pixels). These two tests are

performed for every node at each of the traversal steps.

43.2.1 Frustum Visibility

With respect to the frustum, a node can either be partly inside the frustum, completely inside the
frustum or completely outside the frustum. It is necessary to determine the case a node belongs to

in order to determine the visibility of the node and its child nodes in consideration.

Node partially inside the frustum - To determine if a node is partly within the frustum, it is
tested for intersection with the planes forming the frustum. Since the image is rectangular, the
frustum is formed by four planes. The viewpoint forms the common point among all the planes.
The other two planes are determined by the two end points of the edges of the image. Thus, a node
is partly inside the frustum if the node intersects one or more planes of the frustum and a part of it
is inside the frustum.
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In the implementation, a clipping algorithm is used to determine if a node is partly within the frus-
tum. The node is clipped with all the planes of the frustum. If the clipping algorithm determines
that the polyhedron formed is not an empty polyhedron - detected when the number of vertices it
comprises of is not zero - then a part of the node is within the frustum. When a node is determined
as being partly inside the frustum, its child nodes have a possibility that they are fully outside /
inside the node. Hence, child nodes of partly inside nodes need to be tested for frustum visibility
at each recursive step until they are either fully outside the frustum or fully inside the frustum.

This is shown in case 1in Figure 4.6

node
frustum
viewpoint
Case 1- Node partially inside frustum
node
frustum
viewpoint
Case 2 - Node fully outside frustum
frustum
viewpoint

Case 3 - Node fully inside frustum

Figure 4.6: Frustum visibility of a node. Node can either be partially inside the frustum, fully

outside the frustum or fully inside the frustum, as shown in the diagram.

Node fully inside or outside the frustum - When a node is determined as not being partly
inside the frustum, it implies that the node is either fully inside or fully outside the frustum. Since
the state of all the vertices of the node with respect to the frustum is the same (either inside or
outside), it is sufficient to determine if one of the vertices is inside the frustum or not. If the signed
distances of the point to all the four frustum planes are positive, it implies that the node is fully
inside the frustum. Otherwise, it implies that the vertex and consequently the node is fully outside
the frustum. Cases 2 and 3 in Figure 4.6 show these nodes that are fully inside and fully outside

the frustum.

When a node is fully outside, the node can be skipped. When a node is fully inside, all child

nodes are also fully inside. Hence, frustum visibility tests are not necessary for child nodes of
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fully inside nodes.

4.3.2.2 Node Size Test

In the Coherent Rendering algorithm, the pixels are considered as points rather than as squares.
Thus, when a node becomes too small such that it lies between four pixels (two adjacent vertical
pixels and two adjacent horizontal pixels), the objects in this node (or any child nodes / subtrees
it may have) cannot contribute to the image. This occurs when the triangle density is high (a large

number of small triangles). These nodes do not need to be processed.

This condition is easily tested. Once the node is projected onto the image plane, the vertices at the
extremities along the X and Y axes of the image are determined. These values - the minimum
and maximum values along a particular axis are used to determine whether the node is too small.
When the integer part of the minimum and maximum values are the same along either axes, it is
determined that the node cannot contribute to the image. Figure 4.7 shows a few examples of how

this may happen. The pseudocode below describes the process of detecting if a node is too small.

Figure 4.7: Examples of nodes occurring between four pixels. Since Coherent Rendering

considers the pixels as points, geometry occuring between pixels are ignored.

pMinX =min(X values of eight vertices)
pMaxX =max (X values of eight vertices)

pMinY =min(Y values of eight vertices)
pMaxY =max (Y values of eight vertices)

nodeTooSmall = ((int)pMinX = (int)pMaxX or
(int.) pMinY == (int)pMaxY)

Listing 4.3: Pseudocode indicating how very small nodes, that are small enough to not contribute

to the image, are determined.

If a node has been determined as being within the frustum and big enough, it can consist of
triangles that are a part of the image. However, the nodes (and triangles) may be occluded by
triangles that have already been rendered. Occlusion detection to ensure accurate visibility is

achieved through the use of Hierarchical Occlusion Maps.
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4.4 Occlusion Detection — Hierarchical Occlusion Maps

Occlusion detection is built into ray tracing when a space subdivision structure is traversed in a
front-to-back manner. However, as packet sizes increase, the number of rays in the packet make it
difficult to skip nodes due to the fact that the active rays may intersect some geometry in the node.

Similarly, with Coherent Rendering — which could be considered as a form of packet tracing with
the entire image as the packet — it is difficult to use this property directly to determine occlusion.
At the same time, it is important that occlusion is detected as early as possible so that nodes higher
up in the tree can be skipped.

Since Coherent Rendering cannot use early ray termination directly, Hierarchical Occlusion Maps
[ZMHH97] [Zha98] are adapted to serve a similar purpose. Hierarchical Occlusion Maps are con-
ceptually simple and determine if regions of the image are occluded. They are adapted for use with
Coherent Rendering. The usage mainly consists of two parts — updating them so that they indicate
the current state of occlusion, and testing the corresponding HOM pixels to determine occlusion.
The concept of HOMs as used in Coherent Rendering, as well as their usage is described in further
sections.

With HOMs, occlusion is ascertained by testing just one pixel value. In addition, the update
process is also proportional to the number of pixels in the image and is independent of the number
of triangles in the scene. This is an important component in the efforts to investigate if an O(1)
complexity rendering method is possible.

4.4.1 Concept of HOMs

As the name suggests, HOMs consists of hierarchically organised pixels. HOM pixels in the lower
levels of the map indicate smaller areas with the lowest level indicating four pixels of the actual
image. Each upper level HOM pixel combines four pixels from the corresponding lower level.
At the highest level, a single HOM pixel represents the entire image. Figure 4.8 shows the HOM
generated for the Armadillo model.

In order to minimise the number of HOM pixels accessed during traversal, the structure is modified
slightly so that a given extent can be tested by examining just one HOM pixel. A region of
influence of a pixel is determined as the four pixels closest to it (shown in Figure 4.9). i.e., when
a pixel’s triangle is determined, the closest four pixels are considered to have changed and hence
the value in these four pixels are incremented. Due to this, a HOM pixel (covering four image
pixels at the lowest level) can be incremented 16 times, with a value of 16 indicating that the
corresponding area in the image is occluded.

The HOM pixels can have values between 0 and 16 — a value of 0 indicating that the pixels
represented have not yet been rendered and a value of 16 indicating that the pixels are fully opaque
and hence do not need to be processed again. A value between 0 and 16 indicates that a few pixels
in the region of influence have been rendered, but not all of them are opaque yet. These values
indicate that processing has to continue for areas that correspond to the pixel.

The HOM must be updated whenever a pixel is rendered so that it always maintains the current
occlusion state for the rendering process. This is performed in the recursive rasterisation function
described in Section 4.5.
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Final Rendering

Figure 4.8: HOM for the Armadillo model. The image with the green border is the actual image
of size 1024 x 1024. The image labeled O is the lowest level of the HOM and so on. Level 0 of
the HOM consists of 256 x 256 pixels. The highest level (5) of the HOM has just one pixel.

The updating of HOMs - so that it indicates the current state of occlusion, and testing for occlusion

using it will be described in the following sections.

4.4.2 HOM Update

When a pixel is rendered, it is set to the appropriate colour. At the same time, the pixel affected
and three of its nearest pixels (as shown in Figure 4.9) are considered as being changed. Hence,
the lowest level HOM pixel corresponding to these four pixels are incremented by 1. Each HOM
pixel can be influenced by 16 lower level pixels and thus can be incremented 16 times. A value
of 16 for the pixel value indicates that the region of the image represented by the pixel is opaque.
This change is propagated upwards by incrementing the four closest pixels until either the topmost
level is 16 or the value of a pixel is less than 16.

The concept of region of influence is an optimisation to the algorithm that allows only one HOM
pixel to be tested. As will be discussed in Section 4.4.3, only the HOM pixel corresponding to the
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Figure 4.9: Region Of Influence in HOM. When a pixel is determined, the four closest pixels
(including itself) are deemed to be in the region of influence. These four pixels can cause an

increment in upto four upper level HOMs.

mid-point of projection’s bounding box needs to be tested. If the concept of region of influence
were not used, four pixels corresponding to the extremities of the bounding box would need to be
tested.

Since the maximum number ofupdates to a HOM pixel is 16 and since the number of HOM pixels
is a third of that of the original image (1/4+1/16+ 1/64 + ... = 1/3), the updating process
requires at most 16p2/3 steps, where p2 is the image size, leading to an 0 ( 1) complexity per pixel
for updating the HOM. It is to be noted that the complexity is 0(1) with respect to number of

triangles and not number of pixels.

4.4.3 Occlusion Testing using HOMs

To perform the occlusion test, the exact HOM pixel corresponding to the pixel extent is tested.
Once the pixel has been identified, the actual occlusion determination is just a single comparison
against 16. When the HOM pixel’s value is equal to 16, the space corresponding to the HOM
pixel and resultantly the pixel extent is fully occluded, otherwise it is not. Occluded nodes and

occluded parts of triangles do not need to be processed.

The most complex part of the test is determining the exact pixel to test. Two bits of information
arc needed - the level of the HOM and the bit of the HOM to check in the level. Both of these are

calculated using the vertices of the node’s bounding box.

The bounding box is determined by using the projection of the node / triangle being tested. The
minimum and maximum values of the X and Y coordinates of the projection gives the necessary

bounding box.
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Finding the level of the HOM The level of the HOM is dependent on the maximum of the
two lengths of the bounding box. The structure of the HOM is such that in the first level, each
pixel indicates two X coordinates and two Y coordinates. At the second level, it indicates four
coordinates each and so on. Hence, the level is given by the log; of the greater of the two extents.
The formula used for determining the correct level is simply given by | = Integer(loga(d1)),
where d; is the longest edge (in pixels) of the box and [ is the map level. [ must also be clamped to
[0..log2(N) — 2] since the bounding box may either smaller than a pixel or larger than the image
size N. The logy of a floating point number can be determined efficiently by using the IEEE
floating point representation’s exponent part that gives the power of two just below the floating
point number being represented. The expressions below provide the implementation to determine
the HOM level to be tested.

dl = max(xExtentLength, yExtentLength)
HOMLevel = Exponent (dl)+1

Listing 4.4: Determining the HOM level. Exponent function uses the IEEE representation of a
floating point number to easily determine the exponent.

Finding the Exact Pixel to Test at a Level Once the level has been determined, the pixel at that
level is necessary. For this, the mid-point of the node projection’s bounding square is used as the
representative pixel. At each level, each coordinate is halved — for eg., if the pixel to be tested is
(100, 200), then at the first level the pixel to be tested would be (50, 100). At the next levels, it
would be (25, 50), (12,25) and so on. It can be noticed that the pixel at the required level is the
original pixel divided by 2O Level Since integer divisions by powers of 2 are sufficient, it can
be achieved with just a bitwise right shift operation. The X and Y coordinates of the pixel to be
tested at the required level are computed in the implementation as shown below.

HOMPixelX
HOMPixelY

x >> HOMLevel
y >> HOMLevel

Listing 4.5: Determining the HOM pixel to check using bit shift operators.

Once both the level and the pixel in the map are determined, it is simple to detect occlusion. If
the pixel thus found has a value of 16, then the node or triangle part is occluded. Otherwise it is
considered as not occluded and hence processing continues. It may be observed that the occlusion
test involves very few operations.

HOMs are an integral part of the tree traversal process. Occluded nodes are easily detected using
them and these nodes can be skipped. The traversal continues down the tree, skipping occluded
and invisible nodes to finally reach the leaf nodes. At the leaf nodes, the triangles in them may be
a part of the final image. Determining the parts of the triangle that are part of the final image is
undertaken by the leaf node processing part of the algorithm.

4.5 Leaf Node Processing — Recursive Rasterisation

The tree nodes are tested for visibility, as described in the preceding sections, until either they are
determined as being occluded or until a leaf node is reached. When a leaf node is reached, the
node is fully or partly visible from the viewpoint. Consequently, some or all of the geometry it
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contains may also be visible from the viewpoint. The parts of the triangles in the leaf node are
tested for occlusion until the pixel level and if they are not occluded, then the pixels they occupy

are determined, coloured and shaded accordingly.

At the highest level the algorithm can be described with the pseudocode below.

ProcessLeafNodeO

1
tList = triangles in leaf node
for (each triangle t in tList)

{

polygon = ClipWithBoundingBox (t, nodeBB) ;

polyTrs = polygon.SplitIntoComponentTriangles ();

for (each component triangle cTr in polyTrs)
RecursiveRasteriseTriangle (cTr.pi, cTr.p2, cTr.p3);

Listing 4.6: Leaf node processing in Coherent Rendering algorithm. When a leaf node is

reached, each triangle's part that is in the frustum is recursively rasterised.

The pseudocode shows the main components in determining the contents of the final image. It is
to be recalled that only scenes consisting exclusively of triangles are considered. Every triangle
identified and accessed (as will be shown in Appendix A.2.2) must be clipped with the bounding
box of the node. This is to ensure that the parts of the triangle that are outside the node are
not considered. The clipping is performed using a modified version of the Sutherland-Hodgman
clipping algorithm [SH74].

leaf node triangles

common

vertices
node

Parts of triangles clipped with the bounding box
(triangulated if necessary)

Figure 4.10: Leaf node triangles needing clipping due to partly enclosed triangles. To ensure
accurate visibility, only parts of triangles that are fully contained by the node are to be

considered. If other parts are considered, they result in rendering artifacts.

As Figure 4.10 shows, clipping these triangles leads to polygons that may not be triangles. These
polygons are then broken up into their component triangles using a very simple method. One of
the vertices of the polygon is considered as the common vertex and a fan of triangles is created
with this vertex as the common vertex of all the triangles. The triangulation method is illustrated in
Figure 4.10. This method, how'ever, is not the best method for triangulation and leads to triangles
of poor aspect ratio. Other methods wherein a point is placed in the centre of the polygon and
connected to each vertex would result in better quality triangles. But. for the purposes of our

algorithm, the triangulation method used by us provides satisfactory results.

Subsequent to clipping and triangulating, the component triangles are rasterised. The first step is to
project the three vertices of the triangle to find the pixels that the triangle vertices occupy in image

space. The projection method is computed as described in Section 4.3.1 - i.e., by multiplying the
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point by the global transformation matrix and converting the coordinates from OpenGL space to
image space. The pixels affected by the triangle are then determined with a subdivision method

as described by the pseudocode below.

RecursiveRasteriseTriangle (pi, p2, p3)
t

minX = min(pilx], p2[x], p3[x])

maxX = max(pil[x], p2[x], p3I[x]

minY = min(pilyl, p2[yl, p3lyl)
maxY = max (pllyl, p2lyl, p3ly])

minZz = min(pilz], p2[(z], p3lz])
maxZ = max(pll[z], p2[z], p3lz])

if(maxX < 0 II maxY < 0 |I
minX > imageWidth || minY > imageWidth
Il maxZ < -1 || minZ > 1)

//1f triangle 1is outside image bounds
return;

if (triangle 1is fully between 4 pixels)
return;
visible = CheckVisibilityHOM ( (minX + maxX)/2, (minY+maxY) /2);
ifflvisible)
return;
if (maxX-minX < 1 && maxY-rninY < 1)

{

setPixel (maxX, maxY¥Y);
upaate HOM;
return;

}

1 = LongestEdge ();

p4 = PointOfTriangleNotIn(pi, p2, p3, 1);

middle - Midpoint (longestEdge) ;

RecursiveRasteriseTriangle (longestEdge.pl,
longestEdge.p2, middle);

RecursiveRasteriseTriangle (middle, p4, longestEdge.pl);

Listing 4.7: Recursive rasterisation of a triangle. This is a subdivision algorithm that divides the
triangle recursively until it casts a projection on only one pixel, at which point the triangle can be

attributed to the pixel.

The first step of the recursive process is to find the bounding box of the triangle being considered.

This is determined as the minimum and maximum coordinates along each axis.

Once this is determined, if the bounding box is outside the frustum, the triangle cannot be in the
final image. A test is undertaken to determine if the bounding box is within the bounds of the
image. If the bounding box’s maximum coordinate is less than zero, in which case the entire
bounding box and consequently the triangle is outside the image. Similarly, if the minimum
coordinate of the bounding box is greater than the image width / image height, then the triangle is
outside the image. The bounds for the Z coordinate are -1 and 1which are the depths of the near
plane and the far plane. Parts of the scene not between these planes, indicated by Z values > 1

and < —I1. are discarded.
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If the triangle is determined as being within the image boundaries, the next test it has to undergo
is the visibility / occlusion test. Hierarchical Occlusion Maps - described in Section 4.4 are again
used to verify the triangle’s visibility. The HOMs indicate if the pixels occupied by the triangle
have already been rendered. Due to the front-to-back traversal order of nodes, if a pixel has
already been rendered, it implies that for this pixel, the first triangle along the ray (conceptually)
has been determined. Hence, no other triangle can be visible at this pixel. The HOMs allow easy

determination of this condition.

When a triangle is not small enough to determine just one pixel, it is split into two smaller trian-
gles. The triangle is divided into two smaller triangles at the mid-point of the longest edge of the
triangle. The function is then recursively called for the two split triangles until the extent of the
triangle is less than one pixel wide and one pixel high. Through each subdivision, the HOMs are
tested to see if the split triangle is occluded. When the subdivided triangle’s extents are less than

than one, the pixel overlapped by the triangle extent is given the colour of the triangle.

Figure 4.11 shows the rasterisation process for a few different triangles.

pixe|5 recursn e
subdivi: ions
triangles

very small triangle

pixels
shaded pixels

Figure 4.11: Rasterising triangles. A subdivision method is followed where the triangle is
subdivided recursively until they span a single pixel. At this pixel, the triangle is determined as

being visible.

Simplicity is favoured while implementing this algorithm. Similar ways to perform hierarchical
rasterisation (War69J [Gre96] IGGW98J could have been considered, but the simpler method de-
scribed was favoured. A crucial property of hierarchical rasterisation is that its complexity (i.e.,
the number of recursive calls) is proportional to the number of pixels of the projected triangle.
Figure 4.12 show s the square root of the number of recursive calls for a single triangle projection
according to one dimension (image width / image height) of different image sizes, demonstrating
a perfect linearity of the algorithm. The square root is needed since a single dimension of the

image is plotted on the X axis.

The recursive function is, on average, called approximately 8 times per pixel. The recursion
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Figure 4.12: Linearity of the hierarchical rasterisation algorithm. The number of recurive
rasterisation calls to rasterise the triangle (right) at different resolutions (from 82 to 40962) has
been shown. It can be seen from the graph (left) that the number of calls increase linearly

according to image si/e.

stops only when the size of the bounding box of the triangle is less than a pixel wide, but many
subdivided triangles end up between pixels, making shading impossible and increasing the per

pixel cost.

The process identifies the triangle projecting onto each pixel. When all the triangles for all the
pixels have been identified, the visibility at every pixel is determined. The image can be rendered
by shading the pixel depending on the position of the light source. A very simple scheme of
shading is used where the dot product of the triangle normal and the ray is taken and the pixel is
shaded accordingly. Thus, using the method described in the above sections, the visibility at each

pixel is determined and using a basic shading process, an image is generated.

4.6 Results

Although the algorithm's main motivation is to investigate the possibility of a better complexity, it
was expected that the algorithm would be competitive with packet ray tracers. Hence, in addition
to complexity results, the absolute performance results in comparison to packet ray tracers are

provided.

However, it is to be noted that, so far, no particular effort has been made to optimise the different
parts of the algorithm. The main goal of Coherent Rendering is to investigate performance as
scene sizes and images sizes increase. Also, kd-trees built using the space median heuristic have

been chosen, since it appeared to be faster in most cases than the surface area heuristic.

4.6.1 Empirical Complexity

The algorithm has been empirically tested with different datasets on an AMD Athlon X2 3800+
(2 GHz, 2 cores, 512 KB cache per core) wdth 2 GB of memory available. All our algorithms are

single-threaded and running on a 32-bit operating system.
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Synthetic Benchmark  For the first test, a synthetic plane (Figure 4.13(a)) was subdivided to
see the evolution of the rendering times according to the number of triangles. A plane with 2
triangles is used as the base model and is subdivided to obtain scenes with 2S~1 triangles, where
s is the number of subdivisions. In addition, 15 copies of the same subdivided plane were added
behind the original one and the per pixel rendering times for both the single and multi plane scenes

were studied. A unique viewpoint - shown in Figure 4.13(c) - was used.

Rendering time per pixel Rendering time per pixel

—e— 32x32 32x32
— 64x54 —a— 64x64

128x128 128x128

256x256 256x256

S12x512 % 512x512
—+— 1024x1024 e 1024x1024
T habroas — i 2048x2048
- x 4096x4096

5 10 15 20

Log(#triangles) Log(#triangles per plane)

Figure 4.13: Synthetic Benchmarks, (a) original single plane mesh (no subdivision), (b)
16-plane scene subdivided 6 times, (c) is the final image obtained from all synthetic scenes
rendered using a unique viewpoint, (d) and (e) are the variation of rendering times per pixel (//s)
according to the scene complexity (i.e, number of subdivisions) and the image size for single
plane and multi-plane respectively. Results show that rendering times are constant until the scene
complexity becomes greater than the image complexity. At this point, rendering times become

logarithmic. The similarity of (d) and (e) indicates that only the visible triangles are relevant.

Results show that for a fixed image size, the per-pixel rendering time is constant until a given
point after which a logarithmic complexity takes over. Curves arc also separated by a horizontal
distance of two. indicating that every time the image size is doubled, this point moves 2 points
further. Finally, the curves for both sets of scenes perfectly matches, which proves that the oc-
cluded triangles added to the scene do not affect rendering times and complexity at all, reflecting
the efficiency of HOMs.

The per-pixel average complexity observed here can be summarised as:
O0(max(l.log2{visibletriangles) —c.log2{imagesize))) where c-is a fixed constant depending

on the implementation.

This result is important since it provides evidence that complexity of Coherent Rendering is now
expressed as a function of two variables. In comparison, a regular ray tracer (not using coherence)

is known to achieve 0(log2(Tot.al number of triangles)) here.

Forreal-world datasets, results are unfortunately not so reliable, but it can be shown that increasing
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the image size still tends complexity to 0(1).

Benchmarking Common 3D Scenes The test scenes are summarised in Figure 4.14. with quan-
titative results compiled in Figure 4.15. Rendering times are expressed for the given viewpoints,
which include (very) basic shading. To demonstrate the null contribution of hidden objects, the
Sponza scene has been rendered from inside and outside, and three Stanford models have been

added to this scene as well.

Figure 4.14: Mesh-based Coherent Renderings. From left to right: Single triangle, Sponza ,
Sponza with Stanford Models. Sponza from outside, David and Powerplant. All can be rendered

at approximately the same speed, provided that the resulting image is large enough.

The most important result is visible in Figure 4.15(b), where rendering times have been divided by
the number of non- black pixels to compensate for the footprint size of each model. All rendering
times converge to a reference cost C, irrespective of the number of triangles in the scene. For
instance, the Powerplant (12 million triangles) and the Single Triangle scene rendering times
(after footprint normalisation) are less than 30% apart when rendering an 81f)2J image. If the

algorithm was purely logarithmic, this ratio woultl have been more in the order of 23.

To better understand this property, numbers of calls to two critical functions - the tree traversal
and the rasterisation functions - have been measured as well. Similar to rendering times, the
number of rasterisation steps (Figure 4.15(d)) converge to an approximate constant of 8 steps
per pixel, which demonstrates the average 0(1) rasterisation complexity per pixel. However, the
equivalent operation in ray tracing (i.e.. intersection test) is likely to be 0(1) if the right tree is
used. Therefore, the number of traversal calls made by the algorithm must be analysed as well.
With regular ray tracing, this number obviously increases linearly with the number of rays, as
visible in [WFEMSO05]. In Coherent Rendering's, case (Figure 4.15(c)), the number of traversal
steps is more or less independent of the image size, but obviously depends on the scene itself.
This is where the complexity improvement comes from. It must be added that for all renderings
except the David scene, the number of traversal steps are less than a million, which is a very
low when compared to the numbers of cells traversed by other techniques such as those reported
in [RSHOS5] [WI1K+06]| for similarly sized scenes.

To get a better picture of the redundant nodes traversed by a regular ray tracer, a comparison
between both methods is shown in Table 4.2. For every scene, two trees are constructed with
different splitting heuristics. These trees are used by both rendering algorithms. A single ray
tracer was used, but a 4 x 4 packet, even in the ideal case, would only divide these numbers by 16
and cannot reach the efficiency of Coherent Rendering in terms of nodes traversed. This clearly

suggests that there is still some room for optimising node traversal in ray tracing.

I LIBRARY
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Figure 4.15: Analysis according to the image size, (a) Rendering times for the different scenes,

(b) Rendering times per non-black pixel showing convergence to the same rendering time, (c)
Number of nodes traversed - independent of the image size, (d) Number of rasterisation steps per
non-black pixel - convergence to the same rasterisation cost per pixel. Note that the two Sponza

outside curves overlap on all graphs.

RT (Space RT (SAH Coherent Ren- Coherent Ren-
Median Tree) Tree) dering (Space dering (SAH
Median Tree) Tree)

Single Triangle 1 1 #1 #1

PowerPlant 75 59 0.382 1.41

David 68.5 51 2.5 4.67

Sponza 87 61 0.176 0.169

Sponza and models 109 72 0.642 0.23

Sponza out 5.2 5.5 0.01 0.01

Sponza and models out 5.35 5.5 0.01 0.01

Table 4.2: Number of nodes (in millions) traversed by a recursive ray tracer (without packets)

and the Coherent Rendering algorithm for a 1024 x 1024 image.

The Sponza case requires particular attention. It is clear that adding several objects to the scene
decreases the convergence rate significantly, as long as those objects are visible in the final image.
By using a viewpoint outside the Sponza atrium (though the Stanford models are still inside the
frustum), the visible part of the mesh is considerably simplified. Convergence is then very early,
and adding or not adding the Stanford models ( 1.5 million triangles) inside the atrium does not
make much difference (curves from both datasets overlap on the graph). The number of nodes
traversed for the David scene is large when compared to the Powerplant in which there is a high

degree of occlusion. All in all the experiments show that the convergence speed is directly linked
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to the complexity of the visible part of the mesh. This does not change the complexity result itself,
but may appear to be an issue in practice. Therefore, the use of on-the-fly simplification algorithms
such as [WFP~01] [WWZ+06| could possibly be an interesting extension to the algorithm when

the visible mesh density is greater than the pixel density.

Finally, the current rendering times are about 10-15 times slower than the state-of-the-art MLRT
algorithm, however there is plenty of room for optimisation. The main point is that for reasonable
rendering sizes (1024 x 1024 to 2048 x 2048), all the per-pixel rendering times but Davids are only
between one and three times slower than the rendering time of a single triangle. This demonstrates

that the complexity assumption is valid and scalable.

4.6.2 Absolute Performance

Scene ERW6 Sponza Armadillo Sodahall Powerplant

kd-tree 12 24 26 27 25
maxi-

mum

depth

kd-tree

leaf node

triangles

6 fps

Coherent
Render-
ing Vs
RT and
packet
RT(8x8)
Legend m Coherent rendering o Ray tracing single o Ray tracing packet 8x8

Table 4.3: Performances of Coherent Rendering vs single ray tracing and packet ray tracing
(8x8 rays) in frames per second. It is to be noted that the packet ray tracing implementation has
been optimised through the use of SSE instructions. Absolute performance of Coherent

Rendering is observed to be slower than that of packet ray tracing.
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Although the main experiments were performed to verify complexity assumptions, the absolute
performance in comparison to packel ray tracers is also considered. To measure the effectiveness
of the algorithm, several models have been considered. These models are rendered using the Co-
herent Rendering algorithm described. To determine the fastest performance, the implementation
was run on a PC with a Core 2 Quad processor, but single threaded. The algorithm was developed
and compiled as a 64 bit application with the Visual Studio 2005 C++ compiler to run on Windows
XP 64.

To measure the absolute performance, the scenes shown in Table 4.3 are rendered with ray tracing,
packet ray tracing and Coherent Rendering. Kd-trees with parameters that differ according to
scene sizes are used as the underlying data structure. Details of the kd-tree thus built are also
provided. An image size of 1024 x 1024 is used to benchmark the algorithm.

Table 4.3 provides the results of rendering using this algorithm. The results show the performance
of Coherent Rendering in comparison to single ray tracing and packet ray tracing with 8 x 8 rays.
They indicate that Coherent Rendering is faster than single ray tracing but cannot be competitive
with packet ray tracing.

While the absolute performance of the algorithm is not competitive with a packet ray tracers
performance, the main point of the algorithm is to investigate its complexity per pixel. The reasons
for the slow performance are discussed in Section 4.7.2.

4.7 Discussion

4.7.1 Complexity

As the results demonstrate, Coherent Rendering allows convergence to constant complexity per
pixel. While Coherent Rendering is already very efficient for isosurfaces, more work remains to be
done for the triangle mesh version since the algorithm currently suffers from a high constant and
many questions are still open. For instance, the motivation for such a technique when fast packet
ray tracers [RSHOS] exist could be questioned. First, this research is a proof of concept, which
verifies that lower average complexities exist for rendering, which has never been demonstrated
before.

Using a similar methodology , researchers can investigate empirically whether their technique al-
lows lower complexities or not. A very simple way to do so is to compare rendering times between
various scenes and a single triangle scene. The per-pixel times would indicate whether the new
algorithm is of lower complexity. This would allow differentiation between pure optimisations
and complexity advances and testing whether techniques are optimal and scalable or not. This
methodology could, for instance, be applied to the open problem of secondary rays.

There are many areas where the application of the rendering pipeline is less trivial, like direct illu-
mination of the scene. An approximation of direct illumination is possible at the same complexity
if a shadow mapping method — that requires rendering an image from the light source(s) — is used.
Similarly, this algorithm can be used for global illumination as instant radiosity [Kel97] demon-
strates it. However, shadow mapping and instant radiosity just estimate visibility. A fully correct
solution would need to consider an irregular grid of pixels for the secondary rays. While it may
be possible, it will be scientifically very challenging to develop such an algorithm and to ensure
optimal complexity at the same time. Another question is whether this algorithm is portable to
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graphics hardware or not. For example, some parts of the algorithm like triangle / box clipping
are already possible on the latest graphics card generation. In truth, the whole algorithm is a lot
closer to hardware-based algorithms and pipelines than ray tracing algorithms. Current graph-
ics hardware manufacturers already implement limited hierarchical rasterisation with hierarchical
Z-buffers. For instance. 3-level hierarchical Z- buffer is currently implemented on ATI graphics
cards. A full pyramid could actually be more suitable. Fast access to a pixel’s Z hierarchy by the
CPUs woufd be necessary to determine visibility. This would require a fast communication chan-
nel with low latencies between the GPU and the CPU and a few companies are already working
in that direction. It is believed that this would be much more efficient than occlusion queries, and

would thus be a great feature in GPUs.

Finally, a worst-case rendering scenario has not been discussed since real-world datasets that
would not work have not been found. It is clear that if the HOM pixels cannot become opaque
(e.g., the final image is made of many widely spread black pixels), the visibility test will always
pass and more nodes will be traversed. Actually, this is the same worst case as with regular
ray tracers because the Coherent Rendering algorithm theoretically traverses the same nodes as a

regular ray tracer.

4.7.2 Absolute Performance

Though, the important motivation of the algorithm is to investigate and demonstrate the better
complexity, a usable algorithm needs to be competitive with packet ray tracers. In this area,
the Coherent Rendering algorithm is slower than packet ray tracers warranting investigations to
identify the causes for the relatively poor performance. This would also assist in optimising the

algorithm.

Figure 4.16 shows the algorithm profiled (by rendering the Sponza scene numerous times). The
profiling results show that the recursive process of splitting triangles and identifying the pixels is
the main bottleneck. The next major bottleneck is identifying the bits in the HOM and performing
the visibility test, followed by the vector subtract, dot product and add operations.
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Figure 4.16: Profiling the Coherent Rendering algorithm.
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The number of recursive rasterisation steps — see Section 4.5 — is quite high as each triangle has
to be split several times until the pixel level is reached. Since the rasterisation is done in 2D, the
steps are expensive. Since the triangles are split until they span less than a pixel, many triangles
—especially large triangles occupying several pixels are split numerous times before the sub-pixel
level is reached, at which point, it may be determined that the pixel is not shaded by the triangle
in consideration. This causes the recursive rasterisation process to be performed a large number
of times, sometimes without effect. The fact that the rasterisation algorithm does not identify
multiple pixels in one iteration makes it expensive.

The large number of recursive rasterisation calls also means that each time a triangle is split, the
mid-point of the vector has to be found leading to several calls to vector adds. In addition, at every
recursive step, the triangle is tested for visibility leading to numerous occlusion determination
calls. Due to the fact that the operations are in 2D, they are expensive leading to an expensive
rendering algorithm.

One method to alleviate this is to use a simple ray tracing approach at the leaf node level. i.e., when
the Coherent Rendering algorithm’s tree traversal reaches the leaf node, the ray corresponding to
the leaf node projection can be intersected with the leaf node’s triangles to obtain the right triangle
for the pixel. While the algorithm could be faster, it would lose the occlusion test done during the
rasterisation process which may be detrimental. This method, though, has not been investigated
and could merit further study.

However, the advantage of Coherent Rendering is that the number of tree traversals are minimised
as evidenced by the profiler results where the tree traversal method does not appear even in the
top 11 most time consuming methods. In a ray tracing algorithm, the complexity of triangle
intersections in a ray tracer can be assumed to be a constant. However, each ray has to traverse the
tree to get to the leaf node, performing an average of log(/V) traversals leading to an O(log(N))
complexity per pixel. Since in Coherent Rendering, the number of nodes traversed is minimal and
almost the same for all image sizes, its complexity approaches O(1) when image sizes increase.

4.8 Summary

The Coherent Rendering algorithm discussed in the chapter combines concepts from rasterisation
and ray tracing to introduce a new rendering algorithm. In a ray tracer, the complexity per pixel
is determined as being due to the tree traversals and not the triangle intersections themselves.
Packet ray tracers amortise this by traversing the nodes with groups of rays together. However,
due to coherence issues, these packets are limited to a certain size — optimal size of 8 X 8 in our
implementation. Coherent Rendering takes this approach further by proposing an algorithm where
the entire image’s pixels are considered as a packet. The nodes visible from the viewpoint are
determined. Further, using the concept of Hierarchical Occlusion Maps, the early ray termination
property of ray tracers is applied to Coherent Rendering to perform occlusion detection.

The main reason for investigating the Coherent Rendering algorithm is to show that it may result
in an O(1) renderer. The results show that as image sizes increase, the rendering times appear
to converge to times needed to render a single triangle. On an 8192 x 8192 pixel image, the
rendering time for the Powerplant scene (12 million triangles) is around 30% more than the time
to render the Single Triangle scene. This shows that the method is definitely not logarithmic. It is
expected that if the image size is increased further, the difference in this rendering time would be
even smaller.



4.8 Summary 107

At the same time, the algorithm was expected to be very competitive with ray tracers. However,
due to expensive projection and rasterisation operations performed in 2D, the algorithm’s perfor-
mance suffers. Due to this, though the algorithm manages to be faster than single ray tracers for
most cases, it fails to compete with packet ray tracers. Through optimisations like the use of SSE,
the algorithm can be implemented in a more efficient manner. However, the fact that its perfor-
mance is not competitive with modern packet ray tracing methods is currently a drawback. Since,
the 2D nature of the algorithm has been identified as being the cause of the poor performance, it is
believed that an algorithm that performs these operations in 1D would be much faster. The result
1s the algorithm called Row Tracing — discussed in chapter 5.



Chapter 5

Row Tracing

Contents
51 Motivation . . . . . o o it e e e e e e e e e e e e e e 106
52 Concept . . .o v i i it it e e e e e e e e 107
§.3 HighLevel Algorithm . ... .............. ... ... ..., 109
5.4 Datastructuresfor RowTracing . ....................... 110
S5 TreeTraversal . .. ... ... ... ... it 111
5.6 LeafNodeProcessing ... ... ... ...t it ieenenenennan 117
5.7 FinallmageGeneration . . . . . ... ... ... ... 122
5.8 1D Hierarchical Occlusion Maps (HOMs) .. ... ............. 123
5.9 PacketRowTracing . . ..... ... ... ennnensn 129
5.10 Low Level Optimisations .. ... ................c0..... 133
511 Results . . . . v v it e e e e e e e e e e 133
502 SUMMALY & v v v v v o o e v ot e o ot e i o ot ot et et 142

Row Tracing is introduced as a new visibility / rendering method that is based on Coherent Ren-
dering. At the same time, it aims to improve the absolute performance so that it is competitive
with packet ray tracers. This chapter explains in detail the method described by us in [KMO08]
— Kammaje, Ravi P.; Mora, Benjamin, “Row tracing using Hierarchical Occlusion Maps”, IEEE
Symposium on Interactive Ray Tracing, 2008. RT 2008., pp.27-34, 9-10 Aug. 2008.

5.1 Motivation

Recent research has popularised the use of packet ray tracing as a rendering method through the
use of groups of rays that have a variety of shapes and sizes [PKGH97] [WBWS01] [RSHO05]
[Wal04] [WBSO07] [ORMO7]. The acceleration is brought about by traversing the entire packet -
of rays, thus amortising the computational costs resulting in a much lower cost per ray. Recent
research [RSHO5] [WBS07] [BWS06] has enabled the use of larger packets through interval arith-

metic.

New methods of data acquisition and sophisticated scanning technologies have resulted in in-
creased scene sizes. For larger scene sizes, the computational complexity of packet ray tracing —

108
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shown to be logarithmic [HB0O] [Hur05] [WSS05] [HHS06] [YLMO06] — makes it the preferred
method of rendering. Packet ray tracing is also trivially parallelisable, allowing it to take max-
imal advantage of the recent trend towards multi-core processors. This scalability of packet ray
tracers over scene sizes as well as over multiple cores has resulted in it being touted as a potential
alternative to rasterisation.

Packet ray tracing algorithms work exceptionally when the size of the packets are relatively small.
On the other hand, using a larger group of rays that traverse a similar path would maximise cache
coherence and reduce memory bandwidth requirements. However, as the number of rays are
increased, the coherence reduces, leading to a performance penalty, as the component rays traverse
different paths. Thus, to achieve the best performance, an optimal (but relatively small) number
of rays per packet is necessary.

Another disadvantage of larger packets is that the early ray termination property of ray tracers
that allows in-built occlusion testing can be used only if all the component rays / pixels have
already found intersections. For smaller packets, the first hit object for most rays in the packet are
determined at almost the same traversal step and traversal can be stopped at this point. However,
for larger packets, due to the fact that the rays are far apart the object intersections may occur at
widely separated nodes. Thus, the early termination property cannot be effectively used.

During intersection tests, at most four rays can be tested against a single triangle through the use
of SIMD / SSE instructions (on current architectures). Packets with a greater number of rays have
to be split into smaller groups of four each and intersected with the triangle.

These inefficiencies due to the use of larger rectangular packets of rays point to the possibility
that rectangular packets may not be the most efficient grouping of rays to maximally utilise the
coherence provided by the data structure.

In Chapter 4, a new algorithm that aims to achieve a lower empirical computational complexity
was introduced. However, due to the use of 2D structures, it suffers from expensive intersection,
projection and occlusion detection costs making it an unfeasible algorithm to use in its current
form.

In both Coherent Rendering and packet ray tracing, the main inefficiencies exist due to the fact that
rays are grouped into 2D packets instead of a simpler structure. Hence, the idea of using an algo-
rithm similar to Coherent Rendering, but with packets spanning a row of the image is considered.
The algorithm, called Row Tracing, is an attempt at an algorithm that preserves the advantages of
both packet ray tracing and Coherent Rendering while minimising the disadvantages.

5.2 Concept

Conceptually, Row Tracing is a very simple algorithm and is very similar to ray tracing. Instead
of tracing rays through a structure like a kd-tree or octree constructed on the scene, entire lines
/ rows of the image are traced through the structure. At the leaf nodes of the structure, the row
is intersected with the triangles of the leaf node to obtain the intersected objects for the affected
pixels of the row.

The use of an entire row of the image allows amortisation of traversal and intersection costs. It also
allows the algorithm to use the dual property of a row of pixels — that it can be considered either
as a 2D plane of rays (as shown in Figure 5.1), or as a 1D line of pixels — at different points of
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Row plane

Row being traced

Image plane

Viewpoint

Figure 5.1: A row of the image as a 2D plane. Tracing this 2D plane through the tree is the basic
idea of the Row Tracing algorithm.

the algorithm. This enables the algorithm to select from several efficient methods for the integral
parts of the algorithm.

The row is considered as a 2D plane of rays when traversing through the tree or when intersecting
with triangles. Due to plane-box intersections and plane-triangle intersections being cheap, the
coherence used does not incur additional costs. Intersecting a single ray with a box or a triangle
is of almost similar computational cost to that of intersecting a plane with a box or a triangle. The
traversal and intersection cost - already quite low - is amortised across the number of active rays.
Further, plane-node intersections and plane-triangle intersections are achieved through the use of
simple dot products - vectorisable with SIMD instructions.

At other points of the algorithm, considering the row as a ID line allows simplification and optimi-
sation through the use of ID versions of several operations. Primitive clipping, occlusion testing
and frustum bounds testing arc a few key operations benefiting due to the ID nature of the row.

A disadvantage of tracing rows as compared to single rays is that it loses the early ray termination
property used very effectively for occlusion testing. When a ray is traversed through a space
subdivision structure in front-to-back order, the ray traversal is stopped if it has intersected an
object, thus eliminating a large number of unnecessary operations. Row Tracing loses this ability
due to the large span of the packet. To overcome this disadvantage, a ID version of Hierarchical
Occlusion Maps (HOMs) introduced by Zhang et al. [ZMHH97] is used. The HOM for a row
allows skipping of nodes that overlap already rendered parts of the row - in effect, an early ray
termination like test for nodes.

Row Tracing combines features and abilities of ray tracing and rasterisation. The ability of using
spatial subdivision data structures is borrowed from ray tracers. Generating the image by scan-
lincs, projecting points, etc are concepts adapted from rasterisation. This combination, in addition
to the use of Hierarchical Occlusion Maps, is expected to enable Row Tracing to demonstrate per-
formance advantage over current packet ray tracers. As scene sizes increase, Row Tracing - due
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to its (speculated) logarithmic complexity — should show better performance than Z-buffer based
visibility (OpenGL) when the scene consists of a large number of triangles. Table 5.1 provides a
comparison between rasterisation, ray tracing and Row Tracing and it is clear that Row Tracing is
a hybrid algorithm inheriting properties of both algorithms.

Rasterisation Ray Tracing Row Tracing
Logarithmic Complexity X \/ \/
Cheaper per-pixel scanline \/ X

algorithm

Parallelisation

v
Multi-core / Multi-CPU X / \/
v

Shadows \/ \/

Table 5.1: Comparison between Rasterisation, Ray Tracing and Row Tracing

For the purposes of the algorithm, it has been implemented with kd-trees and octrees as the under-
lying data structures.

5.3 High Level Algorithm

The high level Row Tracing algorithm is very similar to ray tracing. The image’s rows are indi-
vidually traced through a hierarchical structure. When the traversal ends — the triangle occupying
each pixel of the row is determined. When all the rows of the image are similarly traversed, the
triangles for each pixel are identified to determine visibility at each pixel. These pixels can then
be shaded according to the triangle and the lights.

The high level algorithm is very similar to the high level Coherent Rendering algorithm (List-
ing 4.1). Listing 5.1 shows the algorithm with the major differences between the Coherent Ren-
dering and the Row Tracing algorithm highlighted in blue.
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RowTrace ()
{

for(each image row)

{
InitialiseRowConstants();
TraverseTree (row, rootNode);
Shade row;

}

}

Listing 5.1: High Level Row Tracing algorithm. Each row of the image is initialised, traversed
down the tree and finally the pixels determined are coloured appropriately. At the high level, the
algorithm is very similar to the Coherent Rendering algorithm (Listing 4.1). Differences between
the two are highlighted (in blue).

The row of the image to be traced is iteratively selected and by an initialisation process the row
plane equation and other attributes associated with a row are initialised. Subsequent to this pro-
cess, the row is ready to be traversed through the data structure. The row traverses the tree in
a front-to-back order until it is determined that the node cannot contribute to the row’s pixels or
until a leaf node is reached. At the leaf node, the row is tested against the leaf node’s triangles to
ascertain the pixels occupied. Once the triangles have been determined for each pixel of the row,
the visibility at each pixel of the row is determined. It is to be noted that in the pseudocode the
leaf node processing method is not explicitly called as it is called by the TraverseTree method
upon reaching a leaf node.

The considerations for the underlying data structure along with the three parts of Row Tracing -
Initialisation, Tree traversal and Leaf node processing — will be detailed in the following sections.

5.4 Datastructures for Row Tracing

As with ray tracing, rendering times for Row Tracing depend on the number of nodes traversed,
the number of intersections and cost per traversal and intersection. The total rendering time is
given by Weghorst et al. [WHG84] in Equation 2.11. Since the only primitives being considered
are triangles, cost of primitive intersection is a constant. Hence, a structure that is well suited for
Row Tracing minimises the number of nodes traversed with a low per node intersection that at the
same time effectively separates the triangles so that the number of triangles to be intersected are
low.

Row-triangle intersections are very cheap and are amortised across several pixels and hence, the
second term of the cost, Np; x Cpy, will be low when compared to the first term. Due to this,
Row Tracing prefers data structures that minimise the first term, N7 x Cr, even at a slight penalty
to the second term. Data structures with axis-aligned boxes can be intersected against a row plane
at a low cost [Hof96] and hence are particularly suited for Row Tracing. A kd-tree built with
the surface area heuristic, with its effective separation of triangles is a good structure for Row
Tracing. Another structure considered is the octree — due to properties that enable a cheaper cost
for intersection, C'r. These two data structures are thus considered.
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54.1 Kd-tree

A kd-tree is one of the most researched structure for ray tracing. Due to this, there are several
well known algorithms and heuristics for the construction and ray traversal of a kd-tree. The
most popular heuristic is the Surface Area Heuristic(SAH) generally accepted to produce the best
kd-trees for ray tracing. However, Row Tracing is a different algorithm — the best kd-tree for
ray tracing is not necessarily the best for Row Tracing. The advantage with an SAH kd-tree is
that it quickly separates empty space and selects a locally optimal split position at each step. This
partitioning scheme results in a very good tree that should be suitable for use with the Row Tracing
algorithm.

5.4.2 Octree

The octree is normally not discussed with respect to ray tracing, but it is a very simple structure
that is easy to create. In addition, it is a very efficient structure for Row Tracing due to its property
that each node at a particular depth is a cube of the same size. This property enables the use of
a simple optimisation that reduces the cost of row—node intersection, tNode, making it a good
structure to investigate for Row Tracing.

Thus, both the kd-tree and the octree have advantages that make it suitable for Row Tracing. In
addition, by implementing and demonstrating the effectivity of Row Tracing on more than one
data structure with axis-aligned bounding boxes, the easy adaptability of Row Tracing over such
data structures is shown.

The details of the algorithm starting with the tree traversal by the row will be discussed in further
sections.

5.5 Tree Traversal

For Row Tracing on both the kd-tree and the octree, the row is traversed down the tree in a front-to-
back order. Several attributes required for the traversal computations are constants — either for all
the rows or for a single row. An initialisation process handles the computation of these attributes.

5.5.1 Plane-Box intersection

Both the kd-tree and the octree have nodes are axis aligned boxes. Hence, each traversal consists
of a row plane-box intersection. The method described by Hoff [Hof96], that allows several
optimisations will be described in brief before the tree traversal algorithm is described.

A box intersects a plane if its eight vertices lie on both sides of a plane. Naively, this can be found
by calculating the signed distances of the eight vertices to the plane. However, as Figure 5.2 shows,
it is sufficient to test two vertices. These two vertices are the extremities of the box in relation to
the plane. Figure 5.2 shows that these two vertices are the vertices that have the minimum and
maximum projection onto the normal of the plane. Thus, it is sufficient to test if these two points
are on the same side or different sides of the plane.
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Hoff also explains the determination of these two points. If N is the normal of plane, the vertex at
the extremity in the direction of the normal is given by the pseudocode below:

DetermineMaxVertex ()
{
if (N.x>0) //RIGHT
if(N.y>0) //RIGHT, TOP
if(N.z>0) //RIGHT, TOP, FRONT
vl = RIGHT, TOP, FRONT
else
vl = RIGHT, TOP,BACK
else //RIGHT,BOTTOM

if (N.z>0)
vl = RIGHT,BOTTOM, FRONT
else

vl = RIGHT,BOTTIOM, BACK
else //LEFT
if (N.y>0) //LEFT, TOP

if (N.z>0)
vl = LEFT, TOP,FRONT
else

. vl = LEFT, TOP,BACK
else //LEFT,BOTTOM

if (N.z>0)
vl = LEFT,BOTTOM, FRONT
else

vl = LEFT, BOTTOM, BACK

Listing 5.2: Determining the vertex at the extremity in the direction of the normal. N —is the
normal to the row-plane and v1 — is the vertex at the extremity.

The vertex, vq, at the extremity in the negative direction of the normal is just the negative of vy.
i.e., if vy is determined as the LEFT, BOTTOM, BACK vertex, then v is the RIGHT, TOP, FRONT vertex.

If v1 and v are the two vertices with the minimum and maximum projection onto the plane’s
normal and if the plane’s equation is Az + By + Cz + D = 0, then the intersection is determined
by using the set of equations below.

d. = Az, +By. +Cz, +D
d. = Axy, +By. +Cz, +D
interscetion = (dy == 0)or (dy, ==0)or ((d, >0)! = (d, >0)) 5.1

Using this method, it is sufficient to calculate the plane-vertex distance for just two vertices. In
addition, in any structure with a hierarchy of bounding boxes, like kd-trees, octrees or BVHs,
the nodes are all oriented similarly. Hence, these two vertices can be determined during an ini-
tialisation process and the appropriate vertex can be accessed when necessary, allowing further
optimisations.
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'lane normal

Plane
Projection of vertex onto,
plane's normal *

0 Vertices casting maximum projection
onto plane's normal

Figure 5.2: Intersection of a box and a plane. As shown, it is sufficient to determine if the two
extreme points of the box in relation to the normal of the plane arc on the same side or either side

of the plane.

5.5.2 Initialisation

There are two parts to the initialisation process - one that occurs prior to the tree traversal and one
that occurs prior to every row’s traversal. The first process computes the global values that remain
the same for all the rows. The second process - performed for every row - computes the values

relevant to the row being traced.

¢ Global Values - These are the attributes that do not change across the rows and can hence be
considered as global across all the rows. Initialising these just once before the tree traversal

starts is advantageous. The attributes considered as global are:

- Global transformation matrix - This is the transformation matrix that is used to convert

a point from model space to image space.

- Near plane - This is the plane upon which the image is rendered. It is variant upon the
viewpoint used and is constant for all the rows. The four vertices of this plane are de-
termined by applying the global transformation to the four vertices of the OpenGL neat-
plane coordinates. Subsequently, the equation of the near plane is found by finding the
normal to the near plane. If the near plane is given by A npx + Bnpy + Clipz + Dnp = 0,
the normal vector provides the values of Anp, Bnp and Cnp. Plugging these and the
values of x, y, and 2 from one of the near plane’s vertices into the equation, the value

of Dnp is computed and is stored.

- Indices of the node’s vertices casting maximum projection on near plane normal - In
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order to find if a node is in {ront of the near plane, it is more efficient to find the two
vertices of the node that casts the maximum projection onto the normal of the near
plane, as described in Section 5.5.1. The same two vertices of every node casts this
maximum projection. The indices of these vertices, index,,, and indez,,, , are found
and saved.

Indices of node’s vertices casting maximum projection on rows 0 and 3 of matrix — As
will be shown in the following sections, finding the node projection’s overestimate is
an essential part of Row Tracing. To find this with minimal cost, row 0 and 3 of the
global transform matrix are considered as vectors and the node’s vertices at the end
point of the diagonal casting the maximum projection onto these rows are determined
as given by Section 5.5.1. Indices of these vertices are stored.

e Per row constants — The attributes that vary for every node need to be initialised at the
beginning of that row’s traversal. The attributes initialised at this time are:

— Row Plane Equation — This is a plane of rays with the viewpoint and the two end

points of the row defining the plane. The plane equation is determined by calculating
the normal that provides the corresponding A, , B, , C, values and then calculating
the value of D, for the row.

— Indices of node’s vertices casting maximum projection on row plane normal — As

an intersection is to be calculated for each node and the row during traversal, the
indices of the diagonal casting the maximum projection onto the row plane’s normal

is determined and stored.

5.5.3 Tree Traversal Algorithm

The various variables corresponding to a row are pre-computed by the initialisation process so that
the tree can be efficiently traversed in a front-to-back order. Traversal is similar to ray traversal
— it starts from the root node of the tree and continues in a front-to-back order. It can be written

with the following pseudocode.

TraverseTree (row, node)
{
if (node is empty or
node does not intersect row)
return;
proj = FindNodeProjection();
if(proj is outside frustum or
proj is occluded)
return;
if (node is a leaf node)
{
ProcessLeafNode (node) ;
return;
}
for (each childNode sorted in
front-to-back order)
TraverseTree (row, childNode);

Listing 5.3: Single Row traversal algorithm.
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From the pseudocode, it can be observed that traversal stops if the node does not intersect the row,
or if the node projection falls outside the frustum or if the node projection is determined as being
occluded. Otherwise, traversal continues down the tree until it reaches a node that meets the exit
criteria, or until a leaf node is reached. At the leaf node, the triangles contained by the leaf node
are rasterised onto the pixels of the row. At the end of the traversal process, the closest triangle
corresponding to each pixel of the row is determined.

As mentioned, the traversal process tests the node for several criteria. In order to perform these
tests as efficiently as possible, fast methods for row-plane—node intersection and node projection
are determined. These methods are described in the following sections. Before that however, to
better explain the node projection operation, the well known process of projecting a point onto the
screen / row in the context of Row Tracing is provided.

5.5.4 Projection of a Point onto the Row

Projecting a point onto the row — i.e, converting the point from the object space to the image space
to find the actual pixel occupied by the point on the row — is achieved by multiplying the point by
the transformation matrix and converting these co—ordinates from OpenGL space to screen space.
However, in Row Tracing, since the Y coordinate is fixed (by the row being traversed), only the
X and Z coordinates are necessary.

If p is the point to be projected, the value of X and Z coordinates can thus be found using

r = p.amg

z = p.amg

w = p.mg

r = (z/w)* hal fWidth + hal fWidth

2 = (z/w)* hal fWidth (5.2)

where mg, mg and mg — are the first, third and fourth row of the global transformation matrix
respectively hal fWidth —is half of the image’s width x, z, w — are the values of the X coordinate,
the Z coordinate and the homogenous coordinate respectively The values of z and z thus found
are the coordinates of p on the screen.

5.5.5 Kad-tree Node Projection

The naive and most obvious method of finding a node’s projection is to project the eight vertices
onto the row. Projecting a point was described by Equations 5.2. For conducting the node oc-
clusion test, only the X coordinate is necessary. Hence, the naive projection calculation can be
shown as:

r1 = Vi.Inyg

Xy = V2.
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x8 = v&.mo0
wi = V21113
vz = Va2ms
Wg = v8.m3
X\ = (xI/w\) *halfWidth + halfWidth

X2 = (X2/W2) * halfWidth + halfWidth

xs = (xg/w$) * half Width + half Width

x-min = min(xi,X2, *s)
Xfnax = niaa (xi. Xo<mm xx)

(5.3)

V],.v8 are the eight vertices of the node.
are the Ar coordinates of the eight vertices of the node.
wl..wx are the homogenous coordinates of the eight vertices of the node.
xmm and x'max are the extremeties of the actual projection of the node,
mo and m 3 are the hrst row and the fourth row of the global transformation matrix.

However, as Equations 5.3 show, this method is computationally exorbitant, requiring 16 dot prod-
ucts, eight divides and several further operations. It can be observed that to perform an occlusion
test or a frustum bounds test, the exact node projection is not necessary. As shown in Figure 5.3,
a slight overestimate of the node's projection works almost as well. Using the overestimate re-
sults in a few more traversals than otherwise, but if the overestimate is small enough, the trade-off

results in hugely reduced cost for traversal. The method to compute an overestimate is discussed.

We first define ,rj, .r2, u'i and u'2 as follows:

X, -min(12.m0lv2.mo.... v8.nio)
x-2 = mux(vi.niy. v2.nio....v8.nio)
u'i =mm(vli.m3,v2.m3...,v8.m3)
u2 = max(v2.m3,v2.m3....v8.m3) (5.4)

vx and vx can be defined as the vertices casting the maximum projections on mo and can be
determined using the method given in Section 5.5.1. Hence. vx .nio and vx .nio provide values
of .1] and .r2. Similarly. vw and vw can be determined as the vertices of the node casting
the maximum projection onto m 3. Using these, the minimum and maximum values of x can be

determined as follows:



5.5 Tree Traversal

Node

Node vertex projections
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Accurate Projection

Projection overestimate —

Viewpoint
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Figure 5.3: Node Projection onto a Row. x imn and x max indicate the node’s overestimate. If the

overestimate is occluded, then the actual projection is also occluded. Hence, this overestimate

can be used for occlusion detection.

xl = vx mO
x2 = vx .m0
wl = 1/(vw m3)
w2 = 1/(vw .1113)

(5.5)

Since, we are unclear if x| > x2and if w| > w2. and also since x|, x2, wl and w2 maybe negative

or less than 1, we calculate the minimum and maximum values of x as follows:

Xrnin = all'll (x 1W] , X\W 2, X2W\ , X2W2)
Xmax = max(x Wi, X\W2. X Wi, X2w2)
xmin — xmin * half Width- + half Width

Xmax = xmax *halfWidth + halfWidth

where x nvin and x mux represent the extremities of the node projection’s overestimate.

(5.6)
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x rnm and x max are used to find the level and the exact bits needed to check the HOM for occlusion.
The details of using the HOM to detect occlusion is provided in Section 5.8. Also, x mrn and x max
are used to test the node for frustum inclusion. When xmin and xmnx do not span any pixel

between zero and the width of the image, the node is outside the frustum.

5.5.6 Octree Node Projection

The method used to find the projection of an octree node onto the row is essentially the same
as that described for the kd-tree. However, the property of an octree that every node at a given
depth is a cube of the same size can be used to optimise the vertex determination calculation. As
Figure 5.4 shows, if the mid-point of the octree node is known, then each of its vertices can be
found by adding (or subtracting) a vector to the midpoint of the octree. To use this property, the
unit vectors to be added to the midpoint to obtain the necessary vertices are pre-computed before
the tree traversal. The half lengths of a node’s diagonal at every depth of the octree are also pre-
computed. At traversal time, using the unit vector and the half length, the corresponding vertices
are easily found by vector additions. When SIMD / SSE code is used, a vector addition is achieved
in one instruction and is cheaper compared to the expensive indexing operations performed by the

kd-tree version.

Figure 5.4: Calculating the octree node’s vertices, o is the mid-point of the octree, di and d 2

are vectors to be added to o to obtain the vertices.

5.5.7 Row-Kd-tree Node Intersection

A row-kd-tree node intersection is computed at every traversal step and is one of the most fre-
quently performed operations of the algorithm. Hence, it is important that it is computationally as

cheap as possible.

If all eight vertices of a kd-tree node lie on the same side of the row plane, the node does not
intersect the row plane. Using the method in [Hof96], intersection can be determined by com-
puting the signed distances ofjust two vertices (end points of a diagonal that casts the maximum
projection onto the row plane’s normal). The same diagonal of every node casts this maximum
projection onto the row. Hence, the two appropriate vertices can be pre-dctermined at the begin-
ning of traversal of each row - in the per row initialisation process. This reduces the number of

operations significantly. Figure 5.5 shows a diagram that assists in understanding this better.
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Node vertices
to be tested y

Row node
.intersection'

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.5: Row-Node intersection. If the two extreme vertices of the node with respect to the
row plane's normal (shown in blue) are on opposite sides of the row plane, then it intersects the

node.

Using the equation of the row-plane, 4r X + B, Y + Cr Z + Dr - 0, the signed distance is
calculated by substituting the A\ V' and Z values of the vertex into the equation. If d| and d2 are
the signed distances of the two vertices, then there is an intersection only if sign(d\)! - signal}).
The operation is very cheap and can be achieved using just two dot products - efficiently calculated

with SSE instructions.

5.5.8 Row-Octree Node Intersection

A method that is similar to the Row-kd-tree node intersection (Section 5.5.7) is used to find the
intersection between the octree node and the row plane. However, as an optimisation, the property
of octrees described in Section 5.5.6 and as shown by Figure 5.4 is again used. Using this, the two

vertices are calculated using just a vector addition each instead of an expensive indexing operation.

If a node is determined as intersecting the row. traversal continues down the tree until a leaf node

is reached, unless another exit criteria is encountered.

5.6 Leaf Node Processing

At the leaf node, the triangles in it can be a part of the final image. Determining the appropriate

parts of these triangles is implemented by the function ProcessLeafNode shown below.



5.6 LeafNode Processing

ProcessLeafNode (node)

for (each Triangle t in node)

{

1
1

P

= Intersect (t, rowPlane);
= ClipWithBoundingBox (1);
= ProjectOntoImageLine (1);

plist.add(p);

)

extent = MinMax (pList);
RecursiveRender (extent, pList);
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Listing 5.4: Process the leaf node. When the leaf node is reached during the traversal process, the

triangles in it have to be tested against the row to determine which ofthem contribute to the

pixels in the row.

As the pseudocode describes, processing the leaf node involves a few steps that warrant further

discussion.

5.6.1

Row-Triangles Intersection

Row-plane-Triangle
intersection segment

PinM

Row-plane

Figure 5.6: Row-plane-triangle intersection. If the vertices of the triangle lie on opposite sides

of the row' plane, there is an intersection.

The intersection between a row and a triangle is essentially a plane-triangle intersection. It is

easily computed using the equation of the row plane. The calculations are better described by the

equations below and Figure 5.6. In the equations below, the variables (like p|, p2, etc) correspond

to the geometric entities shown in Figure 5.6.
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rowEquation => Ax + By + Cz + 1) 0

di = Ax]|T Bx\|+~CZ\-+D
d2 — Ax23"'Bx2 Cz2 D
dj = 2LT3 T-Bx$ + C23+ 722 (5.7)

If (Zi, d2 and ~3 have the same sign, it implies that the entire triangle is on one side of the row plane
and hence does not intersect the plane. However, if any one distance is differently signed than the
other two, then there are parts of the triangle on both sides of the row plane and henee there is an
intersection. If there is an intersection, the end points, pint and pint , of the intersection segment

are given by:

dint = di/(di + d2)

dint = d\/{d\ + ~3)

Pint = Pi + dint (P2 - Pi)

Pint = Pi + dimt (P3 - Pi) (5.8)

Intersect Row-plane with leaf node triangles

Leaf node

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.7: Row-leaf-node-triangles intersection. Intersecting the row-plane with the triangles

in a node gives several line segments.

The intersection is found for every triangle in the node to obtain a list of line segments. The list is
maintained as a list of start and end points of the segments. If the list is not empty, the algorithm
proceeds to the next step. Figure 5.7 shows the intersection segments formed by intersecting a

row with all the triangles in a leaf node.
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5.6.2 Segments Partially in Front

The algorithm should render only parts of the geometry that are in front of the viewpoint / near
plane. Relevant parts of the triangles can be on both sides of the near plane only if the node
consisting them lies on both sides of the near plane. This is easily determined by finding the
signed distances of the two corresponding pre-determined vertices of the node to the near plane.
If the signed distances of these points have different signs, the node lies on either side of the near
plane and can contain triangles partially on both sides. Only triangle segments in these nodes are
to be tested for being partly in front of the near plane.

Segments that are fully in front of the near plane are rendered directly without any additional
processing. Similarly, segments that are fully behind the near plane are discarded as they are not
part of the final image. However, for the few triangles that have parts in front of and behind the
near plane, additional processing is necessary to ensure that only parts that are in front of the near
plane are rendered.

Testing whether a triangle lies on both sides of the near plane essentially reduces to a problem of
intersection between the near plane and intersection segment. If it is determined that a segment
intersects the near plane, the segment is clipped by the near plane and the part that is in front is
selected for rendering. If the segment is fully in front or fully behind, then they are rendered as it
is or discarded respectively.

At the end of this step, a modified list of segments, containing only the clipped parts that are fully
in front of the near plane, is generated.

5.6.3 Clipping Intersection Segments

In aleaf node, parts of the triangle can be outside the node. This can result in intersection segments
that may be partly or completely outside the leaf node as seen in the example in Figure 5.7. If
these segments are rendered as they are, the resulting image would be incorrect. To ensure that
the image consists of the right parts of the right triangles, these segments are clipped against the
leaf node’s bounding box so that only parts that are inside the node are rendered.

The operation is achieved by using the line equation of the segment and by intersecting the line
with the three entry faces and three exit faces of the node. The set of equations below detail the
process.

ta = (bb[zentry] —p1 )/(P2 —P1)
te = (bb[zeait]) —p1 )/ (P2 —p1)
ly = (bb[yentry] -p1)/(p2 —p1)
ty = (0b[yexit] = p1 )/(p2 —p1)
te = (bb[z entry] p1)/(p2 —p1)
[

t, = (bb Zerzt] Pl /(P2 —p1 ) 5.9
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tentry — niax(ty 1ty ,tz )
texit = min(tj: Ly )
Pint = Pi + t,zntry (P2 - Pl)
Pint = Pi + Lexit(P2 —Pi) (5.10)
ty iz , 17 - arc the clipped entry and exit parameters of the

intersection segment.
bb - is the array representing the hounding box of the node. It consists of 6 values - the minimum
and maximum point along each axis.

Pint »Pint ~ are the extremities of the clipped segment.

Clip intersection segments

Leaf node

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.8: Intersection segment clipping. Intersection line segments need to be clipped to

ensure that only parts of triangle inside the node are considered.

All segments are clipped against the bounding planes of the node and only parts of these segments
that are fully contained by the node are retained. The other parts are discarded. The list of
segments is modified accordingly. Figure 5.8 shows the intersection segments clipped by the

bounding box of the node.

5.6.4 Projection of Clipped Segments

The list of clipped segments contains the parts of the leaf node triangles that can be a part of
the final image. By projecting each clipped segment onto the row and determining the correct
visibility, the triangles occupying each affected pixel is found. As shown by Figure 5.9, each
segment's two end points are projected onto the row using the method described in Section 5.5.4

to obtain the required projection.
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Once the X and Z coordinates of the two end points of the segment are found, any point on the
line segment can be found using linear interpolation. The X coordinate is calculated by linear
interpolation. For perspective projections, the Z coordinate is computed by linearly interpolating
1/Z . To simplify the computation, the relation of 1/Z with respect to the X coordinate is found
as follows.

b =1/Z,
a  =(Z1-Z 2)/(Zi*Z2*(X2-*1))
1/Z% =aX +b (5.11)

where a and b - are the necessary coefficients.
XJ], Zi, Ar2, Z2 - are Ar and Z coordinates of the two end points of the clipped intersection
segment.

1jZ x - is the corresponding 1/Z value at any X.

The values of a, b and 1/Z are calculated for each segment. These values are stored in a list for
use by later parts of the algorithm.

Project clipped segments

Leaf node

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.9: Clipped segments projection. The clipped intersection segments are projected onto

the row to obtain the pixels affected by the triangles in the node.

5.6.5 Rasterising the Segments

The X, a and b values are used to rasterise the segments - i.e., to determine and shade the pixels
affected by the segment. An important consideration is to attribute the right triangle to the pixel

by ensuring accurate visibility if several triangles project onto it.

HOMs are used to determine whether pixels under consideration have already been rasterised and
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are hence occluded by triangles in other leaf nodes. By recursively subdividing the extent of the
node’s triangles and testing the subdivided extent against the HOMs, the visibility of each subdi-
vided extent is determined. The subdivision and occlusion tests are continued until the subdivided
extent is contained fully by an eight pixel group determined by the HOM. Subdivision is stopped
at this point as it is more efficient to use SIMD instructions for further processing. Visibility
determination using HOMs will be discussed in detail in Section 5.8.4.

At the end of subdivision, the intra-node visibility in addition to the inter-node visibility is under-
taken. Inter-node visibility order — the visibility order of triangles in different nodes — is deter-
mined using the lower levels of the HOM. However, intra-node visibility — accurate visibility of
triangles within the node — is determined by using a Z-buffer like algorithm. For the eight pixels,
the maximum values of 1/Z coordinates is maintained. When a clipped line segment projects
onto a pixel, the value of 1/Z of this line segment is compared against the existing value. If it
is greater, then the pixel’s existing triangle is replaced by this triangle and the Z-buffer’s value is
updated to reflect this.

An observation is that if a leaf node has triangles that do not overlap, intra-node visibility is not
necessary and hence the Z-buffer algorithm is also not necessary. However, to simplify the im-
plementation, this is implemented only if a leaf node has a single triangle or two non-overlapping
triangles.

5.7 Final Image Generation

The process so far details the method to find the corresponding triangle for each pixel on a partic-
ular row. Once the triangle has been determined for the pixel, shading can be computed using one
of the popular methods. Since visibility is the main concern, the shading used by Row Tracing is
a simplified method that aims to emphasise speed.

5.7.1 Simplified Shading for Row Tracing

The simplified shading used for Row Tracing is an adaptation of the method used in [MJC00]
[MJCO02] that uses normal coding [Gla90]. Directions are quantised and the normals of the trian-
gles are then classified into one of the quantised directions for which shading is calculated.

The advantage of this process is that for a viewpoint, there are a fixed number of quantised di-
rections for which shading can be pre-computed and stored in an array prior to tree traversal. For
Row Tracing, a quantised set of 65535 directions are used. Once the tree traversal is completed, a
pixel’s shading is found by just an array indexing operation.

For every pixel in each row, if a triangle projects onto it, shading is computed and the pixel’s
colour is set accordingly. When all the rows in the image are similarly shaded after completing
the tree traversal and leaf node processing, all the pixels in the image are appropriately shaded to
obtain the final image.

The algorithm can be used without using HOMs, in which case visibility is always determined by
the Z-buffer algorithm. However, the use of HOMs is an important optimisation that accelerates
the rendering process significantly by incorporating an occlusion detection method ~ one that
mimics the early ray termination used by ray tracers — into Row Tracing.
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5.8 ID Hierarchical Occlusion Maps (HOMys)

Hierarchical Occlusion Maps (HOMs), as introduced by Zhang et al. [ZMHH97], is a very efficient
method to determine occluded areas of an image. When combined with a front-to-back traversal
of a structure like a kd-tree, the areas that have already been rendered occlude other triangles
projecting onto these pixels. HOMs were also used in Coherent Rendering discussed in chapter 4.
They are adapted for use with Row Tracing - the ID nature making HOMs simpler and more
efficient.

Through the use of ID HOMs, it is possible to mimic the early ray termination feature of ray
tracing whereby once a ray is determined to have hit an object, it can stop the traversal. However,
due to the fact that a row encapsulates a large number of rays, the early ray termination property
cannot be used directly. HOMs are one method to adapt this property of ray tracing to Row

Tracing.

The HOM is an array of bits with each bit indicating if the part of the row corresponding to that
bit is occluded. The HOM is a hierarchical structure. Each bit at the lowest level of the HOM
corresponds to a pixel in the row being traced. Figure 5.10 shows a HOM in its initial state when
the entire row is unoccluded. In the figure, the row is indicated by the coloured line with each red
or green part representing a pixel. A bit at each higher level combines the occlusion status from
the two corresponding bits at the level immediately below it - i.e., if the two corresponding bits
are set. then the upper level bit is also set, otherwise the bit is not set. Essentially, the upper level
bit is a bitwise and of the two corresponding lower bits. The bits below are combined to obtain the

higher level bits and when the highest level bit is set. it indicates that the entire row is occluded.

To represent a HOM with minimal wastage, an array of chars is used in the implementation as
the structure for ID HOMs. As a char is just eight bits, this reduces any wastage that may occur
by using a bigger data type. For an image that is 1024 pixels wide, the lowest level of the HOM
uses just 128 chars. The upper levels use 64, 32... 1 chars allowing the HOM for the row to be
represented by just 256 chars - a negligible amount of memory. The reduced memory requirement

for the HOM also improves the cache coherence.

Prior to traversal of a row. the entire row is empty, i.e.. none of its pixels are rendered. At this
point, the HOMs - that at all points indicate the occlusion state of the row - is initialised so that

all bits are zero, as Figure 5.10 shows.

HOM level
16 pixels / bit 0 4
8 pixels / bit 0 1 0 3
4 pixels / bit 0 0 0 0 2

2 pixels / bit 0 0 0 0 0 0 0 1

Lpixel/bit 0 0 0 0 0090 0

Figure 5.10: Initial state of the HOM.

The use of HOMs involve - updating it when a triangle is rasterised so that it represents the current

occlusion state of the row at all times, testing it during tree traversal time. The HOMs are also
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HOM level
16 pixels / bit 0 4
8 pixels / bit 0 0 3

0 I 0 0 2
2pixeis /bt O 1 0 oT oT 0 0 0 1

=] = 0

Lpixel /bit 9 0 0 0 ° 111 1.0 0 0

4 pixels / bit 0

Row

(a) Pixels and HOM bits updated (in blue). If the blue part on the row is rasterised,
then the first level HOM is first updated.

HOM level
16 pixels / bit 0 4
8 pixels / bit 0 0 3
4 pixels / bit 0 0 0 0 2
2 pixels / bit ¢ 0 0 0 0 1 0 0
Ipixel/bit 0 0 0 0 © ° °° 00 11 10 °°
Row

(b) Upper level bit updated (in blue)

Figure 5.11: Updating the HOM.

checked when triangle segments are rasterised.

5.8.1 HOM Update

The HOM needs to be updated when triangles in the leaf node are rasterised so that the HOMs
indicate the current occlusion state of the parts of the row. At the leaf node, when a triangle is
determined overlap a part of the row, the bits corresponding to the affected pixels of the row are
set to one. These bits indicate that any further attempts to render another triangle onto these pixels
should fail. Each bit at the lowest level and its binary adjacent bit are ancled to obtain the upper
level bit. A similar operation is undertaken at every consecutive level until the upper level bit is

zero or until the highest level bit is reached. Figure 5.11 shows the process.

Each HOM consists of a series of chars making it preferable to set and update the HOM upwards
in groups of 8 bits or I char at a time. Accordingly, during the rendering part (Section 5.6.5), the
update is performed when the pixel width is eight pixels corresponding to the 8 bits in a char of
the HOM at the lowest level. Hence, the state of these 8 pixels is combined into a char in which
a bit with a value of 1 indicates that the corresponding pixel has been rendered and a bit with a
value of 0 indicates that it has not yet been rendered. The char thus created is bitwise anded with

the corresponding HOM char’scurrent value to get the new occlusion status for these pixels.

Finding the upper level bits is slightly complicated by the lack of simple horizontal bitwise and

methods. The most obvious method is to make a copy of the char, use bitwise shifts on the copy,
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and finally bitwise and the original char and the shifted copy as shown in Figure 5.12. This
process is expensive - especially as this occurs during the rendering process. To optimise this,
for each of the 256 values that the char can take, the horizontally bitwise atided values are pre-
computed and stored. This simplifies the expensive combination operation to one of indexing an

array - a relatively less expensive operation.

11001011 1 10 0 1 0 1 1 —pa
» 1 01 1.0 0 10 1 —5b
o 0 0 O 01000 0 0 1

o 0 0 0

HOM - obtaining the higher HOM - obtaining the higher
level by 'horizontal and' level using
'shift right and
bitwise and'

Figure 5.12: HOM update - combining bits horizontally.

The HOM thus updated will always reflect the current occlusion state of the row being considered.
It is used to determine if subsequent rendering attempts correspond to already rendered parts of
the row.

5.8.2 Occlusion Testing using HOMs

The real value of HOMs is realised at traversal time, when they enable detection of occluded parts
of the row to allow large parts of the tree to be skipped. Given a segment of pixels - a starting
pixel and an ending pixel - the occlusion testing process uses the HOMs to determine whether this
segment is occluded or not. To conduct the test, the exact level and bits of the HOM that hold this
information is needed. If the bits thus determined are all set. then the span of pixels are occluded.
Otherwise, the span of pixels are not occluded and processing would have to continue further. The

process is shown in Figure 5.13

The most challenging part of the occlusion test is to determine the necessary level and bits of the
HOM.

Determining the level - The level of the HOM to be checked depends on the length of the pixel
span lo be tested. The level is obtained by taking the log-2 of this length and rounding up to the next
integer. The log-2 of a floating point number is easily found - it is the exponent part in the IEEE
floating point representation. Since the exponent provides the log2 of a power of 2 lower than the
float in consideration, it is incremented to get a pow'er of 2 greater than the float. For pixel
lengths that are exact powers of two the exponent is accurate. A HOM bit at this level indicates
the occlusion status of pixels. It is possible that the pixel extent may span either one or two
bits at this level.
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Figure 5.13: Occlusion testing. II'the blue part on the row is to be tested for occlusion, 2 bits

(shown in blue) at level 2 of the HOM is tested.

Determining the bits of the HOM at the level - At the level of the HOM. determining the

corresponding bits of the HOM is done using the actual pixel values of the start and end pixels of

the pixel extent. The respective pixel values are divided by 2,ev#/ - achieved easily by shifting the

pixel value by level bits to the right - to get the bit(s) to be tested. This may be one or two bits

depending on the start and end pixels.

Using the level and bits thus computed, occlusion is easily determined by testing if the bits are set.

If they are set. the pixel extent is occluded and hence processing can stop.

Figure 5.14: Final HOM on the Dragon model. Orange line represents the actual pixel. Each
horizontal line above the orange line is a level of the HOM. In the HOM, each single coloured

block indicates a bit of the HOM at that level.

The occlusion testing is used during the tree traversal to test and skip occluded nodes. It is also

used in the rasterisation steps to determine accurate visibility of triangles and to skip pixel extents

that maybe occluded.
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5.8.3 Node Occlusion Testing

Checking the HOM is the simpler part of the node occlusion test. The more complex part is to
determine an efficient method to find the pixels that the node occupy when projected onto the
row. As detailed in Sections 5.5.5 and 5.5.6 and Figure 5.3, finding an overestimate is preferred
to finding the exact projection due to the computational cost. Although, it would result in a
few false negatives - i.e., a few nodes may be determined as unoccluded when in fact they are
occluded, using the overestimate is preferred to the more expensive method of finding the exact
node projection.

5.8.4 Recursive Rasterisation of Leaf Node Triangles

Leaf node

Row plane

Row being traced

Use for 1
~occlusion —
Image plane

Viewpoint

Figure 5.15: Leafnode intersection segments - Clipped and projected onto the row. These
projections on the image row are tested for occlusion against the HOMs to determine inter-node

visibility.

In Section 5.6.5, it was stated that a recursive process is followed to rasterise the triangle segments.
HOMs are used even in this recursive process to efficiently determine inter-node visibility. The
pixel extent to be tested for occlusion is given by the minimum and maximum projected points
along the row as shown in Figure 5.15. If this extent is occluded, as determined by checking the
HOM, then rasterisation can stop. However, if the extent is not occluded, it is subdivided into two
sub-extents - each spanning half of the original extent - that are tested for occlusion. The process
is continued until either the sub-extent is occluded or until the sub-extent is indicated by one bit
in the HOM at a level where each bit indicates 8 pixels - i.e., a bit in level 3 of the HOM shown
in Figure 5.13. The process is explained by the pseudocode below.
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RerursiveRender (extent, pList)

{

if (extent 1s occluded)
return;
if (extent 1is contained
inside a block of 8 pixels)
{

Rasterise relevant parts of
each projection in pList
using a Z-buffer algorithm;

Update Occlusion map
with rasterised pixels;

else

1
RecursiveRender (first half of extent);
RecursiveRender (second half of extent);

Listing 5.5: Recursively render parts of the triangle that project onto this row. The method
divides the part into two until the parts span eight pixels. At this point a Z-buffer algorithm is

used to determine accurate visibility for these eight pixels.

If the extent - fully indicated by a bit in the level 3 of the HOM (Figure 5.15) - is not occluded,
then the Z-buffer like structure is used to determine occlusion. However, in order to test whether
a pixel has already been rasterised by triangles in other nodes, the corresponding lowest level bits
(indicating occlusion status for a single pixel) of the HOM is tested. The pixel is rasterised only if
the HOMs indicate that it is unoccluded.

In this manner HOMs are used both to optimise Row Tracing and also to ensure accurate visibility.
It is an important part of Row Tracing that enhances the performance - especially for highly
occluded scenes - to be very competitive with packet ray tracers and rasterisation methods like
OpenGL.

5.9 Packet Row Tracing

Row Tracing makes effective use of the coherence provided by the underlying datastructure to ac-
celerate the speed of rendering. However, upon closer observation, it is noticed that the algorithm
can further utilise the coherence provided by the data structure. Several adjacent rows traverse a
similar path down the tree and possibly hit the same object. This in turn points to the possibility
of increased rendering performance by tracing groups or packets of rows through the tree. A new

algorithm - Packet Row Tracing - was implemented to fullil this promise.

5.9.1 High Level Algorithm

The high level algorithm is very similar to Row Tracing, as the pseudocode below shows. How-
ever. due to the use of groups / packets of rows instead of a single row, the algorithm needs minor
modifications. The first change is that each component row has its own attributes that have to be

computed prior to traversal of the packet. However, the major change is the tree traversal of the
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packet. Although it is very similar to the single row variant, it has to be adapted to handle packets
of rows instead of a single row. It will be discussed in greater detail in Section 5.9.2. Finally, once
the tree traversal completes, the triangles occupying all the pixels of all the component rows have
been determined. This high level algorithm is given by the pseudocode below.

RowPacketTrace ()

{

for (each row packet in image)

{ for(each row r in row packet)
InitialiseRowConstants ();
TraverseTreePacket (rootNode) ;
for(each row r in row packet)

Shade r;

)
}

Listing 5.6: High Level Packet Row>Tracing algorithm. Instead of initialising a single row and
tracing it (as shown in Listing 5.1), rows are processed in groups, i.e., they are initialised,
traversed and finally their pixels are shaded in groups. The algorithm is very similar to the single

row version and major deviations from Listing 5.1 are highlighed in blue.

The initialisation and shading are just iterating over all the row s using the same methods described
in the single row' versions. The tree traversal, though, attempts traversing several rows down the
tree minimising the number of node traversals necessary - reducing the calculations and improving

the cache coherence and memory bandwidth usage of the algorithm.

5.9.2 Tree Traversal

The tree traversal is adapted so that the tree is traversed by a group of adjacent rows instead of a
single row. The pseudocode below' shows the process as implemented.

TraverseTreePacket (node)
(
if (node 1is empty or
entire RowPacket misses node)
return
proj = FindNodeProjection();
if (proj is occluded in all rows or
proj 1is outside frustum)
return;
if (node 1is leaf node)
{ for (each row in packet)
ProcessLeafNode (row, node);
return;
>
if (entire RowPacket intersects node)
i
for (each childNode sorted in
front-to-back order)
TraverseTreePacket (childNode) ;
}
else if (RowPacket partially
intersects node)
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{or(each row in packet)
TraverseTree (row, node);

)

Listing 5.7: Row-packet—tree traversal algorithm. This is very similar to the single row traversal
shown in Listing 5.3 and the major differences are highlighted in blue. The differences enable the
algorithm to process a packet of rows instead of a single row.

The early termination criteria for the tree traversal are very similar to the ones for the single row
variant. The first condition is if the node is empty, then traversal can stop. This condition does not
vary for the packet version.

The next condition is packet-node intersection. As shown in Figure 5.16, the intersection is
determined by using just the two outer boundary rows — the top and bottom rows of the packet.
The signed distances between the node and these two are computed, similar to the single row
version — described in Sections 5.5.7 and 5.5.8.

It may be recalled from Section 5.5.1 that a plane—-node intersection can be achieved efficiently by
predetermining the two vertices of the node casting the maximum projection onto the row-plane’s
normal. If vq and v4 are the two vertices thus determined then we can define:

diop and dyop — as the signed distances of the top row to vy and vz respectively and

dyottom  and dportom — as the signed distances of the bottom row to v; and va respectively.
Using these signed distances, the cases are determined and handled as follows:

Case 1 - Entire packet intersects Node — The case occurs when:

sign(diop ) 1= sign(diop ) and

sign{dpottom ) = Sign(dbottom )

This indicates that both the boundary rows intersect the node, as shown in Figure 5.16(a). Conse-
quently, all the component rows of the packet also intersect the node, thus necessitating traversal
down the tree.

Case 2 - Entire packet misses Node — Both the rows miss the node and are on the same side
of the node, as shown in Figure 5.16(b). The case is determined when:

sign(diop ) == sign(disp ) and
sign{diottom ) == sign{dpottom ) and
sign(diop ) == sign(dpottom )

During the calculation of the distances, it is to be ensured that the normals to the rows are not
directed towards each other. In this case, none of the rows in the packet intersect the node and
hence the traversal can stop at this node.

Case 3 - Part of packet intersects Node - This can occur when:
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* One of the boundary rows intersect the node and the other does not. This is detected if:

Sign(dtop ) '-- sign(dtop ) and
sign [di)Ottoni ) sign {d>ot<in )

sign(dtop ) == sign(dtop ) and
sign (dbottnm ) ! sign(dbonom )

This case is illustrated by Figure 5.16(c).

* The node span is smaller than the span of the packet, as shown in Figure 5.16(d). This is

detected when:

sign(dtop ) = sign(dtop ) and
sign(d(,ottom ) = sign(dbottom ) and
sign(dtop ) = sign{dbottom )

When only a part of the packet intersects the node (Figure 5.16(c)or Figure 5.16(d)), the algorithm
continues traversal using the single row variant with each of the component rows using this node

as the starting node for single row traversal.

Node Occlusion testing - When a group of rows are being traversed, if the coherence is good
enough, the occlusion of one of the rows may indicate that the entire group is occluded. However,
to test this accurately, the method used is to simply test the occlusion maps of all the component

rows individually.

Since the transformation matrix is used to project the node onto the screen, the node’s maxi-
mum extent - given by the minimum and maximum A' coordinate occupied by it on the screen
- applies to all the rows. It is sufficient to find the node projection's overestimate as detailed in
Sections 5.5.5 and 5.5.6 just once for the entire packet of rows to get the pixel extent for the

occlusion test.

It may be recalled that during the initialisation process, constants for each row are being created
and maintained. During this process. HOMs for each of the component rows are also created and
initialised. These HOMs are updated when triangles are rasterised and kept up to date with the
occlusion status of the row. During tree traversal, upon finding the node projection overestimate,
it is tested against every single row’s HOM. If any one of the HOMs indicates that the node is not
occluded, the occlusion test can stop as the traversal needs to continue in this case. However, if

all the HOMs indicate that the node is occluded, tree traversal can stop for the entire packet.

As with the single row version, if all the tests indicate that traversal should continue, traversal

continues until either the node is occluded or a leaf node is reached.

Leaf node processing - If traversal continues down the tree in packet mode until a leaf node

is reached, then all the component rows intersect the leaf node and can have some of their pixels
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Node
fe&Bs
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Both rows intersect node Both rows miss node
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One row intersects and Node span is smaller
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Bottom row of packet

Part of packet hitting node

Part of packet missing node

Figure 5.16: Row-Packet-Node intersection.

determined at this leaf node. In this implementation of Packet Row Tracing, all the component
rows at the leafnodes are treated individually and are separately processed using the same method

used by the single row variant (section 5.6).

Final image generation - At the end of the tree traversal by a packet of rows, the triangles at
every pixel of each of the component rows is determined. These triangles are used to shade the
pixels corresponding to each pixel of each row. By tracing all the rows of the image, by grouping

them into packets, the final image is generated and displayed.

An important consideration for Packet Row Tracing is the number of rows in each packet. The
performance of the algorithm is dependent on this number. A small number does not maximise
the coherence enough, whereas with a very large number the available coherence is not sufficient.
In our implementations, packet sizes of 8. 16 or 32 were found to be very good wfith a packet size

of 16 providing the best results on most scenes.
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5.10 Low Level Optimisations

The algorithms - Row Tracing and Packet Row Tracing - as implemented without any low level
optimisations are reasonably fast. However, in order to maximise the performance, a few imple-
mentation optimisations are used. The two main optimisations are the use of SIMD instructions

(see Appendix B) and multi-threading.

5.10.1 Multi-Threading

Row Tracing is highly parallelisable as each row is independent of other rows. Thus, processing
of each row can occur simultaneously without interfering with the processing of other rows. This

properly of Row Tracing is inherited from ray tracing that is similarly trivially parallelisable.

Multi-threading over the number of cores available accelerates Row Tracing and the packet variant
immensely. As the results section - Section 5.11 - will show, the speed-ups achieved is almost
perfect with a speed-up of 3.8 x on average (for the fastest variant of Row Tracing) on a quad core
processor.

The key to achieve the best performance when an algorithm is multi-threaded over multiple cores
is to ensure that all the threads have as similar a workload as possible. This ensures that all the
threads finish the work allocated almost simultaneously. To achieve the best distribution of w'ork
across threads, a round robin allocation of the rows / packets of rows to process is implemented.
As Figure 5.17 shows, this means that the first row' / first packet of rows is allocated to the first
thread, the second row' / packet to the second thread and so on. As adjacent rows follow a very
similar path down the tree, this method of load balancing ensures that the threads have workloads
as close to each other as possible.

Single Row Tracing Packet Row Tracing

Work allocated to CPU-1
Work allocated to CPU-2
Work allocated to CPU-3
Work allocated to CPU-4

Figure 5.17: Load balancing of Row' Tracing and Packet Row Tracing. Each coloured block is

the work allocated to a thread.
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5.11 Results"

The algorithm has been implemented in C++ using the Visual C++ IDE. The results are tabulated
by running the algorithm on a computer with the Intel Core 2 Quad 2.4 GHz processor, 4 GB of
RAM and a Geforce 8800 GTX with 768 MB of video memory, running Windows XP64. A range
of models are used to study the algorithm.

Figure 5.18 shows the performance of Row Tracing and its packet variant in comparison to the
performance of packet ray tracing and OpenGL on the same scenes. It can be noticed that the
performances of Row Tracing and Packet Row Tracing are excellent. It is also noticeable that
Row Tracing and Packet Row Tracing are extremely amenable to multi-threading. The other point
of interest from the graph is the adaptability of Row Tracing over different data structures like
kd-trees and octrees.

In order to observe these results better, subsets of Figure 5.18, that isolate particular results are
shown in the sections that follow.

5.11.1 Row Tracing vs Packet Ray Tracing

In order to better understand the performance difference between Row Tracing and packet ray
tracing, the best results for these two rendering methods are isolated in Figure 5.19 and Table 5.2.
The figure and the table show that the fastest version of Row Tracing is significantly faster than
the fastest version of ray tracing. The advantage is particularly noticeable when the scene consists
of large triangles like in ERW6, Sponza and Sodahall scene with advantages of 7.41x, 1.93x and
3.31x. This reveals the advantage of cheap triangle intersections amortised over a large number
of pixels. For other scenes — the Powerplant and Armadillo scenes — that have a large number of
(possibly small) triangles visible, Row Tracing shows advantages of 1.93x and 1.09 x. It can thus
be inferred that Packet Row Tracing is a very viable alternative to packet ray tracing as a visibility
method.

Scene ERW6 Sponza | Armadillo | Sodahall | Powerplant
Row Tracing (kd-tree) 128 40 20.6 49.2 6.67

Ray Tracing 8x8 17.3 20.6 14.2 14.8 6.09
OpenGL 1000 500 333 8.40 1.49

Row Tracing speed-up vs | 7.41x 1.93x 1.45x% 3.31x 1.09x
Packet Ray Tracing

Row Tracing speed-up vs | 0.13x 0.08x 0.06x 5.86x 4.48%
OpenGL

Table 5.2: Best performances of packet ray tracing and Row Tracing in frames per second. 8§ x8
ray packets and Packet Row Tracing’s kd-tree versions have been used respectively.
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ERW6 Sponza Armadillo Soda Hall PowcrPlant
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Octree Octree Kd Ircc Row KdTree Packet Ray  Packet Ray  Packet Ray Packet Ray OpenGL.
Tracing Packet Row Tracing Packet Row Tracing 2x2 Tracing 4x4 Tracing 8x8 Tracing Display Lists
Tracing Tracing 16x16

Color mapping Index. First 4 columns: Row -Tracing. Next 4 Columns: Ray-tracing. Last Column: OpenGL.

Figure 5.18: Performance of Row Tracing vs Packet Ray Tracing and OpenGL.
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Figure 5.19: Performance of Packet Row Tracing vs Packet Ray Tracing - Single threaded and
Multi-threaded versions respectively. For smaller sized models Packet Row Tracing is much
faster than packet ray tracing. For larger models, though the performance difference is not that

significant. Packet Row Tracing is still faster.

5.11.2 Row Tracing vs OpenGL

Since Row Tracing can he thought of as an algorithm that combines ray tracing and OpenGL. a
comparison against OpenGL is necessary. Table 5.2 and Figure 5.20 compares the fastest Row
Tracing variant vs OpenGL implemented with display lists. It is clear that for smaller models -
with less than a million triangles - OpenGL is significantly faster than Row Tracing. However,
with an increase in the scene sizes. OpenGL performance decreases dramatically as evidenced by
the performance of OpenGL on the larger models - Sodahall (2.1 million triangles) and Power-
plant (12.7 million triangles). For these scenes, Row Tracing is 5.86x and 4.48x faster respec-

tively.

This shows that Row Tracing inherits the complexity advantage of ray tracing making it very
scalable over scene sizes. It also indicates the dependence of OpenGL on available video memory.
The display lists for the larger scenes probably do not fit within the 768 MB of video memory
available. This also contributes to the performance reduction as parts of the model would have to

be paged. Row Tracing, with its low memory usage can handle such scenes efficiently.
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Figure 5.20: Performance of Row Tracing (Single threaded and Multi-threaded versions) vs
OpenGL. OpenGL performance for first three models clipped to 35 fps and 120 fps in both
charts. For smaller models. OpenGL is much faster. However, for larger models, Packet Row-

Tracing. especially when multi-threaded, is faster than OpenGL.

5.11.3 Row Tracing Performance on Kd-trees vs Octrees

The performance of Row Tracing on octrees is very good - close to its performance on an SAH
kd-tree. Figure 5.21 shows that the difference in performance is small for most scenes. Especially
for densely packed scenes like the Armadillo scene, when the SAH cannot effectively segregate
the triangles, the octree actually shows a slight advantage over the kd-tree. This is due to the

computational simplicity of intersecting an octree node as against the slightly more expensive
kd-tree node intersection.

This result is significant as octrees are a very simple structure that are very easy and fast to create.
By using fast construction methods together with fast rendering methods, Row Tracing with the
octree can be used as an effective algorithm to perform dynamic rendering. The octree results also
show the adaptability of Row Tracing on structures that are made up of cuboids / Axis-Aligned
Bounding Boxes (AABBs). When combined with recent data structures like BIH (Bounding In-
terval Hierarchies) [WKO06], BVH (Bounding Volume Hierarchies) [WBSO07], etc that have fast
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construction methods available, it points to the use of Row Tracing for dynamic rendering.

ERW6 Sponza Armadillo Soda Hall PowerPlant

804 Triangles 66454 Triangles 345944 Triangles 2.1 Million Triangles 12.7 Million Triangles

Frames per second - Single Threaded version

BO

Frames per second - Mulli-Threaded version (4 threads)

Octree Row  Octree  KdTree Row  KdTrec  Packet Ray Packet Ray  Packet Ray Packet Ray  OpenGL
Tracing  Packet Row  Tracing  Packet Row Tracing 2x2 Tracing 4*4 Tracing 8x8  Tracing  Display Lists
Tracing Tracing 16*16

Figure 5.21: Performance of Row Tracing on kd-trees and octrees - Single threaded and
Multi-threaded versions respectively. Shows that Row tracing works well on both kd-trees and

octrees.

5.11.4 Performance of Row' Tracing vs Packet Row Tracing

Figure 5.22 and Table 5.3 show that Packet Raw Tracing is considerably faster than Row Tracing.
The use of multiple row results in a 1.05 x to 1.46 x acceleration in rendering performance. W hile
this is considerable, it is noticable that the acceleration due to the use of multiple rows is not in
the same league as acceleration obtained by packet ray tracing vs single ray tracing. Row Tracing
already makes uses of a lot of the coherence provided by the scene. The use of packets can thus
only slightly improve coherence utilisation. In addition, the use of packets implies that some of
the coherence is lost as the component rows may not traverse the same nodes, at which time Packet
Row Tracing reverts to the single row version. Having said that, the use of packets does result in

a considerable improvement in rendering lime and makes Packet Row Tracing very useful.
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Scene ERW6 Sponza Armadillo
Row Tracing (kd-tree) 106.38 30.48 16.42
Packet Row Tracing (kd- 128.21 40.00 20.66
tree)

Packet Row Tracing speed- 1.21 x 1.31 x 1.26 x

up vs Row Tracing

Row Tracing (octtree) 91.74 24.63 17.79
Packet Row Tracing (oct- 107.53 33.67 21.37
tree)

Packet Row Tracing speed- 1.17x 1.20x 1.45x

up vs Row Tracing

Sodahall
33.78
49.26

1.46x

32.05
45.87

1.43 x

144

Powerplant
5.93
6.67

1.12x

4.54
4.78

1.05x

Table 5.3: Performance comparison between Row Tracing and Packet Row Tracing.

ERVV6 Sponza Armadillo Soda Hall

66454 Triangles 345944 Triangles 2 1 Million Triangles

Frames per second - Single Threaded version.

Frames per second - Multi-Threaded version (4 threuds).

Octree Row  Octree  KdTree Row  KdTree  Packet Ray Packet Ray  Packet Ray
Tracing  Packet Row  Tracing  Packet Row' Tracing 2x2 Tracing 4x4 Tracing 8x8
Tracing Tracing

PowerPlant

Packet Ray

12.7 Million Triangles

OpenGL

Tracing  Display Lists

16x16

Figure 5.22: Performance comparison between Row Tracing and Packet Row Tracing on both

octrees and kd-trees. It is clear that Packet Row Tracing is considerably faster than single Row

Tracing.
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5.11.5 Multi-core Performance

The performance of Row Tracing, in theory, should scale when the number of cores are increased.
Figure 5.23 shows the speed-ups achieved by Row Tracing when multi-threaded and run on a
quad core processor. It can be inferred that the algorithm is exceptionally suited to be multi-
threaded. The speed-ups for the best variant of Row Tracing - Packet Row Tracing with kd-trees -
is about 3.8x, thus, confirming the claims. In addition, it also shows the low memory bandwidth
requirements of Row Tracing, since for a multi-threaded application, the major bottlenecks are

load balancing and memory bandwidth issues.

ERW6 Spon/a Armadillo Soda Hall PowerPlan!

804 Triangles 66454 Triangles 345944 Triangles 2.1 Million Triangles 12.7 Million Triangles

Speed-up provided by Multi-Threading

Octree Row  Octree  KdTree Row  KdTree Packet Ray  Packet Ray  Packet Ray  Packet Ray ~ OpenGL
Tracing  Packet Row Tracing  Packet Row Tracing 2x2 Tracing 4x4 Tracing 8x8  Tracing  Display Lists
Tracing Tracing 16x16

Figure 5.23: Speed-ups achieved by Row Tracing by using four threads a quad core CPU.
Accelerations of close to 4x suggest that Row Tracing is highly parallelisable.

5.11.6 Performance vs Tree Size

Figure 5.24 shows the performance of Row Tracing and packet ray tracing across kd-trees of
different sizes. The performance of Row Tracing is very good for small tree sizes. It improves
significantly when the tree sizes are moderately increased. The optimal tree size for Row Tracing
is very small and performance degrades slightly when tree sizes are increased beyond this. In
comparison, the performance of packet ray tracing is poor when tree sizes are very small. It
improves only when the tree size is increased significantly. The optimal tree size for packet ray

tracing is significantly greater than that of Row Tracing.

This is another important result when considering Row Tracing for dynamic rendering. In a dy-
namic context, the structure has to be constructed prior to rendering each frame. A smaller tree

size implies lower construction times leading to better dynamic rendering performance.
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Figure 5.24: Rendering times using Row Tracing, Racket Row Tracing and Packet Ray Tracing
over tree sizes show that while packet ray tracing needs larger trees, Row Tracing and Packet
Row Tracing work very well with smaller trees pointing to the possibility of using Row Tracing

for dynamic scenes.

5.11.7 Row Tracing with and without HOMs

As mentioned, Row Tracing can be used without HOMs. In this case, the visibility is accurately
determined using a partial Z-buffer. To measure the effectiveness of HOMs as implemented for
Row Tracing, the performance is determined with and without the use of HOMs. The results are

shown in Figure 5.25.

The times indicate that HOMs are very effective. For the fastest version of Row Tracing - multi-
threaded packet Row Tracing on SAH kd-trees - the HOMs are responsible speed-ups of 1.2 x,
1.5 x,2.3x,21.7x and 3Gx for the five scenes - ERW6. Sponza, Armadillo, Sodahall, and Power-
plant scenes - respectively. The benefit of HOMs is seen more for larger scenes like the Sodahall
and Powerplant scenes. Only for the very small ERW6 scene, the HOM’s effect is negligible.
This shows that the HOMs, and in a similar vein - the early ray termination used by ray tracers is
highly effective in improving the rendering performance. It is also an indication that HOMs are a

highly effective method to transfer the early ray termination property to Row Tracing.

5.12 Summary

The results show the effectiveness of the algorithm as a visibility method. For scenes with pre-
dominantly large triangles visible, Row Tracing shows exceptional performance in comparison to
packet ray tracing. This is attributed to the amortisation of intersection calculations over a large
number of pixels. The traversal calculations are also averaged over a number of pixels, but the
smaller tree sizes - implying fewer traversals - work in favour of Row Tracing making it much

more efficient. Finally, the adaptation of the early ray termination property - used extensively in
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Figure 5.25: Performance of Row' Tracing on kd-trees and octrees with and without HOMs.

HOMs are shown to be highly effective as an occlusion detection method.

ray tracers - to Row Tracing through a ID version of HOMs proves extremely beneficial, leading

to a very efficient algorithm.

In comparison to OpenGL. Row Tracing shows an advantage when the sizes of the scenes are
large. As the scene sizes increase, OpenGL - using a brute force approach - shows deteriorated
performance, with ray tracing and Row Tracing outperforming it for these scenes. At the same
lime, the performance of Row Tracing for smaller scenes is very good. It can thus be inferred that
Row Tracing has a better complexity over scene sizes than basic OpenGL with display lists. The

results thus show that Row Tracing scales very effectively both ways according to the scene size.

Another inference from the results is the potential suitability of Row Tracing for dynamic ren-
dering. Row Tracing works very well with a very simple data structure like the octree. Octrees
- being simpler to create - are better suited for a dynamic rendering context. In addition. Row
Tracing works well when tree sizes are small. Again, smaller trees are faster to create - pointing to
very good potential for dynamic rendering. The utilisation of Row Tracing in a dynamic rendering

context is one of the obvious areas for further investigation.

Row Tracing is also very easily parallelised - a property that is inherited from ray tracers. This

is a very valuable advantage when there is a trend towards increased number of CPU cores. The
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results show an almost perfect speed-up with the number of cores. Thus, when the number of
cores increase, Row Tracing performance would increase without any modifications to the imple-
mentation.

Other future work include using techniques used in rasterisation - shadow, reflection and refraction
mapping, shadow volumes, etc — to add secondary ray effects. Row Tracing inherits the inability of
rasterisation based methods to physically model secondary rays and these have to be implemented
with methods similar to rasterisation. There is also scope for further optimisations like testing
entire packets for occlusion, faster leaf node processing for packets by intersecting groups of rows
with the leaf node triangles, and possibly splitting packets into smaller packets at divergence nodes
during traversal to further accelerate Packet Row Tracing.

It has been seen that the optimal trees for Row Tracing are much different than trees for ray
tracing. For a cube, the probability of a plane intersecting it is proportional to the sum of the edge
lengths [Hai07]. Instead of using the SAH, a modified version that uses the sum of edges measure
could be used instead of the surface area to create a tree with better properties for Row Tracing.

Row Tracing is introduced as a novel algorithm that aims to improve visibility determination /
rendering performance. It can be considered as a hybrid algorithm combining rasterisation and
ray tracing concepts — fast scanline rasterisation at the leaf node level and fast front-to-back tree
traversal of an octree or a kd-tree. The use of HOMs to determine accurate visibility transforms it
into a very effective algorithm, especially in cases where there is significant occlusion — as in most
computer graphics scenes. The fact that rows are traced independently of each other implies that
it is highly parallelisable. In addition to these factors, Row Tracing and Packet Row Tracing are
simple algorithms to implement. These factors enable Row Tracing to be a very viable alternative
to either packet ray tracing or rasterisation based visibility determination / rendering methods.



Chapter 6

Conclusions and Future Work

Conclusions

This research has made several contributions while investigating the use of ray tracing data struc-
tures and algorithms in the context of visibility. The aim of the research was to investigate the
effectiveness of ray tracing structures like kd-trees, octrees, etc and associated algorithms from a
purely visibility context — i.e., when only the first intersected object is to be found without con-
sidering additional optical effects like reflections, refractions and indirect lighting. Three new
methods to achieve this have been developed and studied.

e RBSP 1rees — A new structure based on kd-trees, but more general, RBSP trees provide
ability to have more than three splitting axes. The axes may be in any arbitrary direction as
long as they are predetermined prior to tree construction. They allow the tree to fit closely
to the scene being rendered, thus reducing the number of node traversals and primitive
intersections.

Construction and use of RBSP trees to generate images has been discussed extensively in
Chapter 3. Due to their similarity to kd-trees, several well known algorithms and heuristics
for both construction and traversal can be adapted. Through the use of the Surface Area
Heuristic to construct them, it has been possible to construct good trees for most scenes.

Results show that, for scenes with predominantly non-axis-aligned triangles, RBSP trees
are responsible for a reduction in the number of node traversals and triangle intersections.
Unoptimised rendering times also show that RBSP trees are more efficient than kd-trees for
these scenes. At the same time, RBSP trees are slower than kd-trees when the scene consists
of predominantly axis-aligned triangles like the Sponza scene. In addition, another problem
is the fact that construction times, as described in this thesis, are dependent on the number
of axes used and can be quite long.

During the axes selection phase of the construction, the axes can be drawn from the scene
itself so that the RBSP tree provides an even closer fitting structure. By this, fewer axes
would be sufficient. The results showed that when ray tracing on RBSP trees, for most
scenes, the best results were obtained with 8-12 axes and the rendering times went up with
trees constructed using more than 8-12 axes. In addition, for the Sphere scene, for which
the axes were, in effect, customised, RBSP trees produced the best acceleration compared
to kd-trees.
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It is notable that the introduction of RBSP trees has drawn more attention to the use of
structures with non-axis-aligned splitting axes. Budge et al. address some of the problems
of RBSP trees as described in our publication. Budge et al.’s improvements make RBSP
trees faster to construct and traverse. Ize et al. use the more general form of BSP trees and
show that they are quite effective for ray tracing.

o Coherent Rendering — This is an algorithm aiming to demonstrate a reduced complexity for
primary visibility using essentially ray tracing structures and concepts like the front-to-back
traversal of a kd-tree. The method is an adaptation of the volume rendering algorithm by
Mora et al. that was very efficient and showed that per pixel rendering complexities are
constant.

The algorithm uses several concepts from both rasterisation and ray tracing based visibility
methods like Hierarchical Occlusion Maps, polygon subdivision and front-to-back traversal
of kd-trees. By combining these, an algorithm that achieves better coherence is developed.
It is shown that as image sizes increase, the time per pixel converges to a constant. This time
per pixel is only about 30% greater for the 12+ million Powerplant scene than for the Single
Triangle scene when large image sizes are used. This shows that complexity is definitely
less than logarithmic as image sizes increase.

e Row Tracing and Packet Row Tracing — Row Tracing is an algorithm similar to scanline
rendering in that it processes one row of the image at time. However, in contrast to scanline
renderers, the intersections between the row and the objects are done in object space. In
addition, ray tracing structures like kd-trees and octrees are used. An adaptation of Hier-
archical Occlusion Maps are used to determine already occluded areas of the image. The
combination of concepts from both rasterisation and ray tracing produces a very effective
and parallelisable method of determining visibility.

In addition, upon closer inspection, it is observed that neighbouring rows traverse a similar
path down the tree. To maximise this coherence, groups of rows are traversed down the tree
with a small change to the traversal algorithm. Tracing groups of 16 neighbouring rows
through the tree is observed to produce the best results.

Results show that Row Tracing and Packet Row Tracing are very effective algorithms. When
scene sizes are small, Row Tracing and Packet Row Tracing are much faster than packet ray
tracing. Comparing the algorithms with OpenGL (that uses a normal Z-buffer algorithm)
shows that Row Tracing and Packet Row Tracing are much faster when scene sizes are
large. For these scenes, packet ray tracing is also faster than OpenGL owing to its better
complexity. However, Packet Row Tracing is faster than packet ray tracing for these scenes
too.

The methods are new techniques, two of which have been published. However, as with any re-
search, each method has given rise to new ideas that could further improve the techniques. These
will be briefly described.

Future Work

For each technique, some areas of improvement and extensions are easily identifiable.

® RBSP trees — The flexibility of RBSP trees to have several axes that may be in arbitrary
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directions means that RBSP trees can adapt very well to the scene. It is believed that by
using 8-12 axes customised to the scene, RBSP frees could be the best structure for ray
tracing single rays.

Another method to customise the tree to the scene is to have a large number of axes —
for eg. 100 directions — and at each step a subset of this used so that the construction
process is simplified. The subset would be determined based on geometric properties of
the geometry in the scene. This would alleviate the problem of slow construction times
seen when the number of axes increases. The constructed tree may sufficiently reduce the
number of traversals and intersections to ovérshadow the increased traversal cost.

Although in this thesis only primary rays are considered to determine primary visibility, it
is believed that the real value of RBSP trees would be when several incoherent rays are to be
traced through the scene like in global illumination algorithms. In these methods, the ability
of RBSP trees to reduce the number of traversals and intersections would be truly valuable.

Although some effort has been put into optimising the traversal methods, the effort has not
been significant. Budge et al. [BCNJOS] state that their optimised methods are 10x faster
than ours. This shows that there is considerable margin for optimisation.

Coherent Rendering — The Coherent Rendering algorithm described is unoptimised and the
main aim was to demonstrate that a lower complexity was possible. However, the abso-
lute performance is not very competitive. To address this, the algorithm can be optimised
through the use of SSE instructions and by a cycle of optimising and profiling. The perfor-
mance after optimisation may reach competitive levels.

In rasterisation, shadows are generated through the use of shadow maps. Similar techniques
are used for refraction and reflection. The generation of additional images / maps could also
be achieved with a lower complexity leading to a full fledged low complexity renderer.

Row Tracing and Packet Row Tracing — As described in the future work for Coherent Ren-
dering, shading, reflection and refraction could be simulated through shadow maps, etc.

A major advantage of Row Tracing is that it works very well with simple structures. This
was shown by the efficiency of Row Tracing on octrees. The difference in rendering times
on an SAH kd-tree and an octree is not very significant. Simple structures like the octree are
simpler and much faster to build leading to applications for rendering dynamic scenes. In
addition, the fact that Row Tracing works well on kd-trees and octrees imply that it would
work well with any structure consisting of axis-aligned bounding boxes. Hence, they can be
used with structures that are fast to build like grids or BVHs for use in a dynamic context.

The best results for Row Tracing have been obtained on kd-trees built using the SAH. How-
ever, when a plane is traversed, the probability of a plane intersecting a box should be used
instead of the surface area. This probability — of a random plane intersecting for a box —
is mentioned by Haines [Hai07] as the sum of the edges of the box. Replacing the surface
area with the sum of edges would thus be more accurate and could create kd-trees that are
better for Row Tracing.
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Appendix A

Software Design

A software system that uses several different underlying data structures and algorithms such as
ours must have an extensible design in which it is easy to add new rendering methods. The main
aim of the software is to assist and ease research. Thus, the emphasis is on the software being a
platform through which several algorithms can be easily implemented and compared. An object
oriented approach is used to develop the system, with the majority of rendering methods having
their own classes. The implementation follows a modular design that should be easy to understand
for a new developer in addition to being new components.

The system was implemented in C++, using Visual Studio 2005 / 2008 as the IDE. For a majority
of the application and benchmarks, the inbuilt compiler has been used. However, for a few al-
gorithms, like the Row Tracing algorithm, where maximal performance was desired, Intel’s C++
compiler was used to compile the application. In addition, profiling was undertaken with the
Intel’s VTune profiling application to identify the bottlenecks in the application.

A renderer, especially one that should be able to use several interchangeable data structures and
algorithms, is an intricate system with several classes interacting with each other. The aim of
the software is to provide the user with an easy to use system whereby s/he can easily select the
viewpoint. The application allows the selection of the camera parameters like perspective (angle
of view), zoom, camera location, etc through mouse based interaction with the scene. The system
should also allow the user to import models / scenes into the native format of the system. So far,
the application is able to import the Stanford ply format, obj format, 3DS format and a raw triangle
format. A separate importer for VRML models, currently not integrated into the system, has also
been implemented using the OpenVRML library. Importers for several formats were necessary
to have a set of commonly used models so that comparisons could be made against published
algorithms using the same scenes.

This chapter will detail the design issues, including the software and user interface design.

A.1 Software Architecture

The software was developed using an object oriented methodology. The main algorithms and data
structures were encapsulated into their own separate classes. The class diagram in Figure A.1
shows the class diagram for the system.
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Figure A. 1: Software Class diagram.
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The diagram shows that the architecture is a very simple one that follows object oriented concepts.
The data — the scene to be rendered — is abstracted from the auxiliary structures (the trees), the
user interface and the rendering algorithms.

The user interface classes — not shown in their entirety, but represented by classes ‘Ray Tracing
main window’ and ‘OpenGL Frame’ in the diagram — are responsible for displaying the user
interface and receiving input from the user. The user inputs are received by the interface class
and passed on to the back end of the application. The class SceneManager is responsible for the
action of passing these commands from the front end to the back end. The scene to be rendered
is represented by the ‘Scene’ class that enables it to be in memory and its components to be
accessible to the renderer. The SceneManager creates the scene to be rendered by either loading
one that is stored in the hard disk or by importing one that exists in a different format. Once the
scene is loaded, most algorithms work with a tree as the underlying structure. Hence, a tree with
a user selected set of parameters is either loaded (if already created and stored onto the hard disk)
or created. Finally, when a rendering type is selected, the SceneManager creates the appropriate
renderer to render the scene. The SceneManager is thus a very important class.

A.1.1 Renderers and Data Structures

The application was designed to allow integrating several data structures and algorithms for ren-
dering. The first step was to declare a set of abstract super classes to define the main functionali-
ties.

As the application’s main task is to render scenes, an abstract class — Renderer — was created that
defined the main functions to be implemented by any rendering method.

Renderer - This class is the super class for all software rendering methods. It is an abstract
class defining several abstract methods that its subclasses have to implement. The main abstract
method it defines is:

e render ~ This method has to be implemented by each subclass, i.e., each new rendering
method. The subclasses use the specific algorithm to generate the image and the bitmap to
be rendered is stored in an object of the FrameBuffer class. This object is then passed onto
the OpenGL Frame object to display the contents of the current FrameBuffer.

As an abstract super-class, it is a placeholder for all rendering methods. Each rendering method is
defined as a subclass that implements this render method. A class RayTracingRender implements
a baseline ray tracing method using kd-trees. This method is used as the method against new algo-
rithms and data structures are compared. The Coherent Rendering method described in chapter 4
is implemented using the subclass SoftRasterizer.

However, when the method used is very similar to ray tracing, it is possible that several functional-
ities of ray tracing are duplicated. Hence, these rendering methods — Ray tracing using RBSP trees
(implemented by class RbspRTRenderer), Packet ray tracing (class PacketRayTracingRenderer —
also a method used as a baseline for comparison), Multi threaded packet ray tracer (class Mul-
tiPRTRenderer — another baseline rendering method), Row Tracing (class RowTracingRenderer
— implementing single threaded Row Tracing and Packet Row Tracing) and multi-threaded Row
tracer (class R()wTracingRendererMT — implementing multi threaded Row Tracing and Packet
Row Tracing) — derive from RayTracingRenderer.
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The manager class — SceneManager — manages the delegation of work to the rendering methods
based on the user’s selection. Depending on the rendering method chosen, this class creates the
appropriate renderer object with chosen rendering parameters. The object then renders the scene
and displays the image.

As demonstrated, the addition of new rendering algorithms is very simple. The new algorithm is
implemented in its own class. The only modifications necessary to the implementation are to the
SceneManager class that has to create an object of the new renderer’s class.

Further, the several data structures are abstracted out of the rendering method so that a renderer
chooses whatever data structure it deems suitable. For eg., Row Tracing has been implemented on
kd-trees as well as octrees. This is easily achieved as the data structure classes are separated from
the rendering classes.

The data structures are also implemented in a similar manner. Since the structures investigated are
all tree structures, an abstract super class called Tree defines the main tree structure. All trees are
implemented as subclasses to this class.

The first data structure implemented was the kd-tree, defined in its own class KDTree.

kdTree The class represents a kd-tree. It provides the data variables and methods necessary to
create and use kd-trees.

A few of the important data members of the kd-tree class are as follows.

o noNodes — The number of nodes in the kd-tree. Since the tree is stored as an array in
memory for efficiency, the number of nodes is used to allocate the nodes and to ensure that
out of bounds array items are not accessed.

e nodeArray — The nodes of the kd-tree are stored as an array in this structure. The array
consists of KDTreeNode items that span eight bytes each. Each KDTreeNode represents
either an internal node of the tree or a leaf node of the tree. The structures of these two
kinds of nodes are shown in Tables A.1 A.2 respectively.

Represents Bits used
Unique pointer to children 32
Quantized value of split position 14
Leaf node flag 1
Unused bit 1
Split axis 16

Table A.1: Kd-tree node structure.

Represents Bits used
Pointer to start of triangle list 32
Number of triangles in node 16
Leaf node flag 1
Unused bits 15

Table A.2: Kd-tree leaf node structure.
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noTotalTriangles — The number of triangles contained by all the leaf nodes of the kdTree.

triangleArray — In the leaf node of the kd-tree, an index an item of this array containing a
list of triangles is stored. The index points to the first triangle contained in the leaf node.
The leaf node also specifies the number of triangles in it. Together, the two members specify
the triangles contained in the leaf node.

kdTreeSplitMethod ~ Indicates the splitting method of the construction process. The split
method could be one of space median, improved space median, SAH or octree. The octree
can be considered as a version of a kd-tree where space is split across all three axes and has
eight child nodes instead of three. However, the octree due to its uniformity does not need
its split position to be represented explicitly and can thus be represented with just 32 bits
that indicate the location of the first child node.

In addition to the data members, the kdTree class also provides methods to create the kd-tree with
several different heuristics. The main methods provided are:

ConstructTree — The method that constructs the tree. It is a recursive method that works
in two passes. Due to the fact that nodes are stored in an array, the first pass counts the
number of nodes and triangles necessary and the second pass includes the data in these
nodes and triangles. The main factor in the quality of the kd-tree is the split method and
this is implemented in a separate method that returns the split position to be used for the
particular construction step. Upon determination of the split position, the construction step
then classifies the triangles as being on one of the sides or both sides of the split and recurses
if necessary.

CountNodesAndTriangles — As mentioned earlier, the construction step is a two pass pro-
cess. This method is performed in the first pass and only counts the number of nodes and
triangles that the final tree must contain.

findPosSAH — Uses the Surface Area Heuristic to determine the locally optimal SAH posi-
tion. The method uses several auxiliary methods to achieve this. It first clips the triangles in
the node by the bounding planes to obtain the potential split positions. Then, it sorts these
split points along all three axes. At each of these points, the SAH cost is determined along
three axes and the point with the minimum cost is determined as the locally optimum SAH
position.

SortTriangles — This is the method that classifies the triangle as being to the left or to the
right of the split in consideration. An in place method is used that minimises slow memory
allocation and de-allocation operations.

saveTreeBin — Once the tree with the given parameters is created, it is saved to the hard disk
for further use. The tree is stored in a binary format that is just a binary dump of the bytes
in the nodeArray followed by the bytes in the triangleArray.

loadTreeBin — If a scene already has a tree constructed and saved, this method loads the tree
from the hard disk rather than constructing the tree from scratch.

TraceRay — The method traces a ray through the kdTree. It initialises several variables
necessary for the traversal and calls the RecursiveRayTraversal method.

RecursiveRayTraversal — The tree is recursively traversed by a ray in front-to-back order
until either a leaf node is reached or until an exit criteria is reached.
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e ProcessLeafNode — If the recursive traversal reaches the leaf node, then this method pro-
cesses the leaf node and the ray. The ray is intersected with all the triangles in the node and
if there are one or more intersected triangles, the one with the closest intersection — as given
by the ¢ intersection parameter — is returned.

As the KDTree class shows, the class for each data structure defines all the functionalities nec-
essary. They define construction of the structure with several heuristics if necessary. Since the
KDTree was initially developed in our system for ray tracing, the ray traversal code is integrated
in this class. However, this is planned to be moved to the RayTracingRenderer class to make the
design more coherent. In addition, the structure class is responsible for serialising — loading and
saving the structure from and to hard disks — the structure.

Since the application considers the octree as a special form of kd-trees, a separate class has not
been created for octrees. Instead, the kdTreeSplitMethod variable indicates that the tree is an octree
and the ConstructTree method ensures that an octree is created.

The other structure developed is the RBSP tree — described in Chapter 3. Although it is similar to
kd-trees, it has very specific construction and ray traversal methods and hence has been included
in its own class. The class defines the construction, loading and saving of RBSP trees. Rendering
using RBSP trees is handled by the RBSPTreeRenderer class.

A.1.2 Scene Structure

Another consideration is the lower level consideration of how the actual scene is represented
in memory. This can have a major impact on the efficiency and extensibility of the system. It is
necessary to represent the scene so that it incorporates the main features of most rendering systems
like textures, lights, vertex normals, etc. in addition to the actual geometry. It is necessary to point
out at this time that the geometry of the scene consists solely of triangles. Also, the scene has
to be represented so that vertices shared between triangles are not duplicated. In addition, it also
necessary to abstract the scene from the rest of the application so that the actions pertaining to it
are achieved independently. The class Scene is thus implemented to fulfil these objectives.

Scene - The Scene class represents scenes to be rendered. The structure of an object of this class
is as follows:

e vertices — This is a list of vertices of the scene’s triangles. The list contains four floating
point values for each vertex. Although, a vertex can be represented by just three floats, four
values are used with a dummy value at the end so that the data is better aligned.

e nbOfVertices — Indicates how many vertices exist in the scene. This is necessary as the
vertices are stored in an array that does not contain size information.

e triangles — This is a list of indices that point to a vertex in the vertices array. Each triangle
is indicated by the indices of the first coordinate of each of the three vertices forming the
triangle. The coordinates of the vertices are obtained by taking the three consecutive floating
point number for each vertex.

o nhOfTriangles — Indicates the number of triangles in the scene.

e vertexNormals — A method similar to the vertices is used to represent the normals at every
vertex. The number of vertex normals is the same as the number of vertices. Hence, the
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same number — nbOfVertices — can be used. Four floating point values in which one is a
dummy is used to indicate the normal vector at the vertex.

textureDimensions — The dimensions of the textures used are stored in this value. It stores
two integers per texture to indicate the length and the breadth of the texture.

textures — This is a two dimensional byte array consisting of RGB values of a texture. The
array contains all the textures used in the scene and is referenced to obtain the colour due to
the texture.

vertexColorsOrTextureCoordinates — This is the colour of a vertex or its texture coordinates.
The texture coordinates allow determining the colour at a pixel after the texture has been
applied. In case it is a colour, an RGB value is stored.

triangleTextureNb — This is a pointer to a texture for every triangle in the scene. The tex-
ture’s colour is mapped onto the triangle to obtain the textured triangle.

lightSourcePatches — Indicates the lights in a scene. Every light source is indicated with a
list of triangles that form the light source. The representation is similar to how triangles are
stored.

lightSourceRadiance — Provides the radiance values for every light source, and is indicated
by one floating point value per light source.

materials — This is a list of materials contained in the scene. The materials are defined in a
separate class that define values for diffuse, ambient and specular components in addition
to the opacity, refraction index and shininess values for the material. This list contains a list
of materials used by the scene.

nbQOfMaterials — The number of materials contained in the scene.

vertexMateriallndex — A pointer to the material at this particular vertex.

The Scene class also contains a few methods to manipulate the scene. The main methods of the
Scene class are:

LoadScene — This method loads a scene stored in this format to memory from the hard disk.
SaveScene — Saves the currently loaded scene to the hard disk.
AutoGenerateNorinals — Generates the normals at the vertices using the triangle’s normal.

InvertNormals — On a few occasions, the normals are directed opposite to how the scene
is structured. In these cases, this method can invert the normals so that the triangles of the
scene are oriented in the right direction.

ComputeBoundingBox — Computes the bounding box of the scene. The bounding box of
the scene is represented by six coordinates — the minimum and maximum coordinates along
each axis. This is computed by determining the minimum and maximum coordinates of all
the triangles in the scene.

operator+= — Combines two scenes to obtain a combined scene incorporating the two
scenes.

The class thus designed represents the scene and the necessary components with minimal dupli-
cation of data. The application currently loads and operates on only one scene at a time, though
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loading and operating on multiple scenes is relatively easy. Again, the SceneManager class man-
ages the application by being the central object with which other components communicate. The
SceneManager class — being the main class sending and receiving messages — is thus an important
class of the application.

SceneManager The SceneManager is a class that manages the operations of the application. It
is the direct interface between the user interface, the back end rendering classes and other classes
that can be independent. It is thus responsible for calling the appropriate methods when the user
requests an action. Its main data members are:

e scene — The scene object that is to be rendered.

e renderer — The renderer object that is responsible to render the scene. According to the
method chosen, the appropriate renderer object is constructed and the render method is
called.

e tree — The tree using which the scene is rendered.

Using the above data members, the SceneManager is responsible for loading the scene and the
corresponding tree. It allows the user to specify the parameters with which s/he wants to render
the scene. It also provides functionality to change the type of tree being used and the rendering
method used, to import scenes of different formats into the application and finally to save the
parameters for a rendering or even to save the scene being rendered in native format. It is to be
noted that the SceneManager does not actually implement any of the operations and just calls the
corresponding method from the corresponding object. The methods that allow the SceneManager
to achieve its responsibilities are:

o ChangeRenderingStyle — The method allows changing the rendering type from OpenGL
based to ray tracing, ray tracing with RBSP trees, Row Tracing and packet ray tracing. The
method creates a new renderer of the appropriate type and calls its render method.

e ChangeKDTreeMethod — Changes the kd-tree’s splitting method between space median,
SAH and octree types.

e ChangeKDTreeParameters — Changes other parameters of the kd-tree like the maximum
depth of the tree and number of primitives contained in the leaf node.

e ChangeRBSPTreeParameters — Similar to the kd-tree, the parameters of the RBSP tree can
be changed. In addition to the maximum depth and the number of triangles in the leaf node,
the RBSP tree has an additional parameter — the number of axes used to construct the tree.

e LoadOrConstructTree — Checks if the tree has already been constructed. If it has been, the
tree is Joaded into the main memory. Otherwise, the tree construction method is called.

e SavePreferences — Preferences are parameters of a particular rendering scenario. It defines
the scene to render, camera parameters, the tree to use along with its main properties. These
parameters are saved for further retrieval by the LoadPreferences method. The preferences
make it easy to compare several algorithms and data structures with a given scenario. It is
also helpful when debugging problematic scenarios.

o LoadPreferences — This loads the preferences including the scene and the tree given by the
parameters. Subsequently, it applies the camera parameters stored in the parameters file to
the camera so that the viewpoint is exactly as it was when the preferences were saved.
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e Load3DS, LoadPly, LoadlW, LoadPlyDir — Allows a user to import scenes of various for-
mats into the format used by the application. The method calls an importer that imports the
scene.

o LoadScene — Loads the scene from memory by calling the appropriate method in the Scene
class.

o SaveScene — Saves the scene to the hard disk by calling the appropriate method in the Scene
class.

e LoadSceneFromXML — Using XML files, several scenes can be combined into one scene.
This is very useful when comparing several different methods of rendering. The SceneM-
anager calls the XML importer to achieve this functionality.

The description of the SceneManager clarifies the role of the SceneManager as being integral to
the extensibility and simplicity of the design. By being an intermediary class between the various
components of the application, it allows the application to be modular, simple and extensible.

Thus, with this combination of individual rendering classes for each rendering method, separate
classes for every major data structure, a detailed Scene ciass and a manager class in the SceneMan-
ager class, the design is flexible enough that developing a combination of structures and rendering
methods is possible very easily.

A.2 Scene and Tree Data Structure Representation

The structures for the scene and the tree aim to maximise memory efficiency. This also achieves
good cache performance. While the members and methods of these structures has been described
earlier, the section below aims to explain them with more clarity.

A.2.1 Scene Structure

In SectionA.1.2, the class structure for representing a scene was described. However, from the
class structure, it maybe difficult to identify the relations between the various data members of the
scene. Figure A.2 aims to clarify the structure of the scene and its representation in memory once
it has been loaded.
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Figure A.2: Structure of a Scene in memory.

Figure A.2 showing only the main objects of the scene, indicates that the scene object consists of
anumber of arrays for the main elements of the scene. Each triangle in the scene consists of three
pointers to the vertex array that consists of a list of all the vertices. The vertex list is composed of
four components per vertex - the A', ¥ and Z coordinates and a fourth component that is always
the value 1. The additional component is added for memory alignment issues. The vertex normals
are similarly stored. The vertex texture coordinates are stored in a similar array, but with three
components per vertex as it is accessed only during the shading part of the rendering. Textures
are loaded into memory as 2D RGB values and an array of pointers to the 2D textures is created.
If a triangle is textured, a pointer in the texture index array indicates the particular texture for the

triangle in consideration. In this way, the major components of the scene are represented.

A.2.2 Kd-tree Data Structure

The kd-tree has a structure that minimises the memory usage, thus enabling optimal cache usage.
It consists of a kd-tree class that represents the tree. The nodes are defined in this class. In order
to save memory and maximise coherence, the nodes of the tree are stored as an array. Due to
this representation, the two child nodes can be easily indicated by just one index as long as the
two child nodes are stored in adjacent items of the array. In addition to saving memory, the array
representation ensures that sub-trees are stored closer, meaning that if a node is loaded into the

cache, several adjacent nodes that are also loaded have a high probability of being accessed.
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In this representation, the first element of the array is the root node of the tree. The two child
nodes of the root node are stored as the next two elements in the array. Similarly, each of the

nodes has two child nodes unless they are leaf nodes.

Obviously, nodes can be of two types - internal nodes and leaf nodes. Both kinds of nodescan be
indicated with just 8 bytes (64 bits). Internal nodes need to store the split position, theaxis that

splits it. an indication of if it is a leaf node and finally a pointer to the first child node.

Represents Bits used
Unique pointer to children 32
Quantised value of split position 14
Leaf node flag 1
Unused bit 1
Split axis 16

Table A.3: kd-tree node structure

Each internal node is stored with the above structure. However, when a leaf node is to be repre-
sented. it has to store different information - the number of triangles in the node, the triangles in

the node and an indicator specifying if it is a leaf node.

Represents Bits used
Pointer to start of triangle list 32
Number of triangles in node 16
Leaf node flag 1
Unused bits 15

Table A.4: kd-tree leaf node structure

Storing the actual triangles in the node is impractical. Hence, an index is stored. The index points
to a triangle in the list of triangles that contains all the triangles of all the leaf nodes. The triangle
is the first triangle in the node. In addition, the number of triangles in the node is also stored. The
first triangle and the number of triangles thus enable identification of the triangles in the node.
These triangles are stored as indices pointing to the list of triangles in the Scene object. The Scene
object then allows access to the vertices of the triangle. The representation of triangles is made

clear by Figure A.3

The data thus represented provides a modular and efficient way to access the data. It minimises
redundant data being stored keeping the structures small. This makes the application memory

efficient and also improves performance by better cache coherence and reduced paging.

A.3 User Interface Design

As an application designed mainly for research purposes, the user interface for the application had

several aims. It would have to be an application that:

* Is Cross platform.
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Figure A.3: Obtaining the leaf node triangles.

* Is simple to use / has a minimal learning curve.
* Allows easy selection of a scene.

* Allows easy manipulation of the camera.

* Assists debugging.

* Enables rendering with different methods.

* Enables selection of different data structures.

+ Enables comparison between different methods.

The interface has been designed with these aims in mind. The user interface design of the appli-

cation with the above aims in mind, is detailed below.

Cross platform - Although, currently the application only works on Windows, it was decided
early on during the development that a cross platform application is desired. Compatibility with
the Linux / Unix platform was desirable due to the robustness of the system as also due to the
possibility of faster performance. For this purpose, FLTK - the Fast Light Toolkit - was selected
as the GUI toolkit. From FLTK's website [FLTO08] -

‘FLTK (pronounced “fulltick”) is a cross-platform C++ GUI toolkit for UNIX/Linux
(X 11), Microsoft Windows, and MacOS X. FLTK provides modern GUI functional-
ity without the bloat and supports 3D graphics via OpenGL and its built-in GLUT

emulation.

FLTK is designed to be small and modular enough to be statically linked, but works
fine as a shared library. FLTK also includes an excellent Ul builder called FLUID
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that can he used to create applications in minutes.’

As the quote from FLTK suggests, it is a cross platform GUI development toolkit that is lightweight.
Additionally it supports OpenGL - a key feature for graphics applications. Development of the
user interface is easily achieved through the provided FLUID tool that is fairly simple to use.

These factors made the decision to use FLTK a straightforward one.

Simple to use / has a minimal learning curve - The application developed by us has to be
simple to use. It was necessary that it popularly used functions could be accessed with minimal
effort. Thus, it was imperative that the application followed a standard approach - that it had a
GUI where all the functions were accessible using a mouse. The main windows of the application
can be shown by Figure A .4.
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Figure A.4: Application Windows

The figure shows the application’s simplicity. It has four windows with the largest one being the

one in which the image is rendered.

Easy selection of scene When a scene is loaded, it is in application's memory and is displayed
in the largest window. The scene is chosen by selecting the appropriate item in the File menu
shown in Figure A.5. As the figure shows, the menu enables scenes of several different formats to

be loaded using the GUI. In this manner, the scene is selected in an easy manner.

Easy manipulation of camera - To compare algorithms, it is necessary to set a viewpoint
that is suitable. To achieve this, easy navigation through the scene and setting the necessary

viewpoint and camera parameters is necessary. The application enables this easily by allowing
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Figure A.5: File Menu

the user to rotate, translate and scale the model using the mouse. The application also allows
setting the perspective angle and the zoom factor of the camera. The user can move / rotate the
camera by dragging the right mouse button and the left mouse button respectively. In addition,
the application provides these functionalities by way of sliders that allow line tuning the camera
settings if necessary. Figure A.6 shows the main window in which the scene can be navigated with
the mouse. Figure A.6 also shows the window with sliders with which rotations and translations

can be applied to the model.

Figure A.6: Setting the camera parameters

Assist debugging - During the development of new algorithms and data structures, there are

bound to be several instances where things do not work as expected. During these instances, it is
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useful to visualise the method and the underlying data structures.

When a new strueture is being developed, it needs to be visualised so that the problems can be
identified and fixed with minimal effort. The user interface allows the user to easily select one of
the several data structures implemented and to visualise it. Figure 4./ shows how several aspects

of a data structure can be visualised depending on what is necessary.

GL| Ray-Tracing [ Glj DACIsJ 00_RT ! KD Trees j Options [ Row Tracing | Testing
Display
17 Surfaces r Octree r BSP Tree Llevels Filled
¥ Wireframe r BSP Tree Llevels
17 Tree r BSP Tree Last two levels
r Vertices r BSP Tree Leaf Nodes
r Normals r BSP free Empty Nodes

BSP Tree
Show splitting axes

-

F Bounding Box

-

(7 Textured Model
T Make Use of Display Lists for scene rendering

Auxiliary GL Display Lists
T

r Frustum/Camera DisplayLlst Current Frustum |
F Ust 1

rust 2

rust3

r ustd i

Figure A.7: Options to visualise the scene and the data strueture

The Figure A.8 shows the RBSP tree visualised using the wireframe method where each node’s
edges are shown. During the development of the structure, this visualisation enabled us to judge
the quality of the tree and to identify the problems. As Figure 4./ shows, several other types of
visualisations have been added to assist the development process. These visualisations also show

the characteristics and quality of the new structure developed.

Enable rendering with different methods - The user interface makes it very simple to choose
the rendering method. As Figure A.9 shows, the rendering method can be chosen and changed
easily, making it easy to compare different rendering methods. Combined with the ability to select
and change data structures for the scene, this is a very effective method to test several algorithms

over different structures.

Enable selection of different data structures - As mentioned earlier, selecting the underlying
data structure is very important for the research. The ability to select different underlying data
structures and change it at run time is one of the key features of the application. When a structure
is selected, the application attempts to find the file in which the tree is stored. If the file is found,
the application loads the tree. Otherwise, the application calls the tree construction process with

the selected parameters. The window also shows the different parameters that can be selected.
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Figure A.8: RBSP tree visualised on the Bunny.

This also makes it possible to compare different variations of the same structure that are built with

different parameters.

Enable comparison between different methods - The user interface with its ability to select
several different rendering methods and several different data structures is a very effective tool to

compare the different methods implemented with different underlying structures.

As shown, the user interface has been customised so that several important features focusing on
research are possible easily and w'ith minimal effort. The application fulfils its goal of being easy
and simple to use while at the same time offering several powerful features for researchers. It
is fully developed using the FLUID tool that makes it easy to add new elements and to make
modifications to existing features. The combination makes the user interface a good fit for the

application.

A.4 Summary

As the section shows, the software was implemented to assist the research. The system is de-
veloped in a modular manner. Several data structures and algorithms can be used to render a

particular scene. This allows easy comparison between the rendering methods. The system also
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Figure A.9: Selecting a rendering method
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Figure A.10: Selecting a data structure

has a user interface that is simple and provides ways to access the key features with minimal effort.
Finally, it is extensible enabling development and use of new rendering methods. All in all. the

system architecture has been a major factor in enabling our research.



Appendix B

Optimising Row Tracing with SSE
instructions

B.0.1 SIMD Instructions

SIMD - Single Instruction, Multiple Data — instructions, though available earlier on other archi-
tectures, are a recent development on X86 processors that enable data level parallelism [SSEQ9b]
[SSE09a]. They enable operating on a larger set of data using a single instruction. Intel’s SSE
instructions allow performing four floating point operations in parallel using a single instruction.
Judicious use of SSE instructions can significantly accelerate the performance. Row Tracing pro-
vides several instances where the use of such instructions are very beneficial. Intrinsics enable
implementing these instructions relatively easily and are supported by both Visual C++ [VCI09]
and Intel C++ compilers [Int09]. A few of these instances and the application of SSE to these are
detailed below.

Triangle intersection and clipping Intersecting triangles in a leaf node and clipping the in-
tersection segment — as necessary for the leaf node processing — is one of the most frequently
performed operations of the algorithm. It is paramount that this part of the algorithm is as efficient
as possible. The process, described in detail in Sections 5.6.1 and 5.6.3, is implemented using
SIMD instructions to optimise them.

The SSE code below determines whether there is an intersection between the row plane and a
triangle and computes the intersection line segment if there is an intersection. The SSE instructions
in the code below leads to a performance boost by vectorising the operations a few operations. The
operations three dot products, vector additions and vector subtractions are achieved using SSE.

//load the three vertices of the triangle into SSE variables

ssePl = _mm_loadu_ps (verts+scTrs[x]);
sseP2 = _mm_loadu_ps (verts+scTrs(x+1]);
sseP3 = _mm_loadu_ps (verts+scTrs[x+2]);

//find the signed distances between the three points and the Row

Plane
rl = _mm_mul_ps{(ssePl, sselmagePlane);
r2 = _mm_mul_ps(sseP2, sselmagePlane);
r3 = _mm_mul_ps(sseP3, sselmagePlane);
r4d = _mm_shuffle_ps(rl, r2, _MM_SHUFFLE(1,0,1,0));
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r5 = mm_shuffle ps(rl,r2, MM SHUFFLE(3,2,3,2))

r6 = mm shuffle ps(r2, r3, MM SHUFFLE(1,0,1, 0) )
r7 = mm shuffle ps(r2, r3, MM SHUFFLE(3,2,3,2))

r4d = mm_add ps(r4, «r5);

r6 = _mm_add_ps(r6, r7);

r3 = mm shuffle ps(r4, r6, MM SHUFFLE (3,2,2,0));
rd = _mm_shuffle ps(r4, r6, MM SHUFFLE(, 3,3, 1) );
r7 = _mm_add_ps(rd4, r3);

//check 1if there 1is an intersect ion
dirs = 7&(7mm7movemask7ps(r7) ) ;
if((dirs==0) I (dirs == 7))

return false;
//Find dO/dO-dl , dl/ dl~d2, dz2/ d2-d0

rl = mm shuffle ps(7, r7, _MM SHUFFLE(0,0,2,1));

rl = mm sub ps(r7, rl);

rl = mm div ps(r7, «rl);

//Linearly interpolate to get pi, p2, plane intersection point
r2 = mm_sub_ps(sseP2, ssePl);

r3 = mm_shuffle ps(rl, rl, _MM SHUFFLE (0, 0, 0, 0) );

r2 = mm mul ps(r2, «r3);

r5 = mm_add_ps(r2, ssePl);

//Linearly interpolate to get p2, p3, plane intersection point
r2 - mm_sub ps(sseP3, sseP2);

r3 = mm shuffle ps(rl, rl, MM SHUFFLE(1,1,1,1));

r2 = mm mul ps (r2, r3);

r4d = mm_add ps(r2, sseP2);

//Select the right two points out of three

r2 = mm sub ps(ssePl, sseP3);

r3 ~mm_shuffle ps(rl, rl, _MM_SHUFFLE(2,2,2, 2));
r2 = mm _mul ps(r2, r3);

r3 = mm_add ps(r2, sseP3);

rl = mm_cmpgt_ps(r7, ZERO_SSE) ;

r2 = mm_shuffle ps(rl, rl, _MM SHUFFLE (0,0,2, 1));
r2 = mrn xor ps (r2, rl);

r2 = mm andnot ps(r2, MASK_TRUE);

rl = mm_shuffle ps(r2, r2, MM SHUFFLE(0,0,0, 0));
r6 = mm_shuffle ps(r2, r2, MM SHUFFLE(1,1,1, 1));
r2 = mm and ps (r3, rl);

r5 = mm_andnot ps(rl, r5);

r5 = mrri or ps (r5 r2);

r2 = mm and ps(r3, r6);

r4d = mir. andnot ps (r6, r4) ;

r4d = mir'. or ps (rd, r2) ;

//Select the right two points out of three

Listing B.l: Triangle-Row intersection using SSE.

Once the intersection segment is found, it is to be ensured that the segment is fully in front of the
near plane. The code below is called only if the node's bounding box lies on both sides of the near
plane. SSE instructions optimise the operation by vectorising the calculation of two dot products,
clipping with the near plane and finding the point intersection (if there is one) - both of which use

the parametric equation of the line.
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//handle cases when the intersection segment 1is partly in front
//and partly behind the near plane

if (bbPartlylnFront)

¢

r9 = mm mul ps(nearPlaneSSE, ri4);
r8 = mm mul ps(nearPlaneSSE, rb5);
r6 = mm unpacklo ps(r9, r8);

r3 = mm _unpackhi ps(r9, r8);

r9 = mm add ps(r6,r3);

r3 = mm movehl ps( r9, r9);

r9 = mm_add _ps(r9,r3);

float dl = M128 F32(r9) [0];
float d2 = M128 F32(r9) [1];
char plEehind = (((dl >0)) != gv_nearPlaneFarPlaneSign);
char p2Eehind = (((d2 >0)) != gv_r.earPlaneFarPlaneSign) ;
if (plBehind && p2Benind)

return false;
if (plBehind)

{

dl = dl/(d1-d2);

r9 = mm sub ps(r5. r4)
rl = mm set psl(dl);

r9 = mm mul ps(r9, rl)
r4d - mrr; add ps (r4, r9

else if (p2Behind)

dl = d2/ (d2-dl);

r9 = mm sub ps(rd4, rb5)
rl - mm ser psl (dl);

r9 = mm mul ps(r9, rl)
r5 = mm_add ps (r5 r9)

Listing B.2: SSE version of algorithm that handles cases when the triangle part being rendered is

partly in front and partly behind the viewpoint.

Finally, the code below ensures that only parts of segments that are within the node’s bounding
box are considered. Similar to the above operation, SSE code vectorises finding the intersection

to the three entry and exit planes by using the parametric equation of the line.

//clamp the intersection line to the bounding box

r9 = mm_sub_ps(r5,r4);

r8 = mm_rcp ps(r9);

r8§ = 7mm7min7ps (TNFTNITY758E7V2, r8);

tl = mm sub ps(minVertexSSE, r4);

tl = mm mul ps(1, r8);

12 = mm_sub ps(maxVertexSSE, rd);

t2 = mm mul ps(12, r8);

13 = _mm_min_ps(tl,t2);

t2 = mm max ps(11,12);

tl = mm shuffle ps(13, t3, MM SHUFFLE(0,0,2,1))
tl = mm _max ps(11, 13) ;

13 = mm_shuffle ps(tl, tl, MM SHUFFLE(1,1,1,1))
tl = mm max ss(11,13);

tl = mm max ss(tl,ZERO_SSE);

13 = mm_shuffle ps(t2, t2, _MM SHUFFLE(0,0,2,1))



£t3 = mm min ps (@13, 12) ;

t2 = mm_shuffle_ps (t3, t3, MM SHUFFLE(1,1,1,1));
t3 = _mm_min_ss(t3, t2);

t3 = _mm_min_ss (t3,0NE_SSE) ;

if (_mm_ucomigt_ss(tl, t3))
return false;

r8§ = mm_shuffle_ps(11,11, MM SHUFFLE(0,0,C,0));
r7 - _mm_shuffle ps(t3,13, MM SHUFFLE (0, O, 0, 0) );
tl = _mm _inul _ps (r9, r8);
tl = _mm_add_ps (r4, ti1);
t2 - _mm_mul_ps (9, r7);
t2 = _mm_add_ps (r4, t2) ;

//clamp the intersection line to the bounding box

return true;

Listing B.3: SSE version of Clamping the intersection line to the hounding box.
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Node Projection Overestimate onto the Row Finding the node projection overestimate is an
operation that is undertaken at every traversal step. Hence, it is imperative that this is as optimised
as possible. SSE allows the calculation of this overestimate using the code below. The optimisa-

tion occurs due to the vectorisation of calculation of four dot products, scalar multiplication to a

vector and addition of a constant to all the components of the vector.

void CalculateNodeOverestimate ()

<

minVertexSSE = *wMinDiag;
maxVertexSSE = *wMaxDiag;
r5 =*xMaxDiag;
rl -*xMinDiag;
[ITDTPEP i rirrirrrirrrri
//FourDotProds ( tl, 12, r8, r9,
m3, m3, mO, mO) ;
rl - mm mul ps(maxVertexSSE, m3);
r4d = mm mul ps(minVertexSSE, m3);
r5 = mm mul ps(r5, mO);
rl = mm mul ps(rl, mO);
r8§ = mm movelh ps( r7, rd);
r9 - mm movehl ps(rd, r7);
rl = mm movelh ps( r5 rl);
r4d = mm_movehl ps(rl, rd);
r8 = mm_add_ps(r8, r9) ;
r4d = mm_add ps (x4, rl) ;
rl = mm shuffle ps(r8, r4, MM SHUFFLE(2,0,2,0));
r8 = mm shuffle ps(r8, r4, MM SHUFFLE(3,1,3,1));
r8 = mm add ps(r8,r7);
//FourDotProds =- Results are in r8

//r8 = {m3.wl, m3.w2, mO.x1, m0.x2)
L1117 77777777777/77777777/777777/77/7/7777/77/777777

rl = mm_shuffle ps(r8, r8, MM SHUFFLE(1,1,0,0));
rl = mm movehl ps(r8, r8);
rl = mm_rcp_ps(rl);
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rl = mm_mul ps (7, rl) ;

rl = _mm_mul_ps (rl, HALF_WIDTH_SSE) ;

r8 = mm_add_ps(rl, HALF_WIDTH_SSE);

r5 = mm _movehl ps(r8, r8);

rl = mm min ps(r8, r5) ;

rl = mm shuffle ps(rl, rl, Mt4 SHUFFLE (1, 1, 1, 1)
rl = mm min ss (7, rl) ;

r3 = mm max ps (r8, r5);

r4 = mm shuffle ps(r3, r3, MM SHUFFLE (1,1,1,1)
r5 = mm max ss (r3, rd) ;

Listing B.4: Finding the row overestimate using SSE

Rasterising the Last 8 Pixels - With eight pixels, the processing can be easily done using two
SSE units to optimise the process. The code below shows the implementation in which each
float component of an SSE variable corresponds to a pixel. By using two SSE units and two

iterations, the triangles for the eight pixels are determined.

RasteriseSPixelsSSE()//int minX)

(

int minX = minXInt-(minXInt&7), maxX = minX+7, i, startX, endX;
LrlntLlne = iritPoints;
lineTrs = ( ml28 *) (gv_lineTriangles+minX) ;

r5 = MINUS_ONE;
r6 = MINUS_ONE;

M128 I32(rl)[0] - gv_lineOcclusionMap|[ (occlMaxDepthStartIndexrminX)>>3];
rl = mm_shuffle ps(rl,rl, MM_SHUFFLE(0,0,0,0));

r8 = mm_and ps(rl, MASK_ OCCL_LOW) ;

r8 = mm_cmpeq_ps (r8, ZERO_SSE);

r9 = mm_and_ps(rl, MASK OCCL_HIGH) ;

r9 = mm cmpeg ps(r9, ZERO_SSE);

firstd4Pixels = mm_set psl (minX);

minXPlus4 = mm_add ps(first4Pixels, FOUR);
firstdPixels - mm_add_ps (first4Pixels, zeroToThree);
second4Pixels = mm_add_ps (minXPlus4, zeroToThree);
maxXml28 = mm set psl (maxX) ;

for(i=0; i < intPointSize; i++)
startX = trIntLine->x1;
startX = MAX 2 (startX,minX);
endX = trIntLine->x2;
endX - MIN_2(endX, maxX);

if (startX <= endX)
{
startXM128 = mm_set psl(startX);
endXM128 = mm_set psl (endX);
bM128 = _mm_set_psl(trIntLine—>b),'
aM128 - mm_set psl (trIntLine->a);
M128 I32(trM128)[0] = trIntLine->tr;
trM128 = miri shuf fle ps (trM128, trM128, MM SHUFFLE (0, 0,0, 0) );



////Rasterise the first 4 pixels

rl = mm cmple ps(first4Pixels, endXM128);
r3 = mm_cmpge_ ps (firstdPixels., startXM128)
r7 = mm and ps(r7, r3);

r3 = mm cmple ps (first4Pixels, minXPlus4);
r3 = mm and ps(r3, r7);

r3 = mm_andnot_ps(r3, MASK_TRUE);

r7 = mm _mul ps(aM128, firstdPixels);

rl = mm add ps(rl, bM128);

rl = mm or ps(rl, r3);

rl = mm or_ps (r3, trM128);

r4 = mm _cmpgt ps (r7, r5);

r4d = mm_and_ps(rd4, r8);

r5 = mm max ps(r7, r5);

rl = mm_and_ps(rd4, rl);

r2 = _rnm_andnol ps (r4, lineTrs [01]);
lineTrs([0] = mm or ps(rl, r2);

//Rasterise the second 4 pixels

rl = mm crr.ple ps (second4Pixels, endXM128) ;
rl = mm_and ps(rl, mm cmpge ps(second4Pixels, startXM128))
r3 = mm_and_ps(rl, _mm_cmple_ ps(second4Pixels, maxXml28));
r3 = mm_andnot ps(r3, MASK TRUE);
rl = mm mjl ps (aMl 28, second4Pixels);
rl = mm add ps (r7, bMI28);
rl = mm or ps(r7, x3);
r3 = mm or ps(r3, trM128);
r4 = mm_cmpgt ps(rl, r6);
rd = rnm and ps (rd4, r9 ;
r6 _mm_max_ps(r7, 1r6);
rl = mm and ps(r4, r3);
r2 = mm_andnot ps(r4, lineTrs[1l]);
lineTrsfl] = mm or ps(rl, r2) ;
t}rIntLine++;
r5 - mm_cmpneq ps(r5, MINUS ONE) ;
r6 = mm cmpneq ps(r6, MINUS ONE) ;
unsigned char shadedFlag= _mm_movemask_ps (rd) I (_mm_movemask_ps(r6) <<
4 ;

UpdateOcclusionMapBy8 (minX, shadedFlag):;

Listing B.5: Rasterising the last eight pixels using SSE.



Appendix C

Low level Optimizations

Low level optimizations enable a well designed algorithm to run even faster. Some of the low'
level optimizations used in the implementation were multi threading the application and the use
of data level parallelism through the use of SSE instructions. Multi threading provided a speed-up
of around 3.5x - 3.9x for many renderings. SSE provided a speed-up of 2x - 3x the non-SSE
method. The use of these two forms of optimization has enabled us to speed up our algorithm to

competitive levels.

SSE

The code for a few' methods optimized with SSE are given below. In the below code, it is to be
noted that rl, r2.r3. r L. r5. rG. rI. »8. r9 are SSE variables that are defined as class variables.

Four dot Products with SSE

The method is a part of the method that finds the projection of the X-coordinate of two points
onto the image line in the row tracing algorithm. It computes four dot products - 11l.m 1, 12.m2,
13.m3, 14.m4 - and stores the value in r8. Since we do not use a structure of arrays as rec-
ommended as the best method to use SSE. we have to use shuffles to horizontally add the value.

However, the number of shuffles and horizontal moves is kept to a minimum.

FourDotProds (11, 12, 13, 14, ml, m2, m3, m4)

{

rl = mm mul ps(ll, ml);

rd = mm_mul ps (12, m2);

r5 = mm _mul ps (13, m3);

rl = mm _mul ps (14, m4);

r8 = mm movelh ps( r7, r4);
r9 = mm _movehl ps(r4, r7);
r3 = mm movelh ps( r5 rl);
r4 = mm movehl ps(rl, r5);
r8 = mm add ps(r8, r9);

rd = mm_add_ps(rd4, r3);
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r3 = mm shuffle ps(r8, r4, MM SHUFFLE(2,0,2,0));
r8 = mm shuffle ps(r8, r4, MM SHUFFLE(3,I,3,1));
r8 = mm_add ps(r8,r3);

If a structure of arrays as suggested for use with SSE were to be used, the data would first have to
be reorganized into this layout. Consequently, the dot products could be calculated with a reduced
number of instructions.

The layout can be changed to a SSE friendly nature by using the macro already defined as a part

of Visual C++. The macro can be given by

_MM_TRANSPOSE4 PS(rowO, row], row2, row3) {
ml28 tmp3, tmp2, trapl, tmpO;

tmpC = mm_shuffle ps((row0), (rowl), 0x44)

tmp2 = mm_shuffle ps((rowO), (rowl), OxEE)

tmpl = mm_shuffle ps((row2), (row3), 0x44)

tmp3 - mm_shuffie ps((row2), (row3), OXEE)
(rowO = mm shuffle ps(tmpO, tmpl, 0x88

) )
(rowl) = _mm_shuffle ps(tmpO, tmpl, OxDD)
(rcw2) = mm_shuffle ps(tmp2, tmp3, 0x88)
(rew3) = mm_shuffle ps(tmp2, tmp3, OxDD)

The macro takes in the rows in the normal format and transposes it so that all the x. y and z
components are now in a single row' each. In this format, four dot products can be achieved with
fewer instructions. If Ix.ly.lz and mx. my. mz indicate the components of the four vectors
arranged in a structure of arrays format, then the four dot products can be achieved very easily as
shown below.

FourDotProds (lx, 1ly, 1lz, mx, my,

{

r7 = mm mul ps(lx, mx);
rd = mm _mul ps(ly, my);
r5 = mm mul ps(lz, mz);
r8 = mm_add ps(r7, rd);
r4d = mm add ps(r8, rS);

Three dot Products with SSE

In row tracing, there are also cases when three dot products are necessary. This is w'hen a point's
X and Z co-ordinates are to be projected onto the image row. Though, the same method used for
four dot products can be used, it is possible to eliminate one multiply instruction when three dot

products are calculated. Thus, three dot products are achieved by the below code that computes

11.d. 12.d. 13.d.

ThreeDotProds (11, 12, 13, d)

(
rl - mm mul ps(1, d ;
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r2 = mm mul ps(2, d) ;

r3 = mm mul ps(13, 4d) ;

r4 = mm_shuffle ps (rl, r2 MM SHUFFLE(1, 0, 1, 0))
r5 = mm_shuf fle ps (rl, r2 _MM_SHUFFLE (3, 2, 3, 2} )
r6 = mm_shuffle ps (r2, r3 _MM SHUFFLE (L, 0,1,0))
r7 = mm shuffle ps (r2, r3 MM SHUFFLE (3,2, 3,2))
rd4 = _mm_add_ps (r4, r5) ,

r6 = mm_add_ps(r6, r7) ;

r3 = mm_shuffle ps (r4, r6 MM SHUFFLE (3, 2, 2, 0) )
r4 = mm shuffle ps (r4, r6 MM SHUFFLE (3,3,3,!))
r7 = ~mm_add_ps(r4, r3),

Determining entry and exit planes for RBSP trees with SSE

For RBSP trees, due to the existence of several axes, determining the entry and exit planes can be
done in groups of four axes using SSE. SSE thus allows the computation of four entry and exit
planes in the same time as one plane when SSE is not used - improving performance significantly.

The below

for (i~0,
1

dirKec

_mm_add_ps (_mm _mul ps(vDirSSEY,

code achieves this by considering groups of four axes each.

k=0; 1 < noSplitPlanes; 1i+=4, k++)

jnm adci ps ( mm mul ps (vDirSSEX, planeNormalsSSEAll:k*3]),
planeNormalsSSEAL1l [k*3+1]),

~mm_muT_ps (vDirSSEZ, planeNormalsSSEA11l[k*3+2])));

flag - mm cmpeq ps (dirRec, ZEF.O) ;

flag = mm_and_ps (flag, FEPSILON_M128) ;

dirRec - mm_add_ps (dirRec, flag);

tempt ~ mm rcp ps(dirRec);

dirRec = mm sub ps( mm add ps(tempi,tempi), mm mul ps( mm mul ps(tempi,

tempi),dirRec));

tempi = mm_mul ps (tSSEMin[k], dirRec);

temp2 = mm mul ps(tSSEMax[k] , dirRec);

flag = mm cmpgt ps(dirRec, ZERO);

£SSEO = mm or ps ( mm and ps (tempi, flag), mrr. ar.dnot ps (flag, temp2));
tSSEl1 = mm or ps( mm and ps(temp2, flag), mm andnot ps(flag, tempi));
tminSSE = mm_max_ps (tminSSE, tSSEO);

tmaxSSE = _mm_min_ps (tmaxSSE, tSSEl);

_mm_store_ps ((t+2*i), mm_unpacklo_ps (tSSEO, tSSEl));

_mm_store_ps ((t+2*i+4), mm unpackhi ps (tSSEO, tSSEl));

signs = mm_mcvemask_ps (flag) ;

rayDirs[i]

rayDirs([irl]
rayDirs[i+2]
rayDirs[i +3]

(signs & 1);

(signs & 2)>>1;
(signs & 4)>>2;
(signs & 8)>>3;



tmin
tmin

tmin

tmax
tmax
tmax

MAX 2 (tminSSE.m128 £32[0], tminSSE.m128 £32[1]);
MAX 2 (tmin, tminSSE.m128 £32[2]);
MAX 2 (tmin, tminSSE.m128 f£32[3]);

MIN 2 (tmaxSSE.m128 £32[0], tmaxSSE.ml26 f£32[1]);
MIN 2 (tmax, tmaxSSE.ml28 £32[2]);
MIN 2 (tmax, tmaxSSE.m!28 f£32[3]);

if(tmax < 0 Il tmin > tmax)

return

_1;

Row / Plane intersection
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For the row tracing algorithm, it is necessary to perform a row / plane intersection at each traversal

step. The test involves two dot products followed by a test of the signs. It can be implemented in

SSE to achieve speed-up as shown below'.

ImagelinelntersectsBBSSE ()

{

rl = ~mm mul ps(sselmagePlane,minVertexSSE) ;
r2 - ~mm_mul ps(sselmagePlane,maxVertexSSE) ;

r3 = ~mm_unpacklo ps(rl, r2);

r4d -  mm unpackhi ps(rl, r2J;

r3 = _mm_add_ps(r3,r4);

r4d = mm shuffle ps(r3,r3, MM SHUFFLE(3,2,3,2));
r3 = mm add ps(r3,r4);

r3 = mm_cmpgt_ps(r3, =zero);

r3 = mm_and ps(r3, one);

r4 = mm shuffle ps(r3,r3, MM SHUFFLE(0,0,0,1));

return _mm_comineq_ss(r3,r4h

Row / Triangle intersection clamping in SSE

Intersecting triangles in a leaf node and clipping the intersection segment - as necessary for the

leaf node processing - is one of the most frequently performed operations of the algorithm.

It

is paramount that this part of the algorithm is as efficient as possible. The process, described in

detail in section 5.6.1 and 5.6.3, is implemented using SIMD instructions in order to optimize

them.

The below code lists the SSE code to determine whether there is an intersection between the row

plane and a triangle and computes the intersection line segment if there is an intersection. The

SSE instructions in the below' code vectorizes the operation by performing the three dot products

and vector additions and subtractions leading to a performance boost.

//load the three vertices of the triangle into SSE variables

ssePl = mm loadu ps(verts+scTrs[x]);
sseP2 = mm loadu ps(verts+scTrs[x+1]);



sseP3

//find the signed distances between
Plane
rl - mm mul ps(ssePl, sselmagePlane);
r2 = mm_mul_ ps(sseP2, sselmagePlane);
r3 = mm mul ps(sseP3, sselmagePlane);
r4d - mm shuffle ps(rl, r2, MM SHUFFLE (1,
r5 = mm_shuffle ps(rl, r2, MM SHUFFLE (
r6 = mm shuffle ps(r2, r3, MM SHUFFLE (1,
r~ - —mm_shuffle ps(r2, r3, MM SHUFFLE (3,
rd = mm_add_ps(rd4, rd);
r6 = mm _add ps(r6, rl);
r3 = mm shuffle ps(r4, r6, MM SHUFFLE (3,2,2,0
r4 - _mm_shuffle ps(r4, r6, MM SHUFFLE(3,3,3,!)
rl = mm_add ps(r4, r3);

= _mm_loadu_ps(verts+scTrs[x+2]M

//check if there is

dirs

//Find d0/dO-di , dl/ dl-d2,

rl
rl
rl

’

an intersection

= 7&(_mm_movemask psl));
if ((dirs==0) (dirs == 7))
return false;

~mm_shuffle ps(r

~mm_sub_ps(r7,
~mm_div_ps(r7,

//Linearly interpola

r2
r3
r2
r5

~mm_sub_ps(sseP2,
~mm_shuffle ps(rl,

~mm mul ps(r2,
_mm_add_ps(rz,

//Linearly interpola

r2
r3
r2
r4

//Select the right two points

r2
r3
r2
r3

rl
r2
r2
r2

rl
ré6

r2
r5
r5

r2
rd
rd

= mm_sub ps (sseP3,

~mm_shuffie ps
~mm_mul_ps (r2,
~mm_add_ps(r2,

d2/ d2-dO

rl);
rl);

te to get pi, p2, plane

ssePl);

r3);

ssePl);

te to get p2, p3,
sseP2);

the three points and the

7

i

7, rl, MM SHUFFLE(0, 0,2, 1) ) ;

rl, MM SHUFFLE (0,0,0,0));

(rl, rl, MM SHUFFLE(1,1,1,1));

r3);
sseP2);

- _mm_sub_ ps(ssePl,

~mm_shuffle ps(rl,

sseP3);

out of three

rl, _MM_SHUFFLE(2,2,2,2));

~mm mul ps(r2,
_inm add ps (r2,

_mm_cmpgt_ps(r
~mm_shuffle ps
_mm_xor_ps(r2,

r3);
sseP3);

7, ZERO_SSE) ;

(rl, rl, _MM_SHUFFLE(0,0,2,1));

rl);

_mm_andnot_ps (r2, MASK_ TRUE) ;

~mm_shuffle ps
~mm_shuffle ps

_mm_and_ps (r3,

(r2, r2, MM_SHUFFLE (0,0,0,0));
(r2, r2, MM SHUFFLE(1,1,1,1));

rl);

_mm_andnot_ps(rl, r5);

~mm_or ps(r5,

~mm_and ps(r3,

r2);

r6);

_mm_andnot_ps(r6, rd);

_mm_or_ps(r4,

r2);

//Select the right two points out of three

Row

intersection point

intersection point
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Once the intersection segment is found, it is to be ensured that the segment if fully in front of the

near plane. The below code is called only if the node's bounding box lies on both sides of the near

plane. SSE instructions optimize the operation by vectorizing the calculation of two dot products,

clipping with the near plane and finding the intersection point ( if there is one) - both of which

use the parametric equation of the line.

//handle cases when the Intersection segment is partly in front
//and partly behind the near plane
if (bbPartlyInFront)
<
r9 = mm_mul_ ps(nearPlaneSSE, r4);
r8 = mm mul ps(nearPlaneSSE, r5) ;
r6 = mm unpacklo ps(r9, «r8);
r3 = mm_unpackhi ps(r9, r8);
r9 = mm_add_ps(r6,r3) ;
r3 = _rnm movehl ps( r9, 1r9) ;
r9 = mm_add ps(r9,r3);
float dl = M128 F32(r9 [0];
float d2 = M128 F32(r9) (1] ;
char plBehind = (((dl >0)) |= gvinearPlaneFarPlaneSign);
char p2Behind = (((d2 >0)) != gv_nearPlaneFarPlaneSign);

if (plBehind && p2Behind)
return false;
if (piBehi nd)

{

dl = dl1/(dl1-d2);

r9 = mm sub ps (r5 r4);
rl = mm set psl(dl);

r9 — mm mul ps(r9, rl);
r4d = mm _add ps(r4, r9) ;

}

else 1if (p2Behind)

{
dl = d2/(d2-dl);

r9 = mm sub ps(r4, r5);
rl = mm_set psl(dl);

r9 = mm_ mul ps (r9, rl);
r5 = mm add ps(r5, r9);

Finally, the below code ensures that only parts of segments that are within the node’s bounding

box are considered. Similar to the above operation. SSE code vectorizes finding the intersection

to the three entry and exit planes by using the parametric equation of the line.

//clamp the intersection line to the bounding box

r9 = mm_sub_ps(r5,r4);

r8 = mm_rcp ps (r9);

r8 = mm _min ps (INFINITY_ SSE V2, r8);
tl = mm sub ps(minVertexSSE, r4);

tl = mm mul ps(tl, r8);

t2 = mm_sub_ps(maxVertexSSE, rd4);

12 = mm mul ps((12, r8);

13 = mm min ps11,12);

12 = _mm_iriax_ps (11,12) ;

tl = mm shuffle ps(13, t3, MM SHUFFLE(0,0,2,1));
tl = mm max ps(tl, t3);

13 = mm shuffle ps(tl, tl, MM SHUFFLE(1,1,1,!));



tl = mn. max_ss (11,13);

tl = mm max_ss(tl,ZERO_SSE);

t3 = nrr. shuffie ps (t2, t2, _MM SHUFFLE (0,0,2, 1) );
t3 = mm min ps@3, 12);

t2 = mm shuffle ps(t3, t3, MM SHUFFLE(1,1,1,1));
t3 = mm rriin ss (£3,12);

13 = mm min ss (13, ONE SSE);

if (_mm ucomigt ss (tl,

13) )

return false;

r8 = mm shuffle ps(tl,tl, MM SHUFFLE(0,0,0,0));
r7 - mm shuffle ps(13,13, MM SHUFFLE (0, 0,0,0));
tl = mm jnul ps (r9, r8);

tl = mm add ps(r4, tl);

t2 = rnm mul ps (r9, r7);

t2 = mm_3dd_ps(r4, t2);

//clamp the intersection line to the bounding box

return true;

Packet Ray tracing implementation
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Packet Ray tracing was implemented with a version of interval arithmetic, as described in chap-

ter 2. The version is implemented without the use of SSE. It uses two boundary rays for each axis

to traverse the entire packet. The implementation of the recursive packet traversal method is given

below.

char RecursiveRayTraversallIntervalSSE (int nodeindex,

)/ /7,

Interval

KDTreeNodel

if (IS_LEAF_ P (node))

(

)

unsigned char

float tmini, £float
*ti)
packetNodeTraversals++;
*node = nodeArray+nodelndex;
if (node->params==3)
return O;
return ProcessLeafNode (nodeindex) ;
axisCur= GET_AXIS_ P (node),
sign = signs[axisCur],
axisCurMinlndex = axisCur<<l;

float bbSp

bbSp =

- GET_

bb [axisCurMinlndex] +

POS_P(node) * NODE DIVISION PRECISION;

(bblaxisCurMinlndextl] -bb/[

axisCurMinlndex]) *bbSp;

float terrpp =
float tSpMax =
temp =

float tSpMin;
if (temp> tSpMax)
(
tSpMin =
tSpMax =

else

(bbSp

- vpF [axisCur] ) ;

temp*rayDirRecMax [axisCur];
temp*rayDirRecMin[axisCur];

tSpMax;
temp;

tmaxi
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tSpMin = temp;

if (tSpMax > tmini && tSpMax > 0)
{

temp = bbl[axisCurMinlndex+sign];

bb [axisCurMinlndex+sign] = bbSp;

axisCur - RecursiveRayTraversallntervalSSE (node->leftNode+l-
sign, tmini, MIN 2 (tmaxi,tSpMax));//, ti);

bb[axisCurMinlndex+sign] = temp;

if (axisCur)
return axisCur;

)
if (tSpMin < tmaxi)

{

temp = bblaxisCurMinlndex+l-sign];

bb [axisCurMin!ndex+1l-sign] = bbSp;

axisCur = RecursiveRayTraversallntervalSSE (node->leftNode+
sign, MAX 2(tmini, tSpMin), tmaxi);//, ti);

bb [axisCurMinlndex+l-sign 1l = temp;

!
return axisCur;

Multi threading

Another valuable tool valuable in the optimization process is multi threading the application. This
was implemented with the pthreads library that allowed implementing the threads in a simple

manner. The below code shows how the ray tracing code was multi threaded.

CastRays ()

int i;
for (i=0; i < noThreads; i++)

{
pthread _create (&t[i], NULL, RowTracingRenderer2MTSub::

do_thread, &rt[il);

}
for(i=0; i < noThreads; it++)

(

pthread join(t[i], NULL);

static void *RowTracingRenderer2MTSub::do_thread (oid* param)

{

static_cast<RowTracingRenderer2MTSub*> (param)->CastRays ();
return NULL;

The method creates as many threads as defined and then calls the ray tracing method defined in

the sub class - RowTracingRendcrer2M TSub in this case.

To be able to be called by a pthread, the method has to be a static function that did not de-
pend on the object. The do_thread’ method is thus defined as a static method that takes in the
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‘RowTracingRenderer2MTSub’ object as a parameter and calls its ‘CastRays’ method. Objects
of RowTracingRenderer2MTSub represent objects allocated to each thread performing the work
allocated to that thread.



