

 Swansea University E-Theses ___

Investigating ray tracing algorithms and data structures in the

context of visibility.

Kammaje, Ravi Prakash

 How to cite: ___
Kammaje, Ravi Prakash (2009) Investigating ray tracing algorithms and data structures in the context of visibility..

thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42220

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42220
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Investigating Ray Tracing Algorithms and Data
Structures in the Context of Visibility

Ravi Prakash Kammaje

Submitted to the University o f Wales in fulfilment o f the requirements for the D egree o f
Doctor o f Philosophy

V©/
Swansea University
Prifysgol Abertawe

Department o f Computer Science
Swansea University

September 2009

ProQuest Number: 10797922

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797922

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

LIBRARY
£

Summary

Ray tracing is a popular rendering method with built in visibility determination. However, the
computational costs are significant. To reduce them, there has been extensive research leading to
innovative data structures and algorithms that optimally utilize both object and image coherence.
Investigating these from a visibility determination context without considering further optical ef
fects is the main motivation of the research.

Three methods - one structure and two coherent tree traversal algorithms - are discussed. While
the structure aims to increase coherence, the algorithms aim to optimise utilization of coherence
provided by ray tracing structures (kd-trees, octrees).

RBSP trees - Restricted Binary Space Partitioning Trees - build upon the research in ray tracing
with kd-trees. A higher degree of freedom for split plane selection increases object coherence
implying a reduction in the number of node traversals and triangle intersections for most scenes.
Consequently, reduced ray casting times for scenes with predominantly non-axis-aligned triangles
is observed.

Coherent Rendering is a rendering method that shows improved complexity, but at an absolute
performance that is much slower than packet ray tracing. However, since it led to the creation of
the Row Tracing algorithm, it is described briefly.

Row Tracing can be considered as an adaptation of Coherent Rendering, scanline rendering or
packet ray tracing. One row of the image is considered and its pixels are determined. Similar to
Coherent Rendering, an adapted version of Hierarchical Occlusion Maps is used to identify and
skip occluded nodes. To maximize utilisation of coherence, the method is extended so that several
adjacent rows are traversed through the tree.

The two versions of Row Tracing demonstrate excellent performance, exceeding that of packet
ray tracing. Further, it is shown that for larger models (2 million+ triangles), Row Tracing and
Packet Row Tracing significantly outperform Z-buffer based methods (OpenGL). Row tracing
shows scalability over scene sizes leading to a rendering method that has fast rendering times
for both large and small models. In addition it has excellent parallelisation properties allowing
utilisation of multiple cores with ease. Thus, the Row Tracing and Packet Row Tracing algorithms
can be considered as the significant contributions of the Ph.D.

These data structures and algorithms demonstrate that ray tracing data structures and adaptations
of ray tracing algorithms exhibit excellent potential in a visibility context.

DECLARATION

This work has not previously been accepted in substance for any degree and is not being concur
rently submitted in candidature for any degree.

Signed ^,................ (candidate)

Date

STATEMENT 1
This thesis is the result of my own investigations, except where otherwise stated. Where correction
services have been used, the extent and nature of the correction is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references. A bibliography is ap
pended.

Signed -................/.................... (candidate)

Date

STATEMENT 2
I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-
library loan, and for the title and summary to be made available to outside organisations.

Signed : rrrr... (candidate)

Contents

List of Figures ix

List of Tables x

Glossary xiii

1 Introduction 1

2 Ray Tracing - Algorithms and Data Structures 5
2.1 Ray T ra c in g .. 5
2.2 Ray In te rsec tio n s... 7

2.2.1 Ray-Triangle in tersections.. 7
2.2.2 Ray-Sphere intersections.. 10
2.2.3 Ray-Plane intersections .. 11

2.2.3.1 Ray-Axis-Aligned Plane In te rse c tio n s ... 12
2.2.4 Ray-Box In tersec tions... 12

2.3 Acceleration S tru c tu res ... 15
2.3.1 Binary Space Partitioning Trees (BSP Trees) .. 16
2.3.2 K d-trees... 17

2.3.2.1 C onstruction ... 17
2.3.2.2 T raversa l.. 22

2.3.3 O c tr e e s ... 25
2.3.4 G r i d s ... 27
2.3.5 Object S ubd iv ision ... 28

2.3.5.1 Shapes of Bounding v o lu m e s .. 29
2.3.5.2 C onstruction ... 29
2.3.5.3 T raversa l.. 31
2.3.5.4 Advantages of BVHs ... 32

2.4 Packet Ray T ra c in g ... 33
2.5 Anti-Aliasing and Incoherent R a y s ... 36
2.6 Dynamic Ray T racing .. 37
2.7 Other Visibility M e th o d s ... 38

2.7.1 Area Subdivision M e th o d s .. 39
2.7.2 Scanline A lg o rith m s .. 39
2.7.3 Visibility Determination by Depth S o rtin g ... 40
2.7.4 Visibility Determination using a BSP T re e .. 40
2.7.5 Z -buffer... 41
2.7.6 Hierarchical M ethods.. 41

i

2.8 S u m m a ry .. 43

3 RBSP Trees 45
3.1 M otivation... 46
3.2 RBSP Trees C o n c e p t .. 48
3.3 Data S tructure ... 50
3.4 Construction... 52

3.4.1 Space Median Construction .. 54
3.4.2 Surface Area H e u ris tic .. 54

3.5 RBSP Tree T ra v e rsa l.. 57
3.5.1 Algorithm 1 .1 - Traversal by Linear Interpolation of Ray-Plane Intersec

tion Parameter .. 57
3.5.2 Algorithm 1.2 - Traversal using SSE .. 61
3.5.3 Alternate Traversal - Ray-Plane Intersection at Each N o d e 61

3.5.3.1 Algorithm 2.1 - Entry and Exit Plane Determination with OpenGL 63
3.5.3.2 Algorithm 2.2 - Entry and Exit Plane Determination by Recur

sive D iv id e 64
3.6 Data Structure Visualised for Various M o d e ls ... 65
3.7 R esults... 66

3.7.1 Node Traversals and Triangle In te rse c tio n s ... 68
3.7.2 Rendering T im e s .. 70
3.7.3 Construction T im es... 73
3.7.4 Number of Faces in Node ... 74

3.8 Further Research on Structures with Non-Axis-Aligned Splitting P la n e s 74
3.8.1 Accelerated Building and Ray Tracing of Restricted BSP Trees - Budge

et al.. 74
3.8.2 Ray Tracing with the BSP Tree - Ize et al.. 76

3.9 S u m m a ry .. 78

4 Coherent Rendering 79
4.1 M otivation.. 80

4.1.1 Average C o m p le x ity ... 80
4.1.2 Object Order Ray C a s t in g ... 83

4.2 Coherent Rendering - Concept and High Level Algorithm 85
4.3 Tree T raversal.. 87

4.3.1 Node Projection .. 88
4.3.2 Frustum Visibility and Node Size T e s t .. 89

4.3.2.1 Frustum V is ib ility .. 89
4.3.2.2 Node Size T e s t... 91

4.4 Occlusion Detection - Hierarchical Occlusion M ap s ... 92
4.4.1 Concept of HOMs ... 92
4.4.2 HOM U p d a te ... 93
4.4.3 Occlusion Testing using HOMs .. 94

4.5 Leaf Node Processing - Recursive R asterisation.. 95
4.6 R esults... 99

4.6.1 Empirical C o m p le x ity .. 99
4.6.2 Absolute P e rfo rm a n c e .. 103

4.7 D iscussion.. 104
4.7.1 C om plex ity .. 104

4.7.2 Absolute P e rfo rm a n c e ... 105
4.8 S u m m a ry .. 106

5 Row Tracing 108
5.1 M otivation.. 108
5.2 C o n c e p t... 109
5.3 High Level A lgorithm .. I l l
5.4 Datastructures for Row T racing ... 112

5.4.1 K d - tr e e .. 113
5.4.2 O ctree ... 113

5.5 Tree T raversal... 113
5.5.1 Plane-Box in tersection .. 113
5.5.2 Initialisation .. 115
5.5.3 Tree Traversal A lgorithm .. 116
5.5.4 Projection of a Point onto the R o w .. 117
5.5.5 Kd-tree Node P ro je c tio n .. 117
5.5.6 Octree Node Projection .. 120
5.5.7 Row-Kd-tree Node In te rsec tio n ... 120
5.5.8 Row-Octree Node In tersection.. 121

5.6 Leaf Node Processing .. 121
5.6.1 Row-Triangles Intersection .. 122
5.6.2 Segments Partially in F ro n t... 124
5.6.3 Clipping Intersection Segments ... 124
5.6.4 Projection of Clipped S e g m e n ts ... 125
5.6.5 Rasterising the S egm ents.. 126

5.7 Final Image G eneration ... 127
5.7.1 Simplified Shading for Row T rac in g .. 127

5.8 ID Hierarchical Occlusion Maps (H O M s) .. 128
5.8.1 HOM U p d a te .. 129
5.8.2 Occlusion Testing using HOMs ... 130
5.8.3 Node Occlusion T e s t in g .. 132
5.8.4 Recursive Rasterisation of Leaf Node T rian g les .. 132

5.9 Packet Row T racing .. 133
5.9.1 High Level Algorithm .. 133
5.9.2 Tree Traversal ... 134

5.10 Low Level O ptim isations.. 138
5.10.1 M u lti-T hread ing .. 138

5.11 R esults.. 139
5.11.1 Row Tracing vs Packet Ray T ra c in g .. 139
5.11.2 Row Tracing vs O p en G L ... 141
5.11.3 Row Tracing Performance on Kd-trees vs O ctrees.................................. 142
5.11.4 Performance of Row Tracing vs Packet Row T ra c in g 143
5.11.5 Multi-core Performance .. 145
5.11.6 Performance vs Tree Size ... 145
5.11.7 Row Tracing with and without H O M s ... 146

5.12 S u m m a ry ... 146

6 Conclusions and Future Work 149

Bibliography 162

Appendices 164

A Software Design 164
A .l Software A rchitecture.. 164

A. 1.1 Renderers and Data S tru c tu res .. 166
A. 1.2 Scene S tructu re ... 169

A.2 Scene and Tree Data Structure R epresentation... 172
A.2.1 Scene S tructu re ... 172
A.2.2 Kd-tree Data S tru c tu re ... 173

A.3 User Interface D e s ig n .. 174
A.4 S u m m a ry .. 179

B Optimising Row Tracing with SSE instructions 181
B.0.1 SIMD In s tru c tio n s .. 181

C Low level Optimizations 187

List of Figures

2.1 Ray tracing. The ray tracing method whereby a ray is traced from the viewpoint
through the pixel to find the first intersected object. At the object of intersection,
additional rays are spawned to generate reflections, refractions and shadows. . . . 6

2.2 Ray-box intersection, r a y i does not intersect the box as tentry > t exit . r a y 2

intersects the box as tKntry < t exjt,... 14
2.3 A 2D BSP Tree. The splitting planes (lines in 2D) are selected so that they are

aligned according to the edges of triangles... 16
2.4 Kd-tree Construction with the Space Median heuristic and with termination crite

ria - maximum triangles in leaf node - 2 ... 18
2.5 SAH potential split positions. The potential split positions are shown as blue

points. For every triangle, the two extremeties of the triangle with respect to an
axis are considered as potential SAH split positions... 20

2.6 SAH potential split positions, showing possible incorrect split positions (in red) if
triangles are not clipped... 21

2.7 Potential for incorrect primitive counts. If the triangles are not clipped, then they
can be incorrectly counted. The two triangles would be considered as being on
both sides, if they are not clipped... 22

2.8 Kd-tree Construction with the Surface Area Heuristic and termination criteria -
maximum triangles in leaf node = 2.. 23

2.9 Space median and SAH kd-trees constructed on the Dragon model. The SAH
kd-tree more closely wraps the model and reduces the void area............................... 24

2.10 Kd-tree ray traversal.. 24
2.11 2D version of an Octree (Quadtree). Space is split at even locations and along all

the axes (in 2D)... 26
2.12 2D version of a uniform grid. The entire bounding volume of the scene is divided

into many smaller even spaces.. 27
2.13 Bounding Volume Hierarchy. Each lower level consists of bounding volumes that

enclose smaller parts of the model until the leaf node level where each bounding
volume has a single primitive... 31

2.14 Kd-tree packet traversal.. 36

3.1 Kd-trees on scenes with predominantly non-axis-aligned triangles. Even though
the SAH kd-trees converge to the model quickly, their void area is still significant.
This is because kd-trees are restricted to using axis aligned splitting planes. . . . 47

3.2 RBSP trees on scenes with predominantly non-axis-aligned triangles. The use of
several additional splitting axes allows the RBSP tree to more closely wrap the
model and minimise void area.. 48

v

3.3 A 2D RBSP tree: In 2D, the splitting planes (lines) can directly be used instead
of the normals (as done in 3D). Hence, the potential set of partitioning planes are
shown (labelled 1,2,3,4). Using this set of axes, a tree that partitions space into
two parts at each step is built.. 49

3.4 Leaf nodes and pointers to their component triangles. Nodes in green are leaf
nodes that point to an index in a global list of leaf node triangles.............................. 52

3.5 Space median RBSP trees on scenes with predominantly non-axis-aligned trian
gles. The split planes are not intelligently placed and hence the space median
method to construct RBSP trees is not beneficial.. 55

3.6 SAH RBSP trees on scenes with predominantly non-axis-aligned triangles. Us
ing the intelligence provided by the SAH, the RBSP tree constructed is of better
quality... 56

3.7 Potential split points for SAH along an axis. Projecting the end points of the
clipped triangles onto the axis in consideration gives the potential split plane po
sitions. The SAH cost at these potential points are calculated and the minimum
point is selected as the locally optimal split position.. 57

3.8 RBSP tree ray traversal (2D). Similar to the kd-tree traversal - if t spnt > £en*ry
the left node is traversed, and if t sput < t exa the right node is traversed. If both
conditions hold, as in the figure, both nodes are traversed... 58

3.9 RBSP tree root node for the Bunny with each plane coloured differently................... 63
3.10 RBSP tree bounding volume / root node of the Bunny with each bounding plane

coloured differently illustrating the recursive divide method. If the four comer
pixels of a rectangular region have the same colour, then all the pixels inside this
region have the same entry plane. Otherwise, the region is subdivided into four
smaller regions and the four comer pixels are tested again.. 65

3.11 RBSP tree on the Bunny using 3,8,16 and 24 planes at various depths. Images
show the non-empty nodes at the given depth and leaf nodes at higher depths. The
visualisation shows that RBSP trees built with more axes converge to the model
more quickly than those built with fewer axes... 66

3.12 Images showing the bounding box and the RBSP tree using 3,8,16 and 24 planes
for few other models. Images show the non empty nodes at depth 16 and leaf
nodes at higher depths. As more axes are used to build the RBSP trees, their
quality improves.. 68

3.13 Variation of node traversals per pixel over number of split axes used to build the
RBSP tree for ray tracing several models. The more the number of axes, the lower
the number of node traversals (except for the Sponza scene)...................................... 69

3.14 Variation of triangle intersections per pixel over number of split axes used to build
the RBSP tree for ray tracing several models. As the number of axes used increase,
the number of triangle intersections decrease.. 69

3.15 Variation of construction times of RBSP trees over number of split axes for various
models. From the data graphed it was deduced that empirical complexity of RBSP
tree construction is 0{m } 6Nl og2(N)) .. 73

3.16 Faces per node of RBSP trees with various number of split axes for various models.
The number of faces per node appears to be very close to six, irrespective of the
number of splitting axes used.. 74

4.1 Naive recursive ray tracing example on a 4 x 4 voxelized grid. The number of
distinctly traversed nodes is a geometric series (1 + 2 + + N /2 + N = 2N — 1). 81

4.2 Ray tracing the Sponza s c e n e .. 82
4.3 Object Order Ray Casting rendering t im e s ... 84
4.4 Node projection. Coherent Rendering projects all the eight vertices of the node

onto the image plane to obtain the node projection for the root nodes...................... 88
4.5 Node projection - projecting only the split plane. For non-root nodes, Coherent

Rendering projects only the split plane to reduce computations................................. 89
4.6 Frustum visibility of a node. Node can either be partially inside the frustum, fully

outside the frustum or fully inside the frustum, as shown in the diagram................. 90
4.7 Examples of nodes occurring between four pixels. Since Coherent Rendering

considers the pixels as points, geometry occuring between pixels are ignored. . . 91
4.8 HOM for the Armadillo model. The image with the green border is the actual

image of size 1024 x 1024. The image labeled 0 is the lowest level of the HOM
and so on. Level 0 of the HOM consists of 256 x 256 pixels. The highest level (5)
of the HOM has just one pixel.. 93

4.9 Region Of Influence in HOM. When a pixel is determined, the four closest pixels
(including itself) are deemed to be in the region of influence. These four pixels
can cause an increment in upto four upper level HOMs... 94

4.10 Leaf node triangles needing clipping due to partly enclosed triangles. To ensure
accurate visibility, only parts of triangles that are fully contained by the node are
to be considered. If other parts are considered, they result in rendering artifacts. . 96

4.11 Rasterising triangles. A subdivision method is followed where the triangle is sub
divided recursively until they span a single pixel. At this pixel, the triangle is
determined as being visible... 98

4.12 Linearity of the hierarchical rasterisation algorithm. The number of recurive ras
terisation calls to rasterise the triangle (right) at different resolutions (from 82 to
40962) has been shown. It can be seen from the graph (left) that the number of
calls increase linearly according to image size.. 99

4.13 Synthetic Benchmarks, (a) original single plane mesh (no subdivision), (b) 16-
plane scene subdivided 6 times, (c) is the final image obtained from all synthetic
scenes rendered using a unique viewpoint, (d) and (e) are the variation of render
ing times per pixel (/us) according to the scene complexity (i.e, number of subdi
visions) and the image size for single plane and multi-plane respectively. Results
show that rendering times are constant until the scene complexity becomes greater
than the image complexity. At this point, rendering times become logarithmic.
The similarity of (d) and (e) indicates that only the visible triangles are relevant. . 100

4.14 Mesh-based Coherent Renderings. From left to right: Single triangle, Sponza ,
Sponza with Stanford Models, Sponza from outside, David and Powerplanl. All
can be rendered at approximately the same speed, provided that the resulting im
age is large enough... 101

4.15 Analysis according to the image size, (a) Rendering times for the different scenes.
(b) Rendering times per non-black pixel showing convergence to the same ren
dering time, (c) Number of nodes traversed - independent of the image size, (d)
Number of rasterisation steps per non-black pixel - convergence to the same ras
terisation cost per pixel. Note that the two Sponza outside curves overlap on all
graphs... 102

4.16 Profiling the Coherent Rendering algorithm.. 105

5.1 A row of the image as a 2D plane. Tracing this 2D plane through the tree is the
basic idea of the Row Tracing algorithm... 110

5.2 Intersection of a box and a plane. As shown, it is sufficient to determine if the two
extreme points of the box in relation to the normal of the plane are on the same
side or either side of the plane... 115

5.3 Node Projection onto a Row. x min and x max indicate the node’s overestimate. If
the overestimate is occluded, then the actual projection is also occluded. Hence,
this overestimate can be used for occlusion detection.. 119

5.4 Calculating the octree node’s vertices, o is the mid-point of the octree, d i and d 2

are vectors to be added to o to obtain the vertices... 120
5.5 Row-Node intersection. If the two extreme vertices of the node with respect to

the row plane’s normal (shown in blue) are on opposite sides of the row plane,
then it intersects the node.. 121

5.6 Row-plane-triangle intersection. If the vertices of the triangle lie on opposite sides
of the row plane, there is an intersection... 122

5.7 Row-leaf-node-triangles intersection. Intersecting the row-plane with the trian
gles in a node gives several line segments.. 123

5.8 Intersection segment clipping. Intersection line segments need to be clipped to
ensure that only parts of triangle inside the node are considered................................ 125

5.9 Clipped segments projection. The clipped intersection segments are projected
onto the row to obtain the pixels affected by the triangles in the node...................... 126

5.10 Initial state of the HOM.. 128
5.11 Updating the HOM.. 129
5.12 HOM update - combining bits horizontally... 130
5.13 Occlusion testing. If the blue part on the row is to be tested for occlusion, 2 bits

(shown in blue) at level 2 of the HOM is tested... 131
5.14 Final HOM on the Dragon model. Orange line represents the actual pixel. Each

horizontal line above the orange line is a level of the HOM. In the HOM, each
single coloured block indicates a bit of the HOM at that level.................................... 131

5.15 Leaf node intersection segments - Clipped and projected onto the row. These pro
jections on the image row are tested for occlusion against the HOMs to determine
inter-node visibility... 132

5.16 Row-Packet-Node intersection... 137
5.17 Load balancing of Row Tracing and Packet Row Tracing. Each coloured block is

the work allocated to a thread... 138
5.18 Performance of Row Tracing vs Packet Ray Tracing and OpenGL............................ 140
5.19 Performance of Packet Row Tracing vs Packet Ray Tracing - Single threaded and

Multi-threaded versions respectively. For smaller sized models Packet Row Trac
ing is much faster than packet ray tracing. For larger models, though the perfor
mance difference is not that significant, Packet Row Tracing is still faster..................... 141

5.20 Performance of Row Tracing (Single threaded and Multi-threaded versions) vs
OpenGL. OpenGL performance for first three models clipped to 35 fps and 120
fps in both charts. For smaller models, OpenGL is much faster. However, for
larger models, Packet Row Tracing, especially when multi-threaded, is faster than
OpenGL.. 142

5.21 Performance of Row Tracing on kd-trees and octrees - Single threaded and Multi
threaded versions respectively. Shows that Row tracing works well on both kd-
trees and octrees.. 143

5.22 Performance comparison between Row Tracing and Packet Row Tracing on both
octrees and kd-trees. It is clear that Packet R o m - Tracing is considerably faster than
single Row Tracing... 144

5.23 Speed-ups achieved by Row Tracing by using four threads a quad core CPU. Ac
celerations of close to 4 x suggest that R o m > Tracing is highly parallelisable. . . . 145

5.24 Rendering times using Row Tracing, Packet Row Tracing and Packet Ray Tracing
over tree sizes show that while packet ray tracing needs larger trees, Row Trac
ing and Packet Row Tracing work very well with smaller trees pointing to the
possibility of using Row Tracing for dynamic scenes... 146

5.25 Performance of Row Tracing on kd-trees and octrees with and without HOMs.
HOMs are shown to be highly effective as an occlusion detection method............... 147

A.l Software Class diagram... 165
A.2 Structure of a Scene in memory.. 173
A.3 Obtaining the leaf node triangles... 175
A.4 Application W indow s.. 176
A.5 File M e n u .. 177
A.6 Setting the camera parameters .. 177
A .l Options to visualise the scene and the data s tru c tu re ... 178
A.8 RBSP tree visualised on the Bunny.. 179
A.9 Selecting a rendering m e th o d ... 180
A. 10 Selecting a data s tru c tu re .. 180

List of Tables

3.1 RBSP tree node s tru c tu re ... 51
3.2 RBSP tree leaf node structu re ... 52
3.3 Scenes and viewpoints used to benchmark RBSP trees... 67
3.4 Ray tracing times with different methods on RBSP trees with different number of

splitting axes for various scenes. The various algorithms are:
Algorithm 1 .1 - Traversal by Linear Interpolation of Ray-Plane Intersection Pa
rameter.
Algorithm 1.2 - Traversal using SSE.
Algorithm 2.1 - Entry and Exit Plane Determination with OpenGL.
Algorithm 2.2 - Entry and Exit Plane Determination by Recursive Divide.............. 72

4.1 Comparison with ray tracing ap p ro ach .. 85
4.2 Number of nodes (in millions) traversed by a recursive ray tracer (without packets)

and the Coherent Rendering algorithm for a 1024 x 1024 image.............................. 102
4.3 Performances of Coherent Rendering vs single ray tracing and packet ray tracing

(8x8 rays) in frames per second. It is to be noted that the packet ray tracing
implementation has been optimised through the use of SSE instructions. Absolute
performance of Coherent Rendering is observed to be slower than that of packet
ray tracing.. 103

5.1 Comparison between Rasterisation, Ray Tracing and Row T r a c in g I l l
5.2 Best performances of packet ray tracing and Row Tracing in frames per second.

8x8 ray packets and Packet Row Tracing's kd-tree versions have been used re
spectively.. 139

5.3 Performance comparison between Row Tracing and Packet Row Tracing....................144

A .l Kd-tree node structure... 167
A.2 Kd-tree leaf node structure.. 167
A.3 kd-tree node s tructu re .. 174
A.4 kd-tree leaf node structure .. 174

x

Glossary

Notation Description Page
List

ID 1 dimensional 82
2D 2 dimensional 14
3D 3 dimensional 8
3DDDA 3D-Digital Differential Analyser - A ray tracing algorithm that identifies 27

voxels traversed by a 3D line (ray)
3DS 3DS - The file format used by Adobe 3D Studio Max previously. This 164

format has been superceded by the .max format

AABB Axis Aligned Bounding Boxes - are boxes, or cuboids, that are aligned 29
along the coordinate axes.

BIH Bounding Interval Hierarchy - A hybrid data structure that adapts con- 38
cepts from the kd-tree and the BVH and uses the space median method to
select splitting planes.

BSP Tree Binary Space Partitioning Tree - A binary tree in which space is parti- 11
tioned into two parts and each part is a node of the tree.

BVH Bounding Volume Hierarchy - A ray tracing structure where objects are 14
enclosed by bounding boxes and a hierarchy is created out of these boxes.

CPU Central Processing Unit 13

FLTK Fast Light ToolKit - A cross platform toolkit that allows development of 175
GUIs.

FLUID FL User Interface Designer - The user interface designer that allows de- 176
sign of interfaces using FLTK.

GB Giga Byte - A measure of the amount of data. A Giga Byte equals 1024 99
Mega Bytes.

GHz Gigahertz - A measure of the speed of a CPU. 99
GUI Graphical User Interface - The user interface consisting mainly of win- 175

dows and interacted mostly using the mouse.

HOM Hierarchical Occlusion Map - An image that represents the already oc- 42
eluded parts of the image.

xi

Notation Description Page
List

IDE

k-DOP

KB

kd-tree

LCTS

MB

MIP

MLRT, MLRTA

NV Query

OBB

Octree-R

OORC

OpenGL

QBVH

Integrated development environment - A tool that allows easy develop- 164
ment of applications.

k discrete oriented poly tope - A poly tope created by the intersection of 75
planes aligned according to a predetermined set of k axes.
Kilo Byte - A measure of the amount of data. A Kilo Byte equals 1024 99
bytes.
k Dimensional Tree - A generalised form of a binary space partitioning 11
tree where the splitting planes are aligned according to one of the X, Y or
Z axes.

Longest Common Traversal Sequence - The longest sequence of nodes 34
traversed by all the rays in a group of rays.

Mega Byte - A measure of the amount of data. A Mega Byte equals 1024 139
Kilo Bytes.
Maximum Intensity Projection - A volume rendering method that 83
projects the voxel with the maximum intensity onto the image plane to
create the image.
Multi Level Ray Tracing Algorithm - A high performance ray tracing 34
algorithm that uses frustum culling and interval arithmetic to trace a group
of rays.

An OpenGL extension introduced by NVIDIA on their Geforce 3 graph- 43
ics cards.

Oriented Bounding Boxes - are boxes, or cuboids, that need not be 29
aligned along the coordinate axes. Due to the freedom allowed, these
boxes more closely wrap the model.
Octree for ray tracing - A structure similar to a normal octree, i.e. one 26
in which an internal node has eight child nodes, but where the subdi
visions are adaptive. The adaptive nature means that splits need not be
placed evenly along the axes. This allows the octree to use the surface
area heuristic so that it is better suited for ray tracing.
Object Order Ray Casting - A volume rendering method that shows con- 82
stant complexity according to number of primitives.
Open Graphics Library - A standard for developing graphics applications. 43

Quad Bounding Volume Hierarchy - A bounding volume hierarchy where 37
each internal node has four child nodes.

R-tree Rectangle Tree - A tree where the nodes are rectangular and in which the 29
internal nodes may have more than two children.

Notation

RBSP Tree

RGB

S-kd-tree

SAH

SIMD

SSE

VRML

XML

Z-buffer

Description Page
List

Restricted Binary Space Partitioning Tree - A form of binary space par- 46
titioning tree that allows the splitting plane to be selected by using a pre
determined set of axes.
Red Green Blue - A format to represent colours where a colour is given 170
as a combination of the colours red, green and blue

Spatial kd-trees - A structure similar to bounding interval hierarchies. 38
The difference is that the S-kd-tree selects the splitting planes using the
surface area heuristic.
Surface Area Heuristic - A heuristic to select the split position popu- 19
larly used to build hierarchical structures for ray tracing (e.g., kd-trees or
BVHs).
Single Instruction Multiple Data - Instruction sets that are popularised 13
recently that allow operating on multiple data using a single instruction.
Streaming SIMD Extensions - Intel’s set of instructions that allows sev- 8
eral (four) calculations (either floating point or integer) with one instruc
tion

Virtual Reality Modelling Language - A language using which 3D scenes 164
are modelled.

extensible Markup Language - A markup language that allows users to 172
define their own parameters.

Depth Buffer - indicated as Z-buffer as in graphics, the Z axis represents 38
depth in a scene

Acknowledgements

The research would not have been possible without EPSRC’s funding. The grant has provided
finances with which I could work without worrying about finances. It has also provided funds for
equipment and travel to conferences that has enriched my research experience.

I would like to thank my supervisor Dr. Benjamin Mora who has been a valuable influence on me
for the last four years. He has supported me immensely - technically, academically and morally -
during the course of the research and has provided invaluable ideas and input. His patience is also
highly appreciated. I would also like to thank Prof. Min Chen, who as my second supervisor, has
provided inputs and feedback that has improved the quality of my work. Dr. Robert S. Laramee’s
initiative in organising the Visible Lunch - a platform for valuable discussions and preparation -
is also appreciated.

Swansea University’s Computer Science Department, with a research lab that is highly conducive
to research, has positively influenced my research, both due to the beautiful workspace as well as
due to the people in the lab. My lab-mates have, during the past four years, been wonderful. They
have made my stay in Swansea a very happy one. Special thanks should also go to a few lab-mates
(in no particular order) - Ben Spencer, Tony McLoughlin, Chitra Acharya, Liam O ’Reilly and Ed
Grundy - for proofreading my thesis. In addition, for supporting and maintaining the equipment
of the lab, the technicians of the lab are also appreciated.

Thanks should also go to my tennis and badminton partners - currently Salar Kasto and Ben
Spencer respectively. I would also like to remember my earlier partners - Jibu Panicker, Ganesh
M. and Rajmohan Subash. Regular tennis and badminton have kept me physically and mentally
fit and for this I am highly thankful to them. My friends, who have enriched my life, are also due
credit.

Finally, I would like to thank my parents - Yajnanarayana and Vasanthi Kammaje - without whose
support and encouragement, the Ph.D. would not have been possible. I would also like to acknowl
edge my soon to be wife, Deepthi, for being supportive and helping me through periods of great
stress.

Chapter 1

Introduction

Computer Graphics are an integral part of modem life. Computer Graphics is defined as - “Most
simply, pictures that are generated by a computer” [HilOO]. The most visible uses of Computer
Graphics are in computer games and movies. However, they are also extensively used in areas
such as automobile engineering, architecture, photography, newspaper and magazines, medical
industry, etc. The predominance means that accuracy and performance are very important.

Rendering is the process of generating images from a model. The model normally represents a
3D object based on a physical entity. To render this model implies generating the image of the
model from a particular viewpoint. The rendering may either be a photo realistic rendering -
which produces images that aim to be close to reality, a non photo realistic rendering - which aim
to have more artistic or stylistic properties, or an interactive rendering - that sacrifices realism for
high interactive frame rates [PH04].

Depending on the type of renderings desired, the methods used to generate the rendering vary
accordingly. Photo realistic renderings use physical properties of surfaces, materials and light to
produce images that are very close to reality.

Ray tracing - which is the basis for several methods that generate photo realistic renderings -
utilises the principles based on the physical properties of light. In its most basic form, as given
by Appel [App68], it is a technique whereby rays are generated and traced, usually backwards -
from the eye / camera through the image plane to the model, to find the closest object that each ray
intersects. When all the rays corresponding to all the pixels of the image undergo a similar process,
the image is generated. The image thus generated does not include any shadows, reflections or
refractions. These additional physical effects are computed through further rays that are generated
at the point of intersection [Whi80].

Although ray tracing is physically based, it does not model indirect lighting - i.e., light that is
dispersed by other objects in the scene. Global Illumination is the name given to the class of
techniques that model both direct and indirect lighting - i.e., lighting that is reflected by diffuse
surfaces - in order to generate images that are highly photo realistic. Images generated with
global illumination look very realistic. Radiosity [GTGB84] was one of the first techniques to
model diffuse indirect reflections.

Rasterisation is the other major technique used to render images. It consists of taking the set of
polygons of the model and mapping them onto the pixels of the screen to generate the image. Since
it is not based on physical properties, optical features like shading, reflections and refractions are

1

2

generated with artificial techniques and are not as accurate as ray tracing. However, it is extremely
fast, making it highly suitable for use when interactive to real time frame rates are necessary. Due
to the high frame rates achieved, it is very popular and is used extensively in computer games.

Motivation and Aims

Irrespective of the rendering method used, the first major step of all rendering methods is to find
the visible surface. Methods that solve this problem are known as visible surface determination
methods or just visibility methods. Very simply, it can be considered as the process of finding the
closest object at every pixel of the image.

There have been several methods like Z-buffer, Area subdivision, BSP tree method, etc., to solve
the problem [FvDFH90]. Ray tracing / ray casting can also be considered as a visibility determina
tion method when only primary rays are traced. Due to the fact that ray tracing is a very expensive
operation, several innovative structures and algorithms have been developed to improve its perfor
mance. The underlying principle of most algorithms and data structures is to create coherence and
optimally utilise this coherence.

One of the best structures for ray tracing, especially for static scenes are kd-trees. The Surface
Area Heuristic to construct them has shown to create trees that significantly reduce the number of
ray-node traversals and ray-primitive intersections than naive construction heuristics. Kd-trees,
and other structures built on the scene, improve and allow utilisation of object coherence by group
ing closer objects into closer nodes creating coherence by ordering / sorting the scene.

The other form of coherence, more widely used in recent times together with object coherence,
is the use of image coherence by tracing groups of neighbouring rays through the structure. This
method is popularly called packet ray tracing. It works on the basis that rays that are closer in the
image traverse a similar path down the structure. The combination of object and image coherence
has resulted in impressive results. If the visibility problem is considered as a searching problem,
packet ray tracing is using a basic result from searching algorithms that searching k neighbouring
elements in a tree can be achieved in log(N) + k steps [Ben79]. With this, the number of steps
needed to render the image are reduced significantly leading to accelerated performance.

For the visibility problem, finding only the first intersection for all the pixels is necessary. This
makes it possible to maximise the utilisation of the coherence provided by the structure and the
image. Investigating methods to maximise the coherence provided by ray tracing structures to the
visibility problem is the motivation of the thesis.

Thus, the aims of the research are to develop and investigate new visibility / rendering algorithms
that build upon and utilise the coherence of structures and algorithms currently popular for ray
tracing and to investigate them in that context.

Contributions of the Research

The main contributions of the research are:

• the development and study of a structure that aims to minimise the number of ray-node
traversals and ray-triangle intersections by providing a closer fitting structure - i.e., a struc
ture that improves object coherence.

3

• the development and study of an algorithm that utilises the entire coherence provided by a
kd-tree and investigates empirically the complexity of this algorithm.

• the development and study of a new algorithm that utilises the coherence provided by a kd-
tree or octree by using a single row at a time - similar to scanline algorithms. The method
is extended so that groups of rows can be traced to maximise coherence utilisation.

Thesis Outline

The thesis starts off with this chapter - Introduction - that introduces the main motivations, aims
and contributions of the thesis.

Chapter 2 - describes the previous and related work in ray tracing. It also describes briefly the
popular visibility methods of the other popular method of rendering - rasterisation.

Chapter 3 - introduces and describes Restricted Binary Space Partitioning Trees (RBSP Trees) in
detail. It describes the motivation, the heuristics to construct them, the algorithms to traverse them
for producing images and finally compares it to kd-trees.

Chapter 4 - Introduces the concept of Coherent Rendering, develops the algorithm and investigates
it from the point of view of empirical complexity.

Chapter 5 - introduces the algorithm - Row Tracing - and its packet variant - Packet Row Tracing
- in detail and provides the results when the algorithm is used to generate an image.

Chapter 6 - briefly summarises the contributions of the thesis. It will also provide a brief list of fu
ture work that can be attempted to realise the potential of the introduced structure and algorithms.

Publications

The following are the publications and technical reports achieved during the course of the Ph.D.
The thesis describes the methods and results of these these publications in greater detail.

Kammaje, R.P.; Mora, B., “A Study o f Restricted BSP Trees fo r Ray Tracing,” IEEE Symposium
on Interactive Ray Tracing, 2007. RT ’07., pp.55-62, 10-12 Sept. 2007. [KM07] - Chapter 3 is
based on this publication. It describes the structure and the methods described in the paper in
greater detail. The chapter also provides additional traversal methods, one of which significantly
improves upon the results presented in the paper.

Benjamin Mora, Ravi Kammaje and Mark W. Jones, ‘‘On the Lower Complexity o f Coherent
Renderings,” Swansea University, Technical Report, 2008. [MKJ08] - Chapter 4 provides the al
gorithm in greater detail with the results pointing to the possibility of a lower complexity followed
by a discussion regarding the complexity of the algorithm.

Kammaje, Ravi P.; Mora, Benjamin, “Row tracing using Hierarchical Occlusion Maps,” IEEE
Symposium on Interactive Ray Tracing, 2008. RT ’08., pp.27-34, 9-10 Aug. 2008. [KM08] -
Chapter 5 describes the Row Tracing algorithm presented in this paper in much greater detail.
Row Tracing traverses a kd-tree or octree using an entire row of the image at a time to maximise
coherence. A ID version of Hierarchical Occlusion Maps is used to determine occluded nodes
and occluded parts of triangles. Hierarchical Occlusion Maps are shown to be responsible for both

4

accurate visibility determination as well as acceleration of performance. To maximise coherence
and performance, an adapted version of the algorithm that traces groups of rows is also developed
and investigated.

Chapter 2

Ray Tracing - Algorithms and Data
Structures

C ontents
2.1 Ray T r a c in g .. 5
2.2 Ray Intersections .. 6
2.3 Acceleration S tructures.. 14
2.4 Packet Ray T r a c in g ... 32
2.5 Anti-Aliasing and Incoherent R a y s.. 35
2.6 Dynamic Ray T racin g ... 36
2.7 Other Visibility M e th o d s ... 37
2.8 Sum m ary.. 42

While rendering from a viewpoint, the first step is to determine the objects that are visible from the
viewpoint. There have been several algorithms and data structures that have been used to achieve
this and these are grouped into the class of visibility determination methods. Ray tracing / ray
casting can be considered as a visibility determination method when only primary rays are traced
to determine the closest object at each pixel. There has been extensive research in ray tracing lead
ing to the development of many data structures and algorithms to efficiently perform ray tracing.
The other main form of rendering - rasterisation, also has several visibility determination meth
ods. In this chapter, the data structures and algorithms for ray tracing will be described followed
briefly by other visibility determination methods.

2.1 Ray Tracing

Ray tracing as a method to determine visible surfaces was introduced by Appel [App68], The
method introduced by Appel is more commonly known as ray casting. Ray tracing is the rendering
method introduced by Whitted [Whi80], in which a ray from the eye / camera for each pixel of
the image is cast and the first object in the scene that intersects the ray is found. Upon finding this
intersection, further rays - a shadow ray from the intersection point to the light source, a reflection
ray determined by the rule that its angle is equal to the angle of incidence, and if the object is
transparent a refraction ray whose direction is found based on Snell’s law - are spawned and a

5

2 . 1 R ay Tracing 6

tree o f rays is fo rm ed (Figure 2.1). The shader then traverses this ray tree, finds the in tersec tion o f
each secondary ray and gathers the contribution o f each secondary ray to u ltim ately shade the pixel
in consideration . D ue to the m ethod 's close sim ilarity to physical reality, the im ages generated are
o f excellent quality. H owever, ray tracing as described m odels only direct illum ination - specular
and refracted com ponents. In order to he m ore realistic , ind irect illum ination also needs to be
m odelled and the m ethods to generate such im ages are c lassified under the g roup o f m ethods
know n as G lobal Illum ination.

An observation to he noted is that the rays in ray tracing , in con trast to physical reality, originate
from the cam era rather than the light source itself. T his allow s only the set o f relevant rays to be
considered. A lso, several objects m ay be occluded by objects in front o f them - in w hich case the
rays are b locked by o ther objects in front. T hus, tracing these rays is unnecessary and w asteful.
O nly the rays o f interest - rays initially o rig inating from the cam era and passing th rough the im age
plane - are traced.

Figure 2.1: Ray tracing. The ray tracing m ethod w hereby a ray is traced from the v iew point
through the pixel to find the first in tersected object. At the object o f in tersection , add itional rays

are spaw ned to generate reflections, refractions and shadow s.

The rendering tim es to generate a few im ages, 44 m ins, 74 m ins and 122 m ins, are specified by
W hitted. The algorithm w as im plem ented in C on a V A X -11/780 com puter running U N IX and
the im ages had a resolution o f 480 x 640 w ith 9 bits per pixel. T h is relatively poor perform ance
w as due to the hardw are lim itations as also due to the fact that it w as a new a lgorithm w ith a
very large num ber o f ca lcu lations perform ed. A ppel used sim ple spheres as bounding volum es o f
the objects to sim plify in tersec tion calculations. H owever, it w as revealed that fo r sim ple scenes,
in tersection calcu lations form ed 75% o f the tim e spent by the ray tracer. T his w as exacerbated for
m ore com plex scenes fo r w hich the intersection ca lcu lations form ed upto 95% o f the tim e spent,
tending to 100% as the num ber o f objects increase to a very large num ber. H ow ever, the im ages
generated by the m ethod w ere o f a very high quality, engendering im m ense in terest in accelerating
ray tracing to generate sim ilarly high quality im ages, but w ith a faster perform ance.

The identification o f ray in tersec tions as the m ain cause o f the poor perform ance o f ray tracing led
to extensive research - both in accelerating the actual o b jec l-ray in tersec tions and in the use o f
acceleration structures to reduce the num ber o f o b jec l-ray in tersec tions. As Section 2.3 w ill show,

reflected ray refracted ray

viewpoint

Y

intersected object

shadow ray

light source

2.2 Ray Intersections 7

numerous acceleration structures have been invented and researched and are of varying quality
with respect to ray tracing performance. For a particular scene, the number of object intersections
that a ray tracer has to perform is highly dependent on the acceleration structure used. However,
irrespective of the acceleration structure used, the ray has to be intersected with the objects at
some stage of the algorithm. Hence, fast object-ray intersection calculations are imperative.

2.2 Ray Intersections

A ray is a semi-infinite line and can be represented by its parametric form as

r (t) = o + td (2.1)

where o - origin of the ray
t - is the parameter and mostly t > 0
d - direction of the ray

For primary rays, the origin is the viewpoint from which the scene is to be rendered. For secondary
rays, it is the intersection point of the primary ray and the object. Since the ray travels only in
one direction - forwards - objects that are behind the origin are discarded. The direction is given
by the vector from the source of the ray to one of the points that it passes through. It is usually
normalised. In case of primary rays, the direction of the ray, d, is given by normalizing the vector
from the viewpoint to the pixel being considered.

The problem of finding the intersection reduces to finding the parameter, t, at which the ray hits
an object in the scene. Several objects may intersect the ray along its path. But, only the first
object that it hits is relevant. This is determined by selecting the object with the minimum positive
intersection parameter. A negative intersection parameter indicates that the intersection is behind
the viewpoint and hence such intersections are disregarded.

Scenes are most commonly represented using triangles. Most popular acceleration structures use
boxes / rectangular cuboids. Hence, fast methods to intersect the ray with triangles and boxes are
important. One of the most popular acceleration structures - the kd-tree - uses an axis-aligned
plane and hence intersections between a ray and an axis-aligned plane are also considered. Finally,
spheres, in addition to being a common primitive, have also been used as bounding volumes in the
first ray tracers and hence ray-sphere intersections are also discussed.

2.2.1 R ay-T riangle intersections

In a majority of scenes, objects consist exclusively of triangles. They are the simplest possible
polygon and can be compactly represented. Other polygons can be easily broken down into trian
gles. Complex objects with curved surfaces can be approximated to fine detail depending on the
number of triangles used [SB87]. Thus, they are the predominant primitive in ray tracing scenes.
In many ray tracers (as in ours) triangles are the only primitive supported. Pharr et al. [PKGH97]
use a similar approach of rendering only triangle based scenes and found that any disadvantages
of this approach was outweighed by the advantages. The predominance of triangles is both the
cause and effect of extensive research in efficient ray-triangle intersections.

2.2 Ray Intersections 8

The most obvious ray-triangle intersection method intersects the ray with the plane of the triangle
and determines whether the intersection point is within the triangle [Bad90] [ray]. Haines [Hai94]
gives a few strategies to determine if a point is within a polygon.

One of the strategies to verify if a point is inside the triangle is given by Arenberg [Are88]. It
computes two of the three barycentric coordinates of the intersection point by using the triangle’s
normal - computed either at intersection time or pre-computed and stored earlier. Due to the
properties of barycentric coordinates, it is only necessary to verify if they are both positive and
their sum is less than one.

Moller [MT97] provides a method that eliminates the need for the triangle’s plane equations by
computing the barycentric coordinates and the intersection parameter t by translating the triangle
onto the Y Z plane with the ray along the X axis and then transforming it to a unit triangle. As this
method does not need the plane equation of the triangle, this method can be used when memory
consumption is a priority.

Wald, in his thesis [Wal04], provides a similar method that is also an optimisation of the barycen
tric coordinate test. The method first computes the intersection between the triangle’s plane and
the ray. Then the barycentric coordinates are computed by projecting the triangle onto the axis-
aligned plane on which the triangle projects the maximum area. By mathematically simplifying
the expressions for the barycentric coordinates of the intersection point, a few per triangle con
stants are identified. By pre-computing these constants, the number of operations for the test are
reduced to a small number (worst case: 10 multiplications, 1 division and 11 additions, best case:
4 multiplications, 5 additions and 1 division). The method is shown to be easily vectorised us
ing SSE instructions (Intel’s Streaming SIMD Extensions) [Int08] [SSE09b] to intersect four rays
with one triangle.

Another method used for the intersection is the use of Plucker coordinates. It has been used
extensively to determine the ray-triangle intersections [Eri97] [Sho98] [TH99] [JonOO]. Plucker
coordinates are a mapping of a 3D line into a 5D coordinate system. The coordinates of the 5D
system are found by a cross product of the two end points and a subtraction of the two points. It
provides a simple method to determine the orientation of one line with respect to the other with an
inner product of the vectors. By considering the three edges of the triangle and the ray as vectors,
the intersection of the ray to the triangle is found.

Segura and Feito [SF01] provide a method that is faster than either M oller’s [MT97] or Badouel’s
[Bad90] that has been shown to be mathematically equivalent [0 ’R98] [KS06] [Eri07] to the
intersection test with Plucker coordinates with a better efficiency. The scalar triple product - rep
resenting the signed volumes of the parallelepipeds defined by three vectors - is used to determine
if there is an intersection or not. By eliminating complex operations, the algorithm is simple, fast
and robust. As provided, the method only determines if there is an intersection or not and does
not calculate the actual point of intersection. However, if there is an intersection, the barycentric
coordinates and the intersection points are easily determined by the values calculated as a part of
the algorithm.

The scalar triple product can be defined as a function of three vectors, signSD and can be given
as:

s ignZD(p, q, r) = p .(q x r) (2.2)

where

2.2 Ray Intersections 9

p . q and r are vectors
T he sym bols . and x indicate a vector dot p roduct and a vector cross p roduct respectively.

If o and d represent the v iew point and the d irection o f the ray being traced and a . b and c are
the three vertices o f the triangle, the in tersec tion can be determ ined as show n by the pseudocode
below :

side3 = w[2] > 0
side! = w [0] > 0
if (side3==sidei)

side2 = w [1] > 0
if (side3-— side2)

return true;

return false;

Listing 2.1: T riang le -ray in tersec tion using sca lar triple products

If there is an intersection, the barycentric coord inates o f the in tersec tion point are given by the
values in w. U sing these, the actual in tersec tion po in t can be easily com puted as show n by the
pseudocode below :

intersect ionPoint[0]= w [0]* a[X]+w[1]* b [X]+ w [2]*c[X]
intersect ionPoint [n=w[0]*a[Y]+w[l]*b[Y]+w[2]*c[Y]
intersectionPoint[2]=w[0]*a[Z]+w[l]*b[Z] >w[2]*c[Z]

Listing 2.2: C om puting the ray -trian g le in tersec tion point using the barycentric coord inates
calcu lated in L isting 2.1.

Due to the sim plicity o f the m ethod, it is used in our im plem entation to in tersect w ith triangles.
T he m ethod has been vectorised using SSE ins tructions w hen packet ray tracing is used to intersect
fou r rays w ith one triangle. W hen larger packets are used, the packets are split into groups o f four
rays and in tersec ted using the SSE version.

C loser observation o f the above in tersection pseudocode, intersectionRayTriangie, reveals
that there exist a few optim isations in the process like com puting the values o f (a — o) . (b —
o) . (c — o) ju s t once in the m ethod. Further reductions in the num ber o f ca lcu lations are also
possib le using the p roperty o f scalar p roducts and cross p roducts given below.

2.2 Ray Intersections 10

• P -(q x r) = q .(r x p) = r .(p x q)

• p x q = —q x p

In addition, when triangle meshes are used, the vertices and edges of a triangle are shared by other
triangles pointing to the possibility of several pre-computations as Amanatides and Choi [AC97]
suggest. By sharing these computations, they could reduce the worst case computations from 51
flops to 33 flops. However, in our implementation, these optimisations have not been applied as
we concentrate more on reducing the number of intersections performed.

In addition to the simplicity of triangles, the availability of several efficient intersection methods
has popularised the use of triangles as primitives. However, for a few other primitives like spheres
and boxes, efficient intersection methods are available that make it cheaper to intersect them as
whole primitives instead of splitting them into triangles.

2.2.2 R ay-S p h ere intersections

Spheres are a common primitive in a few scenes. In addition, they can be used as bounding
volumes to accelerate ray tracing as ray-sphere intersections are reasonably fast.

The mathematical method to intersect a sphere with a ray, as given in Realtime Rendering [AMH02],
uses the implicit mathematical equation of the sphere:

/ (p) = Up - c|| - r = 0 (2.3)

where

c - is the center of the sphere
r - is the radius of the sphere
p - is a point on the sphere

At the intersection point, both the ray’s parametric equation and the sphere’s equation should hold.
Substituting the ray equation into the sphere equation at this point gives:

/ (r (0) = ||r(*) - c|| - r = 0

expanding the parametric equation of a ray in the sphere equation provides the following at the
point of intersection.

||o + t d - c |)

(o -I- td — c).(o + td — c)

t 2 d 2 + 2 f(d .(o — c)) + (o — c).(o — c) — r 2

= r

= r 2

= 0 (2.4)

If we consider
b = (d .(o - c))
c = (o — c).(o - c) - r2

2.2 Ray Intersections 11

and when d is normalised, d 2 = 1

then, Equation 2.4 reduces to

t 2 -t- 2tb c — 0

adding b2 to both sides and simplifying, we have

t 2 + 2 tb + b2- 2tb b c

t 2 + 2tb + b2

(t + b)2

t b

t

2

± y / b 2 — c

—b ± \ Jb 2 — c (2.5)

If the solutions are real, then the ray intersects the sphere and if the solutions are imaginary, then
the ray does not intersect. This can be easily computed by determining if b2 — c < 0 or not. Thus,
if as in the case of bounding spheres, it is only necessary to determine if the sphere is intersected
or not, then determining whether b2 — c < 0 is sufficient.

The book also discusses a geometric solution as given by Haines [Hai89] that uses the geometric
method rather than the algebraic method. The geometric solution considers the various cases
where a ray may not intersect and tries to determine these cases with minimal calculations resulting
in a more efficient method when the ray misses the sphere. However, in cases where the ray
intersects the sphere and the intersection points are necessary, the computations are of similar cost
to the algebraic method.

Although ray-sphere intersections are fairly fast, normally scenes in computer graphics do not
consist of many spheres. Also, using them as bounding volumes is not very efficient as they do
not closely fit most objects in the scene.

2.2.3 R ay-P lan e intersections

The ray-plane intersection is used by ray tracers either as a part of the ray-triangle intersections or
to determine if a ray intersects a node when a Binary Space Partitioning tree(BSP Tree) or kd-tree
is used. The mathematical equations of the ray and the plane are used to achieve the intersection.

If the plane to be intersected is given by

/ (P) = n .(p - p 0) = 0

where n - is the normal to the plane
Po - is a point on the plane

then, at the intersection point, both the ray’s parametric equation and the plane’s equation should
hold. Hence, the equation of the ray can be substituted for the value of p to give:

2.2 Ray Intersections 12

f (r (t)) = n .(r (t) - p 0) = 0

expanding the above equation gives

n .((o + td) - p 0) = 0

solving this equation gives the solution for the parameter t at which the ray intersects the plane as

n .pn — n .o
t = (2.6)

n .d

that can be factorised to

t = n (P 0 : o) a ?)
n .d

2.2.3.1 Ray-Axis-Aligned Plane Intersections

Geometrically, a dot product indicates the projection of one vector onto the other. When only
axis-aligned planes are considered, the coordinate axes themselves are the normals of the plane.
The dot product of a vector with the axis (the projection of a point on to an axis) is just the
corresponding coordinate. For eg., the projection of point (1,2, 3) onto the X axis is 1, onto the
Y axis is 2 and onto the Z axis is 3. Using this result, Equation 2.6 reduces to:

, Paxis Vaxis
tint ~ ------- (Z-<V

(*aris

where
t int ~ is the parameter of intersection
Paxis ~ is the point’s coordinate along axis
Oaxis - is the corresponding coordinate of the ray’s origin
daxis - is the corresponding coordinate of the normalised direction of the ray

As the equation shows, it is a very efficient method.

This simple and efficient intersection method between a ray and plane is one of the causes for the
popularity of the kd-tree - that consists entirely of axis-aligned split planes. In addition, it is also
used for one of the more popular ray-box intersection methods.

2.2.4 R a y -B o x Intersections

One of the most popular methods to intersect a ray with a box is the method proposed by Kay [KK86],
more popularly called the slabs method. A pair of planes along an axis is defined as a slab. For

2.2 Ray Intersections 13

each slab, the parameters, te.ntry at which the ray enters the slab, and t exu at which the ray exits the
slab, is computed using the ray plane intersection method given by Equation2.7 (If the plane is axis
aligned, then Equation 2.8 can be used instead). The interval given by t entry and t exa determines
if the ray intersects the slab. If tentry < t exa, then there is an intersection between the ray and the
slab in consideration. A bounding volume is the intersection of several slabs and consequently, the
intersection of the ray with the bounding volume is the intersection of the intersection intervals.
Hence, the ray intersects the volume i f - in a x (tentry o f all slabs) < rnin(texit o f all slabs). For
an axis aligned bounding box, this method is shown by the set of Equations 2.10.

It is a very simple method that calculates the intersection of the ray with the six planes of the box
and determines intersection by using the values of the intersection parameters. Additionally, it
also provides the intersection parameters at which the ray enters and exits the box.

The method has been improved by Williams et al. [WBMS05] by eliminating degenerate intervals
caused due to floating point values of —0.0. They also propose pre-computing the results of the
division operation to optimise it. However, it still has branches whose misprediction can be quite
detrimental. Hence, a branch-less version using the min and max operations provided by the SIMD
instruction set can result in much faster intersection with boxes [GM03] [BP04] [BP05].

The intersection between a ray and an axis-aligned plane is given by Equation 2.8. However, it
is well known that division is an expensive operation [SL96], even on modern CPUs, and thus
minimizing it is imperative. It may be observed that the term j — is a constant for a ray that can
be pre-computed and stored as drcc . The intersection operation can thus be rewritten as

linl — (Paxis Oaxis)d-re.r. (—-9)

At the root node, the parameters for the six planes - one entry plane and one exit plane along each
axis - of the bounding box / root node are computed as below.

tx — (b b \ x e n t r y \ Ox) d r e e

tx = (b b l x e x i t] -— Ox) d r ec .

t y = (b b [y e n t r y \ — O y) d t (c

t y HII

O y) d r e c

t z — (b b [z e nt , ry\ O z) d re.r

t z = { b b [z e x i t] Oz) d r e c

t e n t r y — max(tx . t y , t

le.xi t = min(tx i I'll i Iz

where
bb - is an array of the six coordinates representing the maximum and minimum coordinate along
each axis ordered axis-wise, i.e., first two values are the minimum and maximum values for the X
axis, the next two are values for the Y axis and the final two are values over the Z axis
Xentry ,Xexit,yentry,yexit,Zentry ,zexit - are the indices of the entry and exit coordinates along
each axis.
tentry and t cxit - t parameters at which the ray enters and exits the box

2.2 Ray Intersections 14

X

X

2

Y
Y.

2

For ray • t <t1 2 erXry exit
=> no intersection => ray intersects box

Figure 2.2: R ay -b o x in tersec tion , r a y ! does not in tersec t the box as t entry > len t - r a y 2
in tersec ts the box as t cntry < t,cx1(.

O nce the t entry and t ex.jt param eters are com puted, the ra y -b o x in tersec tion is de term ined by
sim ply com paring the tw o. If t.tniry > t exu , then there is no in tersec tion , o therw ise there is an
in tersec tion w ith the ray en tering at t cntry and exiting the box at t exit- Figure 2.2 show s th is in
2D.

The entry and exit coord inates a long each axis depends on the d irec tion o f the ray - determ ined by
the sign o f d rec . If d rtc is positive, the ray is said to traverse in the positive d irection , o therw ise it
is said to traverse in the negative direction . The d irec tion o f the ray determ ines the o rder in w hich
the ray enters and exits the box. N orm ally in a ray tracer, these are p re-com puted and sto red in
a variable w ith 1 indicating that the ray is travelling in the positive d irec tion and 0 ind icating a
negative d irec tion fo r the ray.

O ther m ethods o f ray -b o x in tersec tions have been researched . O ne o f the m ethods is to com pute
the in tersec tion by P lucker coord inates [M ah05] IM W 04J. T he m ethod has the advantage in that
it does not need d iv isions w hen the in tersec tion poin t is not needed . M ost o f the com putations
o f th is m ethod are vector operations that allow op tim isa tion using SSE instructions. The m ethod
can be used efficiently fo r traversing BVH trees w here the in tersec tion d istance is not norm ally
necessary. W oo [W oo90] proposed a m ethod that identifies the back-facing p lanes o f the box,
reducing the n um ber o f p lanes to be tested to three. A no ther recen tly p roposed m ethod fo r axis-
a ligned bounding boxes (A A B B s) pro jects the ray and the A A B B onto the three ax is-aligned
p lanes and determ ines in tersec tion using the slopes o f the p ro jected ray [EG M M 07J. T he m ethod
reduces the 3D prob lem to a 2D problem and is d ivision free. T he au thors claim a perform ance
advantage o f 18% over the fastest m ethod. H ow ever, the m ethod does not determ ine the actual
in tersec tion d is tances that need to be determ ined w ith add itional calcu la tions if necessary.

In spite o f the several m ethods available, the slabs m ethod appears to be the m ost popu lar m ethod

2.3 A ccelera tion Structures 15

to intersect a ray with a box. This is mostly due to it being simple. It is also a method that can
be easily vectorised with SSE. In addition, the method provides the intersection distances without
additional calculations.

2.3 Acceleration Structures

Although very fast primilive-ray intersection methods exist, intersecting every primitive with ev
ery ray to determine each pixel of the image is prohibitive. Thus, divide and conquer methods by
which it is possible to determine the primitive at each pixel by intersecting the corresponding ray
against a small subset of primitives are used. The structures that facilitate this - acceleration struc
tures - are classified into two main classes: object subdivision structures and space subdivision
structures.

Acceleration structures work on a simple principle. The structure subdivides the scene - either
the space or the objects - into several groups of either uniform or varying granularity. Each
subdivision, called a node for tree structures, usually contains (either fully or partly) a few objects.
If a ray does not intersect the enclosing structure, then the objects enclosed are also not intersected
by the ray. On the other hand, if the ray intersects the subdivision, then the ray may intersect
one of the objects in the node. Thus, only objects in intersected subdivisions need to be tested.
Acceleration structures allow reduction of the number of primitives that the ray has to intersect to
a very small number.

However, tracing a ray through an acceleration structure adds additional computation to ray trac
ing. The cost of ray tracing is given by Weghorst et al. [WHG84] as

Rf = N t * Ct + N p i * C p i (2.11)

where R t - is the rendering time
N p - is the number of node (or bounding volume) traversals
Cp - is the computational cost of traversing a node (or bounding volume)
N p i - is the number of primitive intersections
C pi - is the computational cost of a primitive intersection

If acceleration structures are not used, the first term would be zero. However, the second term
would be very large resulting in an impractical cost for ray tracing any scene consisting of more
than a few primitives. Hence, acceleration structures for ray tracing - that increase the first term,
but reduce the second term significantly - are necessary.

One class of acceleration structures - space subdivision structures - divide the space in a scene
into sub-spaces and classify the primitives as being included in any of the subspaces. A few of the
space subdivision structures that are used to accelerate ray tracing are BSP trees, kd-trees, octrees
and grids. Some of the more popular methods to construct these structures along with the ray
tracing method using them will be described briefly in the following sections.

2.3 A ccelera tion S tructures 16

triangles

arbitrarily aligned
split planes

Figure 2.3: A 2D BSP Tree. T he splitting p lanes (lines in 2D) are selected so tha t they are
aligned accord ing to the edges o f triangles.

2.3.1 B inary Space Partitioning Trees (BSP Trees)

BSP trees - B inary Space P artitioning trees are h ierarch ical structures - m ore w idely used in
hidden su rface algorithm s (FK N 80] [Thi87] [G C 91). B SP trees partition space into tw o parts. In
their m ost general form , these trees can partition space along any arb itrary axis. T he partition ing
axis is norm ally selected from am ongst one o f the p lanes o f the scene. The potential o f B SP trees
to effectively separate triangles and em pty space to create a struc tu re that closely iits the scene is
quite clear. Figure 2.3 show s a B SP tree in 2D.

One o f the only know n early im plem entations o f ray tracing on BSP trees [Thi87] states that it
can provide im provem ents over ray tracing perform ed w ithout partition ing . It uses a m edian cut
schem e that generates balanced trees. However, the efficiency o f the structure w ith respect to ray
tracing is in doubt as a com parison against m ore popu lar structures is not provided. R ecently, Ize
et al. [IW P08] show that the use o f arb itrarily aligned p lanes can be useful fo r ray tracing. T heir
m ethod will be described in fu rther detail in C hap ter 3.

O ther than that. BSP trees in their general form have not been used for ray tracing. M ost often,
the stated reason is the difficulty in constructing a tree that is good for ray tracing. In addition , the
fact that the planes can be arb itrary m akes storage and traversal m ore expensive |C ha01] |S F 90].
Instead, kd-trees - a class o f B SP trees that restricts the sp litting p lanes to be ax is-aligned - are
used frequently. A nother subset o f the BSP tree, that in m any w ays is sim ilar to kd-trees, is
Restr icted B S P trees investigated by us [K M 07]. T his structure and associated m ethods to ray
trace w ith it w ill be detailed further in C hapter 3.

2.3 A ccelera tion Structures 17

2.3.2 K d-trees

The most popular space subdivision structure for ray tracing has been the k dimensional tree,
more popularly known as the kd-tree. It was invented as a search structure by Bentley [Ben75].
It was adapted to ray tracing by Kaplan [Kap85] (calling them bintrees) and then by Fussel and
Subramanian [FS88] who referred to it by the current name. It was adapted using the existing
research on BSP trees. The first implementation preferred well balanced kd-trees to reduce the
depth of the tree. The implementation used splitting planes placed either at the space median - the
mid-point between the minimum and maximum points or the object median - a split with which
half of the objects are on either side of the splitting plane.

2.3.2.1 Construction

The main criteria for rendering performance with the kd-tree is the quality of the trees constructed.
A well constructed tree can be several times faster for ray tracing than a poorly constructed tree
and hence most research has concentrated on improving the quality of kd-trees.

A kd-tree is a recursive structure where every node can be considered as the root node of the sub
tree below it. Naturally, construction of a kd-tree is undertaken in a recursive manner. It is a top
down process where initially the entire space is considered. A bounding box is created for all the
primitives lying in this space by taking the minimum and maximum coordinates of the primitives
along each axis. One among the X , Y and Z axes is selected and space is split along that axis by
placing a plane, that is normal to the axis, at the selected point. The primitives are then classified
as being on one of the sides of the plane. Some primitives could lie on both sides of the plane and
in this case, the triangles are generally included in both the space partitions. Another solution to
this problem could be to clip the triangles at the splitting plane. However, in our implementation,
the first approach is used. Subsequently, each partition of space is a node of the tree containing
the triangles lying in that part of space.

At each node, the space represented by the node is again partitioned into two by selecting an axis
and a point on this axis where the splitting plane is placed. The primitives are classified again and
the two space partitions created are made into child nodes. The process is recursively continued
until predetermined criteria - called the termination criteria - are met. At this point, the node is
made into a leaf node that is not divided further. The two termination criteria normally used are:
the depth of the tree of the node, and the number of primitives contained in the node.

The pseudocode below and Figure 2.4 show the recursive construction process.

constructKDTree(Node node, int[]nodeTriangles)
(

//If depth of the tree reaches the termination depth
//or if the number of triangles in the node is less than
//a small predetermined number, make it into a leaf node
if(depth==MAX_DEPTH

or nodeTriangles.size <= MIN_NODE_TRIANGLES)
{
//Make the node a leaf node.
node.leafNode = true;
node.noOfTriangles = nodeTriangles.length;
//The index where the triangles in this node start from
//is the last index before the triangles are added
node.trianglelndex = leafNodeTriangles.length;

2.3 A ccelera tion S tructures 18

//Add the triangles to the global leaf node triangle list
leafNodeTriangles.add(nodeTriangles);
return;

}
//Find the split axis and posit ion to split the node
node.splitAxis = findSplitAxis();
node.splitPosition = findSplitPosition {);

//Classify the triangles into left part and right part
int[] leftTriangles = findLeftTriangles(splitAxis, splitPosition);
int[] rightTriangles = findRightTriangles(splitAxis, splitPosition);
//Recursively construct left and right parts
constructKDTree (node.leftNode, leftTriangles);
constructKDTree (node.rightNode, rightTriangles);

Listing 2.3: R ecursive kd-tree construction algorithm .

<
^ ^ - >

S p lit pie

primitives

bounding b o x ^ ^

-

*
'

►
Figure 2.4: K d-tree C onstruction w ith the Space M edian heuristic and w ith term ination criteria -

m axim um triangles in leaf node = 2 .

The m ain challenge in the construction o f a good kd-tree fo r ray tracing is finding a good splitting
plane to partition the space in the given node. The position o f th is p lane determ ines the quality o f
the tree fo r ray tracing. Several m ethods have been proposed to find this split position.

The sim plest m ethod used is to p lace the splitting plane in the cen tre o f the tw o bounding planes
o f a node along one o f the three axes |K ap85] |F S 8 8]. U sing the m id -p o in t1 as the splitting
p lane 's position is not very efficient for ray tracing. S ince a ray can skip traversing em pty nodes,
it is preferab le to identify em pty spaces and create em pty nodes. In addition , ray tracing can be

M id-point here means the spatial median. Since, the splitting planes are indicated by a point and a normal (axis),
a plane placed at the mid-point o f the extent along an axis divides the space into two equal halves.

2.3 A cceleration Structures 19

accelerated by effective separation and classification of triangles to create a kd-tree that closely fits
the scene. The Surface Area Heuristic (SAH) aims to do this and was introduced by MacDonald
and Booth [MB90] to kd-trees, adapted from the Bounding Volume Hierarchy construction method
by Goldsmith and Salmon [GS87].

The SAH is a heuristic to determine a locally optimal split position at a node. It takes advantage of
the property of kd-trees that the splitting plane can be placed arbitrarily between the minimum and
maximum point along an axis. Its conception propelled kd-trees to be the preferred data structure
for ray tracing. The SAH has been widely used [MB90] [SF90] [Sub91] [Wal04] [Wal05] [PH04]
to accelerate ray tracing.

The SAH is based on the probability of a ray hitting a node and the cost of computing the inter
sections to the geometry within it [MB90]. The probability of an arbitrary ray intersecting a node
is dependent on the surface area of the node itself. This is quantised into a cost that indicates
the cost of ray tracing if the split in consideration is used. The cost takes into consideration the
probability that the split node is hit and the number of objects contained by it. The intersection
cost of each primitive in the node is considered to be a constant. Similarly, node traversal cost
is also considered a constant. This is not unreasonable for ray tracers that use solely triangles as
primitives. This cost to be calculated at each potential split point is given by:

m S A (le f tN o d c) L T + S A (r ic jh tN o d e)R T „
C ° Si = Tc + h 1-----------------------------SA(node) '--- < 2 ' 1 2)

where
T c - Cost of traversing a node
I c - Cost of intersecting a triangle
S A (lc f tN o d c) - Surface area of the left node formed by this split plane
SA(righ t,N ode) - Surface area of the right node formed by this split plane
S A (N o d e) - Surface area of the node being split
L T - Number of triangles in the left node
R T - Number of triangles in the right node
SA(nodc) - Surface area of the node

The cost is computed as per the above equation at each potential split point along all the axes and
the point with the minimum cost - the locally optimal split position - is selected2. The split plane
is placed at this point and the primitives are classified accordingly.

It may be observed that there can potentially be an infinite number of split points along an axis.
MacDonald and Booth derive the property that the split point with the minimum cost has to be
between the object median and the space median. In addition, they observe that the SAH cost can
only differ significantly at the limits of each primitive (Figure 2.5). Considering only these points
reduces the number of SAH costs to be calculated to a manageable number.

The most expensive part of computing the SAH cost is the process of classifying the primitives as
being on either side or both sides of the splitting planes and counting them. The naive method to do
this is to scan through the entire list of N primitives at each potential split point and classify them.
This is a very expensive method leading to a cost in the order of 0 (N 2). An improved version of
this method is to sort the primitives along the splitting axis at each node SAH step [PH04] [Sze03].

T and I are constants in our im plem entation where only triangles are used as prim itives. H ence, using them does
not affect the selection o f the split plane position using the SAH.

2.3 A ccelera tion S tructures 20

Node

Node
Potential split pointsprimitives

SplitAxis
Potential split
positions on axis

Figure 2.5: SA H poten tial split positions. T he po ten tia l split positions are show n as blue points.
For every triang le , the tw o extrem eties o f the triang le w ith respect to an axis are considered as

potential SA H split positions.

S ince the sorting is done at each step, and the num ber o f p rim itives can be assum ed to reduce loga
rithm ically w ith the depth o f the tree, the order o f this com putation is, on average, G (N lo c j~ (N)) .
T his has been refined so that it can be achieved w ith a com plex ity o f 0 (N l o g (N)) [W H 06] by
sorting once at the beginn ing and m ain tain ing this o rder through the construction process.

C lassification o f prim itives is also com plicated by the k d -trees’s p roperty that prim itives can lie
on both sides o f a split. The property causes prob lem s in counting the num ber o f prim itives as
w ell as in the selection o f a split point. U sing the end points o f the prim itives leads to incorrect
split points as F igure 2.6 show s. To alleviate this prob lem , clipping the prim itives has been p ro
posed [HB02] |H K R S 02] so that only parts o f prim itives inside the node arc included - as show n
in Figure 2.6.

C lipping also e lim inates the counting problem - show n in F igure 2.7 - that occurs w hen the end
points o f p rim itives are used. As can be seen from the figure, if large triang les are not clipped , they
can be incorrectly included in a node leading to erroneous counts. C lipp ing ensures that p rim itives
outside the node are excluded so that the SA H cost is m ore accurate. T he operation is sim plified
- as show n in F igure 2.7 - w here only the position o f the potential sp lit points w ith respect to the
split plane are counted to get an accurate count o f the num ber o f prim itives. It is also possib le to
ensure that the count is accurate by using a fast tr iang le -A A B B overlap m ethod (AM 01].

The cost function can be also be used to favour certain conditions such as em pty voxels / nodes
|H K R S 02] [W H 06]. E m pty voxels are favourable as rays in tersec ting them can im m edia te ly stop
the traversal o f the em pty node allow ing it to skip large portions o f space. T hus, if a certain split
results in one o f the tw o child nodes to be em pty, then the condition is favoured in the SA H cost
by biasing it so that the cost is m ore probable to be less than if the split resu lted in tw o non-em pty

2.3 A ccelera tion S tructures 21

Potential split
positions on axis

Incorrect split
positions on axis

Incorrect potential
lit points \Node

Potential split
points after clipping

Node
primitives

Potential split points

SplitAxis

Figure 2.6: SA H potential split positions, show ing possib le inco rrec t split positions (in red) if
triangles are not c lipped.

nodes. In [H K R S02] [W H 06] the cost is reduced to 80% o f the o rig inal cost to add in this bias,
resulting in ju s t a 5% im provem ent in perform ance.

Termination criteria - O ne o f the factors in the construction o f a kd-tree is to determ ine w hen a
node is made into a leaf node and is not split further. It is the point at w hich the construction o f the
tree is stopped as fu rther subdivision w ould not be advantageous. T he tw o criteria that are usually
used are the depth o f the tree at a node and the num ber o f triang les in the node at w hich the node is
considered a leaf node. A prim itive count o f tw o or few er is a reasonab le point at w hich the node
should be considered a lea f node. The depth o f the tree at the node in consideration is also used
in conjunction . T his criterion m akes every node at this depth into a lea f node irrespective o f the
num ber o f p rim itives it contains. The depth is norm ally related to the num ber o f prim itives in the
scene. O ne heuristic suggested by H avran IHB02] is to use a te rm ination depth o f 1.2/r>r/2A7 + 2.
T his heuristic is found to w ork well w ith m ost scenes w ith our im plem en ta tion as w ell.

Automatic Term ination C riteria - A lthough these term ination criteria w ork very w ell, they
require som e prior know ledge o f the m odels and user input. U sing the SA H cost to determ ine an
autom ated term ination point w as analysed [SF91] and the term ination point w as determ ined as
the point at w hich the cost begins to increase. The autom atic term ination m ethod suggested by
H avran [HB02] achieves this by using the SAH cost to determ ine instances w here fu rther splits
m ay not actually help. The SA H cost o f the parent is com pared to the SA H cost w hen the parent
node is split. W hen this cost is above a certain percentage, the split is de term ined as not helpful
and thus construction stops here. A nother criterion suggested is w hen the cost indicates a very
sm all p robability o f the node being hit. At this point, the p robab ility o f the node in consideration
being hit by a ray is very sm all and hence splitting the node w ould be poin tless.

2.3 A ccelera tion S tructures 22

Split plane

Large primitives

Split axis
Clipped triangle boundaries Split plane

Position on axis

Figure 2.7: Potential fo r incorrect prim itive counts. I f the triang les are not clipped , then they can
be incorrectly counted . T he tw o triangles w ould be considered as being on both sides, if they are

not clipped.

Improving Construction Perform ance - Even though the construction o f SA H based kd-trees
has been show n to be in the o rder o f 0 (N l o g (N)) , the constan ts associated w ith the construc
tion are quite high, m aking the process quite slow. A ccelerating the construction has thus been
an active area o f research. It has led to algorithm s that base them selves on finding the approx i
m ate m inim al cost point instead o f the exact split point w ith the m inim um SA H cost [PG SS06]
[H M S06] |S S K 07]. T his is achieved by sam pling the SA H cost at a few points and approx im ating
the m inim al cost by m athem atically in terpo lating the cost betw een the sam pled locations. Hunt
e t al. [H M S06) refine this by taking fu rther sam ples in the interval in w hich the m inim um point
occurs. On the o ther hand, Popov et al. [PG SS06] use a h igher num ber o f sam ples to determ ine
a be tter approxim ation. U sing the sam pling m ethod along w ith para lle lisa tion o f the p rocess was
also investigated by Shevtsov et al. [SSK 07] to further accelerate the construction process.

O nce the tree is constructed , the scene can be ray traced by traversing every ray through the tree.

2.3.2.2 Traversal

K d-trees are an efficient structure to traverse. The traversal o f kd-trees has been an area o f active
research [SS92] [H K B v97] [A rv88]. A kd-tree is a binary tree enab ling sim ple determ ination o f
the next node to traverse. The child node to traverse can be determ ined w ith ju s t one p lan e -ray
intersection. This is a m ajor advantage for a kd-tree leading to a cheap per node traversal cost.

A no ther advantage o f kd-trees, as o f m ost space subdivision structures, is that they can be traversed
in a true fron t-to -back order. W hen such a traversal is used, the ob jec ts in this node are guaranteed
to be intersected before objects in nodes that are in tersected at a la ter tim e (the excep tion being
objects that span m ore than one node. As long as the / p aram eter o f the object in tersec tion is
betw een the n ode 's i entry and 1exit, the object in tersec tion is w ith in the node and hence correct).

2.3 A ccelera tion S tructures 23

primitives

split plane

bounding box

> • <1

- 4
Figure 2.8: K d-tree C onstruction w ith the Surface A rea H euristic and term ination criteria -

m axim um triangles in leaf node = 2 .

This property o f space subdivision structures that allow s rays to stop their traversal upon finding an
intersection - called early ray term ination - saves several traversal steps and ob ject in tersec tions
due to occlusion in the scene.

Initially, it is to be determ ined w hether the ray in tersec ts the bounding box o f the scene - or in
o ther w ords, the roo t node o f the kd-tree. This is determ ined by using the slabs m ethod described
in Section 2.2.4. T he m ethod also provides the values for t entry an(J texit - the entry and exit
param eters o f the ray. If there is an in tersection , then the ray in tersec ts the root node and hence
has to be traversed dow n the tree. O therw ise, the ray m isses the root node and hence the entire
scene.

If a ray in tersects the root node, then it has to traverse the tree in a fron t-to -back order. A nother
p roperty o f space subdivision structures is that if a ray in tersec ts the paren t node, then it has to
in tersect at least one o f the tw o child nodes. There m ay be cases w hen the ray traverses only
one child node. The traversal o rder is determ ined by calcu lating the in tersec tion param eter at the
split plane, t spu f , and com paring it to the values o f t mur and t mnx ■ I split is com puted as given in
E quation 2.8, i.e., by using the term below.

I'sp lrt = (S p H t a x i s O a x i s) d r e c (2 . 13)

If I split > t-min* then the ray in tersects the left child node. S im ilarly if 1 sput < tmax* the right
node o f the tree is traversed. If both conditions are true, then the kd -tree first traverses the left
child and then the right child node. A s Figure 2.10 and L isting 2.4 show s, the three possib le cases
- ray traverses on ly the left node, ray traverses only the right node or ray traverses both nodes -
arc handled by ju s t these tw o conditions.

2.3 A cce lera tion S tructures 24

(a) Space median kd-tree for Dragon (b) SA H kd-tree for Dragon

Figure 2.9: Space m edian and SAH kd-trees constructed on the D ragon m odel. The SAH kd-tree
m ore closely w raps the m odel and reduces the void area.

^ s p i n d m i n ^ s p l t < ^ m a x ^ s p M t< d m a x

Ray in tersects left node Ray in tersects both left node Ray intersects left node
and right node

Figure 2.10: K d-tree ray traversal.

If a ray traverses the tree and reaches a leaf node, then the ray has a chance o f h itting one o f the
prim itives contained by the leaf node. The ray then has to be in tersec ted w ith each prim itive and
the closest object - as determ ined by the object w ith the sm allest t in tersec tion param eter less than
tmax ~ is the first object that the ray in tersec ts in the scene. The object can then be used to shade
the co rrespond ing pixel and spaw n additional reflection , refraction and shadow rays as necessary.
T he pseudocode below show s the kd-tree traversal.

int RecursiveRayTraversal(node, tmin, tmax)
{

if (node is a leaf node)
(
if (node is empty)

return -1;
return ProcessLeafNode(node);

)
currentAxis = GetAxis(node);

2.3 A ccelera tion Structures 25

splitPos = GetSplitPosition(node);
t_sp = (splitPos - rayOrigin[axis])*rayDirectionReciprocal[axis];
if((t_sp > tmin))
{

i = RecursiveRayTraversal(node->leftNode, tmin, min(tmax,t_sp));
if (i != -1)

return i;
}
if((t_sp < tmax))
(

i = RecursiveRayTraversal(node->rightNode, max(tmin, t_sp), tmax);
)
return i;

}

Listing 2.4: Recursive Ray traversal algorithm. Algorithm computes ray-split plane intersection
parameters of the ray and traverses only the left node, only the right node or both child nodes, as

shown in Figure 2.10.

The traversal of the kd-tree is simple and efficient - as shown by the pseudocode.

Research has concentrated on comparing several data structures with kd-trees and it was deter
mined by Havran [HavOl] that statistically, at the time of writing his thesis, kd-trees were the best
structures available for ray tracing static scenes. Recently, for some applications like dynamic ren
dering and incoherent rays, BVHs [WBS07] [DHK08] are said to be a better structure. However,
it is a fact that kd-trees are among the best structures for ray tracing, especially for static scenes.

A disadvantage of space partitioning techniques is that the primitives may occur in more than one
leaf node. This can lead to a ray being intersected against a primitive several times. One of the
proposed solutions is mailboxing [APB87] [KA91] [AW87] - a technique that maintains a list of
already intersected primitives by the ray and avoids duplicate intersections. It is debatable as to
the advantages provided by mailboxing. The overheads associated with maintaining and checking
the list leads to a situation where for scenes with largely simple primitives like triangles it may
actually be preferable to intersect with the primitive again [Hav02], Hunt [Hun08] suggests a
simple modification to the SAH cost when mailboxing is included. A significant reduction in
intersections is shown when using the method, but the performance gained is still in the range of
5% with a maximum improvement of around 10% for one particular scene, leaving the usefulness
of mailboxing in doubt.

2.3.3 O ctrees

Introduced by Glassner [Gla84], octrees were one of the first space subdivision structure used. An
octree splits space into eight regular sub-spaces and the primitives in the scene are classified into
these sub-spaces. Since space is proportionally divided, the primitives may span more than one
sub-space. Figure 2.11 shows an octree structure in 2D. In 2D, since space is divided only in two
dimensions, each node is divided twice and is divided into four sub spaces. The structure is thus
called a quadtree.

The root node of an octree is a cube, and hence all child nodes of the octree are also cubes. For
ray tracing, the fact that the splits are even and are not according to the primitives in the scene can

2.3 A cce lera tion S tructures 26

>
>

4 |
Figure 2.11: 2D version o f an O ctree (Q uadtree). Space is sp lit at even locations and along all

the axes (in 2D).

he a serious d isadvantage. As show n by kd-trces, effective separation o f prim itives can make a big
difference in the num ber o f nodes traversed as well as the num ber o f objects in tersected .

The traversal o f octrees is slightly com plicated by the fact that each non -lea f node o f the octree
has eigh t child nodes. H ence, to m aintain the front-to-back order, the traversal o rder o f these eight
child nodes has to be considered. The uniform ity o f the subdiv ision also allow s the use o f Three
D im ensiona l Digital Differential A na lyser like a lgorithm s |Sun91] m ore popu lar for grids. T hus,
the traversal o f octrees has been researched extensively and several m ethods o f traversal have been
published [H av99 |.

The traversal o f octrees can be in one o f c ither form s. It can be a top dow n approach w here the
traversal starts from the root node and descends to the child nodes in a particu lar o rder until the
in tersec tion is found [A GL91] [G A 93]. Or, it could be a bottom up approach w here the traversal
starts in the tirst node in tersected by the ray and traverses the neighbouring voxels [Sam 89] o f this
node until it finds an in tersec ted object.

The a lgorithm for octree traversal by R evelles et al. [RULOO] is a top dow n traversal m ethod that
uses the param etric form o f the ray and by com parisons o f this param eter, decides the next voxel
to traverse. E ach voxel o f the octree is indicated by an in teger from 0 to 7. Each plane is indicated
by a b it and by setting or c learing these bits. The bits are set or cleared based on the value o f the
t in tersec tion param eter. The in teger obtained by the bit operations determ ines the o rder in w hich
the octree is traversed. The results provided show that for densely packed uniform scenes, the
octree is a m ore efficient structure than a space m edian kd-tree as an octree is o f lesser depth and
hence there are few er vertical tree traversals.

A pplying the SA H to octrees has resulted in a structure called O ctree-R [W S C + 95]. In the O ctree-
R. a cost function based on M acD onald and B oo th 's SA H function is used to determ ine the split
planes a long the X , V and Z axis. T his results in a m ore com plex structure - one w ith better
separation o f prim itives. The authors claim a speed-up o f 4% to 47% com pared to norm al octrees.
As expected the construction o f the O ctree-R is m ore involved leading to slow er construction

2.3 A ccelera tion S tructures 27

tim es. H ow ever, they com pare the O ctree-R only to a norm al octree and not to o ther structures
like an SA H kd-tree o r a B V H .

2.3.4 G rids

G rids partition the space into sm all subdivisions [F T I86J LCW88]. T hey w ere first applied to
accelerate ray tracing by F ujiino to et al. [FT I8 6 J. A Three D im ensional D igital D ifferential A nal
yser (3D D D A) traversal a lgorithm is developed for the traversal o f rays through the grid. A faster
traversal - also a variant o f the D D D A algorithm - has also been used to traverse grids [AW 87],
In this algorithm , the next voxel to travel is decided based upon the values o f the t p a ram eter o f
the ray. Initially , it com putes the three entry t param eters and an increm ent value fo r each axis
tha t corresponds to the length equal to the voxel’s d im ension along that particu lar axis. It re
sults in a fa irly sim ple a lgorithm that decides the next voxel to traverse w ith sim ple add itions and
com parisons.

J m
< 7

^ 7 * *

1< 4 1 ►

Figure 2.12: 2D version o f a uniform grid. T he entire bounding volum e o f the scene is divided
into m any sm aller even spaces.

As w ith kd-trees. grids arc a space subdivision structure in w hich ob jects can exist in m ore than
one cell / voxel. To solve the p roblem o f m ultiple in tersec tions w ith the sam e object, A m a-
natides [AW 87] uses the m ailboxing technique described earlier. E ach ray is given a raylD and
for each ob ject, the ray that m ost recently in tersec ted it is m ain tained and checked. If the raylD
is the sam e, then the object has already been in tersec ted w ith the object and does not need to be
in tersected again. O therw ise, the in tersec tion is carried out and the ray lD is updated.

Ize et al. [ISP07) analyze grid creation strategies theore tica lly and em pirically . U sing sim plified
assum ptions, a theory is developed. It is then tested em pirically . The assum ptions are that

• T here are N prim itives that are all points.

• A ll rays hit the bounding box o f the scene - a cube.

• E ach atom ic fu nc tion ’s cost can be treated as a constan t.

• M athem atica l operations rather than m em ory perfo rm ance, etc., dom inate perform ance.

• T he grid has m '1 = M cells.

U sing these assum ptions, fo r un iform grids, they deduce that the m in im um tim e to trace a ray is
given w hen the num ber o f cells, 3 / , in the grid is given as

2.3 A ccelera tion Structures 28

M = 2 N r̂ inttTSCction (2 14)
Tstep

where
M - is the number of grid cells to create
TV - is the number of primitives in the scene
Tintersection - is the cost of intersection with a primitive
Tstep - is the cost of traversing a grid cell

Ray tracing performance on a grid with M cells, calculated according to the equation above,
is shown to be very close to the performance with the optimal grids selected empirically. The
variation is in the range of 1% — 5% even for scenes like the conference room scene [GW09] for
which the assumptions are far off. They also calculate the optimal number of cells when the scene
is composed of triangles with poor aspect ratio and for multi-level grids that work reasonably
well. To conclude, they also state that empirically, M = 0 (N 7/ 9) and M = 0 (N 4/ 3) produced
the perfect results for manifold-like models with compact triangles and triangles with poor aspect
ratio respectively.

Uniform grids work well for scenes that are uniform with primitives distributed evenly. How
ever, for scenes that are non-uniform, they are not particularly well suited. This has led to the
development of hierarchical grids and adaptive grids.

Jevans and Wyvill [JW89] initially create a uniform grid over the scene. These are then examined
and in spaces where the object density is high, they subdivide those particular voxels into several
(i.e., TV3) sub-voxels. The structure is very similar to an octree with the main difference being
the number of subdivisions in the voxel. Cazals et al. [CDP95] create a hierarchy of uniform grids
by finding clusters in the scene and dividing space occupied by each cluster into further uniform
grids. Klimaszewski and Sederberg [KS97] create an adaptive grid structure by first constructing a
BVH using Goldsmith and Salmon’s algorithm. The boxes are then divided into voxels containing
uniform grids to create the adaptive grid structure. Although a comparison with grids is provided,
and the adaptive structure is shown to perform better, a comparison with BVHs is not provided.

Due to the simplicity, uniform grids are normally used instead of the adaptive and hierarchical ver
sions. The simplicity reflects in the ease and speed of construction as well as traversal. Although
the average traversal time per pixel can be slower than a kd-tree, a uniform grid can be constructed
in a fraction of the cost leading to its use in rendering dynamic scenes as Section 2.6 will show.

The traversal of an individual grid cell by a ray is inexpensive and among the cheapest. How
ever, the penalty for this is that there are a larger number of cell traversals if the cells are small
enough. If the cells are large, then the average number of objects in each cell may be very high.
The average complexity of ray tracing a scene with scattered compact primitives using grids is
O (V N) [CW88] [ISP07], if N is the number of triangles in the scene. As the scene sizes increase,
there is a greater increase in ray tracing times than in hierarchical structures like the kd-tree.

2.3.5 O bject Subdivision

Object subdivision structures are a method of subdividing the scene based on the objects and prim
itives. These primitives are enclosed by simple bounding volumes so that they are only intersected

2.3 A cceleration Structures 29

when their bounding volume is hit by the ray.

This type of structure was first described by Clark [Cla76], though not specifically for ray trac
ing. A structure that grouped objects into hierarchies of bounding volumes was used by Whit-
ted [Whi80]. In his first implementation of ray tracing, spheres were used as bounding volumes
as they lead to very simple construction and traversal methods.

These structures can either be flat or more often hierarchies. In a flat object subdivision structure,
bounding volumes are not organised as a hierarchy. However, it is advantageous to organise the
bounding volumes into hierarchies. If a ray can skip bounding boxes higher up in the hierarchy,
larger parts of the scene do not have to be tested. Hierarchies also allow smaller subsets of the
primitives to be tested. Hence, most ray tracers use hierarchies of bounding volumes rather than
flat bounding volumes. The hierarchical structure is more commonly referred to as a bounding
volume hierarchy (BVH). Several different types of bounding volumes have been used.

2.3.5.1 Shapes of Bounding volumes

Spheres were one of the first bounding volumes used as they are very cheap to intersect with a
ray [Whi80]. A method to create spheres that closely fit the volume was provided by Ritter [Rit90],
However, spheres do not bound most volumes very closely [WHG84]. Thus, they result in a
hierarchy with a large number of bounding volumes resulting in higher traversals and primitive
intersections.

Slabs of arbitrarily aligned planes were used as bounding volumes by Kay and Kajiya [KK86]. The
arbitrarily aligned planes provided a very close fitting structure. However, the cost of intersection
was quite high leading to higher ray tracing costs.

The most popular kind of bounding volumes are axis-aligned bounding boxes [WHG84] [Gut84]
[BCG+96]. Axis-aligned bounding boxes (AABB) are rectangular boxes that, as the name sug
gests, are aligned along a coordinate axis (one of X , Y or Z axes). Trees consisting of AABBs
were called R-trees [Gut84] in the context of spatial searching. Due to their abundance, the name
bounding volume hierarchies normally refers to a hierarchy of AABBs. As Weghorst [WHG84]
demonstrates through the introduction of the concept of void area, AABBs have a relatively low
intersection cost and at the same time fit the model reasonably closely. This compromise results
in a very effective shape for bounding volumes in the context of ray tracing.

Oriented bounding boxes (OBBs) [GLM96] [GotOO] are another kind of bounding volumes. Their
alignment is decided by the alignment of their component objects so that they fit the scene more
closely than their axis-aligned counterparts [RW80]. However, they are expensive to construct,
traverse and store.

2.3.5.2 Construction

The first bounding volume hierarchies were constructed manually by user input [RW80]. This is
of limited use as human construction is both tedious and prone to selecting non optimal options,
especially when the scene consists of a large number of triangles. An automated approach was
hence necessary. Kay and Kajiya [KK86] propose a few automated object grouping criteria. One
of them is to group objects as they occur in the scene representation. This approach depends
largely on the way the scene is represented. If the scene is represented so that closer objects are

2.3 A cceleration Structures 30

in succession, then the scheme results in good BVHs, otherwise the BVHs can be quite poor.
Another proposed scheme is the median cut scheme whereby the objects are sorted according to
proximity, either on one axis or according to all axis (through the use of an auxiliary structure like
an octree or a kd-tree). The objects are then grouped into bounding slabs according to the median.
This scheme results in reasonably good trees.

The SAH approach, proposed by Goldsmith and Salmon [GS87] aims to take the automated ap
proach further by considering the probabilities of uniformly distributed rays hitting a bounding
volume. The objects are inserted into the tree similar to insertion of data into a search tree and
determined if the insertion was a good one or not by calculating the surface area of the new node.
The order in which the objects are inserted is important as the node created depends on this order.
They attempt inserting the objects in the order present in the model or in a randomised manner.
This does not result in better trees, mainly due to the bottom up approach rather than the SAH
itself [WMG+], Although, the SAH for BVHs was not widely used, it led to the SAH for kd-trees
that, as already discussed, was the major catalyst to accelerate ray tracing speeds to interactive /
real time performance.

The main challenge with SAH for BVHs is to find the locally optimal bounding box, as there are
0 (2 n) ways to split a set of primitives into two subsets [WBS07]. Muller [MF00] suggests a top
down SAH construction method that is very similar to a kd-tree construction method. They use
an SAH heuristic that has potential split positions at the two end points of the triangle along an
axis and selects the box with the minimum cost. Similar to the kd-tree process, each split point
along each axis is tested and the box with the minimal cost is selected. Masso and Lopez [ML03]
use a different cost model and apply that using a Goldsmith and Salmon tree building approach
with objects selected using another BVH built earlier using the object median or the approach
suggested by Muller [MF00]. Ng and Trifonov [NT03] apply random perturbations to the split
points and also investigate evolutionary approaches to improve the original tree generated. The
method provides only marginal improvements on the original tree while adding computational
overhead.

Wald et al.’s approach to building BVHs [WBS07] using the SAH is to find a good instead of
optimal partition. They investigate evenly spaced candidate planes, the bounding sides of each
triangle as candidate planes and planes placed at the centroid of each triangle. Unexpectedly,
all approaches resulted in similar performance. The centroid based approach was ultimately pre
ferred. The triangles were classified as being in either sub-node based on the position of the
triangle’s centroid.

As with kd-trees, the use of SAH makes the construction relatively slow. However, similar to the
kd-tree heuristics, approximate SAH builds [Wal07] have been suggested to accelerate the build
process. With better quality BVHs available interest has significantly increased, especially for
deformable and dynamic scenes [WBS07] [LYMT06] [WMG+]. There has also been interest in
BVHs to trace incoherent rays [DHK08] [WBB08] for which BVHs consisting of more than two
child nodes at each level are shown to be an excellent structure, making efficient use of SIMD
packets.

A problem with BVHs is that the bounding volume of large triangles can be very large, leading to
a large empty space, especially for non-axis-aligned triangles with a poor aspect ratio. A solution
to this problem is to split the triangles with one of the two approaches that have been proposed.
The first solution, proposed by Ernst and Greiner [EG07], is to clip the larger triangles (based
on the surface area) with axis-aligned planes to create smaller triangles prior to construction of

2.3 A ccelera tion S tructures 31

Figure 2.13: B ounding Volume H ierarchy. E ach low er level consists o f bounding vo lum es that
enclose sm aller parts o f the m odel until the lea f node level w here each bounding volum e has a

single primitive.

the BVH . T his allow s the bounding boxes to be closely aligned and reduces em pty space in these
boxes. The results show that it is effective for non-hom ogeneous scenes like the Power p la n t scene.
A nother solution, proposed by D am m ertz and K eller [D K 08], is to split triangles a long the longest
side to create sm aller triang les. A th reshold that determ ines the num ber o f triang les generated
is determ ined by using a term called edge volume defined as the fraction o f the volum e o f the
bounding box. The resulting BVH show s significantly im proved perform ance fo r p rob lem atic
scenes w ithout adding further triang les for scenes that do not benefit from subdivision.

2.3.5.3 Traversal

D epending on the shape o f the bounding volum e, the traversal o f the BV H structure changes
accordingly. For BV H s w ith spheres, the traversal consists m ainly o f in tersec ting the ray w ith
the sphere fo r the particu lar node. S im ilary fo r A A B B s, O B B s and slabs, in tersec tion m ethods
are used to determ ine w hether a ray is to be traversed through a bounding volum e or not. A A BB
based B V H s - the m ost popu lar B V H used - have a variety o f in tersec tion m ethods available
as described in Section 2.2.4. O ne o f the m ost frequently used in tersec tion m ethods is the slabs
m ethod |K K 86] w hich essen tia lly in tersec ts the ray w ith the com ponent p lanes o f the volum e. It
is a general so lu tion that w orks irrespective o f the o rien tation o f the com ponen t p lanes. A s applied
to A A B B s the six bounding p lanes o f the box are in tersected w ith the ray to determ ine if there is
an in tersec tion .

The slabs m ethod has been op tim ised |W B M S()5] [G M 03] [BP04] [B P05] and is used by m ost
recent ray tracers [D H K 08] using B V H s. A lthough per node traversals are reasonably fast, it

2.3 A cceleration Structures 32

has the disadvantage of being slower than that of kd-trees. With the kd-tree, each traversal step
involves only one ray-plane intersection. For BVHs, all the six planes of the box have to be
intersected.

Another disadvantage of BVHs is that they cannot be traversed in a true front-to-back order. Con
sequently, early ray termination - used when a ray hits a primitive in a kd-tree leaf node - cannot
be used. Since the child nodes are not ordered spatially, it is necessary to traverse all of them.
Hence, for static scenes, kd-trees are better structures for ray tracing.

The traversal of the BVH can be described by the pseudocode below:

RecursiveRayTraversal(node)
(
if(node is leaf node)
{
return closest object intersecting the ray

}
if(ray intersects first child node)
{
closestTrInFirstChild = RecursiveRayTraversal(first child node)

}
if(ray intersects second child node)
{
closestTrInSecondChild =RecursiveRayTraversal(second child node)

}
return ClosestObject(closestTrlnFirstChild, closestTrlnSecondChild)

}

Listing 2.5: BVH traversal. Ray has to descend down both branches (all branches if the tree has
more than two branches) until the leaf nodes and select the closest triangle.

2.3.5.4 Advantages of BVHs

Although each step of a BVH’s traversal is more expensive than that of a kd-tree, it has several
advantages that make it competitive.

One advantage is that in a BVH, the objects are not duplicated. Hence, it is ensured that a ray
intersects a particular object just once. In a kd-tree, an object may occur in several leaf nodes
and consequently, if mailboxing is not used, a ray may have to compute the intersection with
one particular object several times during the traversal process. Mailboxing, that eliminates these
duplicate ray-object intersections does it at the cost of further overheads, making the advantages
minimal. Hence, the property of a BVH that it inherently eliminates duplicate intersections is
significant. This property also brings about a memory requirement advantage. Since objects are
not duplicated in the leaf nodes, the memory footprint is much smaller than that of kd-trees.

Another advantage is that BVHs create a box at each sub-node, whereas kd-trees separate space
only in one dimension. BVHs can, in theory, identify and separate empty space faster. This leads
to trees that are shallower resulting in fewer traversal steps and lower memory requirements.

The major advantage of BVHs is realised when they are applied to dynamic rendering wherein
geometry changes from one frame to the next. As described by Wald [WBS07], updating a BVH
when a part of the geometry deforms is possible with relative ease. In extreme cases, a full rebuild
maybe necessary. However, a full rebuild of a BVH would be faster than a kd-tree rebuild due to
faster construction methods for BVHs.

2.4 Packet Ray Tracing 33

Acceleration structures like grids, kd-trees and BVHs have been responsible for significant in
crease in ray tracing performance. Acceleration structures are one way of reducing the number of
traversals and intersections per pixel. Although tracing a single ray through a well built BVH or a
kd-tree performs reasonably well, in recent times, the observation that several rays follow a simi
lar path through the tree has been used extensively to accelerate ray tracing. This method, called
packet ray tracing, has enabled ray tracing to be competitive with the fastest rendering methods
available for static scenes.

2.4 Packet Ray Tracing

Observation of the path a ray takes through an acceleration structure reveals that neighbouring
rays take similar paths. In some cases, the neighbouring rays even intersect the same primitive.
This property - called image coherence - has been used along with acceleration structures (that
utilise object coherence) to accelerate ray tracing. This idea of image coherence is demonstrated
well by Benthin [Ben06].

The use of image coherence to accelerate ray tracing has been attempted from very early on
during the development of ray tracing algorithms and structures. The idea is to group several
neighbouring rays into a packet and traverse them together through the structure.

Earlier attempts to utilise image coherence traced groups of rays with different boundary shapes.
Heckbert and Hanrahan [HH84] traced beams - groups of rays with the actual primitives as bound
ary shapes - through the scene. When there was a high level of coherence in the scene, the beam
tracer was shown to be much faster than standard ray tracers. They also showed that beam tracers
could achieve anti-aliasing and further ray tracing effects like reflection and refraction - which can
be a major problem with packet ray tracing. Shinya et al. [STN87] trace a group - or pencil - of
rays using a paraxial ray and a system matrix to represent the group of rays. Shaft culling [HW91]
that classifies objects as being inside or outside a shaft is another way coherence has been used
to accelerate ray tracing. Pyramidal clipping by Zwaan et al. [ZRJ95] traces a pyramidal group
of rays through a kd-tree and a grid by intersecting a convex polyhedron with a solid as given by
Greene [Gre94].

It was determined that supercomputers with vector operations were well suited to ray trace pack
ets of rays [PB85] as far back as 1985 when only advanced supercomputers of the time pro
vided vector instructions. The idea has been very popular in recent times with the introduc
tion of vector instructions for general purpose CPUs available in almost all current architectures.
Wald [WBWS01] popularised this concept of tracing packets of rays using SIMD instructions. In
addition to amortizing the calculations amongst the number of rays in the packet, Wald pointed
out that cache and memory efficiency also improved with packet ray tracing as fewer nodes were
accessed.

The SIMD instructions used were Intel’s SSE instructions [SSE09b] [SSE09a] introduced in the
Pentium III [Int08] processors. The introduction gave Pentium III and later processors eight SSE
registers and several new instructions. The SSE registers were 128 bits wide allowing four floating
point numbers to be in the register at a time. To complement this, the new instructions allowed
these four floating point numbers in the registers to participate in arithmetic operations. As can
be seen, this allows four floating point operations to be undertaken with a single instruction. Most
of the instructions have performance comparable to the respective single floating point operation.
Thus, the use of SSE instructions and registers are a good way to accelerate operations that can

2.4 Packet Ray Tracing 34

be parallelised - like ray tracing. Additionally, to ease development, the compilers provided
intrinsics [VCI09] [Int09] that allow access to SSE instructions without the use of assembly code.

The use of SIMD instructions to trace packets is a brute force approach where all the rays are
traversed through the tree. However, several other methods where only a few rays or representative
boundary volumes of packets are traced have also been popular. The longest common traversal
sequence [HBOO] algorithm, stores the traversal history of a set of boundary rays and constructs
the longest common traversal sequence (LCTS) from these. This LCTS is a set of nodes that each
ray in the node traverses and thus the number of traversal steps can be reduced.

Beam tracing, introduced by Heckbert and Hanrahan [HH84], uses beams to intersect with prim
itives. However the fact that they do not use a hierarchical structure had results in relatively slow
performance. Overbeck et al. [ORM07] recently published a similar algorithm that uses similar
beams but traverses a kd-tree to show greatly accelerated performance. They start off with the en
tire viewing frustum as a beam and progressively sub-divide the beams according to the primitive
boundaries. These beams are then traversed through the kd-tree using a frustum proxy method
similar to the LCTS and the Multi Level Ray Tracing Algorithm [RSH05] (MLRT, MLRTA). The
algorithm is extended for soft shadows and performance is shown to be much faster than previous
methods.

The Multi Level Ray Tracing Algorithm [RSH05], traces a hierarchical beam of rays through a
kd-tree constructed with parameters specialised to the algorithm to realise speeds that are almost
real-time making it probably the fastest method of ray tracing. The entire scene is considered as a
beam and by splitting these beams into tiles of various sizes depending on the nodes traversed, a
hierarchical beam tree is built. Using this hierarchical beam tree, entry points deep inside the tree
are found enabling a large part to be disregarded. An inverse frustum culling where the frustum is
culled by the axis-aligned planes of the kd-tree is used to determine if a group of rays intersects
an AABB or not.

Another important contribution of the paper is the application of interval arithmetic to perform
packet ray tracing. Packet ray traversal with interval arithmetic works so that the traversal for
the entire group can be determined using just one interval computation. The interval represents
overestimates for the entire group and is a conservative computation. Partly due to this fact and
partly due to reduced probability of the entire packet (all rays in a packet) hitting a node for larger
packets, they cannot consist of a large number of rays. Reshetov et al. [RSH05] mention optimal
packet sizes of 4 x 4. In our implementation, a packet size of 8 x 8 provided the best performance.

A very similar but slightly modified version of this traversal is used in our implementation. In
order to trace a packet of rays, the rays with the earliest entry point and the latest exit point for each
axis are selected. Using these six rays, the entire packet is traversed. If rEntry [x] , rEntry [Y] ,
rEntry [z], rExit [x] , rExit [Y], rExit [z] are the six rays, then the packet is traversed as shown
by the following pseudocode:

2.4 Packet Ray Tracing 35

char RecursiveRayTraversaiInterval(node, trnin, tmax)
{

if(node is a leaf node)
{

if(node is empty)
return 0 ;

Proc.essLeafNode (nodeindex) ;
if(allRaysIntersected)

return true;
)

axisCur= GetAxis(node);
rayDirection = dtaxisCur] > 0;

temp = splitPoint[axis] - o[axisCur];
tSpMin = temp*dRec[rEntry[axisCur]];
tSpMax - temp*dRec[rExit[axisCur]];

if(tSpMax > tmin)
(
allRaysIntersected = RecursiveRayTraversallnterval(node->leftNode, tmini,

MIN(tmaxi,tSpMax));
if (allRaysIntersected)

return allRaysIntersected;

if (tSpMin < tmax)
{
allRaysIntersected = RecursiveRayTraversalInterval(node->rightNode, MAX(

tmini, tSpMin), tmaxi);
}

return allRaysIntersected;
)

L isting 2.6: R ecursive ray packet traversal a lgorithm using interval arithm etic. A lgorithm
com putes ray-split plane intersection param eters o f tw o boundary rays (as show n in Figure 2.14)

and determ ines if the entire packet traverses the node o r not.

As the pseudocode show s, the traversal m ethod is sim ilar to the single ray traversal. T he only
distinction is in the calcu lation o f the t param eter and the traversal term ination . W hereas only
one ray is to be considered in the single ray version, the packet version uses the tw o rays that
enter and exit the p lanes along the axis in consideration . It is to be noted that these rays are
p redeterm ined for the packet and hence no additional com putation or determ ination is necessary
during the traversal. The tw o rays, rEntry[axis] and rExit [axis], are in tersected w ith the split
plane to get the tw o param eters, tSpMin and tSpMax. T hese param eters are substitu ted instead
o f the single t param eter used in the single ray version to determ ine the nodes to be traversed.
Figure 2.14 show s the node traversal w ith further clarity.

O nce the packet is traversed through the tree, at the le a f node the rays are decom posed into their
individual com ponen ts and tested against the prim itives. H ow ever, to use SSE, the com ponent
rays in the packet are decom posed into groups o f fou r and in tersec ted against the prim itives to
generate the final im age. S im ilar to single ray tracing , packet ray tracing can also use early ray
term ination w ith the difference being that all the com ponen t rays in the packet have to have found
an in tersection .

Packet ray tracing has brought about a m ajor perfo rm ance gain resu lting in interactive to real

2.5 A n ti-A lia sing and Incoherent Rays 36

b o u n d a r y ra y s tS p litM in

split
plane

tSplitMax > t b
=> traverse left node

tSplitMax

tS p litM in

tSplitMax > tjrt))
=> traverse left node
tSplitMin < to-i
=> traverse right node

tSplitMin < tnu_
=> traverse right node

Figure 2.14: K d-tree packet traversal.

tim e perform ance for ray tracing. H owever, a m ajor d isadvantage o f packet ray tracers is that
w hen the rays are not coherent, i.e., w hen the d irections are not sim ilar - frequently occurring
for secondary rays like shadow , reflection and refraction rays, packet ray tracing cannot y ield the
sam e perform ance henelits as it can for prim ary rays. T his problem is significant, as secondary
effects are im perative for generation o f high quality im ages.

2.5 Anti-Aliasing and Incoherent Rays

Since ray tracers trace only one ray per pixel, a liasing can occur at the edges o f ob jects. There
have been several solutions p roposed to alleviate this problem . O ne o f the sim plest m ethods is to
super-sam ple and trace m ore than one ray (4 to 16 rays) per pixel. T his increases the reso lu tion o f
the rendered im age and significantly reduces aliasing artifacts. On the o ther hand, tracing several
rays per pixel is com putationally expensive. H ence, o ther m ethods have been attem pted.

A daptive sam pling [W hi80] w orks by considering m ore sam ples at locations w'here aliasing can
be m ost p rom inent. Rays are cast at the fou r corners o f the pixel and if one or m ore in tensities
d iffer significantly from the o thers, then m ore rays are cast inside this area. O nce the rays are
traced, the w eigh ted in tensities are found and the p ixe l's co lour is determ ined. T his m ethod adds
fu rther rays leading to additional cost.

A m anatides [A m a84] proposes represen ting a pixel as a rec tangular area leading to the rays being
pyram idal. H owever, for sim pler calcu lations, approx im ating the pyram idal volum e to a conical
volum e is p roposed. D ue to the fact tha t the con ica l ray covers a larger area o f the pixel, the
hard edges are reduced leading to a reduction in a liasing artifacts. How'ever, tracing con ica l rays
im plies in tersec ting the acceleration structure and prim itives w ith cones, w hich is expensive.

A nother m ethod proposed is stochastic sam pling w hich adds random pertu rbations / ji t te r to the
ray locations in a pixel [C0 0 8 6] to reduce the effects o f aliasing. Several rays that pass through

2.6 D ynam ic R ay Tracing 37

non-uniformly jittered positions inside the pixel are traced. The colour of the pixel is then de
termined by applying a resampling filter that calculates the value at the pixel. The idea borrows
heavily from the workings of the human eye. Even though the eye uses a limited number of pho
toreceptors, it is not prone to aliasing. The method can be combined with super-sampling and
adaptive sampling to reduce the effects of aliasing. Cook et al. [CPC84] use stochastic sampling
for further physical effects such as motion blur and depth of field.

Although packet tracers with kd-trees are very fast, the coherence when tracing secondary rays
like shadow, reflection and refraction rays is significantly reduced. The solution proposed is to
return to tracing single rays, but optimizing the algorithm by making use of the SIMD instructions
to traverse multi branching bounding volume hierarchies. QBVHs [DHK08] are BVHs that have
four children at each node. These are constructed by collapsing a binary BVH to a quad BVH. This
reduces the memory storage and memory bandwidth requirements by requiring fewer nodes. At
the same time traversal is achieved using SIMD instructions that allow the same ray to be traced
through the four child nodes simultaneously. In effect, this is opposite to SIMD packet tracing
where four rays are traced through one node. The new Larrabee architecture from Intel [SCS+ 08]
proposes SIMD registers that are more than 4 wide, i.e., 16 wide, and hence multi-BVHs with
more than 4 children have also been investigated [WBB08].

2.6 Dynamic Ray Tracing

Ray tracing dynamic scenes - i.e., scenes that change between frames is an area that is currently
being heavily researched. With advanced methods available for ray tracing static scenes, the speed
of ray tracing has reached interactive to real time performance. However, as discussed, most of
this speed-up is due to the use of sophisticated data structures - mostly kd-trees built using the
SAH. Unfortunately, construction takes a significant amount of time. Even though the creation of
the SAH kd-tree has been achieved in 0 (N l o y (N)) time, it is still too slow if the tree needs to be
created before rendering each frame. In addition, it is extremely difficult to update a kd-tree when
triangles in a scene move.

Even then, there have been instances when kd-trees have been used for ray tracing dynamic
scenes. Algorithmically, it was shown that kd-trees could be built in 0 (N l o g (N)) [WH06].
However, the constants associated with it are too high for dynamic rendering. Thus, approxi
mation techniques where a few samples are used to find a reasonably good SAH split have been
attempted [HMS06] [PGSS06]. In addition, due to increased popularity of multi-core proces
sors, parallelizing the kd-tree building has also been attempted with two [Ben06] and four threads
[SSK07] so that dynamic rendering could be achieved using kd-trees. However, in recent times,
other structures have been used more frequently for dynamic ray tracing.

In a dynamic scene, either the entire structure has to be rebuilt from scratch at each frame or the
data structure is built once at the beginning and updated as and when the scene changes. The
second approach only works when the component triangles of the scenes do not change - i.e.,
triangles only move but triangles are not added or deleted from the scene.

If the data structure has to be rebuilt from scratch, the effective rendering time is the sum of the
structure construction time and rendering time. It is generally believed that when more time is
spent in creating a high quality structure, the rendering time decreases. Thus, an optimal structure
would be one that is relatively easy to create and at the same time efficient to traverse.

2.7 O ther Visibility' M ethods 38

One of the simplest data structures to create are grids and have been used for dynamic ray tracing
effectively [WIK+06], Since grid construction is very quick, they can be very effective when used
to ray trace dynamic scenes. An algorithm that is not based on the 3DDDA traversal algorithm
is developed for grids, due to the inability of the 3DDDA algorithm to be effective when used
with packets. The algorithm combines packet ray traversal, SIMD instruction usage and frustum
culling. Instead of testing against a single cell of the grid, it intersects a slice of a grid with
the packet to get all the intersected cells. In order to enable fast primitive intersection tests, the
triangles are culled against the frustum formed by the packet. Mailboxing is used to ensure that
intersection tests are not repeated. The combination of these methods enable grids to be used as
an effective method for dynamic ray tracing.

Another class of structures that combines kd-trees and bounding volume hierarchies has also been
investigated. These structures are called Bounding Interval Hierarchies (BIH) by Wachter and
Keller [WK06] and Spatial kd-trees (S-kd-tree) by Havran et al. [HHS06]. Both these structures
concentrate on creating kd-tree like structures but with faster construction. They use two split
planes that effectively form a bounding volume to create a partition. The split planes fully enclose
the primitives so that they are similar to bounding volume hierarchies. They are shown to be
fast to create and traverse leading to an effective structure for ray tracing dynamic scenes. The
differences between BIH and S-kd-tree are in that the BIH used a spatial median-like splitting
method whereas the S-kd-tree used an SAH-like splitting method to identify good partitions.

In recent times, BVHs are also used to achieve dynamic ray tracing [WBS07] [LYMT06] [WMG+].
Compared to kd-trees, BVHs are faster to create. In addition, it is relatively simple to update the
BVH when a part of the scene moves. By applying packet ray tracing concepts developed for
kd-trees, BVHs are shown to be an effective structure for dynamic ray tracing.

The vast research in ray tracing shows continued interest in new techniques to effectively under
take ray tracing. As a visibility determination method, ray tracing can be one of the methods
used, and can be especially beneficial for very large scenes where it shows a logarithmic average
complexity per pixel. However, rasterisation based methods are normally faster than ray tracing
based methods, possibly due to simpler calculations and effective hardware implementations. A
few of the more widely used and relevant methods of visibility determination in rasterisation will
be described. However, since this thesis is mainly concerned with ray tracing like algorithms and
structures, not all rasterisation based methods will be described.

2.7 Other Visibility Methods

Rasterisation, as defined by Hill [HilOO], is the process of taking high-level information like posi
tions and colours of vertices to determine the colours of many pixels in the frame buffer. Visibility
determination in rasterisation has been achieved using a variety of methods. In most scenes it is
highly likely that there are several objects that overlap a pixel. The first object along the pixel oc
cludes other objects. Thus, visibility / occlusion determination is very important to obtain accurate
images. Since occluded objects do not contribute to the final image, they need not be rendered.
Thus, by accurate and fast occlusion detection, performance can be improved by processing only
the set of objects that are visible. A few methods to determine visibility [FvDFH90] [HB97] are
by using area subdivision, scanline algorithms, Z-buffer, depth sorting, BSP trees, octrees, occlu
sion queries and Hierarchical Occlusion Maps. Some of these methods will be described in brief
in the following sections.

2 .7 O ther Visibility M ethods 39

2.7.1 A rea Subdivision M ethods

Area subdivision methods follow a divide-and-conquer strategy to determine visibility. Areas of
the image are considered and if the polygons projected onto this area can be determined unam
biguously, then they are drawn. Otherwise, the area is divided into smaller areas until the polygons
can be unambiguously determined.

Warnock’s [War69] area subdivision method divides each area into four smaller areas. At each
stage, each area can be classified into one of the cases below.

• The area is surrounded by a single polygon - If there is a single polygon projection that
completely surrounds the area, then the area can be filled with this polygon’s colour. This
is the polygon that is visible from all the pixels in the area being considered.

• Area contains or intersects a single polygon - In either case, the area is first filled with the
background colour. If a single polygon intersects, then the intersecting part of the polygon
is filled with the polygon’s colour. If the polygon is contained by the area, the polygon is
rendered.

• The area is disjoint from the polygons - The polygons have no effect on the area and hence
the area is given the background colour.

• More than one polygon intersects, is contained by, or surrounds the area, but the closest
polygon is a polygon containing the area - In this case, the area is given the colour of the
closest surrounding polygon.

• More than one polygon intersects, is contained by, or surrounds the area, but a closest
surrounding polygon cannot be identified - In this case, the area is further subdivided into
four smaller areas and recursively tested for the above cases until either the determination
can be made or until the pixel level is reached. If, even at the pixel level, the polygon cannot
be identified, the Z values of the polygons at this point are calculated and the polygon with
the closest Z value is selected.

While Wamock’s method handled only polygons, Catmull [Cat74] introduces a subdivision method
that handles curved surfaces. By subdividing the curved surfaces themselves into smaller patches,
until a patch only covers a single pixel, the pixels occupied by the surface were identified. A no
ticeable difference between the two algorithms is that while Warnock’s method subdivides screen
space, Catmull’s method subdivides the object.

While subdivision methods considered subdivided parts of the screen or objects, scanline algo
rithms processed the objects one scanline at a time. These methods have been quite popular due
to their simplicity.

2.7.2 Scanline A lgorithm s

One of the earliest methods of visible surface determination was through the scanline method
[WREE67] [Bou70] [Wat70]. Scan conversion is the process of converting a polygon from the
world space to image space one scanline at a time. The methods described in the above papers
are similar and the method introduced by Wylie et al., who generate images of objects created
with triangles, will be described in brief. The view plane is considered as being made up of a
series of scanlines. Initially, the triangles in the scene are projected to get their screen coordinates.

2.7 O ther Visibility> M ethods 40

The vertices of each triangle are sorted according to the Y coordinate and V-entry and exit tables
are created. Using these, for every triangle, a Y occupied flag is maintained that indicates if a
given triangle occupies a Y coordinate. Once this is done, the scanlines are considered one by
one. For each scanline, the triangles intersected are obtained by checking the y-occupied flag.
The X-values of the intersection of the scanline with the projected triangle are calculated, sorted,
and X-entry and X-exit tables are created. The individual pixels along the scanline are considered
next. Similar to a Y -occupied table, an X-occupied table is created. If at a pixel, there is more than
one triangle, the distances between the viewpoint and the triangle in world space are calculated
and the closest triangle is selected to get the triangle for the pixel.

While the scanline method does not involve preprocessing, researchers have also investigated
visibility determination methods whereby the scene is preprocessed. Two of these methods are the
Depth Sorting method and the BSP tree method that essentially provide a priority to the objects in
which they are to be rendered.

2.7.3 V isibility D eterm ination by D epth Sorting

The depth sorting method was developed by Newell, Newell and Sancha [NNS72], As described
by Foley et al. [FvDFH90], it is a simple method wherein the polygons are first sorted according to
farthest depth. When the depths overlap the polygons are split to resolve ambiguities. In the final
step, the polygons are drawn back-to-front, i.e., according to decreasing depth. This determines
accurate visibility by overwriting objects further away from the viewpoint with closer objects.

2.7.4 V isibility D eterm ination using a B SP Tree

A BSP tree was used by Fuchs et al. [FKN80] to undertake visibility determination. They propose
a new solution to the approach followed by Schumaker et al. [SBGS69]. The use of the BSP tree
eliminates distance calculations to polygons. A scene containing polygons is taken as input and
a binary tree - called a Binary Space Partitioning Tree (BSP tree) - is built. A simple building
process is used whereby a splitting plane is selected and the polygons are classified as being on
one side or the other of the splitting plane. If a polygon lies on both sides, it is split by the splitting
plane. The first splitting plane is made as the root node. The process is recursively followed until
each node has just one polygon. In order to determine visibility using this tree, a back-to-front
traversal (achieved by an in-order traversal of the tree) determines the polygons that are written.
The order ensures that polygons of lower priority are written before higher priority ones. In other
words, polygons that are farther away are overwritten by polygons closer to the viewpoint to
ensure that the right polygon is written to the right pixel. To handle one of the drawbacks - that
there might be an increase in the number of polygons - a split plane that causes the least number
of splits is selected.

The back-to-front traversal in the above method means that polygons cannot be skipped even if
a closer polygon fully occludes farther polygons. To alleviate this, Gordon and Chen [GC91]
traverse the BSP tree in a front-to-back manner. A scanline method is used to render the polygons
and an auxiliary structure called the dynamic screen is used to identify areas of the screen that can
be rendered over. The structure represents unlit (not yet rendered) pixels of each scanline. The
pixels that the polygon can write to are identified by a merge process. This simple modification is
shown to make rendering more efficient for scenes with a higher number of polygons.

2.7 O ther V isibility M ethods 41

2.7.5 Z -buffer

The Z-buffer method of visibility determination is a simple technique. An additional buffer with
the closest Z value at each pixel is stored. As the rendering progresses, the Z-buffer is updated to
maintain the Z value of the closest object at that point. When a new object is being rendered, if its
Z value on a certain pixel is determined as being closer than the existing value, this object projects
onto the pixel and the pixel’s Z value is updated. It was first described by Catmull [Cat74]. Due
to its simplicity, the Z-buffer has been one of the most popular methods to determine visibility.
The simplicity also means that it is easily implemented in graphics hardware.

The main problem with the Z-buffer is that it can only determine visibility of a polygon at one
pixel. This implies that each polygon that is being rasterised has to be processed to the single pixel
level. It also means that a polygon cannot be determined as being occluded until it reaches the
pixel level. This is a major disadvantage, as significantly larger number of polygons are processed
in cases where occlusion is high. Compared to ray tracing - that processes very few occluded poly
gons - this approach to rasterisation appears very primitive. To alleviate some of the problems,
hierarchical visibility methods have been proposed

2.7.6 H ierarchical M ethods

H ierarchical Z-Buffer
Greene et al. [GKM93] introduce a technique called Hierarchical Z-buffer visibility. The tech
nique described by them uses a ray tracing structure - an octree, and an adaptation of the tradi
tional Z-buffer - a hierarchical Z pyramid. The Z pyramid is a hierarchical structure where the
lowest level consists of the normal Z-buffer. Each higher level represents the farthest Z value of
the four values it represents. Whenever a polygon is rasterised, the Z pyramid is updated to keep
the values current. To further improve the speed, the octree nodes are rasterised and checked for
visibility. If the octree node is not visible, then the polygons in it are also not visible and need not
be processed. When the polygons have to be rasterised, the polygon is tested with the appropriate
Z pyramid level by comparing the polygon’s closest Z to the value in the pyramid. If it cannot
be definitively answered, then the pyramid’s next level is checked, again with the closest Z of the
polygon. Although the closest Z of the polygon in the quadrant can be used, it is stated that this
Z value is expensive to compute and hence the simpler approach is used.

Hierarchical Polygon Tiling with Coverage M asks
Another similar method is the use of coverage masks [Car84]. Coverage masks indicate areas of
the screen that are covered by a polygon. Greene [Gre96] uses a modified version of coverage
masks to accelerate visibility determination. The underlying idea of coverage masks is that for a
given edge, all possible tiling patterns crossing a grid of samples can be pre-computed and later
retrieved - indexed by the points of intersection. By andmg all the coverage masks of all edges
of a polygon, the coverage mask for the polygon can be found. Similarly, by compositing all
previously rendered polygons, the coverage mask for the image can be found. Greene modifies
the coverage mask so that it indicates three states of the edge. A given sample is either inside
the edge - indicated by a state of Covered in the mask, outside the edge - status of Vacant in the
mask, or intersecting the edge - status of Active in the mask. These new masks are called Triage
coverage masks.

2.7 O ther Visibility’ M ethods 42

Using these triage coverage masks, a coverage pyramid for the entire image is built. In the finest
level, one bit coverage masks (indicating only Covered and Vacant states) are used. Thus, for a
512 x 512 image with 8 x 8 oversampling, the finest level of the pyramid consists of 512 x 512 one
bit coverage masks. The higher levels of the pyramid consist of triage masks containing 04 x 04,
8 x 8 and l x l values. Each of the masks represent the corresponding area of the image. When a
pixel is rendered, the lowest level of the mask is updated and the change is propagated upwards.

A BSP tree as described by Fuchs et al. [FKN80] is created and the polygons are processed in
front-to-back order. Each of the polygons are rendered using a Wamock style subdivision method
to make use of the logarithmic search properties of the subdivision method. At each step of the
subdivision, the coverage mask is tested to see if the area being investigated is covered. The cov
erage mask of the polygon is found by using the pre-computed edge tables. By compositing the
polygon’s coverage mask and the corresponding mask in the coverage mask pyramid, it can be
determined if the polygon is entirely hidden, entirely visible or its visibility is uncertain. When
cells are entirely hidden, they can be ignored. If they are entirely visible, they can be displayed.
When their visibility is uncertain, then they are recursively subdivided. Whenever a pixel is dis
played, the coverage mask and the pyramid are updated. When all the polygons are recursively
subdivided in a front-to-back manner, the image is generated.

To make the process faster, Greene also proposes to organise the scene into an octree of BSP trees.
An octree is built on the scene in the first stage. In the second stage, at each leaf node of the octree,
a BSP tree is built. First the octree is traversed in a front-to-back manner and the visible nodes are
tested against the coverage masks to determine if they are visible. At a leaf node, the BSP tree is
traversed in a front-to-back manner to render the polygons in the right order. By this process, only
polygons with a high possibility of being visible are tiled, making optimum usage of coverage
masks.

Hierarchical O cclusion M aps
Another hierarchical method to determine visibility is Hierarchical Occlusion Maps (HOMs)
[ZMHH97] [Zha98]. HOMs are adapted for two of the algorithms described in the thesis - Co
herent Rendering and Row Tracing.

An occlusion map is a gray scale image of the parts of the scene rendered. Using this, a pyramid
or hierarchy of images are created. In this hierarchy, each pixel in each image represents a part
of the image. The pixels indicate whether the corresponding area is occluded. As described, the
benefit of HOMs over coverage masks is that HOMs are generated using graphics hardware.

Prior to rendering, the method selects a set of occluders that are an estimate of the objects that
are likely to be visible. For static scenes, they are selected based on a few criteria like the size of
the object, spatial locality (i.e., the bounding boxes are small compared to the size of the scene
and the bounding boxes should have small aspect ratios - bounding boxes that are too big or
ill-shaped would cause problems for the depth estimation), rendering complexity (simple objects
with low polygon count) and redundancy (objects attached to other objects are not considered).
For dynamic scenes, the occluders are selected at run time. One of the methods used is to select
objects based on their distance from the viewpoint and until a particular object count is reached.
Once occluders are selected, they are rendered and the occlusion maps are created.

To perform the occlusion test, the HOMs created earlier are used. There are two parts to the
occlusion test. The first part tests if an object overlaps an area occupied by the occluders. If the
first test is positive, the second part ensures that the depth of the object being rendered is greater

2.8 Sum m ary 43

than the occluders, i.e., the occluders are fully in front of the object.

The overlap test checks if the region occupied by the object overlaps an area occupied by the
occluder objects. For this test, the area covered by the object is necessary. This can be achieved
by projecting the object onto the screen. However, this is very prohibitive as the object may be
quite complex. Hence, the bounding box’s eight vertices are projected and the extent is used as
the area to be tested. The traversal of the HOM is started at a level where the bounding box is
enclosed by a pixel (corresponding length and breadth represented by the pixel is just greater than
the bounding box’s). If the pixel identified is opaque then the bounding box and consequently the
object overlaps an area occupied by the occluders.

Once it has been identified that an object overlaps an area cumulatively overlapped by the occlud
ers, it implies that the object may be occluded if it is completely behind the occluders. This is
tested by a depth estimation buffer. The image area is divided into smaller areas and for each area,
the farthest Z value is stored in the pixel. For each overlapped object, the buffer is tested. If the
object’s nearest depth is greater than the value in the depth buffer, it is occluded.

Coherent Hierarchical Culling
The Coherent Hierarchical Culling [BWPP04] method makes use of occlusion queries supported
by recent graphics hardware. Hardware occlusion queries allow determination of whether a given
object is occluded or not. The query takes the given object as input and the GPU returns the
visible fragments of the object. The main problem, however, is that there is an associated latency.
One kind of query is an NV_occlusion_query, an OpenGL extension introduced by NVIDIA on
their Geforce 3 graphics cards. The NV_occlusion_query returns the number of visible pixels of
the object. In addition, the NV Query also allows queuing queries before asking for the results.
Bittner et al. aim to utilise this feature to improve visibility performance.

In the simplest method, a kd-tree is used and is traversed front-to-back. The bounding boxes of
the kd-tree nodes are sent to the GPU to test for occlusion. The result is awaited and depending on
the outcome, the tree is traversed. However, due to the latency of the query, this is not an efficient
method. To overcome this, temporal coherence is used to reduce the number of occlusion queries.
Also, the queries are issued and stored in a queue until done by the GPU. This allows interleaving
occlusion determination instructions with instructions to show visible polygons. A breadth first
traversal of the kd-tree based on a priority queue is also proposed to optimize utilization of oc
clusion queries. The nodes are prioritised according to the inverse of the minimal distance of the
viewpoint to the node’s bounding box. The use of temporal coherence is shown to be an effective
method to accelerate visibility determination when a walk-through of a large model is attempted.

The above hierarchical methods are just a few of the methods that have been used to determine
visibility efficiently in rasterisation. The popularity of hierarchical methods imply that they are
useful for fast determination of visibility.

2.8 Summary

Due to the use of acceleration structures ray tracing has become a viable form of visibility de
termination / rendering. Acceleration structures enable ray tracing by intersecting with only a
fraction of the primitives in a scene. Furthermore, intelligent structure creation strategies like the
SAH have further improved the performance of ray tracing. The SAH, introduced initially for

2.8 Sum m ary 44

BVHs, when adapted to kd-trees produces the best structure for ray tracing static scenes. Further
performance benefits, especially for primary rays (relevant for visibility), have been brought about
by making efficient use of image coherence (tracing a group of rays together). Through the use
of SSE, four rays have been traced simultaneously. Groups of rays have also been traced using
frustums or by using interval arithmetic. The introduction and development of packet tracing has
culminated in ray tracing primary rays being considered almost a solved problem. Recent re
search, focusing more on incoherent rays and dynamic rendering has shown that intelligently built
BVHs can be very competitive with kd-trees - even for static scenes. In addition, BVHs with their
ability to be quickly built and partially rebuilt are believed to be a better structure for ray tracing
dynamic scenes.

At the same time, several other visibility algorithms have also been developed. The Z-buffer
algorithm is widely used due to its availability on most graphics hardware. Hierarchical methods
combining ray tracing structures (kd-trees, octrees, etc) with hierarchical occlusion information
(hierarchical Z-buffer, HOMs, coverage masks, etc) - are also widely researched.

In addition to algorithmic advances, recent hardware developments like SSE and multiple cores
have enabled ray tracing - a highly parallelisable algorithm - to be a feasible alternative to raster
isation. The investigation of ray tracing structures and algorithms for visibility is thus believed to
merit further consideration.

Chapter 3

RBSP Trees

C ontents__
3.1 M otivation ... 45
3.2 RBSP Trees Concept... 47
3.3 Data S tructure.. 49
3.4 C onstruction.. 51
3.5 RBSP Tree Traversal ... 56
3.6 Data Structure Visualised for Various M odels... 63
3.7 R e s u lt s ... 65
3.8 Further Research on Structures with Non-Axis-Aligned Splitting Planes . . 72
3.9 Sum m ary.. 75

This chapter introduces and studies a new structure based on kd-trees and BSP trees. The structure
uses several arbitrarily aligned splitting directions to create a space partitioning structure that more
closely wraps the scene. The structure is shown to reduce the number of node traversals as well
as the number of triangle intersections and results in a more efficient structure for ray tracing.
Part of the work in the chapter has been published as - Kammaje, R.P.; Mora, B., “A Study o f
Restricted BSP Trees fo r Ray Tracing,” IEEE Symposium on Interactive Ray Tracing, 2007. RT
2007., pp.55-62, 10-12 Sept. 2007. [KM07]

Ray tracing is one of the most researched areas of Computer Graphics and the use of innovative
data structures and algorithms has made it a feasible, even preferable, rendering method. How
ever, due to the expensive nature of computations for each ray, single ray tracing is not very
frequently used as a visibility method. The most frequent use of ray tracing is when realistic op
tical effects are desired. At the same time, it is also acknowledged that ray tracing is scalable,
with an average complexity of log(N) per pixel (where N is the number of primitives in the
scene) [HBOO] [Hur05] [WSS05] [HHS06] [YLM06] [WBWS01] as compared to a much higher
N x s (where s is the average projection size (in pixels) per triangle) per pixel complexity of Z-
buffer algorithms. Wald et al [WBWS01] show the linear and logarithmic complexities of Z-buffer
based and ray tracing algorithms respectively. Due to this, and ray tracing’s built in occlusion de
termination property - early ray termination, as the number of primitives in the scene increase, the
complexity advantage of ray tracing manifests itself. For very large models a significant perfor
mance advantage over the brute force approach of hardware rasterisation based techniques may
be obtained, even for visibility determination.

45

5.7 M otivation 46

The complexity advantage of ray tracing is realised through data structures like kd-trees, octrees
and BVHs. Restricted Binary Space Partitioning trees, henceforth referred to as RBSP Trees, are
introduced as a new addition to this class of data structures. They are binary trees that subdivide
space into two partitions at each step and classify the primitives into one of the two partitions. The
structure attempts to achieve better ray tracing performance by combining advantageous concepts
of general BSP trees and kd-trees.

3.1 Motivation

The primary motivation for the existence of RBSP trees is rooted in the concept of void area. As
defined in [WHG84], void area is the difference in projected areas of the bounding volume and the
actual model. For ray tracing, the void area indicates the space in which the rays miss the scene,
but still have to be processed. Reducing the void area results in a decrease in the number of these
rays, thus improving the efficiency of ray tracing.

Although, the concept of void area is described for bounding volumes, it is equally applicable
to space subdivision structures like the kd-tree. Each node of a space subdivision structure can
be thought of as a bounding volume for the triangles enclosed by the node. Similar to bounding
volumes, the number of rays that miss the triangles in the node, but still hit the node is given by
the void area. Hence the concept, and the complimentary result pertaining to rays, is also believed
to apply to space subdivision structures like kd-trees, octrees, and BSP trees.

It is also one of the reasons for the efficacy of the Siuface Area Heuristic (SAH) for kd-trees.
Although the SAH for kd-trees very effectively reduces the void area of kd-trees, it is limited
by the kd-tree’s property that splits can only be along the X , Y or Z axes. For scenes that
predominantly consist of triangles that are axis-aligned (e.g. architectural scenes), the kd-tree’s
split axes are highly customised to the scene. Compared to general BSP trees, it also results in
the structure being relatively easy and quick to build. This is due to the fact that the selection of a
split plane requires significantly fewer SAH calculations.

Other kinds of scenes, in which the triangles are more arbitrarily aligned, expose the kd-tree’s
limitation. As Figure 3.1 shows, the difference between the projected areas of the kd-tree and the
actual scene (i.e., the void area) is quite considerable even at lower tree depths. Having potential
split axes that are arbitrary in alignment and number could potentially create a structure with a
smaller void area. This is one of the main motivations for the introduction and study of the RBSP
tree.

The RBSP tree can consist of split planes that are very close to the component triangles’ alignment.
As Figure 3.2 shows, compared to Figure 3.1, the RBSP tree has a considerably smaller void area
than kd-trees. Thus, a study is warranted to explore the promise of better rendering performance
provided by the use of RBSP trees.

Along with the concept of void area, Weghorst et al. [WHG84] also quantise the rendering time in
Equation 2.11 which indicates that the rendering time varies according to four variables. A con
siderable increase in any of the four variables can significantly affect performance. On the other
hand, efficient structures that reduce the number of bounding volume and primitive intersections
can be very efficient. In addition to the number of intersections, the cost of this intersection is also
a prominent variable with the possibility of increasing the ray tracing cost significantly. Hence, a

3.1 M otivation 47

(a) Kd-tree for Bunny (b) Kd-tree for A rm adillo

Figure 3.1: K d-trees on scenes w ith predom inan tly non -ax is-a ligned triangles. Even though the
SA H kd-trees converge to the m odel quickly, their void area is still significant. T his is because

kd-trees are restricted to using axis aligned splitting p lanes.

structure that reduces the num ber o f in tersec tions w hile being com puta tionally cheap to traverse
w ould be very efficient.

D eterm ining a ray -k d -tree node in tersec tion is com putationally very cheap. H owever, p rio r to the
in troduction o f the SA H , the kd-tree w as not w idely accepted as one o f the fastest struc tu res for
ray tracing. The num ber o f ray -n o d e traversals and ray—prim itive in tersec tions w ith a non-SA H
kd-tree was high. H ow ever, the SA H |M B 90] - a heuristic that effectively reduces void area and
separates em pty spaces - changes this. T he kd-tree thus built, resu lts in a m uch low er num ber o f
in tersec tions for ray tracing. T he reduced num ber o f in tersec tions coupled w ith the cheap traversal
cost realises the true potential o f kd-trees - resulting in a sign ifican t perform ance increase.

BSP trees - in w hich the split axes can be aligned arb itra rily - are the general form o f kd-trees.
In its general form , the B SP tree has several d isadvantages tha t m ake it unfeasib le fo r ray trac
ing [FS88] . One am ong them is the cost o f in tersec ting a BSP tree node. At each traversal step,
the com putationally expensive p lan c -ray intersection is necessary. H ow ever, if the o ther d isad
vantages w ere overcom e, the advantage a BSP tree prov ides is that its sp litting planes are selected
from the scene itself. The B SP tree can. in theory, he a structure w ith the low est void area pos
sible. This w ould im ply considerab ly reduced num ber o f in tersec tions that could, even w ith the
increased traversal cost o f B SP trees, be m ore efficient than kd-trees.

The high degree o f difficulty in constructing a good BSP tree is one o f the m ain d raw backs h inder
ing it from being a feasib le structure for ray tracing. T he m ain advantage o f the B SP tree - tha t its
splitting p lanes are draw n from the scene - turns out be a m ajor d isadvan tage in practice. T he fact
that there are as m any potential sp litting axes as there are triang les in the node being split m eans
that the best splitting plane can be along any o f these axes. The large num ber o f po ten tia l split
positions that need to be exam ined leads to very high construction costs. A nother d isadvantage o f
the BSP tree is that the splitting plane - indicated by four floats - has to be stored in its entirety
at each node. The increased m em ory requ irem ents brought about by this are significant - at least

3.2 R B SP Trees C oncept 48

(a) RBSP tree for Bunny (b) R BSP tree for A rm adillo

Figure 3.2: R B SP trees on scenes w ith predom inan tly non-ax is-aligned triangles. T he use o f
several add itional sp litting axes allow s the R B SP tree to m ore closely w rap the m odel and

m inim ise void area.

4 x that required fo r a kd-tree node. It a lso leads to degraded perform ance due to increased cache
m isses. B ecause o f these draw backs, the BSP tree is generally not considered as a viable structure
fo r ray tracing.

Irrespective o f these d isadvantages, the p rom ise o f reduced void area, resulting in a structure
w ith significantly reduced in tersec tion num bers, is hard to ignore. I f a structure can com bine the
reduced in tersec tion cost o f a kd-tree w ith the reduced num ber o f in tersec tions o f a genera l B SP
tree w hile being sim pler to construct, it could be the ideal structure fo r ray tracing. R B SP trees are
an attem pt at such a structure.

3.2 RBSP Trees Concept

R B SP trees are a specialised form o f BSP trees in w hich the splitting p lanes are selected from a
res tric ted set o f p redeterm ined p lanes tha t can be arb itrarily aligned. The reduced set o f p lanes
provides the opportun ity to reduce the cost o f in tersec tion in addition to com pact rep resen tation .
In com parison to kd-trees, R B SP trees can have a w ider se lection o f sp litting planes available
resu lting in a reduced num ber o f in tersections.

The use o f a structure w ith non-ax is-a ligned planes is not new to R B SP trees. K ay and K a-
jiy a [K K 86] investigate a structure that uses slabs o f non-ax is-a ligned planes to build bound ing
volum e hierarchies. H owever, bounding volum e h ierarch ies are m ore expensive to traverse than
space partition ing techniques. In addition , the lim ita tion o f hardw are m eant that they could only
test it w ith a lim ited num ber o f axes. It is also stated that add itional axes w ould be very advan
tageous. T he R B SP tree addresses these by being a space partition ing technique w ith a cheaper
traversal cost and w ith the possib ility o f a larger set o f splitting axes.

The splitting p lanes are p redeterm ined as a set o f axes, that are norm als to the actual sp litting

3.2 R B SP Trees C oncept 49

planes. Subsequently, each splitting plane can be rep resen ted as a point on one o f these axes.
Further, if the m in im um and m axim um points along an axis fo r the scene are know n, then any
point along the axis betw een these tw o points can be represen ted by a d iscre tisa tion enabling an
easy and com pact represen tation o f the splitting plane. If the X , Y and Z axes are used as the set
o f axes for R B SP tree construction , a kd-tree is ob tained. T hus, an R B SP tree is a m ore general
form o f a kd-tree.

Scene

Root Node boundaries' ajX+bjy+c.
Figure 3.3: A 2D R BSP tree: In 2D, the splitting p lanes (lines) can d irectly be used instead o f
the norm als (as done in 3D). H ence, the potential set o f partition ing p lanes arc show n (labelled

1.2.3,4). U sing this set o f axes, a tree tha t partitions space into tw o parts at each step is built.

Figure 3.3 show s a 2D R B SP tree and F igures 3.1 and 3.2 show kd-trees and R BSP trees built on
the B unny and A rm adillo m odels. The figures reveal the potential o f R B SP trees. F or scenes that
consist o f predom inantly non-ax is-a ligned triangles, the R B SP tree appears to reduce the em pty
space im m ensely. The splitting planes are m ore closely aligned w ith the planes in the scene.

The use o f non-ax is-aligned p lanes is not unique to R B SP trees. As described in Section 2.3 .3 .1 ,
the structure developed by Kay and K ajiya [K K 86] is one o f the structures that uses non-axis-
aligned planes. However, the structure proposed by them is a bounding volum e h ierarchy in
contrast to the space subdiv ision nature o f R B SP trees. T his is an advantage for the R B SP tree
as it needs ju s t a linear in terpo lation or, at w orst, a p lan e -ray in tersec tion at each traversal step,
w hereas the BV H requires a ray -bound ing -vo lum e in tersec tion at each traversal step. K losow ski
et al. [K H M + 9 8 | detail a sim ilar structure w ith m ore planes but investigate its use fo r co llision
detection. Kay and K ajiya lim it the num ber o f p lane norm als used as they had lim ited hardw are ,
how ever increasing the num ber o f plane norm als is m entioned to be beneficial.

The num ber o f splitting planes that the R B SP tree can use is flexible, and theore tica lly not re
stricted to any num ber. H ow ever, as Section 3.4 w ill show, increasing the num ber o f split axes
significantly increases the construction tim e to obtain a good R B SP tree and thus becom es a lim
iting factor. In practice, it is necessary to restric t the num ber o f split axes to around 24. Even so,

3.3 D ata Structure 50

this is significantly more than what Kay and Kajiya used and allows a range of alignments to be
easily investigated.

In brief, the construction and use of the RBSP tree can be described as follows. Initially, a number
for the split axes is fixed. Depending on the number, the actual split axes are determined, either
manually or using some heuristic. Subsequently, the actual tree is constructed using planes along
these axes. The scene is now ready for ray tracing using the constructed RBSP tree. To ray trace,
the individual rays are traversed through the tree to find the closest intersection and the image is
rendered.

An important feature of RBSP trees is the flexibility provided. RBSP trees can be used to simulate
a kd-tree or a general BSP tree. They can be used both to accelerate ray tracing and also to study
BSP trees. Due to the difficulty of constructing good BSP trees, RBSP trees can be used as a good
substitute.

Geometrically, the RBSP tree has nodes formed by the intersection of a number of planes. Hence
forth, since the number of splitting axes is variable, it will be represented by m. This implies that
the number of planes is 2m. Due to the planes being arbitrarily aligned, the nodes have a variable
number of faces with a variable number of edges. Since m is the number of splitting axes used,
the maximum number of faces that a node may possibly have is 2m. However, a node need not
have faces corresponding to all the planes. A given node may be missing either one or both the
faces corresponding to a particular plane. This is an important distinction from a kd-tree where
the nodes always consist of six rectangular faces and leads to several distinctions in the creation of
the tree. The mid-point calculation undertaken during the space median heuristic is more involved
to ensure that the mid-point of the two bounding points along the axis is inside the node. During
the SAH process, the calculation of the surface area and the counting of triangles in a node is more
complex. At the same time these geometric properties also ensure that the object is more closely
wrapped by the node.

Although RBSP trees are conceptually simple, sufficient thought must be put into the implemen
tation for it to be competitive with the extremely well researched kd-tree structure. The main parts
are the data structure representation, construction heuristics and finally ray-structure traversal -
each of which will be discussed in detail in the following sections.

3.3 Data Structure

Representing the RBSP tree in a compact and easy manner is important if RBSP trees are to be a
viable alternative to kd-trees. It was noted that one of the main drawbacks of the general form of a
BSP tree was its increased memory requirements due to the nodes’ data. In order for RBSP trees to
be an efficient structure for ray tracing, a compact representation is imperative. The RBSP tree has
three pieces of information - information that is common to all the nodes, the nodes themselves,
and a list of triangle pointers contained by all leaf nodes.

The header contains the common data for the tree and consists of the following information.

• List of Predetermined Split Axes - The axes determined prior to construction are stored in
the header as an array of axes. The axes are normal vectors and are represented by three
floating point values. Once the array is stored, the index of the axis in this array is used to
indicate every node’s split axis.

3.3 D ata Structure 51

• Information needed only when loading or saving the tree.

- Number of Split Axes.

- Number of Nodes.

- Number of Triangles - The number of triangle pointers contained by all the leaf nodes
in the tree.

Compactness is an important attribute for representing nodes as it can affect the performance and
memory requirement of the tree. In order to obtain the most compact representation, a node is
represented by 8 bytes (64 bits). Table 3.1 indicates the exact structure of a node.

Represents Bits used
A unique pointer to children 32

Index to split axis 16
Quantised value of split position 14

Leaf node flag 1
Unused bit 1

Table 3.1: RBSP tree node structure

The tree is stored as an array of nodes with each node pointing to its children through an index.
Since the two child nodes are adjacent, only the index to the first node (ordered front-to-back along
the axis used) is stored. The second child node is implicitly addressed by adding one to the stored
index. Using the array form for representing the tree improves cache performance as the nodes and
its children are closer in memory with this representation than if the pointer / tree representation
were to be used. Also, it enables better memory efficiency through the use of implicit second child
addressing.

With the child node pointer taking up 32 bits, it is important that the remaining data of a node is
represented as efficiently as possible. Normally, the split position is stored using a single floating
point value. However, this requires a further 32 bits which is prohibitive. The split position is the
point along the axis selected where a plane that is normal to the axis splits the node into two parts.
It is a point that lies between the extents of the parent node along this axis. Thus, if this distance
between the end points of the node along the axis is discretised into a certain number of values,
it is possible to use fewer bits to indicate the split point. For an RBSP tree, a discretisation of the
distance into 214 — 1(16383) points provides a good result - both in terms of memory usage and
precision of the split point. Thus, the split point can be indicated in the node with just 14 bits.
Although, there is an unused bit available to increase the accuracy of the discretisation, the current
precision was found to produce good results and hence only 14 bits are used.

Since the header consists of all the potential split axes for the tree, the node’s split axis can be
indicated by just the index to the axis. Even though 16 bits are allocated for representing the
index, the practical limit for the number of split axes is about 32 which can be represented by 5
bits. However, the only other piece of information needed in the node is a flag - requiring just one
bit - to indicate if it is a leaf node. Hence, using 16 bits for the axes allows the data to be easily
accessible.

3.4 C onstruction 52

When the construction heuristic determines that a node is a leaf node, the structure represents
different information. The information stored in a leaf node is indicated by Table 3.2

Represents Bits used
A pointer to the start of the triangle list 32

The number of triangles in the leaf node 16
Leaf node flag 1

Unused bits 15

Table 3.2: RBSP tree leaf node structure

The leaf node consists of a certain number of triangles. The triangles contained by all the leaf
nodes are stored in a separate list. Each non empty leaf node has an index that indicates the first
triangle contained by it. Together with the number of triangles, the index is used to obtain the
triangles in this node. Figure 3.4 shows this diagramatically.

Tree node array

Leaf node triangle list

Figure 3.4: Leaf nodes and pointers to their component triangles. Nodes in green are leaf nodes
that point to an index in a global list of leaf node triangles.

As shown, the data for a node (both internal as well as a leaf node) requires just 8 bytes. This is
the same amount of memory required for a kd-tree node. Thus one of the claims of the RBSP tree
- that it is compact to represent - is fulfilled. Having described the compact data structure to store
the tree in memory, the construction process itself can be described.

3.4 Construction

The RBSP tree is a recursive structure in which every internal node can be considered as the
root node of the corresponding subtree. A recursive tree construction process is thus the natural
method to construct the structure. The following pseudocode describes the high level RBSP tree
construction algorithm.

3.4 C onstruction 53

constructRBSPTreeMain()
{

Vector[] splitAxes = findSplitAxesForTree();
constructRBSPTree(root, alITriangles);

}

Listing 3.1: High level RBSP tree construction. First, the axes for the tree are selected and
subsequently the tree is constructed in a recursive manner.

Before the actual construction of the tree, it is necessary to determine the directions of the potential
split axes. One method to determine the axes automatically is to have them evenly distributed
across space. This is achieved by a heuristic that uses evenly spaced points on a sphere [PSA07],
Once the number of axes that the RBSP tree will use is selected, the same number of evenly
distributed points on a unit sphere with the origin as its center are found. The normalised vectors of
the lines connecting the origin to these points provide a set of vectors that are aligned evenly across
3D space. These vectors are chosen as the potential split axes. However, due to the proliferation
of scenes consisting of predominantly axis-aligned planes, it is desirable to include the X , Y and
Z axes as potential axes. The axes that are closest in alignment to the three coordinate axes are
replaced by the X , Y and Z axes.

The recursive RBSP tree construction algorithm, const ructRBSPTree, is the same as the construc
tion of a kd-tree, shown in Listing 2.3. The methods utilised for findsplit Axis, findSpiitPosition,
findLe ft Triangles, f indRightTriangies is where it differs from the kd-tree construction al
gorithm.

The methods findSpiitAxis and findSpl itPositdon select an axis and a split position along
this axis. These methods vary according to the heuristic used. On the other hand, counting and
classifying the number of triangles on each side of the split plane is independent of the heuristic
used. It is more involved than the process followed in the construction of the kd-tree, complicated
by the fact that each node can have a variable number of polygons that themselves have a variable
number of sides. A very straightforward method is used to achieve this. All the triangles in the
node are clipped by all the component planes of the node to find the parts of the triangles that are
contained by the node. Only triangles that have some part within the node are counted as being
inside the node. Clipping the triangles ensures that each node is attributed only those triangles
that have at least some part of themselves in the node.

The construction could be optimised by storing the clipped parts of the triangles for each node
as the construction progresses down the tree. However, since the main aims are to investigate
the advantages offered and to study the RBSP tree's applicability for ray tracing, the construction
process has not been optimised.

Initially, the extremal points of the root node are found for every split axis and stored as a list of
points. The split point at which a node is split becomes the minimum point for one of the child
nodes and the maximum point for the other. The list of node extremities are updated accordingly.
This ensures that the bounding planes for the current node being processed is accurate. These
bounding planes are the clipping planes for the triangles inside the node.

Two heuristics - Space Median and Surface Area Heuristic - to determine the split axis and split
position are investigated. Both have been adapted from their well researched kd-tree versions and
will be discussed in greater detail in Sections 3.4.1 and 3.4.2.

When the split plane for a node is found, the node is split and the triangles are clipped and clas

3.4 C onstruction 54

sified. The process is continued down the tree until a termination criteria is met. When a node
satisfies a termination criteria, it is considered as a leaf node. For the RBSP tree, only two termi
nation criteria are used - the depth of the node in the tree and the number of triangles in the node.
If the depth reaches a predetermined depth or if there are less than or equal to a certain number
of triangles in the node, the node is made into a leaf node and the recursion stops. The number
of triangles in a node at which it is made into a leaf node is fixed at 2. For the RBSP tree, the
maximum depth is calculated as a function of the number of triangles in the scene. The term given
by Havran and Bittner in [HB02] for kd-trees is used even for RBSP trees. It is:

dyn a x — k\ log2(N) + k2 (3.1)

where dmax ~ is the maximum depth of the tree
N - is the number of triangles in the scene
fci and k-2 - are constants chosen to achieve critical performance.

Havran and Bittner [HB02] use the values of kj = 1.2, k 2 = 2 that is also used for RBSP trees.

3.4.1 Space M edian C onstruction

The simplest heuristic for building kd-trees is the space median, in which the axis is selected either
on a round robin basis or the longest axis basis and the mid-point along this axis is selected as the
split point. The same concept can be applied to RBSP trees. If there are m axes, then one of these
axes is selected on a round robin basis. The mid-point along this axis is selected to obtain the split
plane for the node.

Finding the mid-point along arbitrarily aligned axes is slightly more challenging. With kd-trees,
the mid-points along the A", Y or Z are easily found as they are half of the sum of the minimum and
the maximum value of the X , Y and Z coordinates of the node’s bounding box. In comparison,
to find the mid-point along the potential split axes, the bounding box’s eight vertices are projected
onto the axes to find the minimum and maximum projection point of the bounding box along each
axis. The center point between these two extremities gives the necessary point along the axis to
place the split plane.

Figure 3.5 shows that the space median construction results in poor trees, especially for the pur
pose of ray tracing. The reasons for this are quite obvious. The splits are aligned and placed
arbitrarily. Due to the fact that a round robin scheme is being used for selecting the axes, there is
no relation between the particular node and the splits. The problem is compounded by the split
plane being placed at the mid-point of the axis with no consideration of the location of the trian
gles in the node. The poor quality of the trees created necessitate a better heuristic to realise the
potential of multiple differently aligned planes.

3.4.2 Surface Area H euristic

The Surface Area Heuristic (SAH) that results in kd-trees better suited for ray tracing is adapted
to construct RBSP trees. It is based on the hypothesis that the probability of a ray hitting a node’s
triangles is directly proportional to the surface area of the node and the number of triangles in

3 .4 C onstruction 53

(a) Space median RBSP tree for Bunny (b) Space m edian RBSP tree for A rm adillo

Figure 3.5: Space m edian R B SP trees on scenes w ith p redom inan tly non-ax is-a ligned triangles.
T he split p lanes are not in telligently placed and hence the space m edian m ethod to construct

R B SP trees is not beneficial.

the node. T h is p robability prov ides a cost function , given by E quation 2.12, tha t inco rpo ra tes the
p robability o f a ray h itting the node as well as the cost o f in tersec ting the geom etry in it. T he axis
and point at w hich the cost is a m inim um provides the locally op tim um split po in t fo r the node.
M in im ising this cost w hile selecting each split p lane fo rm s the essence o f the SA H . T he heuristic
fo r kd-trees is very effective and increases the perform ance o f ray tracing substantially .

For the R B SP tree , a heuristic like the SAH is even m ore im portan t. It adds in te lligence to the
se lection o f a split axis and the p lacem en t o f the split plane. As F igure 3.6 show s, R B SP trees
built w ith the in telligence provided by the SA H are m uch better than those built w ith the space
m edian heuristic . They have splits that arc aligned and p laced in rela tion to the con ten ts and
p roperties o f the nodes.

A dap ting the SA H to the R B SP tree construction is concep tually stra igh tfo rw ard as E quation 2.12
can be used fo r the cost. H owever, calcu lating the cost is com plica ted by the necessity to exam ine
several axes instead o f ju s t three.

T he m ain purpose o f the SA H . w hen applied to the R B SP tree , is to select the best axes am ong
the num erous axes, and the best split point along that se lected axis. A ll potential axes have to be
considered as the optim um cost can be along any o f the potential axes. T here are an infinite num ber
o f po ten tial split points along any axis. H ow ever as the SA H fo r the kd-tree does, the num ber o f
split points to be investigated can be lim ited to a finite num ber. E very triang le is first c lipped by
the bounding box o f the node to obtain an accurate list o f triang les con tained in the node. Since
the num ber o f triangles can only d iffer at the tw o ex trem ities o f the clipped triang le a long an axis,
only these tw o points are added to the list o f potential split points. T he ex trem ities a long an axis
are found by pro jecting the vertices o f the clipped triangle onto the axis. By fo llow ing this process
for every triangle in the node, a list o f possib le split positions along the axis is found. F igure 3.7

3.4 Construction 56

(a) RBSP tree for Bunny (b) RBSP tree for A rm ad illo

Figure 3.6: SAH R B SP trees on scenes w ith p redom inantly non-ax is-a ligned triang les. U sing the
in telligence provided by the SA H , the R B SP tree constructed is o f be tte r quality.

show s the process w ith m ore clarity.

O nce all the potential split points along an axis are determ ined , the SAH cost at each o f these
points is calculated . To calculate the SAH cost, the surface area o f the left and right node created
by a split plane placed at the poin t in consideration and the num ber o f triang les in these nodes are
to be determ ined. By using the list o f p rojected end po in ts, it is sim ple to determ ine the num ber
o f triang les on e ither side o f a potential split point.

C om puting the surface area o f the tw o nodes created by the split is not as stra igh tfo rw ard . T his
is com pounded bv the fact that the only values stored fo r a node arc the ex trem ities a long each
split axis. To calculate the surface area the n o d e’s actual po lyhedron - found by c lipp ing every
bounding plane o f the node (given by the split axis and an ex trem ity along the axis) w ith every
other bounding plane - is determ ined. T he clipping process resu lts in a list o f po lygons - the
faces o f the node’s bounding volum e. These faces are then c lipped w ith the sp litting p lane in
consideration to obtain the faces o f the tw o split nodes that w ould be created w ith this split. A lso,
the splitting plane itself is c lipped w ith each o f the bounding p lanes to obtain the splitting p lan e ’s
polygon. The polygons thus found can then be decom posed into triang les to ca lcu la te the surface
areas o f the tw o nodes poten tia lly created by the split p lane in consideration .

P lugging in the values for the num ber o f triang les and the su rface area in E quation 2.12, the SAH
cost at each potential split poin t along each potential split axis is ascerta ined . T he SA H also allow s
biasing the cost. Em pty nodes are beneficial for ray tracing as they identify em pty space allow ing
the rays hitting them to be skipped. T his is considered in the heuristic for R B SP tree bu ild ing by
reducing the cost to 80% o f the orig inal cost if a potential split c rea tes an em pty node. T he axis
and the point w ith the m in im um w eighted cost is selected as the sp litting p lane fo r the node.

It is to be noted that w hile the SAH provides a m ethod to create fa irly good trees, the tree is not
optim al. T he cost calcu lated fo r each split is the local op tim um that applies on ly to that node
irrespective o f earlier and future splits.

3 .5 RBSP Tree Traversal 57

Node bounding volume

Triangle outside
bounding volume

Triangle end points

Potential split points
Potential split axis

Figure 3.7: Potential split points for SAH along an axis. Projecting the end points of the clipped
triangles onto the axis in consideration gives the potential split plane positions. The SAH cost at

these potential points are calculated and the minimum point is selected as the locally optimal
split position.

3.5 RBSP Tree Traversal

Constructing the tree prepares the scene for ray tracing. Each individual ray is traversed down
the tree in a front-to-back order until it is determined if the ray misses the scene completely or
intersects a primitive. When a ray hits a primitive, the pixel corresponding to the ray is shaded
using the primitive’s properties.

Using the parametric equation of the ray, given by Equation 2.1, the ray can be traversed through
the tree using different methods - each with its own advantages and disadvantages. Each of these
methods are described subsequently.

3.5.1 A lgorithm 1.1 - Traversal by L inear Interpolation o f R ay-P lan e Intersection
Param eter

This method for ray traversal is based on the kd-tree traversal [SS92] adapted to the RBSP tree.
The high level algorithm can be given by the following two methods described in pseudocode.

3 .5 R B SP Tree Traversal 58

e x i t

s p l i t

Splitting plane
N ode boundaries

Figure 3.8: R B SP tree ray traversal (2D). S im ilar to the kd-tree traversal - if t sput > t entry the
left node is traversed, and if 1sput < t exit the right node is traversed. If both conditions hold, as in

the figure, both nodes are traversed.

int rayTraverse()
{
tMin = INFINITY;
tMax = -INFINITY;
//Compute the intersection parameters
//to the entry and exit planes
//along each axis
for (each split axis index, i)
{
tEntry[i] = findTEntryBoundingPlane(i);
tExit[i] = findTExitBoundingPlane(i);

tMin = maxVal(tEntry, tMin[i]);
tMax = minVal(tExit, tMax[i]);

}
if(tMin > tMax)

return -1; // There is no intersection
// with the bounding volume
// of the node

return recursiveRayTraversal(root, tEntry, tExit, tMin, tMax);

L isting 3.2: H igh Level R B SP tree traversal algorithm . The algorithm intersects the ray w ith each
plane o f the bounding volum e o f the tree. If there is no in tersec tion , it term inates. O therw ise, the

ray is recursively traversed dow n the tree.

3.5 R B SP Tree Traversal 59

int. recursiveRayTraversal (RBSPNode node,
float [JtEntry, float [jtExit,
float tMin, float tMax)

{

if (tMin > tMax //ray does not intersect node
o r tMax < 0) //intersection is behind origin

return -1;
if (node is a leaf node)
{

if (any triangle intersects the ray)
return index of first triangle hit by the ray;

return -1;
}

tSplit = findSplitParameter(node, tEntry, tExit);
if (tSplit > tMin)
<

//Recursively traverse the left node
triang]elndex=recursiveRayTraversa1 (node.left, tEntry, tExit,

rriin (tSplit, tMin), tMax);
if(trianglelndex != 1)

return trianglelndex;
}

if(tSplit < tMax)
(

//Recursively traverse the right node
return recursiveRayTraversal(node.right, tEntry, LExit,

tMin, max(tSplit, tMax));

}

L isting 3.3: R ecursive R B SP tree traversal algorithm .

As the pseudocode show s, there are tw o m ain com ponents that m ake up the tree traversal. The
first step is to calcu late the intersection param eters for the m in im um and m axim um bounding plane
along each axis. Losing these, the ray ’s entry and exit param eters. t (:ntry and t CXit, w ith respect to
the bound ing volum e o f the tree are found. If it is determ ined that the entry param eter is greater
than the exit param eter, the ray does not in tersec t the tree and hence need not be p rocessed further.
O therw ise the ray is traversed dow n the tree.

The ray traversal begins at the root node and descends dow n the tree in a front-to-back order.
At each in ternal (non-leaf) node, the ray 's in tersec tion p aram eter w ith the split plane o f the node
is ca lcu la ted . It is im portant to consider the d irection o f the ray - ind icated by the sign o f the
dot product betw een the ray and the split axis - du ring the ca lcu la tion o f the ray -sp lit-p lane
in tersec tion param eter, /.«,;>/*<. S ince the en try and exit param eters along each axis has already been
calcu lated . t spilf can be qu ick ly calcu lated by linear in terpo lation o f the co rresponding param eters.
It is a lso to be noted that the node stores a d iscretisation o f the d istance betw een the en try and exit
p lanes and hence has to be converted back to the actual value. The conversion back to actual
values and the linear in terpolation can be calculated as follow s:

3 .5 R BSP Tree Traversal 60

float findSplitParameter(node, float []tmin, float []tmax)
{

tSplit = node.splitPosVal*(1/16383);
//signRDirRec[axis] - Indicates ray direction along the split axis
tEntty = signRDirRec[axis] ? tmin[i] : tmax[i];
tExit = signRDirRec[axis] ? tmax[i] : tmin[i];
return (tEntry + tSplit*(tExit-tEntry));

}

L isting 3.4: L isting show s the calcu lation o f the ray -sp lit-p lan e in tersec tion param eter by linear
in terpolation .

It is to be ensured that the right values o f t nXis and t axiS param eters are selected depending
on the sign, or d irection , o f the ray. A nother im plem entation detail is that the value o f (1 /1 6 3 8 3)
(2 14 — 1 as 14 bits are used to store the quantisation . Sec Table 3.1) is not calcu lated at each step,
but is stored as a constant. T hus, the entire process o f finding t spn t is achieved w ith tw o m ultiplies,
one addition and one subtraction.

A s show n by F igure 3.8. the location o f the split plane in re lation to the node - m athem atically
represented by the value o f t spn t in re la tion to t llltry and t cxlt - determ ines the nodes traversed. If
the t Spnt param eter is g reater than the t cntry param eter, it indicates that the split p lane is located
at a point a long the axis that is after the point w here the entry p lane is located. In this case, the
first node along the axis is traversed. If the split plane is located at a po in t before the exit plane,
i.e., if the ray hits the second node along the axis and the node is traversed. If both
the cases are true, as in F igure 3.8, then the ray first traverses the first node. If it does not hit a
triangle in the first node, the second node is traversed.

The tree traversal continues dowrn the tree until a lea f node is reached . At a lea f node, the ray m ay
hit one o f the triangles contained in the node. As the triang les in the ray are not sorted according
to the ray ’s path, it is necessary to test all the triangles fo r in tersec tion . The in tersec tion param eter
is found for all triangles in the node using the m ethod by Segura and Feito fSFO l], If the ray hits
m ore than one triangle, the triangle w ith the low est / param eter - the first triangle in the ray ’s path
- is selected. On the o ther hand, the ray m ay m iss all the triang les in the lea f node in w'hich case,
the tree traversal continues.

The m ethod, as described , is a direct adapta tion o f one o f the best kd-tree traversal m ethods.
H owever, as the results show, the perform ance o f th is m ethod deprecia tes w'hen the num ber o f
sp litting axes used is increased. T his is despite the fact that, as expected , the num ber o f node
traversals and num ber o f triangle in tersec tions show s a consisten t decrease. T his depreciation o f
perform ance is attributed to the first m ethod RayTraverse. Specifically , it can be traced to the
calcu lation o f entry and exit param eters for all the split axes. If in is the num ber o f split axes used,
then 2m ray -p lan e in tersec tions are necessary. C alcu la ting the entry and exit t param eters for each
plane requires three dot products and one divide operation resu lting in a large com putational cost.
A lso, in cases w here the depth o f the tree is less than 2in , the num ber o f ray -p lan e in tersections
w ould be m ore than if the node w ere to be in tersected individually. T he RayTraverse m ethod thus
depends on m as m uch as it does on lo g (N) (the o rder o f the tree 's depth).

To overcom e this problem and realise the true potential o f R B SP trees, alternate traversal m ethods
are thought o f and are described in the fo llow ing sections.

3 .5 R B SP Tree Traversal 61

3.5.2 Algorithm 1.2 - Traversal using SSE

SSE instructions allow four com putations to he perform ed in p ara lle l and are used to address the
problem o f decreased perform ance. The previously identified p rob lem atic part o f the traversal -
the initial entry and exit plane in tersection calculation - is converted to SSE so that four entry
and exit param eters arc com puted sim ultaneously in one ite ra tion , thus reducing the cost o f this
process. The relevant part o f the code in R ayTraverse converted to SSE is

for (each split axis index, i)
{

tMin[i] = findTEntryBcundingPlane(i);
tMax[i] = findTExitBoundingPlane(i);

}

L isting 3.5: Part o f code from R ayT raverse that is com puted using SSE.

It is changed so that every fou r split axes are handled in one iteration o f the loop and can be w ritten
using SSE as show n below.

rayDirSSEX = load rayDirX into all 4 SSE components;
rayDirSSEY - lead rayDirY into all 4 SSE components;
rayDirSSEZ = lead rayDirZ into all 4 SSE components;

for (each 4 split axes starting at index, i)
{

splitAxesX = X coordinate of the 4 split axes
splitAxesY = Y coordinate of the 4 split axes
splitAxesZ = Z coordinate of the 4 split axes

tMinSSEfi/4] = findTEntryBoundingPlaneSSE();
tMaxSSE[i/4] - findTExitBoundingPlaneSSE();

}

L isting 3.6: U sing SSE to accelerate R B SP traversal. Instead o f com puting ray -sp lit plane
intersections individually , SSE is used to com pute four en try plane and four exit plane

in tersections.

To obtain the best perform ance w ith SSE instructions, it is p referab le to load the individual co m
ponent coord inates o f each ray and each split axis into separa te SSE variables. W ith this, dot
products require few er instructions. Upon conversion to SSE. the calcu la tions o f the entry and
exit param eters are achieved w ith few er iterations and reduce the detrim en ta l effect o f increasing
the num ber o f planes. R esults show that this m ethod o f op tim ising the traversal is very effective
as long as the num ber o f axes is relatively sm all (betw een 12 and 16). T he advantage o f SSE
cannot m ask the com putational cost fo r larger num ber o f axes. H ow ever, the results do show that
that m ethod realises the potential o f R B SP trees better and ach ieves im proved perform ance over
an SA H kd-tree.

3.5.3 Alternate Traversal - Ray-Plane Intersection at Each Node

The perform ance o f the tw o traversal m ethods described earlie r is dependen t on the num ber o f split
axes used. However, if possib le, it is preferable for the traversal perfo rm ance to be independent o f
the num ber o f axes. To achieve this, the ray -sp lit-p lan e in tersec tion param eter calculation uses the

3.5 R B SP Tree Traversal 62

ra y -p la n e in tersec tion , as show n in L isting 3.8, instead o f linear in terpo lation used by the earlier
m ethod, as show n in L isting 3.4, to obtain the in tersec tion param eter. A lthough the perform ance
is w orse for R B SP trees constructed w ith a sm all num ber o f split axes, it m akes the rendering tim e
a function o f the depth o f the tree ra ther than the num ber o f split axes. T his m ethod w ould thus
be very useful to study and understand the effect o f num ber o f split axes on R B SP trees. The new
high level a lgorithm can be given as:

int rayTraverse()
{
//Determine two planes of bounding volume
//at which the ray enters and exits
findEntryPiane (entryPlanePoint, entryAxis);
findExitPlane(exitPlanePoint, exitAxis);

//Find the entry and exit
//ray-plane intersection parameters
tEntry = findRayPlaneintersection(ray, entryPlanePoint, entryAxis);
tExit = findRayPlanelntersection(ray, exitPlanePoint, exitAxis);

if(tEntry > tExit)
return -1; //There is no intersection

//between the ray and the
//node's bounding volume

return recursiveRayTraversal(root, tMin, tMax, tEntry, tExit);
}

L isting 3.7: H igh level algorithm for A lternate R B SP traversal. In this m ethod, the en try and exit
p lanes arc determ ined using either the O penG L m ethod (described in Section 3 .5 .3 .1) or the

recursive d ivide m ethod (described in Section 3 .5 .3 .2). C ode in blue show s the m odifications
com pared to the earlie r high level a lgorithm (given by L isting 3.2)

C om pared to the high level algorithm described in S ection 3.5.1, the m ain d ifference (show n
in b lue in L isting 3.7) is that alternate m ethods are necessary to determ ine the entry and exit
planes, as we do not want to com pute ray -p lan e in tersec tions for all 2 m p lanes. C onsequently ,
the ca lcu la tion o f the ray -sp lit plane in tersection param eter, tSplit cannot be done using linear
in terpo lation and is now achieved using a ray -p lan e in tersec tion as show n by the pseudocode
below:

float findSplitParameterPlaneRaylntersection(node)
(
//Get the split position of the node along the axis
tSplit = node.splitPosVal*(1/16383);
//Find actual split point using linear interpolation
splitPoint = bvPointFront[axis]

+ tSplit * (bvPointBack [axis] - bvPointFront[axis));
//Intersect the ray with the plane
//(plane is given by the normal and the splitpoint)
tSplit = findRayPlanelntersection(ray, splitPoint, planeNormals[axis]);
return tSplit;

)

L isting 3.8: C alculating the ray -sp lit p lane in tersec tion by using a full ra y -p la n e in tersec tion .
This is necessary as linear in terpolation o f the ray cannot be perform ed as starting and ending

points have not been calcu la ted earlier.

3 .5 R B SP Tree Traversal 63

O ther than the com putation o f the tSplit param eter, the ray traversal is the sam e as show n by
L isting 3.3.

3.5.3.1 Algorithm 2.1 - Entry and Exit Plane D eterm ination with OpenGL

It is not stra igh tforw ard to determ ine the entry and exit p lanes o f the root nodes w ithout in te rsec t
ing the ray w ith each bounding plane o f the root node. T he first a lternative is to em ploy O penG L
to find these p lanes. O penG L or rasterisation m ethods are very qu ick if the num ber o f rendered
triang les is very sm all. The faces o f the root node are found by clipp ing every bounding plane
against every o ther bounding plane. Each face is assigned a un ique co lour for identification. The
entry p lanes and exit planes are separately rendered w ith O penG L . For the particu lar pixel be
ing ray traced, the entry and exit planes can be determ ined by check ing the p ix e l’s co lour in the
rendered im ages. F igure 3.9 show s the entry p lanes being easily identifiable by their colours.

F igure 3.9: R BSP tree roo t node fo r the B unny w ith each p lane co loured differently.

O nce the entry and exit planes are determ ined for a particu lar ray (p ixel), the ray -p lan e in tersec tion
is used to ca lcu la te t (,ntry and t ex,i for the ray. The m ethod is very qu ick and the projection o f
the bound ing p lanes is perform ed ju s t once at the beginn ing o f ray tracing . The m ethod w orks
very w ell fo r scenes w here the view point is alw ays outside the bound ing volum e o f the root node.
W hen the v iew poin t m oves inside the scene, the entry p lanes are behind the v iew point causing
O penG L pro jec tion to fail. H ence, an alternate m ethod is necessary.

3.5 R B SP Tree Traversal 64

3.5.3.2 Algorithm 2.2 - Entry and Exit Plane Determ ination by Recursive Divide

A recursive process is fo rm ulated as a so lu tion to the problem o f finding the en try and exit p lanes.
T he m ethod uses the property that in a convex po lyhedron, if fou r boundary pixels o f a rec tangu lar
region lie on the sam e face, then all the pixels that lie w ithin these fou r pixels a lso lie on the sam e
face. The process to find the entry and exit planes is very sim ilar and hence on ly the process to
determ ine the entry plane is described in g rea ter detail.

determineEntryPlane(RectImageRegion r)
{

if(r does not contain any pixels within)
return;

//Find the entry plane indices for
//the four boundary pixels of r
int entryPlanel, entryPlane2,

entryPlane3,entryPlane4;

entryPlanel = findEntryPlane(r.cornerl);
entryPlane2 = findEntryPlane(r.corner2);
entry?lane3 = findEntryPlane (r.corner!);
entryPlane4 = findEntryPlane(r.corner4);

if (entryPlanel == entryPlane2 and
entryPlar>e2 == entryPlane3 and
entryPlane3 == entryPlane4)

{
//Set the entry plane indices of
//all the pixels inside r
setAllEntryPlanes (r) ;
return;

}
else
{ /
rectImageRegion rl, r2, r3, r4;
spl i t.Reg: on I nt oFour (r, rl, r2, r3, r4) ;
determineEntryPlane(rl);
determineEnt ryPlane(r2);
determineEntryPlane(r3);
determineEnt ryPlane(r4);

}

L isting 3.9: D eterm ining the entry plane for a group o f rays using a recursive process.

T he entry plane o f the four co rner pixels is ca lcu la ted by finding the in tersec tion o f the ray w ith
all the bounding planes o f the node. If they are the sam e, then each ray that co rresponds to a pixel
w ithin this rectangular region has the sam e entry plane. W hen the entry p lanes are d ifferen t, the
region is split into four sm aller rectangu lar reg ions and a sim ilar process is recursively fo llow ed
until the entry planes o f all the pixels have been found. It m ay app ea r that a significant num ber
o f entry and exit p lanes have to be found. H ow ever, the entry and exit p lanes o f very few pixels
need to be determ ined and this m ethod is found to be very efficient. It is sligh tly slow er than the
O penG L projection m ethod, but is better than calcu lating all the en try p lanes fo r all the rays. It is
a lso accurate fo r all v iew points o f all scenes and is therefore preferred . F igure 3 .10 show s a few
steps o f the recursive m ethod.

3 .6 D ata S tructure V isualised fo r Various M odels 65

F igure 3.10: R B SP tree bounding volum e / root node o f the B unny w ith each bounding plane
coloured d ifferently illustrating the recursive divide m ethod. If the four co rner pixels o f a

rec tangu la r region have the sam e colour, then all the pixels inside this region have the sam e entry
plane. O therw ise, the region is subdivided into four sm aller reg ions and the fo u r co rner pixels are

tested again.

3.6 Data Structure Visualised for Various Models

To v isualise the data structure as built on various m odels, the non em pty nodes at a particu lar
depth are show n. L eaf nodes that are at this or h igher depths are a lso show n. T his visualisation
enables identification o f nodes traversed by the rays at the given depth .

F igure 3.11 show s this v isualisation for R B SP trees built on the B unny. The non em pty nodes and
lea f nodes are show n at various depths to show the traversed nodes. It is c lear that trees built w ith
m ore splitting axes m ore closely w rap the m odel, indicating that few er rays traverse through each
level as the num ber o f sp litting axes rise.

For a few o ther m odels, the sam e (non em pty and leaf) nodes are show n in F igure 3.12, but only at
a depth o f 16. The figure show s a sim ilar result to those seen in the B unny. A s the num ber o f axes
increase, the tree m ore closely w raps the m odel resulting in a reduction in the num ber o f rays that
traverse through the structure. T his points to reduced node traversals and triang le in tersec tions to
ray trace the im age. This fact is co rroborated by the results in Section 3.7.

3 .7 R esu lts 66

N um ber o f
A xes

D epth 0

D epth 4

D epth 8

D epth 12

D epth 16

Figure 3.11: R B SP tree on the B unny using 3 ,8,16 and 24 p lanes at various depths. Im ag es show
the non-em pty nodes at the given depth and leaf nodes at h igher depths. T he v isualisa tion show s

that R B SP trees built w ith m ore axes converge to the m odel m ore qu ick ly than those built w ith
few er axes.

3.7 Results

The aim o f the new data structure is to enable efficient rendering perform ance by reducing the
num ber o f node traversals and the num ber o f triangle in tersec tions. T hus, these num bers in add i
tion to the rendering tim es using the various traversal m ethods described will be presen ted in this
section.

To accurately represen t real w orld perform ance, several scenes are ray traced using the R B SP
tree. For each scene used, several v iew points are chosen and the im ages are generated from this
view point. Table 3.3 show s the m odels and the v iew points used.

3 .7 R esults 67

Scene Sponza A rm adilloBunny D ragon H appy B uddha
V iew s

Table 3.3: Scenes and view points used to benchm ark R B SR trees.

3 .7 R esu lts 68

B ounding Box

3 p lanes

8 p lanes

16 planes

24 planes

F igure 3.12: Im ages show ing the bounding box and the R B SP tree using 3 ,8 ,16 and 24 p lanes fo r
few o ther m odels. Im ages show the non em pty nodes at dep th 16 and leaf nodes at h igher depths.

A s m ore axes are used to build the R B SP trees, their quality im proves.

3.7.1 Node Traversals and Triangle Intersections

The graphs in F igures 3.13 and 3.14 show the num ber o f node traversals and triang le in tersec tions
respectively fo r various m odels using R B SP trees built w ith varying num bers o f split axes. R B SP
trees w ith 3, 4, 8, 12, 16, 20 and 24 p lanes have been built to com pare the effect o f using variably
aligned and num bered splitting p lanes. For non-ax is-aligned scenes, the advantage prov ided by
R B SP trees is very clear. A s the num ber o f splitting axes rise, there is a reduction in the num ber o f
node traversals and triangle in tersec tions. Section 3.6 v isually dem onstrated the reduction in void
area o f R B SP trees as num ber o f axes used to build them increase. T he figures prov ide statistical
support by show ing reduced in tersec tion and traversal num bers. If this reduction is translated to
perfo rm ance term s, R B SP tree w ould be a very good data structure for ray tracing.

T hey also reveal that it is not a very good structure fo r scenes consisting o f p redom inan tly axis-
aligned triangles. The availability o f differently a ligned p lanes causes selection o f sp litting p lanes
that arc not c losely aligned w ith the triangles. T his aspect reveals a p rob lem w ith the split plane
selection heuristic - the SA H . It also suggests the su itability o f kd -trees fo r such scenes as the

3 .7 R esults 69

Armadillo
• Bunny

Dragon
HappyBuddha

— S phere
■* Sponza

No of Split Axes

Figure 3.13: V ariation o f node traversals per pixel over num ber o f split axes used to build the
R B SP tree for ray tracing several m odels. T he m ore the num ber o f axes, the low er the num ber o f

node traversals (except for the Sponza scene).

— Armadillo
• Bunny

Dragon
HappyBudctia

— Sphere
♦ S p o n z a _____

No of SpHf Axes

Figure 3.14: V ariation o f triang le in tersec tions per pixel over num ber o f split axes used to build
the R B SP tree for ray tracing several m odels. As the num ber o f axes used increase, the num ber o f

triangle in tersec tions decrease.

availability o f several sp litting a lignm ents is not advantageous and could in fact be detrim ental
due to m ore expensive traversals.

On the o ther hand, the advantages arc c learly revealed by the resu lts on the Sphere m odel. For this
m odel, the split axes arc perfectly aligned, as they are chosen by using evenly spaced points on a
sphere. These axes are alm ost custom ised to a sphere and hence as the num ber o f axes increase,

3 .7 R esults 70

the tree becom es m ore closely w rapped to the m odel. T he R B SP tree for this m odel is very close
to a BSP tree built on the m odel as the splitting p lanes are actually draw n from the m odel. T his
also suggests that if the splitting axes are chosen so that they are in close a lignm ent to the scene
triang les’ alignm ent, the R B SP tree w ould be an even better structure fo r ray tracing .

3.7.2 Rendering Times

Scene N am e R endering tim es w ith various m ethods and various num ber o f axes

Avg Rendering Times D 3 p D 4p B 8 p D 12p B 1 6 p D 20p B 2 4 p

2000

1000

Rendering
time in ms

A rm adillo
1 1 Algorithm using linear interpolation 2 1 Algorithm using O penG L
1 2 - Algorithm using S S E 2 2 - A lgorithm using R ecu rs iv e divide

Bunny

2000 Avg Rendering Times D 3 p 0 4p ■ Sp 0 1 2 p B 1 6 p D 20p B 2 4 p

1000

Rendering
time in ms

1.1 1.2 2.1 2.2
1 1 Algorithm using linear interpolation 2 1 Algorithm using O penG L
1 .2 - Algorithm using S S E 2 2 Algorithm using R ecu rsiv e divide

3 .7 R esults 71

D ragon

Avg Rendering Times D 3p D 4p B 8 p D 12p B 16p D 20p B 24p

2000

1000

Rendering
time in ms
I
I_______

1.1 1.2 2.1 2.2
1 1 • Algorithm using linear interpolation 2 1 Algorithm using O penG L
1 2 - A lgorithm using S S E 2 2 Algorithm using R ecu rs iv e divide

2000 Avg Rendering Times □ 3p □ 4p ■ 8p □ 12p ■ 16p □ 20p ■ 24p

1000

H appy B uddha

Rendering
time in ms

L _ _ _

1.1 1.2 2.1 2.2
1 1 Algorithm using linear interpolation 2 1 Algorithm using O penG L
1 2 - Algorithm using S S E 2 2 Algorithm using R ecu rs iv e divide

Sphere

3000

2000

1000

13 Avg Rendering Times ■ D 3p D 4p B 8p □ 12p ■ 16p D 20p B 24p

mm l
Rendering
time in ms

1.1 1.2 2.1 2.2
1 1 - Algonthm using linear interpolation 2 1 Algorithm using O penG L
1 2 Algorithm using S S E 2 2 Algorithm using R ecu rsiv e divide

3.7 R esu lts 72

Avg Rendering Times □ 3p □ 4p ■ 8p □ 12p ■ 16p □ 20p ■ 24p

3000

2000

1000

Rendering
time in ms

Sponza

1.1 1.2 2.1 2.2
1 1 - A lgorithm using linear interpolation 2 1 Algorithm using O penG L
1 2 Algorithm using S S E 2 2 - Algorithm using R ecu rsiv e divide

Table 3.4: Ray tracing tim es w ith different m ethods on R B SP trees w ith d ifferent num ber o f
sp litting axes fo r various scenes. T he various algorithm s are:

A lgorithm 1 .1 - Traversal by L inear In terpo la tion o f R ay -P lan e In tersection Param eter.
A lgorithm 1.2 - Traversal using SSE.

A lgorithm 2.1 - Entry and Exit P lane D eterm ination w ith O penG L .
A lgorithm 2.2 - E ntry and E xit P lane D eterm ination by R ecursive D ivide.

Section 3.5 described four d ifferent m ethods to traverse the R B SP tree. In o rd e r to evaluate the
m erits o f each o f these m ethods fo r ray tracing, the scenes have been rendered w ith the trees using
all the four different traversal m ethods.

Algorithm 1.1 - Traversal sim ilar to kd-tree traversal by using a linear in terpo lation at each step.
The results fo r this m ethod reveal the problem discussed in the earlie r section. In this m ethod,
initially an in tersec tion param eter calcu lation for each axis is necessary. T his ca lcu la tion is quite
expensive, involving three dot products and a divide fo r each axis. A s the num ber o f axes used
increase, these calcu la tions dom inate the rendering tim es. T hus, the rendering tim es increase as
the num ber o f axes used increase even though there is a decrease in the num ber o f traversals and
in tersections.

Algorithm 1.2 - T raversal using SSE for initial calculations. T his m ethod realises the po ten tia l
o f R BSP trees. In this m ethod, the initial calcu lations are com puted in g roups o f four w ith SSE
instructions. H ence, as the num ber o f axes rise, initially there is a no ticeab le im provem ent in
perform ance. H ow ever, the perform ance deterio rates w hen the num ber o f axes rise above a certain
num ber. T his is sim ilar to M ethod 3.5.1, but it ju s t takes m ore axes for these to dom inate . It is to
be noted that this m ethod results in a very fast ray tracing m ethod - even better than on kd-trees.
As long as the num ber o f axes used is below a certain threshold - possib ly 12 - this rendering
m ethod results in the best perform ance fo r ray tracing w ith R B SP trees.

Algorithms 2.1 and 2.2 - These are essen tia lly the sam e m ethod w ith sligh tly d ifferent ap
proaches to finding the entry and exit planes. H ow ever, the m ethods o f finding the entry and exit
planes are quite efficient for both these m ethods, w ith the recursive divide m ethod being slightly
slower, as show n by the results. T he graphs for these tw o m ethods are very sim ilar show ing that
the perform ance increases as the num ber o f axes increase. The perform ance increase d irectly re
flects the im proved num bers o f in tersec tions and traversals. The d isadvantage o f these m ethods

3 .7 R esults 73

is that they are generally slow er than either m ethod 3.5.1 o r 3.5.2 due to increased num ber o f
ray -p lan e in tersections.

A s w ith the in tersec tion num ber results, perform ance results show that R B SP trees p rovide ex
cep tional perform ance fo r the Sphere m odel w here the axes are perfectly aligned to the m odel.
R esu lts fo r m ethod 3.5.2 show that significant perform ance increase is possib le w ith R B SP trees.
T hey reiterate the fact, that if properly adapted to the scene, R B SP trees p roduce trees that are b e l
ter than kd-trees fo r ray tracing scenes w ith non-ax is-aligned triangles. The resu lts for the Sponza
scene show that for scenes w ith p redom inantly ax is-aligned triang les, R B SP trees constructed w ith
the current SAH is w orse than kd-trees.

3.7.3 C onstruction Tim es

- Bunrn

•- A rm adillo

Dragon

H appy Buddha

— Sphere

Sponza

6 0 (101)

50000

o
% 40000

= 30000

o
= 20000

o
° 10000

10 15 20

Number of splitting axes

F igure 3.15: V ariation o f construction tim es o f R B SP trees over num ber o f split axes for various
m odels. F rom the data graphed it w as deduced that em pirical com plex ity o f R B SP tree

construction is O (m] c>N I o g 2(N)) .

T he construction tim es fo r R B SP trees is show n to be h ighly dependen t on the num ber o f sp litting
axes used to build the trees. The graphs for every m odel is iden tical and c loser inspection reveals
tha t the em pirical com plex ity o f tree construction appears to be approxim ately O (??71 6N lo g 2 (N))
1 w here m is the num ber o f d irections used and N is the num ber o f triang les in the scene. T his
com plex ity m akes it highly im practical to use m ore than 24 split axes as the tim e necessary for
construction becom es prohibitive.

3 .8 F urther R esearch on S tructures with N on-A xis-A ligned Sp litting P lanes 74

Armadillo

Bunny

— Dragon

-*■ Happy Buddha

— S p h e r e

— Sponza
6 06

60 4

6 02

5 98

Figure 3.16: Faces per node o f R B SP trees w ith various num ber o f split axes fo r various m odels.
The num ber o f faces per node appears to be very close to six. irrespective o f the num ber o f

splitting axes used.

3.7.4 N um ber o f Faces in Node

E xam ining the average num ber o f faces o f all the nodes o f R B SP trees w ith d ifferen t num ber o f
sp litting axes, reveals that it is very close to six irrespective o f the num ber o f axes. T his is an
in teresting result. D uring construction o f the tree, it im plies that on ly six p lanes are relevant and
this result m ay be used to reduce the com plex ity o f construction .

3.8 Further Research on Structures with Non-Axis-Aligned Splitting
Planes

T he in troduction o f the R B SP tree in [K M 07] has sparked in terest in structures that use non-ax is-
a ligned splitting planes [B C N J08] [IW P08]. B udge et al. |B C N J()8] attem pt to address som e o f
the problem s already m entioned in this chapte r like slow construction tim es. H aving no ticed the
potential o f using num erous non-ax is-aligned splitting p lanes in R B SP trees , Ize et al. [IW P 08 |
attem pt to use the even m ore general form o f BSP trees that allow s arb itrarily aligned planes. The
main contribu tions o f these tw o pub lications and com parisons to ou r w ork w ill be described in
b rie f in the sections below.

3.8.1 A ccelerated B uilding and Ray Tracing of R estricted BSP Trees - B udge et al.

B udge et al. [B C N J08] present a lgorithm s for building and ray tracing w ith R B SP trees. O ur paper
h ighligh ted the slow' construction o f R B SP trees. In addition , in [K M 07], w'e p resent only traversal
m ethod 3.5.3.2 - that, in this chapter, has been show n as the slow est traversal m ethod. B udge el
al. attem pt to address the prob lem s o f R B SP trees as p resented in [K M 07],

The empirical com plexity has been calculated using the observed construction tim es, graphed in Figure 3.16.

3 .8 F urther R esearch on Structures with N on-A xis-A ligned Splitting P lanes 75

In [KM07] it was said that an empirical complexity of 0 (m 16N lo g 2(N ■)) was observed for con
structing RBSP trees. Budge et al. reduce this to 0(7n3 + (m N lo g (N))). The main reason for the
high complexity was that the polyhedron of the node was found by clipping each plane with every
other non parallel plane. This resulted in the observed high complexity. Budge et al. identify that
the SAH is a problem that can be solved with dynamic programming to reduce this complexity.

The construction process in [BCNJ08] is an SAH heuristic with changed intersection and traversal
costs of 500 and 1 respectively. An 0 {N lo g 2(N)) approach, in which the triangles are sorted at
each SAH step, is used. However, instead of using a normal 0 (N lo g (N)) sorting method at each
construction step, a radix sort is used to achieve an 0 (N l c ^ { 'T)) construction complexity (for
kd-trees). Each k-DOP (the term used for a node’s polyhedron along the lines of Klosowski et
al. [KHM+98]) is represented by an edge-soup - made of line segments. Each line segment also
has a pair of indices identifying the two faces to which the edge belongs. This representation is
said to be compact, efficient to maintain during splits and is sufficient to compute the surface area
of a k-DOP. No other information is stored for the k-DOPs.

Dynamic programming is a method used to solve problems with overlapping sub-problems. It
works by first dividing the problem into several sub-problems that are again split until the sub
problems are simple to solve. The solutions from these are then combined to obtain the solution
to the problem. In the surface area heuristic, along an axis, if the split points are sorted, then the
surface areas of the first potential sub-node (of the two potential sub-nodes created due to the split)
at these points are increasing. The surface area at the first point is found. The surface area at the
second point is found by using the first solution and so on to reduce the calculation time. Using
this approach, the expression for the areas is given as below.

A rea ie ftO fS p lit — ^ 2ii^splii ~~ ^ lii^ s p li t t-i) <Sj'

A rea .rightOfSplit — A rco .t0tai ~ A rea le ftO fS p lit

A rea .Spin — A"2i^.sp/?7 "P -^ 1?^split K oi

1-i <' = 1-split ^ 1-i+l

where C2i, C 1-;, K 2U K u and Kq , are coefficients initialised for each face. The details of calcu
lating these are provided in [BCNJ08],

Budge et al. state that the traversal method in [KM07], Section 3.5.3.2 is not the best method. A
method similar to the standard slabs method is proposed. Initially, the bounding box rather than
the bounding volume is intersected by the ray. The ray origin and the ray direction reciprocal are
pre-computed and the traversal is continued. SSE is used for accelerating the pre-computations.

If the traversal is performed without pre-computation, a general decrease in rendering times is
noticed. However, they state that in this case, the trends are not clear. As stated earlier, we believe
that the rendering times depend on the number of axes used. In case the number of axes are
greater than the depth of the tree, not pre-computing can lead to a cheaper traversal, owing to
fewer ray-plane intersections.

The traversal method is shown to be faster than the presented (unoptimised) times by a factor of
10. When the bounding box is used instead of the bounding volume, fewer triangle intersections
but greater number of node traversals are seen. This is a disadvantage of using boxes in cases when
the viewpoint is outside the model. A closer fitting bounding volume can mean that numerous rays
can be terminated at the root node level itself.

^

3 .8 F urther R esearch on S tructures w ith N on -A xis-A ligned Sp litting P lanes 76

They observed problems with the RBSP tree constructed for scenes like the Sibenik scene, and
attributed the problems to the fact that due to increased empty space culling, the tree is deeper.
However, we believe that the problem lies in the selection of planes to build the tree. The problem
is similar to the problems with the Sponza scene which is dominated by axis-aligned triangles. A
heuristic in which the directions are customised to the scene for which the tree is being built is
suggested as one of the solutions. An approach used by Coming and Staadt [CS08] to achieve this
customisation is suggested. This is an important benefit of RBSP trees - that the directions can be
arbitrarily chosen. However, to take maximum advantage of RBSP trees, the directions have to be
carefully selected. When that is done, RBSP trees may significantly outperform kd-trees.

Comparison of Traversal Methods The traversal methods described by Budge et al. are similar
to methods 3.5.1 and 3.5.2 detailed in this chapter. The main difference is the use of the bounding
box by Budge et al. rather than the bounding volume. In addition, since the ray’s intersection
parameters are pre-computed, a linear interpolation approach can be used to compute the t sput
parameters. These are believed to increase efficiency, especially in cases where the viewpoint is
outside the model. Also, while they state that their heuristic is not faster than the kd-tree, our
approach - detailed in Section 3.5.2 - for tracing single rays is faster for RBSP trees than for
kd-trees.

3.8.2 Ray Tracing with the B SP Tree - Ize et al.

Ize et al. [IWP08] take a more generalised approach. So far, it was believed that using arbitrary
non-axis-aligned planes does not lead to a good structure for ray tracing. While a restricted set
was used to make the problem more solvable, Ize et al. use a general BSP tree using popular ray
tracing concepts - like the SAH - shown to be applicable for non-axis-aligned planes by the study
on RBSP trees.

One of the main problems of using arbitrarily aligned planes is the construction of an effective
structure for ray tracing. Ize et al. attempt this by reducing the number of split planes used at
each split step. The SAH, with a polytope area calculation similar to ours - by clipping the node’s
polytope with the splitting plane and then computing the area by summing the areas of the faces,
is used to select the best split position from among a set of planes. Ize et al. limit the number of
planes at each triangle by using the triangle’s properties. For each triangle the split planes used
are

• The plane that defines the triangle face.

• The three planes that lie on the edges of the triangle and orthogonal to the triangle face.

• The same six axis-aligned planes used by the SAH for the kd-tree.

Restricting the planes as above limits the number of planes to be tested to O (N). At each split
plane, since triangles are not sorted along the axis, a helper structure - a bounding sphere hierarchy
- is used to count the triangles at either side of the potential plane leading to a log(N) cost for the
search and an 0 (N lo g 2(N)) construction heuristic.

Another adjustment is made during the construction process to the SAH intersection cost. The cost
for intersecting a ray with a plane aligned along one of the coordinate axes is less than intersecting
with an arbitrarily aligned plane. Due to this, two costs, C\>sp and Ckd-tree ~ indicating the cost
of intersecting with an arbitrary plane and an axis-aligned plane respectively, are used during the

3 .8 F urther Research on Structures with N on-A xis-A ligned Splitting P lanes 77

SAH process. For arbitrary planes, it is deduced that the cost linearly varies with the number of
triangles in the node. Thus, the values of C\jSp is given as

Cbsp ~ CsCii^N 1) + Ckd—tree

where a - is a user tunable parameter (a value of 0.1 was used in the paper for a).

If, after investigating all split planes, it is determined that the cost of splitting is not better than
making this a leaf node, then a fixed cost is used for Cbsp and the SAH is process is run again.

The two modifications to the SAH cost computation - using two different costs and considering
the cost of intersecting the non-axis-aligned planes as being linearly dependent on the number of
triangles in the node - are interesting. The application of these ideas to the RBSP tree construction
process is worth investigating. It may ensure that good trees are created for problematic scenes.

The traversal is a modified kd-tree algorithm. A bounding box is used to ensure that the ray has a
good probability of hitting the scene. Each split plane is then intersected using the standard ray -
plane intersection test - involving two dot products and a floating point division. However, due
to limited floating point precision, an epsilon value is used and rays with intersection distances
within an epsilon value of the split plane traverse both nodes. The BSP node traversal is roughly
1.75x slower than the kd-tree node traversal. Hence, a standard kd-tree plane intersection test is
used when the planes are axis-aligned. Another idea used is that in the nodes, the splitting plane
may actually be the triangle itself. In these cases, the intersection need not be recalculated.

A disadvantage of using arbitrary planes instead of a restricted set is that each node requires 20
bytes, instead of 8 bytes for a kd-tree or an RBSP tree node. This leads to a significant increase in
memory usage.

Ize et al. observe good results with the BSP tree. When single ray tracing with secondary rays
are used, the structure outperforms the kd-tree. The single ray tracer is faster on the BSP tree than
on the kd-tree. With SIMD, ray tracing on the BSP tree is as fast or faster than on the kd-tree.
Due to increased traversal costs, a pure BSP tree is not as effective if axis-aligned planes with
faster intersection methods are not used. In contrast to the RBSP tree where there is a decrease
in both traversals and intersections, the BSP tree only brings about a decrease in the number of
intersections.

When the viewpoint is outside, the RBSP tree would be able to terminate more inactive rays due
to a better fitting bounding volume. This is supported by Ize et al. when an RBSP built for the
top level is suggested. The number of planes are limited and investigating more split points -
in the order of 0 (N 3) - is believed to make the BSP tree more effective. However, using such
a large number of split points is not viable. The memory requirement of general BSP trees is
also quite high. When single rays are traced, they state that their structure is the fastest structure.
This corroborates our belief that the use of more than three non-axis-aligned axes leads to a better
structure for ray tracing than kd-trees, especially for single ray tracing. A point to be noted though
is that Ize el al. have not tested the performance of their structure against RBSP trees, which could
be faster due to faster traversal methods and cheaper memory requirements.

3 .9 S w n m aiy 78

3.9 Summary

RBSP trees are an attempt to combine the best features of kd-trees and BSP trees as applicable to
ray tracing. It can also be thought of as an experiment to determine the usefulness of arbitrarily
aligned splitting planes. It has been assumed that the general form of BSP trees would not be a
very effective structure for ray tracing. However, it is hard to ignore the promise of BSP trees being
a structure that very closely wraps the scene being rendered to reduce the number of intersections
and traversals. RBSP trees are a subset of BSP trees that can be built to be very similar to BSP
trees. Thus, RBSP trees, in addition to being an excellent structure themselves, also enable the
study of BSP trees for ray tracing.

RBSP trees are compact to represent, have relatively simple construction methods, and have ef
ficient traversal methods. The efficiency advantage of having a greater choice in number and
alignment of splitting axes is realised for scenes that pre-dominantly consist of non-axis-aligned
triangles. The results show that for these scenes, as predicted, RBSP trees do reduce the number of
intersections and traversals significantly, compared to kd-trees. This advantage is translated to a
performance advantage when the right traversal method is used so that RBSP trees can be a faster
method to ray trace a scene. The best traversal method is an SSE version similar to the kd-tree
traversal method.

The introduction of RBSP trees has sparked interest in the use of space subdivision structures with
non-axis-aligned splitting planes. Budge et al. [BCNJ08] attempt to address the problem of slow
construction times through the use of dynamic programming to obtain a faster method to calculate
the surface areas. Ize et al. [IWP08] apply some of the results from the RBSP trees to the more
general BSP trees with arbitrary planes. Both of them show very good results confirming the belief
that the use of non-axis-aligned planes is worthy of further study.

The study also reveals that for scenes that are dominated by axis-aligned triangles, the construction
heuristic results in trees that are not as good as kd-trees. On the other hand, for scenes like the
Sphere scene, where the splitting axes are essentially drawn from the scene, the heuristic constructs
trees that are significantly better than kd-trees. Another disadvantage is that the construction times
are significantly higher than that of a kd-tree and depend highly on the number of splitting planes
used. Both these problems can be solved by future work enabling intelligent selection of available
planes for the SAH upon investigation of the scene’s component triangles’ alignment. Using a
customised set of directions would allow reducing the number of splitting axes to a manageable
number. The optimum number of planes is found to be between 8-12.

As a method for visibility determination, the use of RBSP trees with single rays is probably not
practical. However, when large number of incoherent rays are to be traced, as in global illumina
tion methods, the RBSP trees are thought to be especially useful. This is also an area of research
worth pursuing as part of the future work.

Chapter 4

Coherent Rendering

C ontents
4.1 M otivation ...
4.2 Coherent Rendering - Concept and High Level Algorithm
4.3 Tree T raversa l..
4.4 Occlusion Detection - Hierarchical Occlusion Maps . . .
4.5 Leaf Node Processing - Recursive R asterisation
4.6 R e s u lt s ...
4.7 Discussion ...
4.8 Sum m ary..

78
83
85
89
93
97

102
104

This chapter discusses a visibility / rendering algorithm that attempts to demonstrate that trian
gle mesh based scenes can be rendered at a lower complexity per pixel. The volume rendering
algorithm that shows a constant complexity per pixel motivates the investigation. It is research
undertaken as a part of the EPSRC grant that funded the investigation of lower complexity algo
rithms.

This chapter expands and describes in detail the methods and results reported in the technical re
port - Benjamin Mora, Ravi Kanunaje and Mark W. Jones, “On the Lower Complexity' o f Coherent
Renderings,” Swansea University, Technical Report, 2008. [MKJ08].

The main algorithm, due to its similarity to his earlier work [MJC02] [ME05], was implemented
by Dr. Benjamin Mora. However, a lot of the background work (e.g., the kd-tree construction for
the algorithm, ray tracing implementations against which Coherent Rendering is compared with,
etc.) as well as refinement to ensure that its application to triangle meshes is accurate has been
undertaken by me. The technical report, due to the fact that it was a submission to a conference
was limited in length. Hence, it is mainly concerned with the analysis of the complexity results
and does not delve into the details of the workings of the algorithm. This chapter details the
algorithm in full detail, using which the algorithm can be reproduced. Producing the benchmarks
for the complexity results has been another of my contributions. Finally, I am responsible for the
comparison to ray tracing and packet ray tracing in Section 4.6.2 and an analysis of the absolute
performance using profilers, as seen in Section 4.7.2. The analysis has led to the Row Tracing
algorithm, detailed in Chapter 5 which has resulted in a highly accelerated rendering method.
Thus, though Dr. Mora was the first author of the report, I have been responsible for a significant
part of the project, leading it to be an integral part of my PhD, and consequently the thesis.

79

4.1 M otiva tion 80

4.1 Motivation

RBSP trees proved to be an effective method to reduce the number of node traversals and triangle
intersections necessary for ray tracing by utilising the spatial coherence of objects in the scene.
Another method of achieving fewer traversals and intersections per ray is to use image coherence
- i.e., tracing the rays in groups and amortising the number of intersections and traversals over the
group. The method, called packet ray tracing / packet tracing, has been very effective to accelerate
ray tracing. As described in Chapter 2, packet tracing traverses groups of rays through the accel
eration structure and intersects the component rays with the primitives. Several different forms of
packets like frustum based, pyramidal and rectangular packets have been used to accelerate ray
tracing.

The best performance for ray tracing has been observed by the MLRTA [RSH05] - a form of
frustum based packet ray tracing that found entry points deep inside the tree to begin tracing the
individual rays. They also detail a packet traversal method based on interval arithmetic that is
relatively easy to implement. This method has been used to intersect packets through a variety of
structures and primitives [Ben06] [BWS06] [WBS07].

As the packet tracer traverses through the tree, several rays in the packet may not intersect the
node. Even in these cases, the nodes need to be traversed since a few rays intersect the node.
This reduces the coherence and the amortisation1 provided by traversing the tree with packets.
Consequently, the packet cannot consist of a large number of rays. At the same time, larger sized
packets lead to maximum amortisation of traversal costs, particularly when a large majority of
the rays traverse the nodes. Thus, a packet size that is optimal reduces the number of inactive
rays in the packet. In our implementations, a packet size of 8 x 8 was found to provide the best
performance2.

A packet size of 8 x 8 implies that a 1024 x 1024 image needs to traverse 16384 packets which
is still quite a large number of packets. Obviously, the number of packets increases as the image
size increases. Thus, an alternate method that uses larger packets could be even more effective.

The largest packet that can be used is one with rays through all the pixels of the image. The
method introduced in this chapter, Coherent Rendering, is an algorithm that considers all the
pixels of the image. The concept is adapted from object order ray casting [MJC02] - a high
performance volume rendering method that produces excellent images. Adapting this to triangle
meshes, providing a good implementation and subsequently studying the properties of such an
algorithm is the motivation for the rendering method called Coherent Rendering. The use of
the entire image as the packet is expected to produce an algorithm that potentially reduces the
complexity of rendering. The reasons for this belief will be described in the following section.

4.1.1 Average C om plexity

The average complexity of rendering is important as scene sizes increase. Z-buffer based rasteri
sation has an average complexity of (N x s) where N is the number of triangles in the scene and

am ortisa tion in the context o f packet ray tracing refers to the cost o f node traversals being shared by the number
o f rays in the packet. For m ost scenes, it can be observed that several neighbouring rays traverse the sam e path down a
tree. Thus, traversing the same nodes for each o f the rays is wasteful. W hen packets are traversed, the node is traversed
just once and the cost is divided, or amortised, amongst the com ponent rays, as long as they intersect the ray.

In our im plem entations, packet sizes o f 4 x 4, 8 x 8. 16 x 16 and 32 x 32 were used. O f these, the perform ance
was the best when packet sizes were 8 x 8 , follow ed c lose ly by packet sizes o f 16 x 16.

4.1 M otiva tion 81

s is the average projection size o f the triangles. A better logarithm ic com plex ity per pixel using
graphics hardw are has how ever been show n by W and et al. [W FP f 01]. On average, ray tracing -
through the use o f h ierarch ical data structures like the kd-tree o r the B V H - has a com plex ity o f
(){luy{N)) per pixel [H B 00] [H ur05] [W FM S05] [W SS05] [H H S06] [Y L M 06]. A sim p ler data
structure like the grid is show n to have a relatively slow er com plex ity o f 0 (N 1/A) [C W 88], It has
also been show n that w orst case com plexity o f ray tracing is 0(log(N)) per p ixel at 0 (N 1 + e)
m em ory and prep rocessing cost (w here e > 0) |B H O + 94j. H ow ever, this m em ory and p rep ro
cessing cost is p rohibitive and average case com plexity is lent m ore im portance.

F inding the closest triangle at a pixel (i.e., the closest triangle in tersec ting the ray co rrespond ing
to a pixel) can be considered as a special case o f a searching a lgorithm . T his im p lies that results
obtained for search a lgorithm s should hold fo r ray tracing. H ence, it m ay be d ifficu lt to im prove
upon the logarithm ic com plex ity per pixel w hen searching for a single elem ent in the tree. B en t
ley |B en79] show s that if instead o f searching for one elem ent in the tree, k n e ighbouring e lem ents
are to be found, it can be achieved in 0(log(N) + k) tim e, w here TV is the num ber o f e lem en ts in
the tree. T hus, fo r sufficiently large values o f k , the search com plex ity w ould be p roportional to k
instead o f log(N).

Nodes •
trav ersed bv 1 Nodes tiaverscd
a single ray j b> mulliPle ra> s

i1] Traversed N odes

2nd quadtree level

I'1 quadtree level

5

(a) Dataset (b) (c)

Figure 4.1: Naive recursive ray tracing exam ple on a 4 x 1 voxelized grid. T he num ber o f
distinctly traversed nodes is a geom etric series (1 + 2 + + N / 2 + TV = 2 7 V - 1).

Packet ray tracing is one m ethod that u tilises this result to significan tly accelera te ray tracing.
Packet ray tracing attem pts to find the closest in tersec tion for a sm all set o f p ixels. T he fac t that
the num ber o f rays in the packet cannot be arbitrarily large (due to reasons o f coherence m entioned
before) im plies that k is sm all enough to not m ake a significant d ifference to the com plexity .
R endering tim es for packet ray tracing, hence, still appear to be logarithm ic [W FM S05] [H ur05].
However, if k can be m ade significantly larger - by increasing packet sizes to very large sizes
(entire im age), then it w ould overshadow the term lo g (N) and as k approaches very large num bers,
the com plex ity w ould depend en tire ly on k p roviding a constan t com plex ity per pixel. T his result
has been used by Jensen [JenO l] to search for photons in a photon m ap. U tilising this resu lt to
investigate if a better com plex ity fo r rendering could be achieved is the basis fo r the C oherent
R endering.

The application o f B en tley 's search result to 3D rendering is obv iously not trivial at this point, even

4.1 M otiva tion 82

 SAH Median
— — Nodes SAH Nodes Median
Intersections Nodes

60 -

40 -

2 0 -

d e p th
10 20 30 40 50

(a) Sponza scene - Left side rendered with Coherent
R endering and right side show ing the wireframe

(b) Average number o f intersections and nodes traversed
by a ray tracer for the Sponza scene with space median
and SAH kd-trees. Average node traversals appears to be
logarithmic whereas the number o f triangle intersections
appears to converge to a constant.

Figure 4.2: Ray tracing the Sponza scene

if it is h igh ly probable that the in tersection points o f the d ifferent rays com posing the im age are
coheren tly located in the search space. F igure 4.1 illustrates the application to the dom ain better
by show casing a 4 x 4 voxelised 2D w orld con tain ing a ID flat surface that w ill be ray traced. In
the figure, rays and surfaces are ax is-aligned and the generalisation o f the sam e case to a N x N
voxelisation will be d iscussed (N being a pow er o f 2). To speed-up rendering , tw o quadtree
levels (log2(N) levels in the general case) are constructed from the voxelised scene, indicating
non-em pty spaces. F igure 4 .1 (a) indicates the nodes (num bered by traversal order) traversed by
a sim ple top-dow n recursive ray tracer fo r a single ray. In this exam ple, three node traversals
(log2(N) + 1) are needed before h itting the surface, w hich happens im m edia te ly after reaching
the first leaf node. If the sam e sim ple recursive ray tracer is called fo r four (i.e, r) d ifferent but
sim ilarly aligned rays as depicted in F igure 4 .1(b), a recursive ray tracer w ould traverse 4 x 3
nodes (i.e, r (lo g 2(N) + 1)). H owever, it is no ticeab le that som e o f them are traversed several
tim es (nodes 1. 2 and 5 in F igure 4 .1(b)). H ence, if only distinct nodes traversed by the algorithm
are counted , only seven nodes (2 N — 1 = 1 + 2 + 4 -1- ... + N / 2 + N) are traversed by four (i.e,
r) rays.

T herefo re , if an algorithm m anages to traverse every node ju s t once, the com plex ity o f tree traver
sal w ould be reduced from logarithm ic per ray to a constant per ray. T his is the princip le behind
C oherent Rendering.

The assum ption is that the logarithm ic com plex ity o f a regu lar recursive ray tracer is due to the
tree traversal itself, and not due to the in tersec tion tests. T he average num ber o f in tersections
per ray by a regu lar recursive ray tracer tends to a constant, p rovided the tree is w ell constructed .
Ray tracing the Sponza scene 4 .2(a) w ith an SA H kd-tree, show s that the average num ber o f
in tersec tions per pixel tends to 2. At the sam e tim e, the num ber o f traversal steps increases w ith
m axim um depth. T his strongly supports the be lie f that the per-pixel logarithm ic com plex ity o f a
regu lar ray tracer is m ain ly due to the tree traversal, and the in tersec tion com plex ity is 0 (1) and
ind ica tes that efforts should concentrate on low ering the num ber o f tree traversals.

T he volum e rendering m ethod - O bject O rder R ay C asting (O O R C) by M ora et al. [M JC 02] -

4.1 M otiva tion 83

demonstrates an 0 (1) complexity per pixel. This method and its main results will thus be detailed
in brief before the Coherent Rendering algorithm is detailed.

4.1.2 O bject O rder R ay C asting

Object Order Ray Casting by Mora et al. [MJC02] is an object order method for volume ren
derings. However, instead of tracing a ray through the volume, cells of the volume / voxels were
projected onto the screen. Since only orthogonal projections were considered, the voxels projected
onto a similar area (hexagon) on the screen. By just displacing the mid-point of a pre-computed
projection, a voxel’s projection is found very efficiently. In addition, a min-max octree was used
to identify and skip transparent regions of the volume. Using the octree also allows the front-to-
back visibility order determination. Combined with Hierarchical Occlusion Maps, the visibility
of a voxel / octree cell is determined. The combination of these structures for rendering is very
efficient. A very similar Maximum Intensity Projection (MIP) algorithm [ME05] has been shown,
both mathematically and empirically, to have an average complexity of 0 (N 2) for an N 2 image
of an N 3 volume leading to an 0 (1) complexity per pixel. It is to be noted that since the algorithm
renders only orthogonal projections, one dimension of the image and the volume are the same (N)
leading to the aforementioned complexity result.

The important results from the OORC algorithm will be briefly described in order to demonstrate
the 0 (1) complexity that motivates us to adapt it to a mesh rendering context.

Four widely used datasets have been resampled from 64'* to 7003 voxels. The datasets are Aneurism
(originally 256'*), UNC head (256 x 256 x 225), Bonsai (2563) and Neghip (643). All renderings
produce a 1024 x 1024 image using orthogonal projection (current code does not allow perspec
tive projection). For all renderings other than the Bonsai dataset, the zoom value has been fixed
to 1, which means that an axis-aligned projection of a voxel will have a 1 x 1 pixel footprint. The
zoom has been reduced to 0.8 for the Bonsai dataset because the 7003 dataset’s isosurface would
otherwise not fit the screen space.

4 .] M otiva tion 84

600
ms

♦ Aneurism
Rendering times (ms) i

500 ■ Head face i
400 ▲ Head skull M A

300 X Bonsai i
A

A

200 X Neghip ■
U
X

*
♦▲

♦

100
« 1

■ *

I ♦
♦ ♦

▼

% ▼ One dimension of resampled volume
7---------- T---------- 1--- - — ------- 1----------1----- ------ r~- ---- T ----- T~ T "-- -—1---

64 128 192 256 320 384 448 512 576 640

(a) Isosurface rendering tim es according to one dim ension o f the volum e size N

9 PSR endering tim e s p e r pixel (ps/pixei)

06
04
0.2 Aneurism Head face Head skull

Bonsai Neghip Log Curve
O ne dim ension of resam pled volume

64 128 192 256 320 384 448 512 576 640

(b) Per pixel rendering tim es. Flat curves indicate that
the com plexity is proportional to N (and therefore 0 (1)
per pixel)

8 ♦
7
6
5 ‘
4
3
2
1

0

R en d e rin g tim e s p e r n on -b lack pixel (ps/p ixe l)

i i I I t I t • •
Aneurism ■ Head face a Head skull
Bonsai * Neghip

O n e d m e n s io n of re s a m p le d vo lum e

64 128 192 256 320 384 448 512 576 640

(c) Rendering tim e per non black pixel.

Figure 4.3: O bject O rder Ray C asting rendering tim es

R endering tim es represent the average contribution o f 30 different v iew points. F inally, sign ifi
cant effort has been put into optim ising the O O R C algorithm , using a profiler and SIM D SSE
instructions as w ell.

F igure 4 .3(a) show s the rendering tim es according to the volum e size. In o rder to dem onstrate
the com plexity better, the preprocessing tim e is subtracted from these rendering tim es before
d iv id ing it by the num ber o f pixels in the im age(F igure 4.3(b)). T he prep rocessing tim e is the tim e
required to in itialise a few rendering param eters and the 1024 x 1024 im age (w hich is oversized
w hen rendering sm all volum es). Thus, only the tree traversal and the access to the relevant p ixels
o f the im age are taken into account, w hich dem onstrates the convergence slightly sooner.

A fter analysing F igure 4.3(b), it appears that the curves are flat enough in the j 196'* - 700 ' J voxels

4.2 C oherent R endering - C oncept a n d H igh Level A lgorithm 85

W ald et al. M ora et al.
P rocessor D ual O pteron 1.8 G H z, 1MB A thlon 64 X 2 2G H z, 512K B

C ores used 2 1
Bonsai 5.2 fps 8.2 fps

A neurism 6.2 fps 20 fps

Table 4.1: C om parison w ith ray tracing approach

range to validate the 0 (N 2) com plexity , especially w hen com pared to a theoretical logarithm ic
curve in F igure 4 .3(b). It is thought that the low efficiency o f the algorithm fo r m odels sm aller
than 1 9 6 1 m ay be due to the overestim ation used during the v isib ility process. A m ore accurate
estim ation o f v isib ility could w ell lead to an earlier convergence.

R endering tim es in F igure 4 .3(b) are div ided by the percen tage o f non-b lack p ixels in each render
ing to obtain rendering tim es per non black pixels (show n in Figure 4 .3(c)), since som e vo lum es
like the A neurism are rendered m uch faster as they have few er affected pixels. O ne can see that
rendering tim es per non-b lack pixel are now m uch closer. O nly the B onsai dataset has a slightly
higher cost per non-black pixel, probably due to the different voxel/p ixel aspect ra tio used.

Finally, the rendering tim es for the A neurism and Bonsai datasets are com pared w ith the very
in teresting ray tracer by W ald et al. (W FM S05). This algorithm - show n to be logarithm ic - has
been optim ised using S IM D instructions as w ell, and unlike O O R C . is able to perform perspective
projection. The sam e isosurface, the sam e p rocessor fam ily, and the sam e im age size (512“) has
been used. W hile it is necessary to be very careful w hile such com parisons are m ade since m any
param eters like shading and view points may not be the sam e, this com parison w ill give us a good
idea o f the o rder o f efficiency o f the O O R C algorithm . R esults sum m arised in Table 4.1 show that
the level o f perform ance obtained w ith just single thread by the O O R C algorithm is m uch better
even for sm all volum es. It is likely that the perform ance advantage is m ore pronounced as the
volum es get larger due to the better com plexity .

The m ethod is a very efficient m ethod to undertake volum e rendering, show ing sign ifican tly h igher
perform ance than previous m ethods. A nalyzing the com plexity o f this m ethod reveals that it has
an average com plexity o f 0 (1) per pixel. This led to the be lie f that if a sim ilar a lgo rithm cou ld
be im plem ented for triangu lar m eshes, sim ilar perform ance and com putational com plex ity could
be achieved. H owever, the algorithm fo r volum es was to be adapted fo r use w ith m eshes. In
addition, perspective p ro jections - m ore popular in triangu lar m esh renderings - was necessary to
be considered. C oherent R endering is the adaptation o f this object ray casting m ethod to render
triangu lar m eshes.

4.2 Coherent Rendering - Concept and High Level Algorithm

As m entioned. C oherent R endering is an adaptation o f the O bject O rder R ay C asting m ethod . It
is an attem pt to consider the entire view ing frustum as a packet o f rays. H ow ever, in o rder to
achieve this, concep ts from both rasterisation and ray tracing are used. In addition , to perfo rm the
occlusion testing - achieved easily lo r single rays through early ray term ination - the concep t o f
H ierarchical O cclusion M aps [ZM H H 97] [Zha98] is adapted.

The high level algorithm o f C oherent R endering first considers the root node o f the kd-tree and

4.2 C oherent R endering - C oncept and H igh Level Algorithm 86

determines if it is visible. If it is, then its children are considered in a front-to-back order with
respect to the viewpoint. This is continued until either the node is determined as being not visible
or a until the leaf node is reached. A node can be determined as being not visible if it is either
outside the frustum or if it is occluded by already rendered parts of the scene. Once the traversal
reaches the leaf node, it implies that some of the geometry in the leaf node may be visible. Thus,
each triangle is tested for visibility and rasterised if it is visible. In this manner, the entire scene is
considered as a packet and at the end of the process, each pixel is shaded accordingly.

The high level algorithm can be written as shown below.

CoherentRender()
{

InitialiseConstants() ;
TraverseTreeCoherent(rootNode) ;
Shade Pixels

}

Listing 4.1: High Level Coherent Rendering algorithm.

One of the differences between rasterisation and Coherent Rendering is the use of a ray tracing
structure like the kd-tree to achieve a better complexity for rendering. The front-to-back traversal
of the structure ensures that geometry that is closer is processed prior to geometry that is further
away from the viewpoint. Using this property, occlusion is detected for nodes (including the
geometry in them) by using Hierarchical Occlusion Maps that are adapted to the algorithm.

The fact that in this method each node is traversed just once at most, is important to attain an
improved rendering complexity. In addition, the triangles are not shared by too many nodes as
long as a good tree can be built. Thus, except in cases where a good tree cannot be built, the
number of triangles to rasterise is minimal. Minimising the number of these two operations -
responsible for almost all of the computational time in a rendering system - is expected to lead to
a very efficient method.

While the main traversal algorithm is well-known, the primary goal is mainly to ensure correct
implementation of the entire pipeline and to observe the complexity improvement. Many papers
/ software are already using similar algorithms for rendering [Gre96] [ZMHH97]. For example,
Bittner et al. [BWPP04] described a similar traversal using occlusion queries to test for occluded
cells. However, the visibility function must actually perform a constant (0 (1)) number of opera
tions to ensure that the global average 0 (1) complexity holds. One way to perform the test would
be to query all rays intersecting the node and to check whether they are already opaque. However,
even this would not be an 0 (1) algorithm. The use of HOMs, that allow occlusion determina
tion in constant time per pixel, is the main component in the attempt to obtain an 0 (1) rendering
method.

In the high level algorithm, there is an initialisation process whereby several important variables
and constants necessary for the rendering process are initialised. Subsequently, the tree is traversed
to determine the triangle that contributes to each pixel of the image. Finally, using the triangle and
the position of the viewpoint and the lights, the pixel is shaded accordingly.

Of the three steps, the tree traversal including the leaf node processing constitutes the main com
putations in the algorithm. These methods including a few important auxiliary methods will be
described in detail in the following sections.

4.3 Tree Traversal 87

4.3 Tree Traversal

O nce the several variables and constants fo r this view point have been com puted , the tree is to
be traversed to render the im age. T he traversal considers the nodes o f the kd-tree struc tu re in a
front-to -back v isib ility o rder starting from the root node. It can be w ritten using the pseudocode
below.

TreeTraverseCoherent(node)
(
Project node onto image
if(node not within frustum or

isOccluded(node) or
node is fully between 4 pixels)

return;
if(isLeaf(node))
(

FrocessLeafNode(node) ;
return;

)
side - viewpoint[axis] > splitpos;
if (side > 0)
{
frontNode = node.leftNode;
back.Node = node.rightNode;

}
else
{

frontNode = node.rightNode;
backNode = node.leftNode;

}
TreeTraverseCoherent(frontNode);
TreeTraverseCoherent(backNode);

Listing 4.2: Tree traversal using the entire frustum . If the frustum in tersec ts the root node, the
tree is traversed in a fron t-to -back o rder until the lea f nodes w here the triang les con tribu ting to

the im age are determ ined.

C oherent R endering , at the highest level, as show n by the pseudocode above, is a recursive a l
gorithm that considers each node in a fron t-to -back order w ith respect to the v iew point. At each
node, the algorithm determ ines the node 's visibility. If the node is visib le , its child nodes are
considered. The process continues until a leaf node is reached or until the node is de term ined as
being occluded.

The m ain steps to determ ine if a node is visible or not are as follow s:

• Project node on to the im age.

• D eterm ine frustum visibility.

• Test node for O cclusion.

• Test to see if node is too sm all.

Except the occlusion test - that w ill be described in m uch g reater detail in Section 4 .4 - the o ther
operations w ill be detailed in the follow ing subsections.

4.3 Tree Traversal 88

4.3.1 N ode Projection

Projecting a node on to the im age plane im plies determ in ing the bounding rectang le o f the node.
This is achieved by transform ing the eight vertices o f the node to im age space. The vertices are
m ultip lied by the global transform ation m atrix to first transform them (w ith pixels in the range o f
-1 .0 to 1.0) and then to get the actual pixels occupied by them by m ultip ly ing and adding the h a lf
im age w idth to the X com ponen ts and ha lf im age height to the Y com ponents. O nce the p ixels
o f the n o d e’s vertices are found, the m axim um and m in im um A' and Y coord inates are selected to
get the bounding rectangle o f the node. Figure 4 .4 show s the node pro jected onto the im age space.

viewpoint*

image plane

n od e projection

Figure 4.4: N ode projection . C oherent R endering p ro jects all the eigh t vertices o f the node onto
the im age plane to obtain the node projection for the root nodes.

The com putations to convert a vertex from m odel space to im age space can be given as:

p = pi * M

Px = (P x / P w) * h a l f W id th + h a l f W i d th

Py — (P y / P w) * h a l f H e ig h t + h a l f H e ig h t

Pz = (.P z / P w) (4 .1)

w here p i - the vertex to be p rojected
M - the global transfo rm ation m atrix
p - the vertex after p ro jection
Px ? Py j Pz ~ AT, Y , and Z coord inates o f the point on the im age
p w - hom ogeneous coord inate
h a l f W id th , h a l f H e ig h t - H alf o f the im age’s w idth and height respectively

The above term s provide the calcu lations necessary to convert one poin t / vertex from m odel space
to im age space. H ence, to find the projection o f the node on the im age space, the eight vertices
arc transform ed using the above calculations.

The above term s show that p ro jecting a single point requ ires several expensive ca lcu la tions - one
m atrix m ultip lication , one div ision and several add itions and m ultip lications. T hus, the entire

4.3 Tree Traversal 89

process o f p ro jecting a node on to the im age is a very expensive operation .

In o rder to reduce a few calcu la tions, the observation that w hen a kd-tree node is split, on ly four
new vertices are created , is used. T hus, w hen a node is split into tw o, the eight vertices are d iv ided
into tw o sets o f four vertices - one set fo r each child node. T he o ther four vertices fo r the tw o
child nodes are shared and are defined by the four vertices fo rm ed by in tersec ting the split p lane
w ith the node. F igure 4.5 show s this. T hus, instead o f p ro jecting all eigh t vertices o f a node, four
vertices o f the split plane are p rojected and the list o f p rojected vertices is m ain tained th rough the
traversal process.

im age plane

v iew point*
node projection n ode

Figure 4.5: N ode p ro jection - p ro jec ting only the split p lane. For non-roo t nodes. C oherent
R endering p ro jects only the split plane to reduce com putations.

O nce the node has been pro jected onto the screen, it can be sub jected to the v is ib ility tests.

4.3.2 Frustum V isibility and N ode Size Test

An unoccluded node is de term ined as not v isible if it lies ou tside the frustum or if its p ro jec tion
falls betw een four neighbouring pixels (2 vertical and 2 horizontal pixels). T hese tw o tests are
perform ed for every node at each o f the traversal steps.

4.3.2.1 F rustum Visibility

W ith respect to the frustum , a node can either be partly inside the frustum , com pletely inside the
frustum or com pletely outside the frustum . It is necessary to determ ine the case a node belongs to
in order to determ ine the v isib ility o f the node and its child nodes in consideration .

Node partially inside the frustum - To determ ine if a node is partly w ithin the frustum , it is
tested for in tersec tion w ith the planes fo rm ing the frustum . Since the im age is rectangular, the
frustum is form ed by four p lanes. T he v iew point form s the com m on point am ong all the p lanes.
The o ther tw o planes are de term ined by the tw o end points o f the edges o f the im age. T hus, a node
is partly inside the frustum if the node in tersects one o r m ore planes o f the frustum and a part o f it
is inside the frustum .

4.3 Tree Traversal 90

In the im plem entation , a c lipp ing algorithm is used to determ ine if a node is partly w ithin the fru s
tum . The node is c lipped w ith all the planes o f the frustum . I f the clipping a lgorithm determ ines
that the polyhedron form ed is not an em pty polyhedron - detected w hen the num ber o f vertices it
com prises o f is not zero - then a part o f the node is w ithin the frustum . W hen a node is de term ined
as being partly inside the frustum , its child nodes have a possib ility that they are fully ou ts ide /
inside the node. H ence, child nodes o f partly inside nodes need to be tested for frustum visib ility
at each recursive step until they are e ither fully ou tside the frustum or fully inside the frustum .
This is show n in case 1 in F igure 4 .6

node

frustum
viewpoint

Case 1 - Node partially inside frustum

node

frustum
viewpoint

Case 2 - Node fully outside frustum

frustum
viewpoint

Case 3 - Node fully inside frustum

Figure 4.6: Frustum v isib ility o f a node. N ode can either be partially inside the frustum , fully
outside the frustum or fully inside the frustum , as show n in the diagram .

Node fully inside or outside the frustum - W hen a node is de term ined as not being partly
inside the frustum , it im plies that the node is e ither fully inside or fully outside the frustum . S ince
the state o f all the vertices o f the node w ith respect to the frustum is the sam e (e ither inside or
outside), it is sufficient to determ ine if one o f the vertices is inside the frustum or not. If the signed
distances o f the point to all the fou r frustum planes are positive, it im plies that the node is fully
inside the frustum . O therw ise, it im plies that the vertex and consequently the node is fu lly ou tside
the frustum . C ases 2 and 3 in F igure 4 .6 show these nodes that are fu lly inside and fu lly ou ts ide
the frustum .

W hen a node is fully ou tside, the node can be skipped. W hen a node is fully inside, all ch ild
nodes are also fully inside. H ence, frustum visibility tests are not necessary fo r child nodes o f

4.3 Tree Traversal 91

fully inside nodes.

4.3.2.2 Node Size Test

In the C oherent R endering algorithm , the p ixels are considered as points ra th e r than as squares.
T hus, w hen a node becom es too sm all such that it lies betw een fou r pixels (tw o ad jacen t vertical
p ixels and tw o adjacent horizontal pixels), the objects in this node (or any child nodes / sub trees
it m ay have) cannot contribute to the im age. T his occurs w hen the triangle density is h igh (a large
num ber o f sm all triang les). T hese nodes do not need to be processed .

T his condition is easily tested. O nce the node is pro jected onto the im age plane, the vertices at the
ex trem ities along the X and Y axes o f the im age are determ ined . T hese values - the m in im um
and m axim um values a long a particu lar axis are used to determ ine w hether the node is too sm all.
W hen the in teger part o f the m inim um and m axim um values are the sam e along either axes, it is
determ ined that the node canno t contribute to the im age. Figure 4 .7 show s a few exam ples o f how
this m ay happen. The p seudocode below describes the process o f de tec ting if a node is too sm all.

Figure 4.7: E xam ples o f nodes occurring betw een four pixels. S ince C oherent R endering
considers the pixels as points, geom etry occuring betw een pixels are ignored .

pMinX = min(X values of eight vertices)
pMaxX = max(X values of eight vertices)

pMinY = min(Y values of eight vertices)
pMaxY = max(Y values of eight vertices)

nodeTooSmall = ((int)pMinX =
(int.) pMinY =

(int)pMaxX or
= (int)pMaxY)

L isting 4.3: Pseudocode ind icating how very sm all nodes, that are sm all enough to not con tribu te
to the im age, are determ ined.

If a node has been determ ined as being w ithin the frustum and big enough , it can co n sis t o f
triang les that are a part o f the im age. H owever, the nodes (and triang les) m ay be occluded by
triang les that have already been rendered. O cclusion detec tion to ensure accurate v is ib ility is
achieved through the use o f H ierarch ica l O cclusion M aps.

4 .4 O cclusion D etection - H ierarchical O cclusion M aps 92

4.4 Occlusion Detection - Hierarchical Occlusion Maps

Occlusion detection is built into ray tracing when a space subdivision structure is traversed in a
front-to-back manner. However, as packet sizes increase, the number of rays in the packet make it
difficult to skip nodes due to the fact that the active rays may intersect some geometry in the node.

Similarly, with Coherent Rendering - which could be considered as a form of packet tracing with
the entire image as the packet - it is difficult to use this property directly to determine occlusion.
At the same time, it is important that occlusion is detected as early as possible so that nodes higher
up in the tree can be skipped.

Since Coherent Rendering cannot use early ray termination directly, Hierarchical Occlusion Maps
[ZMHH97] [Zha98] are adapted to serve a similar purpose. Hierarchical Occlusion Maps are con
ceptually simple and determine if regions of the image are occluded. They are adapted for use with
Coherent Rendering. The usage mainly consists of two parts - updating them so that they indicate
the current state of occlusion, and testing the corresponding HOM pixels to determine occlusion.
The concept of HOMs as used in Coherent Rendering, as well as their usage is described in further
sections.

With HOMs, occlusion is ascertained by testing just one pixel value. In addition, the update
process is also proportional to the number of pixels in the image and is independent of the number
of triangles in the scene. This is an important component in the efforts to investigate if an 0(1)
complexity rendering method is possible.

4.4.1 C oncept o f H O M s

As the name suggests, HOMs consists of hierarchically organised pixels. HOM pixels in the lower
levels of the map indicate smaller areas with the lowest level indicating four pixels of the actual
image. Each upper level HOM pixel combines four pixels from the corresponding lower level.
At the highest level, a single HOM pixel represents the entire image. Figure 4.8 shows the HOM
generated for the Armadillo model.

In order to minimise the number of HOM pixels accessed during traversal, the structure is modified
slightly so that a given extent can be tested by examining just one HOM pixel. A region of
influence of a pixel is determined as the four pixels closest to it (shown in Figure 4.9). i.e., when
a pixel’s triangle is determined, the closest four pixels are considered to have changed and hence
the value in these four pixels are incremented. Due to this, a HOM pixel (covering four image
pixels at the lowest level) can be incremented 16 times, with a value of 16 indicating that the
corresponding area in the image is occluded.

The HOM pixels can have values between 0 and 16 - a value of 0 indicating that the pixels
represented have not yet been rendered and a value of 16 indicating that the pixels are fully opaque
and hence do not need to be processed again. A value between 0 and 16 indicates that a few pixels
in the region of influence have been rendered, but not all of them are opaque yet. These values
indicate that processing has to continue for areas that correspond to the pixel.

The HOM must be updated whenever a pixel is rendered so that it always maintains the current
occlusion state for the rendering process. This is performed in the recursive rasterisation function
described in Section 4.5.

4.4 O cclusion D etection - H ierarchical O cclusion M aps 93

Final Rendering

Figure 4.8: H O M for the A rm adillo m odel. The im age w ith the green border is the actual im age
o f size 1024 x 1024. T he im age labeled 0 is the low est level o f the H OM and so on. Level 0 o f

the H OM consists o f 256 x 256 pixels. T he highest level (5) o f the H O M has ju s t one pixel.

The updating o f H O M s - so that it ind icates the current state o f occlusion , and testing for occlusion
using it will be described in the fo llow ing sections.

4.4.2 HOM Update

W hen a pixel is rendered, it is set to the appropriate colour. At the sam e tim e, the pixel affected
and three o f its nearest pixels (as show n in F igure 4 .9) are considered as being changed. H ence,
the low est level H OM pixel correspond ing to these four pixels are increm ented by 1. E ach H OM
pixel can be influenced by 16 low er level pixels and thus can be increm ented 16 tim es. A value
o f 16 for the pixel value ind icates tha t the region o f the im age rep resen ted by the pixel is opaque.
This change is p ropagated upw ards by increm enting the four closest pixels until e ither the topm ost
level is 16 or the value o f a pixel is less than 16.

The concept o f region o f influence is an op tim isation to the a lgorithm that allow s only one H OM
pixel to be tested. As w ill be d iscussed in S ection 4 .4 .3 , only the H O M pixel correspond ing to the

4.4 O cclusion D etection - H ierarchical O cclusion M aps 94

Lower level’s pixel
becoming opaque

+ 1
1

+1
T

+ 1
h i

+1 is added to the 4
closest pixels of the
current map

(a)

Region of influence of
the central pixel

Bounding Box of the
primitive to be tested

(c f \ < d 2 compulsory)
(b)

Figure 4.9: R egion O f Influence in H OM . W hen a pixel is determ ined , the fo u r closest pixels
(including itself) are deem ed to be in the region o f influence. T hese four p ixels can cause an

increm ent in upto four upper level H O M s.

m id-point o f p ro jec tion ’s bounding box needs to be tested. If the concept o f region o f influence
w ere not used, four pixels correspond ing to the extrem ities o f the bounding box w ould need to be
tested.

Since the m axim um num ber o f updates to a HOM pixel is 16 and since the num ber o f H O M pixels
is a third o f that o f the orig inal im age (1 / 4 + 1 / 1 6 + 1 /64 + ... = 1 /3) , the updating process
requires at m ost 16p2/3 steps, w here p 2 is the im age size, leading to an 0 (1) com plex ity per pixel
for updating the H O M . It is to be noted that the com plex ity is 0 (1) w ith respect to num ber o f
triangles and not num ber o f pixels.

4.4.3 Occlusion Testing using HOMs

To perform the occlusion test, the exact H OM pixel correspond ing to the pixel extent is tested.
O nce the pixel has been identified, the actual occlusion determ ination is ju s t a single com parison
against 16. W hen the H OM p ix e l’s value is equal to 16, the space correspond ing to the H OM
pixel and resultantly the pixel extent is fully occluded, o therw ise it is not. O ccluded nodes and
occluded parts o f triang les do not need to be processed .

The m ost com plex part o f the test is determ in ing the exact pixel to test. Two bits o f in form ation
arc needed - the level o f the H O M and the bit o f the H O M to check in the level. B oth o f these are
calculated using the vertices o f the node’s bounding box.

The bounding box is determ ined by using the projection o f the node / triang le being tested. The
m inim um and m axim um values o f the X and Y coord inates o f the p ro jection gives the necessary
bounding box.

4 .5 L ea f N ode P rocessing - R ecursive R asterisa tion 95

Finding the level of the HOM The level of the HOM is dependent on the maximum of the
two lengths of the bounding box. The structure of the HOM is such that in the first level, each
pixel indicates two X coordinates and two Y coordinates. At the second level, it indicates four
coordinates each and so on. Hence, the level is given by the log2 of the greater of the two extents.
The formula used for determining the correct level is simply given by I = Integer(log-2 {di)),
where d\ is the longest edge (in pixels) of the box and I is the map level. I must also be clamped to
[0Jog2{N) — 2] since the bounding box may either smaller than a pixel or larger than the image
size N . The log2 of a floating point number can be determined efficiently by using the IEEE
floating point representation’s exponent part that gives the power of two just below the floating
point number being represented. The expressions below provide the implementation to determine
the HOM level to be tested.

dl = max(xExtentLength, yExtentLength)
HOMLevel = Exponent(dl)+1

Listing 4.4: Determining the HOM level. Exponent function uses the IEEE representation of a
floating point number to easily determine the exponent.

Finding the Exact Pixel to Test at a Level Once the level has been determined, the pixel at that
level is necessary. For this, the mid-point of the node projection’s bounding square is used as the
representative pixel. At each level, each coordinate is halved - for eg., if the pixel to be tested is
(100. 200), then at the first level the pixel to be tested would be (50.100). At the next levels, it
would be (25, 50), (12, 25) and so on. It can be noticed that the pixel at the required level is the
original pixel divided by 2HOMLevel. Since integer divisions by powers of 2 are sufficient, it can
be achieved with just a bitwise right shift operation. The X and Y coordinates of the pixel to be
tested at the required level are computed in the implementation as shown below.

HOMPixelX = x >> HOMLevel
HOMPixelY = y >> HOMLevel

Listing 4.5: Determining the HOM pixel to check using bit shift operators.

Once both the level and the pixel in the map are determined, it is simple to detect occlusion. If
the pixel thus found has a value of 16, then the node or triangle part is occluded. Otherwise it is
considered as not occluded and hence processing continues. It may be observed that the occlusion
test involves very few operations.

HOMs are an integral part of the tree traversal process. Occluded nodes are easily detected using
them and these nodes can be skipped. The traversal continues down the tree, skipping occluded
and invisible nodes to finally reach the leaf nodes. At the leaf nodes, the triangles in them may be
a part of the final image. Determining the parts of the triangle that are part of the final image is
undertaken by the leaf node processing part of the algorithm.

4.5 Leaf Node Processing - Recursive Rasterisation

The tree nodes are tested for visibility, as described in the preceding sections, until either they are
determined as being occluded or until a leaf node is reached. When a leaf node is reached, the
node is fully or partly visible from the viewpoint. Consequently, some or all of the geometry it

4.5 L e a f N ode P rocessing - R ecursive R asterisa tion 96

contains m ay also be visible from the v iew point. T he parts o f the triangles in the le a f node are
tested fo r occlusion until the pixel level and if they are not occluded , then the pixels they occupy
are determ ined , coloured and shaded accordingly.

At the highest level the algorithm can be described w ith the pseudocode below.

ProcessLeafNodeO
1
tList = triangles in leaf node
for(each triangle t in tList)
{
polygon = ClipWithBoundingBox (t, nodeBB);
polyTrs = polygon.SplitIntoComponentTriangles ();
for (each component triangle cTr in polyTrs)

L isting 4.6: L eaf node processing in C oherent R endering a lgorithm . W hen a lea f node is
reached, each tr iang le 's part that is in the frustum is recursively rasterised .

The pseudocode show s the m ain com ponents in de term in ing the con ten ts o f the final im age. It is
to be recalled that only scenes consisting exclusively o f triangles are considered. Every triang le
identified and accessed (as w ill be show n in A ppendix A .2.2) m ust be clipped w ith the bounding
box o f the node. T his is to ensure that the parts o f the triangle that are outside the node are
not considered. T he clipping is perform ed using a m odified version o f the S u therland-H odgm an
clipping algorithm [SH 74].

Figure 4.10: L eaf node triang les needing clipp ing due to partly enclosed triangles. To ensure
accurate visibility, only parts o f triang les that are fully con ta ined by the node are to be

considered. If o ther parts are considered, they result in rendering artifacts.

As Figure 4 .10 show s, c lipping these triangles leads to po lygons that m ay not be triangles. These
po lygons are then broken up into the ir com ponent triang les using a very sim ple m ethod. O ne o f
the vertices o f the polygon is considered as the com m on vertex and a fan o f triangles is created
with this vertex as the com m on vertex o f all the triangles. The triangulation m ethod is illustrated in
Figure 4.10. T his m ethod, how'ever, is not the best m ethod for triangulation and leads to triang les
o f poor aspect ratio. O ther m ethods w herein a point is placed in the centre o f the polygon and
connected to each vertex w ould result in better quality triangles. B ut. for the purposes o f our
algorithm , the triangulation m ethod used by us p rovides satisfactory results.

Subsequent to clipping and triangulating , the com ponent triangles are rasterised . The first step is to
project the three vertices o f the triangle to find the pixels that the triang le vertices occupy in im age
space. T he projection m ethod is com puted as described in Section 4.3.1 - i.e., by m ultip ly ing the

RecursiveRasteriseTriangle(cTr.pi, cTr.p2, cTr.p3);

node

leaf node triangles

com m on
vertices

Parts of triangles clipped with the bounding box
(triangulated if n ecessary)

4 .5 L e a f N ode Processing - R ecursive R asterisation 97

point by the global transform ation m atrix and converting the coord inates from O penG L space to
im age space. The pixels affected by the triangle are then determ ined w ith a subdivision m ethod
as described by the pseudocode below.

RecursiveRasteriseTriangle(pi, p2, p3)
t
minX = min(pi[x], p2[x], p3[x])
maxX = max(pi[x], p2[x], p 3 [x])

minY = min(pi[y], p2[y], p3[y])
maxY = max(pl[y], p2[y], p3[y])

minZ = min(pi[z], p2[z], p3[z])
maxZ = max(pl[z], p2[z], p3[z])

if(maxX < 0 II maxY < 0 |I
minX > imageWidth || minY > imageWidth
I| maxZ < -1 || minZ > 1)

I
//if triangle is outside image bounds
return;

if (triangle is fully between 4 pixels)
return;

visible = CheckVisibilityHOM((minX + maxX)/2, (minY+maxY)/2);
iff!visible)

return;
if (maxX-minX < 1 && maxY-rninY < 1)
{
setPixel(maxX, maxY);
upaate HOM;
return;

}
1 = LongestEdge ();
p4 = PointOfTriangleNotIn(pi, p2, p3, 1);
middle - Midpoint(longestEdge);
RecursiveRasteriseTriangle(longestEdge.pl,

longestEdge.p2, middle);
RecursiveRasteriseTriangle(middle, p4, longestEdge.pl);

Listing 4.7: R ecursive rasterisation o f a triangle. This is a subdivision algo rithm that d ivides the
triangle recursively until it casts a p ro jection on only one pixel, at w hich point the triang le can be

attribu ted to the pixel.

The first step o f the recursive process is to find the bounding box o f the triangle being considered.
T his is determ ined as the m inim um and m axim um coord inates along each axis.

O nce this is determ ined, if the bounding box is outside the frustum , the triangle cannot be in the
final im age. A test is undertaken to determ ine if the bounding box is w ithin the bounds o f the
im age. If the bounding bo x ’s m axim um coord inate is less than zero, in w hich case the entire
bounding box and consequen tly the triangle is outside the im age. S im ilarly , if the m in im um
coordinate o f the bounding box is g reater than the im age w idth / im age height, then the triang le is
outside the im age. The bounds for the Z coord inate are -1 and 1 w hich are the dep ths of the near
plane and the far plane. Parts o f the scene not betw een these planes, indicated by Z values > 1
and < — 1. are discarded.

4.5 L e a f N ode P rocessing - Recursive R asterisa tion 98

If the triang le is de term ined as being w ithin the im age boundaries, the next test it has to undergo
is the v isib ility / occlusion test. H ierarchical O cclusion M aps - described in Section 4.4 are again
used to verify the tr ian g le ’s visibility. T he H O M s indicate if the pixels occupied by the triangle
have already been rendered. D ue to the fron t-to -back traversal o rder o f nodes, if a pixel has
a lready been rendered , it im plies that for this pixel, the first triang le along the ray (conceptually)
has been determ ined . H ence, no o ther triangle can be visible at th is pixel. The H O M s allow easy
determ ination o f th is condition .

W hen a triang le is not sm all enough to determ ine ju s t one pixel, it is split into tw o sm aller tr ian
gles. T he triang le is divided into tw o sm aller triang les at the m id -po in t o f the longest edge o f the
triangle. T he function is then recursively called for the tw o split triangles until the extent o f the
triangle is less than one pixel w ide and one pixel high. T hrough each subdivision , the H O M s are
tested to see if the split triangle is occluded. W hen the subdiv ided tr ian g le ’s extents are less than
than one, the pixel overlapped by the triangle extent is given the co lou r o f the triangle.

F igure 4.11 show s the rasterisation process fo r a few d ifferent triangles.

pixels recursn e
subdivi: ions

triangles

very small triangle

pixels
shaded pixels

Figure 4.11: R asterising triangles. A subdivision m ethod is fo llow ed w here the triangle is
subdivided recursively until they span a single pixel. A t this pixel, the triangle is de term ined as

being visible.

S im plicity is favoured w hile im plem en ting this algorithm . S im ilar w ays to perform h ierarchical
rasterisation (W ar69J [G re96] IG GW 98J could have been considered, but the sim pler m ethod de
scribed was favoured. A crucial property o f h ierarchical rasterisa tion is that its com plex ity (i.e.,
the num ber o f recursive calls) is p roportional to the num ber o f pixels o f the pro jected triangle.
F igure 4.12 show s the square root o f the num ber o f recursive calls fo r a single triang le p ro jection
accord ing to one d im ension (im age w idth / im age heigh t) o f different im age sizes, dem onstra ting
a perfect linearity o f the algorithm . The square root is needed since a single d im ension o f the
im age is plotted on the X axis.

The recursive function is, on average, ca lled approxim ately 8 tim es per pixel. T he recursion

4 .6 R esu lts 99

W 6000
* 5000
£ 4000
w 3000
X 2000
a w

7000

0 1024 2048 3072 4096

Im a g e S ize (S Q R T (# p i x e l s))

(a) (b)

F igure 4 .12: L inearity o f the h ierarch ical rasterisa tion algorithm . T he num ber o f recurive
rasterisa tion calls to rasterise the triang le (right) at d ifferent reso lu tions (from 8 2 to 40 9 6 2) has

been show n. It can be seen from the graph (left) that the num ber o f calls increase linearly
accord ing to im age si/e .

stops only w hen the size o f the bounding box o f the triangle is less than a pixel w ide, but m any
subdiv ided triang les end up betw een pixels, m aking shading im possib le and increasing the per
pixel cost.

T he p rocess identifies the triang le p ro jecting onto each pixel. W hen all the triangles for all the
p ixels have been identified , the v isib ility at every pixel is determ ined. The im age can be rendered
by shading the pixel depend ing on the position o f the light source. A very sim ple schem e o f
shading is used w here the dot p roduct o f the triang le norm al and the ray is taken and the pixel is
shaded accordingly . T hus, using the m ethod described in the above sections, the v isib ility at each
pixel is de term ined and using a basic shading process, an im age is generated .

A lthough the a lg o rith m 's m ain m otivation is to investigate the possib ility o f a better com plexity , it
w as expected that the a lgo rithm w ould be com petitive w ith packet ray tracers. H ence, in addition
to com plex ity results , the absolute perfo rm ance resu lts in com parison to packet ray tracers are
provided.

H ow ever, it is to be no ted that, so far, no particu lar effort has been m ade to optim ise the different
parts o f the algo rithm . T he m ain goal o f C oherent R endering is to investigate perform ance as
scene sizes and im ages sizes increase. A lso, kd-trees built using the space m edian heuristic have
been chosen , since it appeared to be faster in m ost cases than the surface area heuristic.

4.6.1 E m pirical C om plexity

4.6 Results

T he a lgorithm has been em pirica lly tested w ith d ifferent datasets on an A M D A thlon X2 3800+
(2 G H z, 2 cores, 512 KB cache per core) wdth 2 GB o f m em ory available. All ou r a lgorithm s are
sing le-th readed and running on a 32-bit opera ting system .

4.6 R esults 100

Synthetic Benchm ark F or the first test, a synthetic plane (F igure 4 .13(a)) w as subdiv ided to
see the evolution o f the rendering tim es accord ing to the num ber o f triang les. A plane w ith 2
triang les is used as the base m odel and is subdivided to obtain scenes w ith 2S~ 1 triang les, w here
s is the num ber o f subdivisions. In addition, 15 copies o f the sam e subdiv ided p lane w ere added
behind the original one and the per pixel rendering tim es fo r both the single and m ulti plane scenes
w ere studied. A unique v iew point - show n in F igure 4 .13(c) - w as used.

F igure 4.13: Synthetic B enchm arks, (a) orig inal single plane m esh (no subdiv ision), (b)
16-plane scene subdiv ided 6 tim es, (c) is the final im age obtained from all synthetic scenes

rendered using a unique view point, (d) and (e) are the varia tion o f rendering tim es per pixel (//s)
according to the scene com plex ity (i.e, num ber o f subdiv isions) and the im age size for single

plane and m ulti-p lane respectively. R esults show that rendering tim es are constan t until the scene
com plexity becom es greater than the im age com plexity . At this poin t, rendering tim es becom e
logarithm ic. The sim ilarity o f (d) and (e) indicates tha t only the v isib le triang les are relevant.

5 10 15 20

L o g (# t r i a n g le s) L o g (# t r i a n g le s p e r p l a n e)

R e n d e r in g t i m e p e r p ix e l

—♦— 32x32
— 64x54

1 28x128
2 5 6 x 2 5 6
512 x 5 1 2

—• — 1024x1024
— l— 2 0 4 8 x 2 0 4 8
— 4 0 9 6 x 4 0 9 6

3 2 x 3 2
—■ — 6 4 x 6 4

1 2 8 x 1 2 8
2 5 6 x 2 5 6

—* — 5 1 2 x 5 1 2
—• — 1 0 2 4 x 1 0 2 4
— t— 2 0 4 8 x 2 0 4 8
 4 0 9 6 x 4 0 9 6

R e n d e r i n g t i m e p e r p ix e l

R esults show that for a fixed im age size, the per-pixel rendering tim e is constan t until a given
point after w hich a logarithm ic com plexity takes over. C urves arc also separated by a horizontal
distance o f tw o. indicating that every tim e the im age size is doubled , th is poin t m oves 2 points
further. Finally, the curves for both sets o f scenes perfectly m atches, w hich proves that the oc
cluded triangles added to the scene do not affect rendering tim es and com plex ity at all, reflecting
the efficiency o f H OM s.

The per-pixel average com plex ity observed here can be sum m arised as:
0 (m a x (1. log 2 { v is ib le tr ia n g le s) — c .lo g 2 { im a g e s iz e))) w here c - i s a fixed constan t depending
on the im plem entation.

T his result is im portant since it provides ev idence that com plex ity o f C oherent R endering is now
expressed as a function o f tw o variables. In com parison , a regu lar ray tracer (not using coherence)
is known to achieve 0 (lo g 2 (T o t.a l n u m b e r o f t r ia n g le s)) here.

For real-w orld datasets, results are unfortunately not so reliab le , but it can be show n that increasing

4.6 Results 101

the im age size still tends com plex ity to 0 (1) .

Benchm arking Common 3D Scenes The test scenes are sum m arised in F igure 4 .14. w ith q u an
titative results com piled in F igure 4.15. R endering tim es are expressed for the given v iew poin ts,
w hich include (very) basic shading. To dem onstrate the null con tribu tion o f hidden objects, the
Sponza scene has been rendered from inside and outside, and three S tanford m odels have been
added to this scene as well.

F igure 4.14: M esh-based C oherent R enderings. F rom left to right: Single tr iang le , Sponza ,
Sponza with S tanford M o d e ls . Sponza from outside, D avid and Pow erplant. A ll can be rendered

at approx im ately the sam e speed, provided that the resu lting im age is large enough.

The most im portant result is v isible in F igure 4 . 15(b), w here rendering tim es have been div ided by
the num ber o f non- black p ixels to com pensate for the foo tprin t size o f each m odel. All rendering
tim es converge to a reference cost C , irrespective o f the num ber o f triang les in the scene. F or
instance, the Pow erplant (12 m illion triangles) and the S ing le Triangle scene rendering tim es
(after footprint norm alisation) are less than 30% apart w hen rendering an 81f)2J im age. If the
algorithm w as purely logarithm ic, this ra tio w oultl have been m ore in the o rd er o f 23.

To better understand this property, num bers o f calls to tw o critical functions - the tree traversal
and the rasterisation functions - have been m easured as w ell. S im ilar to rendering tim es, the
num ber o f rasterisation steps (F igure 4 .15(d)) converge to an approx im ate constant o f 8 steps
per pixel, w hich dem onstrates the average 0 (1) rasterisa tion com plex ity per pixel. H ow ever, the
equivalent operation in ray tracing (i.e.. in tersec tion test) is likely to be 0 (1) if the right tree is
used. Therefore, the num ber o f traversal calls m ade by the a lgorithm m ust be analysed as w ell.
W ith regular ray tracing, this num ber obviously increases linearly w ith the num ber o f rays, as
v isible in [W FM S05]. In C oherent Rendering's, case (F igure 4 .15(c)), the num ber o f traversal
steps is m ore or less independent o f the im age size, but obviously depends on the scene itself.
T his is w here the com plex ity im provem ent com es from . It m ust be added that for all renderings
except the D avid scene, the num ber o f traversal steps are less than a m illion , w hich is a very
low w hen com pared to the num bers o f cells traversed by o ther techn iques such as those reported
in [RSH 05] [W 1K+ 0 6 | for sim ilarly sized scenes.

To get a be tter p icture o f the redundant nodes traversed by a regular ray tracer, a com parison
betw een both m ethods is show n in Table 4.2. For every scene, tw o trees are constructed w ith
different splitting heuristics. T hese trees are used by both rendering a lgorithm s. A single ray
tracer was used, but a 4 x 4 packet, even in the ideal case, w ould only divide these num bers by 16
and cannot reach the efficiency o f C oherent R endering in te rm s o f nodes traversed. T his clearly
suggests that there is still som e room for optim ising node traversal in ray tracing.

I LIBRARY

4.6 R esults 102

160
140
120
100
80
60
40
20

0

35

30

25

20

15

10

5

0

num ber of traversed nodes

2500000

2000000

1500000

1000000

500000

0

j (c) 4 5 number of rasterisation steps

T r a v e r s e d N odes

pixels

<d)
Rasterisation steps per non-black pixel

0 1024- 2048- 30722 40962 51202 61442 7168J8192; 0 1024? 2048' 30722 4096' 51202 6144: 71682 8192

Figure 4.15: A nalysis accord ing to the im age size, (a) R endering tim es fo r the different scenes,
(b) R endering tim es per non-black pixel show ing convergence to the sam e rendering tim e, (c)

N um ber o f nodes traversed - independent o f the im age size, (d) N um ber o f rasterisation steps per
non-b lack pixel - convergence to the sam e rasterisation cost per pixel. N ote that the tw o Sponza

outside curves overlap on all graphs.

RT (Space
M edian Tree)

RT (SA H
Tree)

C oherent R en
dering (Space
M edian Tree)

C oherent R en
dering (SAH
Tree)

Single T riangle 1 1 #1 #1
Pow erPlant 75 59 0.382 1.41
David 68.5 51 2.5 4.67
Sponza 87 61 0.176 0.169
Sponza and m odels 109 72 0.642 0.23
Sponza out 5.2 5.5 0.01 0.01
Sponza and m odels out 5.35 5.5 0.01 0.01

Table 4.2: N um ber o f nodes (in m illions) traversed by a recursive ray tracer (w ithout packets)
and the C oherent R endering a lgorithm for a 1024 x 1024 im age.

The Sponza case requ ires particu lar attention. It is c lea r that adding several objects to the scene
decreases the convergence rate significantly, as long as those objects are visible in the final im age.
By using a view point outside the Sponza a trium (though the S tan ford m odels are still inside the
frustum), the visible part o f the m esh is considerab ly sim plified. C onvergence is then very early,
and adding or not add ing the S tan ford m odels (1.5 m illion triang les) inside the atrium does not
make m uch difference (curves from both datasets overlap on the graph). T he num ber o f nodes
traversed for the D avid scene is large w hen com pared to the P ow erplant in w hich there is a high
degree o f occlusion. All in all the experim ents show that the convergence speed is directly linked

seconds _ (a)t e n d e r in g T im e s (s)

0 1024' 2048' 30722 4096' 51202 6144' 71682 8192

p ixels

0 10242 20482 30722 40962 51202 61442 71682 8192

te n d e r in g T im e s p e r n o n -b lack p ixel (b)
(ps/p ixel)

 Single Triangle
PowerPlant

 David
Sponza inside

 Sponza&Objects inside
 Sponza outside
 Sponza&Objects outside

4.6 Results 103

to the com plexity o f the v isib le part of the m esh. T his does not change the com plex ity result itself,
but m ay appear to be an issue in practice. T herefore , the use o f on-the-fly sim plification a lgorithm s
such as |W F P ~ 0 1] |W W Z + 0 6 | could possibly be an in teresting ex tension to the algorithm w hen
the visible m esh density is g reater than the pixel density.

Finally, the current rendering tim es are about 10-15 tim es slow er than the sta te-o f-the-art M LR T
algorithm , how ever there is p lenty o f room for optim isation . T he m ain point is that fo r reasonable
rendering sizes (1024 x 1024 to 2048 x 2048), all the per-pixel rendering tim es but D avids are only
betw een one and three tim es slow er than the rendering tim e o f a single triangle. T his dem onstrates
that the com plexity assum ption is valid and scalable.

4.6.2 A bsolute Perform ance

Scene ERW 6 Sponza A rm adillo Sodahall Pow erplant

kd-tree
m ax i
m um
depth

12 24 26 27 25

kd-tree
lea f node
triangles

C oherent
R ender
ing vs
R T and
packet
R T (8 x 8)

I
6 fps

' t
■ - . I - J

L egend ■ Coherent rendering □ Ray tracing single □ Ray tracing packet 8x8

Table 4.3: Perform ances o f C oherent R endering vs single ray tracing and packet ray tracing
(8 x 8 rays) in fram es per second. It is to be noted tha t the packet ray tracing im plem entation has

been op tim ised through the use o f SSE instructions. A bsolu te perform ance o f C oherent
R endering is observed to be slow er than that o f packet ray tracing.

4 .7 D iscussion 104

Although the main experiments were performed to verify complexity assumptions, the absolute
performance in comparison to packet ray tracers is also considered. To measure the effectiveness
of the algorithm, several models have been considered. These models are rendered using the Co
herent Rendering algorithm described. To determine the fastest performance, the implementation
was run on a PC with a Core 2 Quad processor, but single threaded. The algorithm was developed
and compiled as a 64 bit application with the Visual Studio 2005 C++ compiler to run on Windows
XP 64.

To measure the absolute performance, the scenes shown in Table 4.3 are rendered with ray tracing,
packet ray tracing and Coherent Rendering. Kd-trees with parameters that differ according to
scene sizes are used as the underlying data structure. Details of the kd-tree thus built are also
provided. An image size of 1024 x 1024 is used to benchmark the algorithm.

Table 4.3 provides the results of rendering using this algorithm. The results show the performance
of Coherent Rendering in comparison to single ray tracing and packet ray tracing with 8 x 8 rays.
They indicate that Coherent Rendering is faster than single ray tracing but cannot be competitive
with packet ray tracing.

While the absolute performance of the algorithm is not competitive with a packet ray tracers
performance, the main point of the algorithm is to investigate its complexity per pixel. The reasons
for the slow performance are discussed in Section 4.7.2.

4.7 Discussion

4.7.1 C om plexity

As the results demonstrate, Coherent Rendering allows convergence to constant complexity per
pixel. While Coherent Rendering is already very efficient for isosurfaces, more work remains to be
done for the triangle mesh version since the algorithm currently suffers from a high constant and
many questions are still open. For instance, the motivation for such a technique when fast packet
ray tracers [RSH05] exist could be questioned. First, this research is a proof of concept, which
verifies that lower average complexities exist for rendering, which has never been demonstrated
before.

Using a similar methodology , researchers can investigate empirically whether their technique al
lows lower complexities or not. A very simple way to do so is to compare rendering times between
various scenes and a single triangle scene. The per-pixel times would indicate whether the new
algorithm is of lower complexity. This would allow differentiation between pure optimisations
and complexity advances and testing whether techniques are optimal and scalable or not. This
methodology could, for instance, be applied to the open problem of secondary rays.

There are many areas where the application of the rendering pipeline is less trivial, like direct illu
mination of the scene. An approximation of direct illumination is possible at the same complexity
if a shadow mapping method - that requires rendering an image from the light source(s) - is used.
Similarly, this algorithm can be used for global illumination as instant radiosity [Kel97] demon
strates it. However, shadow mapping and instant radiosity just estimate visibility. A fully correct
solution would need to consider an irregular grid of pixels for the secondary rays. While it may
be possible, it will be scientifically very challenging to develop such an algorithm and to ensure
optimal complexity at the same time. Another question is whether this algorithm is portable to

4 .7 D iscussion 105

g raphics hardw are o r not. For exam ple, som e parts o f the algorithm like triangle / box c lipp ing
are already possib le on the latest g raphics card generation . In tru th , the w hole algorithm is a lot
c lo ser to hardw are-based algorithm s and p ipelines than ray trac ing algorithm s. C urren t g rap h
ics hardw are m anufacturers already im plem ent lim ited h ierarch ical rasterisation w ith h ierarch ical
Z -buffers. For instance. 3-level h ierarchical Z- buffer is curren tly im plem ented on ATI graph ics
cards. A full pyram id could actually be m ore suitable. Fast access to a p ix e l’s Z h ierarchy by the
C PU s woufd be necessary to determ ine visibility. T his w ould require a fast com m unication ch an
nel w ith low latencies betw een the G PU and the C PU and a few com pan ies are already w ork ing
in that direction . It is believed that this w ould be m uch m ore efficient than occlusion queries, and
w ould thus be a great feature in G PU s.

Finally, a w orst-case rendering scenario has not been d iscussed since real-w orld datasets that
w ould not w ork have not been found. It is c lear that if the H O M pixels cannot becom e opaque
(e.g., the final im age is m ade o f m any w idely spread black p ixels), the v isib ility test w ill alw ays
pass and m ore nodes w ill be traversed . A ctually , this is the sam e w orst case as w ith regular
ray tracers because the C oherent R endering a lgorithm theore tica lly traverses the sam e nodes as a
regular ray tracer.

4.7.2 A bso lu te P e rfo rm a n c e

Though, the im portant m otivation o f the algorithm is to investigate and dem onstrate the bette r
com plexity , a usable a lgorithm needs to be com petitive w ith packet ray tracers. In this area,
the C oherent R endering algorithm is slow er than packet ray tracers w arranting investigations to
identify the causes fo r the relatively poor perform ance. T his w ould also assist in op tim ising the
algorithm .

F igure 4.16 show s the algorithm profiled (by rendering the Sponza scene num erous tim es). The
profiling results show that the recursive process o f sp litting triang les and identify ing the p ixels is
the m ain bottleneck. T he next m ajor bottleneck is identify ing the bits in the H O M and perform ing
the visibility test, follow ed by the vector subtract, dot p roduct and add operations.

50.00%
40.00%
30.00%
20.00%
10.00%

n
fl

=3 ■ I I

<N
/y

<& r'0 nsT o <&>

y ,/ / / y y y y / yy y y y y y y y y y/ # a * f > / j r e r

y ̂ oy / yr ^
El CPU_CLK_UNHALTED.CORE %

Figure 4.16: Profiling the C oherent R endering a lgorithm .

4.8 Sum m ary 106

The number of recursive rasterisation steps - see Section 4.5 - is quite high as each triangle has
to be split several times until the pixel level is reached. Since the rasterisation is done in 2D, the
steps are expensive. Since the triangles are split until they span less than a pixel, many triangles
- especially large triangles occupying several pixels are split numerous times before the sub-pixel
level is reached, at which point, it may be determined that the pixel is not shaded by the triangle
in consideration. This causes the recursive rasterisation process to be performed a large number
of times, sometimes without effect. The fact that the rasterisation algorithm does not identify
multiple pixels in one iteration makes it expensive.

The large number of recursive rasterisation calls also means that each time a triangle is split, the
mid-point of the vector has to be found leading to several calls to vector adds. In addition, at every
recursive step, the triangle is tested for visibility leading to numerous occlusion determination
calls. Due to the fact that the operations are in 2D, they are expensive leading to an expensive
rendering algorithm.

One method to alleviate this is to use a simple ray tracing approach at the leaf node level, i.e., when
the Coherent Rendering algorithm’s tree traversal reaches the leaf node, the ray corresponding to
the leaf node projection can be intersected with the leaf node’s triangles to obtain the right triangle
for the pixel. While the algorithm could be faster, it would lose the occlusion test done during the
rasterisation process which may be detrimental. This method, though, has not been investigated
and could merit further study.

However, the advantage of Coherent Rendering is that the number of tree traversals are minimised
as evidenced by the profiler results where the tree traversal method does not appear even in the
top 11 most time consuming methods. In a ray tracing algorithm, the complexity of triangle
intersections in a ray tracer can be assumed to be a constant. However, each ray has to traverse the
tree to get to the leaf node, performing an average of log(N) traversals leading to an 0 (lo g (N))
complexity per pixel. Since in Coherent Rendering, the number of nodes traversed is minimal and
almost the same for all image sizes, its complexity approaches 0 (1) when image sizes increase.

4.8 Summary

The Coherent Rendering algorithm discussed in the chapter combines concepts from rasterisation
and ray tracing to introduce a new rendering algorithm. In a ray tracer, the complexity per pixel
is determined as being due to the tree traversals and not the triangle intersections themselves.
Packet ray tracers amortise this by traversing the nodes with groups of rays together. However,
due to coherence issues, these packets are limited to a certain size - optimal size of 8 x 8 in our
implementation. Coherent Rendering takes this approach further by proposing an algorithm where
the entire image’s pixels are considered as a packet. The nodes visible from the viewpoint are
determined. Further, using the concept of Hierarchical Occlusion Maps, the early ray termination
property of ray tracers is applied to Coherent Rendering to perform occlusion detection.

The main reason for investigating the Coherent Rendering algorithm is to show that it may result
in an 0 (1) renderer. The results show that as image sizes increase, the rendering times appear
to converge to times needed to render a single triangle. On an 8192 x 8192 pixel image, the
rendering time for the Powerplant scene (12 million triangles) is around 30% more than the time
to render the Single Triangle scene. This shows that the method is definitely not logarithmic. It is
expected that if the image size is increased further, the difference in this rendering time would be
even smaller.

4 .8 S u m m o n ' 107

At the same time, the algorithm was expected to be very competitive with ray tracers. However,
due to expensive projection and rasterisation operations performed in 2D, the algorithm’s perfor
mance suffers. Due to this, though the algorithm manages to be faster than single ray tracers for
most cases, it fails to compete with packet ray tracers. Through optimisations like the use of SSE,
the algorithm can be implemented in a more efficient manner. However, the fact that its perfor
mance is not competitive with modern packet ray tracing methods is currently a drawback. Since,
the 2D nature of the algorithm has been identified as being the cause of the poor performance, it is
believed that an algorithm that performs these operations in ID would be much faster. The result
is the algorithm called Row Tracing - discussed in chapter 5.

Chapter 5

Row Tracing

C ontents___
5.1 M otivation ... 106
5.2 C oncept..107
5.3 High Level A lgorithm ..109
5.4 Datastructures for Row T r a c in g .. 110
5.5 Tree T raversa l...I l l
5.6 Leaf Node P rocessin g .. 117
5.7 Final Image G eneration...122
5.8 ID Hierarchical Occlusion Maps (HOMs) ... 123
5.9 Packet Row T racin g ... 129
5.10 Low Level O ptim isations.................. 133
5.11 Results ...133
5.12 Sum m ary...142

Row Tracing is introduced as a new visibility / rendering method that is based on Coherent Ren
dering. At the same time, it aims to improve the absolute performance so that it is competitive
with packet ray tracers. This chapter explains in detail the method described by us in [KM08]
- Kammaje, Ravi R; Mora, Benjamin, “Row tracing using Hierarchical Occlusion M aps’’, IEEE
Symposium on Interactive Ray Tracing, 2008. RT 2008., pp.27-34, 9-10 Aug. 2008.

5.1 Motivation

Recent research has popularised the use of packet ray tracing as a rendering method through the
use of groups of rays that have a variety of shapes and sizes [PKGH97] [WBWS01] [RSH05]
[Wal04] [WBS07] [ORM07]. The acceleration is brought about by traversing the entire packet
of rays, thus amortising the computational costs resulting in a much lower cost per ray. Recent
research [RSH05] [WBS07] [BWS06] has enabled the use of larger packets through interval arith
metic.

New methods of data acquisition and sophisticated scanning technologies have resulted in in
creased scene sizes. For larger scene sizes, the computational complexity of packet ray tracing -

108

5.2 C oncept 109

shown lo be logarithmic [HB00] [Hur05] [WSS05] [HHS06] [YLM06] - makes it the preferred
method of rendering. Packet ray tracing is also trivially parallelisable, allowing it to take max
imal advantage of the recent trend towards multi-core processors. This scalability of packet ray
tracers over scene sizes as well as over multiple cores has resulted in it being touted as a potential
alternative to rasterisation.

Packet ray tracing algorithms work exceptionally when the size of the packets are relatively small.
On the other hand, using a larger group of rays that traverse a similar path would maximise cache
coherence and reduce memory bandwidth requirements. However, as the number of rays are
increased, the coherence reduces, leading to a performance penalty, as the component rays traverse
different paths. Thus, to achieve the best performance, an optimal (but relatively small) number
of rays per packet is necessary.

Another disadvantage of larger packets is that the early ray termination property of ray tracers
that allows in-built occlusion testing can be used only if all the component rays / pixels have
already found intersections. For smaller packets, the first hit object for most rays in the packet are
determined at almost the same traversal step and traversal can be stopped at this point. However,
for larger packets, due to the fact that the rays are far apart the object intersections may occur at
widely separated nodes. Thus, the early termination property cannot be effectively used.

During intersection tests, at most four rays can be tested against a single triangle through the use
of SIMD / SSE instructions (on current architectures). Packets with a greater number of rays have
to be split into smaller groups of four each and intersected with the triangle.

These inefficiencies due to the use of larger rectangular packets of rays point to the possibility
that rectangular packets may not be the most efficient grouping of rays to maximally utilise the
coherence provided by the data structure.

In Chapter 4, a new algorithm that aims to achieve a lower empirical computational complexity
was introduced. However, due to the use of 2D structures, it suffers from expensive intersection,
projection and occlusion detection costs making it an unfeasible algorithm to use in its current
form.

In both Coherent Rendering and packet ray tracing, the main inefficiencies exist due to the fact that
rays are grouped into 2D packets instead of a simpler structure. Hence, the idea of using an algo
rithm similar lo Coherent Rendering, but with packets spanning a row of the image is considered.
The algorithm, called Row Tracing, is an attempt at an algorithm that preserves the advantages of
both packet ray tracing and Coherent Rendering while minimising the disadvantages.

5.2 Concept

Conceptually, Row Tracing is a very simple algorithm and is very similar to ray tracing. Instead
of tracing rays through a structure like a kd-tree or octree constructed on the scene, entire lines
/ rows of the image are traced through the structure. At the leaf nodes of the structure, the row
is intersected with the triangles of the leaf node to obtain the intersected objects for the affected
pixels of the row.

The use of an entire row of the image allows amortisation of traversal and intersection costs. It also
allows the algorithm to use the dual property of a row of pixels - that it can be considered either
as a 2D plane of rays (as shown in Figure 5.1), or as a ID line of pixels - at different points of

5.2 C oncept

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.1: A row of the image as a 2D plane. Tracing this 2D plane through the tree is the basic
idea of the R ow Tracing algorithm.

the algorithm. This enables the algorithm to select from several efficient methods for the integral
parts of the algorithm.

The row is considered as a 2D plane of rays when traversing through the tree or when intersecting
with triangles. Due to plane-box intersections and plane-triangle intersections being cheap, the
coherence used does not incur additional costs. Intersecting a single ray with a box or a triangle
is of almost similar computational cost to that of intersecting a plane with a box or a triangle. The
traversal and intersection cost - already quite low - is amortised across the number of active rays.
Further, plane-node intersections and plane-triangle intersections are achieved through the use of
simple dot products - vectorisable with SIMD instructions.

At other points of the algorithm, considering the row as a ID line allows simplification and optimi
sation through the use of ID versions of several operations. Primitive clipping, occlusion testing
and frustum bounds testing arc a few key operations benefiting due to the ID nature of the row.

A disadvantage of tracing rows as compared to single rays is that it loses the early ray termination
property used very effectively for occlusion testing. When a ray is traversed through a space
subdivision structure in front-to-back order, the ray traversal is stopped if it has intersected an
object, thus eliminating a large number of unnecessary operations. R ow Tracing loses this ability
due to the large span of the packet. To overcome this disadvantage, a ID version of H ierarch ica l
O cclusion M aps (HOMs) introduced by Zhang et al. [ZMHH97] is used. The HOM for a row
allows skipping of nodes that overlap already rendered parts of the row - in effect, an early ray
termination like test for nodes.

R ow Tracing combines features and abilities of ray tracing and rasterisation. The ability of using
spatial subdivision data structures is borrowed from ray tracers. Generating the image by scan-
lincs, projecting points, etc are concepts adapted from rasterisation. This combination, in addition
to the use of H ierarchical O cclusion M aps, is expected to enable R ow Tracing to demonstrate per
formance advantage over current packet ray tracers. As scene sizes increase, R ow Tracing - due

5.3 High Level A lgorithm 111

to its (speculated) logarithmic complexity - should show better performance than Z-buffer based
visibility (OpenGL) when the scene consists of a large number of triangles. Table 5.1 provides a
comparison between rasterisation, ray tracing and Row Tracing and it is clear that Row Tracing is
a hybrid algorithm inheriting properties of both algorithms.

Rasterisation Ray Tracing Row Tracing

Logarithmic Complexity X / /

Cheaper per-pixel scanline
algorithm

/ X /

Multi-core / Multi-CPU
Parallel is ation

X / /

Shadows
/ / /

Table 5.1: Comparison between Rasterisation, Ray Tracing and Row Tracing

For the purposes of the algorithm, it has been implemented with kd-trees and octrees as the under
lying data structures.

5.3 High Level Algorithm

The high level Row Tracing algorithm is very similar to ray tracing. The image’s rows are indi
vidually traced through a hierarchical structure. When the traversal ends - the triangle occupying
each pixel of the row is determined. When all the rows of the image are similarly traversed, the
triangles for each pixel are identified to determine visibility at each pixel. These pixels can then
be shaded according to the triangle and the lights.

The high level algorithm is very similar to the high level Coherent Rendering algorithm (List
ing 4.1). Listing 5.1 shows the algorithm with the major differences between the Coherent Ren
dering and the Row Tracing algorithm highlighted in blue.

5.4 D atastructures f o r R ow Tracing 112

RowTrace()
{

for(each image row)
{

InitialiseRowConstants() ;
TraverseTree(row, rootNode);
Shade row;

}
}

Listing 5.1: High Level Row Tracing algorithm. Each row of the image is initialised, traversed
down the tree and finally the pixels determined are coloured appropriately. At the high level, the
algorithm is very similar to the Coherent Rendering algorithm (Listing 4.1). Differences between

the two are highlighted (in blue).

The row of the image to be traced is iteratively selected and by an initialisation process the row
plane equation and other attributes associated with a row are initialised. Subsequent to this pro
cess, the row is ready to be traversed through the data structure. The row traverses the tree in
a front-to-back order until it is determined that the node cannot contribute to the row’s pixels or
until a leaf node is reached. At the leaf node, the row is tested against the leaf node’s triangles to
ascertain the pixels occupied. Once the triangles have been determined for each pixel of the row,
the visibility at each pixel of the row is determined. It is to be noted that in the pseudocode the
leaf node processing method is not explicitly called as it is called by the TraverseTree method
upon reaching a leaf node.

The considerations for the underlying data structure along with the three parts of Row Tracing -
Initialisation, Tree traversal and Leaf node processing - will be detailed in the following sections.

5.4 Datastructures for Row Tracing

As with ray tracing, rendering times for Row Tracing depend on the number of nodes traversed,
the number of intersections and cost per traversal and intersection. The total rendering time is
given by Weghorst et al. [WHG84] in Equation 2.11. Since the only primitives being considered
are triangles, cost of primitive intersection is a constant. Hence, a structure that is well suited for
Row Tracing minimises the number of nodes traversed with a low per node intersection that at the
same time effectively separates the triangles so that the number of triangles to be intersected are
low.

Row-triangle intersections are very cheap and are amortised across several pixels and hence, the
second term of the cost, N p j x C pj, will be low when compared to the first term. Due to this,
Row Tracing prefers data structures that minimise the first term, N p x Cp, even at a slight penalty
to the second term. Data structures with axis-aligned boxes can be intersected against a row plane
at a low cost [Hof96] and hence are particularly suited for Row Tracing. A kd-tree built with
the surface area heuristic, with its effective separation of triangles is a good structure for Row
Tracing. Another structure considered is the octree - due to properties that enable a cheaper cost
for intersection, Cp. These two data structures are thus considered.

5.5 Tree Traversal 113

5.4.1 K d-tree

A kd-tree is one of the most researched structure for ray tracing. Due to this, there are several
well known algorithms and heuristics for the construction and ray traversal of a kd-tree. The
most popular heuristic is the Surface Area Heuristic(SAH) generally accepted to produce the best
kd-trees for ray tracing. However, Row Tracing is a different algorithm - the best kd-tree for
ray tracing is not necessarily the best for Row Tracing. The advantage with an SAH kd-tree is
that it quickly separates empty space and selects a locally optimal split position at each step. This
partitioning scheme results in a very good tree that should be suitable for use with the Row Tracing
algorithm.

5.4.2 O ctree

The octree is normally not discussed with respect to ray tracing, but it is a very simple structure
that is easy to create. In addition, it is a very efficient structure for Row Tracing due to its property
that each node at a particular depth is a cube of the same size. This property enables the use of
a simple optimisation that reduces the cost of row-node intersection, tN ode , making it a good
structure to investigate for Row Tracing.

Thus, both the kd-tree and the octree have advantages that make it suitable for Row Tracing. In
addition, by implementing and demonstrating the effectivity of Row Tracing on more than one
data structure with axis-aligned bounding boxes, the easy adaptability of Row Tracing over such
data structures is shown.

The details of the algorithm starting with the tree traversal by the row will be discussed in further
sections.

5.5 Tree Traversal

For Row Tracing on both the kd-tree and the octree, the row is traversed down the tree in a front-to-
back order. Several attributes required for the traversal computations are constants - either for all
the rows or for a single row. An initialisation process handles the computation of these attributes.

5.5.1 P lan e-B ox intersection

Both the kd-tree and the octree have nodes are axis aligned boxes. Hence, each traversal consists
of a row plane-box intersection. The method described by Hoff [Hof96], that allows several
optimisations will be described in brief before the tree traversal algorithm is described.

A box intersects a plane if its eight vertices lie on both sides of a plane. Naively, this can be found
by calculating the signed distances of the eight vertices to the plane. However, as Figure 5.2 shows,
it is sufficient to test two vertices. These two vertices are the extremities of the box in relation to
the plane. Figure 5.2 shows that these two vertices are the vertices that have the minimum and
maximum projection onto the normal of the plane. Thus, it is sufficient to test if these two points
are on the same side or different sides of the plane.

5 .5 Tree Traversal 114

Hoff also explains the determination of these two points. If N is the normal of plane, the vertex at
the extremity in the direction of the normal is given by the pseudocode below:

DetermineMaxVertex()
{
if(N.x>0) //RIGHT

if(N.y>0) //RIGHT, TOP
if (N . z>0) //RIGHT, TOP, FRONT

vl = RIGHT, TOP, FRONT
else

vl = RIGHT,TOP,BACK
else //RIGHT, BOTTOM

if(N.z>0)
vl = RIGHT,BOTTOM,FRONT

else
vl = RIGHT,BOTTOM,BACK

else //LEFT
if(N.y>0) //LEFT, TOP

if(N.z>0)
vl - LEFT,TOP,FRONT

else
vl = LEFT,TOP,EACK

else //LEFT, BOTTOM
if(N.z>0)

vl = LEFT,BOTTOM,FRONT
else

vl = LEFT,BOTTOM,BACK
)

Listing 5.2: Determining the vertex at the extremity in the direction of the normal. N - is the
normal to the row-plane and v l - is the vertex at the extremity.

The vertex, V2 , at the extremity in the negative direction of the normal is just the negative of v i .
i.e., if v i is determined as the l e f t , bottom, back vertex, then V2 is the r ig h t , top , f r o n t vertex.

If v i and V2 are the two vertices with the minimum and maximum projection onto the plane’s
normal and if the plane’s equation is A x + B y + C z + D = 0, then the intersection is determined
by using the set of equations below.

dv = A x v -f- B y r C zv -I- D

dy = A x v B y v + C zv + D

intersection = (dv = — 0) or (d.v = = 0) or ((dv > 0)! = (dv > 0)) (5.1)

Using this method, it is sufficient to calculate the plane-vertex distance for just two vertices. In
addition, in any structure with a hierarchy of bounding boxes, like kd-trees, octrees or BVHs,
the nodes are all oriented similarly. Hence, these two vertices can be determined during an ini
tialisation process and the appropriate vertex can be accessed when necessary, allowing further
optimisations.

5.5 Tree Traversal

'lane normal

Plane
Projection of vertex onto,

plane's normal *

0 Vertices casting maximum projection
onto plane's normal

Figure 5.2: Intersection o f a box and a plane. As show n, it is sufficient to determ ine if the tw o
ex trem e points o f the box in rela tion to the norm al o f the plane arc on the sam e side or e ither side

o f the plane.

5.5.2 Initialisation

T here are tw o parts to the in itia lisation process - one that occurs p rior to the tree traversal and one
that occurs p rior to every ro w ’s traversal. The first process com putes the g lobal values tha t rem ain
the sam e for all the row s. The second process - perform ed for every row - com putes the values
relevant to the row being traced.

• G lobal Values - These are the attributes that do not change across the row s and can hence be
considered as g lobal across all the row s. In itialising these ju s t once before the tree traversal
starts is advantageous. T he attributes considered as global are:

- G lobal transform ation m atrix - T his is the transform ation m atrix that is u sed to convert
a point from m odel space to im age space.

- N ear plane - T his is the plane upon w hich the im age is rendered. It is variant upon the
view point used and is constant for all the row s. The four vertices o f this p lane are d e
term ined by applying the global transform ation to the four vertices o f the O penG L neat-
plane coord inates. Subsequently , the equation o f the near plane is found by finding the
norm al to the near plane. If the near plane is given by A npx + B npy + Clipz + D np = 0,
the norm al vector provides the values o f A np, B np and Cnp. Plugging these and the
values o f x, y, and 2 from one o f the near p lan e ’s vertices in to the equation , the value
o f D np is com puted and is stored.

- Indices o f the n o d e’s vertices casting m axim um projection on near p lane norm al - In

5.5 Tree Traversal 116

order to find if a node is in front of the near plane, it is more efficient to find the two
vertices of the node that casts the maximum projection onto the normal of the near
plane, as described in Section 5.5.1. The same two vertices of every node casts this
maximum projection. The indices of these vertices, in d exnp and in d exnp , are found
and saved.

- Indices of node’s vertices casting maximum projection on rows 0 and 3 of matrix - As
will be shown in the following sections, finding the node projection’s overestimate is
an essential part of Row Tracing. To find this with minimal cost, row 0 and 3 of the
global transform matrix are considered as vectors and the node’s vertices at the end
point of the diagonal casting the maximum projection onto these rows are determined
as given by Section 5.5.1. Indices of these vertices are stored.

• Per row constants - The attributes that vary for every node need to be initialised at the
beginning of that row’s traversal. The attributes initialised at this time are:

- Row Plane Equation - This is a plane of rays with the viewpoint and the two end
points of the row defining the plane. The plane equation is determined by calculating
the normal that provides the corresponding A r , B r , Cr values and then calculating
the value of D r for the row.

- Indices of node’s vertices casting maximum projection on row plane normal - As
an intersection is to be calculated for each node and the row during traversal, the
indices of the diagonal casting the maximum projection onto the row plane’s normal
is determined and stored.

5.5.3 Tree Traversal A lgorithm

The various variables corresponding to a row are pre-computed by the initialisation process so that
the tree can be efficiently traversed in a front-to-back order. Traversal is similar to ray traversal
- it starts from the root node of the tree and continues in a front-to-back order. It can be written
with the following pseudocode.

TraverseTree(row, node)
(

if (node is empty or
node does not intersect row)

return;
proj = FindNodeProjection() ;
if (proj is outside frustum or

proj is occluded)
return;

if(node is a leaf node)
(

ProcessLeafNode (node);
return;

)

for(each childNode sorted in
front-to-back order)

TraverseTree(row, childNode);

Listing 5.3: Single Row traversal algorithm.

5.5 Tree Traversal 117

From the pseudocode, it can be observed that traversal stops if the node does not intersect the row,
or if the node projection falls outside the frustum or if the node projection is determined as being
occluded. Otherwise, traversal continues down the tree until it reaches a node that meets the exit
criteria, or until a leaf node is reached. At the leaf node, the triangles contained by the leaf node
are rasterised onto the pixels of the row. At the end of the traversal process, the closest triangle
corresponding to each pixel of the row is determined.

As mentioned, the traversal process tests the node for several criteria. In order to perform these
tests as efficiently as possible, fast methods for row-plane-node intersection and node projection
are determined. These methods are described in the following sections. Before that however, to
better explain the node projection operation, the well known process of projecting a point onto the
screen / row in the context of Row Tracing is provided.

5.5.4 Projection o f a Point onto the R ow

Projecting a point onto the row - i.e, converting the point from the object space to the image space
to find the actual pixel occupied by the point on the row - is achieved by multiplying the point by
the transformation matrix and converting these co-ordinates from OpenGL space to screen space.
However, in Row Tracing, since the Y coordinate is fixed (by the row being traversed), only the
X and Z coordinates are necessary.

If p is the point to be projected, the value of A" and Z coordinates can thus be found using

x = p .m 0

2 = p. Ill 2

W = p.m3

x = (x /w) * hal f Width + ha l f Width
z = (z /w) * ha l f Width (5.2)

where mo, m 2 and m 3 - are the first, third and fourth row of the global transformation matrix
respectively hal f Width - is half of the image’s width x, z, w - are the values of the X coordinate,
the Z coordinate and the homogenous coordinate respectively The values of x and 2 thus found
are the coordinates of p on the screen.

5.5.5 K d-tree N ode Projection

The naive and most obvious method of finding a node’s projection is to project the eight vertices
onto the row. Projecting a point was described by Equations 5.2. For conducting the node oc
clusion test, only the X coordinate is necessary. Hence, the naive projection calculation can be
shown as:

x\ = v 1 m o

x 2 = v 2 . m 0

5.5 Tree Traversal 118

x 8 = v 8 .m 0

W \ = V 2.1113

V ’2 = V 2 m 3

Wg = v 8 . m 3

X\ = (x 1 / w\) * ha l f Width + h a l f Width

X'2 = (X2/W2) * ha l f Wid th + h a l f Width

x s = (xg/w$) * hal f Width + h a l f Width

x-min = min(xi,X2, ŝ)
X f n a x = n i a a (x i . X o < ■ ■, x x)

V] ,.v 8 are the eight vertices o f the node.
are the Ar coord inates o f the eight vertices o f the node.

w \..w x are the hom ogenous coord inates o f the eight vertices o f the node.
x mm and x'max are the extrem eties o f the actual p ro jection o f the node,
m o and m 3 are the hrst row and the fourth row o f the global transfo rm ation m atrix.

(5.3)

H ow ever, as E quations 5.3 show, this m ethod is com putationally exorb itan t, requiring 16 dot p rod
ucts, eight d iv ides and several fu rther operations. It can be observed that to perform an occlusion
test or a frustum bounds test, the exact node projection is not necessary. As show n in F igure 5.3,
a slight overestim ate o f the node 's p ro jection w orks alm ost as w ell. U sing the overestim ate re
sults in a few m ore traversals than o therw ise, but if the overestim ate is sm all enough, the trade-off
results in hugely reduced cost for traversal. T he m ethod to com pute an overestim ate is discussed.

We first define ,r j , .r2, u'i and u'2 as follow s:

x , - m i n (\ 2 .m 0l v 2 . m o v 8 .n io)

x-2 = m u x (v i .n iy . v 2 . n i o v 8 .n io)

u'i = m m (v 1 .m 3 , v 2 .m 3 . . . , v 8 .m 3)

u '2 = m a x (v 2 .m 3 , v 2 .m 3 v 8 .m 3) (5.4)

v x and v x can be defined as the vertices casting the m axim um projections on m o and can be
determ ined using the m ethod given in Section 5.5.1. H ence. v x .n io and v x .n io provide values
o f .1] and .r2. Sim ilarly. v w and v w can be determ ined as the vertices o f the node casting
the m axim um projection onto m 3 . U sing these, the m inim um and m axim um values o f x can be
determ ined as follow s:

5.5 Tree Traversal 119

Node

Node vertex projections

Image row

Accurate Projection

Projection overestimate —•

Viewpoint

Figure 5.3: N ode Projection on to a Row. x imn and x max ind icate the n o d e’s overestim ate . If the
overestim ate is occluded , then the actual projection is also occluded . H ence, this overestim ate

can be used for occlusion detection .

x\ = v x m 0

x 2 = v x . m 0

w\ = l / (v w m 3)

w 2 = l / (v w .1113)

(5 .5)

Since, we are unclear if x \ > x 2 and if w \ > w 2. and also since x \ , x 2, w \ and w 2 m aybe negative
or less than 1, we calcu late the m in im um and m axim um values of x as follow s:

Xr n i n = al l ' l l (x] W] , X \ W 2 , X 2 W \ , X 2 W 2)

Xmax = m a x (x 1 Wi, X\W2. X2 W1 , X2w2)
x mi n — x min * ha l f Width- + ha l f W id th

Xmax = x max * ha l f Wid th + ha l f Wid th (5 .6)

w here x nvin and x mux represent the extrem ities o f the node p ro jec tio n ’s overestim ate.

5.5 Tree Traversal 120

x rnm and x max are used to find the level and the exact bits needed to check the H OM for occlusion.
T he details o f using the H O M to detect occlusion is provided in Section 5.8. A lso, x mrn and x max
are used to test the node fo r frustum inclusion. W hen x min and x mnx do not span any pixel
betw een zero and the w idth o f the im age, the node is outside the frustum .

5.5.6 Octree Node Projection

T he m ethod used to find the p ro jection o f an octree node on to the row is essentially the sam e
as that described for the kd-tree. H ow ever, the p roperty o f an octree that every node at a given
depth is a cube o f the sam e size can be used to op tim ise the vertex determ ination calculation . As
F igure 5.4 show s, if the m id-po in t o f the octree node is know n, then each o f its vertices can be
found by adding (or sub tracting) a vector to the m idpoin t o f the octree. To use this property, the
unit vectors to be added to the m idpo in t to obtain the necessary vertices are pre-com puted before
the tree traversal. T he ha lf lengths o f a n o d e’s d iagonal at every depth o f the octree are also p re
com puted. At traversal tim e, using the unit vector and the ha lf length , the co rresponding vertices
are easily found by vector additions. W hen S1MD / SSE code is used, a vector addition is achieved
in one instruction and is cheaper com pared to the expensive indexing operations perform ed by the
kd-tree version.

F igure 5.4: C alcu lating the octree n o d e’s vertices, o is the m id -po in t o f the octree, d i and d 2
are vectors to be added to o to obtain the vertices.

5.5.7 Row-Kd-tree Node Intersection

A row -kd -tree node in tersec tion is com puted at every traversal step and is one o f the m ost fre
quently perform ed operations o f the algorithm . H ence, it is im portan t that it is com putationally as
cheap as possible.

If all eight vertices o f a kd-tree node lie on the sam e side o f the row plane, the node does not
in tersect the row plane. U sing the m ethod in [H of96], in tersec tion can be determ ined by com
puting the signed d istances o f ju s t tw o vertices (end points o f a d iagonal that casts the m axim um
projection onto the row p lan e ’s norm al). The sam e diagonal o f every node casts this m axim um
projection onto the row. H ence, the tw o appropriate vertices can be p re-dcterm ined at the beg in
ning o f traversal o f each row - in the per row in itia lisation process. T his reduces the num ber o f
operations significantly. F igure 5.5 show s a d iagram that assists in understanding this better.

5.6 L e a f N ode P rocessing 121

Node vertices
to be tested y

Row node
.intersection'

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.5: R o w -N o d e in tersection . If the tw o extrem e vertices o f the node w ith respect to the
row plane 's norm al (show n in blue) are on opposite sides o f the row plane, then it in tersects the

node.

U sing the equation o f the row -plane, A r X + B , Y + C r Z + D r - 0, the signed d istance is
calculated by substitu ting the A \ V' and Z values o f the vertex into the equation . If d\ and d2 are
the signed distances o f the tw o vertices, then there is an in tersection only if s ig n (d \)! - signal}).
The operation is very cheap and can be achieved using ju s t tw o dot p roducts - efficiently ca lcu lated
w ith SSE instructions.

5.5.8 Row-Octree Node Intersection

A m ethod that is sim ilar to the R o w -kd -tree node in tersec tion (Section 5.5 .7) is used to find the
intersection betw een the octree node and the row plane. H ow ever, as an op tim isation , the property
o f octrees described in Section 5 .5.6 and as show n by F igure 5.4 is again used. U sing this, the tw o
vertices are calculated using ju s t a vector addition each instead o f an expensive indexing operation .

If a node is determ ined as in tersec ting the row. traversal con tinues dow n the tree until a leaf node
is reached, unless ano ther exit criteria is encountered .

5.6 Leaf Node Processing

At the leaf node, the triang les in it can be a part o f the final im age. D eterm in ing the appropriate
parts o f these triangles is im plem ented by the function ProcessLeafNode show n below.

5.6 L e a f N ode P rocessing 122

ProcessLeafNode(node)
I

for(each Triangle t in node)
{
1 = Intersect (t, rowPlane);
1 = ClipWithBoundingBox (1);
p = ProjectOntoImageLine(1);
pList.add(p);

)

extent = MinMax(pList);
RecursiveRender(extent, pList);

}

L isting 5.4: Process the lea f node. W hen the lea f node is reached during the traversal p rocess, the
triangles in it have to be tested against the row to determ ine w hich o f them contribu te to the

pixels in the row.

A s the pseudocode describes, p rocessing the lea f node involves a few steps that w arrant further
discussion.

5.6.1 Row-Triangles Intersection

Pi

R ow -p lan e-T rian g le
in tersection se g m e n t

R o w -p la n e
PinM Pmt2

Figure 5.6: R ow -p lan e-trian g le in tersection . If the vertices o f the triangle lie on opposite sides
o f the row' p lane, there is an in tersec tion .

The intersection betw een a row and a triang le is essen tia lly a p lan e -tr ian g le in tersection . It is
easily com puted using the equation o f the row plane. The ca lcu la tions are be tter described by the
equations below and Figure 5.6. In the equations below, the variab les (like p \ , p-2 , etc) correspond
to the geom etric entities show n in Figure 5.6.

5 .6 L e a f N ode P rocessing 123

row E qua tion = > A x + B y + C z + 1) = 0

d \ = A x] T B x \ -\~ C Z \ -1- D

d‘2 — A x 2 3" B x 2 C z2 D
d'j = 2 I.T3 T- B x$ + C 2 3 + Z2 (5.7)

If (Zi, d2 and ^ 3 have the same sign, it implies that the entire triangle is on one side of the row plane
and hence does not intersect the plane. However, if any one distance is differently signed than the
other two, then there are parts of the triangle on both sides of the row plane and henee there is an
intersection. If there is an intersection, the end points, pint and pint , of the intersection segment
are given by:

dint = d i / (d i + d2)
dint = d \/{ d \ + ^3)

Pint = P i + dint (P 2 - P i)

Pint = P i + dint (P 3 - P i) (5 .8)

Intersect Row-plane with leaf node triangles

L eaf n o d e

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.7: R ow -leaf-node-triang les in tersec tion . In tersecting the row -plane w ith the triang les
in a node gives several line segm ents.

T he intersection is found fo r every triangle in the node to obtain a list o f line segm ents. T he list is
m aintained as a list o f start and end points o f the segm ents. If the list is not em pty, the a lgorithm
proceeds to the next step. F igure 5.7 show s the in tersec tion segm ents form ed by in tersec ting a
row w ith all the triangles in a lea f node.

5.6 L eaf N ode P rocessing 124

5.6.2 Segm ents Partially in Front

The algorithm should render only parts of the geometry that are in front of the viewpoint / near
plane. Relevant parts of the triangles can be on both sides of the near plane only if the node
consisting them lies on both sides of the near plane. This is easily determined by finding the
signed distances of the two corresponding pre-determined vertices of the node to the near plane.
If the signed distances of these points have different signs, the node lies on either side of the near
plane and can contain triangles partially on both sides. Only triangle segments in these nodes are
to be tested for being partly in front of the near plane.

Segments that are fully in front of the near plane are rendered directly without any additional
processing. Similarly, segments that are fully behind the near plane are discarded as they are not
part of the final image. However, for the few triangles that have parts in front of and behind the
near plane, additional processing is necessary to ensure that only parts that are in front of the near
plane are rendered.

Testing whether a triangle lies on both sides of the near plane essentially reduces to a problem of
intersection between the near plane and intersection segment. If it is determined that a segment
intersects the near plane, the segment is clipped by the near plane and the part that is in front is
selected for rendering. If the segment is fully in front or fully behind, then they are rendered as it
is or discarded respectively.

At the end of this step, a modified list of segments, containing only the clipped parts that are fully
in front of the near plane, is generated.

5.6.3 C lipping Intersection Segm ents

In a leaf node, parts of the triangle can be outside the node. This can result in intersection segments
that may be partly or completely outside the leaf node as seen in the example in Figure 5.7. If
these segments are rendered as they are, the resulting image would be incorrect. To ensure that
the image consists of the right parts of the right triangles, these segments are clipped against the
leaf node’s bounding box so that only parts that are inside the node are rendered.

The operation is achieved by using the line equation of the segment and by intersecting the line
with the three entry faces and three exit faces of the node. The set of equations below detail the
process.

tx = {bb[xentry\ —)/{p 2 - P \)

t x = {bb[xexit] - p i) /{p 2 - p i)
t y = (bb[yentry\ - Pi) / (P2 ~ P \)

t y = (bb[yexit\ - p i) /(p 2 ~ p \)

tz = {bb[zentry\ - pi) /(p 2 - p i)

t z = (bb[zexit\ - p i) /{p 2 - p i)

5.6 L e a f N ode P rocessing 125

t e n t r y — n i a x (t :r 1 t y , t z)

t e x i t = m i n (t j : 1 t y , t z)

P in t = P i + t,z n t r y (P2 - P i)

P in t = P i + Lexit (P2 — P i) (5.10)

t y , t z , t z - arc the clipped en try and exit param eters o f the
in tersec tion segm ent.
bb - is the array representing the hounding box o f the node. It consists o f 6 values - the m inim um
and m axim um point a long each axis.
Pint » Pint ~ are the ex trem ities o f the clipped segm ent.

Clip intersection segments

Leaf node

Row p lane

Row being tra ced

Im age p lane

V iewpoint

Figure 5.8: In tersection segm ent c lipping. In tersection line segm ents need to be clipped to
ensure that only parts o f triang le inside the node are considered.

All segm ents are clipped against the bounding p lanes o f the node and only parts o f these segm ents
that are fully contained by the node are retained. T he o ther parts are d iscarded. The list o f
segm ents is m odified accordingly. F igure 5.8 show s the in tersec tion segm ents clipped by the
bounding box o f the node.

5.6.4 Projection o f C lipped Segm ents

The list o f clipped segm ents con tains the parts o f the leaf node triang les that can be a part o f
the final im age. By projecting each clipped segm ent onto the row and determ in ing the correct
v isibility, the triangles occupy ing each affected pixel is found. As show n by Figure 5.9, each
segm en t's tw o end points are p ro jected onto the row using the m ethod described in Section 5.5.4
to obtain the required projection .

5.6 L e a f N ode P rocessing 126

O nce the X and Z coord inates o f the tw o end points o f the segm ent are found, any point on the
line segm ent can be found using linear in terpo lation . The X coord inate is calculated by linear
in terpo lation . F or perspective pro jections, the Z coord inate is com puted by linearly in terpo lating
1 / Z . To sim plify the com putation , the relation o f 1 /Z w ith respect to the X coord inate is found
as follow s.

b = 1 /Z ,

a = (Z 1 - Z 2) / (Z i * Z 2 * (X 2 - * i))

1 /Z * = a X + b (5 .11)

w here a and b - are the necessary coefficients.
X] , Z i , Ar2, Z 2 - are Ar and Z coord inates o f the tw o end points o f the clipped in tersec tion
segm ent.
1 j Z x - is the correspond ing 1 /Z value at any X .

T he values o f a , b and 1 / Z are calcu lated for each segm ent. T hese values are stored in a list for
use by later parts o f the algorithm .

Project clipped segments

Leaf node

Row plane

Row being traced

Image plane

Viewpoint

Figure 5.9: C lipped segm ents projection . The clipped in tersec tion segm ents are projected onto
the row to obtain the pixels affected by the triangles in the node.

5.6.5 R asterising the Segm ents

T he X , a and b values are used to rasterise the segm ents - i.e., to determ ine and shade the p ixels
affected by the segm ent. An im portan t consideration is to attribute the right triangle to the pixel
by ensuring accurate v isib ility if several triang les p roject onto it.

H O M s are used to determ ine w hether pixels under consideration have already been rasterised and

5 .7 Final Im age G eneration 111

are hence occluded by triangles in other leaf nodes. By recursively subdividing the extent of the
node’s triangles and testing the subdivided extent against the HOMs, the visibility of each subdi
vided extent is determined. The subdivision and occlusion tests are continued until the subdivided
extent is contained fully by an eight pixel group determined by the HOM. Subdivision is stopped
at this point as it is more efficient to use SIMD instructions for further processing. Visibility
determination using HOMs will be discussed in detail in Section 5.8.4.

At the end of subdivision, the intra-node visibility in addition to the inter-node visibility is under
taken. Inter-node visibility order - the visibility order of triangles in different nodes - is deter
mined using the lower levels of the HOM. However, intra-node visibility - accurate visibility of
triangles within the node - is determined by using a Z-buffer like algorithm. For the eight pixels,
the maximum values of 1 j Z coordinates is maintained. When a clipped line segment projects
onto a pixel, the value of l / Z of this line segment is compared against the existing value. If it
is greater, then the pixel’s existing triangle is replaced by this triangle and the Z-buffer’s value is
updated to reflect this.

An observation is that if a leaf node has triangles that do not overlap, intra-node visibility is not
necessary and hence the Z-buffer algorithm is also not necessary. However, to simplify the im
plementation, this is implemented only if a leaf node has a single triangle or two non-overlapping
triangles.

5.7 Final Image Generation

The process so far details the method to find the corresponding triangle for each pixel on a partic
ular row. Once the triangle has been determined for the pixel, shading can be computed using one
of the popular methods. Since visibility is the main concern, the shading used by Row Tracing is
a simplified method that aims to emphasise speed.

5.7.1 Sim plified Shading for Row Tracing

The simplified shading used for Ro\\> Tracing is an adaptation of the method used in [MJCOO]
[MJC02] that uses normal coding [Gla90]. Directions are quantised and the normals of the trian
gles are then classified into one of the quantised directions for which shading is calculated.

The advantage of this process is that for a viewpoint, there are a fixed number of quantised di
rections for which shading can be pre-computed and stored in an array prior to tree traversal. For
Row Tracing, a quantised set of 65535 directions are used. Once the tree traversal is completed, a
pixel’s shading is found by just an array indexing operation.

For every pixel in each row, if a triangle projects onto it, shading is computed and the pixel’s
colour is set accordingly. When all the rows in the image are similarly shaded after completing
the tree traversal and leaf node processing, all the pixels in the image are appropriately shaded to
obtain the final image.

The algorithm can be used without using HOMs, in which case visibility is always determined by
the Z-buffer algorithm. However, the use of HOMs is an important optimisation that accelerates
the rendering process significantly by incorporating an occlusion detection method - one that
mimics the early ray termination used by ray tracers - into Row Tracing.

5 .8 ID H ierarchical O cclusion M aps (HOMs) 128

5.8 ID Hierarchical Occlusion Maps (HOMs)

H ierarchical O cclusion M aps (H O M s), as in troduced by Z hang et al. [Z M H H 97], is a very efficient
m ethod to determ ine occluded areas o f an im age. W hen com bined w ith a fron t-to -back traversal
o f a structure like a kd-tree, the areas that have already been rendered occlude o ther triangles
p rojecting onto these pixels. H O M s w ere also used in C oherent R endering d iscussed in chap ter 4.
T hey are adapted for use w ith R ow Tracing - the ID nature m aking H O M s sim pler and m ore
efficient.

T hrough the use o f ID H O M s, it is possib le to m im ic the early ray term ination feature o f ray
tracing w hereby once a ray is de term ined to have hit an object, it can stop the traversal. H owever,
due to the fact that a row encapsu lates a large num ber o f rays, the early ray term ination property
cannot be used directly. H O M s are one m ethod to adapt this property o f ray tracing to R ow
Tracing.

T he HOM is an array o f bits w ith each bit indicating if the part o f the row corresponding to that
bit is occluded. The H OM is a h ierarch ical structure. Each bit at the low est level o f the H O M
corresponds to a pixel in the row being traced. F igure 5.10 show s a H O M in its in itial state w hen
the entire row is unoccluded. In the figure, the row is indicated by the co loured line w ith each red
or green part represen ting a pixel. A bit at each h igher level com bines the occlusion status from
the two corresponding bits at the level im m ediately below it - i.e., if the tw o corresponding bits
are set. then the upper level bit is also set, o therw ise the bit is not set. E ssentially , the upper level
bit is a bitw ise and o f the tw o co rresponding low er bits. The bits below are com bined to obtain the
h igher level bits and w hen the highest level bit is set. it ind icates that the en tire row is occluded.

To represent a H OM w ith m inim al w astage, an array o f chars is used in the im plem entation as
the structure for ID H O M s. As a char is just eight bits, this reduces any w astage that m ay occur
by using a b igger data type. F or an im age that is 1024 pixels w ide, the low est level o f the H OM
uses ju s t 128 chars. The upper levels use 64, 32... 1 chars allow ing the H O M for the row to be
represented by ju s t 256 chars - a negligible am ount o f m em ory. The reduced m em ory requirem ent
for the HOM also im proves the cache coherence.

P rior to traversal o f a row. the entire row is em pty, i.e.. none o f its p ixels are rendered. At this
point, the H O M s - that at all points indicate the occlusion state o f the row - is in itialised so that
all bits are zero, as Figure 5.10 show s.

HOM level

16 pixels / bit 0 4

8 pixels / bit 0 I 0 3

4 pixels / bit 0 0 0 0 2

2 pixels / bit 0 0 0 0 0 0 0 0 1

1 pixel / bit 0 0 0 0

ooooooooo

0 0 0 0

Figure 5.10: Initial state o f the H O M .

The use o f H O M s involve - updating it w hen a triangle is rasterised so that it represen ts the current
occlusion state o f the row at all tim es, testing it during tree traversal tim e. The H O M s are also

5 .8 I D H ierarchical O cclusion M aps (HOMs) 129

HOM level

16 pixels / bit 0 4

8 pixels / bit 0 0 3

4 pixels / bit 0 0 I 0 0 2

2 pixels / bit oT o o T oT o 0 0 0 1

1 pixel / bit 0 0 0 0

oooooo

1 11 1 0 0 0 0

Row

(a) Pixels and HOM bits updated (in blue). If the blue part on the row is rasterised,
then the first level HOM is first updated.

HOM level

4

3

2

16 pixels / bit 0

8 pixels / bit 0 0

4 pixels / bit 0 0 0 0

2 pixels / bit 0 0 0 0 0 1 0 0

1 pixel / bit 0 0 0 0

oooo

0 0 1 1 1 0

oo

Row

(b) Upper level bit updated (in blue)

Figure 5.11: U pdating the H O M .

checked w hen triangle segm ents are rasterised .

5.8.1 HOM Update

The HOM needs to be updated w hen triang les in the leaf node are rasterised so that the H O M s
indicate the current occlusion state o f the parts o f the row. A t the lea f node, w hen a triangle is
determ ined overlap a part o f the row, the bits correspond ing to the affected pixels o f the row are
set to one. T hese bits indicate that any fu rther attem pts to render ano ther triangle onto these pixels
should fail. Each bit at the low est level and its b inary ad jacen t bit are ancled to obtain the upper
level bit. A sim ilar operation is undertaken at every consecu tive level until the upper level bit is
zero or until the highest level bit is reached. F igure 5.11 show s the process.

Each H OM consists o f a series o f chars m aking it p referab le to set and update the H OM upw ards
in groups o f 8 bits o r I char at a tim e. A ccordingly, during the rendering part (Section 5.6.5), the
update is perform ed w hen the pixel w idth is eight pixels co rrespond ing to the 8 bits in a char o f
the HOM at the low est level. H ence, the state o f these 8 pixels is com bined into a char in w hich
a bit with a value o f 1 indicates that the correspond ing pixel has been rendered and a bit w ith a
value o f 0 indicates that it has not yet been rendered. T he char thus crea ted is bitw ise anded w ith
the corresponding H OM char’s curren t value to get the new occlusion status for these pixels.

F inding the upper level bits is slightly com plicated by the lack o f sim ple horizontal bitw ise and
m ethods. The m ost obvious m ethod is to m ake a copy o f the char, use b itw ise shifts on the copy,

5 .8 ID H ierarchical O cclusion M aps (HOMs) 130

and finally bitw ise and the orig inal char and the shifted copy as show n in F igure 5.12. T his
process is expensive - especially as this occurs during the rendering process. To optim ise this,
for each o f the 256 values that the char can take, the ho rizon ta lly bitw ise a tided values are p re
com puted and stored. T his sim plifies the expensive com bination operation to one o f indexing an
array - a relatively less expensive operation .

—► a

— b

□ 0 0 0
HOM - obtaining the higher

level using
'shift right and

bitwise and'

Figure 5.12: HOM update - com bin ing bits horizontally .

The HOM thus updated will alw ays reflect the current occlusion state o f the row being considered.
It is used to determ ine if subsequent rendering attem pts correspond to already rendered parts o f
the row.

5.8.2 O cclusion Testing using H O M s

T he real value o f H O M s is realised at traversal tim e, w hen they enable detection o f occluded parts
o f the row to allow large parts o f the tree to be skipped. G iven a segm ent o f pixels - a starting
pixel and an ending pixel - the occlusion testing process uses the H O M s to determ ine w hether this
segm ent is occluded or not. To conduct the test, the exact level and bits o f the H OM that hold this
inform ation is needed. If the bits thus determ ined are all set. then the span o f pixels are occluded.
O therw ise, the span o f p ixels are not occluded and p rocessing w ould have to continue further. The
process is show n in Figure 5.13

The m ost challeng ing part o f the occlusion test is to de term ine the necessary level and bits o f the
H OM .

Determining the level - The level o f the H OM to be checked depends on the length o f the pixel
span lo be tested. T he level is obtained by taking the log -2 o f th is length and rounding up to the next
integer. The log -2 o f a floating point num ber is easily found - it is the exponent part in the IEEE
floating point represen tation . S ince the exponent p rovides the lo g 2 o f a pow er o f 2 low er than the
float in consideration , it is increm ented to get a pow'er o f 2 g rea ter than the float. For pixel
lengths that are exact pow ers o f tw o the exponent is accurate. A H O M bit at this level indicates
the occlusion status o f pixels. It is possib le that the pixel extent m ay span either one or tw o
bits at this level.

HOM - obtaining the higher
level by 'horizontal and'

1 1 0 0 1 0 1 1

□ 0 0 0
» 1

1 1 0 0 1 0 1 1

0 1 1 0 0 1 0 1

0 1 0 0 0 0 0 1

5 .8 I D H ierarchical O cclusion M aps {HOMs) 131

HOM level

16 pixels / bit 0 4

8 pixels / bit 0 1 3

4 pixels / bit 0 0 m m m m m
HOM level

2 and bits to

2 pixels / bit 1 0 1 0 1 1 1 1 check
1

1 pixel / bit 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0

Row

Length = 3 pixels
Log2(3) = 1.58

Level of HOM to check = 2

Figure 5.13: O cclusion testing. II' the blue part on the row is to be tested for occlusion , 2 bits
(show n in blue) at level 2 o f the H O M is tested.

Determ ining the bits of the HOM at the level - At the level o f the H OM . determ in ing the
co rresponding bits o f the H OM is done using the actual pixel values o f the start and end p ixels o f
the pixel extent. T he respective pixel values are d iv ided by 2,evtl - achieved easily by sh ifting the
pixel value by le v e l bits to the right - to get the b it(s) to be tested. T his m ay be one or tw o bits
depending on the start and end pixels.

U sing the level and bits thus com puted , occlusion is easily determ ined by testing if the bits are set.
I f they are set. the pixel extent is occluded and hence processing can stop.

F igure 5.14: Final H O M on the D ragon m odel. O range line rep resen ts the actual pixel. E ach
horizontal line above the o range line is a level o f the H O M . In the H O M , each single coloured

block indicates a bit o f the H O M at that level.

The occlusion testing is used during the tree traversal to test and skip occluded nodes. It is also
used in the rasterisation steps to determ ine accurate v isib ility o f triang les and to skip pixel extents
that m aybe occluded.

5 .8 I D H ierarch ica l O cclusion M aps (HOMs) 132

5.8.3 N ode O cclusion Testing

C heck ing the H OM is the sim pler part o f the node occlusion test. The m ore com plex part is to
de term ine an efficient m ethod to find the p ixels that the node occupy w hen projected on to the
row. As detailed in Sections 5 .5.5 and 5 .5 .6 and F igure 5.3, finding an overestim ate is p referred
to finding the exact p ro jection due to the com putational cost. A lthough , it w ould result in a
few false negatives - i.e., a few nodes m ay be determ ined as unoccluded w hen in fact they are
occluded , using the overestim ate is p referred to the m ore expensive m ethod o f finding the exact
node projection .

5.8.4 R ecursive R asterisation o f L eaf N ode Triangles

Leaf node

Row plane

Row being traced

Use for I
~ occlusion —

Image plane

Viewpoint

Figure 5.15: L ea f node in tersec tion segm ents - C lipped and pro jected onto the row. T hese
p ro jections on the im age row are tested for occlusion against the H O M s to determ ine in ter-node

visibility.

In Section 5.6.5, it w as stated tha t a recursive process is fo llow ed to rasterise the triangle segm ents.
H O M s are used even in this recursive process to efficiently determ ine inter-node visibility. The
pixel extent to be tested fo r occlusion is given by the m inim um and m axim um projected points
a long the row as show n in F igure 5.15. If this extent is occluded, as determ ined by checking the
H O M , then rasterisation can stop. However, if the exten t is not occluded , it is subdivided into tw o
sub-ex ten ts - each spanning h a lf o f the orig inal exten t - that are tes ted for occlusion . The process
is con tinued until e ither the sub-extent is occluded or until the sub-ex ten t is indicated by one bit
in the H O M at a level w here each bit indicates 8 pixels - i.e., a bit in level 3 o f the H O M show n
in F igure 5.13. The process is explained by the pseudocode below.

5.9 Packet Row Tracing 133

RerursiveRender(extent, pList)
{

i f (extent is occluded)
return;

i f (extent is contained
inside a block of 8 pixels)

{
Rasterise relevant parts of

each projection in pList
using a Z-buffer algorithm;

Update Occlusion map
with rasterised pixels;

else
1
RecursiveRender(first half of extent);
RecursiveRender(second half of extent);

}
)

Listing 5.5: R ecursively render parts o f the triangle that project o n to this row. The m ethod
div ides the part into tw o until the parts span eight pixels. At this point a Z -buffer a lgorithm is

used to determ ine accurate visibility fo r these eight pixels.

If the extent - fully indicated by a bit in the level 3 o f the H OM (F igure 5 .15) - is not occluded,
then the Z -buffer like structure is used to determ ine occlusion. H owever, in o rder to test w hether
a pixel has already been rasterised by triangles in o ther nodes, the correspond ing low est level bits
(indicating occlusion status fo r a single pixel) o f the HOM is tested. The pixel is rasterised only if
the H O M s indicate that it is unoccluded.

In this m anner H O M s are used both to optim ise Row Tracing and also to ensu re accurate visibility.
It is an im portant part o f Row Tracing that enhances the perform ance - especially for highly
occluded scenes - to be very com petitive w ith packet ray tracers and rasterisa tion m ethods like
O penG L.

5.9 Packet Row Tracing

Row Tracing m akes effective use o f the coherence prov ided by the underly ing datastructure to ac
celerate the speed o f rendering. H ow ever, upon closer observation , it is no ticed that the algorithm
can further utilise the coherence provided by the data structure. Several ad jacen t row s traverse a
sim ilar path dow n the tree and possibly hit the sam e object. T his in turn points to the possibility
o f increased rendering perform ance by tracing groups or packets o f row s th rough the tree. A new
algorithm - Packet Row Tracing - was im plem ented to fullil this prom ise.

5.9.1 High Level A lgorithm

The high level a lgorithm is very sim ilar to R ow Tracing , as the pseudocode below show s. H ow
ever. due to the use o f groups / packets o f row s instead o f a single row, the algorithm needs m inor
m odifications. The first change is that each com ponent row has its own attributes that have to be
com puted p rior to traversal o f the packet. H owever, the m ajor change is the tree traversal o f the

5.9 Packet Row Tracing 134

packet. A lthough it is very sim ilar to the single row variant, it has to be adapted to handle packets
o f row s instead o f a single row. It will be d iscussed in g reater detail in S ection 5.9.2. Finally, once
the tree traversal com pletes, the triangles occupying all the pixels o f all the com ponent row s have
been determ ined. T his high level a lgorithm is given by the pseudocode below.

RowPacketTrace()
{

for (each row packet in image)
{

for(each row r in row packet)
InitialiseRowConstants();

TraverseTreePacket(rootNode);
for(each row r in row packet)

Shade r;
)

}

L isting 5.6: H igh Level Packet Row> Tracing a lgorithm . Instead o f in itialising a single row and
tracing it (as show n in L isting 5.1), row s are processed in groups, i.e., they are in itialised ,

traversed and finally their pixels are shaded in groups. The algorithm is very sim ilar to the single
row version and m ajor deviations from L isting 5.1 are h igh lighed in blue.

T he in itia lisation and shading are ju s t iterating over all the row s using the sam e m ethods described
in the single row' versions. The tree traversal, though, a ttem pts traversing several row s dow n the
tree m inim ising the num ber o f node traversals necessary - reducing the ca lcu la tions and im proving
the cache coherence and m em ory bandw id th usage o f the algorithm .

5.9.2 Tree Traversal

T he tree traversal is adapted so that the tree is traversed by a g roup o f ad jacen t row s instead o f a
single row. The pseudocode below' show s the process as im plem ented.

TraverseTreePacket(node)
(

if (node is empty or
entire RowPacket misses node)
return

proj = FindNodeProjection();
if (proj is occluded in all rows or

proj is outside frustum)
return;

i f (node is leaf node)
{

for(each row in packet)
ProcessLeafNode(row, node);

return;
>
if(entire RowPacket intersects node)
i

for(each childNode sorted in
front-to-back order)

TraverseTreePacket(childNode);
}

else if(RowPacket partially
intersects node)

{

5.9 Packet R ow Tracing 135

for (each row in packet)
TraverseTree(row, node);

Listing 5.7: Row-packet-tree traversal algorithm. This is very similar to the single row traversal
shown in Listing 5.3 and the major differences are highlighted in blue. The differences enable the

algorithm to process a packet of rows instead of a single row.

The early termination criteria for the tree traversal are very similar to the ones for the single row
variant. The first condition is if the node is empty, then traversal can stop. This condition does not
vary for the packet version.

The next condition is packet-node intersection. As shown in Figure 5.16, the intersection is
determined by using just the two outer boundary rows - the top and bottom rows of the packet.
The signed distances between the node and these two are computed, similar to the single row
version - described in Sections 5.5.7 and 5.5.8.

It may be recalled from Section 5.5.1 that a plane-node intersection can be achieved efficiently by
predetermining the two vertices of the node casting the maximum projection onto the row-plane’s
normal. If v i and V2 are the two vertices thus determined then we can define:
dtop and dtop - as the signed distances of the top row to v i and V2 respectively and
dbottom and dbottom ~ as the signed distances of the bottom row to v i and V2 respectively.
Using these signed distances, the cases are determined and handled as follows:

Case 1 - Entire packet intersects Node - The case occurs when:

This indicates that both the boundary rows intersect the node, as shown in Figure 5.16(a). Conse
quently, all the component rows of the packet also intersect the node, thus necessitating traversal
down the tree.

Case 2 - Entire packet misses Node - Both the rows miss the node and are on the same side
of the node, as shown in Figure 5.16(b). The case is determined when:

During the calculation of the distances, it is to be ensured that the normals to the rows are not
directed towards each other. In this case, none of the rows in the packet intersect the node and
hence the traversal can stop at this node.

sign(dtop) ! = s ig n (d top) and

sign(db0ttorn) ! = sign^dbottom)

s ig n (d top)

s ig n (d bottom)

s ig n (d top)

lottorn

sign(dtoP) and

s ig n {d bottom) an d

sign(dbottom)

Case 3 - Part of packet intersects Node - This can occur when:

5 .9 Packet Row Tracing 136

• O ne o f the boundary row s in tersect the node and the o th e r does not. T his is detec ted if:

§ign(dtop) ! -- sign (d top) and

sign [di)0ttoni) sign {d[>ott <nn)

s ign (d top) = = sign(d top) and
sign (dbottnm) ! s ig n (dbon om)

T his case is illustrated by F igure 5.16(c).

• The node span is sm aller than the span o f the packet, as show n in F igure 5.16(d). T his is
detec ted when:

sign (d top) = sign (d top) and

sign(d(,ottom) = sign(dbottom) and
sign (d top) ! = sign{dbottom)

W hen only a part o f the packet in tersec ts the node (F igure 5 .16 (c) o r F igure 5 .16 (d)), the algorithm
continues traversal using the single row variant w ith each o f the com ponen t row s using this node
as the starting node for single row traversal.

Node Occlusion testing - W hen a group o f row s are being traversed , if the coherence is good
enough, the occlusion o f one o f the rows m ay indicate that the entire g roup is occluded. H owever,
to test this accurately, the m ethod used is to sim ply test the occlusion m aps o f all the com ponent
row s individually.

S ince the transform ation m atrix is used to project the node on to the screen, the node’s m axi
m um extent - given by the m inim um and m axim um A' coord inate occupied by it on the screen
- applies to all the row s. It is sufficient to find the node p ro jec tion 's overestim ate as detailed in
Sections 5.5.5 and 5 .5.6 just once for the entire packet o f row s to get the pixel extent for the
occlusion test.

It m ay be recalled that during the in itia lisation process, constan ts for each row are being created
and m aintained. D uring this p rocess. H O M s for each o f the com ponen t row s are also created and
initialised. T hese H O M s are updated w hen triang les are rasterised and kept up to date w ith the
occlusion status o f the row. D uring tree traversal, upon finding the node projection overestim ate,
it is tested against every single ro w ’s H OM . If any one o f the H O M s ind icates that the node is not
occluded, the occlusion test can stop as the traversal needs to con tinue in this case. H owever, if
all the H O M s indicate that the node is occluded, tree traversal can stop for the entire packet.

A s w ith the single row version, if all the tests indicate that traversal should continue, traversal
continues until e ither the node is occluded or a leaf node is reached.

Leaf node processing - If traversal con tinues dow n the tree in packet m ode until a lea f node
is reached, then all the com ponent row s in tersect the leaf node and can have som e o f their pixels

5.9 Packet R ow Tracing 137

;fe&SBoas

Node

(a)Case 1
Both rows intersect node

(b) Case 2
Both rows miss node

(c) Case 3.1 (d) Case 3.2
One row intersects and Node span is smaller

the other misses t h a n packet span

 Top row of packet

 Bottom row of packet

Part of packet hitting node

Part of packet missing node

Figure 5.16: R ow -P acket-N ode in tersec tion .

determ ined at this lea f node. In this im plem entation o f Packet R ow Tracing , all the com ponent
row s at the lea f nodes are treated individually and are separately p rocessed using the sam e m ethod
used by the single row variant (section 5.6).

Final image generation - At the end o f the tree traversal by a packet o f row s, the triangles at
every pixel o f each o f the com ponent row s is determ ined. These triang les are used to shade the
pixels corresponding to each pixel o f each row. By tracing all the row s o f the im age, by grouping
them into packets, the final im age is generated and displayed.

An im portant consideration for Packet R ow Tracing is the num ber o f row s in each packet. The
perform ance o f the algorithm is dependent on this num ber. A sm all num ber does not m axim ise
the coherence enough, w hereas w ith a very large num ber the available coherence is not sufficient.
In our im plem entations, packet sizes o f 8. 16 o r 32 w ere found to be very good wfith a packet size
o f 16 providing the best results on m ost scenes.

5 .10 Low L evel O ptim isations 138

5.10 Low Level Optimisations

T he algorithm s - R ow Tracing and Packet R ow Tracing - as im plem ented w ithout any low level
op tim isa tions are reasonably fast. H owever, in order to m axim ise the perfo rm ance, a few im p le
m entation op tim isa tions are used. The tw o m ain op tim isa tions are the use o f SIM D instructions
(see A ppendix B) and m ulti-threading.

5.10.1 M ulti-T hreading

R ow Tracing is highly paralle lisab le as each row is independent o f o ther row s. T hus, p rocessing
o f each row can occur sim ultaneously w ithout in terfering w ith the p rocessing o f o ther row s. T his
properly o f R ow Tracing is inherited from ray tracing that is sim ilarly triv ially parallelisable.

M ulti-th read ing over the num ber o f cores available accelerates R ow Tracing and the packet variant
im m ensely. A s the results section - Section 5.11 - w ill show, the speed-ups achieved is alm ost
perfect w ith a speed-up o f 3.8 x on average (for the fastest variant o f R ow Tracing) on a quad core
processor.

T he key to achieve the best perform ance w hen an algorithm is m ulti-th readed over m ultip le cores
is to ensure that all the th reads have as sim ilar a w orkload as possib le . T his ensures that all the
th reads finish the w ork allocated alm ost sim ultaneously. To achieve the best d istribu tion o f w'ork
across threads, a round robin allocation o f the row s / packets o f row s to p rocess is im plem ented .
A s Figure 5.17 show s, this m eans that the first row' / first packet o f row s is allocated to the first
thread, the second row' / packet to the second th read and so on. As ad jacen t row s follow a very
sim ilar path dow n the tree, this m ethod o f load balancing ensu res that the th reads have w ork loads
as c lose to each o ther as possib le.

Single Row Tracing Packet Row Tracing

Work allocated to CPU-1

 Work allocated to CPU-2

Work allocated to CPU-3

 Work allocated to CPU-4

Figure 5 .17: Load balancing o f Row' Tracing and Packet R ow Tracing. Each coloured b lock is
the w ork allocated to a thread.

5.77 Results 139

5.11 Results

The algorithm has been implemented in C++ using the Visual C++ IDE. The results are tabulated
by running the algorithm on a computer with the Intel Core 2 Quad 2.4 GHz processor, 4 GB of
RAM and a Geforce 8800 GTX with 768 MB of video memory, running Windows XP64. A range
of models are used to study the algorithm.

Figure 5.18 shows the performance of Row Tracing and its packet variant in comparison to the
performance of packet ray tracing and OpenGL on the same scenes. It can be noticed that the
performances of Row Tracing and Packet Row Tracing are excellent. It is also noticeable that
Row Tracing and Packet Row Tracing are extremely amenable to multi-threading. The other point
of interest from the graph is the adaptability of Row Tracing over different data structures like
kd-trees and octrees.

In order to observe these results better, subsets of Figure 5.18, that isolate particular results are
shown in the sections that follow.

5.11.1 Row Tracing vs Packet Ray Tracing

In order to better understand the performance difference between Row Tracing and packet ray
tracing, the best results for these two rendering methods are isolated in Figure 5.19 and Table 5.2.
The figure and the table show that the fastest version of Row Tracing is significantly faster than
the fastest version of ray tracing. The advantage is particularly noticeable when the scene consists
of large triangles like in ERW6, Sponza and Sodahall scene with advantages of 7.41 x , 1.93 x and
3.31 x. This reveals the advantage of cheap triangle intersections amortised over a large number
of pixels. For other scenes - the Powerplant and Armadillo scenes - that have a large number of
(possibly small) triangles visible. Row Tracing shows advantages of 1.93 x and 1.09 x . It can thus
be inferred that Packet Row Tracing is a very viable alternative to packet ray tracing as a visibility
method.

Scene ERW6 Sponza Armadillo Sodahall Powerplant
Row Tracing (kd-tree) 128 40 2 0 . 6 49.2 6.67
Ray Tracing 8 x 8 17.3 2 0 . 6 14.2 14.8 6.09
OpenGL 1 0 0 0 500 333 8.40 1.49
Row Tracing speed-up vs
Packet Ray Tracing

7.41 x 1.93 x 1.45 x 3.31 x 1.09x

Row Tracing speed-up vs
OpenGL

0.13x 0.08 x 0.06 x 5.86x 4.48 x

Table 5.2: Best performances of packet ray tracing and Row Tracing in fram es p er second. 8 x 8

ray packets and Packet Row Tracing's, kd-tree versions have been used respectively.

5.11 R esults 140

ERW 6 Sponza Armadillo Soda Hall PowcrPlant

804 Triangles 66454 Triangles 345944 Triangles 2.1 M illion Triangles 12.7 M illion Triangles

■□ID Dll .□ID nllfLnln
Frames per second - Single 1 hreadcd version.

Please note that OpenGL results for the first three models arc clipped to the maximum on the graph

120

loo

3.9

3.8
3.7
3.6

3.5
3.4

3.3
3.2
3.1

3

120

100

80

120

100

80

d d k i

120

100

80

rUII
Frames per second - M ulti-Threaded version (4 threads).

Please note that OpenGL results arc not improved by additional threads.

In □
Speed-up provided by M ulti-Threading

Octree Octree Kd I rcc Row
TracingTracing Packet Row

Tracing

KdTree
Packet Row

Tracing

Packet Ray
T racing 2x2

Packet Ray
Tracing 4x4

Packet Ray
Tracing 8x8

Packet Ray OpenGL.
Tracing Display Lists

16x16

Color mapping Index. First 4 colum ns: Row -Tracing. Next 4 Columns: Ray-tracing. Last Colum n: OpenGL.

Figure 5.18: Performance of Row Tracing vs Packet Ray Tracing and OpenGL.

5.11 R esults 141

KRYV6 Sponza A rm adillo Soda H all Pow erPlant

804 T riangles 66454 T riangles 345944 Triangles 2 .1 M illion Triangles 12.7 M illion Triangles

30

25

20

30 30

25 25

20 20

1.5

15

10

J i :
15 15

10 10

i o i :

1

0.5

1 0

Fram es per second - Single Threaded version.

D ■
Fram es per second • Mu h i-Threaded version (4 threads).

O ctree Row O ctree K dTrcc Row K dTrec Packet Ray Packet Ray Packet Ray Packet Ray O penG L
Tracing Packet Row Tracing Packet Row Tracing 2x2 Tracing 4x4 Tracing 8x8 Tracing D isplay Lists

T racing T racing 16x16

Figure 5.19: Perform ance o f Packet R ow Tracing vs Packet Ray T racing - S ingle threaded and
M ulti-th readed versions respectively. For sm aller sized m odels Packet R ow Tracing is m uch

faster than packet ray tracing. F or larger m odels, though the perfo rm ance d ifference is not that
significant. Packet R ow Tracing is still faster.

5.11.2 Row Tracing vs O penG L

Since Row Tracing can he thought o f as an algorithm that com bines ray tracing and O penG L . a
com parison against O penG L is necessary. Table 5.2 and Figure 5 .20 com pares the fastest R ow
Tracing variant vs O penG L im plem ented w ith display lists. It is c lea r that fo r sm aller m odels -
w ith less than a m illion triang les - O penG L is significantly faster than R ow Tracing. H ow ever,
w ith an increase in the scene sizes. O penG L perform ance decreases dram atica lly as evidenced by
the perform ance o f O penG L on the larger m odels - Sodahall (2.1 m illion triang les) and Power-
p la n t (12.7 m illion triangles). F o r these scenes, Row Tracing is 5 .8 6 x and 4 .4 8 x faster respec
tively.

T his show s that R ow Tracing inherits the com plexity advantage o f ray tracing m aking it very
scalable over scene sizes. It also indicates the dependence o f O penG L on available v ideo m em ory.
T he display lists for the larger scenes probably do not fit w ithin the 768 M B o f v ideo m em ory
available. This also contribu tes to the perform ance reduction as parts o f the m odel w ould have to
be paged. R ow Tracing , w ith its low m em ory usage can handle such scenes efficiently.

5.11 R esults 142

E R W 6 Sponza A rm adillo Soda Hall Pow erP lant

804 Triangles 66454 Triangles 345944 Triangles 2 .1 M illion T riangles 12.7 M illion T riangles

35 35 35 2

30 30 30 -

25 25 25 1.5

20 20 20

15 15 15

10 10 10 _ 0.5
5 5 n 5

0 - 0 0 - -

Fram es per second - Single Threaded version
Please noic thai OpcnCiL results for ihc first three models arc clipped to the maxim um c i the graph

Fram es per second - M ulti-Threaded version (4 threads).
Please note that OpenGL results arc not improved by additional threads

Octree Row Octree KdTrcc Rons K dTrce Packet Run Packet Ray Packet Ray Packet Ray O penG L
T racing Packet Row Tracing Packet Row Tracing 2x2 T rac in g 4 x 4 Tracing Kx8 T racing D isplay Lists

T racing T racing 16x16

Figure 5.20: Perform ance o f R ow Tracing (S ingle threaded and M ulti-th readed versions) vs
O penG L . O penG L perform ance for first three m odels clipped to 35 fps and 120 fps in both

charts. For sm aller m odels. O penG L is m uch faster. H owever, fo r larger m odels, Packet Row-
Tracing . especially w hen m ulti-threaded, is faster than O penG L .

5.11.3 Row Tracing Perform ance on K d-trees vs O ctrees

T he perform ance o f R ow Tracing on octrees is very good - close to its perfo rm ance on an SAH
kd-tree. F igure 5.21 show s that the d ifference in perform ance is sm all fo r m ost scenes. E specia lly
for densely packed scenes like the A rm adillo scene, w hen the SA H cannot effectively segregate
the triangles, the octree ac tua lly show s a slight advantage over the kd-tree. T his is due to the
com putational sim plicity o f in tersec ting an octree node as against the sligh tly m ore expensive
kd-tree node intersection.

T his result is significant as octrees are a very sim ple structure that are very easy and fast to create.
By using fast construction m ethods together w ith fast rendering m ethods, R ow Tracing w ith the
octree can be used as an effective algorithm to perform dynam ic rendering . T he octree results also
show the adaptab ility o f R ow Tracing on structures that are m ade up o f cubo id s / A xis-A ligned
B ounding B oxes (A A B B s). W hen com bined w ith recen t data structures like B IH (B ounding In
terval H ierarchies) [W K 06], BVH (B ounding V olum e H ierarch ies) [W B S07], etc that have fast

5.11 R esults 143

construction m ethods available, it points to the use o f R ow Tracing fo r dynam ic rendering.

E R W 6 Sponza Arm adillo Soda Hall Pow erP lant

804 T riangles 66454 Triangles 345944 Triangles 2 .1 M illion T riang les 12.7 M illion T riangles

Fram es per second - Single Threaded version.

BO
Fram es per second - M ulli-Threaded version (4 threads)

O ctree R ow O ctree K dTree Row KdTrec Packet Ray Packet Ray Packet Ray Packet Ray O penG L
T racing Packet Row T racing Packet Row Tracing 2x2 Tracing 4*4 Tracing 8x8 Tracing Display Lists

T racing T racing 16*16

Figure 5.21: Perform ance o f R ow Tracing on kd-trees and octrees - S ingle threaded and
M ulti-threaded versions respectively. Show s that R ow tracing w orks w ell on both kd-trees and

octrees.

5.11.4 Perform ance o f Row' Tracing vs Packet Row Tracing

Figure 5.22 and Table 5.3 show that Packet Raw Tracing is considerab ly faster than R ow Tracing.
The use o f m ultip le row results in a 1.05 x to 1.46 x acceleration in rendering perform ance. W hile
this is considerab le , it is noticab le that the acceleration due to the use o f m ultip le row s is not in
the sam e league as acceleration obtained by packet ray tracing vs single ray tracing. R ow Tracing
already m akes uses o f a lot o f the coherence provided by the scene. The use o f packets can thus
only slightly im prove coherence u tilisation . In addition , the use o f packets im plies that som e o f
the coherence is lost as the com ponen t row s m ay not traverse the sam e nodes, at w hich tim e Packet
Row Tracing reverts to the single row version. H aving said that, the use o f packets does result in
a considerab le im provem ent in rendering lim e and m akes Packet R ow Tracing very useful.

5.11 R esults 144

Scene ERW 6 Sponza A rm adillo Sodahall Pow erplant
R ow Tracing (kd-tree) 106.38 30.48 16.42 33.78 5.93
Packet Row T racing (kd-
tree)

128.21 40 .00 20.66 49.26 6.67

Packet R ow Tracing speed
up vs R ow Tracing

1.21 x 1.31 x 1.26 x 1 .46x 1 .12x

Row T racing (octtree) 91.74 24.63 17.79 32.05 4.54
Packet Row T racing (oc t
tree)

107.53 33.67 21.37 45.87 4.78

Packet R ow Tracing speed
up vs R ow Tracing

1.17 x 1.20 x 1.45 x 1.43 x 1 .05x

Table 5.3: P erform ance com parison betw een R ow Tracing and Packet R ow Tracing.

ERVV6 Sponza Arm adillo Soda Hall Pow erPlant

66454 Triangles 345944 Triangles 2 I M illion Triangles 12.7 M illion Triangles

Fram es per second - Single Threaded version.

Fram es per second - M ulti-Threaded version (4 threuds).

O ctree Row
Tracing

Octree
Packet Row

T racing

K dTree Row
T racing

K dTree
Packet Row'

Tracing

Packet Ray
Tracing 2x2

Pac ket Ray Packet Ray
Tracing 4x4 Tracing 8x8

Packet Ray OpenG L
Tracing D isplay Lists

16x16

Figure 5.22: Perform ance com parison betw een R ow Tracing and Packet R ow Tracing on both
octrees and kd-trees. It is c lea r that Packet R ow Tracing is considerab ly faster than single Row

Tracing.

5.11 R esults 145

5.11.5 Multi-core Performance

The perform ance o f R ow Tracing, in theory, should scale w hen the num ber o f cores are increased.
F igure 5.23 show s the speed-ups ach ieved by R ow Tracing w hen m ulti-th readed and run on a
quad core processor. It can be inferred that the algorithm is excep tionally suited to be m ulti
threaded. The speed-ups for the best variant o f R ow Tracing - Packet R ow Tracing w ith kd-trees -
is about 3 .8 x , thus, confirm ing the claim s. In addition , it also show s the low m em ory bandw idth
requirem ents o f R ow Tracing , since fo r a m ulti-th readed application , the m ajor bottlenecks are
load balanc ing and m em ory bandw id th issues.

ER W 6 S p o n /a Arm adillo Soda Hall Pow er Plan!

804 T riangles 66454 Triangles 345944 Triangles 2.1 M illion T riang les 12.7 M illion T riangles

S peed-up provided by M ulti-T hreading

Octree R ow O ctree K dTree Row K dTree Packet Ray Packet Ray Packet Ray Packet Ray O penG L
Tracing Packet Row Tracing Packet Row Tracing 2x2 Tracing 4x4 Tracing 8x8 Tracing D isplay Lists

T racing T racing 16x16

Figure 5.23: Speed-ups achieved by R ow Tracing by using four th reads a quad core CPU .
A ccelerations o f c lose to 4 x suggest that R ow Tracing is h igh ly paralle lisab le .

5.11.6 Performance vs Tree Size

Figure 5.24 show s the perfo rm ance o f R ow Tracing and packet ray tracing across kd-trees o f
d ifferent sizes. The perform ance o f R ow Tracing is very good for sm all tree sizes. It im proves
significantly w hen the tree sizes are m oderately increased. T he optim al tree size for R ow Tracing
is very sm all and perfo rm ance degrades slightly w hen tree sizes are increased beyond this. In
com parison, the perform ance o f packet ray tracing is poor w hen tree sizes are very sm all. It
im proves only w hen the tree size is increased significantly . T he optim al tree size for packet ray
tracing is significantly g rea ter than that o f R ow Tracing.

This is ano ther im portant result w hen considering R ow Tracing for dynam ic rendering. In a dy
nam ic context, the structure has to be constructed p rio r to rendering each fram e. A sm aller tree
size im plies low er construction tim es leading to better dynam ic rendering perform ance.

5.12 Sum m ary 146

i -i< to — Row Tracing

Packet Row Tracing

— Packet Ra\ tracing 8 \8

800

-400

KBso
0 1.000 2.1HM) 3.000 4.000 5.000 6.000

Tree Size in KBs

= 4IHI

ic

§ 2(H>

100 -

— Row Tracing

- Packet Row Tracing

■ Packet Ra\ Tracing 8x8

(a) Sponza scene

20.(100 40.000 60.0(H)
Tree size in KBs

(b) Sodahall scene

KBs

Figure 5.24: R endering tim es using R ow Tracing, Racket R ow Tracing and Packet Ray T racing
over tree sizes show that w hile packet ray tracing needs larger trees, R ow Tracing and Packet

Row Tracing w ork very w ell w ith sm aller trees po inting to the possib ility o f using R ow Tracing
for dynam ic scenes.

5.11.7 Row Tracing with and w ithout HOMs

A s m entioned, R ow Tracing can be used w ithout H OM s. In th is case, the v isib ility is accurately
determ ined using a partial Z -buffer. To m easure the effectiveness o f H O M s as im plem ented fo r
R ow Tracing, the perfo rm ance is determ ined w ith and w ithout the use o f H O M s. The results are
show n in F igure 5.25.

T he tim es indicate that H O M s are very effective. For the fastest version o f R ow Tracing - m ulti
threaded packet R ow Tracing on SA H kd-trees - the H O M s are responsib le speed-ups o f 1.2 x ,
1.5 x , 2.3 x , 2 1 .7 x and 3G x for the five scenes - ERW 6. Sponza , A rm adillo , Sodahall, and Power-
p la n t scenes - respectively. The benefit o f H O M s is seen m ore for larger scenes like the Sodahall
and P ow erplant scenes. O nly fo r the very sm all ERW 6 scene, the H O M ’s effect is negligible.
T his show s that the H O M s, and in a sim ilar vein - the early ray term ination used by ray tracers is
highly effective in im proving the rendering perform ance. It is also an ind ica tion that H O M s are a
h ighly effective m ethod to transfer the early ray term ination property to R ow Tracing.

5.12 Summary

T he results show the effectiveness o f the algorithm as a v is ib ility m ethod. For scenes w ith pre
dom inantly large triang les visib le , R ow Tracing show s excep tional perfo rm ance in com parison to
packet ray tracing. T his is a ttributed to the am ortisation o f in tersec tion calcu la tions over a large
num ber o f pixels. The traversal calcu lations are also averaged over a num ber o f pixels, but the
sm aller tree sizes - im plying few er traversals - work in favour o f R ow Tracing m aking it m uch
m ore efficient. Finally, the adap ta tion o f the early ray term ination property - used extensively in

5.12 Sum m ary 147

ERW6 Sponxa Armadillo Soda Hall PowerPIant

804 TYimglcs 66454 Triangle* 345944 Tnangle* 2.1 Million Triangles 12.7 M Son Triangles

Frame* per second * Single llircaded version.

Fram es per second - Multi- I'hreaded version (4 threads)

Octree Row Octree Packet KdTieeRow KcfTiee Octree Row Octiec Racket KDTree Row KdTree
Tiacais Row Tiacaia Tiacais Packet Row Tiacais WO Row'Tiacaig Tracm aW O Packet Row

Tiacaia HOM* WO HOMs HOMs Tracing WO

Figure 5.25: P erform ance o f Row' Tracing on kd-trees and octrees w ith and w ithout H O M s.
H O M s are show n to be highly effective as an occlusion detec tion m ethod.

ray tracers - to R ow Tracing through a ID version o f H O M s proves extrem ely beneficial, leading
to a very efficient algorithm .

In com parison to O penG L . R ow Tracing show s an advantage w hen the sizes o f the scenes are
large. A s the scene sizes increase, O penG L - using a brute force approach - show s deterio rated
perform ance, w ith ray tracing and R ow Tracing ou tperform ing it fo r these scenes. At the sam e
lim e, the perform ance o f R ow Tracing for sm aller scenes is very good. It can thus be in ferred that
Row Tracing has a be tter com plex ity over scene sizes than basic O penG L w ith d isp lay lists. The
results thus show that R ow Tracing scales very effectively both w ays accord ing to the scene size.

A nother inference from the results is the potential su itab ility o f R ow Tracing for dynam ic ren
dering. Row Tracing w orks very well w ith a very sim ple data structure like the octree. O ctrees
- being sim pler to create - are better suited fo r a dynam ic rendering context. In addition. R ow
Tracing w orks w ell w hen tree sizes are sm all. A gain, sm aller trees are faster to create - poin ting to
very good potential fo r dynam ic rendering. The u tilisation o f R ow Tracing in a dynam ic rendering
context is one o f the obvious areas for fu rther investigation.

Row Tracing is also very easily paralle lised - a property that is inherited from ray tracers. T his
is a very valuable advantage w hen there is a trend tow ards increased num ber o f C PU cores. The

5.12 Sum m aiy 148

results show an almost perfect speed-up with the number of cores. Thus, when the number of
cores increase, Row Tracing performance would increase without any modifications to the imple
mentation.

Other future work include using techniques used in rasterisation - shadow, reflection and refraction
mapping, shadow volumes, etc - to add secondary ray effects. Row Tracing inherits the inability of
rasterisation based methods to physically model secondary rays and these have to be implemented
with methods similar to rasterisation. There is also scope for further optimisations like testing
entire packets for occlusion, faster leaf node processing for packets by intersecting groups of rows
with the leaf node triangles, and possibly splitting packets into smaller packets at divergence nodes
during traversal to further accelerate Packet Row Tracing.

It has been seen that the optimal trees for Row Tracing are much different than trees for ray
tracing. For a cube, the probability of a plane intersecting it is proportional to the sum of the edge
lengths [Hai07]. Instead of using the SAH, a modified version that uses the sum of edges measure
could be used instead of the surface area to create a tree with better properties for Row Tracing.

Row Tracing is introduced as a novel algorithm that aims to improve visibility determination /
rendering performance. It can be considered as a hybrid algorithm combining rasterisation and
ray tracing concepts - fast scanline rasterisation at the leaf node level and fast front-to-back tree
traversal of an octree or a kd-tree. The use of HOMs to determine accurate visibility transforms it
into a very effective algorithm, especially in cases where there is significant occlusion - as in most
computer graphics scenes. The fact that rows are traced independently of each other implies that
it is highly parallelisable. In addition to these factors. Row Tracing and Packet Row Tracing are
simple algorithms to implement. These factors enable Row Tracing to be a very viable alternative
to either packet ray tracing or rasterisation based visibility determination / rendering methods.

Chapter 6

Conclusions and Future Work

Conclusions

This research has made several contributions while investigating the use of ray tracing data struc
tures and algorithms in the context of visibility. The aim of the research was to investigate the
effectiveness of ray tracing structures like kd-trees, octrees, etc and associated algorithms from a
purely visibility context - i.e., when only the first intersected object is to be found without con
sidering additional optical effects like reflections, refractions and indirect lighting. Three new
methods to achieve this have been developed and studied.

• RBSP trees - A new structure based on kd-trees, but more general, RBSP trees provide
ability to have more than three splitting axes. The axes may be in any arbitrary direction as
long as they are predetermined prior to tree construction. They allow the tree to fit closely
to the scene being rendered, thus reducing the number of node traversals and primitive
intersections.

Construction and use of RBSP trees to generate images has been discussed extensively in
Chapter 3. Due to their similarity to kd-trees, several well known algorithms and heuristics
for both construction and traversal can be adapted. Through the use of the Surface Area
Heuristic to construct them, it has been possible to construct good trees for most scenes.

Results show that, for scenes with predominantly non-axis-aligned triangles, RBSP trees
are responsible for a reduction in the number of node traversals and triangle intersections.
Unoptimised rendering times also show that RBSP trees are more efficient than kd-trees for
these scenes. At the same time, RBSP trees are slower than kd-trees when the scene consists
of predominantly axis-aligned triangles like the Sponza scene. In addition, another problem
is the fact that construction times, as described in this thesis, are dependent on the number
of axes used and can be quite long.

During the axes selection phase of the construction, the axes can be drawn from the scene
itself so that the RBSP tree provides an even closer fitting structure. By this, fewer axes
would be sufficient. The results showed that when ray tracing on RBSP trees, for most
scenes, the best results were obtained with 8 - 1 2 axes and the rendering times went up with
trees constructed using more than 8-12 axes. In addition, for the Sphere scene, for which
the axes were, in effect, customised, RBSP trees produced the best acceleration compared
to kd-trees.

149

150

It is notable that the introduction of RBSP trees has drawn more attention to the use of
structures with non-axis-aligned splitting axes. Budge et al. address some of the problems
of RBSP trees as described in our publication. Budge et al.’s improvements make RBSP
trees faster to construct and traverse. Ize et al. use the more general form of BSP trees and
show that they are quite effective for ray tracing.

• Coherent Rendering - This is an algorithm aiming to demonstrate a reduced complexity for
primary visibility using essentially ray tracing structures and concepts like the front-to-back
traversal of a kd-tree. The method is an adaptation of the volume rendering algorithm by
Mora et al. that was very efficient and showed that per pixel rendering complexities are
constant.

The algorithm uses several concepts from both rasterisation and ray tracing based visibility
methods like Hierarchical Occlusion Maps, polygon subdivision and front-to-back traversal
of kd-trees. By combining these, an algorithm that achieves better coherence is developed.
It is shown that as image sizes increase, the time per pixel converges to a constant. This time
per pixel is only about 30% greater for the 12+ million Powerplant scene than for the Single
Triangle scene when large image sizes are used. This shows that complexity is definitely
less than logarithmic as image sizes increase.

• Row Tracing and Packet Row Tracing - Row Tracing is an algorithm similar to scanline
rendering in that it processes one row of the image at time. However, in contrast to scanline
Tenderers, the intersections between the row and the objects are done in object space. In
addition, ray tracing structures like kd-trees and octrees are used. An adaptation of Hier
archical Occlusion Maps are used to determine already occluded areas of the image. The
combination of concepts from both rasterisation and ray tracing produces a very effective
and parallelisable method of determining visibility.

In addition, upon closer inspection, it is observed that neighbouring rows traverse a similar
path down the tree. To maximise this coherence, groups of rows are traversed down the tree
with a small change to the traversal algorithm. Tracing groups of 16 neighbouring rows
through the tree is observed to produce the best results.

Results show that Row Tracing and Packet Row Tracing are very effective algorithms. When
scene sizes are small. Row Tracing and Packet Row Tracing are much faster than packet ray
tracing. Comparing the algorithms with OpenGL (that uses a normal Z-buffer algorithm)
shows that Row Tracing and Packet Row Tracing are much faster when scene sizes are
large. For these scenes, packet ray tracing is also faster than OpenGL owing to its better
complexity. However, Packet Row Tracing is faster than packet ray tracing for these scenes
too.

The methods are new techniques, two of which have been published. However, as with any re
search, each method has given rise to new ideas that could further improve the techniques. These
will be briefly described.

Future Work

For each technique, some areas of improvement and extensions are easily identifiable.

• RBSP trees - The flexibility of RBSP trees to have several axes that may be in arbitrary

151

directions means that RBSP trees can adapt very well to the scene. It is believed that by
using 8-12 axes customised to the scene, RBSP trees could be the best structure for ray
tracing single rays.

Another method to customise the tree to the scene is to have a large number of axes -
for eg. 1 0 0 directions - and at each step a subset of this used so that the construction
process is simplified. The subset would be determined based on geometric properties of
the geometry in the scene. This would alleviate the problem of slow construction times
seen when the number of axes increases. The constructed tree may sufficiently reduce the
number of traversals and intersections to overshadow the increased traversal cost.

Although in this thesis only primary rays are considered to determine primary visibility, it
is believed that the real value of RBSP trees would be when several incoherent rays are to be
traced through the scene like in global illumination algorithms. In these methods, the ability
of RBSP trees to reduce the number of traversals and intersections would be truly valuable.

Although some effort has been put into optimising the traversal methods, the effort has not
been significant. Budge et al. [BCNJ08] state that their optimised methods are 10x faster
than ours. This shows that there is considerable margin for optimisation.

• Coherent Rendering - The Coherent Rendering algorithm described is unoptimised and the
main aim was to demonstrate that a lower complexity was possible. However, the abso
lute performance is not very competitive. To address this, the algorithm can be optimised
through the use of SSE instructions and by a cycle of optimising and profiling. The perfor
mance after optimisation may reach competitive levels.

In rasterisation, shadows are generated through the use of shadow maps. Similar techniques
are used for refraction and reflection. The generation of additional images / maps could also
be achieved with a lower complexity leading to a full fledged low complexity renderer.

• Row Tracing and Packet Row Tracing - As described in the future work for Coherent Ren
dering, shading, reflection and refraction could be simulated through shadow maps, etc.

A major advantage of Row Tracing is that it works very well with simple structures. This
was shown by the efficiency of Row Tracing on octrees. The difference in rendering times
on an SAH kd-tree and an octree is not very significant. Simple structures like the octree are
simpler and much faster to build leading to applications for rendering dynamic scenes. In
addition, the fact that Row Tracing works well on kd-trees and octrees imply that it would
work well with any structure consisting of axis-aligned bounding boxes. Hence, they can be
used with structures that are fast to build like grids or BVHs for use in a dynamic context.

The best results for Row Tracing have been obtained on kd-trees built using the SAH. How
ever, when a plane is traversed, the probability of a plane intersecting a box should be used
instead of the surface area. This probability - of a random plane intersecting for a box -
is mentioned by Haines [Hai07] as the sum of the edges of the box. Replacing the surface
area with the sum of edges would thus be more accurate and could create kd-trees that are
better for Row Tracing.

Bibliography

[AC97]

[AGL91]

[AM01]

[Ama84]

[AMH02]

[APB87]

[App6 8]

[Are8 8]

[Arv8 8]

[AW87]

[Bad90]

[BCG+96]

[BCNJ08]

John Amanatides and Kin Choi. Ray Tracing Triangular Meshes. In Proceedings o f
the Eighth Western Computer Graphics Symposium, pages 43-52, 1997.

Mark Agate, Richard L. Grimsdale, and Paul F. Lister. The HERO Algorithm for
Ray-Tracing Octrees. In Advances in Computer Graphics Hardware IV (Eurograph-
ics'89 Workshop), pages 61-73, London, UK, 1991. Springer-Verlag.

Tomas Akenine-Mller. Fast 3D Triangle-Box Overlap Testing. Journal o f Graphics
Tools, 6C1):29—33, 2001.

John Amanatides. Ray Tracing with Cones. SIGGRAPH Computer Graphics,
18(3): 129—135, 1984.

Tomas Akenine-Moller and Eric Haines. Real-Time Rendering. A. K. Peters, Ltd.,
Natick, MA, USA, 2002.

Bruno Amaldi, Thierry Priol, and Kadi Bouatouch. A New Space Subdivision
Method for Ray Tracing CSG Modelled Scenes. The Visual Computer, 3(2):98—108,
August 1987.

Arthur Appel. Some techniques for shading machine renderings of solids. In AFIPS
’68 (Spring): Proceedings o f the April 30-M ay 2, 1968, spring joint computer con

ference, pages 37—45, New York, NY, USA, 1968. ACM.

Jeff Arenberg. Ray/Triangle Intersection with Barycentric Coordinates. Ray Tracing
News, 1(11), 1988.

J Arvo. Linear-time Voxel Walking for Octrees. Ray Tracing News, 1(5), 1988.

John Amanatides and Andrew Woo. A Fast Voxel Traversal Algorithm for Ray
Tracing. In Proceedings o f Eurographics ’87, pages 3-10, Amsterdam, August 1987.
North-Holland.

Didier Badouel. An Efficient Ray-Polygon Intersection. Graphics Gems, pages 390-
393, 1990.

Gill Barequet, Bernard Chazelle, Leonidas J. Guibas, Joseph S. B. Mitchell, and
Ayellet Tal. BOXTREE: A Hierarchical Representation for Surfaces in 3D. Com
puter Graphics Forum, 15(3):387—396, 1996.

Brian C. Budge, Daniel Coming, Derek Norpchen, and Kenneth I. Joy. Accelerated
Building and Ray Tracing of Restricted BSP Trees. IEEE Symposium on Interactive
Ray Tracing, 2008. R T 2008., pages 167-174, Aug. 2008.

152

B IB LIO G R A PH Y 153

[Ben75]

[Ben79]

[Ben06]

[BHO+94]

[Bou70]

[BP04]

[BP05]

[BWPP04]

[BWS06]

[Car84]

[Cat74]

[CDP95]

[ChaOl]

[Cla76]

[C0 0 8 6]

[CPC84]

[CS08]

Jon Louis Bentley. Multidimensional Binary Search Trees used for Associative
Searching. Communications o f the ACM, 18(9):509—517, 1975.

J.L. Bentley. Multidimensional Binary Search Trees in Database Applications. IEEE
Transactions on Software Engineering, SE-5(4):333-340, July 1979.

Carsten Benthin. Realtime Ray Tracing on Current CPU Architectures. PhD thesis,
Saarland University, Saarbriicken, Germany, 2006.

M. De Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. Van Kreveldt. Efficient
Ray Shooting and Hidden Surface Removal. In Algorithmica, pages 21-30, 1994.

W. Jack Bouknight. A Procedure for Generation of Three-Dimensional Half-Toned
Computer Graphics Presentations. Communications o f the ACM, 13(9):527—536,
1970.

Thierry Berger-Perrin. SSE Ray/Box Intersection Test, available at http:
//www.flipcode.com/archives/SSE_RayBox_Intersection_
Test. shtml, 2004.

Thierry Berger-Perrin. Branchless Ray/Box intersections, available at http: //
ompf . org/ray/ray_box . html, 2005.

Jin Bittner, Michael Wimmer, Harald Piringer, and Werner Purgathofer. Coherent
Hierarchical Culling: Hardware Occlusion Queries Made Useful. Computer Graph
ics Forum, Proceedings o f Eurographics, 2004, 23(3):615—624, September 2004.

Solomon Boulos, Ingo Wald, and Peter Shirley. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Technical report, School of Computing, University
of Utah., 2006.

Loren Carpenter. The A-buffer, An Antialiased Hidden Surface Method. SIGGRAPH
Computer Graphics, 18(3): 103-108, 1984.

Edwin Earl Catmull. A Subdivision Algorithm fo r Computer Display o f Curved Sur
faces. PhD thesis, The University of Utah, 1974.

F. Cazals, G. Drettakis, and C. Puech. Filtering, Clustering and Hierarchy Construc
tion: A New Solution for Ray-Tracing Complex Scenes. Computer Graphics Forum,
14(3):371-382, September 1995.

Allen Y. Chang. A Survey of Geometric Data Structures for Ray Tracing. Technical
report, Polytechnic University, Brooklyn, Long Island, Westchester., 2001.

James H. Clark. Hierarchical Geometric Models for Visible Surface Algorithms.
Communications o f the ACM, 19(10):547—554, 1976.

Robert L. Cook. Stochastic Sampling in Computer Graphics. ACM Transactions on
Graphics, 5(1):51—72, 1986.

Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray Tracing.
SIGGRAPH Computer Graphics, 18(3): 137-145, 1984.

Daniel S. Coming and Oliver G. Staadt. Velocity-Aligned Discrete Oriented Poly
topes for Dynamic Collision Detection. IEEE Transactions on Visualization and
Computer Graphics, 14(1): 1—12, 2008.

BIBLIOGRAPH Y 154

[CW8 8]

[DHK08]

[DK08]

[EG07]

[EGMM07]

[Eri97]

[Eri07]

[FKN80]

[FLT08]

[FS8 8]

[FTI8 6]

[FvDFH90]

[GA93]

[GC91]

[GGW98]

[GKM93]

[Gla84]

J G Cleary and G Wyvill. Analysis of an Algorithm for Fast Ray Tracing using
Uniform Space Subdivision. The Visual Computer, (4):65—83, 1988.

H. Dammertz, J. Hanika, and A. Keller. Shallow Bounding Volume Hierarchies
for Fast SIMD Ray Tracing of Incoherent Rays. Computer Graphics Forum,
27(4): 1225-1233, June 2008.

Holger Dammertz and Alexander Keller. The Edge Volume Heuristic - Robust Tri
angle Subdivision for Improved BVH Performance. IEEE Symposium on Interactive
Ray Tracing, 2008. RT 2008., pages 155-158, Aug. 2008.

M. Ernst and G. Greiner. Early Split Clipping for Bounding Volume Hierarchies.
IEEE Symposium on Interactive Ray Tracing, 2007. RT ’07., pages 73-78, Sept.
2007.

Martin Eisemann, Thorsten Grosch, Marcus Magnor, and Stefan Mueller. Fast
Ray/Axis-Aligned Bounding Box Overlap Tests using Ray Slopes. Journal o f
Graphic Tools, 12(4), 12 2007.

Jeff Erickson. Pliicker Coordinates. Ray Tracing News, 10(3), 1997.

Christer Ericson. Plucker coordinates considered harmful! available at http:
//realtimecollisiondetection.net/blog/?p=13, 2007.
Henry Fuchs, Zvi M. Kedem, and Bruce F. Naylor. On Visible Surface Generation by
A Priori Tree Structures. Computer Graphics, (Proceedings o f SIGGRAPH 1980),
pages 124-133, 1980.

Fast light Toolkit, available at http: / / w w w . f ltk . org, 2008.

Donald S. Fussed and K. R. Subramanian. Fast Ray Tracing using K-d Trees. Tech
nical Report CS-TR-88-07, University of Texas at Austin, 1, 1988.

A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated Ray-Tracing System.
Computer Graphics and Applications, IEEE, 6(4): 16-26, April 1986.

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes. Computer
Graphics: Principles and Practice (2nd ed.). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1990.

I. Gargantini and H. H. Atkinson. Ray Tracing an Octree: Numerical Evaluation of
the First Intersection. Computer Graphics Forum, 12(4): 199-210, October 1993.

Dan Gordon and Shuhong Chen. Front-to-Back Display of BSP Trees. IEEE Com
puter Graphics and Applications, 11 (5):79—85, 1991.

Jon Genetti, Dan Gordon, and Glen Williams. Adaptive Supersampling in Object
Space using Pyramidal Rays. Computer Graphics Forum, 17(1):29—54, 1998.

Ned Greene, Michael Kass, and Gavin Miller. Hierarchical Z-buffer Visibility. In
SIGGRAPH ’93: Proceedings o f the 20th annual conference on Computer graphics
and interactive techniques, pages 231-238, New York, NY, USA, 1993. ACM.

Andrew S. Glassner. Space Subdivision for Fast Ray Tracing. IEEE Computer
Graphics and Applications, 4(10): 15-22, 1984.

[Gla90] Andrew S. Glassner. Normal coding. Graphics Gems, pages 257-264, 1990.

BIBLIOG RAPH Y 155

[GLM96]

[GM03]

[GotOO]

[Gre94]

[Gre96]

[GS87]

[GTGB84]

[Gut84]

[GW09]

[Hai89]

[Hai94]

[Hai07]

[Hav99]

[HavOl]

[Hav02]

[HB97]

[HBOO]

S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A Hierarchical Structure for
Rapid Interference Detection. In SIGGRAPH ’96: Proceedings o f the 23rd annual
conference on Computer graphics and interactive techniques, pages 171-180, New
York, NY, USA, 1996. ACM.

Markus Geimer and Stefan Muller. A Cross-Platform Framework for Interactive Ray
Tracing. In Proc. o fG I Graphiktag, pages 25-34, 2003.

Stefan Aric Gottschalk. Collision Queries using Oriented Bounding Boxes. PhD
thesis, The University of North Carolina at Chapel Hill, 2000.

Ned Greene. Detecting Intersection of a Rectangular Solid and a Convex Polyhedron.
Graphics gems /V, pages 74-82, 1994.

Ned Greene. Hierarchical Polygon Tiling with Coverage Masks. In SIGGRAPH ’96:
Proceedings o f the 23rd annual conference on Computer graphics and interactive
techniques, pages 65-74, New York, NY, USA, 1996. ACM.

Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hierarchies for
Ray Tracing. IEEE Computer Graphics and Applications, 7(5): 14-20, 1987.

Cindy M. Goral, Kenneth E. Torrance, Donald P. Greenberg, and Bennett Battaile.
Modeling the Interaction of Light between Diffuse Surfaces. SIGGRAPH Computer
Graphics, 18(3):213-222, 1984.

Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
SIGMOD '84: Proceedings o f the 1984 ACM SIGMOD international conference on
Management o f data, pages 47-57, New York, NY, USA, 1984. ACM.

Anat Grynberg and Greg Ward. Conference Room, available at http://
radsite.lbl.gov/mgf/scenes.html, 2009.

Eric Haines. Essential Ray Tracing Algorithms. An Introduction to Ray Tracing,
pages 33-77, 1989.

Eric Haines. Point in Polygon Strategies, pages 24-46. Academic Press Professional,
Inc., San Diego, CA, USA, 1994.

Eric Haines. Puzzle: Plane Intersection with Spheres vs. Boxes. Ray Tracing News,
20(1), 2007.

Vlastimil Havran. A Summary of Octree Ray Traversal Algorithms. Ray Tracing
News, 12(2), 1999.

V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Czech Technical Uni
versity in Prague, Czech Republic., 2001.

Vlastimil Havran. Mailboxing, yea or nay? Ray Tracing News, 15(1), 2002.

Donald Hearn and M. Pauline Baker. Computer Graphics (2nd ed.): C version.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1997.

Vlastimil Havran and Jin Bittner. LCTS: Ray Shooting using Longest Common
Traversal Sequences. In Proceedings o f Eurographics (EG ’00), pages 59-70, Inter
laken, Switzerland, 2000.

BIBLIOGRAPHY 156

[HB02]

IHH84]

[HHS06]

[HilOO]

[HKBv97]

[HKRS02]

[HMS06]

[Hof96]

[HunOS]

[Hur05]

[HW91]

[Int08]

[Int09]

[ISP07]

[IWP08]

[JenOl]

V. Havran and J. Bittner. On Improving Kd-trees for Ray Shooting. In Proceedings
ofWSCG, pages 209-216, 2002., 2002.

Paul S. Heckbert and Pat Hanrahan. Beam Tracing Polygonal Objects. In SIG
GRAPH ’84: Proceedings o f the 11th Annual Conference on Computer Graphics
and Interactive Techniques, pages 119-127, New York, NY, USA, 1984. ACM.

Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. On the Fast Construction
of Spatial Data Structures for Ray Tracing. In Proceedings o f IEEE Symposium on
Interactive Ray Tracing 2006, pages 71-80, September 2006.

Francis J. Hill. Computer Graphics Using OpenGL. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2000.

Vlastimil Havran, Tomas Kopal, Jin Bittner, and Jin Zara. Fast Robust BSP Tree
Traversal Algorithm for Ray Tracing. Journal o f Graphics Tools, 2(4): 15-23, 1997.

Jim Hurley, Alexander Kapustin, Alexander Reshetov, and Alexei Soupikov. Fast
Ray Tracing for Modern General Purpose CPU. In Proceedings o f Graphicon, 2002.

W. Hunt, W.R. Mark, and G. Stoll. Fast Kd-tree Construction with an Adaptive
Error-Bounded Heuristic. IEEE Symposium on Interactive Ray Tracing, 2006., pages
81-88, Sept. 2006.

Kenny Hoff. A Faster Overlap Test for a Plane and a Bounding Box.
available at http://www.cs.unc.edu/~hoff/research/vfculler/
boxplane.html, 1996.
Warren A. Hunt. Corrections to the Surface Area Metric with Respect to Mail-
Boxing. IEEE Symposium on Interactive Ray Tracing, 2008. R T 2008., pages 77-80,
Aug. 2008.

J. Hurley. Ray Tracing goes Mainstream. Intel Technology Journal 9, (2):99—108,
2005.

Eric Haines and John Wallace. Shaft Culling for Efficient Ray-Traced Radiosity. In
Proceedings o f the Eurographics Workshop on Rendering, pages 122-138. Springer
Verlag, 1991.

Intel. Pentium III Processors Technical Documents. available at
http:I I www.intel.com/design/intarch/pentiumiii/docs_
pent iumiii_pga370 . htm, 2008.

Intel C++ Compiler User and Reference Guides. 2009.

T. Ize, P. Shirley, and S. Parker. Grid Creation Strategies for Efficient Ray Tracing.
IEEE Symposium on Interactive Ray Tracing, 2007. RT ’07., pages 27-32, Sept.
2007.

Thiago Ize, Ingo Wald, and Steven G. Parker. Ray Tracing with the BSP Tree. IEEE
Symposium on Interactive Ray Tracing, 2008. R T 2008., pages 159-166, Aug. 2008.

Henrik Wann Jensen. Realistic Image Synthesis using Photon Mapping. A. K. Peters,
Ltd., Natick, MA, USA, 2001.

BIBLIOGRAPH Y 157

[JonOO]

[JW89]

[KA91]

[Kap85]

[Kel97]

[KHM+98]

[KK8 6]

[KM07J

[KM08]

[KS97]

[KS06]

[LYMT06]

[Mah05]

[MB90]

[ME05]

[MFOO]

Ray Jones. Intersecting a Ray and a Triangle with Plucker Coordinates. Ray Tracing
News, 13(1), 2000.

D Jevans and B Wyvill. Adaptive Voxel Subdivision for Ray Tracing. In Proceedings
o f Graphics Interface 89, pages 164-172, 1989.

D. Kirk and J. Arvo. Improved Ray Tagging for Voxel-Based Ray Tracing. In
Graphics Gems II, pages 264—266. Academic Press, 1991.

M Kaplan. Space-Tracing: A Constant Time Ray-Tracer. In SIGGRAPH ’85 State
o f the Art in Image Synthesis seminar notes, pages 149-158. Addison Wesley, 1985.

Alexander Keller. Instant Radiosity. In SIGGRAPH ’97: Proceedings o f the 24th
annual conference on Computer graphics and interactive techniques, pages 49-56,
New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient
Collision Detection Using Bounding Volume Hierarchies of /c-DOPs. IEEE Trans
actions on Visualization and Computer Graphics, 4(1):21—36, Mar. 1998.

Timothy L. Kay and James T. Kajiya. Ray tracing complex scenes. In SIGGRAPH
’86: Proceedings o f the 13th annual conference on Computer graphics and interac
tive techniques, pages 269-278, New York, NY, USA, 1986. ACM.

Ravi P. Kammaje and B. Mora. A Study of Restricted BSP Trees for Ray Tracing.
IEEE Symposium on Interactive Ray Tracing, 2007. RT ’07., pages 55-62, Sept.
2007.

Ravi P. Kammaje and Benjamin Mora. Row Tracing using Hierarchical Occlusion
Maps. IEEE Symposium on Interactive Ray Tracing, 2008. RT 2008., pages 27-34,
Aug. 2008.

Krzysztof S. Klimaszewski and Thomas W. Sederberg. Faster Ray Tracing Using
Adaptive Grids. IEEE Computer Graphics and Applications, 17(1):42—51, 1997.

A. Kensler and P. Shirley. Optimizing Ray-Triangle Intersection via Automated
Search. IEEE Symposium on Interactive Ray Tracing, 2006., pages 33-38, Sept.
2006.

C. Lauterbach, Sung-Eui Yoon, Dinesh Manocha, and D. Tuft. RT-DEFORM: Inter
active Ray Tracing of Dynamic Scenes using BVHs. IEEE Symposium on Interactive
Ray Tracing, 2006., pages 39-46, Sept. 2006.

Jeffrey A. Mahovsky. Ray Tracing with Reduced-Precision Bounding Volume Hier
archies. PhD thesis, University of Calgary, Calgary, Canada, 2005.

David J. MacDonald and Kellogg S. Booth. Heuristics for Ray Tracing Using Space
Subdivision. The Visual Computer, 6(3): 153-166, 1990.

Benjamin Mora and David S. Ebert. Low-Complexity Maximum Intensity Projec
tion. ACM Transactions on Graphics, 24(4): 1392-1416, 2005.

Gordon Muller and Dieter W. Fellner. Hybrid Scene Structuring with Application
to Ray Tracing. In Proceedings o f International Conference on Visual Computing
(1999), 2000.

BIBLIOGRAPH Y 158

[MJCOO]

[MJC02]

[MKJ08]

[ML03]

[MT97]

[MW04]

[NNS72]

[NT03]

[0 ’R98]

[ORM07]

[PB85]

[PGSS06]

[PH04]

[PKGH97]

[PSA07]

Benjamin Mora, Jean-Pierre Jessel, and Rene Caubet. Accelerating Volume Render
ing with Quantized Voxels. In VVS ’00: Proceedings o f the 2000 IEEE symposium
on Volume visualization, pages 63-70, New York, NY, USA, 2000. ACM.

Benjamin Mora, Jean Pierre Jessel, and Rene Caubet. A New Object-Order Ray-
Casting Algorithm. In VIS ’02: Proceedings o f the conference on Visualization ’02,
pages 203-210, Washington, DC, USA, 2002. IEEE Computer Society.

Benjamin Mora, Ravi P. Kammaje, and Mark W. Jones. On the Lower Complexity of
Coherent Renderings. Technical report, Department of Computer Science, Swansea
University, 2008.

Jos Pascual Molina Masso and Pascual Gonzalez Lopez. Automatic Hybrid Hierar
chy Creation: a Cost-Model Based Approach. Computer Graphics Forum, 22(1):5—
14, 2003.

Tomas Moller and Ben Trumbore. Fast, Minimum Storage Ray-Triangle Intersec
tion. Journal o f Graphics Tools, 2(1):21—28, 1997.

Jeffrey Mahovsky and Brian Wyvill. Fast Ray-Axis Aligned Bounding Box Overlap
Tests with Plucker Coordinates. Journal o f Graphics Tools, 9(1):35—46, 2004.

M E Newell, R G Newell, and T L Sancha. A New Approach to the Shaded Picture
Problem. In Proceedings o f the ACM National Conference, pages 443-450, 1972.

K. Ng and B. Trifonov. Automatic Bounding Volume Hierarchy Generation using
Stochastic Search Methods. In CPSC532D Mini-Workshop ’’Stochastic Search A l
gorithms”, April 2003.

Joseph O ’Rourke. Computational Geometry in C. Cambridge University Press, New
York, NY, USA, 1998.

Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. A Real-time Beam
Tracer with Application to Exact Soft Shadows. In Proceedings o f Eurographics
Symposium on Rendering, pages 85-98, Jun 2007.

D.J. Plunkett and M.J. Bailey. The Vectorization of a Ray-Tracing Algorithm for
Improved Execution Speed. IEEE Computer Graphics and Applications, 5(8):52-
60, Aug. 1985.

Stefan Popov, Johannes Gunther, Hans-Peter Seidel, and Philipp Slusallek. Experi
ences with Streaming Construction of SAH KD-Trees. IEEE Symposium on Inter
active Ray Tracing, 2006., pages 89-94, Sept. 2006.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Rendering Complex
Scenes with Memory-Coherent Ray Tracing. In SIGGRAPH ’97: Proceedings o f
the 24th annual conference on Computer graphics and interactive techniques, pages
101-108, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Matt Phair, Ken Shoemake, and Other Anonymous Authors. Evenly Distributed
Points on Sphere, available at http: / /www . cgaf a q . inf o/wiki/Evenly_
distributed_points_on_sphere, 2007.

BIBLIOGRAPHY 159

[ray]

[Rit90]

[RSH05]

[RULOO]

[RW80]

[Sam89]

[SB87]

[SBGS69]

[SCS+08]

[SF90]

[SF91]

[SFOl]

[SH74]

[Sho98]

[SL96]

[SS92]

[SSE09a]

[SSE09b]

Ray-Polygon Intersection. available at http://www.siggraph.org/
education/materials/HyperGraph/raytrace/raypolygon_
intersection.htm.
Jack Ritter. An Efficient Bounding Sphere. Graphics gems, pages 301-303, 1990.

Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-Level Ray Tracing
Algorithm. ACM Transactions on Graphics (Proceedings o f SIGGRAPH 2005),
24(3): 1176-1185, 2005.

J. Revelles, C. Urea, and M. Lastra. An Efficient Parametric Algorithm for Octree
Traversal. In Proceedings ofWSCG, 2000, pages 212-219, 2000.

Steven M. Rubin and Turner Whitted. A 3-Dimensional Representation for Fast
Rendering of Complex Scenes. Computer Graphics, (Proceedings o f SIGGRAPH
1980), pages 110-116, 1980.

Hanan Samet. Implementing Ray Tracing with Octrees and Neighbor Finding. Com
puters And Graphics, 13:445-460, 1989.

John M. Snyder and Alan H. Barr. Ray Tracing Complex Models Containing Surface
Tessellations. SIGGRAPH Computer Graphics, 21 (4): 119—128, 1987.

R. A. Schumacker, R. Brand, M. Gilliland, and W. Sharp. Study for Applying Com
puter Generated Images to Visual Simulation. Technical report, General Electric,
1969.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash, Pradeep
Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert Cavin, Roger Es-
pasa, Ed Grochowski, Toni Juan, and Pat Hanrahan. Larrabee: A Many-Core X86
Architecture for Visual Computing. In SIGGRAPH ’08: ACM SIGGRAPH 2008
papers, pages 1-15, New York, NY, USA, 2008. ACM.

K. R. Subramanian and Donald S. Fussell. Factors Affecting Performance of Ray
Tracing Hierarchies. Technical report, Austin, TX, USA, 1990.

K. R. Subramanian and Donald S. Fussell. Automatic Termination Criteria for Ray
Tracing Hierarchies. In Proceedings o f Graphics Interface 91, pages 93-100, 1991.

R. J. Segura and F. R. Feito. Algorithms To Test Ray-Triangle Intersection. In
Proceedings ofW SCG., pages 200-205, 2001.

Ivan E. Sutherland and Gary W. Hodgman. Reentrant Polygon Clipping. Communi
cations o f the ACM, 17(1):32—42, 1974.

Ken Shoemake. Pliicker Coordinate Tutorial. Ray Tracing News, 11(1), 1998.

Peter Soderquist and Miriam Leeser. Area and Performance Tradeoffs in Floating-
Point Divide and Square-Root Implementations. ACM Computing Surveys,
28(3):518-564, 1996.

Kelvin Sung and Peter Shirley. Ray tracing with the BSP tree. Graphics Gems III,
pages 271-274,1992.

SSE2. Wikipedia, 2009.

Streaming SIMD Extensions. Wikipedia, 2009.

BIBLIOGRAPHY 160

[SSK07]

[STN87]

[Sub91]

[Sun91]

[Sze03]

[TH99]

[Thi87]

[VCI09]

[Wal04]

[Wal05]

[Wal07]

[War69]

[Wat70]

[WBB08]

[WBMS05]

[WBS07]

M. Shevisov, A. Soupikov, and A. Kapustin. Highly Parallel Fast KD-tree Construc
tion for Interactive Ray Tracing of Dynamic Scenes. Computer Graphics Forum
(Proceedings o f Eurographics)., 26(3), 2007.

Mikio Shinya, T. Takahashi, and Seiichiro Naito. Principles and Applications of
Pencil Tracing. SIGGRAPH Computer Graphics, 21(4):45-54, 1987.

Kalpathi Raman Subramanian. Adapting Search Structures to Scene Characteristics
fo r Ray Tracing. PhD thesis, University of Texas at Austin, Austin, TX, USA, 1991.

Kelvin Sung. A DDA octree traversal algorithm for ray tracing. In Proceedings o f
Eurographics ’91, pages 73-85, 1991.

Laszlo Szecsi. Graphics Programming Methods, chapter An Effective Implemen
tation of the K-D tree, pages 315-326. Charles River Media, Inc., Rockland, MA,
USA, 2003.

Seth Teller and Michael Hohmeyer. Determining the Lines Through Four Lines.
Journal o f Graphics Tools, 4(3): 11—22, 1999.

William Charles Thibault. Application o f Binary Space Partitioning Trees to Ge
ometric Modeling and Ray-Tracing. PhD thesis, Georgia Institute of Technology,
Atlanta, GA, USA, 1987. Director-Bruce F. Naylor.

Visual C++ Language Reference, Compiler Intrinsics. available at http : / /msdn .
microsoft.com/en-us/library/2 6td2 Ids.aspx, 2009.

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Computer Graphics Group, Saarland University, 2004.

Ingo Wald. The RTRT core. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Courses,
page 5, New York, NY, USA, 2005. ACM.

I. Wald. On Fast Construction of SAH-based Bounding Volume Hierarchies. IEEE
Symposium on Interactive Ray Tracing, 2007. RT ’07., pages 33-40, Sept. 2007.

John Edward Warnock. A Hidden Surface Algorithm fo r Computer Generated
Halftone Pictures. PhD thesis, The University of Utah, 1969.

Gary Scott Watkins. A Real Time Visible Surface Algorithm. PhD thesis, The Uni
versity of Utah, 1970.

Ingo Wald, Carsten Benthin, and Solomon Boulos. Getting Rid of Packets - Efficient
SIMD Single-Ray Traversal using Multi-Branching BVHs. IEEE Symposium on
Interactive Ray Tracing, 2008. RT 2008., pages 49-57, Aug. 2008.

Amy Williams, Steve Barrus, R. Keith Morley, and Peter Shirley. An Efficient and
Robust Ray-Box Intersection Algorithm. Journal o f Graphics Tools, 10(l):49-54,
2005.

Ingo Wald, Solomon Boulos, and Peter Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics,
26(l):485-493, 2007.

[WBWS01] Ingo Wald, Carsten Benthin, Markus Wagner, and Philipp Slusallek. Interactive Ren
dering with Coherent Ray Tracing. In Computer Graphics Forum (Proceedings o f

B IBLIOG RAPH Y 161

[WFMS05]

[WFP+01]

[WH06]

[WHG84]

|Whi80]

[WIK+06]

[WK06J

[WMG+]

[Woo90]

[WREE67]

[WSC+95]

[WSS05]

[WWZ+06]

EUROGRAPHICS 2001, volume 20, pages 153-164. Blackwell Publishers, Oxford,
2001 .

Ingo Wald, Heiko Friedrich, Gerd Marmitt, and Hans-Peter Seidel. Faster Isosur
face Ray Tracing Using Implicit KD-Trees. IEEE Transactions on Visualization and
Computer Graphics, 11 (5):562—572, 2005.

Michael Wand, Matthias Fischer, Ingmar Peter, Friedhelm Meyer auf der Heide, and
Wolfgang StraBer. The Randomized Z-buffer Algorithm: Interactive Rendering of
Highly Complex Scenes. In SIGGRAPH 2001, Computer Graphics Proceedings,
pages 361-370. ACM Press / ACM SIGGRAPH, 2001.

I. Wald and V. Havran. On Building Fast Kd-Trees for Ray Tracing, and on Doing
That in 0(N log N). IEEE Symposium on Interactive Ray Tracing, 2006., pages
61-69, Sept. 2006.

Hank Weghorst, Gary Hooper, and Donald P. Greenberg. Improved Computational
Methods for Ray Tracing. ACM Transactions on Graphics, 3(1):52—69, 1984.

Turner Whitted. An Improved Illumination Model for Shaded Display. Communica
tions o f the ACM, 23(6):343-349, 1980.

Ingo Wald, Thiago Ize, Andrew Kensler, Aaron Knoll, and Steven G Parker. Ray
Tracing Animated Scenes using Coherent Grid Traversal. ACM Transactions on
Graphics (Proceedings o f ACM SIGGRAPH 2006), pages 485-493, 2006.

C Wachter and A Keller. Instant Ray Tracing: The Bounding Interval Hierarchy.
In Proceedings o f the 17th Eurographics Symposium on Rendering, pages 139-149,
2006.

Ingo Wald, William R Mark, Johannes Gunther, Solomon Boulos, Thiago Ize, War
ren Hunt, Steven G Parker, and Peter Shirley. State of the Art in Ray Tracing
Animated Scenes. In Eurographics 2007 State o f the Art Reports, pages 89-116.

Andrew Woo. Fast Ray-Box Intersection. Graphics gems, pages 395-396, 1990.

Chris Wylie, Gordon Romney, David Evans, and Alan Erdahl. Half-Tone Perspective
Drawings by Computer. In AFIPS '67 (Fall): Proceedings o f the November Id-
16, 1967, fa ll joint computer conference, pages 49-58, New York, NY, USA, 1967.
ACM.

Kyu-Young Whang, Ju-Won Song, Ji-Woong Chang, Ji-Yun Kim, Wan-Sup Cho,
Chong-Mok Park, and Il-Yeol Song. Octree-R: An Adaptive Octree for Efficient Ray
Tracing. IEEE Transactions on Visualization and Computer Graphics, l(4):343-349,
1995.

Sven Woop, Jorg Schmittler, and Philipp Slusallek. RPU: A Programmable Ray Pro
cessing Unit for Realtime Ray Tracing. ACM Transactions on Graphics, 24(3):434-
444, 2005.

Peter Wonka, Michael Wimmer, Kaichi Zhou, Stefan Maierhofer, Gerd Hesina, and
Alexander Reshetov. Guided Visibility Sampling. In SIGGRAPH ’06: ACM SIG
GRAPH 2006 Papers, pages 494-502, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 162

[YLM06]

[Zha98]

[ZMHH97]

[ZRJ95]

Sung-Eui Yoon, Christian Lauterbach, and Dinesh Manocha. R-LODs: Fast LOD-
based Ray Tracing of Massive Models. The Visual Computer, 22(9):772-784, 2006.

Hansong Zhang. Effective Occlusion Culling fo r the Interactive Display o f Arbitrary
Models. PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC,
USA, 1998.

Hansong Zhang, Dinesh Manocha, Tom Hudson, and Kenneth E. Hoff. Visibility
Culling using Hierarchical Occlusion Maps. In SIGGRAPH ’97: Proceedings o f
the 24th annual conference on Computer graphics and interactive techniques, pages
77-88, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

Maurice Van Der Zwaan, Erik Reinhard, and Frederik W. Jansen. Pyramid Clipping
for Efficient Ray Traversal. In Proceedings o f Eurographics Workshop on Rendering
95, pages 1-10. Springer, 1995.

Appendices

163

Appendix A

Software Design

A software system that uses several different underlying data structures and algorithms such as
ours must have an extensible design in which it is easy to add new rendering methods. The main
aim of the software is to assist and ease research. Thus, the emphasis is on the software being a
platform through which several algorithms can be easily implemented and compared. An object
oriented approach is used to develop the system, with the majority of rendering methods having
their own classes. The implementation follows a modular design that should be easy to understand
for a new developer in addition to being new components.

The system was implemented in C++, using Visual Studio 2005 / 2008 as the IDE. For a majority
of the application and benchmarks, the inbuilt compiler has been used. However, for a few al
gorithms, like the Row Tracing algorithm, where maximal performance was desired, Intel’s C++
compiler was used to compile the application. In addition, profiling was undertaken with the
Intel’s VTune profiling application to identify the bottlenecks in the application.

A renderer, especially one that should be able to use several interchangeable data structures and
algorithms, is an intricate system with several classes interacting with each other. The aim of
the software is to provide the user with an easy to use system whereby s/he can easily select the
viewpoint. The application allows the selection of the camera parameters like perspective (angle
of view), zoom, camera location, etc through mouse based interaction with the scene. The system
should also allow the user to import models / scenes into the native format of the system. So far,
the application is able to import the Stanford ply format, obj format, 3DS format and a raw triangle
format. A separate importer for VRML models, currently not integrated into the system, has also
been implemented using the OpenVRML library. Importers for several formats were necessary
to have a set of commonly used models so that comparisons could be made against published
algorithms using the same scenes.

This chapter will detail the design issues, including the software and user interface design.

A .l Software Architecture

The software was developed using an object oriented methodology. The main algorithms and data
structures were encapsulated into their own separate classes. The class diagram in Figure A .l
shows the class diagram for the system.

164

Ra
y

Tr
ac

in
g

m
an

w

in
do

w

A. 1 Softw are A rchitecture 165

Figure A. 1: Software Class diagram.

A .l Software Architecture 166

The diagram shows thal the architecture is a very simple one that follows object oriented concepts.
The data - the scene to be rendered - is abstracted from the auxiliary structures (the trees), the
user interface and the rendering algorithms.

The user interface classes - not shown in their entirety, but represented by classes ‘Ray Tracing
main window’ and ‘OpenGL Frame’ in the diagram - are responsible for displaying the user
interface and receiving input from the user. The user inputs are received by the interface class
and passed on to the back end of the application. The class SceneManager is responsible for the
action of passing these commands from the front end to the back end. The scene to be rendered
is represented by the ‘Scene’ class that enables it to be in memory and its components to be
accessible to the renderer. The SceneManager creates the scene to be rendered by either loading
one that is stored in the hard disk or by importing one that exists in a different format. Once the
scene is loaded, most algorithms work with a tree as the underlying structure. Hence, a tree with
a user selected set of parameters is either loaded (if already created and stored onto the hard disk)
or created. Finally, when a rendering type is selected, the SceneManager creates the appropriate
renderer to render the scene. The SceneManager is thus a very important class.

A .1.1 Renderers and D ata Structures

The application was designed to allow integrating several data structures and algorithms for ren
dering. The first step was to declare a set of abstract super classes to define the main functionali
ties.

As the application’s main task is to render scenes, an abstract class - Renderer - was created that
defined the main functions to be implemented by any rendering method.

R enderer - This class is the super class for all software rendering methods. It is an abstract
class defining several abstract methods that its subclasses have to implement. The main abstract
method it defines is:

• render - This method has to be implemented by each subclass, i.e., each new rendering
method. The subclasses use the specific algorithm to generate the image and the bitmap to
be rendered is stored in an object of the FrcimeBuffer class. This object is then passed onto
the OpenGL Frame object to display the contents of the current FrameBuffer.

As an abstract super-class, it is a placeholder for all rendering methods. Each rendering method is
defined as a subclass that implements this render method. A class RayTracingRender implements
a baseline ray tracing method using kd-trees. This method is used as the method against new algo
rithms and data structures are compared. The Coherent Rendering method described in chapter 4
is implemented using the subclass SoftRasterizer.

However, when the method used is very similar to ray tracing, it is possible that several functional
ities of ray tracing are duplicated. Hence, these rendering methods - Ray tracing using RBSP trees
(implemented by class RhspRTRenderer), Packet ray tracing (class PacketRayTracingRenderer -
also a method used as a baseline for comparison). Multi threaded packet ray tracer (class Mul-
tiPRTRenderer - another baseline rendering method), Row Tracing (class RowTracingRenderer
- implementing single threaded Row Tracing and Packet Row Tracing) and multi-threaded Row
tracer (class RowTracingRendererMT - implementing multi threaded Row Tracing and Packet
Row Tracing) - derive from RayTracingRenderer.

A. 1 SoftM'are Architecture 167

The manager class - SceneManager - manages the delegation of work to the rendering methods
based on the user’s selection. Depending on the rendering method chosen, this class creates the
appropriate renderer object with chosen rendering parameters. The object then renders the scene
and displays the image.

As demonstrated, the addition of new rendering algorithms is very simple. The new algorithm is
implemented in its own class. The only modifications necessary to the implementation are to the
SceneManager class that has to create an object of the new Tenderer’s class.

Further, the several data structures are abstracted out of the rendering method so that a renderer
chooses whatever data structure it deems suitable. For eg., Row Tracing has been implemented on
kd-trees as well as octrees. This is easily achieved as the data structure classes are separated from
the rendering classes.

The data structures are also implemented in a similar manner. Since the structures investigated are
all tree structures, an abstract super class called Tree defines the main tree structure. All trees are
implemented as subclasses to this class.

The first data structure implemented was the kd-tree, defined in its own class KDTree.

kdTree The class represents a kd-tree. It provides the data variables and methods necessary to
create and use kd-trees.

A few of the important data members of the kd-tree class are as follows.

• noNodes - The number of nodes in the kd-tree. Since the tree is stored as an array in
memory for efficiency, the number of nodes is used to allocate the nodes and to ensure that
out of bounds array items are not accessed.

• node Array - The nodes of the kd-tree are stored as an array in this structure. The array
consists of KDTreeNode items that span eight bytes each. Each KDTreeNode represents
either an internal node of the tree or a leaf node of the tree. The structures of these two
kinds of nodes are shown in Tables A. 1 A.2 respectively.

Represents Bits used
Unique pointer to children 32

Quantized value of split position 14
Leaf node flag 1

Unused bit 1
Split axis 16

Table A. 1: Kd-tree node structure.

Represents Bits used
Pointer to start of triangle list 32
Number of triangles in node 16

Leaf node flag 1
Unused bits 15

Table A.2: Kd-tree leaf node structure.

A .l Software Architecture 168

• noTotalTriangles - The number of triangles contained by all the leaf nodes of the kdTree.

• triangleArray - In the leaf node of the kd-tree, an index an item of this array containing a
list of triangles is stored. The index points to the first triangle contained in the leaf node.
The leaf node also specifies the number of triangles in it. Together, the two members specify
the triangles contained in the leaf node.

• kdTreeSplitMethod - Indicates the splitting method of the construction process. The split
method could be one of space median, improved space median, SAH or octree. The octree
can be considered as a version of a kd-tree where space is split across all three axes and has
eight child nodes instead of three. However, the octree due to its uniformity does not need
its split position to be represented explicitly and can thus be represented with just 32 bits
that indicate the location of the first child node.

In addition to the data members, the kdTree class also provides methods to create the kd-tree with
several different heuristics. The main methods provided are:

• ConstructTree - The method that constructs the tree. It is a recursive method that works
in two passes. Due to the fact that nodes are stored in an array, the first pass counts the
number of nodes and triangles necessary and the second pass includes the data in these
nodes and triangles. The main factor in the quality of the kd-tree is the split method and
this is implemented in a separate method that returns the split position to be used for the
particular construction step. Upon determination of the split position, the construction step
then classifies the triangles as being on one of the sides or both sides of the split and recurses
if necessary.

• CountNodesAndTriangles - As mentioned earlier, the construction step is a two pass pro
cess. This method is performed in the first pass and only counts the number of nodes and
triangles that the final tree must contain.

• findPosSAH - Uses the Surface Area Heuristic to determine the locally optimal SAH posi
tion. The method uses several auxiliary methods to achieve this. It first clips the triangles in
the node by the bounding planes to obtain the potential split positions. Then, it sorts these
split points along all three axes. At each of these points, the SAH cost is determined along
three axes and the point with the minimum cost is determined as the locally optimum SAH
position.

• SortTriangles - This is the method that classifies the triangle as being to the left or to the
right of the split in consideration. An in place method is used that minimises slow memory
allocation and de-allocation operations.

• saveTreeBin - Once the tree with the given parameters is created, it is saved to the hard disk
for further use. The tree is stored in a binary format that is just a binary dump of the bytes
in the nodeArray followed by the bytes in the triangleArray.

• loadTreeBin - If a scene already has a tree constructed and saved, this method loads the tree
from the hard disk rather than constructing the tree from scratch.

• TraceRay - The method traces a ray through the kdTree. It initialises several variables
necessary for the traversal and calls the RecnrsiveRayTraversal method.

• RecursiveRayTraversal - The tree is recursively traversed by a ray in front-to-back order
until either a leaf node is reached or until an exit criteria is reached.

A . 1 Softw 'a re A rchitectu re 169

• ProcessLeafNode - If the recursive traversal reaches the leaf node, then this method pro
cesses the leaf node and the ray. The ray is intersected with all the triangles in the node and
if there are one or more intersected triangles, the one with the closest intersection - as given
by the t intersection parameter - is returned.

As the KDTree class shows, the class for each data structure defines all the functionalities nec
essary. They define construction of the structure with several heuristics if necessary. Since the
KDTree was initially developed in our system for ray tracing, the ray traversal code is integrated
in this class. However, this is planned to be moved to the RayTracingRenderer class to make the
design more coherent. In addition, the structure class is responsible for serialising - loading and
saving the structure from and to hard disks - the structure.

Since the application considers the octree as a special form of kd-trees, a separate class has not
been created for octrees. Instead, the kdTreeSplitMethod variable indicates that the tree is an octree
and the ConstructTree method ensures that an octree is created.

The other structure developed is the RBSP tree - described in Chapter 3. Although it is similar to
kd-trees, it has very specific construction and ray traversal methods and hence has been included
in its own class. The class defines the construction, loading and saving of RBSP trees. Rendering
using RBSP trees is handled by the RBSPTreeRenderer class.

A .l .2 Scene Structure

Another consideration is the lower level consideration of how the actual scene is represented
in memory. This can have a major impact on the efficiency and extensibility of the system. It is
necessary to represent the scene so that it incorporates the main features of most rendering systems
like textures, lights, vertex normals, etc. in addition to the actual geometry. It is necessary to point
out at this time that the geometry of the scene consists solely of triangles. Also, the scene has
to be represented so that vertices shared between triangles are not duplicated. In addition, it also
necessary to abstract the scene from the rest of the application so that the actions pertaining to it
are achieved independently. The class Scene is thus implemented to fulfil these objectives.

Scene - The Scene class represents scenes to be rendered. The structure of an object of this class
is as follows:

• vertices - This is a list of vertices of the scene's triangles. The list contains four floating
point values for each vertex. Although, a vertex can be represented by just three floats, four
values are used with a dummy value at the end so that the data is better aligned.

• nbOfVertices - Indicates how many vertices exist in the scene. This is necessary as the
vertices are stored in an array that does not contain size information.

• triangles - This is a list of indices that point to a vertex in the vertices array. Each triangle
is indicated by the indices of the first coordinate of each of the three vertices forming the
triangle. The coordinates of the vertices are obtained by taking the three consecutive floating
point number for each vertex.

• nhOJTriangles - Indicates the number of triangles in the scene.

• vertexNonnals - A method similar to the vertices is used to represent the normals at every
vertex. The number of vertex normals is the same as the number of vertices. Hence, the

A .l Software Architecture 170

same number - nbOfVertices - can be used. Four floating point values in which one is a
dummy is used to indicate the normal vector at the vertex.

• textureDimensions - The dimensions of the textures used are stored in this value. It stores
two integers per texture to indicate the length and the breadth of the texture.

• textures - This is a two dimensional byte array consisting of RGB values of a texture. The
array contains all the textures used in the scene and is referenced to obtain the colour due to
the texture.

• vertexCoIorsOrTextureCoordinates - This is the colour of a vertex or its texture coordinates.
The texture coordinates allow determining the colour at a pixel after the texture has been
applied. In case it is a colour, an RGB value is stored.

• triangleTextureNb - This is a pointer to a texture for every triangle in the scene. The tex
ture’s colour is mapped onto the triangle to obtain the textured triangle.

• lightSourcePatches - Indicates the lights in a scene. Every light source is indicated with a
list of triangles that form the light source. The representation is similar to how triangles are
stored.

• lightSourceRadiance - Provides the radiance values for every light source, and is indicated
by one floating point value per light source.

• materials - This is a list of materials contained in the scene. The materials are defined in a
separate class that define values for diffuse, ambient and specular components in addition
to the opacity, refraction index and shininess values for the material. This list contains a list
of materials used by the scene.

• nbOfMaterials - The number of materials contained in the scene.

• vertexMateriallndex - A pointer to the material at this particular vertex.

The Scene class also contains a few methods to manipulate the scene. The main methods of the
Scene class are:

• LoadScene - This method loads a scene stored in this format to memory from the hard disk.

• SaveScene - Saves the currently loaded scene to the hard disk.

• AutoGenerateNormals - Generates the normals at the vertices using the triangle’s normal.

• InvertNormals - On a few occasions, the normals are directed opposite to how the scene
is structured. In these cases, this method can invert the normals so that the triangles of the
scene are oriented in the right direction.

• ComputeBoundingBox - Computes the bounding box of the scene. The bounding box of
the scene is represented by six coordinates - the minimum and maximum coordinates along
each axis. This is computed by determining the minimum and maximum coordinates of all
the triangles in the scene.

• operator+= - Combines two scenes to obtain a combined scene incorporating the two
scenes.

The class thus designed represents the scene and the necessary components with minimal dupli
cation of data. The application currently loads and operates on only one scene at a time, though

A . l Softw are A rchitecture 171

loading and operating on multiple scenes is relatively easy. Again, the SceneManager class man
ages the application by being the central object with which other components communicate. The
SceneManager class - being the main class sending and receiving messages - is thus an important
class of the application.

SceneM anager The SceneManager is a class that manages the operations of the application. It
is the direct interface between the user interface, the back end rendering classes and other classes
that can be independent. It is thus responsible for calling the appropriate methods when the user
requests an action. Its main data members are:

• scene - The scene object that is to be rendered.

• renderer - The renderer object that is responsible to render the scene. According to the
method chosen, the appropriate renderer object is constructed and the render method is
called.

• tree - The tree using which the scene is rendered.

Using the above data members, the SceneManager is responsible for loading the scene and the
corresponding tree. It allows the user to specify the parameters with which s/he wants to render
the scene. It also provides functionality to change the type of tree being used and the rendering
method used, to import scenes of different formats into the application and finally to save the
parameters for a rendering or even to save the scene being rendered in native format. It is to be
noted that the SceneManager does not actually implement any of the operations and just calls the
corresponding method from the corresponding object. The methods that allow the SceneManager
to achieve its responsibilities are:

• ChangeRenderingStyle - The method allows changing the rendering type from OpenGL
based to ray tracing, ray tracing with RBSP trees, Row Tracing and packet ray tracing. The
method creates a new renderer of the appropriate type and calls its render method.

• ChangeKDTreeMethod - Changes the kd-tree’s splitting method between space median,
SAH and octree types.

• ChangeKDTreeParameters - Changes other parameters of the kd-tree like the maximum
depth of the tree and number of primitives contained in the leaf node.

• ChangeRBSPTreeParameters - Similar to the kd-tree, the parameters of the RBSP tree can
be changed. In addition to the maximum depth and the number of triangles in the leaf node,
the RBSP tree has an additional parameter - the number of axes used to construct the tree.

• LoadOrConstructTree - Checks if the tree has already been constructed. If it has been, the
tree is loaded into the main memory. Otherwise, the tree construction method is called.

• SavePreferences - Preferences are parameters of a particular rendering scenario. It defines
the scene to render, camera parameters, the tree to use along with its main properties. These
parameters are saved for further retrieval by the LoadPreferences method. The preferences
make it easy to compare several algorithms and data structures with a given scenario. It is
also helpful when debugging problematic scenarios.

• LoadPreferences - This loads the preferences including the scene and the tree given by the
parameters. Subsequently, it applies the camera parameters stored in the parameters file to
the camera so that the viewpoint is exactly as it was when the preferences were saved.

A .2 Scene and Tree D ata S tructure R epresen ta tion 172

• Load3DS, LoadPly, LoadlW, LoadPlyDir - Allows a user to import scenes of various for
mats into the format used by the application. The method calls an importer that imports the
scene.

• LoadScene - Loads the scene from memory by calling the appropriate method in the Scene
class.

• SaveScene - Saves the scene to the hard disk by calling the appropriate method in the Scene
class.

• LoadSceneFromXML - Using XML files, several scenes can be combined into one scene.
This is very useful when comparing several different methods of rendering. The SceneM
anager calls the XML importer to achieve this functionality.

The description of the SceneManager clarifies the role of the SceneManager as being integral to
the extensibility and simplicity of the design. By being an intermediary class between the various
components of the application, it allows the application to be modular, simple and extensible.

Thus, with this combination of individual rendering classes for each rendering method, separate
classes for every major data structure, a detailed Scene class and a manager class in the SceneMan
ager class, the design is flexible enough that developing a combination of structures and rendering
methods is possible very easily.

A.2 Scene and Tree Data Structure Representation

The structures for the scene and the tree aim to maximise memory efficiency. This also achieves
good cache performance. While the members and methods of these structures has been described
earlier, the section below aims to explain them with more clarity.

A .2.1 Scene Structure

In SectionA. 1.2, the class structure for representing a scene was described. However, from the
class structure, it maybe difficult to identify the relations between the various data members of the
scene. Figure A.2 aims to clarify the structure of the scene and its representation in memory once
it has been loaded.

A .2 Scene and Tree D ata S tructure R epresen ta tion 173

RGB textures

Pointers to
textures

Triangle
texture index

0 0 1

Triangle list

vertex coordinate
list

vertex normal
coordinate list

vertex texture
coordinates . . I I I I I l a I I 111

0

Figure A.2: S tructure o f a Scene in m em ory.

Figure A.2 show ing only the m ain ob jects o f the scene, ind icates that the scene object consists o f
a num ber o f arrays fo r the m ain elem ents o f the scene. Each triangle in the scene consists o f three
po inters to the vertex array that consists o f a list o f all the vertices. T he vertex list is com posed o f
four com ponents per vertex - the A', Y and Z coord inates and a fourth com ponent that is alw ays
the value 1. The add itional com ponent is added for m em ory a lignm ent issues. The vertex norm als
are sim ilarly stored. The vertex texture coord inates are stored in a sim ilar array, but w ith three
com ponents per vertex as it is accessed only during the shad ing part o f the rendering . Textures
are loaded into m em ory as 2D RGB values and an array o f po in ters to the 2D textures is created.
If a triang le is tex tured , a po in te r in the texture index array ind ica tes the particu lar texture for the
triangle in consideration . In this way, the m ajo r com ponents o f the scene are represented .

A.2.2 Kd-tree Data Structure

The kd-tree has a structure that m inim ises the m em ory usage, thus enab ling optim al cache usage.
It consists o f a kd-tree class tha t represen ts the tree. T he nodes are defined in this class. In o rder
to save m em ory and m axim ise coherence, the nodes o f the tree are stored as an array. D ue to
this represen tation , the tw o child nodes can be easily indicated by ju s t one index as long as the
tw o child nodes are stored in ad jacent item s o f the array. In addition to saving m em ory, the array
representation ensures that sub-trees are stored closer, m eaning that if a node is loaded into the
cache, several ad jacent nodes that are also loaded have a h igh probability o f being accessed.

A .3 U ser In terface D esign 174

In this representation , the first elem ent o f the array is the roo t node o f the tree. The tw o child
nodes o f the root node are stored as the next tw o elem ents in the array. Sim ilarly , each o f the
nodes has tw o child nodes unless they are leaf nodes.

O bviously, nodes can be o f two types - internal nodes and lea f nodes. Both kinds o f nodes can be
indicated w ith ju s t 8 bytes (64 bits). Internal nodes need to store the split position, the axis that
splits it. an indication o f if it is a lea f node and finally a po in te r to the first child node.

R epresents Bits used
U nique pointer to ch ildren 32

Q uantised value o f split position 14
L eaf node flag 1

U nused bit 1
Split axis 16

Table A .3: kd-tree node structure

E ach internal node is stored w ith the above structure. H ow ever, w hen a lea f node is to be rep re
sented. it has to store d ifferent inform ation - the num ber o f triang les in the node, the triang les in
the node and an ind ica to r specify ing if it is a leaf node.

R epresen ts Bits used
Pointer to start o f triang le list 32
N um ber o f triang les in node 16

L eaf node flag 1
U nused bits 15

Table A .4: kd-tree leaf node structure

S toring the actual triangles in the node is im practical. H ence, an index is stored. T he index po in ts
to a triangle in the list o f triangles that con tains all the triang les o f all the lea f nodes. The triangle
is the first triangle in the node. In addition, the num ber o f triang les in the node is also stored. The
first triangle and the num ber o f triang les thus enable iden tification o f the triangles in the node.
These triangles are stored as indices pointing to the list o f triang les in the Scene object. The Scene
object then allow s access to the vertices o f the triangle. The rep resen tation o f triangles is m ade
clear by F igure A .3

The data thus represen ted provides a m odular and efficient w ay to access the data. It m in im ises
redundant data being stored keeping the structures sm all. T h is m akes the application m em ory
efficient and also im proves perform ance by better cache coherence and reduced paging.

A.3 User Interface Design

As an application designed m ainly fo r research purposes, the user in terface for the app lication had
several aim s. It w ould have to be an application that:

• Is C ross platform .

A .3 U ser In terface D esign 175

triangle
start index

leaf nodes

kd-tree global
triangle list

Scene
triangle list

Scene
vertex
coordinates Q

number of
triangles in
leaf node

Figure A .3: O btain ing the lea f node triangles.

• Is sim ple to use / has a m inim al learning curve.

• A llow s easy selection o f a scene.

• A llow s easy m anipulation o f the cam era.

• A ssists debugging.

• E nables rendering w ith d ifferent m ethods.

• E nables selection o f different data structures.

• E nables com parison betw een d ifferent m ethods.

The interface has been designed w ith these aim s in m ind. The user interface design o f the app li
cation w ith the above aim s in m ind, is detailed below.

Cross platform - A lthough, curren tly the app lication only w orks on W indow s, it w as decided
early on during the developm ent that a cross p latform app lication is desired . C om patib ility w ith
the L inux / U nix p latform w as desirab le due to the robustness o f the system as also due to the
possib ility o f faster perform ance. For this purpose, FLTK - the Fast L ight T oolkit - w as selected
as the G U I toolkit. F rom FL T K 's w ebsite [FLT08] -

‘FLTK (pronounced “fu lltick”) is a cross-p la tfo rm C ++ G U I too lk it fo r U N IX /L inux
(X I 1), M icrosoft W indow s, and M acO S X. FLTK provides m odern G U I functional
ity w ithout the bloat and supports 3D g raphics via O penG L and its built-in G L U T
em ulation .

FLTK is designed to be sm all and m odular enough to be statically linked, but w orks
fine as a shared library. FLTK also includes an excellen t UI bu ilder called FLU ID

A .3 U ser In terface D esign 176

that can he used to create applications in m inu tes .’

A s the quote from FLTK suggests, it is a cross p latfo rm G U I developm ent toolk it that is lightw eight.
A dditionally it supports O penG L - a key feature for graphics applications. D evelopm ent o f the
user interface is easily achieved through the provided FL U ID tool that is fairly sim ple to use.
T hese factors m ade the decision to use FLTK a stra igh tforw ard one.

Simple to use / has a minimal learning curve - The application developed by us has to be
sim ple to use. It w as necessary that it popularly used functions could be accessed w ith m inim al
effort. T hus, it w as im perative that the application fo llow ed a standard approach - that it had a
G U I w here all the functions w ere accessib le using a m ouse. T he m ain w indow s o f the application
can be show n by Figure A .4.

09

Figure A .4: A pp lica tion W indow s

The figure show s the app lica tion ’s sim plicity . It has fou r w indow s w ith the largest one being the
one in w hich the im age is rendered.

Easy selection of scene W hen a scene is loaded, it is in app lica tion 's m em ory and is d isp layed
in the largest w indow . The scene is chosen by selecting the appropriate item in the File m enu
show n in Figure A .5. As the figure show s, the m enu enables scenes o f several d ifferent form ats to
be loaded using the G U I. In this m anner, the scene is selected in an easy m anner.

C Cyhndnt* Bom Tramg
C sprint* Row Tracng
r sphere* *>t» Trsang

• Bom T(*trg ■ Oxfftmzrd
r Born Tracrtg - SS£ Cpamota
r Pom Trarng Pacws Tracing
r Bom Tracng • MJb Trewoea
r Pac*rt Bow Tranng Mu* Trr
r Porn Tracing

Easy m anipulation of cam era - To com pare a lgorithm s, it is necessary to set a view point
that is suitable. To achieve this, easy navigation through the scene and setting the necessary
v iew point and cam era param eters is necessary . T he app lica tion enables this easily by allow ing

A. 3 U ser In terface D esign 177

Load Octree
Save RBSP Tree
Save image __
Load Preferences
Save Preferences

Load Model
Save Model
lmport3DS
Import Pty

Import Ply Directory.
Import IW
Import xml model.
Load KdTree
Save Kd Tree
Load RBSPTree

Figure A .5: File M enu

the user to rotate, translate and scale the m odel using the m ouse. T he app lica tion also allow s
setting the perspective angle and the zoom factor o f the cam era. T he user can m ove / ro tate the
cam era by dragging the right m ouse button and the left m ouse button respectively . In addition,
the app lication p rov ides these functionalities by w ay o f sliders that allow line tun ing the cam era
settings if necessary. F igure A .6 show s the m ain w indow in w hich the scene can be nav igated w ith
the m ouse. F igure A .6 also show s the w indow w ith sliders w ith w hich ro ta tions and translations
can be applied to the m odel.

F igure A .6: Setting the cam era param eters

Assist debugging - D uring the developm ent o f new a lgorithm s and data struc tu res, there are
bound to be several instances w here th ings do not w ork as expected . D uring these in stances, it is

A .3 U ser In terface D esign 178

useful to v isualise the m ethod and the underly ing data structures.

W hen a new strueture is being developed, it needs to be v isualised so that the p roblem s can be
identified and fixed w ith m inim al effort. T he user in terface allow s the user to easily select one o f
the several data structures im plem ented and to v isualise it. F igure A . l show s how several aspects
o f a data structure can be v isualised depending on w hat is necessary.

■L
Gl | Ray-Tracing [Glj DACIsJ 0 0 _ R T ! KD T rees j Options [Row Tracing | Testing

Display

17 Surfaces r Octree r BSP Tree L levels Filled

r Wireframe r BSP Tree L levels

17 Tree r BSP Tree Last two levels

r Vertices r BSP Tree Leaf Nodes

r Normals r BSP f ree Empty Nodes

r BSP Tree
F Bounding Box

r Show splitting axes
(7 Textured Model _

1 Make Use of Display Lists for sc en e rendering

Auxiliary GL Display Lists
l ' ' “

r Frustum/Camera DisplayLlst Current Frustum |

F Ust 1
r u s t 2
r u s t 3
r u s t 4 i

Figure A .7: O ptions to v isualise the scene and the data strueture

The Figure A .8 show s the R B SP tree v isualised using the w irefram e m ethod w here each n o d e’s
edges are show n. D uring the developm ent o f the structure, this v isualisation enabled us to judge
the quality o f the tree and to identify the problem s. A s F igure A . l show s, several other types o f
v isualisations have been added to assist the developm ent process. T hese v isualisations also show
the characteristics and quality o f the new structure developed.

Enable rendering with different methods - The user in terface m akes it very sim ple to choose
the rendering m ethod. A s F igure A .9 show s, the rendering m ethod can be chosen and changed
easily, m aking it easy to com pare d ifferent rendering m ethods. C om bined w ith the ability to select
and change data structures fo r the scene, this is a very effective m ethod to test several a lgorithm s
over different structures.

Enable selection of different data structures - A s m entioned earlier, selecting the underly ing
data structure is very im portan t for the research . T he ability to select d ifferent underly ing data
structures and change it at run tim e is one o f the key features o f the application . W hen a structure
is selected , the app lication attem pts to find the file in w hich the tree is stored. If the file is found,
the application loads the tree. O therw ise, the application calls the tree construction process w ith
the selected param eters. The w indow also show s the d ifferent param eters that can be selected.

A .4 Summ ary 179

Figure A .8: R B SP tree v isualised on the Bunny.

T his also m akes it possib le to com pare d ifferen t variations o f the sam e structure that are built w ith
d ifferent param eters.

Enable com parison between different methods - T he user in terface w ith its ability to select
several different rendering m ethods and several d ifferent data structures is a very effective tool to
com pare the d ifferent m ethods im plem ented w ith different underly ing structures.

A s show n, the user in terface has been custom ised so that several im portan t features focusing on
research are possib le easily and w'ith m inim al effort. T he app lication fulfils its goal o f being easy
and sim ple to use w hile at the sam e tim e offering several pow erfu l features fo r researchers. It
is fully developed using the FL U ID tool that m akes it easy to add new elem en ts and to m ake
m odifications to existing features. T he com bination m akes the user in terface a good fit fo r the
application .

A.4 Summary

As the section show s, the softw are w as im plem ented to assist the research . T he system is de
veloped in a m odular m anner. Several data structures and a lgorithm s can be used to render a
particu lar scene. T his allow s easy com parison betw een the rendering m ethods. The system also

A .4 Summ ary 1 8 0

Rendering parameters

Rendering type OpenGL
Ray Tracing
Soft Monte-Carlo
Hardware-Based Monte Carlo
Soft Rasterization
Packet Ray Tracing
BSP Ray Tracing
kd and rbsp tree rendering - benchmark
Row Tracing
DACIS test
Multi Packet Ray Tracing

Figure A .9: S electing a rendering m ethod

Raytracng O' 0*Os'oO_»T k© Trees optora Paw Trxmg TfJtng OC Re^rrecng G) 0*03 00_RT KD Trw» Ofeons 1 Mow Traewq Twarg

M M tM Ptt ft) 1* iVINLogK 94

HDTnee Tx*fsA>‘ tSrdu(r3«-«<i vj

S*n pmuc*o Pjraweom

3pe Poi«K> SIW BUM BSP Trt« I u**J or Bower* |

xz>Tntc Typ* E 2 E 3 H C E 3 3 5 B B B
Of MC
MamrMBX 3

^ Ocwe 3: ot

tmptv Spy* 60S (TdiTrr

P Auto trmnjhr icr*j « n : O Petxretf) r Auto TenrmM* «r*y «ona Kt SA* Peautefli
Ten*w*te 1 roue m n » & eountfcqto.JT" KX03 Tentmatr * node arts a % tf Dounong tR»(< >0«
Tmrwuw * brycov n toMTop *[• . • Tef"wu* *0MlC0««t0itl0p*I JiOOOO

Figure A. 10: Selecting a data structure

has a user in terface that is sim ple and provides w ays to access the key features w ith m inim al effort.
Finally, it is ex tensib le enab ling developm ent and use o f new rendering m ethods. All in all. the
system arch itecture has been a m ajor fac to r in enabling our research .

Appendix B

Optimising Row Tracing with SSE
instructions

B.0.1 SIM D Instructions

SIMD - Single Instruction, Multiple Data - instructions, though available earlier on other archi
tectures, are a recent development on X86 processors that enable data level parallelism [SSE09b]
[SSE09a], They enable operating on a larger set of data using a single instruction. Intel’s SSE
instructions allow performing four floating point operations in parallel using a single instruction.
Judicious use of SSE instructions can significantly accelerate the performance. Row Tracing pro
vides several instances where the use of such instructions are very beneficial. Intrinsics enable
implementing these instructions relatively easily and are supported by both Visual C++ [VCI09]
and Intel C++ compilers [Int09]. A few of these instances and the application of SSE to these are
detailed below.

Triangle intersection and clipping Intersecting triangles in a leaf node and clipping the in
tersection segment - as necessary for the leaf node processing - is one of the most frequently
performed operations of the algorithm. It is paramount that this part of the algorithm is as efficient
as possible. The process, described in detail in Sections 5.6.1 and 5.6.3, is implemented using
SIMD instructions to optimise them.

The SSE code below determines whether there is an intersection between the row plane and a
triangle and computes the intersection line segment if there is an intersection. The SSE instructions
in the code below leads to a performance boost by vectorising the operations a few operations. The
operations three dot products, vector additions and vector subtractions are achieved using SSE.

//load the three vertices of the triangle into SSE variables
ssePl = __mm_loadu_ps (verts + scTrs [x]) ;
sseP2 = _mm_loadu_ps(verts+scTrs[x+1]);
sseP3 = _mm_loadu_ps(verts+scTrs[x+2]);

//find the signed distances between the three points and the Row
Plane

rl = _mm_mul_ps(ssePl, sselmagePlane);
r2 = _mm_mul_ps(sseP2, sselmagePlane);
r3 = _mm_mul_ps(sseP3, sselmagePlane);
r4 = _mm_shuffle_ps(r1, r2, _MM_SHUFFLE(1,0,1,0));

181

182

r5 = _mm_shuffle_ps(rl, r2, _MM_SHUFFLE(3,2,3,2))
r6 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(1,0,1, 0))
r7 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3,2,3,2))
r4 = _mm_add_ps(r4, r5);
r6 = _mm_add_ps(r6 , r7);
r3 = _mm_shuffle_ps(r4, r6 , _MM_SHUFFLE(3,2,2,0));
r4 = _mm_shuffle_ps(r4, r6 , _MM_SHUFFLE(3, 3, 3, 1)) ;
r7 = _mm_add_ps(r4, r3);

//check if there is an intersect ion
dirs = 7&(_mm_movemask_ps(r7)) ;
if((dirs==0) II (dirs == 7))

return false;
//Find dO/dO-dl , dl/ dl~d2, d2/ d2-d0
rl = _mm_shuffle_ps(r7, r7, _MM_SHUFFLE(0,0,2,1));
rl = _mm_sub_ps(r7, rl);
rl = _mm_div_ps(r7, rl);
//Linearly interpolate to get pi, p2, plane intersection point
r2 = _mm_sub_ps(sseP2, ssePl);
r3 = _mm_shuffle_ps(rl, rl, _MM_SHUFFLE (0, 0, 0, 0)) ;
r2 = _mm_mul_ps(r2, r3);
r5 = _mm_add_ps(r2, ssePl);
//Linearly interpolate to get p2, p3, plane intersection point
r2 - _mm_sub_ps(sseP3, sseP2);
r3 = _mm_shuffle_ps(r1, rl, _MM_SHUFFLE(1,1,1,1));
r2 = _mm_mul_p s (r 2, r3);
r4 = _mm_add_ps(r2, sseP2);

//Select the right two points out of three
r2 = _mm_sub_ps(ssePl, sseP3);
r 3 _mm_shuffle_ps(r1 , rl, _MM_SHUFFLE(2,2,2, 2)) ;
r 2 = _mm_mul_ps(r 2 , r 3);
r 3 = _mm_add_ps(r2, sseP3);

rl = _mm_cmpgt_ps(r7, ZERO_SSE) ;
r 2 = _mm_shuffle_ps(r1 , rl, _MM_SHUFFLE(0,0,2, l)) ;
r2 = _mrn_xor_ps (r2 , rl);
r2 = _mm_andnot_ps(r2, MASK_TRUE);

r 1 = _mm_shuffle_ps(r2 , r2 , _MM_SHUFFLE(0,0,0, 0)) ;
r 6 = _mm_shuffle_ps(r2 , r2 , _MM_S H U FFLE(1,1,1, 1));

r 2 = _mm_and_p s (r 3, r1);
r5 = _mm_andnot_ps(r1, r5);
r 5 = _mrri_or_ps (r 5, r 2) ;

r2 = _mm_and_ps(r3, r6);
r 4 = _mir._andnot_ps (r6 , r4) ;
r 4 = _mir'._or_ps (r 4 , r 2) ;
//Select the right two points out of three

L isting B .l: T rian g le -R o w in tersec tion using SSE.

O nce the in tersec tion segm ent is found, it is to be ensu red that the segm ent is fully in front o f the
near plane. The code below is called only if the node 's bound ing box lies on both sides o f the near
plane. SSE instructions optim ise the operation by vectorising the ca lcu lation o f tw o dot products,
clipp ing w ith the near plane and finding the point in tersec tion (if there is one) - both o f w hich use
the param etric equation o f the line.

183

//handle cases when the intersection segment is partly in front
//and partly behind the near plane

if (bbPartlylnFront)
{

r9 = _mm_mul_ps(nearPlaneSSE, r4);
r8 = _mm_mul_ps(nearPlaneSSE, r5);
r6 = _mm_unpacklo_ps(r9, r8);
r3 = _mm_unpackhi_ps(r9, r8);
r9 = _mm_add_ps(r6,r3);
r3 = _mm_movehl_ps(r9, r9);
r9 = _mm_add_ps(r9,r3);
float dl = M128_F32(r9)[0];
float d2 = M128_F32(r9)[1];
char plEehind = (((dl >0)) != gv_nearPlaneFarPlaneSign);
char p2Eehind = (((d2 >0)) != gv_r.earPlaneFarPlaneSign) ;
if (plBehind && p2Benind)

return false;
if (plBehind)
{
dl = dl/(dl-d2);
r 9 = _mm_sub_ps(r5. r 4)
rl = _mm_set_psl(dl);
r 9 = _mm_mul_ps(r9, rl)
r4

i
- _mrr;_add_ps (r4, r 9)

i
else
/

if(p2Behind)
I
dl = d2 / (d2 -dl);
r 9 = _mm_sub_ps(r4, r 5)
rl - _mm_ser__psl (dl);
r 9 = _mm_mul_ps(r 9, rl)
r5 = _mm_a d d_p s (r 5, r 9)

}

L isting B.2: SSE version o f algorithm that handles cases w hen the triangle part being rendered is
partly in front and partly behind the view point.

Finally, the code below ensures that only parts o f segm ents that are w ithin the n o d e’s bounding
box are considered. S im ilar to the above operation , SSE code vectorises finding the intersection
to the three entry and exit p lanes by using the param etric equation o f the line.

//clamp the intersect ion line to the bounding box
r 9 = _mm_sub_ps(r5,r4);
r 8 = _mm_rcp_ps(r9);
r 8 = _mm_min_ps(TNFTNITY_SSE_V2, r8);
tl = _mm_sub_ps(minVertexSSE, r4);
tl = _mm_mul_ps(1 1 , r 8);
1 2 = _mm_sub_ps(maxVertexSSE, r4);
t2 = _mm_mul_ps(1 2 , r8);
13 = _mm_min_ps(tl,t2);
t2 = _mm_ma x_ps(1 1,1 2);
tl = _mm_shuffle_ps(13, t3, _MM_SHUFFLE(0,0,2,1))
tl = _mm_max_ps(1 1 , 13) ;
13 = _mm_shuffle_ps(tl, tl, _MM_SHUFFLE(1,1,1,1))
tl = _mm_max_s s (1 1 ,13);
tl = _mm_max_ss(tl,ZERO_SSE);
13 = _mm_shuffle_ps(t2, t2, _MM_SHUFFLE(0,0,2,1))

184

t 3 = _mm_min_ps(13, 12) ;
t2 = _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(1,1,1,1));
t3 = _mm_min_ss(t3, t2) ;
t3 = _mm_min_ss(t3,ONE_SSE);
if(_mm_ucomigt_ss(tl, t3))

return false;
r 8 = _mm_shuf £ le_ps (1 1 , 1 1 , _MM_SHUFFLE (0 , 0 , C , 0)) ;

r7 - _mm_shuffle_ps(t3,1 3,_MM_SHUFFLE(0, 0, 0, 0)) ;
tl = _mm_inul_ps (r9, r8);
tl = _mm_add_ps(r4, tl);
t2 - _mm_mul_ps(r9, r7);
t2 = _mm_add_ps(r4 , t2) ;
//clamp the intersection line to the bounding box

return true;

L isting B.3: SSE version o f C lam ping the in tersec tion line to the hounding box.

Node Projection Overestim ate onto the Row Finding the node projection overestimate is an
operation that is undertaken at every traversal step. Hence, it is imperative that this is as optimised
as possible. SSE allows the calculation of this overestimate using the code below. The optimisa
tion occurs due to the vectorisation of calculation of four dot products, scalar multiplication to a
vector and addition of a constant to all the components of the vector.

void CalculateNodeOverestimate()
<
minVertexSSE = *wMinDiag;
maxVertexSSE = *wMaxDiag;
r5 = *xMaxDiag;
rl - *xMinDiag;
/ /
//FourDotProds (tl, 12, r8, r9,

m3, m3, mO, mO) ;
r l - _mm_mul_ps(maxVertexSSE, m3);
r4 = _mm_mul_ps(minVertexSSE, m3);
r5 = _mm_mul_ps(r5, mO);
rl = _mm_mul_ps(r1, mO);

r8 = _mm_movelh_ps(r7, r4);
r9 - _mm_movehl_ps(r4 , r7);
r l = _mm_movelh_ps(r5, rl);
r4 = _mm_movehl_ps(rl, r5);

r8 = _mm_add_ps(r8 , r9) ;
r4 = _mm_add_ps(r4 , r l) ;

r l = _mm_shuffle_ps(r8 , r4, _MM_SHUFFLE(2,0,2,0));
r8 = _mm_shuffle_ps(r8 , r4, _MM_SHUFFLE (3,1,3,1));

r8 = _mm_add_ps(r8 ,r7);
//FourDotProds - Results are in r8
//r8 = {m3.wl, m3.w2, mO.xl, m0.x2)
/ /

rl = _mm_shuffle_ps(r8 , r8 , _MM_SHUFFLE(1,1,0,0));
r l = _mm_movehl_ps(r8 , r8);
r1 = _mm_rcp_ps(r1) ;

185

r 1 = _mm_mul_ps(r7, rl) ;
r 1 = _mm_mul_ps(r1 , HALF_WIDTH_SSE);
r 8 = _mm_add_ps(r1 , HALF_WIDTH_SSE);

r5 = _mm_movehl_ps(r8 , r8) ;
r 1 = _mm_min_ps(r8 , r5) ;
r l = _mm_shuffle_ps(rl, rl, _Mt4_SHUFFLE (1, 1, 1, 1)
r l = _mm_mi n_s s (r 7, rl) ;

r 3 = _mm_ma x_p s (r 8 , r5) ;
r4 = _mm_shuffle_ps(r3, r3, _MM_S H U F F LE (1,1,1,1)
r 5 = _mm_ma x_s s (r 3, r 4) ;

Listing B.4: F ind ing the row overestim ate using SSE

R a s te r is in g th e L a s t 8 P ixels - W ith eight p ixels, the p rocessing can be easily done using tw o
SSE units to op tim ise the process. T he code below show s the im plem en ta tion in w hich each
f l o a t com ponent o f an SSE variable co rresponds to a pixel. By using tw o SSE units and tw o
iterations, the triang les fo r the eight pixels are determ ined .

RasteriseSPixelsSSE() / / i n t minX)
(

int minX = minXInt-(minXInt&7), maxX = minX+7, i, startX, endX;
LrlntLlne = iritPoints;
lineTrs = (ml28 *)(gv_lineTriangles+minX) ;
r5 = MINUS_ONE;
r6 = MINUS_ONE;
M12 8_I32(rl)[0] - gv_lineOcclusionMap[(occlMaxDepthStartIndexrminX)>>3];
rl = _mm_shuffle_ps(r1,r1,_MM_SHUFFLE(0,0,0,0));
r8 = _mm_and_ps(rl, MASK_OCCL_LOW);
r8 = _mm_cmpeq_ps(r8 , ZERO_SSE);
r9 = _mm_and_ps(r1, MASK_OCCL_HIGH);
r9 = mm cmpeg ps(r9, ZERO_SSE);

first4Pixels = _mm_set_psl(minX);
minXPlus4 = _mm_add_ps(first4Pixels, FOUR);

first4Pixels - _mm_add_ps(first4Pixels, zeroToThree);
second4Pixels = _mm_add_ps(minXPlus4, zeroToThree);
maxXml2 8 = __mm_set_psl (maxX) ;

for(i=0; i < intPointSize; i++)
{
startX = trIntLine->xl;
startX = MAX_2(startX,minX);
endX = trIntLine->x2;
endX - MIN_2(endX, maxX);

if (startX <= endX)
{

startXM128 = _mm_set_psl(startX);
endXM128 = _mm_set_psl(endX);
bM128 = _mm_set_psl(trIntLine->b);
aM128 - _mm_set_psl(trIntLine->a);
M128_I32(trM128)[0] = trIntLine->tr;
t rM128 = _miri_shuf f le_ps (trM128, trM128, _MM_SHUFFLE (0, 0,0, 0)) ;

186

////Rasterise the first 4 pixels
r l = _mm_cmple_ps(first4Pixels, endXM128);
r3 = _mm_cmpge_ps (first4Pixels., startXM128)
r 7 = _mm_and_ps(r7, r3);
r 3 = _mm_cmp1e_p s (first4Pixels, minXPlus4);
r 3 = _mm_and_ps(r3, r7);
r 3 = _mm_andnot_ps(r3, MASK_TRUE);
r7 = _mm_mul_ps(aM128, first4Pixels);
r l = _mm_add_ps(r l , bM128);
r l = _mm_o r_ps (r l , r 3);
rl = _mm_o r_p s (r 3, trMl28);
r 4 = _mm_cmpgt_p s (r 7, r 5);
r 4 = _mm_and_ps(r4, r8);
r 5 = _mm_max_ps(r7, r5);
r 1 = _mm_and_ps(r4, rl);
r2 = _rnm_andnol_ps (r4, 1 ineTrs [0]) ;
lineTrs[0] = _mm_or_ps(rl, r2);

//Rasterise the second 4 pixels
r l = _mm_crr.ple_ps (second4Pixels, endXM128) ;
r l = _mm_and_ps(r l , _mm_cmpge_ps(second4Pixels, startXMl28))
r 3 = _mm_and_ps(r l , _mm_cmple_ps(second4Pixels, maxXml28));
r 3 = _mm_andnot_ps(r3, MASK_TRUE);
r l = _mm_mijl_ps (aMl 28, second4Pixels) ;
r l = _mm_a dd_p s (r 7, bM12 8);
r l = _mm_or_ps(r7, r3);
r 3 = _mm_or_ps(r3, trM128);
r 4 = _mm_cmpgt_ps(r l , r6);
r 4 = _rnm_and_ps (r 4 , r 9) ;
r 6 _mm_max_ps(r7, r 6);
rl = _mm_and_ps(r4, r3);
r2 = _mm_andnot_ps(r4, lineTrs[l]);
lineTrsfl] = _mm_or_ps(rl, r2) ;

}
trIntLine++;

}
r5 - _mm_cmpneq_ps(r5, MINUS_ONE);
r6 = _mm_cmpneq_ps(r6 , MINUS_ONE);

unsigned char shadedFlag= _mm_movemask_ps(r5) I (_mm_movemask_ps(r6) <<
4) ;

UpdateOcclusionMapBy8 (minX, shadedFlag);
}

L isting B.5: R asterising the last eight pixels using SSE.

Appendix C

Low level Optimizations

Low level op tim izations enable a well designed algorithm to run even faster. Som e o f the low'
level op tim izations used in the im plem entation w ere m ulti th read ing the application and the use
o f data level paralle lism through the use o f SSE instructions. M ulti th read ing provided a speed-up
o f around 3.5x - 3.9x for m any renderings. SSE p rov ided a speed-up o f 2x - 3x the non-SSE
m ethod. The use o f these tw o form s o f op tim ization has enabled us to speed up o u r a lgorithm to
com petitive levels.

SSE

The code for a few' m ethods optim ized w ith SSE are given below. In the below code, it is to be
noted that r l , r ‘2. r3. r l. r5. rG. r l . r8 . r 9 are SSE variables that are defined as class variables.

Four dot Products w ith SSE

T he m ethod is a part o f the m ethod that finds the pro jec tion o f the X -coord inate o f tw o points
on to the im age line in the row tracing algorithm . It com putes fou r dot products - 11.m l , 12 .m 2 ,
1 3 .m 3 , 14.m 4 - and stores the value in r8 . S ince we do not use a structure o f arrays as rec
om m ended as the best m ethod to use SSE. we have to use shuffles to horizontally add the value.
H owever, the num ber o f shuffles and horizon tal m oves is kept to a m inim um .

FourDotProds(11, 12, 13, 14, ml, m2, m3, m4)
{

r l = _mm_mul_ps(1 1 , ml);
r4 = _mm_mul_ps(12, m2);
r5 = _mm_mul_ps(13, m3);
rl = _mm_mul_ps(14, m4);

r8 = _mm_movelh_ps(r7, r4);
r9 = _mm_movehl_ps(r4, r7);
r3 = _mm_movelh_ps(r5, rl);
r4 = _mm_movehl_ps(r1, r5);

r8 = _mm_add_ps(r8 , r9);
r4 = _mm_add_ps(r4, r3);

187

188

r3 = _mm_shuffle_ps(r8 , r4, _MM_SHUFFLE(2,0,2,0));
r8 = _mm_shuffle_ps(r8 , r 4 , _MM_SHUFFLE(3,I,3,1));

r8 = _mm_add_ps(r8,r3);
}

If a structure o f arrays as suggested for use w ith SSE w ere to be used, the data w ould first have to
be reorganized into this layout. C onsequently , the dot products could be ca lcu lated w ith a reduced
num ber o f instructions.

The layout can be changed to a SSE friendly nature by using the m acro already defined as a part
o f Visual C++. The m acro can be given by

_MM_TRANSPOSE4_PS(rowO, row], row2, row3) {
 ml28 tmp3, tmp2, trapl, tmpO;

tmpC = _mm_shuffle_ps((rowO), (rowl), 0x44)
tmp2 = _mm_shuffle_ps((rowO), (rowl), OxEE)
tmpl = _mm_shuffle_ps((row2), (row3), 0x44)
tmp3 - _mm_shuffie_ps((row2), (row3), OxEE)

(rowO) = _mm_shuffle_ps(tmpO, tmpl, 0x88)
(rowl) = _mm_shuffle_ps(tmpO, tmpl, OxDD)
(rcw2) = _mm_shuffle_ps(tmp2, tmp3, 0x88)
(rew3) = _mm_shuffle_ps(tmp2, tmp3, OxDD)

T he m acro takes in the row s in the norm al form at and transposes it so that all the x. y and z
com ponents are now in a single row' each. In this fo rm at, four dot p roducts can be achieved w ith
few er instructions. If l x . l y . l z and m x . m y . m z indicate the com ponents o f the four vectors
arranged in a structure o f arrays form at, then the four dot p roducts can be achieved very easily as
show n below.

FourDotProds (lx, ly, lz, mx, my,
{

r7 = _mm_mul_ps(lx, mx);
r4 = _mm_mul_ps(ly, my);
r5 = _mm_mul_ps(lz, mz);

r8 = _mm_add_ps(r7, r 4);
r4 = _mm_add_ps(r8 , rS);

Three dot Products w ith SSE

In row tracing, there are also cases w hen three dot products are necessary. T his is w'hen a p o in t's
X and Z co -ord inates are to be projected onto the im age row. T hough, the sam e m ethod used for
four dot products can be used, it is possib le to e lim inate one m ultip ly instruction w hen three dot
p roducts are calcu lated . T hus, three dot products are achieved by the below code that com putes
11.d. 12.d. 13.d.

ThreeDotProds(11, 12, 13, d)
(

rl - _mm_mul_ps(1 1 , d) ;

189

r2 = _mm_mul_ps(1 2 , d) ;
r 3 = _mm_mul_p s (13, d) ;

r 4 = _mm_shuff1e_p s (rl, r2
r 5 = _mm_shuf fle_ps (rl, r2
r 6 = _mm_shuffle_ps (r2 , r3
r7 = _mm_sh u f f1e_p s (r2 , r3

r 4 = _mm_add_ps(r4 , r5) ,
r 6 = _mm_add_ps(r6 , r 7) ;

r 3 = _mm_shuffle_ps (r 4 , r 6
r 4 = _mm_shuffle_ps (r 4 , r 6

r7 = _mm_add_ps(r4, r 3) ,

_MM_SHUFFLE(1, 0, 1, 0))
_MM_SHUFFLE(3, 2, 3, 2})
_MM_SHUFFLE(1, 0,1,0))
_MM_SHUFFLE(3,2, 3,2))

_MM_SHUFFLE(3, 2, 2, 0))
_MM_SHUFFLE (3,3,3,!))

D e te rm in in g e n try an d exit p lanes fo r R B S P tree s w ith SSE

For R B SP trees, due to the existence of several axes, determining the entry and exit planes can be
done in groups of four axes using SSE. SSE thus allows the computation of four entry and exit
planes in the same time as one plane when SSE is not used - improving performance significantly.
The below code achieves this by considering groups of four axes each.

for(i~0, k = 0; i < noSplitPlanes; i +=4, k++)
1
dirKec = jnm_adci_ps (_mm_mul_ps (vDirSSEX, planeNormalsSSEAl1:k*3]),
_mm_add_ps(_mm_mul_ps(vDirSSEY, planeNormalsSSEAll[k*3+1]),
_mm_muT_ps(vDirSSEZ, planeNormalsSSEAl1[k * 3 + 2])));

flag - _mm_cmpeq_ps (dirRec, ZEF.O) ;
flag = _mm_and_ps(f1ag, FEPSILON_M128);
dirRec - _mm_add_ps(dirRec, flag);

tempt ^_mm_rcp_ps(dirRec);
dirRec = _mm_sub_ps(_mm_add_ps(tempi,tempi),_mm_mul_ps(_mm_mul_ps(tempi,

tempi),di rRec));

tempi = _mm_mul_ps(tSSEMin[k], dirRec);
temp2 = _mm_mul_ps(tSSEMax[k] , dirRec);

flag = _mm_cmpgt_ps(dirRec, ZERO);
tSSEO = _mm_or_ps (_mm_and_ps (tempi, flag), _mrr._ar.dnot_ps (flag, temp2));
tSSEl = _mm_or_ps(_mm_and_ps(temp2, flag), _mm_andnot_ps(flag, tempi));

tminSSE = _mm_max_ps(tminSSE, tSSEO);
tmaxSSE = _mm_min_ps(tmaxSSE, tSSEl);

_mm_store_ps((t+2*i), _mm_unpacklo_ps(tSSEO, tSSEl));
_mm_store_ps((t+2*i+4), _mm_unpackhi_ps(tSSEO, tSSEl));

signs = _mm_mcvemask_ps(flag) ;
rayDirs[i] = (signs & 1);
rayDirs[irl] = (signs & 2)>>1;
rayDirs[i+2] = (signs & 4)>>2;
rayDirs[i + 3] = (signs & 8)>>3;

}

190

tmin = MAX_2(tminSSE.ml28_f32[0], tminSSE.ml28_f32[1]);
tmin = MAX_2(tmin, tminSSE.ml28_f32[2]);
tmin = MAX_2(tmin, tminSSE.ml28_f32[3]);

tmax = MIN_2(tmaxSSE.ml28_f32[0], tmaxSSE.ml26_f32[1]);
tmax = MIN_2(tmax, tmaxSSE.ml2 8_f32[2]);
tmax = MIN_2 (tmax, tmaxSSE.m!28_f32[3]);

if(tmax < 0 I| tmin > tmax)
return -1 ;

Row / Plane intersection

For the row tracing algorithm , it is necessary to perfo rm a row / plane in tersec tion at each traversal
step. The test involves tw o dot products fo llow ed by a test o f the signs. It can be im plem ented in
SSE to achieve speed-up as show n below'.

ImageLinelntersectsBBSSE()
{

rl = _mm_mul_ps(sselmagePlane, minVertexSSE);
r2 - _mm_mul_ps(sselmagePlane, maxVertexSSE);

r3 = _mm_unpacklo_ps(rl, r2);
r4 - _mm_unpackhi_ps(r1, r2J;

r3 = _mm_add_ps(r3,r4);
r4 = _mm_shuffle_ps(r3,r3, _MM_SHUFFLE(3,2,3,2));
r3 = _mm_add_ps(r3,r4);

r3 = _mm_cmpgt_ps(r3, zero);
r3 = _mm_and_ps(r3, one);
r4 = _mm_shuffle_ps(r3,r3, _MM_SHUFFLE(0,0,0,1));
return _mm_comineq_ss(r3,r4);

)

Row / Triangle intersection clam ping in SSE

In tersecting triang les in a lea f node and clipp ing the in tersec tion segm ent - as necessary for the
le a f node processing - is one o f the m ost frequently perform ed opera tions o f the algorithm . It
is param ount that this part o f the algorithm is as efficient as possib le. T he process, described in
detail in section 5.6.1 and 5.6.3, is im plem ented using S1MD instructions in o rder to optim ize
them .

T he below code lists the SSE code to determ ine w hether there is an in tersec tion betw een the row
plane and a triangle and com putes the in tersec tion line segm ent if there is an in tersection . The
SSE instructions in the below' code vectorizes the operation by perform ing the three dot products
and vector add itions and subtractions leading to a perfo rm ance boost.

//load the three vertices of the triangle into SSE variables
ssePl = _mm_loadu_ps(verts+scTrs[x]);
sseP2 = _mm_loadu_ps(verts+scTrs[x+1]);

191

sseP3 = _mm_loadu_ps(verts+scTrs[x+2]);

/ / f i n d t h e s i g n e d d i s t a n c e s b e t w e e n t h e t h r e e p o i n t s and t h e Row
P l a n e

rl - _mm_mul_ps(ssePl, sselmagePlane);
r2 = _mm_mul_ps(sseP2, sselmagePlane);
r3 = _mm_mul_ps(sseP3, sselmagePlane);
r4 - _mm_shuffle_ps(rl, r2, _MM_SHUFFLE(1,0,1,0))
r5 = _mm_shuffle_ps(rl, r2, _MM_SHUFFLE(3,2,3,2))
r6 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(1,0,1,0))
r~ - _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3,2,3,2))
r4 = _mm_add_ps(r4, r5);
r6 = _mm_add_ps(r6 , r l) ;
r3 = _mm_shuffle_ps(r4, r6 , _MM_SHUFFLE(3,2,2,0));
r4 - _mm_shuff1e_ps(r4, r6 , _MM_SHUFFLE(3,3,3,!));
r l = _mm_add_ps(r4, r3);

/ / c h e c k i f t h e r e i s an i n t e r s e c t i o n
dirs = 7&(_mm_movemask_ps(r l));
if((dirs==0) (dirs == 7))

return false;
/ / F i n d d O / d O - d i , d l / d l - d 2 , d 2 / d 2- dO
rl = _mm_shuffle_ps(r7, r l , _MM_SHUFFLE(0, 0, 2, 1)) ;
rl = _mm_sub_ps(r7, rl);
rl = _mm_div_ps(r7, rl);
/ / L i n e a r l y i n t e r p o l a t e t o g e t p i , p 2 , p l a n e i n t e r s e c t i o n p o i n t
r2 = _mm_sub_ps(sseP2, ssePl);
r3 - _mm_shuffle_ps(rl, rl , _MM_SHUFFLE(0,0,0,0));
r2 = _mm_mul_ps(r2, r3);
r5 = _mm_add_ps(r2, ssePl);
/ / L i n e a r l y i n t e r p o l a t e t o g e t p 2 , p 3 , p l a n e i n t e r s e c t i o n p o i n t
r 2 = _mm_sub_ps(sseP3, sseP2);
r3 = _mm_shuffie_ps(r1, rl, _MM_SHUFFLE(1,1,1,1));
r2 - _mm_mul_ps(r2, r3);
r4 = _mm_add_ps(r2, sseP2);

/ / S e l e c t t h e r i g h t t wo p o i n t s o ut o f t h r e e
r2 - _mm_sub_ps(sseP1, sseP3);
r3 = _mm_shuffle_ps(rl, rl, _MM_SHUFFLE(2,2,2,2));
r2 = _mm_mul_ps(r2, r3);
r3 = _inm_add_ps (r2, sseP3);

rl = _mm_cmpgt_ps(r7, ZERO_SSE);
r2 - _mm_shuffle_ps(rl, rl, _MM_SHUFFLE(0,0,2,1));
r2 = _mm_xor_ps(r2 , rl);
r2 = _mm_andnot_ps(r2, MASK_TRUE);

rl = _mm_shuffle_ps(r2, r2, _MM_SHUFFLE(0,0,0,0));
r6 = _mm_shuffle_ps(r2, r2, _MM_SHUFFLE(1,1,1,1));

r2 - _mm_and_ps(r3, rl);
r5 = _mm_andnot_ps(rl, r5);
r5 = _mm_or_ps(r5, r2);

r2 = _mm_and_ps(r3, r6);
r4 = _mm_andnot_ps(r6 , r4);
r4 = _mm_or_ps(r4, r2) ;
/ / S e l e c t t h e r i g h t t wo p o i n t s o u t o f t h r e e

192

O nce the in tersec tion segm ent is found, it is to be ensured that the segm ent if fu lly in front o f the
near plane. T he below code is called only if the node 's bounding box lies on both sides o f the near
p lane. SSE instructions op tim ize the operation by vectorizing the calcu lation o f tw o dot products,
c lipp ing w ith the near p lane and finding the in tersec tion point (if there is one) - both o f w hich
use the param etric equation o f the line.

/ / h a n d l e c a s e s when t h e I n t e r s e c t i o n s e g m e n t i s p a r t l y i n f r o n t
/ / a n d p a r t l y b e h i n d t h e n e a r p l a n e
if(bbPartlyInFront)
<

r9 = _mm_mul_ps(nearPlaneSSE, r4);
r8 = _mm_mul_ps(nearPlaneSSE, r5) ;
r6 = _mm_unpacklo_ps(r9, r8);
r3 = _mm_unpackhi_ps(r9, r8);
r9 = _mm_add_ps(r6 ,r3) ;
r3 = _rnm_movehl_ps(r9, r9) ;
r9 = _mm_add_ps(r9,r3);
float dl = M 128_F32(r9) [0];
float d2 = M128_F32(r9) (1] ;
char plBehind = (((dl >0)) != gv_nearPlaneFarPlaneSign);
char p2Behind = (((d2 >0)) != gv_nearPlaneFarPlaneSign);
if(plBehind && p2Behind)

return false;
if(piBehi nd)
{

dl = dl/(dl-d2);
r9 = _mm_sub_ps (r5, r4);
rl = _mm_set_psl(dl);
r9 — _mm_mul_ps(r9, rl);
r4 = _mm_add_ps(r4, r9) ;

}
else if(p2Behind)
{

dl = d2 /(d2-dl);
r9 = _mm_sub_ps(r4, r5);
rl = _mm_set_psl(dl);
r9 = _mm__mul_ps (r9, rl);
r5 = _mm_add_ps(r5, r9);

}
)

Finally , the below code ensures that only parts o f segm ents that are w ithin the n o d e’s bounding
box are considered . S im ilar to the above operation . SSE code vectorizes finding the in tersec tion
to the three entry and exit planes by using the param etric equation o f the line.

/ / c l a m p t h e i n t e r s e c t i o n l i n e t o t h e b o u n d i n g b o x
r9 = _mm_sub_ps(r5, r4);
r 8 = _mm_r cp_p s (r 9);
r8 = _mm_min_ps(INFINITY_SSE_V2, r8);
tl = _mm_sub_ps(minVertexSSE, r4);
tl = _mm_mul_ps(tl, r8) ;
t2 = _mm_sub_ps(maxVertexSSE, r4);
1 2 = _mm_mul_ps(1 2 , r 8);
13 = _mm_mi n_ps(1 1,1 2);
1 2 = _mm_iriax_ps (1 1 , 1 2) ;
tl = _mm_shuffle_ps(13, t3, _MM_SHUFFLE(0,0,2,1));
tl = _mm_max_ps(t1, t3);
13 = _mm_shuffle_ps(tl, tl, _MM_SHUFFLE(1,1,1,!));

193

tl = _mn._max_ss (1 1 , 13) ;

tl = _mm_max_ss(tl,ZERO_SSE);
t 3 = _nrr._shuf fie_ps (t2, t2, _MM_SHUFFLE (0,0,2, 1)) ;
t3 = _mm_min_ps(13, 1 2) ;
t2 = _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(1,1,1,1));
t3 = _mm_rriin_ss (t3, 1 2) ;
13 = _mm_min_s s (13, ONE_SSE) ;
if(_mm_ucomigt_ss (tl, 13))

return false;
r8 = _mm_shuffle_ps(tl,tl,_MM_SHUFFLE(0,0,0,0));
r7 - _mm_shuffle_ps(13,13,_MM_SHUFFLE(0, 0,0,0));
tl = _mm_jnul_ps (r9, r8) ;
tl = _mm_add_ps(r4, tl);
t2 = _rnm_mul_ps (r9, r7);
t2 = _mm_3dd_ps(r4, t2) ;
/ / c l a m p t h e i n t e r s e c t i o n l i n e t o t h e b o u n d i n g b o x

return true;

Packet Ray tracing implementation

Packet Ray tracing w as im plem ented w ith a version o f in terval arithm etic , as described in chap
ter 2. T he version is im plem ented w ithout the use o f SSE. It uses tw o boundary rays fo r each axis
to traverse the entire packet. T he im plem entation o f the recursive packet traversal m ethod is given
below.

char RecursiveRayTraversalIntervalSSE(int nodeindex, float tmini, float tmaxi
)//, I n t e r v a l * t i)

(
packetNodeTraversa1s++;
KDTreeNodel *node = nodeArray+nodelndex;
i f (IS_LEAF_P(node))
(

i f (node->params==3)
return 0;

return ProcessLeafNode(nodeindex);
)
unsigned char axisCur= GET_AXIS_P(node),

sign = signs[axisCur],
axisCurMinlndex = axisCur<<l;

float bbSp - GET_P0S_P(node) * NODE_DIVISION_PRECISION;

bbSp = bb[axisCurMinlndex] + (bb[axisCurMinlndext1] -bb[
axisCurMinlndex])*bbSp;

float terr.p = (bbSp - vpF [axisCur]) ;
float tSpMax = temp*rayDirRecMax[axisCur] ;
temp = temp*rayDirRecMin[axisCur];

float tSpMin;
if (temp> tSpMax)
(

tSpMin = tSpMax;
tSpMax = temp;

else

194

tSpMin = temp;

if(tSpMax > tmini && tSpMax > 0)
{

temp = bb[axisCurMinlndex+sign];
b b[axisCurMinlndex+sign] = bbSp;
axisCur - RecursiveRayTraversallntervalSSE(node->leftNode+l-

sign, tmini, MIN_2(tmaxi,tSpMax));//, t i) ;
bb[axisCurMinlndex+sign] = temp;
if(axisCur)

return axisCur;
)

if (tSpMin < tmaxi)
{

temp = bb[axisCurMinlndex+l-sign];
bb[axisCurMin!ndex+1 - sign] = bbSp;
axisCur = RecursiveRayTraversallntervalSSE(node->leftNode+

sign, MAX_2(tmini, tSpMin), tmaxi);//, t i) ;
bb[axisCurMinlndex+l-sign 1 = temp;

!
return axisCur;

)

Multi threading

A nother valuable tool valuable in the op tim ization process is m ulti th read ing the application . T his
w as im plem ented w ith the p threads library that allow ed im plem enting the th reads in a sim ple
m anner. The below code show s how the ray tracing code w as m ulti threaded.

CastRays()
{

int i;
for(i=0; i < noThreads; i++)
{

pthread_create(&t[i], NULL, RowTracingRenderer2MTSub::
do_thread, &rt[i]);

}

for(i=0; i < noThreads; i++)
(

pthread_join(t[i], NULL);
)

}

static void *RowTracingRenderer2MTSub::do_thread(void* param)
{

static_cast<RowTracingRenderer2MTSub*>(param)->CastRays();
return NULL;

}

T he m ethod crea tes as m any th reads as defined and then calls the ray tracing m ethod defined in
the sub c lass - R ow T racingR endcrer2M T Sub in this case.

To be able to be called by a p th read , the m ethod has to be a static function that did no t de
pend on the object. The do_thread’ m ethod is thus defined as a static m ethod that takes in the

(

195

‘RowTracingRenderer2MTSub’ object as a parameter and calls its ‘CastRays’ method. Objects
of RowTracingRenderer2MTSub represent objects allocated to each thread performing the work
allocated to that thread.

