

 Swansea University E-Theses ___

A mechanism for creating web service interface to scientific

applications.

Chen, Yu

 How to cite: ___
Chen, Yu (2007) A mechanism for creating web service interface to scientific applications.. thesis, Swansea

University.

http://cronfa.swan.ac.uk/Record/cronfa42225

 Use policy: ___
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42225
http://www.swansea.ac.uk/library/researchsupport/ris-support/

 Swansea University

School of Engineering

A Mechanism for Creating Web Service Interface to Scientific

Applications

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor

of Philosophy in the School of Engineering of the

Swansea University

December 2007

Yu Chen

B.Sc., M.Sc.

Swansea University
Prifysgol Abertawe

ProQuest Number: 10797927

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10797927

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

^ <
\

LIBRARY

Declaration

I declare that this work has not already been accepted in substance for any degree, and
is not being concurrently submitted in candidature for any degree

........................... (Candidate)

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

.............................(Candidate)

Statement 2
I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

........................... (Candidate)

 Date

Acknowledgement

With a debt of gratitude, which cannot be adequately expressed in words, I thank my

supervisor Prof Oubay Hassan for his advice, guidance, and endless support during my

research. His practical and sharp vision in research has not only been invaluable for my

work on this thesis but also for my development as a researcher. In the past four years,

engaging in any discussion with my supervisor has been an enjoyable practical lesson,

where professionalism, devotion in duty, gentleness, assured care, and a feel of

protection are abound. Thanks for his friendship and for being such an excellent listener

and all for the financial support he has provided. I have been very fortunate to work

with him.

I would like to extend my sincere gratitude to my second supervisor Prof. Nigel

Weatherill for all the unforgettable generous financial support throughout my PhD

program. Sincere thanks to Prof. Ken Morgan for his support on my thesis corrections,

and to Dr. Jason Jones for many encouraging and exciting discussions.

I am deeply indebted to Prof. Derek Hill from UCL, Prof. Jo Hajnal from Imperial

College and Prof. Daniel Rueckert from Imperial College for their guidance, insightful

suggestions, and encouragements. I am indebted to them for the countless stimulating

and fruitful discussions, which have trained me in research.

This study has greatly benefited from discussions with a number of colleagues at

Swansea University, University College London, Imperial College and University of

Oxford. In particular, I am grateful to the discussions and guidance of Dr. Ali Asghar

Khanban and Dr. Gianlorenzo Fagiolo.

Thanks to Dr. I. J. Keshtiban, Dr. M. J. Banaie and Mr. Q. Hassan for their proof

reading.

Last and certainly not the least, I wish to thank my family without whose moral

support and encouragement this PhD would have been far from completion. I am and

will ever remain indebted to them.

IV

To my parents and other family members with loyalty and love

Abstract

Science is becoming increasingly multi-disciplinary and complicated. To solve

complex scientific problems, we often need to integrate software and customize

workflows to suit a particular problem. To make progress on key scientific issues,

extended scientific collaborations are growingly dependent on complex workflows for

data analysis and simulation.

Service Oriented Architecture has gained popularity in recent years within scientific

research community. It has been broadly accepted as a means of structuring interactions

among distributed software services. Service Oriented Architecture is a new paradigm

for accessing, integrating and coordinating loosely coupled software systems in a

standardized way. It aims to reduce the cost of building and maintaining complex

software systems while increasing their re-usability.

However, most of the large industrial and scientific applications available today were

written well before the introduction of Grid computing and Service Oriented

Architectures. Hence, they are neither service oriented nor Grid-aware. There is a

growing need to integrate them into Grid-aware applications based on Service Oriented

Architecture. How to integrate these legacy applications into the Grid with the least

possible effort and the best performance has become a crucial point.

The majority of the applications developed and used by scientific communities are

command-line applications. They are written in FORTRAN, C, and a host of scripting

languages. In addition to being fast and efficient, these applications represent state-of-

the-art science; however, they are bound by many limitations which make it difficult to

compose complex workflows from them and run them on a distributed set of resources.

By converting these command-line legacy applications into Application Services, it

vi

becomes easy to compose complex workflows from them and run them on the

distributed resources.

There are some research programs aiming at integrating the legacy codes into Grid

infrastructure. Some frameworks have been developed to compose and run scientific

workflows on a Grid. A number of systems are available to allow scientists to Grid-

enabling their existing applications without having to write extra code or modify their

applications. But most of them do not provide a toolkit for wrapping an application as a

Grid-aware Web service. Few of the systems have addressed the issue of security. This

thesis presents an approach to reducing the required effort needed in developing

Application Services for end users.

Also during the execution of complex scientific workflows, Application Services

often become unavailable primarily due to the unreliable nature of the resources that

host them. When an Application Service becomes unavailable, all workflows that are

accessing it have to stop, and this means wasting a great deal of time and resources.

This thesis offers a new solution to this problem, via providing a mechanism by which

Application Service can be created on-demand from workflows in case it is unavailable.

Contents

Acknowledgement iii

Abstract vi

CHAPTER 1 Introduction...1

1.1 Motivation..1

1.2 Contributions... 6

CHAPTER 2 ...8

Legacy Applications Wrapping: Background and Related Work................................. 8

2.1 Introduction... 8

2.1.1 Computational Challenges..9

2.1.2 Not Enough User Interaction.. 9

2.1.3 Hard for Collaborations... 10

2.2 Grid... 11

2.3 Service Oriented Architecture..11

2.4 Discussion about Some Alternative Technologies... 15

2.4.1 .NET..15

2.4.2 UDDI...16

2.4.3 CORBA.. 17

2.5 The Application Service that Combines SOA and Grid.....................................18

2.5.1 Wrapping Approach.. 18

2.5.2 The Application Service.. 19

2.6 Two Wrapping Strategies...21

2.6.1 Service Oriented Wrapping...22

viii

2.6.2 Batch Oriented Wrapping... 23

2.7 Related Work...24

2.7.1 Soaplab... 24

2.7.2 Generic Application Service.. 26

2.7.3 GEMLCA...28

2.7.4 Summary..29

CHAPTER 3 Command-line Description Language and Application Service Toolkit

..31

3.1 Overview and Contribution..31

3.1.1 Command-line Description Language (CoLDeL).......................................32

3.1.2 Automatic Toolkit for Wrapping All Command-line Oriented Applications

... 33

3.1.3 Security... 33

3.1.4 Application Remote Execution and Access to Grid Resources.................33

3.2 Design...34

3.3 Architecture... 35

3.3.1 ASToolkit Architecture...35

3.3.2 Application Service...37

3.4 Features of ASToolkit..40

3.5 Implementation..41

3.5.1 Consistent Interface...41

3.5.2 Component Plug-in Model... 43

3.5.3 Strong Data Typing...46

3.5.4 Command-line Description Language... 47

3.5.5 Application Description File.. 51

3.5.6 Modular WSDL... 56

3.5.7 Data Management...58

3.5.8 Security... 59

3.5.9 Service Provision and Deployment.. 62

3.5.10 ASToolkit Client Environment.. 64

3.6 A Sample to Wrap an Application...65

3.7 Summary..67

CHAPTER 4 NeuroGrid Framework...68

4.1 Introduction..68

4.2 Design Goals... 69

4.2.1 Functional Requirement.. 69

4.2.2 Architectural Requirement..72

4.3 NeuroGrid Framework Architecture... 75

4.3.1 Architecture.. 75

4.3.2 Hardware.. 77

4.3.3 Roles of Framework.. 78

4.4 Implementation.. 80

4.4.1 Abstract Application Service (AAS).. 80

4.4.2 Group Applications Service Optimization...85

4.4.3 Application Services in Scientific Workflow.. 90

4.4.4 Portal...99

4.5 User Cases..101

4.5.1 Brain Extraction and Segmentation Workflow..104

4.5.2 Brain Extraction, Affine Registration and Transformation Workflow ... 108

4.5.3 Image Intensity Correction Workflow... 110

4.6 Users Feedback...111

CHAPTER 5 GECEM: a Problem Solving Environment Using Wrapping Approach

..113

5.1 Introduction... 113

5.2 Some Details.. 114

5.3 GECEM Architecture... 115

5.4 Service Oriented Wrapping..117

5.4.1 Introduction..117

5.4.2 How to wrap...118

5.4.3 Stateful Grid Service for Data Sharing...120

5.4.4 Others issues...121

5.5 Migrate Legacy Service Model - Batch Oriented Wrapping.......................... 121

5.5.1 Model Introduction.. 121

5.5.2 Model Architecture.. 123

5.5.3 Implementation Issues...125

5.6 Security...126

5.6.1 Security Issues..126

5.6.2 Credentials Management Model (CMM).. 129

5.6.3 Service Provider Account Model... 130

5.6.4 User Appointed Compute Resource Model... 131

5.6.5 Accounts Pool Model.. 131

CHAPTER 6 Conclusions and Future Work... 132

6.1 Summary of the Contribution...132

6.2 Future W ork.. 135

6.2.1 Application Description File Generator...135

6.2.2 Batch Submission Optimization... 135

6.2.3 Checkpointing and Monitoring Optimization... 135

xi

6.2.4 Fault Detection...136

6.2.5 Asynchronous Communication.. 136

List of Figures

Figure 3.1: ASToolkit Architecture...36

Figure 3.2: Application Service Architecture..38

Figure 3.3: Application Service Interfaces...41

Figure 3.4: Argument Data Type with Associated Metadata..................................... 49

Figure 3.5: Input/output Argument Data Type with Associated Metadata............... 50

Figure 3.6: ADF BET P a r ti ... 53

Figure 3.7: ADF BET Part2... 53

Figure 3.8: ADF BET Part3... 54

Figure 3.9: ADF BET Part4... 55

Figure 3.10: Web Service Descriptions Modularisation..56

Figure 3.11: A Service Property File.. 63

Figure 3.12: ASToolkit Client API Abstraction Layers..64

Figure 4.1: Grid Enabled Application Service...70

Figure 4.2: NeuroGrid Framework Architecture..75

Figure 4.3: Roles Involved in NeuroGrid Framework.. 79

Figure 4.4: Dynamic creation of Application Service Using AAS............................ 83

Figure 4.5: Registration Workflow, vs. Group Service... 87

Figure 4.6: Group Application Service Architecture.. 88

Figure 4.7: Registration Workflow Description File-Partl...95

Figure 4.8: Registration Workflow Description File-Part2...96

Figure 4.9: NeuroGrid Framework Portal.. 100

Figure 4.10: Brain Extraction - Segmentation Workflow... 104

Figure4.11: Original Scanned Data... 105

Figure 4.12: BET Results... 106

Figure 4.13: BET Results... 107

Figure 4.14: Fast Results.. 108

Figure 4.15: Brain Extraction - Affine Registration - Transformation Workflow.. 108

Figure 4.16: Before Registration... 109

Figure 4.17: After Registration..109

Figure 4.18: Flirt Registration - Flirt Transformation - Intensity Correction Workflow

 110

Figure 4.19: Before Intensity Correction..110

Figure 5.1: GECEM n-layer service-oriented Architecture...................................... 115

Figure 5.2: Migrate Events Sequence.. 124

xiv

i^napici i j l u u u u u i /U U I I

CHAPTER 1

Introduction

1.1 Motivation

Science is becoming increasingly multi-disciplinary. To solve complex scientific

problems, scientists often need to integrate software and customize workflows to suit a

particular case. For example, Electromagnetic modelling employs Computer Aided

Design to generate parametric design geometries, mesh generation software to discretise

the flow domain, and Computational Electromagnetic solvers to obtain a solution [1]. In

imaging studies, researchers tend to combine one or more image processing algorithms

to form sequential image processing pipelines. For example, in tracking the progress of

a brain tumour, the researchers may first segment the area of interest. Then, this

segmentation would be used as an input to a series of rigid registrations that produce a

set of transformations which could then be passed to transformation algorithm [2],

These large scientific collaborations not only highly demand data, applications, and

compute resources sharing seamlessly, but also require several teams of specialists to

work together closely, including the specialists in some specific fields, computer

scientists, and compute resource providers.

To achieve the large scientific collaboration two significant barriers must be

overcame. One barrier is introduced by heterogeneous nature of communities’ resources

including data, applications, and compute resources. The other barrier is introduced by

legacy command-line applications. Most of the scientific applications are command-line

applications, which have several limitations although they are fast, efficient and

represent state-of-the-art science. First, it is not easy to solve computational challenges

for the legacy applications. Traditionally, it is a long tedious task to perform a scientific

computation on the resources provided by third party resources providers. Users interact

with these computation resources at an absolutely fundamental level. Secondly, the

1

^napier i inirouucuon

legacy applications are often used by internal research groups. They are usually run

non-interactively without any user interaction and monitoring support, which makes

them difficult to be steered by the users. Thirdly, the traditional scientific applications

are not easy for collaborations. Most of the applications are often platform dependent

and are difficult to integrate with the applications from other disciplines. Also they are

command-line oriented. There is no generic method to describe their input parameters

and output results. It is usually difficult to programmatically access these applications

remotely.

Adaptable and flexible integration frameworks are highly required to meet

challenges encountered in scientific problem solving environment - increasing

complexity and large number of data, applications, resources, and researchers involved.

Service Oriented Architecture on Grid infrastructure should be exploited to enhance the

large scientific collaboration.

Conventional distributed computing could often assume to provide homogeneous

computational power to solve computationally intensive problems. However, Grid is

characterised by facilitating dynamic, flexible, secure and cross-organizational sharing

of heterogeneous resources among dynamic collections of individuals in a transparent

way. It is identified as the most promising infrastructure to provide resources for

computationally extensive applications and storages for large-scale datasets. In

particular, the Grid handles issues of authentication, authorisation, resource description

and location, data transfer and resource accounting. This makes Grid technologies

extremely useful to facilitate sharing of the resources across a distributed environment.

Service Oriented Architecture (SOA) is a computer systems architectural style for

creating and using business processes, packaged as services, throughout their lifecycle.

SOA also defines and provisions the IT infrastructure to allow different applications to

exchange data and participate in business processes. These functions are loosely

coupled with the operating systems and programming languages underlying the

applications [3]. SOA is a component model that inter-relates different functional units

of an application, called services, through well-defined interfaces and contracts between

these services. The interface is defined in a neutral manner that should be independent

of hardware platform, operating system, and programming language the service is

2

^napier 1 inirouucuon

implemented in. This allows the services, built on a variety of such systems, to interact

with each other in a uniform and universal manner.

This feature of having a neutral interface definition that is not strongly tied to a

particular implementation is known as loose coupling between services. The benefit of a

loosely-coupled system lies in its agility and ability to survive evolutionary changes in

structure and implementation of internals of each service that make up the whole

application. Tight-coupling on the other hand, means that the interfaces between the

different components of an application are tightly interrelated in function and form, thus

making them brittle when any form of change is required to parts or the whole

application.

SOA have gained popularity in recent years within scientific Grid research

community. It has been broadly accepted as a means of structuring interactions among

distributed software services. Within Service Oriented Architecture all the resources

(e.g., computational resources, data, and programs) are exposed as services. Access to

these services is possible via generic interface definition mechanisms and thus allowing

a transparent and uniform access to a range of distributed and heterogeneous resources

(encapsulated behind the service definition).

However, most of the large industrial and scientific applications available today were

composed well before Grid computing and Service Oriented Architecture appeared.

Hence, they are neither service oriented nor Grid-aware. There is a growing need to

integrate them into the Grid infrastructure based on Service Oriented Architecture. How

to integrate these legacy applications into Grid with the least possible effort and the best

performance becomes a crucial point. By converting these command-line legacy

applications into Application Services, it becomes easy to compose complex workflows

from them and run them on the distributed resources. In this present work, an

Application Service is a Grid-aware application with a Web service interface that is

described by Web Service Definition Language (WSDL).[4] The Application Service

makes the application available through a Web service interface. The Application

Service is Grid-aware, which means it can run the computation in the Grid environment.

When a user invokes an Application Service with some input parameters, the service

runs the application that it wraps on the distributed compute resource with those input

parameters, monitors it and returns its output results. Providing the Web service

3

cnapter i iniroauction

interface for the legacy applications alleviates many problems raised by the legacy

applications mentioned above.

There are some research programs aiming at integrating legacy codes into the Grid

infrastructure. Some frameworks have been developed to compose and run scientific

workflows on a Grid. Some systems are available to allow scientists to Grid-enabling

their existing applications without having to write extra code or modify their

applications. Some tools are available to automate tasks of transforming the existing

applications into Web services. But most of them do not provide a toolkit for wrapping

an application as a Grid-aware Web service. Simply providing a Web service interface

is not sufficient to make the application a usable component in a distributed

computation. A toolkit is highly demanded to tackle existing problems, and

automatically wrap the scientific applications as Grid-aware Web services without

having to deal with the details of Web services technologies. Following are challenges

the toolkit is facing:

Firstly, how can the toolkit make Application Services Grid-aware? Grid-aware

means the Application Services can use distributed computational resources to run the

applications. Our goal is to leverage the set of computational resources available across

different sites on the Grid. So it is crucial for the Application Services to have ability to

assess the remote computational resources. However, clusters at different sites run

schedulers of their choice, such as Condor [5] and Sun Grid Engine [6]. Thus, it is

mandatory that the Application Services provide the support to access any of existing

schedulers and schedulers to appear in future. To end users these schedulers are

accessible in a generic way, which means the users are able to access various schedulers

via the Application Services in a transparent uniform fashion (not scheduler specific).

Another major concern is security. How does the Application Service allow users of

a community run the scientific application on computing clusters provided by compute

resource providers without having login accounts on the computing clusters? How can

a service provider authorize a selected group of users with access to the Application

Service without building a separate security infrastructure and without requiring the

users to have login accounts on the machine hosting the Application Service?

Another challenge is scalability. For most of existing wrapping tools, service

providers need to wrap the legacy applications offline and host them as persistent

4

L^napier i inirouucuon

services so they can be accessed from scientific workflows whenever needed. To this

approach, scalability becomes one of the toughest challenges for large scientific

collaborations. Sometimes a service provider needs to wrap and host hundreds of

Application Services just for one scientific package, since it is not uncommon that many

of scientific packages have hundreds of applications. Also whenever a new application

is added into the framework, the service provider needs to develop and deploy a new

Application Service.

Yet another challenge is reliability. In a Grid environment, Application Services

running on a Grid, often become unavailable primarily due to unreliable nature of the

Grid. Sometimes even though an application service may be available, it may not be

usable because it may not meet some quality of service requirements. Under such

circumstances, all workflows that are accessing that Application Service have to be

stopped and can be resumed only after that Application Service becomes available.

During the execution of complex workflows over a period of several hours, Application

Service downtime could result in a considerable waste of time and resources. This is an

important and widespread problem in large scientific communities that is intended to be

addressed and solved in this thesis.

As explained in [7] (Tavema), service failure is more complex and more likely than

other failures. Fault tolerance mechanisms such as dynamic service substitution and

retry are supported by Tavema. If a service failed because the machine it runs on is

down, it is a candidate to be retried. If the service failed because the input data was

invalid, it is inappropriate to try again. In addition to simply retrying the service

invocation, it may be possible to locate an alternate service to invoke should the original

service fail. In reality, only identical services running on an alternate service provider is

deemed by users to be acceptably interchangeable [7]. Similar to Tavema, other current

workflow systems, Triana [8] and Kepler [9], have tried to solve this problem by

allowing the scientist to specify redundant Application Services for all the Application

Services in the workflow.

However, these redundant services must be running at the time of workflow

execution and suffer the same problem of unreliability as the primary copy. Moreover,

in large scientific collaborations, owing to the large number of Application Services,

providing redundancy consumes considerable resources. It is unrealistic to keep a large

5

^napier i introduction

number of Application Services persistent without a huge commitment in the form of

resources and support infrastructure.

So, how is possible to provide a high availability of Application Services without

actually requiring them to be persistent? How can the Application Service be created on

demand in the event it is not kept persistent or is unavailable during the execution of a

scientific workflow? How can the Application Service be created on demand in a way

that is completely transparent to the user?

The several challenges that we have discussed so far are summarized below:

How to make Application Services Grid-aware? This means how to make the

Application Services use distributed computational resources to run the applications.

How to make the Application Services easy to be extended to support any of existing

schedulers and schedulers to be appeared in future?

How to authorize a selected group of users with access to the Application Services

without building a separate security infrastructure? How to allow the users to submit

jobs to the resources provided by third-party without requiring the users to have login

accounts on the computation resources and on the machine hosting the service?

How to provide a large number of applications as Application Services without

problems of updating and maintaining source codes and deployments of all the

Application Services?

How to create the Application Service on demand in the event it is not kept persistent

or is unavailable during the execution of a scientific workflow?

1.2 Contributions

This thesis addresses all the above challenges and thus makes the following

contributions:

i) An XML based language, Command-line Description Language (CoLDeL), to

describe individual command-line application precisely.

i i) An Application Service Toolkit (ASToolkit) that is simple to wrap a large

number of applications as Application Services, without problems of updating

and maintaining source codes and deployments of all the Application Services.

6

i^napier i m iroaucuon

i i i) A Component plug-in mechanism that allows Application Services to be

configured (at deployment time) with a Job Submission Component capable of

interacting with the available resources.

iv) A WS-Security [10] based authorization mechanism by which service providers

can control what users can invoke on their Application Services to run

applications.

v) An Abstract Application Service (AAS) mechanism to create a specific

Application Service on demand in the event it is not kept persistent or is

unavailable during the execution of a scientific workflow. AAS is a generic

Application Service. Scalability of this AAS mechanism is achieved by

delivering applications through a dynamically reconfigurable AAS. This

mechanism eliminates the need to keep all available applications wrapped as

persistent Application Services.

v i) An overall framework for enabling the legacy applications and data on the Grid

based Service Oriented Architecture.

v ii) A Group Applications Service (GAS) mechanism to further optimize execution

time of a workflow. GAS merges several Application Services into a single group

service. It reduces the Grid overhead induced by the Web service invocation,

scheduling, and data transfers.

viii) A mechanism to monitor and restart jobs.

7

Lnapter z legacy Applications wrapping: tsacKgrouna ana Keiatea worK

CHAPTER 2

Legacy Applications Wrapping:

Background and Related Work

2.1 Introduction

Nowadays, in every scientific domain, investigating complex phenomena requires

great vast scientific collaborations. The reason for this is tied to the fact that science is

becoming more multidisciplinary. Key progresses on scientific realms, are becoming

increasingly dependent upon complex workflows of data analysis and simulation tasks.

These workflows involve integration of many complex applications, each of which may

be understood by only a limited number of specialists.

These legacy applications typically represent high quality and validated software.

These applications that are developed by different teams of researchers are required to

be integrated together to offer solution to large-scale scientific and engineering

problems. Even each application requires aggregation and coordinated application of

many widely distributed computing, libraries, and other resources.

Most legacy applications developed and used by scientific communities are

command-line applications. They are written in FORTRAN, C, and some scripting

languages. Traditional scientific applications have the following drawbacks which

makes them difficult to be integrated together to solve large-scale problems.

^iiapiei z l e g a c y /\p p n i;a iiu iis w lapping. JDauKgiuuiiu auu n.ciaieu w uik .

2.1.1 Computational Challenges

High CPU/memory intensive scientific applications require access to high-end

compute resources. Conventionally, to work out some complicated engineering or

scientific problem, self-owned compute resources can not satisfy demand for compute

power. Researchers either make some unnecessary hardware investments or outsource

processing to external compute resources. This results in the current infrastructure

being underutilized. A novel innovation is expected to meet constant demand for the

compute power with the reality of underutilized resources.

Traditionally, it is a long tedious task to perform a scientific computation on

resources provided by third-party resource providers. Users of high-performance

computational resources have interacted with those resources at very rudimentary level

- they obtain authorization (i.e. an account) and some amount of allocation, then they

log in and interact with the resource through a low level interface (e.g. a command-line

shell or ftp client) [11]. They launch an application by submitting a request to a

scheduler or a queuing system. To perform one simulation job, the users have to open a

new user account, recompile simulation codes, and learn different job schedulers on

different resources. The users have to log in many times through the secure shell to run

different jobs, and manually transfer input/output files. This hands-on procedure can be

both time consuming and error prone.

This traditional approach to access the high-performance computational resources is

not user-friendly. Hence, it is difficult to use. It suffers from a number of drawbacks.

First, compute resources broker does not exist to help the users in choosing suitable

resources. Second, low-level interfaces have a very steep learning curve, placing a

cumbersome burden on the users to learn how to use the resources.Thirdly, inadequate

job monitor and job management functionalities are provided to facilitate the users to

track the jobs submitted. Fourthly, resource providers have to set up and maintain state

(typically an account) for each user, which can be such a hassle for big communities.

2.1.2 Not Enough User Interaction

Traditionally, compute-intensive simulations are run non-interactively. Many of

them lack a Graphical User Interface (GUI), which makes them difficult to be invoked

by end users. Usually initial conditions and configuration parameters are recorded in a

text based file format. The simulations read in input files and output results as files. The

9

L.napter z legacy Applications wrapping: tsacKgrouna ana Keiatea worK

whole large scaled simulations run without any user interaction during a job running

process. The user only examines simulation results once the whole job is done.

However, if the result occurs in the early stages when simulation is not satisfied, the

rest of the compute time will be spent on simulating something of absolutely

insignificant interest. Even worse, if the initial parameters of the job fail to produce any

meaningful useful results, then all of the CPU time spent on the simulation will be

wasted. This waste can be avoided if the user interacts with the simulation job and

checks the results on time. Also it is preferable if the user can steer the simulation by

adjusting the parameters set [12].

2.1.3 Hard for Collaborations

Multi-disciplinary nature of engineering and scientific problems requires integrated

applications developed by different research group and multi-source data from multiple

data repositories. This highly demands collaborations among scientists and sharing of

applications, data, and compute resources.

However, most of the applications are often platform dependent and are difficult to

integrate with the applications from other disciplines. Also they are command-line

oriented. There is no generic method to describe their input parameters and output

results. It is usually a tough challenge to programmatically access these applications

remotely.

Many applications have internal and external users worldwide. Though it does seem

uncommon to travel around to have collaborations, it sounds like such a waste of both

travel cost and time for scientists.

The conventional situation brings following challenging issues to communities:

i) How to share compute resources across organisations to satisfy demand of

CPU/memory intensive scientific applications?

i i) How to provide interactive services to let users easily control and steer

applications?

i i i) How to build a collaborative problem solving environment to facilitate

scientific collaborations across distributed organizations?

10

^napier z le g a cy /\p p iic a iiu n t> w rapping. DauKgiuunu auu n .eiaicu w u i k

2.2 Grid

Grid, as explained by Ian Foster and Carl Kesselman, should enable “resource

sharing and coordinated problem solving in dynamic, multi-institutional Virtual

Organizations” [13]. By enabling the use of teraflop computers and petabyte storage

systems interconnected by gigabit networks, Grid enables scientists to explore new

avenues of research via conventional computing resources. Grid differs from other

computational resources such as traditional supercomputers and clusters in the

following key features: First, Grid coordinates resources not subjecting to centralized

control. Second, Grid uses standard, open, general purpose protocols and interfaces.

Third, Grid delivers non-trivial qualities of service.

Grid computing is akin to distributed computing, yet with a major focus on

collaborations, data sharing, and interactions on a global scale, and delivering

heterogeneous computational power to applications in a transparent manner. Grid

ensures to get the most out of global compute resources. The Grid infrastructure is

scalable and we can seamlessly add extra CPU power or other resources as required. In

a Grid environment, the computation can be distributed across the global resources to

achieve dramatic speed-up. Grid, offering flexible and secure sharing of resources, can

couple applications and compute resources together under multiple ownership; hence,

fully rise to the first challenge mentioned above - sharing compute resources across

organizations.

[14] describes the most important capabilities of Grid: exploiting underutilized

resource, parallel CPU capacity, Grid-enabled applications, virtual resource and virtual

organizations for collaboration, access to additional resources, resource balancing, and

increasing reliability relying on software instead of hardware.

2.3 Service Oriented Architecture

Service Oriented Architecture (SOA), can be regarded as a style of information

systems architecture that enables the creation of applications that are built by combining

loosely coupled and interoperable services [15]. SOA separates functions into distinct

units (services), which can be distributed over a network and can be combined and

reused to create business applications [16]. These services communicate with each other

11

unapter z Legacy Applications wrapping: tsacKgrouna ana Keiatea worK

by passing data from one service to another, or by coordinating an activity between two

or more services.

These services inter-operate based on a formal definition (or contract, e.g., WSDL)

that is independent of the underlying platform and programming language. The services

have generic interface definition and can be accessed in a transparent and uniform way.

The interface definition hides the implementation of the language-specific service.

SOA-based systems can therefore be independent of development technologies and

platforms. Application developers or system integrators can build applications by

composing one or more services without knowing the services' underlying

implementations.

Service Oriented Architecture is based on request/reply design paradigm for

synchronous and asynchronous applications. Within a Service Oriented Architecture all

resources including data and application’s business logics or individual functions are

modularized and presented as services for consumer/client applications. These

distributed heterogeneous resources are encapsulated behind the service definition.

SOA has the following advantages:

i) Uniform service semantics: SOA services have self-describing interfaces in

platform-independent XML documents.

i i) Standard invocation mechanisms: Usually SOA services communicate

with messages formally defined via XML Schema.

Hi) Local/remote location transparency

iv) Interface level: Service composition is based on compatibility at an

interface level rather than an implementation level.

These advantages not only let users interact with the services easily, but also

facilitate scientific applications collaborations across distributed organizations. This

means that SOA offers a solution for the challenge two and the challenge three in the

conventional situation.

SOA can be evolved based on existing system rather than requiring a full-scale

system rewrite. As described in [17], we can realize following benefits if we focus our

effort on the creation of services and applying existing techniques:

12

u n a p i e r z leg a cy Applications w r a p p i n g : t s a c K g r o u n a a n a Keiatea w o r K

i) Leverage existing applications: An application can be constructed as an

aggregation of existing components, via a suitable SOA framework which

is made available to the community. To be able to use this new service, one

requires only knowing the interface and the name. Internals of the service

are hidden from the outside world, as well as the complexities of the data

flow through the components that make up the service.

i i) Consistent infrastructure: Infrastructure development and deployment will

become more consistent across all the different applications. Existing

applications and newly-developed applications can be consolidated within a

well-defined SOA framework.

i i i) Reduced cost: As demands for applications evolve and new requirements

are introduced, the cost of enhancing and creating new services by adapting

the SOA framework and the services library, for both existing and new

applications, is greatly reduced.

iv) Continuous applications improvement: SOA allows a clear representation

of process flows. Service composition is based on compatibility at an

interface level rather than an implementation level. This would allow for

changing the application while keeping the same interface, and thus

facilitates continuous applications improvement.

v) Process-centric architecture: In a process-centric architecture, the

application is developed for the process. The process is decomposed into a

series of steps, each representing a service. In effect, each service or

component functions as a sub-application. These sub-applications are

chained together to create a process flow capable of satisfying the users’

need. This granularity lets processes leverage and reuse each sub­

application.

Web service technology can be used as a basis for SOA. The World Wide Web

Consortium (W3C) defines a Web service as below. A Web service is a software system

designed to support interoperable machine-to-machine interaction over a network. It has

an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

13

unapter I Legacy Applications wrapping: tsacKgrouna ana Keiatea worK

SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards [18].

A further descriptive definition can be found in [19], where a Web service is defined

as a platform and implementation independent software component that can be

described using a service description language, published to a registry of services,

discovered through generic mechanisms, invoked through a declared API, usually over

a network, and composed with other services.

Due to widespread adoption of the Web service technologies, many standard

protocols and tools have been defined and implemented and are available for use.

Simple Object Access Protocol (SOAP) provides an XML-based messaging protocol

between service providers and requestors to allow for applications exchange

information over HTTP [20]. It is a lightweight protocol for information exchange in a

decentralized, distributed environment. It consists of three parts: a) an envelope that

defines a framework for describing what is in a message and how to process it, b) a set

of encoding rules for expressing instances of application-defined data types, and c) a

convention for representing remote procedure calls and responses. SOAP can

potentially be used in combination with a variety of other protocols.

Web Services Description Language (WSDL) is an XML format for describing

network services as a set of endpoints operating on messages containing either

document-oriented or procedure-oriented information [21]. It provides a way to describe

and access Web services. The power of WSDL is that it expresses a program’s interface

in language-neutral XML syntax. WSDL does not directly enable remote function

invocation, but does describe how to bind a particular interface to one or more remote

invocation protocols.

Universal Description, Discovery, and Integration (UDDI) is the most widely

recognized mechanism for publishing and discovery the Web services. It is an XML-

based registry for businesses worldwide to list themselves on the Internet. Its ultimate

goal is to streamline online transactions by enabling clients to find one another on the

Web and make their systems interoperable [22].

Business Process Execution Language for Web Services (BPEL) provides a means to

formally specify business processes and interaction protocols. BPEL provides a

language for formal specifications of business processes and business interaction

14

Lnapier z L egacy /\p p n cau oris wrapping: nacKgrouriu ana rveiaieu worK

protocols [23]. As such, it extends the Web services interaction model and enables it to

support business transactions. BPEL defines an interoperable integration model that

should facilitate expansion of automated process integration in both the intra-corporate

and the business-to-business spaces.

Web service makes interoperability easy. It is independent of programming

languages, models, and system software. A client can remotely access a Web service by

using standard well-defined mechanisms. This feature makes the Web services approach

appealing to inter-organizational computing systems. The Web service technology has

been adopted in industry as a standard for building enterprise applications. Adoption of

Web service is useful for dynamic discovery and composition of services required for

coordination of a decentralized set of resources.

2.4 Discussion about Some Alternative Technologies

2.4.1 .NET

The practical realization of Grid poses a number of challenges. Key issues that need

to be dealt with are security, heterogeneity, reliability, application composition,

scheduling, and resource management. The Microsoft .NET Framework [24] provides a

powerful tool set that can be leveraged for all of these, in particular support for remote

execution, multithreading, security, asynchronous programming, disconnected data

access, managed execution and cross-language development, making it a great platform

for Grid computing middleware. By providing developers with a comprehensive and

consistent programming model and a common set of APIs, the .NET Framework helps

developers to build applications in the programming language users prefer, across

software, services, and devices.

The .NET Framework includes four pillars: Windows Presentation Foundation

(WPF), Windows Workflow Foundation (WF), Windows Communication Foundation

(WCF), and Windows CardSpace. WCF is Microsoft’s unified programming model for

building Service Oriented applications. It enables developers to build secure, reliable,

transacted solutions that integrate across platforms and interoperate with existing

investments. WCF simplifies development of connected systems and ensures

interoperability. It unifies a broad array of distributed systems capabilities in a

15

L^napier z legacy Applications wrapping: oacxgrouna ana rceiaiea worK

composable and extensible architecture, spanning transports, security systems,

messaging patterns, encodings, network topologies, and hosting models.

Microsoft’s .NET Framework is a key framework for implementing commercial

distributed systems for Windows-based platforms. Application developers rely on the

.NET framework for its integrated tools, powerful functionality and ease of use.

However, there are some challenges. .NET alone cannot deliver the scalability and

reliability required for today’s data intensive and computation intensive applications.

.Net is limited on desktop computers those running variants of the Microsoft Windows

operating system, thus severely limiting the ability to effectively utilize the none-

Windows computing resources. Also it is difficult for .Net to integrate with current Grid

software, which has been primarily written for Unix-based operating systems. The

capabilities enabled by the .NET framework are important for Grid systems, but will not

be considered by current work due to this limitation.

2.4.2 UDDI

Universal Description, Discovery and Integration (UDDI) is a platform-independent,

XML-based registry for businesses worldwide to list themselves on the Internet [25] .

UDDI is an open industry initiative, sponsored by OASIS, enabling businesses to

publish service listings and discover each other and define how the services or software

applications interact over the Internet. A UDDI business registration consists of three

components: White Pages — address, contact, and known identifiers; Yellow Pages —

industrial categorizations based on standard taxonomies; Green Pages — technical

information about services exposed by the business.

The UDDI specifications define a registry service for Web services and for other

electronic and non-electronic services. A UDDI registry service is a Web service that

manages information about service providers, service implementations, and service

metadata. Service providers can use UDDI to advertise the services they offer. Service

consumers can use UDDI to discover services that suit their requirements and to obtain

the service metadata needed to consume those services.

The UDDI standard is the least understood and often the most maligned of the core

Web Services standards. Unlike its now well-understood SOAP and WSDL, UDDI has

16

Lnapier z legacy Applications wrapping: tsacKgrouna ana Keiatea worK

experienced limited and sporadic adoption by companies implementing Web Services-

based SO As [26].

The UDDI specifications supported a publicly accessible Universal Business

Registry (UBR) in which a naming system was built around the UDDI-driven service

broker. IBM, Microsoft and SAP announced they closed their public UDDI nodes in

January 2006 [27].

“Basically, the UBR is a relic of an earlier vision for UDDI. The original vision for

UDDI was as a standard that would help companies conduct business with each other in

an automated fashion. The idea was that companies could publish how they wanted to

interact, and other companies could find that information and use it to establish a

relationship," said Jason Bloomberg, senior analyst at ZapThink. "Needless to say, this

is not how companies do business — there's always a human element to establishing a

relationship. As a result, the UBR served as little more than an interoperability reference

implementation. Now that UDDI has become more of a metadata management standard

for SOA, there's little need for the UBR anymore."

2.4.3 CORBA

The Common Object Requesting Broker Architecture (CORBA) is a standard

defined by the Object Management Group (OMG) that enables software components

written in multiple computer languages and running on multiple computers to work

together. While CORBA promised to deliver much in the way code was written and

software constructed, it was much criticized during its history. Some of its failures were

due to the implementations and the process by which CORBA was created as a

standard; others reflect problems in the politics and business of implementing a

software standard. These problems led to a significant decline in CORBA use and

adoption in new projects and areas. The technology is slowly being replaced by Java-

centric technologies [28].

Obviously, a number of external factors contributed to the fall of CORBA, such as

the bursting of the Internet bubble and competition with other technologies, such as

DCOM, EJB, and Web services. These factors cannot fully account for CORBA's loss

of popularity, however. After all, if the technology had been as compelling as was

originally envisaged, it is unlikely that customers would have dropped it in favour of

17

IC 1 Z. l e g a c y vv la p p in g . D acjvgiu u iiu anu rvciaicu v v u i j v

alternatives. Technical excellence is not a sufficient prerequisite for success but, in the

long term, it is a necessary prerequisite. No matter how much industry hype might be

pushing it, if a technology has serious technical shortcomings, it will eventually be

abandoned.

The most obvious technical problem is CORBA's complexity—specifically, the

complexity of its APIs. Many of CORBA's APIs are far larger than necessary.

Developers who had gained experience with CORBA found that writing any nontrivial

CORBA application was surprisingly difficult. The platform had a steep learning curve

and was complex and hard to use correctly, leading to long development times and high

defect rates.

Also CORBA provides quite rich functionality, but fails to provide two core features:

security and versioning. For an e-commerce infrastructure, lack of security and

versioning are quite simply showstoppers—many potential e-commerce customers

rejected CORBA for these reasons alone. Please refer to [29], a comprehensive analysis

of CORBA failures by Michi Henning in ACM queue about "The Rise and Fall of

CORBA". The author is one of CORBA’s former architects.

2.5 The Application Service that Combines SOA and Grid

2.5.1 W rapping Approach

The idea of Service Oriented Architecture is to achieve loose coupling among the

interacting software. This advanced flexible architecture provides a foundation to allow

Grid resources to be shared seamlessly. SOA is a widely accepted model for building

grids, holding a lot of promise for grid-enabling scientific applications. In recent years,

Web services have gained wide-spread acceptance in the Grid community as a standard

way of exposing applications functionality to end users.

Most of the scientific applications are conventional FORTRAN or C applications that

are configured by a parameter file or command-line arguments. They are not Web

services. Consequently, to integrate them into the Service Oriented Architecture,theye

must be embedded in a wrapper service. A wrapping approach is used to make a piece

of code such as the simulation solver available as a self-contained reusable object to

some glue layer. The glue layer is written in a high level language. It could be a Grid

18

s im p ler z i^egauy /\p p iica u o iis wrapping: oacK gruunu anu iveiaicu w u ik

fabric layer such as Web services, allowing interoperation of components running on

different machines across a network.

The wrapping approach allows us to write the core of an application in a language

like C or FORTRAN but controls its behaviour through a higher level language. This

allows clients to easily interact the application via the high level language interface.

Additionally, this avoids necessities of dealing with tedious low level details of

interfacing to many third-party libraries. The wrapping approach also avoids incurring

performance penalty resulted from writing the entire application in a higher level

language. Moreover, the wrapping approach is very helpful in integrating the legacy

applications into new technologies without rewriting the applications.

2.5.2 The Application Service

A Web service can wrap an application, enclose it and invoke it without the

application having to be modified using the wrapping approach. In this fashion, a legacy

application is wrapped as an Application Service. In this research, an Application

Service is a Grid-aware application with a Web service interface that is described by the

Web Service Definition Language. The Application Service makes the application

available through a Web service interface. The Application Service is Grid-aware,

which means it can run computations in the Grid environment. When a user invokes an

Application Service with some input parameters, the service runs the application that it

wraps on the distributed compute resource with those input parameters, monitors it and

returns its output results. Providing a Web service interface for the legacy applications

alleviates many problems raised by the legacy applications. By converting the

command-line applications into the Application Services, it becomes easy to compose

complex workflows from them and run them on the distributed resources.

Benefits of the Application Services are clear because of adoption of Grid and SOA.

Application Services are Grid-aware. In a Grid environment, computations can be

distributed across the available processors in a larger pool to achieve dramatic speed-up.

Hence, users benefits from sharing the distributed resources. Our experience

demonstrates that the geographically distributed compute resources on a Grid could

readily be used as one in a computation of a complex job. The results reflect that

dramatic speed-up is achieved only if the scenario being simulated is large enough,

otherwise extra administration and the communication time associated with using the

19

^napier z legacy /\ppiicauons wrapping: oacKgrounu ana rveiaiea wum

resources on a Grid outweigh any possible gains in computation time. Speed differences

in the processors of different resources also have an adverse effect on overall

computation time of a job.

The advantages of Application Services include not only performance gain from the

resources sharing, but also close collaborations established among engineers,

engineering scientists, and computing scientists. Legacy applications are based on

tightly coupled monolithic structure. They read input files and output final results. This

makes them difficult to expand and collaborate according to users’ different

requirements. Legacy applications can be used as foundations and be decomposed into

modules. These modules are further exposed to Application Services. Application

Services are loosely coupled and flexibly distributed, with the following substantial

benefits:

i) Flexible granular functionalities are accessible to the users or other

applications via well defined interfaces. Code reusability is improved by

the availability of invocations. In particular, Application Services can be

naturally well integrated into a complex workflow, chaining different

processing whose outputs are piped to the inputs of each other. Application

Services allow different applications to exchange data regardless of

operation systems or programming languages underlying those

applications.

i i) Legacy applications are usually run locally. To run the legacy applications

remotely, input/output data has to be explicitly specified in a task

description. Users usually need manually transfer data between sites.

Invoking a new execution of one same code on different data requires

rewriting of a new task description. Alternatively, the users have to rely on

some script language to manage batch jobs submission. Whilst, Application

Services allow the users to use global distributed data, it decouples

computation and data transferring. This decoupling is particularly

important when considering restart of a job in case of the job failure. Also,

Application Services can provide batch jobs submission support easily

because it is written in high-level language.

20

unapter z Legacy Applications wrapping: oacKgrouna ana Keiatea worK

i i i) Application Services are an intermediate layer between the users and the

Grid middleware. It adds an extra layer between applications invocation

and the Grid infrastructure to which the jobs are submitted. Users do not

need to know anything about the underlying middleware that will be

directly invoked internally by the service. The different services might even

communicate with different middleware and different Grid infrastructures.

iv) Application Services advertise themselves. So the users don't need to worry

about how to find them.

v) Application Services make it possible to offer the service over internet and

make software updates and maintenances procedures easy, in addition, they

provide the users with the possibility to use the service based on pay per

use rather than purchasing the software outright.

v i) Application Services change the conventional hands-on process and

automate this process considerably. Application Services are easy to be

integrated with a Grid portal. Geographically distributed participants can

collaborate with each other, specify the service configuration, refer to

global data repositories or archives, remote process computational

simulations on demand, real time monitor the jobs and collaboratively

analyze the results.

2.6 Two Wrapping Strategies

There are some research programs aiming at automating the transformation of a

legacy application into an Application Service. Two main strategies are used in

different grid middleware for describing and controlling application processing. The

batch oriented approach is the most widely available and has been exploited for the

longest time. The service oriented strategy has more recently emerged. It consists of

using a standard invocation protocol for calling application code embedded in the

service. Both strategies are valid in different circumstances, depending on factors such

as granularity of codes, users and application area.

21

L-napter z legacy Applications wrapping: JtsacKgrouna ana Keiatea worK

2.6.1 Service Oriented W rapping

The service oriented strategy uses tightly coupled code wrapping technology that

exposes low level functionalities. It uses a high level language to interact with a legacy

application written in a low level language. The flexible granular functionalities in a low

level language are accessible to users via a high level language interface. The service

oriented strategy has more control and interaction with the legacy applications, although

it requires accessing to the source codes.

In the service oriented strategy, it is typically assumed that service providers, would

like to build Grid enabled Application Services using specific legacy software libraries.

They have access to source codes. Some modifications are required to these legacy

codes. Prior to wrapping, the legacy codes may need to be reconstructed and modified

while main computation parts and existed functionalities are kept untouched. A wrapper

layer written in a high level language is added to expose desired low level

functionalities.

However, in the service oriented strategy, all application codes need to be changed

and recompiled with the high level wrapper to become available as an Application

Service. The service providers are often reluctant to invest efforts in writing specific

wrapper for every application due to the following tentative reasons:

i) The complexity of standards often makes service conformity a matter of

specialists. Some tools are available for helping in generating service

interfaces but they cannot be fully automated and they all require a

developer intervention.

i i) Standards tend to evolve quickly, especially in Grid area, obsoleting earlier

efforts in a very short time scale.

i i i) Multiple standards exist and one same application code may need to be

executed through different service interfaces.

iv) In the case of legacy code, recompilation for instrumenting the code may

prove very difficult or even impossible (in case of non-availability of

source codes, compilers, dependencies, etc).

22

i v v l appi ng. -Lmur^giuuiiu aiiu. ivw iaivu vvu in

2.6.2 Batch Oriented W rapping

The batch oriented strategy consists of a command-line description and a remote

execution of an application code. The legacy code is provided as a black box with

specified input and output parameters and environmental requirements. There is no

requirement to access the source codes of the legacy application. Only the executable is

available and required, alongside a user-level understanding of the application. But this

strategy is relatively coarse-grained, in which the Application Service does not allow

visibility of low level functionalities. The exposure of internal functionalities is limited

to the command-line level.

The batch oriented wrapping is very common in both scientific and business

applications when: the source codes are not available, or the programs are poorly

documented and/or the necessary expertises to do any modifications have long left the

organisation, or the application has to be ported onto the Grid within the shortest

possible time and smallest effort and cost, or the functionalities are offered to partner

organisations but the source is not.

In the batch oriented strategy, Application Services have service interfaces and

features such as security, jobs and data management. The computation resources of the

Grid are accessed through jobs submission. Each processing is related to an executable

code and described through an individual computation job. A job description

encompasses at least the executable code name and a command-line to be used for an

application invocation. It may also includes additional parameters such as input and

output files to be transferred before or after the execution, and additional job scheduling

information such as minimum system requirements. Jobs can be described either

directly via the command-line of a job submission tool, or indirectly through a job

description file. Unless considering very simple code invocation use cases, description

files are often required to specify the task in depth.

In the batch oriented strategy, application invocations are straightforward, through

the legacy code command-line. It does not require any adaptation of application codes.

Many Grid middleware are also batch oriented, such as Globus Toolkit [30] and

Condor. This strategy is useful for Grid-enabling legacy applications without much

effort.

23

v^napier z le g a c y /\p p iica u o n s w rapping: oacK grounu anu n e ia ie u wurK

In the batch oriented strategy, the service needs to precisely know the command-line

format of an executable code, taking into account all of its parameters. Most of

Application Services using this strategy rely on users to set up all these executable

related information. It is not always the case when the users are not applications

developers.

In the present work, both strategies have been adopted to wrap legacy applications.

Application Service Toolkit is an automatic toolkit that wraps scientific applications as

Application services and deploys them on the Grid. It is based on batch oriented

wrapping strategy and is discussed in detail in Chapter 3. In GECEM problem solving

environment, several legacy applications are wrapped as Application Services using

service oriented wrapping strategy to achieve collaborative numerical simulation.

Additionally, in GECEM Migrate Legacy Service Model, the batch oriented wrapping

strategy is used to migrate the applications to the Grid environment. The details of

GECEM are elaborated in Chapter five.

2.7 Related Work

2.7.1 Soaplab

.Soaplab is a framework for exposing command-line tools as Web services through

the use of batch oriented wrapping. Soaplab service collection at European

Bioinformatics Institute runs on top of more than hundred bioinformatic analysis tools

from the EMBOSS package. It bears the capability to deploy a Web service in a

container, starting from the description of a command-line tool. This command-line

description, referred to as metadata of the analysis, is written for each application using

ACD text format file and then converted into a corresponding XML format [31]. ACD

format is a format used by EMBOSS [32]. EMBOSS 100+ programs are already

distributed with their descriptions in this format.

Soaplab offers two types of services; namely, Analysis Service and Derived Analysis

Service. Analysis Service is a service representing remote analysis applications using a

generic interface. For Analysis Service, the individual applications have their input data

and their results named. Once users know the input data names they can send their data

to the analysis as the weakly-typed name-value pairs. Derived Analysis Service is a web

2 4

^napier z legacy Applications wrapping: oacKgrouna ana rceiaiea worK

service representing some particular analysis application. European Bioinformatics

Institute hosts more than hundred Derived Analysis Services for EMBOSS.

The Soaplab server is based on an internal CORBA-based AppLab [33] server and a

Tomcat servlet engine [34],

AppLab application provides a CORBA [35] server for executing conventional

command-line applications and sending results back to clients. AppLab is an

automatically generated wrapper of command-line driven applications. It provides a

uniform graphical user interface for the applications by using CORBA (for

communication) and Java (for GUI). Applab develops a distributed object system,

which provides an easy-to-use and well-defined access to a large set of existing

command-line applications of different types.

After the Soaplab services are created and deployed in an Apache Tomcat container,

users can access them using custom client programs, which provides graphical user

interfaces to Soaplab services. Users use the unified API to find an analysis tool,

discover what data is required and what data is produced, to start it and to obtain results.

Although Soaplab serves to wrap almost any command-line tool as a Web service, it

has a number of limitations.

i) Soaplab uses CORBA on sever side for starting, controlling and monitoring

applications but not Web services standards that are more widely adopted

today [31]. To provide improved support for service providers, Soaplab has

been rewritten in year 2007 with the removal of CORBA (AppLab) layer.

The new version, called Soaplab-2, can be deployed in two configurations:

document/literal-wrapped web services (using the JAX-WS webservices

stack), or RPC/encoded web services. But Soaplab-2 only supports

Analysis Service, and not Derived Analysis Service. Also, Soaplab does

not have a Web services based notification model. This makes it difficult

for Soaplab services to interoperate with other Web services based

notifications systems, which are widely adopted today. However, it does

have a CORBA-based event notification model.

i i) SoapLab does not support Grid standards for service level authentication

and authorization [31]. Also, it does not have any other fine grained

25

Lnapier z Legacy Applications wrapping: oacKgrouna ana r^eiaiea worK

authorization mechanism. This means that service providers cannot have

fine-grained control on what operations users can invoke on their

application services.

i i i) The concept of Analysis Service is similar to our AAS. But the Analysis

Service is weakly-typed whilst our AAS is strongly-typed.

iv) ACD is not the language particularly designed for command-line

description.

v) SoapLab cannot run its applications on remote clusters of resources. It

offers very little support for job monitoring and steering. Neither does it

support the asynchronous mode of invocation. This makes it difficult for

users to invoke long running applications.

v i) SoapLab cannot create an Application Service on-demand from workflows.

2.7.2 Generic Application Service

Generic Application Service (GAP) uses batch oriented wrapping. GAP is another

system that provides a Web service interface to scientific command-line applications,

which is part of In-VIGO system [36]. In-VIGO is a Grid system that makes extensive

use of virtualization technologies to decouple user environments from physical

resources, and subsequently creates such components to integrate application codes with

core Grid components [37], In GAP approach, a description of a legacy application’s

input and output information, and the required execution environment (e.g., machine

architecture, operating system, and dependent libraries) are provided by developers. All

information is provided in a single file, thus not requiring Java code to be written. A

generic application service (a Grid service) interprets this information at runtime and

configures itself into an Application Service that is specific to that legacy application.

Validated requests to the generic service are submitted for execution on the Grid [36].

The GAP Service has some similarities with our Abstract Application Service (AAS).

Both approaches attempt to wrap legacy applications as services. Both approaches

develop a language to describe the command-line applications. However the differences

lie in designs, implementations, and then capabilities of the services.

In GAP approach, a configuration language (CFG) has been developed to allow an

application provider to specify information required to Grid-enable a legacy application.

26

^ n ap ic i z i^cgcu;y /\pp iiL ;aiiu iis vv iap p m g. D acK giuu nu an u ivc itu cu vvui*.

The configuration language is specified in a grammatical framework that is designed to

be powerful enough to represent the command-line applications. The grammar is

designed to be a specification language based on feedbacks from application developers.

The CFG specification is then mapped into XML, which is used in the back end of the

enabling framework [36].

The concept of CFG is pretty similar to our Command-line Description Language

(CoLDeL) used in AAS. Both contain information regarding general information for the

application, execution environment information, and list of arguments accepted by the

application. But CoLDel is more user-friendly and more powerful in terms of the

expression of arguments. CoDel is an XML based language, which is human readable.

It is more user-friendly compared with CFG, the unreadable specification language.

CoLDel can specify each application with a rich semantic description and provide more

useful information than CFG. This makes command generation easy and dynamic. CFG

only provides support to express group arguments, but not to express conflict

arguments; whilst CoLDel can specify both the dependencies and conflict of arguments.

CoLDel also contains argument ID, argument order, the format appears on command-

line, and so on, which are not specified in CFG. CFG uses SPS section to half hard

record synopsis of the command. Only non-I/O arguments can be expressed and

plugged into the final command. In CoLDel, I/O arguments contain even more

information than non-I/O arguments, like file format, I/O direction, and name

convention of output.

Another disadvantage of CFG is that, it is only used by services, but not users. GAP

uses cfgParser and adaptors to map the CFG into XML [36], which is used in the back

end of the service. But for the users, they have no data type provided to set up the job

parameters. This means that GAP is a very weakly typed Web service, making it pretty

much unusable by end users and usable only from a web portal using Application

Service specific clients. Besides, GAP cannot be used in workflows where a strongly

typed Web service is required. While in CoLDel, an XML schema has been defined, in

which an initial number of types and a rich set of elements are declared. This ensures

strongly typed data exchanging among services. The strong data typing not only makes

exchange between clients and services easy, but also facilitates generic Web service

workflow tools to compose these services easily.

27

L^napter z legacy Applications wrapping: tsacKgrouna ana rceiatea worK

GAP is built on top of Globus technology, whilst AAS is based on standard Web

service technologies.

2.7.3 GEMLCA

Grid Execution Management for Legacy Code Architecture (GEMLCA) was

developed by the University of Westminster to enable legacy code programs written in

any source language to be easily deployed as a Grid Service without significant user

effort. GEMLCA uses batch oriented wrapping. GEMLCA addresses issues of exposing

the legacy codes as Grid services and provides a method for exposing and executing

legacy applications through OGSI Grid Services [38]. GEMLCA creates a general

solution to deploy existing legacy applications as Grid services without modifying

source codes. GEMLCA services offer a front-end Grid service layer that communicates

with clients in order to pass input and output parameters, and contacts a local job

manager through Globus MMJFS (Master Managed Job Factory Service) to submit

legacy computational jobs.

GEMLCA has been designed as a three-layer architecture: a front-end layer offers a

set of Grid Service interfaces that any authorized Grid client can use in order to contact,

run, and get the status and any result back from legacy codes [39]. This layer hides the

second core layer section of the architecture that deals with each legacy code

environment and their instances as Grid legacy code processes and jobs. The final layer,

backend is related to Grid middleware where the architecture is being deployed. The

GEMLCA implementation is based on Globus.

GEMLCA offers a comprehensive solution, since it includes portal and workflow

access, and security solutions incorporating authentication, authorisation and security

delegation mechanisms. It also offers end users with no programming knowledge the

ability to port their applications to the Grid with relatively little effort. But it has some

major limitations.

i) 1 GEMLCA is not lightweight. It represents a general architecture which

includes GEMLCA client, GEMLCA resource (a set of Grid services), Grid

host environment (Globus), and Compute Server. It allows an application

provider to add a legacy application into the GEMLCA legacy codes list.

But it does not generate a persistent Grid service for the specified

28

c.napier z legacy Applications wrapping: tsacKgrouna ana Keiatea worK

application. Instead GEMLCA resource creates an instance of the legacy

code process returning a Grid service Handle (GSH) [39]. This means

GEMLCA architecture has to be used as a whole. It is not easy to separate

the GEMLCA client, the set of Grid services, and the backend Globus.

Compared with GEMLCA, ASToolkit is lightweight. Service providers

can get a standard Web service for each application wrapped. This Web

service can be accessed in a standard manner by any client or workflow.

i i) GEMLCA is based on Globus infrastructure and is tightly bound with

Globus. It requires Globus installation on GELMCA resource layer and

Compute server.

i i i) It is unable to deploy Grid services on remote hosts. Actually, this is a

limitation of the Grid service containers that are available today. Unlike

Web service containers like Tomcat that allow remote deployment of Web

services, Grid service containers do not allow remote deployment of Grid

services.

iv) GEMLCA Grid services do not transfer the files. The GEMLCA replies on

portal or other client to upload or download the files via GridFTP [40].

v) GEMLCA does not support Message Level Security [41]. Hence, service

providers do not have fine-grained control over which users have access to

the operations in their application services.

2.7.4 Summary

There are a number of research tasks aiming at automating transformation of legacy

codes into Application Services with their own set of advantages and disadvantages.

However, there are some fundamental limitations that are not addressed by currently

available results. These limitations which have been addressed by the work in this thesis

are listed below:

i) Lack of a lightweight toolkit to create standard Web services for legacy

applications.

29

iwi

ii)

iii)

iv)

n p p iiv a iiu i ia vv la p p in g . u a t iv g iu u n u au u iv t ia i t u vvuiiv

Absence of a fine grained authorization mechanism by which service

providers can control whatever operations users can invoke on their

application services.

Need for a mechanism to create a Web service interface to a scientific

application on-demand from workflows.

Requirement for a scalable mechanism which enables wrapping a large

number of applications as Application Services and, updating and

maintaining source codes and deployments of all those Application

Services.

30

v ^ u im u a n u -u u c iv c s c i ip u u u i^ a iig u a g c a n u ^-vppiicaijnjn o c i v i t c i w u u i

CHAPTER 3

Command-line Description Language

and Application Service Toolkit

3.1 Overview and Contribution

Web service architectures have gained popularity in recent years within scientific

grid research communities. One reason for this is that web services allow software and

services from various organizations to be combined easily to provide integrated and

distributed applications. However, most applications developed and employed by

scientific communities are not Web service oriented, and they are written in various

programming languages (e.g., FORTRAN, C, scripting languages and others). These

codes not only typically represent large scale investments in terms of time and effort

that cannot be discarded, but also are high quality and extensively validated programs.

There is a growing need to integrate them into grid applications based on service

oriented architectures. The adaptation of these existing applications to Web services is

becoming important as a way of harnessing validated tools in a new powerful

operational environment provided by the Grid and Service Oriented Architecture.

A Web service can wrap an application, enclose it and invoke it without the

application having to be modified. In principle, the task of wrapping an application as a

Web service is not a huge task for a specialist trained in Web and Web service

programming, but for most scientific application specialists, this is an extremely high

barrier to surmount. There are a number of tools to help accomplish this task. These

tools automate the task of transforming existing applications into Web services without

having to deal with the details of Web services technologies. However, simply

providing a Web service interface is not sufficient to make the application a usable

31

unapter j L,ommana-ime uescripuon language ana Application service i oouat

component in a distributed computation. One major concern is security. In particular,

the question is how the Application Service allows the users of a community run the

scientific applications on computing clusters provided by third party resource providers

without having login accounts on the computing clusters? How can a service provider

provide and authorize a selected group of users with access to Application Services

without building a separate security infrastructure and without requiring the users to

have login accounts on the host running the service?

Another problem is making the service usable directly from a web portal, as well as

making it a component in a workflow. Also, how can the Web service use the

distributed compute resource to run the application?

Our goal is to leverage the set of computational resources available across different

sites on the grid. However, clusters at different sites run schedulers of their choice. The

most commonly used schedulers include Condor and Sun Grid Engine (SGE) [1].

Hence, it is mandatory that the Application Service supports to access any of existing

schedulers and schedulers to be appeared in future. To end users these schedulers are

accessible in a generic way, which means the users are able to use them in a transparent

uniform fashion (not scheduler specific). Furthermore, the users typically interact with

schedulers such as Condor and SGE via command-line interfaces. However, in order to

expose the applications as services, we need to access these schedulers

programmatically.

Due to wide usage and huge potential of the Grid and Service Oriented Architecture,

Application Service Toolkit (ASToolkit) [2] is implemented and allows scientists to

provide a Web service interface to their existing applications without having to write

extra code or modify their applications in any way.

The primary research contribution of this toolkit is as follows:

3.1.1 Command-line Description Language (CoLDeL)

CoLDel, an XML based language, is designed and developed particularly for the

ASToolkit in order to describe individual command-line applications precisely.

CoLDeL acts as a protocol so that different service providers can follow it to generate

an Application Definition File for each scientific algorithm for use by ASToolkit

Services. An XML schema has been defined which ensures strongly typed data

32

Lnapier j Lommana-iine uescnpuon Language ana application service i oonai

exchanging among services. An initial number of types and a rich set of elements are

declared.

3.1.2 Automatic Toolkit for Wrapping All Command-line Oriented Applications

Most large scale computational facilities have traditionally operated their machines

in batch mode and the ASToolkit is focused on these batch mode applications. It can

wrap almost any command-line application (i.e., non-graphical), such as UNIX

commands, or more sophisticated scripts written in Python, Perl, and so on. It does not

require any modification to the wrapped applications. And, no source code is needed for

the legacy applications. ASToolkit is an automatic toolkit that wraps scientific

applications as Web services and deploys them on the grid. This Web Service is named

Application Service. The Application Service is described by CoLDeL, presents a Web

Service Description Language interface to potential clients and interacts with Grid

resources via a component plug-in model.

ASToolkit makes command oriented application wrapping an automatic, easy and

fast task. In addition, application providers do not need to be experts in web service

standards, such as Web Services Description Language, Web Services Addressing, Web

Services Security, or secure authorization, because the toolkit automatically generates

these details.

3.1.3 Security

ASToolkit also automatically provides a WS-Security [3] based authentication and

authorization system that allows selected users to securely interact with these services

through automatically generated web interfaces, to compose scientific workflows using

these services, and to monitor the status of their jobs on the grid.

3.1.4 Application Remote Execution and Access to Grid Resources

The Web Service generated by the ASToolkit is named Application Service.

Application Service presents a Web Service Description Language interface for the

application to potential clients and interacts with Grid resources via a component plug­

in model. Application Service can enable but does not require the use of distributed

resources via the Grid. The Application Service can support operation seamlessly in a

highly distributed environment. The distributed functionality is enabled and controlled

by components employing Grid middleware. While the Application Service can fully

33

Lnapter j Lommana-iine uescnpuon Language ana Application service iooiKit

support the distributed environment, it also can be easily used in a local environment.

The role of the Grid-enabled ASToolkit service is to provide a uniform submission layer

on top of different execution environments.

The ASToolkit provides a level of abstraction to the client that is much higher than

services like Gram because it takes low level job submission details like environment

variables and temporary file management out of the hands of the client.

In this chapter the features and implementation of this Web service wrapper are

described together with how it has been used and tested in the context of medical image

analysis.

3.2 Design

The primary consideration in developing the toolkit is to use standard software and

keep the software requirements to a minimum. Only mature software with known

reliability and performance characteristics is used for the toolkit.

To make the applications grid-aware, the following requirements have to be fulfilled:

remote execution and access to Grid resources support for multiple concurrent users,

access via a set of disparate clients, and the use of security mechanisms. Web service is

good in grid enabling the applications. Web services are capable of serving multiple

client requests concurrently. Also, since Web services are language and platform

independent, they are easily accessible by clients written in different languages.

A toolkit is needed to automatically wrap scientific applications as Web services and

deploy them on the grid. It can wrap any command oriented application and does not

require any modification to the wrapped applications. The toolkit does not attempt to

deploy any application. So the assumption is that either the application that the toolkit

wraps has already been deployed and ready to run on some resource, or the application

is ready to migrate to a remote resource to run. The deployment of the application is

usually done by the application provider or service provider.

In addition, the toolkit should be easy and straightforward to use. The users do not

need to have the knowledge of applications or Web service.

34

^napier j ^um m anu -im e u e sc n p u o n la n g u a g e anu /\p p iic a u o n se r v ic e lu u u u i

Furthermore, one of our primary goals is to couple together applications across the

community. So the service from the toolkit should be easily coupled and orchestrated by

workflow tools.

3.3 Architecture

3.3.1 ASToolkit Architecture

The toolkit can wrap almost any command-line application. Command-line

Description Language is a generic language to describe individual command oriented

applications precisely. Based on CoLDel protocol, the service provider or application

provider will provide an Application Description File for each application wrapped.

Application Service Component can process the ADF based on well known CoLDel

protocol. It retrieves the dynamic information from ADF, and configures itself to the

specified Application Service.

The toolkit does not generate any code for implementing the service interface. All

the business logic, like Data Management Component, Application Service Component

and so on, is pre-developed and packed as a library, and shared by all the Application

Service.

The toolkit, actually Ant [4] script underneath, will pack all the needed documents

into a Web application archive (WAR) file and deploy it onto a remote server. The Sun

App Server [5] and Apache Tomcat both allow new Web applications to be installed

while the container is running. To deploy a Web service on a remote machine

dynamically, the toolkit needs to package the Web service implementation code,

dependencies, and the deployment descriptor into a WAR file. The WAR file

compresses all of this directory-structured content into one Java archive file (JAR).

Usually, a Web service WAR file also includes schema (WSDL) files and the Web

Service Deployment Description (WSDD).

Each application WAR file contains the same WSDL file, the same ASToolkit java

business jars, same third party middleware, but different ADF file and service property

file. A service property file describes some dynamic information that is required by an

Application Service to be hosted on the specified host. It contains information closely

35

l napier 3 Lom m ana-nne uescription Language ana Application service i ooncit

related to the Application Service server, which usually is different based on the

different server’s environment and requirement.

This architecture is simple and yet powerful. It makes the toolkit lightweight but

highly configurable. No code generation is needed to create a service from its

description.

The toolkit can be configured to complete part o f the whole task. For example, it can

only build the W A R file but not deploy it to the server. This Application Service could

be deployed later on by just copying the corresponding W AR file into a specific

directory designated by the hosting server. This directory is monitored by a daemon on

the hosting server. Thus, any newly copied W AR file can be detected by the daemon

and then be deployed into the container by this daemon.

Also, the toolkit can create client side stubs and server side skeletons. A stub is a

client's local proxy for a remote object. The client uses the stub to communicate with

the remote object-actually, the skeleton o f the remote object. The skeleton is responsible

for dispatching the client's communication to the actual remote object.

C onfigu ra tion F iles

S e c u r i t y

C o n tro l F ile s

A p p lic a t io n

D e s c r ip t io n

F ile s
C o n tro l F ile s

Businesi Logic Library

\ /
S e rv ic e D ep loym en t Too 1 (A N T)

I

D a ta Job J o b

M a n a g e m e n t M a n a g e m e n t M o n ito r in g

C o m p o n e n t C o m p o n e n e t C o m p o n e n t

, WAR F ile s D ep lo y ed o n R em ote S e r v e r s ----
i«M liH im iii t tf l i if Biinmmiitfflim»nnnMi(usnnnirtiMiiiM>>siiHMiiiiiiiiinMuiiini>iain>niMiMi>iMiNiiiii

Figure 3.1: ASToolkit Architecture

36

^napier j \^unim anu-im e i^ escn p u on la n g u a g e anu /\p p iica u u ii dcivicc iu u u u i

Figure 3.1 describes the architecture of ASToolkit. The Service provider needs to

manually edit the security control files to set up the security level. A set of security

control file samples are provided. The service provider also needs to provide an

Application Description File for the application wrapped. A plug-in control file needs to

be set up based on which plug-ins the service provider is interested in to use. A set of

business logic library is provided with the ASToolkit.

An Ant script based deployment tool is for the service provider to generate and

deploy the customized Application Service. The deployment tool retrieves the required

ADF from the ADF pool and generates an appropriately customized Application

Service, which encapsulates the application, deploys the service onto the local server or

remote server, and finally publishes the services in a registry service.

A Web interface is provided to let the service provider enter the information required

in an application description, and generate the ADF on the fly. The ADF is pushed to

the server side and registers with the ADF pool. Application providers can also register

the ADF file which they had already via the Web interface.

3.3.2 Application Service

3.3.2.1 Application Service Architecture

Figure 3.2 represents architecture of Application Service. Details regarding structure

of messages and operations supported by the service are presented to clients in a

consistent WSDL interface. All the Application Services have the same interface. The

behaviour of the Application Service is decided by the components (plug-ins) used. The

choice of components essentially depends on the plug-in controller in the service

property file, which specifies the specific plug-ins to use for data management, job

submission and application description. More specific details on the application

wrapped by service are described in detail in the associated Application Description

File. This would typically include algorithm classification information, a full definition

of input/output parameters and all other command-line parameters. At back end a

concrete service implementation is built with appropriate Web Service Components

(plug-ins). The plug-ins in use interact(s) with underneath compute resources. Data

Management Component interacts with the distributed data repositories to

download/upload the input/output files. Job Submission Component communicates with

37

vnapter j Lommana-iine ucscripuon Language ana Application service iooikii

the Application Description File and interprets the job as wrapped application job. It

also interacts with the distributed computational resources and submits jobs to them.

Consistent Interface

Plug-Ins

Plug-in Controller

CondorW e b D A V

A R EG
G ridFTP

TR A N S F

— Concrete Service Implementation

A p p D e s c F ile

(B E T)
JobS ubC om p

(C o n d o r) 1
D a ta M a n a g C o m p

(W e b D A V)

Compute Resource

Figure 3.2: Application Service Architecture

3.3.2.2 Web Service Interface

An Application Service makes an application available through a Web Service

interface. It is implemented as a Java JAX-RPC-compliant [6] Web Service deployable

in any Java Servlet compliant container. This opens up the choice o f deployment

platforms depending on the scalability requirements.

The Web Service interface makes use o f WS-Security to protect message exchange

as well as authenticating and authorizing users. The W eb Service interface demonstrates

the use o f the application as a networked multi-user service.

The Application Service is multi-threaded, i.e., if multiple clients invoke operations

o f a service, a separate thread is generated for each client. State handling is managed

internally and transparently based on unique jobHandlers.

The behaviour o f the submitJob operation is customized for a specified application

by means o f a specified Application Description File.

38

^napier j v^uinmanu-mie i^ escn p u u n la n g u a g e anu /\p p iit;a iion oervn;c iuuikji

3.3.2.3 Web Service Descriptions Modularisation

For the Application Service, WSDL file is separated into distinct modular

components in order to improve re-usability and manageability. These modular

components include an XML Schema file, an abstract WSDL file, and a concrete

WSDL file, which respectively contain data type definitions, abstract definitions, and

specific service bindings. The specific or concrete service definitions depend on the

abstract service definitions, which in turn depend on the data type definitions.

This modularisation improves the readability and manageability. It helps in writing

clearer service definitions by separating the definitions according to their level of

abstraction. The technique also improves opportunities for certain types of extension

and reuse. The same data type definitions can be used across many abstract services,

and the same abstract services can be offered through many different bindings, at many

addresses. As services grow, however, this may evolve into a tree of documents with the

data type definitions at its root, branching into several abstract services, documents, and

further fanning out to concrete services.

3.3.2.4 How it Works?

After a user specifies all the parameteric values for a job following CoLDel (job

description), the client sends a Simple Object Access Protocol message to the

Application Service to invoke the submitJob operation. The Application Service

interacts with the Data Management Component to download the input files from the

data server to the Application Service server side. Invocations on the Application

Service are passed through to the appropriate WS component; the component then takes

the relevant steps required to fully realize the invocation. For the FORK component a

script would be formed and submitted to the local server. The script would invoke the

application with the precise command. For the Condor component a further series of

Web service invocations would be performed. The component would interact with the

Condor submission service and submit the job to the Condor pool. After the job is

completed, Data Management Component uploads the output results back to the data

server.

To monitor the job progress, the client passes the jobHandler to the service to invoke

the monitor Job operation. And the service will return the jobStatus back to the client.

This pull model is used which is based on a request/response paradigm. The client sends

39

^ nap ier j ^ oim n an u -iin e i^ escn pu un la n g u a g e anu /A.ppiiuaiiun se r v ic e jlouiku

a request to the server, then the server answers. In this model, the data transfer is always

initiated by the client, hence avoids the possible firewall problem. Most firewalls are set

up to allow outgoing HTTP requests and incoming responses but not incoming requests.

3.4 Features of ASToolkit

The ASToolkit provides the following features:

i) Easily and rapidly wrap any command oriented application as a Web

service without modification to the selected application.

i i) Enables strong data typing. ASToolkit services have inputs and outputs

defined in detail using XML schemas. Initially the number of types and a

rich set of elements are declared. This ensures strongly typed data exchange

among services. The strong data typing not only makes validation of inputs

easy, but also facilitates generic Web service workflow tools to compose

these services easily.

i i i) Adopts a consistent interface and plug-in model. All the ASToolkit services

have the same interface and can easily be extended to support any Grid

scheduling. ASToolkit services are extensive and are not tied to any

specific scheduling middleware. It can use various schedulers to submit

jobs on resources.

iv) Hide the computational resource from the user. The user only interacts with

algorithm services, not computational resources.

v) Implement with WS-Security, which addresses the three security

requirements: message authentication, message integrity and message

confidentiality.

v i) Use a Service Provider Account Model to make user account management

simpler. There is no need to open a user account for each user on

computational resource.

v ii) Support data transfer for jobs. ASToolkit services can stage in input data

files from a user specified location before running the application, and can

40

s i m p l e r j L O in m a r iu - im e i ^ c s c n p u u n L a n g u a g e a n u / v p p i i c a u o i i s e r v i c e i o o i k u

stage out the output data files after the job is completed. This is done using

W ebDav [7].

v i i i) Support concurrent and asynchronous job submissions.

ix) Support job monitoring. The application services can monitor the status o f

jobs and return output results to the user. The steer service can monitor any

jobs on different hosts.

x) Have capability to return job specification provided by user for each job.

This is useful to resubmit the job if the job fails.

3.5 Im plem entation

3.5.1 Consistent Interface

As Figure 3.2 shows, all the Application Services use the same interface no matter

what application is wrapped. Regardless o f the num ber o f wrapped and deployed

applications what input data and options are expected, what output is produce, or what

syntax the command-line applications have, they all use the consistent interface and are

controlled by the same methods.

<< In te r fa c e d
Job Subm istion

createJobH andlerQ
sbmitJobQ

<< In te r fa c e d
Job S teer

<< In te r fa c e d
ErrorRecovery

monitorJobQ getJobDescQ

lem oveJobQ restertJobQ
holdJobQ

releaseJobQ

Application S ev ice

Figure 3.3: Application Service Interfaces

From Figure 3.2 we can also see that all Application Services use the same interface

no matter what grid scheduler they interact with—FORK, CONDOR, GR A M [8], or

others. Application Service is Grid-enabled and it can submit jobs to distributed

41

Lnapter j Lommana-iine uescnpuon Language ana Application service loonat

compute resources. Since various schedulers run on different sites, it is mandatory that

these schedulers can be accessed in a consistent way for maximum code reuse.

Furthermore, Web service implementations interact with these schedulers

programmatically rather than their regular command-line interfaces.

This consistent approach can offer a lot of benefits to users who are only interested in

the applications themselves, but not in the underlying complicated compute resource, or

the diverse scheduler middleware. By providing one consistent interface to all

applications, we effectively hide the complicated grid environment from the user.

There are two ways to produce WSDL, top-down and bottom-up. In top-down,

WSDL specification should be developed from scratch, optionally starting from some

XML domain vocabulary. While in bottom-up, WSDL specification is derived from

some existing server side component interface. Bottom-up WSDL creation is

straightforward, as powerful tools are available. But developers need keep an eye on the

generated type and port names. They might not match with naming conventions. Also it

is sometimes difficult to map all language constructs of a programming language to

WSDL. This is because the WSDL is independent of the implementation language.

Another frequently occurring problem is that an existing component interface does not

meet the requirements for a well-defined Web service interface. For example,

unsupported data types appear in method signatures or inheritance is used. Whenever

the tools cannot handle the WSDL generation, it is safer to hand code the WSDL. By

creating the WSDL file first developers will ultimately have more control over the Web

service, and can eliminate interoperability issues that may arise when creating a Web

service using the bottom-up method.

We use top-down approach and carefully design the contract. Especially our

Application Service uses industry standard XML schemas to describe the data

structures. A static WSDL is used for every Application Service due to the consistent

interface. Two Application Services can be distinguished by their unique URLs, and

their associated Application Definition File.

The port interfaces of Application Service are depicted in Figure 3.3. The

Application Service exposes many operations via several WSDL port interfaces, namely

jobSubmit, JobSteer, and errRecovery. These port interfaces include many operations

42

^nap ier 3 ^ommana-iine uescnpuon language ana /\ppncauon service i ooikii

like createJobHandler, submitJob, monitorJob, RemoveJob, holdJob, releaseJob,

getJobDesc, and restartJob.

The operation createJobHandler allows the client to create a job. This operation

requires one argument which is a job description object. This object contains all the

application command parameters set up from the client. It is set up following the

CoLDeL and will be validated by the server against associated Application Description

File. Once appropriate checks have been made (validation of inputs, data type checks,

values supplied for options, mandatory arguments setup, and so on), this operation

returns to the client a unique job identifier.

The execution of a remote application can be initiated by calling submitJob. The

submitJob operation provides a generic entry point for using the application. The invoke

operation requires one jobHandler. Once the server retrieves the jobDesc object back

based on the jobHandler, the actual application launches. How or where this processing

takes place is an implementation detail and is effectively hidden from the user. Thus the

client only deals with one generic WSDL interface.

Since the application processing may take considerable time we must release the

client from the call to invoke immediately. Otherwise, client timeout errors are

inevitable.

The operation monitorJob allows the client to get a job specific status object.

getJobDesc allows user to get the job description object back. This object can be used

directly to resubmit the job in case of job failure. RemoveJob, holdJob, and releaseJob

enable the client to control the job.

3.5.2 Component Plug-in Model

The Application Service is simply a wrapper that exists to provide the client with full

details regarding the specific application the service can perform and a means of

invoking a distributed computation. It has the capability to transfer the data files, and

create running instances on the distributed compute resource when the user provides any

additional needed parameters. When so invoked the Application Services responds by

doing three things. First, it combines the information from the user and Application

Description File to create a concrete job description. Second, it transfers the input files

and output files between the Application Service server and data server. Third, it

43

simpler j ^onimaiiu-mie uescnpuon language anu /\ppiicauoii service loouui

interacts with backend compute resources that can be used to do the application

computation.

The Data Management Component, Job Submission Component and ADF are used

to achieve the above functionality. The Data Management Component is in charge of

file transfer between the two sites. Job Submission Component is responsible for

managing the application execution. ADF provides all the specific application related

information. These three components work together to complete the submitJob

operation, the main operation provided by Application Service.

Using the information in the JobDescription from the user, Application Service first

interacts with the Data Management Component to stage in the input files for running

the application. Combined with the information from the user and ADF. the Job

Submission Component prepares the job and submits the application as a job to the

compute resource. Application Service then keeps checking the status of the application

job. After the application execution is complete, the Application Service interacts with

the Data Management Component, and stages the output files of the application to the

specified output data repository.

In a Grid context the compute resources may exhibit considerable heterogeneity. In

our test bed of four distributed sites this can be clearly seen, with various combinations

of hardware, operating systems and middleware present at each site. Given the varying

administrative policies at each site and the fact that each organization has already spent

considerable time developing their respective infrastructures it is not feasible to require

all participants to upgrade or move to a common solution. Instead, we require that the

Application Service adapt to the local resources: this is achieved through the use of a

Job Submission Component plug-in model that allows the Application Service to be

configured (at deployment time) with a Job Submission Component capable of

interacting with the available resources.

The Application Description File is also added as a plug-in at run time to allow the

Application Service to configure itself to become the specified Application Service

based on the associated ADF.

Figure 3.2 shows the component plug-in model we use for the Application Service.

“JobSubmissionComponent” like FORK, CONDOR, GRAM, etc., is the component

capable of interacting with distributed compute resources and submitting application

44

unapter 3 Lommana-nne uescnpuon Language ana Application service i oouat

jobs to it. It is encapsulated behind the consistent interface of the service. BET, FAST,

and FLLIRT are Application Definition Files that describe the application in detail

following CoLDeL protocol. Both “JobSubmissionComponent” and Application

Definition File are prepared and plugged in at deployment time or run time in order that

the Application Service can dynamically construct itself to be the individual application

service running on a specific compute resource. The use of the component plug-in

model ensures that our services are not tied to any specific middleware package or any

specific application. It is straightforward to implement other plug-ins to submit to other

schedulers. This makes the Application Service easy to fit in the increasingly diverse

and complex Grid middleware.

We have currently prototyped components to interact with the local server and the

Condor SOAP, Fork and Condor. The fork implementation translates an incoming

request combined with the Application Definition File, into a simple command-line and

forks this on the host server of the Application Service, whilst the Condor

implementation takes the incoming request and programmatically interacts with the

SOAP interface of the Condor scheduler at a remote site.

For example, at Oxford we have a Linux machine dedicated as an Application

Service compute resource. We need to be able to set up an application running

environment and construct the precise command, submit to the local server, and check

status; and the FORK Component provides this functionality.

At another site, UCL, we have a Condor pool accessible through the Condor SOAP

API. Application Services wishing to make use of this resource are configured with the

Condor component. Requests to the Application Service are delegated to this

component which maps them to Condor specific API calls.

Abstraction of the ADF and the “JobSubmissionComponent” provides us with two

levels of flexibility:

i) Clients deal only with the Application Service interface. Changes can be

made behind this interface without affecting clients in any way.

i i) The Application Service deals only with plug-in components - the service

itself has no intrinsic knowledge of the underlying compute resources and

45

unapter 3 uommana-nne uescnpuon Language ana Application service i oonat

applications. We avoid coupling the Application Service with any one

specific middleware or any application.

3.5.3 Strong Data Typing

Traditionally, scientific applications are invoked via command-line. And the user

needs set up a set of arguments to run the command. Since the advent of the Web

service technologies into the Grid world, several projects have attempted to expose their

applications as Web services. However, it is very often the case these Web services use

simple strings or other generic type to represent the arguments set up. Although this

may provide remote execution and access to Grid resources via a Web service interface,

this is not very flexible and robust. This is because the string based arguments setup are

not strongly typed.

To enable strong data typing, a number of types and a rich set of elements are

defined using XML schemas, like jobDescription, serviceDescription, algorithm,

argument, and so on. The user needs to specify the job in detail using these data types.

The incoming message of the createJobhandler operation is jobDescription, a strong

data type. This jobDescription will be checked and validated by the Application service.

The strong data typing has the following advantages:

i) The strong data typing helps to properly define the web interface and

minimize the network overhead.

i i) These strong data types are the abstract from all command oriented

applications. All the applications can be described by these data types in

detail. Hence, they do not require additional negotiation between clients

and the service provider to understand these data passed or expressed in

strong typed form.

i i i) Without a strong data type, it is prone to message related exceptions due to

inconsistencies between the format of sent data and the format of accepted

data. Application Service code is required to be liberal in what it accepts,

which adds extra coding complexity. With strong data typing, the Web

service is robust, because only highly constrained data enters Application

Service.

46

^ nap ier ;> u oiran anu -u n e L»escnpiion la n g u a g e ana a p p lica tio n se r v ic e iooikii

iv) The client does not have to have fall knowledge about the application. The

client can just set up the input files for the job, and leave the rest of the

argument setup to the Application Service.

v) Application Service can validate and correct the jobDescription set by the

user.

v i) The strong data typing not only makes exchange between client and service

easy, but also facilitates generic Web service workflow tools to compose

these services easily.

The strong data typing also has some disadvantages. It is difficult to develop and

requires the developer to have a working knowledge of XML and WSDL. It makes the

Web interface unstable due to the frequent change of the data types, particularly for

immature Web services where the required data is subject to negotiation and revision. A

modular WSDL is introduced to stabilise the WSDL, in which strong data type system

is abstracted into a 100% XML Schema compliant data model.

3.5.4 Command-line Description Language

Command-line Description Language (CoLDeL), an XML based language, is

designed in order to describe individual applications precisely. CoLDeL acts as a

protocol so that different service providers could follow it to generate an Application

Definition File for each scientific algorithm for use by Application Services. An XML

schema has been defined which ensures strongly typed data exchanging among services.

An initial number of types and a rich set of elements are declared.

The design of the CoLDel is simple but powerful. It provides a generic approach to

the abstraction of command oriented application’s configuration. It makes the

application service lightweight but highly configurable. No business logic code

generation is needed to create a service from its description. CoLDel is also helpful to

enable generic Web service workflow tools to compose Application Services.

In our current implementation, CoLDel has the following advantages:

i) Conforming to the XML schema, CoLDeL can specify each application

with a rich semantic description and provide as much useful information to

the service/workflow/client as possible.

47

v.napier j ^ommana-iine uescnpuon language ana Application service i oo ik ii

i i) CoLDeL provides a set of default argument values from Application

Definition File, so that the user needs not set all argument values for each

job execution - this is useful as there can be hundreds of arguments to be

set up, but the user is often only interested in a few of them.

ii i) CoLDel supports data types and constraints on arguments values to ensure

that all the arguments values are acceptable. It can facilitate validation of

the user’s job configuration. The argument set up from the user can be

validated against its data type and constraints before execution. This

increases the probability of successful completion of the execution. The

benefit of this validation is particularly obvious for long-running

applications or for applications that form part of a workflow.

iv) CoLDel specifies the dependencies and conflict of arguments, which can

help to validate the input dependencies.

Below is the schema definition for argument (named port in the schema).

48

unapter 5 tommana-une Description Language ana Application service i ooiKit

- c v o id index= "l">
- < o b je c t c l a s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .P o r t " >

- c v o id prDperty="id">
< in t> 2 c / in t>

< /v o id >
- < void p r o p e r ty = " p o r tN a m e " >

c s tr in g > - tc /s tr in g >
< /v o id >

- c v o id p r o p e r ty = " p o r tD isp la y N a m e " >
< str in g > In p u t I m a g e T y p e . 1 -T 1 , 2 - T 2 , 3 - P D (d e f a u l t T l) c / s t r in g >

c /v o id >
- < void p r o p e r ty = " p o r tD e sc r ip tio n " >

< str in g > In p u t i m a g e t y p e . 1 -T 1 , 2 - T 2 , 3 - P D (d e f a u l t T l) < /s t r in g >
c /v o id >

- < void p ro p e r ty = 1,m a n d a to r y " >
< b o o le a n > fa ls e < /b o o le a n >

< /v o id >
- < vo id p r D p e r ty = " a r g u m e n tT y p e " >

< o b je c t c la s s - 'u k .a c .n e u r o g r id .a p p v v s . s e r v ic e .c o m m o n .A r g u m e n t T y p e " field="pair" />
c /v o id >

- < void p r o p e r ty = " c m d L in e R e p r e s e n ta t io n " >
- c o b j e c t c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .C o m m a n d L in e R e p r e s e n t a t io n " >

- c v o id p rop erty= "flag" >
c s tr in g > - tc /s tr in g >

< /v o id >
- c v o id p r o p e r ty = " a v a lu e " >

< s tr in g > l< /s tr in g >
< /v o id >

- < vo id p r o p e r ty = " d e fa u ltV a lu e " >
< s tr in g > l< /s tr in g >

< /v o id >
- < vo id p r o p e r t y = " r e c o m m e n d V a lu e “>

< str in g > N A < /str ir ig >
c /v o id >

- c v o id p r a p e r ty = " r a n g e V a lu e " >
< str in g > N A < /s tr in g >

< /v o id >
- c v o id p r o p e r t y = " e n u m V a lu e " >

- c a r r a y class="java.lang.String" le n g th = " 3 " >
- c v o id in d ex = " 0 " >

- c o b j e c t class="java.lang.String">
c s t r i r i g > l c / s t r i n g >

c / o b j e c t >
c / v o i d >

- c v o id in d e x = " l" >
- c o b j e c t cla5s="java.lang.String">

c s t r i n g > 2 c / s t r i n g >
c/object>

c /v o id >
- c v o id in d ex = " 2 " >

- cobject class="java.lang.String">
c s t r i n g > 3 c / s t r i n g >

c/object>
c / v o i d >

c/array>
c / v o i d >

c / o b j e c t >
c /v o id >

c / o b j e c t >
c / v o i d >

Figure 3.4: Argument Data Type with Associated Metadata

4 9

v ^ u iim ia n u -iin c i-/c:>L,iipuuii J ^ an gu agc a n u f-vppiib .aiiun o c i vil-c i u u u u i

As shown in Fig 3.4, the argument data type contains a lot of associated metadata for

each argument of the algorithm command-line, like defaultValue, recommendValue,

range Value, and so on. This can be used by third party portal or workflow to help guide

the user in the setup of a valid parameter. In the case of argument set up, the portal can

use the metadata from ADF to present the user with default value, recommended value

and value range. The user then refers to this to set up the argument with a valid

parameter. This helps the user to set up the arguments in a user friendly way. In

particular, it is useful when the user does not have a lot of experience on applications.

This assist in argument setup greatly reduces the chance of job failure and rapidly

increases the opportunity to get better results from the application.

- cvoid index="9">
- cobject class= " uk .ac.n eu rogrid .ap p w s.serv ice .com m on .P ort" >

- cvoid property="id“>
cint>10c/int>

</void>
- cvoid property="portNamell>

cstring>-orc/string>
c/void>

- cvoid property="portDisplayName''>
cstring>O utput res to r ed im agec/string>

c/void>
- cvoid property="portDescription,l>

cstring>Output res to r ed im age.c/string>
c/void >

- cvoid property="mandatory">
cbooleari> fa lsec /boo lean>

c/void>
- cvoid property=''argumentType">

cobject c la ss= " uk .ac.n eu rogr id .ap p w s.serv ice .com m on .A rgu m entT yp e" field="flag" />
c/void>

- cvoid property=''outPortType">
- cobject class= " uk .ac.n eu rogrid ,ap p w s.serv ice .com m on .F ileT ype">

- cvoid property="ifdefault">
cboo lean> falsec /boo leari>

c/void>
C i - - u h e n f i l e n a m e 1 3 n u m b e r 1 5 , m e a n s g e t f i l e b a s e f r o m p o r t 15 — >

- cvoid property-'fileNam e">
cstring>15c/string>

c/void>
- cvoid property="fileSuffix">

cstring>_restore.niic/stririg>
c/void>

- cvoid property="fileOrPath">
c o b jec t class= " u k .ac.n eu rogr id .ap p w s.serv ice .com m on .F ileO rP ath '1 field="filePartiall\leedSuffix" />

c/void>
- cvoid property="fileFormat">

c o b jec t class= " uk .ac.n eu rogr id .ap p w s.serv ice .com m on .F ileF orm at" field="IMII" />
c/void>

- cvoid property="portDirection''>
cobject class= " uk .ac.n eu rogrid .ap p w s.serv ice .com m on .P ortD irection " field="out" />

Figure 3.5: Input/output Argument Data Type with Associated Metadata

Fig 3.5 shows that for all the input files and output files, "FileType" is defined to

provide full information regarding the file, like “WebDavDir” "filename," "fileFormat,"

etc. All the well known file formats are defined in the type "FileFormat”. This

50

^ u im n< uiu -m ic i_ycs>v;iipuuii la n g u a g e anu /^ p p m aiiu u . o c iv ic c iu u u u i

information allows the workflow composer to compose services by connecting outputs

of a service to the inputs of other services only if they semantically correct match.

CoLDel, the abstraction of applications description, provides a protocol to describe

the command oriented applications. It renders the Application Service the capability to

describe and process any command oriented application in a generic way. CoLDel is not

only used by Application Service, but is also shared by client and workflow. Different

parties follow the same protocol to specify and process the application description,

which makes the application arguments set up an easy and safe task. Therefore, it avoids

the failure or poor performance that is caused by improper arguments setup. CoLDel is

also very helpful for workflow to connect the services and orchestrate the input/output

files in a controlled manner.

On the client side, the client builds strongly typed data defined by CoLDel to supply

specific argument values for the application through an incoming SOAP message. The

input data arguments have to be set by the user. The user needs to set up the Uniform

Resource Identifier of the input files. On the service side, the service provider writes an

ADF for each application following CoLDel before service deployment. At run time,

Application Service validates the client setup and sets up other mandatory arguments

based on the information provided in ADF. JAVA XMLDecoder and XMLEncoder are

applied for converting an “algorithm” object to and from its equivalent XML document

representation. The Application Service generates an “algorithm” object from associated

ADF, combines this with the “algorithm” object provided by the client, determines the

specifics on how to properly build and construct the command with the appropriate

parameters, and subsequently submits the job.

3.5.5 Application Description File

The CoLDeL schema defines all the data type needed to describe the application,

including "FileFormat", "ArgumentType", “CommandLineRepresentation”, "Port", and

so on. An Application Descripion File is an XML document created from CoLDel

schema to fully describe a specific application. It provides meta-data about an existing

application and is usually supplied by the service provider or application provider. The

information provided in an Application Description File defines the semantics of an

application and enables the Application Service to expose an application automatically

as a Web service.

51

L^napier j L.ommana-iine uescnption JLanguage ana Application service i ooikii

Before wrapping the application, the application provider must write an Application

Definition File for this individual application conforming to CoLDeL schema. The ADF

has to be complete enough so that the service can dynamically compose the command-

line at run time and retrieve the input data files. As a consequence, the ADF contains the

following information that can be categorized into three categories:

i) General information. This includes the algorithm name, contributing

institution, versioning information, and brief description.

i i) The execution environment information. This describes the requirement on

the execution environment such as platform, libraries required and

environmental variables. This information is used to construct the

execution environment at run time.

i i i) The argument’s description. This provides all the information for each

argument of the algorithm command-line, including mandatory

information, argument type, default values, value range, dependency

information, naming conventions of outputs, and so on.

<?xml version="1.0" encoding="UTF-8" ?>
- cjava v ers io n = " 1 .5 .0 _ 1 0 " c la ss= " ja v a .b ea n s.X M L D eco d er " >

- c o b je c t c la s s= " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .A lg o r ith m " >
- cvo id property="algorithm lM am e">

c s tr in g > b e tc /s tr in g >
c /v o id >

- cvoid p rop erty= "a igorith m V ersion " >
< str in g > 1 .0 c /str in g >

c/v o id >
- cvoid p rop erty= " a lg o r ith m D escr ip tio n " >

cstr in g> B rain s e g m e n t a t io n to o l .c /s tr in g >
c/v o id >

- cvoid prop erty= ''loca tion '1>
c s t r in g > /h o m e /n g /m e d ic a lA p p / f s l - 3 .3 .7 /b in c / s t r in g >

c/v o id >
- cvoid property="exec">

c s tr in g > b e tc /s tr in g >
c /v o id >

- cvo id p rop erty= "category" >
c s tr in g > s e g m e n ta t io n c /s tr in g >

c /v o id >
- cvoid p ro p erty = " su b ca teg o ry " >

<string> brain e x tr a c t io n c /s t r in g >
c /v o id >

- cvoid p rop erty = " en v iro n m en tV a rs''>
- carray c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .E n v ir o n m e n tV a r " length="3">

- cvoid index="0">
- c o b je c t c la s s= " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .E n v ir o n m e n tV a r " >

- cvoid property="varN am e">
cstrin g> F S L D IR c/string>

c /v o id >
- cvoid property="varV alue">

c s t r ir ig > /h o m e /n g /m e d ic a lA p p / f s l - 3 .3 .7 c / s t r in g >
c /v o id >

c /o b je c t>
c /vo id > 4

52

unapter d tommana-nne uescnpuon Language ana Application service i ooikii

Figure 3.6: ADFBET Parti

- cvo id index="l">
- c o b je c t c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .E n v ir o n m e n tV a r '>

- cv o id prop erty= "varN am e" >
cstr in g> P A T H c/str in g>

c /v o id >
- cv o id property= "varV alue">

cstr in g > $ -{F S L D IR > /b in /:$ -{P A T H > c /s tr in g >
c /v o id >

< /o b je c t>
c /v o id >

- cv o id index=''2">
- c o b je c t d a s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .E n v ir o n m e n tV a r " >

- cvo id p rop erty= "varN am e" >
cstring>L D _L IB R A R Y _P A T H c/string>

c /v o id >
- cv o id p roperty= "varV alue">

cstr in g > $ {F S L D IR > /lib :$ {L D _ L IB R A R Y _ P A T H }c /str in g >
c /v o id >

c /o b je c t>
c /v o id >

c/a rra y >
c /v o id >

- cvo id prop erty= "oth ers">
- carray c la s s= " ja v a .la n g .S tr in g " length=''2">

- cv o id index=“0">
- c o b je c t c la s s= " ja v a .la n g .S tr in g " >

cstr in g > . $ { F S L D I R } /e t c / f s lc o n f / f s l . s h c / s t r in g >
c /o b je c t>

c /v o id >
- cvo id index="l">

- c o b je c t c la s s= " ja v a .la n g .S tr in g " >
c s tr in g > e x p o r t FSLOUTPUTTYPE = ISIIFTIc/string>

c /o b je c t>
c /v o id >

< / array >
< /vo id >

Figure 3.7: ADF BET Part2

Figures 3.6 and 3.7 indicate a simplified example of an ADF used for a medical

image brain extraction service. BET ADF that conforms to the CoLDeL schema has

three main elements: servicelnfo, environmentVars, and ports.

First, some generic information related to the application is included, like

algorithmName, algorithmVersion, algorithmDescription and executable name and

location. As the elements’ names imply, they specify the name and version of the

algorithm, a short description of the algorithm, and the name of the executable and its

location.

Then environment variables are specified inside of the <environmentVars> element,

if any, that need to be passed on to the application before executing it on this host.

The environmental variables FSLDIR, PATH and LD LIBRARY PATH are

specified for the BET application.

53

Lnapter 3 Lommana-nne uescnption Language ana Application service l ooiiat

The generic information and environmental variables information are used by

Application Service only. This is vital information for Application Service to create the

right environment and retrieve the right executable.

- cvo id property="ports">
- < array c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .P o r t" length="13">

- cvoid index="0">
- c o b je c t c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .P o r t" >

- cv o id property="id">
c in t> lc / in t>

c /v o id >
- cvo id property="portN am e">

c s tr in g > b e tc /s tr in g >
c /v o id >

- cvo id p rop erty= "p ortD isp layN am e" >
c s tr in g > b e tc /s tr in g >

c/v o id >
- cvo id p rop erty= "p ortD escrip tion ''>

c s tr in g > b e t.c /str ir ig >
c /v o id >

- cvo id property= "m an d atory" >
cb o o le a n > tr u e c /b o o le a n >

c /v o id >
- cvo id p rop erty= "argu m en tT yp e" >

c o b je c t c la s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .A r g u m e n tT y p e " field="avalue" />
c /v o id >

- cvo id p ra p erty = " cm d l_ in eR ep resen ta tio n " >
- c o b je c t c ld s s = " u k .a c .n e u r o g r id .a p p w s .s e r v ic e .c o m m o n .C o m m a n d L in e R e p r e s e n ta t io n " >

- cvoid property= ''avalue">
c s t r in g > / h o m e / n g / m e d i c a l A p p / f s l - 3 .3 . 7 / b i n / b e t c /s tr in g >

c /v o id >
c /o b je c t>

c /v o id >
c /o b je c t>

c /v o id >

Figure 3.8: ADF_BET Part3

Moreover, Figs 3.8 and 3.9 show that the command arguments information is defined

inside of element <ports>, which is an array that contains many <port> elements. Each

port stands for an argument of the algorithm command-line. It contains all the meta­

data related the argument, e.g., id, portName, portDisplayName, portDescription,

mandatory, argumentType, cmdLineRepresentation, conflictPorts, dependPorts,

inPortType, outPortType and so on.

“mandatory” specifies if this argument is mandatory to be set. “conflictPorts”

explains which arguments cannot bet set together with this argument.

“argumentType” tells the format of argument appears on the command-line. The

possible “argumentType” are “FLAG” (e.g., -debug), “VALUE” (e.g., inputfile.suffix),

“PAIR” (e.g., -Sxl 100) and “NOT”. “cmdLineRepresentation” specifies how the

argument exactly appears on the command-line. For each argument,

“cmdLineRepresentation” is made up of two parts, “flag” and “avalue”. “flag” is always

54

^ u im n a iiu -m ic i^ c sc iip u u n .L anguage anu /A .ppneauun o e iv ie c iuulkji

static, “avalue” is dynamic, and can be set by user or workflow. ADF provides a lot of

associated meta-data for the “avalue” setup, like "defaultValue", "recommendValue",

"enumValue" and "rangeValue". These meta-data can be used by the portal to help

guide the user in the selection of a valid parameter. It is very helpful in terms of

validation and assistance of arguments setup.

- cvoid index-'7'>
- cobject class="uk.ac.neurogrid.appws.service.common.Port">

- cvoid property="ld">
<int>8c/int>

c/void>
- cvoid property="portlMame">

<string>-fc/string>
</void>

- cvoid property="portDisplayName">
cstring>Fractional intensity threshold</string>

</void>
- cvoid property="portDescription">

<stnng>Fractional intensity threshold (0—1); default=0.5; smaller values give larger brain outline estimatesc/string>
c/void>

- cvoid property="mandatory">
cboolean>falsec/boolean>

c/void>
- cvoid property="argumentType">

cobject class=“uk.ac.neurogrid.appws.service.common.ArgumentType" field=“pair" />
c/void>

- cvoid property="cmdLineRepresentation“>
- cobject class="uk.ac.neurogrid.appws.service.common.CommandLineRepresentation">

- cvoid property="flag">
cstring>-fc/string>

c/void>
- cvoid property="avalue">

cstring>0.5c/string>
c/void>

- cvoid property="defaultValue">
cstring>0.5c/string>

c/void>
- cvoid property="rangeValue">

cstring>0;lc/string>
c/void>

c/object>
c/void>

c/object>
c/void>

Figure 3.9: ADF_BET Part4

“inPortType” and “outPortType” provides information for the input file and output

file, respectively including “ifdefault”, “WebDavDir”, “filename”, “fileFormat”,

“filePrefix”, “fileSuffix”, etc. In some applications, the output file name is based on the

input file name. “dependPorts” tells where to get this input file name.

55

l napicr j L o m m a n a - i i n e u c s c r i p u o n L a n g u a g e a n a / v p p n e a u o n s e r v i c e i o o i k u

The information contained in <ports> is shared by the user, workflow, and

Application Service.

Concrete WSDL

AppSenrice.wedl

< import

AppAbstract.wsdl

/

Abstract WSDL I
AppAfastradwsdl

< import

CommonType.xsd
 »■

f

Data Type

r CommonTypejaid —

< com plexType

Argument
 >

< complexType

nieType
. . . . >

Figure 3.10: Web Service Descriptions Modularisation

3.5.6 M odular W SDL

Figure3.10 shows how concrete W SDL imports abstract WSDL, which imports

common data type schema.

As mentioned above, an initial number o f types and a rich set o f elements are

declared in the W SDL which ensure strongly typed data exchange between client and

service. It makes the W SDL interface unstable due to frequent change o f the data types.

Particularly in our case, most data types are designed to describe the applications. With

further applications being brought in, the data types are subject to frequent negotiation

and revision. A m odular W SDL is introduced to keep the W SDL stable, in which the

type declarations o f a W eb Service are moved into a separate document.

All the application related types are separated from the W SDL definitions and put in

an XM L schema document named commontype.xsd.

The NgappServiceAbstract.wsdl file defines what the Application Service does by

defining the data types and business operations o f the W eb Service. The file imports

XM L schema commontype.xsd as immediate children o f the <wsdl:types> element, and

defines different <wsdl:message> and <wsdl:portType> elements.

The NgappService.wsdl is the concrete W SDL file that defines how and where to

invoke a service by defining network protocol and service endpoint location with the

<wsdl:binding> and <wsdl:service> elements. The NgappService.wsdl file incorporates

56

Lnapier j Lommana-nne uescnpuon Language ana Application service i oonat

the NgappServiceAbstract.wsdl file using <wsdl:import> or <wsdl:include>. These

elements should be the first immediate children of the <wsdl:definitions> element.

<wsdl:include> is used when two wsdl files have the same namespace and

<wsdl:import> is used to combine wsdl files from different namespaces. This approach

greatly improves component re-usability as the same NgappServiceAbstract.wsdl file

can have multiple service bindings.

Abstraction of the Web Service type declarations into a 100% XML Schema

compliant data model has many important advantages. This encourages collaboration

between the different partners involved in the data model design process and assures

interoperability. This also leverages the advanced capabilities of XML schema for

precisely constraining complex scientific data.

Abstraction of the Web Service type system into a 100% XML Schema compliant

data model produces several important advantages:

i) Separation of Roles. The type declarations are fully abstracted and developed

in isolation from the network protocol and communication specific details of

the WSDL file. In doing this, the focus becomes centred upon the

business/scientific requirements of the data model. This greatly encourages

collaboration between the scientists who are involved with the description of

scientific data and data model design.

i i) Data Model Re-usability. Existing XML Schema can be re-used instead of re­

designing a new type system for each new Web Service. This helps reduce

development efforts, cost and time.

i i i) Isolation of Changing Components. The data model is the component that is

most subject to change, often in response to changing scientific requirements.

Its isolation therefore limits the impact on other Web Service components

such as the concrete WSDL file implementation.

iv) Full XML Schema Functionality. The XML Schema type system leverages the

more powerful features of the XML Schema language for description,

constraint and validation of complex data. This has proven invaluable for the

description and constraint of complex scientific data.

57

unapter 3 uommana-une Description Language ana Application service i oo ik ii

3.5.7 Data Management

In many scientific enterprises, the input files are large and they may be stored in

some remote location. Consequently, we do not assume that the user will upload the file

directly to the portal or the service, though this is possible. Rather, Uniform Resource

Identifier (URI), a compact string of characters for identifying an abstract or physical

resource, is adopted to provide the direct link to data files. It is often better to pass the

Uniform Resource Identifier (URI) for the input files to the service.

The Data Management Component handles data transfer between two sites using

WebDav. The Application Service interacts with the Data Management Component to

transfer data between service provider and data repositories. It retrieves the input data

from the data repositories and puts the results back to the data repositories. The

information exchanged between the Application Service client and service via SOAP

only contains references of input/output, the URIs. No large data is included in SOAP

messages. Since we are using WebDav to manage data, the URI contains information of

the WebDav server, WebDav folder name, and file name.

We believe using a common data transfer protocol would eliminate the current

duplication of effort in developing unique data transfer capabilities for different storage

systems. For the current implementation, Application Service only takes input data

located in the WebDav folder on the remote data server. WebDav is used to transfer

data files between the Application Service and data server, which is a secure, efficient

data transport mechanism. If needed, other data management plug-ins are possible and

can easily be fitted into the Application Service due to the component plug-in model

used.

When a client invokes an application, the Application Service creates a new working

directory for each job at the server site. The input data files described via URIs are

archived from data repositories to the corresponding working directory through

WebDav. The application is run inside the working directory in the FORK case, or

submitted to a computational resource. The output will be brought back to this working

directory from the remote computational site. Finally, Application Service transfers all

the output files back to the WebDav folder on the data server through WebDav. The

URIs of output files are provided which allows them to be located and retrieved later.

58

^uiixxxxaxxu-xxxxc i^csuxxpixuxx x^aixguage axxu /\ppxxuaixuxx ocxvxcc xuuxxui

The data upon which each job acts may come from two different sources: 1. Users

may directly upload data files from their local machine to a remote data server. In this

case, users can use the WebDav browser to drag the files to the data server directly in an

easy and secure way. 2. Users may issue a query via a web interface. This query is

resolved against one or more distributed databases. The matching data set can be used in

later computations.

The “applicationName” along with the attribute “targetNamespace” uniquely identify

the application. The “hostName” specifies the name of the host on which the application

has been deployed whereas the “executable” specifies the location of the application on

that host. The “tmpDir” specifies a temporary directory that the application service can

use to stage input files to the application. It is also used to temporarily store log files,

standard out, standard error, intermediate files and output files of the application.

3.5.8 Security

Security is a critical requirement and must be accounted for by any geographically

distributed Grid community. There is high demand to protect data confidentiality and

integrity in Grid enabled applications. The traditional security mechanisms for

homogeneous systems do not scale to heterogeneous environments operated by different

organizations. A reliable yet easy to use security infrastructure is therefore important.

There are three requirements of the security: authentication, integrity and

confidentiality. Authentication is to ensure that parties within a business transaction are

really who they claim to be. Integrity is to validate the integrity of business information

exchanged in a transaction ensuring that a message’s content has not been altered or

corrupted during its transmission over the Internet. Confidentiality is to make the

information exchanged in Web services requests and responses unreadable. The purpose

is to ensure that anyone accessing the data would need the appropriate algorithms and

security keys to decrypt the data before being able to access the actual information.

Transport-level mechanisms like HTTP over Secure Sockets Layer (HTTPS) provide

these capabilities, but transport level security isn't flexible enough for some

applications. The difference of HTTPS and WS-Security are exhibited below:

i) Transport based security (HTTPS) is bound to HTTP. It only secures the

transport channel between two points. This means HTTPS provides point-to-

59

^napier j ^ommana-nne uescnpuon language ana Application service i ooikii

point security, securing the connection between the sender and receiver of the

message. This solution is incomplete if intermediaries between the endpoints

forward or process the message. While with WS-Security, message itself is

secure rather than underlying transport. Signature and encryption persists with

messages.

i i) HTTPS is bound to HTTP. While web services are decoupled from an

underlying transport, and can use transports like SMTP and JMS in addition to

HTTP.

i i i) HTTPS encrypts the entire message, while WS-Security can encrypt only a

portion of the message.

It is important to justify the decision to use WS-Security because WS-Security has an

impact on the overall response time and the number of simultaneous requests that the

service can support. HTTPS provides a significantly better performance solution than

what is possible when using XML Digital Signature and XML encryption. For

NeuroGrid Application Service, business logic is more complex and distributed on

remote systems. The overall processing times of business logic executed by the

Application Service implementations are long. The impact of WS-Security on response

time does not result in much a difference. Also due to stringent requirements for patient

confidentiality and authenticity of results, we choose WS-Security instead of transport

level security to ensure secure data management in a distributed environment. For

NeuroGrid Application Service, digital signature and message level encryption

capability provided by WS-Security is the good choice. We have a full implementation

based on WS-security. The Application Service addresses the three security

requirements outlined below:

i) Authentication is used to ensure the identity of the message senders.

i i) Digital signatures are used to ensure a message's integrity, that its content has

not been altered or corrupted during its transmission over the network.

i i i) Encryption is used to ensure message confidentiality.

Every user uses an X.509 certificate issued from NeuroGrid CA, a trusted Certificate

Authority. NeuroGrid CA issues two types of certificates, NeuroGrid user certificate

60

L^napter j ^ommana-nne uescnpuon language ana Application service i oo ik ii

and Guest Certificate. NeuroGrid user certificate has the access to the data nodes

belonging to the user's group, and all the Application Services. The Guest Certificate

has access to all the Application Services, and one data node dedicated for guest users.

The certificate contains identity credentials and has a pair of private and public keys

associated with it. The proof of identity presented by a party includes the certificate

itself and a separate piece of information that is digitally signed using the certificate's

private key. By validating the signed information using the public key associated with

the party's certificate, the receiver can authenticate the sender as being the owner of the

certificate, thereby validating their identity.

In NeuroGrid Application Service, the SOAP message is digitally signed. We use the

private key of the sender's X.509 certificate to digitally sign the SOAP body of a Web

service request. Likewise, a Web services response is digitally signed to ensure data

integrity.

An X509Token is used to allow Application Service to have fine grained control on

what operations users can invoke. Token is an XML document which is a detailed

policy document that authorizes a user to invoke a particular operation on an

Application Service. It is signed by the Application Service’s credentials (X509 proxy

certificate) and is issued to the user. The user needs to present the token to the

Application Service before it can invoke an operation. Thus X509Token allows

Application Service providers to have fine grained control on what operations users can

invoke on their Application Services. X509Token is automatically generated by

Application Services and is completely transparent to Application Service providers.

The security set up can be conveniently controlled by Security Configuration Files.

In a sign-encrypt set up, the client first constructs a SOAP message to invoke the

service. If the Application Service supports tokens, the client attaches the user’s

capability token to the SOAP message, signs the message with the user’s X509 proxy

certificate and encrypts it. Then the user sends the message to the service.

On the server side, the service first decrypts the message. Then it verifies the

signature on the SOAP message. It then verifies the capability token to ensure that it has

not expired and ensure that the token authorizes the user to invoke the operation on the

service. The SOAP message is then sent to the SOAP Message Processor for further

processing. The server signs and then encrypts and sends the response.

61

^napier j ^oniinariu-iine L»escnpiiuii lan gu age anu /\ppiit;auuii serv ice iuouui

In a typical usage scenario, the user invokes the service provided by the service

provider, and then the service provider accesses compute resources on behalf of the

user. This means compute resources have to trust all the users trusted by service

provider, and hence brings the account management burden to the resource provider.

We introduce a Service Provider Account Model to avoid this problem. In this model,

the user does not have direct access to compute resources and they are completely

decoupled from compute resources where jobs are effectively run. The user only has

access to the Application Service. A special user account is set up for the service

provider, which is trusted by compute resources. The service provider acts as an active

agent between the user and compute resources. It authenticates and authorizes the users,

and serves the user requests. It also accesses related compute resources on behalf of

itself. The compute resources respond to these requests due to their trust of the service

provider.

3.5.9 Service Provision and Deployment

We assume that the application has been already deployed on some host or has been

ready to migrate to run on some compute resource. This is because Application Services

do not attempt to deploy any application. Hence, in order to generate a customized

Application Service that can be deployed in the Application Service hosting

environment (i.e., Apache Tomcat) as a Web Service, the application installation or

preparation is first. Also an Application Description File, which specifies the

installation and configuration details, has to be provided. A security control file has to

be in place to control the security setup of the Application Service, like signing,

encrypting, and so on.

62

vuiapici j \^uum i<uiu-im c L7cs>uiipiiuii i^aiigucigc <mu /A.ppnu<iuuii o c i v it c iu u u u i

#webdav client certificate directory, used by ngapp service
server.aswebdavclient.certs=/home/ng/certs/webdavclient

#alias of webdav service at ngapp server side
#ngnodemO3.cs.ucl.ac.uk.webdav.alias=ngnodem03.cs.ucl.ac.uk
#ngnodeml4. ediamond.o k . ac.uk.webdav.alias=ngnodeml4. ediamond.o k . ac.uk

#webdav alias on ngnodeml4
ngnodemOl.ediamond.ox.ac.uk.webdav.alias=ngnodemO1
ngnodem02.ediamond.o k .ac.uk.webdav.alias=ngnodem02
ngnodem03.cs.ucl.ac.uk.webdav.alias=ngnodem03
ngnodem04.cs.ucl.ac.uk.webdav.alias=ngnodem04
ngnodem05.cs.ucl.ac.uk.webdav.alias=ngnodemO5
ngnodem06.ediamond.o k .ac.uk.webdav.alias=ngnodemO6
ngnodemO7.ediamond.o k .ac.uk.webdav.alias=ngnodemO7
ngnodem08.ediamond.o k .ac.uk.webdav.alias=ngnodem08
ngnodemll.ediamond.o k .ac.uk.webdav.alias=ngnodemll
ngnodeml2.ediamond.o k .ac.uk.webdav.alias=ngnodeml2
ngnodeml4.ediamond.o k .ac.uk.webdav.alias=ngnodeml4
ngnodeml5.ediamond.o k .ac.uk.webdav.aliasingnodeml5

intermediate output directory
intermediate.output.directory=/home/ng/tomcat50-jwsdp/j obs

#ngapp implementation class
ngapp.impl.class=uk.ac.neurogrid.appws.core.App_ForkSe rvicelmplementor

Figure 3.11: A Service Property File

Moreover, a service property file is set to describe some dynamic information that is

required by an Application Service to be hosted on the specified host. It contains

information closely related to the Application Service server, which is usually different

based on the different server’s environment and requirement. A sample service property

is shown in Figure 3.11

server.asWebDavclient.certs specifies where the security certificates files are located,

which are used to invoke the Data Management Service. WebDavserver.alias tells the

alias for a specified data management server. Because the Data Management Service is

hosted on 8 different nodes, we provide a list of aliases for all data servers. The

Application Service can dynamically get the right alias based on which data server is in

use. intermediate.output.directory tells the Application Service where to put all the

intermediate output, ngapp.impl.class specifies which Job Submission Component plug­

in (FORK, CONDOR, etc.) is to be used for Application Service.

An intuitive deployment tool has been developed for the generation and deployment

of the customized Application Service. The deployment tool enables the application

provider to upload an Application Description File via a portal interface. The ADF file

63

vnapicr j L o m m a n a - i i n e u c s c r i p u o n L a n g u a g e a n u A p p l i c a t i o n s e r v i c e i o o i k i i

will be registered with the ADF Pool. At the service provider side, the deployment tool

generates an appropriately customized W eb Service, which encapsulates the application,

and finally deploys the service within the remote Application Service hosting

environment.

3.5.10 ASToolkit C lient E nvironm ent

ASToolkit client applications usually run on PCs or workstations connected to the

Internet. ASToolkit client environment offers the ASToolkit client API, which has a

high level Java API interface to hide the complexity o f accessing remote Application

Services from the user. ASToolkit client API is mainly used for communicating with

the Application Services. It also handles the preparation o f service input data and post­

process the serv ice output data. The API may be used not only by the end user, but also

by client side application developers, like portals, to construct advanced Grid

applications that interact with remote Application Services.

Figure 3.12 shows that ASToolkit client contains several layers, high level Java API

interface, client business logic (job submission, job steering), a security handler, and

service proxies. The top layer o f the ASToolkit client is the high level Java API

interface. The Java API provides a set o f classes for dealing with job submission and

job steering at a high level o f abstraction hiding the details o f the underlying interaction

with Application Services. The API hides the complexity o f dealing with remote

Application Services from the user.

Cilcnt Side

High Level JAVA API

Job Submission Job Steer

Message Luyer +W5-5ecurity

5ervice Proxies

JAXRPC Runtime
5QAP

Message

Server Side

Application Service

Ties

JAX-RPC Runtime

Figure 3.12: ASToolkit Client API Abstraction Layers

64

^napter j L.ommana-iine uescnption language ana Application service i ooikii

Security is handled at the lower layer of the ASToolkit client and is completely

hidden from the user. This prevents the user from dealing with low level issues such as

message generation, signing, and encryption.

In the lowest layer, ASToolkit client provides service proxies for the toper layer to

interact with. Service proxies are stubs that are placed on the client and connect a web

service client to the JAX-RPC runtime. ASToolkit automatically generates these and

packs them in ASToolkit client. The user does not have to deal with the complexities of

stub generation of client side. Service proxies are in charge of interacting with remote

Application Services and handle job execution and job monitoring, as well as job

steering.

Jobs can be executed synchronously or asynchronously. If they are executed

synchronously, the client is blocked until the remote execution is complete. The job

outputs are returned as a response to the original request. However, this style of

invocation is not always appropriate. Jobs may possibly spend a lot of time being

queued if the resources happen to be heavily loaded. Furthermore, if the jobs are long

running, the client will stay blocked until the job finishes, or possibly times out.

To overcome this shortcoming, in ASToolkit client, jobs are launched

asynchronously. A response is immediately sent back to the client with a jobID for the

job being executed. The clients can use this jobID to query the service for job status and

job metadata at a later time. This makes the service stateful. Apart from the job status

and metadata about job inputs, outputs and other command arguments setup, the service

status also includes file transfer information and job history. Files are used to keep all

this information on the server side, and are accessed via both Application Service and a

generic steer service.

3.6 A Sample to Wrap an Application

To understand how the ASToolkit can be used to wrap the applications we describe a

typical use sample. (Let us)Suppose there is an application BET needed to be wrapped

as a Web Service. BET [9] is Brain Extraction Tool that runs from the command-line

with a set of arguments options. BET expects to find an input file and produces an

output file. The service provider would like to create an Application Service that will

allow all the qualified users (the people who hold NeuroGrid certificates) to run this

65

unapter 5 Lommana-nne uescnption Language ana Application service 1 oouat

program. We assume that BET has been installed on some host. For example, (let us)

assume that it is installed at Linux box hairyviolet.cs.ucl.ac.uk and located in the

directory path /home/ng/medicalapps/bet. ASToolkit does not do anything related to

application deployment or installation. We install the application in the same directory

path on different servers. ASToolkit allows the application to be installed anywhere as

long as it is accessible because the location of application is specified in the Application

Description File and will be dynamically loaded by Application Service at run time.

There are the following actions that our application provider and service provider

must take to create a BET Application Service:

i) Write an Application Description File (ADF) for BET, which is a simple

Extensible Markup Language (XML) description of the application conforming

to CoLDel schema. ADF is described in detail in section 3.5.5. An ADFBET is

provided in Figure 3.5. The document contains general application information,

the execution environment information, and application arguments information.

If the application is to be run on Condor or another Grid environment, ADF BET

needs to list all the executables to be staged into the remote execution node.

i i) Edit Security Policy File, SPFBET, contains the policy information concerning

which individuals and groups are authorized to invoke the service, and how to

secure the message between users and service. The application provider can

simply use the default Security Policy File without even knowing this.

i i i) The application provider can upload the ADF_BET and SPF BET from the

portal through a Web interface. The executables are also needed to be uploaded

for the non-fork Application Service. Then the service developer will take over

the task and wrap BET as an Application Service using ASToolkit. Or the

application provider can wrap it using ASToolkit with minimum software

installation, ANT and Java.

iv) The service provider manually edits the service property file which contains

some dynamic information that is required by an Application Service to be

hosted on the specified host.

v) The service provider gets ready the ADF_BET, SPF_BET and/or executables.

Then the provider manually edits the ANT property file to let the ANT know

66

^nap ier j \^uim iiaim -iiiie u escr ip u u n Language aim /\p p im au u ii aervm e iuu ik il

where to find all these ADF, SPF and/or executables. Executables are only

prepared and put in the right location known by ANT script for the none-fork

Application Service.

v i) The service provider runs the ANT script through command-line, or eclipse.

ANT script includes service building and remote service deployment.

3.7 Summary

In this chapter, we have presented CoLDel, an XML based language for describing

individual command-line applications precisely. CoLDeL provides an standard to

service providers, so that the service providers can generate an Application Definition

File for each scientific algorithm for use by the Application Service. CoLDeL is also a

protocol between client and service, which makes the exchange between client and

service easy. It also facilitates generic Web service workflow tools to compose

Application services easily.

We also have presented ASToolkit, a toolkit for wrapping scientific applications as

Web services. We described the technical details of the ASToolkit architecture and

implementation. We describe a typical use sample to demonstrate how the ASToolkit

can be used to wrap the applications.

67

^ napier ^ in eurouna rrameworK

CHAPTER 4

NeuroGrid Framework

4.1 Introduction

Current neuroimaging research is characterized by small-scaled studies carried out in

single centers. Many groups make their algorithms available for download over the

Web, which is not a convenient or efficient way for neuroimaging research groups to

share algorithms for regular image analysis. Also it is very unusual to share data. When

data is shared, subtle differences between the image acquisitions normally inhibit

reliable quantitative analysis of aggregated data. Furthermore, data curation in

neuroimaging research tends to be poor, with images normally archived on removable

storage media that rapidly become obsolete, making aggregation of data between or

within sites difficult, if not impossible, on those occasions when it is desired [42-44].

NeuroGrid framework helps to overcome these problems by the integration of image

storage and image analysis algorithms and by the collaboration of work within sites.

The NeuroGrid framework connects sites for rapid and secure flow of data, enables

distributed data analysis with image analysis tools and interoperable databases, and

enhances collaboration between researchers in different clinical and methodological

areas. Therefore, this framework can aid data sharing, data analysis sharing, and

compute resource sharing. It allows current algorithms and existing data management

procedures to be more accessible and interoperable in the Grid environment, so there are

low barriers to sharing and time is not wasted on re-engineering well established

algorithms.

Currently, one of the main obstacles for neuroimaging research and other academia

field take-up of Grid technology is the existence of a large amount of legacy code that is

inaccessible as Grid/Web services. The ASToolkit concept and its integration with the

68

cnapter ^ iNeurouna rrameworK

Grid portal technology eliminates this problem and can lead to a breakthrough in the

establishment of scientific Grids. NeuroGrid framework stretches the usability of

scientific Grids where most of the codes are written in FORTRAN or other languages,

and now all these applications are accessible as Application services. The framework

also enables users to discover these Application services, interact with them, and

interact with composed scientific workflows from a user friendly Web portal. The

framework is built for neuroimaging community, but the approach is generic and can be

used for any other community.

In this chapter, we present a detailed description of the NeuroGrid framework, which

forms a basis for some of the work introduced in this dissertation. First, we present the

design goals for NeuroGrid, and then discuss its architecture in detail. We also highlight

the Abstract Application Service, Group Applications Service Optimization and

Scientific Workflow mechanisms and describe how they are implemented and used

within the framework. Finally we conclude with some real user cases in scientific

communities.

4.2 Design Goals

NeuroGrid is a large-scale system addressing the key issues of data- and services-

sharing in an open and changing community. The complexities of the NeuroGrid are

two-fold: the heterogeneity of initiatives and stakeholders and the high level of

specialization of the various sub-fields that can contribute to the Grid system. Both of

these complexities pose several challenges to requirements engineers and architecture

designers. In such a context, a clear understanding of the key goals and requirements is

crucial to develop a system that fits the users’ expectations.

4.2.1 Functional Requirement

NeuroGrid framework has four primary functional goals:

4.2.1.1 Legacy algorithms easily to be accessed

We need to provide an ability to allow legacy algorithms easily to be accessed and

run in the Grid environment.

69

L napter 4 iNeurouria rrameworK

We need to provide mechanisms to migrate the legacy applications to dynamic Grid

environments. Also, we wish to provide mechanisms to support job monitoring and job

restart for fault tolerance.

Most large scale computational facilities have traditionally operated their machines

in batch mode; the toolkit is focused on these batch mode applications. The toolkit

should be able to wrap almost any command-line application (i.e., non-graphical), such

as UNIX commands or more sophisticated scripts written in Python, Perl, and so on. It

should not require any modification to the wrapped applications. A toolkit will provide

a set o f tools that wraps scientific applications as W eb services. The toolkit is also able

to orchestrate generation, deployment and installation o f the Application service.

Application
Service

Grid Middleware
Compute Resource

Job Submission
Component

Condor
Condor

Condor

Job Submission
Component

Sun Grid Engine Sun Grid Engine
Sun Grid Engine

Job Submission
Component

Globus

Globus

Globus

Job Submission
Component

Fork

Figure 4.1: Grid Enabled Application Service

As depicted in Figure 4.1, algorithms will be wrapped and presented as Web services

in NeuroGrid framework, which is termed as Application services. The exact

implementation details o f the algorithm and platform will be abstracted away using a

comm on Web service interface.

Figure 4.1 also shows that the role o f the Application service is to provide a uniform

submission layer on top o f different execution environments. Various Job Submission

Components can run the legacy algorithms in the various Grid environments, such as

Globus, Condor, and Sun Grid Engine.

70

n c u i u u i i u i la in cw u ijv

The Application service can enable but does not require the use of distributed

resources via the Grid. The Application service with job submission component FORK

can run the application locally without complicated Grid infrastructure.

4.2.1.2 Data to be more accessible and interoperable

We need to allow existing data management procedures to be more accessible and

interoperable. Data Access provides uniform access to heterogeneous data repositories.

Metadata uses metadata to discover data, and explicitly query metadata registries for

metadata about data within the system. Data publishing provides basic means through

which distributed data can be published within the system and accessed and retrieved

later.

A federated database will be built to facilitate the data sharing. A data management

service will allow user to publish and query to and from the federated database. This

service also provides functionalities for files editing, management, and transfer on the

remote server using WebDav protocol. A fine-grained access control system is

developed to provide arbitrarily complex access controls on the federated database. This

service was developed by NeuroGrid Oxford team, and has been integrated with our

NeuroGrid framework seamlessly.

4.2.1.3 Graphical user interfaces to access applications and data

We need to provide graphical user interfaces to access a large number of Application

services and federated database from a scientific portal, and yet keep the portal

lightweight and manageable. We will provide a Web portal which is a gateway through

which users may access services, invoke workflows, and manage data. There are two

types of users: service providers who use the portal to create the application services for

legacy applications and end users who interact with the services through the Web

interface.

4.2.1.4 A lightweight workflow composer

We need to provide a lightweight workflow composer to compose sequential

workflows from Application services. It will be possible to define and store sequential

workflows within NeuroGrid that will join together algorithms wrapped as Application

services.

71

^ n a p ic i h- i>cu iuv jiiu r id in c w u iK

4.2.2 Architectural Requirement

Below are the important high level requirements for the system.

4.2.2.1 Languages

Java TM and J2EE are proven technologies with multiple vendors offering

compatible products. It is a good platform for deploying Web services, and offers the

good solutions to the really hard part of developing Web services, such as security,

messaging capabilities, distributed transaction management, connection pool

management, and handling huge numbers of simultaneous users [45].

4.2.2.2 Platform

Linux is the platform of server that will host the Application toolkit, Application

services, data management services, workflow services, and Web portal. Client-side

software should support any platform.

4.2.2.3 Modularity o f Components

The software should be constructed in a modular way based on components, where a

software component provides specific functions via a well defined public interface [46].

Components interact with other components through their interfaces. It should be

possible to replace a component with a different implementation respecting the same

interfaces without perturbing the rest of the system.

This also ensures no one component in the system is responsible for providing all of

its capabilities. This principle allows components to support “plug and play”

architecture.

4.2.2.4 SOA

It is intended to build the NeuroGrid infrastructure using WS-I [47] compliant Web

services with a minimal set of extensions which currently include WS-Security.

The Web service interactions will be abstracted away by the Java APIs. However, it

will be perfectly possible to achieve full functionality by talking directly to the

underlying Web services.

4.2.2.5 Distributed Environment

The system should enable, but not require, the use of distributed resources via the

Grid. The system should support operation seamlessly in a highly distributed

72

L^napier ^ iNeurouna rrameworK

environment. The Grid-enabled functionalities are enabled and controlled by

components employing Grid middleware. The system should concern distributed

operation in its design and should use the agreed standard services for distributed

operation. While the system should fully support the distributed environment, it also

should be used easily in local environments.

4.2.2.6 Fault Tolerance and Robustness

Security services should not have any possible single point of failure. Data

management services and Application services should show some degree of fault

tolerance.

4.2.2.7 Extensibility and Modifiability

It must be possible to add new services and resources to the system once deployed.

4.2.2.8 Integrate-ability

The system must integrate heterogeneous components whether project-specific or

legacy.

4.2.2.9 Technology Independence

The underlying implementation does not dictate the architecture of the system, and

vice versa.

4.2.2.10 Security

Security is a key in the Grid environment. The core of the security infrastructure will

be an X.509 [48] certificate authority used to issue NeuroGrid certificates. These

certificates will be required for any direct connection to the NeuroGrid. It will not be

possible to download any file or invoke any Application service without a certificate.

Each user certificate will contain the name of the user as well as their research group.

The research group will be used to provide a simple degree of access control.

The standard security mechanisms, like WS-Security, will be used to enforce

integrity and confidentiality on Application services messaging.

Baseline security architecture is as follows:

i) User is authenticated at the Web portal by using his/her credential, an

X.509 certificate issued by a trusted certification authority.

73

unapter 4 JNeurouna rrameworK

i i) When interacting with support components, the user is identified by his

X.509 certificate.

i i i) Authorization and access control are performed on each data node

employing local access rules.

4.2.2.11 Access Control

The most basic level of access control will be that data access will only be granted to

people with valid NeuroGrid certificates. A simple level of access control will be that

files on each node will be divided into those which can be accessed by any other

member of the NeuroGrid consortium and those that can only be accessed by the local

research group; this will be achieved using the research group identifier that forms part

of the user's certificate. More fine grained access controls will be enabled by use of

XACML (extensible Access Control Markup Language) [49] policies at each of the

local nodes. These can be used to provide arbitrarily complex access controls.

4.2.2.12 Interface

There are three ways of dealing with the NeuroGrid:

i) Java APIs -- These will provide the greatest functionality of all the

interfaces; they can be used to create applications that deal directly with

the NeuroGrid using a local user certificate.

i i) Portals — The end-user (human) interface to Web applications will be

through a portal, specifically a Web portal that will require the client to

authenticate themselves using a NeuroGrid certificate. The Web portal

is required to mask the complexity of the distributed environment from

users while providing fully distributed functionality. Most services will

be integrated and accessible through the portal. JSP is adopted to build

the Web portal. Applets can be embedded in the portal for more

interactivity.

i i i) Web Servers — Sometimes there is a need to support users who are not

part of the NeuroGrid consortium. These people will not be given

certificates and will not be able to use the portals or to download any

files. All data presented to/received from the users will be handled by

74

^ n ap ie i h - i \ e u r o o n u r ia m e w o r K

the Web server. The W eb server will have a NeuroGrid certificate

which will enable it to interact directly with the NeuroGrid.

Application Service

Job Submission Component

NeuroGrid Client

c = c >

L e g a c y Job

Legacy jo b
LBUMUy JUIJ

Middleware
Enviro nment

Compute
R esource

NeuroGrid
S en d ees Pool

C o nd o rD ata M a n a g e m e n t
S e rv ic e

A p p lic a t io n S e rv ic e

Job S te e rin g
S e rv ic e

Figure 4.2: NeuroGrid Framework Architecture

4.3 N euroG rid F ram ew ork A rchitecture

4.3.1 A rchitecture

NeuroGrid represents a general architecture for data and legacy applications sharing

on the Grid environment. The high level NeuroGrid conceptual architecture is

represented in figure 4.2. It is designed to be modular and adaptable based on a service-

oriented approach. It is organized in multiple components to promote interoperability

and allow reuse o f core components. There are four basic components in the

architecture as displayed in Figure 4.2, which are NeuroGrid Client, NeuroGrid

Services Pool, Middleware Environment and Compute Resource. These components

could be installed on physically different nodes by different roles. Each o f these

components simulates an encapsulated black box committed to deliver a well-defined

functionality to the layer above that, independent o f the underlying Grid middleware

solution.

The end user communicates with the NeuroGrid Client by sending and receiving

SOAP over SSL, and utilizes the NeuroGrid Client for core functionalities. The

75

^napier h- in euro o n a rramewuiK

NeuroGrid Client in turn forwards some incoming requests to NeuroGrid Services Pool

and relies upon underlying Web services to provide functionalities to the client.

The NeuroGrid Client is built into a Web portal to provide a user-friendly Web-based

interface through which the end user can remotely launch and monitor the algorithms. It

also provides the interface to publish and query the data to and from the global image

databases. It provides seamless integration of a collection of legacy applications and

data across geographically distributed virtual organizations. The NeuroGrid Client

presents the data and applications to the end user through a browser and an Internet

connection, and hides the end user from the complexities of the underlying Grid

infrastructure. There is no any installation for end user site. The end user site only

consists of a compatible Web browser so it is lightweight and can operate across

firewalls.

The NeuroGrid Services Pool consists of a collection of Web services including

Application Services, Data Management Service, and Job Steering Service. Application

Services are the applications with a standard Web service interface independent of the

implementation languages and platforms. The application provider has the flexibility to

move services to different machines or to move a service to an external Compute

Resource provider. The same application services can support different client types.

These applications—a pool of Web services—are the fundamental components of this

architecture. Since Web services are platform- and language-independent, a Web

service technology is also used to implement support services among applications,

portals and Compute Resource. Data Management Service and Job Steering Service

have been developed to provide the following functionalities: data transfer, data

publishing and query, workflow management, job monitoring, and others.

The Middleware Environment is middleware provided by third party, such as GT3,

GT4, SGE, Condor, database related software and others. This layer is a bridge to

connect the NeuroGrid Services Pool to the Compute Resource. The system

administrator of the Compute Resource is in charge of the installation of this layer. The

Compute Resource includes the underlying computational resource and data storage

resource.

76

unapter 4 iNeurouna frame worK

4.3.2 Hardware

The computers used in NeuroGrid framework can be broken up into the following

categories:

4.3.2.1 Data Server Nodes

They store the image files and associated databases. They also host the data

management service to provide the functionalities to access the files and database.

4.3.2.2 Application Server Nodes

These are Application Service servers for the NeuroGrid framework, each of which

hosts a number of Application Services. In none-Fork cases, the servers interact with

Grid middleware and submit application jobs to Computation Nodes. In Fork cases, the

Application Server Nodes are also the Computation Nodes, which means computation is

running on Application Server Nodes.

4.3.2.3 Computation Nodes

These are the nodes to run the applications. The related middleware from a third

party are installed to manage the jobs submitted to Computation Nodes. It is not

compulsory that these Computation Nodes be dedicated to NeuroGrid framework. They

can be any standard job management environment, such as Condor, SGE, and FORK,

with which the Application Services can interact.

4.3.2.4 Portal Server Nodes

These nodes act as the portal servers. All direct access to the Grid will be via one of

these servers. They also host the workflow services and handle all interaction with the

Application Services. They may also optionally host Application Services. This means

the portal and Application Services can be hosted either on physically different nodes or

on same nodes.

4.3.2.5 Web Server Nodes

For some of the research teams, it is necessary to support connections from users

who do not hold NeuroGrid certificates. These users will interact with separate Web

servers that will act as client machines to the NeuroGrid. There should be no restrictions

on the platform used to host these Web servers, aside from the ability to call through to

the Java APIs.

77

L^napier in euro o n a rrameworK

4.3.2.6 Portal Clients

These are the workstations used to interact with the NeuroGrid framework by end

users. It is important that these clients only make outward connections to avoid issues

with firewalls. They will interact directly with the server nodes.

4.3.2.7 Web Clients

These are the users’ machines outside of the NeuroGrid consortium. No special

requirements are to be placed on these machines.

4.3.2.8 Software

Mature software with known reliability and performance characteristics needs to be

used for the NeuroGrid framework. The primary consideration in developing the

NeuroGrid framework is to use standard software and keep the software requirements to

a minimum.

We chose Java since there are a comprehensive set of freely available tools to build

Web service applications. Apache Tomcat is used as the Servlet container that is the

official Reference Implementation for the Java Servlet and JavaServer Pages [50]

technologies. Web services are built using the JavaTM Web Services Developer Pack

(Java WSDP). The Java WSDP is an all-in-one package that contains key technologies

to simplify building Web services using the Java 2 Platform [51]. The package includes

a set of technologies that can be used to create and deploy secure, reliable, transactional,

interoperable Web services and clients [52].

4.3.3 Roles of Framework

NeuroGrid framework brings together five distinct roles: service consumer, service

provider, application provider, service broker, and computing resource provider. Each

participant can play multiple roles. Figure 4.3 illustrates the relationship among these

five roles.

Service providers host the Application Services. They perform the Grid-enabling

process and are in charge of the deployment, hosting, maintaining of the Application

Services. They also need to install the application if needed. They are the service

developer with deep knowledge about Web services. They are not developer of legacy

applications, so they usually do not have knowledge of legacy applications Grid

enabled.

78

l napter ^ iNeurouna rramewoiK

Service
Broker

Computing
Resource
Provider

A p p lic a tio n \ P rovide A p p lic a tio n

P rovider * ----------------------- —

Figure 4.3: Roles Involved in NeuroGrid Framework

Application providers are application specialists who provide the legacy applications

or the information on where to get the legacy applications. They perform the help role in

Grid-enabling process via providing an Application Description File for each

application. They are expected to be very knowledgeable about the application to be

Grid-enabled. However, they are not expected to have the knowledge about Web

service, JAVA, XM L and other Application Service related technologies.

Service brokers are responsible for providing the portals, orchestrating the

Application Services, and managing the Grid resources. They have an in-depth

knowledge o f the Grid computing middleware and portal system. They are not

anticipated to have in-depth knowledge o f the applications o f the Web portal provides.

Computing Resource providers are system administrators responsible for providing

computing resource to scientific applications. It is not compulsory for them to be

dedicated to NeuroGrid framework. They manage the standard job management

environment, such as Condor, and SGE, with which the Application Services can

interact.

Service consumers are clients (humans or other services) who use the Application

Services. Service consumers are expected to have a working knowledge o f how to use

79

^napier ^ iNeurouria rrameworK

the application invoked. They need to prepare for the input data and set up the related

parameters for the application. They do not need to install the applications. Also, it is

expected that most end users are not IT experts. They are not expected to know the

underlying Grid/Web related middleware.

4.4 Implementation

4.4.1 Abstract Application Service (AAS)

4.4.1.1 Introduction and Contribution

This section describes a scalable Abstract Application Service (AAS) mechanism to

Grid-enable legacy scientific applications on Grids. In the context of this section, ‘Grid-

enabling’ means turning an existing application, installed on a Grid resource, into a

service and generating the application-independent user interface to use that application

through a Web portal. The focus of this mechanism is to create the specific application

service on demand in the event it is not kept persistent or is unavailable during the

execution of a scientific workflow. The unique contribution of this work is the design

and implementation of this mechanism, which we term ‘Abstract Application Service

(AAS)’. AAS can create specific Application Service instance on demand in a way that

is completely transparent to the user and provides a high availability of Application

Services without actually requiring them to be persistent. The novel aspect of the

mechanism is that AAS creates Application Service by configuring itself on the fly to

become a particular Application Service in need, not by instantiating the Application

Service. This is achieved by the dynamic combination of the common abstraction for

legacy applications and application description using specially designed Command-line

Description Language (CoLDeL). This combination allows AAS to dynamically

configure itself to a particular Application Service just in time. An AAS may have

several concrete instances running at the same time on the grid, and each concrete

service instance may have a different legacy application associated with it.

AAS can create the specific application service on demand. For example,

Registration workflow invokes its constituent application services in the order specified

in the workflow control file, with the data provided by the scientist. Let us assume that

during the execution of the workflow, the workflow finds the AREG service is not

available. Instead of stopping the workflow execution, the workflow sends a message to

80

unapter 4 iNeurouna rramewont

AAS to check if AREG is included in the AAS. If so, it will invoke the AAS with the

application name and version specified. AAS dynamically configures itself to become

an AREG service, which is a Web service interface to the AREG application. Thus, in

this example, even though the AREG service is not available during the execution of the

workflow, we are able to create it just in time using AAS, invoke it and continue

executing the workflow.

4.4.1.2 Scalability

ASToolkit and most of the reviewed existing wrappers are static compared with

Abstract Application Service. In the context of ASToolkit, we need to wrap the legacy

applications offline and host them as persistent services so they can be accessed from

scientific workflows whenever needed. To this approach, scalability becomes one of the

biggest challenges for large scientific collaborations. Sometimes a service provider

needs to wrap and host hundreds of Application Services just for one scientific package,

because it is not uncommon that many of scientific packages have hundreds of

applications. Also when a new application is added into the framework, service

providers need to develop and deploy a new Application Service. To solve this

scalability problem, we adopt AAS as a generic mechanism to optimize the whole

application execution at run time.

AAS is a generic application service. Scalability of this AAS approach is achieved

by delivering the applications through a dynamically reconfigurable AAS. A legacy

application can be launched by invoking the AAS, which is driven by a pool of

Application Description Files. This applications pool contains many applications.

Disregarding how many are installed and deployed, and what input data they expect,

they all are described using the same language (CoLDeL), having the same service

interface, and being controlled by the same methods.

This mechanism obviates the need to keep all the available applications wrapped as

persistent Application Services. This generic service highly simplifies Application

Service development because it can wrap any command-line oriented executable with a

minimal effort. The application provider only needs to write the Application

Description File for the application and register it with the Abstract Application Service.

81

L,napter ^ iNeurouna rrameworK

4.4.1.3 Registry Service

For each application, we have a configuration document that contains the static

information related to the application. The Application Description File is based on

Command-line Description Language (CoLDeL). It is a XML-based language for

describing individual applications precisely. Conforming to the XML schema, CoLDeL

can specify each application with a rich semantic description and provide as much

useful information to the service, workflow and user as possible. CoLDeL is described

in detail in section 3.5.4. The Application Description File is written by the Application

Service provider and registered with the registry service. To register with the registry

service, the application provider first uploads the Application Description File to the

portal. The portal then pushes the Application Description File to Application

Description Pool. The registry service then updates central registered XML file

containing all the information of registered applications. After being registered with a

well-known registry service, the application can be discovered by the portal or a

workflow.

The registry service holds an Application Descriptions Pool which contains all

Application Description Files for all available registered applications. Once given the

dynamic application name and version information from AAS, the registry service will

get the right Application Description File from pool and return the AppDescription

object to AAS.

The available applications information is central registered in an XML file. The file

is also available at the workflow side. So, in case the registry service is down, or

workflow ensures the information it holds is up to date, workflow also can get available

applications information locally instead of obtaining from the registry service remotely.

4.4.1.4 Some Details o f AAS

This common interface is same as a particular Application Service. Further detail is

introduced in section 3.5.1.

The client, for example workflow, provides AAS with the application information

(name, version, etc...) at the time of launching the service. This information is

contained in the SOPA message. Essentially this incoming SOPA message sent to the

service can be viewed as an abstract invocation of a particular application containing

specific parameter values supplied by the end user, and application information supplied

82

l napter 4 iNcurouna rrameworK

by workflow. Upon receiving this message, AAS can be configured with specific

components that will take the message along with the Application Description File and

translate this abstract invocation into a concrete invocation. This means, AAS

configures itself to a particular Application Service the client needs and specifies.

AAS uses both the static and dynamic information about an application to launch the

application required. The dynamic information is provided by workflow or other clients

when it contacts AAS, including the application name, version, and job related

parameters. The static information is provided by the Application Description File

which AAS retrieves from Registry Service. Upon retrieving the Application

Description File, AAS can configure itself to become that Application Service instance.

The Application Service instance combines the dynamic and static information to

launch the right application with the right configuration.

Unload

Portal

' J o b D esc r ip tio n

iobH andler

AREG sp p Descript on

Application
P ro v id er

End U ser
Abstract

Application
Service

Application
Description
Files Pool

Concrete APEG
Application Service Instance

Figure 4.4: Dynamic creation of Application Service Using AAS

Figure 4.4 describes how AAS configures itself to an AREG service just in time. The

numbers in Figure 4.4 illustrate the detailed flow o f service interactions among

workflow service, AAS and the registry service. Letters A and B in Figure 4.4 illustrate

how the application provider registers the Application Description File (ADF) with the

registry service. In step A, the application provider uploads the AREG ADF to portal

via the portal interface. In step B, the portal pushes the AREG ADF to the registry

service, which then registers the AREG ADF with ADF Pool.

83

v^napier ^ rNeurourm rrameworK

Step 1. The end user intends to run AREG service and passes the jobDescription object

to workflow service, which contains the required service name, service version

and other job related parameters.

Step 2. Workflow service finds out that there is no persistent ARG service available.

Then, it aims to use AAS as an AREG service. Workflow service generates

whatApplication object based on the need, and the jobDescription object based

on the user’s requirement. Workflow queries a well-known registry service to

obtain the available applications.

Step 3. If the application required is available, the workflow service then sends a SOAP

message to AAS with whatApplication and jobDescription have provided.

Step 4. After receiving the message, AAS verifies its authenticity and ensures the user

is authorized. AAS passes the whatApplication to Registry Service, and asks

for needed AppDescription object.

Step 5. The registry service gets the AppDescriptoin object from the Application

Description Pool.

Step 6. The registry service returns the AppDescriptoin object to AAS.

Step 7. Based on the information of whatApplication, AAS configures itself to become

the particular AREG Application Service. With combined information from

AREG AppDescription and jobDescription, AAS launches a concrete AREG

job.

Step 8. AAS returns a jobHandler to workflow service.

The implementation of AAS essentially depends on the resources available within

the Grid. In NeuroGrid framework, we have implemented two plug-in components. One

is FORK, which will translate an incoming request into a simple command-line and fork

this on the host server. The other is Condor, which takes the incoming request and

contacts with Condor submission node to submit job to the Condor pool. Because of the

heterogeneity of grid resources, it may be beneficial to envisage numerous other

components, for example, mapping the incoming request to a Resource Specification

Language (RSL) [53] fragment and submitting to a Globus GRAM gatekeeper, or

84

unapter 4 iNeuroLrna rrameworK

interacting with a high performance parallel cluster via Sun Grid Engine or other

schedulers. The implementation of new plug-in components is straightforward because

the system is constructed in a modular way based on components design.

4.4.2 Group Applications Service Optimization

In the following section, we explore a Group Applications Service (GAS) strategy to

further optimize the execution time of a workflow. GAS merges several sequential

Application Services into a single service. It reduces the grid overhead induced by the

Web service invocation, scheduling, and data transfers.

4.4.2.1 What is Group Applications Service?

‘Services grouping’, in the service oriented workflow is usually not as

straightforward as in the task oriented workflow, for two reasons. First, the services

included in the workflow are totally independent from each other. Every service can use

a different data transfer and job submission approach. Second, the Application Services

and the Grid infrastructure executing the jobs do not have any knowledge regarding the

workflow and the job dependencies. To tackle the problem, we propose a GAS solution

to group sequential Application Services included in the workflow, thus allowing more

elaborated optimization strategies. In this approach, we merge several sequential

Application Services into a single service, which we term Group Applications Service.

GAS not only fulfils the tasks of a set of Application Services, but also takes over the

role of workflow service to assemble the applications and orchestrate the data transfer

and input/output. The contribution of this approach is to move the jobs assembling and

orchestrating tasks from workflow level to Application Service level. Actually GAS

acts in dual roles as both Applications Service and workflow. This provides an

opportunity for GAS to optimize and offer the most efficient performance based on its

knowledge of not only applications, but also the workflow and job dependencies.

On the Grid, large-volume data transfer across sites is common, resulting in large

execution time penalties to many Grid applications. Such data transfers can drastically

affect data-intensive application performance. In NeuroGrid framework, for each atomic

Application Service, the input files of the application need to be staged in from a

WebDav data sever to the application server side. Additionally, output files need to be

sent back to the WebDav data server.

85

i^napier h l'Neuroona rramewoiK.

Usually these Application Services are completely independent. Consequently, in a

sequential workflow, for chaining two independent Application Services AO and A l,

output data of AO first needs to be returned to the data server before being sent back as

an input to A 1. If a workflow contains several atomic Application Services, each service

will go through this data transfer procedure. To maximize efficiency of workflow, the

time spent in files transfer should be minimized. GAS can reduce the execution time of

a workflow by avoiding unnecessary files transfer. A set of applications are put in one

group and are released as a GAS. This GAS is used instead of invoking many atomic

Application Services involved in the workflow. It reduces the Grid overhead induced by

the Web service invocation and lessens data transfers times where it may also reduce the

parallelism. GAS is suitable for use when related sequential Application Services

involved in the workflow and are all provided at the same site.

4.4.2.2 Registration Workflow vs. Registration GAS

Here we use registration as a sample to compare the difference between registration

workflow and registration group service. Consider the registration workflow made of

three services and represented on top of Figure 4.5. There are four components involved

in this workflow—workflow service and three Application Services, BET, AREG and

TRANSF. These Application Services are separate services and are invoked

independently and sequentially in the order of BET, AREG, and TRANSF. Data

transfers are handled by each Application Service, which takes the input from remote

WebDav server and uploads the output to the WebDav server. The output of one service

will serve as the input of next service. Here the output of BET is used as the input of

AREG; the output of AREG is the input of TRANSF. Service invocation and the

input/output connection between the services are handled at the workflow service level.

On the bottom of figure 4.5, BET, AREG, and TRANSF are grouped in a single

Registration Group Applications Service. By interacting with this GAS instead of three

independent Application Services, the overhead associated with each Application

Service invocation is dramatically decreased. Also this Registration GAS has the

knowledge regarding the job dependencies and input/output connection from workflow

level, so it is capable of invoking the three applications sequentially and orchestrates the

input/output among these applications. Instead of taking the input from WebDav server

only as Application Service does, GAS can directly take the output of the previous

86

v n a p i e i h iN e u r o w i iu r r a m e w u i K

service located at the Application server site. Thus, GAS efficiently reduces the data

transfer across the grid.

£ p p S e v ic e U t l

W e b S c iv b c
8

— *
o>

Inoct Catn rcH vfc f

In v o c a tio n T’l Job Suomissicn

<_>
c

O itp u t Data T rans fe r

s A pp 3 c r \ ic c A R E G

o
Q. _

W e b S e rv ic e

i)
Ti Input Data T ransfer

E
o

U

»
a

—

< 2)

a
U

In v o c a tio n
3
E
3

Job G ubmssion

2Lm <n

£
Aop yetvice ik a n s i-

W e b S e iv i je
8

Inpul Data Transfe rt i
g

E
CCSo
c

In v o c a tio n
Job Submission

O ulpul Dalu Tra iisfer
tr>

GAS

1 ™
D | . , o

Hi 1 VTKAREG
V .
•D I 1' 0

1 VTKTRAKSF

Input

Output

D ia l r ib u t e d

Data
S e r v e r s

Figure 4.5: Registration Workflow, vs. Group Service.

4.4.2.3 Implementation: Group Description File

In Figure 4.6, we represent the overall architecture o f GAS and some application

scenarios. GAS is a generic approach which can group any applications. For any newly-

added group, all a service provider needs to do is to provide the related Application

Description Files and a W orkflow Description File.

Now, let us suppose we are going to optimize registration workflow using the

grouping strategy we explained in the last sections. Registration workflow consists o f

three legacy applications, BET, AREG and TRANSF. It is a sequential workflow as

exhibited in the Figure 4.15.

87

u napiei h iNeuiuvjnu riaincwuiK

L e g a c y A p p P ro v id e i PurlalA p p D e s c F i l e S 1

RegisterADF s

A p p D e s c f l ie S 2 Register a d f S2

RegisterADF S3
App Desc File S3

S tep 2 \step J

Group App Service
G A S P ro v id e r

Workflow
Description

F i lc c p o o l

W SDL Interface

Job Connector Com ponent

Data Management
Curriuunenl

S u b m is s io n Application
Description

F i le s p o o l

component

Data
Rftprr«itnry

Figure 4.6: Group Application Service Architecture

Based on our grouping rule, we can group these three applications as a Registration

Group Service.

In step 1, the legacy application provider uploads an Application Description File

(ADF) for each legacy code to a portal. The portal then pushes the ADF to the ADF

pool. In this case, they are b e tO . l .x m l , areg_2.0.xml and transf_2.0.xml. These are

Application Description Files that are used in the individual Application Service.

Further details about ADF can be found in section 3.5.5.

^napier ^ iNeurouna rrameworK

In step 2, the GAS provider provides a Workflow Description File (WDF) which is

the same as the one used in the workflow engine. The greater detail about WDF is

introduced in section 4.4.3. This WDF is registered with a well known Group Registry

Service so it can be discovered by the portal or a workflow.

In step 3, GAS will use Jobs Connector Component to mange the connection

between applications (intermediate files) based on the WDF, and also delegate the

atomic jobs to Job Submission Component sequentially.

Jobs Connector Component takes a role of sequential workflow engine and

orchestrates the data between the services. It contacts with Data Management

Component to get the input data from the WebDav repository for the first application,

Registration, which is termed head application. Then GAS delegates the atomic job

submission to Job Submission Component. When the head service finishes, JCC will

take the output of head application and use it as the input of next application, AREG,

which we term chain application. Then JCC delegates the atomic job submission to Job

Submission Component again for the second atomic job. When all the chain

applications jobs are finished, JCC invokes the last application, TRANSF, termed tail

application, via JSC. Finally, JCC interacts with the Data Management Component to

upload the output to the data server.

Essentially GAS combines the functionality of Application Service and Workflow

Service together. It reuses most components used by Application Service and Workflow

Service. It utilises Job Submission Component when managing each atomic job

submission. It also makes use of Jobs Connector Component (JCC), a layer to

orchestrate the applications like a sequential workflow. GAS is accessible through the

same interface as sequential workflow. This is designed deliberately to allow clients to

treat GAS as workflow without knowing the backend optimization.

The group job submitted by GAS contains several application sub-jobs. At the return

of the GAS job submission, the client gets several sub-job handlers back. These sub­

jobs are the same as atomic jobs submitted via Application Service. Clients can monitor

and steer the sub-jobs individually in the same way they do on the atomic jobs from

Application Service.

89

^napier 4 rseurouria rram ew ont

4.4.2.4 Performance

GAS can lead to different level of speed up depending on the size of the data. In

data-intensive application cases, a huge amount of data transfer is needed across sites

that introduce high overheads. To precisely quantify how group strategy influences the

application performances, we model the workflow execution time and GAS execution

time for different configurations.

4.4.3 Application Services in Scientific Workflow

We have described how to wrap a single application as a Web service. In this section

we describe how to create workflows from the services using our Sequential WorkFlow

Component (SWFC). SWFC provides an easy-to-use tool that allows a service provider

to connect Application Services together to form workflows. End users can execute the

workflows on the Grid instead of executing the Application Services one-by-one. Users

can submit batch jobs and monitor the progress of a workflow.

4.4.3.1 Need o f Assembling Applications

Usually we need to assemble several applications together to solve big scientific

problems. It is very common to build applications by assembling legacy codes for

processing and analyzing data. This assembling allows code reusability without

introducing a redesign and redevelopment task to the application developers. In imaging

studies, researchers tend to combine one or more of the image processing algorithms to

form sequential image processing pipelines [54]. An applications pipeline is essentially

the composition of one or more algorithms that exhibit a linear flow of data between

stages. For example, in tracking the progress of a brain tumour, researchers may first

segment the area of interest. Then, this segmentation would be used as input to a series

of rigid registrations that produce a set of transformations which could then be passed to

transformation algorithm.

At present, the following problems exist when forming this pipeline: first, algorithms

may be provided by a variety of providers, requiring users to first locate and then install

the software they are interested in; second, composition is tightly coupled to specific

processing applications. For example, it can be cumbersome to use another registration

algorithm replacing the one used in the pipeline. Also, there is no agreement among the

various algorithms developers. It is possible an incompatibility occurs, for example, due

90

unapter 4 JNeurouna rrameworK

to differing image formats, at some stage in the pipeline. Frequently users have to

mediate among the algorithm-specific vocabulary and perform a kind of data

conversion.

Scientific workflow is needed to facilitate this applications assembling procedure.

Workflow describes the behaviour of complex applications and their composition. The

logic of such composed applications is described through a set of computation tasks to

perform and data dependencies imposing constraints on the order of processing. In

NeuroGrid framework, the ability to compose Application Services constitutes an

essential requirement.

4.4.3.2 Task Based and Service Based Scientific Workflows

Many workflows have been proposed with very' different approaches to compose a

set of computation tasks. As discussed in section 2.5, two main strategies have been

proposed and implemented in Grid middleware, batch oriented strategy and service

oriented strategy. Current available workflow managers can be categorized into two

groups—task based and service based.

In the task based workflow, workflow composes the batch oriented applications.

Each computation job includes the information of not only the processing (executable

and command-line parameters) but also the data (static declaration). Workflow

processors directly represent the computing tasks. The user needs to provide the

application executables and the precise command-line parameters. All the related data to

be processed are statically described in the workflow. Condor Directed Acyclic Graph

Manager (DAGMan) is a task based workflow manager [55]. DAGMan is a meta­

scheduler for Condor. It manages dependencies between jobs at a higher level than the

Condor Scheduler.

In the service based workflow, workflow composes the service-oriented applications.

Services are naturally well-suited for representing and chaining workflow components.

The service oriented approach has been implemented in different workflow managers,

including the Kepler, Tavema and Triana. Kepler is an extensible open source scientific

workflow system that provides scientists with a graphical user interface to register and

discover resources and to interactively design and execute scientific workflows using

emerging Web and Grid-based technologies to distributed computations. Kepler can

orchestrate standard Web services linked with both data and control dependencies [9].

91

^napier ^ I'seuroona rrameworK

Taveraa is an open source workflow tool which provides a workflow language and

graphical interface to facilitate the easy building, running, and editing of workflows

over distributed computer resources. Tavena targets bioinformatics applications and is

able to enact Web service and other components like SoapLab services and Biomoby

[56] services. It implements high-level tools for the workflow description, Feta semantic

discovery engine [7]. Triana is decentralized and distributes several control units over

different computing resources. Triana implements both parallel and peer-to-peer

distribution policies [57, 58].

4.4.3.3 Sequential Workflow Component

Although existing workflow systems are able to support complex computations and

data repositories in a distributed environment, and some support Web service, they do

not meet security requirements from the NeuroGrid Application Service. Also in the

NeuroGrid community, only sequential image processing pipelines are needed to

combine one or more of the image processing algorithms.

To meet NeuroGrid framework requirements, we develop a practical but powerful

Sequential WorkFlow Component (SWFC) to orchestrate the applications. This is a

lightweight workflow engine that allows users to run and monitor the sequential

applications pipelines.

In the Sequential WorkFlow Component, the appropriate structure of a processing

pipeline is defined. The pipeline exhibits the following characteristics:

i) Each pipeline is composed of one or more distinct sequential processing

stages.

i i) In each stage only one application is executed over a set of data sets. A

stage therefore comprises of one job.

i i i) An ordering representing the dependencies between each stage is

imposed on the pipeline.

iv) Input of each stage can be from users or refer to outputs produced at a

previous stage of the pipeline, thus providing a means of data flow

between stages and achieving transparent data flow.

Typically a workflow comprises a sequence of distinct processing stages, each

corresponding to and realized by an Application Service. Each stage can reference data

92

^napier h iNeurounu rraiiiewuiK

produced at the preceding stage, thus allowing transparent (potentially distributed) data

flow between workflow stages. The logic of such a composed application is described

through a set of computation tasks to perform and data dependencies imposing

constraints on the order of processing. These image processing pipelines are defined

once by the researcher and provided to SWFC.

The SWFC is light and is not really in charge of any data management and

application execution. It does not deal with direct application execution and resources,

but invokes the Application Services instead. SWFC is actually an I/O connector among

applications. It acts as a bridge between the user and Application Services. From WDF,

SWFC gets whatever services to invoke and related I/O information. It generates the job

description for each job on the fly, the right form that Application Services required,

and then it invokes the specified Application Services sequentially. All the data

movement is done in Application Service via interacting with Data Management

Component. This workflow allows users to submit batch sequential pipeline jobs in one

go, further monitor the jobs, and restore the jobs when the jobs are failed.

4.4.3.4 Benefits o f Workflow

Below are the benefits of employing a workflow:

i) Enables executions of multiple applications in one go.

i i) Simplifies re-execution by reusing existing pre-defined workflows.

i i i) Abstracts away the detail behind each application.

In NeuroGrid framework, the chief benefit to the end user is that the common

workflows are pre-defined and offered by portal, so the users can quite easily instantiate

complicated image processing pipelines by simply picking a workflow off the peg and

passing it the appropriate images, datasets and parameters.

4.4.3.5 Data Type Match and Conversion

Typically a workflow will be composed of a number of distinct processing stages.

Each stage is related to and realized by an Application Service. Each stage can reference

data produced at the preceding stage, thus allowing transparent (potentially distributed)

data flow between workflow stages. It is essential this data flow occurring between

workflow stages is compatible in terms of the type of data produced and consumed at

each stage. By checking the related Application Description File, Sequential WorkFlow

93

^napier iNeurovjnu rrameworK

Component can determine the compatibility between stages. Where a type mismatch

occurs the Workflow Component has two options: search for a conversion service

capable of casting between the two types and transparently insert this service into the

workflow, or failing this, reject the workflow and inform the user of the nature of the

incompatibility.

4.4.5 .6 Workflow Description File

The workflow-needed information is expressed in an XML document that allows the

structure of the required processing pipeline to be defined. This XML document, which

is termed Workflow Description File (WDF), is a collection of information that, taken

together, provide precise definitions of scientific processors used to process raw and

derived datasets. The following basic information is included, which is consistent with

the definition of the pipeline.

i) Processes definition that offers a brief description of all processes included

in the processing pipeline. WDF works with Application Description Files

together, which contain a complex and detailed description of each process.

i i) Dataflow description of each scientific process.

i i i) Data derivation description that provides a precise description of how a

dataset was derived.

Based on the information above provided by WDF, SWFC orchestrates the

Application Services and the required datasets. SWFC executes the workflow by

invoking its constituent Application Services in the order specified in the WDF with the

data specified in WDF.

For every workflow, there is one WDF, which contains information necessary to

construct the process pipeline and orchestrate the applications. A WDF contains links

and references to specific services and all related input and output files. There are three

types of services involved in a workflow — head service, chain service, and tail service.

For the head service, all the input files information is from the user. The input and

output files for the chain service and tail service are concept file names. To enable

remote retrieval of these files by the Application Service, these concept file names in

WDF will be substituted by a real physical file identifier (URI or local file with path) on

the fly after the workflow is initialized.

94

v n a p ie r h iN cu ro u iiu rram ew orK

The W DF has four main elements: wfDescription, wfName, wfid, and services. The

services element describes the services invoked. Each service element contains the

name o f the service, a short description o f the service, serviceld, order, input files and

output files. In our example o f a Registration workflow, the W DF has the top-level

structure shown below.

- < java vers io n =" 1 .5 .0 _ 1 0 " c la s s = " ja v a .b e a n s .X M L D e c o d e r " >
- c o b j e c t c la s s - 'u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f .W f " >

- <void property="wfDescription">
c s tr in g > R e g is tr a t io n . BET-VTKAREG-VTKTRAIMSFORMATIOM</string>

</vo id>
- cvoid property="wfNam e'‘>

< str in g > R eg is tra t io n < /s tr ih g >
</vo id>

- <void property="wfid">
< in t> l< / in t>

</void>
- <void property="serv ices">

- <array c la ss= " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f .S e r v ic e ' length="3">
- <void index="0">

- c o b je c t c la s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f . S e r v i c e d
- <void p ro p er ty = " s erv icen a m e" >

c s t r i n g > b e t _ v _ l _ 0 </string>
c /v o id >

- <void p r o p er ty = " s erv ice id ,l>
< in t> l< / in t>

c/v o id >
- cvoid property="order">

< in t> l< / in t>
</void>

- cvoid property="inputfiles''>
- <array c la s s = " u k .a c .n e u r o g r id , w o r k f l o w .c o r e . w f . I o Atomic" length="l">

- <void index="0">
<ob jec t c l a s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f . I o A to m ic " >
- cvoid property="filename">

<strigg>FROMUSER</string>
c/vo id >

- cvoid property="portid">
< in t> 2 c / in t>

</void>
- cvoid property-"hardcontro l">

<int>0< /in t>
c /v o id >

c./object>
c /vo id >

c/array>

Figure 4.7: Registration W orkflow Description File-Partl

95

- cvoid property=“o u tp u t f i l e s " >
- carray c la s s = " u k .a c .n e u r o g r id .w o r k f lo w .c a r e .w f . I o A to m ic " length="l">

- cvo id index="0">
- c o b je c t c la s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f . I o A to m ic '>

- cvoid property="filename">
c s tr in g > r e g o u t_ b e t .n i ic / s t r ir ig >

</void>
- cvo id property="portid">

c in t> 3 c / in t>
c /v o id >

- cvoid property="hardcontrol">
c i n t > l c / i n t >

c /vo id >
c /o b j e c t>

c/v o id >
c/array >

c /v o id >
c / o b j e c t >

c /vo id >
cvoid index="l">
- c o b j e c t c l a s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f .S e r v ic e " >

- cvoid property="order">
c in t>2c / ir i t>

c /v o id >
- cvoid property="serviceid">

c in t> 2 c / in t>
c /v o id >

- cvoid p ro p er ty = " serv icen a m e" >
c s t r i n g > v t k a r e g _ v _ 2 _ 0 _ 0 c / s t r i n g >

c/v o id >
c ! — Not only files from previous service. Also includes files from us

- cvoid property="inputfiles">
- carray c la s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f . I o A to m ic " length="4">

c ! — target, from previous service output-. — >
- cvoid iridex="0">

- c o b je c t c l a s s = " u k .a c .n e u r o g r id .w o r k f lo w .c o r e .w f . I o A t o m ic >
- cvoid property="filename">

c s tr in g > r e g o u t _ b e t .n i i c / s t r in g >
c /vo id >

- cvo id property="portid''>
- cvoid p ro p e r ty - h a r d c o n t ro r >

<int>l</int>
</void>

</object>
</void>
<!— so u rc e . From u s e r .

- cvoid index="l">
- cobject c lass="uk.ac .neurogrid.w orkflow.core.w f.IoAtomic">

- cvoid property="filename">
cstring>FROMUSERc/string>

c/void>
- cvoid property=“po r t id ll>

cint>3</int>
c/void>

- cvoid property- 'hardcontro l">
cint>Oc/int>

c/void>
c/object>

c/void>
- cvoid index="2‘'>

- cobject c la s s - 'uk .ac .neu rog r id .w ork f low .co re .w f .IoAtomic">
- cvoid property="filename">

cstring>FROMUSERc/string>
c/void>

- cvoid property="portid">
cint>4c/ int>

c/void>
- cvoid property=“hardcontro l">

cint>0</int>
c/void>

c/object>
c/void>

4.8: Registration W orkflow Description File-Part2

c^napier ^ iNeurouria rrameworK

Figures 4.7 and 4.8 illustrate the partial XML representation of registration

workflow. Some generic information related to the workflow is included, such as

wfName, wfld, and wfDescription. For registration workflow, it contains three stages,

BET, AREG, and TRANSF, which is defined inside the <services> element. Each stage

is defined as a service, including information like, servicename, serviceid, order,

inputfiles, and outputfiles.

In the first stage, BET, the servicename is bet_v_l_0; serviceid is 1; order is 1. The

BET URL is defined to reference the appropriate BET service. This reference is usually

obtained dynamically through the combination of servicename and host information.

Host information can be achieved through a query on the registration service. Next,

each input/output file is defined for each service to be executed. Information related to

input files is placed inside the <inputfiles> element which includes the portid, file name,

and the origin of the file. The portid is the same identifcation number used in

Application Description File. There are two types of resources for input files; one is

from a user physically located at WebDav server, and the other is from the previous

stage, the outcome of the previous service. BET is the first service of registration

workflow, called head service, so all the input files are from the user on the WebDav

server. In a similar fashion, output files-related information is placed inside the

<outputfiles> element. There is one output file in BET stage, which is named

regout bet. When writing the WDF, it is not clear where the output files will be placed,

so in WDF, only files name is specified, not the real file URL. The Workflow

Component will dynamically resolve this variable reference to a file URL.

Similarly, the next two stages of the workflow, namely an AREG service and a

TRANSF service, are defined. Again we reference the Application Services to be used

for these two stages and specify the input and output files. In the last service of the

workflow (tail service), the output files are not known by the workflow until the job

runs, because for some applications, the number and type of output files are not certain,

based on the parameters set up from users. Therefore, the WDF lists all the possible

output files for tail service. The SWFC will dynamically generate the solid output files

list combining the information from the users and WDF.

The Java language has an excellent API for converting objects to and from XML.

Given a stored WDF document representing a workflow, it is a fairly simple matter to

97

unapter 4 rseurouna rrameworK

generate Java objects from their equivalent XML representations. These objects can

then be used and manipulated immediately for workflow instantiation.

4.4.3. 7 Limitation o f WDF

This WDF concept works well for most cases. It allows variable cardinality for

inputs to applications, but only for certain (fixed) input files. It has problems with some

algorithms which can take variable numbers of inputs. As an example, the atlas

generation algorithm (atlas) from the Insight Toolkit [59] takes a variable length array

of images as input to produce a single composite output image. This array could

realistically comprise as few as two images or, just as easily, more than hundred.

This uncertain range from one to many cardinality distinguishes the stage from

others. Although this sounds conceptually quite simple, representing this in a workflow

at the abstract level is quite difficult to achieve. This is due to the fact that keeping track

of each branch of an undetermined number of input files is impossible without knowing

the exact number of inputs concerned.

4.4.3.8 Generic Application Service in Workflow Component

Let us assume that during the execution of the registration workflow, SWFC finds

the BET service unavailable. Instead of stopping the workflow execution, the SWFC

sends a message to Generic Application Service with the whatApplication object and

jobDescription object. The Generic Application Service dynamically configures itself to

a solid Web service interface to the BET application. Then WFC can run the BET

application and continue to execute the rest of the workflow. Thus, in the above

example, even though the BET service is unavailable during the execution of the

workflow, we will be able to create it just in time using Generic Application Service,

invoke it and continue executing the workflow.

4.4.3.9 Interface o f Workflow

Workflow Service has several operations to support job submission and monitoring.

CreateJob/CreateBatchJob creates a job ID/IDs for single job/batch jobs and returns the

IDs to the user. The sendJob and sendBatch operations provide an entry point for using

any of the applications pipeline. The send submission operation requires one argument

that is essentially a description of command-line-related parameters using Command-

line Description Language (CoLDeL). Once appropriate checks have been made

98

i^napter ^ iNeurouria rrameworK

(validation of inputs, type checks, values supplied for mandatory parameters, etc.), the

actual Application Services are launched. How or where these Application Services are

located is an implementation detail and effectively hidden from the user. Thus the client

only deals with one generic workflow interface.

The workflow also has getWSInfo and getBatchWSInfo operations. If the job fails,

the user can pass the job ID to workflow, get the user’s parameter setup back, and then

resubmit the job easily. Job ID is returned to the user after job submission.

GetJobStatus, getBatchJobStatus and getWorkFlowStatus provide monitoring

functionality to allow the user monitor the jobs submitted. To determine the status of a

particular service invocation, the user needs to use these operations via passing the job

ID. The actual business logic is provided by Steer Service. Workflow interacts with

Steer Service underneath while providing a simple interface to user.

4.4. S. 10 Generic Workflow Service

While the concept of a predefined sequential workflow is clearly useful, there is a

problem with regard to reusability. Since each service and its input/output links must be

clearly specified, a workflow designed to registration workflow could not be used for

another set of applications. A dynamic workflow model was therefore needed to

represent the abstract of workflow and construct a solid workflow according to the

demand of the user. We use the same approach as Generic Applications Service to

develop a Generic Workflow Service. Scalability is achieved by providing a common

abstraction for a category of workflows and providing a “generic” workflow service to

orchestrate any of registered workflow-related applications.

In this approach, we pool a set of Workflow Description Files for the predefined

workflows, such as Registration Workflow, Segmentation Workflow, and N3

Workflow. The Generic Workflow Service can dynamically retrieve the required WDF

and configure itself to be the demanding particular workflow service. For every new

workflow service, the application developer only needs to write the WDF for the new

workflow and register it with the Generic Workflow Service.

4.4.4 Portal

There are various possibilities available for hosting the services to be made available

to the neuroimaging scientists. Given that user friendliness is a key aspect, a Web-based

99

^ u a p i c i h i v c u i u v j n u n a m c w u i K .

project portal was developed. This portal provides a personalizable environment that the

neuroimaging scientist is offered to explore all o f the (Grid-related) software, data

resources and general information associated with the NeuroGrid. The traditional open-

standard-based J2EE technologies have been used to develop the NeuroGrid portal.

Figure 4.9 is a screenshot o f the portal.

N euroG rid P o rta l Mozilla F irefox

EjJe £<4t Jflew Ustorv gocknarfcs Loots fjelp

c. j. *' r i nttps://hqportal.doe.ic.ac.iit:55443;fX}pertafceta;cuery tsp

mmm

CSG Frort Page ^ The *4onlla Org (J,j Googte BEC RNA Tech Dictionary Google Suggest QjJ DAILY ROTATION script.aculo.us - web ... ■■■* BIRN Portal tfU Zend Developer Zone..

"!i*~ Ji-'j £k • ; *•**> O g 4
- ’ S w U I V / O I I C l ,------- ----------y------- ,-----------------------v

Home Support About NeuroGnd Secure Portal

| P ro file | Q u ery | P iAA uh | W t : R e g is tr a a o n | W t . S e g m e n ta t io n [vn: B in s C o r re c tio n ! CHptsM ud M onitor

T h e W efcO A V fo lder is h e re (for K o n quero r) a n d h e re (for In te rn e t E xp lo rer)

Q u e r y I n fo rm a t io n :

□ O w n er

0 Sex A N Y v

0 H a n d e d n e s s Left v

0 Ethnicity A N Y

0 Im ag e S e t A N Y v

0 A g e a t th e tim e Min 20 M ax SO

0 Numer of v is its M m A N Y M a x A N Y

R e s u l t :

FRIENDLY NAME VIEW SEX HANDEDNESS ETHNICITY IMAGESETTYPE AGE VISIT UID FILE

□ M ato L a# O th e r CT P E R F U S IO N 5 0 2 111 1 8 % 0 8 _ 8 9 3 3 0 -* o tu rn e -1 -b # a irw e f mi

P I
__ Bfj. ’ J f l F e m a le Left O th e r

CT
A N G IO G R A PH Y

3 2 1 123 190841_ 8 9 4 6 9 -v o lu m e —1-b ra in -re f nii

ngoor al.doc.ic.ac.uk: 5S-H3 £f

Figure 4.9: NeuroGrid Fram ework Portal

4.4.4.1 Security Issues

The integral part o f the portal technology is security. The neuroimaging researchers

have been issued (by the U.K. e-Science Certification Authority) X.509 certificates that

need to be embedded into their browsers. Based on the role and research group o f each

NeuroGrid portal user (e.g. psychosis, dementia, etc.), the X.509 certificate is used to

limit what services the NeuroGrid portal user sees and subsequently is allowed to

invoke.

It is very important to make sure the database and all the data transactions over the

net are secure. In order to achieve this, it was decided to use secure http and secure

1 0 0

unapter 4 iNeurouria rrameworK

WebDav for all transactions. The neuroimaging researchers have been issued (by the

NeuroGrid Certification Authority) X.509 certificates that need to be embedded into

their browsers. Based on the role and research group of each NeuroGrid portal user (e.g.

psychosis, dementia, etc.), the X.509 certificate is used to limit what services the

NeuroGrid portal user sees and subsequently is allowed to invoke. This certificate

provides user identification for all other tractions between any nodes involved in the

process. This approach also eliminates the need for a username and password, because

users are recognised by their certificates.

There is a WebDav space for each user on a remote server (defined by the certificate)

that works as data pool. All parties who need to share large amount of data, like images,

have secure access to this pool. As an example, user can upload an image from a local

computer into this pool and the image can be read by a web service to run an algorithm

on, and the result can be put back onto the pool, and available for the user to read it

back.

4.4.4.2 Functionalities

The portal consists of two parts: secure and non-secure. The non-secure part consists

of static pages with only one goal: help the user to set up the secure connection. In the

non-secure part, the users can see information about the portal and a step by step guide

on how to obtain and install their certificate into their browser. This guide covers four

browsers: Internet Explorer, Firefox, Konqueror and Safari. In this part the user leams

how to get hold of a valid certificate and how to import it into the browser.

The secure part is the main section. The secure portal has following functionalities:

users can query the database and publish into the database; users can run workflow jobs

on their own data and the data they have queried; users can monitor the jobs; and users

can see and modify their personal profile on the portal. These are the basic and

fundamental functionalities that were expected to be included in the NeuroGrid portal.

4.5 User Cases

The framework has found real applications in scientific communities. Initially the

workflow services are designed and used by users from many universities within the

NeuroGrid project, such as Oxford, UCL, Imperial College, Edinburgh, Nottingham,

unapter 4 iNeurouna rrameworK

Cambridge, and Newcastle. The users of the framework have been divided into four

categories based on their skill level and the flexibility they require when using complex

neuroimaging applications.

Application scientists’. They primarily conduct research to improve the numerical

models for the neuroimaging community. Usually they just provide the applications to

be wrapped by others via ASToolkit. Sometimes these users use the ASToolkit to wrap

their applications as Application Services for the community. These users are the

application providers. They may be also service providers if they wrap the services by

themselves.

Neuroimaging scientists: They have a great deal of experience in using multiple

applications. They use the framework to compose and run the workflows from

Application Services and analyze their output. They can also work with service

providers and contribute their workflows to community.

Neuroimaging users: They do not have vast profound experience on the Application

Services, or they intend to use the distributed Compute Resource. They only run the

pre-composed workflows with some parameters setup through the portal.

Neuroimaging users’. They are only interested in the data and use the portal to access

the distributed data server.

In the real world, there are many requirements from these different users, which are

listed below:

i) Security is critical when working with confidential patient data, but users

are reluctant to manage complicated security systems. It is required to add

in the strict security with minor users’ effort.

i i) The neuroimaging community has a large number of command-line

scientific applications. A cost-effective mechanism is needed to wrap a

large number of applications as Application Services without the hassles of

maintaining and updating the source code.

i i i) Since most application providers are application developers, they have little

knowledge about Web services and related technologies. An easy-to-use

toolkit is needed for application scientists to wrap their applications as

102

L^napier ^ iNeurouna rrameworK

application services with minimal or no learning curve. This means the

toolkit should be easily used by none Web service experts.

iv) Because the amount of scientific applications is huge, a mechanism is

needed to dynamically generate the Application Service on the fly. This is

to avoid hosting huge amount of Application Services.

v) The application scientists continually conduct research to improve the

numerical models. They often add features and improvements to their

applications from time to time. Application Service needs allow application

scientists change the underlying application while keeping the same

interface to the end users.

v i) Application Services will be used by many geographically-located end

users. A user-friendly interface is needed for these end users to access the

Application Services and data server. There should be no software

installation requirement at the end users’ side.

v ii) The Application Services need to be scalable enough to support a few

hundred concurrent end users.

v iii) End users need to run the applications without having a login account on

the compute resource.

The framework meets all of the above requirements via introduction of ASToolkit,

Abstract Application Service, Group Applications Service Optimization and Scientific

Workflow. ASToolkit offers a number of features, which are discussed in Chapter 3.

We have successfully used ASToolkit to wrap scientific applications as Web services

for the neuroimaging community. Also, the toolkit can be used easily for command-

oriented applications in other fields. As mentioned in Chapter 3, with the focus on

simplicity and configurability, all the ASToolkit services employ a consistent interface

and the same business logic. ASToolkit services can be distinguished by their unique

URLs and their associated Application Definition File. This approach makes wrapping

easy but stable. The service provider only needs to create one appropriate Application

Description File and specify server behavior in the configuration file. The ASToolkit

will build the Application Service and deploy it on the remote server.

103

L^napier ^ in eurouna rrameworK

In the real world, imaging studies tend to utilize sequential pipelines of image

processing algorithms where the results of one algorithm are used as the input to a

subsequent step. These pipelines are defined by the researcher and then applied to

specific data sets. Scientific workflow has been used to create the sequential scientific

pipelines. The workflow is expressed in a XML-based Workflow Description File. The

workflow engine coordinates the execution of a series of sequential Application

Services as specified in the Workflow Description File. This workflow engine allows

the user to submit sequential pipeline jobs at one time, and further monitor and restore

them if the job fails. It also has batch job submission functionalities. All the Application

Services are pre-composed into workflows and accessible via the Web-based portal.

Below some of the scientific Application Services/workflows wrapped by the toolkit

are described. Each of these workflows has been tested on sample MR images from the

IXI data set (ww.ixi.org.uk) and found to operate effectively from a simple Web page

interface that can be used by non-experts.

4.5.1 Brain Extraction and Segmentation Workflow

As shown in Figure 4.10, two algorithms wrapped as Application Services are used

in this segmentation workflow. One is FMRIB BET, a Brain Extraction Tool, and the

other is FMRIB FAST [60], an automated tissue classification tool. This workflow

segments the brain from MR image sets, removes surrounding and peripheral tissues,

then classifies voxels into different tissue groups and returns a segmented image.

Figures 4.11, 4.12, 4.13, and 4.14 show the results of Segmentation workflow.

Extraction

Figure 4.10: Brain Extraction - Segmentation Workflow

104

^ n a p i c i <+ i’N cu ru v ju u r i a m c w u i K

Figure4.11: Original Scanned Data

105

enapter ^ iNcurouna rrameworK

Figure 4.12: BET Results

1 0 6

enaptcr 4 iNeurouna rrameworK

Figure 4.13: BET Results

107

l napter 4 iNeurouria rrameworK

Figure 4.14: Fast Results

4.5.2 B rain Extraction, Affine R egistration and T ransform ation W orkflow

Target - *

Source

■Output

Figure 4.15: Brain Extraction - Affine Registration - Transformation W orkflow

Figure 4.15 shows there are three Application Services in this registration workflow.

They are brain extraction (BET); affine registration (IRTK) [61]; and transformation

(IRTK) as determined by the registration process. This workflow automatically aligns a

source image with a reference image. First, the train extraction is used to eliminate non­

brain tissue from the reference image, so the registration is focused on matching the

brain. Next, the quality o f alignment is determined by a similarity measure between the

108

s i m p l e x h 1 N C U I U W I 1 U r i d l l l C W U I K

two images. The alignment uses twelve parameters affine transformation, three

rotations, three translations, three scaling factors, and three skew factors. Finally, the

input image is transformed according to the parameters computed by the registration

step. The workflow involves three distinct Application Services associated with three

different input and configuration files.

Following Figures 4.16 and 4.17 compare the brain images before and after

Registration workflow.

Figure 4.16: Before Registration

Figure 4.17: After Registration

109

l napter 4 iveurouria rrameworK

4.5.3 Im age Intensity C orrection W orkflow

Converter

Mask

Reference
— ►

Scan Cata
FlirtFeg — ► FlirtTransf

— ►

NuCorrect View er

Figure 4.18: Flirt Registration - Flirt Transform ation - Intensity Correction W orkflow

As shown in Figure 4.18, the algorithms wrapped in this workflow are FMRIB

FLIRT [62], image registration, MNI N3 [63], intensity correction, and FMRIB

converter - which applies image transformation. The process is: aligns mask with target

image, estimates bias-field correction using N3, applies correction, returns corrected

image. This image intensity correction workflow includes six independent Application

Services. The results o f Intensity Correction Workflow can be shown via following

Figures 4.19 and 4.20.

Figure 4.19: Before Intensity Correction

1 1 0

l napter ^ iNeurouria rrameworx

Figure 4.20: After Intensity Correction

4.6 Users Feedback

After initially used and tested within NeuroGrid project, the NeuroGrid portal is

further publicised to more scientific communities, like FSL and SPM, and more

institutes, like Clinical Sciences Centre, Imperial College London, Division o f Clinical

Neurosciences, University o f Edinburgh, Department o f Radiology & Biomedical

Imaging, University o f California, San Francisco, UCLA (University o f California, Los

Angeles) Health System, and so on. NeuroGrid project users have full access to the

integrated database and workflow capabilities. Non-NeuroGrid users have access to the

workflows, but not the stored data, via guest certificates. U sers’ feedback is positive.

But it is hard to predict what impact such scientific portals will have on scientific

communities in future.

The use o f certificates is not popular amongst users. Some users have difficulties

installing them. Even though help webpage is provided, users are generally more

comfortable when directly shown how to proceed. Most researchers comment that they

prefer a more familiar user name and password style identity verification process. Also

the Web portal facilitates users in accessing the system from a variety o f platforms, for

example starting a job from the work location and then checking the job result later

from home. This requires the users to install certificates on different platforms.

The access control security model is accepted by the users. Different exemplar

datasets belong to different groups and are accessed by the users within the group only

111

V _ /X lap lc l H- iM curounu rraniewurK

in most cases. Although there is demand on sharing public data and application among

groups, access control on data and application is an important capability.

The concept of WebDav folders is initially foreign to the users, but the portal is

helpful in getting users in using this facility. Lack of universal support for the WebDav

protocol in standard browsers is a minor irritation. However, associating the WebDav

folder as a network place is a widely used strategy. This facilitated simple and

integrated access completely consistent with local data storage solutions.

The workflows are proved popular, particularly the brain extraction tool (BET),

tissue classification, data re-orientation and DICOM anonymisation tools. The system

was found to be reliable however, when occasionally services fail to execute, lack of

feedback is a problem. Once jobs have been submitted, the job monitor provided

information about job status, but if the process fails, there was no way for a user to

identify what has gone wrong. This strongly suggests that a more detailed help page and

more explanatory information on errors could have been invaluable.

The available workflows have kept growing based on the requests from the users.

The ASToolkit is useful to wrap algorithms as Web services rapidly. The concept of

Grid enabled Application Service is very helpful to meet the computational resource

demanding with the number of the users growing.

Criticisms of the portal are mostly related to latencies in response and to occasional

failures in submitted tasks. These could result in frustration as with any interactive

system. Error reporting is a key ingredient in maintaining confidence in the portal if a

problem occurred elsewhere in the system, and this can be substantially improved with

more specific error messages being provided.

112

v,napier d a rrooiem solving nnvironmeni

CHAPTER 5

GECEM: a Problem Solving

Environment Using Wrapping

Approach

5.1 Introduction

Grid-Enabled Computational Electromagnetics (GECEM) [64-68] is a problem

solving environment aimed at exploring Grid technology in engineering designs. It is a

multi-disciplinary effort undertaken jointly with researchers from academic and

commercial partners. The problem solving environment brings together engineers, Mesh

experts, Computational Electromagnetic simulation experts, and computer scientists to

achieve numerical simulation and visualization. The GECEM problem solving

environment strongly focuses on geographically distributed resources sharing and

collaborations, and expects a novel innovation in Engineering designs based on the Grid

technology. A critical issue in success of this innovation is the ability to closely couple

scientific applications developed by engineering scientists with middle-tier support

provided by computer scientists.

GECEM, a service-oriented simulation problem solving environment based on the

Grid technology, provides a platform for engineers and scientists to share their

collective skills, applications, data and computational resources in a secure, reliable and

scalable manner. It is a distributed computing infrastructure designed to facilitate the

engineers and the scientists to remotely initiate, run and monitor engineering services

aiming at achieving collaborative numerical simulation and visualization. It enables the

seamless integration of heterogeneous compute resources that span multiple

administrative domains and locations across the world, and provides flexible and secure

access to these resources to all the participants through a user friendly interface.

113

L,napier d uc,L,nivi: a rrooiem aoiving rnvironmeni

Through the seamless collaboration among virtual organizations, distributed resources

can be more effectively used to tackle complicated engineering problems and contribute

to the exploration of problem in extremely complicated conditions. We believe such an

adaptable and flexible integration framework is able to meet challenges encountered in

engineering problem solving environments — increasing complexity, highly compute

resource demand, and large number of applications involved.

5.2 Some Details

GECEM Grid infrastructure is based on Globus middleware, which has proven to be

a powerful and acceptable reliable basis for our work. For applications involved in

GECEM, a collection of OGSI compliant Grid services are developed at the

corresponding service provider sites. The service oriented approach provides a more

flexible and interactive environment in terms of service discovery, invocation, steering,

and notifications. Grid Resource Allocation and Management (GRAM) [69] is used as

interface to start jobs on computational resources, which will contact and submit the

jobs into a back-end scheduling system, such as Condor, LoadLeveler [70], OpenPBS

[71], and so on. GridFTP [40] is used to transfer any data files between computational

resources and storage resources . JavaCoG [72] is adopted as the main programming

interface to Globus-based services such as GRAM, MDS [73], and GridFTP. It also

provides a client-side API for MyProxy [74] and has extensive Grid Security

Infrastructure (GSI) [75, 76] support. GSI is a portion of the Globus Toolkit that

provides fundamental security services needed to support the Grids in terms of

message-level security, transport-level security and authorization. MyProxy, a

combination of an on-line credential repository and an on line certificate authority, has

been chosen to manage X.509 Public Key Infrastructure (PKI) security credentials.

These services are implemented as a collection of Web and Grid services, each

developed at the corresponding services site. Clients can access the GECEM services in

different ways. A GECEM Portal presents these services to the users through a simple

user-friendly interface, and also hides the users from complexities of underlying Grid

infrastructure. The portal provides seamless integration of a collection of heterogeneous

computational and data intensive applications across geographically distributed virtual

organisations.

114

v napter d CjELEm : a uroDiem so lv in g Environment

Portlets [77] is adopted to enable service brokers to create interactive services, which

plug and play with portals via the Internet, and thereby open up many new integration

ability. The G ECEM portal is based on GridSphere [78] and runs as portlets in any

standard portlet container, which provide an interface to the user to access the Grid

environment.

5.3 G E C E M A rchitecture

Client
Layer

f t w v , s e i

oo

Application

Portals Layer

Application
Poitals

Problem
Solving

Environment

Web Services'
Layer

Core Services
(File Transfer

Ceit Management
Job Submission)

Job Monitoring

Job
Management

Publishing &
Discovering

Services

£

Grid Services
Layer

Surface
Tnangnlation

Meslung

CEM

Migrate

■*—9 s -Si— ^

Resources
Layer

Storage

, C t l # > & ' ! (-

Figure 5.1: GECEM n-layer service-oriented Architecture

Service Oriented Architecture (SOA) is architecture with special properties,

comprised o f components and interconnections that stress interoperability and location

transparency. The idea o f SOA is to achieve loose coupling among interacting software.

This advanced flexible style o f architecture provides a foundation to allow Grid

resources to be shared seamlessly. SOA is adopted on the GECEM Grid infrastructure.

W eb services, Grid services, and Grid portal have been seamlessly integrated into a

GECEM service oriented framework. As shown in Figure 5.1, the layered architectural

115

unapier d u e ^ eivi: a rrooiem solving Environment

f r a m e w o r k i s b u i l t a n d c o m p r i s e d o f a c l i e n t l a y e r , a p o r t a l l a y e r , a w e b / G r i d s e r v i c e s

l a y e r , a n d a c o m p u t e r e s o u r c e s l a y e r . C l i e n t s c o m m u n i c a t e w i t h t h e p o r t a l l a y e r b y

s e n d i n g a n d r e c e i v i n g S O A P o v e r S S L , a n d u t i l i z e t h e p o r t a l f o r c o r e f u n c t i o n a l i t i e s .

T h e p o r t a l i n t u r n f o r w a r d s s o m e o f i n c o m i n g r e q u e s t s t o a s e r i e s o f G r i d a n d W e b

s e r v i c e s a n d r e l i e s u p o n u n d e r l y i n g G r i d a n d W e b s e r v i c e s t o p r o v i d e f u n c t i o n a l i t i e s t o

t h e c l i e n t s .

A p o o l o f O G S I - c o m p l i a n t G r i d s e r v i c e s a r e f u n d a m e n t a l c o m p o n e n t s o f t h i s

a r c h i t e c t u r e . T h e i m p l e m e n t a t i o n , d e p l o y m e n t a n d c o m m u n i c a t i o n o f t h e s e G r i d

s e r v i c e s a r e b a s e d o n G l o b u s T o o l k i t a n d W e b s e r v i c e s t e c h n o l o g i e s . S i n c e W e b

S e r v i c e s a r e p l a t f o r m a n d l a n g u a g e i n d e p e n d e n t , W e b s e r v i c e s a r e u s e d t o i m p l e m e n t

s u p p o r t s e r v i c e s b e t w e e n t h e a p p l i c a t i o n s a n d t h e p o r t a l . W e b s e r v i c e s c o m p o n e n t s a r e

d e p l o y e d t o p r o v i d e s u p p o r t f u n c t i o n a l i t y , s u c h a s c e r t i f i c a t e s m a n a g e m e n t , j o b s

s u b m i s s i o n , f i l e s t r a n s f e r , j o b s m o n i t o r i n g a n d m a n a g e m e n t , a n d p u b l i s h i n g a n d

d i s c o v e r i n g s e r v i c e s . E n d u s e r i n t e r f a c e i s d o m i n a t e d i n t h e u s e o f p o r t a l s e r v e r s .

P o r t l e t s i s a d o p t e d t o e n a b l e s e r v i c e b r o k e r s t o c r e a t e i n t e r a c t i v e s e r v i c e s , w h i c h p l u g

a n d p l a y w i t h p o r t a l s v i a t h e I n t e r n e t , a n d t h e r e b y o p e n u p m a n y n e w i n t e g r a t i o n

a b i l i t i e s . T h e G r i d p o r t a l i s b a s e d o n G r i d S p h e r e a n d r u n s a s p o r t l e t s i n a n y p o r t l e t

c o n t a i n e r , w h i c h p r o v i d e s a n i n t e r f a c e t o t h e u s e r t o a c c e s s t h e G r i d e n v i r o n m e n t .

T h e c l i e n t l a y e r o n l y c o n s i s t s o f a W e b c o m p a t i b l e b r o w s e r f o r t h e p u r p o s e o f

l i g h t w e i g h t . A n y s y s t e m t h a t c a n r u n a W e b b r o w s e r i s c a p a b l e o f s e r v i n g a s a c l i e n t f o r

G E C E M . T h e p o r t a l l a y e r p r o v i d e s a n e n d u s e r i n t e r f a c e , t h r o u g h w h i c h t h e u s e r s c a n

a c c e s s t h e s e r v i c e s f r o m a n y w h e r e w i t h a b r o w s e r a n d a n I n t e r n e t c o n n e c t i o n .

T h e p o r t a l i s a u s e r f r i e n d l y W e b - b a s e d i n t e r f a c e t h a t r e m o t e l y l a u n c h e s a n d

m o n i t o r s c o m p u t a t i o n a l s i m u l a t i o n s o n G E C E M c o m p u t a t i o n a l r e s o u r c e s a t r e m o t e

s i t e s . I t p r o v i d e s s e a m l e s s i n t e g r a t i o n o f a c o l l e c t i o n o f h e t e r o g e n e o u s c o m p u t a t i o n a l

a n d d a t a i n t e n s i v e a p p l i c a t i o n s a c r o s s g e o g r a p h i c a l l y d i s t r i b u t e d v i r t u a l o r g a n i z a t i o n s .

T h e p o r t a l p r e s e n t s t h e a p p l i c a t i o n s t o t h e e n d u s e r s t h r o u g h a b r o w s e r a n d a n I n t e r n e t

c o n n e c t i o n , a n d h i d e s t h e u s e r s f r o m c o m p l e x i t i e s o f t h e u n d e r l y i n g G r i d i n f r a s t r u c t u r e .

T h e p o r t a l i s a v e r y i m p o r t a n t a s p e c t o f G E C E M a n d w e h a v e s p e n t a s i g n i f i c a n t

a m o u n t o f e f f o r t o n t h e G E C E M p o r t a l t o a d d r e s s C E M a p p l i c a t i o n s s p e c i f i c i s s u e s .

T w o p o r t a l s a r e d e v e l o p e d i n o r d e r t o s u i t d i f f e r e n t r e s e a r c h e n v i r o n m e n t n e e d s , a

s e r v i c e - s i t e p o r t a l a n d a g e n e r a l p o r t a l . T h e f o r m e r p r o v i d e s a n i n t e r f a c e f o r s e r v i c e

116

^ nap ier d a rroD iem so lv in g rjiv iron m en i

p r o v i d e r s t o a c c e s s t h e s e r v i c e s ; w h i l e t h e l a t t e r o f f e r s a s e r v i c e f o r t h e m a j o r i t y o f

u s e r s . G E C E M p o r t a l s p r o v i d e a d d i t i o n a l f e a t u r e s s u c h a s a p p l i c a t i o n - s p e c i f i c d a t a

t r a n s f o r m a t i o n b e t w e e n b i g - e n d i a n a n d l i t t l e - e n d i a n , a n d i n p u t f i l e s t r a n s f o r m a t i o n

b e t w e e n X M L a n d t e x t - b a s e d f o r m a t . O u r e x p e r i e n c e s h o w s t h a t p o r t a l i s a l i g h t w e i g h t

a n d e a s y t o u s e s o l u t i o n t o l i n k t h e r e s o u r c e s w i t h t h e u s e r s . B u t m o r e s o p h i s t i c a t e d

a p p r o a c h i s n e e d e d t o a c h i e v e m o r e c l i e n t s i d e a s s i s t a n c e i n s o m e c o m p l i c a t e d c a s e s , f o r

e x a m p l e , a n i n t e r a c t i v e v i s u a l i z a t i o n o f c o m p l e x r e s u l t s s e t .

T h e b u s i n e s s l o g i c l a y e r i n c l u d e s a c o l l e c t i o n o f W e b a n d G r i d s e r v i c e s p r o v i d e d b y

m i d d l e w a r e a n d a p p l i c a t i o n s p r o v i d e r . T h e a p p l i c a t i o n s a r e d e c o m p o s e d i n t o

c o m p o n e n t - o r i e n t e d s e r v i c e s , w h i c h a r e e x p o s e d i n a g e n e r i c i n t e r f a c e i n d e p e n d e n t o f

i m p l e m e n t a t i o n l a n g u a g e s a n d p l a t f o r m s . A s e r v i c e p r o v i d e r h a s f l e x i b i l i t y t o m o v e t h e

s e r v i c e s t o d i f f e r e n t m a c h i n e s , o r t o m o v e s e r v i c e s t o a n e x t e r n a l p r o v i d e r . O n e s e r v i c e

c a n s u p p o r t d i f f e r e n t c l i e n t t y p e s . T h e s e a p p l i c a t i o n s , a s a p o o l o f O G S I - c o m p l i a n t

G r i d s e r v i c e s , a r e t h e f u n d a m e n t a l c o m p o n e n t s o f t h i s a r c h i t e c t u r e . S i n c e W e b S e r v i c e

i s p l a t f o r m a n d l a n g u a g e i n d e p e n d e n t , i t i s u s e d t o i m p l e m e n t s u p p o r t s e r v i c e s b e t w e e n

a p p l i c a t i o n s a n d p o r t a l .

T h e r e s o u r c e s l a y e r i n c l u d e s u n d e r l y i n g c o m p u t a t i o n a l r e s o u r c e s , d a t a s t o r a g e

r e s o u r c e s , a n d a n y i n s t r u m e n t i n v o l v e d .

5.4 Service Oriented Wrapping

5.4.1 Introduction

T h e a p p r o a c h o f m a k i n g a p i e c e o f c o d e s u c h a s s i m u l a t i o n s o l v e r a v a i l a b l e a s a s e l f -

c o n t a i n e d r e u s a b l e o b j e c t t o s o m e h i g h e r - l e v e l g l u e l a y e r i s o f t e n t e r m e d w r a p p i n g . I n

t h i s c a s e , t h e g l u e l a y e r i s a h i g h - l e v e l l a n g u a g e ; i n a m o r e g e n e r a l c a s e , i t c o u l d b e a

G r i d f a b r i c l a y e r s u c h a s W e b S e r v i c e s , a l l o w i n g i n t e r o p e r a t i o n a c r o s s a n e t w o r k o f

c o m p o n e n t s r u n n i n g o n d i f f e r e n t m a c h i n e s . A s d i s c u s s e d i n C h a p t e r 2 , t w o s t r a t e g i e s

a r e a d o p t e d f o r d e s c r i b i n g a n d c o n t r o l l i n g a p p l i c a t i o n p r o c e s s i n g , b a t c h o r i e n t e d

w r a p p i n g s t r a t e g y a n d s e r v i c e o r i e n t e d w r a p p i n g s t r a t e g y . H e r e w e i n t r o d u c e t h e

s e r v i c e o r i e n t e d w r a p p i n g s t r a t e g y u s e d i n t h e G E C E M p r o b l e m s o l v i n g e n v i r o n m e n t .

I n G E C E M , a f e w m e s h i n g a n d s i m u l a t i o n a p p l i c a t i o n s u s e d i n t h e c o m m u n i t y a r e

i n t e g r a t e d w i t h t h e S O A a n d G r i d e n v i r o n m e n t t h r o u g h i n t e r a c t i v e s e r v i c e o r i e n t e d

117

^ n ap ier j a rr o o ie m o o iv in g rn viru m n eiii

w r a p p i n g a p p r o a c h w i t h o u t r e - d e s i g n a n d r e - d e v e l o p m e n t . F o r e x a m p l e , M e s h i n g G r i d

S e r v i c e i s a m e s h g e n e r a t i o n s e r v i c e t o m e s h f l o w d o m a i n . C E M G r i d s e r v i c e p r o v i d e s

s o p h i s t i c a t e d s i m u l a t i o n o n a n . i n c i d e n t e l e c t r o m a g n e t i c w a v e a n d a g e n e r a l s c a t t e r e r .

T h e s e s e r v i c e s a r e e a s y t o b e i n v o k e d r e m o t e l y w i t h o u t l e g a c y c o d e s m i g r a t i o n . I t

e n c o u r a g e s c o l l a b o r a t i o n s b e t w e e n o r g a n i z a t i o n s t o d e l i v e r b e t t e r o u t c o m e s b y

c o m b i n a t i o n o f v a r i o u s a p p l i c a t i o n s g e o g r a p h i c a l l y l o c a t e d .

I n G E C E M f r a m e w o r k , t h e s e O G S I - c o m p l i a n t G r i d s e r v i c e s a r e t h e f u n d a m e n t a l

c o m p o n e n t s o f G E C E M a r c h i t e c t u r e . T h e i m p l e m e n t a t i o n , d e p l o y m e n t a n d

c o m m u n i c a t i o n o f t h e s e G r i d s e r v i c e s a r e b a s e d o n G l o b u s T o o l k i t a n d S O A .

T o b e b e t t e r a d a p t e d f o r t h e G r i d e n v i r o n m e n t , d i f f e r e n t l e g a c y l i b r a r i e s a r e

p r e c o m p i l e d a n d t h e p r o p e r o n e w i l l b e c h o s e n t o p r o v i d e r u n t i m e s u p p o r t a c c o r d i n g t o

t h e p l a t f o r m o n w h i c h t h e s e r v i c e i s h o s t e d . T o b e f u l l y m e r g e d w i t h S O A p r i n c i p l e ,

i n s t e a d o f m o n o l i t h i c s t r u c t u r e w i t h a W e b s e r v i c e i n t e r f a c e , a s i n g l e a p p l i c a t i o n i s s p l i t

i n t o s e v e r a l G r i d s e r v i c e b a s e d c o m p o n e n t s . M i n i m a l m o d i f i c a t i o n s a r e r e q u i r e d t o t h e

l e g a c y a p p l i c a t i o n .

5.4.2 How to wrap

B e f o r e w r a p p i n g , t h e l e g a c y a p p l i c a t i o n n e e d s t o b e r e c o n s t r u c t e d a n d m o d i f i e d

w h i l e m a i n c o m p u t a t i o n p a r t s a n d e x i s t e d f u n c t i o n a l i t i e s a r e k e p t u n t o u c h e d . W e l i s t

o p e r a t i o n s a n d f u n c t i o n a l i t i e s p r o v i d e d b y t h e a p p l i c a t i o n , a n d m a k e i t c l e a r t h a t h o w

c o m m u n i c a t i o n g o e s o n b e t w e e n t h e f u n c t i o n a l i t i e s . I n e a c h f u n c t i o n a l i t y c o n t e x t , w e

p a y a t t e n t i o n t o h o w t h e j o b i s i n v o k e d , w h e n a n d h o w t h e r e s p o n s e i s s e n t b a c k , a n d

h o w t h e j o b i n f o r m a t i o n i s i n d i c a t e d . W i t h a l l t h i s i n f o r m a t i o n , t h e l e g a c y a p p l i c a t i o n i s

r e - c o n s t r u c t e d a n d f u r t h e r d i v i d e d i n t o s m a l l e r , i n d e p e n d e n t c o m p o n e n t s . I n s t e a d o f t h e

l e g a c y m o n o l i t h i c s t r u c t u r e , w e s p l i t t h e s i n g l e a p p l i c a t i o n i n t o s e v e r a l d i s c r e t e

c o m p o n e n t s . A l s o w e a d j u s t t h e c o m p o n e n t s t o m a k e s u r e t h e y a r e c a p a b l e o f w o r k i n g

i n d e p e n d e n t l y a n d n o t r e l y o n o t h e r r e s o u r c e s .

A f t e r t h e r e c o n s t r u c t i o n , w e u s e s e r v i c e o r i e n t e d w r a p p e r s t r a t e g y t o a d d a G r i d

f a b r i c l a y e r f o r e a c h c o m p o n e n t . T h e s e r v i c e o r i e n t e d w r a p p e r s t r a t e g y c a n b e u s e d f o r

g e n e r i c c a s e s w h e r e t h e l e g a c y c o d e s (w r i t t e n i n F O R T R A N , C o r o t h e r s) n e e d t o b e

a c c e s s e d f r o m o t h e r e n v i r o n m e n t s . C o m p u t a t i o n a l i n t e n s i v e p a r t s o f c o m p o n e n t , w r i t t e n

i n F O R T R A N , s t i l l r e m a i n t h e s a m e . T h e s e c o r e c a l c u l a t i o n p a r t s a r e p r e s e n t e d a s C

118

unapter 3 utL U M : a rroDiem solving environment

w r a p p e d l i b r a r y f o r e a s i l y p l u g g i n g i n t o G r i d e n v i r o n m e n t . T h e n a J a v a w r a p p e r i s

d e f i n e d w i t h n a t i v e m e t h o d s . J a v a N a t i v e I n t e r f a c e [7 9] i s a d o p t e d t o e n a b l e t h e

i n t e g r a t i o n o f t h e J a v a w r a p p e r w i t h l e g a c y c o d e w r i t t e n i n o t h e r l a n g u a g e s , a n d a l l o w

J a v a c o d e t o o p e r a t e w i t h e x i s t i n g a p p l i c a t i o n s a n d l i b r a r i e s . T h i s w r a p p e r s t r a t e g y

k e e p s t h e c o r e c o m p u t a t i o n p a r t i n a l a n g u a g e l i k e C o r F O R T R A N , b u t c o n t r o l s i t s

b e h a v i o u r t h r o u g h a h i g h l e v e l l a n g u a g e . T h i s s t r a t e g y n o t o n l y k e e p s t h e p e r f o r m a n c e

s t r e n g t h s o f F O R T R A N , b u t a l s o a l l o w s t h e p r o g r a m m e r t o e a s i l y i n t e r f a c e t h e

a p p l i c a t i o n s t h r o u g h t h e h i g h l e v e l l a n g u a g e .

T h e J a v a w r a p p e r a n d t h e l i b r a r y w r a p p e d n e e d t o b e f u r t h e r e x p o s e d a s a W e b / G r i d

s e r v i c e . W e n e e d t o c o n s i d e r h o w t o i m p l e m e n t t h e s e i n d i v i d u a l s e r v i c e s , O G S I -

c o m p l i a n t o r W e b s e r v i c e s . B y t h e t i m e w e d e v e l o p e d t h e s e r v i c e s , G l o b u s A l l i a n c e h a d

n o t c o n t r i b u t e d t h e W S - R e s o u r c e F r a m e w o r k (W S R F) i m p l e m e n t a t i o n . W e c h o o s e t h e

O G S I - c o m p l i a n t G r i d s e r v i c e t o e x p o s e t h e A p p l i c a t i o n S e r v i c e s . F o r t h e s i m u l a t i o n

s e r v i c e s t o w o r k i n a l a r g e r e - s c i e n c e c o n t e x t , s o m e i s s u e s h a v e t o b e a d d r e s s e d , s u c h a s

s e c u r i t y a n d i n t e r o p e r a b i l i t y w i t h o t h e r s e r v i c e s a n d c o n s u m e r s . I n i n t e r o p e r a b i l i t y

a s p e c t , G r i d s e r v i c e e n h a n c e s t h e w e b s e r v i c e , w h i c h i s s t a t e l e s s a n d n o n - t r a n s i e n t .

O G S I p r o v i d e s c o n s i s t e n t m e c h a n i s m s f o r s t a t e f u l n e s s (S D E s) , s t a t e f u l i n t e r a c t i o n s ,

t r a n s i e n t i n s t a n c e s , s e r v i c e l i f e t i m e m a n a g e m e n t , n o t i f i c a t i o n o n s t a t e c h a n g e s a n d

s e c u r i t y i n f r a s t r u c t u r e , w h i c h a r e a l l k e y r e q u i r e m e n t s f o r G E C E M f r a m e w o r k . G S I i s

t h e s e c u r i t y a r c h i t e c t u r e t h a t p r o v i d e s t h e f u n d a m e n t a l s e c u r i t y s e r v i c e s a n d g u a r a n t e e s

r e l i a b l e i n v o c a t i o n , a u t h e n t i c a t i o n , a u t h o r i z a t i o n , d e l e g a t i o n a n d c o n f i d e n t i a l

c o m m u n i c a t i o n [7 6] . I t d o e s p r o v i d e a u s e f u l b a s e t o G r i d i n f r a s t r u c t u r e f o r e a s i n g s o m e

s e c u r i t y c o n c e r n s .

F o r e v e r y a p p l i c a t i o n (v o l u m e m e s h s e r v i c e a n d e l e c t r o m a g n e t i c s i m u l a t i o n

s e r v i c e) , a p e r s i s t e n t a p p l i c a t i o n f a c t o r y s e r v i c e w h i c h c r e a t e s t r a n s i e n t s e r v i c e

i n s t a n c e s o n d e m a n d i s d e f i n e d a n d h o s t e d , . T h e f a c t o r y i m p l e m e n t s t h e F a c t o r y

p o r t T y p e , w h i c h p r o v i d e s a n o p e r a t i o n t o c r e a t e G r i d s e r v i c e i n s t a n c e s .

N o t i f i c a t i o n S o u r c e p o r t T y p e a n d G r i d S e r v i c e p o r t T y p e a r e a l s o i m p l e m e n t e d , w h i c h

p r o v i d e g e n e r i c a n d n o t i f i c a t i o n f u n c t i o n a l i t i e s t o t h e G r i d s e r v i c e s . A W S D L i s c r e a t e d

m a n u a l l y f o r e a c h a p p l i c a t i o n G r i d s e r v i c e . T h e s e s e r v i c e s a r e c o m p a t i b l e w i t h O G S A ’ s

w e l l - d e f i n e d i n t e r f a c e s a n d s p e c i f i c c o n v e n t i o n s a d d r e s s i n g d i s c o v e r y , d y n a m i c s e r v i c e

c r e a t i o n , l i f e t i m e m a n a g e m e n t , n o t i f i c a t i o n , a n d m a n a g e a b i l i t y . T h e y a l s o e n s u r e h i g h

119

^ n a p ie i j vjc,v_..c,ivi.. a r iu u icm ou ivm g d iv iiu im ic in

s e c u r i t y b a s e d o n a u t h e n t i c a t i o n , a u t h o r i z a t i o n , a n d i n c o r p o r a t e c r e d e n t i a l d e l e g a t i o n .

A t c l i e n t s i t e , t h e c l i e n t u s e s t h e g r i d m i d d l e w a r e (c l i e n t) t o i n v o k e t h e G r i d s e r v i c e s

a n d r e c e i v e s s e r v i c e L o c a t o r s f o r t h e n e w l y c r e a t e d s e r v i c e i n s t a n c e s .

T h e w h o l e w r a p p i n g p r o c e d u r e i s s u m m a r i s e d a n d d e s c r i b e d b e l o w :

i) S p l i t t h e s i n g l e a p p l i c a t i o n i n t o s e v e r a l d i s c r e t e c o m p o n e n t s .

i i) F o r e a c h c o m p o n e n t , d e f i n e t h e J a v a w r a p p e r w i t h n a t i v e m e t h o d s . T h i s

J a v a w r a p p e r l o a d s a n d l i n k s t o t h e n a t i v e i m p l e m e n t a t i o n .

i i i) R u n t h e J a v a t o g e t t h e h e a d e r f i l e , w h i c h w i l l b e i n c l u d e d i n t h e C

w r a p p e r .

i v) C h a n g e t h e F O R T R A N m a i n t o a s u b r o u t i n e , w i t h c o m m a n d l i n e

a r g u m e n t s p a s s e d a s p a r a m e t e r s .

v) C r e a t e a C w r a p p e r t o i n v o k e F O R T R A N s u b r o u t i n e s . A d d c o n t r o l c o d e i n

t h e C w r a p p e r t o c o n t r o l t h e F O R T R A N c o m p u t a t i o n l o o p s a n d d a t a

t r a n s f e r .

v i) T h e F O R T R A N c o d e a n d C w r a p p e r a r e c o m p i l e d t o g e t h e r a s a d y n a m i c

l i n k l i b r a r y , w h i c h c a n b e l o a d e d a n d l i n k e d i n t o t h e J a v a V i r t u a l M a c h i n e .

T h i s s h a r e d l i b r a r y n e e d s t o b e p r e s e n t w h e r e t h e g r i d s e r v i c e i s p r o v i d e d .

v i i) F i n a l l y t h e J a v a w r a p p e r i s e x p o s e d a s t h e g r i d s e r v i c e i m p l e m e n t a t i o n .

5.4.3 Stateful Grid Service for Data Sharing

O n e o f t h e f u n d a m e n t a l r e q u i r e m e n t s f o r t h e G r i d i s t o s h a r e a p p l i c a t i o n d a t a

m a n a g e d i n t e r n a l l y w i t h p r o c e s s e s r u n n i n g o u t s i d e t h e a p p l i c a t i o n e n v i r o n m e n t s . F i l e

s y s t e m c a n b e u s e d t o t r a n s f e r d a t a a m o n g v a r i o u s p r o c e s s e s i n a l o c a l e n v i r o n m e n t . B u t

i t f a l l s s h o r t i n t h e G r i d e n v i r o n m e n t w h e r e p r o c e s s e s c a n b e d i s p a t c h e d t o r u n o n

d i f f e r e n t r e s o u r c e s . T h e O G S I s u p p o r t s t h e d a t a s h a r i n g a c r o s s c o m p u t e r e s o u r c e s

t h r o u g h t h e c o n c e p t o f t h e G r i d S e r v i c e I n s t a n c e .

D u e t o c o n c e r n s f o r s e c u r i t y a n d i n t e r o p e r a b i l i t y r e q u i r e m e n t , w e i m p l e m e n t t h e

c o m p o n e n t s a s a c o l l e c t i o n o f s t a t e f u l G r i d s e r v i c e s . T h i s s t a t e f u l m o d e l a v o i d s p a s s i n g

s t a t e i n f o r m a t i o n b e t w e e n s e r v i c e a n d c o n s u m e r . A l l v a r i a b l e s a n d d a t a i n a n

a p p l i c a t i o n p r o c e s s a r e h a n d l e d b y a u n i q u e G r i d S e r v i c e I n s t a n c e , i d e n t i f i e d b y G r i d

S e r v i c e H a n d l e s (G S H s) , w h i c h c a n m a i n t a i n s t a t e b e t w e e n i n v o c a t i o n s . S o m e d a t a i n

120

^napier d o n ^ n iv i: a rr o o ie m so lv in g en v iron m en t

t h e a p p l i c a t i o n p r o c e s s i s e x p o s e d t h r o u g h s o m e w e l l - k n o w n S e r v i c e D a t a E l e m e n t ,

w h i c h a l l o w s m u l t i p l e p r o c e s s o r s o r c o n s u m e r s t o s h a r e t h e s a m e d a t a b y s h a r i n g t h e

G S H . A G r i d S e r v i c e H a n d l e c a n b e s e e n a s a p o i n t e r t o a p a r t i c u l a r s t a t e f u l i n t e r a c t i o n ,

w h i c h i s u s e f u l t o a c c e s s d a t a t h r o u g h p r o c e s s a n d r e p r e s e n t i n t e r a c t i o n s t a t e .

A c c o r d i n g t o o u r e x p e r i e n c e , O G S I p r o v i d e s a b i l i t i e s t o d y n a m i c a l l y c r e a t e t r a n s i e n t

s t a t e f u l s e r v i c e i n s t a n c e s , w h i c h i s h e l p f u l f o r d a t a s h a r i n g i n t h e G r i d e n v i r o n m e n t . B u t

i t i s a c h i e v e d t h r o u g h t h e i n t r o d u c t i o n o f t h e G r i d S e r v i c e I n s t a n c e , w h i c h i s o b j e c t -

o r i e n t e d , a n d r e s u l t s i n t i g h t l y - c o u p l e d a p p l i c a t i o n s . S p e c i f i c a t i o n o f h i g h l e v e l

i n t e r f a c e s n e e d s t o b e e m p h a s i z e d i n s t e a d o f c r e a t i n g t r a n s i e n t s e r v i c e i n s t a n c e a t t h e

i n f r a s t r u c t u r e l e v e l . G r i d s e r v i c e s n e e d t o m o v e t o w a r d s a s e r v i c e - o r i e n t e d a r c h i t e c t u r e

a d o p t i n g s e c u r e r e l i a b l e m e s s a g e s t o c o u p l e p r o c e s s e s .

5.4.4 Others issues

S e r v i c e p r o v i d e r s c a n p u b l i s h d e t a i l s o f s e r v i c e d e s c r i p t i o n s t o a l l o w e a s y d i s c o v e r y

t h r o u g h c o m m u n i t y r e g i s t r i e s . G E C E M s e r v i c e s c a n b e e a s i l y i n v o k e d v i a a c o m m a n d -

l i n e i n t e r f a c e , g r i d p o r t a l o r o t h e r r e m o t e p r o c e d u r e c a l l w i t h o u t g o i n g t h r o u g h r e p e a t e d

p r o g r a m i n i t i a t i o n a n d t e r m i n a t i o n . B u t s u c h G r i d s e r v i c e s c a n n o t b e r u n s i m p l y a c r o s s

t h e g r i d e n v i r o n m e n t l i k e a b a t c h j o b . T h e y m u s t b e i n s t a l l e d a n d d e p l o y e d w i t h i n a

G r i d s e r v i c e h o s t e n v i r o n m e n t (s u c h a s a n A p a c h e T o m c a t s e r v l e t c o n t a i n e r) o n t h e

c o m p u t e n o d e t h a t r u n s t h e s e r v i c e o r i e n t e d a p p l i c a t i o n .

5.5 Migrate Legacy Service Model - Batch Oriented Wrapping

5.5.1 Model Introduction

W i t h b a t c h o r i e n t e d s t r a t e g y , e x i s t i n g a p p l i c a t i o n s c a n b e r u n o n a v a i l a b l e c o m p u t e r s

i n a G r i d e n v i r o n m e n t . G E C E M a p p l i c a t i o n s a r e c o n v e n t i o n a l F O R T R A N a p p l i c a t i o n s

t h a t r e a d i n p u t f i l e s a n d g e n e r a t e a s e t o f r e s u l t f i l e s . O r i g i n a l l y G E C E M l e g a c y

a p p l i c a t i o n s w e r e i n v o k e d f r o m c o m m a n d - l i n e . I n p u t f i l e s a n d o t h e r c o n f i g u r a t i o n

i n f o r m a t i o n w e r e s p e c i f i e d i n c o m m a n d - l i n e p a r a m e t e r s . T h e s e a p p l i c a t i o n s u s u a l l y

r e m o t e l y r u n o n t r a d i t i o n a l H P C s y s t e m s . U s e r s a r e r e q u i r e d t o l o g i n t o s y s t e m a n d

s u b m i t j o b s t o a q u e u i n g s y s t e m . I n p u t f i l e s a n d o u t p u t r e s u l t s h a v e t o b e t r a n s f e r r e d

m a n u a l l y . P e r f e c t l y f i t t e d t o t h i s s c e n a r i o , a M i g r a t e L e g a c y S e r v i c e M o d e l (M L S M) i s

121

^napter d uhl ,£,ivi: a rrooiem solving rnvironmeni

d e v e l o p e d t o d r i v e t h e a p p l i c a t i o n s a u t o m a t i c a l l y t h r o u g h a b r o w s e r , h e n c e c h a n g e

t r a d i t i o n a l m a n u a l d r i v e n v i a t e r m i n a l .

M L S M b r i n g s t o g e t h e r t h r e e d i s t i n c t r o l e s : s e r v i c e c o n s u m e r , s e r v i c e p r o v i d e r , a n d

c o m p u t a t i o n a l r e s o u r c e p r o v i d e r . I t a l l o w s i n p u t d a t a f r o m u s e r s i t e A , a p p l i c a t i o n

e x e c u t a b l e s f r o m s e r v i c e p r o v i d e r B a n d w o r k t o g e t h e r a t c o m p u t a t i o n a l r e s o u r c e C

p r o v i d e d b y a r e s o u r c e p r o v i d e r . T h e u s e r c a s e w e a r e a d d r e s s i n g h e r e i s t h a t t h e i n p u t

d a t a , t h e a p p l i c a t i o n s , t h e c o m p u t e r e s o u r c e s a r e o w n e d b y d i f f e r e n t e n t i t i e s . T h i s m o d e l

p r o v i d e s t h e a p p l i c a t i o n s w i t h a g a t e w a y t o t h e G r i d e n v i r o n m e n t . T h e m a i n i d e a i s t o

a l l o w t h e c o n s u m e r s t o r e m o t e l y p r o c e s s t h e a p p l i c a t i o n s t o f u l f i l e x t r a c o m p u t i n g

r e s o u r c e s r e q u i r e m e n t t h r o u g h a u s e r - f r i e n d l y i n t e r f a c e . I n t h i s m o d e l , a u s e r o n l y

f o c u s e s o n c o n f i g u r a t i o n , s t e e r i n g , a n d m o n i t o r i n g s e r v i c e s w i t h o u t b e i n g a w a r e o f t h e

d e t a i l s o f t h e u n d e r l y i n g G r i d i n f r a s t r u c t u r e .

M L S M c h a n g e s c o n v e n t i o n a l j o b s u b m i s s i o n t h r o u g h u s e r l o g - i n i n m a n y a s p e c t s .

T h e s e r v i c e s u p p o r t s d i f f e r e n t c l i e n t f o r m a t . I t b r i n g s i n s e c u r i t y b a s e d o n G S I . I t a l s o

h a s d e l e g a t i o n f u n c t i o n a l i t y , s o t h e s e r v i c e c a n f u r t h e r i n v o k e o t h e r s e r v i c e o n b e h a l f o f

t h e u s e r . P r o c e s s e s r e q u e s t e d v i a t h e s e r v i c e a r e l a u n c h e d a s s e r v i c e h a n d l e r s r a t h e r t h a n

j o b s . D a t a t h a t i s g e n e r a t e d f r o m t h e s e r v i c e r e q u e s t s m a y o r m a y n o t b e l o n g t o a n

i n d i v i d u a l u s e r .

M L S M i s d e s i g n e d f o r b a t c h - d r i v e n , c o m m a n d - l i n e o r i e n t e d a p p l i c a t i o n s . I t c a n

w o r k w i t h a l l t h e c o m m a n d - l i n e o r i e n t e d e x e c u t a b l e s w r i t t e n i n a n y l a n g u a g e . I t

t y p i c a l l y s u i t s p a r a l l e l a p p l i c a t i o n s , w h i c h a r e h a r d t o b e m i g r a t e d i n t o t h e G r i d

e n v i r o n m e n t u s i n g s e r v i c e o r i e n t e d w r a p p i n g a p p r o a c h d e s c r i b e d i n C h a p t e r 2 . I n t h i s

m o d e l , t h e r e i s n o (a n y) m o d i f i c a t i o n o n l e g a c y c o d e , s o s o u r c e c o d e i s n o t n e c e s s a r y t o

b e a v a i l a b l e . I t p r o v i d e s a n e a s y s o l u t i o n t o m i g r a t e t h e l e g a c y a p p l i c a t i o n s t o t h e G r i d

e n v i r o n m e n t w i t h t h e s m a l l e s t e f f o r t a n d c o s t . T h e G r i d m i d d l e w a r e i s r e s p o n s i b l e f o r

s e c u r i t y , r e s o u r c e c o n t r o l , s c h e d u l i n g , a n d s o o n . B u t a n e x e c u t a b l e a p p l i c a t i o n t e n d s t o

h a v e s p e c i a l r e q u i r e m e n t s f o r d i f f e r e n t p l a t f o r m v e r s i o n s , s u c h a s c o l l e c t i o n s o f

l i b r a r i e s , J A R f i l e s , a n d a n y o t h e r e n v i r o n m e n t a l c o n d i t i o n s . T h e h e t e r o g e n e o u s n a t u r e

o f c o m p u t i n g r e s o u r c e s s t i l l r e m a i n s a s i g n i f i c a n t b a r r i e r i n t h i s c o n t e x t . P r e - p r o c e s s

w o r k o n t h e e x e c u t a b l e s a n d i n p u t d a t a i s r e q u i r e d t o t a i l o r t o v a r i o u s e n v i r o n m e n t s . A

j o b b r o k e r m a y b e n e e d e d t o a l l o c a t e s u i t a b l e r e s o u r c e s f o r t h e e x e c u t a b l e a c c o r d i n g t o

i t s s p e c i f i c r e q u i r e m e n t s .

122

L^napier d unutivi: a rrooiem solving environment

5.5.2 Model Architecture

T h e M i g r a t e L e g a c y S e r v i c e M o d e l i s c o m p o s e d o f a n u m b e r o f p i e c e s o f s o f t w a r e

i n t e r a c t i n g o v e r s e v e r a l d i f f e r e n t s i t e s , c l i e n t s i t e , s e r v i c e p r o v i d e r s i t e , c o m p u t a t i o n

s i t e , a n d d a t a s i t e . T h e G r i d p o r t a l i s p r o v i d e d f o r s e r v i c e i n v o c a t i o n , t h r o u g h w h i c h a

u s e r n e e d s t o p o i n t o u t U n i v e r s a l R e s o u r c e I d e n t i f i e r s (U R I s) o f i n p u t f i l e s a n d t o

s p e c i f y a s e r v i c e c o n f i g u r a t i o n . T h e M i g r a t e L e g a c y S e r v i c e (M L S) p a s s e s a l l t h e s e i n f o

a n d r e q u e s t s a l e g a c y j o b . G l o b u s T o o l k i t , a m i d d l e w a r e l a y e r , h a n d l e s s e c u r e

c o m m u n i c a t i o n s a n d d a t a t r a n s f e r a m o n g d i f f e r e n t s i t e s .

5.5.2.1 Client Site

A t t h e c l i e n t s i t e , t h e u s e r i n t e r a c t s w i t h t h e M i g r a t e L e g a c y S e r v i c e t h r o u g h a

s t a n d a r d b r o w s e r . A G r i d P o r t a l i s p r o v i d e d t o i n v o k e t h e s e r v i c e s . H t t p , i n s t e a d o f

G r i d F T P , i s u s e d t o b r i n g r e s u l t s b a c k t o u s e r s i t e a f t e r a j o b f i n i s h e d . T h i s a v o i d s a n y

i n s t a l l a t i o n f r o m t h e u s e r s i t e .

5 . 5.2.2 Service Provider Site

A t t h e s e r v i c e p r o v i d e r s i t e , a M i g r a t e L e g a c y S e r v i c e i s h o s t e d a n d i t s e r v e s a s a

b r i d g e b e t w e e n u s e r s a n d c o m p u t e / d a t a r e s o u r c e s . M L S i s a G r i d s e r v i c e t h a t p r o v i d e s

t h e a p p l i c a t i o n s w i t h a g a t e w a y t o t h e G r i d e n v i r o n m e n t . F r o n t e n d , M L S p r o v i d e s a

G r i d s e r v i c e i n t e r f a c e t o c o m m u n i c a t e w i t h t h e u s e r . B a c k e n d , i t c o n t a c t s a j o b

m a n a g e r t h r o u g h G l o b u s G R A M t o m i g r a t e a l e g a c y j o b t o a l l o c a t e d c o m p u t a t i o n a l

r e s o u r c e . A l s o i t c o n t a c t s G r i d F T P s e r v e r s o n d i f f e r e n t s i t e s t o t r a n s f e r l a r g e a m o u n t s o f

d a t a a m o n g g e o g r a p h i c a l l y d i s t r i b u t e d s t o r a g e s y s t e m s . M L S i s i m p l e m e n t e d b o t h

t h r o u g h p r o g r a m m a t i c j o b s u b m i s s i o n a g a i n s t c o m p u t e r G r i d u s i n g t h e J a v a C o G K i t ,

a n d t h r o u g h e x e c u t i n g s c r i p t s i n c l u d i n g a s e t o f G l o b u s c o m m a n d s i n a d e f i n e d

e n v i r o n m e n t (J A V A , P e r l , e t c .) .

F i g u r e 5 . 2 i l l u s t r a t e s e v e n t s s e q u e n c e o f t h i s m i g r a t i o n p r o c e d u r e . T h e c o n s u m e r

s t o r e s h i s / h e r p r o x y o n a M y P r o x y s e r v e r a n d i n t e r a c t s w i t h t h e p o r t a l . T h e p o r t a l

r e t r i e v e s a p r o x y f o r t h e c o n s u m e r f r o m M y P r o x y s e r v e r a n d t h e n u s e s i t t o c o n t a c t t h e

M L S o n b e h a l f o f t h e c o n s u m e r . T h e M L S s u b m i t s t h e j o b t o t h e c o m p u t a t i o n a l s i t e v i a

G l o b u s j o b m a n a g e r . U p o n r e c e i v i n g t h e M L S r e q u e s t , G l o b u s R e s o u r c e A l l o c a t i o n

M a n a g e r ’ s g a t e k e e p e r o f t h e a l l o c a t e d c o m p u t e r e s o u r c e s p a w n s t h e a p p l i c a t i o n

m i g r a t e d s e q u e n t i a l l y o r a c r o s s m u l t i p l e c o m p u t i n g n o d e s i n p a r a l l e l . I n t h i s p r o c e s s ,

i n p u t f i l e s a n d a p p l i c a t i o n e x e c u t a b l e s , a p p o i n t e d b y t h e c o n s u m e r , a r e s t a g e d t o t h e

123

vjc,v.jj.m. a r i u u i c m o u iv m g n u v i iu m i ic m

chosen compute nodes by MLS. Upon completion, results are brought back to where the

consumer appointed. The consumer can submit, query and retrieve the results o f Grid

jobs.

MyProxy 1. Service
Saver «-------- Consumer 1.

•J

\ S
\

3.
4.
r

4. \ 2. 10. 6.

\ g.
\ 1f 1’ < 9

Portal 2
Servict Prcviier

Pertain
Service Broker

Master Site
(Migrate Service

Provider)

Globus Gelt
Keeper

F Job
Manager

Store Proxy

Authenticate

Request User Prosy
Retrieve User Prory

Submit job
Submit job to remote resource

Transfer itiput files

Transfer executables
Return results.
Query job status or cancel job

£ H F T
Data, Data Data

Repository 1 Repository 2 Repository n

Compute
Resource

Provider 1

Compute
Resource

Providern

’4KUH

Figure 5.2: M igrate Events Sequence

The Migrate Legacy Service is an OGSI compliant service with delegation

functionality. Delegation is a key factor to guarantee the MLS further invokes other

services on behalf o f the users.

5 .5 .2.3 Computational Site

At the computational site, a Globus container runs continuously where it offers a

persistent GRAM service to response the Migrate Legacy Service’s request and

forwards a job to a related local scheduler. It also provides a GridFTP service to

response file transfer requests from the Migrate Legacy Service.

124

v.napier d un^civi: a rrooiem solving r-nvironmeni

S. 5.2.4 Data Site

A t t h e d a t a s i t e , a G r i d F T P s e r v i c e i s p r o v i d e d t o p u t a t h i r d - p a r t y f i l e t r a n s f e r i n t o

a c t i o n , w h i c h i s s t e e r e d b y t h e M i g r a t e L e g a c y S e r v i c e .

T h e r e i s n o i n s t a l l a t i o n w o r k a t t h e c l i e n t s i t e . A t t h e s e r v i c e p r o v i d e r s i t e , s e r v i c e

p r o v i d e r s n e e d t o i n s t a l l G l o b u s . T h e y a l s o n e e d t o d e p l o y a n d h o s t a M i g r a t e L e g a c y

S e r v i c e o n t h e m a c h i n e w h e r e t h e a p p l i c a t i o n e x e c u t a b l e s a r e a v a i l a b l e . A t t h e

c o m p u t a t i o n a l s i t e a n d t h e d a t a s i t e , G l o b u s n e e d s t o b e i n s t a l l e d t o r e s p o n s e j o b

r e q u e s t s f r o m t h e M i g r a t e L e g a c y S e r v i c e .

5.5.3 Implementation Issues

W e a d o p t a w e l l - d o c u m e n t e d a n d i n d u s t r y s t a n d a r d a p p r o a c h , R e s o u r c e

S p e c i f i c a t i o n L a n g u a g e (R S L) , t o e x p r e s s o u r r e q u i r e m e n t s . R e s o u r c e c o n s u m p t i o n

i n f o r m a t i o n a n d o t h e r j o b i n f o r m a t i o n a r e p r o v i d e d , s u c h a s n a m e o f t h e e x e c u t a b l e f i l e ,

f i l e s t o s t a g e i n a n d s t a g e o u t , f i l e s c l e a n u p , m a x i m u m m e m o r y r e q u i r e d , C P U u s a g e ,

e t c . A j o b d e f i n e d i n t h i s w a y c a n e i t h e r b e s e n t v i a G l o b u s c o m m a n d s o r b e s u b m i t t e d

p r o g r a m m a t i c a l l y t o G l o b u s G R A M .

I n d e p e n d e n t s u b - j o b s s t r a t e g y i s u s e d i n M i g r a t e L e g a c y S e r v i c e . I n s t e a d o f

s u b m i t t i n g o n e b i g j o b w i t h i n p u t s t a g i n g a n d o u t p u t b a c k i n o n e g o , w e d i v i d e t h e

w h o l e M L S j o b i n t o s e v e r a l i n d e p e n d e n t s u b - j o b s , i n p u t s t a g i n g , l e g a c y p r o c e s s i n g , a n d

o u t p u t b a c k . T h i s i s p a r t l y b e c a u s e o f f l e x i b l e s e c u r i t y c o n t r o l o v e r d i f f e r e n t s u b - j o b s ,

a n d p a r t l y b e c a u s e o f e f f i c i e n c y o f t h e c o m p u t a t i o n a l s i t e . F u r t h e r e x p l a n a t i o n i s g i v e n

b e l o w r e g a r d i n g t h e s e b e n e f i t s .

D u e t o t h r e e d i s t i n c t r o l e s i n v o l v e d , s e r v i c e c o n s u m e r , s e r v i c e p r o v i d e r , a n d

c o m p u t i n g r e s o u r c e p r o v i d e r , i t b r i n g s i n a b i g c h a l l e n g e i n a s e c u r i t y c o n t e x t . A s

M i g r a t e L e g a c y S e r v i c e i s a G r i d s e r v i c e , s o o p e r a t i o n s a r e e x e c u t e d a s ‘ c o n t a i n e r

o w n e r ’ b y d e f a u l t , a s e r v i c e p r o v i d e r w h o h o s t s t h e s e r v i c e i n t h i s c o n t e x t . B u t s o m e

f u n c t i o n a l i t y , s u c h a s t h e u s e r ’ s i n p u t d a t a r e t r i e v a l , h a s t o b e e x e c u t e d a s t h e u s e r . W e

d i v i d e t h e j o b i n t o s e v e r a l s u b - j o b s . S u b - j o b s c a n b e c o n t r o l l e d t o r u n a s d i f f e r e n t

i d e n t i t i e s , f o r e x a m p l e , r e t r i e v i n g t h e u s e r ’ s d a t a a s t h e u s e r , r e t r i e v i n g a p p l i c a t i o n

e x e c u t a b l e s a s t h e s e r v i c e p r o v i d e r , a n d s u b m i t t i n g a j o b a s t h e u s e r o r t h e s e r v i c e

p r o v i d e r . T h i s i s a c h i e v e d t h r o u g h f i n e - g r a i n e d c o n t r o l o v e r s e c u r i t y p r o p e r t i e s o f

M L S , s u c h a s a u t h e n t i c a t i o n m e c h a n i s m s r e q u i r e d t o a c c e s s t h e m e t h o d s o f M L S a n d

125

chapter d unL.£ivi: a rrooiem solving environment

r u n - a s i d e n t i t i e s o f M L S . A c c o u n t a n d c r e d e n t i a l m a n a g e m e n t m e c h a n i s m i s a d o p t e d t o

o r g a n i s e a n d p a s s t h e p r o p e r c r e d e n t i a l n e e d e d t o s a t i s f y s e c u r i t y r e q u i r e m e n t s f r o m

e a c h r o l e , w h i c h i s d e s c r i b e d i n d e t a i l i n s e c t i o n 5 . 6 .

I n d e p e n d e n t s u b - j o b s s t r a t e g y a l s o b r i n g s m o r e e f f i c i e n c y a n d f l e x i b i l i t y t o c o m p u t e

s i t e c o m p a r e w i t h a s i n g l e j o b . F o r e x a m p l e , t h e u s e r c a n r e s u b m i t a “ l e g a c y j o b ”

w i t h o u t r e - t r a n s f e r i n p u t f i l e s i f p r e v i o u s s u b m i s s i o n f a i l e d . A l s o , i f t h e “ l e g a c y j o b ” i s

t e r m i n a t e d o r f a i l e d , t h e u s e r s t i l l c a n t r a n s f e r p a r t i a l r e s u l t b a c k . A l s o “ i n p u t s t a g i n g ”

a n d “ r e s u l t s b a c k ” j o b s o n l y n e e d G r i d F T P s e r v e r a n d d a t a s t o r a g e , b u t n o t a n y o t h e r

s p e c i a l r e s o u r c e s d e m a n d , w h e r e a s “ l e g a c y p r o c e s s i n g ” m o s t p o s s i b l e h a s v e r y s t r i c t

a n d h i g h c o m p u t a t i o n a l r e s o u r c e r e q u i r e m e n t s . I f a l l t h e s e s u b - j o b s w e r e b o u n d

t o g e t h e r a s a s i n g l e j o b , c o m p u t a t i o n a l r e s o u r c e s w o u l d b e e n g a g e d f o r t h e w h o l e j o b .

I n f a c t , t h e s e r e s o u r c e s w e r e l e f t i d l e w h i l e f i l e t r a n s f e r w a s c a r r y i n g o n .

W i t h i n d e p e n d e n t s u b - j o b s s t r a t e g y , t h e u s e r c a n c o n t r o l a n d s t e e r m a n y s u b - j o b s

i n s t e a d o f o n e b i g j o b , a n d i t i s e a s y t o g e t c l e a r a n d c o r r e c t i n f o r m a t i o n o f e a c h s u b - j o b .

5.6 Security

5.6.1 Security Issues

S e c u r i t y i s a c r i t i c a l r e q u i r e m e n t a n d m u s t b e a c c o u n t e d f o r b y a n y g e o g r a p h i c a l l y

d i s t r i b u t e d G r i d c o m m u n i t y . T o a c h i e v e a s p e c i f i c g o a l , G r i d e x t e n d s t h e c o n v e n t i o n a l

h o m o g e n e o u s s y s t e m t o a m o r e h e t e r o g e n e o u s e n v i r o n m e n t w h i c h b r i n g s a d i v e r s e s e t

o f u s e r s , d a t a , a p p l i c a t i o n s , a n d c o m p u t e r e s o u r c e s t o g e t h e r . S e c u r i t y c o n t r o l a n d

m a n a g e m e n t o f t h e s e d i f f e r e n t r e s o u r c e s a r e o f t e n t h e r e s p o n s i b i l i t y o f e n t i r e l y d i f f e r e n t

o r g a n i z a t i o n s . T r a d i t i o n a l s e c u r i t y m e c h a n i s m s f o r h o m o g e n e o u s s y s t e m d o n o t s c a l e t o

h e t e r o g e n e o u s e n v i r o n m e n t b e l o n g e d b e l o n g i n g) t o d i f f e r e n t o r g a n i z a t i o n s . A G E C E M

s e c u r i t y m o d e l i s s e t u p t o a d d r e s s s e c u r i t y m a n a g e m e n t a n d c o l l a b o r a t i o n i s s u e s a m o n g

v i r t u a l o r g a n i z a t i o n . T h i s s e c u r i t y m o d e l p l a y s a k e y r o l e i n s u p p o r t i n g a n d e n f o r c i n g

t h e o v e r a l l s e c u r i t y r e q u i r e m e n t , a n d i n p r o v i d i n g a u t h e n t i c a t i o n , a u t h o r i z a t i o n , r o l e

m a n a g e m e n t , a c c e s s c o n t r o l , d e l e g a t i o n , a n d s o o n .

T o p r o v i d e a r o b u s t s e c u r i t y i n f r a s t r u c t u r e , G E C E M s e c u r i t y m o d e l i s b a s e d o n G r i d

S e c u r i t y I n f r a s t r u c t u r e (G S I) a s s i s t e d w i t h G r i d A c c o u n t s a n d C r e d e n t i a l s M a n a g e m e n t

M o d e l .

126

v^napici j vjr^dvi. a riuuicui ouivuig x̂ iiviiuimicui

A l l w e b t r a n s a c t i o n s a r e e x e c u t e d u n d e r a S e c u r e S o c k e t L a y e r v i a H T T P S . A s e c u r e

H T T P c o n n e c t i o n m e a n s t h a t d a t a s e n t t o a n d r e c e i v e d f r o m a n H T T P s e r v e r a r e

e n c r y p t e d b e f o r e b e i n g s e n t o u t o v e r t h e i n t e r n e t .

B a s e d o n P u b l i c K e y I n f r a s t r u c t u r e , G r i d S e c u r i t y I n f r a s t r u c t u r e p r o h i b i t s a c e n t r a l l y

m a n a g e d s e c u r i t y s y s t e m . K e y o f t h i s t e c h n o l o g y i s t h e i n t r o d u c t i o n o f a P u b l i c K e y

I n f r a s t r u c t u r e c r e d e n t i a l , w h i c h c o n s i s t s o f a p r o x y c e r t i f i c a t e a n d i t s c o r r e s p o n d i n g

p r i v a t e k e y . T h e c r e d e n t i a l i s a c e r t i f i c a t e g e n e r a t e d f r o m t h e u s e r ' s c e r t i f i c a t e a n d a c t s

a s a r e p r e s e n t a t i v e o f t h e u s e r . T h i s c r e d e n t i a l i s p a s s e d a n d v e r i f i e d a c r o s s

o r g a n i z a t i o n a l b o u n d a r i e s ; h e n c e , i t a l l o w s h e t e r o g e n e o u s s y s t e m t o b e s e c u r e d o n a

d i s t r i b u t e d b a s i s . T h e i n t r o d u c t i o n o f c r e d e n t i a l h a s m a n y b e f i t s . I t p r o v i d e s “ s i n g l e

s i g n o n ” c a p a b i l i t y , w h i c h a v o i d s t h e n e e d o f p r i v a t e k e y a s s o c i a t e d w i t h t h e u s e r

c e r t i f i c a t e . T h e l i f e t i m e o f c r e d e n t i a l c a n b e s e t l i m i t e d , w h i c h r e d u c e s t h e i n f l u e n c e i n

c a s e o f e x p o s u r e . I t i s a l s o p o s s i b l e t o f l e x i b l y c o n t r o l r i g h t s g r a n t e d t o t h e c r e d e n t i a l .

D u a l a u t h e n t i c a t i o n a n d a u t h o r i z a t i o n i s p e r f o r m e d b e t w e e n s y s t e m s e r v i c e s a n d

s e r v i c e c o n s u m e r b a s e d o n X . 5 0 9 c e r t i f i c a t e s . G S I d e f i n e s a n d i m p l e m e n t s u s e f u l

s e c u r i t y s e r v i c e s f o r a u t h e n t i c a t i o n a n d d e l e g a t i o n , w h i c h i s p r o v e d h e l p f u l a n d e a s y t o

w o r k w i t h i n s o m e u n c o m p l i c a t e d c o n t e x t . G S I h a s b e e n u s e d t h r o u g h o u t t h e G E C E M

s y s t e m a n d h e n c e p r e s e n t s t h e u s e r a c o n s i s t e n t s e c u r i t y m e c h a n i s m f o r c o m p u t e , d a t a ,

a n d a p p l i c a t i o n r e s o u r c e . H o w e v e r , o u r e x p e r i e n c e s h o w s t h a t t a s k s o f c r e a t i n g a n d

m a n a g i n g t h e u s e r a c c o u n t s a n d c r e d e n t i a l s u s e d b y G S I a r e c o m p l i c a t e d a n d d i f f i c u l t

d u e t o c o m p l i c a t e d s e c u r i t y r e q u i r e m e n t s t h e G r i d f a c e s . G r i d A c c o u n t s a n d C r e d e n t i a l s

M a n a g e m e n t M o d e l a r e a d o p t e d t o s o l v e t h i s p r o b l e m , a s w i l l b e f u r t h e r d i s c u s s e d

b e l o w . S o m e m i d d l e w a r e i s n e e d e d f o r a u t o m a t i n g u s e r r e g i s t r a t i o n , c r e d e n t i a l c r e a t i o n ,

a n d c r e d e n t i a l m a n a g e m e n t t a s k s .

G E C E M a p p l i c a t i o n s e r v i c e s a l s o h a v e d e l e g a t i o n f u n c t i o n a l i t y a n d t h e c l i e n t s i d e i s

a l s o s e t w i t h f u l l y d e l e g a t i o n , w h i c h a l l o w s d e l e g a t i o n o f c r e d e n t i a l s f o r c o m p u t a t i o n s

t h a t i n v o l v e m u l t i p l e s i t e s , a n d p r o v i d e s t h e u s e r w i t h a s i n g l e s e c u r e a c c e s s p o i n t . T h i s

“ s i n g l e s i g n - o n ’ m e c h a n i s m a l l o w s t h e u s e r t o e a s i l y a c c e s s m a n y d i v e r s e d a t a ,

a p p l i c a t i o n s , c o m p u t e r e s o u r c e o w n e d b y d i f f e r e n t o w n e r w i t h o u t v i s i t i n g m a n y s i t e s .

T h e u s e r c a n s i m p l y i g n o r e t h e u n d e r l y i n g c o m p l i c a t e d G r i d i n f r a s t r u c t u r e a n d n o

l o n g e r h a v e t o t y p e i n d i f f e r e n t a c c o u n t s a n d p a s s w o r d s f o r d i f f e r e n t r e s o u r c e s . T h i s

“ s i n g l e s i g n - o n ” m a k e s i t e a s y f o r t h e u s e r t o a c c e s s r e s o u r c e s a c r o s s o r g a n i z a t i o n a l

127

^ n a p ie i j a riuu icm ouivm g jciivuuimiciu

b o u n d a r i e s , b u t i t l a y s a c h a l l e n g e t o u s e r m a n a g e m e n t f o r G r i d s i t e s . T y p i c a l l y i n l a r g e

s c a l e V O s , a n e n d u s e r m a y n e i t h e r h a v e a c c e s s t o h i s / h e r p h y s i c a l c e r t i f i c a t e a n d k e y ,

n o r h a v e a n a c c o u n t l o g i n o n t h e r e m o t e r e s o u r c e .

I n a t y p i c a l u s a g e s c e n a r i o , t h e u s e r a p p l i e s f o r a u s e r c e r t i f i c a t e a n d k e y f r o m t r u s t e d

c e r t i f i c a t e a u t h o r i t y . U K N a t i o n a l C A a n d S i n g a p o r e C A a r e t r u s t e d b y G E C E M

s y s t e m . W e m a k e s o m e e f f o r t t o r e c o g n i z e S i n g a p o r e C A a n d c r e a t e n e w o p p o r t u n i t i e s

f o r s h a r i n g G r i d r e s o u r c e s b e t w e e n U K a n d S i n g a p o r e .

A l s o t h e u s e r i s r e q u i r e d t o h a v e a u s e r a c c o u n t o n t h e G r i d r e s o u r c e s h e / s h e i s

e n t i t l e d t o u s e . T h e u s e r ’ s d i s t i n g u i s h e d n a m e (D N) , a s s o c i a t e d w i t h e a c h c e r t i f i c a t e ,

m u s t b e i n d i v i d u a l l y r e g i s t e r e d o n a m a p f i l e o f t h e G r i d r e s o u r c e . T h e u s e r g e n e r a t e s a

l i m i t e d l i f e t i m e p r o x y u s i n g X . 5 0 9 p e r s o n a l c e r t i f i c a t e a n d k e y p a i r . T h i s p r o x y i s

p a s s e d a m o n g t h e G r i d r e s o u r c e s f o r a u t h e n t i c a t i o n . T h e s u b j e c t o f t h e p r o x y i s v e r i f i e d

a g a i n s t t h e D N e n t r y r e c o r d e d o n t h e G r i d m a p f i l e . A u t h o r i z a t i o n a n d a c c e s s c o n t r o l i s

p e r f o r m e d b a s e d o n t h e v e r i f i c a t i o n . W i t h d e l e g a t i o n f u n c t i o n a l i t y , t h e s e r v i c e c a n u s e

t h e u s e r ’ s p r o x y t o i n v o k e o t h e r s e r v i c e s o n o t h e r G r i d r e s o u r c e s . T h e f u r t h e r i n v o k e d

s e r v i c e p e r f o r m s a l l a u t h e n t i c a t i o n a n d a u t h o r i z a t i o n a g a i n s t t h e u s e r p r o x y , w i t h o u t

h a v i n g t o t r u s t t h e i n t e r m e d i a t e s i t e s w h i c h f o r w a r d e d t h e j o b . N o f u r t h e r p a s s w o r d

r e q u e s t i s h a n d e d t o t h e u s e r f o r i n v o c a t i o n o f a n e w s e r v i c e . A t e a c h s i t e , a f t e r p a s s i n g

a u t h e n t i c a t i o n a n d a u t h o r i z a t i o n t h e u s e r c e r t i f i c a t e i s m a p p e d t o l o c a l a c c o u n t , w h i c h

m a y b e d i f f e r e n t a t d i f f e r e n t s i t e s .

M y P r o x y i s u s e d t o s t o r e t h e u s e r ’ s c r e d e n t i a l s . T h e u s e r c a n s t o r e h i s / h e r p r o x y w i t h

a d e f i n e d a m o u n t o f t i m e o n a M y P r o x y S e r v e r . W h e n t h e u s e r l o g s i n t o G E C E M

p o r t a l , t h e p o r t a l c o n t a c t s w i t h t h e M y P r o x y s e r v e r a n d r e t r i e v e s t h e c r e d e n t i a l w i t h

l i m i t e d l i f e t i m e f o r t h e u s e r . T h i s s h o r t - t e r m c r e d e n t i a l i s u s e d b y p o r t a l t o a c c e s s G r i d

r e s o u r c e s o n t h e u s e r ’ s b e h a l f b y s i g n i n g r e q u e s t w i t h t h e p r i v a t e k e y b e l o n g i n g t o t h e

p r o x y c e r t i f i c a t e . W i t h M y P r o x y ’ s c r e d e n t i a l s d e l e g a t i o n , t h e p r o x y c a n b e r e t r i e v e d

d i r e c t l y f r o m t h e w e b b r o w s e r . A l s o t h e p r i v a t e k e y o f t h e u s e r ’ s d i g i t a l c e r t i f i c a t e c a n

b e a v o i d e d t o b e s e n t o v e r a n e t w o r k .

T o f u r t h e r c i r c u m v e n t c l i e n t f i r e w a l l r e s t r i c t i o n s , a l l c o m m u n i c a t i o n s t o G E C E M

s e r v i c e s a r e c l i e n t i n i t i a t e d , w h e r e t h e c l i e n t i n v o k e s a s e r v i c e a n d p o l l s f o r r e s p o n s e s /

r e s u l t s a t a l a t e r d a t e (n o W e b S e r v i c e c a l l b a c k s a r e m a d e t o t h e c l i e n t) . T h i s

a r c h i t e c t u r a l m o d e l c l e a r l y s e p a r a t e s s e r v i c e p r o v i d e r s f r o m t h e c l i e n t .

128

L^napier d un^mvi: a rroDiem solving nnvironmeni

A c c o u n t s a n d C r e d e n t i a l s M a n a g e m e n t M o d e l i s c o m p o s e d o f s e v e r a l m o d e l s ,

C r e d e n t i a l s M a n a g e m e n t M o d e l (C M M) , S e r v i c e P r o v i d e r A c c o u n t m o d e l , U s e r

A p p o i n t e d C o m p u t e R e s o u r c e m o d e l a n d A c c o u n t s P o o l M o d e l .

5.6.2 Credentials Management Model (CMM)

S c e n a r i o a : M i g r a t e L e g a c y S e r v i c e n e e d s t o a c c e s s d i f f e r e n t r e s o u r c e s b e l o n g i n g t o

d i f f e r e n t r o l e s i n o n e s i n g l e j o b .

M i g r a t e L e g a c y S e r v i c e n e e d s t o a c c e s s v a r i o u s k i n d s o f r e s o u r c e s o w n e d b y

d i f f e r e n t e n t i t i e s i n c l u d i n g d a t a , a p p l i c a t i o n e x e c u t a b l e , a n d c o m p u t a t i o n a l r e s o u r c e . W e

i n t r o d u c e a t h i r d - p a r t y C M M t o a s s i s t t h e r e s o u r c e s s h a r i n g i n a c o n t r o l l e d m a n n e r .

I n M i g r a t e L e g a c y S e r v i c e , i t a l l o w s i n p u t d a t a f r o m t h e u s e r s i t e A , a p p l i c a t i o n

e x e c u t a b l e s f r o m t h e s e r v i c e p r o v i d e r B , w o r k t o g e t h e r a t c o m p u t e r e s o u r c e C p r o v i d e d

b y t h e r e s o u r c e p r o v i d e r . T h e u s e r c a s e w e a r e a d d r e s s i n g h e r e i s t h a t i n p u t d a t a ,

a p p l i c a t i o n s a n d c o m p u t e r e s o u r c e s a r e o w n e d b y d i f f e r e n t e n t i t i e s f r o m t h e s a m e

V i r t u a l O r g a n i z a t i o n . N o n e o f t h e m w a n t s t o g i v e a c c e s s t o t h e d a t a o r t h e a p p l i c a t i o n t o

o t h e r m e m b e r s . O n l y G S I m e c h a n i s m s a r e v e r y h a r d t o s a t i s f y t h e r e q u i r e m e n t b e c a u s e

o f r e a d a n d w r i t e p e r m i s s i o n p r o b l e m a m o n g m a n y d a t a s t o r a g e s b e l o n g i n g t o d i f f e r e n t

i d e n t i t i e s . W e i n t r o d u c e a t h i r d - p a r t y C r e d e n t i a l s M a n a g e m e n t M o d e l (C M M) t o s o r t

t h i s p r o b l e m o u t .

C M M i s a n e n d - t o - e n d G S I b a s e d c r e d e n t i a l s m a n a g e m e n t s o l u t i o n w h i c h i s e x p o s e d

f o r u s i n g v i a G r i d p o r t a l s . C M M c o n s i s t s o f a f r o n t - e n d G r i d p o r t a l a n d b a c k e n d

s e c u r i t y s e r v i c e s t h a t p r o v i d e s e c u r e m a n a g e m e n t o f t h e c r e d e n t i a l s .

D i f f e r e n t r o l e s d e l e g a t e t h e i r p r o x y c r e d e n t i a l s t o t h i s a g e n t . F o l l o w i n g t h e u s e r

d e l e g a t i o n , o r s t r i n g e n t i d e n t i t y v e r i f i c a t i o n , C M M a u t o m a t i c a l l y g e n e r a t e s a n d s t o r e s

c r e d e n t i a l s f o r t h e u s e r s , w h i c h a r e a l l o w e d f o r s u b s e q u e n t u s e b y t h e a g e n t . T h e m o d e l

o r g a n i z e s t h e s e c r e d e n t i a l s i n a s o p h i s t i c a t e d m a n n e r t o p e r f o r m d i f f e r e n t s u b - j o b s o f a

M i g r a t e L e g a c y S e r v i c e j o b o n b e h a l f o f d i f f e r e n t u s e r s . U s i n g C M M , M i g r a t e L e g a c y

S e r v i c e h a s t h e a b i l i t y t o a u t h e n t i c a t e t o s o m e d a t a r e s o u r c e (G r i d F T P s e r v e r , S R B [8 0]

a r c h i v e , e t c .) a s t h e u s e r , m e a n t i m e a u t h e n t i c a t e t o s o m e o t h e r r e s o u r c e s u s i n g t h e

s e r v i c e p r o v i d e r ' s c r e d e n t i a l . T h i s m e a n s t h e s e r v i c e p r o v i d e r c a n r e t r i e v e t h e p r o t e c t e d

i n p u t d a t a (a c c e s s e d o n l y b y t h e u s e r) o n b e h a l f o f t h e u s e r . I t a l s o c a n r e t r i e v e t h e

129

unapter d ununivi: a rroDiem solving environment

p r o t e c t e d a p p l i c a t i o n e x e c u t a b l e s a n d i n v o k e s r e m o t e s e r v i c e o n t h e r e s o u r c e p r o v i d e r

o n b e h a l f o f i t s e l f .

C M M m a n a g e s t h e s e c r e d e n t i a l s o n b e h a l f o f t h e u s e r s w i t h o u t m a k i n g t h e m a w a r e

o f t h e i r c r e d e n t i a l s ' e x i s t e n c e . T h e m o d e l a l s o h a s f u n c t i o n a l i t i e s t o s u p p o r t c r e d e n t i a l

r e n e w a l a n d r e v o c a t i o n . B y a p p l y i n g c r e d e n t i a l s o f d i f f e r e n t u s e r s d u r i n g d i f f e r e n t s t e p s

o f a j o b p r o c e d u r e , C M A o r c h e s t r a t e s t h e s e i n d i v i d u a l s t o s h a r e r e s p o n s i b i l i t i e s o f t h e

w h o l e j o b .

5.6.3 Service Provider Account Model

S c e n a r i o b : T h e c o m p u t e r e s o u r c e p r o v i d e r t r u s t s t h e s e r v i c e p r o v i d e r , n o t t h e u s e r .

I n a t y p i c a l u s a g e s c e n a r i o , t h e u s e r i n v o k e s t h e s e r v i c e p r o v i d e d b y t h e s e r v i c e

p r o v i d e r , a n d t h e n t h e s e r v i c e p r o v i d e r a c c e s s e s t h e c o m p u t e r e s o u r c e s o n b e h a l f o f t h e

u s e r . T h i s m e a n s t h e c o m p u t e r e s o u r c e s h a v e t o t r u s t a l l t h e u s e r s t r u s t e d b y t h e s e r v i c e

p r o v i d e r , h e n c e i t b r i n g s a c c o u n t m a n a g e m e n t b u r d e n t o t h e r e s o u r c e p r o v i d e r . W e

i n t r o d u c e a S e r v i c e P r o v i d e r A c c o u n t M o d e l t o a v o i d t h i s p r o b l e m . I n t h i s m o d e l , t h e

u s e r d o e s n o t h a v e d i r e c t a c c e s s t o t h e c o m p u t e r e s o u r c e s a n d i s c o m p l e t e l y d e c o u p l e d

f r o m t h e c o m p u t e r e s o u r c e s w h e r e j o b s a r e e f f e c t i v e l y r u n . T h e u s e r o n l y h a s a c c e s s t o

t h e s e r v i c e p r o v i d e r s i t e . A s p e c i a l G r i d u s e r a c c o u n t i s s e t u p f o r t h e s e r v i c e p r o v i d e r ,

w h i c h i s t r u s t e d b y t h e c o m p u t e r e s o u r c e s . T h e s e r v i c e p r o v i d e r a c t s a s a n a c t i v e a g e n t

b e t w e e n t h e u s e r a n d t h e c o m p u t e r e s o u r c e s . O n o n e s i d e , t h e s e r v i c e p r o v i d e r

a u t h e n t i c a t e s a n d a u t h o r i z e s t h e u s e r s , a n d s e r v e s t h e r e q u e s t s o f t h e u s e r s . O n t h e o t h e r

s i d e , i t a c c e s s e s r e l a t e d c o m p u t e r e s o u r c e s o n b e h a l f o f i t s e l f . T h e c o m p u t e r e s o u r c e s

r e s p o n s e t h e r e q u e s t s b a s e d o n t h e i r t r u s t o f t h e s e r v i c e p r o v i d e r .

I n G E C E M , e a c h u s e h a s a X . 5 0 9 c e r t i f i c a t e a n d i t s D i s t i n g u i s h e d N a m e (D N) i s

i n c l u d e d i n a g r i d - m a p f i l e o n t h e s e r v i c e p r o v i d e r s i t e i n o r d e r t o a c c e s s t h e s e r v i c e . T h e

s e r v i c e p r o v i d e r , a s a s p e c i a l G r i d u s e r , h a s i t s c e r t i f i c a t e a n d i s i n c l u d e d i n t h e g r i d -

m a p f i l e o n t h e c o m p u t e r e s o u r c e p r o v i d e r s i t e .

T h i s a c c o u n t m a n a g e m e n t a p p r o a c h b e n e f i t s f r o m t h e f o l l o w i n g a d v a n t a g e s :

i) I t a b s t r a c t s t h e r e s o u r c e s u s e d , a l l o w i n g t h e r e s o u r c e s t o b e u s e d w i t h o u t t h e

u s e r ’ s a w a r e n e s s . T h e u s e r d o e s n o t n e e d t o o b t a i n m u l t i p l e u s e r a c c o u n t s o n

d i f f e r e n t G r i d s i t e s t o c o m p l e t e o n e j o b i n t h e G r i d e n v i r o n m e n t . I n s t e a d o f t h e

u s e r , t h e s e r v i c e p r o v i d e r w i l l a c c e s s t h e r e s o u r c e s a t c r o s s - s i t e s o r g a n i s a t i o n s .

130

^ n a p ie r j vjnv,nivi: a rr o o ie m a o iv in g n iv iru m iie iii

i i) T h e G r i d r e s o u r c e o n l y k n o w s a b o u t t h e s e r v i c e p r o v i d e r a n d i s f r e e f r o m t h e

t a s k o f a c c e s s c o n t r o l f o r e v e r y G r i d c o m m u n i t y u s e r . T h i s g r e a t l y r e d u c e s t h e

a c c o u n t m a n a g e m e n t b u r d e n a n d a l l o w s (f o r) s c a l a b i l i t y .

5.6.4 User Appointed Compute Resource Model

S c e n a r i o c : T h e c o m p u t e r e s o u r c e p r o v i d e r t r u s t s t h e u s e r o n l y , n o t t h e s e r v i c e

p r o v i d e r .

I n t h i s s c e n a r i o , t h e u s e r i s t r u s t e d n o t o n l y b y t h e s e r v i c e p r o v i d e r , b u t a l s o b y t h e

c o m p u t e r e s o u r c e p r o v i d e r . I n t h i s c a s e , t h e s e r v i c e p r o v i d e r a c c e s s e s t h e a p p o i n t e d

c o m p u t e r e s o u r c e o n b e h a l f o f t h e u s e r . T h i s s c e n a r i o a l l o w s v e r i f y i n g t h e i d e n t i t y o f

t h e u s e r a t t h e c o m p u t e r e s o u r c e s i t e , w i t h o u t h a v i n g t o b e a w a r e o f t h e i n t e r m e d i a t e

s i t e s w h i c h f o r w a r d t h e j o b .

5.6.5 Accounts Pool Model

C r e d e n t i a l M a n a g e m e n t A g e n t m a k e s t h e c o m p u t e r e s o u r c e t r u s t t h e s e r v i c e p r o v i d e r

o r t h e u s e r , a n d a v o i d t r u s t i n g a l l t h e u s e r s o f a l l t h e s e r v i c e p r o v i d e r s . B u t a c c o r d i n g t o

G S I , e a c h t r u s t e d u s e r n e e d s t o o b t a i n a t r a d i t i o n a l u s e r a c c o u n t o n t h e c o m p u t e

r e s o u r c e a n d t h e u s e r ' s D i s t i n g u i s h e d N a m e (D N) h a s t o b e m a p p e d t o t h i s u s e r a c c o u n t .

T h i s r e q u i r e s t h e c o m p u t e r e s o u r c e t o s e t u p a n d m a i n t a i n a c c o u n t f o r e a c h t r u s t e d u s e r ;

t h u s , m a k i n g i t a b u r d e n f o r l a r g e G r i d c o m m u n i t i e s . T h i s i s n o t a s c a l a b l e l o n g - t e r m

s o l u t i o n a n d i t m a k e s i t d i f f i c u l t f o r G r i d c o m m u n i t y t o e x t e n d t o m a n y u s e r s . I n

G E C E M c o n t e x t , t h i s s c a l a b l e i s s u e i s d e a l t w i t h t h r o u g h a p p l y i n g t h e A c c o u n t s P o o l

M o d e l (A P M) , w h i c h i n t r o d u c e s a d y n a m i c u s e r a c c o u n t s p o o l . W e c r e a t e a p o o l o f u s e r

a c c o u n t s a t e a c h s i t e f o r a l l t r u s t e d u s e r s s h a r i n g . A P M d y n a m i c a l l y m a p s t h e t r u s t e d

G r i d u s e r t o a u s e r a c c o u n t f r o m t h e u s e r a c c o u n t s p o o l . T h i s u s e r a c c o u n t i s b l o c k e d

a f t e r i t i s a l l o c a t e d t o a u s e r a n d i s r e l e a s e d u p o n t h e j o b h a s b e e n c o m p l e t e d .

131

^napiei o ^ uiiciumujus a n u r u iu ic w u ik

CHAPTER 6

Conclusions and Future Work

T h e p u r p o s e o f t h i s c h a p t e r i s t o s u m m a r i z e t h e t h e s i s c o n t r i b u t i o n a n d c o n c l u s i o n s .

W e c o n c l u d e b y h i g h l i g h t i n g s o m e f u t u r e w o r k t h a t c o u l d s t i m u l a t e f u t u r e r e s e a r c h i n

e n a b l i n g l e g a c y a p p l i c a t i o n s o n d i s t r i b u t e d c o m p u t e r e s o u r c e s .

6.1 Summary of the Contribution

A d a p t a b l e a n d f l e x i b l e i n t e g r a t i o n f r a m e w o r k s a r e h i g h l y r e q u i r e d t o m e e t

c h a l l e n g e s e n c o u n t e r e d i n t h e s c i e n t i f i c p r o b l e m s o l v i n g e n v i r o n m e n t . T h e m a i n g o a l o f

t h e t h e s i s h a s b e e n t h e d e v e l o p m e n t o f a f r a m e w o r k f o r c o m p u t e r e s o u r c e s s h a r i n g . T h e

c o n t r i b u t i o n c o u l d b e s u m m a r i z e d a s f o l l o w s :

i) P r o v i d i n g a n X M L b a s e d l a n g u a g e , C o m m a n d - l i n e D e s c r i p t i o n L a n g u a g e

(C o L D e L) , t o d e s c r i b e i n d i v i d u a l c o m m a n d - l i n e a p p l i c a t i o n s , p r e c i s e l y .

C o L D e L a c t s a s a p r o t o c o l s o t h a t d i f f e r e n t s e r v i c e p r o v i d e r s c a n f o l l o w i t

t o g e n e r a t e a n A p p l i c a t i o n D e f i n i t i o n F i l e f o r e a c h s c i e n t i f i c a l g o r i t h m t o

b e u s e d b y t h e A p p l i c a t i o n S e r v i c e s . A n X M L s c h e m a h a s b e e n d e f i n e d

w h i c h e n s u r e s s t r o n g l y t y p e d d a t a e x c h a n g i n g a m o n g s e r v i c e s . A n i n i t i a l

n u m b e r o f t y p e s a n d a r i c h s e t o f e l e m e n t s a r e d e c l a r e d .

i i) P r o v i d i n g A p p l i c a t i o n S e r v i c e T o o l k i t (A S T o o l k i t) t h a t i s b o t h c o s t -

e f f e c t i v e a n d s i m p l e t o w r a p a l a r g e n u m b e r o f a p p l i c a t i o n s a s A p p l i c a t i o n

S e r v i c e s , w i t h o u t t h e p r o b l e m s o f u p d a t i n g a n d m a i n t a i n i n g t h e s o u r c e

c o d e s a n d d e p l o y m e n t s o f a l l t h e A p p l i c a t i o n S e r v i c e s .

A S T o o l k i t i s a n a u t o m a t i c t o o l k i t t h a t w r a p s s c i e n t i f i c a p p l i c a t i o n s a s

A p p l i c a t i o n s e r v i c e s a n d d e p l o y s t h e m o n t h e g r i d . T h e A p p l i c a t i o n

S e r v i c e i s d e s c r i b e d b y C o L D e L , p r e s e n t s a W e b S e r v i c e D e s c r i p t i o n

L a n g u a g e (W S D L) i n t e r f a c e t o p o t e n t i a l c l i e n t s a n d i n t e r a c t s w i t h G r i d

r e s o u r c e s v i a a c o m p o n e n t p l u g - i n m o d e l .

132

i^napier o conclusions ana ruiure worK

i i i) E m p l o y m e n t o f a c o m p o n e n t p l u g - i n m e c h a n i s m t h a t a l l o w s t h e

A p p l i c a t i o n S e r v i c e t o b e c o n f i g u r e d (a t d e p l o y m e n t t i m e) w i t h a J o b

S u b m i s s i o n C o m p o n e n t c a p a b l e o f i n t e r a c t i n g w i t h t h e a v a i l a b l e c o m p u t e

r e s o u r c e s .

T h e c o m p o n e n t p l u g - i n m e c h a n i s m m a k e s t h e A p p l i c a t i o n S e r v i c e G r i d -

a w a r e a n d r e n d e r s t h e A p p l i c a t i o n s e r v i c e t h e c a p a b i l i t y t o p r o v i d e a

u n i f o r m s u b m i s s i o n l a y e r o n t o p o f d i f f e r e n t h e t e r o g e n e o u s e x e c u t i o n

e n v i r o n m e n t s . T h e A p p l i c a t i o n S e r v i c e p r o v i d e s a l e v e l o f a b s t r a c t i o n t o

t h e c l i e n t t h a t i s m u c h h i g h e r t h a n s e r v i c e s l i k e G r a m b e c a u s e i t t a k e s l o w

l e v e l j o b s u b m i s s i o n d e t a i l s l i k e e n v i r o n m e n t v a r i a b l e s a n d t e m p o r a r y f i l e

m a n a g e m e n t o u t o f t h e h a n d s o f t h e c l i e n t .

i v) P r o v i d i n g a W S - S e c u r i t y b a s e d a u t h o r i z a t i o n m e c h a n i s m b y w h i c h s e r v i c e

p r o v i d e r s c a n c o n t r o l w h a t u s e r s c a n i n v o k e o n t h e i r A p p l i c a t i o n S e r v i c e s

t o r u n t h e a p p l i c a t i o n s .

v) P r o v i d i n g a m e c h a n i s m t o c r e a t e t h e s p e c i f i c A p p l i c a t i o n S e r v i c e o n

d e m a n d i n t h e e v e n t i t i s n o t k e p t p e r s i s t e n t o r i s u n a v a i l a b l e d u r i n g t h e

e x e c u t i o n o f a s c i e n t i f i c w o r k f l o w .

T h e u n i q u e c o n t r i b u t i o n o f t h i s w o r k i s t h e d e s i g n a n d i m p l e m e n t a t i o n o f

t h i s m e c h a n i s m , w h i c h i s t e r m e d A b s t r a c t A p p l i c a t i o n S e r v i c e (A A S) .

A A S c a n c r e a t e s p e c i f i c A p p l i c a t i o n S e r v i c e i n s t a n c e o n d e m a n d i n a w a y

t h a t i s c o m p l e t e l y t r a n s p a r e n t t o t h e u s e r a n d p r o v i d e s a h i g h a v a i l a b i l i t y

o f A p p l i c a t i o n S e r v i c e s w i t h o u t a c t u a l l y r e q u i r i n g t h e m t o b e p e r s i s t e n t .

T h e n o v e l a s p e c t o f t h e m e c h a n i s m i s t h a t A A S c r e a t e s A p p l i c a t i o n

S e r v i c e b y c o n f i g u r i n g i t s e l f o n t h e f l y t o b e c o m e a p a r t i c u l a r A p p l i c a t i o n

S e r v i c e i n n e e d , n o t b y i n s t a n t i a t i n g t h e A p p l i c a t i o n S e r v i c e . T h i s i s

a c h i e v e d b y t h e d y n a m i c c o m b i n a t i o n o f t h e c o m m o n a b s t r a c t i o n f o r

l e g a c y a p p l i c a t i o n s a n d a p p l i c a t i o n d e s c r i p t i o n u s i n g s p e c i a l l y d e s i g n e d

C o m m a n d - L i n e D e s c r i p t i o n L a n g u a g e (C o L D e L) . T h i s c o m b i n a t i o n

a l l o w s A A S t o d y n a m i c a l l y c o n f i g u r e i t s e l f t o a p a r t i c u l a r A p p l i c a t i o n

S e r v i c e j u s t i n t i m e . A n A A S m a y h a v e s e v e r a l c o n c r e t e i n s t a n c e s r u n n i n g

a t t h e s a m e t i m e o n t h e g r i d , a n d e a c h c o n c r e t e s e r v i c e i n s t a n c e m a y h a v e

a d i f f e r e n t l e g a c y a p p l i c a t i o n a s s o c i a t e d w i t h i t .

133

unapter o conclusions ana future worK

A A S i s a g e n e r i c a p p l i c a t i o n s e r v i c e . S c a l a b i l i t y o f t h i s A A S a p p r o a c h i s

a c h i e v e d b y d e l i v e r i n g t h e a p p l i c a t i o n s t h r o u g h a d y n a m i c a l l y

r e c o n f i g u r a b l e A A S . T h i s m e c h a n i s m o b v i a t e s t h e n e e d t o k e e p a l l t h e

a v a i l a b l e a p p l i c a t i o n s w r a p p e d a s p e r s i s t e n t A p p l i c a t i o n S e r v i c e s .

v i) P r o v i d i n g a n o v e r a l l f r a m e w o r k f o r e n a b l i n g t h e l e g a c y a p p l i c a t i o n s a n d

d a t a o n G r i d b a s e d a n d S e r v i c e O r i e n t e d A r c h i t e c t u r e .

T h e f r a m e w o r k h a s a c h i e v e d f o u r p r i m a r y f u n c t i o n a l g o a l s : t o p r o v i d e a n

a b i l i t y t o a l l o w l e g a c y a l g o r i t h m s t o b e a c c e s s e d e a s i l y a n d r u n i n t h e G r i d

e n v i r o n m e n t ; t o a l l o w e x i s t i n g d a t a m a n a g e m e n t p r o c e d u r e s t o b e m o r e

a c c e s s i b l e a n d i n t e r o p e r a b l e ; t o p r o v i d e g r a p h i c a l u s e r i n t e r f a c e s t o a c c e s s

a l a r g e n u m b e r o f A p p l i c a t i o n s e r v i c e s a n d f e d e r a t e d d a t a b a s e f r o m a

s c i e n t i f i c p o r t a l , a n d y e t k e e p t h e p o r t a l l i g h t w e i g h t a n d m a n a g e a b l e , a n d

f i n a l l y t o p r o v i d e a l i g h t w e i g h t w o r k f l o w c o m p o s e r t o c o m p o s e s e q u e n t i a l

w o r k f l o w s f r o m A p p l i c a t i o n S e r v i c e s .

v i i) E x p l o r i n g a G r o u p A p p l i c a t i o n s S e r v i c e (G A S) a p p r o a c h t o f u r t h e r

o p t i m i z e t h e e x e c u t i o n t i m e o f a w o r k f l o w . G A S m e r g e s s e v e r a l

A p p l i c a t i o n S e r v i c e s i n t o a s i n g l e s e r v i c e . I t r e d u c e s t h e g r i d o v e r h e a d

i n d u c e d b y t h e W e b s e r v i c e i n v o c a t i o n , s c h e d u l i n g , a n d d a t a t r a n s f e r s .

G A S n o t o n l y f u l f i l s t h e t a s k s o f a s e t o f A p p l i c a t i o n S e r v i c e s , b u t a l s o

t a k e s o v e r t h e r o l e o f w o r k f l o w s e r v i c e t o a s s e m b l e t h e a p p l i c a t i o n s a n d

o r c h e s t r a t e t h e d a t a t r a n s f e r a n d i n p u t / o u t p u t . T h e c o n t r i b u t i o n o f t h i s

a p p r o a c h i s t o m o v e t h e j o b s a s s e m b l i n g a n d o r c h e s t r a t i n g t a s k s f r o m

w o r k f l o w l e v e l t o A p p l i c a t i o n S e r v i c e l e v e l . A c t u a l l y G A S a c t s i n d u a l

r o l e s a s b o t h A p p l i c a t i o n S e r v i c e s a n d w o r k f l o w . T h i s p r o v i d e s a n

o p p o r t u n i t y f o r G A S t o o p t i m i z e a n d o f f e r t h e m o s t e f f i c i e n t p e r f o r m a n c e

b a s e d o n i t s k n o w l e d g e o f n o t o n l y a p p l i c a t i o n s , b u t a l s o t h e w o r k f l o w a n d

j o b d e p e n d e n c i e s .

v i i i) P r o v i d i n g a m e c h a n i s m t o m o n i t o r a n d r e s t a r t t h e j o b .

134

L^napier o conclusions ana ruiure worK

6.2 Future Work

T h e r e a r e a n u m b e r o f i m p r o v e m e n t s t h a t c a n b e m a d e t o t h e f r a m e w o r k i n o r d e r t o

b e t t e r s u p p o r t t h e a p p l i c a t i o n s t h a t i t w r a p s .

6.2.1 Application Description File Generator

B a s e d o n C o L D e l p r o t o c o l , t h e s e r v i c e p r o v i d e r o r a p p l i c a t i o n p r o v i d e r n e e d s

p r o v i d e a n A p p l i c a t i o n D e s c r i p t i o n F i l e (A D F) f o r e a c h a p p l i c a t i o n w r a p p e d . O u r

e x p e r i e n c e s h o w s t h a t w r i t i n g a n A D F i s n o t a n e a s y t a s k f o r a p e r s o n w h o i s n o t

f a m i l i a r w i t h C o L D e l . A n A p p l i c a t i o n D e s c r i p t i o n F i l e G e n e r a t o r , p o s s i b l e v i a W e b

i n t e r f a c e , i s n e e d e d t o l e t t h e s e r v i c e p r o v i d e r e n t e r t h e i n f o r m a t i o n r e q u i r e d i n a n

a p p l i c a t i o n d e s c r i p t i o n , a n d g e n e r a t e t h e A D F o n t h e f l y . T h e A D F i s a b l e t o b e p u s h e d

t o t h e s e r v e r s i d e a n d r e g i s t e r s w i t h t h e A D F s p o o l . A p p l i c a t i o n p r o v i d e r s c a n a l s o

r e g i s t e r t h e A D F f i l e w h i c h t h e y h a v e a l r e a d y v i a t h e W e b i n t e r f a c e .

6.2.2 Batch Submission Optimization

A t p r e s e n t , t h e b a t c h s u b m i s s i o n c a p a b i l i t y i s p r o v i d e d a t w o r k f l o w l e v e l , r a t h e r

t h a n A p p l i c a t i o n S e r v i c e l e v e l . T h i s m e a n s t h e A p p l i c a t i o n S e r v i c e n e e d s t o b e i n v o k e d

a n u m b e r o f t i m e s t o c o m p l e t e t h e b a t c h s u b m i s s i o n . W e p l a n t o p r o v i d e s u p p o r t f o r

p a r a m e t e r s w e e p s [8 1] i n t h e A p p l i c a t i o n S e r v i c e s . T h i s w i l l a l l o w u s e r s t o r u n t h e s a m e

a p p l i c a t i o n a n u m b e r o f t i m e s u s i n g a “ s e t ” o f v a l u e s f o r e a c h i n p u t p a r a m e t e r i n o n e

A p p l i c a t i o n S e r v i c e i n v o c a t i o n .

6.2.3 Checkpointing and M onitoring Optimization

C u r r e n t l y o n e j o b i s d i v i d e d i n t o f o l l o w i n g s t a g e s : i n p u t s t a g e i n , a p p l i c a t i o n

c o m p u t a t i o n , a n d o u t p u t s t a g e o u t . U s e r c a n m o n i t o r t h e s t a t u s o f e a c h j o b s t a g e . T h e

j o b s p e c i f i c a t i o n i s r e c o r d e d f o r e a c h j o b , w h i c h c o n t a i n s a l l t h e i n f o r m a t i o n r e g a r d i n g

t h e p a r a m e t e r s v a l u e s , i n p u t f i l e s l o c a t i o n s a n d o t h e r s . T h e u s e r c a n r e s t a r t t h e j o b u s i n g

t h e r e c o r d e d j o b s p e c i f i c a t i o n u p o n f a i l u r e s . B u t t h e j o b h a s t o b e r e s u b m i t t e d f r o m t h e

s c r a t c h , n o t f r o m t h e f a i l u r e p o i n t . A c h e c k p o i n t i n g c a p a b i l i t y i s n e e d e d , w h i c h c a n b e

u s e d t o r e s t a r t t h e j o b s f r o m f a i l u r e p o i n t i n s t e a d o f f r o m t h e v e r y b e g i n n i n g .

135

c^napier o conclusions ana ruiure worK

6.2.4 Fault Detection

C u r r e n t l y w e o n l y p r o v i d e a n a b i l i t y t o r e c o v e r f r o m f a u l t s b y r e s t a r t i n g a n

a p p l i c a t i o n . W e a r e u n a b l e t o p r o v i d e a c a p a b i l i t y t o d e t e c t t h e s e f a u l t s , a s t h e y o c c u r .

W e c a n p r o v i d e a u t o m a t i c i d e n t i f i c a t i o n o f c a u s e s o f f a i l u r e o f a p p l i c a t i o n s . T h i s w i l l

e n a b l e u s e r s t o e a s i l y i d e n t i f y t h e r e a s o n w h y t h e a p p l i c a t i o n f a i l e d d u r i n g i t s e x e c u t i o n

a n d t a k e a p p r o p r i a t e a c t i o n s .

6.2.5 Asynchronous Communication

P r e s e n t l y , t h e c o m m u n i c a t i o n b e t w e e n c l i e n t a n d m o n i t o r i n g s e r v i c e i s c a r r i e d o u t

v i a t h e c l i e n t ’ s r e q u e s t s f o r i m m e d i a t e , s y n c h r o n o u s d e l i v e r y . T h i s i s s y n c h r o n o u s i n

n a t u r e . A s y n c h r o n o u s c o m m u n i c a t i o n c a n b e a d d e d , b y u s i n g i m p l e m e n t a t i o n s o f

p o p u l a r W e b s e r v i c e s b a s e d p u b l i s h - s u b s c r i b e s y s t e m s s u c h a s W e b S e r v i c e s

N o t i f i c a t i o n [8 2] .

136

tfiDiiograpny

Bibliography

1 . E l h a c h e m i M , H a s s a n O , M o r g a n K , W e a t h e r i l l N P . 3 D t i m e d o m a i n
c o m p u t a t i o n a l e l e c t r o m a g n e t i c s u s i n g a H I f i n i t e e l e m e n t m e t h o d a n d h y b r i d
u n s t r u c t u r e d m e s h e s . C o m p u t a t i o n a l F l u i d D y n a m i c s J o u r n a l . 2 0 0 4 ; 1 3 : 5 5 - 6 6 .
2 . R a o A , C h a n d r a s h e k a r a R , S a n c h e z - O r t i z G I , A l j a b a r P , M o h i a d d i n R , H a j n a l
J V , e t a l . S p a t i a l t r a n s f o r m a t i o n o f m o t i o n a n d d e f o r m a t i o n f i e l d s u s i n g n o n - r i g i d
r e g i s t r a t i o n . I E E E T r a n s a c t i o n s o n M e d i c a l I m a g i n g . 2 0 0 4 ; 2 3 (9) : 1 0 6 5 - 7 6 .
3 . N e w c o m e r E , L o m o w G , e d i t o r s . U n d e r s t a n d i n g S O A w i t h W e b S e r v i c e s :
A d d i s o n W e s l e y ; 2 0 0 5 .
4 . [c i t e d ; A n t w e b s i t e] . A v a i l a b l e f r o m : h t t p : / / a n t . a p a c h e . o r g / i n d e x . h t m l
5 . T h a i n D , T a n n e n b a u m T , M L . D i s t r i b u t e d c o m p u t i n g i n p r a c t i c e : t h e C o n d o r
e x p e r i e n c e . C o n c u r r e n c y - P r a c t i c e a n d E x p e r i e n c e . 2 0 0 5 ; 1 7 : 3 2 3 - 5 6 .
6 . G e n t z s c h W . S u n G r i d E n g i n e : T o w a r d s C r e a t i n g a C o m p u t e P o w e r G r i d .
C C G R I D , P r o c e e d i n g s o f t h e 1 s t I n t e r n a t i o n a l S y m p o s i u m o n C l u s t e r C o m p u t i n g a n d
t h e G r i d , P a g e : 3 5 I E E E C o m p u t e r S o c i e t y W a s h i n g t o n , D C , U S A ; 2 0 0 1 .
7 . O i n n T , G r e e n w o o d M , A d d i s M , A l p d e m i r M N , F e r r i s J , G l o v e r K , e t a l .
T a v e m a : L e s s o n s i n c r e a t i n g a w o r k f l o w e n v i r o n m e n t f o r t h e l i f e s c i e n c e s i n
C o n c u r r e n c y a n d C o m p u t a t i o n : P r a c t i c e a n d E x p e r i e n c e . G r i d W o r k f l o w S p e c i a l I s s u e .
2 0 0 5 ; 1 8 (1 0) : 1 0 6 7 - 1 1 0 .
8 . C h u r c h e s D , G o m b a s G , H a r r i s o n A , M a a s s e n J , R o b i n s o n C , S h i e l d s M , e t a l .
P r o g r a m m i n g S c i e n t i f i c a n d D i s t r i b u t e d W o r k f l o w w i t h T r i a n a S e r v i c e s . C o n c u r r e n c y
a n d C o m p u t a t i o n : P r a c t a n d E x p e r . 2 0 0 6 ; S p e c i a l I s s u e : S c i e n t i f i c W o r k f l o w s .
9 . L u d a e s c h e r B , A l t i n t a s I , B e r k l e y C , H i g g i n s D , J a e g e r - F r a n k E , J o n e s M , e t a l .
S c i e n t i f i c W o r k f l o w M a n a g e m e n t a n d t h e K e p l e r S y s t e m . C o n c u r r e n c y a n d
C o m p u t a t i o n : P r a c t a n d E x p e r . 2 0 0 6 ; S p e c i a l I s s u e : S c i e n t i f i c W o r k f l o w s .
1 0 . N a d a l i n A , K a l e r C , M o n z i l l o R , H a l l a m - B a k e r P . W e b S e r v i c e s S e c u r i t y :
S O A P M e s s a g e S e c u r i t y 1 . 1 (W S - S e c u r i t y 2 0 0 4) . 2 0 0 6 [c i t e d ; A v a i l a b l e f r o m :
h t t p : / / d o c s . o a s i s - o p e n . o r g / w s s / v l . 1 /
1 1 . W e l c h V , B a r l o w J , B a s n e y J , M a r c u s i u D , W i l k i n s - D i e h r N . A A A A A m o d e l
t o s u p p o r t s c i e n c e g a t e w a y s w i t h c o m m u n i t y a c c o u n t s . C o n c u r r e n c y a n d C o m p u t a t i o n :
P r a c t i c e a n d E x p e r i e n c e . 1 9 (6) : 8 9 3 - 9 0 4 .
1 2 . C h i n J , H a r t i n g J , J h a S , C o v e n e y P , P o r t e r A , P i c k l e s S . S t e e r i n g i n
c o m p u t a t i o n a l s c i e n c e : m e s o s c a l e m o d e l l i n g a n d s i m u l a t i o n . C o n t e m p o r a r y P h y s i c s .
2 0 0 3 ; 4 4 (5) : 4 1 7 - 3 4 .
1 3 . F o s t e r I , K e s s e l m a n C , N i c k J M , T u e c k e S . T h e p h y s i o l o g y o f t h e g r i d : A n o p e n
g r i d s e r v i c e s a r c h i t e c t u r e f o r d i s t r i b u t e d s y s t e m s i n t e g r a t i o n . 2 0 0 2 .
1 4 . J a c o b B , B e r s t i s V . F u n d a m e n t a l s o f G r i d C o m p u t i n g . I B M R e d p a p e r . 2 0 0 2 .
1 5 . C a r d o s o J , S h e t h A P , e d i t o r s . " F o r e w o r d " , S e m a n t i c W e b S e r v i c e s , P r o c e s s e s
a n d A p p l i c a t i o n s : S p r i n g e r ; 2 0 0 6 .
1 6 . E r l T , e d i t o r . S e r v i c e - o r i e n t e d A r c h i t e c t u r e : C o n c e p t s , T e c h n o l o g y , a n d D e s i g n ;
2 0 0 5 .
1 7 . C h a n n a b a s a v a i a h K , H o l l e y K , E d w a r d T u g g l e J . M i g r a t i n g t o a s e r v i c e - o r i e n t e d
a r c h i t e c t u r e . I B M D e v e l o p e r W o r k s ; 2 0 0 3 .
1 8 . [c i t e d ; W e b S e r v i c e f r o m W 3 C] . A v a i l a b l e f r o m : h t t p : / / w w w . w 3 . o r g / T R / w s a -
r e q s /
1 9 . G r a h a m S , S i m e o n o v S , B o u b e z T , D a v i s D , D a n i e l s G , N a k a m u r a Y , e t a l .
B u i l d i n g W e b S e r v i c e s w i t h J a v a . S A M S . 2 0 0 2 .

137

jBiDiiograpny

2 0 . [c i t e d ; S O A P f r o m W 3 C] . A v a i l a b l e f r o m : h t t p : / / w w w . w 3 . o r g / T R / s o a p 1 2 -
p a r t l /
2 1 . C h r i s t e n s e n E , C u r b e r a F , M e r e d i t h G , W e e r a w a r a n a S . 2 0 0 1 [c i t e d ; W S D L
f r o m W 3 C] . A v a i l a b l e f r o m : h t t p : / / w w w . w 3 . o r g / T R / w s d l
2 2 . C l e m e n t L , H a t e l y A , R i e g e n C , R o g e r s T . [c i t e d ; U D D I f r o m U D D I . o r g] .
A v a i l a b l e f r o m : h t t p : / / u d d i . o r g / p u b s / u d d i v 3 . h t m
2 3 . [c i t e d ; B P E L f r o m I B M] . A v a i l a b l e f r o m :
h t t p : / / w w w . i b m . c o m / d e v e l o p e r w o r k s / l i b r a r y / s p e c i f i c a t i o n / w s - b p e l /
2 4 . L i b r a r y M . . N E T F r a m e w o r k C o n c e p t u a l O v e r v i e w . 2 0 0 7 [c i t e d ; A v a i l a b l e
f r o m : h t t p : / / m s d n . m i c r o s o f t . c o m / e n - u s / l i b r a r y / z w 4 w 5 9 5 w . a s p x
2 5 . U n i v e r s a l D e s c r i p t i o n D i s c o v e r y a n d I n t e g r a t i o n . [c i t e d ; A v a i l a b l e f r o m :
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / U D D I
2 6 . B l o o m b e r g J . U D D I : S t r a w m a n o r u g l y d u c k l i n g .
2 7 . M i c r o s o f t , I B M , S A P T o D i s c o n t i n u e U D D I W e b S e r v i c e s R e g i s t r y E f f o r t . S O A
W O R L D M A G A Z I N E . 2 0 0 5 / 1 2 / 1 8 .
2 8 . C o m m o n O b j e c t R e q u e s t B r o k e r A r c h i t e c t u r e . [c i t e d ; A v a i l a b l e f r o m :
h t t p : / / e n . w i k i p e d i a . o r g / w i k i / C O R B A
2 9 . H e n n i n g M . T h e R i s e a n d F a l l o f C O R B A . A C M q u e u e
3 0 . F o s t e r I . G l o b u s T o o l k i t V e r s i o n 4 : S o f t w a r e f o r S e r v i c e - O r i e n t e d S y s t e m s .
I F I P I n t e r n a t i o n a l C o n f e r e n c e o n N e t w o r k a n d P a r a l l e l C o m p u t i n g ; 2 0 0 5 .
3 1 . S e n g e r M , R i c e P , O i n n T . S o a p l a b - a u n i f i e d S e s a m e d o o r t o a n a l y s i s t o o l s .
U K e - S c i e n c e , A l l H a n d s M e e t i n g E d i t o r s - S i m o n J C o x , p . 5 0 9 - 5 1 3 ; 2 0 0 3 .
3 2 . R i c e P , L o n g d e n I , B l e a s b y A . E M B O S S : T h e E u r o p e a n M o l e c u l a r B i o l o g y
O p e n S o f t w a r e S u i t e . T r e n d s i n G e n e t i c s 2 0 0 0 ; 1 6 ((6)) : p p 2 7 6 — 7 .
3 3 . [c i t e d ; A p p L a b] . A v a i l a b l e f r o m : h t t p : / / w w w . e b i . a c . u k / ~ s e n g e r / a p p l a b /
3 4 . [c i t e d ; T o m c a t W e b s i t e] . A v a i l a b l e f r o m : h t t p : / / t o m c a t . a p a c h e . o r g / i n d e x . h t m l
3 5 . [c i t e d ; C O R B A] . A v a i l a b l e f r o m : h t t p : / / w w w . c o r b a . o r g /
3 6 . S a n j e e p a n V , M a t s u n a g a A , Z h u L , L a m H , F o r t e s J . A S e r v i c e - O r i e n t e d ,
S c a l a b l e A p p r o a c h t o G r i d - E n a b l i n g o f L e g a c y S c i e n t i f i c A p p l i c a t i o n s . I n t e r n a t i o n a l
C o n f e r e n c e o n W e b S e r v i c e s (I C W S - 2 0 0 5) , p a g e s 5 5 3 - 5 6 0 ; 2 0 0 5 .
3 7 . A d a b a l a S , C h a d h a V , C h a w l a P , F i g u e i r e d o R , F o r t e s J , K r s u l I , e t a l . F r o m
v i r t u a l i z e d r e s o u r c e s t o v i r t u a l c o m p u t i n g g r i d s : t h e I n - V I G O s y s t e m . F u t u r e
G e n e r a t i o n C o m p u t e r S y s t e m s . 2 0 0 5 ; 2 1 ((6)) .
3 8 . D e l a i t r e T , G o y e n e c h e A , K a c s u k P , K i s s T , T e r s t y a n s z k y G Z , W i n t e r S C .
G E M L C A : G r i d E x e c u t i o n M a n a g e m e n t f o r L e g a c y C o d e A r c h i t e c t u r e D e s i g n . 3 0 t h
E U R O M I C R O C o n f e r e n c e ; 2 0 0 4 .
3 9 . K a c s u k P , G o y e n e c h e A , D e l a i t r e T , K i s s T , F a r k a s Z , B o c z k o T . H i g h - l e v e l
g r i d a p p l i c a t i o n e n v i r o n m e n t t o u s e l e g a c y c o d e s a s O G S A g r i d s e r v i c e s . F i f t h
I E E E / A C M I n t e r n a t i o n a l W o r k s h o p ; 2 0 0 4 ; 2 0 0 4 . p . 4 2 8 - 3 5 .
4 0 . B r e s n a h a n J , L i n k M , K h a n n a G , I m a n i Z , K e t t i m u t h u R , F o s t e r I . G l o b u s
G r i d F T P : W h a t ' s N e w i n 2 0 0 7 . t h e F i r s t I n t e r n a t i o n a l C o n f e r e n c e o n N e t w o r k s f o r G r i d
A p p l i c a t i o n s (G r i d N e t s 2 0 0 7) ; 2 0 0 7 .
4 1 . T e r s t y a n s z k y G , D e l a i t r e T , G o y e n e c h e A , K i s s T , S a j a d a h K , W i n t e r S C , e t a l .
S e c u r i t y m e c h a n i s m s f o r l e g a c y c o d e a p p l i c a t i o n s i n G T 3 e n v i r o n m e n t . P a r a l l e l ,
D i s t r i b u t e d a n d N e t w o r k - B a s e d P r o c e s s i n g , 2 0 0 5 P D P 2 0 0 5 1 3 t h E u r o m i c r o
C o n f e r e n c e ; 2 0 0 5 ; 2 0 0 5 . p . 2 2 0 - 6 .
4 2 . G e d d e s J , L l o y d S , S i m p s o n A , R o s s o r M , F o x N , H i l l D , e t a l . N e u r o G r i d :
C o l l a b o r a t i v e N e u r o s c i e n c e v i a G r i d C o m p u t i n g . I n : C O X S , e d i t o r . P r o c U K e - S c i e n c e
A l l H a n d s M e e t i n g 2 0 0 4 .

138

oiDiiograpny

4 3 . G e d d e s J , L i o y d S , S i m p s o n A , R o s s o r M , F o x N , H i l l D , e t a l . N e u r o G r i d :
U s i n g G r i d T e c h n o l o g y t o A d v a n c e N e u r o s c i e n c e . P r o c e e d i n g s o f t h e 1 8 t h I E E E
S y m p o s i u m o n C o m p u t e r - B a s e d M e d i c a l S y s t e m s ; 2 0 0 5 ; 2 0 0 5 .
4 4 . G e d d e s J , M a c k a y C , L i o y d S , S i m p s o n A , P o w e r D , R u s s e l D . T h e C h a l l e n g e s
o f D e v e l o p i n g a C o l l a b o r a t i v e D a t a a n d C o m p u t e G r i d f o r N e u r o s c i e n c e s . C o m p u t e r -
B a s e d M e d i c a l S y s t e m s , 2 0 0 6 C B M S 2 0 0 6 1 9 t h I E E E I n t e r n a t i o n a l S y m p o s i u m , p . 8 1 -
6 .

4 5 . G r a h a m S , D a v i s D , S i m e o n o v S , D a n i e l s G , B r i t t e n h a m P , N a k a m u r a Y , e t a l .
B u i l d i n g W e b S e r v i c e s w i t h J a v a : M a k i n g S e n s e o f X M L , S O A P , W S D L , a n d U D D I
S a m s P u b l i s h i n g .
4 6 . K E I O , K o i c h O , Y o s h i a k i F . A M e t h o d t o I m p r o v e M o d u l a r i t y o n C o m p o n e n t -
O r i e n t e d W e b A p p l i c a t i o n F r a m e w o r k s . I E I C T e c h n i c a l R e p o r t (I n s t i t u t e o f E l e c t r o n i c s ,
I n f o r m a t i o n a n d C o m m u n i c a t i o n E n g i n e e r s) . 1 0 5 (2 2 9) : 1 3 - 8 .
4 7 . F e r r i s C , K a r m a r k a r A , Y e n d l u r i P . B a s i c P r o f i l e V e r s i o n 2 . 0 . 2 0 0 7 [c i t e d ;
A v a i l a b l e f r o m : h t t p : / / w w w . w s - i . o r g / P r o f i l e s / B a s i c P r o f i l e - 2 0 (W G D) . h t m l
4 8 . A d a m s C , F a r r e l l S . I n t e r n e t X . 5 0 9 P u b l i c K e y I n f r a s t r u c t u r e : C e r t i f i c a t e
M a n a g e m e n t P r o t o c o l . 1 9 9 9 .
4 9 . G r i f f i n P . I n t r o d u c t i o n T o X A C M L . W e b S e r v i c e s J o u r n a l 2 0 0 4 [c i t e d ;
A v a i l a b l e f r o m : h t t p : / / d e v 2 d e v . b e a . e o m / p u b / a / 2 0 0 4 / 0 2 / x a c m l . h t m l
5 0 . B e r g s t e n H . J a v a S e r v e r P a g e s . O ' R e i l l y M e d i a . 2 0 0 3 .
5 1 . [c i t e d ; J W S D P w e b s i t e] . A v a i l a b l e f r o m :
h t t p : / / i a v a . s u n . e o m / w e b s e r v i c e s / r e f e r e n c e / a p i s - d o c s / j w s d p 2 . 0 . i s p
5 2 . M a h m o u d Q H . T h e N e w J a v a W e b S e r v i c e s D e v e l o p e r P a c k 1 . 4 (J a v a W S D P
1 . 4) . S u n D e v e l o p e r N e t w o r k ; 2 0 0 4 .
5 3 . G T 2 . 4 : T h e G l o b u s R e s o u r c e S p e c i f i c a t i o n L a n g u a g e R S L v l . O . [c i t e d ;
A v a i l a b l e f r o m : http://www.globus.Org/toolkit/docs/2.4/gram/rsl specl.html
5 4 . B u m s M , R o w l a n d A L , R u e c k e r t D , H a j n a l J V , H i l l D . A G r i d I n f r a s t r u c t u r e f o r
I m a g e R e g i s t r a t i o n a n d S e g m e n t a t i o n . I n : C o x C J , e d i t o r . P r o c U K e - S c i e n c e A l l H a n d s
M e e t i n g 2 0 0 4 ; 2 0 0 4 .
5 5 . [c i t e d ; D A G M a n w e b s i t e] . A v a i l a b l e f r o m :
h t t p : / / w w w . c s . w i s c . e d u / c o n d o r / m a n u a l / v 7 . 0 / 2 1 O D A G M a n A p p l i c a t i o n s . h t m l
5 6 . W i l k i n s o n M D , L i n k s M . B i o M O B Y : A n o p e n s o u r c e b i o l o g i c a l w e b s e r v i c e s
p r o p o s a l . B R I E F I N G S I N B I O I N F O R M A T I C S . 2 0 0 2 ; 3 (4) : 3 3 1 - 4 1 .
5 7 . T a y l o r I , S h i e l d s M , W a n g I , P h i l p R . D i s t r i b u t e d P 2 P C o m p u t i n g w i t h i n T r i a n a :
A G a l a x y V i s u a l i z a t i o n T e s t C a s e . I P D P S 2 0 0 3 C o n f e r e n c e ; 2 0 0 3 .
5 8 . T a y l o r I , S h i e l d s M , W a n g I , P h i l p R . G r i d E n a b l i n g A p p l i c a t i o n s U s i n g T r i a n a .
W o r k s h o p o n G r i d A p p l i c a t i o n s a n d P r o g r a m m i n g T o o l s , S e a t t l e I n c o n j u n c t i o n w i t h
G G F 8 j o i n t l y o r g a n i z e d b y : G G F A p p l i c a t i o n s a n d T e s t b e d s R e s e a r c h G r o u p (A P P S -
R G) a n d G G F U s e r P r o g r a m D e v e l o p m e n t T o o l s R e s e a r c h G r o u p (U P D T - R G) ; 2 0 0 3 .
5 9 . Y o o T S , A c k e r m a n M J , L o r e n s e n W E , S c h r o e d e r W , C h a l a n a V , A y l w a r d S , e t
a l . E n g i n e e r i n g a n d A l g o r i t h m D e s i g n f o r a n I m a g e P r o c e s s i n g A P I : A T e c h n i c a l
R e p o r t o n I T K - T h e I n s i g h t T o o l k i t . M e d i c i n e M e e t s V i r t u a l R e a l i t y , J W e s t w o o d , e d .
2 0 0 2 : 5 8 6 - 9 2 .
6 0 . Z h a n g Y , B r a d y M , S m i t h S . S e g m e n t a t i o n o f b r a i n M R i m a g e s t h r o u g h a
h i d d e n M a r k o v r a n d o m f i e l d m o d e l a n d t h e e x p e c t a t i o n m a x i m i z a t i o n a l g o r i t h m . I E E E
T r a n s o n M e d i c a l I m a g i n g . 2 0 0 1 ; 2 0 (l) : 4 5 - 5 7 .
6 1 . D e n t o n E R E , S o n o d a L I , R u e c k e r t D , R a n k i n S C , H a y e s C , L e a c h M , e t a l .
C o m p a r i s o n a n d e v a l u a t i o n o f r i g i d a n d n o n - r i g i d r e g i s t r a t i o n o f b r e a s t M R i m a g e s .
J o u r n a l o f C o m p u t e r A s s i s t e d T o m o g r a p h y . 1 9 9 9 ; 2 3 : 8 0 0 - 5 .

139

D i u i i u g i a p n y

6 2 . J e n k i n s o n M , S m i t h S M . A g l o b a l o p t i m i s a t i o n m e t h o d f o r r o b u s t a f f i n e
r e g i s t r a t i o n o f b r a i n i m a g e s . M e d i c a l I m a g e A n a l y s i s . 2 0 0 1 ; 5 (2) : 1 4 3 - 5 6 .
6 3 . S l e d J G , Z i j d e n b o s A P , E v a n s A C . A n o n - p a r a m e t r i c m e t h o d f o r a u t o m a t i c
c o r r e c t i o n o f i n t e n s i t y n o n - u n i f o r m i t y i n M R I d a t a . I E E E T r a n s a c t i o n s o n M e d i c a l
I m a g i n g . 1 9 9 8 ; 1 7 : 8 7 - 9 7 .
6 4 . C h e n Y , H a s s a n O , J o n e s j J W , W e a t h e r i l l N P , W a n g X , W a l k e r D W . T h e
G E C E M : A p p l y i n g G r i d T e c h n o l o g y f o r C E M R e s e a r c h . I n t e r n a t i o n a l C o n f e r e n c e o n
D a t a M a n a g e m e n t , I C D M 2 0 0 8 ; 2 0 0 8 .
6 5 . L i n M , W . W D . A p o r t l e t s e r v i c e m o d e l f o r G E C E M . U K e - S c i e n c e A l l H a n d s
M e e t i n g 2 0 0 4 , : S . J . C o x , e d i t o r , P r o c . ; 2 0 0 4 .
6 6 . L i n M , W a l k e r D W , C h e n Y , J o n e s J W . A w e b s e r v i c e a r c h i t e c t u r e f o r G E C E M .
U K e - S c i e n c e A l l H a n d s M e e t i n g 2 0 0 4 : S . J . C o x , e d i t o r , P r o c . ; 2 0 0 4 .
6 7 . L i n M , W a l k e r D W , C h e n Y , J o n e s J W . A G r i d - b a s e d P r o b l e m S o l v i n g
E n v i r o n m e n t f o r G E C E M . 2 0 0 5 I E E E I n t e r n a t i o n a l S y m p o s i u m o n C l u s t e r C o m p u t i n g
a n d t h e G r i d ; 2 0 0 5 .
6 8 . C h e n Y , H a s s a n O , J o n e s f J W , W e a t h e r i l l N P , W a n g X , W a l k e r D W . A
S e r v i c e - o r i e n t e d f r a m e w o r k o n G E C E M G r i d . I n t e r n a t i o n a l C o n f e r e n c e o n D a t a
M a n a g e m e n t , I C D M 2 0 0 8 ; 2 0 0 8 .
6 9 . F e l l e r M , F o s t e r I , M a r t i n S . G T 4 G R A M : A F u n c t i o n a l i t y a n d P e r f o r m a n c e
S t u d y .
7 0 . T i v o l i W o r k l o a d S c h e d u l e r L o a d L e v e l e r . [c i t e d ; A v a i l a b l e f r o m : h t t p : / / w w w -
3 0 6 . i b m . c o m / s o f t w a r e / t i v o l i / p r o d u c t s / s c h e d u l e r - l o a d l e v e l e r /
7 1 . [c i t e d ; O p e n P B S w e b s i t e] . A v a i l a b l e f r o m :
h t t p : / / w w w . p b s g r i d w o r k s . c o m / D e f a u l t . a s p x
7 2 . L a s z e w s k i G V , G a w o r J , L a n e P , R e h n N , R u s s e l l M , J a c k s o n K . F e a t u r e s o f t h e
J a v a C o m m o d i t y G r i d K i t . C o n c u r r e n c y a n d C o m p u t a t i o n : P r a c t i c e a n d E x p e r i e n c e .
2 0 0 2 ; 1 4 : 1 0 4 5 - 5 5 .
7 3 . Z h a n g X , S c h o p f J . P e r f o r m a n c e A n a l y s i s o f t h e G l o b u s T o o l k i t M o n i t o r i n g a n d
D i s c o v e r y S e r v i c e , M D S 2 . P r o c e e d i n g s o f t h e I n t e r n a t i o n a l W o r k s h o p o n M i d d l e w a r e
P e r f o r m a n c e (M P 2 0 0 4) , p a r t o f t h e 2 3 r d I n t e r n a t i o n a l P e r f o r m a n c e C o m p u t i n g a n d
C o m m u n i c a t i o n s W o r k s h o p (I P C C C) ; 2 0 0 4 .
7 4 . N o v o t n y J , T u e c k e S , W e l c h V . A n O n l i n e C r e d e n t i a l R e p o s i t o r y f o r t h e G r i d :
M y P r o x y . t h e T e n t h I n t e r n a t i o n a l S y m p o s i u m o n H i g h P e r f o r m a n c e D i s t r i b u t e d
C o m p u t i n g (H P D C - 1 0) : I E E E P r e s s ; 2 0 0 1 .
7 5 . M e n e z e s A , O o r s c h o t P V , V a n s t o n e S , e d i t o r s . H a n d b o o k o f A p p l i e d
C r y p t o g r a p h y : C R C P r e s s ; 1 9 9 6 .
7 6 . B u t l e r R , E n g e r t D , F o s t e r I , K e s s e l m a n C , T u e c k e S , V o l m e r J , e t a l . A
N a t i o n a l - S c a l e A u t h e n t i c a t i o n I n f r a s t r u c t u r e . I E E E C o m p u t e r . 2 0 0 0 ; 3 3 (1 2) : 6 0 - 6 .
7 7 . I n t r o d u c t i o n t o J S R 1 6 8 — T h e J a v a P o r t l e t S p e c i f i c a t i o n . [c i t e d ;
s u n . d e v e l o p e r] . A v a i l a b l e f r o m :
h t t p : / / d e v e l o p e r s . s u n . c o m / p o r t a l s e r v e r / r e f e r e n c e / t e c h a r t / i s r l 6 8 / p b w h i t e p a p e r . p d f
7 8 . S h a n k a r A . A G e n e r a l I n t r o d u c t i o n t o (G r i d) P o r t a l s / G a t e w a y s . [c i t e d ;
A v a i l a b l e f r o m : h t t p : / / d h r u v . u i t s . i n d i a n a . e d u / p o r t a l s / p o r t a l s - 1 0 1 . p d f
7 9 . S a r k a r B . I n v o k i n g A s s e m b l y L a n g u a g e P r o g r a m s f r o m J a v a . 2 0 0 6 [c i t e d ;
A v a i l a b l e f r o m : h t t p : / / t o d a v . i a v a . n e t / p u b / a / t o d a y / 2 0 0 6 / 1 0 / 1 9 / i n v o k i n g - a s s e m b l v -
l a n g u a g e - f r o m - i a v a . h t m l
8 0 . R a j a s e k a r A , W a n M , M o o r e R , S c h r o e d e r W , K r e m e n e k G , J a g a t h e e s a n A , e t
a l . S t o r a g e R e s o u r c e B r o k e r - M a n a g i n g D i s t r i b u t e d D a t a i n a G r i d . C o m p u t e r S o c i e t y
o f I n d i a J o u r n a l . 2 0 0 3 ; 3 3 (4) : 4 2 - 5 4 .

140

tJioiiograpny

8 1 . P r o d a n R , Z e n t u r i o F T . A g r i d s e r v i c e - b a s e d t o o l f o r o p t i m i s i n g p a r a l l e l
a n d g r i d a p p l i c a t i o n s . J o u r n a l o f G r i d C o m p u t i n g . 2 0 0 4 ; 2 : 1 5 - 2 9 .
8 2 . N i b l e t t P , G r a h a m S . E v e n t s a n d s e r v i c e - o r i e n t e d a r c h i t e c t u r e : T h e O A S I S W e b
S e r v i c e s N o t i f i c a t i o n s p e c i f i c a t i o n s . I B M S y s t e m s J o u r n a l . 2 0 0 5 ; 4 4 (4) .

141

