=
&

Swansea University ‘C I'OIlfa

Prifysgol Abertawe Setting Research Free

Swansea University E-Theses

A mechanism for creating web service interface to scientific
applications.

Chen, Yu

How to cite:

Chen, Yu (2007) A mechanism for creating web service interface to scientific applications.. thesis, Swansea
University.
http://cronfa.swan.ac.uk/Record/cronfa42225

Use policy:

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms
of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior
permission for personal research or study, educational or non-commercial purposes only. The copyright for any work
remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium
without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from
the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the
repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference
above.)

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42225
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Swansea University

School of Engineering

A Mechanism for Creating Web Service Interface to Scientific

Applications

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor

of Philosophy in the School of Engineering of the

Swansea University

December 2007

Yu Chen

B.Sc., M.Sc.

Swansea University
Prifysgol Abertawe

ProQuest Number: 10797927

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10797927

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Declaration

I declare that this work has not already been accepted in substance for any degree, and
is not being concurrently submitted in candidature for any degree

.................... (Candidate)

Statement 1

This thesis is the result of my own investigations, except where otherwise stated. Other
sources are acknowledged by footnotes giving explicit references. A bibliography is
appended.

..................... (Candidate)

Statement 2

I hereby give consent for my thesis, if accepted, to be available for photocopying and
for inter-library loan, and for the title and summary to be made available to outside
organisations.

1

Acknowledgement

With a debt of gratitude, which cannot be adequately expressed in words, I thank my
supervisor Prof. Oubay Hassan for his advice, guidance, and endless support during my
research. His practical and sharp vision in research has not only been invaluable for my
work on this thesis but also for my development as a researcher. In the past four years,
engaging in any discussion with my supervisor has been an enjoyable practical lesson,
where professionalism, devotion in duty, gentleness, assured care, and a feel of
protection are abound. Thanks for his friendship and for being such an excellent listener
and all for the financial support he has provided. I have been very fortunate to work

with him.

I would like to extend my sincere gratitude to my second supervisor Prof. Nigel
Weatherill for all the unforgettable generous financial support throughout my PhD
program. Sincere thanks to Prof. Ken Morgan for his support on my thesis corrections,

and to Dr. Jason Jones for many encouraging and exciting discussions.

I am deeply indebted to Prof. Derek Hill from UCL, Prof. Jo Hajnal from Imperial
College and Prof. Daniel Rueckert from Imperial College for their guidance, insightful
suggestions, and encouragements. I am indebted to them for the countless stimulating

and fruitful discussions, which have trained me in research.

This study has greatly benefited from discussions with a number of colleagues at
Swansea University, University College London, Imperial College and University of
Oxford. In particular, I am grateful to the discussions and guidance of Dr. Ali Asghar

Khanban and Dr. Gianlorenzo Fagiolo.

Thanks to Dr. I. J. Keshtiban, Dr. M. J. Banaie and Mr. Q. Hassan for their proof

reading.

iii

Last and certainly not the least, I wish to thank my family without whose moral
support and encouragement this PhD would have been far from completion. I am and

will ever remain indebted to them.

v

To my parents and other family members with loyalty and love......

Abstract

Science is becoming increasingly multi-disciplinary and complicated. To solve
complex scientific problems, we often need to integrate software and customize
workflows to suit a particular problem. To make progress on key scientific issues,
extended scientific collaborations are growingly dependent on complex workflows for

data analysis and simulation.

Service Oriented Architecture has gained popularity in recent years within scientific
research community. It has been broadly accepted as a means of structuring interactions
among distributed software services. Service Oriented Architecture is a new paradigm
for accessing, integrating and coordinating loosely coupled software systems in a
standardized way. It aims to reduce the cost of building and maintaining complex

software systems while increasing their re-usability.

However, most of the large industrial and scientific applications available today were
written well before the introduction of Grid computing and Service Oriented
Architectures. Hence, they are neither service oriented nor Grid-aware. There is a
growing need to integrate them into Grid-aware applications based on Service Oriented
Architecture. How to integrate these legacy applications into the Grid with the least

possible effort and the best performance has become a crucial point.

The majority of the applications developed and used by scientific communities are
command-line applications. They are written in FORTRAN, C, and a host of scripting
languages. In addition to being fast and efficient, these applications represent state-of-
the-art science; however, they are bound by many limitations which make it difficult to
compose complex workflows from them and run them on a distributed set of resources.

By converting these command-line legacy applications into Application Services, it

vi

becomes easy to compose complex workflows from them and run them on the

distributed resources.

There are some research programs aiming at integrating the legacy codes into Grid
infrastructure. Some frameworks have been developed to compose and run scientific
workflows on a Grid. A number of systems are available to allow scientists to Grid-
enabling their existing applications without having to write extra code or modify their
applications. But most of them do not provide a toolkit for wrapping an application as a
Grid-aware Web service. Few of the systems have addressed the issue of security. This
thesis presents an approach to reducing the required effort needed in developing

Application Services for end users.

Also during the execution of complex scientific workflows, Application Services
often become unavailable primarily due to the unreliable nature of the resources that
host them. When an Application Service becomes unavailable, all workflows that are
accessing it have to stop, and this means wasting a great deal of time and resources.
This thesis offers a new solution to this problem, via providing a mechanism by which

Application Service can be created on-demand from workflows in case it is unavailable.

vil

Contents

Acknowledgement iii
Abstract vi
CHAPTER 1 INtrodUCHONeouiiiiiieeiietceeiesiceeetese et 1
1.1 MOIVALION .ttt sttt ettt s beeene e 1
1.2 CONTIDULIONS ...ttt ettt ettt et et 6
CHAPTER 2.ttt ettt 8
Legacy Applications Wrapping: Background and Related Workc..c.ceoee, 8
2.1 INErOAUCHION ..ttt et 8
2.1.1 Computational Challengescccceceverireeiiiiienieineneeeceeeseeeceees 9
2.1.2 Not Enough User Interaction...........ccoceevveeuiereenenieneeneneeniniieeeee e 9
2.1.3 Hard for Collaborations.............cooeereriiirienieiiiecieeerc e 10

2.2 G0 e s ettt 11
2.3 Service Oriented ATChiteCtUrecocueeviiviiiiiriiiieeten e 11
2.4 Discussion about Some Alternative Technologies..........ccccceveeviniiiniinenene. 15
241 NET oottt 15
242 UDDI ..ottt s 16
243 CORBA ...ttt 17

2.5 The Application Service that Combines SOA and Grid.............coceeenieene. 18
2.5.1 Wrapping APPrOacChcccccoviiriiriiiieiieie ettt 18
2.5.2 The Application SEIVICE.........ceeveeiieieeerieeieesieeie et e e 19

2.6 TWo Wrapping Strategiescceouevuirieriirinieriniereienieereseese et 21
2.6.1 Service Oriented WIapPINgc.ccoeeveeeiereniinieicreieseeieeeeeee e 22

2.6.2 Batch Oriented WIapping..........cccceeveveeerenrercreneneeeeneseeseeesresaeenenaens 23

2.7 Related WOrk......cc.oooieiiiieiiciceeeeeeeecee e 24
2.7.1 S0APIAD ... e st 24
2.7.2 Generic Application SEIVICEccceeeeeririeiirieiereieneiest e eaereenenn 26
273 GEMLCA ..ottt s 28
2.7.4 SUIMMALY ..covvivivieriiieiecriiceree ettt eent et sa st enesne e e 29

CHAPTER 3 Command-line Description Language and Application Service Toolkit

... 31
3.1 Overview and ContribUtIONcceeveererieriinieieeeieeereeee et 31
3.1.1 Command-line Description Language (COLDeL).........ccccecevvrrenvincnnnen 32

3.1.2 Automatic Toolkit for Wrapping All Command-line Oriented Applications

... 33
3. 1.3 SECUIILY ...eeeureeeieeee ettt ettt ettt ettt e e st e sneennens 33
3.1.4 Application Remote Execution and Access to Grid Resources 33

3.2 DESIZM ittt ettt ettt ettt et st sae e 34

3.3 ATCRILECIUIE ...ttt st s 35
3.3.1 ASToolKit Architectureccoceviiiiiiiii e 35
3.3.2 ApPLication SEIVICEccoueeueiiiiiiieecieeiee ettt 37

3.4 Features of ASTOOIKItcooiiiiiieeeeee e 40

3.5 IMPIeMENAtION.......ccovvieireeieeeierieeree ettt e et resee s e sbnesanasas 41
3.5.1 Consistent INterface.........c.coecveevereeereineiriieiierecenrecec e 41
3.5.2 Component Plug-in Modelc.oceviiiiiiniinieccceeece 43
3.5.3 Strong Data TYPINGcccveveiiieiiiiieeececeeec ettt 46
3.5.4 Command-line Description Language.............ceccevceereeriereniincnieeneenennns 47
3.5.5 Application Description Fileccccocooiiieiniiiinininiiicieecnece 51
3.5.6 Modular WSDL.......ooviiiiiiiiee e 56

X

3.5.7 Data Man@gement...........coceeruuereerniiinreeireneeeeeeneeeeeeee e snnee s ennneeens 58

3.5.8 SECUILY ..ot 59
3.5.9 Service Provision and Deploymentcccceceerviniineninenieenenciniece 62
3.5.10 ASToolkit Client Environmentccocceerereerirrenienenrcnieneeeneneennenn. 64
3.6 A Sample to Wrap an Applicationccoceeveevireminireecccniineeecnecicnenes 65
3.7 SUMIMATY ..ottt ettt st sn e ene s 67
CHAPTER 4 NeuroGrid Frameworkc.coeceeevieieviincniniieceneneeiecrceneeene 68
4.1 INrOAUCHIONoveeieieiceecetee et s ea e 68
4.2 DESIZN GOALS ..ottt ettt s e 69
4.2.1 Functional Requir€mentccccvueveerierienieenenie oo 69
4.2.2 Architectural REQUITEMENLtc.ccoveeeeerieeiriieeeeie e 72
4.3 NeuroGrid Framework Archit€Ctureccoccevveeueniinieenienieeieneecicicei e 75
4.3.1 ATCRITECTUIE ...ttt ettt e st sn s e e saans 75
4.3.2 HATAWATE ..o e 77
4.3.3 Roles of FramewWorkcocueeiemieienciniiiiiicceciieeeeccsee e 78
4.4 ITMPIEMENLALION....c..eeirieeieeeeierieeee ettt ettt e s et e bt s se et neeaas 80
4.4.1 Abstract Application Service (AAS)......cccoeeieerierienieneeeeieeeeseceee 80
4.4.2 Group Applications Service Optimizationcccceceeeeveerveennvinicineenne, 85
4.4.3 Application Services in Scientific Workflow............cocoeciniiniiinnn. 90
A4 POIAl ...t 99
4.5 USET CASES .ueeenveeurieieeeiiereteeeeieette et e e e st st se e et e sbaesenneeeaneees 101
4.5.1 Brain Extraction and Segmentation Workflowcc..cccccveeveniiinnnnn. 104

4.5.2 Brain Extraction, Affine Registration and Transformation Workflow ... 108
4.5.3 Image Intensity Correction Workflowcccoooiviniinn 110

Vi S RIS ol == s Lo o) PR 111

CHAPTER 5 GECEM: a Problem Solving Environment Using Wrapping Approach

... 113
5.1 INETOAUCLION ..ottt s 113
5.2 S0mME DELals.....ocoueiieiiiiieiieiencectee e e 114
5.3 GECEM AIChItECLUIEc.eeeuiiiiiieiiiciieciccieee e 115
5.4 Service Oriented WIapPINgcccvevveeierceiienienecieneereneesreereeeesresieanennens 117

5.4.1 INtroduCIONc..eeemiiiiiiiiicecccctc s 117
5.4.2 HOW £0 WIAP c.eeeveieniiiieieniieeeeieece ettt sttt sne e enn s 118
5.4.3 Stateful Grid Service for Data Sharing...........cccceeeeevevriniereeeeieeeeeenne, 120
5.4.4 Others 1SSUEScouvruerueeiititeienirie ettt 121
5.5 Migrate Legacy Service Model - Batch Oriented Wrappingccceeeee. 121
5.5.1 Model INtroduction...........ccoceeverienieciiiiiiiiiiciesiccrecrecee e 121
5.5.2 Model ArchiteCture...........cccoeviiiiiiiienieeceetceece e 123
5.5.3 Implementation ISSUESc.ceeereeriereeienciiirereeeecren e 125
5060 SECUIILY ..ottt ettt st et bs et 126
5.6.1 Security ISSUEScccooiieiiiiiiiiicice s 126
5.6.2 Credentials Management Model (CMM)cccoeceeieininniennccnecnenne. 129
5.6.3 Service Provider Account Model ..o 130
5.6.4 User Appointed Compute Resource Model..........c..coceiiininincninnnnne 131
5.6.5 Accounts Pool Modelc..coooeeuiriiniiiiiiiccnicceeece 131
CHAPTER 6 Conclusions and Future Work..........c.cccocooeiiiininininineeciccne 132
6.1 Summary of the Contribution...........ccccoccevvviiviiiiiiiiiiiniircce e, 132
6.2 FULUIE WOTK ...cntiiiiiiiiiceeeeteete et s 135
6.2.1 Application Description File Generatorcccceceevenveereeceeneniicnenne. 135
6.2.2 Batch Submission OptimiZation.........ccc.eeirerrerercrinreerinerieeneeeeeenne 135
6.2.3 Checkpointing and Monitoring OptimiZationc..ccceceeeecercrcrnnene. 135

X1

6.2.4 FAUIL DEtECHION ... veeeeeeeeeeeeeee et ee e e e e e e eeereeesesseseesarsennnnas

6.2.5 Asynchronous CommuniCationeeevvereeeienineseneneeeereeirnenene

X1l

List of Figures

Figure 3.1: ASToolkit ArchiteCture.cocevvereinierreiniirienieieceeeneeee e 36
Figure 3.2: Application Service ArchiteCture...........cccvveveeernieverieneereeeenesreeneenns 38
Figure 3.3: Application Service Interfaces...........ccocevveeerivineneeniciecriercecieeeene 41
Figure 3.4: Argument Data Type with Associated Metadata...............cccoccceieeenn. 49
Figure 3.5: Input/output Argument Data Type with Associated Metadata................ 50
Figure 3.6: ADF BET Partlcccooceoiiiiiieeeeeeecceee e 53
Figure 3.7: ADF BET Part2cccocoiiiireiirrteiectesereee sttt 53
Figure 3.8: ADF BET Part3ccooiiiiiiiiieeeeeeeeeeeeee e 54
Figure 3.9: ADF BET Part4ccoocooiiiiiiiiiieeeecesee e 55
Figure 3.10: Web Service Descriptions Modularisationc.cceveveeviievcencnneenne 56
Figure 3.11: A Service Property File.........cccoovieoiiminiiiiniiieeeceeee 63
Figure 3.12: ASToolkit Client API Abstraction Layers.........cccccoceviivvivivncnncennen. 64
Figure 4.1: Grid Enabled Application Servicecoceevvveenirienicnicecinineencrecnne 70
Figure 4.2: NeuroGrid Framework Architecture.........c..cocecuerevienecniriceieininencnns 75
Figure 4.3: Roles Involved in NeuroGrid Frameworkccoccoveveeeiiiincrccnncnnen. 79
Figure 4.4: Dynamic creation of Application Service Using AAScccccceenreeee 83
Figure 4.5: Registration Workflow, vs. Group Service.........cccveverirveruereeneencneeenne. 87
Figure 4.6: Group Application Service Architectureccoeeviveeeervencrenecnennens 88
Figure 4.7: Registration Workflow Description File-Partlcccoccooveeiinnnnns 95
Figure 4.8: Registration Workflow Description File-Part2..............ccoecevevinneecnnne. 96
Figure 4.9: NeuroGrid Framework Portalcccooviiiiiiiiiiieee 100
Figure 4.10: Brain Extraction - Segmentation Workflowcccooccovcnennnn. 104

Xiil

Figure4.11: Original Scanned Data...........cccooceiviiiriiiinininiccreccicecicce e 105

Figure 4.12: BET RESUILSccuveviiieiieeiieceeeie ettt 106
Figure 4.13: BET ReSUILSccooouieieeiieiieeeeeeeeeeere et 107
Figure 4.14: Fast RESUILScooeiiiiiiiiicet s 108

Figure 4.15: Brain Extraction - Affine Registration - Transformation Workflow..108
Figure 4.16: Before Registration...........cccoevreienininicnienienineciencese e 109
Figure 4.17: After REgiStrationcccoevveeierieeieniinieieceeieeeeee e 109

Figure 4.18: Flirt Registration - Flirt Transformation - Intensity Correction Workflow

... 110
Figure 4.19: Before Intensity COIrectionco.ceeevrevereerenienieienieeneeieeee e 110
Figure 5.1: GECEM n-layer service-oriented Architecturecocceevevveeueenenee. 115
Figure 5.2: Migrate Events SEqUENCE.........ccecuvveeuririerieniieniienreeseeeeeeireeee e 124

X1V

wllapivl 1 4Ll vduLntiioll

CHAPTER 1

Introduction

1.1 Motivation

Science is becoming increasingly multi-disciplinary. To solve complex scientific
problems, scientists often need to integrate software and customize workflows to suit a
particular case. For example, Electromagnetic modelling employs Computer Aided
Design to generate parametric design geometries, mesh generation software to discretise
the flow domain, and Computational Electromagnetic solvers to obtain a solution [1]. In
imaging studies, researchers tend to combine one or more image processing algorithms
to form sequential image processing pipelines. For example, in tracking the progress of
a brain tumour, the researchers may first segment the area of interest. Then, this
segmentation would be used as an input to a series of rigid registrations that produce a
set of transformations which could then be passed to transformation algorithm [2].
These large scientific collaborations not only highly demand data, applications, and
compute resources sharing seamlessly, but also require several teams of specialists to
work together closely, including the specialists in some specific fields, computer

scientists, and compute resource providers.

To achieve the large scientific collaboration two significant barriers must be
overcame. One barrier is introduced by heterogeneous nature of communities’ resources
including data, applications, and compute resources. The other barrier is introduced by
legacy command-line applications. Most of the scientific applications are command-line
applications, which have several limitations although they are fast, efficient and
represent state-of-the-art science. First, it is not easy to solve computational challenges
for the legacy applications. Traditionally, it is a long tedious task to perform a scientific
computation on the resources provided by third party resources providers. Users interact

with these computation resources at an absolutely fundamental level. Secondly, the

111 0ductioll

legacy applications are often used by internal research groups. They are usually run
non-interactively without any user interaction and monitoring support, which makes
them difficult to be steered by the users. Thirdly, the traditional scientific applications
are not easy for collaborations. Most of the applications are often platform dependent
and are difficult to integrate with the applications from other disciplines. Also they are
command-line oriented. There is no generic method to describe their input parameters
and output results. It is usually difficult to programmatically access these applications

remotely.

Adaptable and flexible integration frameworks are highly required to meet
challenges encountered in scientific problem solving environment - increasing
complexity and large number of data, applications, resources, and researchers involved.
Service Oriented Architecture on Grid infrastructure should be exploited to enhance the

large scientific collaboration.

Conventional distributed computing could often assume to provide homogeneous
computational power to solve computationally intensive problems. However, Grid is
characterised by facilitating dynamic, flexible, secure and cross-organizational sharing
of heterogeneous resources among dynamic collections of individuals in a transparent
way. It is identified as the most promising infrastructure to provide resources for
computationally extensive applications and storages for large-scale datasets. In
particular, the Grid handles issues of authentication, authorisation, resource description
and location, data transfer and resource accounting. This makes Grid technologies

extremely useful to facilitate sharing of the resources across a distributed environment.

Service Oriented Architecture (SOA) is a computer systems architectural style for
creating and using business processes, packaged as services, throughout their lifecycle.
SOA also defines and provisions the IT infrastructure to allow different applications to
exchange data and participate in business processes. These functions are loosely
coupled with the operating systems and programming languages underlying the
applications [3]. SOA is a component model that inter-relates different functional units
of an application, called services, through well-defined interfaces and contracts between
these services. The interface is defined in a neutral manner that should be independent

of hardware platform, operating system, and programming language the service is

LT OUuUCLIVn

implemented in. This allows the services, built on a variety of such systems, to interact

with each other in a uniform and universal manner.

This feature of having a neutral interface definition that is not strongly tied to a
particular implementation is known as loose coupling between services. The benefit of a
loosely-coupled system lies in its agility and ability to survive evolutionary changes in
structure and implementation of internals of each service that make up the whole
application. Tight-coupling on the other hand, means that the interfaces between the
different components of an application are tightly interrelated in function and form, thus
making them brittle when any form of change is required to parts or the whole

application.

SOA have gained popularity in recent years within scientific Grid research
community. It has been broadly accepted as a means of structuring interactions among
distributed software services. Within Service Oriented Architecture all the resources
(e.g., computational resources, data, and programs) are exposed as services. Access to
these services is possible via generic interface definition mechanisms and thus allowing
a transparent and uniform access to a range of distributed and heterogeneous resources

(encapsulated behind the service definition).

However, most of the large industrial and scientific applications available today were
composed well before Grid computing and Service Oriented Architecture appeared.
Hence, they are neither service oriented nor Grid-aware. There is a growing need to
integrate them into the Grid infrastructure based on Service Oriented Architecture. How
to integrate these legacy applications into Grid with the least possible effort and the best
performance becomes a crucial point. By converting these command-line legacy
applications into Application Services, it becomes easy to compose complex workflows
from them and run them on the distributed resources. In this present work, an
Application Service is a Grid-aware application with a Web service interface that is
described by Web Service Definition Language (WSDL).[4] The Application Service
makes the application available through a Web service interface. The Application
Service is Grid-aware, which means it can run the computation in the Grid environment.
When a user invokes an Application Service with some input parameters, the service
runs the application that it wraps on the distributed compute resource with those input

parameters, monitors it and returns its output results. Providing the Web service

ANntroauction

interface for the legacy applications alleviates many problems raised by the legacy

applications mentioned above.

There are some research programs aiming at integrating legacy codes into the Grid
infrastructure. Some frameworks have been developed to compose and run scientific
workflows on a Grid. Some systems are available to allow scientists to Grid-enabling
their existing applications without having to write extra code or modify their
applications. Some tools are available to automate tasks of transforming the existing
applications into Web services. But most of them do not provide a toolkit for wrapping
an application as a Grid-aware Web service. Simply providing a Web service interface
is not sufficient to make the application a usable component in a distributed
computation. A toolkit is highly demanded to tackle existing problems, and
automatically wrap the scientific applications as Grid-aware Web services without
having to deal with the details of Web services technologies. Following are challenges

the toolkit is facing:

Firstly, how can the toolkit make Application Services Grid-aware? Grid-aware
means the Application Services can use distributed computational resources to run the
applications. Our goal is to leverage the set of computational resources available across
different sites on the Grid. So it is crucial for the Application Services to have ability to
assess the remote computational resources. However, clusters at different sites run
schedulers of their choice, such as Condor [5] and Sun Grid Engine [6]. Thus, it is
mandatory that the Application Services provide the support to access any of existing
schedulers and schedulers to appear in future. To end users these schedulers are
accessible in a generic way, which means the users are able to access various schedulers

via the Application Services in a transparent uniform fashion (not scheduler specific).

Another major concern is security. How does the Application Service allow users of
a community run the scientific application on computing clusters provided by compute
resource providers without having login accounts on the computing clusters? How can
a service provider authorize a selected group of users with access to the Application
Service without building a separate security infrastructure and without requiring the

users to have login accounts on the machine hosting the Application Service?

Another challenge is scalability. For most of existing wrapping tools, service

providers need to wrap the legacy applications offline and host them as persistent

4

I oduction

services so they can be accessed from scientific workflows whenever needed. To this
approach, scalability becomes one of the toughest challenges for large scientific
collaborations. Sometimes a service provider needs to wrap and host hundreds of
Application Services just for one scientific package, since it is not uncommon that many
of scientific packages have hundreds of applications. Also whenever a new application
is added into the framework, the service provider needs to develop and deploy a new

Application Service.

Yet another challenge is reliability. In a Grid environment, Application Services
running on a Grid, often become unavailable primarily due to unreliable nature of the
Grid. Sometimes even though an application service may be available, it may not be
usable because it may not meet some quality of service requirements. Under such
circumstances, all workflows that are accessing that Application Service have to be
stopped and can be resumed only after that Application Service becomes available.
During the execution of complex workflows over a period of several hours, Application
Service downtime could result in a considerable waste of time and resources. This is an
important and widespread problem in large scientific communities that is intended to be

addressed and solved in this thesis.

As explained in [7] (Taverna) , service failure is more complex and more likely than
other failures. Fault tolerance mechanisms such as dynamic service substitution and
retry are supported by Taverna. If a service failed because the machine it runs on is
down, it is a candidate to be retried. If the service failed because the input data was
invalid, it is inappropriate to try again. In addition to simply retrying the service
invocation, it may be possible to locate an alternate service to invoke should the original
service fail. In reality, only identical services running on an alternate service provider is
deemed by users to be acceptably interchangeable [7]. Similar to Taverna, other current
workflow systems, Triana [8] and Kepler [9], have tried to solve this problem by
allowing the scientist to specify redundant Application Services for all the Application

Services in the workflow.

However, these redundant services must be running at the time of workflow
execution and suffer the same problem of unreliability as the primary copy. Moreover,
in large scientific collaborations, owing to the large number of Application Services,

providing redundancy consumes considerable resources. It is unrealistic to keep a large

11aodudcuon

number of Application Services persistent without a huge commitment in the form of

resources and support infrastructure.

So, how is possible to provide a high availability of Application Services without
actually requiring them to be persistent? How can the Application Service be created on
demand in the event it is not kept persistent or is unavailable during the execution of a
scientific workflow? How can the Application Service be created on demand in a way

that is completely transparent to the user?
The several challenges that we have discussed so far are summarized below:

How to make Application Services Grid-aware? This means how to make the
Application Services use distributed computational resources to run the applications.
How to make the Application Services easy to be extended to support any of existing

schedulers and schedulers to be appeared in future?

How to authorize a selected group of users with access to the Application Services
without building a separate security infrastructure? How to allow the users to submit
jobs to the resources provided by third-party without requiring the users to have login

accounts on the computation resources and on the machine hosting the service?

How to provide a large number of applications as Application Services without
problems of updating and maintaining source codes and deployments of all the

Application Services?

How to create the Application Service on demand in the event it is not kept persistent

or is unavailable during the execution of a scientific workflow?

1.2 Contributions

This thesis addresses all the above challenges and thus makes the following

contributions:

1) An XML based language, Command-line Description Language (CoLDeL), to

describe individual command-line application precisely.

11) An Application Service Toolkit (ASToolkit) that is simple to wrap a large
number of applications as Application Services, without problems of updating

and maintaining source codes and deployments of all the Application Services.

ANTOAuCtion

iii)

Vi)

vii)

viii)

A Component plug-in mechanism that allows Application Services to be
configured (at deployment time) with a Job Submission Component capable of

interacting with the available resources.

A WS-Security [10] based authorization mechanism by which service providers
can control what users can invoke on their Application Services to run

applications.

An Abstract Application Service (AAS) mechanism to create a specific
Application Service on demand in the event it is not kept persistent or is
unavailable during the execution of a scientific workflow. AAS is a generic
Application Service. Scalability of this AAS mechanism is achieved by
delivering applications through a dynamically reconfigurable AAS. This
mechanism eliminates the need to keep all available applications wrapped as

persistent Application Services.

An overall framework for enabling the legacy applications and data on the Grid

based Service Oriented Architecture.

A Group Applications Service (GAS) mechanism to further optimize execution
time of a workflow. GAS merges several Application Services into a single group
service. It reduces the Grid overhead induced by the Web service invocation,

scheduling, and data transfers.

A mechanism to monitor and restart jobs.

LegacCy ApplICAuons wrappig. baCkgrounad and nelaltcd vvorx

CHAPTER 2

Legacy Applications Wrapping:
Background and Related Work

2.1 Introduction

Nowadays, in every scientific domain, investigating complex phenomena requires
great vast scientific collaborations. The reason for this is tied to the fact that science is
becoming more multidisciplinary. Key progresses on scientific realms, are becoming
increasingly dependent upon complex workflows of data analysis and simulation tasks.
These workflows involve integration of many complex applications, each of which may

be understood by only a limited number of specialists.

These legacy applications typically represent high quality and validated software.
These applications that are developed by different teams of researchers are required to
be integrated together to offer solution to large-scale scientific and engineering
problems. Even each application requires aggregation and coordinated application of

many widely distributed computing, libraries, and other resources.

Most legacy applications developed and used by scientific communities are
command-line applications. They are written in FORTRAN, C, and some scripting
languages. Traditional scientific applications have the following drawbacks which

makes them difficult to be integrated together to solve large-scale problems.

wilapiel & Ligaly ApPPLLAtiULLS Yyilapplllyg. DALV/RgI0UNU allud Rblatcd Yy ULR

2.1.1 Computational Challenges

High CPU/memory intensive scientific applications require access to high-end
compute resources. Conventionally, to work out some complicated engineering or
scientific problem, self-owned compute resources can not satisfy demand for compute
power. Researchers either make some unnecessary hardware investments or outsource
processing to external compute resources. This results in the current infrastructure
being underutilized. A novel innovation is expected to meet constant demand for the

compute power with the reality of underutilized resources.

Traditionally, it is a long tedious task to perform a scientific computation on
resources provided by third-party resource providers. Users of high-performance
computational resources have interacted with those resources at very rudimentary level
— they obtain authorization (i.e. an account) and some amount of allocation, then they
log in and interact with the resource through a low level interface (e.g. a command-line
shell or ftp client) [11]. They launch an application by submitting a request to a
scheduler or a queuing system. To perform one simulation job, the users have to open a
new user account, recompile simulation codes, and learn different job schedulers on
different resources. The users have to log in many times through the secure shell to run
different jobs, and manually transfer input/output files. This hands-on procedure can be

both time consuming and error prone.

This traditional approach to access the high-performance computational resources is
not user-friendly. Hence, it is difficult to use. It suffers from a number of drawbacks.
First, compute resources broker does not exist to help the users in choosing suitable
resources. Second, low-level interfaces have a very steep learning curve, placing a
cumbersome burden on the users to learn how to use the resources.Thirdly, inadequate
job monitor and job management functionalities are provided to facilitate the users to
track the jobs submitted. Fourthly, resource providers have to set up and maintain state

(typically an account) for each user, which can be such a hassle for big communities.

2.1.2 Not Enough User Interaction
Traditionally, compute-intensive simulations are run non-interactively. Many of
them lack a Graphical User Interface (GUI), which makes them difficult to be invoked
by end users. Usually initial conditions and configuration parameters are recorded in a

text based file format. The simulations read in input files and output results as files. The

9

Legacy Appilications wrapping. baCkground and Relatéd work

whole large scaled simulations run without any user interaction during a job running

process. The user only examines simulation results once the whole job is done.

However, if the result occurs in the early stages when simulation is not satisfied, the
rest of the compute time will be spent on simulating something of absolutely
insignificant interest. Even worse, if the initial parameters of the job fail to produce any
meaningful useful results, then all of the CPU time spent on the simulation will be
wasted. This waste can be avoided if the user interacts with the simulation job and
checks the results on time. Also it is preferable if the user can steer the simulation by

adjusting the parameters set [12].

2.1.3 Hard for Collaborations
Multi-disciplinary nature of engineering and scientific problems requires integrated
applications developed by different research group and multi-source data from multiple
data repositories. This highly demands collaborations among scientists and sharing of

applications, data, and compute resources.

However, most of the applications are often platform dependent and are difficult to
integrate with the applications from other disciplines. Also they are command-line
oriented. There is no generic method to describe their input parameters and output
results. It is usually a tough challenge to programmatically access these applications

remotely.

Many applications have internal and external users worldwide. Though it does seem
uncommon to travel around to have collaborations, it sounds like such a waste of both

travel cost and time for scientists.
The conventional situation brings following challenging issues to communities:

1) How to share compute resources across organisations to satisfy demand of

CPU/memory intensive scientific applications?

ii) How to provide interactive services to let users easily control and steer

applications?

iii) How to build a collaborative problem solving environment to facilitate

scientific collaborations across distributed organizations?

10

Ligaly APPLILAUOULLS YyilapPpllly. Daligloulid dllid Atldled vyuls

2.2 Grid

Grid, as explained by Ian Foster and Carl Kesselman, should enable “resource
sharing and coordinated problem solving in dynamic, multi-institutional Virtual
Organizations” [13]. By enabling the use of teraflop computers and petabyte storage
systems interconnected by gigabit networks, Grid enables scientists to explore new
avenues of research via conventional computing resources. Grid differs from other
computational resources such as traditional supercomputers and clusters in the
following key features: First, Grid coordinates resources not subjecting to centralized
control. Second, Grid uses standard, open, general purpose protocols and interfaces.

Third, Grid delivers non-trivial qualities of service.

Grid computing is akin to distributed computing, yet with a major focus on
collaborations, data sharing, and interactions on a global scale, and delivering
heterogeneous computational power to applications in a transparent manner. Grid
ensures to get the most out of global compute resources. The Grid infrastructure is
scalable and we can seamlessly add extra CPU power or other resources as required. In
a Grid environment, the computation can be distributed across the global resources to
achieve dramatic speed-up. Grid, offering flexible and secure sharing of resources, can
couple applications and compute resources together under multiple ownership; hence,
fully rise to the first challenge mentioned above - sharing compute resources across

organizations.

[14] describes the most important capabilities of Grid: exploiting underutilized
resource, parallel CPU capacity, Grid-enabled applications, virtual resource and virtual
organizations for collaboration, access to additional resources, resource balancing, and

increasing reliability relying on software instead of hardware.

2.3 Service Oriented Architecture

Service Oriented Architecture (SOA), can be regarded as a style of information
systems architecture that enables the creation of applications that are built by combining
loosely coupled and interoperable services [15]. SOA separates functions into distinct
units (services), which can be distributed over a network and can be combined and

reused to create business applications [16]. These services communicate with each other

11

LCgAaCy APpIlICallons wrapping. baCkground and nelatCd vy ork

by passing data from one service to another, or by coordinating an activity between two

or more services.

These services inter-operate based on a formal definition (or contract, e.g., WSDL)
that is independent of the underlying platform and programming language. The services
have generic interface definition and can be accessed in a transparent and uniform way.
The interface definition hides the implementation of the language-specific service.
SOA-based systems can therefore be independent of development technologies and
platforms. Application developers or system integrators can build applications by
composing one or more services without knowing the services' underlying

implementations.

Service Oriented Architecture is based on request/reply design paradigm for
synchronous and asynchronous applications. Within a Service Oriented Architecture all
resources including data and application’s business logics or individual functions are
modularized and presented as services for consumer/client applications. These

distributed heterogeneous resources are encapsulated behind the service definition.
SOA has the following advantages:

1) Uniform service semantics: SOA services have self-describing interfaces in

platform-independent XML documents.

i1) Standard invocation mechanisms: Usually SOA services communicate

with messages formally defined via XML Schema.
iii) Local/remote location transparency

iv) Interface level: Service composition is based on compatibility at an

interface level rather than an implementation level.

These advantages not only let users interact with the services easily, but also
facilitate scientific applications collaborations across distributed organizations. This
means that SOA offers a solution for the challenge two and the challenge three in the

conventional situation.

SOA can be evolved based on existing system rather than requiring a full-scale
system rewrite. As described in [17], we can realize following benefits if we focus our

effort on the creation of services and applying existing techniques:

12

LCgaCy APPICAUOIls Yiapplllg. DaCkglound dlld Reldicd vy OIK

iii)

Leverage existing applications: An application can be constructed as an
aggregation of existing components, via a suitable SOA framework which
is made available to the community. To be able to use this new service, one
requires only knowing the interface and the name. Internals of the service
are hidden from the outside world, as well as the complexities of the data

flow through the components that make up the service.

Consistent infrastructure: Infrastructure development and deployment will
become more consistent across all the different applications. Existing
applications and newly-developed applications can be consolidated within a

well-defined SOA framework.

Reduced cost: As demands for applications evolve and new requirements
are introduced, the cost of enhancing and creating new services by adapting
the SOA framework and the services library, for both existing and new

applications, is greatly reduced.

Continuous applications improvement:. SOA allows a clear representation
of process flows. Service composition is based on compatibility at an
interface level rather than an implementation level. This would allow for
changing the application while keeping the same interface, and thus

facilitates continuous applications improvement.

Process-centric architecture: In a process-centric architecture, the
application is developed for the process. The process is decomposed into a
series of steps, each representing a service. In effect, each service or
component functions as a sub-application. These sub-applications are
chained together to create a process flow capable of satisfying the users’
need. This granularity lets processes leverage and reuse each sub-

application.

Web service technology can be used as a basis for SOA. The World Wide Web

Consortium (W3C) defines a Web service as below. A Web service is a software system
designed to support interoperable machine-to-machine interaction over a network. It has
an interface described in a machine-processable format (specifically WSDL). Other

systems interact with the Web service in a manner prescribed by its description using

13

Legacy Applications wrapping: background and Relaicd vv ork

SOAP messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards [18].

A further descriptive definition can be found in [19], where a Web service is defined
as a platform and implementation independent software component that can be
described using a service description language, published to a registry of services,
discovered through generic mechanisms, invoked through a declared API, usually over

a network, and composed with other services.

Due to widespread adoption of the Web service technologies, many standard
protocols and tools have been defined and implemented and are available for use.
Simple Object Access Protocol (SOAP) provides an XML-based messaging protocol
between service providers and requestors to allow for applications exchange
information over HTTP [20]. It is a lightweight protocol for information exchange in a
decentralized, distributed environment. It consists of three parts: a) an envelope that
defines a framework for describing what is in a message and how to process it, b) a set
of encoding rules for expressing instances of application-defined data types, and c) a
convention for representing remote procedure calls and responses. SOAP can

potentially be used in combination with a variety of other protocols.

Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information [21]. It provides a way to describe
and access Web services. The power of WSDL is that it expresses a program’s interface
in language-neutral XML syntax. WSDL does not directly enable remote function
invocation, but does describe how to bind a particular interface to one or more remote

invocation protocols.

Universal Description, Discovery, and Integration (UDDI) is the most widely
recognized mechanism for publishing and discovery the Web services. It is an XML-
based registry for businesses worldwide to list themselves on the Internet. Its ultimate
goal is to streamline online transactions by enabling clients to find one another on the

Web and make their systems interoperable [22].

Business Process Execution Language for Web Services (BPEL) provides a means to
formally specify business processes and interaction protocols. BPEL provides a

language for formal specifications of business processes and business interaction

14

LAgdly ApPpPLICdUOlLls YWilapPplllyg. DaCKgloOulld alld RelalCu vy Ol

protocols [23]. As such, it extends the Web services interaction model and enables it to
support business transactions. BPEL defines an interoperable integration model that
should facilitate expansion of automated process integration in both the intra-corporate

and the business-to-business spaces.

Web service makes interoperability easy. It is independent of programming
languages, models, and system software. A client can remotely access a Web service by
using standard well-defined mechanisms. This feature makes the Web services approach
appealing to inter-organizational computing systems. The Web service technology has
been adopted in industry as a standard for building enterprise applications. Adoption of
Web service is useful for dynamic discovery and composition of services required for

coordination of a decentralized set of resources.

2.4 Discussion about Some Alternative Technologies

2.4.1 NET

The practical realization of Grid poses a number of challenges. Key issues that need
to be dealt with are security, heterogeneity, reliability, application composition,
scheduling, and resource management. The Microsoft .NET Framework [24] provides a
powerful tool set that can be leveraged for all of these, in particular support for remote
execution, multithreading, security, asynchronous programming, disconnected data
access, managed execution and cross-language development, making it a great platform
for Grid computing middleware. By providing developers with a comprehensive and
consistent programming model and a common set of APIs, the NET Framework helps
developers to build applications in the programming language users prefer, across

software, services, and devices.

The NET Framework includes four pillars: Windows Presentation Foundation
(WPF), Windows Workflow Foundation (WF), Windows Communication Foundation
(WCF), and Windows CardSpace. WCF is Microsoft’s unified programming model for
building Service Oriented applications. It enables developers to build secure, reliable,
transacted solutions that integrate across platforms and interoperate with existing
investments. WCF simplifies development of connected systems and ensures

interoperability. It unifies a broad array of distributed systems capabilities in a

15

Legdly ApPplHCallOlls vvilapplilg. DACKEIOULIU dalld RelalCQ vy OIk

composable and extensible architecture, spanning transports, security systems,

messaging patterns, encodings, network topologies, and hosting models.

Microsoft’s .NET Framework is a key framework for implementing commercial
distributed systems for Windows-based platforms. Application developers rely on the
NET framework for its integrated tools, powerful functionality and ease of use.
However, there are some challenges. .NET alone cannot deliver the scalability and
reliability required for today’s data intensive and computation intensive applications.
Net is limited on desktop computers those running variants of the Microsoft Windows
operating system, thus severely limiting the ability to effectively utilize the none-
Windows computing resources. Also it is difficult for .Net to integrate with current Grid
software, which has been primarily written for Unix-based operating systems. The
capabilities enabled by the .NET framework are important for Grid systems, but will not

be considered by current work due to this limitation.

2.4.2 UDDI

Universal Description, Discovery and Integration (UDDI) is a platform-independent,
XML-based registry for businesses worldwide to list themselves on the Internet [25] .
UDDI is an open industry initiative, sponsored by OASIS, enabling businesses to
publish service listings and discover each other and define how the services or software
applications interact over the Internet. A UDDI business registration consists of three
components: White Pages — address, contact, and known identifiers; Yellow Pages —
industrial categorizations based on standard taxonomies; Green Pages — technical

information about services exposed by the business.

The UDDI specifications define a registry service for Web services and for other
electronic and non-electronic services. A UDDI registry service is a Web service that
manages information about service providers, service implementations, and service
metadata. Service providers can use UDDI to advertise the services they offer. Service
consumers can use UDDI to discover services that suit their requirements and to obtain

the service metadata needed to consume those services.

The UDDI standard is the least understood and often the most maligned of the core
Web Services standards. Unlike its now well-understood SOAP and WSDL, UDDI has

16

LCgacy AppiCauolls wilappllg. BbdCkgloulld alld Reldicd vy OIk

experienced limited and sporadic adoption by companies implementing Web Services-

based SOAs [26].

The UDDI specifications supported a publicly accessible Universal Business
Registry (UBR) in which a naming system was built around the UDDI-driven service
broker. IBM, Microsoft and SAP announced they closed their public UDDI nodes in
January 2006 [27].

“Basically, the UBR is a relic of an earlier vision for UDDI. The original vision for
UDDI was as a standard that would help companies conduct business with each other in
an automated fashion. The idea was that companies could publish how they wanted to
interact, and other companies could find that information and use it to establish a
relationship," said Jason Bloomberg, senior analyst at ZapThink. "Needless to say, this
is not how companies do business -- there's always a human element to establishing a
relationship. As a result, the UBR served as little more than an interoperability reference
implementation. Now that UDDI has become more of a metadata management standard

for SOA, there's little need for the UBR anymore."

2.4.3 CORBA

The Common Object Requesting Broker Architecture (CORBA) is a standard
defined by the Object Management Group (OMG) that enables software components
written in multiple computer languages and running on multiple computers to work
together. While CORBA promised to deliver much in the way code was written and
software constructed, it was much criticized during its history. Some of its failures were
due to the implementations and the process by which CORBA was created as a
standard; others reflect problems in the politics and business of implementing a
software standard. These problems led to a significant decline in CORBA use and
adoption in new projects and areas. The technology is slowly being replaced by Java-

centric technologies [28].

Obviously, a number of external factors contributed to the fall of CORBA, such as
the bursting of the Internet bubble and competition with other technologies, such as
DCOM, EJB, and Web services. These factors cannot fully account for CORBA's loss
of popularity, however. After all, if the technology had been as compelling as was

originally envisaged, it is unlikely that customers would have dropped it in favour of

17

wldapiel & Ligdably ApplLatlulls vy lappllly. DabiglOuliud dallul flidated Yy ulh

alternatives. Technical excellence is not a sufficient prerequisite for success but, in the
long term, it is a necessary prerequisite. No matter how much industry hype might be
pushing it, if a technology has serious technical shortcomings, it will eventually be

abandoned.

The most obvious technical problem is CORBA's complexity—specifically, the
complexity of its APIs. Many of CORBA's APIs are far larger than necessary.
Developers who had gained experience with CORBA found that writing any nontrivial
CORBA application was surprisingly difficult. The platform had a steep learning curve
and was complex and hard to use correctly, leading to long development times and high

defect rates.

Also CORBA provides quite rich functionality, but fails to provide two core features:
security and versioning. For an e-commerce infrastructure, lack of security and
versioning are quite simply showstoppers—many potential e-commerce customers
rejected CORBA for these reasons alone. Please refer to [29], a comprehensive analysis
of CORBA failures by Michi Henning in ACM queue about "The Rise and Fall of
CORBA". The author is one of CORBA’s former architects.

2.5 The Application Service that Combines SOA and Grid

2.5.1 Wrapping Approach

The idea of Service Oriented Architecture is to achieve loose coupling among the
interacting software. This advanced flexible architecture provides a foundation to allow
Grid resources to be shared seamlessly. SOA is a widely accepted model for building
grids, holding a lot of promise for grid-enabling scientific applications. In recent years,
Web services have gained wide-spread acceptance in the Grid community as a standard

way of exposing applications functionality to end users.

Most of the scientific applications are conventional FORTRAN or C applications that
are configured by a parameter file or command-line arguments. They are not Web
services. Consequently, to integrate them into the Service Oriented Architecture,theye
must be embedded in a wrapper service. A wrapping approach is used to make a piece
of code such as the simulation solver available as a self-contained reusable object to

some glue layer. The glue layer is written in a high level language. It could be a Grid

18

whapiel o Ligdly ApPpPLLallUiL Vyvildpplllg. DaLlkgloullld dlil RClattd vy Ul

fabric layer such as Web services, allowing interoperation of components running on

different machines across a network.

The wrapping approach allows us to write the core of an application in a language
like C or FORTRAN but controls its behaviour through a higher level language. This
allows clients to easily interact the application via the high level language interface.
Additionally, this avoids necessities of dealing with tedious low level details of
interfacing to many third-party libraries. The wrapping approach also avoids incurring
performance penalty resulted from writing the entire application in a higher level
language. Moreover, the wrapping approach is very helpful in integrating the legacy

applications into new technologies without rewriting the applications.

2.5.2 The Application Service

A Web service can wrap an application, enclose it and invoke it without the
application having to be modified using the wrapping approach. In this fashion, a legacy
application is wrapped as an Application Service. In this research, an Application
Service is a Grid-aware application with a Web service interface that is described by the
Web Service Definition Language. The Application Service makes the application
available through a Web service interface. The Application Service is Grid-aware,
which means it can run computations in the Grid environment. When a user invokes an
Application Service with some input parameters, the service runs the application that it
wraps on the distributed compute resource with those input parameters, monitors it and
returns its output results. Providing a Web service interface for the legacy applications
alleviates many problems raised by the legacy applications. By converting the
command-line applications into the Application Services, it becomes easy to compose

complex workflows from them and run them on the distributed resources.

Benefits of the Application Services are clear because of adoption of Grid and SOA.
Application Services are Grid-aware. In a Grid environment, computations can be
distributed across the available processors in a larger pool to achieve dramatic speed-up.
Hence, users benefits from sharing the distributed resources. Our experience
demonstrates that the geographically distributed compute resources on a Grid could
readily be used as one in a computation of a complex job. The results reflect that
dramatic speed-up is achieved only if the scenario being simulated is large enough,

otherwise extra administration and the communication time associated with using the

19

Legaly ApplLallOIls vwilapplllyg. DaCKkgloulld alld [Acidicd vy U1K

resources on a Grid outweigh any possible gains in computation time. Speed differences
in the processors of different resources also have an adverse effect on overall

computation time of a job.

The advantages of Application Services include not only performance gain from the
resources sharing, but also close collaborations established among engineers,
engineering scientists, and computing scientists. Legacy applications are based on
tightly coupled monolithic structure. They read input files and output final results. This
makes them difficult to expand and collaborate according to wusers’ different
requirements. Legacy applications can be used as foundations and be decomposed into
modules. These modules are further exposed to Application Services. Application
Services are loosely coupled and flexibly distributed, with the following substantial

benefits:

i) Flexible granular functionalities are accessible to the users or other
applications via well defined interfaces. Code reusability is improved by
the availability of invocations. In particular, Application Services can be
naturally well integrated into a complex workflow, chaining different
processing whose outputs are piped to the inputs of each other. Application
Services allow different applications to exchange data regardless of
operation systems or programming languages underlying those

applications.

i1) Legacy applications are usually run locally. To run the legacy applications
remotely, input/output data has to be explicitly specified in a task
description. Users usually need manually transfer data between sites.
Invoking a new execution of one same code on different data requires
rewriting of a new task description. Alternatively, the users have to rely on
some script language to manage batch jobs submission. Whilst, Application
Services allow the users to use global distributed data, it decouples
computation and data transferring. This decoupling is particularly
important when considering restart of a job in case of the job failure. Also,
Application Services can provide batch jobs submission support easily

because it is written in high-level language.

20

LCEacCy Applications wiapping. baCKgrouna ana Relatcd vv ork

1ii) Application Services are an intermediate layer between the users and the
Grid middleware. It adds an extra layer between applications invocation
and the Grid infrastructure to which the jobs are submitted. Users do not
need to know anything about the underlying middleware that will be
directly invoked internally by the service. The different services might even

communicate with different middleware and different Grid infrastructures.

iv) Application Services advertise themselves. So the users don't need to worry

about how to find them.

v) Application Services make it possible to offer the service over internet and
make software updates and maintenances procedures easy. in addition, they
provide the users with the possibility to use the service based on pay per

use rather than purchasing the software outright.

vi) Application Services change the conventional hands-on process and
automate this process considerably. Application Services are easy to be
integrated with a Grid portal. Geographically distributed participants can
collaborate with each other, specify the service configuration, refer to
global data repositories or archives, remote process computational
simulations on demand, real time monitor the jobs and collaboratively

analyze the results.

2.6 Two Wrapping Strategies

There are some research programs aiming at automating the transformation of a
legacy application into an Application Service. Two main strategies are used in
different grid middleware for describing and controlling application processing. The
batch oriented approach is the most widely available and has been exploited for the
longest time. The service oriented strategy has more recently emerged. It consists of
using a standard invocation protocol for calling application code embedded in the
service. Both strategies are valid in different circumstances, depending on factors such

as granularity of codes, users and application area.

21

LCgaly APplCaulons wiapplig. BbaCkground andad Relaicd vy Olk

2.6.1 Service Oriented Wrapping

The service oriented strategy uses tightly coupled code wrapping technology that
exposes low level functionalities. It uses a high level language to interact with a legacy
application written in a low level language. The flexible granular functionalities in a low
level language are accessible to users via a high level language interface. The service
oriented strategy has more control and interaction with the legacy applications, although

it requires accessing to the source codes.

In the service oriented strategy, it is typically assumed that service providers, would
like to build Grid enabled Application Services using specific legacy software libraries.
They have access to source codes. Some modifications are required to these legacy
codes. Prior to wrapping, the legacy codes may need to be reconstructed and modified
while main computation parts and existed functionalities are kept untouched. A wrapper
layer written in a high level language is added to expose desired low level

functionalities.

However, in the service oriented strategy, all application codes need to be changed
and recompiled with the high level wrapper to become available as an Application
Service. The service providers are often reluctant to invest efforts in writing specific

wrapper for every application due to the following tentative reasons:

1) The complexity of standards often makes service conformity a matter of
specialists. Some tools are available for helping in generating service
interfaces but they cannot be fully automated and they all require a

developer intervention.

i1) Standards tend to evolve quickly, especially in Grid area, obsoleting earlier

efforts in a very short time scale.

iii) Multiple standards exist and one same application code may need to be

executed through different service interfaces.

iv) In the case of legacy code, recompilation for instrumenting the code may
prove very difficult or even impossible (in case of non-availability of

source codes, compilers, dependencies, etc).

22

~ralGpivi & 50V Y LA PJPMVAUIVIID VYIGP IS DAVILGLIVULIL GlLIV IvVvlGive VP VLD

2.6.2 Batch Oriented Wrapping

The batch oriented strategy consists of a command-line description and a remote
execution of an application code. The legacy code is provided as a black box with
specified input and output parameters and environmental requirements. There is no
requirement to access the source codes of the legacy application. Only the executable is
available and required, alongside a user-level understanding of the application. But this
strategy is relatively coarse-grained, in which the Application Service does not allow
visibility of low level functionalities. The exposure of internal functionalities is limited

to the command-line level.

The batch oriented wrapping is very common in both scientific and business
applications when: the source codes are not available, or the programs are poorly
documented and/or the necessary expertises to do any modifications have long left the
organisation, or the application has to be ported onto the Grid within the shortest
possible time and smallest effort and cost, or the functionalities are offered to partner

organisations but the source is not.

In the batch oriented strategy, Application Services have service interfaces and
features such as security, jobs and data management. The computation resources of the
Grid are accessed through jobs submission. Each processing is related to an executable
code and described through an individual computation job. A job description
encompasses at least the executable code name and a command-line to be used for an
application invocation. It may also includes additional parameters such as input and
output files to be transferred before or after the execution, and additional job scheduling
information such as minimum system requirements. Jobs can be described either
directly via the command-line of a job submission tool, or indirectly through a job
description file. Unless considering very simple code invocation use cases, description

files are often required to specify the task in depth.

In the batch oriented strategy, application invocations are straightforward, through
the legacy code command-line. It does not require any adaptation of application codes.
Many Grid middleware are also batch oriented, such as Globus Toolkit [30] and
Condor. This strategy is useful for Grid-enabling legacy applications without much
effort.

23

LOgatly APPLILAUOLLS VyldpPPlllg., DaCkglouulld allad [AllatCld vy U1K

In the batch oriented strategy, the service needs to precisely know the command-line
format of an executable code, taking into account all of its parameters. Most of
Application Services using this strategy rely on users to set up all these executable
related information. It is not always the case when the users are not applications

developers.

In the present work, both strategies have been adopted to wrap legacy applications.
Application Service Toolkit is an automatic toolkit that wraps scientific applications as
Application services and deploys them on the Grid. It is based on batch oriented
wrapping strategy and is discussed in detail in Chapter 3. In GECEM problem solving
environment, several legacy applications are wrapped as Application Services using
service oriented wrapping strategy to achieve collaborative numerical simulation.
Additionally, in GECEM Migrate Legacy Service Model, the batch oriented wrapping
strategy is used to migrate the applications to the Grid environment. The details of

GECEM are elaborated in Chapter five.

2.7 Related Work

2.7.1 Soaplab

.Soaplab is a framework for exposing command-line tools as Web services through
the use of batch oriented wrapping. Soaplab service collection at European
Bioinformatics Institute runs on top of more than hundred bioinformatic analysis tools
from the EMBOSS package. It bears the capability to deploy a Web service in a
container, starting from the description of a command-line tool. This command-line
description, referred to as metadata of the analysis, is written for each application using
ACD text format file and then converted into a corresponding XML format [31]. ACD
format is a format used by EMBOSS [32]. EMBOSS 100+ programs are already

distributed with their descriptions in this format.

Soaplab offers two types of services; namely, Analysis Service and Derived Analysis
Service. Analysis Service is a service representing remote analysis applications using a
generic interface. For Analysis Service, the individual applications have their input data
and their results named. Once users know the input data names they can send their data

to the analysis as the weakly-typed name-value pairs. Derived Analysis Service is a web

24

LCgaty APPLCalOIls vwilapplllg. BAaCkgloulla alld Kelatcd vy Ok

service representing some particular analysis application. European Bioinformatics

Institute hosts more than hundred Derived Analysis Services for EMBOSS.

The Soaplab server is based on an internal CORBA-based AppLab [33] server and a

Tomcat servlet engine [34].

AppLab application provides a CORBA [35] server for executing conventional
command-line applications and sending results back to clients. AppLab is an
automatically generated wrapper of command-line driven applications. It provides a
uniform graphical user interface for the applications by using CORBA (for
communication) and Java (for GUI). Applab develops a distributed object system,
which provides an easy-to-use and well-defined access to a large set of existing

command-line applications of different types.

After the Soaplab services are created and deployed in an Apache Tomcat container,
users can access them using custom client programs, which provides graphical user
interfaces to Soaplab services. Users use the unified API to find an analysis tool,

discover what data is required and what data is produced, to start it and to obtain results.

Although Soaplab serves to wrap almost any command-line tool as a Web service, it

has a number of limitations.

1) Soaplab uses CORBA on sever side for starting, controlling and monitoring
applications but not Web services standards that are more widely adopted
today [31]. To provide improved support for service providers, Soaplab has
been rewritten in year 2007 with the removal of CORBA (AppLab) layer.
The new version, called Soaplab-2, can be deployed in two configurations:
document/literal-wrapped web services (using the JAX-WS webservices
stack), or RPC/encoded web services. But Soaplab-2 only supports
Analysis Service, and not Derived Analysis Service. Also, Soaplab does
not have a Web services based notification model. This makes it difficult
for Soaplab services to interoperate with other Web services based
notifications systems, which are widely adopted today. However, it does

have a CORBA-based event notification model.

i1) SoapLab does not support Grid standards for service level authentication

and authorization [31]. Also, it does not have any other fine grained

25

LCgalCy APPLCAUOLls WIapPpPlly. DaCkglOulld dlld Kelated vy Ok

authorization mechanism. This means that service providers cannot have
fine-grained control on what operations users can invoke on their

application services.

iii) The concept of Analysis Service is similar to our AAS. But the Analysis
Service is weakly-typed whilst our AAS 1is strongly-typed.

iv) ACD is not the language particularly designed for command-line

description.

v) SoapLab cannot run its applications on remote clusters of resources. It
offers very little support for job monitoring and steering. Neither does it
support the asynchronous mode of invocation. This makes it difficult for

users to invoke long running applications.

vi) SoapLab cannot create an Application Service on-demand from workflows.

2.7.2 Generic Application Service

Generic Application Service (GAP) uses batch oriented wrapping. GAP is another
system that provides a Web service interface to scientific command-line applications,
which is part of In-VIGO system [36]. In-VIGO is a Grid system that makes extensive
use of virtualization technologies to decouple user environments from physical
resources, and subsequently creates such components to integrate application codes with
core Grid components [37]. In GAP approach, a description of a legacy application’s
input and output information, and the required execution environment (e.g., machine
architecture, operating system, and dependent libraries) are provided by developers. All
information is provided in a single file, thus not requiring Java code to be written. A
generic application service (a Grid service) interprets this information at runtime and
configures itself into an Application Service that is specific to that legacy application.
Validated requests to the generic service are submitted for execution on the Grid [36].
The GAP Service has some similarities with our Abstract Application Service (AAS).
Both approaches attempt to wrap legacy applications as services. Both approaches
develop a language to describe the command-line applications. However the differences

lie in designs, implementations, and then capabilities of the services.

In GAP approach, a configuration language (CFG) has been developed to allow an

application provider to specify information required to Grid-enable a legacy application.

26

wilaptiel & LAgaly AppliLdulUulls Vylappllly. Dabigioullu alldd fltlatva vy vin

The configuration language is specified in a grammatical framework that is designed to
be powerful enough to represent the command-line applications. The grammar is
designed to be a specification language based on feedbacks from application developers.
The CFG specification is then mapped into XML, which is used in the back end of the

enabling framework [36].

The concept of CFG is pretty similar to our Command-line Description Language
(CoLDeL) used in AAS. Both contain information regarding general information for the
application, execution environment information, and list of arguments accepted by the
application. But CoLDel is more user-friendly and more powerful in terms of the
expression of arguments. CoDel is an XML based language, which is human readable.
It is more user-friendly compared with CFG, the unreadable specification language.
CoLDel can specify each application with a rich semantic description and provide more
useful information than CFG. This makes command generation easy and dynamic. CFG
only provides support to express group arguments, but not to express conflict
arguments; whilst CoLDel can specify both the dependencies and conflict of arguments.
CoLDel also contains argument ID, argument order, the format appears on command-
line, and so on, which are not specified in CFG. CFG uses SPS section to half hard
record synopsis of the command. Only non-I/O arguments can be expressed and
plugged into the final command. In CoLDel, /O arguments contain even more
information than non-I/O arguments, like file format, I/O direction, and name

convention of output.

Another disadvantage of CFG is that, it is only used by services, but not users. GAP
uses cfgParser and adaptors to map the CFG into XML [36], which is used in the back
end of the service. But for the users, they have no data type provided to set up the job
parameters. This means that GAP is a very weakly typed Web service, making it pretty
much unusable by end users and usable only from a web portal using Application
Service specific clients. Besides, GAP cannot be used in workflows where a strongly
typed Web service is required. While in CoLDel, an XML schema has been defined, in
which an initial number of types and a rich set of elements are declared. This ensures
strongly typed data exchanging among services. The strong data typing not only makes
exchange between clients and services easy, but also facilitates generic Web service

workflow tools to compose these services easily.

27

LegaCy AppliCcalions widpplilg. DaCkgroulld alld Related vy OIK

GAP is built on top of Globus technology, whilst AAS is based on standard Web

service technologies.

2.7.3 GEMLCA
Grid Execution Management for Legacy Code Architecture (GEMLCA) was

developed by the University of Westminster to enable legacy code programs written in
any source language to be easily deployed as a Grid Service without significant user
effort. GEMLCA uses batch oriented wrapping. GEMLCA addresses issues of exposing
the legacy codes as Grid services and provides a method for exposing and executing
legacy applications through OGSI Grid Services [38]. GEMLCA creates a general
solution to deploy existing legacy applications as Grid services without modifying
source codes. GEMLCA services offer a front-end Grid service layer that communicates
with clients in order to pass input and output parameters, and contacts a local job
manager through Globus MMIJFS (Master Managed Job Factory Service) to submit

legacy computational jobs.

GEMLCA has been designed as a three-layer architecture: a front-end layer offers a
set of Grid Service interfaces that any authorized Grid client can use in order to contact,
run, and get the status and any result back from legacy codes [39]. This layer hides the
second core layer section of the architecture that deals with each legacy code
environment and their instances as Grid legacy code processes and jobs. The final layer,
backend is related to Grid middleware where the architecture is being deployed. The
GEMLCA implementation is based on Globus.

GEMLCA offers a comprehensive solution, since it includes portal and workflow
access, and security solutions incorporating authentication, authorisation and security
delegation mechanisms. It also offers end users with no programming knowledge the
ability to port their applications to the Grid with relatively little effort. But it has some

major limitations.

i) 1 GEMLCA is not lightweight. It represents a general architecture which
includes GEMLCA client, GEMLCA resource (a set of Grid services), Grid
host environment (Globus), and Compute Server. It allows an application
provider to add a legacy application into the GEMLCA legacy codes list.

But it does not generate a persistent Grid service for the specified

28

LCgacCy AppliCallons wIapplllg. BaCkglOulld 4dild Kelalcd vy Ok

application. Instead GEMLCA resource creates an instance of the legacy
code process returning a Grid service Handle (GSH) [39]. This means
GEMLCA architecture has to be used as a whole. It is not easy to separate
the GEMLCA client, the set of Grid services, and the backend Globus.
Compared with GEMLCA, ASToolkit is lightweight. Service providers
can get a standard Web service for each application wrapped. This Web

service can be accessed in a standard manner by any client or workflow.

i1) GEMLCA is based on Globus infrastructure and is tightly bound with
Globus. It requires Globus installation on GELMCA resource layer and

Compute server.

iii) It is unable to deploy Grid services on remote hosts. Actually, this is a
limitation of the Grid service containers that are available today. Unlike
Web service containers like Tomcat that allow remote deployment of Web
services, Grid service containers do not allow remote deployment of Grid

services.

iv) GEMLCA Grid services do not transfer the files. The GEMLCA replies on
portal or other client to upload or download the files via GridFTP [40].

v) GEMLCA does not support Message Level Security [41]. Hence, service
providers do not have fine-grained control over which users have access to

the operations in their application services.

2.7.4 Summary

There are a number of research tasks aiming at automating transformation of legacy
codes into Application Services with their own set of advantages and disadvantages.
However, there are some fundamental limitations that are not addressed by currently
available results. These limitations which have been addressed by the work in this thesis

are listed below:

i) Lack of a lightweight toolkit to create standard Web services for legacy

applications.

29

wlapvl <

wRGW Y APPIIValiViio YWWidppllls. DaviiglUuldliud dliv IvNiGiva Yy Vil

Absence of a fine grained authorization mechanism by which service
providers can control whatever operations users can invoke on their

application services.

Need for a mechanism to create a Web service interface to a scientific

application on-demand from workflows.

Requirement for a scalable mechanism which enables wrapping a large
number of applications as Application Services and, updating and
maintaining source codes and deployments of all those Application

Services.

30

wAlapivl J AULLLLLIG LIV =LY JLobLLIPUVIL Ldllguagsh dlild ApplivduUll ovl vivhe 1 UUVIALL

CHAPTER 3
Command-line Description Language

and Application Service ToolKkit

3.1 Overview and Contribution

Web service architectures have gained popularity in recent years within scientific
grid research communities. One reason for this is that web services allow software and
services from various organizations to be combined easily to provide integrated and
distributed applications. However, most applications developed and employed by
scientific communities are not Web service oriented, and they are written in various
programming languages (e.g., FORTRAN, C, scripting languages and others). These
codes not only typically represent large scale investments in terms of time and effort
that cannot be discarded, but also are high quality and extensively validated programs.
There is a growing need to integrate them into grid applications based on service
oriented architectures. The adaptation of these existing applications to Web services is
becoming important as a way of hamnessing validated tools in a new powerful

operational environment provided by the Grid and Service Oriented Architecture.

A Web service can wrap an application, enclose it and invoke it without the
application having to be modified. In principle, the task of wrapping an application as a
Web service is not a huge task for a specialist trained in Web and Web service
programming, but for most scientific application specialists, this is an extremely high
barrier to surmount. There are a number of tools to help accomplish this task. These
tools automate the task of transforming existing applications into Web services without
having to deal with the details of Web services technologies. However, simply

providing a Web service interface is not sufficient to make the application a usable

31

]

Lommand-ine DCsCriplion Language and Applicalion SCrvice 1 0O01kIt

component in a distributed computation. One major concern is security. In particular,
the question is how the Application Service allows the users of a community run the
scientific applications on computing clusters provided by third party resource providers
without having login accounts on the computing clusters? How can a service provider
provide and authorize a selected group of users with access to Application Services
without building a separate security infrastructure and without requiring the users to

have login accounts on the host running the service?

Another problem is making the service usable directly from a web portal, as well as
making it a component in a workflow. Also, how can the Web service use the

distributed compute resource to run the application?

Our goal is to leverage the set of computational resources available across different
sites on the grid. However, clusters at different sites run schedulers of their choice. The
most commonly used schedulers include Condor and Sun Grid Engine (SGE) [1].
Hence, it is mandatory that the Application Service supports to access any of existing
schedulers and schedulers to be appeared in future. To end users these schedulers are
accessible in a generic way, which means the users are able to use them in a transparent
uniform fashion (not scheduler specific). Furthermore, the users typically interact with
schedulers such as Condor and SGE via command-line interfaces. However, in order to
expose the applications as services, we need to access these schedulers

programmatically.

Due to wide usage and huge potential of the Grid and Service Oriented Architecture,
Application Service Toolkit (ASToolkit) [2] is implemented and allows scientists to
provide a Web service interface to their existing applications without having to write

extra code or modify their applications in any way.

The primary research contribution of this toolkit is as follows:

3.1.1 Command-line Description Language (CoLDeL)
CoLDel, an XML based language, is designed and developed particularly for the

ASToolkit in order to describe individual command-line applications precisely.
CoLDeL acts as a protocol so that different service providers can follow it to generate
an Application Definition File for each scientific algorithm for use by ASToolkit
Services. An XML schema has been defined which ensures strongly typed data

32

COHUIIalIQ-1I1C LJCSCIIPUOI Lallgudgc alld AppP11LdlliOll oClVILL 1 OUIKIL

exchanging among services. An initial number of types and a rich set of elements are

declared.

3.1.2 Automatic Toolkit for Wrapping All Command-line Oriented Applications

Most large scale computational facilities have traditionally operated their machines
in batch mode and the ASToolkit is focused on these batch mode applications. It can
wrap almost any command-line application (i.e., non-graphical), such as UNIX
commands, or more sophisticated scripts written in Python, Perl, and so on. It does not
require any modification to the wrapped applications. And, no source code is needed for
the legacy applications. ASToolkit is an automatic toolkit that wraps scientific
applications as Web services and deploys them on the grid. This Web Service is named
Application Service. The Application Service is described by CoLDeL, presents a Web
Service Description Language interface to potential clients and interacts with Grid

resources via a component plug-in model.

ASToolkit makes command oriented application wrapping an automatic, easy and
fast task. In addition, application providers do not need to be experts in web service
standards, such as Web Services Description Language, Web Services Addressing, Web
Services Security, or secure authorization, because the toolkit automatically generates

these details.

3.1.3 Security

ASToolkit also automatically provides a WS-Security [3] based authentication and
authorization system that allows selected users to securely interact with these services
through automatically generated web interfaces, to compose scientific workflows using

these services, and to monitor the status of their jobs on the grid.

3.1.4 Application Remote Execution and Access to Grid Resources

The Web Service generated by the ASToolkit is named Application Service.
Application Service presents a Web Service Description Language interface for the
application to potential clients and interacts with Grid resources via a component plug-
in model. Application Service can enable but does not require the use of distributed
resources via the Grid. The Application Service can support operation seamlessly in a
highly distributed environment. The distributed functionality is enabled and controlled
by components employing Grid middleware. While the Application Service can fully

33

Lommand-ine Lescription Language and Appiicatilion SCrvice 1001KIU

support the distributed environment, it also can be easily used in a local environment.
The role of the Grid-enabled ASToolkit service is to provide a uniform submission layer

on top of different execution environments.

The ASToolkit provides a level of abstraction to the client that is much higher than
services like Gram because it takes low level job submission details like environment

variables and temporary file management out of the hands of the client.

In this chapter the features and implementation of this Web service wrapper are
described together with how it has been used and tested in the context of medical image

analysis.

3.2 Design

The primary consideration in developing the toolkit is to use standard software and
keep the software requirements to a minimum. Only mature software with known

reliability and performance characteristics is used for the toolkit.

To make the applications grid-aware, the following requirements have to be fulfilled:
remote execution and access to Grid resources support for multiple concurrent users,
access via a set of disparate clients, and the use of security mechanisms. Web service is
good in grid enabling the applications. Web services are capable of serving multiple
client requests concurrently. Also, since Web services are language and platform

independent, they are easily accessible by clients written in different languages.

A toolkit is needed to automatically wrap scientific applications as Web services and
deploy them on the grid. It can wrap any command oriented application and does not
require any modification to the wrapped applications. The toolkit does not attempt to
deploy any application. So the assumption is that either the application that the toolkit
wraps has already been deployed and ready to run on some resource, or the application
is ready to migrate to a remote resource to run. The deployment of the application is

usually done by the application provider or service provider.

In addition, the toolkit should be easy and straightforward to use. The users do not

need to have the knowledge of applications or Web service.

34

wlapied o LULUTalIU=1HIC LJCSUIIPUOL LallgUuagt dalll ApPpPLCatiOll oClVILE 1 V0VIKIL

Furthermore, one of our primary goals is to couple together applications across the
community. So the service from the toolkit should be easily coupled and orchestrated by

workflow tools.

3.3 Architecture

3.3.1 ASToolkit Architecture

The toolkit can wrap almost any command-line application. Command-line
Description Language is a generic language to describe individual command oriented
applications precisely. Based on CoLDel protocol, the service provider or application
provider will provide an Application Description File for each application wrapped.
Application Service Component can process the ADF based on well known CoLDel
protocol. It retrieves the dynamic information from ADF, and configures itself to the

specified Application Service.

The toolkit does not generate any code for implementing the service interface. All
the business logic, like Data Management Component, Application Service Component
and so on, is pre-developed and packed as a library, and shared by all the Application

Service.

The toolkit, actually Ant [4] script underneath, will pack all the needed documents
into a Web application archive (WAR) file and deploy it onto a remote server. The Sun
App Server [5] and Apache Tomcat both allow new Web applications to be installed
while the container is running. To deploy a Web service on a remote machine
dynamically, the toolkit needs to package the Web service implementation code,
dependencies, and the deployment descriptor into a WAR file. The WAR file
compresses all of this directory-structured content into one Java archive file (JAR).
Usually, a Web service WAR file also includes schema (WSDL) files and the Web
Service Deployment Description (WSDD).

Each application WAR file contains the same WSDL file, the same ASToolkit java
business jars, same third party middleware, but different ADF file and service property
file. A service property file describes some dynamic information that is required by an

Application Service to be hosted on the specified host. It contains information closely

35

]

Lommana-nne uescription Language ana Application service 1ooncit

related to the Application Service server, which usually is different based on the

different server’s environment and requirement.

This architecture is simple and yet powerful. It makes the toolkit lightweight but
highly configurable. No code generation is needed to create a service from its

description.

The toolkit can be configured to complete part of the whole task. For example, it can
only build the WAR file but not deploy it to the server. This Application Service could
be deployed later on by just copying the corresponding WAR file into a specific
directory designated by the hosting server. This directory is monitored by a daemon on
the hosting server. Thus, any newly copied WAR file can be detected by the daemon

and then be deployed into the container by this daemon.

Also, the toolkit can create client side stubs and server side skeletons. A stub is a
client's local proxy for a remote object. The client uses the stub to communicate with
the remote object-actually, the skeleton of the remote object. The skeleton is responsible

for dispatching the client's communication to the actual remote object.

Configuration Files Businesi Logic Library
. Application Data Job Job
Security
D ipti M itori
Control Files escription Control Files Management Management enitering
Files Component Componenet Component

\

Service Deployment Tool(ANT)

[

, WARFiles Deployed on Remote Servers----

iMiH im Niiii

Figure 3.1: ASToolkit Architecture

36

walapiel O LULLIIAaU=1LUT LJCSUHIPUVLL Lallgudgh allU AppLitdliVvll ol vice 1 UUIRIL

Figure 3.1 describes the architecture of ASToolkit. The Service provider needs to
manually edit the security control files to set up the security level. A set of security
control file samples are provided. The service provider also needs to provide an
Application Description File for the application wrapped. A plug-in control file needs to
be set up based on which plug-ins the service provider is interested in to use. A set of

business logic library is provided with the ASToolkit.

An Ant script based deployment tool is for the service provider to generate and
deploy the customized Application Service. The deployment tool retrieves the required
ADF from the ADF pool and generates an appropriately customized Application
Service, which encapsulates the application, deploys the service onto the local server or

remote server, and finally publishes the services in a registry service.

A Web interface is provided to let the service provider enter the information required
in an application description, and generate the ADF on the fly. The ADF is pushed to
the server side and registers with the ADF pool. Application providers can also register

the ADF file which they had already via the Web interface.

3.3.2 Application Service

3.3.2.1 Application Service Architecture

Figure 3.2 represents architecture of Application Service. Details regarding structure
of messages and operations supported by the service are presented to clients in a
consistent WSDL interface. All the Application Services have the same interface. The
behaviour of the Application Service is decided by the components (plug-ins) used. The
choice of components essentially depends on the plug-in controller in the service
property file, which specifies the specific plug-ins to use for data management, job
submission and application description. More specific details on the application
wrapped by service are described in detail in the associated Application Description
File. This would typically include algorithm classification information, a full definition
of input/output parameters and all other command-line parameters. At back end a
concrete service implementation is built with appropriate Web Service Components
(plug-ins). The plug-ins in use interact(s) with underneath compute resources. Data
Management Component interacts with the distributed data repositories to

download/upload the input/output files. Job Submission Component communicates with

37

rj) Lommana-iine ucscripuon Language ana Application service 100IKI1

the Application Description File and interprets the job as wrapped application job. It

also interacts with the distributed computational resources and submits jobs to them.

Consistent Interface

Plug-Ins
Plug-in Controller
WebDAV Condor
AREG
GridFTP
TRANSF

— Concrete Service Implementation

DataManagComp JobSubComp AppDescFile
(WebDAV) (Condor) 1 (BET)

Compute Resource

Figure 3.2: Application Service Architecture

3.3.2.2 Web Service Interface

An Application Service makes an application available through a Web Service
interface. It is implemented as a Java JAX-RPC-compliant [6] Web Service deployable
in any Java Servlet compliant container. This opens up the choice of deployment

platforms depending on the scalability requirements.

The Web Service interface makes use of WS-Security to protect message exchange
as well as authenticating and authorizing users. The Web Service interface demonstrates

the use of the application as a networked multi-user service.

The Application Service is multi-threaded, i.e., if multiple clients invoke operations
of a service, a separate thread is generated for each client. State handling is managed

internally and transparently based on unique jobHandlers.

The behaviour of the submitJob operation is customized for a specified application

by means ofa specified Application Description File.

38

LOLILIaLIU=1ITC LJCoULIPUIVLL Laligudgl alll Applitdallull oClvILe 1 VUIKIL

3.3.2.3 Web Service Descriptions Modularisation

For the Application Service, WSDL file is separated into distinct modular
components in order to improve re-usability and manageability. These modular
components include an XML Schema file, an abstract WSDL file, and a concrete
WSDL file, which respectively contain data type definitions, abstract definitions, and
specific service bindings. The specific or concrete service definitions depend on the

abstract service definitions, which in turn depend on the data type definitions.

This modularisation improves the readability and manageability. It helps in writing
clearer service definitions by separating the definitions according to their level of
abstraction. The technique also improves opportunities for certain types of extension
and reuse. The same data type definitions can be used across many abstract services,
and the same abstract services can be offered through many different bindings, at many
addresses. As services grow, however, this may evolve into a tree of documents with the
data type definitions at its root, branching into several abstract services, documents, and

further fanning out to concrete services.

3.3.2.4 How it Works?

After a user specifies all the parameteric values for a job following CoLDel (job
description), the client sends a Simple Object Access Protocol message to the
Application Service to invoke the submitJob operation. The Application Service
interacts with the Data Management Component to download the input files from the
data server to the Application Service server side. Invocations on the Application
Service are passed through to the appropriate WS component; the component then takes
the relevant steps required to fully realize the invocation. For the FORK component a
script would be formed and submitted to the local server. The script would invoke the
application with the precise command. For the Condor component a further series of
Web service invocations would be performed. The component would interact with the
Condor submission service and submit the job to the Condor pool. After the job is
completed, Data Management Component uploads the output results back to the data

server.

To monitor the job progress, the client passes the jobHandler to the service to invoke
the monitorJob operation. And the service will return the jobStatus back to the client.

This pull model is used which is based on a request/response paradigm. The client sends

39

LOUlILTIallU=1111C LJCOUILIPUOILL Lalipudgt dlid APPLLAtiVIL OCIVILE 1 UULKIL

a request to the server, then the server answers. In this model, the data transfer is always

initiated by the client, hence avoids the possible firewall problem. Most firewalls are set

up to allow outgoing HTTP requests and incoming responses but not incoming requests.

3.4 Features of ASToolkit

The ASToolkit provides the following features:

i)

i)

iii)

vi)

vii)

Easily and rapidly wrap any command oriented application as a Web

service without modification to the selected application.

Enables strong data typing. ASToolkit services have inputs and outputs
defined in detail using XML schemas. Initially the number of types and a
rich set of elements are declared. This ensures strongly typed data exchange
among services. The strong data typing not only makes validation of inputs
easy, but also facilitates generic Web service workflow tools to compose

these services easily.

Adopts a consistent interface and plug-in model. All the ASToolkit services
have the same interface and can easily be extended to support any Grid
scheduling. ASToolkit services are extensive and are not tied to any
specific scheduling middleware. It can use various schedulers to submit

jobs on resources.

Hide the computational resource from the user. The user only interacts with

algorithm services, not computational resources.

Implement with WS-Security, which addresses the three security
requirements: message authentication, message integrity and message

confidentiality.

Use a Service Provider Account Model to make user account management
simpler. There is no need to open a user account for each user on

computational resource.

Support data transfer for jobs. ASToolkit services can stage in input data

files from a user specified location before running the application, and can

40

simpler J LUOInmariu-ime 1"¢cscnpuun L,anguage anu /vpplicauoll service I00IKU

stage out the output data files after the job is completed. This is done using

WebDav [7].
viii) Support concurrent and asynchronous job submissions.

ix) Support job monitoring. The application services can monitor the status of

jobs and return output results to the user. The steer service can monitor any

jobs on different hosts.

x) Have capability to return job specification provided by user for each job.

This is useful to resubmit the job if the job fails.

3.5 Implementation

3.5.1 Consistent Interface
As Figure 3.2 shows, all the Application Services use the same interface no matter
what application is wrapped. Regardless of the number of wrapped and deployed
applications what input data and options are expected, what output is produce, or what
syntax the command-line applications have, they all use the consistent interface and are
controlled by the same methods.

<< Interfaced

<< Interfaced << Interfaced
Job Submistion Job Steer ErrorRecovery
createJobHandlerQ monitorJobQ getJobDescQ
sbmitJobQ lemoveJobQ restertJobQ
holdJobQ

releaseJobQ

Application Sevice

Figure 3.3: Application Service Interfaces

From Figure 3.2 we can also see that all Application Services use the same interface
no matter what grid scheduler they interact with—FORK, CONDOR, GRAM [8], or

others. Application Service is Grid-enabled and it can submit jobs to distributed

41

Lommana-inc Poscription Language and Appilication SCrvice 1 00IKIt

compute resources. Since various schedulers run on different sites, it is mandatory that
these schedulers can be accessed in a consistent way for maximum code reuse.
Furthermore, Web service implementations interact with these schedulers

programmatically rather than their regular command-line interfaces.

This consistent approach can offer a lot of benefits to users who are only interested in
the applications themselves, but not in the underlying complicated compute resource, or
the diverse scheduler middleware. By providing one consistent interface to all

applications, we effectively hide the complicated grid environment from the user.

There are two ways to produce WSDL, top-down and bottom-up. In top-down,
WSDL specification should be developed from scratch, optionally starting from some
XML domain vocabulary. While in bottom-up, WSDL specification is derived from
some existing server side component interface. Bottom-up WSDL creation is
straightforward, as powerful tools are available. But developers need keep an eye on the
generated type and port names. They might not match with naming conventions. Also it
is sometimes difficult to map all language constructs of a programming language to
WSDL. This is because the WSDL is independent of the implementation language.
Another frequently occurring problem is that an existing component interface does not
meet the requirements for a well-defined Web service interface. For example,
unsupported data types appear in method signatures or inheritance is used. Whenever
the tools cannot handle the WSDL generation, it is safer to hand code the WSDL. By
creating the WSDL file first developers will ultimately have more control over the Web
service, and can eliminate interoperability issues that may arise when creating a Web

service using the bottom-up method.

We use top-down approach and carefully design the contract. Especially our
Application Service uses industry standard XML schemas to describe the data
structures. A static WSDL 1is used for every Application Service due to the consistent
interface. Two Application Services can be distinguished by their unique URLs, and

their associated Application Definition File.

The port interfaces of Application Service are depicted in Figure 3.3. The
Application Service exposes many operations via several WSDL port interfaces, namely

jobSubmit, JobSteer, and errRecovery. These port interfaces include many operations

42

CUIINIINald-1111C LJCS0IIpUon Lallguagc allldl ApPpLCdllOIl SCIVICC 1 001K

like createJobHandler, submitJob, monitorJob, Removelob, holdJob, releaseJob,

getJobDesc, and restartJob.

The operation createJobHandler allows the client to create a job. This operation
requires one argument which is a job description object. This object contains all the
application command parameters set up from the client. It is set up following the
CoLDeL and will be validated by the server against associated Application Description
File. Once appropriate checks have been made (validation of inputs, data type checks,
values supplied for options, mandatory arguments setup, and so on), this operation

returns to the client a unique job identifier.

The execution of a remote application can be initiated by calling submitJob. The
submitJob operation provides a generic entry point for using the application. The invoke
operation requires one jobHandler. Once the server retrieves the jobDesc object back
based on the jobHandler, the actual application launches. How or where this processing
takes place is an implementation detail and is effectively hidden from the user. Thus the

client only deals with one generic WSDL interface.

Since the application processing may take considerable time we must release the
client from the call to invoke immediately. Otherwise, client timeout errors are

inevitable.

The operation monitorJob allows the client to get a job specific status object.
getJobDesc allows user to get the job description object back. This object can be used
directly to resubmit the job in case of job failure. RemoveJob, holdJob, and releaseJob

enable the client to control the job.

3.5.2 Component Plug-in Model

The Application Service is simply a wrapper that exists to provide the client with full
details regarding the specific application the service can perform and a means of
invoking a distributed computation. It has the capability to transfer the data files, and
create running instances on the distributed compute resource when the user provides any
additional needed parameters. When so invoked the Application Services responds by
doing three things. First, it combines the information from the user and Application
‘ Description File to create a concrete job description. Second, it transfers the input files

and output files between the Application Service server and data server. Third, it

43

wllapiweld O LOHUTAIU=1HTIS LJCSUITPDUIOIL Lallguagt alld APpPLCdUOLL OCLVILEL 1 OUILKIL

interacts with backend compute resources that can be used to do the application

computation.

The Data Management Component, Job Submission Component and ADF are used
to achieve the above functionality. The Data Management Component is in charge of
file transfer between the two sites. Job Submission Component is responsible for
managing the application execution. ADF provides all the specific application related
information. These three components work together to complete the submitJob

operation, the main operation provided by Application Service.

Using the information in the JobDescription from the user, Application Service first
interacts with the Data Management Component to stage in the input files for running
the application. Combined with the information from the user and ADF, the Job
Submission Component prepares the job and submits the application as a job to the
compute resource. Application Service then keeps checking the status of the application
job. After the application execution is complete, the Application Service interacts with
the Data Management Component, and stages the output files of the application to the

specified output data repository.

In a Grid context the compute resources may exhibit considerable heterogeneity. In
our test bed of four distributed sites this can be clearly seen, with various combinations
of hardware, operating systems and middleware present at each site. Given the varying
administrative policies at each site and the fact that each organization has already spent
considerable time developing their respective infrastructures it is not feasible to require
all participants to upgrade or move to a common solution. Instead, we require that the
Application Service adapt to the local resources: this is achieved through the use of a
Job Submission Component plug-in model that allows the Application Service to be
configured (at deployment time) with a Job Submission Component capable of

interacting with the available resources.

The Application Description File is also added as a plug-in at run time to allow the
Application Service to configure itself to become the specified Application Service

based on the associated ADF.

Figure 3.2 shows the component plug-in model we use for the Application Service.
“JobSubmissionComponent” like FORK, CONDOR, GRAM, etc., is the component

capable of interacting with distributed compute resources and submitting application

44

Lommand-iune Pescription Language ana Appilication 5€rvice 1 00IKIt

jobs to it. It is encapsulated behind the consistent interface of the service. BET, FAST,
and FLLIRT are Application Definition Files that describe the application in detail
following CoLDeL protocol. Both “JobSubmissionComponent” and Application
Definition File are prepared and plugged in at deployment time or run time in order that
the Application Service can dynamically construct itself to be the individual application
service running on a specific compute resource. The use of the component plug-in
model ensures that our services are not tied to any specific middleware package or any
specific application. It is straightforward to implement other plug-ins to submit to other
schedulers. This makes the Application Service easy to fit in the increasingly diverse

and complex Grid middleware.

We have currently prototyped components to interact with the local server and the
Condor SOAP, Fork and Condor. The fork implementation translates an incoming
request combined with the Application Definition File, into a simple command-line and
forks this on the host server of the Application Service, whilst the Condor
implementation takes the incoming request and programmatically interacts with the

SOAP interface of the Condor scheduler at a remote site.

For example, at Oxford we have a Linux machine dedicated as an Application
Service compute resource. We need to be able to set up an application running
environment and construct the precise command, submit to the local server, and check

status; and the FORK Component provides this functionality.

At another site, UCL, we have a Condor pool accessible through the Condor SOAP
APL Application Services wishing to make use of this resource are configured with the
Condor component. Requests to the Application Service are delegated to this

component which maps them to Condor specific API calls.

Abstraction of the ADF and the “JobSubmissionComponent” provides us with two
levels of flexibility:

1) Clients deal only with the Application Service interface. Changes can be

made behind this interface without affecting clients in any way.

i1) The Application Service deals only with plug-in components — the service

itself has no intrinsic knowledge of the underlying compute resources and

45

command-iunc LEsCription Language anad Appiication SCrvice 1 00IKIU

applications. We avoid coupling the Application Service with any one

specific middleware or any application.

3.5.3 Strong Data Typing

Traditionally, scientific applications are invoked via command-line. And the user
needs set up a set of arguments to run the command. Since the advent of the Web
service technologies into the Grid world, several projects have attempted to expose their
applications as Web services. However, it is very often the case these Web services use
simple strings or other generic type to represent the arguments set up. Although this
may provide remote execution and access to Grid resources via a Web service interface,
this is not very flexible and robust. This is because the string based arguments setup are

not strongly typed.

To enable strong data typing, a number of types and a rich set of elements are
defined using XML schemas, like jobDescription, serviceDescription, algorithm,
argument, and so on. The user needs to specify the job in detail using these data types.
The incoming message of the createJobhandler operation is jobDescription, a strong

data type. This jobDescription will be checked and validated by the Application service.
The strong data typing has the following advantages:

i) The strong data typing helps to properly define the web interface and

minimize the network overhead.

11) These strong data types are the abstract from all command oriented
applications. All the applications can be described by these data types in
detail. Hence, they do not require additional negotiation between clients
and the service provider to understand these data passed or expressed in

strong typed form.

111) Without a strong data type, it is prone to message related exceptions due to
inconsistencies between the format of sent data and the format of accepted
data. Application Service code is required to be liberal in what it accepts,
which adds extra coding complexity. With strong data typing, the Web
service is robust, because only highly constrained data enters Application

Service.

46

e

LOllllalld=1111C LJCSLIIPUOL Lallgudge alll AppileatlOll oCIvVICE 100K

iv) The client does not have to have full knowledge about the application. The
client can just set up the input files for the job, and leave the rest of the

argument setup to the Application Service.

v) Application Service can validate and correct the jobDescription set by the

user.

vi) The strong data typing not only makes exchange between client and service
easy, but also facilitates generic Web service workflow tools to compose

these services easily.

The strong data typing also has some disadvantages. It is difficult to develop and
requires the developer to have a working knowledge of XML and WSDL. It makes the
Web interface unstable due to the frequent change of the data types, particularly for
immature Web services where the required data is subject to negotiation and revision. A
modular WSDL is introduced to stabilise the WSDL, in which strong data type system
is abstracted into a 100% XML Schema compliant data model.

3.5.4 Command-line Description Language

Command-line Description Language (CoLDeL), an XML based language, is
designed in order to describe individual applications precisely. CoLDeL acts as a
protocol so that different service providers could follow it to generate an Application
Definition File for each scientific algorithm for use by Application Services. An XML
schema has been defined which ensures strongly typed data exchanging among services.

An initial number of types and a rich set of elements are declared.

The design of the CoLDel is simple but powerful. It provides a generic approach to
the abstraction of command oriented application’s configuration. It makes the
application service lightweight but highly configurable. No business logic code
generation is needed to create a service from its description. CoLDel is also helpful to

enable generic Web service workflow tools to compose Application Services.
In our current implementation, CoLDel has the following advantages:

1) Conforming to the XML schema, CoLDeL can specify each application
with a rich semantic description and provide as much useful information to

the service/workflow/client as possible.

47

LOINInNanad-uIic 1JC5CIiptoll Lallgudge alld AppliCcatloll SCIVICC 1 00I1KIL

i1) CoLDeL provides a set of default argument values from Application
Definition File, so that the user needs not set all argument values for each
job execution — this is useful as there can be hundreds of arguments to be

set up, but the user is often only interested in a few of them.

1i) CoLDel supports data types and constraints on arguments values to ensure
that all the arguments values are acceptable. It can facilitate validation of
the user’s job configuration. The argument set up from the user can be
validated against its data type and constraints before execution. This
increases the probability of successful completion of the execution. The
benefit of this validation is particularly obvious for long-running

applications or for applications that form part of a workflow.

iv) CoLDel specifies the dependencies and conflict of arguments, which can

help to validate the input dependencies.

Below is the schema definition for argument (named port in the schema).

48

Lommana-ine pCscription Language and Application SErvice 100IKIt

- <void index="1">
- <object class="uk.ac.neurogrid.appws.service.common.Port">
- <void property="id">
<int>2</int>
</void>
- <void property="portName">
<string>-t</string>
</voids
- <void property="portDisplayName">
<string>Input Image Type. 1-T1, 2-T2, 3-PD(default T1)</string>
</vaid>»
- <void property="portDescription">
<string>Input image type. 1-T1, 2-T2, 3-PD(default T1)</string>
</void>
- «<void property="mandatory">
<boolean>false</boolean>
</vaid>
- «<void property="argumentType">
<cbject class="uk.ac.neurogrid.appws.service.common.ArgumentType" field="pair" />
</vaid>
- <void property="emdLineRepresentation">
- <object class="uk.ac.neurogrid.appws.service.common.CommandLineRepresentation">
~ <void property="flag">
<string>-t</string>

</void>
- «void property="avalue">
<string>1</string>
</void>

- <void property="defaultvalue">
<string>1</string>
</void>
<void property="recommendValue">
<string>NA</string>
</void>
- <void property="rangeVvalue":>
<string>NA</string>
</void>
- <void property="enumValue">
- <array class="java.lang.String" length="3">
- «<void index="0">
- <object class="java.lang.String">
<string>1</string>
</object>
</void>
- «void index="1">
- <object class="java.lang.String">
<string>2«</string>
</object>
</void>
- <void index="2">
- <object class="java.lang.String">
<string>3</string>
</ohject>
</void>
<farray>
</vaid>
</object>
</void>
</object>
</void>

Figure 3.4: Argument Data Type with Associated Metadata

49

llapield o LAULTLIALIUSLILG VOOV LIPUIVIL Ldllsudshy alll Applivativil ol vive 1 UUIALL

As shown in Fig 3.4, the argument data type contains a lot of associated metadata for
each argument of the algorithm command-line, like defaultValue, recommendValue,
rangeValue, and so on. This can be used by third party portal or workflow to help guide
the user in the setup of a valid parameter. In the case of argument set up, the portal can
use the metadata from ADF to present the user with default value, recommended value
and value range. The user then refers to this to set up the argument with a valid
parameter. This helps the user to set up the arguments in a user friendly way. In
particular, it is useful when the user does not have a lot of experience on applications.
This assist in argument setup greatly reduces the chance of job failure and rapidly

increases the opportunity to get better results from the application.

- <void inder="9">
- <object class="uk.ac.neurogrid.appws.service.common.Port">
- <void property="id">
<int>10</int>
</void>
- <void property="portName">
<string>-or</string>
</void>
- <void property="portDisplayName">
<string>0Output restored image</string>
</void>
- <void property="portDescription">
<string>Output restored image.</string>
</void>
- <void property="mandatory">
<boolean>false</boolean>
</void>
- <void property="argumentType">
<object class="uk.ac.neurogrid.appws.service.commeon.ArgumentType" field="flag" />
</void>
- <void property="outPortType">
- <object class="uk.ac.neurogrid.appws.service.common.FileType">
- <void property="ifdefault">
<hoolean>false</boolear>
</void>
&l-- when filenaws 12 nuksr 15, m=ans get file bass from port 15 -2
- «void property="fileName">
<string>15</string>
</void>
- <void property="fileSuffix">
<string>_restore.nii</string>
</void>
- <void property="fileOrPath">
<abject class="uk.ac.neurogrid.appws.service.common.FileOrPath" ficld="filePartialNeedSuffix" />
</void>
- <void property="fileFormat">
<object class="uk.ac.neurogrid.appws.service.common.FileFormat" field="NII" />
</void>
- «void property="portDirection">
<object class="uk.ac.neurogrid.appws.service.common.PortDirection" field="out" />

Figure 3.5: Input/output Argument Data Type with Associated Metadata

Fig 3.5 shows that for all the input files and output files, "FileType" is defined to
provide full information regarding the file, like “WebDavDir” "filename," "fileFormat,"

etc. All the well known file formats are defined in the type "FileFormat”. This

50

laptiel O UMHALIU=LIC Lol ipUvil Lallpuagt dllud ApPpPUbdiiUil vl vive 1 UUIAIL

information allows the workflow composer to compose services by connecting outputs

of a service to the inputs of other services only if they semantically correct match.

CoLDel, the abstraction of applications description, provides a protocol to describe
the command oriented applications. It renders the Application Service the capability to
describe and process any command oriented application in a generic way. CoLDel is not
only used by Application Service, but is also shared by client and workflow. Different
parties follow the same protocol to specify and process the application description,
which makes the application arguments set up an easy and safe task. Therefore, it avoids
the failure or poor performance that is caused by improper arguments setup. CoLDel 1s
also very helpful for workflow to connect the services and orchestrate the input/output

files in a controlled manner.

On the client side, the client builds strongly typed data defined by CoLDel to supply
specific argument values for the application through an incoming SOAP message. The
input data arguments have to be set by the user. The user needs to set up the Uniform
Resource Identifier of the input files. On the service side, the service provider writes an
ADF for each application following CoLDel before service deployment. At run time,
Application Service validates the client setup and sets up other mandatory arguments
based on the information provided in ADF. JAVA XMLDecoder and XMLEncoder are
applied for converting an “algorithm” object to and from its equivalent XML document
representation. The Application Service generates an “algorithm” object from associated
ADF, combines this with the “algorithm” object provided by the client, determines the
specifics on how to properly build and construct the command with the appropriate

parameters, and subsequently submits the job.

3.5.5 Application Description File

The CoLDeL schema defines all the data type needed to describe the application,
including "FileFormat", "ArgumentType", “CommandLineRepresentation”, "Port", and
so on. An Application Descripion File is an XML document created from CoLDel
schema to fully describe a specific application. It provides meta-data about an existing
application and is usually supplied by the service provider or application provider. The
information provided in an Application Description File defines the semantics of an
application and enables the Application Service to expose an application automatically

as a Web service.

51

Lomnimnand-1nc JesCription Language and Appication Service 1 00IKIt

Before wrapping the application, the application provider must write an Application
Definition File for this individual application conforming to CoLDeL schema. The ADF
has to be complete enough so that the service can dynamically compose the command-
line at run time and retrieve the input data files. As a consequence, the ADF contains the

following information that can be categorized into three categories:

i) General information. This includes the algorithm name, contributing

institution, versioning information, and brief description.

ii) The execution environment information. This describes the requirement on
the execution environment such as platform, libraries required and
environmental variables. This information is used to construct the

execution environment at run time.

i11) The argument’s description. This provides all the information for each
argument of the algorithm command-line, including mandatory
information, argument type, default values, value range, dependency

information, naming conventions of outputs, and so on.

<?xml version="1.0" encoding="UTF-8" 7>
- <java version="1.5.0_10" class="java.beans.XMLDecoder">
- <object class="uk.ac.neurogrid.appws.service.common.Algorithm">
- <void property="algorithmName">
<string>bet</string>
</void>
«<void property="algorithmVersion">
<string>1.0</string>
</void>
- «<void property="algorithmbDescription">
<string>Brain segmentation tool.</string>
</void>
- «<void property="location">
<string>/home/ng/medicalApp/fs|-3.3.7/bin</string>
</void>
<void property="exec">
<string>bet</string>
</voids
<void property="category'>
<string>segmentation</string>
</void>
<void property="subcategory":
<string>brain extraction</string>
</void>
- <void property="environmentVvars":
- <array class="uk.ac.neuragrid.appws.service.common.EnvironmentVar" length="3">
- <void index="0">
- «<object class="uk.ac.neurogrid.appws.service.common.EnvironmentVar":
- <void property="varName">
<string>FSLDIR</string>
</void>
- <void property="varvalue">
«<string>/home/ng/medicalApp /fsl-3.3.7</string>
</void>
</object>
</void>,

52

Lommand-line LJCesCription Language and Application Scrvice 1 001kIt

Figure 3.6: ADF_BET Partl

- <void index="1">
- zobject class="uk.ac.neurogrid.appws.service.common.Environmentvar">
- <void property="varName">
<string>PATH</string>
</void>
- <void property="varvalue">
<string>${FSLDIR} /bin/ :${PATH}</string>
«</void>
</object>
</void>
- <void index="2">
- <object class="uk.ac.neurogrid.appws.service.common.EnvironmentVar">
- <void property="varName">
<string>LD_LIBRARY_PATH</string>
</void>
- «<void property="varValue">
<string>${FSLDIR} /lib:${LD_LIBRARY_PATH}</string>
</void>
</object>
</void>
<farray>
</void>
- <void property="others">
- <array class="java.lang.String" length="2">
- <void index="0">
~ <object class="java.lang.String">
<string>. ${FSLDIR} /etc/fslconf/fsl.sh</string>
</object>
</void>
- <void index="1">
- <object class="java.lang.String">
<string>export FSLOUTPUTTYPE=NIFTI</string>
</object>
</void>
<farray>
</void>

Figure 3.7: ADF_BET Part2
Figures 3.6 and 3.7 indicate a simplified example of an ADF used for a medical

image brain extraction service. BET ADF that conforms to the CoLDeL schema has

three main elements: servicelnfo, environmentVars, and ports.

First, some generic information related to the application is included, like
algorithmName, algorithmVersion, algorithmDescription and executable name and
location. As the elements’ names imply, they specify the name and version of the
algorithm, a short description of the algorithm, and the name of the executable and its

location.

Then environment variables are specified inside of the <environmentVars> element,

if any, that need to be passed on to the application before executing it on this host.

The environmental variables FSLDIR, PATH and LD LIBRARY PATH are
specified for the BET application.

53

Lommanad-ine Lescription Language ana Appiication SCrvice 1 00IKit

The generic information and environmental variables information are used by ;
Application Service only. This is vital information for Application Service to create the

right environment and retrieve the right executable.

- <void property="ports">
- <array class="uk.ac.neurogrid.appwis.service.common.Port" length="13">
- <void index="0">
- <object class="uk.ac.neurogrid.appws.service.common.Port">
- <void property="id">
<int>1</int>
</void>
- <void property="portName">
<string>bet</string>
</void>
- <void property="portDisplayName">
<string>bet</string>
</void>
- <void property="portDescription">
<string>-bet.</string:>
</void>
- <void property="mandatory">
<boolean>true</boolean:
</uoid>
- <void property="argumentType">
<object class="uk.ac.neurogrid.appws.service.common.ArgumentType" field="avalue" />
</void>
- «<void property="cmdLineRepresentation">
- «nbject class="uk.ac.neurogrid.appws.service.common.CommandLineRepresentation">
- <void property="avalue">
<string>/home/ng/medicalApp/fsl-3.3.7/bin/bet</string:
</void>
</object>
</void>
</cbject>
</void>

Figure 3.8: ADF_BET Part3

Moreover, Figs 3.8 and 3.9 show that the command arguments information is defined
inside of element <ports>, which is an array that contains many <port> elements. Each
port stands for an argument of the algorithm command-line. It contains all the meta-
data related the argument, e.g., id, portName, portDisplayName, portDescription,
mandatory, argumentType, cmdLineRepresentation, conflictPorts, dependPorts,

inPortType, outPortType and so on.

“mandatory” specifies if this argument is mandatory to be set. ‘“conflictPorts”

explains which arguments cannot bet set together with this argument.

“argumentType” tells the format of argument appears on the command-line. The
possible “argumentType” are “FLAG” (e.g., -debug), “VALUE” (e.g., inputfile.suffix),
“PAIR” (e.g., -Sx1 100) and “NOT”. “cmdLineRepresentation” specifies how the
argument exactly appears on the command-line. For each argument,

“cmdLineRepresentation” is made up of two parts, “flag” and “avalue”. “flag” is always

54

wilapivl o UL HALIU=ILLY DJUSULHIPUIVIL Lallgudge alll ApPPLLatlULL Ol VILG 1 UOULRIL

static. “avalue” is dynamic, and can be set by user or workflow. ADF provides a lot of
associated meta-data for the “avalue” setup, like "defaultValue", "recommendValue",
"enumValue" and "rangeValue". These meta-data can be used by the portal to help
guide the user in the selection of a valid parameter. It is very helpful in terms of

validation and assistance of arguments setup.

- <void index="7">
- <object class="uk.ac.neurogrid.appws.service.common.Port">
- <void property="ld">
<int>8</int>
</void>
- <void property="portName">
astring>-f</string>
</void>
- <void property="portDisplayName">
<string>Fractional intensity threshold</string>
</void>
- <void property="portDescription">
<string>Fractional intensity threshold (0--1); default=0.5; smaller values give larger brain outline estimates</string>
</void>
- <void property="mandatory">
<boolean>false</boolean>
</void>
- <void property="argumentType">
<object class="uk.ac.neurogrid.appws.service.common.ArgumentType' field="pair’ />
</void>
- <void property="cmdLineRepresentation”>
- <object class="uk.ac.neurogrid .appws.service.common.CommandLineRepresentation’>
- <void property="flag">
<string>-f</string>
</void>
- <void property="avalue">
<string>0.5</string>
</void>
- «vaid property="defaultYalue">
<string>0.5</string>
</void>
- <void property="rangeValue'>
<string>0;1</string>
</void>
</object>
</void>
</object>
</void>

Figure 3.9: ADF_BET Part4

“inPortType” and “outPortType” provides information for the input file and output
file, respectively including “ifdefault”, “WebDavDir”, “filename”, “fileFormat”,
“filePrefix”, “fileSuffix”, etc. In some applications, the output file name is based on the

input file name. “dependPorts” tells where to get this input file name.

55

]

Lommana-ilne ucscripuon Language ana /vppneauon service I00IKU

The information contained in <ports> is shared by the wuser, workflow, and

Application Service.

Concrete WSDL Abstract WSDL I Data Type
AppSenrice.wed] AppAfastradwsdl r CommonTypejaid —
/ < complexType
< import < import f
Argument
AppAbstract.wsdl CommonType.xsd i
b | < complexType
nieType

>

Figure 3.10: Web Service Descriptions Modularisation

3.5.6 Modular WSDL

Figure3.10 shows how concrete WSDL imports abstract WSDL, which imports

common data type schema.

As mentioned above, an initial number of types and a rich set of elements are
declared in the WSDL which ensure strongly typed data exchange between client and
service. It makes the WSDL interface unstable due to frequent change of the data types.
Particularly in our case, most data types are designed to describe the applications. With
further applications being brought in, the data types are subject to frequent negotiation
and revision. A modular WSDL is introduced to keep the WSDL stable, in which the

type declarations of a Web Service are moved into a separate document.

All the application related types are separated from the WSDL definitions and put in

an XML schema document named commontype.xsd.

The NgappServiceAbstract.wsdl file defines what the Application Service does by
defining the data types and business operations of the Web Service. The file imports
XML schema commontype.xsd as immediate children of the <wsdl:types> element, and

defines different <wsdl:message> and <wsdl:portType> elements.

The NgappService.wsdl is the concrete WSDL file that defines how and where to
invoke a service by defining network protocol and service endpoint location with the

<wsdl:binding> and <wsdl:service> elements. The NgappService.wsdl file incorporates

56

Lommana-ime 1e5Cripuon Language and Applicaiion SCrvice 1 001Kkit

the NgappServiceAbstract.wsdl file using <wsdl:import> or <wsdl:include>. These
elements should be the first immediate children of the <wsdl:definitions> element.
<wsdl:iinclude> is used when two wsdl files have the same namespace and
<wsdl:import> is used to combine wsdl files from different namespaces. This approach
greatly improves component re-usability as the same NgappServiceAbstract.wsdl file

can have multiple service bindings.

Abstraction of the Web Service type declarations into a 100% XML Schema
compliant data model has many important advantages. This encourages collaboration
between the different partners involved in the data model design process and assures
interoperability. This also leverages the advanced capabilities of XML schema for

precisely constraining complex scientific data.

Abstraction of the Web Service type system into a 100% XML Schema compliant

data model produces several important advantages:

1) Separation of Roles. The type declarations are fully abstracted and developed
in isolation from the network protocol and communication specific details of
the WSDL file. In doing this, the focus becomes centred upon the
business/scientific requirements of the data model. This greatly encourages
collaboration between the scientists who are involved with the description of

scientific data and data model design.

ii) Data Model Re-usability. Existing XML Schema can be re-used instead of re-
designing a new type system for each new Web Service. This helps reduce

development efforts, cost and time.

iii) Isolation of Changing Components. The data model is the component that is
most subject to change, often in response to changing scientific requirements.
Its isolation therefore limits the impact on other Web Service components

such as the concrete WSDL file implementation.

iv) Full XML Schema Functionality. The XML Schema type system leverages the
more powerful features of the XML Schema language for description,

constraint and validation of complex data. This has proven invaluable for the

description and constraint of complex scientific data.

command-iunce Description Language and Application SCrvice 1 00l1KIt

3.5.7 Data Management

In many scientific enterprises, the input files are large and they may be stored in
some remote location. Consequently, we do not assume that the user will upload the file
directly to the portal or the service, though this is possible. Rather, Uniform Resource
Identifier (URI), a compact string of characters for identifying an abstract or physical
resource, is adopted to provide the direct link to data files. It is often better to pass the

Uniform Resource Identifier (URI) for the input files to the service.

The Data Management Component handles data transfer between two sites using
WebDav. The Application Service interacts with the Data Management Component to
transfer data between service provider and data repositories. It retrieves the input data
from the data repositories and puts the results back to the data repositories. The
information exchanged between the Application Service client and service via SOAP
only contains references of input/output, the URIs. No large data is included in SOAP
messages. Since we are using WebDav to manage data, the URI contains information of

the WebDav server, WebDav folder name, and file name.

We believe using a common data transfer protocol would eliminate the current
duplication of effort in developing unique data transfer capabilities for different storage
systems. For the current implementation, Application Service only takes input data
located in the WebDav folder on the remote data server. WebDav is used to transfer
data files between the Application Service and data server, which is a secure, efficient
data transport mechanism. If needed, other data management plug-ins are possible and
can easily be fitted into the Application Service due to the component plug-in model

used.

When a client invokes an application, the Application Service creates a new working
directory for each job at the server site. The input data files described via URIs are
archived from data repositories to the corresponding working directory through
WebDav. The application is run inside the working directory in the FORK case, or
submitted to a computational resource. The output will be brought back to this working
directory from the remote computational site. Finally, Application Service transfers all

the output files back to the WebDav folder on the data server through WebDav. The

URISs of output files are provided which allows them to be located and retrieved later.

wapiel o LULIHIAUIU=LHLITG LJOSULIPUUIL Ldallgudgt allld ApplitatlVll oCl vILe 1 OUIRIL

The data upon which each job acts may come from two different sources: 1. Users
may directly upload data files from their local machine to a remote data server. In this
case, users can use the WebDav browser to drag the files to the data server directly in an
easy and secure way. 2. Users may issue a query via a web interface. This query is
resolved against one or more distributed databases. The matching data set can be used in

later computations.

The “applicationName” along with the attribute “targetNamespace” uniquely identify
the application. The “hostName” specifies the name of the host on which the application
has been deployed whereas the “executable” specifies the location of the application on
that host. The “tmpDir” specifies a temporary directory that the application service can
use to stage input files to the application. It is also used to temporarily store log files,

standard out, standard error, intermediate files and output files of the application.

3.5.8 Security

Security is a critical requirement and must be accounted for by any geographically
distributed Grid community. There is high demand to protect data confidentiality and
integrity in Grid enabled applications. The traditional security mechanisms for
homogeneous systems do not scale to heterogeneous environments operated by different

organizations. A reliable yet easy to use security infrastructure is therefore important.

There are three requirements of the security: authentication, integrity and
confidentiality. Authentication is to ensure that parties within a business transaction are
really who they claim to be. Integrity is to validate the integrity of business information
exchanged in a transaction ensuring that a message's content has not been altered or
corrupted during its transmission over the Internet. Confidentiality is to make the
information exchanged in Web services requests and responses unreadable. The purpose
is to ensure that anyone accessing the data would need the appropriate algorithms and

security keys to decrypt the data before being able to access the actual information.

Transport-level mechanisms like HTTP over Secure Sockets Layer (HTTPS) provide
these capabilities, but transport level security isn't flexible enough for some

applications. The difference of HTTPS and WS-Security are exhibited below:

1) Transport based security (HTTPS) is bound to HTTP. It only secures the

transport channel between two points. This means HTTPS provides point-to-

59

CUIINITNalld=1111C L7C5CTIPUOIL LallgudgC alld ApPpPLCatlOll oCIvICC 1 O01RIL

point security, securing the connection between the sender and receiver of the
message. This solution is incomplete if intermediaries between the endpoints
forward or process the message. While with WS-Security, message itself is
secure rather than underlying transport. Signature and encryption persists with

messages.

it) HTTPS is bound to HTTP. While web services are decoupled from an
underlying transport, and can use transports like SMTP and JMS in addition to
HTTP.

iii) HTTPS encrypts the entire message, while WS-Security can encrypt only a

portion of the message.

It is important to justify the decision to use WS-Security because WS-Security has an
impact on the overall response time and the number of simultaneous requests that the
service can support. HTTPS provides a significantly better performance solution than
what is possible when using XML Digital Signature and XML encryption. For
NeuroGrid Application Service, business logic is more complex and distributed on
remote systems. The overall processing times of business logic executed by the
Application Service implementations are long. The impact of WS-Security on response
time does not result in much a difference. Also due to stringent requirements for patient
confidentiality and authenticity of results, we choose WS-Security instead of transport
level security to ensure secure data management in a distributed environment. For
NeuroGrid Application Service, digital signature and message level encryption
capability provided by WS-Security is the good choice. We have a full implementation
based on WS-security. The Application Service addresses the three security

requirements outlined below:
1) Authentication is used to ensure the identity of the message senders.

i1) Digital signatures are used to ensure a message's integrity, that its content has

not been altered or corrupted during its transmission over the network.

iii) Encryption is used to ensure message confidentiality.

Every user uses an X.509 certificate issued from NeuroGrid CA, a trusted Certificate
Authority. NeuroGrid CA issues two types of certificates, NeuroGrid user certificate

60

Lominanda-1nce 1JCsCriptoln Ldanguage aild Appilcdation Seivice 1 001kIt

and Guest Certificate. NeuroGrid user certificate has the access to the data nodes
belonging to the user's group, and all the Application Services. The Guest Certificate

has access to all the Application Services, and one data node dedicated for guest users.

The certificate contains identity credentials and has a pair of private and public keys
associated with it. The proof of identity presented by a party includes the certificate
itself and a separate piece of information that is digitally signed using the certificate's
private key. By validating the signed information using the public key associated with
the party's certificate, the receiver can authenticate the sender as being the owner of the

certificate, thereby validating their identity.

In NeuroGrid Application Service, the SOAP message is digitally signed. We use the
private key of the sender's X.509 certificate to digitally sign the SOAP body of a Web
service request. Likewise, a Web services response is digitally signed to ensure data

integrity.

An X509Token is used to allow Application Service to have fine grained control on
what operations users can invoke. Token is an XML document which is a detailed
policy document that authorizes a user to invoke a particular operation on an
Application Service. It is signed by the Application Service’s credentials (X509 proxy
certificate) and is issued to the user. The user needs to present the token to the
Application Service before it can invoke an operation. Thus X509Token allows
Application Service providers to have fine grained control on what operations users can
invoke on their Application Services. X509Token is automatically generated by

Application Services and is completely transparent to Application Service providers.

The security set up can be conveniently controlled by Security Configuration Files.
In a sign-encrypt set up, the client first constructs a SOAP message to invoke the
service. If the Application Service supports tokens, the client attaches the user’s
capability token to the SOAP message, signs the message with the user’s X509 proxy

certificate and encrypts it. Then the user sends the message to the service.

On the server side, the service first decrypts the message. Then it verifies the
signature on the SOAP message. It then verifies the capability token to ensure that it has
not expired and ensure that the token authorizes the user to invoke the operation on the

service. The SOAP message is then sent to the SOAP Message Processor for further

processing. The server signs and then encrypts and sends the response.

61

LOLHIalIA =G LJGSULIPUOVL Lallgud gl dlild ApPpltatiVil oClvILe 1 OULKIL

In a typical usage scenario, the user invokes the service provided by the service
provider, and then the service provider accesses compute resources on behalf of the
user. This means compute resources have to trust all the users trusted by service
provider, and hence brings the account management burden to the resource provider.
We introduce a Service Provider Account Model to avoid this problem. In this model,
the user does not have direct access to compute resources and they are completely
decoupled from compute resources where jobs are effectively run. The user only has
access to the Application Service. A special user account is set up for the service
provider, which is trusted by compute resources. The service provider acts as an active
agent between the user and compute resources. It authenticates and authorizes the users,
and serves the user requests. It also accesses related compute resources on behalf of
itself. The compute resources respond to these requests due to their trust of the service

provider.

3.5.9 Service Provision and Deployment

We assume that the application has been already deployed on some host or has been
ready to migrate to run on some compute resource. This is because Application Services
do not attempt to deploy any application. Hence, in order to generate a customized
Application Service that can be deployed in the Application Service hosting
environment (i.e., Apache Tomcat) as a Web Service, the application installation or
preparation is first. Also an Application Description File, which specifies the
installation and configuration details, has to be provided. A security control file has to
be in place to control the security setup of the Application Service, like signing,

encrypting, and so on.

62

llapied 2 LULIHIIALIU=ULIL LJLoLLIPUVIL Ldllguagst dlild Appllalivil oLl vIVL 1 VUVIAAL

#webdav client certificate directory, used by ngapp service
server .aswebdavclient.certs=/home/ng/certs/webdavclient

#alias of webdav service at ngapp server side
#ngnodem03.cs.ucl.ac.uk.webdav.alias=ngnodem03.cs.ucl.ac.uk
#ngnodemld. ediamond. ox. ac.uk.webdav.alias=ngnodemld.ediamond.ox.ac.uk

#webdav alias on ngnodemld

ngnodem01 .ediamond.ox.ac.uk.webdav.alias=ngnodem0Ol1
ngnodem02.ediamond.ox.ac.uk.webdav.alias=ngnodem02
ngnodem03.cs.ucl.ac.uk.webdav.alias=ngnodem03
ngnodem0O4.cs.ucl.ac.uk.webdav.alias=ngnodem04
ngnodem05.cs.ucl. ac.uk.webdav.alias=ngnodem05
ngnodem06. ediamond. ox.ac.uk.webdav.alias=ngnodem06
ngnodem07.ediamond. ox.ac.uk.webdav.alias=ngnodem07
ngnoclem08.ediamond.ox.ac.uk.webdav.alias=ngnodem08
ngnodemll.ediamond.ox.ac.uk.webdav.alias=ngnodemll
ngnodeml2.ediamond.ox.ac.uk.webdav.alias=ngnodeml2
ngnodemld.ediamond.ox.ac.uk.webdav.alias=ngnodemld
ngnodeml5.ediamond.ox.ac.uk.webdav.alias=ngnodemlb

#Intermediate output directory
intermediate.output.directory=/home/ng/tomcat50-jwsdp/jobs

#ngapp implementation class
ngapp.impl.class=uk.ac.neurogrid.appws.core.App ForkServiceImplementor

Figure 3.11: A Service Property File

Moreover, a service property file is set to describe some dynamic information that is
required by an Application Service to be hosted on the specified host. It contains
information closely related to the Application Service server, which is usually different
based on the different server’s environment and requirement. A sample service property

is shown in Figure 3.11

server.asWebDavclient.certs specifies where the security certificates files are located,
which are used to invoke the Data Management Service. WebDavserver.alias tells the
alias for a specified data management server. Because the Data Management Service is
hosted on 8 different nodes, we provide a list of aliases for all data servers. The
Application Service can dynamically get the right alias based on which data server is in
use. intermediate.output.directory tells the Application Service where to put all the
intermediate output. ngapp.impl.class specifies which Job Submission Component plug-

in (FORK, CONDOR, etc.) is to be used for Application Service.

An intuitive deployment tool has been developed for the generation and deployment
of the customized Application Service. The deployment tool enables the application

provider to upload an Application Description File via a portal interface. The ADF file

63

rJ Lommana-iine ucscripuon Language anu Application service IOOIKII

will be registered with the ADF Pool. At the service provider side, the deployment tool
generates an appropriately customized Web Service, which encapsulates the application,
and finally deploys the service within the remote Application Service hosting

environment.

3.5.10 ASToolkit Client Environment

ASToolkit client applications usually run on PCs or workstations connected to the
Internet. ASToolkit client environment offers the ASToolkit client API, which has a
high level Java API interface to hide the complexity of accessing remote Application
Services from the user. ASToolkit client API is mainly used for communicating with
the Application Services. It also handles the preparation of service input data and post-
process the service output data. The API may be used not only by the end user, but also
by client side application developers, like portals, to construct advanced Grid

applications that interact with remote Application Services.

Figure 3.12 shows that ASToolkit client contains several layers, high level Java API
interface, client business logic (job submission, job steering), a security handler, and
service proxies. The top layer of the ASToolkit client is the high level Java API
interface. The Java API provides a set of classes for dealing with job submission and
job steering at a high level of abstraction hiding the details of the underlying interaction
with Application Services. The API hides the complexity of dealing with remote

Application Services from the user.

Cilent Side Server Side
High Level JAVA API

Application Service

Job Submission Job Steer

Message Luyer +W5-5ecurity Ties

Service Proxies

5QAP JAX-RPC Runtime

JAXRPC Runtime Message

Figure 3.12: ASToolkit Client API Abstraction Layers

64

omimana-ine esCription Language and Applcdation Seivice 1 001K

Security is handled at the lower layer of the ASToolkit client and is completely
hidden from the user. This prevents the user from dealing with low level issues such as

message generation, signing, and encryption.

In the lowest layer, ASToolkit client provides service proxies for the toper layer to
interact with. Service proxies are stubs that are placed on the client and connect a web
service client to the JAX-RPC runtime. ASToolkit automatically generates these and
packs them in ASToolkit client. The user does not have to deal with the complexities of
stub generation of client side. Service proxies are in charge of interacting with remote
Application Services and handle job execution and job monitoring, as well as job

steering.

Jobs can be executed synchronously or asynchronously. If they are executed
synchronously, the client is blocked until the remote execution is complete. The job
outputs are returned as a response to the original request. However, this style of
invocation is not always appropriate. Jobs may possibly spend a lot of time being
queued if the resources happen to be heavily loaded. Furthermore, if the jobs are long

running, the client will stay blocked until the job finishes, or possibly times out.

To overcome this shortcoming, in ASToolkit client, jobs are launched
asynchronously. A response is immediately sent back to the client with a jobID for the
job being executed. The clients can use this jobID to query the service for job status and
job metadata at a later time. This makes the service stateful. Apart from the job status
and metadata about job inputs, outputs and other command arguments setup, the service
status also includes file transfer information and job history. Files are used to keep all
this information on the server side, and are accessed via both Application Service and a

generic steer service.

3.6 A Sample to Wrap an Application

To understand how the ASToolkit can be used to wrap the applications we describe a
typical use sample. (Let us)Suppose there is an application BET needed to be wrapped
as a Web Service. BET [9] is Brain Extraction Tool that runs from the command-line
with a set of arguments options. BET expects to find an input file and produces an
output file. The service provider would like to create an Application Service that will

allow all the qualified users (the people who hold NeuroGrid certificates) to run this

65

Lommand-ine escription Language and Appiication >SCrvicc 100IKit

program. We assume that BET has been installed on some host. For example, (let us)

assume that it is installed at Linux box hairyviolet.cs.ucl.ac.uk and located in the

directory path /home/ng/medicalapps/bet. ASToolkit does not do anything related to

application deployment or installation. We install the application in the same directory

path on different servers. ASToolkit allows the application to be installed anywhere as

long as it is accessible because the location of application is specified in the Application

Description File and will be dynamically loaded by Application Service at run time.

There are the following actions that our application provider and service provider

must take to create a BET Application Service:

1)

iii)

Write an Application Description File (ADF) for BET, which is a simple
Extensible Markup Language (XML) description of the application conforming
to CoLDel schema. ADF is described in detail in section 3.5.5. An ADF _BET is
provided in Figure 3.5. The document contains general application information,
the execution environment information, and application arguments information.
If the application is to be run on Condor or another Grid environment, ADF_BET

needs to list all the executables to be staged into the remote execution node.

Edit Security Policy File, SPF_BET, contains the policy information concerning
which individuals and groups are authorized to invoke the service, and how to
secure the message between users and service. The application provider can

simply use the default Security Policy File without even knowing this.

The application provider can upload the ADF BET and SPF BET from the
portal through a Web interface. The executables are also needed to be uploaded
for the non-fork Application Service. Then the service developer will take over
the task and wrap BET as an Application Service using ASToolkit. Or the
application provider can wrap it using ASToolkit with minimum software

installation, ANT and Java.

The service provider manually edits the service property file which contains
some dynamic information that is required by an Application Service to be

hosted on the specified host.

The service provider gets ready the ADF BET, SPF_BET and/or executables.
Then the provider manually edits the ANT property file to let the ANT know

66

wlldapiel o LOLLLATIEaLU=1IC DJCOUHIPLUVIL LaligUdgt alll ApPpIitdLiVuil oel VILE 1 OLIRIL

where to find all these ADF, SPF and/or executables. Executables are only
prepared and put in the right location known by ANT script for the none-fork

Application Service.

vi) The service provider runs the ANT script through command-line, or eclipse.

ANT script includes service building and remote service deployment.

3.7 Summary

In this chapter, we have presented CoLDel, an XML based language for describing
individual command-line applications precisely. CoLDeL provides an standard to
service providers, so that the service providers can generate an Application Definition
File for each scientific algorithm for use by the Application Service. CoLDeL is also a
protocol between client and service, which makes the exchange between client and
service easy. It also facilitates generic Web service workflow tools to compose

Application services easily.

We also have presented ASToolkit, a toolkit for wrapping scientific applications as
Web services. We described the technical details of the ASToolkit architecture and
implementation. We describe a typical use sample to demonstrate how the ASToolkit

can be used to wrap the applications.

67

INCUITOUITLIA I'IdlIICWOILRK

CHAPTER 4

NeuroGrid Framework

4.1 Introduction

Current neuroimaging research is characterized by small-scaled studies carried out in
single centers. Many groups make their algorithms available for download over the
Web, which is not a convenient or efficient way for neuroimaging research groups to
share algorithms for regular image analysis. Also it is very unusual to share data. When
data is shared, subtle differences between the image acquisitions normally inhibit
reliable quantitative analysis of aggregated data. Furthermore, data curation in
neuroimaging research tends to be poor, with images normally archived on removable
storage media that rapidly become obsolete, making aggregation of data between or

within sites difficult, if not impossible, on those occasions when it is desired [42-44].

NeuroGrid framework helps to overcome these problems by the integration of image
storage and image analysis algorithms and by the collaboration of work within sites.
The NeuroGrid framework connects sites for rapid and secure flow of data, enables
distributed data analysis with image analysis tools and interoperable databases, and
enhances collaboration between researchers in different clinical and methodological
areas. Therefore, this framework can aid data sharing, data analysis sharing, and
compute resource sharing. It allows current algorithms and existing data management
procedures to be more accessible and interoperable in the Grid environment, so there are
low barriers to sharing and time is not wasted on re-engineering well established

algorithms.

Currently, one of the main obstacles for neuroimaging research and other academia
field take-up of Grid technology is the existence of a large amount of legacy code that is

inaccessible as Grid/Web services. The ASToolkit concept and its integration with the

68

INCUTOUTIA FIAINCWOIK

Grid portal technology eliminates this problem and can lead to a breakthrough in the
establishment of scientific Grids. NeuroGrid framework stretches the usability of
scientific Grids where most of the codes are written in FORTRAN or other languages,
and now all these applications are accessible as Application services. The framework
also enables users to discover these Application services, interact with them, and
interact with composed scientific workflows from a user friendly Web portal. The
framework is built for neuroimaging community, but the approach is generic and can be

used for any other community.

In this chapter, we present a detailed description of the NeuroGrid framework, which
forms a basis for some of the work introduced in this dissertation. First, we present the
design goals for NeuroGrid, and then discuss its architecture in detail. We also highlight
the Abstract Application Service, Group Applications Service Optimization and
Scientific Workflow mechanisms and describe how they are implemented and used
within the framework. Finally we conclude with some real user cases in scientific

communities.

4.2 Design Goals

NeuroGrid is a large-scale system addressing the key issues of data- and services-
sharing in an open and changing community. The complexities of the NeuroGrid are
two-fold: the heterogeneity of initiatives and stakeholders and the high level of
specialization of the various sub-fields that can contribute to the Grid system. Both of
these complexities pose several challenges to requirements engineers and architecture
designers. In such a context, a clear understanding of the key goals and requirements is

crucial to develop a system that fits the users’ expectations.

4.2.1 Functional Requirement

NeuroGrid framework has four primary functional goals:

4.2.1.1 Legacy algorithms easily to be accessed

We need to provide an ability to allow legacy algorithms easily to be accessed and

run in the Grid environment.

69

1Neurouria rrameworiK

We need to provide mechanisms to migrate the legacy applications to dynamic Grid
environments. Also, we wish to provide mechanisms to support job monitoring and job

restart for fault tolerance.

Most large scale computational facilities have traditionally operated their machines
in batch mode; the toolkit is focused on these batch mode applications. The toolkit
should be able to wrap almost any command-line application (i.e., non-graphical), such
as UNIX commands or more sophisticated scripts written in Python, Perl, and so on. It
should not require any modification to the wrapped applications. A toolkit will provide
a set of tools that wraps scientific applications as Web services. The toolkit is also able

to orchestrate generation, deployment and installation of the Application service.

Application Grid Middleware
Servi Compute Resource
ervice
Job Submission
Component Condor
Condor

Condor

Job Submission
Component

Sun Grid Engine Sun Grid Engine

Sun Grid Engine

Job Submission
Component
Globus

Globus
Globus

Job Submission
Component
Fork

Figure 4.1: Grid Enabled Application Service

As depicted in Figure 4.1, algorithms will be wrapped and presented as Web services
in NeuroGrid framework, which is termed as Application services. The exact
implementation details of the algorithm and platform will be abstracted away using a

common Web service interface.

Figure 4.1 also shows that the role of the Application service is to provide a uniform
submission layer on top of different execution environments. Various Job Submission
Components can run the legacy algorithms in the various Grid environments, such as

Globus, Condor, and Sun Grid Engine.

70

\Jlldplcl - ANVULIUUJLIU 114111V VW UL,

The Application service can enable but does not require the use of distributed
resources via the Grid. The Application service with job submission component FORK

can run the application locally without complicated Grid infrastructure.

4.2.1.2 Data to be more accessible and interoperable

We need to allow existing data management procedures to be more accessible and
interoperable. Data Access provides uniform access to heterogeneous data repositories.
Metadata uses metadata to discover data, and explicitly query metadata registries for
metadata about data within the system. Data publishing provides basic means through
which distributed data can be published within the system and accessed and retrieved

later.

A federated database will be built to facilitate the data sharing. A data management
service will allow user to publish and query to and from the federated database. This
service also provides functionalities for files editing, management, and transfer on the
remote server using WebDav protocol. A fine-grained access control system is
developed to provide arbitrarily complex access controls on the federated database. This
service was developed by NeuroGrid Oxford team, and has been integrated with our

NeuroGrid framework seamlessly.

4.2.1.3 Graphical user interfaces to access applications and data

We need to provide graphical user interfaces to access a large number of Application
services and federated database from a scientific portal, and yet keep the portal
lightweight and manageable. We will provide a Web portal which is a gateway through
which users may access services, invoke workflows, and manage data. There are two
types of users: service providers who use the portal to create the application services for
legacy applications and end users who interact with the services through the Web

interface.

4.2.1.4 A lightweight workflow composer

We need to provide a lightweight workflow composer to compose sequential
workflows from Application services. It will be possible to define and store sequential
workflows within NeuroGrid that will join together algorithms wrapped as Application

services.

71

wllapiel = ANCUIUUILIO 1'1alliCWUL

4.2.2 Architectural Requirement

Below are the important high level requirements for the system.

4.2.2.1 Languages
Java TM and J2EE are proven technologies with multiple vendors offering
compatible products. It is a good platform for deploying Web services, and offers the
good solutions to the really hard part of developing Web services, such as security,
messaging capabilities, distributed transaction management, connection pool

management, and handling huge numbers of simultaneous users [45].

4.2.2.2 Platform
Linux is the platform of server that will host the Application toolkit, Application
services, data management services, workflow services, and Web portal. Client-side

software should support any platform.

4.2.2.3 Modularity of Components

The software should be constructed in a modular way based on components, where a
software component provides specific functions via a well defined public interface [46].
Components interact with other components through their interfaces. It should be
possible to replace a component with a different implementation respecting the same

interfaces without perturbing the rest of the system.

This also ensures no one component in the system is responsible for providing all of
its capabilities. This principle allows components to support “plug and play”

architecture.

4.2.2.4 SOA
It is intended to build the NeuroGrid infrastructure using WS-I [47] compliant Web

services with a minimal set of extensions which currently include WS-Security.

The Web service interactions will be abstracted away by the Java APIs. However, it
will be perfectly possible to achieve full functionality by talking directly to the
underlying Web services.

4.2.2.5 Distributed Environment

The system should enable, but not require, the use of distributed resources via the

Grid. The system should support operation seamlessly in a highly distributed

72

INCUTOUTIA F1alllICWOIK

environment. The Grid-enabled functionalities are enabled and controlled by
components employing Grid middleware. The system should concern distributed
operation in its design and should use the agreed standard services for distributed
operation. While the system should fully support the distributed environment, it also

should be used easily in local environments.

4.2.2.6 Fault Tolerance and Robustness

Security services should not have any possible single point of failure. Data
management services and Application services should show some degree of fault

tolerance.

4.2.2.7 Extensibility and Modifiability

It must be possible to add new services and resources to the system once deployed.

4.2.2.8 Integrate-ability

The system must integrate heterogeneous components whether project-specific or
legacy.
4.2.2.9 Technology Independence

The underlying implementation does not dictate the architecture of the system, and

vice versa.

4.2.2.10 Security
Security is a key in the Grid environment. The core of the security infrastructure will
be an X.509 [48] certificate authority used to issue NeuroGrid certificates. These
certificates will be required for any direct connection to the NeuroGrid. It will not be
possible to download any file or invoke any Application service without a certificate.
Each user certificate will contain the name of the user as well as their research group.

The research group will be used to provide a simple degree of access control.

The standard security mechanisms, like WS-Security, will be used to enforce

integrity and confidentiality on Application services messaging.
Baseline security architecture is as follows:

i) User is authenticated at the Web portal by using his/her credential, an
X.509 certificate issued by a trusted certification authority.

73

INCUTOUTI1A r'raimcwork

i)

iii)

When interacting with support components, the user is identified by his

X.509 certificate.

Authorization and access control are performed on each data node

employing local access rules.

4.2.2.11 Access Control

The most basic level of access control will be that data access will only be granted to

people with valid NeuroGrid certificates. A simple level of access control will be that

files on each node will be divided into those which can be accessed by any other

member of the NeuroGrid consortium and those that can only be accessed by the local

research group; this will be achieved using the research group identifier that forms part

of the user's certificate. More fine grained access controls will be enabled by use of

XACML (eXtensible Access Control Markup Language) [49] policies at each of the

local nodes. These can be used to provide arbitrarily complex access controls.

4.2.2.12 Interface

There are three ways of dealing with the NeuroGrid:

i)

iii)

Java APIs -- These will provide the greatest functionality of all the
interfaces; they can be used to create applications that deal directly with

the NeuroGrid using a local user certificate.

Portals -- The end-user (human) interface to Web applications will be
through a portal, specifically a Web portal that will require the client to
authenticate themselves using a NeuroGrid certificate. The Web portal
is required to mask the complexity of the distributed environment from
users while providing fully distributed functionality. Most services will
be integrated and accessible through the portal. JSP is adopted to build
the Web portal. Applets can be embedded in the portal for more

interactivity.

Web Servers -- Sometimes there is a need to support users who are not
part of the NeuroGrid consortium. These people will not be given
certificates and will not be able to use the portals or to download any

files. All data presented to/received from the users will be handled by

74

“napiel h- leuroonu riameworiK

the Web server. The Web server will have a NeuroGrid certificate

which will enable it to interact directly with the NeuroGrid.

Application Service

Job Submission Component

Legacy Job
Legacy job
LBUMUy JUIJ
NeuroGrid Client NeuroGrid Middleware Compute
Sendees Pool Enviro nment Resource

Data Management Condor

Service
c=¢Cc> Application Service

Job Steering
Service

Figure 4.2: NeuroGrid Framework Architecture

4.3 NeuroGrid Framework Architecture

4.3.1 Architecture

NeuroGrid represents a general architecture for data and legacy applications sharing
on the Grid environment. The high Ilevel NeuroGrid conceptual architecture is
represented in figure 4.2. It is designed to be modular and adaptable based on a service-
oriented approach. It is organized in multiple components to promote interoperability
and allow reuse of core components. There are four basic components in the
architecture as displayed in Figure 4.2, which are NeuroGrid Client, NeuroGrid
Services Pool, Middleware Environment and Compute Resource. These components
could be installed on physically different nodes by different roles. Each of these
components simulates an encapsulated black box committed to deliver a well-defined
functionality to the layer above that, independent of the underlying Grid middleware

solution.

The end user communicates with the NeuroGrid Client by sending and receiving

SOAP over SSL, and utilizes the NeuroGrid Client for core functionalities. The

75

ANCUIOULIU P 1alllCVWULK

NeuroGrid Client in turn forwards some incoming requests to NeuroGrid Services Pool

and relies upon underlying Web services to provide functionalities to the client.

The NeuroGrid Client is built into a Web portal to provide a user-friendly Web-based
interface through which the end user can remotely launch and monitor the algorithms. It
also provides the interface to publish and query the data to and from the global image
databases. It provides seamless integration of a collection of legacy applications and
data across geographically distributed virtual organizations. The NeuroGrid Client
presents the data and applications to the end user through a browser and an Internet
connection, and hides the end user from the complexities of the underlying Grid
infrastructure. There is no any installation for end user site. The end user site only
consists of a compatible Web browser so it is lightweight and can operate across

firewalls.

The NeuroGrid Services Pool consists of a collection of Web services including
Application Services, Data Management Service, and Job Steering Service. Application
Services are the applications with a standard Web service interface independent of the
implementation languages and platforms. The application provider has the flexibility to
move services to different machines or to move a service to an external Compute
Resource provider. The same application services can support different client types.
These applications—a pool of Web services—are the fundamental components of this
architecture. Since Web services are platform- and language-independent, a Web
service technology is also used to implement support services among applications,
portals and Compute Resource. Data Management Service and Job Steering Service
have been developed to provide the following functionalities: data transfer, data

publishing and query, workflow management, job monitoring, and others.

The Middleware Environment is middleware provided by third party, such as GT3,
GT4, SGE, Condor, database related software and others. This layer is a bridge to
connect the NeuroGrid Services Pool to the Compute Resource. The system
administrator of the Compute Resource is in charge of the installation of this layer. The
Compute Resource includes the underlying computational resource and data storage

resource.

76

INCUTOUTIA FIaINCWOIK

4.3.2 Hardware

The computers used in NeuroGrid framework can be broken up into the following

categories:

4.3.2.1 Data Server Nodes

They store the image files and associated databases. They also host the data

management service to provide the functionalities to access the files and database.

4.3.2.2 Application Server Nodes

These are Application Service servers for the NeuroGrid framework, each of which
hosts a number of Application Services. In none-Fork cases, the servers interact with
Grid middleware and submit application jobs to Computation Nodes. In Fork cases, the
Application Server Nodes are also the Computation Nodes, which means computation is

running on Application Server Nodes.

4.3.2.3 Computation Nodes
These are the nodes to run the applications. The related middleware from a third
party are installed to manage the jobs submitted to Computation Nodes. It is not
compulsory that these Computation Nodes be dedicated to NeuroGrid framework. They
can be any standard job management environment, such as Condor, SGE, and FORK,

with which the Application Services can interact.

4.3.2.4 Portal Server Nodes

These nodes act as the portal servers. All direct access to the Grid will be via one of
these servers. They also host the workflow services and handle all interaction with the
Application Services. They may also optionally host Application Services. This means
the portal and Application Services can be hosted either on physically different nodes or

on same nodes.

4.3.2.5 Web Server Nodes

For some of the research teams, it is necessary to support connections from users
who do not hold NeuroGrid certificates. These users will interact with separate Web
servers that will act as client machines to the NeuroGrid. There should be no restrictions
on the platform used to host these Web servers, aside from the ability to call through to
the Java APIs.

77

INCUIOUITIA FalllCWOILK

4.3.2.6 Portal Clients

These are the workstations used to interact with the NeuroGrid framework by end
users. It is important that these clients only make outward connections to avoid issues

with firewalls. They will interact directly with the server nodes.

4.3.2.7 Web Clients

These are the users’ machines outside of the NeuroGrid consortium. No special

requirements are to be placed on these machines.

4.3.2.8 Software

Mature software with known reliability and performance characteristics needs to be
used for the NeuroGrid framework. The primary consideration in developing the
NeuroGrid framework is to use standard software and keep the software requirements to

a minimum.

We chose Java since there are a comprehensive set of freely available tools to build
Web service applications. Apache Tomcat is used as the Servlet container that is the
official Reference Implementation for the Java Servlet and JavaServer Pages [50]
technologies. Web services are built using the JavaTM Web Services Developer Pack
(Java WSDP). The Java WSDP is an all-in-one package that contains key technologies
to simplify building Web services using the Java 2 Platform [51]. The package includes
a set of technologies that can be used to create and deploy secure, reliable, transactional,

interoperable Web services and clients [52].

4.3.3 Roles of Framework

NeuroGrid framework brings together five distinct roles: service consumer, service
provider, application provider, service broker, and computing resource provider. Each
participant can play multiple roles. Figure 4.3 illustrates the relationship among these

five roles.

Service providers host the Application Services. They perform the Grid-enabling
process and are in charge of the deployment, hosting, maintaining of the Application
Services. They also need to install the application if needed. They are the service
developer with deep knowledge about Web services. They are not developer of legacy
applications, so they usually do not have knowledge of legacy applications Grid
enabled. |

78

L napter 1Neurouna rramewoin

Service
Broker
Computing
Resource
Provider

Application \ Provide Application

Provider S — _

Figure 4.3: Roles Involved in NeuroGrid Framework

Application providers are application specialists who provide the legacy applications
or the information on where to get the legacy applications. They perform the help role in
Grid-enabling process via providing an Application Description File for each
application. They are expected to be very knowledgeable about the application to be
Grid-enabled. However, they are not expected to have the knowledge about Web

service, JAVA, XML and other Application Service related technologies.

Service brokers are responsible for providing the portals, orchestrating the
Application Services, and managing the Grid resources. They have an in-depth
knowledge of the Grid computing middleware and portal system. They are not

anticipated to have in-depth knowledge of the applications of the Web portal provides.

Computing Resource providers are system administrators responsible for providing
computing resource to scientific applications. It is not compulsory for them to be
dedicated to NeuroGrid framework. They manage the standard job management
environment, such as Condor, and SGE, with which the Application Services can

interact.

Service consumers are clients (humans or other services) who use the Application

Services. Service consumers are expected to have a working knowledge of how to use

79

INCUTOUT1A I'IalllCWOIK

the application invoked. They need to prepare for the input data and set up the related
parameters for the application. They do not need to install the applications. Also, it is
expected that most end users are not IT experts. They are not expected to know the

underlying Grid/Web related middleware.

4.4 Implementation

4.4.1 Abstract Application Service (AAS)
4.4.1.1 Introduction and Contribution

This section describes a scalable Abstract Application Service (AAS) mechanism to
Grid-enable legacy scientific applications on Grids. In the context of this section, ‘Grid-
enabling’ means turning an existing application, installed on a Grid resource, into a
service and generating the application-independent user interface to use that application
through a Web portal. The focus of this mechanism is to create the specific application
service on demand in the event it is not kept persistent or is unavailable during the
execution of a scientific workflow. The unique contribution of this work is the design
and implementation of this mechanism, which we term ‘Abstract Application Service
(AAS)’. AAS can create specific Application Service instance on demand in a way that
is completely transparent to the user and provides a high availability of Application
Services without actually requiring them to be persistent. The novel aspect of the
mechanism is that AAS creates Application Service by configuring itself on the fly to
become a particular Application Service in need, not by instantiating the Application
Service. This is achieved by the dynamic combination of the common abstraction for
legacy applications and application description using specially designed Command-line
Description Language (CoLDeL). This combination allows AAS to dynamically
configure itself to a particular Application Service just in time. An AAS may have
several concrete instances running at the same time on the grid, and each concrete

service instance may have a different legacy application associated with it.

AAS can create the specific application service on demand. For example,
Registration workflow invokes its constituent application services in the order specified
in the workflow control file, with the data provided by the scientist. Let us assume that
during the execution of the workflow, the workflow finds the AREG service is not

available. Instead of stopping the workflow execution, the workflow sends a message to

80

INCUTOUTIA FTramework

AAS to check if AREG is included in the AAS. If so, it will invoke the AAS with the
application name and version specified. AAS dynamically configures itself to become
an AREG service, which is a Web service interface to the AREG application. Thus, in
this example, even though the AREG service is not available during the execution of the
workflow, we are able to create it just in time using AAS, invoke it and continue

executing the workflow.

4.4.1.2 Scalability

ASToolkit and most of the reviewed existing wrappers are static compared with
Abstract Application Service. In the context of ASToolkit, we need to wrap the legacy
applications offline and host them as persistent services so they can be accessed from
scientific workflows whenever needed. To this approach, scalability becomes one of the
biggest challenges for large scientific collaborations. Sometimes a service provider
needs to wrap and host hundreds of Application Services just for one scientific package,
because it is not uncommon that many of scientific packages have hundreds of
applications. Also when a new application is added into the framework, service
providers need to develop and deploy a new Application Service. To solve this
scalability problem, we adopt AAS as a generic mechanism to optimize the whole

application execution at run time.

AAS is a generic application service. Scalability of this AAS approach is achieved
by delivering the applications through a dynamically reconfigurable AAS. A legacy
application can be launched by invoking the AAS, which is driven by a pool of
Application Description Files. This applications pool contains many applications.
Disregarding how many are installed and deployed, and what input data they expect,
they all are described using the same language (CoLDeL), having the same service

interface, and being controlled by the same methods.

This mechanism obviates the need to keep all the available applications wrapped as
persistent Application Services. This generic service highly simplifies Application
Service development because it can wrap any command-line oriented executable with a
minimal effort. The application provider only needs to write the Application

Description File for the application and register it with the Abstract Application Service.

81

INCUIOULIA IIallICWOIK

4.4.1.3 Registry Service

For each application, we have a configuration document that contains the static
information related to the application. The Application Description File is based on
Command-line Description Language (CoLDeL). It is a XML-based language for
describing individual applications precisely. Conforming to the XML schema, CoL.DeL
can specify each application with a rich semantic description and provide as much
useful information to the service, workflow and user as possible. CoLDeL is described
in detail in section 3.5.4. The Application Description File is written by the Application
Service provider and registered with the registry service. To register with the registry
service, the application provider first uploads the Application Description File to the
portal. The portal then pushes the Application Description File to Application
Description Pool. The registry service then updates central registered XML file
containing all the information of registered applications. After being registered with a
well-known registry service, the application can be discovered by the portal or a

workflow.

The registry service holds an Application Descriptions Pool which contains all
Application Description Files for all available registered applications. Once given the
dynamic application name and version information from AAS, the registry service will
get the right Application Description File from pool and return the AppDescription
object to AAS.

The available applications information is central registered in an XML file. The file
is also available at the workflow side. So, in case the registry service is down, or
workflow ensures the information it holds is up to date, workflow also can get available

applications information locally instead of obtaining from the registry service remotely.

4.4.1.4 Some Details of AAS

This common interface is same as a particular Application Service. Further detail is

introduced in section 3.5.1.

The client, for example workflow, provides AAS with the application information
(name, version, etc...) at the time of launching the service. This information is
contained in the SOPA message. Essentially this incoming SOPA message sent to the
service can be viewed as an abstract invocation of a particular application containing

specific parameter values supplied by the end user, and application information supplied

82

1INcurouna rrameworns

by workflow. Upon receiving this message, AAS can be configured with specific
components that will take the message along with the Application Description File and
translate this abstract invocation into a concrete invocation. This means, AAS

configures itselfto a particular Application Service the client needs and specifies.

AAS uses both the static and dynamic information about an application to launch the
application required. The dynamic information is provided by workflow or other clients
when it contacts AAS, including the application name, version, and job related
parameters. The static information is provided by the Application Description File
which AAS retrieves from Registry Service. Upon retrieving the Application
Description File, AAS can configure itself to become that Application Service instance.
The Application Service instance combines the dynamic and static information to

launch the right application with the right configuration.

Application
Provider
Unload
Portal
Abstract Application
End User Job Description Application Description
Service Files Pool

iobHandler

AREG spp Descript on

Concrete APEG
Application Service Instance

Figure 4.4: Dynamic creation of Application Service Using AAS

Figure 4.4 describes how AAS configures itselfto an AREG service just in time. The
numbers in Figure 4.4 illustrate the detailed flow of service interactions among
workflow service, AAS and the registry service. Letters A and B in Figure 4.4 illustrate
how the application provider registers the Application Description File (ADF) with the
registry service. In step A, the application provider uploads the AREG ADF to portal
via the portal interface. In step B, the portal pushes the AREG ADF to the registry

service, which then registers the AREG ADF with ADF Pool.

&3

INCULIOUTIA C1alllCWOIK

Step 1. The end user intends to run AREG service and passes the jobDescription object
to workflow service, which contains the required service name, service version

and other job related parameters.

Step 2. Workflow service finds out that there is no persistent ARG service available.
Then, it aims to use AAS as an AREG service. Workflow service generates
whatApplication object based on the need, and the jobDescription object based
on the user’s requirement. Workflow queries a well-known registry service to

obtain the available applications.

Step 3. If the application required is available, the workflow service then sends a SOAP
message to AAS with whatApplication and jobDescription have provided.

Step 4. After receiving the message, AAS verifies its authenticity and ensures the user
is authorized. AAS passes the whatApplication to Registry Service, and asks
for needed AppDescription object.

Step 5. The registry service gets the AppDescriptoin object from the Application

Description Pool.
Step 6. The registry service returns the AppDescriptoin object to AAS.

Step 7. Based on the information of whatApplication, AAS configures itself to become
the particular AREG Application Service. With combined information from
AREG AppDescription and jobDescription, AAS launches a concrete AREG
job.

Step 8. AAS returns a jobHandler to workflow service.

The implementation of AAS essentially depends on the resources available within
the Grid. In NeuroGrid framework, we have implemented two plug-in components. One
1s FORK, which will translate an incoming request into a simple command-line and fork
this on the host server. The other is Condor, which takes the incoming request and
contacts with Condor submission node to submit job to the Condor pool. Because of the
heterogeneity of grid resources, it may be beneficial to envisage numerous other
components, for example, mapping the incoming request to a Resource Specification

Language (RSL) [53] fragment and submitting to a Globus GRAM gatekeeper, or

84

INCUIOUTIA Ir'raimcwork

interacting with a high performance parallel cluster via Sun Grid Engine or other
schedulers. The implementation of new plug-in components is straightforward because

the system is constructed in a modular way based on components design.

4.4.2 Group Applications Service Optimization

In the following section, we explore a Group Applications Service (GAS) strategy to
further optimize the execution time of a workflow. GAS merges several sequential
Application Services into a single service. It reduces the grid overhead induced by the

Web service invocation, scheduling, and data transfers.

4.4.2.1 What is Group Applications Service?

‘Services grouping’, in the service oriented workflow is wusually not as
straightforward as in the task oriented workflow, for two reasons. First, the services
included in the workflow are totally independent from each other. Every service can use
a different data transfer and job submission approach. Second, the Application Services
and the Grid infrastructure executing the jobs do not have any knowledge regarding the
workflow and the job dependencies. To tackle the problem, we propose a GAS solution
to group sequential Application Services included in the workflow, thus allowing more
elaborated optimization strategies. In this approach, we merge several sequential

Application Services into a single service, which we term Group Applications Service.

GAS not only fulfils the tasks of a set of Application Services, but also takes over the
role of workflow service to assemble the applications and orchestrate the data transfer

and input/output. The contribution of this approach is to move the jobs assembling and

orchestrating tasks from workflow level to Application Service level. Actually GAS
acts in dual roles as both Applications Service and workflow. This provides an
opportunity for GAS to optimize and offer the most efficient performance based on its

knowledge of not only applications, but also the workflow and job dependencies.

On the Grid, large-volume data transfer across sites is common, resulting in large
execution time penalties to many Grid applications. Such data transfers can drastically
affect data-intensive application performance. In NeuroGrid framework, for each atomic
Application Service, the input files of the application need to be staged in from a
WebDav data sever to the application server side. Additionally, output files need to be

sent back to the WebDav data server.

85

INCUIOUTIA F1allICWOLK

Usually these Application Services are completely independent. Consequently, in a
sequential workflow, for chaining two independent Application Services A0 and Al,
output data of A0 first needs to be returned to the data server before being sent back as
an input to Al. If a workflow contains several atomic Application Services, each service
will go through this data transfer procedure. To maximize efficiency of workflow, the
time spent in files transfer should be minimized. GAS can reduce the execution time of
a workflow by avoiding unnecessary files transfer. A set of applications are put in one
group and are released as a GAS. This GAS is used instead of invoking many atomic
Application Services involved in the workflow. It reduces the Grid overhead induced by
the Web service invocation and lessens data transfers times where it may also reduce the
parallelism. GAS is suitable for use when related sequential Application Services

involved in the workflow and are all provided at the same site.

4.4.2.2 Registration Workflow vs. Registration GAS

Here we use registration as a sample to compare the difference between registration
workflow and registration group service. Consider the registration workflow made of
three services and represented on top of Figure 4.5. There are four components involved
in this workflow—workflow service and three Application Services, BET, AREG and
TRANSF. These Application Services are separate services and are invoked
independently and sequentially in the order of BET, AREG, and TRANSF. Data
transfers are handled by each Application Service, which takes the input from remote
WebDav server and uploads the output to the WebDav server. The output of one service
will serve as the input of next service. Here the output of BET is used as the input of
AREG; the output of AREG is the input of TRANSF. Service invocation and the

input/output connection between the services are handled at the workflow service level.

On the bottom of figure 4.5, BET, AREG, and TRANSF are grouped in a single
Registration Group Applications Service. By interacting with this GAS instead of three
independent Application Services, the overhead associated with each Application
Service invocation is dramatically decreased. Also this Registration GAS has the
knowledge regarding the job dependencies and input/output connection from workflow
level, so it is capable of invoking the three applications sequentially and orchestrates the
input/output among these applications. Instead of taking the input from WebDav server

only as Application Service does, GAS can directly take the output of the previous

86

vnaplel H INeurowliu rramewullk

service located at the Application server site. Thus, GAS efficiently reduces the data

transfer across the grid.

£pp Sevice U tl

8 Dialributed
Web Scivbec Inoct Catn rcHvfcf
o Data
- ") issi Servers
Invocation Tl Job Suomissicn
<
c

Oitput Data Transfer

App 3crlicc AREG

s
0 D

Q - . T Input Data Transfer
E < Web Service 2

o

v — a 3 Job Gubmssion
» Invocation E

a U 3

Zlm @

Aop yetvice IKANSI-

8
Web Seivije ti Inpul Data Transfer
9 . .
Invocation ES Job Submission
o
N Oulpul Dalu Traiisfer
>
GAS
Input
; ™ P
P [..o
H 1 VTKAREG
|4
D I 10
Output

1 VTKTRAKSF

Figure 4.5: Registration Workflow, vs. Group Service.

4.4.2.3 Implementation: Group Description File
In Figure 4.6, we represent the overall architecture of GAS and some application
scenarios. GAS is a generic approach which can group any applications. For any newly-
added group, all a service provider needs to do is to provide the related Application

Description Files and a Workflow Description File.

Now, let us suppose we are going to optimize registration workflow using the
grouping strategy we explained in the last sections. Registration workflow consists of
three legacy applications, BET, AREG and TRANSF. It is a sequential workflow as

exhibited in the Figure 4.15.

87

unapicl # Neculuvjnu riainCcwulis

Legacy App Providei App Desc File S1 Purlal
RegisterADF s

App Desc f lie §2 Register ADF S2

. RegisterADF S3
App Desc File S3

step J Step 2 \

Group App Service
GAS Provider

Workflow
Description

Filcc pool

WSDL Interface

Job Connector Component

Data Management

Curriuunenl
Submission Application
component Description
Files pool
Data

Rftprr«itnry

Figure 4.6: Group Application Service Architecture

Based on our grouping rule, we can group these three applications as a Registration

Group Service.

In step 1, the legacy application provider uploads an Application Description File
(ADF) for each legacy code to a portal. The portal then pushes the ADF to the ADF
pool. In this case, they are betO.l.xml, areg 2.0.xml and transf 2.0.xml. These are
Application Description Files that are used in the individual Application Service.

Further details about ADF can be found in section 3.5.5.

INCUTOUTIA FIaINICWOIK

In step 2, the GAS provider provides a Workflow Description File (WDF) which is
the same as the one used in the workflow engine. The greater detail about WDF is
introduced in section 4.4.3. This WDF is registered with a well known Group Registry

Service so it can be discovered by the portal or a workflow.

In step 3, GAS will use Jobs Connector Component to mange the connection
between applications (intermediate files) based on the WDF, and also delegate the

atomic jobs to Job Submission Component sequentially.

Jobs Connector Component takes a role of sequential workflow engine and
orchestrates the data between the services. It contacts with Data Management
Component to get the input data from the WebDav repository for the first application,
Registration, which is termed head application. Then GAS delegates the atomic job
submission to Job Submission Component. When the head service finishes, JCC will
take the output of head application and use it as the input of next application, AREG,
which we term chain application. Then JCC delegates the atomic job submission to Job
Submission Component again for the second atomic job. When all the chain
applications jobs are finished, JCC invokes the last application, TRANSF, termed tail
application, via JSC. Finally, JCC interacts with the Data Management Component to

upload the output to the data server.

Essentially GAS combines the functionality of Application Service and Workflow
Service together. It reuses most components used by Application Service and Workflow
Service. It utilises Job Submission Component when managing each atomic job
submission. It also makes use of Jobs Connector Component (JCC), a layer to
orchestrate the applications like a sequential workflow. GAS is accessible through the
same interface as sequential workflow. This is designed deliberately to allow clients to

treat GAS as workflow without knowing the backend optimization.

The group job submitted by GAS contains several application sub-jobs. At the return
of the GAS job submission, the client gets several sub-job handlers back. These sub-
jobs are the same as atomic jobs submitted via Application Service. Clients can monitor
and steer the sub-jobs individually in the same way they do on the atomic jobs from

Application Service.

89

INCUTOUTlA r'IalllCWOIK

4.4.2.4 Performance

GAS can lead to different level of speed up depending on the size of the data. In
data-intensive application cases, a huge amount of data transfer is needed across sites
that introduce high overheads. To precisely quantify how group strategy influences the
application performances, we model the workflow execution time and GAS execution

time for different configurations.

4.4.3 Application Services in Scientific Workflow

We have described how to wrap a single application as a Web service. In this section
we describe how to create workflows from the services using our Sequential WorkFlow
Component (SWFC). SWFC provides an easy-to-use tool that allows a service provider
to connect Application Services together to form workflows. End users can execute the
workflows on the Grid instead of executing the Application Services one-by-one. Users

can submit batch jobs and monitor the progress of a workflow.

4.4.3.1 Need of Assembling Applications

Usually we need to assemble several applications together to solve big scientific
problems. It is very common to build applications by assembling legacy codes for
processing and analyzing data. This assembling allows code reusability without
introducing a redesign and redevelopment task to the application developers. In imaging
studies, researchers tend to combine one or more of the image processing algorithms to
form sequential image processing pipelines [54]. An applications pipeline is essentially
the composition of one or more algorithms that exhibit a linear flow of data between
stages. For example, in tracking the progress of a brain tumour, researchers may first
segment the area of interest. Then, this segmentation would be used as input to a series
of rigid registrations that produce a set of transformations which could then be passed to

transformation algorithm.

At present, the following problems exist when forming this pipeline: first, algorithms
may be provided by a variety of providers, requiring users to first locate and then install
the software they are interested in; second, composition is tightly coupled to specific
processing applications. For example, it can be cumbersome to use another registration
algorithm replacing the one used in the pipeline. Also, there is no agreement among the

various algorithms developers. It is possible an incompatibility occurs, for example, due

90

INEUrouria rramework

to differing image formats, at some stage in the pipeline. Frequently users have to
mediate among the algorithm-specific vocabulary and perform a kind of data

conversion.

Scientific workflow is needed to facilitate this applications assembling procedure.
Workflow describes the behaviour of complex applications and their composition. The
logic of such composed applications is described through a set of computation tasks to
perform and data dependencies imposing constraints on the order of processing. In
NeuroGrid framework, the ability to compose Application Services constitutes an

essential requirement.

4.4.3.2 Task Based and Service Based Scientific Workflows

Many workflows have been proposed with very different approaches to compose a
set of computation tasks. As discussed in section 2.5, two main strategies have been
proposed and implemented in Grid middleware, batch oriented strategy and service
oriented strategy. Current available workflow managers can be categorized into two

groups—task based and service based.

In the task based workflow, workflow composes the batch oriented applications.
Each computation job includes the information of not only the processing (executable
and command-line parameters) but also the data (static declaration). Workflow
processors directly represent the computing tasks. The user needs to provide the
application executables and the precise command-line parameters. All the related data to
be processed are statically described in the workflow. Condor Directed Acyclic Graph
Manager (DAGMan) is a task based workflow manager [55]. DAGMan is a meta-
scheduler for Condor. It manages dependencies between jobs at a higher level than the

Condor Scheduler.

In the service based workflow, workflow composes the service-oriented applications.
Services are naturally well-suited for representing and chaining workflow components.
The service oriented approach has been implemented in different workflow managers,
including the Kepler, Taverna and Triana. Kepler is an extensible open source scientific
workflow system that provides scientists with a graphical user interface to register and
discover resources and to interactively design and execute scientific workflows using
emerging Web and Grid-based technologies to distributed computations. Kepler can

orchestrate standard Web services linked with both data and control dependencies [9].

91

INCUITOUITIA F1allICWOLRK

Taverna is an open source workflow tool which provides a workflow language and
graphical interface to facilitate the easy building, running, and editing of workflows
over distributed computer resources. Tavena targets bioinformatics applications and is
able to enact Web service and other components like SoapLab services and Biomoby
[56] services. It implements high-level tools for the workflow description, Feta semantic
discovery engine [7]. Triana is decentralized and distributes several control units over
different computing resources. Triana implements both parallel and peer-to-peer

distribution policies [57, 58].

4.4.3.3 Sequential Workflow Component
Although existing workflow systems are able to support complex computations and
data repositories in a distributed environment, and some support Web service, they do
not meet security requirements from the NeuroGrid Application Service. Also in the
NeuroGrid community, only sequential image processing pipelines are needed to

combine one or more of the image processing algorithms.

To meet NeuroGrid framework requirements, we develop a practical but powerful
Sequential WorkFlow Component (SWFC) to orchestrate the applications. This is a
lightweight workflow engine that allows users to run and monitor the sequential

applications pipelines.

In the Sequential WorkFlow Component, the appropriate structure of a processing

pipeline is defined. The pipeline exhibits the following characteristics:

i) Each pipeline is composed of one or more distinct sequential processing

stages.

i1) In each stage only one application is executed over a set of data sets. A

stage therefore comprises of one job.

iii) An ordering representing the dependencies between each stage is

imposed on the pipeline.

iv) Input of each stage can be from users or refer to outputs produced at a
previous stage of the pipeline, thus providing a means of data flow

between stages and achieving transparent data flow.

Typically a workflow comprises a sequence of distinct processing stages, each

corresponding to and realized by an Application Service. Each stage can reference data

92

AINCUIOULIU £ 1allICWUILR

produced at the preceding stage, thus allowing transparent (potentially distributed) data
flow between workflow stages. The logic of such a composed application is described
through a set of computation tasks to perform and data dependencies imposing
constraints on the order of processing. These image processing pipelines are defined

once by the researcher and provided to SWFC.

The SWFC is light and is not really in charge of any data management and
application execution. It does not deal with direct application execution and resources,
but invokes the Application Services instead. SWFC is actually an I/O connector among
applications. It acts as a bridge between the user and Application Services. From WDF,
SWEFC gets whatever services to invoke and related I/O information. It generates the job
description for each job on the fly, the right form that Application Services required,
and then it invokes the specified Application Services sequentially. All the data
movement is done in Application Service via interacting with Data Management
Component. This workflow allows users to submit batch sequential pipeline jobs in one

go, further monitor the jobs, and restore the jobs when the jobs are failed.

4.4.3.4 Benefits of Workflow

Below are the benefits of employing a workflow:
1) Enables executions of multiple applications in one go.
i) Simplifies re-execution by reusing existing pre-defined workflows.
ili) Abstracts away the detail behind each application.

In NeuroGrid framework, the chief benefit to the end user is that the common
workflows are pre-defined and offered by portal, so the users can quite easily instantiate
complicated image processing pipelines by simply picking a workflow off the peg and

passing it the appropriate images, datasets and parameters.

4.4.3.5 Data Type Match and Conversion

Typically a workflow will be composed of a number of distinct processing stages.
Each stage is related to and realized by an Application Service. Each stage can reference
data produced at the preceding stage, thus allowing transparent (potentially distributed)
data flow between workflow stages. It is essential this data flow occurring between
workflow stages is compatible in terms of the type of data produced and consumed at

each stage. By checking the related Application Description File, Sequential WorkFlow

93

AINCUITOUITIA FIalllCWOUIK

Component can determine the compatibility between stages. Where a type mismatch
occurs the Workflow Component has two options: search for a conversion service
capable of casting between the two types and transparently insert this service into the
workflow, or failing this, reject the workflow and inform the user of the nature of the

incompatibility.
4.4.3.6 Workflow Description File

The workflow-needed information is expressed in an XML document that allows the
structure of the required processing pipeline to be defined. This XML document, which
1s termed Workflow Description File (WDF), is a collection of information that, taken
together, provide precise definitions of scientific processors used to process raw and
derived datasets. The following basic information is included, which is consistent with

the definition of the pipeline.

1) Processes definition that offers a brief description of all processes included
in the processing pipeline. WDF works with Application Description Files

together, which contain a complex and detailed description of each process.
it) Dataflow description of each scientific process.

iii) Data derivation description that provides a precise description of how a

dataset was derived.

Based on the information above provided by WDF, SWFC orchestrates the
Application Services and the required datasets. SWFC executes the workflow by
invoking its constituent Application Services in the order specified in the WDF with the

data specified in WDF.

For every workflow, there is one WDF, which contains information necessary to
construct the process pipeline and orchestrate the applications. A WDF contains links
and references to specific services and all related input and output files. There are three
types of services involved in a workflow -- head service, chain service, and tail service.
For the head service, all the input files information is from the user. The input and
output files for the chain service and tail service are concept file names. To enable
remote retrieval of these files by the Application Service, these concept file names in
WDF will be substituted by a real physical file identifier (URI or local file with path) on

the fly after the workflow is initialized.

94

vnapler u 1INcurouliu rrameworis

The WDF has four main elements: wfDescription, wfName, wfid, and services. The
services element describes the services invoked. Each service element contains the
name of the service, a short description of the service, serviceld, order, input files and
output files. In our example of a Registration workflow, the WDF has the top-level

structure shown below.

- <java version="1.5.0_10" class="java.beans.XMLDecoder">
- cobject class-'uk.ac.neurogrid.workflow.core.wf.Wf">
- <void property="wfDescription">
cstring>Registration. BET-VTKAREG-VTKTRAIMSFORMATIOM</string>
</void>
- cvoid property="wfName'>
<string>Registration</strihg>
</veoid>
- <void property="wfid">
<int>I</int>
</void>
- <void property="services">
- <array class= "uk.ac.neurogrid.workflow.core.wf.Service' length="3">
- <void index="0">
- cobject class="uk.ac.neurogrid.workflow.core.wf.Serviced
- <void property="servicename'">
cstring>bet_v_1_0 </string>
c/void>
- <void property="serviceid,>
<int>I</int>
c/void>
- cvoid property="order">
<int>I</int>
</void>
- cvoid property="inputfiles''>
- <array class="uk.ac.neurogrid,workflow.core.wf.lo Atomic" length="1">
- <void index="0">
<object class="uk.ac.neurogrid.workflow.core.wf.loAtomic">
- cvoid property="filename'">
<strigg>FROMUSER</string>
c/void>
- cvoid property="portid">
<int>2c/int>
</void>
- cvoid property-"hardcontrol">
<int>0</int>
c/void>
c./object>
c/void>

c/array>

Figure 4.7: Registration Workflow Description File-Partl

95

- cvoid property=“outputfiles">

- carray class="uk.ac.neurogrid.workflow.care.wf.loAtomic" length="1">

- cvoid index="0">
- cobject class="uk.ac.neurogrid.workflow.core.wf.loAtomic'>
- cvoid property="filename">
cstring>regout_bet.niic/stririg>
</void>
- cvoid property="portid">
cint>3c/int>
c/void>
- cvoid property="hardcontrol">
cint>lc/int>
c/void>
c/object>
c/void>
c/array>
c¢/void>
c/object>
c/void>
cvoid index="1">
- cobject class="uk.ac.neurogrid.workflow.core.wf.Service">
- cvoid property="order">
cint>2c¢/irit>
c/void>
- cvoid property="serviceid">
cint>2c/int>
c/void>
cvoid property="servicename">
cstring>vtkareg_v_2_0_0c/string>
c/void>
Not only files from previous service.

c!—
- cvoid property="inputfiles">

Also includes files from us

- carray class="uk.ac.neurogrid.workflow.core.wf.loAtomic" length="4">

¢!— target, —>
- cvoid iridex="0">

- cobject class="uk.ac.neurogrid.workflow.core.wf.loAtomic >

from previous service output-.

- cvoid property="filename">
cstring>regout_bet.niic/string>
c/void>
- cvoid property="portid''>
- cvoid property-hardcontror>
<int>1</int>
</void>
</object>
</void>
<1—
- cvoid index="1">
- cobject class="uk.ac.neurogrid.workflow.core.wf.loAtomic">
- cvoid property="filename">
cstring>FROMUSERGc/string>
c/void>
- cvoid property=‘portidI>
cint>3</int>
c/void>
- cvoid property-'hardcontrol">
cint>Oc/int>
c/void>
c/object>
c/void>
- cvoid index="2">
- cobject class-'uk.ac.neurogrid.workflow.core.wf.loAtomic">
- cvoid property="filename">
cstring>FROMUSERGc/string>
c/void>
- cvoid property="portid">
cint>4c/int>
c/void>
- cvoid property=‘hardcontrol">
cint>0</int>
c/void>
c/object>
c/void>

4.8: Registration Workflow Description File-Part2

source.

From user.

INCUTOUTLIA CIdINICWOILK

Figures 4.7 and 4.8 illustrate the partial XML representation of registration
workflow. Some generic information related to the workflow is included, such as
wifName, wfld, and wfDescription. For registration workflow, it contains three stages,
BET, AREG, and TRANSF, which is defined inside the <services> element. Each stage
is defined as a service, including information like, servicename, serviceid, order,

inputfiles, and outputfiles.

In the first stage, BET, the servicename is bet v_1 0; serviceid is 1; order is 1. The
BET URL is defined to reference the appropriate BET service. This reference is usually
obtained dynamically through the combination of servicename and host information.
Host information can be achieved through a query on the registration service. Next,
each input/output file is defined for each service to be executed. Information related to
input files is placed inside the <inputfiles> element which includes the portid, file name,
and the origin of the file. The portid is the same identifcation number used in
Application Description File. There are two types of resources for input files; one is
from a user physically located at WebDav server, and the other is from the previous
stage, the outcome of the previous service. BET is the first service of registration
workflow, called head service, so all the input files are from the user on the WebDav
server. In a similar fashion, output files-related information is placed inside the
<outputfiles> element. There is one output file in BET stage, which is named
regout_bet. When writing the WDF, it is not clear where the output files will be placed,
so in WDF, only files name is specified, not the real file URL. The Workflow

Component will dynamically resolve this variable reference to a file URL.

Similarly, the next two stages of the workflow, namely an AREG service and a
TRANSF service, are defined. Again we reference the Application Services to be used
for these two stages and specify the input and output files. In the last service of the
workflow (tail service), the output files are not known by the workflow until the job
runs, because for some applications, the number and type of output files are not certain,
based on the parameters set up from users. Therefore, the WDF lists all the possible
output files for tail service. The SWFC will dynamically generate the solid output files

list combining the information from the users and WDF.

The Java language has an excellent API for converting objects to and from XML.

Given a stored WDF document representing a workflow, it is a fairly simple matter to

97

INCUrouria rramework

generate Java objects from their equivalent XML representations. These objects can

then be used and manipulated immediately for workflow instantiation.

4.4.3.7 Limitation of WDF

This WDF concept works well for most cases. It allows variable cardinality for
inputs to applications, but only for certain (fixed) input files. It has problems with some
algorithms which can take variable numbers of inputs. As an example, the atlas
generation algorithm (atlas) from the Insight Toolkit [59] takes a variable length array
of images as input to produce a single composite output image. This array could

realistically comprise as few as two images or, just as easily, more than hundred.

This uncertain range from one to many cardinality distinguishes the stage from
others. Although this sounds conceptually quite simple, representing this in a workflow
at the abstract level is quite difficult to achieve. This is due to the fact that keeping track
of each branch of an undetermined number of input files is impossible without knowing

the exact number of inputs concerned.

4.4.3.8 Generic Application Service in Workflow Component

Let us assume that during the execution of the registration workflow, SWFC finds
the BET service unavailable. Instead of stopping the workflow execution, the SWFC
sends a message to Generic Application Service with the whatApplication object and
jobDescription object. The Generic Application Service dynamically configures itself to
a solid Web service interface to the BET application. Then WFC can run the BET
application and continue to execute the rest of the workflow. Thus, in the above
example, even though the BET service is unavailable during the execution of the
workflow, we will be able to create it just in time using Generic Application Service,

invoke it and continue executing the workflow.

4.4.3.9 Interface of Workflow

Workflow Service has several operations to support job submission and monitoring.
CreateJob/CreateBatchJob creates a job ID/IDs for single job/batch jobs and returns the
IDs to the user. The sendJob and sendBatch operations provide an entry point for using
any of the applications pipeline. The send submission operation requires one argument
that 1s essentially a description of command-line-related parameters using Command-

line Description Language (CoLDeL). Once appropriate checks have been made

98

INCUITOUTIA FI4AINCWOIK

(validation of inputs, type checks, values supplied for mandatory parameters, etc.), the
actual Application Services are launched. How or where these Application Services are
located is an implementation detail and effectively hidden from the user. Thus the client

only deals with one generic workflow interface.

The workflow also has getWSInfo and getBatchWSInfo operations. If the job fails,
the user can pass the job ID to workflow, get the user’s parameter setup back, and then
resubmit the job easily. Job ID is returned to the user after job submission.
GetJobStatus, getBatchJobStatus and getWorkFlowStatus provide monitoring
functionality to allow the user monitor the jobs submitted. To determine the status of a
particular service invocation, the user needs to use these operations via passing the job
ID. The actual business logic is provided by Steer Service. Workflow interacts with

Steer Service underneath while providing a simple interface to user.

4.4.3.10 Generic Workflow Service

While the concept of a predefined sequential workflow is clearly useful, there is a
problem with regard to reusability. Since each service and its input/output links must be
clearly specified, a workflow designed to registration workflow could not be used for
another set of applications. A dynamic workflow model was therefore needed to
represent the abstract of workflow and construct a solid workflow according to the
demand of the user. We use the same approach as Generic Applications Service to
develop a Generic Workflow Service. Scalability is achieved by providing a common
abstraction for a category of workflows and providing a “generic” workflow service to

orchestrate any of registered workflow-related applications.

In this approach, we pool a set of Workflow Description Files for the predefined
workflows, such as Registration Workflow, Segmentation Workflow, and N3
Workflow. The Generic Workflow Service can dynamically retrieve the required WDF
and configure itself to be the demanding particular workflow service. For every new
workflow service, the application developer only needs to write the WDF for the new

workflow and register it with the Generic Workflow Service.

4.4.4 Portal

There are various possibilities available for hosting the services to be made available

to the neuroimaging scientists. Given that user friendliness is a key aspect, a Web-based

99

N~ uapici H ivecuiuvjnu namcwuiKk.

project portal was developed. This portal provides a personalizable environment that the
neuroimaging scientist is offered to explore all of the (Grid-related) software, data
resources and general information associated with the NeuroGrid. The traditional open-
standard-based J2EE technologies have been used to develop the NeuroGrid portal.

Figure 4.9 is a screenshot of the portal.

NeuroGrid Portal Mozilla Firefox mmm

Ele £4 Jflew Ustorv gocknarfes Loots fielp

c j-* ri nttps://hgportal.doe.ic.ac.iit:55443:fX }; scuery tsp

CSGFrortPage # The *onllaOrg (Jj Google ~ BEC ~ RNA Tech Dictionary Google Suggest QjJ DAILYROTATION script.aculo.us - web ... maBIRNPortal #U Zend Developer Zone..

R 'S ‘;vgvkl}’lﬂv\%g I 1&4

9 J b
Home Support ° About = NeuroGnd Secure Portal

| Profile | Query | PiAAuh W t:Registraaon | Wt Segmentation [WEBinsCorrection ! CHptsMud Monitor
The WefcOAV folder is here (for Konqueror) and here (for Internet Explorer)
Query Information:
o Owner
0 Sex ANY v
0 Handedness Left v
0 Ethnicity ANY
0 ImageSet ANY v
0 Age atthe time Min 20 Max SO
0 Numer ofvisits Mm ANY Max ANY
Result:
FRIENDLY NAME VIEW SEX HANDEDNESS ETHNICITY IMAGESETTYPE AGE VISIT UID FILE
o Mato La# Other CT PERFUSION 50 2 111 18%08_89330-*oturne-1-b#airwef mi
P 1
Bfj. * Ifl Female Left Other 321 123 190841_89469-volume—1I-brain-ref nii

ANGIOGRAPHY

ngooral.doc.ic.ac.uk: 5S-H3 £f

Figure 4.9: NeuroGrid Framework Portal

4.4.4.1 Security Issues

The integral part of the portal technology is security. The neuroimaging researchers
have been issued (by the U.K. e-Science Certification Authority) X.509 certificates that
need to be embedded into their browsers. Based on the role and research group of each
NeuroGrid portal user (e.g. psychosis, dementia, etc.), the X.509 certificate is used to
limit what services the NeuroGrid portal user sees and subsequently is allowed to

invoke.

It is very important to make sure the database and all the data transactions over the

net are secure. In order to achieve this, it was decided to use secure http and secure

100

INCUTOULTIA FIAIMCWOIK

WebDav for all transactions. The neuroimaging researchers have been issued (by the
NeuroGrid Certification Authority) X.509 certificates that need to be embedded into
their browsers. Based on the role and research group of each NeuroGrid portal user (e.g.
psychosis, dementia, etc.), the X.509 certificate is used to limit what services the
NeuroGrid portal user sees and subsequently is allowed to invoke. This certificate
provides user identification for all other tractions between any nodes involved in the
process. This approach also eliminates the need for a username and password, because

users are recognised by their certificates.

There is a WebDav space for each user on a remote server (defined by the certificate)
that works as data pool. All parties who need to share large amount of data, like images,
have secure access to this pool. As an example, user can upload an image from a local
computer into this pool and the image can be read by a web service to run an algorithm
on, and the result can be put back onto the pool, and available for the user to read it

back.

4.4.4.2 Functionalities

The portal consists of two parts: secure and non-secure. The non-secure part consists
of static pages with only one goal: help the user to set up the secure connection. In the
non-secure part, the users can see information about the portal and a step by step guide
on how to obtain and install their certificate into their browser. This guide covers four
browsers: Internet Explorer, Firefox, Konqueror and Safari. In this part the user learns

how to get hold of a valid certificate and how to import it into the browser.

The secure part is the main section. The secure portal has following functionalities:
users can query the database and publish into the database; users can run workflow jobs
on their own data and the data they have queried; users can monitor the jobs; and users
can see and modify their personal profile on the portal. These are the basic and

fundamental functionalities that were expected to be included in the NeuroGrid portal.

4.5 User Cases

The framework has found real applications in scientific communities. Initially the
workflow services are designed and used by users from many universities within the

NeuroGrid project, such as Oxford, UCL, Imperial College, Edinburgh, Nottingham,

101

INCUTOUT1A Fraimework

Cambridge, and Newcastle. The users of the framework have been divided into four
categories based on their skill level and the flexibility they require when using complex

neuroimaging applications.

Application scientists: They primarily conduct research to improve the numerical
models for the neuroimaging community. Usually they just provide the applications to
be wrapped by others via ASToolkit. Sometimes these users use the ASToolkit to wrap
their applications as Application Services for the community. These users are the
application providers. They may be also service providers if they wrap the services by

themselves.

Neuroimaging scientists: They have a great deal of experience in using multiple
applications. They use the framework to compose and run the workflows from
Application Services and analyze their output. They can also work with service

providers and contribute their workflows to community.

Neuroimaging users: They do not have vast profound experience on the Application
Services, or they intend to use the distributed Compute Resource. They only run the

pre-composed workflows with some parameters setup through the portal.

Neuroimaging users: They are only interested in the data and use the portal to access

the distributed data server.

In the real world, there are many requirements from these different users, which are

listed below:

1) Security is critical when working with confidential patient data, but users
are reluctant to manage complicated security systems. It is required to add

in the strict security with minor users’ effort.

i1) The neuroimaging community has a large number of command-line
scientific applications. A cost-effective mechanism is needed to wrap a
large number of applications as Application Services without the hassles of

maintaining and updating the source code.

1i1) Since most application providers are application developers, they have little
knowledge about Web services and related technologies. An easy-to-use

toolkit is needed for application scientists to wrap their applications as

102

INCUIOUTIA IIdIIICWOUIK

vi)

vii)

viil)

application services with minimal or no learning curve. This means the

toolkit should be easily used by none Web service experts.

Because the amount of scientific applications is huge, a mechanism is
needed to dynamically generate the Application Service on the fly. This is

to avoid hosting huge amount of Application Services.

The application scientists continually conduct research to improve the
numerical models. They often add features and improvements to their
applications from time to time. Application Service needs allow application
scientists change the underlying application while keeping the same

interface to the end users.

Application Services will be used by many geographically-located end
users. A user-friendly interface is needed for these end users to access the
Application Services and data server. There should be no software

installation requirement at the end users’ side.

The Application Services need to be scalable enough to support a few

hundred concurrent end users.

End users need to run the applications without having a login account on

the compute resource.

The framework meets all of the above requirements via introduction of ASToolkit,

Abstract Application Service, Group Applications Service Optimization and Scientific

Workflow. ASToolkit offers a number of features, which are discussed in Chapter 3.

We have successfully used ASToolkit to wrap scientific applications as Web services

for the neuroimaging community. Also, the toolkit can be used easily for command-

oriented applications in other fields. As mentioned in Chapter 3, with the focus on

simplicity and configurability, all the ASToolkit services employ a consistent interface

and the same business logic. ASToolkit services can be distinguished by their unique

URLs and their associated Application Definition File. This approach makes wrapping

easy but stable. The service provider only needs to create one appropriate Application

Description File and specify server behavior in the configuration file. The ASToolkit

will build the Application Service and deploy it on the remote server.

103

INCUIOUTIA F1alIICWOIK

In the real world, imaging studies tend to utilize sequential pipelines of image
processing algorithms where the results of one algorithm are used as the input to a
subsequent step. These pipelines are defined by the researcher and then applied to
specific data sets. Scientific workflow has been used to create the sequential scientific
pipelines. The workflow is expressed in a XML-based Workflow Description File. The
workflow engine coordinates the execution of a series of sequential Application
Services as specified in the Workflow Description File. This workflow engine allows
the user to submit sequential pipeline jobs at one time, and further monitor and restore
them if the job fails. It also has batch job submission functionalities. All the Application

Services are pre-composed into workflows and accessible via the Web-based portal.

Below some of the scientific Application Services/workflows wrapped by the toolkit
are described. Each of these workflows has been tested on sample MR images from the
IXI data set (ww.ixi.org.uk) and found to operate effectively from a simple Web page

interface that can be used by non-experts.

4.5.1 Brain Extraction and Segmentation Workflow

b _y
Biion

Source —p Segnentin | — Output

Figure 4.10: Brain Extraction - Segmentation Workflow

As shown in Figure 4.10, two algorithms wrapped as Application Services are used
in this segmentation workflow. One is FMRIB BET, a Brain Extraction Tool, and the
other is FMRIB FAST [60], an automated tissue classification tool. This workflow
segments the brain from MR image sets, removes surrounding and peripheral tissues,
then classifies voxels into different tissue groups and returns a segmented image.

Figures 4.11, 4.12, 4.13, and 4.14 show the results of Segmentation workflow.

104

“napicir <= IiNcuruvjuu riamcwulis

Figure4.11: Original Scanned Data

105

enapter * 1Ncurouna rrameworis

Figure 4.12: BET Results

ra4 nveurouna rrameworn

Figure 4.13: BET Results

107

1Neurouria rrameworis

Figure 4.14: Fast Results

4.5.2 Brain Extraction, Affine Registration and Transformation Workflow

Target - *
: #Output

Source

Figure 4.15: Brain Extraction - Affine Registration - Transformation Workflow

Figure 4.15 shows there are three Application Services in this registration workflow.
They are brain extraction (BET); affine registration (IRTK) [61]; and transformation
(IRTK) as determined by the registration process. This workflow automatically aligns a
source image with a reference image. First, the train extraction is used to eliminate non-
brain tissue from the reference image, so the registration is focused on matching the

brain. Next, the quality of alignment is determined by a similarity measure between the

108

simplex H INCUIUWI1NU ridllICWUIK

two images. The alignment uses twelve parameters affine transformation, three
rotations, three translations, three scaling factors, and three skew factors. Finally, the
input image is transformed according to the parameters computed by the registration
step. The workflow involves three distinct Application Services associated with three

different input and configuration files.

Following Figures 4.16 and 4.17 compare the brain images before and after

Registration workflow.

Figure 4.16: Before Registration

Figure 4.17: After Registration

109

iveurouria rrameworn

4.5.3 Image Intensity Correction Workflow

Converter
Mask
Reference S
FlirtFeg p FlirtTransf NuCorrect Viewer
Scan Cata

N

Figure 4.18: Flirt Registration - Flirt Transformation - Intensity Correction Workflow

As shown in Figure 4.18, the algorithms wrapped in this workflow are FMRIB
FLIRT [62], image registration, MNI N3 [63], intensity correction, and FMRIB
converter - which applies image transformation. The process is: aligns mask with target
image, estimates bias-field correction using N3, applies correction, returns corrected
image. This image intensity correction workflow includes six independent Application
Services. The results of Intensity Correction Workflow can be shown via following

Figures 4.19 and 4.20.

Figure 4.19: Before Intensity Correction

L napter — 1Neurouria rrameworx

Figure 4.20: After Intensity Correction

4.6 Users Feedback

After initially used and tested within NeuroGrid project, the NeuroGrid portal is
further publicised to more scientific communities, like FSL and SPM, and more
institutes, like Clinical Sciences Centre, Imperial College London, Division of Clinical
Neurosciences, University of Edinburgh, Department of Radiology & Biomedical
Imaging, University of California, San Francisco, UCLA (University of California, Los
Angeles) Health System, and so on. NeuroGrid project users have full access to the
integrated database and workflow capabilities. Non-NeuroGrid users have access to the
workflows, but not the stored data, via guest certificates. Users’ feedback is positive.
But it is hard to predict what impact such scientific portals will have on scientific

communities in future.

The use of certificates is not popular amongst users. Some users have difficulties
installing them. Even though help webpage is provided, users are generally more
comfortable when directly shown how to proceed. Most researchers comment that they
prefer a more familiar user name and password style identity verification process. Also
the Web portal facilitates users in accessing the system from a variety of platforms, for
example starting a job from the work location and then checking the job result later

from home. This requires the users to install certificates on different platforms.

The access control security model is accepted by the users. Different exemplar

datasets belong to different groups and are accessed by the users within the group only

wlapiel & ANCUIOULIU T 1alllCWOUILK

in most cases. Although there is demand on sharing public data and application among

groups, access control on data and application is an important capability.

The concept of WebDav folders is initially foreign to the users, but the portal is
helpful in getting users in using this facility. Lack of universal support for the WebDav
protocol in standard browsers is a minor irritation. However, associating the WebDav
folder as a network place is a widely used strategy. This facilitated simple and

integrated access completely consistent with local data storage solutions.

The workflows are proved popular, particularly the brain extraction tool (BET),
tissue classification, data re-orientation and DICOM anonymisation tools. The system
was found to be reliable however, when occasionally services fail to execute, lack of
feedback is a problem. Once jobs have been submitted, the job monitor provided
information about job status, but if the process fails, there was no way for a user to
identify what has gone wrong. This strongly suggests that a more detailed help page and

more explanatory information on errors could have been invaluable.

The available workflows have kept growing based on the requests from the users.
The ASToolkit is useful to wrap algorithms as Web services rapidly. The concept of
Grid enabled Application Service is very helpful to meet the computational resource

demanding with the number of the users growing.

Criticisms of the portal are mostly related to latencies in response and to occasional
failures in submitted tasks. These could result in frustration as with any interactive
system. Error reporting is a key ingredient in maintaining confidence in the portal if a
problem occurred elsewhere in the system, and this can be substantially improved with

more specific error messages being provided.

112

ULCULEVLI. a4 FIODICHL SOIVIILE LIIVIIOIUIICIIL

CHAPTERSS
GECEM: a Problem Solving
Environment Using Wrapping

Approach

5.1 Introduction

Grid-Enabled Computational Electromagnetics (GECEM) [64-68] is a problem
solving environment aimed at exploring Grid technology in engineering designs. It is a
multi-disciplinary effort undertaken jointly with researchers from academic and
commercial partners. The problem solving environment brings together engineers, Mesh
experts, Computational Electromagnetic simulation experts, and computer scientists to
achieve numerical simulation and visualization. The GECEM problem solving
environment strongly focuses on geographically distributed resources sharing and
collaborations, and expects a novel innovation in Engineering designs based on the Grid
technology. A critical issue in success of this innovation is the ability to closely couple
scientific applications developed by engineering scientists with middle-tier support

provided by computer scientists.

GECEM, a service-oriented simulation problem solving environment based on the
Grid technology, provides a platform for engineers and scientists to share their
collective skills, applications, data and computational resources in a secure, reliable and
scalable manner. It is a distributed computing infrastructure designed to facilitate the
engineers and the scientists to remotely initiate, run and monitor engineering services
aiming at achieving collaborative numerical simulation and visualization. It enables the
seamless integration of heterogeneous compute resources that span multiple
administrative domains and locations across the world, and provides flexible and secure

access to these resources to all the participants through a user friendly interface.

113

UL LIVl a ITODICIL SOLVIIE EIlVIIOIUICIIL

Through the seamless collaboration among virtual organizations, distributed resources
can be more effectively used to tackle complicated engineering problems and contribute
to the exploration of problem in extremely complicated conditions. We believe such an
adaptable and flexible integration framework is able to meet challenges encountered in
engineering problem solving environments -- increasing complexity, highly compute

resource demand, and large number of applications involved.

5.2 Some Details

GECEM Grid infrastructure is based on Globus middleware, which has proven to be
a powerful and acceptable reliable basis for our work. For applications involved in
GECEM, a collection of OGSI compliant Grid services are developed at the
corresponding service provider sites. The service oriented approach provides a more
flexible and interactive environment in terms of service discovery, invocation, steering,
and notifications. Grid Resource Allocation and Management (GRAM) [69] is used as
interface to start jobs on computational resources, which will contact and submit the
jobs into a back-end scheduling system, such as Condor, LoadLeveler [70], OpenPBS
[71], and so on. GridFTP [40] is used to transfer any data files between computational
resources and storage resources . JavaCoG [72] is adopted as the main programming
interface to Globus-based services such as GRAM, MDS [73], and GridFTP. It also
provides a client-side API for MyProxy [74] and has extensive Grid Security
Infrastructure (GSI) [75, 76] support. GSI is a portion of the Globus Toolkit that
provides fundamental security services needed to support the Grids in terms of
message-level security, transport-level security and authorization. MyProxy, a
combination of an on-line credential repository and an on line certificate authority, has

been chosen to manage X.509 Public Key Infrastructure (PKI) security credentials.

These services are implemented as a collection of Web and Grid services, each
developed at the corresponding services site. Clients can access the GECEM services in
different ways. A GECEM Portal presents these services to the users through a simple
user-friendly interface, and also hides the users from complexities of underlying Grid
infrastructure. The portal provides seamless integration of a collection of heterogeneous
computational and data intensive applications across geographically distributed virtual

organisations.

114

rb UELEM a urobdiem solving kEnvironment

Portlets [77] is adopted to enable service brokers to create interactive services, which
plug and play with portals via the Internet, and thereby open up many new integration
ability. The GECEM portal is based on GridSphere [78] and runs as portlets in any
standard portlet container, which provide an interface to the user to access the Grid

environment.

5.3 GECEM Architecture

Client Application Web Services' Grid Services

Resources
Layer Portals Layer Layer Layer Layer
Core Services Surface
(File Transfer Tnangnlation
Annplication Ceit Management
PP K Job Submission)
Poitals
Meslung
0 Job Monitoring ¢ yi—} §- Storage
ftw v, sei Problem
Solving CEM
Environment Job
Management
Migrate CHl & (-
Publishing &
Discovering
Services

Figure 5.1: GECEM n-layer service-oriented Architecture

Service Oriented Architecture (SOA) 1is architecture with special properties,
comprised of components and interconnections that stress interoperability and location
transparency. The idea of SOA is to achieve loose coupling among interacting software.
This advanced flexible style of architecture provides a foundation to allow Grid
resources to be shared seamlessly. SOA is adopted on the GECEM Grid infrastructure.
Web services, Grid services, and Grid portal have been seamlessly integrated into a

GECEM service oriented framework. As shown in Figure 5.1, the layered architectural

115

ULLLEIVI. a I'TOVICI ODOlViIlEg CIVIIOILIICI

framework is built and comprised of a client layer, a portal layer, a web/Grid services
layer, and a compute resources layer. Clients communicate with the portal layer by
sending and receiving SOAP over SSL, and utilize the portal for core functionalities.
The portal in turn forwards some of incoming requests to a series of Grid and Web
services and relies upon underlying Grid and Web services to provide functionalities to

the clients.

A pool of OGSI-compliant Grid services are fundamental components of this
architecture. The implementation, deployment and communication of these Grid
services are based on Globus Toolkit and Web services technologies. Since Web
Services are platform and language independent, Web services are used to implement
support services between the applications and the portal. Web services components are
deployed to provide support functionality, such as certificates management, jobs
submission, files transfer, jobs monitoring and management, and publishing and
discovering services. End user interface is dominated in the use of portal servers.
Portlets is adopted to enable service brokers to create interactive services, which plug
and play with portals via the Internet, and thereby open up many new integration
abilities. The Grid portal is based on GridSphere and runs as portlets in any portlet

container, which provides an interface to the user to access the Grid environment.

The client layer only consists of a Web compatible browser for the purpose of
lightweight. Any system that can run a Web browser is capable of serving as a client for
GECEM. The portal layer provides an end user interface, through which the users can

access the services from anywhere with a browser and an Internet connection.

The portal is a user friendly Web-based interface that remotely launches and
monitors computational simulations on GECEM computational resources at remote
sites. It provides seamless integration of a collection of heterogeneous computational
and data intensive applications across geographically distributed virtual organizations.
The portal presents the applications to the end users through a browser and an Internet

connection, and hides the users from complexities of the underlying Grid infrastructure.

The portal is a very important aspect of GECEM and we have spent a significant
amount of effort on the GECEM portal to address CEM applications specific issues.
Two portals are developed in order to suit different research environment needs, a

service-site portal and a general portal. The former provides an interface for service

116

UL LIVI. a FTOVICIIL OOULVIIE LI1VIIOILIICIL

providers to access the services; while the latter offers a service for the majority of
users. GECEM portals provide additional features such as application-specific data
transformation between big-endian and little-endian, and input files transformation
between XML and text-based format. Our experience shows that portal is a lightweight
and easy to use solution to link the resources with the users. But more sophisticated
approach is needed to achieve more client side assistance in some complicated cases, for

example, an interactive visualization of complex results set.

The business logic layer includes a collection of Web and Grid services provided by
middleware and applications provider. The applications are decomposed into
component-oriented services, which are exposed in a generic interface independent of
implementation languages and platforms. A service provider has flexibility to move the
services to different machines, or to move services to an external provider. One service
can support different client types. These applications, as a pool of OGSI-compliant
Grid services, are the fundamental components of this architecture. Since Web Service
is platform and language independent, it is used to implement support services between

applications and portal.

The resources layer includes underlying computational resources, data storage

resources, and any instrument involved.

5.4 Service Oriented Wrapping

5.4.1 Introduction

The approach of making a piece of code such as simulation solver available as a self-
contained reusable object to some higher-level glue layer is often termed wrapping. In
this case, the glue layer is a high-level language; in a more general case, it could be a
Grid fabric layer such as Web Services, allowing interoperation across a network of
components running on different machines. As discussed in Chapter 2, two strategies
are adopted for describing and controlling application processing, batch oriented
wrapping strategy and service oriented wrapping strategy. Here we introduce the

service oriented wrapping strategy used in the GECEM problem solving environment.

In GECEM, a few meshing and simulation applications used in the community are

integrated with the SOA and Grid environment through interactive service oriented

117

wllapiwel O LU LEVL, a FIOUICILL OOLVILE LILVIIOIITICIL

wrapping approach without re-design and re-development. For example, Meshing Grid
Service is a mesh generation service to mesh flow domain. CEM Grid service provides
sophisticated simulation on an. incident electromagnetic wave and a general scatterer.
These services are easy to be invoked remotely without legacy codes migration. It
encourages collaborations between organizations to deliver better outcomes by

combination of various applications geographically located.

In GECEM framework, these OGSI-compliant Grid services are the fundamental
components of GECEM architecture. The implementation, deployment and

communication of these Grid services are based on Globus Toolkit and SOA.

To be better adapted for the Grid environment, different legacy libraries are
precompiled and the proper one will be chosen to provide run time support according to
the platform on which the service is hosted. To be fully merged with SOA principle,
instead of monolithic structure with a Web service interface, a single application is split
into several Grid service based components. Minimal modifications are required to the

legacy application.

5.4.2 How to wrap

Before wrapping, the legacy application needs to be reconstructed and modified
while main computation parts and existed functionalities are kept untouched. We list
operations and functionalities provided by the application, and make it clear that how
communication goes on between the functionalities. In each functionality context, we
pay attention to how the job is invoked, when and how the response is sent back, and
how the job information is indicated. With all this information, the legacy application is
re-constructed and further divided into smaller, independent components. Instead of the
legacy monolithic structure, we split the single application into several discrete
components. Also we adjust the components to make sure they are capable of working

independently and not rely on other resources.

After the reconstruction, we use service oriented wrapper strategy to add a Grid
fabric layer for each component. The service oriented wrapper strategy can be used for
generic cases where the legacy codes (written in FORTRAN, C or others) need to be
accessed from other environments. Computational intensive parts of component, written

in FORTRAN, still remain the same. These core calculation parts are presented as C

118

ULEL BNV a Frooiem SOIving environment

wrapped library for easily plugging into Grid environment. Then a Java wrapper is
defined with native methods. Java Native Interface [79] is adopted to enable the
integration of the Java wrapper with legacy code written in other languages, and allow
Java code to operate with existing applications and libraries. This wrapper strategy
keeps the core computation part in a language like C or FORTRAN, but controls its
behaviour through a high level language. This strategy not only keeps the performance
strengths of FORTRAN, but also allows the programmer to easily interface the
applications through the high level language.

The Java wrapper and the library wrapped need to be further exposed as a Web/Grid
service. We need to consider how to implement these individual services, OGSI-
compliant or Web services. By the time we developed the services, Globus Alliance had
not contributed the WS-Resource Framework (WSRF) implementation. We choose the
OGSI-compliant Grid service to expose the Application Services. For the simulation
services to work in a larger e-science context, some issues have to be addressed, such as
security and interoperability with other services and consumers. In interoperability
aspect, Grid service enhances the web service, which is stateless and non-transient.
OGSI provides consistent mechanisms for statefulness (SDEs), stateful interactions,
transient instances, service lifetime management, notification on state changes and
security infrastructure, which are all key requirements for GECEM framework. GSI is
the security architecture that provides the fundamental security services and guarantees
reliable invocation, authentication, authorization, delegation and confidential
communication [76]. It does provide a useful base to Grid infrastructure for easing some

security concerns.

For every application (volume mesh service and electromagnetic simulation
service), a persistent application factory service which creates transient service
instances on demand is defined and hosted,. The factory implements the Factory
portType, which provides an operation to create Grid service instances.
NotificationSource portType and GridService portType are also implemented, which
provide generic and notification functionalities to the Grid services. A WSDL is created
manually for each application Grid service. These services are compatible with OGSA’s
well-defined interfaces and specific conventions addressing discovery, dynamic service

creation, lifetime management, notification, and manageability. They also ensure high

119

wilapiel J LU LLIVL, a TIUUICLL vUlLVILE LIIVIIOLILTIICIL

security based on authentication, authorization, and incorporate credential delegation.
At client site, the client uses the grid middleware (client) to invoke the Grid services

and receives serviceLocators for the newly created service instances.
The whole wrapping procedure is summarised and described below:
i) Split the single application into several discrete components.

i1) For each component, define the Java wrapper with native methods. This

Java wrapper loads and links to the native implementation.

iii) Run the Java to get the header file, which will be included in the C

wrapper.

iv) Change the FORTRAN main to a subroutine, with command line

arguments passed as parameters.

v) Create a C wrapper to invoke FORTRAN subroutines. Add control code in
the C wrapper to control the FORTRAN computation loops and data

transfer.

vi) The FORTRAN code and C wrapper are compiled together as a dynamic
link library, which can be loaded and linked into the Java Virtual Machine.

This shared library needs to be present where the grid service is provided.

vii) Finally the Java wrapper is exposed as the grid service implementation.

5.4.3 Stateful Grid Service for Data Sharing

One of the fundamental requirements for the Grid is to share application data
managed internally with processes running outside the application environments. File
system can be used to transfer data among various processes in a local environment. But
it falls short in the Grid environment where processes can be dispatched to run- on
different resources. The OGSI supports the data sharing across compute resources

through the concept of the Grid Service Instance.

Due to concerns for security and interoperability requirement, we implement the
components as a collection of stateful Grid services. This stateful model avoids passing
state information between service and consumer. All variables and data in an
application process are handled by a unique Grid Service Instance, identified by Grid

Service Handles (GSHs), which can maintain state between invocations. Some data in

120

LU LVE. da TIOUICIL OOULVILE LILVIIOIILICIL

the application process is exposed through some well-known Service Data Element,
which allows multiple processors or consumers to share the same data by sharing the
GSH. A Grid Service Handle can be seen as a pointer to a particular stateful interaction,

which is useful to access data through process and represent interaction state.

According to our experience, OGSI provides abilities to dynamically create transient
stateful service instances, which is helpful for data sharing in the Grid environment. But
it is achieved through the introduction of the Grid Service Instance, which is object-
oriented, and results in tightly-coupled applications. Specification of high level
interfaces needs to be emphasized instead of creating transient service instance at the
infrastructure level. Grid services need to move towards a service-oriented architecture

adopting secure reliable messages to couple processes.

5.4.4 Others issues

Service providers can publish details of service descriptions to allow easy discovery
through community registries. GECEM services can be easily invoked via a command-
line interface, grid portal or other remote procedure call without going through repeated
program initiation and termination. But such Grid services cannot be run simply across
the grid environment like a batch job. They must be installed and deployed within a
Grid service host environment (such as an Apache Tomcat servlet container) on the

compute node that runs the service oriented application.

5.5 Migrate Legacy Service Model - Batch Oriented Wrapping

5.5.1 Model Introduction

With batch oriented strategy, existing applications can be run on available computers
in a Grid environment. GECEM applications are conventional FORTRAN applications
that read input files and generate a set of result files. Originally GECEM legacy
applications were invoked from command-line. Input files and other configuration
information were specified in command-line parameters. These applications usually
remotely run on traditional HPC systems. Users are required to log in to system and
submit jobs to a queuing system. Input files and output results have to be transferred

manually. Perfectly fitted to this scenario, a Migrate Legacy Service Model (MLSM) is

121

urLceLivi. a r'roolcin SOLVIINE LilvIIOINIICI

developed to drive the applications automatically through a browser, hence change

traditional manual driven via terminal.

MLSM brings together three distinct roles: service consumer, service provider, and
computational resource provider. It allows input data from user site A, application
executables from service provider B and work together at computational resource C
provided by a resource provider. The user case we are addressing here is that the input
data, the applications, the compute resources are owned by different entities. This model
provides the applications with a gateway to the Grid environment. The main idea is to
allow the consumers to remotely process the applications to fulfil extra computing
resources requirement through a user-friendly interface. In this model, a user only
focuses on configuration, steering, and monitoring services without being aware of the

details of the underlying Grid infrastructure.

MLSM changes conventional job submission through user log-in in many aspects.
The service supports different client format. It brings in security based on GSI. It also
has delegation functionality, so the service can further invoke other service on behalf of
the user. Processes requested via the service are launched as service handlers rather than
jobs. Data that is generated from the service requests may or may not belong to an

individual user.

MLSM is designed for batch-driven, command-line oriented applications. It can
work with all the command-line oriented executables written in any language. It
typically suits parallel applications, which are hard to be migrated into the Grid
environment using service oriented wrapping approach described in Chapter 2. In this
model, there is no (any) modification on legacy code, so source code is not necessary to
be available. It provides an easy solution to migrate the legacy applications to the Grid
environment with the smallest effort and cost. The Grid middleware is responsible for
security, resource control, scheduling, and so on. But an executable application tends to
have special requirements for different platform versions, such as collections of
libraries, JAR files, and any other environmental conditions. The heterogeneous nature
of computing resources still remains a significant barrier in this context. Pre-process
work on the executables and input data is required to tailor to various environments. A
job broker may be needed to allocate suitable resources for the executable according to

its specific requirements.

122

ULCLEN. a4 r'TOuicIl SOlviig Civiolnceit

5.5.2 Model Architecture

The Migrate Legacy Service Model is composed of a number of pieces of software
interacting over several different sites, client site, service provider site, computation
site, and data site. The Grid portal is provided for service invocation, through which a
user needs to point out Universal Resource Identifiers (URIs) of input files and to
specify a service configuration. The Migrate Legacy Service (MLS) passes all these info
and requests a legacy job. Globus Toolkit, a middleware layer, handles secure

communications and data transfer among different sites.

5.5.2.1 Client Site

At the client site, the user interacts with the Migrate Legacy Service through a
standard browser. A Grid Portal is provided to invcke the services. Http, instead of
GridFTP, is used to bring results back to user site after a job finished. This avoids any

installation from the user site.

5.5.2.2 Service Provider Site

At the service provider site, a Migrate Legacy Service is hosted and it serves as a
bridge between users and compute/data resources. MLS is a Grid service that provides
the applications with a gateway to the Grid environment. Front end, MLS provides a
Grid service interface to communicate with the user. Backend, it contacts a job
manager through Globus GRAM to migrate a legacy job to allocated computational
resource. Also it contacts GridFTP servers on different sites to transfer large amounts of
data among geographically distributed storage systems. MLS is implemented both
through programmatic job submission against computer Grid using the Java CoG Kit,
and through executing scripts including a set of Globus commands in a defined

environment (JAVA, Perl, etc.).

Figure 5.2 illustrates events sequence of this migration procedure. The consumer
stores his/her proxy on a MyProxy server and interacts with the portal. The portal
retrieves a proxy for the consumer from MyProxy server and then uses it to contact the
MLS on behalf of the consumer. The MLS submits the job to the computational site via
Globus job manager. Upon receiving the MLS request, Globus Resource Allocation
Manager’s gatekeeper of the allocated compute resource spawns the application
migrated sequentially or across multiple computing nodes in parallel. In this process,

input files and application executables, appointed by the consumer, are staged to the

123

vjc,v.]].m. d riuuicm ouivimg nuviiumiicm

chosen compute nodes by MLS. Upon completion, results are brought back to where the

consumer appointed. The consumer can submit, query and retrieve the results of Grid

jobs.

MyProxy 1 Service
Saver Qe Consumer 1. Store Proxy
" Authenticate
3. Request User Prosy
\ S 4. Retrieve User Prory
T
Submitjob
4.\ 2 10. 6. Submitjob to remote resource
Transfer itiput files

g Transfer executables

LR T < 9 Return results.

Portal 2 Pertain Query job status or cancel job
Servict Previier Service Broker
£ H FT
Data, Data Data
Repository 1 Repository 2 Repositoryn
Master Site
(Migrate Service
Provider)
Compute Compute
Globus Gelt Resource Resource
Keeper Provider 1 Providern
F Job
Manager

"4KUH

Figure 5.2: Migrate Events Sequence
The Migrate Legacy Service is an OGSI compliant service with delegation
functionality. Delegation is a key factor to guarantee the MLS further invokes other

services on behalf of the users.

5.5.2.3 Computational Site

At the computational site, a Globus container runs continuously where it offers a
persistent GRAM service to response the Migrate Legacy Service’s request and
forwards a job to a related local scheduler. It also provides a GridFTP service to

response file transfer requests from the Migrate Legacy Service.

124

ULLULIVI, a 'TODICI OO1VIIE CHVIIOIUIICIt

5.5.2.4 Data Site

At the data site, a GridFTP service is provided to put a third-party file transfer into

action, which is steered by the Migrate Legacy Service.

There is no installation work at the client site. At the service provider site, service
providers need to install Globus. They also need to deploy and host a Migrate Legacy
Service on the machine where the application executables are available. At the
computational site and the data site, Globus needs to be installed to response job

requests from the Migrate Legacy Service.

5.5.3 Implementation Issues

We adopt a well-documented and industry standard approach, Resource
Specification Language (RSL), to express our requirements. Resource consumption
information and other job information are provided, such as name of the executable file,
files to stage in and stage out, files clean up, maximum memory required, CPU usage,
etc. A job defined in this way can either be sent via Globus commands or be submitted

programmatically to Globus GRAM.

Independent sub-jobs strategy is used in Migrate Legacy Service. Instead of
submitting one big job with input staging and output back in one go, we divide the
whole MLS job into several independent sub-jobs, input staging, legacy processing, and
output back. This is partly because of flexible security control over different sub-jobs,
and partly because of efficiency of the computational site. Further explanation is given

below regarding these benefits.

Due to three distinct roles involved, service consumer, service provider, and
computing resource provider, it brings in a big challenge in a security context. As
Migrate Legacy Service is a Grid service, so operations are executed as ‘container
owner’ by default, a service provider who hosts the service in this context. But some
functionality, such as the user’s input data retrieval, has to be executed as the user. We
divide the job into several sub-jobs. Sub-jobs can be controlled to run as different
identities, for example, retrieving the user’s data as the user, retrieving application
executables as the service provider, and submitting a job as the user or the service
provider. This is achieved through fine-grained control over security properties of

MLS, such as authentication mechanisms required to access the methods of MLS and

125

ULECLEIVI, 4 I'TODICIN SOIVINE ENVIIOTHNCII

run-as identities of MLS. Account and credential management mechanism is adopted to
organise and pass the proper credential needed to satisfy security requirements from

each role, which is described in detail in section 5.6.

Independent sub-jobs strategy also brings more efficiency and flexibility to compute
site compare with a single job. For example, the user can resubmit a “legacy job”
without re-transfer input files if previous submission failed. Also, if the “legacy job” is
terminated or failed, the user still can transfer partial result back. Also “input staging”
and “results back” jobs only need GridFTP server and data storage, but not any other
special resources demand, whereas “legacy processing” most possible has very strict
and high computational resource requirements. If all these sub-jobs were bound
together as a single job, computational resources would be engaged for the whole job.

Infact, these resources were left idle while file transfer was carrying on.

With independent sub-jobs strategy, the user can control and steer many sub-jobs

instead of one big job, and it is easy to get clear and correct information of each sub-job.

5.6 Security

5.6.1 Security Issues

Security is a critical requirement and must be accounted for by any geographically
distributed Grid community. To achieve a specific goal, Grid extends the conventional
homogeneous system to a more heterogeneous environment which brings a diverse set
of users, data, applications, and compute resources together. Security control and
management of these different resources are often the responsibility of entirely different
organizations. Traditional security mechanisms for homogeneous system do not scale to
heterogeneous environment belonged belonging) to different organizations. A GECEM
security model is set up to address security management and collaboration issues among
virtual organization. This security model plays a key role in supporting and enforcing
the overall security requirement, and in providing authentication, authorization, role

management, access control, delegation, and so on.

To provide a robust security infrastructure, GECEM security model is based on Grid
Security Infrastructure (GSI) assisted with Grid Accounts and Credentials Management
Model.

126

wllapivl J WL LIVE, 4 DIUULCIL OULVILE LALVIIULLLIVLL

All web transactions are executed under a Secure Socket Layer via HTTPS. A secure
HTTP connection means that data sent to and received from an HTTP server are

encrypted before being sent out over the internet.

Based on Public Key Infrastructure, Grid Security Infrastructure prohibits a centrally
managed security system. Key of this technology is the introduction of a Public Key
Infrastructure credential, which consists of a proxy certificate and its corresponding
private key. The credential is a certificate generated from the user's certificate and acts
as a representative of the user. This credential is passed and verified across
organizational boundaries; hence, it allows heterogeneous system to be secured on a
distributed basis. The introduction of credential has many befits. It provides “single
sign on” capability, which avoids the need of private key associated with the user
certificate. The lifetime of credential can be set limited, which reduces the influence in

case of exposure. It is also possible to flexibly control rights granted to the credential.

Dual authentication and authorization is performed between system services and
service consumer based on X.509 certificates. GSI defines and implements useful
security services for authentication and delegation, which is proved helpful and easy to
work with in some uncomplicated context. GSI has been used throughout the GECEM
system and hence presents the user a consistent security mechanism for compute, data,
and application resource. However, our experience shows that tasks of creating and
managing the user accounts and credentials used by GSI are complicated and difficult
due to complicated security requirements the Grid faces. Grid Accounts and Credentials
Management Model are adopted to solve this problem, as will be further discussed
below. Some middleware is needed for automating user registration, credential creation,

and credential management tasks.

GECEM application services also have delegation functionality and the client side is
also set with fully delegation, which allows delegation of credentials for computations
that involve multiple sites, and provides the user with a single secure access point. This
“single sign-on’ mechanism allows the user to easily access many diverse data,
applications, compute resource owned by different owner without visiting many sites.
The user can simply ignore the underlying complicated Grid infrastructure and no
longer have to type in different accounts and passwords for different resources. This

“single sign-on” makes it easy for the user to access resources across organizational

127

wllapiel o LU LI, 4 THOULCILL OULVIE LAVIIOILIICLHL

boundaries, but it lays a challenge to user management for Grid sites. Typically in large
scale VOs, an end user may neither have access to his/her physical certificate and key,

nor have an account login on the remote resource.

In a typical usage scenario, the user applies for a user certificate and key from trusted
certificate authority. UK National CA and Singapore CA are trusted by GECEM
system. We make some effort to recognize Singapore CA and create new opportunities

for sharing Grid resources between UK and Singapore.

Also the user is required to have a user account on the Grid resources he/she is
entitled to use. The user’s distinguished name (DN), associated with each certificate,
must be individually registered on a mapfile of the Grid resource. The user generates a
limited lifetime proxy using X.509 personal certificate and key pair. This proxy is
passed among the Grid resources for authentication. The subject of the proxy is verified
against the DN entry recorded on the Grid mapfile. Authorization and access control is
performed based on the verification. With delegation functionality, the service can use
the user’s proxy to invoke other services on other Grid resources. The further invoked
service performs all authentication and authorization against the user proxy, without
having to trust the intermediate sites which forwarded the job. No further password
request is handed to the user for invocation of a new service. At each site, after passing
authentication and authorization the user certificate is mapped to local account, which

may be different at different sites.

MyProxy is used to store the user’s credentials. The user can store his/her proxy with
a defined amount of time on a MyProxy Server. When the user logs into GECEM
portal, the portal contacts with the MyProxy server and retrieves the credential with
limited lifetime for the user. This short-term credential is used by portal to access Grid
resources on the user’s behalf by signing request with the private key belonging to the
proxy certificate. With MyProxy’s credentials delegation, the proxy can be retrieved
directly from the web browser. Also the private key of the user’s digital certificate can

be avoided to be sent over a network.

To further circumvent client firewall restrictions, all communications to GECEM
services are client initiated, where the client invokes a service and polls for responses /
results at a later date (no Web Service call backs are made to the client). This

architectural model clearly separates service providers from the client.

128

VLU LWV, a4 FIODICII OOLVIILE LIIVIIOIMIICHL

Accounts and Credentials Management Model is composed of several models,
Credentials Management Model (CMM), Service Provider Account model, User

Appointed Compute Resource model and Accounts Pool Model.

5.6.2 Credentials Management Model (CMM)

Scenario a: Migrate Legacy Service needs to access different resources belonging to

different roles in one single job.

Migrate Legacy Service needs to access various kinds of resources owned by
different entities including data, application executable, and computational resource. We

introduce a third-party CMM to assist the resources sharing in a controlled manner.

In Migrate Legacy Service, it allows input data from the user site A, application
executables from the service provider B, work together at compute resource C provided
by the resource provider. The user case we are addressing here is that input data,
applications and compute resources are owned by different entities from the same
Virtual Organization. None of them wants to give access to the data or the application to
other members. Only GSI mechanisms are very hard to satisfy the requirement because
of read and write permission problem among many data storages belonging to different
identities. We introduce a third-party Credentials Management Model (CMM) to sort

this problem out.

CMM is an end-to-end GSI based credentials management solution which is exposed
for using via Grid portals. CMM consists of a front-end Grid portal and backend

security services that provide secure management of the credentials.

Different roles delegate their proxy credentials to this agent. Following the user
delegation, or stringent identity verification, CMM automatically generates and stores
credentials for the users, which are allowed for subsequent use by the agent. The model
organizes these credentials in a sophisticated manner to perform different sub-jobs of a
Migrate Legacy Service job on behalf of different users. Using CMM, Migrate Legacy
Service has the ability to authenticate to some data resource (GridFTP server, SRB [80]
archive, etc.) as the user, meantime authenticate to some other resources using the
service provider's credential. This means the service provider can retrieve the protected

input data (accessed only by the user) on behalf of the user. It also can retrieve the

129

ULECL LBV a rrobieim So1vINg cnvironment

protected application executables and invokes remote service on the resource provider

on behalf of itself.

CMM manages these credentials on behalf of the users without making them aware
of their credentials' existence. The model also has functionalities to support credential
renewal and revocation. By applying credentials of different users during different steps
of a job procedure, CMA orchestrates these individuals to share responsibilities of the

whole job.

5.6.3 Service Provider Account Model

Scenario b: The compute resource provider trusts the service provider, not the user.
In a typical usage scenario, the user invokes the service provided by the service
provider, and then the service provider accesses the compute resources on behalf of the
user. This means the compute resources have to trust all the users trusted by the service
provider, hence it brings account management burden to the resource provider. We
introduce a Service Provider Account Model to avoid this problem. In this model, the
user does not have direct access to the compute resources and is completely decoupled
from the compute resources where jobs are effectively run. The user only has access to
the service provider site. A special Grid user account is set up for the service provider,
which is trusted by the compute resources. The service provider acts as an active agent
between the user and the compute resources. On one side, the service provider
authenticates and authorizes the users, and serves the requests of the users. On the other
side, it accesses related compute resources on behalf of itself. The compute resources

response the requests based on their trust of the service provider.

In GECEM, each use has a X.509 certificate and its Distinguished Name (DN) is
included in a grid-mapfile on the service provider site in order to access the service. The
service provider, as a special Grid user, has its certificate and is included in the grid-

mapfile on the compute resource provider site.
This account management approach benefits from the following advantages:

1) It abstracts the resources used, allowing the resources to be used without the
user’s awareness. The user does not need to obtain multiple user accounts on
different Grid sites to complete one job in the Grid environment. Instead of the

user, the service provider will access the resources at cross-sites organisations.

130

lldpiwed D LU LDIVI. a FIOUICIL OOLVILE DILVIOILIICI

ii) The Grid resource only knows about the service provider and is free from the
task of access control for every Grid community user. This greatly reduces the

account management burden and allows (for) scalability.

5.6.4 User Appointed Compute Resource Model

Scenario c: The compute resource provider trusts the user only, not the service

provider.

In this scenario, the user is trusted not only by the service provider, but also by the
compute resource provider. In this case, the service provider accesses the appointed
compute resource on behalf of the user. This scenario allows verifying the identity of
the user at the compute resource site, without having to be aware of the intermediate

sites which forward the job.

5.6.5 Accounts Pool Model

Credential Management Agent makes the compute resource trust the service provider
or the user, and avoid trusting all the users of all the service providers. But according to
GSI, each trusted user needs to obtain a traditional user account on the compute
resource and the user's Distinguished Name (DN) has to be mapped to this user account.
This requires the compute resource to set up and maintain account for each trusted user;
thus, making it a burden for large Grid communities. This is not a scalable long-term
solution and it makes it difficult for Grid community to extend to many users. In
GECEM context, this scalable issue is dealt with through applying the Accounts Pool
Model (APM), which introduces a dynamic user accounts pool. We create a pool of user
accounts at each site for all trusted users sharing. APM dynamically maps the trusted
Grid user to a user account from the user accounts pool. This user account is blocked

after it is allocated to a user and is released upon the job has been completed.

131

wiiaptel U CULICIUSIVULD allU 1ultulc VY VLK

CHAPTER 6

Conclusions and Future Work

The purpose of this chapter is to summarize the thesis contribution and conclusions.
We conclude by highlighting some future work that could stimulate future research in

enabling legacy applications on distributed compute resources.

6.1 Summary of the Contribution

Adaptable and flexible integration frameworks are highly required to meet
challenges encountered in the scientific problem solving environment. The main goal of
the thesis has been the development of a framework for compute resources sharing. The

contribution could be summarized as follows:

1) Providing an XML based language, Command-line Description Language
(CoLDeL), to describe individual command-line applications, precisely.
CoLDeL acts as a protocol so that different service providers can follow it
to generate an Application Definition File for each scientific algorithm to
be used by the Application Services. An XML schema has been defined
which ensures strongly typed data exchanging among services. An initial

number of types and a rich set of elements are declared.

it) Providing Application Service Toolkit (ASToolkit) that is both cost-
effective and simple to wrap a large number of applications as Application
Services, without the problems of updating and maintaining the source

codes and deployments of all the Application Services.

ASToolkit is an automatic toolkit that wraps scientific applications as
Application services and deploys them on the grid. The Application
Service is described by CoLDeL, presents a Web Service Description
Language (WSDL) interface to potential clients and interacts with Grid

resources via a component plug-in model.

132

LOICIUS10IS alld Future vwoOlk

iii)

Employment of a component plug-in mechanism that allows the
Application Service to be configured (at deployment time) with a Job
Submission Component capable of interacting with the available compute

resources.

The component plug-in mechanism makes the Application Service Grid-
aware and renders the Application service the capability to provide a
uniform submission layer on top of different heterogeneous execution
environments. The Application Service provides a level of abstraction to
the client that is much higher than services like Gram because it takes low
level job submission details like environment variables and temporary file

management out of the hands of the client.

Providing a WS-Security based authorization mechanism by which service
providers can control what users can invoke on their Application Services

to run the applications.

Providing a mechanism to create the specific Application Service on
demand in the event it is not kept persistent or is unavailable during the

execution of a scientific workflow.

The unique contribution of this work is the design and implementation of
this mechanism, which is termed Abstract Application Service (AAS).
AAS can create specific Application Service instance on demand in a way
that is completely transparent to the user and provides a high availability
of Application Services without actually requiring them to be persistent.
The novel aspect of the mechanism is that AAS creates Application
Service by configuring itself on the fly to become a particular Application
Service in need, not by instantiating the Application Service. This is
achieved by the dynamic combination of the common abstraction for
legacy applications and application description using specially designed
Command-Line Description Language (CoLDeL). This combination
allows AAS to dynamically configure itself to a particular Application
Service just in time. An AAS may have several concrete instances running
at the same time on the grid, and each concrete service instance may have

a different legacy application associated with it.

133

Conciusions and ruturc vvorK

Vi)

vii)

viii)

AAS is a generic application service. Scalability of this AAS approach is
achieved by delivering the applications through a dynamically
reconfigurable AAS. This mechanism obviates the need to keep all the

available applications wrapped as persistent Application Services.

Providing an overall framework for enabling the legacy applications and

data on Grid based and Service Oriented Architecture.

The framework has achieved four primary functional goals: to provide an
ability to allow legacy algorithms to be accessed easily and run in the Grid
environment; to allow existing data management procedures to be more
accessible and interoperable; to provide graphical user interfaces to access
a large number of Application services and federated database from a
scientific portal, and yet keep the portal lightweight and manageable, and
finally to provide a lightweight workflow composer to compose sequential

workflows from Application Services.

Exploring a Group Applications Service (GAS) approach to further
optimize the execution time of a workflow. GAS merges several
Application Services into a single service. It reduces the grid overhead
induced by the Web service invocation, scheduling, and data transfers.
GAS not only fulfils the tasks of a set of Application Services, but also
takes over the role of workflow service to assemble the applications and
orchestrate the data transfer and input/output. The contribution of this
approach is to move the jobs assembling and orchestrating tasks from
workflow level to Application Service level. Actually GAS acts in dual
roles as both Application Services and workflow. This provides an
opportunity for GAS to optimize and offer the most efficient performance
based on its knowledge of not only applications, but also the workflow and

job dependencies.

Providing a mechanism to monitor and restart the job.

134

COLCIUSIONS and ruturc vv oIk

6.2 Future Work

There are a number of improvements that can be made to the framework in order to

better support the applications that it wraps.

6.2.1 Application Description File Generator

Based on CoLDel protocol, the service provider or application provider needs
provide an Application Description File (ADF) for each application wrapped. Our
experience shows that writing an ADF is not an easy task for a person who is not
familiar with CoLDel. An Application Description File Generator, possible via Web
interface, is needed to let the service provider enter the information required in an
application description, and generate the ADF on the fly. The ADF is able to be pushed
to the server side and registers with the ADFs pool. Application providers can also

register the ADF file which they have already via the Web interface.

6.2.2 Batch Submission Optimization

At present, the batch submission capability is provided at workflow level, rather
than Application Service level. This means the Application Service needs to be invoked
a number of times to complete the batch submission. We plan to provide support for
parameter sweeps [81] in the Application Services. This will allow users to run the same
application a number of times using a “set” of values for each input parameter in one

Application Service invocation.

6.2.3 Checkpointing and Monitoring Optimization

Currently one job is divided into following stages: input stage in, application
computation, and output stage out. User can monitor the status of each job stage. The
job specification is recorded for each job, which contains all the information regarding
the parameters values, input files locations and others. The user can restart the job using
the recorded job specification upon failures. But the job has to be resubmitted from the
scratch, not from the failure point. A checkpointing capability is needed, which can be

used to restart the jobs from failure point instead of from the very beginning.

135

CUIICIUSIOIS dalld Irutdlic WOIK

6.2.4 Fault Detection

Currently we only provide an ability to recover from faults by restarting an
application. We are unable to provide a capability to detect these faults, as they occur.
We can provide automatic identification of causes of failure of applications. This will
enable users to easily identify the reason why the application failed during its execution

and take appropriate actions.

6.2.5 Asynchronous Communication

Presently, the communication between client and monitoring service is carried out
via the client’s requests for immediate, synchronous delivery. This is synchronous in
nature. Asynchronous communication can be added, by using implementations of
popular Web services based publish-subscribe systems such as Web Services

Notification [82].

136

D1010grapiy

Bibliography

1. El hachemi M, Hassan O, Morgan K, Weatherill NP. 3D time domain
computational electromagnetics using a H1 finite element method and hybrid
unstructured meshes. Computational Fluid Dynamics Journal. 2004;13:55-66.

2. Rao A, Chandrashekara R, Sanchez-Ortiz GI, Aljabar P, Mohiaddin R, Hajnal
JV, et al. Spatial transformation of motion and deformation fields using non-rigid
registration. IEEE Transactions on Medical Imaging. 2004;23(9):1065-76.

3. Newcomer E, Lomow G, editors. Understanding SOA with Web Services:
Addison Wesley; 2005.

4. [cited; Ant website]. Available from: http://ant.apache.org/index.html

5. Thain D, Tannenbaum T, M L. Distributed computing in practice: the Condor

experience. Concurrency - Practice and Experience. 2005;17:323-56.

6. Gentzsch W. Sun Grid Engine: Towards Creating a Compute Power Grid.
CCGRID, Proceedings of the 1st International Symposium on Cluster Computing and
the Grid, Page: 35 IEEE Computer Society Washington, DC, USA; 2001.

7. Oinn T, Greenwood M, Addis M, Alpdemir MN, Ferris J, Glover K, et al.
Taverna: Lessons in creating a workflow environment for the life sciences in
Concurrency and Computation: Practice and Experience. Grid Workflow Special Issue.
2005;18(10):1067-110.

8. Churches D, Gombas G, Harrison A, Maassen J, Robinson C, Shields M, et al.
Programming Scientific and Distributed Workflow with Triana Services. Concurrency
and Computation: Pract and Exper. 2006;Special Issue: Scientific Workflows.

9. Ludaescher B, Altintas I, Berkley C, Higgins D, Jaeger-Frank E, Jones M, et al.
Scientific Workflow Management and the Kepler System. Concurrency and
Computation: Pract and Exper. 2006;Special Issue: Scientific Workflows.

10. Nadalin A, Kaler C, Monzillo R, Hallam-Baker P. Web Services Security:
SOAP Message Security 1.1 (WS-Security 2004). 2006 [cited; Available from:
http://docs.oasis-open.org/wss/vl.1/

11. Welch V, Barlow J, Basney J, Marcusiu D, Wilkins-Diehr N. A AAAA model
to support science gateways with community accounts. Concurrency and Computation:
Practice and Experience.19(6):893 - 904.

12. Chin J, Harting J, Jha S, Coveney P, Porter A, Pickles S. Steering in
computational science: mesoscale modelling and simulation. Contemporary Physics.
2003;44(5):417 - 34.

13. Foster I, Kesselman C, Nick JM, Tuecke S. The physiology of the grid: An open
grid services architecture for distributed systems integration. 2002.

14. Jacob B, Berstis V. Fundamentals of Grid Computing. IBM Redpaper. 2002.

15. Cardoso J, Sheth AP, editors. "Foreword", Semantic Web Services, Processes
and Applications: Springer; 2006.

16. Erl T, editor. Service-oriented Architecture: Concepts, Technology, and Design;
2005.

17. Channabasavaiah K, Holley K, Edward Tuggle J. Migrating to a service-oriented
architecture. IBM DeveloperWorks; 2003.

18. [cited; Web Service from W3C]. Available from: http://www.w3.org/TR/wsa-
regs/

19. Graham S, Simeonov S, Boubez T, Davis D, Daniels G, Nakamura Y, et al.
Building Web Services with Java. SAMS. 2002.

137

Db10110grapny

20. [cited; SOAP from W3C]. Available from: http:/www.w3.org/TR/soapl2-
partl/

21. Christensen E, Curbera F, Meredith G, Weerawarana S. 2001 [cited; WSDL
from W3C]. Available from: http://www.w3.org/TR/wsdl

22. Clement L, Hately A, Riegen C, Rogers T. [cited; UDDI from UDDI.org].
Available from: http://uddi.org/pubs/uddi_v3.htm

23, [cited,; BPEL from IBM]. Available from:
http://www.ibm.com/developerworks/library/specification/ws-bpel/

24. Library M. .NET Framework Conceptual Overview. 2007 [cited; Available
from: http://msdn.microsoft.com/en-us/library/zw4wS95w.aspx

25. Universal Description Discovery and Integration. [cited; Available from:
http://en.wikipedia.org/wiki/UDDI

26. Bloomberg J. UDDI: Straw man or ugly duckling.

27. Microsoft, IBM, SAP To Discontinue UDDI Web Services Registry Effort. SOA
WORLD MAGAZINE. 2005/12/18.

28. Common Object Request Broker Architecture. [cited; Available from:
http://en.wikipedia.org/wiki/CORBA

29. Henning M. The Rise and Fall of CORBA. ACM queue

30. Foster I. Globus Toolkit Version 4: Software for Service-Oriented Systems.
IFIP International Conference on Network and Parallel Computing; 2005.

31. Senger M, Rice P, Oinn T. Soaplab - a unified Sesame door to analysis tools.
UK e-Science, All Hands Meeting Editors - Simon J Cox, p.509-513; 2003.

32. Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology
Open Software Suite. Trends in Genetics 2000;16((6)):pp276--7.

33. [cited; AppLab]. Available from: http://www.ebi.ac.uk/~senger/applab/

34. [cited; Tomcat Website]. Available from: http://tomcat.apache.org/index.html
35. [cited; CORBA]. Available from: http://www.corba.org/

36. Sanjeepan V, Matsunaga A, Zhu L, Lam H, Fortes J. A Service-Oriented,
Scalable Approach to Grid-Enabling of Legacy Scientific Applications. International
Conference on Web Services (ICWS-2005), pages 553-560; 2005.

37. Adabala S, Chadha V, Chawla P, Figueiredo R, Fortes J, Krsul I, et al. From
virtualized resources to virtual computing grids: the In-VIGO system. Future
Generation Computer Systems. 2005;21((6)).

38. Delaitre T, Goyeneche A, Kacsuk P, Kiss T, Terstyanszky GZ, Winter SC.
GEMLCA: Grid Execution Management for Legacy Code Architecture Design. 30th
EUROMICRO Conference; 2004.

39. Kacsuk P, Goyeneche A, Delaitre T, Kiss T, Farkas Z, Boczko T. High-level
grid application environment to use legacy codes as OGSA grid services. Fifth
IEEE/ACM International Workshop; 2004; 2004. p. 428 - 35.

40. Bresnahan J, Link M, Khanna G, Imani Z, Kettimuthu R, Foster I. Globus
GridFTP: What's New in 2007. the First International Conference on Networks for Grid
Applications (GridNets 2007); 2007.

41. Terstyanszky G, Delaitre T, Goyeneche A, Kiss T, Sajadah K, Winter SC, et al.
Security mechanisms for legacy code applications in GT3 environment. Parallel,
Distributed and Network-Based Processing, 2005 PDP 2005 13th Euromicro
Conference; 2005; 2005. p. 220 - 6.

42. Geddes J, Lloyd S, Simpson A, Rossor M, Fox N, Hill D, et al. NeuroGrid:
Collaborative Neuroscience via Grid Computing. In: COX S, editor. Proc UK e-Science
All Hands Meeting 2004.

bB1ollograpny

43, Geddes J, Lioyd S, Simpson A, Rossor M, Fox N, Hill D, et al. NeuroGrid:
Using Grid Technology to Advance Neuroscience. Proceedings of the 18th IEEE
Symposium on Computer-Based Medical Systems; 2005; 2005.

44, Geddes J, Mackay C, Lioyd S, Simpson A, Power D, Russel D. The Challenges
of Developing a Collaborative Data and Compute Grid for Neurosciences. Computer-
Based Medical Systems, 2006 CBMS 2006 19th IEEE International Symposium. p. 81-
6.

45. Graham S, Davis D, Simeonov S, Daniels G, Brittenham P, Nakamura Y, et al.
Building Web Services with Java: Making Sense of XML, SOAP, WSDL, and UDDI
Sams Publishing.

46. KEI O, Koich O, Yoshiaki F. A Method to Improve Modularity on Component-
Oriented Web Application Frameworks. IEIC Technical Report (Institute of Electronics,
Information and Communication Engineers).105(229):13-8.

47. Ferris C, Karmarkar A, Yendluri P. Basic Profile Version 2.0. 2007 [cited,;
Available from: http://www.ws-i.org/Profiles/BasicProfile-2_0(WGD).html

48. Adams C, Farrell S. Internet X.509 Public Key Infrastructure: Certificate
Management Protocol. 1999.

49. Griffin P. Introduction To XACML. Web Services Journal 2004 [cited;
Available from: http://dev2dev.bea.com/pub/a/2004/02/xacml.html

50. Bergsten H. JavaServer Pages. O'Reilly Media. 2003.

51. [cited; JWSDP website]. Available from:
http://java.sun.com/webservices/reference/apis-docs/jwsdp2.0.jsp

52. Mahmoud QH. The New Java Web Services Developer Pack 1.4 (Java WSDP
1.4). Sun Developer Network; 2004.

53. GT 2.4: The Globus Resource Specification Language RSL v1.0. [cited;
Available from: http://www.globus.org/toolkit/docs/2.4/gram/rsl_specl.html

54. Burns M, Rowland AL, Rueckert D, Hajnal JV, Hill D. A Grid Infrastructure for
Image Registration and Segmentation. In: Cox CJ, editor. Proc UK e-Science All Hands
Meeting 2004; 2004.

55. [cited; DAGMan website]. Available from:
http://www.cs.wisc.edu/condor/manual/v7.0/2_10DAGMan_Applications.html

56. Wilkinson MD, Links M. BioMOBY: An open source biological web services
proposal. BRIEFINGS IN BIOINFORMATICS. 2002;3(4):331-41.

57. Taylor I, Shields M, Wang I, Philp R. Distributed P2P Computing within Triana:
A Galaxy Visualization Test Case. IPDPS 2003 Conference; 2003.

58. Taylor I, Shields M, Wang I, Philp R. Grid Enabling Applications Using Triana.
Workshop on Grid Applications and Programming Tools, Seattle In conjunction with
GGF8 jointly organized by: GGF Applications and Testbeds Research Group (APPS-
RG) and GGF User Program Development Tools Research Group (UPDT-RG); 2003.
59. Yoo TS, Ackerman MJ, Lorensen WE, Schroeder W, Chalana V, Aylward S, et
al. Engineering and Algorithm Design for an Image Processing API: A Technical
Report on ITK - The Insight Toolkit. Medicine Meets Virtual Reality,] Westwood, ed.
2002:586-92.

60. Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a
hidden Markov random field model and the expectation maximization algorithm. IEEE
Trans on Medical Imaging. 2001;20(1):45-57.

61. Denton ERE, Sonoda LI, Rueckert D, Rankin SC, Hayes C, Leach M, et al.
Comparison and evaluation of rigid and non-rigid registration of breast MR images.
Journal of Computer Assisted Tomography. 1999;23:800-5.

139

Diuvlivstapily

62. Jenkinson M, Smith SM. A global optimisation method for robust affine
registration of brain images. Medical Image Analysis. 2001;5(2):143-56.

63. Sled JG, Zijdenbos AP, Evans AC. A non-parametric method for automatic
correction of intensity non-uniformity in MRI data. IEEE Transactions on Medical
Imaging. 1998;17:87-97.

64. Chen Y, Hassan O, Jonest JW, Weatherill NP, Wang X, Walker DW. The
GECEM: Applying Grid Technology for CEM Research. International Conference on
Data Management, ICDM 2008; 2008.

65. Lin M, W. WD. A portlet service model for GECEM. UK e-Science All Hands
Meeting 2004,: S. J. Cox, editor, Proc.; 2004.

66. Lin M, Walker DW, Chen Y, Jones JW. A web service architecture for GECEM.
UK e-Science All Hands Meeting 2004: S. J. Cox, editor, Proc.; 2004.

67. Lin M, Walker DW, Chen Y, Jones JW. A Grid-based Problem Solving
Environment for GECEM. 2005 IEEE International Symposium on Cluster Computing
and the Grid; 2005.

68. Chen Y, Hassan O, Jonest JW, Weatherill NP, Wang X, Walker DW. A
Service-oriented framework on GECEM Grid. International Conference on Data
Management, ICDM 2008; 2008.

69. Feller M, Foster I, Martin S. GT4 GRAM: A Functionality and Performance
Study.

70. Tivoli Workload Scheduler LoadLeveler. [cited; Available from: http://www-
306.1bm.com/software/tivoli/products/scheduler-loadleveler/

71. [cited; OpenPBS website]. Available from:
http://www.pbsgridworks.com/Default.aspx

72. Laszewski GV, Gawor J, Lane P, Rehn N, Russell M, Jackson K. Features of the
Java Commodity Grid Kit. Concurrency and Computation: Practice and Experience.
2002;14:1045-55.

73. Zhang X, Schopf J. Performance Analysis of the Globus Toolkit Monitoring and
Discovery Service, MDS2. Proceedings of the International Workshop on Middleware
Performance (MP 2004), part of the 23rd International Performance Computing and
Communications Workshop (IPCCC); 2004.

74. Novotny J, Tuecke S, Welch V. An Online Credential Repository for the Grid:
MyProxy. the Tenth International Symposium on High Performance Distributed
Computing (HPDC-10): IEEE Press; 2001.

75. Menezes A, Oorschot PV, Vanstone S, editors. Handbook of Applied
Cryptography: CRC Press; 1996.

76. Butler R, Engert D, Foster I, Kesselman C, Tuecke S, Volmer J, et al. A
National-Scale Authentication Infrastructure. IEEE Computer. 2000;33(12):60-6.

77. Introduction to JSR 168—The Java Portlet Specification. [cited;
sun.developer]. Available from:
http://developers.sun.com/portalserver/reference/techart/jsr168/pb_whitepaper.pdf

78. Shankar A. A General Introduction to (Grid) Portals/Gateways. [cited;
Available from: http://dhruv.uits.indiana.edu/portals/portals-101.pdf

79. Sarkar B. Invoking Assembly Language Programs from Java. 2006 [cited;
Available from: http://today.java.net/pub/a/today/2006/10/19/invoking-assembly-
language-from-java.html

80. Rajasekar A, Wan M, Moore R, Schroeder W, Kremenek G, Jagatheesan A, et
al. Storage Resource Broker - Managing Distributed Data in a Grid. Computer Society
of India Journal. 2003;33(4):42-54.

140

DIDLOZIAPIl Y

81. Prodan R, Zenturio FT. A grid service-based tool for optimising parallel

and grid applications. Journal of Grid Computing. 2004;2:15-29.

82. Niblett P, Graham S. Events and service-oriented architecture: The OASIS Web
Services Notification specifications. IBM Systems Journal. 2005;44(4).

141

