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ABSTRACT

Biochar production and application to soil can mitigate climate change and 
improve soil quality. This thesis investigated the influence of biochar 
preparation methods and application rates on the hydrological and erosional 
characteristics of biochars themselves and the soils to which they were 
applied.

Biochar hydrophobicity was influenced by feedstock and decreased with 
increasing highest treatment temperature (H IT). Biochar did not influence 
soil wettability and the effect of HIT on biochar porosity was more 
important for soil water-holding capacity than its effect on hydrophobicity.
H IT affected biochar yield, cation exchange-capacity and provision of fungal 
substrates. H IT also significantly influenced the effect of biochar on soil 
suction.

Smaller feedstock particles produced biochars that were slightly more 
hydrophobic than those produced from larger particles. The effects of 
biochar application on the properties of sandy loam were influenced by 
biochar particle size, because larger particles had less effect on bulk density 
and had slower water uptake.

A low biochar application rate (5 g kg'1) had no effect on the aggregate 
stability of a silt loam and did not affect the hydrological and erosional 
response of the soil under simulated rainfall. Application rates of 25 and 50 g 
k g 1 reduced aggregate stability, which led to surface sealing and overland 
flow generation occurring more readily. However, there was no more 
erosion of these soils than those with low or zero biochar content, and the 
crusts formed by seal drying were much weaker than those formed on soils 
with low or zero biochar. Biochar was preferentially eroded from the soils, 
regardless of the application rate used.

H IT  and particle size can have important implications both for the 
properties of biochar itself and for its effects on soil properties. However, 
biochar may only substantially influence soil hydrology and erosion when 
applied at sufficiently high rates.
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INTRODUCTION

1 INTRODUCTION

According to the most recent Assessment Report of the IPCC, it is 33 - 66% 

likely that removal of greenhouse gases from the atmosphere will become 

necessary if we are to avoid what the United Nations Framework 

Convention for Climate Change described as 'unmanageable' climate change 

risks (Bierbaum et al, 2007; IPCC, 2013). Building on the work of previous 

reviews, such as the Royal Society study on geoengineering the climate 

(Shepherd et al., 2009) and the comparative global assessment of potential 

negative emission technologies carried out by McLaren (2012), this chapter 

explores some of the most prominent potential means of greenhouse gas 

removal. None of the methods of greenhouse gas removal proposed thus far 

is without challenges. Some of them sequester carbon only temporarily, 

others have adverse ecological impacts, some are prohibitively expensive 

and / or energy-intensive and others are still in the process of being 

developed (McLaren, 2012a).

Biochar production is a means of greenhouse gas removal (GGR) that avoids 

many of the challenges faced by other GGR methods. It is produced by the 

thermal decomposition of biomass in a contained environment with a limited 

supply of oxygen (pyrolysis) and normally within a temperature range 

between around 350°C and 800°C. The biomass used as pyrolysis feedstock 

contains carbon (C), which was initially removed from the air through 

photosynthesis. Biomass typically decomposes rapidly, releasing the carbon 

dioxide (CO2) that was fixed by the plants back into the atmosphere. 

Conversely, biochar is highly recalcitrant and can store carbon (C) for long
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periods (Cheng et al., 2008). Biochar may sequester carbon for several 

thousand years (Lehmann et al., 2009) and its production can be a self- 

sustaining or energy-generating process (see section 3.3), providing a range 

of saleable services and commodities contributing to its economic viability, 

including positive impacts on soil prpperties (McCarl et al, 2009). 

Furthermore, a review of the literature shows that biochar can deliver 

numerous benefits as a soil amendment. It can increase soil fertility by 

improving cation exchange-capacity (CEQ (Liang et al, 2006), limiting 

leaching of nutrients (Laird et al. 2010a) and by directly introducing nutrients 

to the soil (Angst & Sohi, 2013). Biochars can provide substrates and secure 

habitats for soil microbiota (Gundale & DeLuca, 2006), though observations 

of earthworm preference for, or avoidance of, biochar-amended soils have 

been mixed (Van Zwieten et al, 2010; Li et al, 2011). In certain soils, biochar 

amendments can improve water-holding capacity (WHC) (Tryon, 1948; Laird 

et al., 2010b) and aggregate stability (Liu et al, 2012) when applied at 

sufficiently high rates.

This thesis further explores the potential of biochar as a soil amendment.

This introduction is followed by two further introductory chapters. Chapter 2 

briefly explains the potential need for greenhouse gas removal and offers a 

concise review of the literature surrounding some of the most prominent 

means of greenhouse gas removal proposed to date. Chapter 3 offers a 

review of the literature surrounding biochar, exploring the rationale for 

biochar production and exploring its effects on soil properties, with a 

particular focus on the influence of biochar on soil hydrology and erosion.

The subsequent six chapters of this thesis report experiments conducted to 

address some of the research gaps identified in Chapter 3. The objectives of
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this thesis were to investigate how the preparation of biochars (i.e. use of 

different pyrolysis temperatures, feedstocks and particle sizes) can influence 

their effect on soil hydrology and related properties, and how different 

biochar application rates influence soil hydrology and physical breakdown 

during rainfall. These objectives were achieved by addressing three main 

strands of enquiry:

i. How do feedstock type and highest treatment temperature (HTT) 

influence biochar hydrophobicity, CEC and yield?

ii. In what ways do the HTT and particle size of biochar amendments 

influence their effects on soil hydrological properties?

iii. How do different biochar application rates influence the hydrological 

and erosional response of soil during simulated rainfall?

§

In Chapter 4, the influence of HTT and feedstock on biochar hydrophobicity, 

yields and CEC are examined. Chapter 5 explores the extent to which HTT 

influences the effects (in the short-term) that biochar amendments have on 

soil properties, focusing particularly on moisture retention. Chapter 6 

employs the same methodologies as those used in Chapter 5 to investigate 

the extent to which particle size influences the effects that biochar 

amendments have on soil properties, again with a focus on moisture 

retention. Finally, in Chapters 7 and 8, simulated rainfall is used to 

investigate the effect of different biochar application rates on soil hydrology 

and erosion. Chapter 9 presents the conclusions arising from the five 

experimental chapters, discusses their potential implications and makes 

suggestions for further research.
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2 GREENHOUSE GAS REMOVAL

2.1 Introduction

International policy discussion on mitigating anthropogenically enhanced 

global warming has been framed around limiting warming to an increase of 

2°C above pre-industrial levels, a figure widely held to represent an upper 

limit that warming must not exceed if we are to avoid 'unmanageable' 

climate change risks with irrevocable consequences (Commission for 

European Communities, 2007; Bierbaum et al, 2007; Meinshausen, 2009; 

UNFCCC, 2009).

Apart from water vapour, carbon dioxide is by far the most significant of 

anthropogenic greenhouse gases. According to the Fifth Assessment Report 

of the Intergovernmental Panel on Climate Change, greenhouse gas 

emissions in 2011 were the CO2 equivalent (CChe) of 38 gigatonnes (Gt). 

Cumulative anthropogenic emissions reached 1,947 Gt CC>2ein 2011 (IPCC, 

2013). In order to have more than a 50% chance of not exceeding 2°C 

warming relative to pre-industrial levels, cumulative emissions will have to 

be limited to less than 4,437 Gt C02e (IPCC, 2013). There is a 33 - 66% chance 

that it will be necessary to remove greenhouse gases from the atmosphere to 

stay within this limit (IPCC, 2013). Increasing numbers of countries (112 

currently) now support a more conservative wanning limit of 1.5°C, which 

would require an atmospheric CO2 concentration of 350 ppm (350.org 2013). 

Every part per million corresponds to 7.8 Gt CO2 (Socolow et al, 2011). On 

current emission trends, returning atmospheric CO2 to 350 ppm by the year 

2100 would require removal of 20 - 50 Gt CO2 per annum for 50 to 75 years
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(McLaren, 2012b). Reducing atmospheric CO2 concentrations will also 

mitigate other direct consequences of elevated atmospheric CO2 such as 

ocean acidification, which cannot be addressed by geoengineering 

techniques that do not reduce atmospheric CO2 (Shepherd et al, 2009).

Scientists and engineers have proposed several methods of removing 

greenhouse gases from the atmosphere, often referred to as negative 

emissions technologies, most of which are focused on capture of CO2, rather 

than other more potent, but less prolific greenhouse gases such as methane 

or nitrous oxide. The most prominent of these methods of carbon 

sequestration are discussed below. For the sake of brevity, other greenhouse 

gas removal methods with significant potential, such as use of timber in 

construction, carbon negative cement, hempcrete and wetland creation are 

not examined here.

2.2 Bioenergy with carbon capture and storage

Commonly referred to in the literature as BECCS, this approach to carbon 

sequestration involves combining two technologies commonly associated 

with mitigation efforts: bioenergy and carbon capture and storage (CCS). 

Bio-energy crops take up CO2 as they grow and can then be burned to release 

energy directly, or converted to liquid fuels such as ethanol. 80-90% of the 

CO2 released during these combustion or conversion processes can be 

captured using CCS (IPCC, 2005), resulting in a net sequestration of carbon.

It has been proposed that by 2050, a net total of 0.8 - 3.2 Gt CO2 could be 

pumped into geological storage annually through use of BECCS, assuming a 

biomass supply of 126 exajoules (EJ) a year (Koomneef et al., 2011). This



GREENHOUSE GAS REMOVAL

would necessitate an upscaling by two orders of magnitude of the 

international trade of solid and liquid biofuels, which in 2006 was about 0.9 

EJ (Heinimo & Junginger, 2009). There is considerable variability in 

projections of global biomass potential due to differences in how 

comprehensively different resource categories are included and uncertainties 

and sensitivities in the parameters used to project the availability of 

resources needed for biomass production. Assessments of the global biomass 

potential availability range three orders of magnitude, from 50 to 1,500 EJ a 

year, the variations being largely due to different forecasts of land 

availability and yield improvement for both food and energy crops 

(McGIashan et al., 2012). Koomneef et al (2012) estimated that the economic 

potential of BECCS could be as high as 3.5 Gt CO2 y*1, but this assumes a CO2 

price of €50 per tonne. In contrast, prices under the European Union 

Emission Trading System (the world's largest carbon market) in early 2014 

were only around €5.

The challenges for BECCS are not only economic; its widespread 

implementation could place significant strain on natural resources. 

According to Bemdes (2008), a large-scale expansion of energy crop 

production could lead to a large increase in evapotranspiration, potentially 

as large as the present evapotranspiration from global cropland, which could 

enhance already stressed water situations in Some countries. However, this 

would of course depend on the nature of the initial vegetation replaced by 

energy crop production. Smith & Tom (2013) estimate that removal of 3.7 Gt 

CO2 annually using switchgrass BECCS would have a nitrogen requirement 

equivalent to 44% of global N fertiliser production in 2009, and require 2 

million km2 of land (20 times the current US area under bioethanol 

production). Demand for biofuels plantations has in the past resulted in
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'land-grabbing', considered by some to have negative environmental and 

social impacts, particularly for farmers in developing countries (Zoomers, 

2010; Borras et al, 2011). Conversion of natural forests to pine or eucalyptus 

monocultures has increased in recent decades with deleterious effects for 

biodiversity (Zurita et al, 2006). Bioenergy projects can convert native 

habitats to cropland directly or indirectly, by displacing cropland or 

rangeland, resulting in land clearance elsewhere (Lapola et al, 2010). 

Simulations conducted by Lapola et al (2010) have shown carbon emissions 

arising from land use changes for biofuel crops can outweigh the emissions 

savings made by replacing fossil fuels with biofuels (though it should be 

noted that these simulations were for bioenergy without CCS). A further 

challenge for BECCS is its dependence on sites for geological storage of CO2 

(see section 2.5).

2.3 Forestation

Canadell & Raupach (2008) estimated that efforts aimed at reforestation and 

reduced deforestation could achieve sequestration of up to 5.5 Gt CO2 year1, 

assuming carbon sequestration and avoidance prices of between US$ 20 and 

100 per tonne of CO2. This would offset 2 - 4% of projected emissions 

increases over the same period (Canadell & Raupach, 2008). Lenton (2010) 

estimated that foresting an area of 2.64 million km2 could store 0.77 - 1.54 Gt 

CO2 per year.

However, although carbon sequestration rates of temperate forests are high, 

the net climate forcing of temperate forests is uncertain as they have lower 

albedo than croplands and many climate model simulations indicate that 

trees warm surface air temperature relative to crops (tropical forests also



GREENHOUSE GAS REMOVAL

have relatively low albedo but this is offset by strong evaporative cooling) 

(Bonan, 2008; Arora & Montenegro, 2011). In any case, the primary 

production the terrestrial biosphere is expected to decrease with increasing 

global temperatures (despite the effect of CO2 fertilization), reducing their 

capacity as carbon sinks (Woodward, 2007). Moreover, any carbon 

sequestered by forests may be vulnerable to future climate change or reversal 

by burning (Jones et al, 2013).

Forestation projects could be problematic in terms of land and water 

resources. Projections indicate that rising world population and changing 

diets may require an additional 2m km2 of land (an area more than 8 times 

the size of the UK) devoted to food production by 2050 (Tilman et al., 2011). 

Without significant agricultural intensification, almost 10 million km2 (an 

area larger than the US) may be required (Tilman et al, 2011). Large 

forestation projects could therefore lead to a significant gap between land 

demand and availability, leaving the world's growing population unable to 

feed itself. Smith & Tom (2013) estimated that tropical forestation could 

increase local evapotranspiration from 50% of mean annual precipitation to 

75%, placing significant strain on local water resources. However, it should 

also be noted that increased evapotranspiration would tend to result in an 

increase in low elevation cloudiness which would increase planetary albedo 

and therefore have a cooling effect cm global temperatures (Ban-Weiss et al, 

2011).
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2.4 Reduced tillage

Much research has been focused on the potential for reduced tillage to result 

in soil carbon sequestration (Follet, 2001; West & Post, 2002; Lai, 2004). When 

natural grassland or forest is converted to cropland, as much as 50% of the 

soil carbon is lost, primarily because annual tilling increases decomposition 

rates by aerating, or exposing, undecomposed organic matter - around 55 

GtC has been lost historically in this way (Pacala & Socolow, 2004). A review 

of data from the National Soil Inventory of England and Wales obtained 

between 1978 and 2003 showed carbon was lost from soils across England 

and Wales over the survey period at a mean rate of 0.6% y r1 (Bellamy et al.,

2005). However, a more recent survey by Emmett et al. (2007) was unable to 

confirm this loss, finding no net change in carbon concentration between 

1978 and 2007. Pacala & Socolow (2004) estimated that if conservation tillage 

practices had been applied to all cropland globally in 2004 in conjunction 

with enforced adoption of credible soil conservation methods, 12.5 - 25 Gt C 

could be stored by 2054. This represents 7 -14% of the 175 GtC capture and 

sequestration Pacala & Socolow (2004) claim is necessary to limit 

atmospheric CCh concentrations at 500 ± 50 ppm.

The literature surrounding reduced tillage can be ambiguous, with titles such 

as "Conservation Tillage for Carbon Sequestration" (Lai Ac Kimble, 1997) 

imprecisely suggesting that reduced tillage directly results in soil removing 

atmospheric carbon. When soil is tilled, soil carbon is oxidised, and removal 

of crop residues to facilitate easier tillage means organic carbon is removed 

that could otherwise be assimilated into the soil through humification (Lai, 

2004). However, removing crop residues from a field does not necessarily 

mean organic carbon cannot be assimilated into soil elsewhere. Also, whilst
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reducing tillage does reduce the amount of carbon released into the 

atmosphere by oxidation, it does not directly increase the amount of new soil 

carbon (Burras et al., 2001; Sundermeier et al., 2005). Rather, increased soil 

carbon associated with conservation tillage is a result of indirect carbon 

sequestration from decomposition of crop residues left in-situ (rather than 

being removed for easier tillage), in conjunction with reduced oxidation of 

soil carbon, resulting in a lower rate of loss (Burras et al., 2001; Sundermeier 

et al., 2005). There is no conclusive evidence that reducing tillage increases 

direct sequestration by chemical reactions converting carbon dioxide into soil 

inorganic carbon compounds (Burras et al, 2001; Sundermeier et al, 2005). 

Any carbon sequestration associated with conservation tillage practices 

could actually be achieved without conservation tillage, because crop 

residues can conceivably be temporarily removed before tillage then 

returned as mulch afterwards.

Harbinson (2001) argued that carbon emissions savings achieved through 

reduced tillage might actually be cancelled out by production, transport and 

application of the herbicides needed in place of tillage. This argument is 

countered somewhat by writers who point to the reduced CO2 emissions 

resulting from reduced use of farm machinery (Koga et al., 2003; Lithourgidis 

et al., 2005) and also by the fact that in horticultural systems, weeds are often 

suppressed using mulching rather than herbicides. A large proportion of the 

carbon that accumulates in soils through conservation tillage is labile and 

could easily be lost through soil disturbance (Jacinthe & Lai, 2006). In soils 

with a carbon content of greater than 100 g kg:1, the rate of loss has been 

found to be 2 % y r1 (Bellamy et al, 2005). Strand & Benford (2009) argue that 

soil sequestration is inefficient and temporary because after 20 years, less 

than 10% of the original crop residue carbon remains in the soil, and once at
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equilibrium, even this is matched by a loss. Furthermore, whilst there is still 

debate as to the precise effect of climate change on global soil carbon stocks, 

it has been speculated that as global temperatures increase, soil respiration 

may be accelerated, enhancing carbon decomposition (Davidson and 

Janssens, 2006). Reducing tillage does not so much sequester carbon as 

reduce oxidation of soil carbon and might therefore be better understood as 

means of reducing agricultural carbon emissions rather than as a means of 

carbon sequestration.

Calculating atmospheric CO2 removal by conservation tillage is challenging 

and there is no conclusive evidence that it increases carbon storage in all soils 

(Powlson et al, 2012; Stockmann et al, 2013). Furthermore, caibon storage 

associated with reduced tillage might be counteracted by increased soil 

emissions of nitrous oxide, a highly potent greenhouse gas (Powlson et al., 

2012). It has been estimated that implementation of conservation tillage 

practices could arable a peak storage of 0.77 Gt CO2 per year (Thomson et al.,

2008). However, soils would eventually become carbon-equilibrated, so this 

rate could not be sustained (Stockmann et al., 2013).

2.5 Direct air-capture

Several methods have been proposed for capturing CO2 directly from 

ambient air using chemical sorbents such as sodium hydroxide or polymer 

based ion-exchange resins (Stolaroff et al, 2008; Lackner, 2009). These 

sorbents would then be heated or washed to release CO2 which would be 

pressurised and injected into geological storage. Cost estimates for direct air 

capture methods vary dramatically (from 30 to >600 US dollars per tonne of 

CO2 captured), partly because some methods would adapt existing
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technology from scrubbing towers (Socolow et al., 2011; Holmes & Keith, 

2012; Mazzotti et al., 2013), while others would utilise novel technology that 

is less well-established but may have the potential to become cheaper and 

more efficient in the long-term (Lackner, 2009). Either way, even the most 

optimistic cost estimates far exceed current carbon prices. In 2013, under the 

European Union Emissions Trading Scheme (EU ETS), the world's largest 

carbon market, carbon prices were €41-1 CO2, equivalent to US $511 CO2. 

(World Bank, 2014). Models developed by Thomson Reuters Point Carbon, 

suggest that CO2 prices for 2030 may range from €40-50 tr1 CO2 (Ferdinand, 

2014).

An additional challenge (and cost) to direct air capture methods (and also 

BECCS) is geological storage. Cost estimates for geological storage of CO2 

span two orders of magnitude depending on the storage site location (DECC, 

2012). Geological storage projects in Europe have been abandoned because of 

public opposition arising from fears about safety and inadequate 

involvement of local stakeholders (Brunsting et al, 2011). Should these 

challenges be overcome however, direct air capture would be highly scalable 

and would theoretically be capable of sequestering several Gt CO2 annually 

(McLaren, 2012a), assuming sufficient geological storage availability.

2.6 Ocean fertilization

Iron is a necessary trace element for photosynthesis, but it is highly insoluble 

in seawater and its low availability limits phytoplankton growth in the high 

nutrient-low chlorophyll regions of the oceans such as the North-East and 

Equatorial Pacific. Large phytoplankton blooms can therefore be created by
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introducing iron to the upper-ocean in iron-deficient waters. Iron would 

enhance phytoplankton productivity and lower levels of dissolved CO2 in the 

upper-ocean, which could lead to carbon levels being restored through a flux 

of atmospheric CO2, reducing atmospheric CO2 levels (Jones & Young, 1997). 

When the phytoplankton die, a proportion would sink to the deep ocean, 

storing the carbon they hold there. However, the efficacy by which ocean 

fertilization would sequester CO2 is poorly constrained (Buesseler, 2008). An 

alternative means of enhancing phytoplankton growth is the use of vertical 

pipes that utilise wave energy to pump nutrient-rich waters from below the 

thermodine into the relatively nutrient-poor waters at the ocean surface, 

promoting algal blooms (Lovelock & Rapley, 2007).

Ocean fertilization is considered by its proponents to have multiple benefits 

besides carbon sequestration. Increasing the productivity of plankton 

through ocean fertilization could increase fish stocks, contributing to much- 

needed global protein production (Jones & Young, 1997). Ocean fertilization 

might be considered a dual-pronged approach to climate change mitigation 

as phytoplankton (such as the coccolithophorid Emiliania Huxleyi) produce 

dimethyl sulphide, which is oxidised in the atmosphere to sulphur dioxide 

which can form sulphate aerosols that increase Earth's albedo, causing 

cooling (Wingenter et al., 2004). However, the production of cloud-forming 

particles from dimethyl sulphide is highly episodic, so assessing the potential 

impact of ocean fertilization on albedo is difficult (Wingenter et al., 2004).

Despite its supposed benefits, ocean fertilization is yet to be accepted by the 

scientific community as a viable means of CO2 sequestration. The efficiency 

of iron fertilization in sequestering atmospheric carbon remains largely 

unknown (Aumont & Bopp, 2006). Buesseler et al. (2008) note that modelling
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studies have suggested that ocean iron fertilization would be unlikely to 

sequester more than several hundred million tons of carbon per year and 

would thus be unable to make more than a minor contribution to emissions 

mitigation. Furthermore, there is currently little understanding of the 

intended and unintended ecological and biogeochemical impacts of iron 

ocean fertilization which are spread over a large area by oceanic circulation, 

making long-term assessment and verification problematic (Buesseler et al.,

2008). The energy costs of iron fertilization are likely to be high as it would 

involve shipping to rather distant regions of the ocean in some cases. Most 

commentators stress that ocean iron fertilization cannot be considered a 

viable means of generating carbon offsets until there is stronger evidence that 

ocean iron fertilization effectively removes atmospheric CO2, retains carbon 

in the ocean for a quantifiable period, and has predictable and acceptable 

environmental impacts (Buesseler et al., 2008; Shepherd et al, 2009). There is 

currently an international moratorium on major ocean iron fertilization until 

scientists better understand the potential risks and benefits of manipulating 

the oceanic food (Secretariat of the Convention on Biological Diversity, 2009).

2.7 Ocean liming

Ocean liming would involve heating limestone (CaCOs) until it breaks down 

into CO2 (which must be captured and pumped into geological storage) and 

lime (CaO), which would be released into the surface waters of the ocean 

(Renforth et al., 2013). The lime would react with CO2 dissolved in seawater 

to form bicarbonate (H2CO3) and thus enable the seawater to absorb 

additional atmospheric CO2 to replace that removed by formation of 

bicarbonate (Renforth et al., 2013). As limestone is abundantly available, the
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only limiting factors for ocean liming are energy for calcining limestone, 

vessels and port facilities, and the availability of geological storage for the 

CO2 released during calcining which must be captured and stored (see 

section 2.5).

Ocean liming would deliver the co-benefit of increasing ocean alkalinity, 

counteracting the effect of elevated CO2 concentrations in lowering ocean pH 

(Paquay & Zeebe, 2013). However, the ecological effects of heightened local 

alkalinity following ocean liming have not yet been discussed in the 

literature, nor have the onshore effects of the process, which would include 

extensive quarrying. Cost estimates for ocean liming range from US$ 72 to 

US$ 15911 CO2 sequestered (Renforth et al., 2013; Paquay & Zeebe, 2013), but 

these figures are highly uncertain. Using ocean liming to capture 3.7 Gt CO2 

annually would probably require an industry larger than the current global 

cement industry (McGlashan et al, 2012).

2.8 Oceanic burial of crop residues

"Crop residue ocean permanent sequestration (CROPS)" as it was branded 

by Strand & Benford (2009), can be simply defined as the removal of crop 

residues for deep ocean burial. Strand & Benford (2009) stated that CROPS is 

92% efficient in sequestration of crop residue carbon and could potentially 

capture 15% of the current global CO2 annual increase, using existing 

infrastructure and technology to confine the carbon for millennia. However, 

Karlen et al. (2009) argued that CROPS could have harmful consequences as 

crop residues provide multiple services in agricultural systems - including 

protection against soil erosion, food sources for many organisms, enhanced 

water infiltration, retention and release, enhanced nutrient cycling and
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improved soil structure - all of which are critical for sustaining the soil 

resources upon which we depend for food, livestock feed, fibre and biofuel 

feedstocks. Nutrients lost through removal of crop residues would have to be 

replaced by fertilizers and costly, specialised equipment with additional 

operator time would also be required, resulting in a high opportunity cost 

associated with harvesting crop residue (Karlen et al., 2009). The potential 

loss of phosphate is also particularly serious in view of the ongoing depletion 

of phosphate resources. Karlen et al. (2009) also pointed out that the 

transportation costs and CO2 released through combustion of transportation 

fuels pose a significant threat to the credibility of CROPS as a viable means of 

sequestration. Furthermore, unless sufficient material were deposited to 

create anoxic conditions (this in itself constituting a major ecosystem 

perturbation), organic material would be slowly decomposed and the carbon 

and nutrients returned to shallow waters, disrupting growth and nutrient 

cycling in the ocean ecosystem (Shepherd et al., 2009).

2.9 Enhanced weathering

When silicate minerals dissolve in seawater or rainwater, CO2 is drawn in to 

the resultant solution, forming carbonate ions, which can be incorporated 

into the shells or skeletons of certain aquatic organisms, a portion of which 

sinks into the deep ocean when the organisms die (Hartmann et al., 2013).

This process can be described by the following simplified equation for 

enhanced weathering of olivine:

Mg2SiOA + 4C02 + 4H20 -> 2Mg2+ + 4HC03.  -I- HASiOA 

2MgC02 4" Si02 4 2C02 + 4-H20
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Enhanced weathering would involve applying finely ground, silicate- 

containing rocks to soils (Schuiling & Krijgsman, 2006) or seawater (Kohler et 

al., 2013) to augment this process in order to reduce atmospheric CO2 levels. 

Kohler et al. (2010) estimated that global use of enhanced weathering might 

annually capture up to 3.7 Gt CO2 if the difficulties of spreading silicate 

minerals in remote, densely forest areas could be overcome. This method is 

currently conceptual as the weathering rates achieved in laboratory 

experiments are yet to be replicated in field trials, where weathering is 

typically 2 -4  orders of magnitude slower (White & Brantley, 2003). 

Moreover, enhanced weathering is not without its risks. Release of elements 

such as Si, P and K during mineral dissolution could result in an inadvertent 

ocean fertilization effect, disrupting oceanic ecosystems (Kohler et al., 2013). 

Use of enhanced weathering on agricultural land could also have a 

fertilization effect, but might also result in crop uptake of toxic metals 

(Hartmann et al., 2013).

2.10 Summary

If we are to be certain that global warming will not exceed 2°C above pre- 

industrial levels, greenhouse gas removal may become necessary. Severed 

methods of carbon sequestration have been proposed. Some of these 

methods sequester carbon only temporarily, others might have adverse 

ecological impacts, some are prohibitively expensive and / or energy- 

intensive and others are still in the process of being developed.

Although forestation has significant potential for carbon sequestration, its net 

climate forcing is uncertain and forest productivity is in any case expected to 

decline as temperatures increase, while forestation projects will face growing
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competition for land and water resources and population increases. Reduced 

tillage could help increase soil carbon storage, but the efficacy of carbon 

sequestration through conservation tillage remains unclear. Direct air- 

capture methods would be capable of removing and securely storing large 

volumes of carbon dioxide, but are unlikely to become economically viable 

under foreseeable carbon market conditions. Ocean fertilization is a means of 

carbon sequestration that could have beneficial side-effects such as increased 

fish stocks, but its efficacy and ecological impacts remain unclear. Ocean 

liming could sequester large volumes of CO2, but its ecological impacts are 

yet to be explored. Furthermore, along with direct air-capture and BECCS, 

ocean liming is dependent on the successful development of geological CO2 

storage, which is costly and politically sensitive. The potential economic and 

ecological costs of CROPS seem to outweigh its limited carbon sequestration 

potential. Enhanced weathering has significant carbon sequestration 

potential, but only if the rates of weathering observed in field trials can be 

dramatically increased.

An additional means of greenhouse gas removal that has not been discussed 

in this chapter is the production of biochar. Although biochar does share 

some of the challenges faced by the greenhouse gas removal methods 

described above, there are many that it might avoid. The potential of biochar 

is explored in detail in the following chapter.
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3 BIOCHAR FOR GREENHOUSE GAS
MITIGATION AND SOIL IMPROVEMENT: 
A REVIEW

3.1 Introduction

The application of biochar to soil has been proposed as a novel approach to 

establish a substantial long-term sink for atmospheric CO2 in terrestrial 

ecosystems (Lehmann et al., 2006). Biochar is generally considered to 

comprise biomass-derived char produced specifically for application to soil 

(Sohi et al., 2010). Increased crop yield is a frequently reported benefit of 

applying biochar to soil and meta-analysis has shown a small but statistically 

significant benefit of biochar application on crop productivity, with a grand 

mean increase of 10% (Jeffery et al., 2011). It should be noted however, that 

the results for each analysis within the meta-analysis covered a wide range, 

from -28% to 39%, and were dependent on the biomass used to produce 

biochar, the application rate and nature of the soil to which biochar was 

applied (Jeffery et al., 2011).

Recent research on biochar was instigated by the discovery of terra preta soils 

in the Amazon. These anthropogenic soils have textures, mineralogy and 

other geochemical signatures similar to those of adjacent soils but are often 

distinguishable by their higher contents of ceramic and lithic artefacts and 

also by their characteristic black colour which contrasts with the Ferralsols 

typical of the area (Dawit et al, 2007). Compared to adjacent soils, these 

anthrosols have been shown to have accumulated much higher levels of
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fertility over time under non-agricultural use. The terra preta soils have come 

to be known as Amazonian Dark Earths and are estimated to have developed 

between 500 and 9000 years B.P. through human activity including biomass 

burning and nutrient deposition on pre-Columbian Amerindian settlements. 

It has been suggested that soils could be enhanced today in a similar manner 

through the use of biochar (Lehmann & Joseph, 2009a).

Biochar is produced by the thermal decomposition of biomass in a sealed 

environment with a limited supply of oxygen (pyrolysis) and normally 

within a temperature range between around 350°C and 800°C. Many studies 

also include biomass heated to temperatures between 200 and 300°C within 

their definition of biochar, but for the purposes of this literature review, such 

products are considered to be torrefied material (Zheng et al., 2012; Atienza- 

Martmez et al., 2012) rather than biochar. Mok et al. (1992) found that 

structured degradation of cellulose only began at around 300°C; for woody 

species the threshold was higher (312 - 322°C), while for herbaceous plants 

the threshold was slightly lower (291 - 299°C). These temperature ranges 

broadly correspond the endothermic (< 280°C and > 350°C) and exothermic 

(> 350°C) phases of biomass pyrolysis (Evans, 2008).

Biochar differs from charcoal in that it is specifically produced as a means of 

carbon sequestration and as a soil amendment, and therefore it can be 

produced from any biomass feedstock, whereas charcoal tends to be 

produced from woody feedstocks. The biomass used as pyrolysis feedstock 

contains C, which was initially removed from the air through 

photosynthesis. Biomass typically decomposes rapidly, releasing the CO2 

that was fixed by the plants back into the atmosphere. Converseley, biochar
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is highly recalcitrant and is thus able to store C for long periods (Liang et al., 

2008; Lehmann et al., 2008).

The physio-chemical properties of biochar are difficult to define as they are 

dependent on the organic material and charring conditions used. The crucial 

property of biochar is its high C content, which largely comprises sheets of 

aromatic compounds characterised by rings of six C atoms linked together 

without oxygen or hydrogen atoms which are otherwise more plentiful in 

living organic matter (Lehmann & Joseph, 2009a). Graphite comprises 

aromatic rings arranged in perfectly stacked and aligned sheets, but pure 

graphite is not formed to any significant extent within the temperature 

ranges used to produce biochar. Pyrolysis instead yields rather more 

irregular (turbostratic) arrangements of C that contain O, H, and sometimes 

minerals, depending on the feedstock (Lehmann & Joseph, 2009a; Downie et 

al., 2009). The crystalline particles comprising biochar enlarge and become 

more ordered with increases in highest treatment temperature (HIT) 

(Downie et al., 2009).

Several of the challenges faced by other means of greenhouse gas removal 

discussed in the previous chapter are not shared by biochar. Firstly, biochar's 

sequestration of carbon is not dependent on geological CO2 storage.

Secondly, rather than having high energy-costs, biochar production can 

release energy as a co-product. Thirdly, although negative impacts are 

possible when biochar is applied to soil, it often has positive ecological 

impacts. Fourthly, biochar production has potential as a commercially viable 

enterprise as it produces saleable commodities and is therefore not purely 

reliant on emissions trading. Finally, unlike many other sequestration
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technologies, which are at the concept or pilot stages of development, 

biochar production is an old technology that can be adopted at various scales 

and used today. The viability of biochar for CO2 sequestration is examined in 

greater detail below. Beginning by exploring the biochar as a means of 

greenhouse gas mitigation and the relative energy efficiency of biochar 

production, this review then briefly discusses the energy efficiency of biochar 

production, its potential as a waste-management tool and the economic 

viability of biochar production. However, the majority of this review is 

devoted to investigating the emerging body of knowledge regarding the 

effects of biochar amendments on soil nutrient dynamics, biota, hydrology 

and erosion.

3.2 Biochar for greenhouse gas mitigation

Woolf et al. (2010) estimated that without endangering food security, habitat 

or soil conservation, production of biochars and their application to soil 

could directly sequester 1.8 - 3.3 Gt CO2 per year, whilst also avoiding an 

additional 1.8 - 3.3 Gt CChe of net global emissions of CO2, N2O and CH4, 

equating to 12% of current anthropogenic CCfce emissions. It should, 

however, be acknowledged that such a widespread implementation of 

biochar technology could share some similar challenges to those of BECCS 

and forestation methods of greenhouse gas removal (see Chapter 2).
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3.2.1 Carbon sequestration in biochar

The physical, chemical and biological stability of biochars are of fundamental 

importance to their use as a carbon sequestration technology, as this will 

determine how long C applied to the soil as biochar will remain sequestered 

in the soil and also how long it can influence pedospheric greenhouse gas 

emissions (Lehmann et al., 2009).

The chemical recalcitrance of biochar persists over long periods. A study of 

black carbon in die Amazonian Dark Earths found there were no differences 

in aromatidty between biochar particles of ages between 700 and 7000 years 

(Liang et al., 2008). In Kenya, a study of the first 100 years of biochar 

exposure to soil found that whilst surfaces of biochar particles were oxidised 

rapidly within 5 years, below this lQnm thick surface layer the 0:C ratio 

remained unchanged (Nguyen et al, 2008). This indicates that whilst biochar 

does decompose to a degree, the stability of the remaining biochar persists 

over long periods. Radiocarbon dating of charcoal found in high proportions 

in the Amazonian Dark Earths indicates that it originated between 500 and 

7000 years ago (Lehmann et al, 2009). Other studies have found soil charcoal 

deposits up to 9500 years old in central Guyana (Hammond et al, 2007) and 

deposits over 23,000 years old in Costa Rica (Titiz & Sanford, 2007). It should 

be noted, that these findings may be indicative only of the recalcitrance of 

certain portions of charcoal, as it is possible that other portions were 

degraded prior to dating.

Lehmann et al. (2008) compared annual production of black carbon by 

savannah fires to measured char stocks for various soils in North Australian 

woodlands. Assuming the most likely and conservative scenarios of the
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proportions of char produced per unit biomass burned, the extent and 

frequency of biomass burning and biomass production, evidence suggests 

the mean residence time of char in the dryland conditions of Northern 

Australia is between 1300 and 2600 years (Lehmann et al., 2008). However, 

whilst the above data provide some indication of the potential stability of 

biochar, they provide no evidence of biochar's actual decomposition rates. 

Furthermore, few studies have investigated the stability of biochar under 

mid-latitude and temperate climatic conditions. Gomez et al. (2014) observed 

increased CO2 emissions from temperate soils with increasing biochar 

application rate, but this could only be partially explained by priming - 

microbial utilization of biochar carbon.

Carbon budgeting of biochar suggests that its average stability is much 

greater than that of plant litter. Forbes et al. (2006) estimated global 

production of black carbon (produced by incomplete combustion of biomass 

or fossil fuels) to be between 0.05 and 0.27 Gt C y 1. This is less than 0.5% of 

the global net primary production by land plants, estimated by Sabine et al.

(2009) to be about 57 GtC y 1. However, a study of soils selected from long­

term research plots in five widely different agricultured areas of the USA 

found that charcoal constituted between 10 and 35% of the total organic 

carbon in the soils (Skjemstad et al, 2002), and a previous study of four 

different soil types in Australia found charcoal constituted up to 30% of total 

soil carbon (Skjemstad et al., 1996). Combined, these studies indicate that 

biochar has a significantly slower rate of decomposition than plant litter.

It is important to note that differences in biochar stocks over time should not 

be interpreted only in terms of decomposition or mineralization to CO2, as
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biochar can also be removed from soil by leaching or erosion (Olson and 

Tryterud, 2000; Czimczik et al, 2003; Rumpel et al, 2006; Lehmann et al, 2009; 

Major et al, 2010). Consumption by subsequent fires has also been 

considered a major mechanism of black carbon losses from soil (Preston & 

Schmidt, 2006; Czimczik & Masiello, 2007), but recently published data 

indicate that losses by fires are actually likely to be small (Santin et al., 2013).

The effect of biochar application on soil organic matter is debated, with some 

studies indicating increased mineralization (positive priming) and others 

indicating a decrease in C metabolism, causing increased stabilization of soil 

organic carbon (negative priming). For example, Cross and Sohi (2011) found 

that carbon mineralization was often higher in biochar-amended soil but 

demonstrated that this was due to swift utilization of a small, labile 

proportion of the biochar rather than a positive priming effect on native soil 

organic matter. In fact, for grassland soils, biochar actually had a negative 

priming effect (Cross and Sohi, 2011). Conversely, although Farrell et al.

(2013) observed a substantial reduction in positive priming of biochar 

amended soils after 15 days of incubation, it nonetheless remained persistent 

throughout 74 days of incubation. Observations of enhanced losses of boreal 

forest litter in the presence of black carbon had led some commentators to 

speculate that the carbon sequestration potential of biochar might be 

significantly offset or even negated by losses of non-pyrogenic soil organic 

carbon (Wardle et al, 2008; Lehmann & Sohi, 2008). However, it has since 

been demonstrated that the potential effect of increased labile organic carbon 

decomposition is negligible, even when assuming that (i) the priming effect 

is the largest recorded in any published study and (ii) ther priming effect 

persists in the long-term (Woolf & Lehmann, 2012).
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Zimmerman (2010) found that carbon release from year-long abiotic 

incubations of biochar was 50-90% that of microbially inoculated incubations, 

indicating that abiotic processes were consistently responsible for about half 

the oxidation of black carbon during the year. These conclusions contrast 

with those of Cheng et al. (2009) who examined changes in surfidal 

functional-group chemistry following 4-month incubations at 30°C and 

found that abiotic processes were more important than biotic processes. 

However, Zimmerman (2010) argued that BC loss via mineralisation 

(oxidation to CO2) probably occurs at different rates and by different 

processes to.the oxidation of the BC surface to O-containing functional 

groups. It is also noteworthy that the two experiments used different 

microbial inoculants and are therefore not directly comparable. Cheng et al.

(2006) state that increases in hydrophilidty brought about by abiotic 

oxidation could also facilitate higher levels of microbial oxidation.

Lehmann (2007a) argued that quantification of the long-term stability of 

biochar will require long-term observations that are impractical for 

traditional experiments. As biochars consist of recaldtrant aromatic ring 

structures and more easily degradable aliphatic and oxidized carbon 

structures, a portion of a given biochar partide may indeed be mineralized 

very rapidly in a short-term experiment, but an extrapolation of data 

produced by such an experiment to the whole biochar could lead to 

erroneous projections (Lehmann, 2007a). Furthermore, whilst surface 

oxidation may be initiated within timescales as short as a few months (Cheng 

et al., 2006), even after hundreds of years it can remain restricted to the outer 

areas of a particle, meaning that quantification of the decomposition of fresh
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biochar through short-term experiments may lead to overestimation of long­

term decay (Lehmann, 2007a).

Zimmerman (2010) demonstrated that increasing pyrolysis temperature has 

an exponential effect on the long-term stability of the resultant material to 

both abiotic and microbial decay. For example, the difference between the 

half-lives of material pyrolysed at 250°C and 400°C was -20%, but there was 

an order of magnitude difference between the stability biochars produced at 

525°C and 650°C (Zimmerman, 2010). Masek et al (2013) also found that the 

concentration of stable (not susceptible to thermal and chemical oxidation) 

biochar increased with increasing pyrolysis temperature. However, actual 

yield of the stable biochar fraction is almost independent of pyrolysis 

temperature (Masek et al, 2013).

3.2.2 Influence of biochar on soil greenhouse gas emissions

There is evidence to suggest that greenhouse gas emissions from soil may be 

significantly reduced by biochar application. Rondan et al (2005) reported 

that applying biochar at a rate of 201 h a 1 to an add savannah soil in eastern 

Colombia led to a 50% reduction of nitrous oxide (N2O) emissions and an 

almost complete suppression of methane (CH«) emissions. Spokas & 

Reicosky (2009) examined the effect of 16 different biochars on the 

greenhouse gas emissions of 3 different soils and found that the effect of 

biochar amendments is highly dependent on h e  biochar and the soils used. 

However, in the majority of cases, biochar additions reduced CO2 and CH4 

emissions or had no effect, while N2O emissions were almost always 

suppressed (Spokas & Reicosky, 2009). Suppression of NzO emissions



BIOCHAR FOR GREENHOUSE GAS MITIGATION AND SOIL

IMPROVEMENT: A REVIEW

following biochar application was also reported by, inter alia, Yanai et al.

(2007) and Zhang et al. (2010). However, Zhang et al. (2010) also found that 

biochar application led to increased CH< emissions. The mechanisms by 

which the emissions are reduced remains unclear (Gaunt & Lehmann, 2008). 

It is evident that further research is necessary to identify the exact 

mechanisms by which these emissions suppressions occur and under what 

conditions they can be expected.

Biochar application may also indirectly reduce greenhouse gas emissions 

through its effect of reducing nutrient leaching (see section 5.4.3). If less 

agricultural nutrients are lost through leaching, fertilizers will not have to be 

applied so often, reducing the emissions associated with fertilizer 

production, transport and application.

3.3 Energy efficiency of biochar production

Whereas many other proposed means of greenhouse gas removal have large 

energy requirements, biochar production can be a self-sustaining, energy 

generating process. The pyrolysis process releases syngas containing 

combustible gases. In advanced, continuous feed pyrolysers, these gases can 

be combusted to dry incoming feedstock and also to heat the pyrolysis kiln 

itself (Best Energies Inc., 2006; Brown, 2009). If the pyrolysis process is 

optimized for syngas production, the energy yield is 50% of the energy 

contained in the feedstock and if pyrolysis is optimized for biochar 

production, the energy yield is 38% of the energy contained in the feedstock 

(Gaunt & Lehmann, 2008).
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Using Switchgrass (Panicum virgatum), Miscanthus, forage com, wheat straw 

and com stover as feedstocks, energy output from pyrolysis optimized for 

energy production ranges from 3.0 - 9.1 MJ MJ*1 (Gaunt & Lehmann, 2008). If 

pyrolysis is optimised for biochar production, energy output is about 30% 

lower, ranging from 2.3 - 6.9 MJ MJ1 (Gaunt & Lehmann, 2008). However, 

this lower energy output still compares favourably with ethanol production 

from com which yields 0.7 - 2.2 MJ MJ*1 (Patzek & Pimentel, 2005; Metzger,

2006) and is likely to remain competitive with future cellulosic ethanol 

technologies which projections estimate will yield -4-6 MJ MJ*1 

(Hammerschlag, 2006).

3.4 Biochar for waste management

3.4.1 Agricultural and food-processing wastes

Agricultural and food-processing wastes can lead to pollution of ground and 

surface waters and can therefore present a significant burden to agricultural 

and food processing industries which face increasing regulatory pressure to 

reduce their environmental impacts (Matteson & Jenkins, 2007). The 

following examples illustrate a wide range of problematic wastes that could 

conceivably be utilised for biochar production:

Manure management practices haVe traditionally recycled plant nutrients 

through land application, but in the US there is an increasing trend toward 

so-called concentrated animal feeding operations whose manure production 

often exceeds local crop and pastureland nutrient demands (Cantrell et al.,
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2007). Over-application of animal manure can result in emissions of 

ammonia (contributing to add rain) and GHGs, spread of pathogens, release 

of hormones and other pharmaceutically active compounds and 

eutrophication of water resources (Cantrell et al, 2007). Several studies have 

shown that biochar produced from manure can have benefitial agronomic 

impacts (Chan et al, 2008; Tagoe et al, 2008; Shinogi et al, 2008).

Cassava (Manihot esculenta) is a staple food across large parts of sub-Saharan 

Africa, South-East Asia and Latin America. Fresh cassava peels contain toxic 

levels of hydrocyanic add  (364.2-814.7 ppm) and are normally left to rot in 

the open, resulting in health hazards (Tewe, 1992; Oboh, 2006). Cassava peel 

accounts for 10-13% of the wet wdght of a cassava tuber (Oboh, 2006; 

Oyebimpe et al, 2006) though this figure can be much higher if cassava is 

peeled by hand. In Nigeria, roughly 10 million tonnes of cassava tubers are 

peeled for processing every year (Oboh, 2006), meaning that ~1 million 

tonnes of cyanogenic waste is produced. Sudaryanto et al (2006) found that 

cassava peel is an ideal feedstock for production of activated carbon, 

indicating that it may also be a suitable feedstock for biochar production.

Following the BSE (bovine spongiform encephalopathy) and foot and mouth 

crises, fallen livestock in the UK can no longer be buried or burned in the 

open by farmers themselves due to the risk of disease spread through 

groundwater or air pollution (Defra, 2009). Carcasses must instead be taken 

to or collected by an approved knacker, incinerator, Tenderer or hunt kennel 

(Defra, 2009). Bonemeal has been used to produce biochar that passes all 

standard tests for ecotoxicity and is safe for soil application at the 

recommended rate of 0.4 - 1 1 ha-1 (IBI, 2009).
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3.4.2 Household, municipal and industrial wastes

Commentators have expressed concerns regarding the use of household, 

municipal or industrial wastes for biochar production because they may 

contain organic pollutants or heavy metals that could cause environmental 

contamination (Lehmann et al, 2006; Lehmann & Joseph, 2009b). However, 

green urban wastes and certain dean industrial wastes such as those from 

paper mills could also be effectively managed through use as feedstock for 

pyrolysis, thus avoiding the problem of declining availability of landfill 

(Lehmann & Joseph, 2009b).

Sewage sludge could be used as biochar feedstock. Shinogi et al. (2003) found 

biochar produced from sewage sludge did not contain harmful levels of 

heavy metals. Conversely, Hossain et al. (2010) found that while biochar 

produced from wastewater sludge did contain high concentrations of heavy 

metals, uptake of the trace metals by cherry tomato plants indicated that 

their bioavailability was below the maximum permitted concentrations for 

food in Australia. Plant uptake of heavy metals is dependent on the specific 

physico-chemical properties of the soil and the plant species involved (Kidd 

et al, 2007), so it may be the case that if the biochar used by Hossain et al.

(2010) had been applied to different soil and/or with different plant species, 

the crops produced could have contained unsafe heavy metal concentrations. 

The sewage sludge biochar produced by Shinogi et al. contained cadmium 

concentrations of 1.3 mg kg'1 and zinc concentrations of 500 mg kg'1, while . 

the biochar produced from wastewater sludge by Hossain et al. contained 

cadmium concentrations of 4.7 mg kg'1 and zinc concentrations of 3300 mg 

kg'1. Neither Shinogi et al. or Hossain et al. explain the precise composition of 

the sewage sludge and wastewater sludge used in their respective
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experiments, but these differences in heavy metal concentrations suggest that 

the composition of two sludges may have been very different. For example, 

while the sewage sludge used by Shinogi et al. might have been obtained 

from a separate sewerage system carrying only domestic black water, the 

wastewater sludge used by Hossain et al. might have been obtained from a 

combined sewerage system carrying urban storm water run-off and 

industrial effluent in addition to domestic waste water. Clearly while there is 

potential for sewage sludge to be used as feedstock for biochar production, 

the suitability of sludges to be managed in this way must be determined on a 

case-by-case basis.

3.5 Economic viability of biochat production

According to McCarl et al., (2009) the economic viability of large-scale 

biochar production could arise from a combination of saleable energy 

commodity yields, marketing of biochar as a soil additive, other saleable 

chemical products and the trading of emissions offsets generated by 

displacing use of fossil fuels, reducing emissions from use of agricultural 

inputs and sequestering carbon. However, the authors neglect to mention 

that farmers could conceivably generate further emissions offsets simply by 

applying biochar to the soil, as various studies have indicated that 

application of biochar can reduce emissions of non-CCh GHGs from the soil. 

Furthermore, McCarl et al. do not highlight the possibility that biochar 

projects could potentially generate income through gate fees arising from 

provision of disposal services that could, for example, deal with municipal 

sewage or food processing wastes.
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The fact that co-production of biochar and bioenergy through slow pyrolysis 

is likely to remain competitive with future ethanol technologies (see section 

3.3) gives some indication of its commercial viability. Nonetheless, Lehmann 

(2007b) calculated that biochar sequestration in conjunction with bioenergy 

from pyrolysis will not become "economically attractive" until the value of 

avoided carbon dioxide emissions reaches US $37 per tonne, more than five 

times current carbon trading prices in the EU. However, this in itself is 

dependent on recognition of biochar projects as qualifying for carbon offsets. 

It is difficult to evaluate the calculation offered by Lehmann (2007b) as it is 

unclear what income sources for biochar production the author has taken 

into account.

McCarl et al. (2009) conclude that at an electricity sale price of US$ 80 MW h 1, 

a biomass pyrolysis plant will be unprofitable based only on energy sales. 

However, a full evaluation of profitability must also consider income from 

biochar sales, emissions trading and sales of other chemicals (McCarl et al.,

2009). Income from gate fees (see section 3.4) and offsets generated by 

avoided soil emissions (see section 3.2.2) could also be added to this list. As 

to whether it is more profitable to use biochar as a soil amendment or as an 

energy source, McCarl et al. (2009) concluded that the economic value of 

biochar applied to the soil is close to its value as an energy source. However, 

the economics of biochar production are highly dependent on the cost of 

feedstock and the pyrolysis system used (Brown et al., 2011).

There are doubts as to the viability of industrial-scale commercial production 

of biochar, but the economics of pyrolysis technology at the household, farm 

and community level must be evaluated separately and by a very different
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set of criteria (Joseph, 2009). Joseph (2009) argues that assessment of small- 

scale biochar projects - particularly in the context of rural areas or developing 

countries - must be carried out within a framework recognising the need for 

projects to be people-centred and participatory, economically, 

environmentally and institutionally sustainable, and emphasising 

partnership between all stakeholders, including biochar users, producers, 

researchers, extension workers, all levels of government and where relevant, 

donor organisations. There are currently few, if any, such assessments of 

small-scale biochar projects in the literature. Further research will be 

necessary to determine and enhance the viability of small-scale biochar 

production.

3.6 The influence of biochar on soil nutrient dynamics

The terra preta (dark earth) soils in the Amazonian region are much more 

fertile than other soils in the area, having high contents of carbon (C), 

phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn) and manganese 

(Mn), along with larger amounts of stable soil organic matter (Kern et al.,

2003; Glaser et al, 2001). It is thought that use of biochar as a soil amendment 

could produce similar effects.

3.6.1 Cation exchange-capacity

Amazonian Dark Earths (ancient anthrosols developed through biomass 

burning and nutrient deposition) contain up to 70 times more black carbon
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than other soils in their vicinity, indicating the presence of incompletely 

combusted organic matter (Glaser et al., 2001). This high black carbon content 

can give Amazonian Dark Earths a greater potential cation exchange- 

capacity (CEC) than adjacent soils, increasing their nutrient retention (Liang 

et al., 2006). For example, at the Hatahara archaeological site near Manaus, an 

Amazonian Dark Earth was found to have a CEC of 211.3 mmol kg*1, 

whereas CEC of the adjacent soil was less than half of that at 88.4 mmol kg*1 

(Liang et al., 2006). Similarly, at the Lago Grande archaeological site (also 

near Manaus), an anthrosol had a CEC of 222.4 mmol kg*1, almost four times 

greater than that of the surrounding soil, which had a CEC of just 59.2 mmol 

kg*1 (Liang et al., 2006). Biochar can potentially be used to enhance the ability 

of soils to retain plant-available nutrients in cation form in a similar way 

(McHenry, 2009).

Several authors have attributed the high CECs of biochar in soil to the 

presence of oxidised functional groups (such as carboxyl, phenolic or 

hydroxyl groups) on the surfaces of biochar particles (Liang et al., 2006; 

Preston & Sdunidt, 2006; Cheng et al., 2008; DeLuca et al., 2009; Joseph et al.,

2009). If functional groups are also primarily responsible for the CEC of 

biochar before it is applied to soil, then biochar CEC would be expected to 

decrease as HIT is increased; studies using Fourier Transform Infrared 

(F l'lK) spectroscopy (see Antal & Gronli, 2003) and Boehm titrations (Chun et 

al., 2004, Guo and Rockstraw, 2007) have indicated that concentrations of 

functional groups are progressively reduced as HTT is increased. However, 

when Boehm titrations are used to characterise acidic groups on biochar 

surfaces, erroneous results can be produced due to the presence of bio-oil or 

ash (Tsechabsky & Graber, 2014). There is evidence to suggest that functional
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group concentrations can in fact increase with increasing HTT. Using X-ray 

photoelectron spectroscopy, Nishimiya et al. (1998) found that while carboxyl 

groups were present on biochars produced at 300°C, they were around 30- 

60% more concentrated on the surfaces of biochars produced at 400,600 and 

800°C.

The results of other investigations of biochar CEC also suggest that it is not 

controlled exclusively by the elimination of functional groups with 

increasing pyrolysis temperature. Lehmann (2007a) found that, overall, CEC 

increased with increasing HTT; the CEC of biochar produced at 500°C was 

almost three times higher than that of biochar produced at 350°C. There was 

little difference between biochars produced at temperatures of 500,550,600 

and 750°C, but the CEC of biochar produced at 800°C was -40% higher 

(Lehmann, 2005). Mukheijee et al. (2011) found that the CECs of biochars 

produced from oak and pine feedstocks at 400 and 650°C were similar. For 

biochars produced from grass, the CEC of biochar at 650°C was much higher 

than that produced at 400°C, even though for each feedstock type, functional 

groups decreased dramatically between 400 and 650°C (Mukherjee et al., 

2011). Yuan et al. (2011) found that the CEC of biochars produced from 

canola straw and com straw at 500°C were significantly higher than those of 

biochars produced at 300 or 700°C, but for soybean straw and peanut straw 

biochars, CEC was highest using HTTs of 300 and 700°C respectively.

The CEC of freshly produced biochar is relatively low; only aged biochar 

shows high CEC (Lehmann, 2007a; Liang et al., 2006). Cheng et al. (2008) 

found that charocal deposits found in soils at historical charcoal furnace sites 

in North America had a mean CEC of 1644 mmol kg*1 C, whereas freshly
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produced biochar had a CEC of just 1.7 mmol kg*1 C. Cheng et al. (2006) 

incubated biochar for four months at 30°C and 70°C and found that the CEC 

increased by 53% and 538% respectively, which suggests CEC will naturally 

increase quickly in very warm conditions or over long periods of time. In 

their study of the ADEs, Glaser et al. (2000) used 13C nuclear magnetic 

resonance spectroscopy which showed that oxidation of pyrogenic C had, 

over time, produced carboxylic groups on the edges of its aromatic backbone, 

thus increasing its nutrient retention capacity. Further research is necessary 

to investigate the lengths of time necessary for oxidation to increase biochar 

CEC, particularly in temperate climates (Lehmann, 2007a).

3.6.2 Biochar as a nutrient source

Chan & Xu (2009) compiled a summary of the total elemental composition of 

14 different biochars recorded by various studies. The C content of biochar 

ranged between 172 g kg*1 and 905 g kg*1 (Chan & Xu, 2009). There is an even 

greater range in the cases of total N (1.8 g kg:1 to 56.4g kg*1), total P (2.7 g kg'1 

to 480 g kg'1) and total K (1.0 g kg'1 to 58 g kg'1) (Chan & Xu, 2009). The high 

variability of biochar composition can result from the varying initial 

elemental composition of different feedstocks. For example, biochars 

produced from feedstocks of animal origin (e.g. sewage sludge or broiler 

litter) have higher P content than biochars produced from plant feedstocks 

such as wood (Chan & Xu, 2009). The variable composition of biochar also 

depends on the conditions under which it was produced. Chan & Xu (2009) 

reported that one study they reviewed reported total N contents of 6.0 g kg'1 

and 7.5 g kg'1 for two biochars made from poultry litters at 450°C, while 

another study reported total N contents of 20 g kg'1 for another biochar
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produced from at 700°C poultry litter. Chan & Xu (2009) therefore speculated 

that production conditions significantly determine the N content of biochar 

as there is greater N loss at higher pyrolysis temperatures. Indeed, a later 

study by Hossain et al. (2011) demonstrated that the N content of a 

wastewater sludge biochar decreased with increasing pyrolysis temperature. 

Conversely, micronutrients increased with increasing temperature (Hossain 

etal., 2011).

The total elemental nutrient content of biochar does not necessarily reflect 

the availability of those nutrients to plants, especially for organically bound 

nutrients such as N and S, which must be mineralised in order to become 

bioavailable. Angst & Sohi (2013) used sequential leaching to assess the 

potential of sycamore wood (Acer pseudoplatanus) biochar to supply crop 

nutrients. Cumulatively, most or all of the biochar's potassium contents were 

released during leaching, but at most one-third of the total magnesium in the 

biochar was released (Angst & Sohi, 2013). Cumulative release of the 

biochar's phosphorus content ranged from partial to complete, but in all 

cases the release was slow and relatively even over six extractions, 

suggesting that with further leaching all phosphorus might have eventually 

been released (Angst & Sohi, 2013).

3.6.3 The influence of biochar on nutrient availability

The elemental composition of biochar itself can have indirect effects on 

nutrient availability. For example, phosphorus is an important element for 

nodule metabolism in legumes. Application of P-rich biochars (e.g. those 

derived from poultry manures or bonemeal) can therefore enable legumes to
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compensate for limited N availability through increased biological nitrogen 

fixation (BNF) (Chan et al., 2008; Tagoe et al., 2008). Biochar application can 

therefore indirectly increase N availability. A study of the effects of biochar 

applications on BNF by common beans (Phaseolus vulgaris L.) in Columbia 

found that biochar additions of 30 g kg*1 increased BNF by 49% compared to 

the unamended control (Rondon et al., 2007). Adding an additional 30 g kg*1 

increased BNF by another 29% but with a total biochar addition of 90 g kg*1 

the BNF dropped to just 30% above the control (Rondon et al., 2007). The 

significant improvement of BNF with moderate biochar addition rates is 

likely to be largely due to increased availability of boron and molybdenum 

which are known to increase BNF (Rondon et al., 2007).

In some cases, biochar application can actually lead to reductions of available 

nutrients, particularly nitrogen (Wamock et al., 2007). Application of plant- 

derived biochar may reduce the availability of soil nitrogen due to its effect 

on the soil C:N ratio. The effect of biochar application can therefore be highly 

dependent on pre-existing soil fertility and fertilizer management (Asai et al., 

2009; Tenenbaum, 2009; Rondon et al., 2007).

Several authors have attributed positive plant responses to biochar 

application to the ability of biochars to increase and / or maintain soil pH.

For example, Van Zwieten et al. (2010) applied a paper mill sludge biochar to 

an acidic soil and observed a 30-40% increase in wheat height resulting from 

biochar carbonates counteracting the toxic effects of exchangeable 

aluminium.
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3.6.4 Nutrient leaching

Application of biochar to soil can reduce leaching of agricultural pollutants. 

Laird et al. (2010a) observed significant reductions in nutrient leaching with 

increasing biochar application rate, even though the biochar amendments 

themselves added substantial amounts of nutrients to the soil. Singh et al. 

(2010) also found that biochar amendments reduced ammonium leaching by 

55 - 94% depending on the soil involved and the feedstock and HTT used to 

produce the biochar. Yao et al. (2012) produced twelve biochars using four 

feedstocks and three HTTs. Nine of these were able to adsorb ammonium but 

most showed little or no ability to adsorb nitrate or phosphate (Yao et al., 

2012). However, it should be noted that the CECs of freshly produced 

biochars such as those in the latter study tend to be relatively low (Lehmann, 

2007a). Biochar CEC can increase substantially as it is oxidised in the soil 

(Cheng et al, 2008), meaning that biochar may become more effective at 

limiting nutrient leaching over time. There is nonetheless evidence to suggest 

otherwise. Lehmann et al. (2003) found that although an Amazonian Dark 

Earth had much higher water percolation than a Ferralsol from the same 

region, cumulative leaching of mineral N, K, Ca and Mg in the ADE was just 

24,45,79 and 7%, respectively, of that found in the Ferralsol. However, when 

both soils were fertilised with inorganic nutrients, leaching in the ADE 

exceeded that found in the Ferralsol (Lehmann et al, 2003).
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3.7 Soil biota

The porous structure of biochar is thought to provide a secure habitat for 

microbiota; hyphae and bacteria that colonize biochar particles may be 

protected from soil predators such as collembolan, mites, protozoans and 

nematodes (Gundale & DeLuca, 2006; Wamock et al., 2007; Tenenbaum, 

2009). Rondon et al. (2007) reported that biochar is an excellent support 

material for Rhizobium (nitrogen-fixing bacteria) inoculants. Biochar can 

increase the ability of arbuscular mycorrhizal fungi (AMF) to assist their host 

in resisting infection by plant pathogens (Matsubara et al., 2002). Several 

studies have shown that biochar application can have a positive effect on 

AMF, resulting in greater availability of nutrients and moisture for host 

plants, but some have observed negative effects on the abundance of AMF 

(Wamock et al, 2007). Steiner et al. (2008) reported that pyrolysis condensates 

introduced to the soil by biochar application provided a substrate that 

promoted microbial activity. DeLuca et al. (2006) found that biochar can 

alleviate factors inhibiting the activity of the nitrifying microbial community 

in forest soils. Similarly, Zackrisson & Nilsson (1992) observed a complete 

elimination of the phytotoxic effect of allelochemicals inhibitory to 

microorganisms themselves by adding activated carbon to the soil, which 

adsorbed the allelochemicals.

Earthworm behaviour studies have demonstrated that earthworm behaviour 

in response to biochar application can differ according to the HTT used to 

produce the biochar, the soil to which the biochar is applied, and the 

application rate. An earthworm behaviour study conducted by Chan et al.

(2008) found that worms preferred soil amended with biochar produced at
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450°C to soil amended with biochar produced at 550°C or unamended soil 

(the application rates were not specified). A later study by the same research 

group showed that in an acidic Australian ferrosol, worms preferred a soil 

containing a biochar amendment to the control, but in a calcarosol, biochar 

amendments made no difference (Van Zwieten et al., 2010). Li et al. (2011) 

found that although earthworms didn't avoid artificial soils (wetted to 85% 

of the control treatment's water-holding capacity) containing 10 g kg*1 of 

biochar, they did avoid soil with 100 and 200 g kg*1 biochar. However, when 

the soil containing 100 g kg*1 of biochar was wetted to it full water-holding 

capacity, there was no statistically significant difference in worm avoidance 

compared to the control (Li et al., 2011). After 28-day incubations in soils 

amended with different biochar concentrations, worms experienced 

significantly more weight loss in soils containing 100 and 200 g kg biochar 

compared to soils without biochar, but an application rate of 10 g kg*1 did not 

significantly affect worm weight loss and none of the application rates 

affected reproduction (Li et al, 2011).

3.8 Impacts on soil hydrology and erosion

3.8.1 Moisture retention

One of the oft-dted benefits of applying biochar to the soil is increased 

moisture retention. The high water-holding ability of charcoal has been 

known for many years. Morley (1927, p.15) wrote in the first issue of The 

National Greenkeeper that "charcoal acts as a sponge in the soil, absorbing and 

retaining water...", and in a later edition asserted that "As.. .an absorber of
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moisture, charcoal has no equal." (Morley, 1929, p. 11). An increase in the water- 

holding capacity (WHC) of a soil will diminish the occurrence of saturated 

overland flow events, significantly reducing erosion (Verheijen et al., 2010).

3.8.1.1 Biochar porosity

The ability of biochar to retain moisture is thought to be due to its porous 

structure giving it a high specific surface area. Glaser et al. (2002) found that 

Amazonian Dark Earths had specific surface areas three-times higher than 

those of surrounding soils, and 18% higher water-holding capacity (WHC). 

The greater the porosity of biochar, the more water it will be able to hold 

(Joseph et al., 2009). However, the pore size distribution of biochar will 

determine the extent to which that water is mobile in soil and its availability 

to plants. Data on the relative percentage of different pore sizes under 

different production scenarios are scarce (Joseph et al., 2009). Further 

research is necessary to identify which feedstocks and specific pyrolysis 

parameters will produce biochars that improve soil WHCs, but more 

specifically, biochars with maximized volumes of pores of diameters 

between 0.2 and 30 pm which hold plant-available water (Kumar & Shivay, 

2008).

Observations of biochar specific surface area and porosity with increasing 

HTT have varied. Several studies have observed increases in pore volume 

and specific surface area with increases in HTT up to 500-600°C (depending 

on the feedstock), then decreases in porosity and specific surface area with 

subsequent increases in HIT (Lua et al., 2004; Chun et al., 2004; Lehmann, 

2007a; Chen et al., 2008; Chen & Chen, 2009; Angin, 2013). These patterns
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have been attributed to enhanced evolution of volatiles with increases in 

HTT between 400 and 500°C, followed by widening or coalescence of pores <

0.002 |im in diameter and / or the sealing off of some pores by plastic 

deformation and sintering of ash and volatile fractions at HTTs above 500°C, 

which seal off some of the pores (Lua et al., 2004; Fu et al., 2011; Angin, 2013). 

However, some authors have reported linear increases (Uchimiya et al, 2011; 

Chen et al, 2012), another observed linear decreases (Muradov et al, 2012), 

whilst another observed fluctuating porosity with increasing HTT 

(Karaosmanoglu et al., 2000).

The measurements of biochar porosity discussed above were made using 

BET (the Brunauer, Emmett and Teller method) (Brunauer et al, 1938), which 

is influenced by nanometre scale pores. Biochars with high proportions of 

nanometre-scale pores may hold large volumes of immobile water even at 

elevated matric potentials. According to Joseph et al. (2009), biochars having 

both a high specific surface area and a high volume of pores with diameters 

in excess of 50 nm can have a particularly high WHC, with plant available 

water residing in pores of about 10 -  80 pm. Biochars typical of this 

description are those derived from wood, the pores of which originate from 

tracheids in the feedstock material and can have diameters greater than 100 

pm (Joseph et al., 2009; Wildman & Derbyshire, 1991). Smaller pores will 

attract and retain capillary soil water for much longer periods than larger 

pores of diameters greater than -20 pm (Thies & Rillig, 2009), but water is 

generally considered only considered 'mobile' when present in pores of sizes 

in the order of a few micrometers (Brady & Weil, 2008), so water held in 

pores of the nanometre scale will not be plant-available (Sohi et al, 2010).
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3.8.12 Im pacts of b iochar application  on soil m oistu re

The effect of biochar application on soil water-holding capacity (WHC) 

varies with application rate. Tryon (1948) found that mixing biochar with a 

sandy podzolic forest soil at a rate of 45 % (by volume) increased the soil's 

water retention by 18 %, but such a large application rate is probably 

unrealistic for the average soil manager. Busscher et al. (2010) mixed 0,5,10, 

and 20 g kg*1 (equivalent to 0,11,22 and 44 tonnes ha*1) of pecan shell biochar 

(produced at 700°C and ground to < 0.6 mm) with loamy sand but found no 

compelling evidence that biochar additions increased soil WHC. Chan et al. 

(2007) demonstrated that the WHC of an Australian Alfisol (texture not 

described) increased as it was mixed with increasing amounts of biochar. 

However, significant increases in WHC were detected only at the highest 

rates of biochar application used in the study, 50 and 1001 ha*1 (Chan et al, 

2007). Gaskin et al. (2007) found that mixing biochar with loamy sand at rates 

equivalent to 11 and 221 ha*1 did not affect the soil's WHC, only an 

application rate of 881 ha*1 increased WHC. However, Laird et al. (2010b) 

found that a biochar application rate of 5 g kg*1 significantly increased the 

WHC of a fine-loamy soil. Although doubling and tripling the application 

rate increased WHC, the increases were not statistically significant (Laird et 

al, 2010b).

The type of biomass and the temperature at which it is pyrolysed to produce 

biochar can influence its effect on WHC. Novak et al. (2009) mixed biochars 

with loamy sand soil at a rate of 20 g kg*1 pecan shell and poultry litter 

biochars had no significant effect on WHC, nor did biochar produced from 

peanut hull using a HTT of 500°C. However, biochar produced from 

switchgrass and biodiar produced from peanut hull at 400°C significantly
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increased the soil's WHC (Novak et al., 2009). Lei & Zhang (2013) produced 

biochars from manure and woodchip at HTTs of 300,500 and 700°C and 

mixed them with a loam soil at a rate of 50 g kg*1. Although all the biochars 

increased WHC, the effect was strongest in biochars produced at higher 

temperatures (Lei & Zhang, 2013).

It has been demonstrated that the effect of biochar on soil moisture retention 

is determined to an extent by the nature of the soil with which it is mixed. 

Tyron (1948) applied charcoal additions of 45% (by volume) to sandy, loamy 

and clayey brown podzolic forest soils. As discussed above, in sandy soil, 

water retention increased by 18% (Tyron, 1948). However, in loamy soil, no 

changes in water retention were observed whilst in clayey soil, the available 

soil moisture actually decreased with increasing charcoal additions, which 

Tyron (1948) attributes to the hydrophobidty of the charcoal (Tyron, 1948). 

Another possible explanation could be simply that the charcoal had a lower 

water retention capacity than the clay it replaced. It is conceivable that the 

results of this experiment might have been different had the charcoal been 

produced from different parent material and by different pyrolysis 

conditions. Once optimum feedstocks and pyrolysis parameters for biochar 

WHC have been identified, research could be conducted to investigate again 

the effect of biochar application on different soil types.

The effect of biochar application on soil moisture retention may be 

dependent to an extent on the particle size of the biochar used. Little 

information is available regarding the effects of biochar particle size on soil 

WHC. Whilst it can be postulated that smaller particles are more likely to 

increase efficiency as a result of a larger surface area, it can also be theorised
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that particle size is a redundant parameter due to the high porosity of 

biochar particles (Joseph et al, 2009). Lehmann et al (2003) observed no 

relevant differences between the impacts on crop growth of biochars of < 2 

mm and -20 mm particle size, though the application method was not 

specified. Joseph et al (2009) concluded that it was not necessary to include 

particle size in their biochar classification system. The specific surface area, 

porosity, pore-size distribution and pore connectivity will each have a 

significant influence on the effect that biochars have on soil water-holding 

capacity. High biochar porosity will increase the total amount of water stored 

within the soil, whilst pore sizes will determine whether this water is mobile 

in soil and whether it is available or unavailable to plants.

Besides the work of Lei & Zhang (2013), there are scarce data regarding the 

effect of the pyrolysis temperature at which biochars are produced influences 

their effect on soil moisture retention. Furthermore, there are no published 

studies on the influence of biochar particle size on soil matric suction, nor on 

the effect of different biochars on osmotic suction, which, combined with 

matric suction, determines the amount of energy plants must expend to take 

up water, which in turn influences crop yields (Taylor, 1952; Kirkham, 2005). 

Osmotic suction results from the presence of solutes in the soil solution. 

Water molecules cluster around solute ions or molecules meaning that their 

freedom of movement is reduced, so the greater the concentration of solutes, 

the greater the osmotic suction (Brady & Weil, 2008). Thomas et al (2013) 

reported that biochar additions mitigated salt stress for two heibaceous plant 

species, suggesting that biochar can influence osmotic suction.
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It is likely that there are soil-specific thresholds which biochar application 

must exceed to have a significant effect on soil WHC, depending on the 

biochar. Further research is needed to determine the minimum application 

thresholds to achieve significant increases in WHC for different biochars on 

different soils.

Biochar amendments can increase the amount of water held in the soil at the 

permanent wilting point (-1,500 kPa). Hardie et al. (2014) reported that 

applying biochar at a rate of 20% w/w to a sandy loam significantly increased 

the soils moisture content at -1,500 kPa. However, using an application rate 

of 5% w/w (similar to the maximum rates used in some field trials) had no 

effect on the soil moisture content at wilting point (Hardie et al., 2014). Laird 

et al. (2010b) found that mixing biochar produced from mixed hardwoods 

and sieved to < 0.5 mm with a fine-loamy soil at rates of 5 -  20 g kgr1 

increased the amount of water retained in the soil at -500 kPa. Ulyett et al. 

(2014) reported that adding biochar to a sandy loam at a rate of 601 h a1 

increased the available water capacity by up to 1.3% between 0 and -50 kPa 

(the application method was not specified).

3.8.2 Bulk density

High soil bulk densities usually indicate a poor environment for root growth, 

with increased soil penetration resistance, low aeration, slow movement of 

water and nutrients, and accumulation of toxic gases and root exudates 

(Brady & Weil, 2008). Biochar can reduce soil bulk density and increase total 

porosity (Van Zweiten et at., 2009; Laird et al., 2010b; Ulyett et al., 2014). 

Conversely, if the biochar has a low mechanical strength and disintegrates
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quite quickly into small particles, filling up existing pore spaces, soil bulk 

density may actually increase (Verheijen et al., 2010). Further research is 

necessary to investigate how biochar soil bulk density is affected by different 

biochar particle sizes.

3.8.3 Biochar hydrophobicity

Several authors have reported that surfaces of newly produced biochars are 

hydrophobic (Lehmann et al., 2009; Major et al., 2009; Veiheijen et al., 2010), 

implying that hydrophobicity is eliminated as biochar ages. Verheijen et al.

(2010) argued that hydrophobicity induced by biochar is considered to be 

most significant in the first years immediately following application because 

fresh biochar contains a larger fraction of hydrophobic groups. Similarly, 

Major et al. (2009) stated that fresh biochar with low surface oxidation is both 

hydrophobic and an effective sorbent of hydrophobic molecules. 

Nevertheless, previous research has shown that hydrophobicity is not 

necessarily limited to fresh biochar and can in fact persist over long periods. 

Briggs et al. (2005) found that samples of eight-year-old charcoal (produced 

by wildfire) taken from the soil surface and from within the soil were 

extremely water-repellent, having water drop penetration times in excess of 2 

hours. However, this may have been due to fungal colonization of the 

biochar.

Observations of a reduction in biochar hydrophobicity over time may be 

partly due to the way amphiphilic molecules re-orient themselves while in 

contact with water. It is thought that where water repellency is caused 

primarily by soil particles being coated in amphiphilic molecules, the
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attraction of water to the polar (hydrophilic) ends of these molecules 

weakens the soil/molecule bond, eventually leading to the reorientation of 

the molecules and resulting in a wettable soil (Doerr et al, 2000). Whilst 

Doerr et al. (2000) argued that this concept has yet to be proven and that the 

factors determining the length of time necessary for a breakdown of water 

repellency in soil are poorly understood, it may nonetheless be the case that 

this hypothesis can also be applied to biochar.

Major et al. (2009) implied that reductions in biochar surface hydrophobicity 

may sometimes be the result of oxidation. Cheng et al. (2006) artificially 

'aged' fresh biochar through incubation at 70°C. Its subsequent oxidation led 

to the formation of acidic functional groups, suggesting that over long time 

periods, biochar could actually become hydrophilic (Cheng et al., 2006). 

Conversely, Briggs et al. (2005) concluded that water repellency of charcoal is 

reduced by leaching of hydrophobic compounds from the charcoal. Clearly 

further research is clearly needed to identify the processes that eliminate 

biochar hydrophobicity and the periods of time over which this occurs. 

Biochar hydrophobicity can be eliminated through the utilisation of higher 

pyrolysis temperatures. Kinney et al. (2012) found that biochar 

hydrophobidty was greatly reduced between pyrolysis temperatures of 300 

and 600°C. Biochar hydrophobicity was strongly correlated to the presence of 

C-H functional groups characteristic of alkyl groups in FITR spectra, 

suggesting that hydrophobicity derives from aliphatic domains on the 

surface of low-temperature biochars. Producing biochar from pine needles, 

Chen et al. (2008) showed that aliphatic alkyl groups were completely 

destroyed at HTTs of 400°C. Anecdotal evidence indicates that the surface 

hydrophobicity of 'fresh' biochar might be reduced by the reabsorption and
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readsorption of condensed volatiles on the surface of biochar particles (R. 

Bryant, pers. comm., 3rd March 2011). However, biochar hydrophobicity 

may also be affected by its surface topography. The sub-mm scale surface 

topography of a material can significantly modify its hydrophobicity as 

water droplets can be suspended on the peaks of the surface topography, 

bridging across the gaps. This is because the length scales are such to make 

surface tension the dominant force, rather than gravity. The capillary length 

for water is 2.7 mm, so the contact angles of water droplets on surfaces with 

length scales of this magnitude and less will be dominated by surface 

tension. As the heights of peaks in the surface topography are reduced, water 

droplet contact angles can also be reduced (McHale et al, 2007).

Kinney et al (2012) reported that mixing hydrophobic biochar with an 

otherwise hydrophilic soil at rates of up 7% by weight reduced the soil's 

wettability. However, the differences were not statistically significant. 

Similarly, Smetanova et al. (2012) found that mixing a hydrophobic biochar 

with a hydrophilic soil at rates of 5 and 10% by weight did not substantially 

alter the wettability of the soil. Furthermore, the overland flow responses of 

biochar-amended soils were dominated by the infiltration properties of the 

soils rather than their wettability (Smetanova et al, 2012). However, it should 

also be noted that fungal colonisation of biochar-amended soils can render 

them hydrophobic, regardless of whether the biochar itself is hydrophobic 

(Abel et al, 2013). Although the evidence suggests that biochar 

hydrophobicity has little influence on soil water repellency, it may have 

significant implications for its use as a soil amendment for other reasons. 

Hydrophobic particles are ejected further by raindrop impact than 

hydrophilic particles (Ahn et al., 2013), so hydrophobic biochar is more likely
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to be preferentially eroded from the soil by splashing. Indeed, Rumpel et al

(2009) found that splashing accounts for a substantial proportion of biochar 

erosion. Gray et al. (2014) reported that water uptake by biochars produced at 

low HTTs was lower than that of biochars produced at high HTTs, 

suggesting that surface hydrophobicity could have implications for the 

ability of biochar to increase soil WHC.

3.8.4 Overland flow

Data on the influence of biochar amendments on overland flow from soils are 

scarce. To date, no published studies have investigated the influence of 

different biochar application rates on the hydrological response of soils 

under simulated rainfall, and none has measured the effects of biochar 

application on both drainage and overland flow. Beck et al (2011) found that 

adding biochar at a rate of 7% by weight resulted in a 4.4% increase of water 

retention in a greenroof soil under simulated rainfall. However, for half of 

the replicates the initial soil moisture content was not controlled or 

measured. Furthermore, as their study did not differentiate between 

overland flow and subsurface flow (drainage), the findings of Beck et al

(2011) have limited applicability to in-situ soils. Smetanov& et al (2013) 

reported that applying biochar produced at 500-600°C (from unspecified 

wood) to a sandy loam at a rate of 10% by volume decreased overland flow 

by up to -40%, but drainage was not measured.
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3.8.5 Crop residue removal

A key consideration in assessing the sustainability of biochar production is 

that where crop residues are removed from agricultural land for the 

purposes of biochar production, the risk of soil erosion will be increased. 

Crop residues left in-situ reduce raindrop impact, lessen aggregate slaking 

and dispersion and protect die soil from water and wind erosion (Stavi &

Lai, 2013). If too high a proportion of crop residues are removed for biochar 

production, any potential benefits of biochar application might be cancelled 

out by the loss of organic-matter-rich topsoil by erosion in the first place. For 

example, McAloon et al (2000) estimated that only about 30% of stover could 

be removed from cornfields after harvest as the remainder would need to be 

left in situ to provide adequate soil cover to control soil erosion. However, 

the maximum removable residue percentages vary according to the crop, 

soil, field slope and length, local wind and rainfall conditions, and 

management practices (Nelson, 2002), meaning that such an estimate is 

probably redundant. It is likely that the proportion of agricultural residues 

that can be safely removed for biochar production will have to be determined 

on a case-by-case basis.

3.8.6 Soil erosion

Data on the effect of biochar amendments on soil erosion are scarce. 

Smetanova et al (2012) found that applying biochar by mixing at rates of 5 

Mid 10% by volume to a sandy loam soil had no significant effect of sediment 

yields during rainfall simulation. Jien & Wang (2013) found that applying 

biochar by mixing with an acidic, silty clay soil at a rate of 25 g kg*1 reduced
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soil erosion rates by around 50%, while an application rate of 50 g kg*1 

reduced erosional losses by nearly two-thirds. These reductions in erosion 

were attributed to an increase in microbial activity arising from biochar 

additions, leading to formation of macroaggregates (Jien & Wang, 2013). 

However, as the biochar additions had a significant liming effect (Jien & 

Wang, 2013) another possible explanation is that there was improved 

aggregate stability through increased bivalent cation availability (Brady & 

Weil, 2008). The effect of biochar application on erosion of medium-textured 

soils has not yet been investigated. No published data are available on the 

influence of biochar application on splash erosion.

3.8.7 Erosion of biochar

Major et al. (2010) reported that after two years, 20 - 53% of the biochar 

applied to a 0.1m depth in a sandy clay loam using 2 disk-harrow passes 

could not be accounted for by downward migration, leaching or respiration. 

It was therefore presumed that the biochar was lost from the soil by overland 

flow processes (Major et al., 2010). Guggenberger et al. (2008) found that a 

larger proportion of black carbon produced by vegetation fire was present in 

streamwater than in the soils of a tundra-catchment.

Rumpel et al. (2006) investigated soil losses from water erosion on steep 

slopes (-25°) under slash and bum  agriculture with shallow tillage, sampling 

from plots under rice cultivation, fallow and secondary forest. They found 

that whilst black carbon represented on average 15% of the carbon in the 

bulk soil, at the watershed level black carbon represented 30% of carbon in 

eroded sediments, indicating that black carbon is eroded more easily than
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other soil carbon (Rumpel et al, 2006). The light nature of black carbon 

enables the largest particles to float, and the colloidal nature of finer particles 

allows them to remain in suspension for long periods (Rumpel et al., 2006) 

meaning that biochar particles will be more susceptible to erosion than other 

soil particles. However, eroded sediment was sampled during the rainy 

season but the bulk soil was not sampled until after the rainy season, when 

the black carbon content of the soil had already been depleted by erosion. 

Had the bulk soil been sampled just before the rainy season, the black carbon 

content of the soil would have been higher, so the gap between the black 

carbon content of the bulk soil and that of the eroded sediments would have 

been smaller. Also, whilst Rumpel et al do not mention whether the soils in 

the study were hydrophobic; their investigation was conducted during the 

rainy season in an area where slashing and burning is carried out just before 

the rainy season. Burned soil is often markedly more hydrophobic and 

susceptible to erosion compared with unbumed terrain (Shakesby et al, 2013) 

and it is highly possible that there were hydrophobic sites within the 

catdunent, which could have further enhanced overland flow and 

accelerated erosion (Doerr et al., 2000). Further research is needed to 

determine the whether biochar is preferentially eroded from soils on 

shallower, unbumed slopes.

3.8.8 Aggregation and aggregate stability

Brodowski et al. (2006) suggested that biochar acts as a binding agent for 

organic matter in aggregate formation. Few studies have investigated the 

possibility of biochar providing surfaces for organo-mineral associations 

leading to increased soil aggregation, but Pronk et al. (2012) found that
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applying a commercial barbecue charcoal (ground to 63-200 pm) to an 

artificial soil had no effect on the formation of organo-mineral associations 

and a negative effect on macro-aggregation. Busscher et al (2010) found that 

biochar amendments (produced from pecan (Carya illinoinensis) shell at 700°C 

and ground to < 2mm) applied to a loamy sand at rates of 5,10 and 20 g kg'1 

had mixed effects on aggregation - using application rates of 5 and 20 g kg-1 

resulted in reduced aggregation, while a rate of 10 g kg increased 

aggregation. However, a further study using the same soil and biochar found 

that biochar applied at a rate of 10 g kg'1 resulted in an insignificant 

reduction in aggregation (Busscher et al, 2011).

Root growth can increase aggregate stability through physical entanglement 

of aggregates by roots and through increased production of root exudates 

(Monroe & Kladivko, 1987). Root penetration is limited by soil strength 

(Brady & Weil, 2008), which Chan et al (2007) found to decrease with 

increasing applications of biochar. Biochar application may therefore 

improve root development which would in turn increase aggregate stability. 

Furthermore, the porous structure of biochar is thought to provide a secure 

habitat for microbiota such as hyphae of arbuscular mycorrhizal fungi (see 

section 3.7), which improve soil aggregation in the rhizosphere as they grow 

into small pores and bind soil particles together (Voroney, 2007).

Biochar has been reported to have a liming effect (Lehmann et al, 2003; Van 

Zwieten et al, 2010). Increases in pH-dependent charges associated with 

biochar application could therefore have implications for aggregate stability, 

as bivalent cations would be more able to act as bridges between organic 

colloids and clays (Shainberg & Levy, 1996; Brady & Weil, 2008). The ash 

content of biochar may also have implications for aggregate stability.
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Although sodium increases the tendency of aggregates to slake, other soluble 

salts can help prevent dispersion of soil colloids (Goldberg et al, 1988; Brady 

& Weil, 2008). Inlhe long-term however, such effects may not be particularly 

important, as salts and cations are progressively leached from the soil 

(Lehmann et al., 2011).

Several published studies have investigated how biochar applications 

influence aggregate stability by mixing biochar with sieved and repacked 

soils. Peng et al. (2011) reported that applying rice straw biochars (produced 

at 350,400 and 500°C) to an Ultisol at a rate of 10 g kg*1 had no effect on 

aggregate stability. However, applying biochar (produced from Leucaena 

leucocephala wood at 700°C, then ground to < 2 mm) to an Ultisol at rates of 25 

and 50 g kg'1 resulted in significant increases in aggregate stability (Jien & 

Wang, 2013). Using biochars produced from straw, wood chip and waste 

sludge to amend a clayey soil, Sun & Lu (2014) measured aggregate stability 

using fast wetting, slow wetting and wet-stirring (Le Bissonnais, 1996a).

They found that in most cases biochar application rates of 20 g kg'1 reduced 

aggregate stability of a clayey soil, while higher application rates of 40 and 60 

g kg'1 resulted in increased aggregate stability (Sun & Lu, 2014). Soinne et al. 

(2014) produced biochar from coniferous wood chips at 550-600°C and 

ground to < 0.2 mm and mixed it with two clayey soils to a depth of 20 cm, at 

rates corresponding to 15 and 301 ha'1, which resulted in increased aggregate 

stability. Ibrahim et al. (2013) reported that application of Conocarpus biochar 

at rates up to 20 g kg'1 increased the aggregate stability of a sandy loam, but 

Liu et al. (2012) found that biochar application up to 16 g k g 1 had no effect on 

the aggregate stability of another sandy loam. Few data are available on the 

effect of biochar applications on silt loam soils. Herath et al. (2013) found that
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applying com stover biochars (produced at 350 and 550°C) to silt loam soils 

at rates between 10 and 15 g kg1 resulted in significant increases in aggregate 

stability. Liu et al. (2012) found that applying biochar at a rate of 4 g k g 1 had 

no effect on aggregate stability in two different silt loam soils. An application 

rate of 8 g k g 1 significantly increased the aggregate stability of one of the 

soils, with a further significant increase in aggregate stability when the 

biochar application rate was doubled to 16 g k g 1 (Liu et al., 2012). However, 

these higher application rates had no effect on the aggregate stability of the 

other soil (Liu et al., 2012). Data on the effect of biochar applications cm 

aggregate stability under field conditions are scarce. Hardie et al. (2014) 

applied biochar (produced from acacia green waste at 550°C, particle size not 

reported) at a rate of 471 ha*1 to a sandy loam orchard soil and found it had 

no effect on aggregate stability after 31 months.

3.9 Soil strength and penetration resistance

Few data are available on the effect of biochar amendments on soil strength. 

Q ian et al. (2007) observed reductions in the tensile strength of an Alfisol 

with increasing biochar application rate. Masulili et al. (2010) found that 

applying biochar (produced from rice husks at 600°C then ground to < 0.5 

mm) at a rate corresponding to 151 ha-1 reduced the penetration resistance of 

an add sulphate soil by around 25%. Similarly, Busscher et al. (2010) found 

that the penetration resistance of a sandy loam was reduced with increasing 

biochar application rate. Conversely, a later study by Busscher et al. (2011) 

using the same soil and biochar found that applying biochar at a rate of 10 g 

k g 1 to loamy sand increased penetration resistance. All of the above
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investigations of penetration resistance were carried out on soils in pot or 

column incubations. No studies to date have investigated the effect of 

biochar application on the penetration resistance of structural crusts formed 

by rainfall. Structured breakdown of aggregates during rainfall can lead 

sealing of the soil surface as fine partides are washed into pores, clogging 

them and thus restricting the permeability of the soil surface (Gabriels et al., 

1998). A seal can then set to a hard structured mass (crust) as it dries 

(Gabriels et al., 1998).

Surface crusts can protect the soil, but because they reduce surface hydraulic 

conductivity, they can also trigger overland flow and erosion (Valentin & 

Bresson, 1992). This has deleterious consequences for moisture recharge and 

thus increases the risk of crop water stress during critical plant growth 

periods. Decreases in soil strength can also reduce costs associated with soil 

preparation such as tillage. Strong soil crusts can also mechanically impede 

seedling emergence, sometimes to the extent that the crop has to be resown 

(Brady & Weil, 2008). Further research is needed to investigate the effect of 

biochar application on soil sealing and crusting.

3.10 Application methods

The studies discussed in this literature review all used uniform topsoil 

mixing methods to apply biochar, either through mixing by hand or by using 

mechanical ploughing or disking to incorporate biochar to a certain depth. 

Conversely, biochar could be applied to the soil by alternative methods such 

as deep-banding, drilling, top-dressing or ecological delivery via animal feed
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(Blackwell et al., 2009). It should therefore be noted that the effects of biochar 

application highlighted in this review could be altered to some extent by use 

of different application methods.

3.11 Summary

Biochar has great potential both as a means of greenhouse gas mitigation and 

as a soil amendment, but there remain considerable uncertainties as to the 

effects of biochar application on soil properties.

Biochar could potentially sequester significant amounts of carbon for several 

thousands of years, but there is little data available as to how rapidly biochar 

might be oxidised in temperate climates. More precise quantification of the 

long-term stability of biochar requires long-term observation. Biochar 

application can suppress nitrous oxide and methane emissions from the soil, 

but further research is needed to understand the mechanisms by which these 

emissions suppressions occur.

Whereas many other means of carbon sequestration are energy-intensive, 

biochar production can be a self-sustaining or even energy-generating 

process. Pyrolysis can provide a range of saleable services and commodities 

contributing to its economic viability. Industrial-scale biochar sequestration 

in conjunction with bioenergy production is unlikely to become 

commercially attractive until carbon trading prices are more than double 

their current level. The economics of biochar production at the household, 

farm and community level must be evaluated by a very different set of
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criteria to that used for industrial-scale biochar production; research is 

needed to determine and enhance the viability of small-scale biochar 

production. Pyrolysis presents a useful option for waste management, 

particularly for potentially hazardous biological wastes. However, the 

suitability of sewage / wastewater sludges to be used as feedstock for biochar 

production must be determined on a case-by-case basis.

The cation exchange-capacity (CEC) of freshly produced biochar is relatively 

low, but it has been demonstrated that aged biochar has high CEC due to 

oxidation. More research will be necessary to ascertain the periods of time 

are necessary for oxidation to increase biochar CEC, particularly in temperate 

climates. The nutrient content of biochar varies considerably according to the 

initial elemental composition of feedstock material and the pyrolysis 

conditions used. The elemental content of biochar does not necessarily reflect 

the availability or the rate of release of those nutrients to plants, and the 

effect of biochar application on nutrient availability is not necessarily directly 

related to the nutrient content of the biochar itself. Biochar application can 

limit N availability. Further research is required to identify best practices for 

combined fertilizer and biochar soil amendments.

Biochar can provide a secure habitat for some soil microbiota and can adsorb 

allelochemicals, protecting microorganisms from their toxic effects. 

Furthermore, biochar can be a substrate that promotes microbial activity. 

Earthworm avoidance studies have had mixed results depending on the HIT 

used to produce the biochar, the application rate used, and the soil type and 

moisture content.
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Numerous studies have demonstrated that biochar application can increase 

soil water-holding capacity (WHC), but research indicates that there are 

minimum thresholds which biochar applications must exceed in order To 

have a substantive effect on soil moisture retention. The moisture retention of 

biochar will increase according to the abundance of certain pore sizes; further 

research is necessary to identify which feedstocks and production practices 

will produce biochars which positively influence soil moisture retention. No 

published data are available on the effect of biochar amendments on osmotic 

suction; research is needed to investigate the effects of biochar application on 

the total energy-cost of water uptake by plants (including both matric and 

osmotic suction).

Application of biochar can be expected to reduce bulk density by increasing 

the organic matter content of the soil and increasing total porosity. However, 

if the biochar has a low mechanical strength and disintegrates, clogging pore 

spaces, the soil bulk density could potentially increase. Further research is 

essential to investigate the mechanical strength of biochar is affected by 

feedstock material and pyrolysis conditions.

Freshly produced biochar can be hydrophobic, but hydrophobidty is not 

necessarily limited only to fresh biochar. Biochar hydrophobidty can be 

eliminated at certain pyrolysis temperatures, depending on the feedstock. 

Further research is needed to determine the pyrolysis temperatures 

necessary to eliminate hydrophobidty on a range of feedstocks.

If too high a proportion of crop residues are removed for biochar production, 

loss of topsoil may cancel out any potential benefits of biochar application.
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Biochar can be preferentially eroded from burned soils on steep slopes, but 

further research is needed to determine whether biochar is also preferentially 

eroded on unbumed soils on shallower slopes.

Previous studies have observed both increases and decreases in soil 

aggregation following biochar addition. The effect of biochar on SOM, soil 

strength and soil biota will have important consequences for aggregate 

stability, but limited data are available on the effect of biochar on aggregate 

stability under field conditions. Most studies of the impact of biochar on 

aggregate stability have been based on incubation experiments. Several 

studies have observed increased aggregate stability in clayey soils following 

biochar application, though in some cases there have been reductions in 

aggregate stability where relatively low application rates are used. Studies of 

aggregate stability in biochar-amended sandy soils have observed mixed 

effects. Data on the effect of biochar on aggregate stability in medium- 

textured soils are scarce. Relatively low application rates (< 16 g kg'1) have 

been shown to increase aggregate stability, but the effect of higher 

application rates has not been investigated. Moreover, to date, there has been 

little investigation of how biochar application methods might influence the 

effect of biochar amendments on soil properties.

Addressing the research gaps identified above will (i) enable a more 

thorough evaluation of the potential of biochar production as a means of 

carbon sequestration, (ii) inform biochar producers as to how certain 

properties of biochar can be maximised or avoided, and (iii) enable soil 

managers to make more informed decisions about applying biochar to their 

soils.
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Some of the key research gaps related to potential effects of biochar as a soil 

amendment are addressed through laboratory experiments in the following 

chapters. The objectives of the remainder of this thesis are thus to investigate 

how the preparation of biochar amendments (i.e. use of different pyrolysis 

temperatures, feedstocks and particle sizes) can influence their effect on soil 

hydrology and related properties, and how different biochar application 

rates influence soil hydrology, erosion and crust formation during rainfall. 

These objectives were achieved by addressing the following key research 

questions:

i. How do feedstock (biomass type and particle size) and HTT influence 

biochar hydrophobidty, CEC and yield?

ii. How do feedstock biomass type and HTT influence biochar CEC?

iii. How feedstock biomass type and HTT influence biochar yield?

iv. How does HTT influence the effect of biochar amendments on soil 

bulk density, WHC and suction?

v. How does partide size influence the effect of biochar amendments on 

soil bulk density, WHC and suction?

vi. How do different biochar application rates influence moisture 

retention, drainage and overland flow of a soil under simulated 

rainfall?

vii. How do different biochar application rates influence aggregate 

stability, splash and slopewash erosion and seal formation of a soil 

during simulated rainfall?
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4 THE EFFECTS OF FEEDSTOCK AND
PYROLYSIS TEMPERATURE ON BIOCHAR 
PROPERTIES

4.1 Introduction

Bicohar is often described as being hydrophobic (Amonette & Joseph, 2009; 

Lehmann et al., 2009; Major et al., 2009; Reza et al., 2012; Briggs et al., 2012; 

Baronti et al., 2014). Hydrophobic particles are ejected further by raindrop 

impact than hydrophilic particles (Ahn et al., 2013), so hydrophobic biochar is 

more likely to be preferentially eroded from the soil by splashing. Also, it has 

been demonstrated that the surface hydrophobidty of biochar particles is 

more important than their porosity in determining their uptake of water 

(Gray et al., 2014).

Anecdotal evidence indicates that the surface hydrophobidty of 'fresh' 

biochar might be reduced by the reabsorption and readsorption of 

condensed volatiles on the surface of biochar partides (R. Bryant, pers. 

comm., 3rd March 2011). This suggests that biochar partide size could 

influence hydrophobidty, as larger partides would have a larger surface area 

to volume ratio, limiting the mass transfer of volatiles out of the partides in 

the first instance (Antal & Gronli, 2003). Biochar partide size diminishes with 

increasing pyrolysis temperature however, and the tensile strength of 

biochar decreases as pyrolysis temperature increases, making partides more 

susceptible to attrition if sieved (Downie et al., 2009; Kim et al. 2012). As such, 

biochars produced at higher temperatures could have smaller particle sizes
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than biochar produced at lower temperatures, even if both were ground to 

pass through the same sized sieve aperture.

Biochar hydrophobidty varies according to the feedstock used, and can be 

reduced by increasing the highest treatment temperature (HTT) used in 

pyrolysing biomass to produce biochar (Kinney et al, 2012). However, higher 

H lTs produce lower biochar yields (Demirbas, 2004) and it has been daimed 

that increasing HTT to eliminate biochar hydrophobidty will have a 

deleterious effect on the cation exchange-capadty (CEC) of biochar, often 

considered one its prime qualities as a soil amendment. The initial 

hydrophobic and CEC properties of biochars are likely to be altered within 

months of biochar being applied to the soil (Cheng et al., 2006). As biochar 

ages in the soil, hydrolysis and oxidation of biochar surfaces can deplete 

aliphatic compounds and increase concentrations of addic functional groups, 

resulting in increased CEC and reduced hydrophobidty (Cheng et al, 2006). 

Leaching by water and / or various plant-derived alcohols and adds can also 

reduce biochar hydrophobidty (Briggs et al., 2012).

No studies to date have simultaneously investigated the influence of 

feedstock type and HTT on biochar yield, hydrophobidty and CEC. The 

purpose of this investigation was to gain an improved understanding of how 

different feedstocks and HTTs would affect biochar yield and influence the 

hydrophobidty and CEC of the biochars prior to their application to soil.



THE EFFECTS OF FEEDSTOCK A N D  PYROLYSIS TEM PERATURE ON

BIO C H A R  PROPERTIES

4.2 Methods

4.2.1 Biochar production

Biochar samples were produced from willow (Salix viminalis) and 

Miscanthus (M. x giganteus) feedstocks supplied by IBERS, Aberystwyth, and 

Sitka spruce (Picea sitchensis) supplied by SelectFor Ltd., Aberystwyth. These 

feedstocks are henceforth referred to as Salix, Miscanthus, and Picea 

respectively. They were selected to represent commonly available deciduous, 

graminoid and coniferous feedstocks respectively. Salix (willow) and 

Miscanthus are prevalent energy crops, while Picea (Sitka spruce) is a 

widespread forestry species. These different feedstock types have diverse 

biochemical composition, with varying cellulose, lignin and mineral ash 

content; these can influence biochar yield and surface properties (Kinney et 

al, 2012).

Prior to pyrolysis, all feedstock materials were chipped and sieved to obtain 

the 2 -5  mm fraction. Particle size was controlled because it can have a 

significant effect on yield; smaller feedstock particle sizes result in lower 

biochar yields (Demirbas, 2004). For Salix, the 5 -10  and 10 - 20 mm fractions 

were also obtained to investigate whether feedstock particle influences 

biochar hydrophobidty. Feedstocks were then oven-dried to constant weight 

at 40°C to ensure that (i) any observed differences in percentage yield were 

not influenced by moisture loss and (ii) differences in cation exchange- 

capadty (CEC) were not influenced by evolution of steam within samples 

removing tars and maximising porosity, increasing the surface area 

(Smemik, 2009). Although a more complete drying of the wood could have 

been achieved using an oven temperature of 80 -120 °C, a lower drying
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temperature was chosen to avoid biomass degradation which begins at 50°C 

with changes in the amorphous region in cellulose (Mehrotra et al., 2010).

Feedstocks were pyrolysed in an electrically heated Vectstar VTF 7 tube 

furnace with an alumina worktube continuously purged with nitrogen (N2) 

gas. The N2 was supplied from an oxygen-free, pressurised gas cylinder. A 

dual-stage 0 to 4 bar gas regulator was used in combination with a needle 

valve and a Cole-Parmer rotameter to control the N2 flow rate (Figure 4.1). A 

gas-tight seal at the ends of the worktube was achieved using stainless-steel 

end-plates with O-ring seals compressed onto the machined-flat tube ends 

using butterfly screws clamped to the reactor tube with a worm-drive damp. 

The end-plates had openings with nipple connectors, allowing entry of a k- 

type thermocouple and N2 via rubber tubing at the upstream end of the 

furnace and exhaust via rubber tubing at the downstream end (Figure 4.1). 

To ensure an oxygen-free atmosphere, the furnace and tubing were purged 

with N2 at 0.51 min*1 for 5 minutes prior to commencement of heating with a 

flow rate of 0.051 m in1 maintained thereafter (throughout the heating 

program and cooling to below 40°Q. Exhaust gases were passed through an 

ice trap condenser then vented through a fume hood (Figure 4.1). Feedstocks 

were inserted into the furnace in alumina boats. Condensed tars within the 

furnace or alumina boats were cleaned between production runs by using an 

air pump to purge the worktube with air whilst it was heated to 650 PC, 

causing the tars to be combusted.
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Figure 4.1: Schematic diagram of pyrolysis apparatus (adapted from Woolf 2011)

The temperature of the tube furnace was controlled using a Fuji PXZ4 

temperature controller and logged using a Pico TC-08 thermocouple 

datalogger with a logging program created in Visual Basic 6.0 (Microsoft, 

USA). Pilot studies showed that the thermal mass of the ceramic worktube 

consistently caused time lags of several minutes between the heating rates 

programmed through the temperature controller and those observed in the 

heating rate recorded by the thermocouple within the furnace. Further tests 

showed that time-lags were too long to be effectively dealt with by the 

controller's inbuilt algorithms for preventing temperature overshoot or 

undershoot. Undershooting was instead eliminated by programming 

temperature setpoints, which were higher than the desired temperatures by 

amounts equal to the undershoots observed during test runs. This method 

enabled highly reproducible heating curves to within ± 1 °C of the desired
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highest treatment temperature (HTT: the highest temperature reached 

during pyrolysis).

For each feedstock type, biochar samples were produced at HTTs of 350,500, 

650 and 800 °C. These HTTs were intended to represent the range of 

temperatures at which biochar might be produced. Project funding and time 

constraints rendered the investigation of varying heating rate on biochar 

properties impractical, so a heating rate of 10 °C m in1 was used for all 

samples. However, the furnace was first heated to 45°C and held at this 

temperature for 5 minutes to ensure the same starting temperature. Once the 

furnace had reached a temperature 50°C below the target HTT, the heating 

rate was slowed to minimize overshoot. The HTT was maintained for 2 hours 

before the furnace was allowed to cool. The resultant biochar was removed 

once the furnace temperature had cooled to below 40°C and stored in a 

sealed container.

As biochar samples were present in the furnace for the entire heating and 

cooling process, biochars produced using a HTT of 500°C were in fact held at 

temperatures > 350°C for substantially longer than two hours, biochars 

produced at 650°C were held at temperatures > 500°C for substantially longer 

than two hours and so on. Using different heating rates could have reduced 

this effect somewhat, but such an approach was avoided because pyrolysis is 

initiated at higher temperatures as heating rates is increased (Gupta & Lilley, 

2003), and different heating rates affect biochar yields (Williams & Besler,
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4.2.2 Biochar y ield

Biochar yields were measured for each biomass type and HTT using 

feedstock of a 2 - 5 mm particle size. Three yield measurements were made 

for each treatment i.e. from three separate pyrolysis runs, except for Salix 

biochar produced using an H l l of 650*C, for which only one measurement 

was made. Feedstock was weighed immediately before pyrolysis and the 

resultant biochar was weighed immediately after removal from the furnace. 

Weight measurements were made using a Sartorius 5-figure balance.

4.2.3 Hydrophobidty

Several methods are used within soil sdence to measure hydrophobidty, so 

pilot studies were used to select an effective way of measuring biochar 

hydrophobidty. The most commonly used approach in is the water drop 

penetration time (WDPT) test, which measures the persistence of a soil's 

water repellency. The WDPT test was rejected as a possible methodology 

following pilot studies which showed that using ground biochar, observing 

the exact penetration time was difficult because droplets often became 

completely obscured from view by fine biochar partides drawn onto their 

surfaces. The WDPT test was then piloted on unground biochar particles, but 

it was conduded that this would be an ineffident approach due to the 

extreme hydrophobidty (WDPT > 3600 seconds) of some biochar partides. 

These problems have also been encountered by other researchers (C. 

Masiello, pers. comm., September 2010). In order to avoid these problems, 

biochar hydrophobidty was instead investigated using a Kriiss Easydrop 

goniometer to measure water droplet contact angles. On a hydrophobic
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surface, water will minimize its contact with the surface, so droplets will 

tend to bead on the surface, having a high contact angle (Yuan & Lee, 2013). 

Conversely, on a hydrophilic surface, water droplets will tend to spread 

(Yuan & Lee, 2013). Thus, the contact angle where a water droplet, air and 

the surface being investigated intersect gives a measure of hydrophobidty 

(Figure 4.2).

A B

Figure 4.2: Contact angle measurements. The biochar particles were both produced 
from Salix feedstock. 'A ' was produced at 350°C and 'B' was produced at 650°C.

Preliminary tests showed that ground biochar particles covering the surface 

of the water droplet obscured the contact-angle, so unground biochar 

particles were used instead. A droplet of deonized water (6 pi) was dropped 

onto a piece of biochar held in place using Play-Doh (a modelling compound 

produced from flour, water, salt, boric add and mineral oil by Hasbro Inc., 

Rhode Island, USA) from a height of 10 mm, using an automated syringe 

(Figure 4.3). After 20 seconds, an image of the water droplet sitting on the 

biochar (illuminated from behind) was recorded by a high-resolution camera 

(Figure 4.3). The apparent contact angles where the water, air and biochar 

intersected on each side of the droplet were then measured (Figure 4.2). Pilot
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studies showed that that the accuracy of contact-angle measurements 

produced by drop-shape analysis software (DSA1 Version 1.9, Kriiss, 

Germany) was unsatisfactory, so measurements were instead made manually 

using ImageJ software (Version 1.45c, National Institutes of Health, USA). 

When droplets infiltrated biochar or spread over the surface, the contact 

angle was recorded as zero.

Automated syringe

High-resolution 
camera v

Biochar partide held in 
place with Play-Doh

Back light

Figure 4.3: Goniometer

This procedure was carried out 50 times, giving a total of 100 contact angle 

measurements, one on each side of each water droplet, for each of the 

following:

(i) Biochar produced from each feedstock material at each HTT using 

only the 2 -5  mm fraction, immediately following the sample removal 

from the furnace after cooling to <40°C. This size fraction was selected 

because it represented the largest fraction by mass, ensuring sufficient 

sample availability.



THE EFFECTS OF FEEDSTOCK AND PYROLYSIS TEMPERATURE ON

BIOCHAR PROPERTIES

(ii) Biochar produced at 350°C from each partide-size fraction of Salix 

immediately following the sample removal from the furnace after 

cooling to < 40°C. The feedstock and HTT used were selected on the 

basis of evidence from pilot studies which indicated that they were 

most likely to produce hydrophobic biochar.

(iii) Biochar produced at 350°C from the 10 - 20 mm fraction of Salix 

feedstock at 2 hours, 7 days and 21 days from when the biochar was 

removed from the furnace after cooling < 40°C. These time periods 

were selected on the basis of anecdotal evidence which suggested that 

immediately following production, biochar surfaces were coated by 

condensed volatiles, but after three weeks the tars were no longer 

visible (R. Bryant, pers. comm., 3rd March 2011). This design thus 

provided a means of investigating whether biochar hydrophobidty 

might be influenced by reabsorption of condensed volatiles over time.

For each treatment, hydrophobidty was tested using biochar from a single 

batch.

4.2.4 Stereomicroscopy

Images of biochar partides were produced to assess visually the effect of 

feedstock type and pyrolysis temperature on the surface roughness of 

biochar partides. Images were obtained using a Leica MZ FL III fluorescence 

stereomicroscope in combination with a Qlmaging MicroPublisher 3.3 

camera operated using QCapture Pro software (Version 6.0, Qlmaging, 

Canada).
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4.2.5 Cation exchange-capacity

Cation exchange-capacity (CEC) was determined four times for each 

feedstock material at each HTT except 800°C, for which CEC was determined 

three times for each feedstock material. CEC was measured using sub­

samples drawn from a composite sample produced from multiple pyrolysis 

runs. The method adopted used ammonium acetate to remove ash and buffer 

pH (Hendershot et al., 2008). 1.00 to 2.00 g of biochar was weighed out into a 

jar. 40 ml of 1 M analytical grade ammonium acetate (NH4OAC) were added 

to the tube, which was then sealed and shaken for 5 minutes on a reciprocal 

shaker (115 rpm). The tube was then removed from the shaker, agitated to 

rinse down biochar adhering to the sides and lid of the jar and left to stand 

overnight. The jar was then shaken again for 15 minutes, before the contents 

were transferred to a Buchner funnel with Whatman no. 42 ashless filter 

paper over a 500 ml filtering flask. The jar and lid were rinsed into the funnel 

with 1 M NH4OAC from a wash bottle. The biochar was then washed with 

four 30 ml portions of 1 M NH4OAC, each portion draining completely before 

the next was added. Any residual NH4OAC was washed from the biochar 

with three 40 ml portions of isopropanol, with each portion again being 

allowed to drain completely before the next was added. The Buchner funnel 

was then placed onto a new flask and the biochar leached with four 50 ml 

portions of 1 M KQ, each portion being allowed to drain fully before the next 

was added. The leachate was then transferred to a 250 ml volumetric flask. 

Double distilled water was used to rinse the filtering flask into the 

volumetric flask and top up the volumetric flask to volume. Finally, the 

resultant solution was mixed thoroughly and a portion saved for analysis of 

NH< content using a SEAL Analytical AA3 automated segmented flow 

' analyser.
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The 2 -5  mm size fraction was used to produce the biochar samples because 

it represented the largest fraction by mass, ensuring sufficient sample 

availability. The biochar samples were not ground prior to CEC analysis. 

Biochar particle size diminishes with increasing pyrolysis temperature and 

specific surface area can increase by up to two orders of magnitude (Kim et 

al. 2012; Brown et al. 2006), which may contribute to any differences in CEC 

between biochars produced at different temperatures. Grinding the biochar 

down to a standard particle size would have been inappropriate because it 

would have eliminated such an effect. Furthermore, the tensile strength of 

biochar decreases as pyrolysis temperature increases, making particles more 

susceptible to attrition if sieved (Downie et al., 2009). As such, biochars 

produced at higher temperatures could have smaller particle sizes than 

biochar produced at lower temperatures, even if both were ground to pass 

through the same sized sieve aperture. Attempting to standardize the 

particle size of biochars produced at different HTTs is therefore problematic.

4.2.6 Statistical .analyses

Normality of the hydrophobidty data was checked using the Kolmogorov- 

Smimov test (Kolmogorov, 1933; Smirnov, 1948). This quantifies the 

maximum distance between the empirical distribution function of the sample 

and the cumulative distribution function, the normal distrubtion. Given data 

points Ji to Jn, the empirical distribution function, En, is defined thus:

Where n(k) is the number of data points less than Jk and the Jk are ordered 

from least to greatest value. This is a step function increasing by 1/N at the



THE EFFECTS OF FEEDSTOCK AND PYROLYSIS TEMPERATURE ON

BIOCHAR PROPERTIES

77

value of each ordered data point. The Kolmogorov-Smimov test statistic is 

given by:

j r=

Where C is the theoretical cumulative distribution function. The K statistic is 

then compared to a critical value obtained from a probability table to 

determine whether or not the dataset is normally distributed.

The datasets collected in this investigation were either small or not normally 

distributed, so non-parametric methods were used for all statistical analyses.

Overall differences between biochars produced from different feedstocks or 

at different temperatures were analysed using the Kruskal-Wallis one-way 

analysis of variance by ranks (Kruskal & Wallis, 1952). This statistic is 

obtained by ranking the data from all groups together, from 1 to n, ignoring 

group membership; tied values are assigned the mean of the ranks that they 

would have received had they not been tied. The sum of ranks and mean of 

ranks is then calculated both for each group then for all groups combined 

and the statistic 'H' is calculated thus:

Where j  is the number of groups, Sm is the sum of ranks for the mth group, «* 

is the sample size of the m* group, N  is the total number of observations in 

all groups combined and Q2 is given by:

m = ld=1
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Where nm is the rank for the dth observation in the mth group. The p value is 

then approximated by comparing H with the x2 distribution according to the 

number of degrees of freedom, determined by j -1.

Mann-Whitney If-tests were used for post hoc pairwise comparisons (Mann & 

Whitney, 1947). As with the Kruskal-Wallis test, the data from both groups is 

numerically ranked from 1 to n, ignoring group membership, with equal 

values being assigned the mean of the ranks that they would have received 

had they not been equal. The sum of the ranks for group 1 is then 

determined, with If calculated thus:

. ” l(Hl + 1) „
U = n ,n2 + ------=-------- Si

Where m is the sample size for group 1, and Si is the sum of ranks for group 

1. The U statistic is then compared to the probability tables provided by 

Mann & Whitney (1947) to determine the p value according to the sample 

sizes of the two groups being compared. To control the familywise Error rate, 

significance values from If-tests were subjected to Bonferroni adjustment, 

meaning that the p values obtained using If- tests were multiplied by the 

total number of inter-group comparisons made for a family of tests using a 

given dataset (Dunn, 1961)

Jonckheere-Terpstra tests were used to assess trends with a priori ordering 

(Jonckheere, 1954). For example, the alternative hypothesis could be: group 1 

median < group 2 median < group 3 < group 4 median, where each group 

represents a higher temperature or dosage than the preceding group. For 

each group 1 value in turn, the number of values in groups 2,3 and 4 that are 

greater than the group 1 value in question are counted (a tied value is 

counted as 0.5). This process is repeated to compare group 2 to groups 3 and
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4, and group 3 to group 4; the total count is M. A count is also made of the 

number of values in groups 2,3 and 4 that are smaller than the group 1 value 

in question (again, a tied value is counted as 0.5). Again, this process is 

repeated to compare group 2 to groups 3 and 4, and group 3 to group 4; the 

total count is Q. The Jonckheere-Terpstra statistic, S, is then calculated thus:

S = M -Q

The S statistic is then compared to the probability tables provided by 

Jonckheere (1954) to determine the p value according to the number of 

groups, and the group sample sizes.

All statistical analyses were completed using SPSS (v. 19, IBM, USA), except 

for the J onckheere-T erpstra tests, which were manually calculated from first 

principles using Microsoft Excel (2010) because SPSS was found to produce 

erroneous output for this test. A 95% confidence level was adopted for all 

tests; differences were considered to be statistically significant where p < 0.05.

4.3 Results

43.1 Biochar yield

For all feedstocks, the average biochar yield decreased with each increase in 

HTT (Table 4.1). Using a HTT of 350°C, there were no significant differences 

between the bkxhar yields produced by different feedstocks (Table 4.2). At 

HTTs of 500°C. and 650°C, there were statistically significant differences 

between the biochar yields produced using different feedstocks (Table 4.2). 

Tor all feedstocks, the largest reductions in biochar yield occurred between 

HTTs of 350 and 500°C. For Salix and Miscanthus feedstocks, median yield
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decreased from -40% to -30%, while for Picea feedstock, median yield 

decreased from 47% to 37%. Further increases in H IT had less effect on the 

average biochar yield of Salix and Miscanthus feedstocks; yields at 800°C 

were only -3.5% lower than at 500°C (Figure 4.4). Using Picea feedstock, 

median yield was diminished from 37% to 31% between 500 and 650°C, with 

a further 2% reduction in yield between 650 and 800°C. Using a HTT of 

800°C, the biochar yields for all feedstocks were -25-30% and there were no 

statistically significant differences between them (Table 4.2). The range of 

yields produced from Salix and Miscanthus feedstocks was relatively small at 

all HTTs (Figure 4.4). However, for Picea feedstock, there appeared to be an 

overall trend for the range of biochar yields produced to decrease with 

increasing H IT (Figure 4.4).
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Figure 4.4: The effect of highest treatment temperature on the yield of biochar 
produced from different feedstock types
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Table 4.1; Tests for differences between biochar yields at different temperatures and 
for trends of decreasing yield with increasing pyrolysis temperature

Feedstock Kruskal-Wallis Jonckheere-Terpstra

H df V S V
Salix 8.35 3 0.001 36 <0.001

Miscanthus 8.13 3 0.015 44 <0.001

Picea 7.82 3 0.021 42 <0.001

Table 4.2: Tests for differences between biochar yields produced from different 
feedstocks at different highest treatment temperatures

HTT Kruskal-Wallis 
H df P

350°C 0.69 2 0.757

500°C 7.20 2 0.004

650°C 5.14 2 0.043

800°C 3.20 2 0.254

4.3.2 Hydrophobicity

43.2.1 The effect of HTT

Biochar hydrophobicity was significantly affected by HTT for all feedstocks. 

Statistically significant reductions in hydrophobicity occurred with each 

increase in HTT for all three feedstocks, with the exception of the difference 

between biochars produced at 650°C and 800°C from Miscanthus feedstock 

(Table 4.3). For Miscanthus and Picea biochars, the largest absolute decreases
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in hydrophobicity occurred when increasing the HTT from 350°C to 500°C, 

which led to a 40% reduction in mean contact angle for both feedstocks; from 

96® to 57° for Miscanthus and from 83° to 47° for Spruce (Figure 4.5). 

However, this temperature increase had the least effect for Salix feedstock, 

resulting in a hydrophobicity reduction of just 14%. Increasing HTT from 

500®C to 650°C halved the hydrophobicity of Miscanthus and Picea biochars 

but decreased the hydrophobicity of Salix biochar by only 27%. Increasing 

HTT from 650°C to 800°C reduced the hydrophobicity of Salix biochar by a 

further third, and of Picea biochar by a further half, but did not significantly 

affect the hydrophobicity of Miscanthus biochar (Table 4.3). Overall, the mean 

contact angles observed on Salix, Miscanthus and Picea biochars pyrolysed 

using a HTT of 800°C were respectively 58%, 70% and 80% lower than those 

on biochars produced at 350°C.

Biochar hydrophobicity was significantly affected by feedstock type at all 

H'lT's (Table 4.4). Salix biochars were over a third more hydrophobic than 

Miscanthus or Picea biodiars at all HTTs except 350°C (Table 4.4). When 

produced using HTTs of 350°C and 800°C, Miscanthus biochars were 

respectively 14% and 32% more hydrophobic than Picea biochars, but there 

were no significant differences between the two when HTTs of 500°C and 

650°C were used (Table 4.4).

For all feedstocks, contact angle variability increased with increasing HTT 

(Figure 4.5).
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Figure 4.5: The effect of feedstock and H TT on biochar hydrophobicity (Error bars 
represent 95% confidence intervals (CIs), n = 100)

Table 4.3: Tests for differences between hydrophobicity of biochars produced using 
different HTTs (for U-tests, p is 1-tailed and Bonferroni-adjusted)_____________
Feedstock Kruskal-Wallis Mann-Whitney
HTTs compared (°C) H (df) U V
Salix 208.47 (3) <0.001
350 vs. 500 2334.5 <0.001
500 vs. 650 2403.0 < 0.001
650 vs. 800 3022.5 <0.001

M iscanthus 279.26 (3) <0.001
350 vs. 500 151.0 <0.001
500 vs. 650 1729.0 <0.001
650 vs. 800 4527.0 0.238

Picea 223.94 (3) <0.001
350 vs. 500 838.0 <0.001
500 vs. 650 3900.0 0.010
650 vs. 800 317.50 <0.001
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Table 4.4: Tests for differences between hydrophobicity of biochars produced from
different feedstocks (for U-tests, p is 2-tailed and Bonferroni-adjusted)_________

HTT Kruskal-Wallis Mann-Whitney
Feedstocks compared____________ H  (df)_________ U___________ p_
350°C
Salix vs. Miscanthus 
Salix vs. Picea 
Miscanthus vs. Picea

500°C
Salix vs. Miscanthus 
Salix vs. Picea 
Miscanthus vs. Picea

650°C
Salix vs. Miscanthus 
Salix vs. Picea 
Miscanthus vs. Picea

soo°c
Salix vs. Miscanthus 
Salix vs. Picea 
Miscanthus vs. Picea

106.27 (2)

153.40 (2)

75.10 (2)

44.88 (2)

<0.001
3016.0 <0.001
1284.5 <0.001
1913.5 <0.001

<0.001
641.0 <0.001
638.0 <0.001

4187.0 0.140

<0.001
1677.0 <0.001
2360.0 <0.001
4263.0 0.201

<0.001
3157.0 <0.001
2400.0 <0.001
4128.5 0.086

43.23 The effect of feedstock partic le  size

The particle size of feedstock had a statistically significant effect on the 

hydrophobicity of Salix biochar (H(2) -  10.62, p = 0.005). The hydrophobicity 

of Salix biochars produced from 2 -5  and 5-10 mm feedstock was almost 

identical; both had mean water droplet contact angles of 104 ±14° (± denotes 

standard deviation). In contrast, the mean water droplet contact angle on 

biochar produced from 10-20 mm Salix feedstock was lower (100 ±14°); the 

differences between this particle size and the smaller two were statistically 

significant (Table 4.5).
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Table 4.5: Tests for differences between hydrophobicity of biochars produced from 
different particle size fractions of Salix feedstock (n = 100, p is 2-tailed and 
Bonferron i-adjusted)_______________________________________________
Feedstock particle sizes (mm) Mann-Whitney

U V
2 -5  vs. 5 -10 4921.0 0.500
2 -5  vs. 10 - 20 3850.0 0.008

5-10  vs. 10 - 20 3843.5 0.008

4.3.2.3 The effect of tim e since p ro d u c tio n

As Figure 4.6 illustrates, the hydrophobicity of Salix biochar did not change 

significantly between the day it was produced and 7 days and 21 days later

(p = 0.062).
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Figure 4.6: The effect of time since production on the hydrophobicity of Salix biochar 
produced at 350°C (Error bars represent 95% C/s, n = 100)
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4.3.3 Cation exchange-capacity

CEC was significantly affected by HTT for Salix and Miscanthus feedstocks, 

but not for Picea feedstock (Table 4.6). The largest changes in CEC occurred 

between HTTs of 350 and 500°C, the mean more than doubling for each 

feedstock. This was a statistically significant change in CEC in the case of 

Salix and Miscanthus feedstocks (Table 4.6). For all subsequent increases in 

HTT, biochar CEC was invariant (Figure 4.7).

Biochar CEC was significantly affected by feedstock material at all HTTs 

(Table 4.7). The mean CECs of biochars produced from Salix were 

consistently double that of biochars produced from Picea (Figure 4.7), though 

the differences between them were only statistically significant at HTTs of 

500 and 650°C (Table 4.7). The mean CECs of biochars produced from 

Miscanthus feedstock were consistently ~3 times higher than those produced 

from Picea biomass (Figure 4.7); the differences were statistically significant 

at each HTT except 800°C (Table 4.7). The mean CEC of Miscanthus biochar 

was higher than that of Salix biochar at all HTTs except for 650°C (Figure 

4.7), but the differences between them were only statistically significant at 

350°C (Table 4.7).
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Figure 4.7: The effect of feedstock and HTT on biochar CEC (Error bars represent 
95% CIs. Red dashed lines represent typical range of soil CEC values (Brady & Weil, 
2008). For biochars produced at 350 - 650°C, n = 4, for biochars produced at 800°C, 
n =3.)

Table 4.6: Tests for differences between CECs of biochars produced using different 
HTTs (for U-tests, p is 1-tailed and Bonferroni-adjusted)____________________
Feedstock Kruskal-Wallis Mann-Whitney
HTTs compared (°C) H (df) U V
Salix 9.84 (3) 0.004
350 vs. 500 0.00 0.042
500 vs. 650 3.00 0.300
650 vs. 800 2.00 0.342

Miscanthus 9.18 (3) 0.009
350 vs. 500 0.00 0.042
500 vs. 650 7.00 1.000
650 vs. 800 2.00 0.342

Picea 4.78 (3) 0.189
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Table 4.7: Tests for differences between CECs of biochars produced using different 
HTTs (for U-tests, p is 1-tailed and Bonferroni-adjusted)_____________ _____
HTT Kruskal--Wallis Mann-Whitney
Feedstocks compared H (df) U V
350°C 8.35 (2) 0.002
Salix vs. Miscanthus 0.0 0.042
Salix vs. Picea 3.0 1.000
Miscanthus vs. Picea 0.0 0.042

500®C 7.73 (2) 0.007
Salix vs. Miscanthus 5.0 0.729
Salix vs. Picea 0.0 0.042
Miscanthus vs. Picea 0.0 0.042

650°C 7.73 (2) 0.007
Salix vs. Miscanthus 5.0 0.729
Salix vs. Picea 0.0 0.042
Miscanthus vs. Picea 0.0 0.042

800°C 5.96 (2) 0.025
Salix vs. Miscanthus 2.0 0.600
Salix vs. Picea 0.0 0.150
Miscanthus vs. Picea 0.0 0.150

4.4 Discussion

4.4.1 Biochar yield

The decreases in yield observed with increasing HTT are in agreement with, 

inter alia, the findings of Demirbas (2004), Hossain et al. (2011) and Masek et 

al. (2013). At pyrolysis temperatures below 250°C, mass is lost by formation 

of water from cellulose and evolution of CO2 and CO (Antal & Gronli, 2003). 

Decomposition of hemicellulose begins at 220°C and is largely completed by
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315°C (Yang et al., 2007). As the lowest HTT used in this investigation was 

350°C, hemicellulose content is unlikely to have contributed to differences 

between weight losses of feedstocks at different HTTs. Biochar yields are 

greater at lower pyrolysis temperatures because there are lower losses of 

CH4, H2 and CO (Novak et al., 2009). Pyrolysis (and weight loss) of cellulose 

occurs between 315°C and 400°C (Yang et al, 2007) and cellulose-derived 

levoglucosan tars can be volatilized at 300-600°C (Amonette & Joseph, 2009), 

meaning biochar yields significantly decline between HTTs of 300°C and 

600°C. Increasing the HTT beyond 600°C results in the removal of more of 

the O, H, N and S in the original feedstock (Amonette & Joseph, 2009). Lignin 

starts to decompose at around 160°C and steadily continues to do so up to 

900°C (Yang et al., 2007). Lignin preferentially forms char during pyrolysis, 

so using feedstocks with high lignin contents tends to deliver higher biochar 

yields (Anted & Gronli, 2003; Demirbas, 2004). Lignin weight loss during 

pyrolysis is typically less than half that of cellulose because it is less easily 

dehydrated and produces more residual biochar (Brown, 2009). The 

literature indicates that Picea is likely to have had the highest lignin content 

of the feedstocks used in this investigation (Table 4.8), which could explain 

why it delivered the highest mean biochar yields at all pyrolysis 

temperatures and why reductions in yield with increases in HTT were larger 

than for Miscanthus and Salix feedstocks. The similarities between the yields 

obtained from Miscanthus x giganteus and Salix viminalis feedstocks suggest 

that their lignin contents were similar.
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Table 4.8: Lignin and cellulose content of feedstocks

Biomass Composition (%) 
Lignin Cellulose

References

Miscanthus x 
giganteus

12-28 42-52 Ververis et al., 2004; 
Brosse et al., 2012

Picea sitchensis 28 44-46 Ramsden & Blake, 1997; 
Nuopponen et al., 2006

Salix viminalis 25-27 38-41 Waliszewska et al, 2006

4.4.2 Hydrophobicity

4.42.1 The effect of feedstock  partic le  size

The relatively lower hydrophobicity of biochar produced using the 10-20 mm 

particle size compared to the smaller particle sizes may be due to the effect of 

larger feedstock particle size on pyrolysis reactions. Larger particle sizes can 

limit heat transfer into particles and the mass transfer of volatiles out of the 

biochar (Antal & Gronli, 2003; Downie et al., 2009). This could ultimately 

result in a lesser volume of hydrophobic tars condensing on the surface of 

biochar, with unescaped volatiles instead condensing within the particle. 

Further research is needed to determine whether this is the case. The heating 

rate for small particles is higher than for larger particles (Zanzi, 2001). 

Different heating rates can result in different concentrations of functional 

groups (Ammonette and Joseph, 2009), which could have contributed to 

differences in hydrophobicity.

Although the differences between the hydrophobicity of different biochar 

particle size fractions were statistically significant; the differences were small
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and unlikely to have any substantial influence on the use of biochar as a soil 

amendment. Moreover, it is likely that biochars of 10-20 mm would be 

ground to maximise their specific surface area prior to being applied to soil, 

which, if the explanation given above for the greater hydrophobicity of this 

particle size fraction is correct, could eliminate the effect of larger feedstock 

particle sizes in reducing biochar hydrophobicity anyway (because the 

internal surfaces where volatiles condensed would be exposed by grinding). 

Also, as Downie et al. (2009) suggest, the influence of larger particle sizes 

might be overcome by using longer retention times.

4.42.2 The effect of tim e since p roduction

That biochar hydrophobicity did not decrease with time since production 

demonstrates that the hydrophobicity of these biochars was not reduced by 

reabsorption of condensed volatiles. It is more likely that hydrophobicity is 

instead eliminated by oxidation of biochar surfaces and leaching (Cheng et 

al., 2006; Briggs et al., 2012). However, further research is needed to 

determine whether the presence and subsequent reabsorption of condensed 

volatiles on biochars produced without N2 purge gas contributes to 

variations in biochar hydrophobicity.

4.423 The effect of HTT

In surface science, Young's Law stipulates that a water /  solid contact angle 

of 90® delineates the boundary between hydrophobic and hydrophilic solids 

(Young, 1805). If a water droplet on a surface has a contact angle of <90°, the 

surface is considered hydrophilic. If the contact angle is >90°, the surface is
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considered hydrophobic. It is often assumed in soil science that the same 

contact angle threshold is indicative of whether or not a soil is hydrophobic 

(Shirtdiffe et al., 2006). Applying this principle to biochar, it can be concluded 

that Picea biochar was hydrophilic even when using a HTT of 350°C and 

Miscanthus biochar became hydrophilic when using a HTT >500°C. These 

findings support the theory proposed by Kinney et al. (2012) that biochar 

hydrophobicity is related to alkyl functionalities which are largely destroyed 

by pyrolysis up to 500°C. Indeed, the most dramatic decreases in the 

hydrophobicity of biochars produced from Miscanthus and Picea feedstocks 

occurred between HTTs of 350 and 500°C. The largest reduction in the 

hydrophobicity of Salix biochar nonetheless occurred between HTTs of 500 

and 650°C, indicating that factors other than the destruction of alkyl 

functionalities at 500°C can contribute to changes in biochar hydrophobicity.

Although the mean droplet contact angle cm Salix biochar was below 90° 

using a HTT of 500°C, the 95% upper confidence interval only dropped 

below 90° between HTTs of 500 and 650°C (Figure 4.5). Moreover, Shirtdiffe 

et al. (2006) demonstrated theoretically and experimentally that water cannot 

enter many soils unless the contact angle is less than approximately 50°. This 

finding may also apply to biochar, though it should be noted Shirtdiffe et al. 

(2006) examined multi-partide surfaces, whereas this investigation used 

single (but porous) partides. Using a 50° contact angle threshold to define 

biochars as hydrophilic or hydrophobic, Picea and Miscanthus biochars can 

only be dassified as hydrophilic with 95% confidence at a HTT of 650°C, 

though Picea biochar became more wettable using a HTT of 800°C (Figure 

4.5). Although the mean water droplet contact angle on Salix biochar was 

below 50° using a HTT of 800°C (Figure 4.5), there is less than 95%
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confidence that the true mean contact angle was in fact below 50°. Using 

HTTs of 800°C, contact angles of 0° were only recorded for 20% of droplets 

on Salix biochar, and 37% of droplets for both Picea and Miscanthus biochars, 

so there was clearly a residual resistance to wetting of the biochar surfaces 

even at the highest pyrolysis temperature.

If alkyl functionalities were solely responsible for biochar hydrophobicity, 

the wettability of biochars produced at HTTs >500°C would be the same, 

because alkyl groups are destroyed at HTTs between 400 and 500°C. 

However, differences in the wettability of biochars produced from different 

feedstocks persisted at HTTs beyond 500°C. A plausible explanation for 

continued reductions in hydrophobicity at HTTs beyond 500°C would be 

increasing surface charge, but this cannot have been the case as the surface 

charge characteristics of the biochars were not significantly altered by 

increases in H IT beyond 500°C (

Table 4.6). It therefore seems likely that other factors influence biochar 

hydrophobicity besides surface chemistry.

Surface chemistry alone can only achieve maximum contact angles of around 

120° on flat surfaces (McHale et al., 2007). Greater contact angles can only 

occur where there is a sufficiently 'rough' surface at the sub-mm scale 

(McHale et al, 2007). For Salix biochar produced using a HTT of 350°C, 15% 

of the contact angles recorded were greater than 120®, while for Miscanthus 

and Picea biochars produced at the same temperature, 6% and 7% of the 

contact angles recorded were greater than 120®. This demonstrates that the 

surface topography of biochar particles contributes to their hydrophobicity.
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As pyrolysis temperature is increased from 300 to 1000°C, biochar particles 

shrink as a result of pyrolysis reactions (rearrangement of chemical bonds 

and the coalescence of graphite nuclei within die particle) and loss of water 

mass (Emmerich & Luengo, 1996; Di Blasi, 1996; Freitas et al., 1997; Hagge & 

Bryden, 2002; Antal & Gronli, 2003; Downie et al., 2009). Shrinkage of 

particles is three-dimensional (Pulido-Novido et al., 2001), so the height of 

peaks in the surface topographies of biochar particles will be reduced in 

proportion to the overall reduction in particle size, meaning that biochar 

surfaces become smoother and therefore less hydrophobic as HTT increases 

(Figures 4.8 - 4.10). This effect would be more complex for woody feedstock 

particles where some of the surface is covered in bark, as the bark will often 

have a higher lignin content than the rest of the wood (Harkin & Rowe,

1971), potentially resulting in different amounts of shrinkage at the surface 

compared to the rest of the char.

Contact angle variability increased with increasing HTT for all feedstocks, 

demonstrating that changes in the hydrophobicity of biochar surfaces are not 

uniform. Instead biochar hydrophobicity becomes more heterogeneous with 

increasing HTT, indicating changes in the surface chemistry and topography 

of biochar particles are gradual rather than subject to sudden, uniform 

changes at certain threshold temperatures. As such, specific sites on biochar 

particles will be more or less hydrophobic than other sites.
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Figure 4.8: Stereomicroscope images o f Miscanthus biochars (For scale, blue marks
are at 1 mm intervals)
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Figure 4.9: Stereomicroscope images o f Picea biochars (For scale, blue marks are c
mm intervals)



THE EFFECTS OF FEEDSTOCK A N D  PYROLYSIS TEM PERATURE ON

BIO CH A R PRO PERTIES

350°C

m in i

mm

800°C

m ini

immi

il ium

Figure 4.10: Stereomicroscope images o f Picea biochars (for scale, blue marks are at
mm intervals)
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4.42.4 The effect of feedstock  type

Kinney et al. (2012) found that biochar hydrophobicity was correlated to alkyl 

functionalities. At temperatures below 500°C, differences in hydrophobicity 

between biochars produced from different feedstocks will therefore result in 

part from differences in the concentrations of alkyl functionalities inherited 

from the original biomass. Alkyl is representative of plant structures such as 

lipids and cutans which are present in different concentrations in different 

biomass (Krull et al., 2009). However, at HTTs above 500°C, the conversion of 

alkyls to aryls is almost complete (Krull et al, 2009), meaning that contrasts in 

the chemical characteristics of feedstocks will become less important in 

influencing biochar hydrophobicity. The differences in hydrophobicity of 

biochars produced from different feedstocks at HTTs above 500°C thus 

provide further evidence of the importance of biochar surface topography.

Some of the differences in hydrophobicity between the two wood-derived 

biochars may have arisen from their different densities. The average density 

of Salix viminalis is 0.59 g cm-3 (Vargas et al, 2012). This is much higher than 

the average density of Picea sitchensis, which is 0.35 g cm-3 (Moore, 2011). 

Generally speaking, the lower the density of a wood, the easier it is to cut, 

resulting in smoother surfaces (Simpson & TenWolde, 1999). Denser woods 

are more likely to split or splinter when cut. It is therefore possible that the 

lower hydrophobicity of Picea biochar compared to Salix biochar was partly 

attributable to their different densities resulting in different degrees of 

surface smoothness when the feedstocks were chipped. Also, Picea has a fine, 

even texture and a consistently straight grain, whereas Salix usually has a 

more medium (rougher) texture; this may have also contributed to 

differences in the surface topographies of Salix biochar and Picea biochar.
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Miscanthus feedstock yielded more hydrophobic biochar than Picea feedstock 

at most HTTs, this difference presumably arose in part from the uniformly 

ribbed structure of Miscanthus stems (Figure 4.8) augmenting hydrophobicity 

to a greater extent than die texture of Picea feedstocks.

The extent to which particles shrink as they are pyrolysed differs according 

to the proportions of lignin, cellulose and hemicellulose, and other organic 

and inorganic materials in the feedstock (Hagge & Bryden, 2002). Fengel & 

Grosser (1975) tabulated data from more than 350 papers investigating the 

composition of 153 wood species. On average, stem wood in temperate-zone 

hardwoods contains 40-50% cellulose and 20-25% lignin, while temperate- 

zone softwoods contain 40-45% cellulose and 25-35% lignin (Fengel & 

Grosser, 1975). Cellulose is thermally degraded between 315°C and 400°C 

whereas lignin starts to decompose at around 160°C and steadily continues 

to do so up to 900°C (Yang et al., 2007). Different proportions of these 

components in the different feedstocks used in this study (Table 4.8) would 

have influenced the extent to which the physical structure and therefore, 

surface topography of biochar particles was modified at different pyrolysis 

temperatures.

The proportion of inorganic components (ash content) also has implications 

for physical structure however and can cause dramatic changes in the 

physical and structural composition of biochar where ash fusion or sintering 

occurs (Downie et al, 2009). As Table 4.9 demonstrates, the Miscanthus 

feedstock used in this study would probably have had substantially higher 

ash content than the Salix or Picea feedstocks. Miscanthus feedstock particles 

would therefore to have been more susceptible to changes in its structural



THE EFFECTS OF FEEDSTOCK A N D  PYROLYSIS TEMPERATURE ON

BIOCHAR PROPERTIES

composition due to ash fusion or sintering during pyrolysis. This may have 

contributed to differences in surface roughness and therefore, differences in 

hydrophobicity between the feedstocks.

Table 4.9: Reported ash contents of Picea, Salix and Miscanthus stems

Reference
Ash content (% dry weight)

Picea Salix Miscanthus

van Ree (1995) - - 1.50

Wilen etal. (1996) - 1.18 2.30

- - 3.31

Miles et al. (1996) - 0.95 2.30

- 1.10 4.15

Dlerup & Rathmann (1996) - 2.10 1.50

Moilanen et al. (1997) - 1.20 3.30

Hallgren et al. (1999) - 1.90 1.50

Guanxing et al. (1999) - - 2.80

Yu etal. (1999) - 2.50 -

Antal et al. (2000) 0.30 - -

Romey et al. (2001) - 1.60 -

Sorum et al. (2001) 0.20 - -

Wekelinetal. (2005) 0.40 - -

Obemberger et al. (2006) - 2.00 4.00

Rh&ietal. (2007) 0.36 - -

Tutus et al. (2010) 0.32 - -

Butler et al. (2013) 0.26 L16 3.43

Wang & Dibdiakova (2014) 0.19 - -

Mean (± standard deviation) 0.29 (±0.08) 157 (±054) 2.74 (±0.98)
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4.4.3 Cation exchange-capacity

Apart from the increase in HTT from 350 to 500°C, increases in HTT did not 

affect biochar CEC. However, feedstock type had a significant effect on CEC 

at ail HTTs. This corresponds to the finding of Zhao et al. (2013) that CEC is 

predominantly controlled by feedstock rather than temperature. That the 

average CECs of Miscanthus biochars were generally higher than the average 

CECs of Picea and Salix biochars supports the conclusions of Mukheijee et al. 

(2011), who also found that graminoid biochars had a higher CEC than 

woody biochars derived from coniferous and deciduous feedstocks.

The CECs of biochars produced at 500,650 and 800°C were higher than those 

produced at 350°C. This supports the findings of Lehmann (2007a) and may 

indicate that that there were larger numbers of oxygen-bearing functional 

groups on the biochars produced at higher temperatures as observed by 

Nishimiya et al. (1998). Differences in specific surface area may also have 

contributed to differences between the CECs of biochars produced at 

different temperatures and from different feedstock. Specific surface area 

was not measured in this study due to time and budget limitations, but Picea 

feedstock is likely to have a smoother surface than Salix feedstock (see 

section 4.4.2.4), so the Picea biochars probably would have had a lower 

specific surface area per unit weight than the Salix biochars. The shortest axes 

of Miscanthus feedstock particles were generally substantially smaller than 

those of Picea or Salix feedstocks i.e. Miscanthus feedstock particles had a 

more platy shape, while Picea and Salix feedstock particles had a more 

cylindrical shape. Miscanthus biochars are therefore likely to have had a 

higher specific surface area than Picea and Salix biochars. Differences in 

biochar specific surface area resulting from feedstock type or HTT (due to
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particle shrinkage) could have resulted in different degrees of oxidation 

following production enabled by differences in intrasurface accessibility 

(Zimmerman, 2010). The biochars in this study were stored under ambient 

conditions for several months prior to CEC determination. The outer surfaces 

of biochar particles can undergo abiotic oxidation within a few months of 

their production, even under ambient atmosphere and temperature (Cheng et 

al, 2006; Cheng et al, 2008). Oxidation of aromatic C on biochar surfaces 

forms carboxylic groups, which increases CEC (Glaser et al., 2002). Logically, 

the biochars with larger specific surface area could have been subject to more 

abiotic oxidation than those with smaller specific surface area. Consequently, 

even if carboxylic groups were progressively eliminated with increasing 

pyrolysis temperature (Antal & Gronli, 2003), biochars produced at higher 

temperatures could undergo more oxidation resulting in them having a 

higher density of carboxylic groups and, therefore, a higher CEC. Biochar 

shape can to some extent be controlled; grinding raw feedstock tends to 

produce large, fibrous particles, whereas grinding biochar tends to produce 

shorter, more rounded particles (Abdullah & Wu, 2009).

Although the CEC determination method used in this study should have 

removed most of the ash content (mineral residue) of biochars by washing 

with ammonium acetate, it is possible that ash content may have influenced 

CEC determination. There are no statistically robust comparisons of plant- 

derived ash and biochar CECs in the literature, but the CEC of plant ash can 

be high (Smith, 1969; Fritze et al, 1995) and may have been a further 

influence on biochar CEC. Ash content of biochar increases with increasing 

temperature (Bagreev, 2001, Novak et al., 2009; Yuan et al, 2011) which 

(assuming ash CEC is high) might to some extent counter the effect of
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progressive elimination of addic functionalities on the surface of the biochar 

itself as HTT increases. Ash content of biochar is also strongly influenced by 

feedstock material; graminoid biomass will produce biochar with much 

higher ash content than woody biomass (Obemberger et al, 2006; Hammes et 

al, 2006) and dedduous wood generally has more ash content than 

coniferous wood (Wenzl, 1970; Obemberger et al, 2006). Ash content may 

have accordingly contributed to the differences in CEC between different 

feedstock types. The literature indicates that Picea is likely to have had the 

lowest ash content of the feedstocks used in this study, while Miscanthus is 

likely to have had the highest (Table 4.9). This corresponds to the typical 

ordering of CEC values observed in biochars produced from those feedstocks 

(Figure 4.7).

The biochar CECs reported in this study are indicative only of the effect that 

they might have on soil CEC when first applied. The CEC of newly produced 

biochar is relatively low under any production scenario (Lehmann, 2007a).

As Figure 4.7 illustrates, the range of biochar CECs found in this study were 

broadly similar to normal CEC values of soils, which typically range from -3 

to -40 cmol(+) kg-1 (Brady & Weil, 2008). The CECs of fresh biochar observed 

in the present study were very low compared to those typical of soil humus, 

which range from -150 to -250 cmol(+) kg-1 (Brady & Weil, 2008). 

Nevertheless, had the biochars been ground, their CECs would probably 

have been substantially higher due to larger specific surface area. Over the 

lifespan of biochar, changes to its chemical properties following its 

application to soil may be more important than properties arising from its 

production. Oxidation of biochar once it is mixed with soil can leads to 

substantial increases in its CEC over time (Cheng et al, 2008). Differences
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between CECs of biochars recorded in this study are negligible compared to 

the CECs recorded for aged biochar, which can be orders of magnitude 

greater (Liang et al., 2006).

If ash content does make a significant contribution to biochar CEC, this will 

diminish over time as it is leached out. As Joseph et al. (2009) suggest, a more 

useful way of classifying biochar CEC might be based on assessment of how 

it changes once applied to soil. It may also be more worthwhile to focus on 

the effect that biochar has on overall soil nutrient adsorption rather than on 

the CEC of the biochar itself. The CEC of biochar itself does not necessarily 

equate to its potential contribution to soil CEC. Much of the internal surface 

area of biochar particles may not be in contact with plant roots or the soil 

solution (except under saturated conditions), so even if its CEC is high, it is 

not necessarily functionally important. Whilst the contribution of biochar to 

soil CEC could be amplified by adsorption of organic C rich in functional 

groups, biochar pores may be blocked by adsorbed substances, rendering 

adsorption sites in inner pores inaccessible (Hammes & Schmidt, 2009). 

Furthermore, it should be remembered that the physical adsorption capacity 

of biochar may be an important factor influencing soil nutrient dynamics, 

regardless of any effect of HTT on chemical adsorption capacity (Ding et al., 

2010).

4.5 Limitations

The apparent effect of biochar hydrophobicity being lower when larger 

feedstock particles are used may in practice be eliminated by grinding of
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biochar following production. Further investigation is needed to determine 

whether this is the case.

The finding that biochar hydrophobicity is not affected by time since 

production may not apply to all biochar production systems. This study used 

a purge gas in biochar production, meaning that a proportion of evaporated 

volatiles were removed from the furnace and condensed elsewhere. Where 

no purge gas is used, a greater proportion of evaporated volatiles will 

condense on biochar surfaces. This could potentially result in (i) freshly 

produced biochar being more hydrophobic than when produced using purge 

gas and (ii) a reduction in biochar surface hydrophobicity over time since 

production resulting from the absorption of condensed volatiles. Additional 

research is necessary to determine whether the biochar hydrophobicity is 

affected by the use of purge gas and whether the hydrophobicity of biochar 

produced without purge gas is influenced by time since production.

This study offers a theoretical explanation of the potential for differences in 

biochar surface topography to contribute to differences in hydrophobicity. 

Quantitative analyses of differences in biochar surface topography related to 

pyrolysis temperature and feedstock are needed to enable experimental 

demonstration of the relationship between biochar surface roughness and 

biochar hydrophobicity.

A combination of differences in the specific surface areas of biochars and 

differences in the period of storage prior to CEC determination could have 

resulted in different degrees of oxidation of biochar surfaces during storage, 

which in turn could have influenced biochar CEC through the formation of
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carboxylic groups. The hydrophobicity and CEC data presented in this study 

provide an understanding of the properties of fresh biochar, but are of 

limited value in determining the likely long-term effects of biochars on soil 

properties. As biochar surfaces are progressively oxidised in die soil 

environment, formation of functional groups is likely to render them 

progressively less hydrophobic; while increasing their CEC (Cheng et al, 

2008). Biochar CEC may also be influenced by progressive leaching of ash. 

Changes in biochar properties following application to the soil may thus be 

more important than the initial surface properties arising from the 

production technique used.

4.6 Summary

For all feedstocks, biochar yield decreased with increasing HTT. The largest 

reductions in median yield occurred between H 11s of 350 and 500°C due to 

weight loss associated with pyrolysis of cellulose (Yang et d., 2007). Further 

reductions in median yield were smaller for all feedstocks. Picea feedstock 

tended to produce the largest yields, presumably because it had the highest 

lignin content.

Biochar hydrophobicity was affected by feedstock particle size, but the 

differences were small and unlikely to influence substantially the overall 

hydrologic properties of biochar as a soil amendment. The hydrophobicity of 

stored biochar did not decrease with time since production, demonstrating 

that hydrophobicity was not reduced by reabsorption of condensed volatiles. 

For all feedstocks, biochar hydrophobicity was significantly reduced with
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each increase in HTT (except for Miscanthus feedstock between HTTs of 650 

and 800°C). Biochar hydrophobicity was not solely attributable to surface 

chemistry. Contact angles > 120° were recorded on all biochars produced at 

350°C, demonstrating that surface topography also contributed to biochar 

hydrophobicity. Reductions in hydrophobicity with increasing HTT were 

related to the surface topography of biochar becoming smoother as particles 

shrank, not just to changes in surface chemistry. The hydrophobicity of 

different feedstocks responded differently to increases in HTT because of 

variations in their chemical composition. Contrasts in the chemical 

composition of feedstocks will also result in different concentrations of alkyl 

functionalities on biochar surfaces causing differences in hydrophobicity. 

Furthermore, at different HTTs, certain precursor materials shrink more than 

others and may become smoother and therefore less hydrophobic. The 

hydrophobicity of biochar surfaces becomes increasingly heterogeneous as 

HTT is increased.

Increasing HTT did not have a deleterious effect on biochar CEC. Biochar 

CEC is predominantly controlled by feedstock rather than HTT. Differences 

in CEC may have arisen from differences in concentrations of carboxyl 

groups on the surfaces of biochar particles. Differences in specific surface 

area resulting in different degrees of oxidation during storage, and 

differences in ash content between biochars produced from different 

feedstocks and at different HTTs may also have contributed. If ash content 

does make a significant contribution to biochar CEC, it is likely to become 

decreasingly important once biochar is applied to soil and ash is leached out 

of the biochar.
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5 THE EFFECTS OF PYROLYSIS
TEMPERATURE ON BIOCHAR SOIL 
AMENDMENTS

5.1 Introduction

Biochar amendments have been reported to improve soil bulk density 

(Joseph et at., 2009) and water-holding capacities (Laird et ah, 2010b). Laird et 

ah (2010b) found that biochar amendments increased the amount of water 

retained in fine-loamy sand at -1 and -5 bars of matric potential. Gray et ah 

(2014) reported that biochars produced at low temperatures took up water 

less effectively than high temperature biocha.rs due to differences in 

hydrophobicity. Similarly, Lei & Zhang (2013) reported that biochars 

increased soil water retention most effectively when a high HTT was used.

There are few other data available cm the effect that different HTTs have on 

the influence that biochars have on soil bulk density, water-holding capacity 

and matric suction. Caused by the attraction of water to solid surfaces 

resulting from adhesive forces and capillarity, matric suction influences the 

retention and movement of soil water (Brady & Weil, 2008). Furthermore, 

there does not appear to be any discussion in the literature of the effect that 

biochar amendments have cm soil osmotic suction, which, combined with 

matric suction, affects the amount of energy plants must exert to take up 

water. Osmotic suction is caused by inorganic and organic solutes in the soil 

solution. As water molecules cluster around solute ions or molecules, the 

freedom of movement of the water is reduced; osmotic suction therefore
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increases as solute concentrations increase (Brady & Weil, 2008). Improved 

understanding of how HTT affects the influence of biochars on soil 

hydrology may enable identification of certain pyrolysis temperatures that 

should produce biochars that ace more or less effective than others in 

amending particular soil properties.

In order to address the research gaps, outlined above, the experiments

presented in this chapter were primarily carried mil to investigate the 

following research questions:

(i) Whether or not a l biochar amendments affect bulk density, water-

holding capacity and matric, osmotic and total suction, regardless of 

the pyrolysis temperature used to produce than 

(M) Whether biochars produced at different HTTs affect these soil 

properties in different ways and / or to different extents 

During the course of experimental work to address the above questions, 

different effects cm fungal growth between treatments were observed and 

recorded. Improved understanding of how pyrolysis temperature influences 

the effects erf biochar amendments cm soil hydrology and biology may 

enable identification of certain temperatures that are more or less beneficial 

than others in terms erf producing biochars capable of amending particular 

soil properties hi particular ways.
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5.2 Methods

5.2.1 Biochar production

The experiments presented in this chapter required large amounts of biochar, 

which could not be produced within the time and cost constraints of the 

project using the method presented in Chapter 4. Biochar samples were 

instead produced at the UK Biochar Research Centre (UKBRC), University of 

Edinburgh, from softwood pellets in an electrically-heated rotary kiln (Figure 

5.1). This kiln was not in commission at the time the experiments presented 

in Chapter 4 were begun, hence why the experiments presented in Chapter 4 

used biochar produced by a different pyrolysis process.

Softwood pellets were delivered from the conical hopper to the kiln heat- 

tube by a feed screw; the kiln was rated at up to 50 kg h 1 dry feed 

throughput. The tube was heated in three independently controllable zones 

by radiant electrical elements. Kiln temperature was measured for each zone 

and at intermediate points between the zones. Material passed along the 

length of the tube through a rolling motion with forward movement induced 

by the following feed and a slight downward incline of 3°. Solids were 

separated from gas and vapour by gravity in a water-jacketed discharge 

chamber surrounding the downstream end of the heat tube. Solids were 

conveyed to a product discharge drum by a water-cooled screw. Gases and 

vapours passed into an afterburner chamber where they were combusted to 

destroy toxic products (W. Lowe, pers. comm., 2nd July 2012). Biochars were 

produced using four different HTTs: 400°C, 500°Q 600°C and 700°C 

(henceforth referred to as 400°C biochar, 500°C biochar etc.).
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Figure 5.1: Electrically-heated rotary kiln at UKBRC (credit: UKBRC, 2011)

5.2.2 Preparation of soil-biochar m ixtures

Each biochar type described above was ground and sieved to obtain a 

particle size fraction of 0.4 -1 mm, selected on the assumption that it would 

be likely to significantly influence bulk density and moisture retention, 

maximising the possibility of observing differences between biochars 

produced at different temperatures. It was thought that smaller particles 

could clog pores whereas larger particles might have too low a specific 

surface area to significantly influence the soil properties. As the data 

presented in Chapter 6 demonstrate, the 0.4 -1 mm particle size fraction did 

indeed have the strongest influence on soil properties of the particle size 

fractions investigated in the present study. These data are presented 

separately for clarity and readability.
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The soil used in these experiments was proprietary sandy loam supplied by 

Boughton (Kettering, Northamptonshire) that was sieved to < 2 mm and air- 

dried. Particle size analysis using laser diffraction (Malvern Mastersizer 2000, 

Malvern Instruments Ltd., UK) showed that the soil comprised 50% sand, 

46% silt and 4% clay (n = 20). A sandy loam soil was selected for this 

investigation because increases in WHC associated with biochar application 

have often been observed in sandy soils (e.g. Gaskin et al, 2007; Novak et al., 

2009; Case et al, 2012; Basso et al, 2013), but are less likely in soils with 

higher day content (Tryon, 1948; Dugan et al, 2010). Using a sandy loam soil 

thus ensured a reasonable likelihood of differences in soil moisture retention 

being observed due to biochar application.

Biochars were applied to the soil at rates of 50 g kg'1 (based on post- 

production weight) and thoroughly mixed, to mimic biochar being ploughed 

or disked into topsoil. It should be acknowledged however that alternative 

methods of application could be used, for example deep-banding, drilling, 

top-dressing or ecological delivery via animal feed (Blackwell et al., 2009).

The findings of previous studies suggest that for many soils, an application 

rate of at least -20 g kg'1 is needed for biochar to increase soil WHC (Chan et 

al, 2007; Gaskin et al., 2007; Busscher et al, 2010). An application rate of 50 g 

kg'1 was therefore used to maximise the probability of biochars increasing 

soil moisture retention, in turn increasing the likelihood of observing 

differences between the effects of different biochars. A higher application 

rate was not used because these were considered unlikely to become 

commercially realistic within foreseeable timescales.
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The soil-biochar mixture was poured into a measuring cylinder which was 

repeatedly tapped on the laboratory bench from a height of < 2 cm, until a 

140 ml volume of soil was obtained, with no reduction in volume observed 

with further tapping. Once the soils were added to 150 ml pots used for the 

WHC and suction experiments, this volume of soil would leave sufficient 

head space for water to be added and, in the case of the suction experiments, 

a filter paper to be suspended over the soil surface using an O-ring. This 

sample of soil-biochar mixture would then be used to measure bulk density, 

water-holding capacity or matric suction. Soil without added biochar was 

used as a control.

5.2.3 Bulk Density Determination

Bulk density of biochars was determined gravimetrically on a dry basis using 

25-ml biochar. The biochar poured into a measuring cylinder which was 

repeatedly tapped on the laboratory bench from a height of < 2 cm, until a 

140 ml volume of soil was obtained, with no reduction in volume observed 

with further tapping. This volume of biochar was then weighed. 5 replicates 

were carried out for each HTT. Bulk density of soil-biochar mixtures was 

measured gravimetrically on a dry basis by the same method, using a 

volume of 140 cm3 soil (see section 5.2.2). 25 replicates were carried out for 

each soil or soil-biochar mixture.
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5.2.4 Measurement of Water-holding capacity

The water-holding capacities of the soils were measured gravimetrically, 

using 150 ml clear polypropylene pots (H 68 mm, OD 60mm) with twenty 

equidistantly spaced 0.5 mm holes in the bottom of the pot covered by 55 

mm diameter Whatmann no. 42 filter paper which was slightly wetted to aid 

adhesion to the bottom of the pot (Figure 5.2). Each pot (including filter 

paper and lid) was weighed, then 140 ml of soil were added (determined on 

a tapped basis) and the weight of the pot and its contents was recorded. The 

lids were then removed and deionized water was slowly added until the pot 

was saturated. Saturation was ensured by visually checking that the soil was 

uniformly wetted at all depths and all around the pot, along with the 

commencement of drainage from the bottom of the pot and water pooling at 

the surface. The lids were then replaced and the samples left to drain in a 

constant temperature room at 21 °C to eliminate evaporation.

Lid to prevent 
evaporation

Filter paper 
covering drainage 
holes

140 cm3 volume of 
soil

Figure 5.2: Pot measurement of WHC (not to scale)
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After 24 hours, the base of each pot was gently dabbed with paper towel to 

remove water than had drained from the soil but remained on the surface of 

the pot, then the pots were reweighed. The water-holding capacity of each 

sample, expressed volumetrically, was calculated as the amount of water 

retained (grams converted to cm3) per volume of dry soil (control) or soil- 

biochar mixture (140 cm3). Five replicates were carried out for each 

treatment.

5.2.5 Measurement of suction

Soil suctions were inferred for each soil-biochar mixture using the filter 

paper method (ASTM, 2010). A 70 ml volume of soil or soil-biochar mixture 

was put into a 150 ml propylene pot (H 68 mm, OD 60mm) and half of the 

total amount of water needed to create a total water content of 0.17 cm3 cm*3 

was slowly added using a syringe. Using tweezers, a 42.5 mm diameter 

Whatman no.42 filter paper was placed over the surface of the soil, inserted 

between two protective Whatman no.42 55 mm diameter filter papers (Figure 

5.3). The remaining 70 ml volume of soil or soil-biochar mixture was added 

to the pot and gently tapped to constant volume, and the remaining water 

evenly dripped around the surface. A PVC ring support was then positioned 

on the soil surface, on to which a 42.5 mm filter paper (Whatman no. 42) was 

placed (Figure 5.3). The pot lid was screwed on immediately, and sealed with 

PVC tape to ensure that the pot remained airtight. The pot was then placed 

in an insulated chest resting cm a polystyrene block and left to allow 

moisture equilibration between the soil or soil-biochar mixture and the filter 

papers.
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After 14 days the pot was removed from the insulated container. The top 

filter paper was then quickly extracted using tweezers, sealed in a pre­

weighed weighing tin and immediately weighed using a Sartorius 4-figure 

balance. The top half of the soil was then removed from the pot to allow the 

middle filter paper to be extracted and weighed in the same way. With their 

lids half open, the tins were placed in an oven to dry at 105°C. After 24 

hours, the lids were closed and the tins were removed from the oven and 

placed on a large aluminium block to expedite cooling. Once cooled, the tins 

were weighed (again using a Sartorius 4-figure balance). This process was 

completed five times for each treatment.

42.5 mm diameter filter '— 
paper between two 
protective 55 m m  diameter

140 cm3 volume of 
soil

filter papers

Figure 5.3: Measurement of soil suction using the filter paper method (not to scale)

The working principle of this method is simply that either through vapour 

flow or liquid flow, the filter papers will come to moisture equilibrium with 

the soil, such that the suction value of the filter papers and the soil will be the 

same (Bulut & Wray, 2005). In a sealed container at equilibrium in isothermal 

conditions, suction in water vapour will be equal to the suction of the soil 

pore water (Bulut & Wray, 2005). As the evaporation of water molecules is
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limited by both osmotic and matric suction, the moisture content of the filter 

paper above the soil surface relates to a total suction value. Osmotic suction 

does not influence the mass movement of water within soils, so the moisture 

content of the filter paper from the centre of the soil relates to a matric 

suction value. From the weight measurements of filter papers it was possible 

to calculate their water content prior to drying. This moisture content was 

used to infer total and matric suction values using the ASTM D5298-10 

calibration curves for Whatman no. 42 filter papers (ASTM, 2010).

Calibration curves have been developed for other filter papers (most notably 

Scheicher & Schuell no. 589) and their quality is relatively uniform, but 

Whatman no. 42 filter papers were selected for this investigation as they have 

been found to have the most consistent suction characteristics (Leong et al., 

2002).

Pilot studies identified a water content of 0.17 cm3 cm-3 (-35% of the water- 

holding capacity of the soil without biochar additions) as an ideal water 

content to investigate differences between the effects of biochars on soil 

suction. Using higher water contents, the filter papers tended to become 

saturated and disintegrate when removed from the soil, while at lower water 

contents, the filter papers did not become sufficiently wetted for differences 

in matric suction to be observed, probably due to rapid evaporation of 

moisture from the filter papers as they were transferred from the soil pots to 

weighing tins. A moistened filter paper can lose 5% or more of its mass by 

evaporation during 5 to 10 seconds of exposure in a room with a relative 

humidity of 30% to 50% (ASTM, 2010).
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5.2.6 Fungal growth

When the filter papers were removed from pots following 14 days 

incubation, the surfaces of the soils were visually checked for the presence of 

fungal growth. Where fungal growth was observed without magnification, 

samples were set aside for viewing with a stereomicroscope.

5.2.7 Statistical Analyses

For each factor investigated, the effect of each biochar amendment was 

individually compared to the control soil (to which no biochar was added) 

using a Bonferroni-adjusted Mann-Whitney U-test (Mann & Whitney, 1947; 

Dunn, 1961). Overall differences between biochars were analysed using the 

Kruskal-Wallis test (Kruskal & Wallis, 1952). Mann-Whitney U-tests were 

used for post hoc pairwise comparisons in which significance values were 

subjected to Bonferroni adjustment to eliminate family-wise Error (Mann & 

Whitney, 1947; Dunn, 1961). All statistical analyses were completed using 

SPSS (v. 19, IBM, USA). A 95% confidence level was adopted for all tests; 

differences were considered to be statistically significant where p < 0.05.
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5.3 Results

5.3.1 Bulk density

5.3.1.1 Bulk density  of b io ch ar a m endm en ts

Figure 5.4 illustrates the effect of HTT on biochar bulk density. There were 

significant differences between the bulk densities of biochars produced at 

different HTTs (H(3) = 17.07, p < 0.001). Biochar bulk density was 

significantly increased (by 16%) as HTT was increased from 400°C to 500°C 

(Table 5.1). Increasing HTT to 600°C reduced biochar bulk density to be 

significantly less than that of the 400°C biochar, but there was rio further 

effect on biochar bulk density when HTT was increased to 700°C (Table 5.1)

0.6
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700

Figure 5.4: The effect of different HTTs on biochar bulk density (Error bars represent
95% CIs, n= 5)
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Table 5.1: Tests for differences between bulk densities of biochars produced at 
different HTTs (p is 2-tailed and Bonferroni-adjusted)

HTTs of biochar additions compared (°C) Mann-Whitney
U V

400 vs. 500 0.0 0.024
600 vs .700 3.5 0.237
400 vs. 600 and 700 0.0 0.003

53.12 Bulk density  of b iochar-am ended soils

Figure 5.5 shows the effect that biochars producing using different HTTs had 

on the bulk density of a sandy loam. Each type of biochar addition resulted 

in a statistically significant reduction in bulk density (Table 5.2). There were 

significant differences between biochars produced using different HTTs in 

terms of their effects on bulk density (H(3) = 18.68, p < 0.001). Biochars 

produced at 400 and 500°C reduced the bulk density of the sandy loam by 5 

and 6% respectively, but were not statistically different from each other 

(Table 5.3). The bulk density of the soil was reduced the most by the biochars 

pyrolysed using HTTs of 600 or 700°C, which both reduced the soil's bulk 

density by -8%; the effects of these two biochars were statistically similar to 

each other, but significantly different from biochars produced at 400 and 

500°C (Table 5.3).
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Control 400 500 600 700
(no biochar)

Biochar HTT (°C)

Figure 5.5: The effect of biochars produced using different HTTs on the bulk density 
of a sandy loam (Error bars represent 95% CIs, n = 25)

Table 5.2: Tests for differences between bulk densities of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)

HTT of biochar addition (°C)
U

Mann-Whitney
V

400 21.0 <0.001
500 36.0 <0.001
600 5.0 <0.001
700 3.0 <0.001

Table 5.3: Tests for differences between bulk densities of soils with biochar additions 
produced using different HTTs (p is 2-tailed and Bonferroni-adjusted)

HTTs of biochar additions compared (°C) Mann-Whitney

____________________________________________  e_
400 vs. 500 
600 vs. 700 

400 and 500 vs. 600 and 700

271.5
295.5 
633.0

1.000
1.000

<0.001
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5.3.2 W ater-holding capacity

Figure 5.6 illustrates how biochars produced using different pyrolysis 

temperatures affected the WHC of a sandy loam. Only biochar produced at 

500°C significantly affected the soil's WHC (Table 5.4), increasing it by 11.6%. 

There were significant differences between the effects of different biochar 

additions on the soil's water-holding capacity (H(3) = 11.71, p < 0.001). The 

mean WHCs of soils amended with 400 and 500°C biochars were 

significantly higher (7% and 16% respectively) than that of soil amended 

with 700°C biochar (Table 5.5). However, the WHC of soil containing 400°C 

did not significantly differ from the WHCs of soils containing 500 or 600°C 

biochars, and the WHC of soil containing 600°C biochar was not significantly 

different for the WHCs of any of the other soils (Table 5.5).
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Figure 5.6: The effect of biochars produced using different HTTs on soil water- 
holding capacity (Error bars represent 95% CIs, n = 5)
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Table 5.4: Tests for differences between WHCs of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)
HTT of biochar addition (®C)

U
Mann-Whitney

V
400 4.0 0.192
500 0.0 0.016
600 10.0 1.000
700 3.0 0.112

Table 5.5: Tests for differences between WHCs of soils with biochar additions 
produced at differing HTTs (p is 2-tailed and Bonferroni-adjusted)

HTT of biochar additions in 
soils being compared (°C)

Mann-Whitney
U V

400 vs. 500 2.0 0.192
400 vs. 600 8.0 1.000
400 vs. 700 0.0 0.048
500 vs. 600 2.0 0.192
500 vs. 700 0.0 0.048
600 vs. 700 11.0 1.000

5.3.3 Total suction

As Figure 5.7 illustrates, the peak temperature at which biochars were 

produced had a significant influence on the extent to which they affected 

total soil suction. Biochar produced using a HTT of 500°C was the only 

amendment which significantly affected total soil suction (Table 5.6), 

increasing it by almost 100%.
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Figure 5.7: The effect of biochar amendments produced using different HTTs on total 
suction (Error bars represent 95% CIs, n = 5)

Table 5.6: Tests for differences in total suction of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)
HTT of biochar addition (°C)

U
Mann-Whitney

V
400 4.0 0.192
500 0.0 0.016
600 12.0 1.000
700 3.0 0.112

5.3.4 Matric suction

Each biochar addition resulted in significantly higher soil matric suction 

(Table 5.7). Statistically significant differences were observed between the 

matric suctions of soils with different biochar additions (H(3) = 13.4, p < 

0.001). Biochar produced using a HTT of 400°C had a significantly lesser 

effect on matric suction than any of the other biochars (Table 5.8), but 

nonetheless increased matric suction by over one-third. Biochar produced
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using a HTT of 500°C had a significantly larger effect than any of the other 

biochars (Table 5.8), almost tripling the matric suction of the soil (Figure 5.8). 

Biochar amendments produced using HTTs of 600°C and 700°C increased 

matric suction by 137% and 95% respectively, but there was no statistically 

significant difference between them (Table 5.8).

8 T

Control 
(no biochar)

400 500 600

Biochar HTT (°C)

700

Figure 5.8: The effect of biochars amendments produced using different HTTs on 
matric suction (Error bars represent 95% CIs, n = 5)

Table 5.7: Tests for differences between matric suction of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)

HTT of biochar addition (°C) Mann-Whitney

 H __________________________
400 0.0 0.016
500 0.0 0.016
600 0.0 0.016
700 0.0 0.016



THE EFFECTS OF PYROLYSIS TEMPERATURE ON BIOCHAR SOIL

A M E N D M E N T S

Table 5.8: Tests for differences between matric suctions of soils with biochar 
additions produced at differing H I Is (p is 1-tailed and Bonferroni-adjusted)

H IT of biochar additions in 
soils being compared (eC) U

Mann-Whitney
V

400 vs. 500 0.0 0.016
600 vs. 700 6.0 0.444
500 vs. 600 and 700 6.0 0.039
400 vs. 600 and 700 2.0 0.005

5.3-5 Fungal growth

Prolific fungal mycelia were observed without magnification on the surfaces 

of soils containing 500°C biochar following the 14 days of equilibration 

carried out for the suction experiments (Figure 5.10). However, none was 

seen on the surfaces of soils containing 400°C, 600°C or 700°C biochars.
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Figure 5.9: Fungal mycelia on the surface of soil amended with 500'C biochar
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5.4 Discussion

The high bulk density of 500°C biochar may be related to the condensates 

present on the surface of the biochar particles produced at this temperature. 

These condensates could have filled biochar pores (Muradov et al., 2012) and 

/ or enabled tighter packing of particles by lubrication. The low bulk 

densities of biochars produced at 600 and 700°C can be attributed to pore 

widening and coalescence with increasing HTT (Angin, 2013). The variation 

in bulk density with increasing temperature is in contrast with the findings 

of Rajkovich et al. (2012), who concluded that biochar bulk density was not 

affected by HTT. Comparison of the bulk densities of the biochars 

themselves and the effect they had on the bulk density of a sandy loam 

demonstrates that differences in the bulk densities of biochars are not 

necessarily indicative of the effect they will have on the bulk density of a soil, 

because the packing arrangement of a mass of biochar particles is unrelated 

to the packing arrangement of a mass of soil containing disperse biochar 

particles. 500°C biochar had a much higher bulk density than that of 400°C 

biochar, but their effect on the bulk density of the soil was the same 

(presumably because the effect of condensates on the surface of 500°C 

biochar particles became less important once the biochar was interspersed 

between soil particles). However, biochars produced at 600 and 700°C had 

both the lowest bulk densities and the greatest effect of decreasing the bulk 

density of the soil.

The high water-holding capacity of soils amended with 500°C biochar 

corresponds to the work of Kinney et al. (2012) who found that the WHCs of 

biochars produced from com stover (Zea mays) and apple wood (Malus
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domestica) were highest when a HTT of 500°C was used. However, the results 

of the present study contrast somewhat with those of Lei & Zhang (2013) 

who found that the effect of biochar on soil moisture retention was greatest 

when an HTT of 700°C was used. The present investigation demonstrates 

that the effect that biochar amendments have on soil bulk density are not 

necessarily indicative of the effect they will have on soil water-holding 

capacity. For example, the bulk density of soil containing 700°C biochar was 

lower than that of soil containing 500°C biochar, but the WHC and matric 

suction of soils with 500°C biochar were higher.

If changes in hydrophobicity with increasing pyrolysis temperature for 

softwood pellets were similar to those observed for Picea sitchensis (see 

Chapter 4), then there would have been a dramatic decrease in hydrophobic 

sites on the surface of biochar between HTTs of 400°C and 500°C, with less 

substantial decreases thereafter (see section 4.3.2.1), meaning that factors 

other than hydrophobicity became more important. Gray et al. (2014) 

reported that differences in hydrophobicity were more important than 

differences in porosity in determining how the WHC of columns of biochars 

produced at different HTTs (370 to 620°C). Contrastingly, in the present 

study, soil WHC was not increased by the increasing HTT of the biochar 

amendments, except between 400 and 500°C, which was not a statistically 

significant difference anyway. This suggests that once biochar is applied to 

the soil, the importance of biochar hydrophobicity in determining water 

uptake is diminished. A possible explanation for this is that saturation of the 

soil surrounding biochar particles eventually causes reorientation of 

amphiphilic molecules on the surface of biochar particles (Doerr et al., 2000), 

rendering them wettable. If this is indeed the case, different application
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methods could result in greater differences between biochars produced at 

different HTTs than were observed in the present study, where biochar was 

thoroughly mixed with the soil. Applying biochar by top-dressing, deep- 

banding or drilling would not result in thorough mixing of biochar with the 

soil, they would instead result in horizontal or vertical layering of biochar 

above or within the soil profile. Hydrophobic biochar would therefore not be 

rendered wettable by saturation of surrounding soil, except at biochar layer 

margins. This would result in hydrophilic biochars produced at higher HTTs 

increasing WHC to a much greater extent than hydrophobic biochars 

produced at lower HTTs.

All the biochar amendments resulted in significant increases in matric 

suction. This can be attributed to the porosity of biochars increasing the soil 

surface area, as matric suction arises from the adhesive force of water being 

attracted to solid surfaces (Brady & Weil, 2008). Higher WHC and matric 

suction in soils amended with 500*C biochar compared to soils amended 

with 400*C biochar may be related to an increase in biochar porosity between 

HTTs of 400 and 500*C (Lua et al, 2004; Lehmann, 2007a; Chen et al, 2008; 

Angin, 2013). Biochar particles produced at 600 and 700°C were less dense 

than biochar particles produced at 500°C. Interestingly, although soil 

amended with 600°C biochar had a significantly lower bulk density than 

soils amended with 400 or 500*C biochars, measurements of WHC and 

matric suction in soils with 600*C biochar were not significantly different 

from those recorded for soils with 400 or 500*C biochars. However, despite 

having lower bulk density, soil amended with 700°C had lower WHC and 

matric suction than soil amended with 500°C biochar. There are several 

possible explanations for this. Relative to 500°C biochar, 700°C biochar may
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have directly or indirectly increased the average pore size of the soil (due to 

the biochar having larger pores or somehow limiting tight packing of soil 

particles), resulting in increased hydraulic conductivity (and consequently 

lower WHC) and reduced matric suction. An alternative explanation is that 

less of the pore space within 700°C biochar was interconnected or accessible 

to water, because some of the pore spaces were sealed-off by intermediate 

melts at HTTs >500*C (Lua et al., 2004; Angin, 2013). A further possibility is 

that some pores of < 2 nm diameter may have widened and /  or coalesced at 

HTTs beyond 500°C (Zhang et al, 2004; Fu et al, 2011), increasing the chance 

of internal pore volume being sealed off by day-sized mineral partides 

dogging outer pores. However, pores with diameters in the range of 2 - 50 

nm may be too small to significantly influence the hydrological properties of 

biochar anyway (Nomo, 2004; Sohi et al, 2010; Kinney et al, 2012).

Differences in surface charge arising from different HTTs may also have 

contributed to the effects of biochars had on soil moisture retention. Water 

molecules are polar and can be attracted to negatively charged surfaces by 

the hydrogen (positive) end of the molecules (Brady & Weil, 2008). The 

results presented in Chapter 4 suggest that biochar partides produced at 

500°C could have had more negative charges on their surfaces than biochar 

partides produced at 400°C, which could have contributed to the former 

increasing soil WHC to a greater extent than the latter. If the effect of HTT on 

the surface charge of Picea biochars (see section 4.3.3) applies to softwood 

pellet biochars, then surface charges of biochars produced from softwood 

pellets at 500,600 and 700°C would have been similar. Surface charge would 

therefore not have contributed to any differences in the effects of these 

biochars on soil WHC.
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Biochars produced at 600 or 700°C had less effect on WHC and matric 

suction than biochar produced at 500°C, which has implications for their 

effects on nutrient leaching. In sandy soils, biochar particles may act 

similarly to clay, holding large volumes of immobile water near the soil 

surface even at high matric potentials. While this could increase the amount 

of water available to plants, it would also increase the amount of dissolved 

nutrients retained near the soil surface, accessible to plants (Major et al,

2009). The findings of this investigation, however, suggest that not all 

biochar porosity is necessarily functional once biochar is applied to the soil.

A further factor that would have contributed at least in part to the effects that 

different biochars had on matric suction was the growth of fungi visible at 

the surface of soils amended with 500°C biochar after 14 days incubation. 

Although this is to some extent a cofounding factor in interpreting the data 

pertaining to the effect of different HTT biochars on matric suction, the 

matric suction data correspond well to the WHC measurements, suggesting 

that the influence of fungal growth on matric suction was minimal compared 

to the effect of the biochar itself. In experiments investigating the effect of 

biochars (produced at 500°C) of different particle size on matric suction (see 

Chapter 6), substantially less fungal growth was observed on the surfaces of 

soils amended with 2 -3  and 4 -5  mm biochars compared to those amended 

with < 0.2 and 4 -5  mm diameter biochars, presumably because there was 

less substrate surface area available. However, there were no significant 

differences between the effects of biochars of different particle size on matric 

suction, again indicating that the effect of fungal growth on matric suction 

was minimal.
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Although all biochar amendments significantly increased matric suction, 

only 500°C biochar significantly increased total suction. This suggests that 

the effect of biochar amendments increasing matric suction and, therefore, 

increasing the amount of energy plants must expend to take up water, can be 

counteracted by the effect of biochar amendments 'displacing' the native soil, 

reducing solute concentrations and, therefore, reducing osmotic suction. 

Alternatively, it is possible that biochars sorbed solutes from the soil solution 

(Thomas et al., 2013). For soils with low osmotic potential, the effect of 

biochar on matric potential will have a greater influence on plants' ability to 

take up water. The present results indicate that biochars produced at 400,600 

and 700°C can significantly increase soil WHC without significantly affecting 

the amount of energy plants must expend to access water. However, it must 

be acknowledged that further research is necessary to verify whether this is 

indeed the case over the entire soil moisture release curve.

The increase in total suction resulting from 500°C biochar amendments 

indicates that this biochar introduced substantially more solutes to the soil 

than other biochars did. At pyrolysis temperatures between 300 and 600°C, 

tar and liquid forming processes become increasingly important, while at 

temperatures over 600°C, tar and liquid formation is minimal, with gas 

formation dominating instead (Amonette & Joseph, 2009). As such, the 

biochar produced at 500°C is likely to have held a greater volume of tars and 

/ or other liquids than the biochars produced at 400,600 and 700°C. Visual 

observations confirmed that this was indeed the case. It is likely that the 

liquids associated with 500GC biochar were responsible for increasing 

osmotic suction and therefore total suction.
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The inferred effect of the 500°C biochar on osmotic suction has implications 

for its potential use as an agronomic amendment, as the findings of this 

investigation suggest it could increase plant moisture stress, at least 

immediately after application. Further research is needed to evaluate the 

lengths of time over which this effect would persist, as it is likely that it will 

decline significantly as the solutes are leached from the soil. Higher osmotic 

suction will reduce moisture availability because more water is held in the 

soil at the permanent wilting coefficient than would be retained by matric 

suction alone (Brady & Weil, 2008). Plants are most susceptible to elevated 

osmotic suction in early stages of growth; high solute concentrations may 

delay or even prevent seed germination or kill young seedlings (Brady & 

Weil, 2002). For established plants, although increased osmotic suction can 

result in reduced growth and yield as the amount of energy they must 

expend to accumulate solutes in order to obtain water by osmosis is 

increased (Taylor, 1952; Kirkham, 2005)/ it rarely results in wilting or reduced 

water intake (Brady & Weil, 2008). In trials co-ordinated by Carbon Gold Ltd. 

(Bristol), several growers observed poor seedling emergence in biochar- 

amended soils and composts, but established plants outperformed those in 

soils or composts without biochar additions (B. Raskin, pers. comm., June 

2012). These effects could have resulted in part from biochar additions 

increasing the osmotic suction of soils which would have been particularly 

important in the early stages of plant growth, but less important once plants 

had become established (at which point the effects of biochar amendments 

on other soil properties became more important), or once the solutes 

associated with biochar amendments had been leached from the soil.
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The dense hyphal branching seen on the surface of soils amended with 500°C 

biochar (Figure 5.10) suggests that 500°C biochar amendments introduced a 

nutritionally rich substrate for the fungi; the extent of hyphal branching is 

directly related to h e  concentration of nutrients in h e  substrate (O'Toole, 

2006). Biochar is highly recalcitrant, and recalcitrance tends to increase with 

increasing HIT (Zhao et al, 2013) so it is unlikely h a t  differences in fungal 

growth observed over 14 days between soils amended w ih  biochars 

produced at different HTTs resulted from differences between h e  biochar 

solids themselves (Thies & Rillig, 2009). In h e  short-term at least, residual 

bio-oils on biochar particles are likely to be the only substrates available to 

support fungal growth and metabolism (Thies & Rillig, 2009). From visual 

observations of h e  biochars used in this study, it was evident h a t  biochar 

produced at 500°C was much richer in condensates than h e  others. This 

corresponds to the finding that 500°C biochar amendments resulted in 

substantial increases in osmotic suction, meaning that this biochar 

amendment carried high concentrations of solutes.

Under pyrolysis conditions, lignin decomposition begins at 280°C and 

continues up to 500°C, a product of which is condensable vapours and liquid 

aerosols that are recovered as pyroligneous arid and insoluble tar 

condensates (Mohan et al., 2006). Pyroligneous arid condensate is typically 

high in acetic arid, formic arid, methanol and aldehydes (Steiner et al., 2008). 

W ih high concentrations of pyroligneous arid, some aldehydes and acids 

can serve as biorides (Steiner et al, 2008). However, at lower concentrations 

h e  alcohols, acids and aldehydes contained in pyroligneous arid can serve as 

carbon and energy substrates for soil microorganisms (Tye & Willetts, 1976; 

Steiner et al, 2008). An alternative explanation is h a t  500°C biochar
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amendments introduced solutes that had a toxic effect on grazers of fungi 

(Thies & Rillig, 2009). Biochar pH tends to increase with increasing 

temperature (Novak et al., 2009; Hossarn et al., 2011; Yuan et al., 2011) and is 

thus unlikely to have contributed to the unique effect of 500°C biochar on 

fungal growth compared to biochars produced using other HTTs.

Fungal hyphae exude polysaccharides and other organic compounds, 

forming sticky webs that bind soil particles together (Brady & Weil, 2008). 

There was evidence of fungal hyphae enmeshing soil particles together at the 

surface of soils amended with 500°C biochar (Figure 5.10b). This biochar 

could therefore be a useful amendment for promoting soil aggregation in 

sandy soils. Fungal growth could also lead to increased soil hydrophobidty. 

Indeed, Abel et al. (2013) observed increased local hydrophobidty in soil 

amended with hydrochar due to fungal colonisation of the char (hydrochar is 

similar to biochar, but produced in a pressurised aqueous solution at lower 

temperatures). Consequently, although HTT directly affects biochar 

wettability through its influence on surface chemistry and topography (see 

Chapter 4) the influence of HTT on the extent to which biochars provide 

fungal substrates may also affect biochar and soil wettability.

Further research is necessary to determine the persistence of the effect of 

500°C biochar on fungal growth. It is probable that the organisms colonising 

fresh biochar partides with post-pyrolysis condensates on their surfaces will 

differ considerably from those colonizing the biochar once the condensates 

have been metabolized (Thies & Rillig, 2009). At meso- and macro-aggregate 

level, fungal filaments and metabolic products act as binding agents (Thies & 

Rillig, 2009). Therefore, where condensates promote fungal growth, the
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hydrophobidty of the biochar itself could be less important in controlling the 

rates at which it is eroded from the soil, as fungi can help to stabilize biochar 

in the soil matrix and within soil aggregates. However, it should also be 

noted that fungal colonisation of biochar-amended soils can render them 

extremely hydrophobic, regardless of whether the biochar itself is 

hydrophobic (Abel et al., 2013).

It should be remembered, however, that the biochar application rate used in 

this study was high (50 g kg*1). Differences observed between biochars 

produced at different temperatures may be less significant at lower, currently 

more commerdally realistic application rates.

5.5 Limitations

In absolute terms, the accuracy of the inferred matric suction values reported 

in section 5.3.4 is doubtful. Matric suction accounts for the majority of total 

suction in most soils (Yerima & Van Ranst, 2005). Conversely, the values 

reported in section 5.3.4 suggest that osmotic suction was 1 -2  orders of 

magnitude greater than matric suction for all treatments. For example, in soil 

containing 600*C biochar, the mean inferred matric suction was 5.58 kPa, 

whereas the mean total suction (matric and osmotic suction combined) was 

64.38 kPa. The inferred osmotic suction, calculated by subtracting matric 

suction from total suction, would therefore be 58.80 kPa; 10 times greater 

than matric suction. Osmotic suction can substantial in saline soils, but the 

mean electrical conductivity of the soil used in this study was 35.9 pS cm 1, 

meaning that it contained less than 1% of the salinity necessary for it to be
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considered a saline soil (Brady & Weil, 2008). It is therefore probable that the 

matric suction values produced in the experiment were subject to an 

experimental error.

The most likely explanation for this is the filter papers placed in the middle 

of the soil (for inference of matric suction) were disproportionately wet and 

therefore not at moisture equilibrium with the surrounding soil. As 

described in section 5.2.5, the soil incubation pots were prepared as follows: 

half the soil was put in the pot, then half of the water added, then the filter 

papers, then the rest of the soil, then the second portion of water. The 

problem with this approach is that the filter paper in the middle of the soil 

would have absorbed a lot of moisture as the second portion of soil was 

poured in, forcing the filter paper into close contact with the very wet soil 

immediately beneath it. During the incubation period however, there was 

less force pushing the filter paper into the soil beneath because the top layer 

of soil was resting on the filter paper rather than falling onto it, so there was 

less force pushing the soil and filter paper together. The moisture content of 

the filter paper therefore began to approach, but did not reach, equilibrium 

with the surrounding soil within the 14 day incubation period. This could 

have been avoided had the first half of the water been added to the pot 

before or halfway through the first portion of soil being added.

In any case, it must be concluded that the matric suction values presented in 

section 5.3.4 cannot be accepted as absolute measures of matric suction. 

Moreover, osmotic suction cannot be calculated by subtracting the matric 

suction values presented in section 5.3.4 from the total suction values 

presented in section 53.3. The data are nonetheless useful for evaluating the
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relative differences in suction between treatments, because the same method 

was used for all treatments and many of the differences between treatments 

are statistically significant, therefore they cannot be due to chance. 

Accordingly, it is reasonable to assume that where relative differences in 

total suction values between treatments did not reflect relative differences in 

matric suction values between treatments, it was because differences in 

matric suction were counteracted by differences in osmotic suction.

Ideally, the biochars used for the experiments presented in this chapter 

would have been produced by the same method as described in Chapter 4, 

but this was not possible due to the budget and time limitations of the project 

however, this was not possible. It is not certain that the changes in biochar 

surface hydrophobidty and charge observed with increasing pyrolysis 

temperature using the pyrolysis process described in Chapter 4 also apply to 

the pyrolysis process described at the beginning of this chapter. Interpreting 

the results of the presented in this chapter in the light of the findings of the 

experiments presented in Chapter 4 is therefore problematic. Biochar 

hydrophobidty was not measured, so the precise effect that differences in 

hydrophobidty between biochars produced at different temperatures had on 

the moisture retention of different soil-biochar mixtures is undear.

The present study used sieved, repacked soils. The structures, pore 

architectures, aggregates and inter-aggregate pore size distributions of the 

soils were therefore artefacts of the sieving, mixing and repacking process, 

and do not necessarily resemble the properties of soils amended with biochar 

in-situ, where the direct effects of biochar on moisture retention will be 

complicated by indirect effects through the influence of biochar on soil
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aggregation and aggregate stability. Moreover, in field situations, the effect 

of biochar on soil properties will be complicated by its effects on above- and 

below-ground biota.

The biochar application rates used in this study were very high and not 

currently commercially realistic for broadacre agriculture. Differences 

between the effects of biochars produced at different pyrolysis temperatures 

observed in the present study may not be observed when lower application 

rates are used. Moreover, differences between biochars may be less 

important in soils where biochar application has little or no effect on 

moisture retention because the soil has high clay or organic matter content. 

Furthermore, differences between the effects of biochars produced at 

different pyrolysis temperatures may be different where different biochar 

particle size fractions are used; differences in moisture retention arising from 

differences in biochar pore connectivity could be augmented where larger 

biochar particles are used, or reduced where smaller particles are used. Also, 

in this study, biochar was mixed with soil to mimic ploughing, but it should 

be acknowledged that alternative methods of application could be used, for 

example deep-banding, drilling, top-dressing or ecological delivery via 

animal feed (Blackwell et al., 2009), which could result in biochar having 

different effects.

Finally, the differences in matric and total suction reported in this study 

represent only one soil moisture content. Further research is needed to 

determine whether and to what extent the differences observed apply across 

the whole moisture release curve.
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5.6 Summary

Biochar amendments significantly reduced soil bulk density, but the extent to 

which they did so differed according to the temperature at which they were 

produced; the effect of biochars produced at higher temperatures in reducing 

bulk density was larger than the effect of those produced at lower 

temperatures.

All biochar amendments resulted in reduced soil bulk density, but this effect 

was greater for biochars produced at HTTs of 600 and 700*C than for those 

produced at 400 and 500*C. Only 500*C biochar significantly increased the 

soil's WHC, but all biochars increased matric suction (at a water content of 

0.17 cm3 cm*3). For both of these properties, the mean effect of amendments 

increased as biochar HTT increased from 400°C to 500°C, then decreased 

with subsequent increases in HTT up to 700°C. These effects may be related 

to an increase in biochar porosity between HTTs of 400°C and 500°C and 

widening of soil or biochar pores, or reduction in pore interconnectivity 

and/or accessibility with further increases in HTT.

In terms of the energy plants would have to expend to access water, the 

effect of biochars produced at 400°C, 600°C and 700°C increasing matric s 

suction appears to be counteracted by their effect osmotic suction, which can 

be attributed to these biochars displacing native soil, reducing solute 

concentrations. Biochar produced at 500°C significantly augmented total 

suction as it significantly increased both matric and osmotic suction. The 

increase in osmotic suction in soils amended with 500°C biochar is probably 

related to the higher production of tars and other liquids when an HTT of
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500°C is used. The findings of this study suggest that 500°C biochar could - at 

least initially - increase plant moisture stress, particularly for seedlings.

Prolific fungal growth observed in soils amended with 500°C biochar can be 

attributed to condensates on the surface of the biochar which provided a 

carbon and energy substrate.
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6 THE EFFECTS OF BIOCHAR SOIL 
AMENDMENT PARTICLE SIZE

6.1 Introduction

Biochar amendments have been reported to reduce bulk density (Joseph et 

al., 2009) and increase water-holding capacity (Laird et al, 2010b) in certain 

soils. Laird et al. (2010b) found that biochar amendments increased the 

amount of water retained in a fine-loamy soil at -1 and -5 bars of matric 

potential. However, there is no discussion in the literature of how biochar 

particle size influences the biochars have on soil bulk density, water-holding 

capacity and matric suction.

Lehmann et al. (2003) concluded that using different sized biochar particles (1 

mm and 20 mm diameter) had only minor effects on nutrient uptake and 

biomass production of Cowpea (Vigna unguiculata). It was argued by Joseph 

et al (2009) that inclusion of particle size in a biochar classification system 

was unnecessary, though particle size has subsequently been included in the 

classification system of the International Biochar Initiative (2013). It has been 

speculated that smaller particles may increase the influence of biochar soil 

amendments due to greater contact area, but Joseph et al. (2009) argued that 

the high porosity of biochar particles may make particle size irrelevant. Soil 

hydrology may be influenced by the smallest particle size fractions of biochar 

blocking pores. However, as Verheijen et al (2010) noted, empirical studies of 

such effects are scarce and further research to evaluate the implications of 

differing biochar particle sizes on soil processes and functioning is needed.



144 THE EFFECTS OF BIOCHAR SOIL AMENDMENT PARTICLE SIZE

Using biochars of four different particle sizes to amend a sandy loam soil, 

this part of the study aims to address these research gaps by testing whether 

biochars of different particle size affect bulk density, water-holding capacity 

and total, matric and osmotic suction in different ways and / or to different 

extents. Improved understanding of how particle size affects the influence of 

biochars on soil hydrology may enable identification of certain particle sizes 

that are more or less beneficial than others in terms of amending a particular 

soil property. Greater knowledge of the influence of biochar particle size on 

soil hydrology will also aid understanding of how the effects of biochar 

amendments may change as they are physically broken down in the soil.

6.2 Methods

Biochar was produced at UKBRC (see 5.2.1) from softwood pellets using a 

HTT of 500°C. This HTT was selected because biochar produced at this 

temperature was found to have the greatest influence on soil moisture 

retention (see Chapter 5). The biochar pellets were ground and sieved to 

obtain four different particle size fractions: < 0.2,0.4 - 1,2 - 3 and 4 -5  mm to 

ensure that all the biochar particles within each fraction were at least half or 

double the size of any particles within other fractions, increasing the 

likelihood of differences being observed. Biochars were applied to the sandy 

loam soil described in Chapter 5 (50% sand, 46% silt, 4% clay) at a rate of 50 g 

kg-1. A sandy loam soil was selected for this investigation because increases 

in WHC associated with biochar application have often been observed in 

sandy soils (e.g. Gaskin et al., 2007; Novak et al., 2009; Case et al., 2012; Basso 

et d., 2013), but are less likely in soils with higher clay content (Tryon, 1948;
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Dugan et al., 2010). Using a sandy loam soil thus ensured a reasonable 

likelihood of differences in soil moisture retention being observed due to 

biochar application. Biochars were applied to the soil at rates of 50 g kg^1 

(based on post-production weight) and thoroughly mixed, to mimic biochar 

being ploughed or disked into topsoil. It is however acknowledged that 

alternative methods of application could be used, for example deep-banding, 

drilling, top-dressing or ecological delivery via animal feed (Blackwell et al., 

2009). The findings of previous studies suggest that for many soils, an 

application rate of at least -20 g kg*1 is needed for biochar to increase soil 

WHC (Chan et al., 2007; Gaskin et al., 2007; Busscher et al., 2010). An 

application rate of 50 g kg*1 was therefore used to maximise the probability of 

biochars increasing soil moisture retention, in turn increasing the likelihood 

of observing differences between the effects of different biochars. A higher 

application rate was not used because these were considered unlikely to 

become commercially realistic within foreseeable timescales.

The methods used in this chapter were the same as those specified in 

Chapter 5; the results are presented separately to aid clarity and readability. 

Bulk density was assessed by weighing 140 ml volumes of dry soil-biochar 

mixtures, WHC was measured gravimetrically and suction was investigated 

using the filter paper method. For bulk density measurements, 25 replicates 

were made for the control (no biochar) treatment and the 0.4 -1 mm biochar 

amendment, while 10 replicates were carried out for soils with biochar 

amendments having particle sizes of < 0.2,2-3 and 4 -5  mm. Non- 

parametric statistical tests were used to analyse this data to ensure the 

imbalanced design did not influence findings.
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6.3 Results

6.3.1 Bulk Density

Each particle size of biochar resulted in a statistically significant reduction in 

soil bulk density (Table 6.1). A Kruskal-Wallis test indicated that there were 

significant differences between the effects of different sized biochars on bulk 

density (H(3) = 20.26, p < 0.001). Applying biochar with a particle size of <0.2 

mm to the soil had the greatest effect, reducing the mean bulk density from 

1.33 to 1.23 g cm-3. This was a significantly lower bulk density than those of 

the soils amended with biochars of larger particle sizes (Table 6.2). Applying 

the largest biochar particle size (4-5 mm) had the least effect on the soil's 

bulk density, resulting in a mean bulk density of 1.28 g cm-3. This was ~4% 

lower than the bulk density of the control soil, but significantly higher than 

the bulk densities resulting from using any of the other particle sizes (Table 

6.2). Biochars with particle sizes of 0.4 -1 and 2 -3  mm reduced the soil bulk 

density by ~5 and ~7% respectively; these effects were not significantly 

different from each other (Table 6.2).

Table 6.1: Tests for differences between bulk densities of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)
Biochar particle size (mm) Mann-Whitney

U R
< 0.2

0.4-1
2 -3
4 - 5

0.0
36.0
55.0
14.0

< 0.001
< 0.001
< 0.001
< 0.001
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1 i s

Control <0.2 0.4-1 2 - 3  4 - 5

(no biochar) Biochar particle size (mm)

Figure 6.1: The effect of different sized biochars on the bulk density of a sandy loam 
(Error bars represent 95% CIs, n = 5)

Table 6.2: Tests for differences between bulk densities of soils with biochar additions 
of differing particle size (p is 2-tailed and Bonferroni-adjusted)

Biochar particle size (mm) Mann-Whitney
U V

0.4-1 vs. 2 -3 83.0 0.387
<0.2 vs. 0.4 -1 and 2 -3 72.0 0.012

0.4 -1 and 2 -3 vs. 4 -5 69.0 0.009

6.3.2 W ater-holding capacity

Biochar of 0.4 -1 mm particle size was the only amendment to significantly 

influence WHC (Table 6.3), with soil amended with this biochar retaining 

12% more water than the control treatment (Figure 6.2). There was no 

significant difference between soils containing 2 - 3 or 4 - 5 mm biochars; 

both had WHCs of -0.43 cm3 cm 3. The mean WHC soil containing < 0.2 mm 

biochar was 6% higher relative to soil containing 2 -5  mm biochar, and this
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difference was statistically significant (Table 6.4). The mean WHC of soil 

containing 0.4 -1 mm biochar was 0.036 cm3 cm 3 higher than that of soil 

containing < 0.2 mm biochar, but the difference between the the two soils 

was not statistically significant (Table 6,4).

0.55

£  0.35

Control 
(no biochar)

< 0.2 0.4-1 2 - 3 4 - 5

Biochar particle size (mm)

Figure 6.2: The effect of additions of biochars of differing particle size on the water- 
holding capacity of a sandy loam (Error bars represent 95% C/s, n = 5)

Table 6.3: Tests for differences between water-holding capacities of soils with biochar 
additions compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted) 
Biochar particle size (mm) Mann-Whitney

________________________________________ U_________________ v _
< 0.2

0.4-1
2 -3
4 -5

4.0 
0.0
6.0 
5.0

0.192
0.016
0.444
0.300
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Table 6.4: Tests for differences between water-holding capacities cf soils with biochar 
additions of differing particle size (p is 1-tailed and Bonferroni-adjusted)

Particle sizes of biochars in soils being Mann-Whitney
compared (mm) U V .

2 -3  vs. 4 -5 11.0 1.000
<0.2 vs. 2 - 3 a n d 4 - 5 3.0 0.015
< 0.2 vs .0.4-1 3.0 0.168

6.3.3 Total suction

While biochar amendments of all particle sizes increased mean matric 

suction, in the case of biochars with a particle size between 2 and 5 mm, this 

effect was not statistically significant (Table 6.5). Biochar amendments of a 

particle size between < 0.2 and 0.4 -1 mm did have a statistically significant 

effect (Table 6.5), increasing the mean total soil suction relative to the control 

treatment by 61% and 99% respectively (Figure 6.3). There were statistically 

significant differences between the effects of biochar amendments of 

different particle size on total soil suction (H(3) = 12.44, p < 0.001); < 0.2 mm 

and 0.4 -1 mm biochars resulted in a significantly larger increase in total 

suction than was observed in soils amended with 2 -3  mm and 4 -5  mm 

biochars (Table 6.6).
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(no biochar)
<0.2 0.4-1 2 - 3

Biochar particle size (mm)

4 - 5

Figure 6.3: The effect of additions of biochars of differing particle size on total suction 
of a sandy loam (Error bars represent 95% CIs. For <0.2 mm biochar n = 4, for all 
other treatments n =5)

Table 6.5: Tests for differences between total suction of soils with biochar 
amendments compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)

Biochar particle size (mm) Mann-Whitney
U V

<0.2 0.0 0.032
0.4-1 0.0 0.016
2 -3 3.0 0.111
4 -5 6.0 0.619

Table 6.6: Tests for differences between total suction of soils with biochar 
amendments of different particle sizes (p is 2-tailed and Bonferroni-adjusted) 
Biochar particle size in soils being Mann-Whitney
compared (mm)____________________________U____________________p_

< 0.2 vs. 0.4 -1 
2 -3  vs. 4 - 5 

< 0.2 and 0.4-1 vs . 2 -  3 and 4 -5

5.0 
11.0
3.0

0.857
1.000

< 0.001
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6.3.4 M atric suction

6.3.4.1 The effect of b io ch ar p a rtic le  size

Figure 6.4 illustrates the effect of different-sized biochars on the matric 

suction of a sandy loam. The matric suction in soil containing biochar of any 

particle size fraction was roughly 3 to 4 times greater than in the control 

treatment, and in each case this was a statistically significant effect (Table 

6.7). Pairwise comparisons revealed no significant differences between the 

effects of different biochar sizes on matric suction (Table 6.8).

%
co

‘Vu
3<«u

• Gm
s

Control 
(no biochar)

<0.2 0.4-1 2 - 3

Biochar particle size (mm)

4 -5

Figure 6.4: The effect of additions of biochars of differing particle size on the matric 
suction of a sandy loam (Error bars represent 95% CIs, n = 5)

Table 6.7: Tests for differences between matric suction of soils with biochar additions 
compared to soil without biochar (p is 1-tailed and Bonferroni-adjusted)__________

Biochar particle size (mm) Mann-Whitney

 M_______________________ 2 _
< 0.2 0.0 0.016

0.4 -1 0.0 0.016
2 -3  0.0 ' 0.016
4 -5  0.0 0.016
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Table 6.8: Tests for differences between matric suction of soils with biochar 
amendments of different particle sizes (p is 2-tailed and Bonferroni-adjusted)
Biochar particle size in soils being 
compared (mm) U

Mann-Whitney
V

<0.2 vs. 0.4 -1 11.0 1.000
2 -3 vs. 4 -5 1.0 0.063

< 0.2 and 0.4 -1 vs. 2 -3 7.0 0.112
< 0.2 and 0.4 -1 v s . 4 - 5 13.0 0.658

6.4 Discussion

The effect of biochar in reducing soil bulk density decreased as biochar 

particle size increased. This is probably because smaller biochar particles 

prevented tight packing of soil grains more effectively than larger biochar 

particles, which influenced the packing arrangement of a smaller volume of 

soil. Soil bulk density is generally lower when soil particle size is uniform 

(Brady & Weil, 2008). The smaller biochar particle size fractions were more 

uniform in size than the larger fractions. In absolute terms, the breadth of the 

particle size fraction for 4 - 5 mm biochars was potentially five times larger 

than that of < 0.2 mm biochar. Furthermore, biochar particle sizes between 0 

and 1 mm were obviously much more similar to the grain sizes in the soil 

itself than biochar particle sizes between 4 and 5 mm. Soil-biochar mixtures 

containing < 0.2 and 0.4 -1 mm biochars would therefore have had a more 

uniform particle size overall than soil-biochar mixtures containing 4 -5  mm 

biochars. If biochar particles were sufficiently small however, they could fill 

the spaces between larger soil particles, resulting in a tighter packing 

arrangement and consequently, a higher bulk density. Differences in the 

effects of biochars of differing particle size are controlled by their effect on
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overall soil packing rather than differences in the internal porosity of the 

biochars themselves. Therefore, where biochars have differing particle size 

but are produced from a feedstock of the same type and particle size under 

similar pyrolysis conditions, differences between their effects on bulk density 

(in a sandy loam) are likely to be similar to those observed in this study.

Larger biochar particles (2-3 and 4 - 5  mm) reduced bulk density, but did 

not increase WHC. This suggests that water drained from the soil more 

quickly than it was able to permeate larger biochar partides. The 

experiments investigating these parameters were conducted in a constant 

temperature room and all used distilled water and biochar produced at the 

same temperature from the same feedstock, which was of uniform partide 

size. It can therefore be assumed that the surface tension and density of the 

water, the contact angle of the biochar with the water and its pore size 

distribution were constant for each biochar partide size used in this 

investigation. This means that the rate of movement of water into biochar 

pores should have been equal at first. However, the rates at which porous 

solids absorb liquid decrease with time and in larger biochar partides, water 

must travel further through a pore network before the entire partide is 

saturated. This means that 24 hours may have been an insuffident period of 

time for water to reach some the innermost porosity of 2 - 3 and 4 -5  mm 

biochars, meaning that not all of their porosity was involved in water uptake 

during this period, hence these biochars did not significantly increase the soil 

WHC.

This outcome corresponds to sorption experiments carried out by Zheng et al. 

(2010), which showed that larger biochar partide sizes increased pestidde 

sorption equilibrium times by several days because of the greater length of
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time necessary for pesticides to reach their innermost regions. It is possible 

that if WHC had been measured after 48 h instead of after 24 h, 2 - 3 and 4 -5  

mm biochars might have had a more substantial effect on soil WHC as water 

would have been able to move further into the larger particles (though this 

might have been countered to some extent by further drainage of water from 

the soil). It may be the case that during wetting events in poorly drained 

soils, biochar particle size would have less effect on WHC because there 

would be more time for particles to take up water.

Biochar of < 0.2 mm particle size did not increase WHC to the same extent as 

0.4 -1 mm biochar. This effect can be related to the effect that the biochars 

had on bulk density. Soil amended with < 0.2 mm biochar had a significantly 

lower bulk density than soil amended with 0.4 -1 mm biochar, indicating 

greater porosity, which could increase hydraulic conductivity.

The lower moisture absorption by larger biochar particles in the WHC 

experiments could have arisen in part from surface hydrophobidty. 

Hydrophobic sites on the surface of biochar partides will have a greater 

impact on the hydrologic properties of larger partides than smaller partides. 

For large partides, a greater proportion of their porosity will be made 

ineffective by a certain percentage of their surface being hydrophobic than 

would be the case for smaller partides. As such, unless saturation conditions 

persist for periods sufficient to overcome the surface hydrophobidty of 

biochar partides, water will drain from the soil rather than be absorbed by 

biochar partides. It can therefore be expected that for biochars produced at 

higher HTTs which are less hydrophobic (see section 4.4.2.3), differences in 

partide size will have less effect on WHC. On the other hand, intermediate 

melts in biochars produced at higher HTTs can reduce pore interconnectivity
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(see section 5.4). This could have a more significant effect on the hydrologic 

properties of larger particles as a larger num ber of pores could be cut off by a 

melt than would be the case in smaller particles.

The finding that there were no significant differences between the effects of 

different biochar particle size fractions on matric suction suggests that the 

two-week incubation period allowed sufficient time for moisture to be 

absorbed by pores further inside larger particles, with the amount of water 

held by biochar being equal regardless of particle size and / or that the 

moisture content of the soil was sufficiently low to mean that only a certain 

percentage of biochar porosity was holding water, regardless of particle size. 

As the different size fractions were all produced under the same conditions, 

their pore size distribution would have been similar, meaning that there 

would be no differences in matric suction if they had wetted equally.

The differing effects of different sized biochar particles observed in the 

present study contrast somewhat with the findings of Lehmann et al. (2003) 

who used biochars of < 2 mm and -20 mm particle size (in absolute terms, a 

much greater difference in size than was investigated in the present study) 

and observed no differences in crop growth. Nonetheless, it should be noted 

that Lehmann et al. (2003) irrigated the soils in their study daily to maintain 

-60% of WHC. The findings of the present study suggest that the findings of 

Lehmann et al. (2003) might have been different had irrigation instead been 

applied to nearer 100% of WHC, with soils allowed to dry out more 

completely (over several days) before rewetting. If larger biochar particles do 

not necessarily wet as completely as smaller biochar particles, the moisture 

content of soils containing larger biochar particles would have been lower,
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meaning plants would have expended more energy on water uptake,

, resulting in lower growth.

Only biochar amendments of < 0.2 and 0.4 -1 mm significantly increased the 

total suction of the soil. This can be attributed to differences in the effect that 

different biochar particle sizes had on osmotic suction, as there were no 

significant differences between the effects that different biochar particle sizes 

had on matric suction. Differences in osmotic suction would have arisen 

from biochar amendments introducing different amounts of solutes into the 

soil solution according to the amount of biochar surface area that was in 

contact with the soil solution. During pyrolysis, biochar pores can become 

filled with condensed volatiles (Downie et al., 2009). The process of grinding 

larger biochar particles down to smaller size fractions could have released 

these condensed volatiles from pores and spread them over the surfaces of 

small particles, resulting in them having a greater surface area in contact 

with the soil solution.

Differences between the effects of biochars of different particle size on 

osmotic suction will become decreasingly important as biochar-introduced 

solutes are leached from the soil. Furthermore, biochar is brittle, so larger 

particles will eventually break down into smaller particles anyway. Sohi et al. 

(2009) suggested that the effect of biochar particle size may be short-lived, as 

once biochar is applied to the soil it 'rapidly' divides into particles of silt size 

or less. There will however be differences in the speed with which this occurs 

between different biochars; those produced at lower HTTs tend to be 

stronger than those produced at higher HTTs (Downie et al., 2009) are thus 

likely to abrade into finer fractions less rapidly. Further research is needed to 

determine the periods over which biochar partide size can exert a significant
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influence on osmotic suction and the ability of plants to take up water. 

Regardless of the temporal nature of any biochar particle size effects, this 

study provides an indication of how those effects might change as biochar 

breaks down in the soil.

The effects of different biochar particle sizes on osmotic suction described 

above will not apply to all biochars. Biochar amendments do not necessarily 

increase osmotic suction; they can instead reduce it (see section 5.4). Further 

research is needed to determine whether and to what extent particle size 

influences the effect of biochar amendments that reduce osmotic suction. As 

smaller biochar particles reduce bulk density to a greater extent than larger 

particles, it follows that where biochars reduce osmotic suction, smaller 

particles may do so to a greater extent than larger particles as they are more 

effective displacers of the native soil.

6.5 Limitations

As with the matric suction results presented in Chapter 5, an obvious 

limitation for the results presented in this chapter is that the matric suction 

measurements presented in section 6.3.4 cannot with confidence be accepted 

as valid absolute values due to problems with the experimental approach 

(see section 5.5). The data are nonetheless useful for evaluating the relative 

differences in matric suction between treatments, because the same method 

was used for all treatments and many of the differences between treatments 

are statistically significant, therefore they cannot be due to chance. 

Accordingly, it is reasonable to assume that where relative differences in 

total suction values between treatments did not reflect relative differences in
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matric suction values between treatments, it was because differences in 

matric suction were counteracted by differences in osmotic suction.

The findings of the present study suggest that larger biochar particles (> 2 

mm) are not as effective in increasing soil WHC as smaller biochar particles 

(< 1 mm). It should however be noted that the larger particles may have had 

more of an influence on soil WHC had saturation conditions persisted for a 

longer period. Biochar hydrophobicity was not measured, so it is not clear 

whether or not biochar surface hydrophobicity contributed to the different 

effects that biochars of differing particle size had on soil water-holding 

capacity. If hydrophobicity was indeed an influencing factor, then particle 

size could have less influence on the effect of biochar additions on soil WHC 

when biochar is produced at higher temperatures and is therefore wettable.

Biochar produced at 500*C increased osmotic suction, whereas those 

produced at other temperatures did not (see section 5.4). Differences in 

osmotic and total suction observed between biochars of different particle size 

produced at 500*C are not necessarily representative therefore of the 

differences that would be observed for biochars produced at other 

temperatures.

As with experiments presented in Chapter 5, the present set of experiments 

used sieved, repacked soils. The structures, pore architectures, aggregates 

and inter-aggregate pore size distributions of the soils were therefore 

artefacts of the sieving, mixing and repacking process, and do not necessarily 

resemble the properties of soils amended with biochar in-situ, where the 

direct effects of biochar on moisture retention will be complicated by indirect 

effects through the influence of biochar on soil aggregation and aggregate
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stability. Furthermore, in field situations, the effect of biochar on soil 

properties will be complicated by its effects on above- and below-ground 

biota.

It should also again be acknowledged that the biochar application rates used 

in this study were very high and not currently commercially realistic for 

broadacre agriculture. Differences between the effects of biochars produced 

at different pyrolysis temperatures observed in the present study may not be 

observed when lower application rates are used. Moreover, differences 

between biochars may be less important in soils where biochar application 

has little or no effect on moisture retention. In this study, biochar was mixed 

with soil to mimic ploughing, but it should be remembered that alternative 

methods of application could be used, for example deep-banding, drilling, 

top-dressing or ecological delivery via animal feed (Blackwell et al., 2009), 

which could result in biochar having different effects.

Finally, it should once again be noted that the differences in matric and total 

suction reported here are representative of one soil moisture content only. 

Further research is needed to determine whether and to what extent the 

differences observed apply across the whole moisture release curve.

6.6 Summary

Biochar amendments significantly reduced the bulk density of a sandy loam, 

but the extent to which they did so differed according to, their particle size. 

Biochar amendments of smaller particle size reduced bulk density more 

effectively than those of a larger particle size.
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Biochars of < 1 mm particle size increased soil WHC, but this effect was only 

significant in the case of 0.4 -1 mm biochar. Larger biochar particles (2-5 

mm) reduced bulk density but did not increase WHC, meaning that their 

effect on WHC must be attributed to the biochars themselves rather than to 

their overall effect on the soil. That the larger biochar fractions did not affect 

WHC suggests that water drained from the soil more quickly than it was able 

to permeate larger biochar particles. Further research is needed to verify 

whether the patterns of difference between biochars of differing particle size 

observed in this investigation would apply to biochars produced using 

different HTTs.

Biochars of < 0.2 and 0.4 -1 mm particle size were the only amendments that 

resulted in a significant increase in total suction. All biochar amendments 

resulted in a significant increase in matric suction (at a water content of 0.17 

cm3 cm 3), regardless of their particle size. This indicates that the two-week 

incubation time used was sufficient for wetting of larger biochar particles to 

be equal to that of smaller particles. It therefore seems likely that under 

persistently wet conditions, moisture uptake by larger biochar particles can 

match that of smaller particles. However, 2 -3  and 4 -5  mm biochars did not 

significantly increase total suction as their effect of increasing matric suction 

was countered by a reduction in osmotic suction. This was presumably 

because these biochars displaced some of the original soil and did not 

introduce substantial amounts of solutes to the soil solution. Biochars of < 0.2 

and 0.4 -1 mm particle size did increase total suction as they resulted in an 

increase of both matric and osmotic suction. This can be attributed to the 

grinding process exposing and spreading condensed volatiles over the 

surfaces of the biochar particles, making a large volume of solutes available 

to the soil solution. It can be concluded that these smaller particle-size
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fractions could significantly increase the amount of energy plants would 

have to expend to access water. Further research is needed to determine: (i) 

whether these effects would apply across the entire moisture release curve; 

(ii) the periods of time over which increased solute concentrations would 

persist; and (iii) whether these differences would apply to biochars produced 

under different conditions.
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7 EFFECTS OF BIOCHAR APPLICATION 
RATE ON THE HYDROLOGICAL 
RESPONSE OF A SOIL UNDER 
SIMULATED RAINFALL

7.1 Introduction

Although biochar amendments have been reported to improve soil water- 

holding capacities (Laird et al, 2010b, Case et al, 2012; Basso et al, 2013), 

there are few studies in the literature investigating moisture retention versus 

run-off generation in biochar-amended soils under rainfall. Beck et al (2011) 

found that adding biochar at a rate of 7% by weight resulted in a 4.4% 

increase of water retention in greenroof soil plots under simulated rainfall. 

However, these findings may not be trustworthy as, for half of the replicates, 

the initial soil moisture content was not controlled or measured. 

Furthermore, Beck et al (2011) only measured the total discharge of water 

from the greenroof soil plots and therefore could not differentiate between 

overland flow and subsurface drainage, limiting the applicability of the 

results to in-situ soils. Smetanova et al (2013) found that applying biochar 

produced at 500 - 600°C (from unspecified wood) to a sandy loam at a rate of 

10% by volume decreased overland flow by up to -40%, but drainage was 

not measured. Given the influence that feedstock material has on biochar 

properties (see Chapter 4), it is difficult to evaluate the implications of this 

research because the Smetanova et al did not specify the precise feedstock 

used to produce the biochar. Clearly, the effects of biochar amendments on 

soil hydrological responses under rainfall are yet to be thoroughly explored.
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Furthermore, no published studies have examined the effect of different 

biochar application rates on the hydrological response of a medium-textured 

soil under simulated rainfall.

Using three different biochar application rates, this part of the study 

investigated the effect of biochar amendments on the hydrological response 

of a silt loam under simulated rainfall, measuring both overland flow and 

drainage.

7.2 Methods

7.2.1 Biochar production and incubation

The pyrolysis unit used to produce the biochars used in Chapters 5 & 6 was 

not commissioned when the experimental process in this Chapter was begun. 

Biochar (supplied by Bodfari Environmental, St. Asaph) was instead 

produced using drippings of varying partide size produced from mixed 

dedduous hardwoods native to England and Wales, induding Oak (Quercus 

spp.), Common Ash (Fraxinus excelsior), Sycamore (Acer spp.), Birch (Betula 

spp.) and Cherry (Prunus spp.). The feedstock material was pyrolysed using 

steel ring kilns (Figure 7.1), in which the peak pyrolysis temperature can vary 

according to the position within the kiln (Powell et al., 2012). Following 

production, the biochar was stored in a heated greenhouse for 12 months 

because oxidation of biochar surfaces is encouraged by warm, humid 

conditions (Cheng et al., 2006), leading to the formation of functional groups 

which may increase both biochar wettability (Kinney et al., 2012) and the
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formation of organo-mineral associations between biochar and soil particles, 

promoting aggregate stability (Glaser et al, 2000; Lin et al, 2006).

Figure 7.1: Ring kilns (Credit: Bodfari Environmental)

7.2.2 Biochar hydrophobicity

Biochar hydrophobicity was assessed using a goniometer to measure water 

droplet contact angles following the methodology described in detail in 

section 4.2.3. One hundred contact angle measurements were made.

7.2.3 Soil-biochar m ixtures

The soil used in this part of the study was an air-dried proprietary silt loam 

(9% clay, 72% silt, 19% sand) with an organic matter content of 8% which 

was supplied by Boughton Ltd. (Kettering). Key objectives of this experiment 

were to investigate the influence of different biochar application rates on 

aggregate stability and soil crusting following rainfall simulation, though for
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clarity and readability, the data on these are presented separately in Chapter 

8. The sandy loam soil used for the experiments in Chapters 5 and 6 did not 

readily form aggregates, so a silt loam was used instead because it readily 

formed aggregates, was friable and because soils dominated by silt fractions 

are particularly susceptible to sealing and subsequent crusting (Gabriels et 

al., 1998). Using a silt loam thus increased the likelihood of differences in soil 

aS8regate stability, sealing and crusting being observed with different 

biochar application rates.

The biochar was sieved to < 2 mm as this particle size fraction was most 

likely to influence the water-holding capacity of the soil (see Chapter 6). The 

soil was sieved to < 3.35 mm, then the biochar was mixed with the soil to 

create triplicate samples totalling 3 kg with biochar added at rates of 0 

(control), 5,25 and 50 g kg-1 (dry weight). 435 ml of water (30% of the WHC 

of the control sample) was stirred into each sample. The samples were then 

stored in darkness at 21 °C in lidded 4.8 litre containers. The containers were 

not air-tight, but the lids were removed every 6 weeks and the soils 

disturbed using a trowel to allow more thorough aeration and mimic 

bioturbation. After 250 days, the samples were air-dried to constant weight 

and sieved to < 5 mm.

7.2.4 Bulk density

The bulk densities of the soil-biochar mixtures were measured using the 

same method as described in Chapter 5. Five replicates were completed for

each treatment.
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7.2.5 Soil-biochar mixture hydrophobicity

The surface hydrophobicity of soil-biochar mixtures was measured using the 

water drop penetration time (WDPT) test. The soil-biochar mixtures were 

sieved to < 2 mm, placed in petri dishes of 40 mm diameter and 5 mm depth 

and the surfaces were levelled and smoothed using a ruler. 6 petri dishes 

were prepared for each soil-biochar mixture. Five equidistantly spaced 

droplets (-0.05 ml) of distilled water (21 °C) were applied to each dish using a 

pipette, and the time taken for each droplet to completely penetrate the soil 

surface was measured using a stopwatch. A total of 30 WDPTs were 

therefore recorded for each soil-biochar mixture.

7.2.6 Preparation of soil plots

A 30 mm layer of soil was spread over permeable fibreglass doth covering a 

10 mm mesh screen within a 300 x 300 mm metal plot (Bodi et al, 2012). This 

custom-made plot had an outlet above the mesh screen (level with the top of 

the layer of soil) for capturing overland flow and an outlet below the mesh 

screen for capturing drainage (Figure 7.2).

7.2.7 Rainfall simulation

Rainfall simulation was carried out using a laboratory drip-type simulator 

(Figure 7.2). Three rainfall simulations were completed for each biochar 

application rate. Water was supplied from a 25 L tank into a 400 x 400 mm 

droplet box with 190 drop-formers of 0.5 mm diameter made from Teflon 

tubing (see Clark & Walsh, 2007). The flow of water from the tank was
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regulated by a switch, which was activated once the water reached a certain 

level in the droplet box (Bodi et al., 2012). This minimised variation in the 

depth of water in the droplet box, thus also limiting variation in rainfall 

intensity. A wire mesh hanging 500 mm below the droplet box was 

continually oscillated by hand to break up droplets (creating a variety of 

droplet sizes) and randomize their landing positions.

Slope-angle
adjusting
screw

Droplet box

Wire mesh

Overland flow 
outlet 
(drainage 
outlet below)

Splash cup

Figure 7.2: Rainfall simulator
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The soil plots were placed 1.5 m below the droplet box on a slope angle of 5° 

and subjected to 60 minutes of simulated rainfall. The mean rainfall rate 

across all simulations was 79.34 ± 2.09 mm h 1, which in the UK would be an 

extreme rainfall event (Bilham, 1935) around the 'maximum' possible point 

rainfall in the UK (Hand et al, 2004). The highest rainfall rate ever recorded 

in the UK over one hour was 92 mm (Met Office, 2014). However, this 

rainfall rate would not be uncommon in tropical climates (Maitra et al, 2009; 

Rahardjo et al., 2012) or Mediterranean climates (Kelsch et al, 2001).

Rainfall rates were measured using a V-shaped tray held in place below the 

droplet box. For each simulation carried out, rainfall was measured for 2 

minutes immediately before the simulation and 2 minutes immediately 

afterwards. Total rainfall for the 60 minute simulation was estimated from 

the mean of these two measurements, allowing subsequent calculation of 

overland flow coefficients and the proportions of rainwater that were held by 

the soils or lost by drainage. Overland flow was first measured 2 minutes 

after commencement of rainfall and at 4 minute intervals thereafter.

Drainage (subsurface drainage) was first measured after 2 minutes and 

recorded every 2 minutes thereafter.

7.2.8 Statistical analyses

Kruskal-Wallis tests were used to test for overall differences between 

treatments (Kruskal & Wallis, 1952). Pairwise comparisons were made using 

Mann-Whitney U-tests (Mann & Whitney, 1947), with Bonferroni 

adjustments applied to control familywise Error (Dunn, 1961). Trends in the 

data were tested for using Jonckheere-Terpstra tests (Jonckheere, 1954). Most 

statistical analyses were carried out using SPSS (v.19, IBM, USA). However,
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Jonckheere-Terpstra tests were partly calculated manually due to an Error in 

SPSS and Bonferroni adjustments were also calculated manually. A 95% 

confidence level was adopted for all tests; differences were considered to be 

statistically significant where p < 0.05.

7.3 Results

Differing biochar application rates resulted in significant differences between 

the hydrological responses of soils under simulated rainfall. The temporal 

changes in drainage and overland flow during rainfall simulations varied 

with the biochar contents of the soils (Figure 7.6).

7.3.1 Biochar hydrophobicity

The hydrophobicity of the biochar used in the present study was extremely 

varied. Around a third of the water droplets spread over the surface or 

infiltrated completely. However, assuming a contact angle of 50° represents a 

boundary between wettable and non-wettable biochar (see section 4.4.2.3),

54% of the contact angles measured were indicative of hydrophobic biochar 

surfaces (Figure 7.3).

73.2 Soil-biochar mixture hydrophobicity

Biochar application rate had no effect on the surface hydrophobicity of soil- 

biochar mixtures. At all application rates, 100% of water drops were able to 

penetrate the soil surface immediately (WDPT < 1 second).
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'Assumes a contact angle of 5 0 ’ delineates the boundary between hydrophobic 

and hydrophilic surfaces (see section 4A.2.3).

Figure 7.3: Water droplet contact angles on biochar particles produced from mixed 
deciduous wood in a ring kiln

7.3.3 Bulk density

Figure 7.4 illustrates the effect of different biochar application rates on the 

bulk density of the soil. Differing biochar application rates had a significant 

effect on bulk density (H(3) = 16.21, p < 0 0.001). An application rate of 5 g k g 1 

decreased the mean bulk density of the soil, but this effect was not 

statistically significant (Table 7.1). An application rate of 25 g kg'1 

significantly reduced the mean bulk density of the soil (by over 5%). 

Applying biochar at a rate of 50 g kg'1 resulted in a significantly lower bulk 

density than an application rate of 25 g k g 1 (Table 7.1), and reduced the 

mean bulk density by over 7% compared to soil without biochar.
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Figure 7.4: The effect of biochar application rate on the bulk density of a silt loam 
(Error bars represent 95% C/s, n = 5)

Table 7.1: Tests for differences between bulk densities of soils with different biochar 
contents (p is 1-tailed and Bonferroni-adjusted)

Biochar application rate (g kg'1)
U

Mann-Whitney
V

0 vs. 5 9.0 0.822
0 and 5 vs. 25 0.0 <0.001

25 v s . 50 0.0 0.012

7.3.4 Rainwater infiltration

It is likely that the portion of rainwater that was able to infiltrate the soil was 

reduced as biochar application rate was increased (S = 16, p = 0.147). On 

average, 59% of rainwater infiltrated plots without biochar additions, while 

infiltration in plots with biochar contents of 50 g kg*1 was 54% of rainfall 

(Figure 7.5).
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Figure 7.5: Fate of precipitation (Error bars represent 95% CIs, n =3)

7.3.4.1 R eten tio n  of ra in w a te r  in soil

There are indications that soil water retention increased with increasing 

biochar application rate (S = 18, p = 0.117). The mean proportion of rainwater 

retained by soil with a biochar content of 50 g kg'1 was 45% higher than that 

retained by soil without biochar (Figure 7.5). As Figure 7.6 illustrates, 

proportionate to the amount of rainwater infiltrating the soil in the first 

place, there was a significant trend for water retention to increase with 

increasing application rates (S = 38, p -  0.003).
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Figure 7.6: Effect of biochar application rate on retention of rainwater by soil

7.3A.2 D rainage

Temporal changes in drainage during rainfall simulations varied with the 

biochar content of the soils (Figure 7.7). Commencement of drainage was 

slower with increasing biochar content (S = 13 ,p  = 0.18). As Figure 7.8 

illustrates, there was a statistically significant trend for the proportion of 

infiltrated rainfall released from the soil as drainage to decrease with 

increasing biochar content (S = 38, p = 0.003). For plots with biochar applied 

at rates of 0 or 5 g kg'1, almost 40% of the total rainfall was lost from the plots 

by drainage. Plots with biochar content of 25 g kg'1 lost around a third of 

rainwater by drainage, whilst plots with biochar applied at a rate of 50 g kg*1 

lost a quarter of rainwater by drainage (Figure 7.5).

Overall, the maximum drainage rate recorded over 1 minute tended to 

decrease with increasing biochar application rate (S = 39, p = 0 .004). In soil
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without biochar, drainage peaked at around 75 mm h 1, while in soil with a 

biochar content of 50 g k g 1, drainage peaked at around 60 mm h 1 (Figure 

7.9). There were no significant differences between the durations of rainfall 

after which peak drainage occurred in different soils (H(3) = 0.089, p = 0.711)
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Figure 7.8: Effect of biochar application rate on proportion of infiltrated rainfall 
transmitted through soil as drainage
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Figure 7.9: Effect of biochar application rate on peak basal drainage
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7.3.5 O verland flow

Overland flow was generated more quickly as biochar content increased (S 

33, p = 0.008). For plots with biochar additions of 0 and 5 g kg^, the median 

time for commencement of overland flow was after 24 minutes of rainfall 

(Figure 7.10). For plots with 25 and 50 g kg'1, the median times for 

commencement of overland flow were 18 and 14 minutes respectively 

(Figure 7.10).

oCS
TJ

30

25

20

15

10

5a>
£
H

o
o

o

o
o

o

o

o

25

O
Q

50

Biochar application rate (g kg'1 soil)

Figure 7.10: The effect of biochar application rate on time to onset of overland flow

The overland flow coefficient for plots with a biochar content of 5 g kg'1 was 

lower than that from plots without biochar. However, the overland flow 

coefficient for plots with biochar content of 25 g kg'1 was 3 percentage points 

higher than that from plots without biochar, and for plots with biochar 

content of 50 g kg'1 it was a further 2 percentage points higher (Figure 7.5). 

The data therefore suggest that overland flow volume tended to increase 

slightly with increasing biochar application rate (S = 16, p = 0.147). Biochar
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content did not significantly affect the maximum overland flow rates 

recorded over one minute (H(3) = 0.524, p = 0.491). However, there are 

indications that peak overland flow was reached more quickly as biochar 

content increased (S = 30,p = 0.182). There were no significant differences 

between the correlations of rainfall duration and overland flow volume of 

soils with differing biochar content.

7.4 Discussion

The variability in the wetting characteristics of the biochar used in this study 

is unsurprising given that the biochar was produced in a traditional kiln, 

from mixed deciduous wood feedstock. The peak temperature at which 

particles in traditional kilns are pyrolysed can vary substantially (from 

~430°C to ~750°C) according to their position in the kiln (Powell et al, 2012.). 

Biochar wettability is significantly influenced by both pyrolysis temperature 

and feedstock type (see Chapter 3). The biochar was stored for 12 months in 

a heated greenhouse and was thus subjected to warm and humid conditions, 

which would have enhanced oxidation of its surface (Cheng et al, 2006), 

leading to formation of functional groups which increase surface wettability. 

Although a large proportion of the biochar particles were nonetheless 

hydrophobic, biochar application had no effect on soil wettability at 

application rates up to 50 g kg*1. This confirms the findings of Kinney et al 

(2012) and Smetanova et al. (2012) that hydrophobic biochars do not 

significantly affect soil wettability even at high application rates. It should 

however be noted that the present study and those of Kinney et al (2012) and 

Smetanova et al (2012) all mixed biochar with the soil, mimicking ploughing
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biochar into soil. Hydrophobic biochars may have a greater effect on soil 

wettability when they are instead spread over the soil surface by top- 

dressing.

The increasing proportion of water retained by the soil with increasing 

biochar application rate can be attributed to reductions in bulk density (i.e. 

increased porosity) and decreases in hydraulic conductivity. This finding is 

in agreement with studies of a number of soils in which biochar application 

increased water retention during rainfall (Beck et al, 2011) and slowed 

downward movement of rainwater through the soil profile (Major et al, 

2006) with saturated hydraulic conductivity decreasing as application rate 

was increased (Brockhoff et al, 2010; Githinji, 2013). Increased water 

retention at higher biochar application rates meant that drainage tended to 

commence more slowly as the biochar content of soil increased. Although 

overland flow was generated significantly more quickly as biochar content 

increased, biochar content did not affect the duration of rainfall necessary to 

reach peak drainage (the rate of which significantly decreased with 

increasing biochar content). Differences in the proportion of rainwater that 

was lost from the soil as drainage are therefore attributable to differences in 

hydraulic conductivity rather than temporal differences in the onset of 

surface sealing.

Although soils with biochar contents of 25 and 50 g kg-1 retained more 

rainwater than those with biochar contents of 0 and 5 g kg-1, they generated 

overland flow more quickly. Biochar application did not result in any 

increased resistance to wetting, so the quicker overland flow generation 

observed in soil with biochar contents of 25 and 50 g kgr1 cannot be attributed



EFFECTS OF BIOC HAR A PPL IC A T IO N  RATE O N  THE H YDROLOGICAL

RESPONSE OF A SOIL U N D E R  SIM ULATED RAINFALL

to an increase in soil water repellency. Rather, increased rapidity of overland 

flow generation can be attributed to the lower aggregate stability of these 

soils. Aggregates at the surface of these soils would have broken down more 

quickly than in soils with low or zero biochar content (see section 8.3.2). This 

led to formation of a surface seal, reducing water infiltration, and increasing 

the likelihood of hortonian overland flow (see section 8.4.3). These seals 

dried to form crusts (Figure 7.11). It should however be noted that onset of 

overland flow might have been quicker in soils with high biochar content 

regardless of the speed of seal formation. Differences in overland flow 

generation may not have been caused by differences in surface infiltration 

capacity alone; differences in sub-surface hydraulic conductivity may have 

also contributed.

Overland flow was generated more rapidly in soils with high biochar 

contents, so the overland flow coefficients for these soils were higher than 

those for soils with low or zero biochar content. It can therefore be concluded 

that although biochar amendments may improve soil water retention by 

limiting drainage, they can actually reduce the amount of water that is able 

to infiltrate the soil in the first place. As high biochar application rates of 25 

to 50 g kg'1 may be less effective at improving water storage than laboratory 

measurements of WHC might suggest. Of course, such an effect would only 

apply during rainfall events of sufficient intensity and / or duration to cause 

surface sealing or exceed the soil's hydraulic conductivity. Low application 

rates did not affect aggregate stability (see Chapter 8) and may therefore be 

capable of improving rainwater retention in soils without increasing 

overland flow. While Figure 7.5 indicates that such an effect may be possible, 

it must be acknowledged that the differences in overland flow coefficient
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between soils with biochar contents of 0 and 5 g kg'1 were not statistically 

significant.

Figure 7.11: A  surface crust formed by drying of a surface seal in a 300 x 300 mm 
soil plot with a biochar content of 25 g k g 1

As Figures 7.5 -  7.10 illustrate, although application rates of 25 and 50 g kg*1 

seemed to alter the hydrological behaviour of the soil, an application rate of 5 

g kg '1 seemed to have little or no effect. Further research (with greater 

replication) is needed to confirm whether this is indeed the case and whether 

certain application rates represent thresholds at which the hydrological 

behaviour of the soil is significantly altered.
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7.5 Limitations

The results of this experiment are not necessarily representative of how 

biochar could influence soil hydrology during natural rainstorm events. 

Owing to the relatively low height of the rainfall simulator used in this 

study, raindrops would not have readied terminal velocity before striking 

the soil (see section 8.4.3). As previously discussed, although the rainfall 

intensity used in this study would not be unusual in Mediterranean or 

tropical dimates, it cannot be considered representative of typical rainfall 

events in temperate climates.

The results of these experiments largely relate to the physical effects that 

biochar application has on the hydrological response of bare, loose soil under 

rainfall. Biochar amendments can result in significantly increased root 

development (Prendergast-Miller et al., 2013) and biochar-amended soils may 

be preferred by earthworms over those without biochar (Van Zwieten et al.r 

2010). Biopores such as earthworm burrows (typically > 1mm in radius) and 

root channels can have a substantial influence on hydraulic conductivity 

(Brady tk Weil, 2008). It is therefore possible that even if the physical effect of 

biochar application is a reduction in the hydraulic conductivity of a soil, the 

influence of biochar application on soil flora and fauna could counteract this 

effect. Furthermore, if biochar application has a beneficial or deleterious 

effect on above-ground biomass growth, groundcover will be affected, 

resulting in changes in interception of rainfall by plants with important 

consequences for development of surface seals and overland flow.
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It must also be noted that prior to rainfall simulation, the soil samples were 

dried and sieved to < 5 mm. The soil aggregates were therefore to some 

extent artefacts of the drying and sieving process, with differences in 

aggregate sizes between soils of differing biochar potentially being less 

pronounced than they might otherwise have been. This could have 

influenced infiltration rates and hydraulic conductivity.

The findings of this investigation suggest that a biochar application rate of 5 

g kg'1 would have little or no effect on the hydrological response of medium- 

textured soils during rainfall. Further work, with greater replication, is 

needed to identify a threshold application level at which biochar is likely to 

start to significantly influence infiltration and runoff. Equally, further work is 

needed to investigate the influence of biochar on coarser and finer textured 

soils. In more sandy soils which do not themselves form aggregates, such as 

that used in Chapters 5 & 6, the effect of biochar application might be very 

different.

7.6 Summary

Biochar application rate had no effect on soil wettability. Although retention 

of rainwater by the soil tended to increase with increasing application rate, 

overland flow was generated more quickly as biochar application rate 

increased. This can be attributed to higher biochar application rates causing a 

reduction in aggregate stability and therefore increasing the speed with 

which formation of surface seals began, reducing infiltration of rainwater
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into the soil. However, lower hydraulic conductivity may also have 

contributed.

Depending on the particle size used, biochar amendments can reduce bulk 

density and increase water retention, but their effect on aggregate stability 

can reduce the amount of water that is able to enter the soil. Biochar 

application may therefore be a less effective means of enhancing water 

conservation its effect on moisture retention alone might suggest. However, 

the effects of biochar on development of vegetation above and below ground 

may moderate or counteract its physical effect on the soil.
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8 EFFECTS OF BIOCHAR CONTENT ON 
SOIL AGGREGATE STABILITY AND  
EROSION UNDER SIMULATED RAINFALL

8.1 Introduction

Aggregate stability and soil strength are key parameters influencing soil 

erodibility. Biochar additions have been shown to influence these 

parameters, but for all soil types the results are conflicting. Liu et al. (2012) 

reported that applying biochar (produced in a traditional charcoal mound 

from conifer sawdust, then sieved to < 2mm) to a silt loam at rate of 4 g kg*1 

had no effect on aggregate stability, but increasing the application rate to 8 

and 16 g kg'1 resulted in significant increases aggregate stability following 11 

months of incubation. However, using a different silt loam, the same biochar 

amendments had no effect on aggregate stability (Liu et al., 2012). Herath et 

al. (2013) reported that applying biochars (produced from com stover at 350 

and 500°C, with 95% of biochar particles being < 2 mm) to a silt loam at rates 

between 10 and 15 g kg-1 resulted in significant increases in aggregate 

stability following 295 days of incubation. Overall then, the literature 

suggests that amending silty soils with biochar at rates up to 16 g kg'1 can 

result either in no change in aggregate stability or an increase. However, the 

effect of higher biochar application rates on the aggregate stability of silty 

soils is unknown.

The literature on the effects of biochar on soil erosion by water is also 

unclear. Rumpel et al. (2006) reported that biochar is preferentially eroded
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from soil. However, data on the effect of biochar on soil erosion are scarce. 

Biochar amendments did not affect erosion of a sandy loam (Smetanova et al., 

2012), but erosion of a clayey soil was reduced with increasing biochar 

content (Jien & Wang, 2013). No published studies have investigated the 

effect of biochar application on erosion of medium-textured soils.

Few data are available on the effect of biochar amendments on soil crusting 

and penetration resistance. Biochar was found to reduce the penetration 

resistance of an add sulphate soil (Masulili et al., 2010). Busscher et al. (2010) 

found that biochar additions reduced the penetration resistance of a sandy 

loam soil (Busscher et al., 2010), but a later experiment found that the same 

biochar increased the penetration resistance of the same sandy loam soil 

(Busscher et al., 2011). To date, no studies have investigated the effect of 

biochar application on the penetration resistance of medium-textured soils 

and none has investigated the penetration resistance of structural crusts.

To address these research gaps, this study uses simulated rainfall to 

investigate the effect of three different biochar application rates on the 

aggregate stability and erosion of a silt loam under simulated rainfall, and 

penetration resistance once the soils were dried following rainfall simulation.

8.2 Methods

The soil and soil-biochar mixtures used in this investigation were the same as 

those described in Chapter 7 - biochar was produced from deciduous wood 

in a ring kiln and sieved to < 2 mm because this was this particle size was
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likely to influence soil moisture retention (see Chapter 6). The biochar was 

then applied to a silt loam at rates of 0,5,25 and 50 g kg-1 (see section 7.2.3). 

Key objectives of this experiment were to investigate the influence of 

different biochar application rates on aggregate stability and soil crusting 

following (see Chapter 8). The sandy loam soil used for the experiments in 

Chapters 5 and 6 did not readily form aggregates, so a silt loam was used 

instead because it readily formed aggregates, was friable and because soils 

dominated by silt fractions are particularly susceptible to sealing and 

subsequent crusting (Gabriels et al., 1998). Using a silt loam thus increased 

the likelihood of differences in soil aggregate stability, sealing and crusting 

being observed with different biochar application rates. The experiments 

described below were conducted after the soils had been incubated for 250 

days at 30% of WHC in a darkened constant temperature room at 21°C. This 

incubation period was chosen to provide as much time as possible for the 

formation of organo-mineral associations in the soil-biochar mixtures (see 

section 7.2.1), within the time limitations of the project.

8.2.1 Particle size distribution

The particle size distribution of each soil or soil-biochar mixture was 

measured using laser diffraction (Malvern Mastersizer 2000, Malvern 

Instruments Ltd„ UK). Forty replicate measurements were made for each 

application rate.
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8.2.2 Aggregate stability

Three subsamples of 100 g were removed from each container (a total of 9 

samples for each biochar application rate), dried at 45°C and sieved to obtain 

the 3.35 - 4 mm fraction for determination of aggregate stability by rainfall 

simulation (Le Bissonnais, 1996a). Around 10 g of each subsample were 

weighed out and evenly spread out on a 500 pm sieve. The sieve was placed 

1.5 m below the droplet box of a rainfall simulator (described in Chapter 7) 

and rainfall was simulated for two minutes. The rainfall intensity was 

measured for 1 minute immediately before and after each 2-minute 

simulation by measuring the water collected in an 800 x 800 mm V-shaped 

tray above the sieve. The sieve and the soil remaining in it were then dried at 

45°C and the soil aggregates retained in the sieve were sieved again to obtain 

the fraction > 3.35 mm. This fraction was weighed to enable calculation of the 

percentage of aggregates that were destroyed.

8.2.3 Electrical conductivity and pH

Electrical conductivity and pH were measured because they can influence 

aggregate stability through their effect on the cohesion of colloids and days 

facilitated by cations. 40 ml of de-ionised water were added to 2.0 g of soil in 

a centrifuge tube, which was then placed on a shaker for 1.5 hours to ensure 

that the biochar partide surfaces and the solution were suffidently 

equilibrated (Rajkovich et al., 2012). The electrical conductivity of the 

resultant solution was then measured using a Hanna HI 9835 conductivity 

meter, and pH was measured using a Camlab pH Boy 501 meter. Five 

replicate measurements were made for each biochar application rate.



188 EFFECTS OF BIOCHAR CONTENT ON SOIL AGGREGATE STABILITY AND

EROSION UNDER SIMULATED RAINFALL

8.2.4 Erosion under simulated rainfall

Splash and slopewash erosion from plots with differing biochar contents 

were measured during the rainfall simulations described in Chapter 7.

8.2.4.1 Splash erosion

A splash cup lined with filter paper (Whatman no. 541,110 mm diameter) 

was positioned on each side of the soil plot (Figure 7.2). The collected 

sediment was oven-dried for 24 hours at 105°C and weighed.

8.2.4.2 Slopew ash erosion

Overland flow was collected for 1 minute every 4 minutes throughout the 60 

minute period of simulated rainfall, giving a total of 15 samples per 

simulation (the timings of overland flow collection differed slightly for Run 2 

on soil with 0 g kg'1 biochar -  see Table A.8.5 in appendices). The collected 

overland flow samples enabled subsequent determination of sediment yield 

and concentration, erosion rates and organic matter (OM) content. After the 

simulation, the collected overland flow was passed through a vacuum filter 

(lined with Whatman no. 541,110 mm diameter filter paper) to obtain the 

sediment The sediment was then oven-dried for 24 hours at 105°C and 

weighed. Total sediment yields were estimated by calculating the mean 

sediment yield of all 15 samples (each assumed to be representative of a 4- 

minute period) and multiplying this by 4.

)
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8.2.4.3 D eterm ination of organic m atter content

Prior to rainfall simulation, 15 x 4 g subsamples were taken from throughout 

each sample. The organic matter contents of these samples and die collected 

eroded sediments were determined through loss-on-ignition (LOI). The 

samples were oven-dried 105*C for 24 hours, cooled in a desiccator and 

weighed before being heated in a muffle furnace at 750°C for 6 hours and 

again cooled in a desiccator for 1 hour. The mineral residue was then 

weighed, allowing the OM content of the sediment to be calculated from the 

differences in weight before and after LOI.

8.2.5 Penetration resistance

To assess crust formation, plots were oven-dried at 30°C for 72 hours 

following rainfall simulation. Grid meshes comprising 23 x 231.21 cm2 

sections were then placed over the plots, and penetration resistance 

measurements were made to a depth of 6 mm using a hand-held 

penetrometer (6 mm foot diameter) in every third grid square on alternate 

rows (Figure 8.1), giving a total of 92 measurements for each plot (Figure 8.1). 

Where the soil in a section to be measured had cracked during drying, or had 

been visibly disturbed by previous penetration resistance measurements 

nearby, a measurement was instead taken from the nearest section with 

undisturbed soil in the adjacent row.
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38

39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54

55 56 57 58 59 60 61

62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77

78 79 80 81 82 83 84

85 86 87 88 89 90 91 92

Figure 8.1: Idealised positioning of penetration resistance measurements on a soil 
plot

8.2.6 Statistical analyses

Kruskal-Wallis tests were used to test for overall differences between 

treatments (Kruskal & Wallis, 1952), and Mann-Whitney tests were used for 

pairwise comparisons (Mann & Whitney, 1947). Where multiple comparisons 

were made, significance values were adjusted using a Bonferroni correction 

(Dunn, 1961). Trends in the data were tested for using Jonckheere-Terpstra 

tests (Jonckheere, 1954). Correlation coefficients were calculated using 

Spearman's rho (Spearman, 1910). For a sample size n, the scores Xs, Ys are 

converted to ranks Xi, yr, and p is given by:

=  i_JU^L
P n (n2 -  1)
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Where dr represents the difference between ranks, xr -  yr. Correlations were 

compared by first converting each coefficient to a z-score as described by 

Fisher (1921), then comparing these z-scores using formula 2.8.5 from Cohen 

&c Cohen (1983, p. 54):

• y r i i - 3  n 2 — 3

Except for correlation comparisons, which were calculated by hand, all 

statistical analyses were carried out using SPSS, though Jonckheere-Terpstra 

tests were partly calculated by hand due to an Error in SPSS (see section 

4.2.6).

8.3 Results

8.3.1 Particle size distribution

Figure 8.2 illustrates the effect of biochar application rate on the particle size 

distribution of the soil. Overall, biochar application rate had a significant 

effect on the percentage of sand-sized particles (0.02 - 2 mm) in the soil (H(3) 

= 77.62, p < 0.001). Using a biochar application rate of 5 g kg:1 did not 

significantly influence the percentage of sand particles in the soil (Table 8.1). 

Applying biochar at a rate of 25 g kg:1 significantly affected the particle size 

distribution, increasing five sand content by 10% compared to soil without 

biochar additions. A biodvar application rate of 50 g kg-1 resulted in a further 

statistically significant increase in the sand content of the soil; the percentage
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of sand sized particles in soil with 50 g kg-1 of biochar was 25% greater than 

that in unamended soil.

The percentage of silt-sized particles (0.002 - 0.02 mm) in the soil was 

significantly influenced by biochar application rate (H(3) = 61.16, p< 0 0.001). 

An application rate of 5 g kg'1 did not affect the silt content relative to the 

unamended soil (Table 8.2). Applying biochar at a rate of 25 g kg'1, however, 

resulted in a statistically significant reduction in silt content, which was 2% 

less abundant than in soils to which biochar was applied at rates of 0 or 5 g 

kg'1. Doubling the application rate to 50 g kg'1 resulted in a further 

statistically significant reduction in the prevalence of silt in the soil by 2%.

Biochar application rate (g kg'1 soil)

Figure 8.2: Particle size distribution of a silt loam with different biochar application 
rates (Error bars represent 95% CIs, n = 40)
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Biochar application rate also had a significant effect on the proportion of 

clay-sized (< 0.002 mm) particles (H(3) = 21.02, p < 0.001). Application rates of 

5 and 25 g kg'1 did not significantly affect the clay content of the soil (Table 

8.3). However, an application rate of 50 g kg'1 resulted in a statistically 

significant reduction in clay content, reducing its prevalence by over 10% 

compared to unamended soil. Furthermore, there was a statistically 

significant trend for the clay content of the soil to decrease with increasing 

biochar application rate (S -  2798, p < 0.001).

Table 8.1: Tests for differences between the sand content of soil under different 
biochar application rates (p is 1-tailed and Bonferroni-adjusted)___________
Biochar application rates 
compared (g kg-1) U

Mann-Whitney
V

0 vs. 5 697.0 0.486
0and5 vs. 25 694.0 <0.001

25 vs. 50 284.0 <0.001

Table 8.2: Tests for differences between the silt content of soil under different biochar
application rates (p is 2-tailed and Bonferroni-adjusted)______________________
Biochar application rates Mann-Whitney
compared (g kg^1) U V

0 vs. 5 770.0 1.000
0 and 5 vs. 25 819.0 <0.001

25 vs. 50 351.0 <0.001

Table 8.3: Tests for differences between the clay content cfsoil under different 
biochar application rates (p is 2-tailed and Bonferroni-adjusted)___________
Biochar application rates Mann-Whitney
compared (g kg'1)_______________________ U___________•__________ p_

0 vs. 5 674.0 0.693
0and5  vs. 25 1410.0 0.876

0,5 and 25 vs. 50 284.0 <0.001
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8.3.2 Aggregate stability

Biochar application rate had a significant effect on the aggregate stability of 

the silt loam (H(3) = 23.58, p < 0.001). An application rate of 5 g kg'1 had no 

effect on aggregate stability (Figure 8.3); as with the control treatment, 30% of 

aggregates were destroyed per millimetre of rainfall. An application rate of 

25 g kg'1 significantly reduced aggregate stability (Table 8.4), with -34% of 

aggregates destroyed per millimetre of rainfall. Doubling the application rate 

to 50 g kg;1 did not result in any further statistically significant reduction in 

aggregate stability (Table 8.4), but there was a significant overall trend for 

aggregate stability to decrease with increasing application rate (S = 334, p < 

0.001).

0 5 25 50

Biochar application rate (g kg'1 soil)

Figure 8.3: Destruction of aggregates under simulated rainfall (Error bars represent 
95% CIs, n = 9)
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Table 8.4: Tests for differences between aggregate stability of soil at different biochar
application rates (p is 1-tailed and a Bonferroni adjustment has been applied)

Biochar application rates Mann-Whitney
compared (g k g 1) U V

0 vs. 5 37.0 1.000
0 and 5 vs. 25 11.0 <0.001

25 vs. 50 19.0 0.18

8.3.3 Electrical conductivity

The ECs of soils containing biochar were higher than that of soil without 

biochar additions, but these differences were not statistically significant (H(3)

= 6.11, p = 0.106).

140

0 5 25 50

Biochar application rate (g kg'1 soil)

Figure 8.4: Electrical conductivity of soils of differing biochar content (Error bars 
represent 95% CIs, n = 5)
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8.3.4 pH

Significant differences were observed between the pH values of soils of 

differing biochar content (H(3) = 16.24, p < 0.001). As Figure 8.5 illustrates, 

biochar application rates of 5 and 25 g kg:1 resulted in small but statistically 

significant changes in the mean pH of the soil, increasing it to 0.11 and 0.18 

respectively (Table 8.5). The differences in pH between soils under biochar 

application rates of 5 and 25 g kg:1 were not statistically significant. However, 

increasing the application rate to 50 g kg-1 resulted in a further small but 

statistically significant increase in mean pH to 8.18 (Table 8.5).

8.5 

8.0

7.5

X
^  7.0

6.5 

6.0
0 5 25 50

Biochar application rate (g kg'1 soil)

Figure 8.5: pH of soils under different biochar application rates (Error bars represent 
95% CIs, n = 5)

Table 8.5: Tests for differences between pH of soils of differing biochar contents (p is
1-tailed and Bonferroni-adjusted)_______________________________________
Biochar application rates Mann-Whitney
compared (g kg-1)__________________U_________________________ p

5 vs. 25 4.5 0.249
5 and 25 vs. 0 2.5 0.006
5 and 25 vs. 50 2.5 0.006
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8.3.5 Splash erosion

Figure 8.6 shows that biochar application rate did not influence the total 

mass of sediment eroded from the plots by splash erosion (H(3) = 1.106, p = 

0.292).

1.50
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1.00

0.75

0.50

0.25

0.00
5 250 50

Biochar application rate (g kg"1 soil)

Figure 8.6: Total collected splash-eroded sediment during simulated rainfall from  
soils under different biochar application rates

8.3.6 Slopewash erosion

As Figure 8.7 illustrates, there was a statistically significant trend for 

slopewash erosion to be generated more quickly as biochar content increased 

(S = 24,p  = 0.042). For plots with biochar contents of 0 and 5 g kg'1, the 

median rainstorm duration before any recorded erosion was 24 minutes, for 

25 g kg'1 plots the median time was 20 minutes, and for 50 g kg:1 plots it was 

16 minutes.
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Figure 8.7: Time to onset of slopewash erosion

As Figure 8.8 demonstrates, biochar application rate did not influence the 

estimated total amount of slopewash erosion from soil plots in absolute 

terms (H(3) = 1.77, p = 0.669). Biochar content did not affect estimated total 

erosion per unit volume of overland flow either (H(3) = 3.31, p = 0.385).
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Figure 8.8: Estimated total slopewash erosion from soils under different biochar 
application rates
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Figure 8.9 illustrates how the strength of the correlation between rainstorm 

duration and the amount of erosion (per minute) was reduced with each 

increase in biochar application rate (Table 8.7). For plots with a biochar 

content of 5 g k g 1, the correlation was similar to that for plots with no added 

biochar (Table 8.8). The correlation for soil plots with biochar contents of 50 

g kg^1 was significantly weaker than the correlation for soil plots without 

biochar (Table 8.8). There were no statistically significant differences in the 

correlations between overland flow volume and erosion for soils of differing 

biochar content.

Table 8.6: Correlations between rainfall duration and erosion

Biochar content of soil (g kg'1) n Spearman's rho V
0 45 0.884 <0.001
5 45 0.827 <0.001

25 45 0.782 <0.001
50 45 0.730 <0.001

Table 8.7: Comparisons of correlations between rainstorm duration (tnins) and 
erosion rate (g m in1) in soils of differing biochar content (p is 1-tailed and
Bonferron i-adjus ted)______________________________________________
Biochar content of soil (g kg'1) z p

0 vs. 5
0 vs. 25
0 vs. 50

0.986
1.573
2.152

1.000
0.174
0.050
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Figure 8.9: Slopewash erosion rates during rainfall simulations for soils with biochar 
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8.3.7 Organic m atter content of eroded sedim ents

There were significant differences between different biochar application rates 

in terms of how the OM contents of splash-eroded sediments differed from 

the OM contents of the plot soils (H(3) = 7.31, p = 0.033). As Figure 8.10 

illustrates, the OM contents of splash-eroded sediments from plots without 

biochar additions were not significantly different from the OM contents of 

the soils in the plots themselves. However, for plots with biochar application 

rates of 5, 25 and 50 g kgr1, the mean OM contents of splash-eroded 

sediments were, respectively, 163,119 and 94% higher than the OM contents 

of the plots themselves (Figure 8.10). These differences were statistically 

significant (in each case, U = 0.00, p = 0.05).
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A s  Figure 8.10 illustrates, for all biochar application rates (including 0 g kgr1), 

the OM contents of slopewash sediments were significantly higher than the
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10: The effect of biochar application rate on the organic matter content of 
eroded sediments
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OM contents of the plots from which they were eroded (in each case, U = 

0.00, p = 0.05). However, there were no statistically significant differences 

between different biochar application rates in terms of how the OM contents 

of slopewash sediments differed from the OM contents of the plots (H(3) = 

4.74, p = 0.209).

8.3.8 Penetration resistance

As Figure 8.11 illustrates, biochar application rate had a significant effect on 

the penetration resistance of soil (H(3) = 398.91, p < 0.001). The penetration 

resistance of soil with a biochar content of 5 g k g 1 did not significantly differ 

from that of the control treatment; both soils had a mean penetration 

resistance of -0.8 kg^1 force cm 2. Applying biochar at a rate of 25 g k g 1 

reduced penetration resistance by one-quarter, to 0.61 kg*1 force cm 2, but 

there was no further reduction in penetration resistance when the biochar 

application rate was increased to 50 g kg'1.

0 5 25 50

Biochar application rate (g kg'1 soil)

Figure 8.11: The effect of biochar application rate on soil penetration resistance 
(Error bars represent 95% CIs, n = 276)
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Table 8.8: Comparisons of penetration resistance between soils of differing biochar 
content (p is 1-tailed and Bonferroni-adjusted)___________________________

Biochar content of soil (g kg'1) U
Mann-Whitney

V
0 vs. 5 34,737.0 0.228
0 vs. 25 11,618.0 <0.001
0 vs. 50 9,314.0 <0.001
5 vs. 25 14,350.0 <0.001
5 vs. 50 12,084.5 <0.001

25 vs. 50 36,330.0 1.000

8.4 Discussion

8.4.1 Aggregate stability

In the present study, 5 g kgr1 of biochar did not significantly affect aggregate 

stability. This corresponds to the finding of Liu et al. (2012) that biochar 

application rates up to 4 g kg'1 did not affect aggregate stability in either of 

the two silt loam soils they studied. The reductions in aggregate stability 

associated with higher biochar application rates (25 and 50 g kg-1) observed 

in the present study are somewhat in contrast with the findings of previous 

studies which reported either no change or significant increases in the 

aggregate stability of silt loam soils with biochar application rates between 8 

and 16 g kg'1 (Liu et al., 2012; Herath et ad., 2013). The application rates used 

in the present study were substantially higher than those used by Liu et al. 

(2012) and Herath et al. (2013). It is possible that aggregate stability is 

unaffected by low biochar application rates, then increases with increasing 

application rate up to a certain point, after which further increases in 

application rate result in decreases in aggregate stability. The findings of the 

present study are not necessarily comparable however with those of Liu et al.



EFFECTS OF BIOCHAR CONTENT ON SOIL AGGREGATE STABILITY AND

EROSION UNDER SIMULATED RAINFALL

(2012) and Herath et al. (2013), who incubated their soil-biochar mixtures in 

open containers for around 11 and 10 months respectively. The soil-biochar 

mixtures in the present study were incubated for a shorter period of time (~8 

months) in lidded containers (which were occasionally aerated), meaning 

that there may have been less oxidation of biochar particle surfaces than in 

the studies conducted by Liu et al. (2012) and Herath et al. (2013). Compared 

to those studies, limited oxygen availability in the present study could have 

diminished the potential for: (i) increases in aggregate stability arising from 

microbially-produced polysaccharides; and (ii) organo-mineral associations 

between biochar and soil particles promoted by the formation of carboxylic 

and phenolic functional groups on biochar surfaces (Glaser et al., 2000; Lin et 

al., 2006). As such, the findings of the present study may only be indicative of 

the effects of biochar on soil hydrology and erosion relatively soon after 

application.

It should however be remembered that the biochar in the present study was 

initially stored for 12 months in a heated greenhouse to enhance oxidation of 

its surfaces. If there was indeed little formation of functional groups on 

biochar particles in the present study, it is likely that the particles which were 

hydrophobic (see section 7.3.1) would have remained so after incubation 

(Cheng et al., 2006). Decreasing the wettability of soil aggregates can enhance 

their stability (Chenu et al, 2000), which suggests that hydrophobic biochar 

particles at the surface of aggregates may promote aggregate stability. 

However, the effect of hydrophobic particles within otherwise wettable soil 

aggregates has not been investigated. It is possible that hydrophobic biochar 

particles within otherwise wettable aggregates contribute to aggregate break­

up by repelling water, causing dispersion of adjacent soil particles.
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Reductions in aggregate stability arising from high biochar application rates 

may be attributable to substantial changes in the soil's particle size 

distribution caused by biochar 'displacing' the original soil, particularly the 

clay fraction, with larger sized particles. Clay particles have an important 

aggregation and bonding effect, but sand is more easily detachable (Le 

Bissonnais, 1996b; Brady & Weil, 2008). Coarser textured soils tend to have 

lower aggregate stability as they have less day and silt to bind larger, sand­

sized partides together (Skidmore & Layton, 1992). In silty soils, aggregate 

stability decreases with decreasing day content (Le Bissonnais, 1988). A 

biochar application rate of 5 g kg-1 did not significantly affect the aggregate 

stability of the soil; this can be attributed to the fact that this application rate 

was too low to make any substantial difference to the partide size 

distribution of the soil. Conversely, at application rates of 25 and 50 g kg’1, 

there were substantial declines in day content and increases in sand content 

which may have caused the substantial reductions in aggregate stability. An 

application rate of 25 g kg'1 increased the sand content of the soil by 10% and 

reduced the aggregate stability by 11%. An application rate of increased the 

sand content of the soil by 25% and reduced the soil's aggregate stability by 

14%.

Further research is needed to determine whether threshold application rates 

exist, above which the influence of biochar amendments (of a certain partide 

size distribution) on the partide size distribution of the soil begins to affect 

aggregate stability significantly (where there is little oxidation of the biochar 

surfaces). For example, it may be the case that finer biochar particle size 

fractions than were used in this study have less effect on aggregate stability, 

or even increase it, if they increase the day content of a soil.

205
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Soil pH increased with increasing biochar application, which would have 

had the effect of increasing CEC through an increase in pH-dependent 

charges (Brady & Weil, 2008), increasing the ability of bivalent cations (such 

as calcium ions) to act as bridges between organic colloids and days 

(Shainberg & Levy, 1996). However, although the effects of increasing 

biochar application on soil pH were statistically significant, they were small. 

It is therefore assumed that any effect of biochar application increasing soil 

pH and therefore aggregate stability was outweighed by its effect on partide 

size distribution. The influence of biochar on soil pH may have greater 

implications for aggregate stability in more addic soils.

Although sodium increases the tendency of aggregates to slake, other soluble 

salts can help prevent dispersion of soil colloids (Goldberg et al.f 1988; Brady 

& Weil, 2008). It is therefore possible that increasing salinity with increasing 

biochar application rate (inferred from increasing electrical conductivity) 

could have moderated to some extent the effect of biochar in altering the 

partide size distribution of the soil, thereby reducing aggregate stability. 

However, although biochar additions increased the electrical conductivity of 

the soil, the increases were not statistically significant. On the other hand,
i

neither the exchangeable sodium percentage nor the sodium adsorption ratio 

were measured, thus the possibility that increasing salinity with increasing 

biochar application rate contributed to reductions in aggregate stability 

cannot categorically be ruled out. However, the Na content of biochar tends 

to be low compared to the combined contents of Ca and Mg (Enders & 

Lehmann, 2012), the ions of which moderate the adverse effects of Na ions 

(Brady & Weil, 2008). Moreover, it should be noted that none of the soil or 

soil-biochar mixtures used in this study was particularly saline (all were far
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below the 4000 |nS cm 1 threshold commonly used to define soils as saline) 

and the differences in salinity between soils of differing biochar content were 

small. It therefore seems unlikely that the influence of biochar application on 

soil salinity had a substantial effect on aggregate stability either way. For 

biochars of higher salt or cation content (Bird et al., 2011, Yuan et al, 2011) 

high application rates could have a more substantial influence on aggregate 

stability. However, as salts and cations are progressively leached from the 

soil, such effects may not be important in the long-term (Lehmann et al,

2011).

Under field conditions, the effect of biochar amendments on aggregate 

stability will be more complex. Biochars may promote aggregation through 

their effect on soil biota such as fungi (see Chapter 4). Earthworms can assist 

aggregate formation through the formation of worm casts and although 

some studies have observed earthworm avoidance of biochar-amended soils, 

others have observed earthworm preference for biochar-amended soils (see 

section 3.7). Root growth has a positive effect on aggregate stability (Reid &

Goss, 1981), so the effect of biochar amendments on plant root development 

will also be important. Furthermore, these experiments were conducted on 

bare soils; where vegetation is present to intercept rainfall and overland flow, 

the effects of biochar application on aggregate stability, overland flow and 

erosion may be different. Moreover, biochar will be incorporated into soil 

aggregates much more slowly if it is not mixed with the soil as it was in the 

present study. If biochar is applied via top-dressing, drilling or deep-banding 

for example, it will exist as horizontal or vertical layers within the soil 

profile, becoming mixed with the surrounding soil only through subsequent 

tillage or bioturbation.
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8.4.2 Water erosion

Applying biochar at a rate of 5 g kg'1 did not affect the rapidity slopewash 

erosion initiation because it did not affect aggregate stability, which meant 

the speed of surface sealing and subsequent onset overland flow were also 

unchanged. As biochar application rates of 25 and 50 g kg'1 did significantly 

reduce aggregate stability, surface sealing occurred more rapidly. This 

resulted in quicker onset of overland flow, meaning that slopewash erosion 

also began more quickly.

Although slopewash erosion began sooner in plots with higher biochar 

content, there was no difference between different biochar application rates 

in terms of the (estimated) total amount of soil eroded over one hour of 

rainfall. These findings resemble those of Smetanova et al. (2012), who found 

that adding biochar of an unspecified particle size at rates of 5 and 10% (by 

volume) to a sandy loam soil had no significant effect of sediment yields 

during rainfall simulation. However, the findings of the present study 

contrast with those of Jien & Wang (2013), who found that applying biochar 

ground to < 2 mm to a silty clay soil at a rate of 25 g kg'1 reduced soil erosion 

rates by around 50%, while an application rate of 50 g kg'1 reduced erosional 

losses by nearly two-thirds. This contrast may be related to the effect of 

biochar application on soil pH. The soil studied by Jien & Wang (2013) was 

acidic, but biochar application had a substantial liming effect, which could 

have enhanced aggregate stability (Shainberg & Levy, 1996; Brady & Weil, 

2008). Conversely, although in the present study biochar application 

increased soil pH, the effect was very small (as the unamended soil already 

had a relatively high pH) and thus unlikely to significantly influence 

aggregate stability, so other factors were more important.
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The relationship between rainstorm duration and erosion rate became 

weaker as biochar content increased, indicating that while short rainfall 

events may result in more erosion in soils with high biochar content (25 or 50 

g kg'1) at the beginning of rainfall events or during short rainfall events, as 

rainfall duration increases, it becomes more likely that the total amount of 

erosion will be similar regardless of the biochar content of the soil. The 

weaker correlation between rainfall duration and slopewash erosion in soils 

with high biochar contents can be attributed to the fact that these soils were 

less responsive to higher volumes of overland flow than soils with low (5 g 

kg'1) or zero biochar content. This may be because lower aggregate stability 

enabled more rapid reorganisation of aggregates into a complete surface seal 

than in soils with low /  no biochar content. Partial seal formation would lead 

to generation of overland flow, which could cause erosion. However, as 

sealing becomes more complete, it can reduce soil erodibility (Romkens et al., 

2001). In near-saturated soils, sealing affords a protective layer of dense 

material, increasing shear strength such that shallow overland flows are 

unable to erode the soil (Bradford et al, 1987; Neave & Rayburg, 2007). 

Moreover, fewer loose particles are available for transport by saltation due to 

raindrop impact dispersing aggregates then compacting the resultant loose 

material (Smith et al, 1990).

A further factor to consider is that at 0.4 m2 scale examined here, few erosion 

processes are active because plots are too small for overland flow to form 

eroding rills (Rumpel et al, 2006). Consequently, slopewash erosion was 

largely limited to transporting sediments already detached by raindrops. No 

significant differences were observed in the amount of sediment eroded by 

splash, making it unlikely that there could be differences in slopewash
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erosion. At field scale however, the effect of biochar on aggregate stability 

(which accelerated the formation of structural seals) could have resulted in 

increased erosion as a result of increased overland flow. Nonetheless, the 

relationships between surface sealing and fluvial erosion are usually more 

complicated than those between sealing and overland flow generation; either 

a positive or negative relationship between seal development and erosion is 

possible (Neave & Rayburg, 2007).

It should be remembered that amounts of splash and slopewash erosion 

were measured by weight rather than by volume. Biochar particles are light 

compared to soil particles of a similar volume. Therefore, even if the weight 

of eroded sediment from plots containing biochar was similar to the weight 

of sediment from plots without biochar, there might have been substantial 

differences in the volume of sediment eroded from plots with differing 

biochar contents.

The present study confirms the finding of Rumpel et al. (2006) that biochar 

itself is preferentially eroded. The OM contents of sediments eroded by 

splashing from biochar amended plots were significantly higher than that of 

the plots themselves, but for soil without biochar additions there was no 

significant difference. The mean OM content of splash-eroded sediment from 

soil plots without biochar was 26% higher than the OM content of the plots 

themselves, but for plots with biochar additions the differences were 3 to 6 

times greater. This can be attributed to preferential erosion of biochar, which 

can be explained by its low specific gravity, meaning less energy is required 

to transport a biochar particle than a typical soil particle of the same size 

(Kookana et al., 2011), and its hydrophobidty.
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Hydrophobic particles are preferentially eroded because a greater proportion 

of them are ejected from the soil surface by splashing than is the case for 

hydrophilic particles, and they also travel further than hydrophilic particles 

once ejected (Ahn et al., 2013). As explained above, overland flow erosion 

would have been largely limited to transporting sediment detached by 

rainsplash, so differences in the OM content of slopewash sediments 

reflected those of splash-eroded sediments. The data suggest however that 

preferential erosion of biochar was less prevalent in slopewash sediment 

than in rainsplash sediment. This is presumably because a substantial 

proportion of the biochar available at the soil surface was removed from the 

soil plot by splashing prior to commencement of overland flow. It can 

therefore be assumed that at the field-scale, preferential erosion of biochar by 

overland flow would not be less important than preferential erosion by 

splashing.

Preferential erosion of biochar could result in there being more erosion from 

soil with higher biochar contents compared to soils with lower biochar 

contents. Such an effect was not observed in this study, but this may be 

because the amounts of sediment eroded were assessed by mass rather than 

by volume. Bkxhar has a low bulk density, so even if a large volume of it 

was eroded, the mass of that volume of biochar sediment would be lower 

than an equivalent volume of soil sediment. In future work investigating 

erosion of biochar-amended soils, erosion rates should be determined by 

both mass and volume.

As the present study was conducted on an unbumed, wettable soil with a 

relatively shallow incline (5°), it demonstrates that preferential erosion of
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biochar is not limited to the distinctive conditions (burned soils on steep 

slopes, containing extremely high biochar contents) investigated by Rumpel 

et al. (2006). The preferential erosion of biochar may have significant 

implications for its potential as a means of greenhouse gas removal. In their 

modelling work to estimate potential of biochar for climate change 

mitigation, Woolf et al. (2010) assumed a maximum biochar application to the 

top 0.15 m of agricultural soils of 501C h a 1. However, if biochar is 

preferentially eroded from agricultural soils, biochar may well be reapplied if 

maintaining a certain biochar concentration is desirable for agronomic 

purposes. Preferential erosion of biochar could therefore stimulate ongoing 

demand for biochar production and thus influence its potential for 

greenhouse gas removal. Although some eroded biochar might accumulate 

in depressions, much of it could be expected to reach waterways and 

potentially be transported to the deep ocean, storing carbon for millennia 

(Masiello & Druffel, 1998).

In the present study biochar was thoroughly mixed with the soil; preferential 

erosion of biochar will to some extent be dependent on the application 

method used. For example, if biochar were to be applied by top-dressing, it 

would probably be even more susceptible to preferential erosion than the 

findings of the present study suggest, particularly if the biochar were to be 

hydrophobic, as it would be completely exposed at the soil surface, with no 

protection from other soil particles. Conversely, if biochar were to be applied 

by deep-banding, it would be well protected from erosive forces by the soil 

above it.
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8.4.3 Penetration resistance

Soils that are susceptible to sealing and subsequent crusting are typically 

dominated by fine sand or silt (Valentin & Bresson, 1992). Biochar 

application rates of 25 and 50 g kg^1 reduced by displacement the proportion 

of silt-sized particles in the soil and increased the proportion of larger, sand­

sized particles in the soil. This may have resulted in an increase in the 

average pore size at the soil surface, reducing penetration resistance (Brady 

& Weil, 2008). Differences in particle size distribution arising from biochar 

application would have affected the extent to which particles bound to each 

other in a single layer in a similar manner to that of aggregate formation. 

Interestingly, the aggregate stability of soil with biochar applied at a rate of 

25 g kĝ 1 was significantly higher than at 50 g kg'1, but there was no 

significant difference between the strength of the crusts developed following 

rainfall. As biochar amendments increased water retention, their effect of 

reducing penetration resistance could be even greater in a field situation. The 

effect of biochar in reducing crust strength could therefore be a significant 

benefit promoting its adoption as a soil conditioner.

However, the mean penetration resistance of the unamended soil was 0.82 

kg-f cm2, less than 10% of that necessary to retard seedling emergence (Cass,

1999), so further research is needed to determine whether biochar can 

effectively reduce penetration resistance when the latter is critically high.

Moreover, due to their lower aggregate stability, the soils with higher 

biochar content in this study were more susceptible to sealing (and 

subsequent crusting) in the first place, even though their crusts were less 

severe. On the other hand, the rainfall intensity used in this study was high, 

and differences in aggregate stability could have been less important had
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rainfall intensity been lower. Nonetheless, the relatively high rainfall 

intensity used in this study would have been countered to some extent by the 

low velocity of drops compared to real rainfall. Although < 1 mm diameter 

water drops will attain 95% of their terminal velocity within a 2 m falling 

distance, for drops > 1 mm the required distance increases rapidly; a 2 mm 

diameter drop requires 5.6 m falling distance to reach terminal velocity (Van 

Boxel, 1997). Drop-size distribution was not determined for this study, but 

Clark & Walsh (2007) used identical drop-formers to generate rainfall 

intensities of 160 and 200 mm h 1 and found that most drops were < 1 mm, 

while drops of 4 - 5 mm diameter were volumetrically more important (it 

should be acknowledged that these drop-size distributions were calculated 

under tropical conditions; drop-size distributions may be different in 

temperate conditions.) The falling distance in this study was 1 -1.5 m it can 

be assumed that many of the droplets would have failed to reach terminal 

velocity before impacting the soil, especially when compared to raindrops in 

a genuine rainfall event. Finally, it should be noted that it is possible that in 

the present study, there was limited oxidation of the biochar surfaces during 

incubation (see section 8.4.1). The effect of biochar on crust formation may be 

different when the biochar is more fully weathered.

8.5 Limitations

The incubation method and period used in this study may have limited 

oxidation of biochar particles compared to the approaches used by Liu et al. 

(2012) and Herath et al. (2013), making direct comparison between studies 

difficult. If oxidation of biochar particle surfaces was limited by the
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incubation method adopted, the findings of the present study might only 

relate to the effects of biochar on soil hydrology and erosion relatively soon 

after application. The most likely explanation for the effect of biochar 

additions on aggregate stability (and therefore, erosion) is that the 

amendments altered the partide-size distribution of the soil. The effects of 

biochar application on aggregate stability observed in this study are 

therefore likely to be specific to some extent to (i) the partide size 

distribution of the biochar used and (ii) the partide size distribution of the 

soil to which the biochar was applied.

Under field conditions, the effect of biochar amendments on aggregate 

stability will be more complex than the interactions observed in this 

laboratory study. Biochars may promote aggregation through their effect on 

soil biota and as root growth has a positive effect on aggregate stability, the 

effect of biochar amendments on plant root development will also be 

important. These experiments were conducted on bare soils but where 

vegetation is present to intercept rainfall and overland flow, the effects of 

biochar application on aggregate stability, overland flow and erosion may be 

different. Moreover, it should be noted that biochar will be incorporated into 

soil aggregates much more slowly if it is not mixed with the soil as it was in 

the present study. If biochar is applied via top-dressing, drilling or deep- 

banding for example, it will be present as horizontal or vertical layers within 

the soil profile, becoming mixed with the surrounding soil only through 

subsequent tillage or bioturbation.

Although biochar additions significantly decreased penetration resistance, 

the penetration resistance of unamended soil was not high enough to limit
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seedling emergence anyway. Further research is needed to determine 

whether biochar additions could effectively reduce penetration resistance in 

soils where penetration resistance is sufficiently high to limit seedling 

emergence.

It should be noted that at the 0.4 m2 scale examined in this study, few erosion 

processes are active because plots are too small for overland flow to form 

eroding rills. Runoff was thus limited to transporting soil detached by 

splashing. At larger scales, where sediment is also eroded by runoff, 

preferential erosion of biochar and differences in erosion rates between soils 

of differing biochar content may be greater.

The rainfall intensity used in this study was high; differences in aggregate 

stability could have been less important had rainfall intensity been lower. 

Nonetheless, the relatively high rainfall intensity used in this study would 

have been countered to some extent by the fact that many raindrops would 

not have reached terminal velocity before striking the soil.

The results of these experiments largely relate to the physical effects that 

biochar application has on the hydrological response of bare, loose soil under 

rainfall. Biochar amendments can result in significantly increased root 

development and influence earthworm activity. It is therefore possible that 

even if the physical effect of biochar application is a reduction in the 

hydraulic conductivity of a soil, the influence of biochar application c«\ soil 

flora and fauna could counteract this effect. Furthermore, if biochar 

application has a beneficial or deleterious effect on above-ground biomass 

growth, groundcover will be affected, resulting in changes in interception of



EFFECTS OF BIOCHAR CONTENT ON SOIL AGGREGATE STABILITY 217

AND EROSION UNDER SIMULATED RAINFALL

rainfall by plants with important consequences for development of surface 

seals and overland flow.

The soil samples in the present study were dried and sieved to < 5 mm prior 

to being subjected to rainfall simulation. The soil aggregates were therefore 

to some extent artefacts of the drying and sieving process, with differences in 

aggregate sizes between soils of differing biochar potentially being less 

pronounced than they might otherwise have been; this could have influenced 

infiltration rates and hydraulic conductivity, with subsequent effects on 

runoff and, therefore, erosion.

The findings of this investigation suggest that a biochar application rate of 5 

g kg'1 would have little or no effect on the erosional response of medium- 

textured soils during rainfall. Further work, with greater replication, is 

needed to identify a threshold application level at which biochar is likely to 

start to significantly influence infiltration and runoff.

8.6 Summary

Applying biochar at a rate of 5 g k g 1 did not affect aggregate stability of the 

silt loam examined here, confirming the finding of Liu et al. (2012) that a low 

application rate (4 g kg-1) of biochar of a particle size < 2 mm did not 

significantly affect the aggregate stability of medium-textured soils.

However, application rates of 25 and 50 g kg'1 resulted in significant 

reductions in aggregate stability. Soil pH and electrical conductivity 

increased with increasing biochar application rate. These effects could have
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promoted increased aggregate stability through their influence on cohesion 

of colloids and days, but the increases were too small to have any material 

* effect. It seems likely that the diminished aggregate stability observed with 

high rates of biochar application (25 and 50 g kg*1) can be attributed to the 

effects of those application rates on the partide size distribution of the soil, 

combined with insuffirient oxidation of biochar partide surfaces to enable 

extensive formation of organo-mineral associations which could have 

increased aggregate stability.

Biochars produced at other temperatures or from alternative feedstocks may 

be more likely to increase aggregate stability owing to their higher salt or 

cation content and their effect on soil biota. The liming effect of biochar is 

likely to have greater implications for aggregate stability in more addic soils. 

It is possible that if biochar is ground to particle size typical of day (i.e. <

0.0002 mm), it will improve aggregate stability when applied to soil by virtue 

of increasing the day content. Of course, all of the above would also have 

implications for erosion.

Slopewash erosion commenced earlier in the silt loam soil with high biochar 

contents, but no differences were found between treatments in terms of the 

total amount of sediment eroded over an hour of rainfall. This can be 

explained by sealing occurring more rapidly in soils with higher biochar 

content (see Chapter 7), protecting the soil surface from erosion by overland 

flow by increasing its cohesion. Biochar particles were preferentially eroded 

from the soil at all application rates because of their hydrophobidty and low 

partide density, which meant they were ejected over greater distances by 

splashing.
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Due to differences in partide size distribution, the crusts of soils with high 

biochar content were significantly weaker than those of soils with 0 or 5 g kg 

of biochar. However, assuming suffident rainfall intensity and / or duration, 

soils with higher biochar contents are likely to form crusts more often than 

soils with low or zero added biochar of a partide size < 2mm.
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9.1 Conclusions

Greenhouse gas removal may become necessary to ensure that global 

warming does not exceed 2°C. Some of the technologies for greenhouse gas 

removal proposed to date can only temporarily sequester carbon, others have 

adverse ecological impacts, some are prohibitively expensive and / or 

energy-intensive and others are still in the process of being developed, so it is 

likely that a suite of these methods will be needed. Biochar does share some 

of the challenges faced by other greenhouse gas removal methods, but it 

avoids many of them. Biochar production can potentially sequester carbon 

for several millennia and can be a self-sustaining or energy-generating 

process providing a range of saleable services and commodities contributing 

to its economic viability.

The review of the literature carried out here revealed that biochar can deliver 

numerous benefits as a soil amendment. It can increase soil nutrient fertility 

by improving CEC, limiting leaching of nutrients and, to some extent, by 

directly introducing nutrients to the soil. Biochars may provide substrates 

and secure habitats for soil microbiota, though observations of earthworm 

preference for, or avoidance of, biochar amended soils have been mixed. In 

certain soils biochar amendments will improve soil WHC and aggregate 

stability.
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However, the literature review also identified severed research gaps, 

particularly with regards to the effects of biochar application on soil 

hydrology and erosion. The overarching objectives of this study were to 

address some of the research gaps by investigating how the preparation of 

biochar amendments (i.e. use of different pyrolysis temperatures, feedstocks 

and particle sizes) can influence their effect on soil hydrology and related 

properties, and how different biochar application rates influence soil 

hydrology and degradation during rainfall. These objectives were achieved 

by addressing three main strands of enquiry:

i. How do feedstock type and H IT  influence biochar hydrophobidty, 

CEC and yield?

ii. In what ways do the H IT and particle size of biochar amendments 

influence their effects on the hydrological properties of a sandy loam 

soil?

iii. How do different biochar application rates influence the hydrological 

and erosional response of a silty loam soil during simulated rainfall, 

and crust formation after drying?

The experiments conducted to answer these questions led to the conclusions 

listed below, where an effect is described as significant if p < 0.05.

Biochar hydrophobidty

I. Feedstock partide size significantly affected the hydrophobidty of 

fresh biochar. Biochar produced from 10 - 20 mm feedstock partides 

was less hydrophobic than biochar produced from 2 - 5 or 5 -10 mm 

feedstock particles. However, these differences were very small and it 

seems unlikely that they would substantially influence the 

hydrological properties of the biochars as soil amendments.
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II. Time since production did not influence the hydrophobidty of biochar 

stored for 21 days.

III. Pyrolysis temperature significantly affected biochar hydrophobidty; 

biochar partides became increasingly wettable (i.e. less hydrophobic) 

with increasing HIT (from 350°C to 800°C).

IV. Feedstock type significantly influenced biochar hydrophobidty. Salix 

feedstock produced the least wettable (i.e. most hydrophobic) biochar, 

while Picea feedstock tended to produce biochar that was slightly
*r

more wettable than that produced from Miscanthus feedstock.

V. Biochar hydrophobidty cannot be solely attributed to surface 

chemistry; the surface topography of biochar partides also has an 

influence.

Biochar yield

VI. Biochar mass yields decreased with increasing HIT. For all three 

feedstocks examined here (Salix, Picea and Miscanthus), the largest 

reductions in median yield occurred between HTTs of 350 and 500°C. 

Further reductions in median yield with increasing temperature were 

smaller.

VII. Picea feedstock tended to produce the largest yields, while yields from 

Salix and Miscanthus feedstock were similar.

Biochar CEC

VIII. Biochar CEC varied by feedstock for a given HTT. The CEC of biochar 

produced from Picea feedstock tended to be less than half of that of
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biochars produced from Salix and Miscanthus feedstocks, which were 

similar to each other.

IX. Salix and Miscanthus biochar CECs more than doubled between HTTs 

of 350 and 500°C, but further increases in HTT had no significant 

effect.

X. Differences between the CECs of biochars produced from different 

feedstocks and / or at different HTTs were negligible compared to the 

CECs of aged biochars reported in the literature, which may be orders 

of magnitude greater.

The effects of pyrolysis temperature on biochar soil amendments

XI. Biochars significantly reduced the bulk density of the soil tested. 

However, this effect was greater with biochars produced at 600 and 

700°C than those produced at 400 and 500°C.

XII. Only biochar produced at 500*C significantly increased soil WHC, but 

all biochars significantly augmented matric suction (at a water content 

of 0.17 cm3 cm-3). The overall trend was for increases in soil moisture 

retention as biochar HTT was increased from 400 to 500°C, but 

decreases with subsequent increases in HTT. These effects may arise 

from an increase in biochar porosity at HTTs up to 500°C and 

widening of soil or biochar pores, or reduction in pore 

interconnectivity with further increases in biochar HTT.

XIII. The effect of 400°C, 600°C and 700°C biochars increasing matric 

suction was counteracted by a reduction of osmotic suction, which can 

be attributed to these biochars displacing native soil, reducing solute 

concentrations. This indicates that biochars may be able to increase
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WHC without increasing total suction. However, 500°C biochar did 

increase total suction, presumably because it significantly enhanced 

osmotic suction (presumably by introducing condensed volatiles to 

the soil solution) as well as matric suction. 500°C biochar could, 

therefore, increase plant moisture stress, particularly for seedlings.

XIV. After 14 days of incubation, prolific fungal growth was observed in 

soils amended with 500°C biochar, but not in soils amended with 

biochars produced at other HTTs. This can be attributed to pyrolysis 

condensates on the surface of the 500GC biochar which provided a 

carbon and energy substrate.

The effects of biochar soil amendment particle size

XV. Biochars of all particle sizes (< 0.2,0.4 -1 ,2  - 3 and 4 -5  mm) 

significantly diminished the soil's bulk density. However, biochars of 

a smaller particle size reduced bulk density more effectively than 

those of a larger diameter; <0.2 mm biochar reduced bulk density by 

-8%, whereas 4 -5  mm biochar reduced bulk density by only 4%.

XVI. Only biochars with a particle size of 0.4-1 mm significantly augmented 

the soil's WHC. Water drained from the soil more quickly that it was 

able to permeate larger biochar particles.

XVII. All biochar amendments resulted in significantly increased matric
i

suction (at a water content of 0.17 cm3 cm-3), indicating that when wet 

conditions persist, moisture uptake by larger biochar particles may 

match that of smaller particles.

XVIII. Biochars of particle sizes < 1 mm increased both matric and osmotic 

suction and therefore significantly increased fotal suction. However,
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biochars of particle sizes between 2 and 5 mm did not significantly 

affect total suction because their effect of increasing matric suction 

was countered by a reduction of osmotic suction. These contrasts 

between biochars of differing particle size probably relate to 

differences in the extent to which pyrolysis condensates held in 

biochar pores were released by grinding.

The effect of biochar application rate on the hydrology and erosional 

response of a silt loam under simulated rainfall

XIX. Pyrolysing mixed deciduous wood in a traditional kiln produced 

biochar with highly heterogeneous wetting characteristics.

XX. Despite this biochar being partially hydrophobic, applying at rates up 

to 50 g k g 1 had no effect on soil wettability

XXI. An application rate of 5 g k g 1 did not affect the soil's bulk density. 

However, an application rate of 25 g k g 1 significantly reduced bulk 

density, with an additional reduction when this rate was doubled.

XXII. Soil water retention tended to increase with increasing biochar 

application rate.

XXIII. A biochar application rate of 5 g k g 1 did not affect the aggregate 

stability of the soil. However, applying biochar at rates of 25 and 50 g 

kg-1 resulted in significant reductions in aggregate stability and there 

was an overall trend for aggregate stability to decrease with increasing 

biochar application rate. This may be attributed to biochar 

amendments altering the soil's particle size distribution, with 

insufficient oxidation of biochar particles to enable organo-mineral 

associations between the biochar and soil particles.
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XXIV. Overland flow was generated more quickly as the biochar application 

rate increased beyond 5 g k g 1. This can be attributed to more rapid 

onset of surface sealing arising from biochar applications, which 

caused reductions in aggregate stability. Reductions in hydraulic 

conductivity may also have contributed.

XXV. As a result, slopewash erosion commenced earlier in soils with high 

biochar contents (25 and 50 g k g 1). However, there were no 

statistically significant differences between treatments in terms of total 

amount (weight) of sediment eroded during rainfall simulation.

XXVI; Biochar particles were preferentially eroded from the soil at all

application rates because of their low particle density and in many 

instances, their hydrophobidty, which meant they were ejected over 

greater distances by splashing.

XXVII. Penetration resistance testing demonstrated that the crusts formed 

following rainfall simulation were ~25% stronger on plots with 

biochar contents of 0 or 5 g kg*1 than on plots with 25 or 50 g k g 1 of 

biochar.

9.2 Limitations

The apparent effect of biochar hydrophobidty being lower when larger 

feedstock particles are used may in practice be eliminated by grinding of 

biochar following production. The finding that biochar hydrophobidty is not 

affected by time since production may not apply to all biochar production 

systems. Where no purge gas is used, a greater proportion of evaporated 

volatiles will condense on biochar surfaces. This could potentially result in (i) 

freshly produced biochar being more hydrophobic than when produced
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using purge gas and (ii) a reduction in biochar surface hydrophobidty over 

time since production resulting from the absorption of condensed volatiles. 

This study provides only a theoretical explanation of the potentiaHor 

differences in biochar surface topography to contribute to differences in 

hydrophobidty. Quantitative analyses of differences in biochar surface 

topography related to pyrolysis temperature and feedstock are needed to 

enable experimental demonstration of the relationship between biochar 

surface roughness and biochar hydrophobidty. The hydrophobidty and CEC 

data presented in this study provide an understanding of the properties of 

fresh biochar, but are of limited value in determining the likely long-term 

effects of biochars on soil properties. Biochar surfaces are progressively 

oxidised in the soil environment, so the formation of functional groups is 

likely to render them progressively less hydrophobic, while increasing their 

CEC (Cheng et al, 2008). Biochar CEC may also be influenced by progressive 

leaching of ash. Changes in biochar properties following application to the 

soil may thus be more important than the initial surface properties arising 

from the production technique used.

Differences between the effects of biochars of different partide size or 

produced at different pyrolysis temperatures observed in the present study 

might not be evident if lower, currently more commerdally realistic 

application rates are used. Moreover, differences between biochars may be 

less important in soils where biochar application has little or no effect on 

moisture retention. Furthermore, differences between the effects of biochars 

produced at different pyrolysis temperatures may be different where 

different biochar particle size fractions are used; differences in moisture 

retention arising from differences in biochar pore connectivity could be
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augmented where larger biochar partides are used, or reduced where 

smaller particles are used. The findings of the present study suggest that 

biochar partides > 2 mm are not as effective in increasing soil WHC as those 

of a diameter < 1 mm. The larger partides may have had more of an 

influence on soil WHC had saturation conditions persisted for a longer 

period. Biochar hydrophobidty was not measured, so it is not dear whether 

or not biochar surface hydrophobidty contributed to the different effects that 

biochars of differing partide size had on soil water-holding capadty. If 

hydrophobidty was indeed an influencing factor, then partide size could 

have less influence on the effect of biochar additions on soil WHC when 

biochar is produced at higher temperatures and is therefore wettable.

Biochar produced at 500#C increased osmotic suction, whereas those 

produced at other temperatures did not. Differences in suction observed 

between biochars of different partide size produced at 500*C are not 

necessarily representative of the differences that would be observed for 

biochars produced at other temperatures. A dear limitation of the present 

study is that while the differences in matric suction between soils containing 

biochars of different partide size or produced at different temperatures are 

informative, the measurements themselves cannot be considered valid as 

absolute values. It must again be acknowledged that the differences in matric 

and total suction observed in this study are representative of only one 

particular soil moisture content.

All of the experiments presented in this thesis used soils that were bare, dry, 

sieved and repacked. The structures, pore architectures, aggregates and 

inter-aggregate pore size distributions of the soils were therefore to some
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extent artefacts of the drying, sieving, mixing and repacking process, and do 

not necessarily resemble the properties of soils amended with biochar in-situ, 

where the direct effects of biochar on water infiltration, conduction and 

retention will be complicated by indirect effects through the influence of 

biochar on soil aggregation, aggregate size and aggregate stability. 

Furthermore, in field situations, the effect of biochar on soil properties will 

be complicated by its effects on above- and below-ground biota. It should 

also again be acknowledged that the biochar application rates used in this 

study were very high and not currently commercially realistic for broadacre 

agriculture. Differences between the effects of biochars produced at different 

pyrolysis temperatures observed in the present study may not be observed 

when lower application rates are used. Moreover, differences between 

biochars may be less important in soils where biochar application has little or 

no effect on moisture retention

Again, it must be remembered that for all the experiments presented in this 

thesis, biochar was applied to the soil by mixing to mimic biochar being 

ploughed in. Differences observed between different biochars or different 

application rates might have been more or less pronounced had a different 

application method been used. The present study concludes that biochar 

hydrophobidty does not influence its effect on WHC, possibly because 

saturation of the soil surrounding biochar causes reorientation of 

amphiphilic molecules on biochar surfaces, rendering them wettable. 

Conversely, where application methods result in layering of biochar within 

the soil profile, such an effect might only occur at the biochar layer margins. 

As with previous studies which mixed hydrophobic biochar with soil, the 

present study found that biochar did not influence soil wettability.
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Hydrophobic biochars might have a greater influence on soil wettability 

however if they are applied by top-dressing rather than mixing. Biochar 

would probably be more susceptible to preferential erosion if applied by top- 

dressing, and less susceptible if applied by deep-banding, than the results of 

the present study suggest. Equally, if biochar were applied by drilling, top- 

dressing or deep-banding, it would be so readily incorporated into soil 

aggregates and would thus have less influence on soil aggregation and 

aggregate stability than the results of the present study suggest.

The results of the experiments presented in Chapters 7 & 8 are not 

necessarily representative of how biochar could influence soil hydrology 

during natural rainstorm events. Due to the relatively low height of the 

rainfall simulator used in this study, many droplets would not have reached 

terminal velocity before striking the soil. The findings of this investigation 

suggest that a biochar application rate of 5 g kg-1 would have little or no 

effect on the hydrological response of medium-textured soils during rainfall, 

but further work is needed to identify a threshold application level at which 

biochar is likely to start to significantly influence infiltration and runoff.

9.3 Final Discussion

HTT has numerous implications both for the properties of biochar itself and 

for its subsequent influence on soil properties. Biochar surface 

hydrophobicity was observed to decrease with increasing HTT, confirming 

the findings of Kinney et al. (2012). However, while Kinney et d. (2012) 

attributed biochar surface hydrophobicity solely to the presence of alkyl
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functionalities, the present study has shown that rough biochar surface 

topography also contributes to hydrophobicity. Furthermore, the present 

study has demonstrated that, contrary to the conclusions of Kinney et al. 

(2012), biochar hydrophobicity does continue to reduce with increases in 

HTT beyond 500°C. The present study found that a partially hydrophobic 

biochar had no effect on soil wettability at application rates up to 50 g kg'1, 

confirming the findings of Kinney et al. (2012), Smetanova et al. (2012) and 

Abel et al. (2013) that hydrophobic biochars do not significantly affect soil 

wettability even at high application rates. Gray et al. (2014) concluded that 

the hydrophobicity of biochar is more important than its porosity in 

determining its water uptake. Contrastingly, the findings of the present 

study suggest that for soil WHC, the effect of increasing HTT on biochar and 

/ or soil porosities has greater significance than its effect on hydrophobicity.

All this is not to say that biochar surface hydrophobicity is not important. 

Indeed, biochar hydrophobicity is likely to play a significant role in 

determining the extent to which biochar is preferentially eroded from the 

soil, particularly during the first year after application. Furthermore, HTT 

can influence the extent to which biochars provide fungal substrates. As 

fungal growth can affect biochar and soil wettability, the effects of HTT on 

biochar and / or soil wettability may be both direct and indirect. Indeed, the 

persistent hydrophobicity of 8 year old biochar in soil reported by Briggs et 

al. (2005) might have been due to the presence of fungal hyphae colonizing 

the biochar rather than being related to the surface chemistry and / or 

topography of the biochar itself.
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The HTT used to produce a biochar can have various implications for soil 

nutrient dynamics. Biochars produced from Salix, Miscanthus and Picea 

feedstocks at HTTs of 500 - 800°C were observed to have higher CECs than 

biochars produced at 350°C. Biochar produced from softwood pellets at 

500°C was associated with prolific fungal growth when applied to soil, but 

those produced at 400,600 and 700°C had no visually discemable effect, 

indicating that 500°C biochar introduced more nutrients to the soil than the 

other biochars did. As mycorrhizal fungi can influence plant nutrient 

availability, so the effect of biochar application of fungal activity may have 

important indirect effects on soil nutrient dynamics.

The present study has demonstrated that HIT can significantly affect the 

influence of biochar soil suction. The higher solute concentrations in soils 

containing 500°C biochar led to much higher total suction, which would 

increase the energy-cost of water uptake by plants. Conversely, although 

biochars produced at 400,600 and 700°C all increased matric suction, they 

reduced osmotic suction and therefore did not augment total suction. The 

HTT used to produce biochar may therefore have implications for the energy 

cost of water-uptake by plants. Although differences between the CECs of 

biochars produced using different HTTs are initially small, differences may 

increase if biochar surfaces weather at different rates over time, resulting in 

differences in surface charge, which could result in greater differences in 

WHC than those observed in the present study.

In summary, it is dear that HTT has several important impacts on the 

influence of biochar on soil properties. However, it should be remembered 

that even if certain biochar properties assodated with different HTTs are
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considered desirable, biochar production costs may rise with increasing HTT 

because energy costs are likely to be higher, and biochar yields will be lower.

Of course, under some production scenarios, precise control of HTT and 

resultant biochar properties will not be possible anyway, as demonstrated by 

the extreme heterogeneity in wettability of biochar produced from mixed 

deciduous wood in a traditional kiln. Also, the effect of HTT on biochar 

properties varies with feedstock type.

The particle size of feedstock materials and biochars affects both the 

properties of biochars and their influence on soil properties. Smaller Salix 

feedstock particles (2 -10 mm) produced biochars that were slightly more 

hydrophobic than those produced from larger Salix particles (> 10 mm).

However, it is unlikely that these small differences would have a significant 

influence on soil hydrology, especially compared to the direct effect of 

biochar particle size itself. The findings of the present study indicate that 

biochar porosity is more important than hydrophobicity in influencing the 

effects of biochar amendments on soil hydrology, but biochar particle size 

does significantly affect soil properties, because larger particles have less 

effect on bulk density and water takes longer to permeate larger particles.

The findings of the present study correspond to those of Zheng et al. (2010) 

who found that larger biochar particle sizes increased pesticide sorption 

equilibrium times by several days because of the greater length of time 

necessary for pesticides to reach their innermost regions. Differences in 

osmotic suction arising from use of different biochar particle sizes may be 

specific to the pyrolysis system and / or the feedstock used in the present 

study. For example, in a furnace continuously purged with N 2, there may be 

less blocking of biochar pores by pyrolysis condensates as volatiles are
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transported out of the furnace by the purge gas rather than condensing on 

biochar surfaces.

Overall, the present study has demonstrated that, contrary to the conclusions 

of Lehmann et al. (2003) and Joseph et al. (2009), particle size can significantly 

influence the effects of biochar applications on soil properties.

Larger biochar particles are less likely to be preferentially eroded than 

smaller particles. Smaller particles are lighter and thus more susceptible to 

transport by splashing, while the distance travelled by a particle in 

suspension is dependent on its settling velocity in water; the lower the 

density and size of a particle, the slower it settles out of suspension and the 

further it travels. Assuming no grinding of biochar particles following 

pyrolysis, differences in biochar hydrophobicity arising from differences in 

feedstock particle size could augment these differences between the 

preferential erosion of large and small biochar particles. Conversely, it is 

possible that these factors may be counteracted by the large specific surface 

area of smaller biochar particles causing them to be more cohesive than 

larger particles.

The influence that the particle size distribution of biochar amendments has 

on soil texture can important implications for aggregate stability and 

consequently, the hydrological and erosional response of soils under rainfall. 

The present study confirms the finding of Liu et al. (2012) that biochar 

applications rates < 5 g kg'1 do not significantly affect the aggregate stability 

of silt-loam soils. However, the findings of the present study contrast with 

those of previous studies which reported either no effect (Liu et al., 2012) or
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increased aggregate stability (Liu et al, 2012; Herath et al, 2013) when higher 

biochar application rates (8 -15 g kg'1) were used to amend medium-textured 

soils. In the present study, applying biochar ground to < 2 mm at rates of 25 

and 50 g kg'1 to a silt loam inevitably gave the soil a more sandy texture, 

reducing its aggregate stability.

Taken in conjunction with the findings of Liu et al and Herath et al., the 

reductions in aggregate stability observed in the present study with biochar 

applications of 25 and 50 g kg'1 may indicate that biochar application only 

increases aggregate stability up to a certain point, after which further 

increases in application rate have a deleterious effect on aggregate stability. 

Conversely, it is also possible that the reductions in aggregate stability at 

higher biochar application rates observed in the present study relate to low 

oxidation of biochar particle surfaces, in which case the findings of the 

present study might therefore be indicative only of the effects of biochar on 

soil hydrology and erosion relatively soon after application. It should, 

however, be noted that the HTT at which biochar is produced can 

significantly influence both its CEC and its utility as a fungal substrate. CEC 

can influence aggregate stability through their effect on the cohesion of 

colloids and clays facilitated by cations. Fungal hyphae can bind soil particles 

together, increasing aggregate stability. The influence of biochar 

amendments on aggregate stability may therefore vary according to their 

HTT.

Although the effects of biochar application on erosion observed in the 

present study resemble those of Smetanova et al (2012), they contrast with 

those of Jien & Wang (2013), who found that biochar application reduced
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erosion in an addic silt day loam. This contrast may be related to the fact that 

biochar application substantially increased pH (which would have 

contributed to increased aggregate stability) in the study conducted by Jien & 

Wang (2013), but only had a small effect on the pH of the more alkaline soil 

used in the present study, in which high biochar application rates reduced 

aggregate stability.

The effect of biochar amendments on aggregate stability will have a 

substantial effect on their influence on both soil hydrology and erosion. Soil 

water retention increased with increasing biochar application rate, but there 

are indications that reductions in aggregate stability arising from high 

biochar application rates can reduce the amount of rainwater that infiltrates 

the soil in the first place, by causing surface sealing which results in overland 

flow being generated sooner (assuming suffident rainfall intensity and 

duration). However, although soils containing high biochar contents sealed 

more quickly than those with low or zero biochar, the crusts that were 

formed by drying of those seals were significantly weaker in soils with high 

biochar contents. Although overland flow was generated more quickly on 

soils with high biochar contents, there was no more erosion from these soils 

than from those with low or zero biochar. However, the present study 

confirms the finding of Rumpel et al (2006) that biochar itself is preferentially 

eroded and demonstrates that preferential erosion of biochar can also occur 

on shallower slopes.

The preferential erosion of biochar may have significant implications for its 

potential as a means of greenhouse gas removal. If biochar is preferentially 

eroded from agricultural soils, biochar may well be reapplied if maintaining
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a certain biochar concentration is agronomically desirable and economically 

viable. Preferential erosion of biochar could therefore stimulate ongoing 

demand for biochar production, resulting in it having a greater potential for 

greenhouse gas removal than was estimated by Woolf et al. (2010).

9.4 Implications and suggestions for future research

Biochar hydrophobicity is influenced both by feedstock type and HTT. 

Previous research has demonstrated that hydrophobic particles are 

preferentially eroded compared to wettable particles (Ahn et al., 2013). The 

biochar used in the rainfall simulation experiments, comprising both 

wettable and hydrophobic particles, was preferentially eroded from the soil. 

Additional research is needed to determine the extent to which preferential 

erosion of biochar can be reduced by producing it from certain feedstocks 

and / or at certain HTTs, to ensure it is wettable. Using higher HTTs to 

eliminate biochar hydrophobicity could result in a higher unit cost of 

biochar, because biochar yields would be lower and energy costs could be 

higher. However, if biochar produced at higher HTTs is eroded less quickly, 

it will not need to be reapplied as frequently as biochar produced at lower 

HTTs. On the other hand, hydrophilic biochar is likely to break down into 

smaller particles more quickly than hydrophobic biochar. As discussed 

above, smaller particles are more easily eroded than larger particles. Future 

research could investigate the costs associated with maintaining a certain 

biochar content in the soil, depending on whether it was produced using a 

higher or lower HTT. Furthermore, increased hydrophilidty of biochar is not 

necessarily a positive outcome. It could augment the biological, physical and
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chemical weathering of biochar such as particle size reduction and 

dissolution (Cheng et al., 2006). There also appears to be a trade-off between 

maintaining the ability of biochar to sorb hydrophobic molecules such as 

organic contaminants and reducing the hydrophobicity of biochar (Major et 

al., 2009; Verheijen et al., 2010). Research is needed to determine in which 

contexts it is preferable for biochar to be an initially hydrophobic or 

hydrophilic material.

The HTT at which biochar amendments were produced had a significant 

effect on the extent to which they influenced the physical and hydrological 

properties of a sandy loam. However, it should be remembered that the 

application rates used in these experiments were high (50 g kgr1). Further 

research is necessary to understand how important these differences would 

be if lower, more commercially realistic biochar application rates and / or 

soils were used. Indeed, an application rate of 5 g kgr1 seemed to have little 

effect on the hydrological response of a silt loam under simulated rainfall. 

Differences between biochar types may thus be less important at lower 

application rates. On the other hand, certain biochars may significantly 

influence soil hydrology even at very low application rates, while others may 

require higher application rates to have an impact. Research could also be 

conducted to investigate how differences between the hydrological 

properties of soils amended with biochars produced under different 

pyrolysis conditions vary over time. For example, biochar surface charges 

will increase over time, contributing to increased soil WHC, while ash and 

pyrolysis condensates will be progressively leached from biochar pores, 

resulting in increased available porosity.
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Biochar produced at 500°C from softwood pellets was found to have a 

positive effect on fungal growth, which was observed to aid aggregation, 

binding biochar together with other soil particles. Future research could 

investigate how biochars which affect fungal growth influence aggregate 

stability and the hydrological and erosional response of soils under rainfall.

If biochar application leads to increased fungal activity promoting 

aggregation and aggregate stability, their use could result in reduced soil 

erosion. Binding of biochar within and to soil aggregates by fungi could also 

reduce the extent to which it is preferentially eroded. On the other hand, 

certain fungi can be associated with enhanced soil water repellency (Doerr et 

al, 2000). Biochar application could thus indirectly lead to increased soil 

water repellency (resulting in increased overland flow and erosion) if it 

sufficiently affects fungal activity. The effect of HTT on biochar CEC may 

also have important implications for soil aggregation; biochars which have or 

develop high concentrations of negative surfaces charge are likely to promote 

soil aggregation more effectively than those with lower concentrations.

Additional research is necessary to determine whether the differences in 

suction observed between biochars produced at different HTTs and biochars 

of differing particle size would apply across the whole moisture release 

curve. Also, it is not clear whether the differences between the effects of 

biochars produced using different HTTs would be the same if a different 

particle size (< or > 0.4 - 1mm) was used. Equally, it is not known if the 

different effects of biochars of differing particle size observed in this 

investigation would apply to biochars produced using different HTTs. 

Furthermore, the periods of time over which these differences would persist 

remain undear. For example, if differences in osmotic suction between soils
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containing biochars of differing particle size were indeed related to the extent 

to which pyrolysis condensates were either retained in the pores of larger 

particles or were instead available to the soil solution in the case of smaller 

particles, these differences would not apply to biochars produced at higher 

HTTs (which contain less condensates). Moreover, the influence of pyrolysis 

condensates may in any case be short-lived if they are quickly leached from 

the soil. If biochars produced at higher HTTs had less pore interconnectivity 

(due to intermediate melts), it might be expected that the differences between 

die effects between smellier (< 1 mm) and larger (> 3 mm) biochar particles on 

properties such as WHC would be even more pronounced than those 

observed in the present study. On the other hand, biochar particles produced 

using higher HTTs tend to be more fragile than those produced at lower 

temperatures, so larger particles would break down into smellier fragments 

more quickly than particles produced at lower temperatures would. The bulk 

density of biochar-amended soils might be expected to reduce over time as 

biochar particles break down into smaller fragments. However, this effect 

would be complicated by the direct and indirect influences of different sized 

biochar particles on aggregation and aggregate stability.

Although biochar HTT and particle size can directly influence the effects of 

biochar application on soil properties such as WHC or bulk density, the 

effect of different biochars on soil aggregation and aggregate stability may be 

of equal or greater importance to properties such as WHC or bulk density 

under field conditions. For example, feedstock and HTT significantly affect 

biochar CEC, which will mean that different biochars will influence soil 

aggregation to varying extents. Again, it must be remembered that the 

findings of the present study are not necessarily representative of the



SUMMARY OF TH ESIS FIN D IN G S A N D  QUESTIONS FOR FUTURE

RESEARCH

influence of biochars when applied to soils in-situ, where the direct effects of 

biochar application will be complicated by pre-existing soil structure, and the 

effects of biochar on above- and below-ground biota. Much further research 

is needed to explore all these interactions.
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11 APPENDIX: SUPPLEMENTARY DATA

This appendix contains supplementary data from the experiments described 

in Chapters 4 to 8. Tables A.4.1 to A.4.3 contain data presented in Chapter 4, 

Tables A.5.1 to A.5.4 contain data presented in Chapter 5 and so on.

Table A.4.1: Biochar yields (mass % of feedstock mass) by feedstock type and HTT

Salix

350°C 500°C 650°C 800°C

45.15 29.94 - 27.02

39.08 30.01 27.70 26.41

38.63 29.69 - 25.64

Miscanthus

350°C 500°C 650°C 800°C

41.87 30.31 28.50 23.57

37.79 31.41 30.14 31.15

41.69 30.86 28.39 27.46

Picea

350°C 500°C 650°C 800°C

56.78 48.60 47.17 29.15

47.36 33.71 30.91 29.34

34.88 37.22 31.50 29.63

Table A.4.2: Contact angles of water droplets on biochar surfaces by feedstock type 
and HTT

Salix Miscanthus Picea

350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C

94.4 69.3 45.2 33.3 90.0

oo

0.0 8.6 88.1 0.0 70.3 16.4

90.0 93.3 42.4 28.1 82.7 0.0 49.2 47.4 93.1 0.0 90.0 19.5

90.0 90.0 88.9 49.2 91.8 48.5

49.8

59.0

52.8 40.3 72.4 0.0 74.9 13.3

92.2 65.1 86.5 32.9 75.6 0.0 40.6 84.9 0.0 69.6 31.8

78.8 70.2 85.6 91.4 77.5 0.0 40.4 78.5 0.0 85.7 41.5

103.1 67.5 85.2 102.5 76.1 48.9 0.0 0.0 66.7 0.0 64.2 44.4

63.5 75.2 86.1 0.0 80.6 75.6 21.6 0.0 72.9 0.0 33.9 45.0

100.6 77.1 85.1 0.0 93.0 70.4 27.6 0.0 70.1 0.0 35.7 39.1

75.0 82.9 85.9 13.9 95.8 69.4 28.0 0.0 63.6 0.0 52.5 31.5

68.8 90.0 90.0 20.9 95.6 64.5 19.4 0.0 73.8 0.0 54.2 14.7
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Salix Miscanthus Picea

350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C

111.2 77.1 98.2 0.0 92.9 67.3 0.0 0.0 80.5 12.8 58.2 17.7

125.9 92.7 71.6 0.0 89.0 66.7 0.0 34.1 78.2 23.3 50.9 26.0

98.1 79.1 76.6 0.0 83.7 53.7 13.1 33.0 73.6 47.8 49.8 20.5

107.0 80.9 78.5 0.0 95.3 54.6 17.5 56.4 71.1 40.2 56.0 42.5

104.9 74.1 0.0 51.3 93.9 64.2 29.8 63.6 97.8 0.0 50.2 32.6

126.1 75.7 0.0 60.3 95.1 19.7 27.2 64.5 93.9 0.0 41.4 40.5

95.4 65.7 0.0 71.7 95.2 85.5 34.1 45.5 100.4 11.7 0.0 31.8

99.0 56.6 0.8 67.2 85.3 128.9 38.0 35.9 122.9 12.5 0.0 0.0

87.0 78.7 47.3 74.5 91.1 41.6 63.3 41.6 138.2 56.5 2.0 0.0

98.5 81.4 34.7 83.4 90.1 58.2 50.1 66.0 133.0 41.9 2.0 33.7

94.3 97.9 59.8 70.3 95.5 58.8 36.1 66.8 142.2 58.4 2.0 31.2

97.9 96.1 58.3 77.7 92.5 66.4 54.4 56.5 85.8 48.5 2.0 0.0

100.2 88.3 58.3 45.1 91.1 54.3 26.6 50.8 78.4 43.2 55.0 0.0

118.0 98.3 53.9 60.8 97.0 47.2 23.1 54.3 63.1 55.2 51.5 24.0

104.3 66.1 78.9 2.0 98.5 58.3 60.8 51.3 70.7 52.0 52.0 13.2

101.3 72.9 71.1 2.0 96.4 45.3 51.9 61.2 64.2 68.3 60.6 0.0

92.4 67.9 72.6 42.4 92.3 48.7 54.2 72.0 66.3 83.6 48.5 0.0

93.1 65.4 69.1 46.8 86.8 60.5 47.1 52.8 61.5 87.0 39.4 20.4

99.5 58.3 86.6 0.0 84.6 59.3 38.3 47.4 67.3 73.6 39.2 21.8

105.4 68.9 93.7 0.0 86.9 54.0 50.7 0.0 70.2 73.0 46.4 10.4

117.6 67.2 81.6 36.3 81.2 58.6 61.6 0.0 80.3 82.2 0.0 18.2

125.5 83.3 77.6 29.9 96.2 62.3 74.3 0.0 72.5 88.0 0.0 0.0

107.7 74.9 87.5 27.4 91.1 58.8 63.5 0.0 85.5 59.9 37.7 0.0

116.3 90.0 86.3 22.0 92.8 67.3 71.4 21.2 90.0 66.6 23.8 0.0

101.8 91.9 50.3 67.4 90.7 56.4 64.4 26.8 76.1 61.7 0.0 0.0

106.7 95.9 47.6 73.1 94.6 67.7 60.1 33.0 120.0 63.1 0.0 4.7

102.3 95.8 67.7 0.0 95.0 71.4 49.2 31.4 87.1 76.7 0.0 10.5

90.0 91.1 70.0 0.0 93.0 67.1 31.0 48.5 95.5 101.8 0.0 10.8

100.1 83.2 68.2 35.5 96.9 56.9 19.2 13.8 76.1 66.0 30.9 0.0

97.8 74.7 71.0 31.6 86.6 54.4 32.4 2.0 84.2 52.9 12.8 0.0

98.1 88.2 71.0 27.9 82.5 67.9 33.5 2.0 81.5 59.5 18.6 19.0
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Salix Miscanthus Picea

350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C

95.2 70.1 61.3 14.0 105.5 60.2 45.1 22.9 68.9 62.6 43.5 22.0

105.3 79.0 71.7 53.8 96.2 65.6 51.3 25.4 77.6 49.9 39.5 0.0

98.9 80.6 71.6 42.5 100.3 70.3 26.2 46.8 136.4 43.1 63.6 0.0

114.7 70.1 51.0 43.8 94.0 68.5 29.2 41.8 83.0 0.3 0.0 0.0

115.4 78.0 49.9 46.0 95.3 78.8 48.7 8.0 73.7 0.3 0.0 0.0

136.8 125.9 54.4 30.2 91.0 88.1 63.7 2.0 72.7 13.2 2.0 0.0

132.7 125.8 55.7 43.2 97.4 55.6 51.6 38.1 66.7 13.2 2.0 0.0

114.2 123.5 89.0 18.3 95.3 66.1 46.9 19.6 76.4 64.2 46.0 0.0

110.2 145.5 93.9 20.8 90.0 37.3 0.0 13.5 74.1 49.2 48.0 0.0

105.7 108.4 93.6 65.5 92.1 45.0 0.0 17.2 70.1 72.2 48.2 28.1

104.5 101.4 102.4 68.6 90.0 44.1 56.3 0.0 71.0 79.0 77.0 32.9

115.1 96.1 62.8 59.5 89.5 41.7 45.0 0.0 73.4 89.9 64.5 29.5

106.6 111.6 61.1 64.0 82.3 46.5 44.6 0.0 88.0 69.4 68.3 45.9

101.0 121.3 60.5 0.0 88.3 49.3 46.0 0.0 99.6 61.2 69.4 0.0

120.3 83.5 66.0 0.0 129.5 57.2 57.2 0.0 95.0 72.3 72.2 0.0

106.1 95.2 56.5 81.2 123.8 54.3 67.5 46.1 84.5 47.1 46.0 16.8

98.4 94.7 72.6 90.5 112.4 54.3 0.0 53.1 83.4 33.8 36.6 25.1

100.9 86.8 111.4 20.2 116.8 50.4 0.0 49.4 89.3 53.3 24.3 0.0

98.0 88.4 99.0 19.7 119.7 49.5 0.0 43.5 76.7 70.1 15.5 0.0

90.0 88.4 122.6 62.1 117.0 48.6 0.0 31.5 77.1 59.4 2.0 46.2

100.3 98.3 107.0 67.0 116.1 62.9 0.0 35.2 86.5 73.4 2.0 34.0

96.6 111.0 38.8 110.4 116.1 42.4 0.0 3.7 86.1 53.5 76.3 42.5

90.0 119.6 57.3 113.6 115.0 51.8 0.0 0.0 66.1 44.2 78.7 40.8

100.8 108.2 110.3 56.4 116.3 56.0 0.0 19.5 99.6 49.4 43.1 39.7

103.1 112.8 107.8 62.6 122.7 50.6 0.0 33.1 83.9 43.9 38.1 22.5

96.9 91.3 0.0 34.2 117.9 65.7 0.0 21.8 91.6 59.6 52.9 46.7

96.8 119.5 0.0 23.9 131.7 76.7 0.0 0.0 75.5 60.1 49.2 0.0

121.2 106.8 0.0 0.0 122.5 772 68.5 0.0 59.1 69.6 66.5 0.0

127.7 105.8 0.0 0.0 93.2 45.6 71.5 0.0 78.2 35.7 57.9 38.7

122.0 95.7 20.2 65.5 95.3 50.9 0.0 0.0 79.9 43.7 66.5 33.6

107.9 102.0 22.1 59.3 92.1 52.0 0.0 34.1 77.5 40.2 74.1 43.1
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Salix Miscanthus Picea

350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C 350°C 500°C 650°C 800°C

97.1 93.6 29.3 0.0 91.5 48.6 0.0 19.1 86.1 50.3 0.0 27.3

90.0 92.7 37.1 0.0 77.6 52.4 43.8 29.1 81.2 54.0 0.0 24.4

94.4 84.6 0.0 41.9 104.8 39.4 41.0 41.5 86.0 51.4 63.5 13.8

88.5 92.2 0.0 35.8 100.6 50.2 44.8 0.0 76.7 44.4 68.4 20.5

101.0 105.0 54.1 29.1 109.6 57.2 45.7 0.0 85.7 66.8 0.0 27.0

100.3 104.5 67.5 40.4 106.3 52.3 36.6 0.0 126.5 63.1 0.0 0.0

135.0 94.4 77.9 120.7 92.1 58.2 0.0 0.0 70.4 53.9 13.8 0.0

111.5 90.2 90.0 111.8 88.8 50.4 0.0 28.8 87.4 59.9 26.0 0.0

119.7 111.1 87.1 72.9 108.5 56.4 35.5 20.1 83.0 64.5 71.8 0.0

114.9 114.6 90.0 64.5 101.9 79.7 27.3 51.1 93.0 66.8 73.0 42.2

77.5 89.0 76.0 0.0 91.9 76.1 21.1 52.8 97.5 67.8 82.6 29.0

99.7 89.5 93.2 0.0 103.4 72.7 39.6 66.6 81.3 48.9 82.5 0.0

111.4 98.9 59.3 61.1 87.6 69.2 34.5 66.8 79.9 40.6 70.1 0.0

114.7 88.3 59.0 74.8 117.0 60.5 0.0 0.0 84.3 35.9 73.9 26.4

118.4 46.1 69.9 49.5 120.2 73.2 0.0 0.0 74.4 76.3 0.0 19.2

87.8 64.0 58.2 54.2 95.4 46.6 0.0 35.2 70.9 52.2 0.0 35.8

89.3 76.1 55.1 90.6 119.1 46.4 0.0 31.9 70.0 57.3 18.9 34.0

96.8 92.5 43.6 81.5 78.7 51.4 2.0 13.2 74.6 45.1 21.8 0.0

135.0 98.0 49.2 44.4 86.5 53.9 2.0 20.8 65.2 62.3 0.0 0.0

120.6 103.6 49.6 62.3 87.8 65.8 0.0 0.0 77.8 53.2 0.0 0.4

135.0 78.0 77.5 36.2 86.5 45.7 0.0 0.0 67.4 54.0 0.0 9.9

132.3 82.0 76.0 38.0 86.7 47.9 27.8 33.5 84.9 64.4 0.0 0.0

94.3 96.8 77.7 65.8 89.8 56.6 28.4 42.0 80.7 59.6 16.5 0.0

91.6 96.6 90.9 52.4 86.0 51.8 69.3 0.0 73.0 68.3 12.0 9.7

106.8 83.0 100.9 75.6 81.0 51.3 47.7 0.0 92.4 59.2 0.0 12.5

120.0 87.9 95.7 71.0 90.0 59.8 50.2 0.0 94.3 2.7 0.0 17.2

107.9 79.7 89.7 71.6 94.5 43.8 0.0 0.0 77.3 2.7 30.3 22.4

116.6 78.8 81.1 67.4 96.2 64.4 0.0 0.0 82.0 49.1 28.5 14.6
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Table A.4.3: Contact angles o f water droplets on Salix biochar surfaces at 0, 7 and 
21 days after production

0 7 21

87.4 102.8 79.7

91.1 117.2 97.4

90.0 115.7 95.4

86.8 127.7 96.5

81.5 142.1 100.5

90.9 140.6 92.9

77.7 94.1 93.9

92.0 97.5 98.0

79.6 93.3 90.0

94.5 93.6 94.7

90.0 89.1 90.0

113.6 89.3 85.1

97.8 98.4 89.5

78.7 125.2 87.8

95.2 119.0 107.2

90.0 113.2 134.2

95.5 97.5 111.2

74.6 87.9 104.7

98.5 90.0 112.5

105.9 89.9 116.8

108.4 90.0 94.9

130.1 85.1 94.7

132.7 86.0 108.1

126.8 144.7 120.5

87.9 88.3 95.9

80.5 85.0 113.6

95.5 86.0 98.4

96.4 84.4 108.8

91.0 89.1 97.6

89.4 146.9 105.9
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0 7 21

106.3 119.1 101.9

94.4 111.1 117.3

99.8 93.0 123.3

106.1 116.9 112.9

112.4 104.0 105.6

93.1 105.2 110.4

108.8 115.5 79.2

129.0 109.2 77.3

128.2 101.4 84.4

92.3 97.1 88.1

88.1 100.9 78.5

88.4 98.2 81.7

80.5 106.5 82.7

94.4 104.4 90.0

89.4 91.0 92.6

90.6 103.5 80.5

91.7 73.9 93.6

89.4 74.1 94.9

86.6 74.8 108.4

85.1 76.6 88.6

91.3 115.0 90.0

125.1 90.5 86.8

116.8 99.6 92.9

119.2 85.0 88.2

132.1 110.7 96.5

94.2 93.6 90.0

93.1 125.5 94.7

105.7 91.4 91.7

95.0 102.3 81.0

112.4 104.4 88.0

116.3 117.6 84.5

90.0 112.2 85.6
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0 7 21

93.0 107.4 104.2

96.2 107.4 99.6

116.6 95.4 106.1

104.6 104.7 109.5

113.6 110.9 115.2

104.7 94.3 105.2

90.0 109.5 109.9

116.2 96.9 94.5

104.2 87.5 102.6

98.8 100.3 103.9

97.6 108.8 94.3

106.8 88.7 92.6

121.6 98.6 117.9

90.0 103.3 123.1

107.6 112.7 102.3

83.8 102.9 104.2

90.0 119.7 82.4

94.4 91.9 90.8

98.4 123.5 82.5

96.1 116.6 93.9

86.8 143.0 84.0

90.0 112.3 81.0

93.4 103.4 93.0

90.5 92.0 87.6

120.1 91.1 99.8

117.6 118.6 94.3

100.4 130.1 104.6

119.9 102.4 88.7

113.6 69.0 105.5

118.2 90.0 108.6

109.6 93.0 110.0

95.6 79.0 106.5
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0 7 21

101.7 98.9 87.3

104.9 103.0 88.7

109.1 81.1 79.0

108.2 81.9 84.5

87.1 105.6 83.0

92.4 98.9 84.9

Table A A A : Biochar CEC (cmol(+) kg-1) by feedstock  type  and H T T

Salix

350°C 500°C 650°C 800°C

15.64 25.73 51.17 37.39

12.85 30.69 66.92 42.41

14.27 43.97 62.83 32.87

13.46 52.20 34.17 -

M iscanthus

350°C 500°C 650°C 800°C

19.65 41.51 48.05 45.23

21.59 59.93 44.80 46.00

16.80 38.04 46.75 36.85

26.11 50.35 52.28

Picea

350°C 500°C 650°C 800°C

2.86 15.36 13.36 19.39

1.83 17.38 24.81 12.63

3.67 12.05 12.60 11.74

14.72 22.50 12.06 -

Table A.5.1: Bulk densities (g c m 3) o f  so ftw o o d  p e lle t biochars (ground to  OA -  1 
m m ) produced a t different HTTs

400°C 500°C 600°C 700°C

0.42 0.49 0.40 0.40

0.42 0.49 0.40 0.40

0.42 0.49 0.40 0.41

0.42 0.48 0.39 0.41

0.42 0.50 0.40 0.40

0.42 0.49 0.40 0.40
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Table A.5.2: Bulk densities (g cm 3) o f soils amended with biochars produced at 
different HTTs

Control 400°C 500°C 600°C 700°C

1.36 1.24 1.26 1.24 1.25

1.35 1.26 1.26 1.24 1.21

1.35 1.29 1.30 1.25 1.25

1.39 1.28 1.30 1.26 1.28

1.35 1.29 1.30 1.25 1.25

1.39 1.31 1.29 1.28 1.27

1.37 1.27 1.29 1.24 1.26

1.34 1.28 1.30 1.29 1.27

1.36 1.23 1.27 1.20 1.22

1.35 1.23 1.25 1.22 1.22

1.32 1.23 1.25 1.19 1.22

1.36 1.28 1.31 1.26 1.27

1.35 1.28 1.25 1.20 1.21

1.28 1.22 1.23 1.21 1.20

1.30 1.23 1.21 1.22 1.23

1.34 1.28 1.27 1.20 1.20

1.28 1.22 1.22 1.17 1.21

1.28 1.19 1.19 1.16 1.18

1.32 1.24 1.23 1.20 1.20

1.34 1.25 1.2.6 1.23 1.23

1.32 1.20 1.23 1.16 1.19

1.30 1.20 1.25 1.18 1.16

1.34 1.25 1.26 1.22 1.23

1.30 1.25 1.27 1.22 1.23

1.34 1.26 1.21 1.22 1.22
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Table A.5.3: Water-holding capacities (cm3 cm 3) o f soils amended w ith  biochars 
produced at different H Tl s

Control 400°C 500°C 600°C 700°C

0.44 0.45 0.51 0.43 0.43

0.45 0.46 0.49 0.47 0.43

0.45 0.44 0.46 0.42 0.43

0.45 0.46 0.52 0.48 0.42

0.43 0.48 0.50 0.41 0.42

Table A.5.4: Suction (kVa, at a water content o f 0.17 cm3 cm-3) o f soils amended 
w ith  biochars produced at different HTTs

(i) Total suction

Control 400°C 500°C 600°C 700°C

50.52 48.85 165.17 44.23 43.29

61.30 57.01 110.63 66.59 50.05

58.95 53.72 93.70 57.35 49.05

61.53 58.56 126.41 80.35 52.56

61.63 55.99 87.93 58.76 60.65

(ii) Matric suction

Control 400°C 500°C 600°C 700°C

2.40 3.60 7.78 522 6.82

2.21 2.85 6.68 5.14 4.55

2.31 3.05 6.00 4.05 3.39

2.45 2.71 6.71 6.49 3.90

2.21 3.62 6.69 6.51 3.85
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Table A.6.1: B u lk  densities (g cm 3) o f soils amended with biochars o f differing 
partic le  size

Control < 0.2 mm 0.4 -1 mm 2 -3  mm 4 -5  mm

1.36 1.24 1.26 1.23 1.28

1.35 1.23 1.26 1.23 1.27

1.35 1.22 1.30 1.25 1.28

1.39 1.22 1.30 1.24 1.27

1.35 1.22 1.30 124 1.27

1.39 1.24 1.29 1.25 1.27

1.37 1.24 1.29 1.24 1.28

1.34 1.24 1.30 1.24 1.30

1.36 1.23 1.27 1.27 1.27

1.35 1.23 1.25 1.25 1.29

1.32 - 1.25 - -

1.36 - 1.31 - -

1.35 - 1.25 - -

1.28 - 1.23 - -

1.30 - 1.21 - -

1.34 - 1.27 - -

1.28 - 1.22 - -

1.28 - 1.19 - -

1.32 - 1.23 - -

1.34 - 1.26 - -

1.32 - 1.23 - -

1.30 - 1.25 - -

1.34 - 1.26 -

1.30 - 1.27 - -

1.34 _ 1.21 - -
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Table A.6.2: WHCs (cm3 cm 3) o f  so ils am ended w ith  biochars o f  d iffering  partic le
size

Control < 0.2 mm 0.4 -1 mm 2 -3  mm 4 -5  mm

0.44 0.47 0.51 0.42 0.43

0.45 0.47 0.49 0.43 0.44

0.45 0.46 0.46 0.45 0.43

0.45 0.44 0.52 0.43 0.42

0.43 0.46 0.50 0.42 0.44

Table A.4: Suction (kPa, a t a w ater content o f 0.17 cm 3 cm 3) in so ils  am ended w ith  
biochars o f  differing particle size

(i) Total Suction

Control < 0.2 mm 0.4 -1  mm 2 -3 mm 4 - 5  mm

50.52 72.38 165.17 66.30 53.49

61.30 125.38 110.63 82.19 83.30

58.95 85.44 93.70 80.05 70.83

61.53 94.78 126.41 60.36 65.16

61.63 - 87.93 61.95 60.65

(ii) Matric suction

Control < 0.2 mm 0.4 -1 mm 2 -3  mm 4 -5  mm

2.40 7.01 7.78 6.50 6.86

2.21 7.26 6.68 8.61 6.47

2.31 6.15 6.00 8.39 6.23

2.45 6.30 6.71 8.38 6.06

2.21 6.61 6.69 7.87 4.09
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Table A.7.1: C ontact angles o f  w a ter  droplets on the surface o f  biochar produced  
fro m  m ixed deciduous in a trad itiona l kiln

M easurem ent num ber
'

1-20 21 -40 41 -60 61 -80 81 -100

41.99 0.00 0.00 71.05 100.46

56.42 24.53 0.00 95.44 119.55

79.66 36.67 0.00 81.09 66.27

79.55 49.79 0.00 65.27 63.73

109.47 130.39 0.00 52.72 82.69

116.24 120.73 0.00 60.71 62.55

121.08 102.94 0.00 63.60 90.00

119.82 119.23 0.00 70.81 92.42

124.85 134.05 34.37 24.72 96.54

8.45 7.96 0.00 22.51 98.93

15.96 0.00 60.50 17.46 32.81

26.08 0.00 0.00 33.02 60.70

24.69 103.37 0.00 96.39 61.13

15.23 110.82 0.00 68.84 71.85

12.67 72.84 0.00 57.90 74.83

16.22 68.40 0.00 54.00 0.00

10.22 67.54 0.00 56.87 0.00

0.00 78.47 0.00 48.84 101.52

0.00 0.00 107.22 90.91 94.79

0.00 0.00 101.57 92.79 100.79



APPENDIX:  SUPPLEMENTARY DATA 281

Table A.7.3: B ulk density  (g c m 3) o f  s i l t  loam  so il under d ifferent biochar  
applica tion  rates

0 g kg-1 S g k g 1 25 g kg*1 50 g kg-1

1.23 1.22 1.17 1.14

1.22 1.19 1.17 1.13

1.22 1.22 1.17 1.16

1.24 1.22 1.16 1.14

1.24 1.23 1.17 1.13

Table A.7.4: Drainage (T) and overland f lo w  (R) (mm hr1) during ra in fa ll s im u la tio n  
fro m  s il t  loam  soil under different biochar app lica tion  rates

(i) Biochar application rate of 0 g k g 1 (control)

Time Simulation 1 Simulation 2 Simulation 3

(mins) T R T R T R

2 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 - 0.00 - 0.00 -

6 0.67 0.00 0.00 0.00 0.00 0.00

8 2.67 - 0.00 - 14.67 -

10 57.33 0.00 16.00 0.00 41.33 0.00

12 69.33 - 65.33 - 72.67 -

14 80.00 0.00 70.67 0.00 66.67 0.00

16 80.00 - 72.00 - 72.00 -

18 76.67 0.00 73.33 0.00 70.00 7.33

20 77.33 - 72.00 - 58.67 -

22 49.33 0.00 71.33 0.00 42.67 35.33

24 77.33 - 54.00 - 38.67 -

26 62.67 9.33 46.67 28.67 22.67 47.33

28 66.67 - 40.67 - 21.33 -

30 53.33 22.67 22.67 49.33 20.00 53.33

32 49.33 - 26.67 - 23.33 -
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Time Simulation 1 Simulation 2 Simulation 3

(mins) T R T R T R

34 42.67 63.33 21.33 55.00 21.33 56.00

36 40.00 - 20.00 - 20.00 -

38 32.00 46.67 20.00 56.67 20.00 59.33

40 30.00 - 18.67 - 18.00 -

42 26.67 48.00 17.33 60.00 17.33 52.67

44 23.33 - 15.33 - 17.33 -

46 18.67 60.00 14.67 63.33 16.00 60.00

48 17.33 - 13.33 - 14.67 -

50 16.00 60.00 19.33 53.33 14.00 57.33

52 14.67 - 17.33 - 13.33 -

54 14.00 64.00 16.00 60.00 13.33 63.33

56 13.33 - 14.00 - 13.33 -

58 13.33 62.00 13.33 62.00 13.33 62.67

60 12.00 - 12.67 - 13.33 -

(ii) Biochar application rate of 5 g k g 1

Time

(mins)

Simulation 1 

T R

Simulation 2 

T R

2 0.00 0.00 0.00 0.00

4 0.13 - 0.00 -

6 0.07 0.00 0.00 0.00

8 5.33 - 2.67 -

10 34.00 0.00 34.67 0.00

12 74.67 - 69.33 -

14 76.67 0.00 84.67 0.00

16 74.00 - 80.00 -

18 70.00 0.00 80.67 0.00

20 67.33 - 79.33 -

22 54.67 16.00 73.33 0.00

24 48.67 - 63.33 -

Simulation 3 

T R

0.00 0.00

0.00 -

1.33 0.00

1.33 -

10.00 0.00

37.33 -

56.00

55.33

0.00

74.67 0.00

76.00 -

61.33 0.00

56.67 -
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Time Simulation 1 Simulation 2 Simulation 3

(mins) T R T R T R

26 40.00 35.33 50.67 27.33 62.00 9.33

28 32.67 - 44.00 - 55.33 -

30 26.67 51.33 37.33 44.00 49.33 13.33

32 22.67 - 28.00 - 38.00 -

34 20.00 53.33 26.67 51.33 36.67 19.33

36 20.00 - 24.00 - 36.00 -

38 18.00 60.00 20.00 64.67 22.67 42.00

40 17.33 - 17.33 - 24.00 -

42 19.33 50.67 14.67 63.33 22.67 26.67

44 16.00 - 14.67 - 21.33 -

46 21.33 62.67 14.67 64.67 20.00 53.33

48 14.00 - 14.00 - 19.33 -

50 13.33 60.00 13.33 63.33 16.00 57.33

52 13.33 - 11.33 - 15.33 -

54 13.33 63.33 10.67 66.67 14.67 55.33

56 14.00 - 10.67 - 13.33 -

58 13.33 56.00 10.00 66.67 12.67 48.00

60 14.00 - 9.33 - 12.00 -

(iii) Biochar application rate of 25 g kg'1

Time

(mins)

Simulation 1 

T R

Simulation 2 

T R

Simulation 3 

T R

2 0.00 0.00 0.00 0.00 0.00 0.00

4 0.33 - 0.00 - 0.00 -

6 0.33 0.00 0.00 0.00 0.00 0.00

8 0.33 - 3.33 - 2.67 -

10 39.33 0.00 15.33 0.00 28.00 0.00

12 57.33 - 53.33 - 61.33 -

14 69.33 0.67 65.33 0.00 72.67 0.00

16 63.33 - 66.00 - 69.33 -
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Time Simulation 1 Simulation 2 Simulation 3

(mins) T R T R T R

18 56.00 16.67 66.00 0.00 65.33 8.67

20 46.67 - 68.00 - 59.33 -

22 36.67 41.33 58.00 16.67 48.00 29.33

24 30.67 - 48.00 - 35.33 -

26 26.67 50.67 38.67 30.00 48.67 30.00

28 23.33 - 36.67 - 39.33 -

30 22.67 56.00 31.33 46.00 33.33 45.33

32 19.33 - 26.00 - 28.00 -

34 23.33 46.00 22.67 54.00 26.67 50.67

36 23.33 - 20.67 - 23.33 -

38 22.00 56.67 20.00 59.33 21.33 57.33

40 20.00 - 18.00 - 20.00 -

42 17.33 56.67 14.67 55.33 20.00 55.33

44 16.00 - 14.67 - 20.00 -

46 14.67 64.67 13.33 63.33 17.33 56.67

48 16.00 - 12.67 - 18.67 -

50 14.00 60.00 12.00 60.00 16.67 52.00

52 14.00 - 11.33 - 16.00 -

54 13.33 60.00 10.67 64.00 16.00 60.00

56 13.33 - 11.33 - 15.33 -

58 13.33 62.00 10.67 60.00 16.67 62.00

60 12.67 - 11.33 - 14.67 -

(iv) Biochar application rate of 50 g kg'1

Time Sim ulation 1 Simulation 2 Simulation 3 

(mins) T R T R T R

2 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 - 0.00 - 0.00 -

6 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 - 1.33 - 0.00 -

10 0.67 0.00 5.33 0.00 8.00 0.00

12 19.33 - 20.00 - 50.67
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Time Simulation 1 Simulation 2 Simulation 3

(mins) T R T R T R

14 36.67 0.33 56.67 2.67 65.33 0.00

16 46.00 - 47.33 - 52.00 -

18 55.33 0.33 46.67 20.00 41.33 34.67

20 60.00 - 33.33 - 36.67 -

22 50.00 7.33 36.00 36.00 38.67 40.00

24 40.00 - 21.33 - 32.00 -

26 33.33 32.67 32.00 42.00 22.67 53.33

28 28.00 - 26.67 - 26.67 -

30 26.67 46.00 23.33 51.33 22.67 58.67

32 24.00 - 20.00 - 21.33 -

34 21.33 44.00 18.00 54.67 20.00 59.33

36 19.33 - 15.33 - 18.67 -

38 17.33 48.67 15.33 59.33 18.00 63.33

40 16.00 - 13.33 - 16.67 -

42 14.67 52.67 13.33 58.00 16.00 64.00

44 14.67 - 11.33 - 14.67 -

46 13.33 50.00 12.67 57.33 14.00 68.00

48 12.67 - 12.00 - 14.00 -

50 12.67 57.33 12.00 56.67 13.33 68.67

52 11.33 - 11.33 - 13.33 -

54 10.67 46.67 10.67 59.33 12.67 68.67

56 10.67 - 16.00 - 12.67 -

58 10.00 56.67 16.67 53.33 12.00 66.00

60 10.67 - 15.33 - 11.33 -

Table A.8.1: Particle size distribution (%) of silt loam soil under different biochar 
application rates

0 g kg1 5 g kg'1 25 g kg i 50 g kg-i

Clay Silt Sand Clay Silt Sand Clay Silt Sand Clay Silt Sand

9.00 6852 22.48 8.07 69.64 2230 7.70 6726 25.03 7.18 71.90 20.92

7.54 73.01 19.46 8.65 7030 21.05 7.27 7139 2134 8.64 67.95 23.41

9.12 6952 2157 7.33 7555 17.12 8.07 7156 20.38 8.61 67.93 23.46
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Clay

Ogkg-1

Silt Sand Clay

5 g kg1 

Silt

i

Sand Clay

25 g kg 

Silt

■l

Sand Clay

50 g kg 

Silt

-l

Sand

7.42 71.95 20.63 7.17 74.08 18.75 8.76 71.61 19.63 8.62 68.03 2334

7.58 73.61 18.81 8.70 7134 20.06 7.01 71.92 21.07 7.19 72.44 2037

8.98 6839 22.13 8.50 6952 21.98 8.40 67.48 24.12 7.11 7139 21.01

7.58 7339 18.53 8.72 7132 19.% 8.35 67.18 24.47 7.14 72.17 20.69

8.99 68.93 22.08 7.27 75.51 17.22 8.33 67.04 24.63 7.16 72.44 20.40

8.95 68.73 2232 7.26 7553 1730 8.28 66.63 25.09 8.62 68.02 23.36

8.76 6725 23.99 7.09 73.54 1937 8.26 6655 2530 8.72 68.91 22.37

9.75 6952 20.73 8.91 7233 18.86 6.81 7059 22.61 6.30 65.65 28.05

8.16 73.11 18.74 7.75 73.11 19.14 8.38 67.42 2430 6.35 65.91 27.75

8.42 7554 16.04 9.74 7138 18.38 8.38 67.47 24.15 6.32 6556 28.12

8.33 74.84 16.84 9.75 71.94 1831 6.94 71.77 2139 7.52 6033 31.65

8.25 74.16 1759 7.95 72.61 19.44 8.54 69.91 2155 6.42 6632 26.75

8.31 7433 16.86 8.06 73.74 18.19 8.50 69.89 21.61 6.36 6638 27.35

8.24 74.40 1736 9.70 71.98 18.32 8.43 69.45 22.12 631 65.73 27.96

8.44 7622 15.35 7.97 73.14 18.89 8.47 69.83 21.70 6.37 6634 2739

8.23 7438 1739 9.84 72.97 17.19 8.41 69.45 22.14 6.45 67.17 26.38

8.08 73.12 18.80 8.11 74.40 17.49 8.51 70.45 21.04 6.35 6631 2733

7.41 7236 19.73 9.72 7035 19.43 8.63 7130 20.16 7.98 6635 25.67

8.35 7330 17.86 9.74 71.19 19.07 8.43 69.75 21.83 6.55 71.09 22.36

9.04 74.11 16.85 9.60 7036 20.03 8.43 69.73 21.83 7.92 6637 25.71

9.37 72.08 18.55 9.65 71.06 19.29 8.47 69.% 2157 7.86 65.92 2633

9.60 7235 1756 9.56 7037 20.07 8.79 70.76 20.45 8.01 67.16 24.83

1128 70.62 18.10 9.62 70.92 19.45 8.69 70.12 21.18 6.50 70.67 22.83

9.48 7222 18.30 9.52 7035 20.14 859 69.16 2235 7.91 6638 25.72

935 71.51 19.13 9.49 70.07 20.44 8.69 69.93 2138 7.81 65.49 26.70

1129 70.80 17.91 9.46 69.98 20.56 8.78 7053 20.70 8.01 67.17 24.82

1123 7031 18.46 7.80 7135 20.95 8.86 7131 19.93 7.74 64.97 27.29

7.55 72.44 20.01 6.41 71.69 21.90 8.78 7056 20.66 826 68.98 2276

7.40 71.12 21.48 6.39 71.77 21.84 7.17 72.13 20.70 833 69.04 22.73

9.16 6924 21.60 6.31 71.09 22.60 8.75 69.12 22.14 8.18 6853 23.30

7.56 72.92 1951 7.86 68.63 23.50 7.14 7251 2035 7.97 67.04 24.98

7.51 72.47 20.02 6.41 7230 2139 8.72 69.17 22.10 7.99 67.14 24.87

9.03 68.62 2235 6.39 72.00 21.61 7.26 73.60 19.14 8.12 6837 23.50

7.43 71.74 20.83 6.35 71.91 21.74 8.62 68.58 22.80 8.20 68.82 22.98

7.53 7231 19.65 6.41 7238 2131 7.15 72.80 20.05 8.15 6839 23.56
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0 g kg-1 5 g kg 1 25 g kg-' 50 g kg'i

Clay Silt Sand Clay Silt Sand Clay Silt Sand Clay Silt Sand

7.44 71.84 20.71 6.50 73.47 20.03 7.26 73.65 19.09 8.20 68.87 22.93

8.87 6732 23.81 6.44 72.79 20.77 7.27 7332 18.91 8.20 68.79 23.01

Table A.8.2: Electrical conductivity (EC) and pH of silt loam soil under different 
biochar application rates

0 g kg° 5gkg-> 25 g kg-’ 50 g kg '

EC pH EC PH EC pH EC PH

112.5 7.9 99.5 7.9 111.6 8.1 110.5 8.2

103 7.9 105.8 8 117.8 8.0 110.0 8.1

104.4 7.9 107.2 8.1 111.5 8.1 109.4 8.2

105.7 7.9 127.7 8.0 115.3 8.1 114.6 8.2

104.4 7.9 135.4 8.0 115.1 8.1 112.3 8.2
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Table A.8.3: Percentage o f aggregates destroyed per mm o f rainfall on silt loam soil 
under different biochar application rates

0 g kg-1 S gkg-1 25 g kg-1 50 g kg-1

31.96 29.21 32.62 32.85

31.39 32.64 35.15 34.39

29.72 28.78 32.88 34.63

27.52 29.30 34.16 36.05

31.04 27.65 30.87 35.29

30.35 29.24 34.52 35.22

28.92 33.19 33.86 34.71

31.57 29.63 33.80 34.99

30.67 32.82 34.36 32.85

Table A.8.4: Total collected sediment splash (g) during rainfall simulations on silt 
loam soil under different biochar application rates

Simulation o g kgr1 5 g k g 1 25 g kg-1 50 g kg'1

1 1.14 0.91 1.37 0.79

2 0.69 0.88 0.74 1.16

3 0.93 0.98 1.37 0.87
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Table A.8.5: Slopewash sediment yields during rainfall simulations on silt loam 
soil under different biochar application rates

Time 0 g kg i 5 g kg' i 25 g kg'1 50 g kg-l

(mins) 1 2 3 1 2 3 1 2 3 1 2 3

4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.11 0.13

20 0.00 0.00 0.06 0.02 0.00 0.00 0.53 0.00 021 0.00 0.58 033

24 0.00 0.07 0.33 0.37 028 0.00 0.78 0.10 0.59 0.06 0.51 0.31

28 0.17 - 0.32 121 0.63 0.32 0.97 023 0.42 0.20 0.70 0.31

30 - 0.19 - - - - - - - - - -

32 0.36 - 0.30 0.86 0.62 0.15 0.66 034 0.50 0.49 1.04 0.39

34 - 032 - - - - - - - - - -

36 1.06 - 0.52 0.98 0.78 0.63 0.58 0.51 0.63 0.62 0.49 0.38

38 - 0.36 - - - - - - - - - -

40 0.66 0.95 0.81 0.62 1.76 0.24 0.51 0.44 0.81 0.34 128 0.47

44 1.39 0.51 1.22 0.80 0.95 0.31 3.17 0.56 0.74 0.54 0.45 0.52

48 1.31 0.44 1.23 1.14 0.92 1.08 0.95 0.47 0.94 0.49 0.57 0.52

52 1.90 0.51 1.02 1.15 120 1.05 1.28 0.41 0.85 0.34 022 0.53

56 0.48 0.44 0.75 2.19 1.11 0.21 1.10 0.44 0.76 0.42 0.81 0.58

60 1.64 0.72. 1.03 1.29 1.18 0.51 1.33 0.49 1.35 0.45 1.02 0.59
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Table A.8.6: Mean OM content of silt loam soil tmder different biochar application 
rates

Simulation Ogkg-1 5 g kg-1 25 g kg-1 50 g kg1

1 8.08 8.71 9.86 11.71

2 7.95 8.47 9.93 1157

3 8.16 8.68 9.91 11.12

Table A.8.7: Mean OM content o f splash eroded sediment from silt loam soil under 
different biochar application rates

Simulation 0 g kg1 Sgkg-1 25 g kg 1 50 g kg-1

1 1236 14.88 17.03 23.12

2 7.09 30.17 22.07 1933

3 11.15 22.76 24.19 24.12

Table A.8.7: Mean OM content of slopewash sediment from silt loam soil under 
different biochar application rates

Simulation 0 g kg-1 5 g kg1 25 g kg 1 50 g kg1

1 11.58 10.13 13.88 23.04

2 2327 10.60 20.16 20.69

3 9.13 12.05 13.82 25.43
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Table A.8.8: Penetration resistance of silt loam soil under different biochar 
application rates after drying following simulated rainfall

o g kg i Sgkg-1 25 g kg 50 g kg-i

1 2 3 1 2 3 1 2 3 1 2 3

0.70 0.75 0.75 0.55 0.90 0.75 0.55 0.50 0.50 0.45 0.50 0.55

0.95 0.83 0.88 0.50 1.10 0.65 0.60 0.68 0.63 0.70 0.40 0.50

0.95 0.75 0.75 0.88 0.75 0.88 0.70 050 0.70 0.55 0.50 0.63

0.60 0.60 0.68 0.80 0.80 0.70 0.80 0.45 0.60 0.55 0.80 0.50

0.68 0.70 1.05 0.75 0.63 0.63 0.45 0.40 0.80 0.50 0.40 0.83

0.55 0.63 0.95 0.70 0.83 0.75 0.75 0.55 0.63 0.60 0.45 0.60

0.68 0.80 0.60 0.75 0.68 0.95 0.80 055 0.60 0.60 0.60 0.55

0.75 0.88 0.80 0.95 0.75 0.83 0.88 0.50 0.68 0.55 055 0.58

0.83 0.75 0.83 0.75 0.60 0.75 1.05 0.60 0.70 0.50 0.55 0.68

0.95 0.65 1.00 0.95 0.90 0.68 0.68 0.68 0.55 0.50 0.60 0.55

0.98 0.70 0.70 0.55 0.83 0.55 1.50 0.58 0.50 0.55 0.40 0.80

0.80 0.80 0.83 0.80 0.65 0.88 0.75 0.50 0.45 0.65 0.70 0.75

0.88 0.95 0.95 0.63 0.50 0.80 0.68 0.50 0.50 0.50 0.50 0.58

0.63 0.83 1.30 0.55 0.95 0.75 0.68 0.50 0.50 0.45 0.60 0.63

0.88 1.00 0.75 0.80 0.75 0.80 0.55 050 0.45 0.45 0.50 0.45

0.75 0.95 0.75 0.70 0.95 0.80 0.88 0.75 0.40 0.70 0.63 0.75

0.70 0.75 0.63 0.70 0.88 0.70 0.75 0.40 0.58 0.88 0.45 0.75

0.63 0.95 0.75 0.80 0.90 0.60 0.50 0.45 0.65 0.65 0.45 0.45

0.75 0.55 0.75 1.00 0.85 0.68 0.70 0.45 0.60 0.63 0.45 0.60

0.75 0.80 0.80 1.13 0.70 0.75 0.75 055 0.95 0.55 0.35 0.50

0.75 0.93 0.83 0.75 0.60 0.63 0.70 0.35 0.45 0.70 0.50 0.45

0.63 1.00 1.00 0.95 0.70 0.63 0.70 0.60 0.48 0.80 0.45 0.65

0.55 0.75 0.60 0.88 0.60 0.88 0.85 0.60 0.55 0.65 0.50 0.60

0.60 0.83 0.68 0.95 0.68 0.83 0.50 0.50 0.98 0.55 0.50 0.55

0.60 0.75 0.75 0.75 0.50 0.70 0.55 0.63 0.65 0.55 035 0.55

0.90 0.80 0.68 0.75 1.15 0.68 0.68 0.45 0.75 0.50 0.55 0.68

0.75 0.88 0.75 0.80 1.05 0.75 0.60 0.60 0.55 0.55 0.40 0.80

0.70 0.90 0.65 0.55 0.50 0.90 0.55 0.50 055 0.75 0.63 0.55

0.68 0.80 0.68 0.63 0.88 0.70 0.60 055 0.50 0.70 0.75 0.75

1.08 0.68 0.85 0.70 1.10 0.58 0.75 0.35 0.68 0.63 0.45 0.50

0.90 0.95 1.00 0.80 0.95 0.75 0.60 0.55 0.55 0.60 0.63 0.40

0.60 0.83 0.80 0.63 0.90 0.63 0.50 0.45 0.88 0.50 0.55 0.43

0.88 0.75 0.95 0.80 123 0.93 0.75 0.45 0.68 0.75 0.45 0.65



292 APPENDIX: SUPPLEMENTARY DATA

0.55 0.55 0.95 0.75 130 0.75 0.88 0.55 0.50 0.95 0.65 0.60

0.68 0.90 1.10 0.55 0.70 0.70 0.68 0.50 0.50 0.65 0.68 0.65

0.55 0.80 1.00 0.88 0.80 0.68 0.80 0.45 0.80 0.90 0.50 0.55

0.75 0.88 1.15 0.75 035 0.60 0.75 0.75 0.68 0.85 0.85 0.65

1.00 0.80 1.15 0.80 0.60 0.80 0.75 0.45 0.50 0.65 0.70 0.40

0.63 0.50 0.95 1.20 1.00 0.70 0.95 0.40 0.68 0.75 030 0.55

0.90 0.70 0.95 0.60 0.63 0.50 0.75 0.45 0.58 0.63 0.35 0.75

0.88 0.63 0.95 0.63 1.00 0.75 0.88 035 0.70 0.50 0.45 0.60

0.50 0.70 1.48 0.95 125 0.75 0.75 0.45 0.68 0.45 0.88 0.75

0.50 0.83 1.25 0.80 1.20 0.95 0.63 0.70 0.55 0.60 0.50 0.55

0.68 0.95 0.95 0.50 1.00 0.80 0.63 0.45 0.60 0.45 0.70 0.63

0.63 0.80 1.25 0.75 1.00 0.75 0.55 0.50 0.80 0.65 035 0.50

0.75 0.75 0.85 0.80 0.80 0.55 0.68 0.50 0.65 0.63 0.60 0.53

0.95 0.75 1.00 0.70 0.60 0.65 0.60 0.45 0.60 0.70 0.40 0.55

0.75 0.90 1.65 0.55 0.88 0.75 0.55 0.40 0.75 0.63 0.58 0.50

0.75 0.95 0.88 0.95 135 0.58 0.75 0.40 0.58 0.55 0.50 0.55

0.85 1.00 0.95 0.88 0.75 0.65 0.80 0.55 0.68 0.50 0.68 0.58

0.63 0.88 1.00 0.95 1.13 0.68 0.80 0.45 0.45 0.60 0.55 0.70

0.80 0.80 0.75 0.75 0.88 1.03 0.95 0.50 0.70 0.75 0.58 0.50

0.80 0.90 1.00 0.90 0.80 0.80 0.55 030 0.50 0.70 0.70 0.50

0.90 0.50 0.75 0.75 0.85 0.75 0.68 0.55 0.55 0.70 0.80 0.58

0.90 0.70 0.85 0.63 135 0.75 0.75 0.45 0.75 0.70 0.50 0.50

0.85 0.88 1.15 0.50 0.70 0.65 0.70 0.55 0.75 0.60 0.55 0.65

0.63 0.75 1.05 0.90 0.95 0.83 0.50 0.58 0.45 0.55 0.55 0.80

0.90 1.10 0.93 0.90 0.90 0.58 0.70 0.40 0.45 0.65 0.40 0.68

0.68 0.75 0.83 0.88 0.80 0.80 0.75 0.55 0.55 0.50 0.68 0.58

0.75 0.75 0.83 0.88 0.88 0.60 0.60 0.45 0.50 0.63 0.75 0.70

0.90 0.68 1.00 0.70 1.00 0.80 0.68 0.55 0.60 0.70 0.63 0.50

1.00 0.63 1.05 1.05 033 0.83 0.80 0.48 0.68 0.55 0.50 0.55

0.80 0.70 0.75 0.90 1.05 0.95 0.75 0,45 075 0.55 068 0-50

0.80 0.80 1.33 0.85 0.85 0.80 0.68 0.45 0.75 0.55 0.40 0.75

0.80 0.90 0.75 0.88 1.20 0.75 0.70 0.50 0.70 0.63 030 0.50

0.80 0.75 0.80 1.00 0.70 0.55 0.50 0.75 0.50 0.55 0.55 0.50

0.90 0.68 0.75 0.75 0.83 0.93 0.55 0.40 0.60 0.50 030 0.65

0.88 0.83 0.95 1.00 0.63 0.65 0.75 0.45 0.50 0.70 035 0.45

1.00 1.20 133 0.75 0.63 0.75 0.55 0.40 0.50 0.60 0.83 0.75

0.83 0.83 1.43 0.90 0.55 0.55 0.50 0.58 0.65 0.75 0.60 0.85
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1.10 0.80 1.10 0.80 0.95 0.45 0.55 0.68 0.68 0.55 035 0.55

0.95 0.70 0.55 0.65 0.75 0.60 0.63 0.85 0.63 0.80 0.65 0.60

0.75 0.95 0.68 0.75 0.70 0.83 0.75 0.45 0.55 0.63 0.68 0.60

0.75 0.75 0.85 0.75 0.70 1.03 0.50 0.55 0.63 0.50 1.10 0.70

0.75 0.68 0.95 0.95 0.95 0.70 0.70 0.50 0.60 0.70 0.80 0.80

0.95 0.68 0.75 1.20 0.90 0.50 0.70 0.50 0.75 0.50 0.80 0.50

0.75 0.68 0.85 0.75 0.90 0.85 0.70 0.58 0.50 0.65 0.60 0.60

0.85 0.83 0.75 1.00 0.80 0.75 0.80 0.75 0.68 0.63 035 0.50

0.60 0.70 0.75 0.75 0.83 0.60 0.60 0.50 0.60 0.63 0.45 0.65

0.80 1.20 0.75 0.88 1.05 0.70 0.75 0.70 0.65 0.45 0.50 0.80

0.75 0.75 0.60 0.63 0.88 0.70 0.83 0.80 0.83 0.70 0.50 0.50

0.83 1.05 0.88 1.05 1.05 0.83 0.75 0.88 0.68 0.65 035 0.65

0.75 0.65 0.68 0.95 0.80 1.10 0.45 0.40 0.80 0.50 0.50 0.60

1.10 0.75 0.80 0.88 1.00 0.90 0.63 0.50 0.50 0.55 0.60 0.55

1.00 0.70 0.75 0.80 0.68 0.75 0.70 035 0.50 0.55 0.70 0.45

0.70 0.75 0.85 0.70 0.70 0.70 0.70 0.45 0.55 0.75 0.45 0.58

0.80 0.80 0.80 0.88 1.05 0.75 0.50 0.55 0.80 0.75 0.80 0.50

0.70 0.68 0.75 1.00 0.75 0.90 0.68 0.45 0.55 0.50 0.50 0.50

0.70 0.75 0.75 1.20 0.80 0.68 0.60 0.58 0.75 0.45 0.68 0.58

0.60 1.00 1.05 0.55 0.90 0.75 0.70 0.45 0.68 0.55 0.45 0.50

1.05 0.83 1.25 0.80 0.90 0.65 0.55 0.40 0.45 0.70 0.50 0.68

0.90 0.95 0.68 0.60 0.63 0.68 0.70 0.55 0.55 0.65 1.00 0.63



THE EFFECTS OF BIOCHAR SOIL AMENDM ENT PARTICLE SIZE

(see section 5.4). This could have a more significant effect on the hydrologic 

properties of larger particles as a larger number of pores could be cut off by a 

melt than would be the case in smaller particles.

The finding that there were no significant differences between die effects of 

different biochar particle size fractions on matric suction suggests that the 

two-week incubation period allowed sufficient time for moisture to be 

absorbed by pores further inside larger particles, with the amount of water 

held by biochar being equal regardless of particle size and /  or that die 

moisture content of the soil was sufficiently low to mean that only a certain 

percentage of biochar porosity was holding water, regardless of particle size. 

As the different size fractions were all produced under the same conditions, 

their pore size distribution would have been similar, meaning that there 

would be no differences in matric suction if they had wetted equally.

The differing effects of different sized biochar particles observed in die 

present study contrast somewhat with the findings of Lehmann et a l (2003) 

who used biochars of < 2 mm and -20 mm particle size (in absolute terms, a 

much greater difference in size than was investigated in die present study) 

and observed no differences in crop growth. Nonetheless, it should be noted 

dial Lehmann et a l (2003) irrigated the soils in their study daily to maintain 

-60% of WHC. The findings of the present study suggest that the findings of 

Lehmann et a l (2003) might have been different had irrigation instead been 

applied to nearer 100% of WHC, with soils allowed to dry out more 

completely (over several days) before rewetting. If larger biochar particles do 

not necessarily wet as completely as smaller biochar particles, the moisture 

content of soils containing larger biochar particles would have been lower,


