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Abstract

Glycinergic neurotransmission is a major inhibitory influence in 
the CNS and defects are associated with paroxysmal neuromotor 
disorder, hyperekplexia with mutations in subunits of the 
inhibitory glycine receptor which facilitates postsynaptic ligand- 
binding, ion-channels. This study investigates the human 
glycinergic system by; 1) Mutation analysis o f glycinergic 
candidate genes in hyperekplexia: the DNA sequencing of GLRA1 
in 88 hyperekplexia patients revealed 30 sequence variants; 21 
were inherited in recessive mode or part of compound 
heterozygosity, indicating that recessive hyperekplexia is more 
common than previously expected. Further screening of the 
glycine transporter-2 gene (SLC6A5) as a candidate gene, 12 
SLC6A5 mutations were found in 7 human hyperekplexia cases 
inherited predominantly by compound heterozygosity. 2) 
Biophysical analysis and molecular modelling o f GLRA1 mutations: 
which demonstrated that subcellular localisation defects were the 
major mechanism underlying recessive mutations. Other mutants 
typically show alterations in the dose-response curve for glycine 
suggestive of disrupted signal transduction. This study reports 
the firs t hyperekplexia mutation associated with leaky current 
suggesting tonic channel opening as a new receptor mechanism 
and fully-supported by molecular modelling. 3) Molecular and 
immunoreactive analysis o f gephyrin heterogeneity in human 
brain: gephyrin encodes a multifunctional cytoplasmic protein 
im portant fo r organizing glycine and GABAa receptors at the 
postsynaptic membrane. Gephyrin has many different transcript 
isoforms and the study describes the population /  distribution of 
gephyrin isoforms in neuronal tissues using molecular and 
immunohistochemical techniques. The heterogeneity of gephyrin 
cassettes indicates that each cassette is temporally and spatially 
regulated with unique patterns of glycine receptors co-localisation 
and we hypothesise that different gephyrin isoforms exhibit 
differential binding specificity affecting protein-protein 
interactions. This thesis describes that hyperekplexia is 
definitively a glycinergic disorder with several mechanism of 
molecular pathogenicity. Moreover, the underlying complexity of 
proteins, such as gephyrin, reveals further challenges in 
interpretating the functional significance of the neuronal 
heterogeneity.
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Chapter 1 Introduction

Fast synaptic neurotransmission in the central nervous system 

(CNS) is mediated by members of the ligand-gated ion channel 

superfamily, which includes the glycine receptor (GlyR), 

acetylcholine receptor (AchR), gamma-aminobutyric acid receptor 

(GABAR), and glutamate receptors (Celesia, 2001). These 

channels share sim ilar structures and conduct neuronal signaling 

by perm itting ionic flux which changes the membrane potential 

(Breitinger and Becker, 2002). Mechanisms of the excitatory 

neurotransmission and/or inhibitory neurotransmission have been 

intensively studied in many neurological diseases such as 

Alzheimer's disease, Parkinson's disease, hyperekplexia and 

psychiatric disorders (Cyr et al., 2002; Grossberg, 2002; 

Moghaddam, 2002; Segovia, 2002; Brotchie, 2003; Spedding et 

al., 2003) In particular, inhibitory transmission pathways have 

been pharmacological targets to relieve neurological and 

psychiatric symptoms such as depression, epileptic seizures, and 

psychosis (Ketter and Wang, 2003; Lynch, 2009). However, the 

mechanisms underlying inhibitory neurotransmission are not well 

understood. This thesis aims to provide better understanding of 

the glycinergic inhibitory system using the following two 

approaches: 1) mutation analysis of a neurological disorder, 

hyperekplexia, which is associated with defects in the inhibitory 

glycinergic molecules; 2) molecular investigation of a 

multifunctional scaffolding molecule, gephyrin, which is important 

for organizing of inhibitory GlyRs and GABA type-A receptor 

(GABAaR) at the postsynaptic membrane of neurons (Betz, 1998).

1



1.1 Inhibitory system

Glycine receptor (GlyR)s and GABA type-A receptor (GABAaR)s are 

the two major inhibitory determinants in the central nervous 

system (CNS) and regulated expression of these receptors at the 

postsynaptic cell membrane surface is crucial for the balance 

between neural excitation and inhibition (Lynch, 2004). Defects in 

several determinants in the glycinergic system (Shiang et al., 

1993; Rees et al., 1994; Rees et al., 2002; Harvey et al., 2008) 

are associated with startle disorder or hyperekplexia 

(OMIM: 149400) which can provide an excellent opportunity to 

study the dynamics and mechanisms underlying the inhibitory 

system. Before we examine the molecular basis of hyperekplexia 

(HE) later in this chapter (section 1.2), the glycinergic system will 

be briefly reviewed in this section.

1 .1 .1  G lycine re c e p to r

Glycinergic neurotransmission mediates postsynaptic inhibition 

mainly in the spinal cord and the mammalian central nervous 

system (Figure 1.1) (Betz et al., 1999). Binding of a 

neurotransm itter (or ligand), such as glycine, to GlyR mediates a 

conformational change which then leads to the opening of the 

channel gate followed by influx of Cl' and hyperpolarisation of the 

cell (Lynch, 2004). GlyRs are a member of the Cys-loop ligand- 

gated ion channel (LGIC) superfamily and GlyR consists of five 

subunits with each of which comprising a large N-terminal extra

cellular domain, followed by four membrane-spanning domains 

(M1-M4) and a short extracellular C-terminus (Celesia, 2001).

2
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Like other members of the cys-loop LGIC superfamily, GlyR subunit 

has ligand-binding sites at the interface of two adjacent N-terminal 

domain, and a channel pore-forming M2 region (Breitinger and 

Becker, 2002; Lynch, 2004). The adult human glycine receptor 

has at least four subunits, a l,  a2, a3 and p (Betz et al., 1999) and 

the expression of GlyRs are spatially and developmentally 

regulated: the neonatal isoform is mainly a homopentamer of a2 

subunits encoded by the GLRA2 gene (Lynch, 2004; Lynch, 2009), 

whilst the most abundant adult isoform is a hetero-pentamer 

consisting of ligand-binding a l and structural p subunits at a 

2 a l:3 p  stoichiometry (Grudzinska et al., 2005). The 

heteropentameric a ip  GlyR is the most abundant form of GlyRs in 

the adult human brain, however the a l GlyR subunits are able to 

generate a functional homo-pentameric receptor, whereas the p- 

subunit requires alpha subunits to form a functional channel 

(Lynch, 2009).

The formation of GlyR clusters at the postsynaptic sites requires 

the interaction of the p-subunit with a multifunctional scaffolding 

protein named gephyrin (Meyer et al., 1995). Gephyrin in turn 

binds to a variety of structural molecules including microtubules, 

collybistin and microfilaments to form the subsynaptic cytoplasmic 

matrix or lattice (reviewed in Fritschy et al., 2008). Mice with 

complete loss of gephyrin generated by antisense primers or 

transgenic gene knockout, resulted in the abolished postsynaptic 

clustering of GlyRs (Kneussel et al., 1999). The importance of 

gephyrin is further discussed in detail later in this chapter (section 

1.3).
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1 .1 .2  G lyc in erg ic  system

The glycinergic system is established throughout the brain but does 

play a subservient role relative to GABAergic neurotransmission. 

GlyRs are highly-enriched in the medullary brainstem and spinal 

cord with other regions in the basal ganglia and auditory pathways 

also heavily innervated with glycinergic inputs (Baer et al., 2003). 

On the molecular level expression of GlyRs at the postsynaptic cell- 

surface and controlled release of neurotransmitters such as glycine, 

are critical aspects of maintaining the normal inhibitory function 

(Lynch, 2004).

In the synaptic cleft, glycine is removed by two discretely-localized 

Na+/CI- dependent glycine transporters, G lyTl and GlyT2 (Harvey 

et al., 2008). G lyT l is mainly expressed in glial cells and 

term inates neurotransmission by removing excess glycine for 

enzymatic degradation via glycinergic cleavage system (GCS) 

(Gomeza et al., 2003). G lyT l is also involved in controlling glycine 

concentration at the excitatory /V-methyl-D-aspartate synapses 

(Gabernet et al., 2005). Alternatively, GlyT2 transports glycine 

into the presynaptic term inal for repackaging into synaptic vesicles 

by the low-affin ity vesicular transporter (VGAT/VIAAT) (Supplisson 

and Roux, 2002; Gomeza et al., 2003) (Figure 1.1). The knockout 

mouse for GlyT2 has a hyperekplexia-like phenotype whilst the 

G lyT l knockout is an embryonic lethal (Gomeza et al., 2003).

GlyR a l  knockout mice also have a lethal outcome, in contrast with 

human hyperekplexia patients with null mutations in the G lyRal 

subunit where a lethal outcome is avoided through a theoretical 

compensatory GABAergic mechanism (Kling et al., 1994). This is 

partially supported by the action of benzodiazepine drugs which 

enhance the GABAergic inhibition and are the main frontline drug in

5



alleviation of hyperekplexia symptoms. GlyRs also co-exist with 

GABARs in the spinal cord neurons and glycine can be co-released 

with GABA from the axonal presynaptic term inals (Triller et al., 

1987; Maxwell et al., 1995). Therefore it is likely that inhibitory 

influences in the brain and spinal cord are sometimes a mixed 

influence of GABAergic and glycinergic effects, but the reason for 

this is unclear. Although it may go some way to explain the 

relative moderate effects of human knockout phenotypes.

1.2 Hyperekplexia

Hyperekplexia (HE), also known as startle disease, is the first 

human disease identified as a result of mutations within a 

neurotransm itter gene in the CNS (Andrew and Owen, 1997). 

From the findings of this study/ thesis, hyperekplexia is also the 

firs t human neurological disorder with mutations in a cognate 

neurotransporter gene (Rees et al, 2006). The startle response is 

a normal and basic reaction to sudden unexpected stimulation. 

The reaction, however, can be present in a pathologically 

excessive, abnormal form and this clinical entity was in itia lly 

termed "Hyperexplexia" meaning 's ta rtle ' in Greek (Gastaut and 

Villeneuve, 1967). Hyperexplexia was then replaced by 

"Hyperekplexia" using the correct Greek word for startle (Gastaut 

and Villeneuve, 1967). Hyperekplexia is a relatively rare, but 

potentially fatal, neurological disorder characterized by an 

abnormal startle reflex and an exaggerated muscle stiffness in 

response to sudden, unexpected auditory or tactile stimuli (Gastaut 

and Villeneuve, 1967)
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1.2.1 Clinical aspects of hyperekplexia

Symptoms

The disorder is characterised by exaggerated startle and stiffness 

due to an abnormal increase in muscle tension and the reduced 

ability of a muscle to stretch (hypertonia) (Gastaut and Villeneuve, 

1967). The symptoms are most severe in neonates and infants 

and the affected newborns suffer from essentially continuous, but 

variable muscular rig id ity and the intense hypertonicity can lead to 

breath-holding spells and prolonged cyanotic attacks. They are 

also at risk of sudden death from apnea or aspiration (Nigro and 

Lim, 1992; Praveen et al., 2001). Several cases of sudden infant 

death syndrome (SIDS) were reported in association with 

hyperekplexia (Giacoia and Ryan, 1994). Delay in the acquisition 

of motor skills is common in infants with hyperekplexia due to 

hypertonicity. The hypertonia -  which is predominantly in the 

trunk and lower limbs - often diminishes during the firs t year of 

life, but the pathological startle response, which can provoke 

unprotected falls and result in in jury, remains throughout 

development and into adulthood (Nigro and Lim, 1992; Praveen et 

al., 2001). Patients of all ages experience brief attacks of 

generalized, intense spasm of skeletal muscles in response to 

sudden, unexpected noises or tactile stimulation (Zhou et al., 

2002). Startle induced spasms often cause unprotected falls 

w ithout loss of consciousness, resulting in severe injuries.

Classification

Hyperekplexia is a primarily hereditary non-epileptic paroxysmal 

disorder, transm itting in dominant or recessive manner. Sporadic 

cases of HE, symptomatic HE, have also been reported, particularly 

in association with other brain disorders, such as brainstem lesions 

or frontal lobe dysfunction (Brown et al., 1991; Kellett et al., 1998;



Gambardella et al., 1999; Ruprecht et al., 2002; Gaitatzis et al., 

2004). Abnormal startle response can be associated with other 

neuropsychiatric and neurophysiological disorders such as the 

congenital stiff-man syndrome, startle epilepsy, myoclonic seizures, 

cerebral palsy, neuromyotonia, Tourette syndrome, Swartz Jampel 

syndrome, and Coffin-Lowry syndrome (see Appendix B).

Diagnostic criteria

The diagnosis of hyperekplexia can be established by presence of 

the following features: 1) neonatal hypertonia; 2) excessive startle 

reactions followed by general muscle stiffness in response to 

sudden and unexpected tactile /auditory stim uli; 3) abnormal startle 

reactions induced by nose tapping; 4) fall-down startle reactions 

(Matsumoto et al., 1992; Meinck, 2006). A detailed diagnostic 

inclusion criteria is included in Appendix A. Startle attacks may 

simulate pseudo-epileptic seizure episodes. Genotype-phenotype 

correlations have not yet been established in hyperekplexia.

Treatm ents

Benzodiazepines, which enhance GABAaR activity, are currently the 

treatm ent of choice. Clonazepam often, but not always, has a 

dramatic and sustained effect on the symptoms of hyperekplexia 

(Scarcella and Coppola, 1997; Stewart et al., 2002). However, 

despite a successful treatm ent of the excessive startle response, 

further attention is needed to approach the residual problems that 

may arise from the fear of falling, such as anxiety disorders, 

depression, and the side-effects clonazepam may cause. 

Interestingly, it was reported that enhancing GlyR activity has 

tem porarily diminished the hyperekplexia phenotype in mutant 

mice (Kung et al., 2001). Further investigation into development 

of drugs that enhance GlyR response may provide potential 

therapeutic options for hyperekplexia patients.
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1.2.2 Pathogenesis of hyperekplexia

Hyperekplexia was firs t described in 1958 (Kirstein and 

Silfverskiold, 1958) and the pathogenesis of HE was unclear for 

many decades. Recent advances in molecular genetics have 

revealed tha t HE is associated with mutations in genes involved in 

the glycinergic inhibitory pathway (Shiang et al., 1993). 

Hyperekplexia is the firs t neurological disease identified as a result 

of mutations within a neurotransm itter gene, GLRA1 and Na+/CI- 

dependent neurotransm itter transporter, GlyT2 (Rees et al 2006 

and this study). Defects in these genes can result in decreased Cl" 

currents and consequently impaired glycinergic inhibitory 

transmission which may lead to excessive startle reaction and 

muscle stiffness (Harvey et al., 2008)

To date, five genes are associated with hyperekplexia: GLRA1, 

SLC6A5, GLRB, gephyrin - GPHN, and collybistin - ARHGEF9 have 

been identified using a positional cloning strategy and an animal 

model /  candidate gene approach. Of these genes 1) GLRA1 and 

GLRB encode a and P subunits of inhibitory glycine receptor (GlyR), 

respectively (Shiang et al., 1993; Rees et al., 2002); 2) SLC6A5 

encodes for the glycine transporter subtype-2 (GlyT2) which plays 

an im portant role in neurotransm itter reloading of synaptic vesicles 

at glycinergic synapses (Rees et al., 2006); 3) GPHN encodes the 

peripheral membrane protein, Gephyrin, that is involved in 

clustering and anchoring of two m ajor inhibitory receptors, GlyR 

and GABAR (Rees et al., 2003); 4) ARHGEF9 encodes collybistin 

which is necessary fo r clustering of gephyrin on postsynaptic sites. 

GLRA1 is regarded as the most prevalent gene associated with 

hyperekplexia - accounting for 70% of all hyperekplexia mutations 

identified thus far. Mutations in GLRB, GPHN, and ARHGEF9 are 

rare causes of HE with only one case per gene reported- albeit with

9



functional evidence of pathogenicity (Rees et al., 2002; Rees et al., 

2003; Harvey et al., 2004) (Table 1.1). SLC6A5 was identified as 

the second major gene in hyperekplexia as part of this study and 

the findings will be discussed in Chapter 3.

Table 1.1 Genes associated with hyperekplexia.

Gene Protein Locus Incidence

GLRA1 GlyR al subunit 5q33-q35 > 70 %

SLC6A5 GlyT2 llpl5.1 20%

GLRAB GlyR (b-subunit 4q31.3 3%

GPHN Gephyrin 14q23.3 3%

ARHGEF9 Collybistin Xqll.2 <2%

1.2 .2 .1  Hyperekplexia associated genes -  GLRA1

GLRA1 consists of 9 exons and spans 100 kb of genomic sequence 

(Shiang et al., 1993) and hyperekplexia is the only phenotype 

associated with mutations in GLRA1. After the identification of the 

firs t hyperekplexia mutation, R271Q, in dominant hyperekplexia 

families in 1993, over 29 distinct GLRA1 mutations have been 

identified in 56 index cases from various studies and involving 

missense, nonsense and frame shift mutations, including 3 cases of 

compound heterozygotes and 15 presenting as recessive 

hyperekplexia cases (Table 1.2). Interestingly, an analysis of the 

transgenic mouse expressing the mutant human GLRA1 (R271Q) 

showed tha t this mutation diminished both GlyR and GABA-A 

receptor mediated inhibitory transmission (Becker et al., 2002). 

This indicates that the expression of a m utant gene affects the 

entire postsynaptic mechanism of inhibition.
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All nonsense and fram eshift GLRA1 mutations identified to date are 

associated with recessive cases of hyperekplexia with 

asymptomatic parental carriers, proving that hyperekplexia is not 

susceptible to haploinsufficiency (Brune et al., 1996; Rees et al.,

2001). In contrast to other diseases caused by dysfunction of ion 

channels (channelopathies) or in murine hyperekplexia models 

(Buckwalter et al., 1994; Traka et al., 2006), patients with 

recessive or null mutations in GLRA1 were not associated with 

particularly severe cases of hyperekplexia. This indicates that the 

complete loss of GlyR a l function in humans may be tolerated due 

to compensatory mechanisms possibly by other inhibitory 

influences (Harvey et al., 2008).

1 .2 .2 .2  Hyperekplexia associated genes -  GLRB

GLRB consists of 9 exons and spans 95 kb of genomic sequence 

(Milani et al., 1998) and currently hyperekplexia is the only 

disorder associated with mutations in GLRB. GLRB in addition to 

GLRA3 are candidates genes for autism and idiopathic generalized 

epilepsy (Sobetzko et al., 2001; Ramanathan et al., 2004). To 

date only one compound heterozygote has been identified in a 

transient hyperekplexia case (Table 1.2) (Rees et al., 2002). A 

missense mutation in this case leads to a GlyR with a reduced 

agonist sensitivity, whereas a splice site error results in exon 

skipping. Both mutations did not produce a hyperekplexia 

phenotype in heterozygous asymptomatic parents.

1.2 .2 .3  Hyperekplexia associated genes -  GPHN

GPHN consists of 27 exons and spans 700 kb of genomic sequence. 

GPHN encodes the peripheral membrane protein, gephyrin, which 

is involved in organizing and clustering of the two major inhibitory 

receptors, GlyR and GABAaR, to the postsynaptic membrane. 

Gephyrin mediates GlyR anchoring by binding to the p subunit of

14



GlyR. One missense mutation was described in a transient HE case 

(Table 1.2) (Rees et al., 2003). Functional studies of the GPHN 

mutation shows that it did not affect interactions with GlyR, but it 

remains unknown if the mutation affects interactions with other 

gephyrin-binding proteins.

1 .2 .2 .4  Hyperekplexia associated genes - ARHGEF9

ARHGEF9 encodes collybistin, a RhoGef protein which is required 

for clustering of gephyrin on postsynaptic sites (Kins et al., 2000). 

ARHGEF9 consists of 10 exons and spans 120.18 kb of genomic 

sequence. One ARHGEF9 missense mutation, G55A, was identified 

in a young patient with a severe case of hyperekplexia and 

epileptic encephalopathy phenotypes who died at the age of four 

(Harvey 2004). Functional studies of ARHGEF9 G55A indicated that 

the mutant collybistin disturbed the localization of gephyrin and 

GlyR at the postsynaptic sites.

1 .2 .3  Functiona l an a lys is  o f GLRA1 m u ta tio n s

Recessive mutations are scattered throughout the a l  GlyR channel, 

whereas, dominant mutations are specifically clustered around the 

M2 domain containing an ion-selectivity filte r and flanking regions 

(Figure 1.2). Previously-identified dominant GLRA1 mutations have 

all been missense mutations predominantly located either in the M2 

pore-lining domain of the GlyR a l  subunit (V260M and Q266H, 

S270T), or in the M1-M2 /  M2-M3 loops adjacent to the M2 domain 

(P250I, R271L/Q, K276E, and Y279C/S) (Shiang et al., 1993; 

Elmslie et al., 1996; Milani et al., 1996; Saul et al., 1999; del 

Giudice et al., 2001; Lapunzina et al., 2003; Poon et al., 2006; 

Becker et al., 2008; Gregory et al., 2008). The functional 

consequences of dominant GLRA1 mutations have been extensively 

studied and heterologous expression studies demonstrate tha t
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mutations in these regions exert dominant-negative effects by 

altering the channel gating process, conductance or agonist 

sensitivity (Rajendra et al., 1994; Laube et al., 1995; Saul et al., 

1999; Breitinger et al., 2001; Breitinger et al., 2004).

Ion selectivity of the ligand-gated ion channels is controlled by the 

charged residues in the pore lining region and the size of pore 

diameter. The smaller the pore diameter, the higher the 

permeability of anions (Lynch, 2004). The substitution of proline to 

threonine at the P250T mutation increases the pore diameter, 

thereby altering the channel conductance. The high-frequency 

R271Q mutation (identified in at least 18 independent families with 

dominant hyperekplexia), which substitutes a positively charged 

highly hydrophilic arginine to glutamine, can alter the channel 

conductance by changing polarity (Langosch et al., 1994).

All nonsense and frameshift GLRA1 mutations identified to date are 

associated with recessive cases of HE with asymptomatic parental 

carriers, proving that hyperekplexia is not susceptible to 

haploinsufficiency (Brune et al., 1996; Rees et al., 2001). 

Identification and functional studies of two recessive missense 

mutations, I244N and S231R revealed a reduction in whole cell 

channel current possibly due to the defects in receptor trafficking 

or a decrease of membrane expression (Lynch et al., 1997; Rees et 

al., 2001; Humeny et al., 2002). Thus, it was suggested that the 

compensation mechanism is induced by a reduction of cell surface 

GlyR numbers, but not by the alteration in GlyR function (Humeny 

et al., 2002).

Further functional studies, however, are necessary to investigate 

whether the traffic defects and reduced number of cell-surface GlyR 

numbers are the initiating factor fo r the compensatory mechanism.
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Recessive mutations interfere with some aspect of receptor 

expression, folding, assembly, trafficking, or stability. A GABAaR 

gamma-subunit mutation, R43Q, interferes with receptor assembly, 

trafficking, or surface expression (Kang and Macdonald, 2004)

1 .2 .4  H y p e re k p le x ia  a n im a l m odels

Defects in glycinergic genes are also associated with hereditary 

motor disorders with exaggerated startle responses and increased 

muscle tone in a variety of mammalian species (Table 1.3) 

(Buckwalter et al., 1994; Kingsmore et al., 1994; Ryan et al., 

1994; Kling et al., 1997; Becker et al., 2000; Becker et al., 2002). 

A LINE-1 transposable element in the Glrb results in aberrant 

splicing of the p subunit transcripts in the spastic mouse 

(Kingsmore et al., 1994). In spasmodic, a point mutation causing 

a A52S missense change in G lra l causes ligand sensitivity 

problems. In homozygous spastic and spasmodic mice, when the 

neonatal isoform of GlyRs change over to the adult isoform of the 

GlyRs (at about 2 weeks of age), a severe neuronal motor

phenotype develops.

A microdeletion in the G lra l leads to a truncated protein devoid of

the M3-M4 loop and M4 of the protein in oscillator mouse

(Buckwalter et al., 1994). A severe neuromotor phenotype was 

also observed in homozygous oscillator 2 weeks after the birth and 

they usually die within a week. Mutations in glycinergic genes are 

also responsible for hyperekplexia in cows, dogs, goats, and 

various interbred mammals (Harvey et al., 2008). Gephyrin-

deficient mice displayed phenotypes sim ilar to human hereditary 

molybdenum cofactor deficiency and hyperekplexia further 

suggesting that gephyrin is essential for synaptic clustering of 

glycine receptors as well as molybdenum enzyme activity (Feng et 

al., 1998).
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1.3 Gephyrin

Gephyrin, meaning 'bridge' in Greek, plays two distinctive and 

independent roles; 1) clustering inhibitory Glycine and GABAa 

receptors at the postsynaptic membrane of neurons; 2) 

molybdoenzyme activity in non-neuronal tissues and glial cells in 

the CNS (Feng et al., 1998; Stallmeyer et al., 1999; Smolinsky et 

al., 2008). Rare defects in gephyrin can result in a neurological 

startle disorder, hyperekplexia, hereditary molybdenum cofactor 

deficiency and is disrupted in specific leukaemia translocation 

breakpoints (Reiss et al., 2001; Rees et al., 2003; Macaya et al.,

2005). Gephyrin is encoded by a single-copy gene located on the 

chromosome 14 (14q23.3) in human and it has at least 29 exons, 

eleven of which undergo alternative splicing generating multiple 

isoforms (David-Watine, 2001; Rees et al., 2003).

The diversity of human gephyrin isoforms are mainly generated by 

alternative splicing of C3/C4cassettes in the central linker region of 

gephyrin (Rees et al., 2003) whereas in rodents, splicing exons in 

the N or E term inal regions also account for generating multiple 

isoforms (Meier et al., 2000; Fritschy et al., 2008) (Figure 1.3). 

Studies on rodent gephyrin isoforms demonstrated tha t the 

presence or absence of central linker region can interfere with the 

postsynaptic clustering of glycine receptor (Meier et al., 2000; 

Schrader et al., 2004; Bedet et al., 2006). Mice with complete loss 

of gephyrin by antisense primers or transgenic gene knockout 

resulted in severe depletion of GlyRs (Kneussel et al., 1999).

1 .3 .1  G ephyrin  h e te ro g e n e ity

Alternative splicing is one of the major mechanisms underlying the 

functional diversity of proteins and at least two thirds of multi-exon
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genes are subject to alternative splicing (Lander et al., 2001; 

Modrek et al., 2001; Johnson et al., 2003; Ben-Dov et al., 2008; 

Melamud and Moult, 2009). Particularly, the tissue-specific splicing 

events are most common in the nervous system to accommodate 

the functional diversity observed in neurological systems (Xu et al.,

2002). Gephyrin, a multifunctional cytoplasmic protein, provides 

an outstanding example of tissue-specific alternative splicing in the 

neuronal context (reviewed in Fritschy et al., 2008).

Previous studies demonstrated that human neuronal tissues 

express over a dozen variants of gephyrin isoforms, generated 

from alternatively spliced exons, whereas non-neuronal tissues 

express a single gephyrin transcript (David-Watine et al., 2001; 

Rees et al., 2003). Functional studies on rodent gephyrin isoforms 

suggested different gephyrin isoforms exhibit different binding 

specificity and thereby affect protein-protein interactions (Meier et 

al., 2000; Bedet et al., 2006; Smolinsky et al., 2008). The variety 

and biological significance of gephyrin heterogeneity in the human 

brain, however, remains to be characterised and justified. Further 

analysis of gephyrin transcripts will lead to better understanding of 

the mechanisms underling the expression of specific splice variants 

and the ir functional roles in the dynamics of inhibitory 

neurotransmission.

1 .3 .2  Functiona l e ffe c ts  o f g e p h y rin  iso form s

The central region contains several potential protein-interaction 

domains whereas both N and E term inal regions, homologous to 

Escherichia coli MogA and MoeA enzymes, are involved in the 

synthesis of molybdenum cofactor (MoCo) (Kneussel and Betz, 

2000; Fritschy et al., 2008). Recent findings suggest that gephyrin 

is involved in the modulation of signaling pathways by interacting
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with several neurological partners including Mena/VASP 

(mammalian enabled/vasodilator stimulated phosphoprotein), 

dynein light chain, RAFT1 (rapamycin and FKBP12 target 1), 

collybistin, or the actin-binding protein profilin (Sabatini et al., 

1999; Kins et al., 2000; Fuhrmann et al., 2002; Giesemann et al., 

2003; Bausen et al., 2006). Thus, the activity of the central linker 

region is regarded as essential for brain-specific functions and 

studies in rodents suggest that heterogeneous gephyrin isoforms 

enable differential binding-specificity and thereby affect protein- 

protein interactions (Meier et al., 2000; Bedet et al., 2006). 

Gephyrin interacts with GlyR (3 subunit through its E-domain but 

recent studies on rodent gephyrin isoforms demonstrate that the 

presence or absence of central linker region can interfere with the 

postsynaptic clustering of GlyRs (Meier et al., 2000; Schrader et 

al., 2004; Bedet et al., 2006).

Previous studies demonstrated that gephyrin is ubiquitously 

present in the human brain and it is co-localized with the majority 

of GlyRs (over 50%) in the human brainstem and spinal cord (Baer 

et al., 2003; Waldvogel et al., 2003; Waldvogel et al., 2007). 

Although GlyRs are also identified in the upper brain regions, such 

as basal ganglia, auditory cortex and amygdala, the greatest 

concentration of glycine and GlyRs are located in the brainstem, 

spinal cord and retina (Greferath et al., 1994; Maksay et al., 2002; 

Waldvogel et al., 2003; Waldvogel et al., 2007).
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1.4 Aims and Objectives of Research

1. To assess the GLRA1 mutation spectrum in a large hyperekplexia 

cohort.

2. Investigate if a new candidate gene, SCL6A5, is responsible for 

hyperekplexia in GLRA1-negative cohorts.

3. Establish the functional basis of GLRA1 mutation pathogenicity 

using biophysical assays, cell-surface experiments and molecular 

modelling.

4. Investigate the extent and baseline of gephyrin isoform 

heterogeneity in specific areas of the human brain, the spinal 

cord and retinal tissues.

5. To complement and accompany objective 4, investigate the 

distribution of gephyrin isoforms in the human brain and spinal 

cord using new custom-made gephyrin antibodies.

6. Immunofluorescent co-localisation studies with the new gephyrin 

cassette antibodies with GlyR receptor subunits and 

constitutional full-length gephyrin in normal human brain 

samples.

1.5 Justification of Research

Although, the mechanisms of inhibitory neurotransmission have

been intensively studied in many neurological diseases such as

Alzheimer's disease, Parkinson's disease, hyperekplexia and

psychiatric disorders (Cyr et al., 2002; Grossberg, 2002;

Moghaddam, 2002; Segovia, 2002; Brotchie, 2003; Spedding et
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al., 2003), the mechanisms underlying the inhibitory network are 

still relatively undefined.

The structural and physiological properties of GlyRs have been 

extensively investigated using random site-directed mutagenesis 

approach (Shan et al., 2002; Nevin et al., 2003; Shan et al., 2003; 

Han et al., 2004; Hawthorne et al., 2006; Press et al., 2007; Yang 

et al., 2007; Heads et al., 2008; Press et al., 2008; Yang et al., 

2008; Chen et al., 2009; Press et al., 2009), however, these 

studies do not provide us with clinical perspective and the in-vivo 

biological significance of the receptor activity. Furthermore, the 

hyperekplexia literature is dominated by small studies or single 

case-studies where it is difficult to arrange meaningful cohort- 

based research or establish translational genetics trends. There is 

also the false perception that hyperekplexia is a dominant disease 

when slowly, but surely, the evidence-base is indicating that it is a 

recessive disorder on a world-wide basis.

With 88 patients gathered over 15 years from centers around the 

world, this study regards our assembled cohort as a compelling 

resource to bypass the numbers lim itation to establish trends. The 

outcomes of the genetic screening will create 2 research 

opportunities; the firs t is the pathophysiological characterization of 

the gene-positive cases, and the second being further gene- 

discovery work in those cases who remain gene-negative. This 

genetic triaging has the advantage of respective patient audit to 

establish phenotypic trends that will improve future study inclusion 

criteria.

The discovery of any clinically-relevant mutation in receptor biology 

triggers an opportunity to define pathophysiological mechanisms 

and a direct cause of disorder onset. This also can provide insights
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in other channelopathy disorders (e.g. epilepsy, arrhythm ia, 

m igraine) where sim ilar gene-family structures (e.g. GABA, ACh 

receptors) can adopt principles from other channelopathy findings. 

As the research on inhibitory systems becomes more developed 

then the baseline research can be used in the development of new 

interventions and also provide insights into drug-resistance and 

side-effect causes in existing interventions.

The controlled expression and clustering of glycine receptors at the 

postsynaptic sites are vital fo r normal inhibitory function. Recent 

studies demonstrated tha t the stable clustering of GlyRs at the 

synaptic sites can be achieved through interacting with gephyrin as 

well as the controlled expression of gephyrin isoforms (Bedet et al.,

2006). The altered level of gephyrin has been implicated in 

neurological disorders such as Alzheimer's disease (AD), chorea- 

acanthocytosis (ChAc) and amyotrophic lateral sclerosis (ALS) 

(Kurano et al., 2006; Lorenzo et al., 2006; Agarwal et al., 2008). 

In this study, the heterogeneity of gephyrin splicing cassette at the 

human brain will be examined in both mRNA and protein levels. 

Understanding the mechanisms of the startle disease and the 

characterization of the essential scaffolding molecule gephyrin, 

may ultim ately provide im portant new insights into the 

pathophysiology and treatm ent of other neurological disorders that 

are correlated with inhibitory neurotransmission.

1.6 Experim ental S trategy
From the beginning of this thesis work in 2005 there has already 

been a shift in technology platforms and so this must be considered 

in context with the following experimental approaches.
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1.6.1 Mutation analysis (Chapter 3 )

Based on the small cohort sizes and fragmented evidence-base for 

the genetic contribution of GLRA1 in hyperekplexia, we have 

screened the entire coding regions of GLRA1 gene for our eighty- 

eight hyperekplexia samples. Although GLRA1 is currently the 

major gene for hyperekplexia, more than two-th irds of screened 

patients are gene-negative. Therefore, using the candidate gene 

approach, we have selected a second gene to screen based on the 

hyperekplexia-like phenotype observed in GlyT2 knockout mice 

(Gomeza et al., 2003). The GlyT2 gene (SLC6A5) was analysed in 

all GLRAl-negative cases using Transgenomics dHPLC technology 

and direct sequencing due to the expense of mutation screening of 

both GLRA1 and SLC6A5 genes. dHPLC has now been superseded 

by the Idaho technologies LightScanner platform which is now used 

in continuing screening efforts.

1.6 .2  Functional analysis of GLRA1 m utations (C hapter 4 )

As new GLRA1 genotypes were identified the next step was to 

prepare for the biophysical characterization of the new gene 

variants. The experiments were conducted as a visiting RA at 

laboratories in London and Brisbane as part of a multi-centre 

collaboration. The generation of mutant GLRA1 constructs and 

immunostaining experiments were hosted by the School of 

Pharmacy (with Professor Robert Harvey) in London. The 

electrophysiological studies of mutants were conducted at the 

University of Queensland during a total of nine months of stay in 

2007 and 2008. In addition to the molecular genetics, the cell- 

surface biotinylation experiments and molecular modeling was 

completed within ILS, Swansea. The aim here was to provide 

convincing multi-disciplinary proof for GLRA1 pathogenicity.
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1.6 .3  Molecular basis of gephyrin isoforms in human brain  

(Chapter 5 )

To investigate the heterogeneity of gephyrin isoforms and 

biological basis behind GlyR clustering, cassette-specific primers 

and antibodies were generated. The expression level of cDNA 

transcripts were determined using RT-PCR and real-time PCR 

analysis. Whereas the distribution of the gephyrin proteins 

containing specific-cassettes was examined using 

immunohistochemical analysis of human brain sections from 

medulla oblongata and the cervical spinal cord. Further double

labelling immunocytochemical analysis was adopted to establish 

co-localisation trends between gephyrin cassettes and GlyRs.
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Chapter 2 Materials and Methods

This chapter will describe the methods and technical details of the 

experiments undertaken to deliver the experimental objectives 

outlined in Chapters 3-5. Several appendices have been prepared 

to add some background and indirect context to the work.

2.1 Mutation analysis of hyperekplexia

The molecular genetic analysis of candidate genes uses the 

techniques outlined in this section and relates to the results 

described in chapter 3.

2 .1 .1  P a tie n ts

With informed consent procedures in place, patients with suspected 

hyperekplexia were ascertained by referral from neurologists, 

paediatricians or clinical geneticists from centres around the world. 

Eighty-eight anonymized index patients were included in this study 

following phenotypic evaluation. Clinical inclusion criteria states 

that phenotypes such as non-habituating startle response (positive 

nose tap test), history of infantile hypertonicity and an exclusion of 

mimics such as startle-epilepsy (see Appendix A) are markers for 

human hyperekplexia. The 88 patients were then tested by PCR 

amplification methods and genomic sequencing in two 

hyperekplexia candidate genes.

2 .1 .2  DNA e x tra c tio n  fro m  blood

DNA was extracted from the patient's blood using standard phenol- 

chloroform extraction. Approximately 5 -lO m ls of the patient's 

blood was placed into a 50ml falcon tube and red cell lysis buffer
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was added to constitute a total volume of 50ml. The solution was 

placed on ice for 15 minutes and then centrifuged for 15 minutes at 

3000 rpm. The supernatant was discarded into a dedicated 

disposal bottle and a further 40ml of red cell lysis buffer was 

added. The tube was gently vortexed to break up the pellet, and 

centrifuged for lOminutes at 3000rpm. After the removal of the 

second supernatant, 4.5ml of proteinase K resuspension, 250pl of 

10% SDS and lOOpI of proteinase K was added. Following gentle 

agitation of the digest mix, the solution was incubated in a 37°C 

water bath overnight. All DNA samples were stored at -20°C.

2 .1 .3  P o lym era se  Chain R eaction  (P C R )

The genomic sequences of GLRA1 and SLC6A5 were determined 

using BLAST 2.2.14 (NCBI) software. The exonic fragments and 

exon-intron boundaries of GLRA1 and SLC6A5 were amplified using 

primers designed using the Primer 3.0 program (h ttp ://w w w - 

genom e.w i.m it.edu/cgi-bin/prim er/prim er3_www.cgi). To prevent 

allelic dropout, all primers were placed in intronic regions that were 

devoid of known SNPs as revealed by the SNP database at NCBI 

(Tester et al., 2006) and care was taken to avoid obvious short- 

repeat and alu-like structures. Primer sequences for both genes 

are presented in table 2.1.

Optimal PCR protocols were established for GLRA1 and SLC6A5 

exons using two control DNA samples with Qiagen PCR solution 

(Table 2.2). Genomic DNA was diluted to 8 ng/jil and PCR was 

performed in a total volume of 25 \i\ of a solution containing 80 ng 

of genomic DNA, 10 pmol of each forward primer and reversed 

primer, 200 jxM deoxynucleotide triphosphates (dNTPs), 1 Unit Taq 

DNA polymerase (Qiagen) using a PTC-200 thermal cycler (MJ 

Research Inc). Amplification conditions were an initial denaturation 

at 94°C for 5 minutes followed by 30 -  38 cycles at 94°C for 30
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Table 2.1 PCR primers for GLRA1 and SLC6A5

GLRA1 Primers

Exon Forward Primer 5 '-3 ' Reverse Primer 3 '-5 '
1 6AAAT AT ACCCACCCCCAAAC GGT AGCCTCCGT ACTCTTTCC
2 T AACCTGGGCCTT ACCT CATT CTGCTTGCTGCTTTAATCTGG

3 CAAGGATCTCCTCC ACC AAA TGGAGACCAATGCAGAGGATA
4 ACCCCCATATAAGATGCAACC TTTGGCCCCTCTTTT AGAGT C

5 A CCTATCCTGGGCAACTGA1 1 1 1 GCCT ATCCCATGGGT AAA A AG
5B CCTGGTCT CACAAGTTCCATC A A ATGACCTCTGGT CCTGGTT
6 TGTGAG ACTGAACCAGGACT CT T GTTTTAGGCAGAGCAAG&AA
7 ATGTGGGGAATT ACCGAAGAG GAAGGATGG ACC ATTGAAACA
8 GAAAT AT ACCCACCCCCAAAC 1GCA1CAC1GCA11 1 YGCTAT

SLC6A5 Primers

EXON Forward Primer 5 '-3 ' Reverse Primer 3 '-5 '
1 CTCTACAGCCCGATCCACTCT AAACGAATCT&CTTTCCCTGT
2 TAAAAGCTGTTGTGACTTT&TTTT G AC ACTGTGCGGGCCGT A AT
3 CTT GCTGGGAAGGACCCCT A T CCCACCCAACCCTCAGGT G
4 CAGGAATGGAGCT AAATTGTCC G AC AGAGT AAGAAAGGGCCTGA
5 TCCATTCT GT ACAAGAGAGCCT A CTCTGTGTTCCCAGAACCT AGT
6 GCAAATGTTTTTGGCATTTGT CACCTCTGGTCTGCA A ATTGA
7 TGTGATTAGGTTCCTGATGGTG CAGCTCCTGACTCT CTTT CCA

8 CCCTGATGTGCTCTCTGTCAT GT C 1 AACCCTTTTT&CCCAAG

9 TTTCCCCTGG A A AC ATGAT A GTGGCCTCAGGTGTCTGATAA

10 GCACACCTAATGGAAAACTCTG TCCTCCACCCTCTATCCTGTT
11 ACCAACAGTGGAAGCAGCATA AGGGGGAGTCTTCAAGAGGAG
12 GCCATCCT AAAAACCAAACCT CATGGAAATGGTAGTGATTTGC
13 TCCTGTTTGCACCTGACTCTT CATGAATGCCTTACCGACACT
14 GCTTGAGTGAGGGGCTCTAGT ACGT ATGCAAGGTGCTGTCTG
15 CGAAAGCATCAAACTCAT AACG GGCAACTGT A ATCGCTTCATC

16 CAAGGACTCTGGTCAAAGTGG AAATGGGAGGAGAGCr ATGGAA

31



Table 2.2 Amplification conditions for GLRA1 and SLC6A5

GLPlAl

Exon
Amplimer 
Size (bp)

PCR Temp 
(o C) PCR Cycles

1 453 60* 35
2 347 60 32
3 267 60 32
4 448 60* 32

5 A 243 60 32
5B 321 60 32
6 392 60 32
7 347 60 32
8 585 55Q* 35

SLC6A5

Exon
Amplimer 
Size (bp)

PCR Temp 
(oC) PCR Cycles

1 491 60 32
2 620 55Q 34
3 300 60 32
4 306 60 32
5 400 60 32
6 326 60 32
7 379 60 32
8 325 60 32
9 287 55 32
10 386 60 32
11 294 60 32
12 379 60 32
13 272 60 32
14 239 60 32
15 397 60 32
16 350 60 32

Q= addition o f Q solution (Qiagen) required, *=45 seconds annealing time required. A ll 

exons underwent 32 cycles o f  denaturation at 94 °C s, extension at 55-64 °C s and annealing 

at 72 °C s unless otherwise stated.
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seconds, 55-64°C annealing temperature for 30 seconds, and 72°C 

extension temperature for 30-45 seconds.

2 .1 .4  A g aro se  gel e le c tro p h o re s is

Agarose gel electrophoresis was used to separate and isolate DNA 

fragments. The percentage of agarose in the gel was selected 

based on the target size of DNA. Agarose gels at 1.5 % were 

selected for the m ajority of gels, as this was the optimal 

concentration for separation of DNA fragments between 200 bp and 

500bp in length, a range encompassing the m ajority of the exons 

in the hyperekplexia gene assays. For restriction enzyme digests 

(see section 2.1.5), 2% gels were used to separate smaller 

fragments produced by cutting of the PCR fragments.

To generate 1.5 % agarose gels, 1.5 g of dried agarose was 

dissolved in 100 ml of 0.5 X TBE (tris-boric acid-edta) buffer by 

boiling and after cooling the solution to about 70 °C, the gel was 

poured into a casting tray containing a well-form ing comb. The gel 

was allowed to solidify at room temperature. Set agarose gels 

were submerged in 0.5 X TBE buffer (Sigma) in a horizontal 

electrophoresis apparatus and the DNA samples mixed with 6X gel 

loading dye (Sigma) were pipetted into the sample wells. 

Electrophoresis conditions were usually set at 80 -120  V fo r about 

1 h, depending on the size of the gel. DNA fragments were then 

visualized under UV light by staining gels with SYBR-Green 

(1:10,000, Invitrogen), a fluorescent dye that intercalates between 

bases of double stranded nucleic acids.
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2 .1 .5  Denaturing High-Perform ance Liquid 

Chrom atography (dHPLC)

Transgenomic dHPLC analysis was used to rapidly identify 

mutations in SLC6A5 gene, since at the time it was considered the 

optimal method for mutation detection due to a high degree of 

automation and high-throughput detection rate (Xiao and Oefner, 

2001). dHPLC detects single nucleotide polymorphisms (SNPs) 

based on the melting temperature differences between hetero- and 

homo-duplexes of wild - type and mutated DNA and the sensitivity 

of the analysis is maximized by maintaining the column 

temperature for successful heteroduplex separation (Figure 2.1).

A T  G C Heat

Homoduplexes

Wild Mutant Chromatograph

JU l
A C  G  T

i n r
Heterodu plexes

F ig u re  2.1 Hetero and  homoduplexes reso lu tion  on the dHPLC. W h e n  a n  

i n d i v i d u a l  i s  h e t e r o z y g o u s  f o r  a  m u t a t i o n  o r  p o l y m o r p h i s m  i n  a  s e q u e n c e ,  h e a t i n g  t h e  

D N A  t o  9 4 ° C  a n d  c o o l i n g  o f  t h e  P C R  p r o d u c t  r e s u l t s  i n  t h e  f o r m a t i o n  o f  

h e t e r o d u p l e x  m o l e c u l e s  b e t w e e n  t h e  w i l d - t y p e  a n d  m u t a n t  s e q u e n c e s .  T h i s  

h e t e r o z y g o s i t y  c a n  b e  i d e n t i f i e d  b y  d H P L C  w h e n  a n a l y z e d  u n d e r  p a r t i a l l y  

d e n a t u r i n g  t e m p e r a t u r e s .  M u t a t i o n  d e t e c t i o n  w a s  b a s e d  o n  t h e  v i s u a l i z a t i o n  o f  

c h r o m a t o g r a m  s h a p e  d i f f e r e n c e s  b e t w e e n  h o m o z y g o u s  a n d  h e t e r o z y g o u s  s a m p l e s .

34



For each of the exon assays, the optimal partial denaturing 

temperatures were determined using interpretation of the DNA 

melting properties by the Navigator version 1.5.1 software.

Prior to dHPLC, 5 pi of PCR product was checked on a 1.5% 

agarose gel to verify the yield and purity of the amplified DNA 

fragment. The remaining 20 pi of PCR product was then

heteroduplexed in preparation for dHPLC analysis. This was 

achieved by denaturing at 95°C for 5 minutes and slowly cooling to 

4°C (0.1°C/sec) using an automated program on the PTC-200 

thermal cycler to generate either homoduplex or heteroduplex 

molecules if a mismatch of base pairs is present. dHPLC analysis 

was performed on the Transgenomic 2100 WAVER DNA fragment 

analysis system (Transgenomic Inc), using a DNASep HT cartridge 

and Navigator version 1.5.1 software.

The heteroduplexed sample (5 pi) was automatically injected on a 

preheated column and eluted on a linear acetonitril gradient with a 

constant flow-rate of 1.5 m l/m in (Figure 2.2). Heteroduplex 

molecules were separated from homoduplex DNA molecules by ion- 

pair reverse-phase liquid chromatography in a partial denaturing 

environment. At the partial denature temperature, the mismatch 

region of the heteroduplexes begins to melt and the DNA becomes 

less hydrophobic causing heteroduplexes to elute earlier than 

homoduplexes. The difference in elution time between hetero- and 

homo-duplexes, produces distinct patterns of elution profiles with 

heterozygous samples including double or multiple peaks, peak 

shift, plateau, or curves. Any sample that displays a variant 

chromatogram profile was selected for ABI 3100 sequencing.
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I I  Buffer B
m m m m m

Buffer A

Column UV Detector

DNA Sample 
Introduction

_____________

Print
out

BUFFER A
Acetonitrile: 250|il 
TEAA: 50ml 
H20  (dHPLC grade) 
~ 950ml

BUFFER B BUFFER C (sy rin g e
Acetonitrile: 250ml w a sh in g  s o lu tio n )

TEAA: 50ml Acetonitrile: 80ml

H20 (dHPLC grade):
H20 (dHPLC grade): 
920ml

700ml

BUFFER D (co lum n  
w ash s o lu tio n )
Acetonitrile: 750ml
H20 (dHPLC grade): 
250ml

F ig u re  2.2 Schematic d iagram  o f  d H P L C  system flow path . d H P L C  u s e s  a  

p o l y a c r y l a m i d e  g e l  m a t r i x  t o  s e p a r a t e  h o m o -  a n d  h e t e r o - d u p l e x  s p e c i e s  l i k e  

c o n v e n t i o n a l  h e t e r o d u p l e x  a n a l y s i s ,  h u t  i n  a  d e n a t u r i n g  e n v i r o n m e n t ,  t o  e n h a n c e  t h e  

s e n s i t i v i t y  o f  d e t e c t i o n  b e t w e e n  t h e  t w o  s p e c i e s .  A l i q u o t s  o f  P C R  p r o d u c t  w e r e  

a u t o m a t i c a l l y  l o a d e d  o n  t h e  D N A  S e p R  c o l u m n  p a c k e d  w i t h  p o l y s t y r e n e -  

d i v i n y l h e n z e n e  p o l y m e r s ,  a n d  s t a t i o n a r y  p h a s e  o c c u r s  d u e  t o  b i n d i n g  o f  t h e  

p o s i t i v e l y  c h a r g e d  T E A A  ( t r i e t h y l a m m o n i u m  a c e t a t e )  i o n  p a i r i n g  m o l e c u l e s  a n d  

p a r t i a l l y  u n w o u n d  D N A  f r a g m e n t s  w i t h  t h e  n e g a t i v e l y - c h a r g e d  b a c k b o n e  e x p o s e d  

( X i a o  a n d  O e f n e r ,  2 0 0 1 ) .  D N A  w a s  t h e n  e l u t e d  f r o m  t h e  s t a t i o n a r y  p h a s e  b y  u s i n g  a  

l i n e a r  a c e t o n i t r i l e  g r a d i e n t  f o r m e d  b y  m i x i n g  b u ffe r  A  a n d  b u ffe r  B .  D N A  w h i c h  i s  

p r o g r e s s i v e l y  e l u t e d  f r o m  t h e  c o l u m n  i s  d e t e c t e d  u s i n g  a  u l t r a - v i o l e t  d e t e c t o r ,  w h i c h  

a l l o w s  t h e  D N A  f r a g m e n t s  t o  b e  c o l l e c t e d .  R e c i p e s  f o r  b u ffe r  s o l u t i o n s  f o r  

T r a n s g e n o m i c  2 1 0 0  W a v e  D N A  f r a g m e n t  a n a l y s i s  d H P L C  m a c h i n e  a r e  a l s o  s h o w n  

( T r a n s g e n o m i c  I n c . )

2 .1 .6  Sequencing analysis.

PCR products of DNA samples were electrophoresed on 2 % 

agarose gels (Roche Applied Sciences) and then purified with 

QIAquick Gel Extraction /  QIAquick purification kits (QIAGEN Inc). 

The purified DNA fragments were directly sequenced using Big Dye 

Terminator and ABI automated sequencer (ABI3100; Applied 

Biosystems). DNA samples and primers were submitted at 5 ng/pl
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and 1.5 pm ol/|jl respectively. The sequence of nucleotides on the 

chromatograph was compared to the normal established sequence 

using a mutation surveyor (vergion.3.2, SoftGenetics, State 

College, PA) and any changes were investigated for mutational 

consequence.

2 .1 .7  R estric tio n  F ra g m e n t Length  P o lym o rp h ism  

(R F L P ) te s ts

Mutations identified by sequencing analysis were confirmed by a 

RFLP test. Genetic mutation due to a single or multiple base pair 

changes could result in the loss or gain of specific restriction 

enzyme sites. Digestion of the DNA fragment containing the 

restriction site with an appropriate restriction enzyme could 

distinguish alleles or variants based on resulting fragment sizes via 

electrophoresis, and this type of polymorphism was thus referred 

to as 'restriction fragment length polymorphism'.

A restriction map of the exon was established for both the normal 

and the mutant sequences using the restrictionmapper software 

(http://www.restrictionm aPDer.ora/T Comparison between the 

normal and mutant maps reflects the differential loss and gain of 

restriction enzyme cut sites. A restriction enzyme was chosen 

based on availability and price when more than one enzyme was 

applicable. A total of 25 \i\ of the PCR products were digested 

overnight at the required temparature with 1U of enzyme in a total 

volume of 5jllI. DNA fragments were separated on a 2 % agarose 

gel to assess SNP or mutation frequency in control samples. RFLP 

mapping can also be applied to the screening of fam ily members of 

a proband with a known mutation, as a confirmatory assay to 

accompany the sequencing data.

37



2.2 . Functional analysis of GLRA1 m utations

As a consequence of mutation discovery, the following techniques 

were adopted and correspond to the research findings in Chapter 4 

of this thesis.

2 .2 .1  M u ta g en es is  and ex p res s io n  o f cDNAs

The full-length human GLRA1 a l  and p-subunits were cloned into 

the pRK5 vector (provided by Prof Rob Harvey, University of 

Pharmacy, London) and the pIRES2-EGFP plasmid vector 

(Clontech, Mountain View, CA, provided by Prof Joe Lynch, QLD 

Brain Institu te , University of QLD, Australia), respectively. Mutant 

GlyR a l  subunits were constructed using a QuickChange Site- 

directed mutagenesis system according to the manufacturer's 

protocol (Stratagene, La Jolla, CA, USA). All cDNA constructs were 

confirmed by sequencing the entire coding region. W ild-type (WT) 

or m utant GlyR a l subunits were transiently expressed in human 

embryonic kidney cells (HEK-293) using Qiagen's Effectgene 

transfection reagent or a calcium phosphate technique (Sambrook 

et al., 1989). HEK 293 cells were maintained in Dulbecco's 

modified Eagle's medium (DMEM; Invitrogen, La Jolla, CA) 

supplemented with 10% of fetal calf serum (Invitrogen) and 5% of 

a m ixture of penicillin and streptomycin (100 U/ml penicillin ; 100 

g/m l streptomycin; Invitrogen) at 37°C in 5% CO2. Homomeric 

GlyR a l  subunits were co-transfected with empty pEGFP vector 

(Clontech, Mountain View, CA) as a transfection marker in a 1:1 

ratio. For heteromeric GlyRs, a l  and p subunit were transfected at 

a DNA ratio of 1:10 (Lynch et al 2008). Homomeric a lpha l subunit 

or heteromeric alpha and beta subunits of GlyRs were distinguished 

by applying lOOpM picrotoxin (PTX), which inhibits homomeric 

GlyRs but not heteromeric GlyRs (Lynch, 2004). Twenty four hours 

after transfection, cells were washed in Phosphate Buffered Saline

38



(PBS) twice, and electrophysiological recordings were made at 

room temperature within the following 24-48 hours.

2 .2 .2  E lec tro ph ys io log y  -  P atch  c lam p ing

Whole-cell patch-clamp recordings were performed on HEK293 cells 

placed in an external solution consisting of: 140mM NaCI, 5mM KCI, 

2mM CaCI2, ImM MgCI2, lOmM HEPES, lOmM glucose, adjusted to 

pH 7.4 with NaOH. Electrodes were pulled from borosilicate glass 

hematocrit tubing (Vitrex, Modulohm, Denmark) with a horizontal 

puller (P97, Sutter Instrum ents, Novato, CA, USA) and heat- 

polished. The electrode has resistances of 1 - 3 MQ when filled 

with an internal pipette solution consisting of: CsCI 145mM, CaCI2 

2mM, MgCI2 2mM, HEPES lOmM, EGTA lOmM, adjusted to pH 7.4 

with NaOH. Glycine-gated currents were recorded using the whole

cell patch-clamp configuration at a holding potential of -4 0  mV 

using Axon instruments (Union City, CA, USA). Solutions were 

applied to whole cells via gravity through parallel micro-tubules. 

The perfusion system was under the control of a manual 

m icromanipulator and solution exchange was routinely complete 

within 100 ms between adjacent tubes. Currents were digitized at 

1 kHz, filtered at 500 Hz and digitally recorded on a computer 

using an Axopatch ID  amplifier and pClamp9 software suite (Axon 

Instruments, Union City, CA).

The half-maximal concentration (EC50) and the Hill coefficient (nH) 

values for activation were calculated for an individual cell 

separately using the Hill equation (SigmaPlot 9.0, Systat Software). 

Currents from individual cells were normalized to the maximum 

response at saturating glycine concentrations. The averages of the 

current amplitudes from individual cells were used to construct a 

dose-response curve by fitting data into the Hill equation through a
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nonlinear least squares analysis (SigmaPlot 9.0, Systat Software). 

For tonic open channel activity, the voltage-clamp protocol used to 

determine the current-voltage (I-V) curves was voltage-ramps 

from a holding potential of -8 0  mV to a target potential of +20 mV 

over 2-s interval.

2 .2 .3  H ig h -th ro u g h p u t flu o re s c e n t system

Forty eight hours after transfection, HEK293 cells were screened 

using an automated high-throughput system using the yellow 

fluorescent protein (YFP) mutant, YFP-I152L as previously 

described (Kruger et al., 2005; Gilbert et al., 2009). Briefly, 

HEK293 cells were co-transfected with mutant/W T a l  and YFP- 

I152L within the pcDNA3.1 vector. Twenty four hours after 

transfection, cells were plated into a 384 well plate (approximately 

2.5 x 103 cells/well). Within the following 24-32 hours, cells were 

incubated in 25pL standard control solution (NaCI 140mM, KCI 

5mM, CaCI2 2mM, MgCI2 Im M , HEPES lOmM, and glucose lOMm; 

pH 7.4 using NaOH) for one hour. Ten different glycine 

concentrations (lpM -30mM ) were prepared in Nal solution (Nal 

140mM, KCI 5mM, CaCI2 2mM, MgCI2 Im M , HEPES lOmM, and 

glucose lOMm; pH 7.4 using NaOH). Using the automated high- 

throughput system, fluorescence images of each well were 

obtained twice before and after the application of Nal solution 

containing a varying concentration of glycine (Figure 2.3). 

Individual concentration responses were constructed by pooling 

results from 2-wells exposed to Nal solution containing the same 

glycine concentration. The averages of the fluorescence from 

individual cells were used to construct a dose-response curve by 

fitting data into the Hill equation (SigmaPlot 9.0, Systat Software). 

For each mutant, screening was replicated at least 3 times.

40



Control image

Test image

I-
Iodide ( I  ) containing solution 

•  Glycine: luM-30mM

F igu re  2.3 Autom ated h igh -th roughpu t fluo rescen t system. T h e  a n i o n - s e n s i t i v e  

y e l l o w  f l u o r e s c e n t  p r o t e i n  ( Y F P )  m u t a n t ,  Y F P ( I 1 5 2 L ) ,  h i g h l y  s e n s i t i v e  t o  T  a n d  

t r a n s f e c t i o n  o f H E K  2 9 3  c e l l s  w i t h  Y F P ( I 1 5 2 L )  l e a d s  t o  j l u o r e s c e n c e  c e l l s  ( C o n t r o l  

i m a g e ) .  E K  2 9 3  c e l l s  t r a n s f e c t e d  w i t h  Y F P ( I I 5 2 L )  a n d  G l y R s  c a n  b e  q u e n c h e d  b y  

i n f l u x  o f  T  t h r o u g h  a n i o n  c h a n n e l s  s u c h  a s  G l y R s  ( T e s t  i m a g e ) .  A  t y p i c a l  i m a g e  

c o n t a i n e d  a v e r a g e  o f  5 0 0  f l u o r e s c e n c e  c e l l s  t h a t  c a n  b e  u s e d  f o r  a n a l y s i s .  G l y c i n e  

c o n c e n t r a t i o n - r e s p o n s e  r e l a t i o n s h i p s  c a n  b e  f i t t e d  w i t h  t h e  f o l l o w i n g  e q u a t i o n :  F  =  

F m i t  / ( I  +  ( E C 5 0 / [ G l y c i n e ] ) n H ) ,  w h e r e  F  i s  t h e  f l u o r e s c e n c e  l e v e l  f o l l o w i n g  t h e  

a p p l i c a t i o n  o f  a  p a r t i c u l a r  g l y c i n e  c o n c e n t r a t i o n ,  [ g l y c i n e ] ;  F im ,  i s  t h e  i n i t i a l  ( o r  

c o n t r o l )  f l u o r e s c e n c e .

2.2 .4  B iotinylation- cell surface expression assay

Two days after transfection, surface expression of GLRA1 subunits 

in HEK293 cells were investigated using a cell membrane- 

impermeable reagent Sulfo-NHS-LC-Biotin (Pierce Biotechnology, 

Rockford, IL, USA) based on the manufacturer's protocol. Briefly, 

transfected HEK293 cells in a 100ml dish were washed twice with 

ice cold PBS buffer and incubated in 10ml of PBS containing 

0.25mg/ml Sulfo-NHS-SS-biotin for 30 min at 4 °C with gentle
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shaking. Excess biotinylating reagent was then removed by adding 

Quenching solution followed by washing the cells twice with TBS. 

Cells were lysed using a lysis buffer supplemented with protease 

inhibitors. To remove non-soluble fraction, the lysate was 

centrifuged at 14,000 x g for 15 min at 4°C and then the clear 

supernatant removed for fu rther analysis. The total protein 

concentration was measured with a DC (detergent compatible) 

Protein Assay (Bio-Rad, Hercules, CA)and 50pg of total protein was 

removed fo r immunoblotting analysis. To separate biotin-labelled 

surface proteins, 500pg of protein was incubated with 125pl of 

immobilized biotin-binding protein, NeutrAvidin gels for lh  at room 

temperature (RT). The biotin protein attached beads were then 

washed four times with a wash buffer. The surface proteins were 

isolated from NeutrAvidin linked biotin molecule by incubating with 

lOOpI of a sample buffer containing 50mM of reducing reagent 

dith iothreito l (DTT) for lh  at RT. The surface proteins were then 

eluted by centrifugation at 1000 x g for 2 minutes. Total protein 

lysates were also obtained from cells transfected with mutant or 

WT GlyR a l  and p subunits by lysing cells as described above, but 

w ithout the biotinylation labelling. The expression levels of GlyRs 

were analyzed using anti-human GlyR a l  antibody (1:1500; 

Millpore, Billerica, MA).

Proteins in the whole cell lysates or cell surface proteins were 

separated on 4-12% Bis-Tris gels (Biorad) and transferred to 

nitrocellulose membranes (Invitrogen). The blots were blocked 

with a blocking buffer (Invitrogen) then incubated with an 

appropriate antibody at 4°C overnight /  lh o u r at room 

temperature. After three washes with Tris-Buffered Saline Tween- 

20 (TBST), the blots were incubated with secondary anti-mouse or 

anti-rabbit IgG (GE healthcare, UK) for lh r  at room temperature. 

Proteins were visualized with a gel imaging system (Biorad). An
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anti p-actin antibody (1:7000; ABcam) was used as a control to 

confirm that the intracellular proteins were not labelled with biotin. 

The intensity of immunoreactivity signal was quantified with 

ImageJ software (h ttp ://rsb .in fo .n ih .go v /ij/)

2 .2 .5  S ta tis tic a l an a lys is

Data were analysed using Sigma plot (Systat Software, version 

9.0; Point Richmond, CA, USA) and GraphPad Prism version 3.02 

(GraphPad Software Inc. San Diego. CA) and expressed as 

mean± SEM. Statistical significance was determined by Student's 

t-tes t and considered to be significant at P<0.01.

2 .2 .6  Im m u n o s ta in in g

To examine the subcellular localisation the GLRA1 mutants, 

HEK293 cells were transfected with the a l construct using Qiagen's 

Effectgene transfection reagent. For live-staining, 24 hours after 

transfection, cells were washed twice with PBS, then incubated in 

10% (v o l/v o l)  FCS + 0 .5%  (w t/v o l)  BSA (FCS/BSA) in PBS 

fo r 15 min at RT. Cells were then incubated with a primary 

antibody against GlyR a l  subunit (1:400 dilution, Millipore) for 1- 

hour at RT. After three washes with FCS/BSA in PBS, the cells 

were incubated with secondary fluo rochrom e conjugated 

an tibody (1:200, Alexa 488 goat a n ti-ra b b it, In v itro g e n ) for 30 

min at RT (Figure 2.4). Cells then washed three times with 

FCS/BSA in PBS, fo llow ed by tw o washes w ith  PBS. After 

fixing cells in 4% paraformaldehyde (PFA) in PBS for 5 min, fixed 

cells were incubated with the quenching solution containing 50 mM 

NH4CI for 10 min followed by a further wash with PBS. For normal
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Primary antibody 
Anti-G lyR  a1

Secondary antibody 
Anti-Rabbit A lexa 568 Fix in 

4% PFA

GlyR (x 1 or 
mutants in 
HEK293s

F igu re  2.4 Schematic d iagram  o f  im m unosta in ing  o f  H E K  293 cells transfected  

with  GlyRs. G l y R  a l  s u b u n i t  e x p r e s s e d  o n  H E K 2 9 3  c e l l s  w e r e  d e t e c t e d  a g a i n s t  t h e  

p r i m a r y  a n t i b o d i e s  a g a i n s t  t h e  N - t e r m i n a l  r e g i o n s  o f  G l y R  a l  s u b u n i t ,  a n d  

s u b s e q u e n t l y  d e t e c t e d  u s i n g  s e c o n d a r y  a n t i b o d i e s .  I n  c o n t r a s t  t o  n o r m a l  s t a i n i n g  

m e t h o d  w h e r e  t h e  c e l l s  w e r e  f i x e d  w i t h  P F A  b e f o r e  t h e  a n t i b o d y  i n c u b a t i o n ,  b y  f i x i n g  

c e l l s  w i t h  P F A  a f t e r  t h e  a n t i b o d y  i n c u b a t i o n ,  o n l y  c e l l  s u r f a c e  e x p r e s s e d  G l y R  a l  

c a n  b e  d e t e c t e d .

staining, cells were fixed with 4% PFA prior to the primary antibody 

incubation.

2.2.7  Molecular modelling

Structural modelling of wild-type and mutant GlyR a l  was carried 

out using a homology modelling pipeline built with the Biskit 

structural bioinformatics platform (Grunberg et al., 2007), which 

scans the entire protein data bank (PDB) for candidate homologies. 

The best homology attained for GlyRal was based on 26% identity 

with the crystal structure of the nicotinic acetylcholine receptor
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(PDB: 2BG9). Our pipeline workflow incorporates the NCBI tools 

platform (Wheeler et al., 2007), including the BLAST program 

(Altschul et al., 1990) for sim ilarity searching of sequence 

databases. In this case, protein sequences corresponding to the 

PDB of protein structures were searched for homology with the C- 

term inus of G lyTl in order to identify putative structural 

homologues. A multiple sequence alignment software T-COFFEE 

(Notredame et al., 2000) was used for alignment of the test 

sequence with the template. Homology models were generated 

over 10 iterations of the MODELLER program (Eswar et al., 2003), 

and the DSSP algorithm (Kabsch and Sander, 1983) applied for 

secondary structure validation. All models were visualized using 

the molecular graphics program Chimera (Pettersen et al., 2004).

2.3 Analysis of Gephyrin heterogeneity

This section details the techniques used to deliver the research 

outputs for Chapter 5 with supporting literature (Rees et al 2003; 

Waldvogel et al 2006)

2 .3 .1  RT- PCR an a lys is  o f g ep h y rin  iso fo rm s

Primers were designed to target the C3/C4 linker region of 

Gephyrin, forward, 5'-CAGTGGTGTTGCTTCAACA GA-3'; reverse,5'- 

TCAGAGGAA AAGAGCATGC-3'. Total RNA from human adult brain, 

fetal brain, spinal cord and retina (Clontech, Mountain View, CA,) 

were reverse-transcribed using lp l of total RNA, lOpmol of oligo 

(dT) primers and Superscript I I I  (Invitrogen, La Jolla, CA, USA), 

and then PCR-amplified. Amplification conditions were an initial 

denaturation at 94 °C for 5 minutes followed by 30 -  38 cycles at 

94 °C for 30 seconds, 55-64 °C annealing temperature for 30 

seconds, and 72 °C extension temperature for 30-45 seconds. PCR
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products from the DNA samples were electrophoresed on 1.5 % 

agarose gels and C3/C4 band was extracted from the agarose gel 

using scalpel blades, then purified with QIAgel agarose gel 

extraction purification kit (QIAGEN Inc). Purified PCR products of 

C3/C4 regions were cloned into pGEM-Easy vectors (Promega, 

USA) by incubating the PCR products with T4 ligase (Promega) and 

the pGEM-Easy vector for 1 h at RT. lp l of ligated reactions was 

then transformed into TOP20 competent cells (Invitrogen) and 

plated on plates containing ampicillin ( lp g /m l) , isopropyl-|3-D- 

thiogalactopyranoside (IPTG) (80 pg/m l) and 5-bromo-4-chloro-3- 

indolyl-b-D-galactopyranoside (X-gal) (20 mM) for white and blue 

colony selection. A total of 1,500 colonies were picked from 

different neurological sources and transferred into 96 well plates 

containing 20pl of LB (Luria-Bertani) complemented with ampicillin 

( lp g /m l) . 1 pi of the sub-cloned colony /  LB solutions was used to 

PCR screen for size heterogeneity on a 2% agarose gel fragments 

and a selection was sequenced using Big-Dye Terminators and an 

ABI automated sequencer (ABI3100; Applied Biosystems).

2 .3 .2  Q -PCR an a lys is

Primers for Q-PCR analysis of gephyrin cassettes were designed 

with the Primer-3 programme: The following reverse primer was 

used for amplification of all C3 and C4A-C regions, 5'-TCAGAG GA 

AAAGGAGACAT GC-3'; Forward primers for each cassette are 1) 

targeting C3 region, 5'-C AGTCCTGCTGTTGTCATGG-3'; 2) targeting 

C4A region, 5'-ATTAGACGGCCGGATGAAAG -3 '; 3) targeting C4B 

region, 5'-CTCCATCGAAAGCTGGAGGA -3 '; 4) targeting C4C of 

gephyrin, 5'-TTCCCTCGTGCTCATCTACC-3'; 5) targeting C4D, 5'-G 

ATTGGAAGGGCTTAAAGATG A-3'; 5) targeting invariant G-domain 

region of gephyrin (GephG), forward, 5'-CAAGGAAACCCTGATAGA
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TTGG-3'; reverse,5'-CTGGTGClTCCCGTTCTATTA-3'. 6) targeting 

invariant E-region of gephyrin (GephE), forward, 5'-CAACCATCATC 

AAAGCAAGGT-3'; reverse, 5'-AGACGGCTGCTCATTTGATTA-3'. 

Total RNA from human adult brain, fetal brain, spinal cord, retina 

and heart was reverse transcribed into cDNA as described above 

and used as template in a Q-PCR experiment. p-actin and 

hypoxanthineoquanin phosphoribosyl transferase (HPRT) mRNA 

levels were used as an internal standard. Biorad IQ system was 

used with SYBRgreen as the reporter dye. Q-PCR was performed in 

triplicates using the IQSYBR Green supermix (Biorad) on Biorad IQ 

system (Biorad). A 2 5 jlxI reaction includes lp l of cDNA, lOpmol of 

each forward and reverse primers and 12.5pl of lx  SYBR Green 

mastermix (Biorad) and PCR conditions are as follows: at 95 °C for 

5 min, 40 cycles of denaturation at 95 °C for 10s, anneal at 60°C 

for 30s, followed by 95 °C for 1 min, 55 °C for 1 min, 81 cycles of 

55 °C for 10s (fluorescence acquiring). Primers were optimized to 

have -100%  efficiency. To determine the fold gene expression 

level of each cassette, the Ct values of the target gene to the Ct 

value of the control gene (p-actin) were compared using the 

following formula: 2"(ct(Target)' ct(Control)).

2 .3 .3  Im m u n o h is to c h e m ic a l p ro cedu res

Adjacent series of from human upper medulla and the cervical level 

of the spinal cord were processed as a free-floating form at in 6-well 

tissue culture plates and prepared for immunohistochemical 

procedures using standard protocols outlined below, but also 

covered in precise detail by Waldvogel et al (Waldvogel et al., 

1999; Waldvogel et al., 2004; Waldvogel et al., 2006; Waldvogel et 

al., 2007). For each primary antibody, dilution factor was 

optimized using dilution series. Each gephyrin cassette antibody
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was then incubated with the antigenic peptide which can block the 

binding of the primary antibody to test the specificity of the 

antibody.

2 .3 .3 .1  Brain tissue

The human brain tussue for this study were obtained from the 

Neurological Foundation of New Zealand Human Brain Bank 

(Department of Anatomy with Radiology, University of Auckland), 

with the written informed consent from the families. Ethical 

approval for this study was obtained from The University of 

Auckland Human Participants Ethics Committee. Brain tissue was 

obtained from 5 neurologically normal cases including 1 female and 

4 males (Table 2.3), with no history of neurological disease and no 

evidence of neuropathology. The cases have an average age of 

61.2 years (range 35-98 years), and a mean post post-mortem  

interval of 15.2 hours (Table 2.3). Blocks from upper medulla and 

the cervical level of the spinal cord were frozen with powdered dry- 

ice and sectioned at a 50-70pm thickness with a microtome. 

Sections were stored in PBS with 0.1% sodium azide at 4°C for the 

immunohistochemical studies.

Table 2.3 List of human cases used in this study.

Case Age(yr) Sex Postmortem 
delay (h)

Cause of death

H148 64 M 7 Ischemic heart disease
H149 48 M 21 CO poisoning
H187 98 F 15 -

H183 61 M 13 -

H184 35 M 20 -
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2.3.3.2 Primary antibodies

1. Custom-made polyclonal antibodies for gephyrin cassettes. 

Rabbit polyclonal antibody production for cassettes C3, C4A, C4C 

and C4D was performed by Mimotopes Pty Ltd, Victoria 3168, 

Australia (www.mimotopes.comT The antigens used correspond to 

the human gephyrin gene cassettes are as follows: 

WMAHGEQPIPGC for C3; QIRRPDESKGVAC for C4A; ARLPSCSST 

YSV for C4C; G LKDELWRNRGYC for C4D (See Figure 5.3). Two 

rabbits were injected intradermally with synthetic peptide 

conjugated to carrier protein followed by a booster injection. The 

antisera were affinity-purified from a 50/50 mixture of both 

hyperimmune sera. The antibody tite r of the affinity-purified 

antisera was determined by ELISA assay according to standard 

manufacturer's procedures (Mimotopes) yielding a titre  of 19,413 

for C3; 54,281 for C4A; 5,567 for C4C; and 20,766 for C4D; 

corresponding to a concentration of 104 pg/ml for C3; 319 pg/ml 

for C4A; 59 pg/ml for C4C; and 119 pg/m l for C4D. Rabbit 

polyclonal antibody production for cassette C4B was performed by 

NeoMPS, Inc., San Diego, California (www.neomps.connj using the 

human C4B peptide sequence LHRKLEELRDHLEGNVKGYC. Three 

New Zealand white rabbits were injected intradermally with purified 

peptide conjugated to carrier protein followed by a booster 

injection. The antisera were affin ity-purified, and the antibody tite r 

was determined by ELISA assay according to standard 

manufacturer's procedures (NeoMPS) yielding a tite r of 940,500 

and a concentration of 3.42 mg/m l for C4B.

2. GlyRs were detected using a monoclonal antibody Mab4a 

(Synaptic Systems; Germany) raised against amino acids 96-105 in 

GlyR a i subunit and recognizes both oci and p GlyR subunits 

(Pfeiffer et al., 1984; Perez-Leon et al., 2003). This antibody has
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been characterized in immunohistochemical studies on human 

brain (Waldvogel et al., 2003; Waldvogel et al., 2007).

3. A monoclonal antibody 3B11 (Synaptic Systems, Germany) 

raised against the firs t half of the E-domain of the gephyrin protein 

was used to detect the full-length gephyrin. 3B11 has been 

recently characterized by immunoreactivity rat spinal cord cells 

(Smolinsky et al., 2008). At the tim e of this study there was no 

viable gephyrin N-domain antibody available.

2 .3 .3 .3  Single im m unoperoxidase labelling (DAB staining).

Pretreated sections were incubated with primary antibodies for 48 

-7 2  hrs at 4°C with gentle shaking at the following dilutions: 

mouse monoclonal antibody mAb4a at 1:2,000; mouse monoclonal 

antibody 3B11 at 1:1000; C3 at 1:500; C4A at 1:500; C4B at 

1:15,000; C4C at 1:200; C4D at 1:500. The sections were washed 

three times with PBST for 15 min, then incubated with biotinylated 

secondary antibodies (at 1:400; Veatastain) overnight at 4 °C. 

Following three washes with PBS-Triton (PBST), the sections were 

incubated with Avidin-Biotin Complex kit (at 1:250, ABC kit, 

Vectastain Elite kits) for 4 h at RT. After three further washes with 

PBST, the sections were incubated with DAB (3,3 '- 

diaminobenzidine) solution for 15-30 min to generate a brown 

coloured product.

2 .3 .3 .4  Im m unofluorescent double labelling

Sections were incubated in a combination of primary antibodies for 

48 -72 hrs at 4°C with gentle shaking; the mAb4a antibody (diluted 

at 1:2,000) or 3B11 antibody (diluted at 1:1,000) was co
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incubated separately with gephyrin cassette antibodies against C3 

(diluted 1:250), C4A (diluted 1:500), C4B (diluted 1:5,000), C4C 

(diluted 1:50), or C4D (diluted 1:250). The sections were washed 

three times with PBST for 15 min and then incubated with 

fluorescent secondary antibodies coupled to Alexa 488 or 568 

(1:2500; Invitrogen, La Jolla, CA, USA) for 4 h at RT. The sections 

were again washed three times with PBST for 15 min, and then 

mounted on glass slides with Prolong Gold (Invitrogen). Each 

primary antibody was incubated with both secondary antibodies 

and no cross-reactivity was observed between the secondary 

antibodies. In control sections where the primary antibody was 

omitted, no immunolabelling was obtained.

2 .3 .3 .5  Im m unohistochem ical analysis

Single immunoperoxidase labeled sections were analysed with light 

microscopy using a Zeiss Axioskop upright microscope (Zeiss, Jena, 

Germany) equipped fo r epi-fluorescence and a Axiocam  digital 

camera. Double immunofluorescent sections were assessed by 

laser scanning confocal microscopy (Zeiss LSM 510 Meta, Jena, 

Germany) by using dual-channel recording of AlexaFluor 568 (red 

emission) and AlexaFluor 488 (green emission). Digital images 

were processed and merged for color colocalisation using the Zeiss 

LSM5 Image Examiner software (Zeiss, Jena, Germany).

To determine the immunoreactivity for the gephyrin cassette, for 

each cassette, at least three independent experiments were 

conducted on brainstem and spinal cord sections obtained from 3 

different cases (Table 2.3). The level of immunoreactivity was 

sem i-quantitatively analysed by counting the number of puncta 

from randomly selected cell bodies and dendrites from a total of 

402 neurons. Then the level of immunoreactivity of each cassette
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expressed as the ratio of that of C3. For analysis of co-localisation, 

colour images were merged, and the position of each gephyrin 

cassette was compared with that of the GlyR- or Geph-E clusters. 

The level of co-localisation was then represented to the level of 

each cassette analysed.
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Chapter 3 

Mutation analysis of hyperekplexia

Glycinergic neurotransmission is a major inhibitory system in the 

central nervous system (CNS) and defects in glycinergic genes are 

associated with the startle disorder, hyperekplexia. This rare, but 

potentially fatal, neurological disorder is primarily a hereditary 

disorder, typically associated with hypertonia, non-epileptic drop

down attacks in response to audible or tactile stimuli and 

psychogenic consequences. At inception of this thesis and study, 

dominant mutations in the glycine receptor a l  subunit (GLRA1) 

was the accepted perception from the literature. This study 

however, describes one of the largest studies in the molecular 

genetics of hyperekplexia where we not only find an increased 

incidence of recessive mutations in GLRA1, but also describe a new 

gene in hyperekplexia (at the time) in the form of the glycine 

transporter GlyT2 (SLC6A5)  gene. The choice of SLC6A5 as a 

candidate gene in hyperekplexia was due to the reporting of a 

GlyT-2 knockout mouse in 2005 that had all the features of startle 

disease (Gomeza et al 2005). In this study, we have analysed the 

entire coding regions of two major glycinergic genes, GLRA1 and 

SLC6A5 through the 88 index-cases.

3.1 Patients

Eighty-eight hyperekplexia index-cases were recruited for 

hyperekplexia mutation screening having passed the diagnostic 

inclusion criteria (Appendix A). All samples were accompanied by 

informed consent from patients, parents, carers or guardians. The 

samples have originated from healthcare systems from across the
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globe and referred from centers/specialties ranging from neonatal 

paediatrics to adult neurology. Patients were numbered according 

to the order in which blood samples were received and cohorts 

were assembled into a manageable size (n<16) for effective 

mutation analysis. Patient samples were initially screened for 

GLRA1 mutations using direct sequencing, with all GLRA1 -negative 

patients progressing towards dHPLC screening (and later direct 

sequencing) of SLC6A5 (Table 3.2).

3.2  GLRA1 analysis

GLRA1 was a recognized diagnostic gene in hyperekplexia at the 

start of this study, although the disorder was perceived as a mainly 

dominant disorder. Eighty-eight index cases of hyperekplexia were 

screened for genetic variation in the entire coding regions and 

splice regions of GLRA1. Direct sequencing analysis revealed 19 

mutations within 30 hyperekplexia index cases, of which 12 

mutations were novel and a further 7 mutations have been 

described in other studies; whilst seven of the novel and recurrent 

mutations were discovered in more than one index case (Table 3.1, 

Figure 3.1). This compendium of mutations included 13 missense 

mutations (9 novel), 3 nonsense mutations (1 novel) and 3 

frameshift deletions (2 novel). The m ajority of mutations (21/30, 

70%) were inherited in a recessive mode, including four cases of 

compound heterozygote inheritance (Table 3.1) thereby 

significantly increasing the number of pathological recessive 

hyperekplexia alleles in the literature. Consequently, on a large 

population, index-case ascertainment basis, hyperekplexia is 

predominantly recessive, and not dominant as reflected by an 

ascertainment bias in the literature (Harvey et al., 2008).
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Consistent with previous studies, all nonsense and deletional 

fram eshift mutations were associated with recessive cases of HE, 

whereas missense mutations transm it either as dominant or 

recessive traits depending on the ir relative position in the 

polypeptide subunit or co-inheritance in compound heterozygotes. 

Recessive mutations were scattered throughout the GlyR a l  

subunit, whereas, dominant mutations are specifically clustered 

around the M2 domain containing an ion-selectivity filte r and 

flanking regions (Figures 3.2 and 3.3). As revealed from previous 

studies (Brune et al., 1996; Gilbert et al., 2004; Becker et al., 

2006), clinical phenotypes of patients with recessive mutations 

were not as severe as the phenotype of HE animal models where 

recessive mutations are associated with more severe outcomes 

leading to premature death (Buckwalter et al., 1994; Kling et al., 

1997; Traka et al., 2006), indicating the existence of compensatory 

mechanisms. However, they tend to have more complex 

phenotypes with developmental delay and/or learning difficulties 

(Appendix C). Parents that were heterozygous carriers of the 

recessive/compound mutations did not present with clinical 

symptoms reminiscent of hyperekplexia. Similarly, dominant 

mutations in index-cases were associated with one affected parent 

within the fam ily structure.

3 .2 .1  GLRA1 recess ive  v a r ia n ts

Five novel (R65W, D165G, R252C and G254D) and one recurrent 

(R392H) recessive missense mutations were identified in the N- 

term inal, intracellular and the transmembrane regions. Of the 30 

mutation-positive cases, 13 index-cases were identified with 

null/non-functional truncated GLRA1 alleles (Table 3.1, Figure 3.4). 

The established homozygous deletion of exons 1 to 7 (Aexon
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1-7) was identified in six patients of Turkish origin with 

consanguineous parents and is identical to the previously- reported 

deletion (Becker et al., 2006). The Aexon 1-7 genotype

hGlyR al 
mGlyR al

MYSFNTLRLYLWETIVFFSLAASKEAEA -1 
MYSFNTLRFYLWETIVFFSLAASKEAEA -1

hGlyR al 
mGlyR al

hGlyR al 
mGlyR al

ARSAPKPMSPSDFLDKLMGRTSGYDARIRPNFKGPPVNVSCNIFINSFGSIAETTMDYRV 60
arsapkpmspsdfldklmgrtsgydarirpnfkgppvnvscnifiIJsfgsiSettmdyrv 60

N46K A52S
R65L/W E103K

niflEqqwndprlayneypddsldldpsmldsiwkpdlffanEkgahfheittdnkllri 120
NIFLRQQWNDPRLAYNEYPDDSLDLDPSMLDSIWKPDLFFANEKGAHFHEITTDNKLLRI 120

Y128C D165G
hGlyR al SRNGNVLBsiRITLTLACPMDLKNFPMDVQTCIMQLESFGYTMNSLIFEWQEQGAVQVAD 180 
mGlyR al SRNGNVLYSIRITLTLACPMDLKNFPMDVQTCIMQLESFGYTMNDLIFEWQEQGAVQVAD 180

L184fs21X Y197X Y202X S231N

hGlyR ai glt̂ qfilkeekdlrEctkhBntgkftciearfhlerqmgyyliqi6yip§llivilswi
mGlyR al GLTLPOFILKEEKDLRYCTKHYNTGKFTCIEARFHLEROMGYYLIOBYIPSLLIVILSWI

240
240

hGlyR al 
mGlyR al

hGlyR al 
mGlyR al

ITTVLTM 1|§S(2ASLPKVSYVK£ 
RASLPKVSYVKS

S296X
IDIWMAVCLLFVF§ALLE
IDIWMAVCLLFVFSALLE

R252C
G342S

300
300

YAAVNFVSRQHKELLRFRRKRRHHKEDEAGEGRFNFSAYGM̂PACLQAKDGISVKGANNS 360 
YAAVNFVSRQHKELLRFRRKRRHHKDDEGGEGRFNFSAYGMGPACLQAKDGIS'VKGANNN 360

R392H
hGlyR al NTTNPPPAPSKSPEEMRKLFIQRAKKIDKISjj 
mGlyR al NTTNPPPAPSKSPEEMRKLFIQRAKKIDKISI

rPMAFLIF 
P̂MAFLIFNMFYWI

’REDVHN 420 
’REDVHN 420

hGlyR al 
mGlyR al

Q*
K*

421
421

F igu re  3.2 A m ino  acid  sequence o f  GlyR a l  subun it w ith hyperekplexia variants  

iden tified  in  th is study. A m i n o  a c i d  s e q u e n c e  a l i g n m e n t  o f  h u m a n  a n d  m o u s e  G l y R  

a l  w i t h  l o c a t i o n s  o f  h u m a n  G L R A 1  m u t a t i o n s  i d e n t i f i e d  i n  t h i s  s t u d y  a n d  m o u s e  

G l r a l  m i s s e n s e  m u t a t i o n s  p u b l i s h e d  t o  d a t e  ( g r e y  s h a d i n g ) .  R e s i d u e s  o n  t h e  

t r a n s m e m b r a n e  d o m a i n s  ( M 1 - M 4 )  a r e  s h a d e d  i n  c o l o u r  a n d  c o r r e s p o n d  t o  

t r a n s m e m b r a i n  ( T M )  d o m a i n s  i n  F i g u r e  3 . 3 .
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has been identified in another 13 hyperekplexia patients, all from 

Turkish decent (Brune et al., 1996; Gilbert et al., 2004). 

Homozygous premature stop codon alleles, Y197X and Y202X, were 

also identified in five unrelated Pakistani and Jordanian patients 

where the homozygous recessive inheritance in 4 patients 

originated from consanguineous parents.

R65L
R65W

W68C R72H

165GE103KM147V Y197X

Albp L184fs21X*f )Y202X

R271PR218Q
R271L
R271Q

S231R
S231N

AExons 1-7* 

AExons 4-7*

O  D om inant m utation  

O Recessive m utation

GlyR a1
K276E Y279X 
K276Q Y279C

W239C

I244N

S270T

o
o S267N

O Q266H

CD ®

o o V260M

o G254D*
o °

T265I*

P250T*

R392H

R316X

F ig u re  3.3 Schematic d iagram  o f  pred icted  GlyR a l  subun it and relative locations  

o f  hyperekplexia m utations. 2 - D  s c h e m a t i c  r e p r e s e n t a t i o n  o f  a  s i n g l e  G l y R  a l  

p o l y p e p t i d e  w h i c h  c o n s i s t s  o f  a  l a r g e  N - t e r m i n a l  e x t r a - c e l l u l a r  d o m a i n ,  f o l l o w e d  b y  

f o u r  m e m b r a n e  s p a n n i n g  d o m a i n s  ( M 1 - M 4 )  a n d  a  s h o r t  e x t r a c e l l u l a r  C  t e r m i n u s .  

H u m a n  G L R A 1  m u t a t i o n s  p u b l i s h e d  t o  d a t e  a r e  i n d i c a t e d .  *  d e n o t e s  m u t a t i o n s  

i d e n t i f i e d  i n  t h i s  s t u d y .  T h i s  f i g u r e  i s  a  m o d i f i e d  v e r s i o n  o f  F i g u r e  l a  i n  H a r v e y  e t  a l  

2 0 0 8  w i t h  p e r m i s s i o n  f r o m  t h e  a u t h o r .
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Normal C573 C573T (Homozygous) -R65W

GLRA1 L184fs21x
17 0

G G AC T A A C T C T G C C C C A G T T T .

ACT
180 18 0

G C C C C A  G T T T i
17 0

G G A C T A  A  C T

Normal A 931-932CT (Homozygous) - L184fs21X

6LRA1 D1656
Tu

Normal A874 A874G (Homozygous) - D1656

GLRA1 Y197X
210 220

T G A G A T  A A T G C A C C A
2 2 0

M a a Aa a a a Aa a a / v
C971A (Homozygous) -Y197XNormal C971

F igu re  3.4 Sequence analysis o f  novel recessive GLRA1 variants iden tified  in  this  

study. S e q u e n c e  c h r o m a t o g r a m s  o f  t h e  n o r m a l  a l l e l e s  ( l e f t ,  r e d  a r r o w )  w e r e  

c o m p a r e d  w i t h  t h e  h o m o z y g o u s  m u t a t i o n s  ( r i g h t ,  r e d  a r r o w ) .  T h e  s e q u e n c e  

c h r o m a t o g r a m s  a r e  s h o w n  i n  t h e  s e n s e  d i r e c t i o n .  L 1 8 4 f s 2 1 X  a n d  Y 1 9 7 X  w e r e  a l s o  

i d e n t i f i e d  a s  a  p a r t  o f  h e t e r o z y g o u s  c o m p o u n d  m u t a t i o n s ,  i n  c a s e s  1 0  a n d  1 3 ,  

r e s p e c t i v e l y .
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GLRA1 Y202X
s i n  s  s o  W O  i

<;>•» ^  c  / i  o  i t \ € i  r. v <? >w c  • •  c? a .  • l < *  c :  c • i . / .  c  « i  f j

Normal C986 C986A (Homozygous) - Y202X

R252C
•  O 2 00 2X0  2 0 0  2 1 0
o  y -c c a c c  t  <2 o  T - c r a  t c  - rc i c s c i c c  t o c a c c  ’  c  c  f  t o  T O t o a c c e

Normal C1134__________ C1134T (Homozygous)- R252C

GLRA1 G254D
220 230

2 2 0  5 S T G T G G A C C T A G G C A

Normal G845 G845A (Homozygous) -G254D

GLRA1 R392H

Normal G1555 G1555A( Homozygous) - R392H

F ig u re  3.5 Sequence analysis nove l and recu rren t recessive G LRA1 variants  

iden tified  in  th is  study. S e q u e n c e  c h r o m a t o g r a m s  o f  t h e  n o r m a l  a l l e l e s  ( l e f t ,  r e d  

a r r o w )  w e r e  c o m p a r e d  w i t h  t h e  h o m o z y g o u s  m u t a t i o n s  ( r i g h t ,  r e d  a r r o w ) .  T h e  

s e q u e n c e  c h r o m a t o g r a m s  a r e  s h o w n  i n  t h e  s e n s e  d i r e c t i o n .  Y 2 0 2 X  w a s  a l s o  

i d e n t i f i e d  a s  a  p a r t  o f  a  h e t e r o g y g o u s  c o m p o u n d  m u t a t i o n  f i n d i n g  ( c a s e  1 3 ) .
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3 .2 .2  GLRA1 com p o un d  h e te ro zy g o s ity  v a ria n ts

Novel compound mutations were identified in four unrelated 

patients with asymptomatic parental carriers (Table 3.1, Figure 

3.6), effectively doubling the reporting of compound heterozygosity 

in GLRA1 (Vergouwe et al., 1999; Rees et al., 2001; Tsai et al., 

2004); 1) In patient 7, a large deletion (Aexon 4-7) is co-inherited 

with N-terminal missense mutation R65L. Aexon 4-7, a novel 

deletion detected by MLPA, is the second largest GLRA1 deletion 

identified in a HE case and is expected to produce a non-functional 

allele. R65L is a novel missense mutation, the effect of which is 

described in Chapter 4 on functional platforms along with the 

missense mutations of patients 10 and 18 (E103K and S231N); 2) 

Novel mutations, L184fs21X and E103K, were identified in patient 

10 where the heterozygous frameshift L184fs21X allele generates a 

premature stop codon at amino acid position 205; 3) Compound 

mutations, Y197X and Y202X, were detected in patient 13, and 

both alleles are expected to produce truncated nonsense proteins 

devoid of transmembrane domains; 4) A novel missense mutation, 

S231N and recurrent nonsense mutation S296X were identified in 

patient 18.

Assuming tha t Aexon 4-7 in patient 7, L184fs21X in Patient 10, and 

S296X in patient 18 result in non-functional alleles, then 

corresponding R65L, E103K and S231N respectfully are

hemizygous alleles by default and represent the only a l-subun its 

available for in-vivo a l3  GlyR assembly (Figure 3.7). Previously, 

three compound heterozygotes for GLRA1 mutations have been 

reported in the literature: 1) R252H /  R392H (Vergouwe et al., 

1999); 2) lb p  deIC (601-605)/ M147V (Rees, et al., 2001); 3) 

W96C /  R344X (Tsai et al., 2004).
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Case 7 : R65L + A Exons 4 -7

Normal G574 G574T (Hemizygous) -R65L

Case 10: L184fs21x + E103K

G687A - E103KA 931-932CT - L184fs21x

Case 13: Y197X+ Y202X

i m m i l
C986A - Y202XC971A - Y197X

Case 18: S231N + Y296X

G1074A -S231N C1257A -S296X

F ig u re  3.6 Sequence analysis o f  com pound GLRA1 variants iden tified  in  th is  

study. S e q u e n c e  c h r o m a t o g r a m s  o f  f o u r  c a s e s  o f  c o m p o u n d  h e t e r o g y g o u s  m u t a t i o n s  

( s e e  r e d  a r r o w s ) .  R 6 5 L  i s  t h e  o n l y  a v a i l a b l e  a l l e l e  i n  C a s e  7  d u e  t o  t h e  d e l e t i o n  ( A  

E x o n s  4 - 7 )  o f  t h e  s e c o n d  a l l e l e  a n d  i s  c o m p a r e d  w i t h  w i l d - t y p e  a l l e l e .  T h e  s e q u e n c e  

c h r o m a t o g r a m s  a r e  a l l  s h o w n  i n  t h e  s e n s e  d i r e c t i o n .
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W T N-

Predicted GlyR a l  subunit

Ml M2 M3
C X

M4

Predicted GlyR 
assembly

2o3a l(W T ) p

R65L
Case 7 N-

Aexon4-7

R65L R65L

2o3al(R65L) p

E103K

Case 10 N"

ISI-

LI 84 

- J - 2 0 5

E103K E103K

2 n  3al(E103K) p

Case 13 M

H.

yi97  

. Y202

No functional GlyR 
a l channels

Case 18 N"

S231

NT H D S296X

F ig u re  3 .7  Predicted in -v ivo  outcomes o f  com pound m utations and  resu lting  

pentam eric assembly components. F o u r  i n d e x - c a s e s  w e r e  i d e n t i f i e d  w i t h  c o m p o u n d  

m u t a t i o n s  i n  t h i s  s t u d y .  I n  c a s e s  7 , 1 0  a n d  1 8 ,  t h e  m i s s e n s e  m u t a t i o n s  R 6 5 L ,  E 1 0 3 K  

a n d  S 2 3 1 N  r e s p e c t i v e l y ,  a r e  e x p e c t e d  t o  r e p r e s e n t  t h e  o n l y  s u r f a c e - e x p r e s s e d  G l y R  

a l  s u b u n i t s  a v a i l a b l e  f o r  i n - v i v o  a s s e m b l y .  W h e r e a s  i n  c a s e  1 3 ,  b o t h  a l l e l e s  a r e  

e x p e c t e d  t o  p r o d u c e  t r u n c a t e d  p r o t e i n ,  r e s u l t i n g  i n  n o  f u n c t i o n a l  G l y R  a l  o n  t h e  c e l l -  

s u r f a c e .

al(S231N)2p
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3.2.3 GLRA1 dominant variants

Two novel dominant mutations, Y128C and T265I, and two 

recurrent missense mutations, P250T and R271Q, were identified in 

7 hyperekplexia patients (Table 3.1). R271Q was the first GLRA1 

mutation associated with hyperekplexia and has been identified in 

18 independent families /  index cases with dominant hyperekplexia 

(Harvey et al., 2008) with a further four independent cases 

identified in this study. Extensive functional assessment of R271Q 

and P250T have described the ir pathophysiological basis (Rajendra 

et al., 1994; Laube et al., 1995; Lewis et al., 1998; Moorhouse et 

al., 1999; Saul et al., 1999; Breitinger et al., 2001; Maksay et al., 

2002). The previously-identified G342S variant was identified in 

two patients with an ambiguous functional consequence (Rees et 

al., 2001) and consequently is being re-examined in this study 

along with novel alleles Y128C and T265I. However, subsequent to 

the functional assessment further expanded population studies 

have revealed that G342S is a rare SNP present in controls 

(frequency = 0.01). The functional data remains in this study as a 

virtual negative control fo r pathogenicity although conceding that 

G342S may still remain an allelic risk-factor which may exert an 

effect in tandem with other mutations in GLRA1, as is the case in 

other disorders (Kubota et al., 2001; Mitra et al., 2003).
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GLRA1 Y128C

Normal A764 A764G -Y128C

GLRA1 P250T

Normal C1128 C1128A -P250T

GLRA1 T 265 I

2 5 0

Normal C1174 C1174T - T265I

270 260
T C T C T

Normal G1192 G1192A - R271Q

F ig u re  3.8 Sequence analysis o f  dom inan t GLRA1 variants iden tified  in  th is  

study. S e q u e n c e  c h r o m a t o g r a m s  o f  t h e  n o r m a l  a l l e l e s  ( l e f t ,  r e d  a r r o w )  w e r e  

c o m p a r e d  w i t h  t h e  h o m o z y g o u s  m u t a t i o n s  ( r i g h t ,  r e d  a r r o w ) .  T h e  s e q u e n c e  

c h r o m a t o g r a m s  a r e  s h o w n  i n  t h e  s e n s e  d i r e c t i o n .
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3 .3  SLC6AS A nalysis

Fifty-eight patients, excluded from GLRA1 mutations, were 

screened for genetic variation in the coding regions and splice 

regions of SLC6A. This was achieved by using denaturing high- 

performance liquid chromatography (dHPLC) initially, and repeated 

by direct sequencing, despite the experimental expense and low 

ratio of assays to variant discovery. For SLC6A5 analysis, 16 exons 

were screened through the 58 patients, and 12 SLC6A5 mutations 

were discovered in 7 index cases (Table 3.2). Patients 31 and 32 

were identified with recessive mutations, R439X and T425M, 

respectively (Figure 3.10). R439X is a novel mutation identified

after the firs t report of SLC6A5 mutations (Rees et al., 2006). The 

detailed clinical information for patients with SLC6A5 mutations is 

included in appendix D (Rees et al., 2006).

The vast m ajority of SLC6A5 mutations identified in this study were 

inherited as compound heterozygotes (Rees et al., 2006); 1) A 

nonsense mutation Y377X and a missense plus frameshift mutation 

(V432F+fs97X) were identified in patient 33. Both mutations are 

expected to produce truncated nonsense proteins. The fam ily 

members with Y377X were asymptomatic, whereas V432F+fs97X 

was associated with a partial HE (with nocturnal myoclonus and a 

nervous disposition); 2) Compound mutations, Y491C and Q630X, 

were identified in patient 34. Parents who were heterozygous 

carriers of the compound mutations did not present with HE 

symptoms; 3) A missense mutation W483R and a missense plus 

frameshift mutation P108L+fs25X were identified in patient 35 with 

unaffected parents. 4) Patient 36 was detected with two missense 

mutations, L306V inherited from the mother and N509S from the 

paternal side. In this study, only one case of a dominant mutation,
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Y377XR439X
L306V

V432F
+fs97

W482RT425M10 S510R
N509SL269P

CMD2

Y491C

0  Dominant mutation 
0  Recessive mutation

F ig u re  3.10 Schem atic d iagram  o f  predicted G lyT2 and relative locations o f  
hyperekplexia m utations. 2 - D  s c h e m a t i c  r e p r e s e n t a t i o n  o f  a  s i n g l e  G l y T 2  

p o l y p e p t i d e  w h i c h  c o n s i s t s  a  l a r g e  N - t e r m i n a l  i n t r a - c e l l u l a r  d o m a i n ,  f o l l o w e d  b y  

t w e l v e  m e m b r a n e  s p a n n i n g  d o m a i n s  ( M 1 - M 1 2 )  a n d  a  s h o r t  i n t r a - c e l l u l a r  C  

t e r m i n u s .  S L C 6 A 5  m u t a t i o n s  i d e n t i f i e d  i n  t h i s  s t u d y  a r e  i n d i c a t e d .  T h i s  f i g u r e  i s  a  

m o d i f i e d  v e r s i o n  o f  F i g u r e  l b  i n  R e e s  e t  a l  2 0 0 6  w i t h  p e r m i s s i o n  f r o m  t h e  a u t h o r .

was identified (S510R in case 37), further supporting the notion 

that recessive mutations are the most common cause of 

hyperekplexia.

All SLC6A5 mutations, except the novel R439X, were functionally 

characterized using a glycine-uptake assay, immuno-staining of 

expression constructs and elecrophysiological validation through our 

collaboration (Rees et al., 2006). A surface localisation assay 

showed that all nonsense or frameshift mutations were not able to 

express on the cell-surface possibly due to traffic defects, whereas 

the majority of missense mutations, were able to reach the cell- 

surface (Rees et al., 2006). However, the surface expressed 

missense mutations displayed a significantly reduced level of
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glycine uptake (Figure 3.11). This data was kindly provided with 

consent from Professor Robert Harvey (School of Pharmacy, 

London) and Dr Stephan Supplison (INSERM, Paris) within the 

multicentre collaboration. The data in Fig 3.11 was not generated 

by the author of this thesis.

300 1
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200 -
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F ig u re  3.11 Transport activ ity  o f  W T and m utan t GlyT2. T o  d e t e r m i n e  t h e  k i n e t i c s  

o f  3 H - g l y c i n e  u p t a k e ,  c e l l s  w e r e  t r a n s f e c t e d  w i t h  t h e  p E G F P - h G l y T 2  c o n s t r u c t  a n d  

i n c u b a t i o n s  w e r e  c a r r i e d  o u t  w i t h  v a r y i n g  c o n c e n t r a t i o n s  o f  u n l a b e l l e d  g l y c i n e  ( 1  -  

1 0 0 0  p M ) .  T h e  g l y c i n e  u p t a k e  w a s  e x p r e s s e d  a s  a  p e r c e n t a g e  o f  t h a t  i n  c e l l s  

t r a n s f e c t e d  w i t h  a n  e m p t y  p E G F P  v e c t o r .  D a t a  a r e  r e p r e s e n t e d  a s  m e a n s  ±  S E M  ( n  

=  6 - 2 0 ) .  T h i s  f i g u r e  i s  a  m o d i f i e d  v e r s i o n  o f  F i g u r e  3 a  i n  R e e s  e t  a l  2 0 0 6  w i t h  

p e r m i s s i o n  f r o m  t h e  a u t h o r .

3.4  Summary

Hyperekplexia is a neuromotor disorder characterized by 

exaggerated startle reflexes and muscle stiffness in response to 

sudden, unexpected auditory or tactile stimuli. This rare, but 

potentially fatal disorder is primarily a hereditary disorder and 

typically caused by mutations in the genes encoding GlyR alphal 

subunit (GLRA1) and the glycine transporter GlyT2 (SLC6A5).
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Systematic DNA sequencing analysis of GLRA1 in 88 new 

hyperekplexia patients revealed 19 sequence variants within 30 

index cases, of which 21 were inherited in a recessive mode or part 

of compound heterozygosity. Consistent with previous studies, all 

deletion and nonsense mutations were associated with recessive 

onset of phenotype, whereas missense mutations could exert an 

effect either as dominant or recessive traits depending on the 

position of the mutation in the GlyR a lpha l subunit. The mutation 

analysis of the glycine transporter-2 gene (SLC6A5) in 

hyperekplexia also displays predominantly recessive inheritance 

and compound heterozygosity. SLC6A5 variants were identified 

using denaturing high-performance liquid chromatography (dHPLC) 

and confirmed by sequencing. Screening of 58 GLRA1 negative 

index cases revealed eleven SLC6A5 variants within 7 independent 

families. Collectively, GLRA1 and SLC6A5 mutations analysis have 

a positive outcome in 37 patients in total, reflecting a 42 % of 

detecting rate, leaving 58 % phenotype positive /  genotype 

negative hyperekplexia w ithout a molecular explanation.

This study indicates, that on a population basis, recessive 

hyperekplexia is more common than expected and that the previous 

label and reference towards a 'dom inant disorder' was an 

ascertainment bias on familial presentation and founder linkage 

analysis cohorts. In contrast to other diseases caused by 

dysfunction of ion channels or murine hyperekplexia models, 

patients w ith recessive mutations/null hyperekplexia mutations in 

GLRA1 were not particularly associated with severe cases of 

hyperekplexia. The explanation for tolerance of null GLRA1 gene 

function in humans is likely due to a compensatory mechanism by 

other neuro-inhibitory mechanisms.
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In chapter 4, an account is given on the functional analysis of a 

proportion of novel GLRA1 mutations in a recombinant heteromeric 

GlyR a 1(3 expression system representing the native form of adult 

GlyRs (Langosch et al., 1988). The pathogenicity of SLC6A5 

mutations were determined through collaboration and only the 

gene-discovery work was undertaken by this author at Swansea 

University. Chapter 4, therefore, will be restricted to the analysis 

of the new GLRA1 mutations where further progress is made in 

understanding the pathophysiology of hyperkeplexia.
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Chapter 4

Functional analysis of G L R A 1  mutations

Taking forward the genetic findings described in Chapter 3, we 

prepared expression constructs of 11 GLRA1 mutants to initiate 

studies into the functional context of the hyperekplexia mutations. 

There is no further functional work described for SLC6A5 since 

much of this was completed by other investigators as part of a 

collaboration between Swansea, London and Paris (Rees et al.,

2006). Although discussed in Chapter 6, the genetics and 

functional context of SLC6A5 (GlyT2) mutations remain in the 

summarized account given in Chapter 3.

The functional properties of the novel recessive and dominant 

GLRA1 mutations were further investigated using in-vitro 

electrophysiology, fluorescence-based imaging, immunostaining 

and biotinylation of cell-surface membranes, plus the latest 

molecular modelling algorithms. This chapter will now describe the 

outcome of these experiments and demonstrates a multi-faceted 

explanation fo r GLRA1 pathogenicity.

4.1  Preparation of m utagenesis constructs

The human GLRA1 a l cDNA within the pRK5 vector was kindly 

provided by Prof. Robert Harvey (The School of Pharmacy, 

London, UK). Eleven GLRA1 mutations listed in Table 4.1 were 

introduced into the WT a l cDNA plasmid using the Quickchange 

site-directed mutagenesis k it (Stratagene). The coding region of
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a l subunit was otherwise confirmed intact by sequencing for all a l 

constructs used in this study. The pIRES2-EGFP plasmid vector 

with the full-length human (B-subunit cDNA and YFP-I152L within 

the pcDNA3.1 vector was kindly provided by Prof. Joe Lynch 

(Queensland Brain Institute, University of Queensland, Australia). 

Both GlyR-|3 and YFP-I152L constructs were fully-validated in 

previous studies (Kruger et al., 2005; Hawthorne et al., 2006; 

Yang et al., 2007; Yang et al., 2008; Gilbert et al., 2009)

4.2  Electrophysiological analysis of a l  GlyR 

hyperekplexia m utations

To determine the pathogenic effects of GLRA1 mutants, WT or 

mutant human a l  GlyRs were transiently expressed in HEK293 

cells either as homomeric a l  GlyRs or as heteromeric a lp  GlyRs 

with WT p subunits (Table 4.1). Transfected HEK293 cells were 

analysed using whole-cell patching electrophysiology and a high- 

throughput YFP-based screening assay. Electrophysiology was 

used to examine the effects of mutations at high-precision in single 

cells, whereas the fluorescence assay was used to provide an 

indication of the proportion of cells that expressed mutant GlyRs.

4 .2 .1  R ecessive V a ria n ts

When expressed in HEK293 cells, the m ajority of recessive 

mutations (R65W, R252C, G254D) failed to generate currents 

either as homomeric or heteromeric GlyR receptors upon 

application of upto 30mM of glycine (Figure 4.1). A novel recessive 

mutation, D165G, induced detectable, but significantly (p<0.001) 

reduced maximum currents compared to WT, regardless of whether 

it was expressed as a homomer or heteromer (al(D165G)P:
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Im ax=700.90±250.05pA, n = l l ;  vs WT al(3: Im ax=

16051.78±868.67pA, n = 16). In addition, the glycine EC50 was 

significantly increased in cells where a recording was possible 

(Figure 4.2) indicating that glycine sensitivity in these mutants are 

markedly decreased. The mutation R392H, identified as a 

homozygous recessive mutation in this study, was previously- 

identified as a compound heterozygote (R252H and R392H) 

(Vergouwe et al., 1999). Consistent with the previous study, 

expression of homomeric R392H mutant in HEK293 cells induced 

no currents (n=20 for whole cell patching clamp, n>2000 for 

automated screening). However, expression with GlyR (3 subunits 

produced small but detectable currents (Figure 4.1) that exhibited 

a significant increase in glycine EC50 (Figure 4.2).

R e c e s s iv e  m u ta t io n s

20000

^  1 5 0 0 0  
a

x 10000(U

5 0 0 0

<&' &

a l
a lp

G lyR  a l  m u ta t io n s

F igure 4.1 Im ax  values o f  recessive mutations. Maximal GlyR currents were 
obtained from  HEK293 cells expressing wild-type (WT) or mutant GlyR a l  
individually o r with the GlyR-j3 subunit at saturating glycine concentration (up to 
30mM). The majority o f  recessive mutants generated no/ significantly reduced 
current (p<0.001 vs w ild  type). Note a significant increase o f  maximal currents were 
observed in a l  R392H upon co-expression with (3 subunit. E rro r bars represent 
SEM.
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Recessive m utations120 -|
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v a l(R 3 9 2 H )P
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0.0001 0.001 0.01 0.1 1 10
Glycine [m M ]

G l y c i n e
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a1(W T)3
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G l y c in e
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ot1(D165G)f3

0.1 0.3 10

_l.
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G l y c i n e  0.1 0 .3  1 3
[ m M ]

a1(R392H)(3

Figure 4.2 Dose-response characteristics of recessive mutations. Currents were 
obtained from  HEK293 cells expressing WT o r mutant GlyR a l subunit either as 
homomeric a l  subunits or heteromeric a lp  GlyRs at varying concentrations o f  
glycine (0.01-10 mM). The currents are shown as a percentage o f  the maximal 
current fo r  each cell. A) While the m ajority o f  recessive mutations fa ile d  to generate 
glycine induced currents, two recessive mutations, D165G and R392H, produced 
small but detectable currents. Both mutants create a large right shift o f  the EC50 fo r  
glycine. R392H, however, was able to generate currents only upon expression with 
[1-subunit. B) Examples o f  glycine-induced currents produced by WT or mutant GlyR 
a l and /? subunit.

2sec
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4.2.2 Compound Heterozygosity

Hemizygous missense mutations, R65L, E103K and S231N,

identified in individuals with co-inherited second-hit nonsense 

mutations (compound heterozygosity in cases 7, 10 and 18 -  table 

3.1) were tested. R65L, co-inherited with A exon 4-7, generated 

no current when expressed in HEK293 cells (Figure 4.3). The 

positively-charged R65 residue is an important determinant for 

interacting with a-amino groups of glycine (Grudzinska et al., 

2005).

Mutations E103K and S231N behaved differently from conventional 

recessive missense mutants despite mimicking the in-vivo 

consequences of recessive alleles (Figure 3.7) where al(E103K) 

and a l(S231N ) are the only functional copies of GlyR subunits at 

the cell-surface. In contrast to recessive mutants expressing no or 

small currents, both S231N and E103K, either as homomeric a l  

GlyR or heteromeric a ip  GlyR, generated fully-functional channels 

with Im ax currents compatible with WT at glycine concentration 

30mM (Figure 4.3). However, glycine EC50 was significantly (p 

<0.001) increased in both mutants (al(E103K)P =

757.52±147.72, a l(S231N )P=383.8.1±132.57; WT a lp =  23.24 ± 

7.59) (Figure 4.4). Unsurprisingly, both S296X and L184fs21X 

mutants failed to generate any functional channels (Figure 4.3).
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Compound mutations
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Figure 43  Imax values o f compound mutations. Maximal GlyR currents were 
obtained from  HEK293 cells expressing wild-type (WT) o r mutant GlyR a l  
individually o r with the G lyR-p subunit at saturating glycine concentration (up to 
30mM). HEK293 cells that d id  not generate any glycine-induced current were 
excluded from  the analysis. Peak amplitudes ofE103K, S23 IN  glycine currents were 
sim ilar to that o f  WT fo r  either heteromeric or homomeric expression. E rro r bars 
represent SEM.
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Figure 4.4 Dose-response characteristics o f compound mutations. Currents were 
obtained from  HEK293 cells expressing WT or mutant GlyR a l subunit either as 
homomeric a l  subunits o r heteromeric a lp  GlyRs at varying concentrations o f  
glycine (0.01-10 mM). The currents are shown as a percentage o f  the maximal 
current fo r  each cell. A) Compound missense mutations, E103K and S231N, show 
significant righ t shift o f  glycine EC50. B) Examples o f  glycine-induced currents 
produced by WT or mutant GlyR a l andP subunit.
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4.2.3 Dominant Variants

Two novel dominant mutations, Y128C and T265I, showed a 

significant (pcO.OOl) reduction of Imax compared to WT when 

expressed as heteromers with the p subunit (al(Y128C)P = 

2276.93±74.5, a l(T265 I)p  = 3583.38±1218.30; WT a ip  = 

14578.58±814.20) (Table 4.1, Figure 4.5). When expressed as 

homomers, T265I generated barely detectable glycine currents, 

and in those cells where a measurement was possible Imax was 

170 ± 58 pA (n= 3, p<0.0001 vs WT). The nH value for a l(T265 I) 

were significantly reduced (Table 2), suggesting a reduction in 

gating efficacy (Colquhoun, 1998).

However, when a l(T 265 I) was co-expressed with WT glyR p 

subunit, the heteromeric glycine-mediated current was easily 

detectable and a 20-fold increase in Imax (=3583.38±1218.30pA) 

was observed (which can be used to distinguish a l(T 2 65 I) from 

a l(T265 I)P ), although it remained significantly less than values 

observed in WT a ip  (p< 0.001, Figure 4.5). In both homomeric 

and heteromeric states, T265I has a significantly increased glycine 

EC50 (p<0.001, Figure 4.6). The recurrent mutation G342S, 

identified in two dominant hyperekplexia index cases in this study 

and in previous studies (Jungbluth et al., 2000; Rees et al., 2001), 

induced Im ax currents and glycine EC50 compatible to that of WT, 

and no evidence of a trafficking defect was observed. Within the 

lim itations of these experiments, we have no evidence to suggest 

that this GLRA1 sequence variant is pathogenic.
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Dom inant m utations
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Figure 4.5 Imax values o f dominant mutations. Maximal GlyR currents were 
obtained from  HEK293 cells expressing wild-type (WT) or mutant GlyR a l  
individually o r with the GlyR f t  subunit at saturating glycine concentration (upto 
30mM). The peak glycine currents were significantly reduced in Y128C and T265I 
(p<0.001 vs w ild  type). Note a significant increase o f  maximal currents were 
observed in a l  T265I upon co-expression with (3-subuni (p<0.01). Peak amplitudes 
o f  G342S currents were sim ilar to that o f  WT fo r  either heteromeric o r homomeric 
expression. E rro r bars represent SEM.
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Dominant mutations
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Figure 4.6 Dose-response characteristics of dominant mutations. A) Currents were 
obtained from  HEK293 cells expressing WT or mutant GlyR a l  subunit either as 
homomeric a l  subunits o r heteromeric a lp  GlyRs at varying concentrations o f  
glycine (0.01-10 mM). The currents are shown as a percentage o f  the maximal 
current fo r  each cell. A) A dominant mutation T265I shows a significant righ t shift 
o f  glycine EC50 (p<0.01) . B) Examples o f  glycine-induced currents produced by 
WT or mutant GlyR a l andp  subunit.
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TM 2 domain m utation T 2 6 5 I: Interestingly, the glycine-

mediated current from HEK293 cells expressing the heteromeric 

a l(T265I)P  GlyR was inhibited by picrotoxin (PTX). PTX, a 

botanical alkaloid, can inhibit the homomeric a l-3  GlyR subtypes, 

whereas the heteromeric a ip  GlyR subtypes are insensitive to PTX 

(Pribilla et al., 1992). Thus, PTX is often used in assays to 

discriminate the homomeric a-GlyR from the heteromeric ap GlyR.

For WT and other a l GlyR mutants investigated in this study, PTX 

(lOOpM) strongly inhibited currents in cells expressing homomeric 

a l  GlyRs, but not heteromeric a ip  GlyRs. The exception to this 

was the heteromeric a l(T265I)P  GlyR mutant which displayed an 

anomalously high-sensitivity to PTX. To investigate the gain of PTX 

sensitivity in a l(T265I)P  GlyRs, a range of PTX concentrations 

(lpM -lOOpM ) were applied in the presence of the glycine EC50 

concentration. As shown in Figure 4.7, the glycine-mediated 

current was reduced by PTX in a concentration-dependent manner. 

The averaged inhibitory dose-response curve is presented in Figure 

4.8. Individual PTX dose-responses in the a lT265Ip GlyR were fitted 

with an averaged half-maximal inhibitory concentration (IC50) of 

12.7 ±  0.82pM and an nH of 1.126 ± 0.103. This IC50 is 

significantly lower than the corresponding values of the 

heteromeric a l  p GlyR, which have previously been determined at 

219 ±  28 pM (Hawthorne et al., 2006). Consequently, these 

results suggest tha t T265 in the TM2 domain represents an 

im portant new determ inant of PTX sensitivity.
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100 PTX (fiM)
Glycine
(EC50)
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Figure 4.7 alT265I mutation converted heteromeric alT265I P GlyRs to PTX 
sensitive. Inh ib itory dose-response characteristics o f  PTX-induced currents. The 
heteromeric a l  T265I p  was not resistant to PTX and the PTX inhibition shows a 
dose-dependent manner. The IC50 value o f  PTX antagonism was 1.49±0.15juM and 
6.3 ±  0.7 fo r  a l(T265I)p  and a lW T  glyRs, respectively. The currents induced by 
a l T265I was not sufficient enough to generate IC50.

0.8

•  a l (T 2 6 5 I )pX(D
EHHVM
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1000.001 0.01 0.1 101
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Figure 4.8 TM2-domain dominant mutation T265I. Examples o f  P TX current 
inhibition produced by a l  (T265I)f GlyRs when an increasing concentration o f  PTX  
was applied in the presence o f  the EC50 concentration o f  glycine o f  the cell. 
Representative traces o f  inhibition o f  PTX on a l  WT and a l  WTfi in the presence o f  
corresponding glycine EC50 concentration.
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N -term inal m utation GlyR a l  Y128C : The m ajority of dominant 

mutations in HE are located in the pore-forming M2 domain or M2 

flanking regions of the GlyR a l  subunit. However, the novel 

mutation Y128C is the second dominant HE mutation located in the 

N-terminal extracellular domain (Figure 3.3). The only previously- 

reported N-terminal dominant mutation, R218Q, revealed a 

decrease in both total and cell-surface expression levels (Miraglia 

Del Giudice et al., 2003). Consequently, it was intriguing to 

discover tha t the Y128C mutant formed spontaneously-opening 

channels when transiently expressed as homomeric a l  (Y128C) 

GlyRs or heteromeric a l (Y128C)P GlyRs (Figure 4.9 A). In the 

absence of glycine, the competitive antagonist strychnine had no 

significant effect on leak current in cells expressing al(Y128C) or 

al(Y128C)P GlyRs. In contrast, application of lOOpM of PTX, an 

allosteric inhibitor of GlyRs, significantly reduced inward current 

(472 ±71 pA, n=25; p<) in the absence of glycine, indicating the 

closure of spontaneously open channels (Figure 4.9 B).

Both strychnine and PTX did not induce any detectable currents in 

WT a l  or a 1(3 in the absence of glycine. To further verify the 

leakage currents of Y128C, voltage ramp protocols as described in 

the methods section, were performed 1) in the absence of 

agonist/antagonist (control), 2) in the presence of lOOpM of PTX 

and 3) in the presence of ImM of glycine (see Figure 4.9 C). In 

the absence of agonist/antagonist spontaneous opening of 

al(Y128C) GlyR was confirmed by unusually larger resting 

conductances compared to WT; the slope conductance between 

-8 0  and +80 mV for Y128C prior to the activation of receptor 

(resting conductances) was significantly higher compared to WT 

(Y128C = 2.95+0.48 nS, n=7 ; WT= 0.57+0.20 nS, n=3 ; 

pcO.001). Application of PTX (lOOpM) reduced the resting
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conductance of Y128C by 35%, whilst resting conductances for WT 

were sim ilar in the presence or absence of lOOpM PTX (Control = 

0.57±0.20 pS, PTX= 0.54±0.21). As expected from the smaller 

glycine current produced by Y128C compared to WT (Figure 4.9), 

application of Im M  glycine resulted in smaller slope conductance in 

Y128C than in WT (Figure 4.9 C).

Following the electrophysiological evidence for tonic opening in 

Y128C, tonic currents induced by cells transfected with alY128C 

were further examined using a high-throughput quantitative 

fluorescence system (Kruger et al., 2005; Gilbert et al., 2009). To 

investigate how leak magnitude changed when co-expressed with 

WT subunits, the a l  GlyR Y128C mutation construct was mixed 

with different ratios of WT a l  and co-expressed with the I" 

sensitive YFP(I152L); (Figure 4.9). FIEK 293 cells transfected with 

YFP(I152L) and GlyRs can be quenched by influx of I ' through 

anion channels such as GlyRs. Using an automated live-cell 

imaging system, the glycine dose response characteristics were 

determined by quantifying the fluorescence change following the 

application of increasing concentrations of glycine (O.OOl-lOmM).

Following the application of saturating glycine concentration 

(Im M ), over 90% of fluorescent cells transfected with a l  and YFP 

(I152L) displayed fluorescence quench, indicating over 90% of co

transfection efficiency of a l  and YFP (I152L). The EC50 of WT a l  

obtained from cells analysed with the YFP automated system was 

sim ilar to tha t of patch-clamped cells (19.3±3.4 for YFP imaging, 

n>2000; 20.74±7.27 for patching electrophysiology, n= 6). As 

shown in Figure 4.10, cells transfected with Y128C displayed a 

maximum fluorescent change in the absence of glycine (n>2000). 

Cells transfected with an equal amount of Y128C and WT generated

89



Glycine
[mM]

Y128C

0.001 0.01 0.1 PTX (lOOpM)

2sec  |200pA

Control PTX (100|jM) Glycine(lmM)

Y128C - A

.5nA
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6nA
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Glycine
(Im M )
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2.95±0.48*

0.57±0.20

1.93±0.31

0.54±0.21

9.53±1.85
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Figure 4.9 alY128C GlyRs generated tonic currents when expressed in HEK 293 
cells either as homomeric a l subunits or heteromeric a lp  GlyRs. A) Examples o f  
glycine-induced currents produced by alY128C. B) A representative trace o f  an 
upward current induced by PTX (lOOpM) in the absence o f  glycine. F o r WT, no 
detectable current was induced by PTX  o r in the absence o f  agonist (Data not 
shown). C) Current-voltage curves relationship o f  WT /  Y128C receptors. I-V  
curves were measured by whole-cell patch clamp recordings using voltage ramp 
from  -8 0  to +20 mV over 2-s interval. a lY128C  shows unusually large resting 
conductances in the absence o f  glycine (Control) (*Statistically different from  WT 
GlyR a l,  P<0.001). PTX, GlyR channel blocker, induced outward current and the 
slope conductance ofY128C was decreased in the presence o f  lOOpM o f  PTX.
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Y 1 2 8 C . W T  a t  1 : 4  g e n e r a t e d  c o n t r o l  f l u o r e s c e n c e  l e v e l  i n  t h e  m i d d l e  o f Y 1 2 8 C  a n d  

W T .

a dose response curve similar to that of cells expressing Y128C 

indicating the dominant-negative effect of Y128C on WT.

4.3  Subcellular localisation w ith  recessive 

m utations

The following experiments were adopted to test whether certain 

mutations with no evidence of detectable current activity were 

actually reaching the cell surface or alternatively being retained in 

the translational pathways of the cellular organelles /  or become 

trafficking mutants.
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4.3.1 YFP Fluorescence Assay

For each mutant, the number of cells expressing functional GlyRs 

were determined using the above assay in which HEK293 cells were 

co-transfected with mutant/W T a l  and YFP. Fluorescent cells that 

were quenched more than 20% of the initial fluorescence intensity 

upon the application of a saturating concentration of glycine 

(maximum of 30mM) were defined as expressing functional GlyRs. 

Screening of over 1,500 HEK cells transfected with GlyR mutants 

demonstrated tha t recessive mutations display a significant 

reduction in the number of functional channels, further supporting 

the absence of receptor currents caused by these mutations ( 

Figure 4.11 A).

Dominant mutations, Y128C and T265I and hemizygous missense 

mutations, E103K and S231N, displayed an expression level 

compatible to tha t of the w ild-type GlyR channels (Figure 4.11 B, 

C). To investigate the effects of co-expression of compound 

mutations, we have screened over 2,000 HEK cells co-transfected 

with compound mutations (S296X + S 231R / E103K + L184fs21X). 

Both S296X and L184fs21X mutants show loss of function, 

however, they did not demonstrate any dominant-negative effects 

on the expression of S231R or E103K respectively (Figure 4.11 B). 

Previously, S296X was reported to exert dominant-negative effects 

on the WT GlyR a l  subunit by reducing Cl" current density from 

-1 7 0  pA/pF (WT) to -1 0 0  pA/pF (S296X + WT) (Bellini et al.,

2007). However, when HEK293 cells were transfected with S296X 

and WT GlyR a l  and analysed on the YFP automated system 

(n>2000), no significant change in EC50 or maximum current was 

observed in comparison to WT.
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Figure 4.11 The level o f functional GlyRs. Wild-type human GlyR a l  subunit or 
hyperekplexia a l variants were expressed in HEK293 cells, either as homomeric a l  
subunit o r heteromeric a l f i  GlyRs, with YFP. The number o f  cells expressing 
functiona l mutant channels were quantified (and compared to that o f  the wild-type 
subunit) using a YFP-based high-throughput screening assay. Fluorescent cells that 
showed >20% o f  fluorescent change (quench) fo llow ing  the application o f  a 
saturating concentration o f  glycine were considered as expressing functiona l GlyRs. 
The % fluorescent change (quench) was calculated using the fo llow ing  equation: (1 
-  (Ffinai/Finit))*100), where F i„it is the in itia l (or control) fluorescence value p r io r  to 
the application o f  glycine; Ffinai is the fluorescence level after the application o f  
glycine. A) The percentage o f  fluorescent cells expressing functiona l Y128C and 
T265I channels were compatible to that o f  the wild-type GlyR channels. B) The 
levels o f  functional channels fo r  compound missense mutations, E103K and S231N, 
were s im ilar to that o f  WT. S296X and L184fs21X do not express functiona l 
receptors. When S296X and L184fs21X were co-expressed with E103K and S231N, 
respectively, the level o f  functional channel o f  E103K and S231N were not affected. 
C) The majority o f  mutants harbouring recessive mutations (e.g. R65L, R65W,
R252C, G254D) have significantly lower levesl o f  functional GlyRs compared to WT 
GlyRs.
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4 .3 .2  Biotinylation labelling assay

Hyperekplexia mutants with no/low level of functional receptors 

were further investigated for the surface expression of channels. 

Transfected HEK293 cells were labelled with sulfo-NHS-SS biotin 

and electrophoresis of cell-surface proteins revealed that the 

reduction in the number of functional channels observed in 

recessive mutants is due to the decreased cell-surface expression 

of channels (Figure 4.12). The whole-cell expression of recessive 

mutations were compatible to that of WT, however, cell-surface 

expression levels revealed a significant decrease (Figure 4.12). 

Positive controls for WT profiles in mutations T265I and R392H 

displayed the expected WT cell-surface expression (Figure 4.12). 

The hemizygous mutation, R65L, identified in a compound 

heterozygous case (Table 3.1, case 7), generated no current but 

has sim ilar levels of surface protein expression compared with WT.

In contrast, the recessive mutation R65W showed a significant 

reduction (p<0.0001) in the level of surface protein expression but 

sim ilar level of whole cell expression. The possible explanation for 

this residue-specific cell-surface difference is described in the 

molecular modelling section of this study. For the dominant T265I 

mutation there was no alteration in the cell-surface expression 

indicating the decreased level of T265I functional channels is due 

to non-functional surface-targeted channels rather than a reduction 

in surface-expressed channels.
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Figure 4.12 Majority of recessive HE mutations resulted in reduced surface 
expression on HEK293 cells. HEK293 cells transfected with WT or mutant a l  
GlyRs were labelled with sulfo-NHS-SS-biotin, and the cell-surface proteins were 
analysed by Western blot with an antibody against the GlyR a l  subunit (M illipore). 
A) Expression o f  recessive mutations resulted in sim ilar levels o f  whole cell protein  
expression (total) but reduced cell-surface protein expression (surface) compared 
with WT receptors. B) The surface expression o f  the mutant a l  subunits was 
quantified using imageJ software and expressed as a percentage o f  WT a l.  The 
surface level fo r  the recessive mutations, R65W, D165G, R252C, G254D were 
significantly reduced when compared w ith WT (*p<0.0001). In  contrast, the surface 
expression o f  dominant mutation T265I was not reduced compared to WT. 50fig  o f  
protein lysates were loaded in the each lane.
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4 .4  Im m unohistochem istry

The reduction of cell-surface expression of GLRA1 mutations were 

also confirmed by surface staining of HEK293 cells with an antibody 

against the N-terminal of GlyR a l  subunit (Millipore) (Figure 4.13).

A. Fixed imaging
W T R65W E103K R252C G254D G342S

B. Live imaging

Figure 4.13 Representative confocal fluorescence images o f  HEK293 cells 
transfected with wild-type and m utant expression constructs. T h e  s u b c e l l u l a r  

l o c a l i s a t i o n  o f  t h e  G l y R  a l  s u b u n i t  a n d  h y p e r e k p l e x i a  m u t a n t s  w e r e  v i s u a l i s e d  w i t h  

a n t i - G l y R  a l  a n t i b o d y  ( M i l l i p o r e ) .  T w o  d i f f e r e n t  p r o t o c o l s  w e r e  u s e d  t o  d i f f e r e n t i a t e  

b e t w e e n  c y t o p l a s m i c  ( f i x e d )  a n d  c e l l - s u r f a c e  G l y R s  ( l i v e  s t a i n i n g ) .  W T  G l y R  a l  a n d  

E 1 0 3 K  a n d  G 3 4 2 S  G l y R  a l  a r e  p r i m a r i l y  d e t e c t e d  i n  t h e  c e l l  m e m b r a n e ,  w h i l e  

m a j o r i t y  o f  r e c e s s i v e  m u t a t i o n s  s h o w  p r e d o m i n a n t l y  c y t o p l a s m i c  s t a i n i n g  w i t h  

m i n i m a l  c e l l - s u r f a c e  l o c a l i z a t i o n .

4.5  Molecular modelling.

Examination of the positions of the new mutations (Figure 4.14A) 

reveals that they are located in three broad zones -  the central 

region of the extracellular domain, the mid-membrane region and 

the cytoplasmic loops. The dominant mutations reported involve 

uncharged residues being replaced by other uncharged residues, 

while the compound mutations involve residues being replaced by a 

charged or polar residue, and recessive mutations involve either
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the replacement of or replacement with a charged residue (i.e. 

change of charge). There are no discernable patterns for the 

location for each type of mutation, rather it is the changes in 

secondary, tertiary and quaternary structure brought about by 

individual mutations that determine their functional effects.

The structural modelling of GlyRal mutants is summarized in table 

4.2 and has proved to be a useful approach in rationalising some of 

the functional effects of the mutations observed in terms of 

structural changes brought about by the mutations. Notably, a 

short alpha helical

D 1 6 5 Y 1 2 8

D97 R 6 5

E 1 0 3

S 2 3 1
T 2 6 5

G 2 5 4
R 2 5 2

R 3 9 2

Figure 4.14 S tructu ra l modelling o f  G lyR a l mutants. A) T h e  p o s i t i o n s  o f  G l y R a l  

m u t a t i o n s  a r e  s u p e r i m p o s e d  o n  t h e  m o d e l l i n g  s t r u c t u r e  d e m o n s t r a t i n g  t h e  t o p o l o g y  

o f  t h e  v a r i a n t s .
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structure is predicted to be introduced in the extracellular domain 

of the Y128C mutant (Figure 4.14B) associated with tonic opening. 

Several mutant structures displayed marked rearrangement of 

transmembrane regions, including Y128C, D165G and T265I, which 

are associate with low current. Conversely, E103K, S231N and 

G342S mutants show only slight rearrangements of 

transmembrane regions compared to wild-type, consistent with 

wild-type current levels. Relaxation of the (3-strand structure in the 

vicinity of the glycine binding site in the extracellular domain was 

predicted for E103K, S231N, T265I and R392H, and could be 

aligned with observed increases in EC50.

The R65W, R252C, and G254D mutants displayed extension of 

either the M2 or M3 helix into the interface with the extracellular 

domain, and these mutants suffered a lack of expression (Figure 

4.14 C). R65L is a second mutation identified on the glycine 

binding residue R65 and is a part of compound mutations. 

According to the structural modeling, the main differences between 

R65L and R65W are in the (3 strand structure of the extracellular 

domain, which is enhanced in R65W compared to R65L and wild 

type i.e. with regards to the (3 strand structure of the extracellular 

domain, R65L is much more like wild type, whereas R65W has 

substantially more strand structure, and therefore with the 

extended M2 domain helix possesses two significant structural 

differences compared to wild type. In R65L, the extension of the 

M2 domain helix is compensated for by the increased flexib ility in 

the extracellular domain, whereas R65W suffers from extension of 

the M2 helix and less flexib ility in the extracellular domain. These 

structural features occur down the same side of the molecule 

suggesting that the expression problems encountered by R65W 

may be caused by an inability to form viable pentameric structures 

with adjacent subunits, due to this decreased flexibility.



D is u lp h id eD is u lp h id eD is u lp h id e  ^

Figure 4.14 B) Structural modelling o f GlyRal, showing wild type structure, 
introduction o f short alpha helical structure in extracellular domain o f Y128C 
mutant (indicated by thick arrow) associated with tonic opening, marked 
rearrangement o f transmembrane regions in T265I mutant associated with low 
current; and relaxation o f structure in the vicinity o f the glycine binding site (regular 
long arrow), concomitant with observed increases in EC50.
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R 6 5 W

(

Figure 4.14 C) R65W mutant displays extension o f M2 helical region into the 
interface with the extracellular domain (dashed thick arrows), associated with lack 
o f expression, whereas R65L mutant displays a less extensive rearrangement o f TM 
helixes. E103K and S231N mutants show only slight rearrangements o f 
transmembrane regions compared to wild-type, and relaxation o f structure in the 
vicinity> o f the glycine binding site (regular arrows), coincident with observed 
increases in EC50.

4.6  Sum m ary

From the 18 novel and recurrent GLRA1 variants in Chapter 3, we 

have progressed to investigate the functional effects of eleven novel 

and two recurrent GLRA1 mutations. Mutation constructs were 

prepared using site-directed mutagenesis techniques and the 

expression level and functional properties of the hyperekplexia 

mutants were analyzed using patch-clamp techniques and a high- 

throughput screening system (Table 4.2). The majority of recessive 

mutants were unable to generate any current due to traffic defects,

E 1 0 3 K ^

r  r J
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where as dominant mutations generated surface expressed but 

dysfunctional channels.

When expressed in HEK293 cells, either as homomeric a l  subunits 

or heteromeric a ip  subunits of GlyRs, subcellular localisation 

defects were the major mechanism underlying recessive mutations. 

Interestingly two mutations identified on the glycine binding 

residue, R65W and R65L, generated no glycine currents through 

two different cellular mechanisms; in R65W, identified in a 

recessive case of HE, the m utant channel was not able to reach the 

cell surface resulting in no functional channels, whereas R65L, a 

hemizygous mutation, was expressed on the surface, but the 

channels were insensitive to glycine activation. GLRA1 mutants 

w ithout trafficking defects typically show alterations in the dose- 

response curve for glycine suggestive of disrupted signal 

transduction.

Whilst the m ajority of dominant mutations are located in the pore- 

form ing M2 domain or flanking regions of the GlyR a l subunit, the 

new dominant mutation Y128C is located in the N-terminal 

extracellular domain. When transiently-expressed in HEK293 cells, 

either as homomeric a l  GlyRs or heteromeric a lp  GlyRs, the Y128C 

substitution resulted in spontaneously-opening channels. 

Although, tonic channel opening has been recognized as one of the 

mechanisms underlying channelopathies, this is the first report of a 

hyperekplexia mutation associated with leaky current.

We also demonstrate that T265 on the pore lining region is an 

im portant residue on determ inant of PTX sensitivity and one amino 

acid change on the residue was sufficient enough to convert the 

heteromeric a ip  GlyRs to PTX sensitive. PTX is widely-used in 

recombinant expression studies of cys-loop channels, however, its 

complex inhibitory mechanism is not yet clear. The analysis of PTX
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action on T265I could reveal the new features of pore structural 

and pharmacological differences between a l and p subunits.
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Chapter 5 Gephyrin heterogeneity in 
human brain

In this chapter, we transfer to a wider perspective of human 

hyperekplexia and glycinergic biology by examining the relationship 

between glycine receptors and gephyrin in the human brain. 

Gephyrin encodes a multifunctional cytoplasmic protein that is 

im portant fo r both organizing of inhibitory glycine and GABAa 

receptors at the postsynaptic membrane of neurons and for 

molybdoenzyme activity in non-neuronal tissues (Fritschy et al., 

2008). Mutations in gephyrin are associated with a neurological 

startle disorder, hyperekplexia, hereditary molybdenum cofactor 

deficiency and is disrupted in specific leukaemia translocation 

breakpoints (Reiss, 2000; Eguchi et al., 2001; Kuwada et al., 

2001; Rees et al., 2003).

A previous study demonstrated that human neuronal tissues 

express over a dozen variants of gephyrin isoforms, generated 

from alternatively spliced exons, whereas non-neuronal tissues 

express a single gephyrin transcript (Rees et al., 2003). 

Alternative splicing, which is generally developmentally regulated, 

is now established as the major mechanism underlying the 

functional diversity of proteins particularly in the nervous system 

(Grabowski and Black, 2001), however, the biological significance 

of the gephyrin heterogeneity in the human brain is not known. 

Thus, the objective of the experimental approach in this chapter is: 

1) to investigate gephyrin transcript heterogeneity among the adult 

human brain, retina, spinal cord and fetal brain; 2) to examine, 

using custom-made, cassette-specific gephyrin antibodies, the 

distribution pattern of each gephyrin cassette in the medullar 

brainstem region where GlyRs are highly-enriched.
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5.1 Molecular analysis of gephyrin transcripts

The genomic structure of gephyrin is detailed on Figure 1.3 and 

clearly demonstrates the existence of a central linker region and 

hotspot for differential splicing. Here, the existence of transcript 

populations in four neurological tissue-sources are assessed and an 

attempt to quantify their presence in the human brain with Real

time PCR validation.

5.1.1  Transcript analysis of human gephyrin

To detect possible gephyrin splice-variants, C3 and C4 fragments 

were amplified from human adult brain (HB), fetal brain (FB), 

retina (R) and spinal cord (SC) RNA (Figure 5.1). This created a 

ladder effect of several differentially-sized products and an obvious 

heterogeneity in the patterns 

observed between tissues. The 

transcript ladders were excised 

and sub-cloned into pGem 

vectors and transformed into 

ultracompetent cells. Subsequent 

transcript analysis and 

sequencing analysis of over 1,500 

clones revealed that at least 22 

gephyrin C3/C4 transcripts are 

differentially expressed in the 

above four areas (Figure 5.2).

Ten of 22 splice isoforms were 

tissue-specific. Consistent with a previous study, in human brain 

at least 11 distinct neuronal gephyrin isoforms were generated

300bp
400bp

R HB FB SC

Fogure 5.1. Heterogeneity o f  
C3-C4 assays in neurological 
tissues. C3-C4 regions were 
amplified from cDNAs o f 
Human adult brain (HB), fetal 
brain (FB), retina (R) and 
spinal cord (SC) cDNA..
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from  the alternative splicing of 4 exons (Rees et al 2003), whereas 

fetal brain has 13 isoforms generated from the alternative splicing 

of 6 exons. Interestingly, exons 10 and 15 are subject to splicing 

in the fetal brain and become constitutive in the adult human brain, 

whereas they remain regulated in the adult spinal cord and retina.

Retina and spinal cord displayed 10 and 11 gephyrin isoforms, 

respectively and isoforms detected in fetal brain, retina and spinal 

cord have a single C3 or C4 cassette insertion. Whilst in the adult 

brain, the m ajority of C3/C4 isoforms contain multiple C4 cassette 

insertions, consequently resulting in a more diverse range of the 

combinatorial arrangements. This experiment underlies the 

concept of the importance of transcript heterogeneity in the human 

brain, and the complexity of the interpretation of the biological 

context in future studies.

5 .1 .2  Expression  o f g e p h y rin  s p lic e -v a r ia n ts  in 

m a m m a lia n  b ra in  tissu e

Real-time PCR was conducted to quantify the mRNA levels of the 

gephyrin cassettes in adult human brain, fetal brain, spinal cord, 

retina and heart. First, the expression level of each cassette was 

represented relative to tha t of full-length gephyrin containing N- 

domain (GephN) in the adult human brain. As illustrated in Figure 

5.3, C4 cassettes were mostly brain-specific, while in the retina 

and spinal cord, transcripts containing the C3 cassette 

predominate. Gephyrin molecules containing the E domain (GephE 

-see Figure 5.3) were more highly expressed than GephN in all 

tissue-types investigated except fetal brain. This could be 

explained by the presence of gephyrin molecules containing only E- 

domain but not N-domain as identified by Y2H experiments (Rees 

et al., 2003). The occurrence of smaller gephyrin molecules of
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_ 1.6

.2 1.2

0.8

<d 0.4

□  GephN

■  GephE 

B C 3

□  C4A

□  C4B

■  C4C

■  C4D

B

Human Brain Fetal Brain Retina Spinal cord Heart

Cassette (%) C3 C4A C4B C4C C4D

Human Brain 100 264.2 5.2 28.7 92.6

Fetal Brain 100 140.7 7.8 11.5 88.2

Retina 100 5.0 0.2 1.1 4.2

Spinal cord 100 14.9 0.9 1.7 0.6

□ C4A

□ C4B

L
Human Brain Fetal Brain Retina Spinal cord H eart

Figure 5.3 Gephyrin splice variant transcript analysis in mammalian 
brain tissue. mRNA expression o f each gephyrin cassette was determined in 
human brain, fetal brain, spinal cord, retina and heart using Q-PCR and 
cassette-specific primers. A) Data are presented as a ratio o f expression 
level o f each cassette in different neuronal regions to that o f the full length 
gephryin in the human brain. B) Data are presented as a ratio o f 
expression level o f each cassette to that o f C3 region in different neuronal 
regions. In human adult brain, all five splicing exons were identified in a 
relatively balanced level, while in the retina and spinal cord, C3 was 
predominantly present.
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various sizes (52- 60kDa) containing E- domain were also 

identified in rat tissues (Hermann et al., 2001). C4B and 

C4C containing transcripts were rare in the brain and hardly 

detectable in retina and spinal cord. When the relative 

expression level of each cassette was compared to that of 

the C3 cassette in each tissue, it clearly showed that C4 

cassettes were predominantly expressed in the adult and 

fetal brain, whilst in the retina and spinal cord, C4A, C4B 

and C4D cassettes had low expression levels but were 

minimally detectable (Figure 5.3 B). This is consistent with 

studies on rodent gephyrin isoforms which also reveal 

variable tissue-specific expression levels of the C4 cassettes 

(Meier et al., 2000; Smolinsky et al., 2008). Interestingly, 

C4C cassette was detectable in the heart, albeit to a small 

extent, but remains the only evidence of C4 cassette 

involvement outside neurological tissue.

5.2  Im m unohistochem ical localization of 

gephyrin isoforms in the human m edulla  

oblongata and spinal cord

The human medulla and spinal cord are highly-enriched with 

glycine receptors and subject to the glycinergic inhibition of 

the sensory circuits responsible for the ancient startle 

response. To begin to understand the neuroanatomy of the 

human startle response we created cassette-specific, 

custom-made antibodies targeting the five C3 and C4 

gephyrin cassettes (see Figure 5.4). The distribution of 

gephyrin isoforms containing C3/C4 cassette were 

investigated in the human brainstem and spinal cord. 

Previous immunohistochemistry studies have illustrated that
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gephyrin has a sim ilar staining pattern compared to GlyRs in the 

medullar region and spinal cord with a high proportion of 

gephyrin immunoreactivity co-localizing with glycine 

im m unoreactivity (Baer et al., 2003). Here we have compared 

the distribution of gephyrin cassettes with that of GlyR or 

gephyrin E-domain (GephE) in human brain. Monoclonal 

antibodies, mAb4a (Synaptic Systems; Germany) and 

3 B ll(S yn a p tic  Systems, Germany) were used to detect GlyRs 

and the invariant GephE respectively. Each gephyrin cassette 

displays distinct patterns of immunoreactivity and co-localizaton 

with GephE domain and GlyR in double-labeled experiments 

(Table 5.1 and Figure 5.5 - 5.9).

5 .2 .1  R eg ional lo c a liza tio n  o f g ep h y rin  iso fo rm s

Sections from the upper medulla oblongata and the cervical level 

of the spinal cord were immunohistochemically labelled for 

gephyrin cassettes (C3, C4A-C4D), GephE or GlyR using DAB 

staining (Figure 5.5). Consistent with previous studies 

(Waldvogel et al., 2003; Baer et al., 2003), GephE and GlyR 

demonstrate moderate to high levels of immunoreactivity in the 

hypoglossal nucleus (HN), the dorsal motor nucleus of the vagus 

(DMNX) and the solitary nucleus (SN) in the upper medulla 

oblongata (Figure 5.5 A-B). The gephyrin cassettes show 

weaker immunoreactivity than GephE in the medullar region 

(Figure 5.5 C-G) and this correlates with lower levels of C3/C4 

mRNA compared to total gephyrin mRNA in the spinal cord 

(Figure 5.3). Each cassette, however, displays distinct staining 

patterns in the upper medulla oblongata and the cervical spinal 

cord (Figure 5.5 and Table 5.1).
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Figure 5.5 Regional localization o f gephyrin iso forms and GlyRs in human 
medulla and spinal cord. Macroscopic images o f serial coronal sections o f 
human upper medulla (A-G) and spinal cord (H-M) labelled fo r gephyrin 
isoforms (C-D; J-M); GlyR (A, H); or gephyrin-E domain (B, I) by DAB staining. 
A) GlyR and B) gephyrin display intense level o f immunoreactivity labelling in the 
dorsal motor nucleus o f the vagus (DMNX), the hypoglossal nucleus (HN), dorsal 
and medial accessory olivary nuclei (AON), inferior olive (10) and the spinal 
trigeminal nucleus (STN). C) C3 shows overall weak labelling with moderate 
patch staining in the HN and DMNX. D), C4A demonstrates intense levels o f 
immunoreactivity in the HN, SN, AON and moderate levels o f labelling in the 10. 
E) C4B and F) C4C shows relatively weak labelling. G) C4D displays moderate 
levels o f immunoreactivity in the HN, and DMNX. H) In the spinal cord, GlyRs 
show intense staining in the dorsal (DH) and ventral horns (VH) whereas GephE 
I) has very intense immunoreactivity in the lamina I I  o f the D H with moderate to 
high labelling throughout the spinal cord. J) C4A shows intense staining in both 
D H  and VH. K) C4B shows moderate to low-levels o f labelling in the DH. L) 
C4C displays relatively weak labelling in the DH and VH. M) C4D demonstrates 
weak to moderate levels o f labelling in the DH and VH. -  (  Scale bar) =  0.5 cm 
in E (applies to A-G); 2 mm in M  (applies to H-M).
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Of the five gephyrin cassette specific antibodies, C4A showed the 

highest immunoreactivity in the HN and SN (Figure 5.5A). The 

staining pattern of C4A was the most sim ilar to that of GlyR and 

GephE, showing moderate levels of immunoreactivity in the 

accessory olivary nucleus (AON) and the inferior olive (10). C3,

C4B and C4D displayed overall weak but more diffused

immunoreactivity around the HN and DMNX (Figure 5.5 C, E, G).

Examples of GlyR and GephE staining in the spinal cord are 

presented in the Figure 5.5 H-M. The labelling pattern of GlyR and 

GephE observed here are in accordance with previously described 

staining immunoreactivity patterns (Baer et al., 2003). Consistent 

with the staining observed in the medullar area, the

immunoreactivity of C4A antibody (Figure 5.5J) demonstrates

staining patterns sim ilar to GlyR's with moderate to high-labelling 

throughout the DH and VH. The C4D antibody (Figure 5.5 M) and 

C4C antibody (Figure 5.5 L) show weak and moderate labelling 

throughout the DH and VH respectively. In C4B (Fig. 5.5 K), 

staining was preferentially localised to the lamina I I  of the DH.

5 .2 .2  C e llu la r lo c a liza tio n  o f g ep h y rin  iso fo rm s

The distribution of gephyrin isoforms containing C3/C4 cassette 

(C3/C4 variants) was further investigated by confocal 

immunofluorescence labelling. Although gephyrin binds to GlyR-p 

subunit through its E-domain (Kneussel et al., 1999; Rees et al., 

2003; Schrader et al., 2004), a recent study on rodent gephyrin 

isoforms indicated that presence or absences of C4 cassette can 

interfere with the polymerization of GephE and GlyR and gephyrin 

interaction (Bedet et al., 2006). Here, we have investigated the 

co-localization patterns of each of the gephyrin cassettes with GlyR 

or GephE. Figures 5.6 and 5.8 represent the high-resolution
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images of medulla oblongata and spinal cord sections double

labelled fo r each gephyrin-cassette with GephE or GlyR

respectively. As observed in previous studies (Baer et al., 2003;

Waldvogel et al., 2007), GlyR displayed high-level of punctate

immunoreactivity along the membranes of cell bodies and dendritic 

processes of HN neurons (Figure 5.8 left panel) whereas GephE 

exhibited punctate staining on the membranes in addition to the 

cytoplasmic regions (Figure 5.6 left panel). Consistent with Q-PCR 

data (Figure 5.3), the level of gephyrin cassette staining was less 

than that of GephE immunoreactivity. All gephyrin cassettes

showed puncta immunostaining, the characterization of gephyrin 

staining (Meier et al., 2000). In contrast to GephE which exhibited 

immunoreactive punctate both on the neuronal membranes and the 

cytoplasm (Figure 5.6 left panel), immunoreactivity of the gephyrin 

cassette appeared to be preferentially localized to either neuronal 

membranes or cytoplasm (Figure 5.6, middle panel). This 

preferential localization of gephyrin isoforms was also observed in 

rat spinal cord neurons expressing gephyrin isoforms containing C4 

cassette due to its inability to form polymerisation and localise to 

the cell membrane (Bedet et al., 2006). Interestingly, a significant 

proportion of gephyrin variants were not associated or co-localised, 

with GephE immunoreactivity providing partial indirect evidence 

that some gephyrin species may be fragmented (Figure 5.6). 

Further work is needed to prove this suspected outcome and 

ongoing efforts are imminent. C3 showed predominantly a diffuse 

staining pattern in the cytoplasmic region of HN neurons (Figure 

5.6 B, 5.8 B). Rare C3 clusters observed both intracellularly and 

on the membrane were scarcely co-localized with GephE 

immunoreactivity (Figure 5.6 C) or GlyR immunoreactivity (Figure 

5.8 C). In agreement with DAB staining, at the cellular level, C4A 

reveals the most sim ilar staining patterns when compared with 

GlyR and GephE immunoreactivity.
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Figure 5.6 Gephyrin immunoreactivity at the cellular level. A-O, Confocal laser 
scanning micrograph single scans from sections o f the human hypoglossal nucleus 
and spinal cord after double-labelling with gephyrin E-domain (GephE, 3B11, left 
column) and gephyrin isoforms (middle column), with merged images (right column). 
The labelling o f each marker is shown separately and arrows point to colocalizing 
gephyrin E-domain and gephyrin isoform immunoreactivity in each triplet o f images. 
Moderate to high levels o f gephyrin E-domain- immunoreactivity (green, A, D, G, J, 
M) are present outlining the membranes o f cell bodies and neuronal processes. 
Gephyrin isoform- immunoreactivity (red, B, E, H, K, N) is present in low levels with 
varying degree o f colocalization (yellow in merged images in right column). A-C) 
C3 displays low levels o f IR that is detected mainly in the cell body and often 
colocalized with 3B11- immunoreactivity. D-F) C4A demonstrates moderate to high 
levels o f immunoreactivity with strong punctate immunoreactivity on the membranes 
o f cell bodies and processes often colocalizing with 3B11- immunoreactivity. G-I) 
C4B and J-L) C4C show low levels o f immunoreactivity that is detected mainly in the 
cell body. M-O) C4D displays moderate levels o f immunoreactivity on dendritic and 
somatic membranes that often colocalizes with 3B11 immunoreactivity. L f  = 
lipofucsin auto-fluorescence. Scale bars = 10pm (C,F,I,0); 25pm (L).
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Figure 5.7 Quantitative analysis o f gephyrin immunoreactivity at the cellular level.
Semi-quantitative comparison o f gephyrin cassette immunoreactivity in HN, Data 
are presented as a ratio o f expression level o f each cassette standardised against C3. 
The ratio o f co-localisation with GlyR was represented in a patterned bar.

The m ajority of C4A immunoreactive puncta were localized on the 

membranes of the soma and dendritic processes of neurons in the

HN, DH and VH and often co-localized with GephE or GlyR

immunoreactivity (Fig 5.6 E-F, 5.8 E-F). C4D has less

immunoreactivity than C4A, but presented a sim ilar staining

pattern (Fig5.6 & 5.8 N-O). The higher level of immunoreactivity 

of C4A and C4D compared to that of C3 correlates with the mRNA 

level detected in the whole human brain. I t  is interesting to note 

that the level of C4B and C4C immunoreactivity observed in the 

neurons expressing GlyR (Figure 5.9) was much higher than the 

level of mRNA detected in the medulla region (Figure 5.3). This 

may indicate tha t the low-levels of C4B/ C4C transcripts in whole 

brain regions is a function of regulated expression of C4B/C4C 

gephyrin in discrete populations of neurons in the medullar 

brainstem region.
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Figure 5.8 Gephyrin- and GlyR-immunoreacitivity at the cellular level. Confocal 

laser scanning micrograph single scans from sections o f the human hypoglossal 

nucleus and spinal cord after double-labelling with GlyR (mAb4a, left column) and 

gephyrin isoforms (middle column), with merged images (right column). The 

labelling o f each marker is shown separately and arrows point to colocalizing GlyR- 

and gephyrin isoform-immunoreactivity in each triplet o f images. High levels o f 

GlyR- immunoreactivity (green, A, D, G, J, M) are present outlining the membranes 

o f cell bodies and neuronal processes. Gephyrin isoform- immunoreactivity (red, B, 

E, H, K, N) is present in low levels with varying degree o f colocalization (yellow in 

merged images in right column). A-C) C3 displays low levels o f immunoreactivity 

that is detected mainly in the cell body and rarely colocalized with GlyR- 

immunoreactivity. D-F) C4A demonstrates moderate to high levels o f IR with strong 

punctate immunoreactivity on the membranes o f cell bodies and processes often 

colocalizing with GlyR- immunoreactivity. G-l) C4B and J-L) C4C show low levels 

o f immunoreactivity that is detected mainly in the cell body with little 

immunoreactivity along the neuronal membrane that often colocalizes with GlyR- 

immunoreactivity. M-O) C4D displays moderate levels o f immunoreactivity on 

dendritic and somatic membranes that often colocalizes with GlyR- 

immunoreactivity. L f — lipofucsin autofluorescence. Scale bars = 10 pm (C, F, O); 

50 pm (I, L).
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Figure 5.9 Quantitative analysis of gephyrin- and GlyR-immunoreactivity at the 
cellular level. Semi-quantitative comparison o f gephyrin cassette IR in HN, Data 
presented as a ratio o f expression level o f each cassette to that o f C3. The ratio o f 
co-localisation with GlyR was represented as a pattered bar.

5 .3  Sum m ary

In this chapter, the distribution of gephyrin isoforms in the human 

brain and spinal cord was analysed using molecular biological and 

immunohistochemical techniques. Using RT-PCR and real time 

analysis, gephyrin transcript heterogeneity was extensively 

investigated in the adult human brain, retina, spinal cord and fetal 

brain. RT-PCR transcript analysis and cloning of gephyrin isoforms 

revealed that some splice isoforms are restricted to adult human 

brain where a more diverse range of the combinatorial 

arrangements of exons was observed in comparison to fetal brain, 

retina and spinal cord. In addition, we have generated novel 

gephyrin cassette-specific antibodies, that are described for the 

firs t tim e and used to investigate the distribution of gephyrin 

iisoforms in the human brainstem and the cervical spinal cord and 

th e ir co-localization with GlyR's in these regions.
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The heterogeneity of gephyrin cassettes identified in this study 

indicates that the expression of each cassette is temporally and 

spatially regulated with unique patterns of co-localization with 

GlyRs. Functional studies on rodent gephyrin isoforms suggested 

different gephyrin isoforms exhibit different binding specificity and 

thereby affect protein-protein interactions. Further analysis of 

gephyrin transcripts will lead to better understanding of the 

mechanisms underlying the expression of specific splice variants 

and the ir functional roles in the dynamics of inhibitory 

neurotransmission.
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Chapter 6 Discussion

Chapters 3-4 of this thesis have described the genetic basis of 

human hyperekplexia and we provide further proof of genetic 

heterogeneity involving the glycinergic inhibitory system. The 

pathogenicity of the gene mutations in GLRA1 (this study) and 

SLC6A5 (collaboration) have been validated by a range of 

functional platforms, revealing new mechanisms of receptor /  

transporter pathology in hyperekplexia. Lastly, in chapter 5, the 

investigation of gephyrin heterogeneity in the human brain has 

revealed the plethora of transcript isoforms in the human brain and 

differential profiles gained from other neurological tissue. The 

molecular findings correlated well with the neuro-anatomical 

investigation utilizing new antibodies targeting the exons of the 

central linker region which are spliced in or out of the gephyrin 

gene. Collectively, this has advanced our knowledge-base in the 

themes around human hyperekplexia, inhibitory glycinergic biology 

and the determ inants of GlyR receptor clustering in neural cells.

6 .1  M u ta tio n s  in GLRA1 and  SCL6AS  cause h um an  

h y p e re k p le x ia

This study represents the largest genetic screening and molecular 

characterization of GLRA1 and SLC6A5 in hyperekplexia. Our direct 

sequencing screening program of 88 index-cases, collected over 15 

years, identified 19 GLRA1 mutations within 30 index cases, and a 

further 12 mutations in SLC6A5 found in 7 patients negative for 

GLRA1 changes. Collectively this represents a 42% detection rate 

in hyperekplexia leaving a further 58% of index cases w ithout a 

molecular diagnosis. By defining the genetic hierarchy of this 

hyperekplexia cohort, we can now triage the cohort into further
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gene-discovery experiments for those who are phenotype + 've /  

genotype - 've , as well as validate the pathogenicity of the gene- 

positive cases.

From the 30 cases with GLRA1 mutations, 18 were inherited in a 

recessive mode or part of compound heterozygosity (Table 3.1) 

which is in conflict with the perception that dominant inheritance is 

the most common form of hyperekplexia. Twelve novel GLRA1 

mutations were identified, all of which were submitted to functional 

analysis with exception of homozygous stop codon alleles (Y197X) 

and large deletions (Aexon 4-7) where the outcomes are 

unambiguous. This study increases the compendium of 

hyperekplexia associated GLRA1 mutations by 46% and effectively 

doubles the number of gene-positive index-cases known in the 

literature (Harvey et al., 2008).

Consistent with previous studies, all nonsense and intragenic 

deletion mutations were associated with recessive cases of 

hyperekplexia, confirming that haploinsuffiency is not a feature in 

this disorder. Hyperekplexia has traditionally been considered a 

dominant disorder (Harvey et al., 2008) largely driven by the 

identification of multiply-affected dominant families with a linked 

bias of M2 pore domain mutations, and the relative high frequency 

of R271Q/L alleles in Caucasians. Several studies in recent years, 

in relative isolation, have been providing an increasing evidence- 

base for the contribution of recessive alleles, led by the high 

frequency of A exon 1-7 as a founder-effect in the Turkish 

population (Gilbert et al., 2004; Becker et al., 2006; Siren et al., 

2006). This latest study confirms that on an index-case 

population-basis the recessive inheritance of hyperekplexia is more 

common than dominant although they are closely-matched in the ir 

relative contribution. Combined with the data from SLC6A5, the
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second m ajor gene of effect in hyperekplexia where compound 

heterozygosity and homozygous mutant alleles predominate, then 

hyperekplexia becomes a predominantly recessive disorder.

In addition to the insights of the molecular genetics of 

hyperekplexia, the functional context of the pathogenic mechanism 

of GLRA1 mutations is essential to establish pathophysiological 

mechanisms underlying the abnormal startle response. The data in 

this thesis and in the SLC6A5 collaboration (Rees et al., 2006) 

greatly enhance the existence of 3 basic glycinergic channelopathy 

mechanisms.

1. Cell-surface expressed receptors that do not function due to 

dominant mutations that compromise glycine ligand-binding, alter 

agonist sensitivity or cause chloride conductance defects.

2. Trafficking mutants where that GlyR pentameric assembly or 

transition through the transcription/translation processes conspire 

to cause a deficiency of cell-surface targeting and insertion.

3. Recessive null genotypes, where the creation of functional a ip  

pentamers is precluded leading to a deficit in glycinergic 

neurotransmission where compensatory mechanisms likely exist to 

prevent a lethal clinical outcome.

This study has also identified a new pathogenic mechanism relating 

to glycine receptors and hyperekplexia. A novel dominant 

mutation, Y128C, causes spontaneously opening GlyR channels and 

is discussed below. In addition, we have also identified T265 in the 

TM2 domain as an important residue for the antagonistic activity of 

PTX, and 2 substitutions at position 65 of the polypeptide which
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have very opposite outcomes in functional analysis and molecular 

modelling.

6 .2  L eaky  c h a n n e ls  -  n e w  m ech an ism  in h y p e re k p le x ia

A single dominant missense mutation, Y128C, in the N-terminal of 

the a l  subunit resulted in tonic channel opening in the absence of 

glycine agonist. This dominant mutation is the first hyperekplexia 

mutation identified with spontaneously opening channels or leaky 

channels as revealed by the biophysical characterisation. This 

channelopathy mechanism has been recognized as a pathogenic 

mechanism in other episodic disorders including congenital muscle 

disease, cardiac arrhythmias and hypokalaemic periodic paralysis 

(Marks et al., 2002; Paavola et al., 2007; Sokolov et al., 2007; 

Treves et al., 2008). Constitutive spontaneously opening activity 

has also been observed in native cys-loop receptors, including 

GABAa receptors (Krishek et al., 1996; Birnir et al., 2000; Wagner 

et al., 2005) and nAChRs (Ferrer-Montiel et al., 1991), in addition 

to cys-loop receptors with point mutations in regions involved in 

channel gating such as TM2 and flanking regions (TM2-TM3, TM3) 

or agonist binding N-domain (Chang and Weiss, 1998; Chang and 

Weiss, 1999; Corringer et al., 1999; Ueno et al., 1999; Torres and 

Weiss, 2002; Bhattacharya et al., 2004; Miko et al., 2004; Newell 

et al., 2004). Site-directed mutagenesis studies of GlyR a l  subunit 

have identified three residues causing spontaneously opening GlyR 

a l  channels; N-terminal D97R and A288W in the TM3 domain 

(Mihic et al., 1997; Beckstead et al., 2002). Structural modelling 

indicates tha t Y128 is located in close proxim ity to D97. Both 

Y128C and D97R result in sim ilar conformational changes with the 

formation of the same short alpha helix in the extracellular domain 

directly overlying the TM regions (Figure 4.14 B) indicating the 

tonic opening of the channel is mediated by the same mechanism

129



fo r both N-terminal mutations. In contrast, A288W, which is 

located on TM3 domain near the extracellular boundary, appears to 

achieve tonic opening by an alternative mechanism, i.e. w ithout 

change in secondary structure. The large tryptophan residue 

projects outward from the TM3 domain and possibly interferes with 

the normal packing of the subunits in the pentameric form. I t  is 

likely tha t in this regard the introduction of the short helix in Y128C 

and D97R has the same effect.

Although the precise mechanisms underlying the channel activation 

were unclear at present, a recent study revealed that agonist 

binding on the GlyR a l  initiates rearrangements of the inner p- 

sheet on the ligand binding domain (LBD) to trigger further 

movements fo r removing channel gating (Pless and Lynch, 2009). 

Y128 is a constituent of the loop E in the inner p-sheet which is 

subject to conformational change upon ligand-binding and the 

substitution of tyrosine to cysteine at residue 128 is expected to 

in terrupt the p-sheet structure of the channel transform ing (or 

converting) the channel to favour an open conformational state. 

This is consistent with the predictions of our modelling studies 

where the Y128C (and D97R) mutations affect extracellular domain 

structure immediately adjacent to the membrane domain.

6 .3  D o m in a n t M 2 m u ta tio n s  im p a ir  G lyR  ch ann el fu n c tio n

Typical HE dominant mutations are clustered around the pore- 

forming TM2 and flanking domains with Y128C and R218Q being 

exceptions from this trend (Miraglia Del Giudice et al., 2003). 

R271Q and P250T are recurrent mutations in our cohort which 

have extensive previous characterization in the literature 

(Langosch et al., 1994; Laube et al., 1995; Shiang et al., 1995; 

Elmslie et al., 1996; Saul et al., 1999; Breitinger et al., 2001; Kung
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et al., 2001; Breitinger and Becker, 2002) and Y128C is already 

discussed above.

Analysis of a novel dominant mutation, T265I, located in the TM2 

domain, revealed a significant decrease of glycine-induced maximal 

current and increased EC50 mimicking the typical features of 

dominant GLRA1 mutations, specifically the reduced glycine 

sensitivity of membrane expressed receptors (Rajendra et al., 

1994; Laube et al., 1995; Saul et al., 1999; Breitinger et al., 2001; 

Breitinger et al., 2004).

Interestingly, the deleterious effect of the homomeric a l(T 2 6 5 I) 

subunits were partially rescued by co-transfection of GlyR (3- 

subunits (Figure 4.5). As a a l  homomeric channel, T265I had no 

detectable current, but upon expression with p-subunit, an 18-fold 

increase of maximal current was observed. This partial rescue of 

the heteromeric channel by p-subunit co-transfection was also 

observed in a recessive mutation R392H in the M3-M4 domain 

(Figure 4.1). Previously, GlyR channels with defects in glycine 

binding sites (R65A and E157D) were also rescued by p subunit co

transfection (Grudzinska et al., 2005). Agonist binding and signal 

transduction occurs by interaction of residues between adjacent 

domains, thus, it seems the incorporation of WT p-subunits into the 

mutant a l  GlyRs with defects in agonist binding sites or signal 

transduction domains have the potential to alter the biophysical 

properties of the a ip  GlyRs. The pharmacological properties of 

GlyRs can also be altered by the incorporation of p-subunits into a 

subunits (Supplisson and Chesnoy-Marchais, 2000; Yang et al., 

2007; Lynch, 2009).

PTX is widely used to discriminate homomeric a GlyR from 

heteromeric ap GlyR, due to its ability to selectively inhibit
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homomeric GlyRs (Lynch, 2004). Interestingly, the a l  T265I 

mutation restored high PTX sensitivity to heteromeric a l(T265 I)p  

GlyR (Figures 4.7 and 4.8), although the mechanism by which this 

was achieved is not understood at present. Site-directed 

mutagenesis studies have demonstrated that the structure of the 

M2 domain is an im portant constraint for the antagonistic activity 

of PTX on a l  homomers; mutations on a l  pore lining residues, 

G254, T258, S267, R271, can reduce the antagonistic effect of PTX 

(Lynch et al., 1995; Shan et al., 2001; Dibas et al., 2002), 

particularly, threonine at the residue 258 on a l  subunit is regarded 

as an essential residue for PTX sensitivity (Shan et al., 2001; Yang 

et al., 2007). When residue F282 of p subunit polypeptide, which 

corresponds to T258 on a l  subunit, was substituted to the 

threonine, the heteromeric alp(F282T) was converted to 

picrotoxin-sensitive (Shan et al., 2002).

Structural analysis of cys-loop channels predicted that, T265 forms 

a part of pore lining residues, along with G254, T258 and S267, 

and plays an im portant role for maintaining a minimum pore 

diameter by form ing a hydrophobic bond with Q266 in adjacent 

TM2 domain (Akabas et al., 1994; Miyazawa et al., 2003) This 

study demonstrates that T265 is a novel determ inant of PTX 

sensitivity. Analysis of its mechanism of action could reveal new 

features of pore structural differences and pharmacological 

differences between a l and p subunits.

6 .4  R ecessive m u ta tio n s  cause tra ffic k in g  d e fec ts

Two novel mutations in the pore and the flanking region (R252C in 

M1-M2 region and G254D in TM2) were associated with recessive 

cases of hyperekplexia. Carriers of heterogygous R252C or G254D 

mutations are phenotypically asymptomatic. This indicates some
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missense mutations on the pore lining regions may not exert 

dominant-negative effects and can be tolerated in the 

heterozygous state. Convergent functional studies of these 

recessive missense mutations displayed a significant reduction of 

membrane expression, presumably a defect in channel trafficking, 

thereby inducing a small or no current by glycine (Table 4.1).

Recessive mutations identified in the N-terminal region, R65W and 

D165G, also displayed a significant decrease of membrane 

expression level as displayed in the biotinylation data and the lack 

of glycine currents.

Hyperekplexia differs from other ion channel disorders in that 

human patients with recessive/null hyperekplexia mutations do not 

present with a phenotype as severe as hyperekplexia animal cases 

or recessive cases in other genetic disorders, indicating some sort 

of compensatory mechanisms. However, they tend to have a more 

complicated phenotype including learning difficulties and 

developmental disorders (Appendix C). Although phenotypic 

variability is a common feature even among the carriers of a same 

mutation in complex genetic disorders, generally, recessive or 

compound mutations in channelopathies are typically associated 

with more severe phenotype than patients with dominant 

mutations, as exemplified by mutations in CLC2 or KCNQ1 genes 

causing myotonia congenita or cardiac arrhythmia respectively 

(Westenskow et al., 2004; Planells-Cases and Jentsch, 2009).

Defects in the glycinergic system generate HE-like symptoms in a 

variety of animal models (Buckwalter et al., 1994; Kingsmore et 

al., 1994; Ryan et al., 1994; Kling et al., 1997; Becker et al., 

2000; Becker et al., 2002). Studies indicate that these animal 

models have impaired glycinergic function linked to hyperekplexia
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and experience compensation by enhancement of GLRA subunits or 

GABAergic neurotransmission (Findlay et al., 2003; Molon et al., 

2006). In murine hyperekplexia models, homozygous mutations 

are generally associated with severe phenotypic outcomes e.g. the 

murine model of hyperekplexia (oscillator, spdot) has homozygous 

deletion of 7bp which leads to the compete loss of GlyR a l  subunit 

and fatal phenotypic consequences (Buckwalter et al., 1994). The 

spc/ot mice with a heterozygous deletion have a loss of about 50% 

of a l  subunits, but about 30% reduction in total GlyR levels and 

are associated with relatively mild phenotype (Kling et al., 1997). 

This compensatory mechanism was not observed in mutations 

associated with dominant hyperekplexia animal models (Becker et 

al., 2002; Findlay et al., 2003). A transgenic mouse expressing 

the dominant human mutation (R271Q) showed that the mutation 

diminished both GlyR and GABA-A receptor mediated inhibitory 

transmission (Becker et al., 2002). This indicates that the 

expression of a m utant GLRA1 gene with a dominant mutation may 

affect the entire postsynaptic inhibitory system.

6 .5  C om pound m issense m u ta tio n s  b eh av e  d iffe re n tly

Two hemizygous missense mutations, E103K and S231N, identified 

as heterozygous compound mutations in this study, do not cause 

hyperekplexia in the heterozygous status as revealed by 

asymptomatic parental carriers of the mutations. In contrast to 

the recessive missense mutations in this study, E103K and S231N 

expressed fully functional channels with no evidence of trafficking 

defects. However, both mutations displayed a significant increase 

of glycine EC50, although they were able to generate maximum 

currents compatible to WT at saturating glycine concentrations. 

The pathogenic basis for these mutations are likely to lie in the 

alteration of glycine binding affin ity or gating efficacy (Findlay et
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al., 2003), as previously observed with dominant mutations. 

Hemizygous mutation E103 is located adjacent to the glycine 

binding residues, A101 and N102 (Lynch, 2004), therefore it is 

reasonable to speculate that changing a negatively-charged 

glutamate to a positively-charged lysine in E103K will interfere with 

the binding of glycine.

In a previously-published recessive hyperekplexia case, a 

substitution of serine 231 for a charged hydrophilic arginine 

(S231R) was reported and expression studies of S231R indicated a 

reduced cell-surface expression level (Humeny et al., 2002). In 

contrast, S231N seems to alter affin ity for glycine binding revealing 

a substitution-specific effect in GlyR pathology which is also 

observed with R65L and R65W in this study. The hemizygous R65L 

mutation does not mimic the EC50 effects of E103K and S231N, 

and fails to generate currents when expressed in HEK293 cells. 

However, surface-labelling experiments indicated that the R65L 

mutants are fully-expressed on the membrane surface, in contrast 

to R65W which does not reach the cell surface as supported by 

molecular modelling of the effect on the subunit. Whether or not 

the R65 mutations have a trafficking outcome, it may all be 

secondary to the role of residue R65 as a definitive part of glycine 

binding and the change of polarity in R65L and R65W is expected 

to alter the stability of glycine binding.

6 .6  G ep hyrin : a ch a m eleo n  g en e

Gephyrin is a pleiotropic gene which sustains a neuronal clustering 

function and a non-neuronal metabolic function in the biosynthesis 

of molybdenum co-factor (Feng et al., 1998; Stallmeyer et al., 

1999; Smolinsky et al., 2008). This is reflected in the range of
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disorders that gephyrin mutations can cause including 

hyperekplexia (neuronal context) and molybdenum deficiency 

syndrome (non neuronal context). There is also an unknown 

contribution to leukemogenesis through translocations which 

disrupt the gephyrin gene (Eguchi et al., 2001; Kuwada et al., 

2001). Gephyrin is also implicated as a microarray compensator 

gene observed in Chorea-acanthocytosis (ChAc), a hereditary 

neurodegenerative disorder caused by loss of function mutations in 

the chorein gene ( VPS13A) (Kurano et al., 2006) and in various 

neurodegenerative conditions (Thompson-Vest et al., 2003; Kurano 

et al., 2006; Lorenzo et al., 2006; Agarwal et al., 2008; 

Nithianantharajah et al., 2008; Ryzhikov and Bahr, 2008). 

Reduced expression of gephyrin was identified in Alzheimer's 

disease and amyotrophic lateral sclerosis (ALS) (Lorenzo et al., 

2006; Agarwal et al., 2008).

To sustain such a varied biological role, whilst encoded by a single 

highly-conserved gene, the solution lies in the generation of 

function-specific transcripts and certainly that is the evidence for 

gephyrin. Gephyrin, typically creates one isoform for the metabolic 

function in cells, however, generates multiple isoforms in the adult 

human brain and neurological tissue by alternative splicing of five 

linker-region cassettes (C3, C4A-D) (Rees et al 2003). This 

transcript heterogeneity then confers a neuronal context to the 

function where binding of the E-domain of gephyrin to the p 

subunit of GlyRs constitutes a major role for gephyrin in glycinergic 

neurons and some undefined influence in GABAergic neurons 

(Meyer et al., 1995; Calamai et al., 2009). Tissue-specific 

gephyrin variants have also been observed in rodents and 

functional assays indicated tha t different gephyrin isoforms are 

involved in a range of different protein-protein interactions (Meier 

et al., 2000; Bedet et al., 2006; Smolinsky et al., 2008).
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To gain insight into the role of human splicing cassette, the 

expression and distribution patterns of gephyrin variants containing 

C3/C4 cassettes (C3/C4 variants) were analysed in the human 

brain regions. Using cassette-specific primers and antibodies, this 

study has demonstrated that 1) from 1,500 clones, at least 21 

gephyrin mRNA transcripts were differentially expressed in the 

human fetal brain, adult brain, spinal cord and retina (Figure 5.2);

2) gephyrin cassettes were highly brain-specific with C4A and C4D 

being the most abundantly expressed cassettes and 4B and C4C, 

though rare, showing highly-localized expression, whilst the C3 

variants are predominant in the spinal cord, retina and non

neuronal tissue (Figure 5.3); 3) C3/C4 variants display a distinct 

distribution pattern in the human brainstem and spinal cord 

(Figures 5.4 -5 .8 ); 4) C3/C4 aggregates show preferential 

localization either on the surface membrane or in the cytoplasm 

with a different level of co-localisation with GephE or GlyR; 5) the 

diversity of gephyrin transcripts is spatially and temporally 

regulated and the complexity of gephyrin isoforms is even higher 

than previously estimated (Rees et al., 2003; Fritschy et al., 2008).

Recent recombinant expression studies of rodent gephyrin 

indicated tha t the relative expression of different gephyrin isoforms 

can regulate the dynamics of GlyRs on the cell membrane (Bedet et 

al., 2006). Based on the structural analysis of the purified E- and 

G-domain gephyrin, the full-length gephyrin exists as a more 

stable trim er status (300kDa) generated by the G-domain 

aggregation whereas the E-domain alone forms dimers which can 

interact w ith GlyRs but are unable to form stable postsynaptic 

clusters (Sola et al., 2004; Saiyed et al., 2007). Gephyrin variants 

that failed to form  trimerization were not capable of stabilizing GlyR 

at the cell-surface, thereby disturbing the synaptic stability of 

receptors (Bedet et al., 2006). The presence/absence of the linker
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cassette can in terrupt the oligomerization of rodent gephyrin 

protein and consequently decrease the number of cell-surface 

GlyRs through the rapid internalization of cell surface receptors 

(Bedet et al., 2006). Immunohistochemical analysis of human 

gephryin cassette in this study showed that the variants containing 

each cassette display distinct immuno-staining pattern with the 

preferential localization either on the neuronal membranes or in the 

cytoplasm indicating different C3/C4 variants may exert different 

oligomerization status and may play distinct roles in the clustering 

at postsynaptic sites.

Consistent with previous study, the expression level of C3 

transcripts displayed a significant difference between neuronal and 

non-neuronal tissues (Rees et al., 2003). I t  is present in virtually 

all gephyrin isoforms identified in heart, whereas its presence is 

down-regulated in human adult and fetal brain at the mRNA level 

(Figure 5.3). In neuronal cells, C3 variants were reported to be 

repressed by nova, a neuronal regulator of pre-mRNA splicing, and 

the presence of C3 variants in neurones may reflect the 

requirement fo r background non-neuronal moco-synthesis, rather 

than enabling clustering at the postsynaptic sites (Paarmann et al., 

2006). As expected, immunoreactive gephyrin clusters containing 

C3 (C3 variant) are predominantly present intracellularly in the 

neurons of the HN or DH and virtually no colocalization with GlyR 

(Figures 5.5 - 5.9). Cytoplasmic clusters of C3 variant were also 

observed in recombinant gephyrin variant expressed in rat spinal 

cord neurons (Paarmann et al., 2006). A recent study showed that 

in the rat brain, cortical neuronal cells display a very low activity of 

Moco synthesis, whereas glial cells are responsible for the synthesis 

of Moco in the brain. Consequently, C3 isoforms were most 

commonly found in rat glial cells and not in the cortical neurons 

(Smolinsky et al., 2008). This may explain the lower immuno-
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labelling of C3 in the medulla oblongata and the cervical spinal cord 

neurons compared to the high expression of C3 mRNA transcripts 

in the spinal cord as observed in this study. This is also supported 

by the expression levels observed in human brain where C3- 

cassette gephyrin is subservient to the C4 cassette gephyrin which 

is then reversed in spinal cord and retina (Figure 5.3).

C4A was the most abundant C4 gephyrin cassette both at the 

mRNA and protein level in the brain. This is consistent with a 

previous study where C4' (rat gephyrin cassette equivalent to 

human C4A) was readily detected in the brain tissue but not in the 

non-neuronal tissues (Meier et al., 2000). C4A variants have a 

staining pattern compatible to that of GlyR in the medulla 

oblongata and the cervical spinal cord regions and a significant 

proportion of C4A is co-localized with GephE and GlyRs on the cell 

membrane indicating the m ajority of C4A variants are involved in 

postsynaptic clustering of GlyRs (Figures 5.5 - 5.9). The 

interaction of C4A variants with GlyR was also demonstrated in 

rodent gephyrin isoforms (Meier et al., 2000). In contrast to low 

expression levels of C4A mRNA transcripts in the spinal cord, 

immunoflurescence studies showed that C4A is highly-expressed 

and shows more intense labelling than that of GephE, particularly, 

in the VH neurons in the spinal cord, indicating the selective 

localization of C4A variants. C4D is the second most abundant 

cassette in the brain and is very sim ilar to C4A as evidenced by the 

convergent data on the mRNA expression pattern, membrane 

punctate immuno-staining and protein levels. This implicates 

cassettes C4A and C4D as important developmentally-conserved 

determinants in the human brain and confers properties onto the 

gephyrin molecule which triggers /  facilitates glycinergic specificity.
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C4B is currently a human-specific cassette and was the least 

abundant cassette at the mRNA level. However, at the protein 

level, it showed higher level of expression in the glycinergic 

neurons in the medullar oblongata region. Interestingly, C4B is 

hardly co-localized with GephE, however the m ajority of the C4B 

variants were colocalized with GlyRs on glycinergic neurons. This 

cell-specific differential expression of gephyrin molecules has been 

well-documented in rodent tissues (Craig et al., 1996; Simburger 

et al., 2000). Differential expression of gephyrin in distinct sizes 

and shapes were even reported in single spinal cord neurons 

(Gonzalez-Forero et al., 2005).

C4C, is another rare cassette in the human brain, but also showed 

higher expression level in the discrete populations of glycinergic 

neurons in the medullar brainstem region. A recent study indicated 

that the synaptic clustering of GlyR is regulated by gephyrin- 

gephyrin interaction as well as gephyrin-GlyR interactions 

(Ehrensperger et al., 2007). Functional analysis of rodent gephyrin 

isoforms showed tha t gephyrin variant containing C4 (equivalent of 

human C4C) can inhibit the polymerization of gephyrin as well as 

interfere with the glycine and gephyrin interaction by producing a 

dominant-negative effect (Bedet et al., 2006).

The clear understanding of the functional roles of these cassettes is 

further complicated by the combinatory transcripts which exist, 

with multiple cassettes making biological characterization a very 

difficult task. Based on functional analysis of gephyrin isoforms in 

rodent (Meier et al., 2000; Smith et al., 2000; Bedet et al., 2006; 

Paarmann et al., 2006), it is possible that through the regulated 

expression of different gephyrin C3/ C4 isoforms in different brain 

regions, gephyrin may interact with distinct proteins and thereby
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accommodate the diverse range of functional complications in the 

human brain.

Gephyrin is involved in clustering of both GABA and glycine 

receptors (Kirsch and Betz, 1993; Kirsch and Betz, 1995; Craig et 

al., 1996; Sassoe-Pognetto and Wassle, 1997; Essrich et al., 1998; 

Giustetto et al., 1998). Both GABARs and GlyRs show subunit 

specific, distinct regional and a cell-specific expression in the brain 

with subunit restricted physiological and pharmacological properties 

(Enz and Bormann, 1995; Sassoe-Pognetto et al., 1995; Lynch and 

Chen, 2008; Chen et al., 2009). In addition to binding to GABAAR 

and GlyRs, gephyrin is also interacting with numerous neurological 

molecules including Mena/VASP, neuroligin, dynein light chain 1/2, 

RAFT1, collybistin, GABAR associated protein (GABARAP_, P in l or 

the actin-binding protein profilin and tubulin (Sabatini et al., 1999; 

Kins et al., 2000; Fuhrmann et al., 2002; Giesemann et al., 2003; 

Bausen et al., 2006), illustrating the diverse role of gephyrin 

molecules in the CNS.

A recent immunohistochemical study showed that in the human 

substantia nigra region, some neurons are GABA /  glycine specific 

whereas some have both receptors expressed but without co- 

locolazing (Waldvogel et al., 2007). Based on the unique 

distribution pattern demonstrated by different gephyrin cassette, it 

is tempting to speculate tha t the differential cellular expression of 

GABARs and GlyRs observed in these neurons are regulated by the 

differential expression of gephyrin isoforms. Indeed, a 

recombinant expression study indicated that the GABAergic 

postsynaptic sites are not pre-determined for exclusive expression 

of GABARs, but presence or absence of specific gephyrin cassettes 

were able to regulate the expression of GlyRs in the GABAergic 

sites (Meier and Grantyn, 2004). Immunohistochemical analysis
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has also revealed that gephyrin is co-localized with the slicing 

variants of glutamate receptor interacting protein 1 (GRIP1), 

GRIP lc4-7 or GRIPla/b, at the vast m ajority of post-synaptic 

GABAergic synapses (Yu et al., 2008).

6 .7  S tu dy  S u m m a ry

In this study, we present the largest multi-centre screening 

programme in hyperekplexia which has revealed novel and 

recurrent mutations at a rate where functional analysis is beginning 

to reveal pathophysiological and clinical trends and conclusions. In 

screening 88 index-cases with unequivocal hyperekplexia, this 

study confirms tha t GLRA1 and SLC6A5 are genes of major effect 

in hyperekplexia and have direct clinical translation in 42% of 

patients. Nevertheless 58% remain gene-negative and more effort 

is needed to identify the genetic basis of these cases. For the first 

time, the study confirms that recessive hyperekplexia is more 

common that dominant hyperekplexia, albeit due to several 

anthropological and mutation frequency factors.

The functional analysis of the novel GLRA1 mutations reveals a 

number of mechanisms in hyperekplexia. This includes 

compromised ligand-binding, chloride conductance, cell-surface 

trafficking, agonist sensitivity and functional null scenarios. In 

addition, new mechanisms of action have been identified, including 

the firs t clinical example of tonic opening of GlyR's (Y128C), an 

important determ inant of pictrotoxin binding (T265I), and the first 

human mutations in the R65 glycine binding site with mutation- 

specific abilities to reach the cell surface. Several lines of 

convergent evidence, including biophysical characterisation, cell- 

surface expression and molecular modelling, all provide a 

pathophysiological basis in a mutation-specific manner; with the
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exception of the G342S variant where no indication of pathology 

was found, and is now a confirmed population-based non- 

synonymous SNP variant.

The structural in tegrity of the GlyR pentamer is one issue in 

hyperekplexia, but so is the effective targeting and clustering of 

receptors at the postsynaptic membrane. Gephyrin is an essential 

determ inant in GlyR clustering by providing a sub-cellular 

scaffolding lattice to support the dynamic process of GlyR cycling 

and anchoring. This study confirms tha t gephyrin makes at least 

21 transcript editions in human brain, retina and spinal cord and 

that this is generated by combinatory splicing of the C3/C4 central 

linker exons. We demonstrate that C4 exons are highly expressed 

in human adult and fetal brain, especially so for C4A and C4D, and 

that this trend is repeated by immunoreactivity experiments on 

postmortem human brain. Immunocytochemical studies also found 

a high-degree of co-localization between C4A /  C4D and GlyRs in 

the human brainstem region. The next challenge is to unravel the 

functional context of this heterogeneity and how it affects and 

specifies glycinergic neurotransmission.

Finally, it must not go unnoticed that this study was only made 

possible by collaborative, multicentre efforts and the role of 

consenting patients. Collectively, we are in pursuit of effective 

diagnostics and drug-control of hyperekplexia -  a distressing, life

long condition tha t can diminish well-being at best and at worst can 

have fatal consequences; all the result of the dysfunction of an 

evolutionary-conserved, ancient glycinergic startle response.
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Conclusions
• This study describes the ongoing genetic screening program 

which has identified a new gene in 7 human hyperekplexia 

cases with 12 pathological mutations in the glycine 

transporter-2 gene (SLC6A5; GlyT2). Functional analysis 

validated pathogenicity as part of a multicentre collaboration.

• The same study discovered 19 novel & recurrent mutations in 

GLRA1 associated with 30 cases of hyperekplexia. Contrary 

to popular belief, the study indicates that compound 

heterozygosity and recessive mutations are the most common 

inheritance pattern in sporadic hyperekpelxia.

• All nonsense and intragenic deletion GLRA1 mutations were 

associated with recessive cases of hyperekeplxia, confirming 

tha t haploinsuffiency is not a feature in this disorder. In 

some parts of the world the cultural acceptance of 

consanguinity is a risk-factor for recessive hyperekplexia.

• Functional analysis of GLRA1 mutations demonstrates that 

defects in trafficking appear to be the major mechanism 

underlying recessive mutations.

• Other hyperekplexia mutants, w ithout trafficking defects, 

typically show a total absence of channel current or exhibit 

EC50 alterations in the dose-response curve for glycine, 

suggestive of disrupted signal transduction.

• Biophysical characterisation and molecular modelling of GlyR- 

Y129C has confirmed that it is uniquely a leaky channel where 

the glycine receptor is locked into a position favouring the 

open channel conformation.
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• The T265I mutation confers pictrotoxin sensitivity on 

ai(T265l)P heteropentamers which is contrary to the insensitive 

aip w ild-type counterpart.

• Convergent use of experimental data and molecular modelling 

reveals the reason behind the cell-surface expression of the 

glycine binding mutant, R65L; contrary to R65W which 

displays markedly reduced cell-surface expression.

• The complexity of gephyrin isoforms in humans is even higher 

than previously estimated; with at least 21 gephyrin mRNA 

transcripts tha t are differentially-expressed in the human fetal 

brain, adult brain, spinal cord and retina.

• The C3 variants are predominant in the spinal cord, retina and 

non neuronal tissue, whereas the four C4 cassettes were 

highly brain-specific with C4A and C4D being the most 

abundantly expressed cassettes.

• By using established antibodies and creating new gephyrin 

antibodies with epitopes in the C3/C4 region, this study 

revealed tha t variant cassettes display a distinct distribution 

pattern in the human brain stem and spinal cord with different 

levels of co-localisation with GlyRs.

• The poor representation of cassettes C4B and C4C in 

generalised real-time PCR, is contradicted by highly-localized 

im m unoreactivity expression of both cassettes; indicating that 

the diversity of gephyrin transcripts is spatially and 

tem porally regulated in brain cell-types and neural networks.
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L im ita tio n s  o f s tu d y

1) Due to the tim e and financial constraints, only GLRA1 gene -ve 

samples were screened for SLC6A5. However, we cannot exclude 

the possibility of hyperekplexia cases with digenic mutations in 

both GLRA1 and SLC6A5 genes.

2) Following the ethical guidelines obtained for this study, all 

patients were anonymised and the detailed phenotypic information 

of patients were not available for the current study. Further 

studies are required to establish phenotype-genotype co

relationships in hyperekplexia.

3) The functional impact for the GLRA1 G342S mutation remains 

ambiguous; therefore, a causal relationship in patients is not 

proved conclusively despite being identified in three patients with 

typical hyperekplexia symptoms.

4) Population studies were not performed for recurrent mutations 

where credible previous studies have assessed frequencies in 

normal control populations. In addition, major racial/ethnic groups 

appear to have different allele frequencies (Botstein and Risch 

2003), and our control cohort were typically Caucasian.

5) The pathological outcomes in this study of GLRA1 and SLC6A5 

mutations were confirmed on a non-neuronal cell line, HEK293. 

However, other studies have implicated that different experimental 

outcomes can be observed between HEK293 cells and neuronal cell 

lines (Kung et al., 2001).
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6) Functional analysis of GLRA1 and SLC6A5 were performed with 

constructs based on cDNA of each gene. Therefore, mutations that 

may cause splicing effects were not considered in the experimental 

setting and they require new constructs with exonic and the 

flanking intronic regions containing splicing machinery.

7) Due to the availability of RNA samples, quantitative study of 

gephyrin isoforms at the mRNA level was performed in the whole 

brain region whereas the level of gephyrin protein level were 

investigated in GlyR-rich brain stem regions. To clarify the 

conflicting results observed in the quantity of gephyrin at the 

mRNA and protein level in this study, quantitative analysis of 

gephyrin isoforms on brainstem region RNA is required.

8) The N-terminal specific antibody for gephyrin was not tested in 

this study. I t  would be an immediate experiment to test if GephN 

immunoreactivity shows a pattern relative to the C3/C4 cassettes 

and GlyRs.
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F u tu re  D irections

This study has revealed some novel discoveries and attempted to 

define the causes of hyperekplexia and approach the biological 

context of receptor dynamics and clustering. However, detailed 

investigation can lead to more questions than answers and with 

58% of the hyperekplexia cases w ithout a molecular explanation, a 

future challenge is immediately obvious.

The gene-negative samples need further screening in genes that 

are determinants of the glycinergic proteome. The same level of 

sequencing detail is required in the genes with rare association 

with hyperekplexia such as GLRB, GLRA2, GLRA3 and gephyrin. 

There is also some justification for screening the GABAergic 

candidates, particularly since GAD-65 auto-antibodies can cause 

stiff-person syndrome, although GABAergic mutations are 

occasionally associated with idiopathic epilepsy rather than 

paroxysmal startle disorders. Historically, gene discovery from the 

animal models of hyperekplexia and startle phenotypes have 

guided human screening efforts. I t  seems prudent to remain 

vigilant of new models as they emerge in the literature and react 

by screening the gene-negative cohorts.

More promise of success will emerge with 3rd generation 

sequencing and microarray platforms. Molecular genetics is 

changing from large cohort-based studies to smaller well-defined 

cohorts matched with the technical feasibility of genome-wide 

sequencing and transcriptome sequencing. A well-defined 

hyperekplexia cohort which has all major candidate genes excluded 

as the pathogenic basis will be well-suited for this high-end 

technology and this thesis recommends embracing these new
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opportunities. Expression microarrays will be more of a challenge 

since the neuronal context and tissue-type specificity in 

hyperekplexia means that normal pathology samples such as blood 

cells or fibroblast lines are unlikely to be informative.

"Let's keep looking where the street lamp standeth" is a 

paraphrase often used to pay closer attention to what is already 

known and this applies to GLRA1 and SLC6A5. How? -  the effect 

of intragenic SNP's and changes close to splice-sites that may have 

a yet undiscovered influence over gene control. The same applies 

to promoter and enhancer sites for both genes. All these factors 

need investigating even if it merely contributes to exclusion from 

the cause of the disorder. Moreover, since auto-antibodies often 

mimic hyperekplexia symptoms, it is feasible to suggest that 

glycinergic auto-antibodies may be one of several non-genetic 

causes of sporadic and late-onset cases.

One of the big challenges to arise from the study is the validation 

strategy required to assess the functional significance of gephyrin 

transcript heterogeneity. With 22 transcripts created from multiple 

combinations of central cluster exons may all have subtle cellular 

or tissue-type consequences and this is where microarray may be 

useful as a way forward to analyse effects. Also the preparation of 

full-length tagged constructs of gephyrin transcripts for 

transfection experiments in contextual cellular models will be a 

start to the process of assigning transcripts to specific function.

Although detection sensitivity may be an issue with transcripts, but 

analysis of the gephyrin C3/C4 cassette antibodies on brain-lysate 

Western blots is also a future research line to follow.
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I t  is also apparent that other parts of the brain are enriched with 

glycinergic pathways and the analysis of co-localization patterns 

would also be a project to fu lly exploit the unique antibody 

resource created by this study. Once the constitutional 

characterisation is complete, there are also other disorders where 

we could investigate altered patterns of staining and where the 

disorder is common enough to be represented in brain banks.

Lastly, with a well-defined group of hyperekplexia cases with 2 

different genes of effect, then phenotype /  genotype correlation 

studies are warranted. For example, the association of recessive 

hyperekplexia with learning difficulties is an emerging theme, or 

the response dynamics to clonazepam treatm ent in GLRA1 positive 

versus SLC6A5 positive cases is an intriguing possibility.
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Appendix
A. Diagnostics criteria for human 

hyperekplexia

Required criteria

- S ta r t le : Exaggerated startle reflex to unexpected (particularly 

auditory) stimuli. The startle response can be prolonged and be 

present before birth. Consciousness is unaltered during startle 

episodes. Nose-tap-test is positive (does not habituate).

- S tif fn e s s : Generalized stiffness im m ediately a fte r birth,

normalising during the firs t years of life. The stiffness can be 

predominantly truncal or lower limb, increases with handling and 

disappears during sleep. Short period of generalised stiffness 

following the startle response during which voluntary movements 

are impossible. This can result in falls in adults.

- E xc lus ion  o f  m im ics '. Normal MR imaging, no dysmorphism or 

congenital deficits noted. Normal EEG during startle episode. 

Autonomic features of paroxysmal extreme pain disorder absent.

Supportive criteria

- Inguinal, umbilical, or epigastric herniae.

- Congenital dislocation of the hip.

- Hypoxic attacks in infancy.
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B. Clinical phenocopies of human hyperekplexia

Phenocopy Comparisons w ith  human startle

Acquired Hyperekplexia
Sub-acute anti-glycine 
receptor antibody 
mediated condition that 
responds to
immunosuppresion and 
plasma exchange 
(Hutchinson et al., 2008).

Paroxysmal extrem e  
pain disorder
Autosomal dominant 
condition recently shown 
to be a sodium 
channelopathy involving 
SCN9A (previously known 
as familial rectal pain 
syndrome) (Fertleman et 
al., 2007).

Jumping Frenchmen of 
Maine /  Latah syndrom e
Culturally bound 
neuropsychiatric 
syndromes thought to be 
an anxiety /  somatisation 
disorder (Meinck, 2006).

Startle Epilepsy
Startle epilepsy is a reflex 
epileptic seizure 
precipitated by a sudden 
stimulus; most patients 
are young and have 
infantile cerebral 
hemiplegia (Meinck,
2006).

Sim ilarities  Truncal rigidity, muscle 
spasms and stimulus induced startle . 
Differences  Features not present from 
early life. Immunosuppression clearly 
efficacious. Apnoea attacks not 
described.

Sim ilarities  Onset in neonatal period or 
infancy, persists throughout life.
Dramatic syncopes with bradycardia and 
sometimes asystole. Tonic attacks are 
triggered by factors such as defecation, 
cold wind, eating, and emotion. 
Differences  Autonomic manifestations 
predominate initially, with skin flushing 
in all and harlequin colour change. Later 
attacks of excruciating deep burning pain 
often in the rectal, ocular, or jaw.

Sim ilarities  Excessive response to 
startle.
Differences  Echopraxia (involuntary 
repetition of another's words or actions) 
and echolalia (repetitive vocalisations).

Sim ilarities  Surprising stimuli induce 
motor reactions -  consciousness can be 
preserved in seizures.
Differences  Neuro-imaging will almost 
certainly be abnormal.

Stiff Person Syndrom e Sim ilarities  Stimulus induced 
Progressive axial stiffness hypertonia, startles and falls.
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and in term ittent spasms 
mainly evoked by 
unexpected stim uli; 
associated with anti-GAD 
antibodies in CSF (Meinck, 
2006).

Tourette 's syndrom e
Motor and vocal tics, 
associated with an 
exaggerated startle reflex, 
behaviour change and 
stereotypy (Bakker et al., 
2006).

Crisponi syndrom e
An autosomal recessive 
syndrome in itia lly 
described in 12 different 
families in southern 
Sardinia; caused by 
mutations in the CRLF1 
gene (Crisponi, 1996; 
Crisponi et al., 2007).

Sym ptom atic S tartle  
and Myoclonus
Neuropsychiatric - anxiety 
states including 
generalised anxiety 
disorder, post traumatic 
stress disorder.
Cerebral - Children with 
cerebral palsy, 
post-traumatic or hypoxic 
encephalopathy, 
para neoplastic 
syndromes.
Brainstem  -  particularly 
pontine pathology eg 
multiple system atrophy 
(Bakker et al., 2006).

Hypertonia can preferentially affect 
lower-limbs.
Differences  Stiffness /  hypertonia is 
much more prolonged than the 
paroxysmal attacks seen in 
hyperekplexia.

Sim ilarities  Startle response, 
symptoms precipitate by stressors. 
Differences  Vocalisations and obsessive 
/  compulsive behaviours. Motor tics can 
be complex and appear semi-purposeful.

Sim ilarities  Evident at birth. Marked 
muscular contraction of the facial 
muscles in response to tactile stimuli or 
during crying, contractions slowly 
disappear as infant calms. Generalised 
seizures (albeit rare) and mild 
psychomotor delay in some. Low GABA 
levels in CSF have been described 
Differences  Abundant salivation 
simulating a tetanic spasm. Neck 
muscle hypertonia. Facial anomalies 
(large face, chubby cheeks, broad nose 
with anteverted nostrils and long 
philtrum). Bilateral camptodactyly. 
Hyperthermia.

Sim ilarities  Symptoms will be 
exaggerated by stressors. Stimulus 
sensitive (e.g. touch) can be seen 
following hypoxic brain in jury. Children 
with cerebral palsy may have a positive 
nose-tap test.
Differences  Acquired cause often clear, 
for example late adult onset of multi 
system atrophy. Hypertonia not a 
feature of anxiety syndromes.
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D. Clinical inform ation for patients w ith  SLC6A5 

m utations

Case 32 (The Netherlands; hom ozygote for T425M )

This 9-year-old boy was seen at the out-patient clinic at the age of 

2 years. He was the firs t born of consanguineous parents. The 

pregnancy was unremarkable. During delivery there was presence 

of meconium-stained amniotic fluid, but his Apgar scores were 7 

and 9 at 1 and 5 minutes. During the firs t days of life episodes of 

in term ittent generalised stiffness were noted. At the firs t day of 

life a generalised tonic clonic seizure was observed lasting l 1/2 

minutes was observed. Treatment with phenobarbital was 

therefore started. An EEG during a seizure showed bilateral 

synchronous epileptic activity. During the hospital stay attacks of 

stiffness with je rks and cyanosis with a duration of 1-3 minutes 

were observed. Between these attacks myoclonus was noted. 

Over the years the child suffered from episodes of stiffness and 

startling. During these episodes, he frequently turned blue and 

lost consciousness for short periods. These attacks were 

interpreted as breath-holding spells. On neurological examination 

this patient showed excessive startle responses with a bilateral 

pyramidal syndrome. He had persistent delays in cognitive and 

motor development. While the parents were unaffected, a 

daughter of a nephew of mother was reported as having startle 

attacks.

33 (Canada; compound heterozygote for Y377X  and 

V 4 3 2 F + fs 97 )

The proband was the product of an unremarkable pregnancy to a 

G3T2L2 woman of Northern European origin and her unrelated 

Italian/Yugoslavian partner. Foetal movements were described as
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unusually je rky throughout the pregnancy. The proband was born 

at 40 weeks gestation. She had Apgars of 8 and 9 at 1 and 5 

minutes. At 90 minutes of age she suffered a generalized tonic- 

clonic seizure of 50 minutes duration and was successfully treated 

with phenobarbital. An EEG demonstrated 'non-specific excessive 

partial sharp waves over the right hemisphere1, but no clear 

evidence of epilepsy. A brain CT scan and MRI were normal. 

Between seizures 'tw itching' was often noted, reflexes were brisk 

and her startle response was exaggerated. The diagnosis of 

hyperekplexia was made and she was treated with clonazepam 

from 10 days of age with marked improvement. During her first 

year she had episodes of spontaneous stiffening lasting as long as 

10 minutes and associated with cyanosis. These could be 

minimized by picking her up and sometimes aborted by flexing her 

legs against her body in a specific fashion. The head retraction 

reflex (HHR) was strongly positive. Over the years the episodes of 

stiffening diminished. Tripping would precipitate whole body 

stiffening that prevented her from bracing her fall. At the age of 4 

years, she was still requiring 0.08 to 0.09 mg clonazepam 

administered every 6 hours. Family history revealed that mother, 

with the V432F+fs97-causing mutation, reported significant sleep 

myoclonus characterized by s tiff jerks of her entire body on a 

nightly basis, but had no episodes of infantile stiffening or seizures 

as well as a normal startle response.

34 (USA; compound heterozygote for Y491C and Q 630X)

During pregnancy, the mother of the proband was hospitalized on a 

number of occasions for hyperemesis in the firs t trimester. At 27 

weeks of gestation, she was exposed to pepper spray which caused 

an allergic reaction and hypoxia. She received both oxygen and 

steroid therapy which manifested in a case of gestational diabetes. 

She later developed pre-eclampsia and was put on bed rest. She
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was induced at 38 weeks of gestation. The proband, a boy, was 

delivered with a tigh t nuchal cord around his neck. He was noted 

to be experiencing some respiratory grunting but was resolved 

when treated with a saline bolus. Within 12 hours of birth, the 

proband was diagnosed as having a massive neonatal stroke which 

was not confirmed by CT testing. He suffered 47 respiratory 

arrests in an eight-week period. These episodes were resolved 

with positive pressure ventilation but caused bradycardia. 

Treatment with caffeine, phenobarbital and clonazepam did not 

resolve the apnoea. He also presented with hypertonia and 

exaggerated startle response to tactile stimuli, resulting in the 

diagnosis of hyperekplexia. He was tested for the common startle 

mutations in GLRA1 but none were found. By nine months of age, 

the startle response resolved spontaneously and his tone became 

hypotonic. The proband also was diagnosed with a heart murmur, 

a large hiatal hernia and GER. By five years of age, his symptoms 

had resolved. His parents are unaffected.

35 (Australia; compound heterozygote for P 108L+fs25 and 

W 482R )

The eldest brother was born after a pregnancy complicated by pre

eclampsia. He had some neonatal episodes consisting of 

hypertonia and convulsive features considered to be seizures and 

treated as such. After settling over time the young infant was 

described as very tense and prone to trembling and episodes of 

stiffening. In childhood he was prone to episodes of generalised 

stiffness resulting in fallsthat were provoked by startle. At 5 years 

of age he was otherwise healthy with retention of the stereotypical 

nose-tap stereotypes response. The younger brother was also born 

by Caesarean section after a pregnancy complicated with pre

eclampsia. At 6 hours of life, he began having hypertonic episodes 

with respiratory obstruction tha t were treated as seizures. At 13
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weeks, he was a very tense, s tiff baby who became very rigid when 

bathed, and some episodes were associated with cyanosis. The 

generalised hypertonia and prominent nose-tap response were 

markedly improved with small doses of clonazepam. Treatment 

was discontinued during infancy w ithout further symptoms.

36 (The Netherlands; compound heterozygote for L306V and 

N509S)

This 5-year-old girl was born after an uncomplicated pregnancy by 

vacuum extraction. Despite the presence of meconium-stained 

amniotic fluid, she had Apgars of 9 and 10 at 1 and 5 minutes. 

Seven hours post-partum she had her first period of cyanosis. 

These episodes of cyanosis occurred several times a day during the 

following days. She was initially treated with luminal lidocaine and 

clonazepam. During the first days of life periods of in term ittent 

hypertonia and excessive startle responses to unexpected stimuli 

became evident. A fter the startle reflexes the stiffness increased 

and was accompanied by apnoea. Clonazepam was effective for 

the stiffness and the excessive startle. On neurological

examination a head retraction reflex could be elicited. Motor 

milestones were slightly delayed but caught up. The startle attacks 

and the stiffness reduced in frequency during the first years of life. 

The family history for startling and stiffness was negative. MRI and 

EEG were unremarkable.

37 (UK; heterozygote for S510R )

This first-born male, previously reported as Patient 1 (Stephenson, 

1992) developed severe convulsions at age 40 hours, up to six per 

day, most often precipitated by bathing. A fter immersion in warm 

water he would have rapid quivering of his limbs, an interrupted
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cry with fast grunting, and then silence with intense stiffening in a 

semi-flexed posture, leading to deep cyanosis, profound syncope 

with isoelectric EEG and junctional bradycardia, non-epileptic 

spasms with forcible urination, and a grey moribund appearance. 

Surface EMG during episodes showed repetitive giant compound 

muscle potentials (Pascotto & Coppola 1992) in the "clonic" phase 

that became more closely spaced in the "ton ic" phase. Between 

these triggered attacks of gross hypertonia, he behaved 

appropriately, with normal muscle tone. Nose-tapping in the first 

months of life elicited excessive startle with no habituation. 

Clonazepam was only given for 48 hours during which time life- 

threatening syncopes continued: daily baths were then

discontinued. A fter a finding of low CSF GABA (14nm ol/l) we had 

the impression tha t vigabatrin (0.5g daily from age 7 months) led 

to marked improvement, insofar as he was then able to have a 

bath happily fo r the first time (Stephenson, 1992), but in 

retrospect this may have been spontaneous improvement, as at 

age 14 months, when he was on no medication, daily baths did not 

provoke stiffenings. The abnormal nose-tap response gradually 

waned and was minimal age 10 years. Aged 13 he no longer has 

as any excessive startle, and plays prop forward in school rugby. 

His mother and fa ther have no history of abnormal tone or startles 

as a baby and do not startle to nose-tap or sudden noise. In 

summary, this boy had severe life-threatening neonatal 

hyperekplexia but between attacks was not a s tiff baby. There was 

spontaneous remission in infancy with minimal residual tendency to 

startle.
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E Ethical approval for Hyperekplexia study

Canolfan Gwasanaethau Busnes 
Business Services Centre

South West Wales REC
Swansea 

36 Orchard Street 
SWANSEA 

SA1 5AQ

Telephone: 01792 607416 
Facsimile: 01792 607533 

07 June 2007

Professor Mark. I Rees 
Professor of Molecular Neuroscience 
University of Wales Swansea 
4th Floor, Institute o f Life Science 
School of Medicine 
Swansea University 
S A 28PP

Dear Professor Rees

Full title of study: Genetic basis of neuromotor disorder, hyperekplexia, and
associated startle syndromes.

REC reference number: 07/WMW02/24

Thank you for your letter of 18 May 2007, responding to the Committee's request for further 
information on the above research [and submitting revised documentation].

The further information was considered at the meeting of the Sub-Committee of the REC 
held on 07 June 2007. A list of the members who were present at the meeting is attached

Confirmation of ethical opinion

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for the 
above research on the basis described in the application form, protocol and supporting 
documentation [as revised).

Conditions of approval

The favourable opinion is given provided that you comply with the conditions set out in the 
attached document. You are advised to study the conditions carefully.

Approved documents

The final list o f documents reviewed and approved by the Committee is as follows;

Canolfan Gwasanaethau Busnes GIG Cymru.
Canolfan Henffordd. 36 Stryd y Berilan.
Abertawe. SA1 5AO
Ffon; 01792 458066
WHTN- 1780
Ffacs 01792 607533
TNT QW5/QW3 32

f t J ^ IC S t C O R R E S P O N D E N C E ^ O O ^ e ^ ^ .f ^ f ^ ^ ^ - ^

NHS Wales Business Services Centre. 
The Oldway Centre, 36 Orchard Street, 
Swansea. SA1 5AQ 
Telephone: 01792 458066 
WHTN; 1780 
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Letter from MRC to Mr A Patel 1 16 May 2007

R&D approval

All researchers and research collaborators who will be participating in the research at NHS 
sites should apply for R&D approval from the relevant care organisation, if they have not yet 
done so. R&D approval is required, whether or not the study is exempt from SSA. You 
should advise researchers and local collaborators accordingly.

Guidance on applying for R&D approval is available from 
http://www.rdforum.nhs.uk/rdform.htm.

Statement of compliance

The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard Operating 
Procedures for Research Ethics Committees in the UK.

Feedback on the application process

Now that you have completed the application process you are invited to give your view of 
the service you received from the National Research Ethics Service. If you wish to make 
your views known please use the feedback form available on the NRES website at:

https://www.nresform.org.uk/AppForm/Modules/Feedback/EthicalReview.aspx

□

With the Committee’s best wishes for the success of this project 

Yours sincerely

Mr Roy L.,Eyans ^
Chairman

Please note prior to this ethical approval obtained on 07 June 2007, 
the extended ethical approval from Auckland council was used for 
hyperekplexia study.

We value your views and comments and will use them to inform the operational 
process and further improve our service.

07/WMW02/24 Please quote this number on all
correspondence
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F. Patient In form ation  Sheet

You and/or your child have been invited to take part in a research study 
looking at the:

Molecular Genetics of Startle Syndromes

Before you decide you need to understand why the research is being done 
and what it would involve. Please take time to read the following information

carefully.

Part 1 tells you the purpose of the study and what will happen if you take 
part. Part 2 gives you more detailed information about the conduct of the

study.

Ask if there is anything that is not clear or if you would like more information. 
Take time to decide whether or not you wish to take part.

Parti 

What is the purpose of the study?

The purpose of this study is to identify gene changes that cause startle 
syndromes.

Why have I been chosen?

You have been invited to take part in this study because your Doctor thinks 
that you and/or your child may have a startle syndrome. Having a startle 
syndrome means having an excessive startle. You may startle easily at a 
sudden sound or unexpected touch or bump and may fall and be injured. If 
you have any questions about startle syndromes then please ask your doctor 
for advice.

Do I have to take part?

Whether o r not to take pa rt is your decision. In  you decide to 
participate you will be given this information sheet to keep and 
asked to sign a consent form to show tha t you have agreed to 
take part. I f  you decide to take part you are still free to 
withdraw a t any time w ithout giving a reason. A decision no t to 
take p a rt w ill not affect the standard o f clinical care you or your 
fam ily receives.

What will happen to me if I decide to take part?

1. If you decide and consent to take part in this research a blood sample will 
be collected from you and/or your child. About one teaspoonful of blood 
is the amount that will be collected.
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2. The blood sample will be taken for DNA isolation. DNA is the genetic 
material inside your cells which controls how each cell develops and 
behaves. A gene is a distinct stretch of that DNA which has a specific job 
in your body. Sometimes a change or alteration in the DNA of one of 
those genes can lead to a disease or syndrome like startle syndrome. 
We will look at your DNA closely to see if we can find a gene change or 
alteration that causes startle syndrome.

3. If a gene change is found in the sample which is causing the startle 
syndrome then the research team will write to your doctor with the results.

4. Your Doctor will then contact you to explain what the results are and 
arrange appropriate support.

What are the possible benefits of taking part?

We hope we will identity the gene change causing the startle syndrome in 
you and/or your child. This is helpful because it confirms the diagnosis of 
startle syndrome, and gives your doctor assurance that they are treating your 
symptoms properly.

Identifying gene changes which cause startle syndromes also helps scientists 
and doctors to better understand these rare syndromes. This may help 
people with startle syndrome in the future.

What are the possible disadvantages and risks of taking part?

There are no anticipated risks in taking part.

Will my taking part in this study be kept confidential?

Yes. We will follow ethical and legal practice and all information about you 
will be handled in confidence. More details are included in Part 2 of this 
information sheet.

Who has reviewed this study?

This study has been reviewed by the South West Wales Research Ethics 
Committee.

This completes Part 1

If the information in Part 1 has interested you and you are considering 
participation, please read the additional information in Part 2 before making a

decision.
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Part 2

Will my taking part in the study be kept confidential?

Yes. When samples are sent to the research team they will be labelled with 
the name and date of birth of the donor. This is important so that samples do 
not get mixed up.

Immediately after the sample is received it will be given a unique research 
reference number. Throughout the research process the samples are 
identified with the research code only. This means that the sample is 
anonymous to laboratory staff and in any communications.

When results become available the sample is re-linked to the name, date of 
birth and referring Doctors name. This is so that your Doctor can be 
informed of the results. This re-linking of information will be done by an 
individual within the research team who is aware of their duty of 
confidentiality.

What will happen to my sample?

The blood sample(s) will be sent to the research team who will look to see if 
they can find a gene change which is causing the startle syndrome. They will 
start by looking carefully at the genes where changes have already been 
found in other people with startle syndromes. This may take up to 6 months 
to complete.

If the research team discover a gene change in these genes they will write to 
your Doctor with the results. Your Doctor will then contact you to explain 
what the results mean for you and arrange appropriate support.

The researchers may not find a gene change causing the startle syndrome in 
the genes already known to cause startle syndrome. In this case they will 
continue to investigate the sample in new genes that are not yet linked with 
startle syndrome. This may take a long time; however, your Doctor will be 
informed immediately if anything is found.

What will happen if I don’t want to carry on with the study?

You are free to withdraw your sample from the study at any time. All you 
need to do is tell your Doctor that you have changed your mind about the 
research. If you do decide to withdraw from the study, the samples will be 
destroyed immediately.

What will happen to the results of the study?

Your doctor will be told if there are any results from the blood sample(s). 
Your Doctor will then explain these results to you and your family.
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Research findings will also be presented for medical journal publication and 
medical conference presentations. In all cases identity remains 
anonymous and findings cannot be linked back to you or your family.

What do I do now?

Take your time to decide whether or not you would like to take part in the 
research.

Please feel free to contact us for additional information, or clarification of this 
information document.

Miss Carrie Hammond, the Research Genetic Counsellor will be happy to 
hear from you, her contact details are as follows:

Phone Number: 

E-mail:

Address:

c.l.hammond@swansea.ac.uk

School of Medicine 
University of Wales Swansea 
Singleton Park 
SA2 8PP

Once you have made a decision then please let your Doctor know.

Thank you for taking the time to read this information
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G. ASSENT FORM-Child

Title of Project: Molecular Genetics of Startle Syndrome 

Name of Researcher: Professor Mark Rees

Please initial box

1. I confirm that I have read and understand the information sheet for the above study.
I have had the opportunity to consider the information, ask questions and have had 
these answered satisfactorily.

2. I understand that participation is voluntary and that we are free to withdraw at any 
time, without giving any readfcn, without medical care or legal rights being affected.

3. I agree for my child to give a blood sample for the startle syndrome research.

4. I understand how the sample will be collected and I have had an opportunity to 
discuss any concerns that I may have about the procedure.

5. I agree for my child to take part in the above study.

Name of Child

Name of Parent/Guardian Date Signature

Name of Doctor taking consent Date Signature

Name of Researcher Date Signature
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H. CONSENT FORM -Adult

Title of Project: Molecular Genetics of Startle Syndrome 

Name of Researcher: Professor Mark Rees

Please initial box

1. I confirm that I have read and understand the information sheet for the above study.
I have had the opportunity to consider the information, ask questions and have had 
these answered satisfactorily.

2. I understand that my participation is voluntary and that I am free to withdraw at any 
time, without giving any reason, without my medical care or legal rights being affected.

3. I agree to give a blood sample for the startle syndrome research

4. I understand how the sample will be collected and I have had an opportunity to 
discuss any concerns that I may have about the procedure.

5. I agree to take part in the above study.

Name of Participant Date Signature

Name of Doctor taking consent Date Signature

Name of Researcher Date Signature
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