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Summary
Nutrition influenced growth, sporulation, phenotypic stability and virulence of the 

insect pathogenic fungus, Metarhizium anisopliae. Virulent conidia were produced 

on nutrient poor or osmotic stress media, while least virulent conidia were produced 

on nutrient rich media. Repeated subculturing on nutrient rich media caused further 

attenuation of virulence, however, attenuation was strain dependant. Several strain 

independent parameters were identified that could be used to monitor the virulence 

of M. anisopliae conidia during normal production or when developing new 

inexpensive culture media. Virulent conidia typically had high levels of spore bound 

Prl, a CN ratio below 5.2:1 and high germination rates. RT-PCR revealed that 

virulent conidia from insects contained high levels of transcripts of prl A and other 

pathogenicity-related genes (e.g. ste 1, try 1 and chy 1). Virulent conidia from 1% 

yeast extract media had higher levels of transcripts of these pathogenicity-related 

genes than the least virulent conidia from CN 35:1 medium (= SDA), however, 

levels were significantly lower than those in insect-derived conidia. This study shows 

for the first time that passaged inoculum is virulent irrespective of the original 

culture medium or insect host suggesting that starvation conditions, whether in vivo 

or in vitro, results in de-repression of Prl and that elevated levels of this enzyme 

enhance fungal virulence. Nutrition also influenced expression of other pathogenicity 

determinants e.g. adhesive properties of conidia (hydrophobicity, surface charge) and 

destruxins production, however, inconclusive relationship between these 

pathogenicity determinants and nutrition was observed. Nutrition also influenced 

fungal stability independent of strain. Under similar nutritional conditions, V275 

produced fewer sectors than V245. Most sectors were sterile and produced 

significantly lower quantities of pathogenicity determinants. Careful selection of 

stable strains and manipulation of cultural conditions could be employed to enhance 

or stabilize virulence of M. anisopliae.
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Chapter 1: General Introduction

1.1 Introduction
Metarhizium anisopliae is a soil-bome entomopathogenic fungus found throughout 

the world (Humber, 1992; Zimmerman, 1993). It has a wide host range including 

major genera of insects and some medically important acarids e.g. ticks and mites 

(Mugnai et al., 1989; Zimmerman, 1993; Kaaya et al., 1995). Much progress has 

been made in the development of M. anisopliae for use in integrated pest 

management (EPM) programmes for the control of arthropod pests (Butt et al, 2001). 

This biocontrol agent (BCA) offers an environmentally friendly alternative to 

chemical pesticides, especially to pesticides that are banned (e.g. organochlorines) or 

being phased out (e.g. methyl bromide) or to which pests have developed resistance 

(Butt et al. 2001).

At present more than 20 products based on entomopathogenic fungal BCAs are on 

the market or being developed as commercial products (Butt and Copping, 2000; 

Kabalouk and Gazdick, 2004; Appendix 1). However, their share in the total 

pesticide market is negligible and often restricted to niche markets (Butt and 

Brownbridge, 2001). One major factor contributing to the slow uptake of fungal 

BCAs such as M. anisopliae is the inconsistency in their performance. Attenuation of 

virulence during successive in vitro subculturing is considered to be a major factor 

leading to inconsistency in the efficacy of fungal BCAs (Butt et al., 2001). 

Nutritional conditions during inoculum production of many other fungal BCAs have 

also been reported to influence the quality of the inoculum (Winder, 1999; Magan, 

2001). These reports also indicate that nutritional conditions favouring a high yield 

of inoculum may adversely affect the virulence of inoculum, therefore, it is important 

to understand the effect of nutrition on both quantitative yield and quality of 

inoculum.

Studies to date have focussed on the influence of nutrition on selected attributes such 

conidial yield, endogenous reserves, surface carbohydrates of M. anisopliae where as
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less attention has been given to study the influence of nutrition on its virulence. 

There is urgent need to improve production of efficacious inoculum. This will also 

require development of cost-effective and reliable quality control procedures to 

monitor the changes in M. anisopliae virulence during its production and storage. To 

date, there is no high throughput method available for monitoring changes in 

virulence. Current methods of determining the efficacy involve bioassays against test 

organisms, which is a time-consuming and expensive process.

Studies of the infection process have helped identify pathogenicity determinants of 

M. anisopliae. However, no one has conducted a detailed study to understand the 

relationship between nutrition and expression of pathogenicity determinants of M. 

anisopliae. To our knowledge this is the first study to addresses the influence of 

nutrition on both quantitative (conidial yield, phenotypic stability etc.) and 

qualitative attributes (virulence and its determinants) of M. anisopliae. The section 

below (1.2) describes the infection process of M. anisopliae and attention is drawn to 

factors that are considered to be virulence determinants.

1.2 Infection process of M  anisopliae

M. anisopliae infects its host via a series of integrated, systematic events progressing 

from spore attachment to germination, penetration, growth and proliferation within 

the host body, interactions with host defence mechanisms and finally death of the 

host (Hegedus and Khachatourians, 1995). Under favourable environmental 

conditions, the fungus emerges from the cadaver and differentiates into conidia 

(Roberts and Humber, 1984). These interactions between fungus and host are 

extremely complex; however, certain events are necessary and will take place in any 

successful infection. These include attachment of conidia to host, recognition of host 

via signal molecules, penetration requiring a combination of enzymes and 

mechanical force, production of metabolites or rapid colonization of host tissues. The 

quantitative and qualitative differences in these attributes lead to variability in fungal 

virulence. Major events of the infection process are shown in fig. 1.1.
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1.2.1 Attachment of conidia to the host cuticle

The initial step in the establishment of infection is the attachment of conidia to the 

host surface. Conidial attachment occurs in two stages i.e. passive and active. Passive 

attachment involves preformed factors such as surface hydrophobicity and 

electrostatic forces. Secretion of mucus and spore bound enzymes during the active 

stage consolidates the passive adhesion (Fargues, 1984; St. Leger et al. 1991b; El- 

Sayed et al., 1994).

The dry hydrophobic conidia of M. anisopliae have a negative charge (Boucias and 

Pendland, 1991). The very first step of adsorption, which occurs non-specifically, is 

thought to be facilitated by electrostatic and hydrophobic interactions (Boucias et al., 

1988; Boucias and Pendland, 1991). However, the exact mechanism by which 

conidia initially attach to their host remains unclear. Fargues (1984) suggested that 

lectins played a role in the initial attachment process whereas Boucias et al. (1988) 

reported that lectins and electrostatic force play only a minor role in adhesion of 

spores to insect cuticle. The latter did observe that the hydrophobicity of M 

anisopliae, Beauveria bassiana and Nomuraea rileyi conidia did influence spore 

attachment. They also observed that the rodlet layer responsible for imparting 

hydrophobicity to the spore could be stripped off by harsh alkali treatment (1.0 M 

NaOH, 100°C for 1 hr), which then significantly reduced the adhesion to cuticle 

surfaces. In plant pathogenic fungi, the surface hydrophobicity of fungal spores has 

also been associated with their adhesion (Kuo and Hoch, 1996, Tuker and Talbot, 

2001)

Doyle (2000) has listed several pathogens including fungi, actinomycetes and 

bacteria that demonstrate the role of hydrophobicity in their virulence or infection. 

Surface hydrophobicity has also been shown to differ between different types of 

fungal conidia e.g. submerged and aerial conidia of several plant and insect 

pathogens (Pascual et al., 2000). In the plant pathogenic fungus Magnaporth grisea, 

a reduction in hydrophobicity resulted in reduction in attachment and pathogenicity 

(Talbot et al., 1996).
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Molecules other than hydrophobins are an integral part of the surface layer of fungal 

spores (Beever et al., 1979; Cole et al., 1979; Tronchin et al. 1997) and can therefore 

play a role in physiochemical properties of the spore. For instance, the conidial outer 

cell wall of fungal species contains lipids, which could contribute to surface 

hydrophobicity (Cole et al., 1979; Latge et al, 1988). Glycoproteins such as adhesins 

are distributed over the surface of the rodlet layer of Aspergillus conidia (Tronchin et 

al., 1997). Differences in the composition and /or nature of these molecules may 

therefore, alter the adhesion potential.

Adhesion of M. anisopliae conidia is also influenced by the properties of the host 

surface. For example, Lacey et al., (1988) observed that M. anisopliae conidia show 

an affinity towards the hydrophobic region i.e. the siphon tube of the mosquito. 

Boucias et al., (1988) examined conidial adhesion on cuticle ghost preparation and 

observed that the presence and spatial arrangement of cuticular spines facilitates 

conidial adhesion. However, they concluded that the presence of these spines was not 

a requirement for adhesion as conidial attachment was also observed on regions void 

of theses structures e.g. head capsule, seta, etc. Similarly, prior work with M. 

anisopliae demonstrated that conidia bind nonspecifically over the cuticle but can be 

displaced from smooth sclerite epicuticle more easily than from the epicuticle folds 

(Zacharuk, 1970).

Studies on insect surface biochemistry revealed that cuticular lipids have a greater 

effect on adhesion than cuticular proteins. The removal of protein using chemical 

treatments did not alter the conidia adhesion, whereas cuticular lipid extraction with 

solvents significantly reduced the M. anisopliae adhesion (Sosa-Gomez et al., 1997). 

Similarly, conidial distributions could be region specific on host cuticle (Sosa- 

Gomez et al., 1997) and surface topography of host may influence growth of 

deutromycetes after adhesion (Boucias and Pendland, 1991).

As mortality is dose related (Butt and Brownbridge, 2001), any positive change in 

conidial properties to increase their attachment to the host would directly influence
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virulence, therefore, it is vital to understand the role of nutrition on adhesion 

properties of the inoculum.

1.2.2 Germination

After attachment to the host cuticle, the conidia germinate using endogenous and 

exogenous nutrients. Osherov and May (2001) describe conidia germination as a 

regulated process that responds to environmental stimuli by a signalling cascade that 

is amenable to genetic and biochemical inquiry. The nutritional requirements for 

conidial germination varies inter and intra specifically, however, an exogenous 

source of nutrient is generally required for germination. Pre - soaking of M. anisoplie 

conidia in distilled water resulted in swelling of conidia coupled with protein 

synthesis but high levels of germination required a utilizable carbon source (Dillion 

and Chamley, 1990). Conidia of M. anisopliae obtained from different hosts also 

varied for the ability to germinate on glucose. Isolates from coleopteran hosts 

germinated poorly on glucose compared to isolates from hemipteran or lepidopteran 

sources (St. Leger et a l , 1994).

Smith and Grula (1981) found that, in vitro, a utilizable, exogenous carbon energy 

source was required for germination of B. bassiana conidia, while a nitrogen source 

was further required to sustain hyphal growth. Although conidia apparently possess 

sufficient nitrogen reserves to germinate, the supply is soon depleted and without an 

exogenous nitrogen source lysis of the germ tube soon occurs (Hunt et al., 1984). 

Milner et al (1991) reported that simple amino acid solutions do stimulate conidial 

germination of M. anisopliae suggesting the provision of both carbon and nitrogen 

sources by these amino acids were sufficient for germination.

An important aspect of host specificity is thought to be associated with fungal-cuticle 

interactions in terms of nutrient utilization on the host surface (Boucias and 

Pendland, 1984; El-Sayed et al., 1991). Samuels et al., (1989) attributed high 

specificity of various strains of M. anisopliae against Oryctes rhinoceros to the
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presence of intermediate nutrients on or inside the host’s cuticle. Similarly, Butt et 

al., (1995) observed that the high availability of nutrients on the cuticle of aphids 

stimulates the rapid germination of M. anisopliae conidia.

The speed of germination is important for successful infection and is an attribute of 

highly virulent isolates. Studies with various entomopathogenic fungi have shown 

that the isolate exhibiting faster speed of germination in vitro had higher virulence. 

For example, germination speed in vitro was correlated with the infectivity of M 

anisopliae against mosquito larvae (Al-Aidroos and Roberts, 1978; Al-Aidroos and 

Seifert, 1980) and of Verticillium lecanii isolates against adult aphids (Jackson et al., 

1985) and glasshouse whiteflies (Chandler et al., 1993). Isolates of Paecilomyces 

fumosoroseus that germinated faster on diamondback moth cuticle were the most 

virulent (Alter et al., 1999). Another advantage of rapid speed of germination is that 

environmental conditions often offer a narrow window of favourable conditions for 

infection, thus enabling fast germinating conidia to perform better. Similarly host 

defences and morphological changes could be easily tackled by fast germinating 

conidia as opposed to relatively slow germinating ones. For example, on immature 

insects, a fungal pathogen needs to penetrate before being shed with moulted cuticle 

(Vey and Fargues, 1977).

Hassan et al., (1989) observed accelerated germination and appressorium formation 

in vivo among pre soaked conidia compared to fresh conidia. They also observed 

significantly higher mortality of Munduca sexta larvae caused by pre soaked conidia. 

Therefore, any change resulting in faster germination could directly influence 

virulence. Studies on the plant pathogenic fungus Coletotrichum truncation showed 

that conidia produced on low CN 10:1 media germinated faster compared to those 

produced on moderate 30:1 or high CN 80:1 ((Jackson and Schisler, 1992). 

Similarly, Hallsworth and Magan (1995) manipulated endogenous reserves of 

conidia of M. anisopliae, B. bassiana and P. fumosoroseus enabling conidia to 

germinate faster. These modified conidia were also able to germinate at a relatively
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low humidity suggesting the potential of nutritional/cultural manipulations to 

improve germination speed and virulence of pathogenic fungi.

1.23 Cuticle Penetration

Following germination, the most important step in the infection process of M. 

anisopliae is the penetration of the host cuticle (Zacharuk, 1970; Hassan and 

Chamley, 1989). This process is achieved by a combination of mechanical force and 

enzymatic activity. The relative contribution of mechanical force and enzymatic 

activity depends on the characteristics of host cuticle. It has also been demonstrated 

that the pathogenic process involving the production of cuticle degrading enzymes 

(CDEs) and penetration of host cuticle occurs only when it is necessary to establish a 

nutritional relationship with host (St. Leger et al., 1989)

Insect cuticle is a complex structure comprising 25-40% of the chitin embedded in 

protein (up to 70%) and lipid layers (Hackman, 1964). The majority of CDEs are 

inductive in nature and the relative composition of polymers in the cuticle may 

therefore predetermine the production of individual enzymes (St. Leger et al., 1986a, 

b). M. anisopliae extra cellular hydrolytic enzymes are important for the degradation 

of host cuticle during infection, assisting penetration and providing nutrients for 

further growth (Zacharuk, 1970; Hassan and Chamley, 1989). Several authors have 

reported that M. anisopliae produces a diverse and large array of enzymes during the 

cuticle penetration and in vitro growth on medium containing insect cuticle as the 

sole source of carbon and nitrogen (St. Leger et al., 1986a, 1987; Chamley 1992; 

Hajek and St. Leger 1994) These enzymes are synthesized in a co-ordinated manner 

related to cuticle structure (Samsinnakova et al., 1971: Smith et a l, 1981) and are 

induced in vitro when grown on insect cuticle (St. Leger et a l, 1986a,b; 1987; El 

Sayed et a l, 1992; Gupta et a l, 1991, 1992). The variability of enzymes increases 

the range of tools naturally available to degrade the cuticle, however, proteases and 

chitinases have an important correlation with virulence.
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Protein is the predominant structural component of the insect cuticle and it has been 

shown that proteases released during the first steps of invasions are involved in the 

penetration of the cuticular barrier and thus constitute a crucial factor in the 

pathogenicity (St. Leger et al, 1988). The Expressed Sequence Tag (EST) analysis 

of M. anisopliae revealed that proteases account for the 36% M. anisopliae of a 

secreted cDNA library constructed under inductive conditions (Freismore et al.,

2003).

M  anisopliae produces families of catalytically distinct extracellular subtilisin-like 

proteases (Prl), trypsin like proteases (Pr2), and metalloproteases as well as several 

families of exo-acting peptidases. The only known function of secreted subtilisins is 

the acquisition of nutrients and the breaching of host cuticle. The sharp increase in 

their production during penetration and the presence of their exceptionally large 

number of subtilisins isoenzymes is presumably related to pathogenicity (Bagga et 

al., 2003). Among these, subtilisin Prl is predominant in its role in virulence and 

exists as several isoenzymes (Prl A, B, C, D, E, F, G, H, I, J, K) with Prl A playing a 

major role in cuticle penetration (St. Leger et al., 1989). The EST for Prl A are 10 

times more abundant than the second most highly expressed sequence (Prl J) (Bagga 

et al., 2003). These different isoforms of Prl are thought to play an important role in 

host specificity and pathogenicity (Bagga et al., 2003).

Prl production in vitro is regulated by both carbon and nitrogen de-repression (St. 

Leger et. a l, 1993; Paterson et a l, 1994a). Once induced during infection, Prl is 

produced at high levels until penetration is complete and low molecular weight 

carbon and nitrogen compounds provide a feedback to stop Prl production. M 

anisopliae produces Prl in vitro in liquid cultures containing insect 

homogenate/cuticle as the sole source of carbon and nitrogen. Simple carbon sources 

such as amino acids and glucose strongly repress Prl production (Butt et al., 1998). 

It is possible that successive subculturing of M  anisopliae on artificial media with 

glucose as a main constituent alters the expression of the prl gene. This shift in gene 

expression might result in a decrease or total loss of Prl production by attenuated
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cultures. In certain cases these switched-off genes might also be lost resulting in less 

virulent mutants (Wang et a l, 2002). This hypothesis is also based on fact that all 

cases known for attenuation are reported from nutrient rich media and the pathogen 

regains its virulence with one or more passages through its host (Kawakami, 1960; 

Nagaich, 1973; Fargues and Roberts, 1983; Morrow et al., 1989; Vandenberg and 

Cantone, 2004). Furthermore, St. Leger et al., (1991b) showed that the spore bound 

enzyme profile of conidia obtained from killed insects and those obtained from 

culture media like Sabouraud dextrose agar (SDA) varied significantly. Higher levels 

of spore bound Prl and NAG’ase were observed on conidia obtained from insects 

compared to those produced on artificial media suggesting the role of nutrition to pre 

adapt conidia for pathogenic or saprophytic mode of action.

In addition to proteases, chitinases are required by the fungus to penetrate the cuticle 

as well as to emerge out of the host after its death (Coudron et al 1984). Hydrolysis 

of chitin is mediated by a series of exo (A-acetyleglusaminidase and chitiobiase) and 

endo- (chitinase) degradative enzymes. Synthesis of these enzymes is induced by the 

soluble monomers of chitin: glucosamine, N- acetyleglucosamine and chitiobiose 

that are present in minute quantities in the cuticle (St. Leger et al 1986b, 1991a, 

1993; Bidochka and Khachtourians, 1993; Havukkala et a l, 1993). Although cuticles 

of insects fed with a diet containing specific chitin synthesis inhibitors were more 

susceptible to M. anisopliae hyphal penetration (Hassan and Chamley, 1989) 

chitinase has not been detected in vivo during the early stages of penetration (St. 

Leger et a l, 1987b). In vitro production of chitinases took place at a later stage as 

compared to that of proteases (Gupta et al., 1992). In addition to proteases and 

chitinases, a variety of other enzyme are also produced by the entomopathogenic 

fungi, however, their role in pathogenesis and virulence is less clear but appears not 

to be as important as those of above enzymes.

The level and number of CDEs produced vary inter and intra specifically (Gillespie 

et al., 1998). Many studies have shown a direct relationship between enzyme 

production and virulence (Gupta et a l, 1994). Failure to produce sufficient quantities
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of enzymes delays and in most cases stops the penetration and infection process. 

Gillespie et al., (1998) suggested that sub optimal properties of the CDEs of an 

isolate might contribute towards its avirulence to a particular host. Reduced virulence 

has been observed in protease deficient mutants of B. bassiana (Bidochka and 

Khachatourians, 1990) and M. anisopliae (Wang et al. 2002). An increase in Prl 

production was linked with high virulence in a Prl over expressing mutant of M. 

anisopliae (St. Leger et al., 1996). Paris et al. (1985) and El-Sayed et al. (1989) 

observed a similar loss of virulence in chitinase deficient mutants. However, 

recently, a transformant of M. anisopliae with increased chitinase production showed 

no corresponding increase in virulence suggesting that chitinase is not limiting for 

cuticle penetration (Screen et al., 2001).

The regulation of CDEs is complex, usually involving a combination of substrate 

induction and carbon and nitrogen repression (St. Leger, 1993; Butt et al., 1998). 

Proteases have an additional role in providing nutrients, before and after the cuticle is 

penetrated. Consequently, regulation is looser, with production being triggered in 

response to limitation for nutrients such as carbon and nitrogen (St. Leger, 1993). 

However, production is enhanced when the pathogen is grown on insect cuticle 

(Paterson et al., 1994b). The enhanced levels of enzymes activities present on 

Manduca sexta derived spores as compared to those produced on nutrient rich SDA 

media suggest that nutritional conditions in which spores develop can pre adapt them 

for a pathogenic life style (St. Leger et al., 1991b). Although there is sufficient 

information on the regulation of CDEs both during in vitro and in vivo growth of M 

anisopliae, very little is known about the influence of nutrition during inoculum 

production on the ability of the inoculum to produce these enzymes. Considering the 

importance of CDEs in M. anisopliae virulence, it is vital to understand regulation of 

important enzymes with special reference to M. anisopliae nutrition during inoculum 

production. Such information will help us to identify nutritional conditions, which 

could be used to produce large quantities of M. anisopliae inoculum with minimal 

repression of CDEs.
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1.2.4 Host colonization

Once inside the host body, M. anisopliae either grows rapidly to colonize host tissues 

or secretes toxic metabolites to kill the host (Amiri et al., 2000; Kershaw et al., 

1999). Among the metabolites produced, the destruxins (dtxs) are of particular 

interest because they are the dominant mycotoxins detected in the insect body at 

advanced stages of infection to cause death (Suzuki et al, 1971). Destruxins, the 

cyclic depsipeptides are secondary metabolites produced by M. anisopliae (Roberts, 

1981). At least twenty-six different destruxins have been identified so far, of which 

destruxins A, B and E predominate (Pais et al., 1981; Wang et al., 2004).

Injection of the dtxs into lepidopteran larvae or to adult Diptera resulted in 

immediate, titanic muscular paralysis, followed by flaccidity, which was reversible at 

low doses but high doses were lethal (Kodaira, 1961; Roberts, 1966; Samuels et al., 

1988a, b, c.). Similar symptoms together with the identification of dtxs or dtx-like 

material from lepidopteran larvae infected with M. anisopliae in quantities sufficient 

to have caused death proves the role of dtxs in pathogenesis and insect mortality 

(Roberts, 1966; Samuels et al., 1988a; Suzuki et al 1971; Vey et al., 1986). These 

toxins have often been implicated as the cause of death of insects infected with M  

anisopliae (Butt et al., 1994; Vestergaard et al., 1995). Death occurs shortly after 

inoculation and often without any sign of the fungus in the haemocoel, suggesting 

that toxins are secreted during very early stages of infection and that the pathogen 

colonizes its host as a necrotroph (Butt et al., 1994).

Although destruxins have been suggested to be an important virulence determinant 

(Suzuki et al., 1971; Vey et al., 1986; Samuels et al., 1988b; Dumas et al., 1994; 

Brousseau et al., 1996; Kershaw et al., 1999), other factors may also contribute to 

pathogenesis, and isolates that do not produce dtxs may have alternative virulence 

strategies (Amiri et al., 2000; Kershaw et al., 1999). Kershaw et al., (1999) also 

reported that isolates of M. anisopliae varied considerably in their ability to produce 

dtxs in vitro. High titres were produced only by M. anisopliae sf. anisopliae isolates 

while least or no production was observed for M. anisopliae sf. majus. Similarly a
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spontaneous mutant of M. anisopliae exhibiting a higher virulence than the wild type 

was also observed to produce more toxin than wild type (Al-Aidroos and Roberts 

1978). However, the mutant also had denser sporulation and more rapid in vitro 

germination, therefore the link between destruxins production and virulence is not 

proven. Recently, Wang et al., (2002, 2003) reported a M. anisopliae mutant, which 

exhibited lower virulence than the wild type against wax moth larvae and had also 

lost the ability to produce destruxins.

Some strains of M. anisopliae however, grow profusely in their hosts without 

inducing symptoms of toxicosis and death of the insect occurs slowly (Samuels et al., 

1988b). Bagga et al., (2003) observed the presence of several transcripts encoding 

enzymes involved in the synthesis of toxic metabolites in M. anisopliae sf. 

anisopliae (toxin producing fungus as reported by Samuels et al. 1989) and the 

absence of counterparts in M. anisopliae sf. acridium (colonizes host tissues and no 

toxin detected by Inglis et al. 2001) and concluded that these differences are 

representative of the different strategies these two fungi use.

A number of other observations further suggest intra specific variation in toxin 

production. Destruxins A and E were observed to be more toxic than others (Dumas 

et al., 1994), so the relative amount of these toxins could influence virulence and 

specificity. Amiri et al, (2000) showed inter and intra specific differences in 

destruxin production among different isolates of M. anisopliae. Amiri et al., (2000) 

suggested that the quantity and type of destruxins secreted could play an important 

role determining virulence and/or specificity for some strains of Metarhizium.

Destruxin A is the predominant toxin produced by M anisopliae sf. majus, M. 

flavoviride and M. album, which are usually restricted to representatives of 

Coleoptera, Orthoptera and Hemiptera, respectively (Kaijiang and Roberst, 1986; 

Rombach, et al., 1987). Samuels et al., (1988b) reported intra-specific variation in 

destruxin A production in four strains and found that those which produced large 

quantities were highly pathogenic for Munduca sexta, however, such a relationship
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was not observed by Amiri et al., (2000). Amiri et al., (2000) also suggested that 

destruxins presumably work in concert with other pathogenicity factors in killing the 

insect.

Trace amounts of destruxins A, B and E detected in the mycelium of M. anisoliae 

suggested that all three compounds are synthesized in their active form but are 

rapidly secreted into the medium (Amiri et al., 2000). The presence of the destruxin 

in similar ratios in mycelia and in media suggest that destruxins are biosynthesised in 

mycelia and straight after, released in culture media, thereby suggesting rapid 

diffusion process for destruxins (Loutelier et al., 1996).

Cultural conditions are also thought to influence destruxins production (Wang et al.,

2004). Jegerov et al., (1989) reported that no selective in vitro production of 

destruxins could be achieved by addition of any common amino acids. However, 

they did find that addition of L- proline into Czapek Dox medium significantly 

affected the total production of destruxins. Using maltose as a main carbon source 

gave higher destruxins yield than that of the conventional Czapek Dox broth medium 

(Chen et al., 1999). Espada and Dreyfuss (1997) reported cyclic peptolide 90-215 

influenced the titre and ratios of destruxins and helvolic acids in various M. 

anisopliae strains, however little is known about the effect of successive subculturing 

on destruxins production.

From the above discussion it is evident that M. anisopliae uses multiple approaches 

as pathogenicity and virulence determinants. Certain pathogenicity determinants 

appear to be influenced by the nutritional conditions, however, further studies are 

required to elucidate the role of nutrition on individual pathogenicity determinants.
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1.3 Genetics of M. anisopliae
M. ansipliae is haploid, mitosporic fungus and is known to have no teleomorphic 

stages (Bidochka et al., 2001). It is assumed to reproduce clonally and has the 

potential for parasexual recombination. Modes of genetic recombination have been 

identified in M. anisopliae, but it can only anastomose with closely related, 

parasexually compatible isolates (Bidochka et ah, 2000; St. Leger et al., 1993).

Several studies using a variety of molecular techniques e.g. RAPD, RFLP, suggest 

genetic variability among difference isolates of M anisopliae (Leal et al., 1994; 

Fegan et al., 1993). The total genome size of M. anisopliae was estimated to vary 

from 23.39 to 31.88 Mb among the Brazilian isolates (Inglis and Peberdy, 1998). 

They also reported variation in chromosome numbers form 7-8. The smallest and 

largest chromosome observed in their study was 1.33Mb and 6.02 respectively, 

however, each chromosome varied in its size among the different isolates. In an 

earlier study Shimizu et al., (1992) reported variability among Japanese isolates with 

the genome size varying from 29.6 to 32.1 Mb. They observed 7 chromosomes in 

each isolate and estimated the size of the chromosomes varied between 1.6 to 7.4 

Mb. In a recent study, Wang et al., (2003) reported loss of a conditionally 

dispensable chromosome (1.05 Mb) from a mutant strain of M. ansiopliae. This 

dispensable choromosome was also reported as encoding two important 

pathogenicity related genes Prl and destruxins (Wang et al., 2002, 2003).

1.4. Mechanisms involved in attenuation of virulence

An important aspect in the production and development of M. anisopliae is to 

maintain its virulence during in vitro growth. Like most pathogenic fungi, the 

entomopathogenic fungi are also notorious for losing virulence upon repeated in vitro 

subculturing on artificial media but the rate and frequency of this phenomenon varies 

inter and intra specifically (Brownbridge et al. 2001). There have been many reports 

demonstrating the loss of virulence after repeated subculturing in isolates of B. 

bassiana, M. anisopliae, P. farinosus and V lecanii (Table, 1.1; Kawakami, 1960; 

Schaerffenberg, 1964; Nagaich, 1973; Fargues and Roberts, 1983; Morrow et al.,
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1989). Similar findings of decreased virulence during in vitro growth have also been 

reported for entomophthorales fungi. Hajeck et al., (1990) observed an increase in 

incubation time for Entomphaga maimaiga after repeated subculturing and 

concluded that the rate of subculturing had an impact on virulence, while the 

absolute length of time in axenic culture did not influence virulence. Similarly a 

decline in pathogenicity and ability to produce oospores was observed after 

prolonged culturing of Lagenidium gigantem on sterol free medium (Lord and 

Roberts, 1986).

However, some reports contradict these findings as no attenuation was observed 

upon repeated subculturing of B. bassiana, B. brongniartii, Culicinomyces 

clavisporus, M anisopliae, P. farinosus and V lecani (Hall 1980; Ignoffo et al., 

1982; Sweeney, 1981; Brownbridge et al., 2001; Vandenberg and Cantone 2004). 

Recently, Vandenberg and Cantone (2004)) observed that up to 30 successive serial 

in vitro transfers of P. fumosoroseus had no effect on its virulence against Diuraphis 

noxia or Plutella xylostella. Similar observations were also made by Hayden et al., 

(1992) and Brownbridge et al. (2001) for P. farinosus and B. bassiana respectively, 

with no loss of virulence seen for up to 15 in vitro subcultures on artificial media. 

The most extreme case of stable virulence was reported for an isolate of C. 

clavisporus, which maintained its virulence against mosquitoes even after 8 years of 

continuous subculturing on nutrient agar (Sweeney, 1981).

In some cases, the repeated subculturing resulted in morphological changes but no 

noticeable effect on pathogens virulence. Sparse mycelial growth and less intense 

pigmentation of P. fumosorseus conidia were observed after 30 serial passages but no 

change in genetic or virulence was observed (Vandenberg and Cantone, 2004)). 

Similarly, changes in the colony morphology of V lecanii were observed after 

repeated subculturing (Hall, 1980). Hajeck et al., (1990) observed change in 

morphology (enlarged spherical protoplasts) and loss of ability to produce conidia in 

E. maimaiga after repeated subculturing.
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Although, the phenomenon of attenuation is well documented the underlying 

mechanisms of attenuation are poorly understood. Nearly all known cases of 

attenuation are reported from growth on artificial media or due to cultivation in non

host media. These findings suggest a link between nutrition and attenuation of 

virulence. The fact that virulence can be restored by a single or multiple passage 

through a host further supports this hypothesis. Several studies have demonstrated 

recovery of virulence upon host passages; however, some reports even suggest an 

improvement in virulence and expansion in host range (Ferron, 1985). An increase in 

virulence of P. farinosus was observed after a single passage thorough Stiobion 

avenae and continued to increase for up to 9 passages (Hayden et al., 1992). 

Vandenberg and Cantone (2004) observed loss of specificity to D. noxia by two 

isolates of P. fumosoroseus upon passage through P. xylostella but this ability was 

regained after 5 passages through D. noxia.

These contradictions and discrepancies serve to highlight inter and intra-species 

variation that exists in the effects of repeated subculturing on the virulence and 

genetic stability of this trait as well as the effect of approaches (media, cultivation 

method i.e. single spore or multispore etc) used to study attenuation (Brownbridge et 

al., 2001). Studies by Vandenberg and Cantone (2004) suggest that stability of traits

i.e. phenotype and virulence can vary by strain and therefore should be monitored in 

commercial production settings.
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Table. 1.1 Attenuation of virulence in entomopathogenic fungi upon successive in 

vitro subculturing

Entomopathogenic

fungus

Type of attenuation References

Paecilomyces

fumosoroseus

Less virulent, sparse mycelial 

growth, decline in sporulation

Kawakami, 1960; 

Vandenberg and Cantonne, 

2004

Verticillum lecanii Less virulent/variant phenotype to 

parent culture

Nagaich, 1973, Hall, 1980

Metarhizium anisopliae Less virulent Al-Aidroos and Seifert, 

1980

Beauveria bassiana Less virulent Schaerffenberg, 1964; 

Samsinankova et al. ,1981

Entomophaga maimaiga Less virulent, enlarged spherical 

protoplasts and loss of ability to 

form conidia

Hajek, et a l, 1990

Lagenidium giganteum Less virulent, poor sporulation 

(unable to form oospores and 

zoospores)

Lord and Roberts, 1986

Nomuraea rileyi Less virulent, altered phenotype Morrow, et al., 1989

1.4.1 Gene silencing - a potential factor involved in attenutation of virulence

Gene silencing in Eukaryotic organisms has been described by several terms or 

forms e.g. Post transcriptional gene silencing (PTGS), RNA -  interference (RNAi), 

virus induced gene silencing (VIGS) and quelling (Pooggin et al., 2001). Post 

transcriptional gene silencing is a general term for a variety of phenomena that 

repress gene expression by causing degradation of mRNA (Maine, 2003). Studies by 

several authors reported common characteristics in different PTGS phenomena
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suggesting that PTGS in different organisms may be mediated by similar molecular 

mechanism (Fire et al., 1998; Montgomery et al., 1998; Fire, 1999). Gene involved 

in PTGS have been identified in several organsin as qde in Neurospora crassa, rde, 

mut, and ego -  1 genes in soil nematode Caenorhabditis elegans and sde, sgs in the 

mustard plant Arabidopsis thaliana (Cogoni et al., 1997; Tabara et al., 1999; Ketting 

et al., 1999; Smardon et al., 2000; Elmayan et al., 1998; Mourrain et al., 2000; 

Dalmay et al., 2000). These findings are consistent with a conserved mechanism 

operating in these diverse species (Maine, 2003).

A variety of RNA -  mediated gene silencing methods that inhibits genes at the PTGS 

level has also been identified in different organisms. The most common forms 

involve the introduction of antisense RNA, double - stranded RNA also termed as 

RNAi or sense transgenes also called co- suppression in plants and quelling in fungi. 

In the case of Neurospora, molecular analysis indicate that gene silencing (quelling) 

operates at the PTGS level and is believed to be linked with possible production of 

sense RNA from the introduced transgene (Cogoni et al., 1996). Detailed analysis of 

the PTGS -  resistant mutant in Neurospora, Arabidopsis and RNAi resistant mutants 

in C. elegans have helped to understand the mechanisms of these forms of RNA -  

mediated gene silencing (Backer et al., 2002). It has also been reported that 

homologues of the qde 1 gene (Neurospora) are required in plants (SDE 1/SGS 2) for 

PTGS and in C. elagans (EGO-1) for RNAi (Dalmay et al., 2000; Smardon et al., 

2000), and also argonaute 1 (AGO 1) which is involved in co- suppression on plants 

(Tabara et al., 1999; Catalanotto et al., 2000; Fagard et al., 2000).

One major prediction from the current model is that PTGS -  related phenomena may 

involve the production of small interfering RNAs (siRNA) that act as the mediators 

of gene silencing (Backer et al., 2002) RNA silencing is thought to be either induced 

by dsRNA or by the production of dsRNA by some other means e.g. over production 

of sense and antisense RNA, action of a cellular RNA dependent RNA polymerase 

(Poogin et al., 2001). At the next stage, dsRNA is then chopped non-specifically into
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pieces of 21-25 nucleotides by an RNase III like activity. These 21-25 nt products 

named as small interfering RNA (siRNA) which are found in all cases of RNA 

silencing are believed to act as guide that provides sequence-specificity for target 

RNA degradation (Poogin et al., 2001). Recently siRNAs have been used effectively 

to regulate specific gene expression in mammalian cells (Elbashir et al., 2001; 

Harborth et al., 2001).

So far, there has been no attempt to study such mechanisms in entompathogenic 

fungi; however dsRNA mycoviruses have been reported from attenuated cultures of 

M. ansiopliae (Gimenez-Pecci et al., (2002; Frazzon et al., 2000). Further studies on 

M. anisopliae and other pathogenic fungi may reveal existence of the above 

mechanisms in attenuated cultures.

1.5 Link between nutrition and virulence

For fungal BCAs to be commercially viable, it has to be produced in large quantities, 

which is not possible to achieve by simply passaging through hosts. For mass 

production, fungal BCAs have to be produced on artificial media at a cost effective 

price. There have been many attempts to reduce the production cost of fungal BCAs 

by increasing yield but little attention was paid to increasing the quality of the 

inoculum (Schisler et al., 1991; Magan, 2001). Recent studies with various 

biocontrol agents have suggested that the nutrition provided during the production of 

biocontrol agents could significantly affect their biocontrol efficacy. Cother and Van 

der Ven (1999) reported that the nutritional composition of liquid media significantly 

influenced the conidial production and virulence of Rhynchosporium alismatis. 

Similarly, Winder (1999) observed that conditions favouring abundant sporulation of 

Fusarium avenaceum did not favour virulence. On the other hand, conidial 

production and biocontrol efficacy of Colletotrichum truncation, Plectosporium 

tabacium, Helminthosporium solani and Trichoderma harzianum were high if they 

were produced in media containing a CN ratio of 5-15:1 compared to those produced 

in medium with CN ratios of 15-80: 1 (Jackson and Schissler, 1992; Agosin et al., 

1997; Elson et al., 1998; Zhang et al., 2001)
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Earlier studies on the influence of nutrition on entomopathogenic fungi have also 

shown that the conditions under which conidia are produced affect attributes such as 

endogenous reserves, surface properties and virulence (Lane et al., 1991; Hallsworth 

and Magan 1994, 1995; Ibrahim et al., 2002). However, there is a paucity of 

information on the effect of nutritional conditions on the inoculum quality. Most 

studies represent fragmented information and addressed only the conidial attributes 

with a passive role (if any) in virulence, whereas information on putative virulence 

determinants is lacking.

1.5.1 Carbon and Nitrogen repression of cuticle degrading enzymes

Filamentous fungi have the ability to grow in diverse environmental conditions and 

have sophisticated regulatory mechanisms which allow them to detect changes in 

their environment. The efficient utilization of growth substrates by filamentous fungi 

is under the control of both wide -  domain and pathway specific regulatory genes 

(Hynes, 1994). Cuticle degrading enzymes of M. anisopliae particularly Prl are 

regulated by carbon (C) and (N) repression and de repression (Smithson et al., 1995). 

C and N derepression of Prl have been shown to operate at the level of transcription 

(St. Leger et al., 1991, 1992). Screen et al., (1997) sequenced the prl  promoter 

region and identified a motif which is identical to those found in Aspergillus nidulans 

and which act in that fungus as binding sites for the regulatory proteins AREA and 

CREA. The presence of binding sites for the A. nidulans carbon-response regulator 

CREA in a carbon -catabolite -repressed gene from M. anisopliae suggests that the 

molecular mechanisms for C- repression may be conserved in these two organisms. 

More direct evidence is provided by the identification of a gene crrl, encoding a 

protein which shows significant homology with the CREA proteins of A. nidulans, A. 

niger, Trichoderma reesei and T. harzianum (67%, 61%, 84% and 85% similarity 

respectively). In addition to the structural similarity between the M anisopliae CRR1 

and the CREA proteins, it was observed that crrl can functionally complement the A. 

nidulans creA 204 mutation, in that CRR1 is capable of substituting for A. nidulans 

CREA in the repression of alcohol dehydrogenase 1 (Screen et al., 1997). These 

findings clearly demonstrate that crrl encodes a carbon -  response regulator protein
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which is at least in part functionally homologous to the A. nidulans CREA (Screen et 

al., 1997).

The prl A gene is also regulated in response to Nitrogen availability and the 

presence of closely spaced 5/_ GATA sequence suggested the presence of an 

AREA/NIT2 equivalent in M. anisopliae (Screen et al., 1997). Screen et al., (1998) 

designed a number of primers based on AREA from A. nidulans (Kudla et al., 1990) 

and NIT2 form N. crassa (Fy and Mazluf, 1990) and amplified an 840-bp fragment 

from genomic DNA M. ansioplaie strain ME1. Further studies revealed that the gene 

existed as a single copy and was designated as nitrogen response regulator gene nrrl 

(Screen et al., 1998). This gene contains two introns of 151 nd 253 bp, and encodes 

a protein of 944aa. The first intron disrupts a glycine residue rather than an arginine 

as found in all other filamentous fungal nitrogen response regulators genes. 

Complementation analysis further indicated that nrrl is functional when expressed in 

an A. nidulans areA- mutant (Screen et al., 1998). However, homology comparisons 

indicate that the protein is more silimar to the NIT2 protein from Neurospora crassa 

than to the AREA protein from A. nidulans (Screen et al., 1998).

Identification of similar wide domain C and N regulatory genes in several other fungi 

e.g. A. nidulans, N. crassa, Penicillium chrysogenum, T. reesei and T. harzianum 

suggests that the these regulatory mechanisms may be widely conserved amongst 

fungi (Screen et al., 1997 and references there in).

1.6 Aims and justification of the present study

It is clear from the review of the literature that several attributes of M. anisopliae 

contribute to the overall virulence of this fungus. These attributes or putative 

virulence determinants include: adhesion, germination, production of CDEs and 

toxins. At present, we have very limited information on the influence of nutrition on 

these virulence determinants. The overall aim of this study is to understand the 

influence of nutrition on the virulence and stability of M. anisopliae. The specific 

aims of the study are
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1. To study the influence of successive in vitro subculturing on the growth and 

virulence of M. anisopliae to identify its virulence determinants.

2. To study the effect of nutrition (media composition) on the putative virulence 

determinants of M. anisopliae.

3. To identify virulence determinants, which could be used as potential quality 

control markers.

4. To optimise assays for the quantification of putative virulence determinants 

e.g. adhesion of conidia. To date studies on M. anisopliae adhesion describe 

qualitative differences only.

5. To study the influence of nutrition in the production and physiology of sector 

formation in M. anisopliae to determine the possible role of phenotypic 

instability in attenuation.

6. To determine the influence of successive subculturing on the virulence of 

single spore and parent cultures.

These specific aims are specifically designed to increase our understanding of the 

factors involved in attenuation of virulence In M. anisopliae. Since all known cases 

of attenuation are reported from artificial or non host environments, therefore studies 

are particularly focused on the influence of nutrition in attenuation and virulence of 

M. anisopliae
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Chapter 2: Elucidating the underlying mechanisms of 

attenuation in the entomopathogenic fungus M. anisopliae

2.1 Introduction

Successive in vitro subculturing of M. anisopliae and other entomopathogenic fungi 

results in the attenuation of virulence (Butt and Goettel 2000) but the underlying 

mechanisms of attenuation remain unclear. It is possible that maintenance of M. 

anisopliae in nutrient rich conditions affects the expression and production of its 

virulence determinants. To date no one has investigated the relationship between 

putative virulence determinants and attenuation in M. anisopliae. Monitoring the 
virulence determinants during successive subculturing could enable us to understand the 

role of these virulence determinants in virulence. In this study, the components of 
infection process that are linked with virulence (see Chapter 1) were used as tools to 

monitor changes in virulence when successively subcultured on artificial media. The aim 

of this study was to identify which components of the infection process (i.e. adhesion, 

CDEs, Destruxin) were affected as the culture declines in virulence. Other aspects of 

fungal development such as spore production, conidial carbon to nitrogen ratio were also 

evaluated to see the effect of successive subculturing on these aspects of M. anisopliae.

2.2 Materials and Methods

2.2.1 Fungi

Two strains of M. anisopliae V245 (isolated from soil, Finland) and V275 (isolated from 

Cydia pomonella, Lepidoptera) were used in this study. Both isolates were passaged 
through Galleria melonella larvae and isolated using a selective Oatmeal dodine agar 

medium and single spore colonies were transferred to Sabouraud Dextrose Agar (SDA). 

These cultures were maintained at 4°C and used as a source of inoculum for further
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subculturing onto SDA up to 10th subculture. Subcultures (1st, 3rd, 5 th, 7th and 9th) of both 

strains were selected for further studies.

2.2.2 Monitoring growth and sporulation

Sterilized SDA media was poured into 9 cm diameter Petri dishes (Bibby Sterilin, U.K.) 

and on solidification inoculated with a 2 mm diameter mycelial plug taken from the 

growing edge of a 12 day old culture of the selected subcultures grown on SDA at 25°C 

in the dark. Inoculated Petri dishes were sealed in polythene bags and incubated at 25°C 

in the dark. The colony diameter was measured at right angles at 3 days intervals until 

15 days post inoculation and radial growth (mmd*1) calculated from the linear portions 

of the curves plotted from these values. Conidial yield was determined by suspending 

the conidia from the whole colony in 50 ml of 0.05% aq. v/v Tween 80, and counting the 
number of spores using an improved Neubauer haemocytometer (Weber Scientific 

International Ltd. U.K.)

2.2.3 Determining virulence of inoculum after repeated subculturing on SDA

Conidia from the above treatments were assayed against 4-5th instar larvae of Tenebrio 

molitor. Larvae were immersed in 10 ml conidial (lxlO7 conidia/ml) suspension or 

0.03% v/v aq. Tween carrier (control) for ca. 30 sec and the excess moisture removed by 

filtering over a vacuum in a Buchner funnel. Larvae were incubated without food in 9cm 

diameter Petri dishes lined with moist Whatman No.l filter paper and incubated at 25°C 

in the dark. Each treatment was replicated three times with ten larvae per replicate. 

Mortality was recorded daily and dead insects were transferred to Petri dishes lined with 

moist filter paper to encourage external sporulation of the fungus if present. The LT 50 

(time required to kill 50% larvae) were calculated from the linear portions of the curves 

plotted from these values (time in days vs mortality).
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2.2.4 Carbon and Nitrogen (CN) elemental composition/ratio of conidia produced 

after repeated subcultures

The CN elemental composition of the conidia produced after repeated subculturing on 

SDA were determined using an Automated Nitrogen Carbon Analysis for Gas Solids 

and Liquids (ANCA GSL) elemental analyser interfaced with a PDZ Europa 20/20 mass 

spectrometer. Conidia (lmg) from each subculture were wrapped in 6x4 mm tin foil 

discs (Elemental Microanalysis, Ltd. U.K.) that had first been washed in acetone 

(Sigma) and allowed to dry to ensure they were oil free. Samples were then kept in 

sealed tubes and kept in an airtight desiccator until analysis. Isoleuecine (Sigma) at 

different concentrations ranging from 25 pg to 150 pg was used as standard. Tin foil 

discs without conidia were used as negative control. Each treatment was replicated and 

whole procedure was repeated twice.

2.2.5 Determination of conidial adhesion using Radial Flow chamber

Conidial attachment studies were carried out in a Radial Flow Chamber (RFC) as 

described by Tegoulia et al., (2002), however, RFC assays were optimized for M 

anisopliae as described in Chapter 4. Briefly, M. anisopliae conidia obtained from 

different subcultures were suspended in 0.03% aq.Tween 80 to a final concentration of 

lxlO9 conidia/ml. The reservoir of the RFC contained 95 ml of deionised water. 

Conidial suspension (5 ml) of a single treatment was introduced into the reservoir. The 

suspension was allowed to run at flow rate of 0.2 l/min into RFC for 15 minutes prior to 

adhesion observations. These conditions were kept constant for all the experiments. In 

order to compare the adhesion strength of conidia different successive subcultures, shear 

strength of 1.33 N M2 (15 mm from point on injection) was used for all studies. Conidial 

adhesion was recorded simultaneously on stainless and cuticular lipid coated glass 

surface.
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2.2.6 Measurement of zeta potential (to quantify electrostatic forces/surface charge 

involved in adhesion)

The zeta potential of the conidia was calculated from experimentally determined 

electrophoretic mobility using the Smoluchowski equation. Smoluchowski (1918) 

considered the effect of an electric field on the movement of a liquid adjacent to a flat 

charged surface. The velocity of the liquid varies from zero (plane of shear) to a 

maximum value, some distance from the wall where it remains constant. A force balance 

on an elemental volume of the liquid results in the electro-osmotic mobility, defined in 

equation 2.1

hE = - ( P Q / / i Eq. 2.1

Where i fE  is electro-osmotic mobility (m2/SecV); D is the dielectric constant 

(dimensionless); £ is the zeta potential in mV and p represents the viscosity of water 

(Kg/ms).

This theory can also be applied to large particles moving within relatively thin double 

layers in a stationary liquid, taking into consideration that the particle is moving in the 

opposite direction, and therefore, the sign reversed as shown in Equation 2.2

ijE= (DQ/ f i  Eq. 2.2

Where i fE  now represents the electrophoretic mobility, which could then be used to 

determine zeta potential.

To determine the electrophoretic mobility, conidia from different subcultures were 

suspended in distilled water to the final concentration of lxl07 conidia/ml. The 

electrophoretic mobility was then measured using a Malvern Zetasizer 2000/3000 

(Malvern Instruments, U.K.). The mean of 10 measurements was then used to calculate
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the zeta potential. Distilled water was used as the reference sample and the system was 

thoroughly flushed with deionized water after each reading.

2.2.7 Surface hydrophobicity measurements

The surface hydrophobicity of the conidia was assessed by aqueous-solvent partitioning 

assays. The test assesses the distribution ratio of cells between water and an organic 

phase. The organic phase used was n-Hexadecane (Sigma). M. anisopliae (V245, V275) 

conidia from different subcultures were suspended in 0.1 M K N O 3 solution to a final 

concentration of lxl07 conidia /ml. The optical density of the spore suspension was 

determined at 660 nm (Lightwave, UV/VIS Diode-Array Spectrophotometer, WPA, 

U.K.), referred to as ‘total density’ (OD total). Conidial suspension (6 ml) of each sample 

was then transferred to a universal bottle containing 2 ml of hexadecane and agitated for 

twenty seconds. The suspension was held for 30 minutes to allow for phase separation. 

Following phase separation, the aqueous phase was collected and the OD (660 nm) 

recorded. Relative hydrophobicity was then determined as follows:

Relative hydrophobicity (%) = 100 (1 -  (OD aq/ OD totai)}

Where the OD (totai) and the OD (aq) represent the values of the start sample and resultant 

aqueous phase respectively.

2.2.8 Germination assays

The germination rate of inoculum from the different subcultures was assessed by 

inoculating SDA with 10 pi of conidial suspension (lxlO6 conidia/ml) of each 

subculture, then counting the number of germlings following 10 hours post inoculation 

at 25°C. Conidia with germ tubes equal to or greater than the conidial width were
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considered to have germinated. For each treatment, three separate fields were observed 

for germination and 100 conidia observed randomly in each field.

2.2.9 Effect of repeated subculturing on the production of Prl and non-specific 

proteases

The production of CDEs was investigated by inoculating an inductive medium 

consisting of homogenised cockroach cuticle (lOmg/ml) in minimal medium with 

conidia from different subcultures. The minimal medium consisted of (g/1) O.3K2HPO4, 

0.3 MgS04.7H20, 0.15 NaCl, 0.3 CaC1.6H20, 0.008 MnS04.6H20, 0.0002 CuS04.5H20  

and 0.003 FeS04.7H20

The inductive medium (18ml) was poured into 100 ml conical flasks and autoclaved at 

120°C for 20 minutes before inoculation with 2 ml of lxl 07 conidia/ml. Cultures were 
incubated at 24°C, 120 rpm, in a Gallen-Kamp orbital incubator (Sanyo). Each treatment 

and the whole experiment were repeated twice.

Samples for the enzyme assays were prepared as follows: (1) 1.5ml culture filtrate was 

collected in an Eppendorf tube and centrifuged at 12000 g ( in Sanyo Harrier 18/80 

centrifuge) for ten minutes, (2) 1ml of the supernatant was stored at -80°C until required 

for protein and enzyme assays. All samples were collected at 72 hours post inoculation.

2.2.10 Protein assays

Protein concentrations in culture filtrates were determined by the method of Bradford 

(1976) using bovine serum albumin as a standard.
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2.2.11 Enzyme assays:

2.2.11.1 Determination of non-specific protease activity

The assays for non-specific proteolytic activity were carried out as described by Segers 

et al., (1995). Azocoll (Calbiochem) was dissolved in 0.1 M Tris-HCl buffer (pH 7.95) 

and stirred gently for 2 hours at 37°C. After stirring, the solution was centrifuged at 

5000g (in Sanyo, Harrier 18/80 centrifuge) for 10 minutes and the supernatant was then 

poured off to remove any unbound dye. The pellet was re-suspended in buffer to a final 

concentration of 10 mg/ml. This substrate was then used for the protease assay. Each 

assay was performed by incubating buffer (200 pi), enzyme (50 pi) and azocoll substrate 

(250 pi) for 30 minutes at 37°C in a rotary shaker (160 rpm). In controls, the enzyme 

was replaced with buffer. After incubation, the mixture was centrifuged at 12000 g (in 

Sanyo, Harrier 18/80 centrifuge) for 5 minutes and the supernatant (200 pi) were 

transferred to individual wells of 96 well microtitre plate (Dynatec) and absorbance was 

read at 492 nm wavelength. Each treatment and the whole experiment were replicated 

twice.

2.2.11.2 Subtilisins (Prl) and Trypsin like (Pr2) activity

Prl and Pr2 activities were assayed against Succinyl-Ala-Ala-Pro-Phe-/?-nitroanilide 

and N-Benzyol-Phe-Val-Arg-/?-nitroanilide respectively (Sigma) as described by St. 

Leger et al., (1994b). Assays were conducted using 96 well microtitre plates (Dynatec). 

The reaction mixture contained 50 pi of 0.1 M Tris-HCl buffer (pH 7.95), 50 pi of crude 

enzyme and the reaction was started by adding 50 pi of 3 mM substrate dissolved in 

Tris-HCl buffer (pH 7.95) to each well. Absorbance was read immediately for 3 minutes 

with 12-second intervals between each reading in a Lab System microplate reader. 

Absorbance was read at wavelength of 405 nm wavelengths and enzyme activity was 

calculated using the Ascent software. Each sample and the whole experiment were 

replicated twice. Controls consisted of buffer and substrate only.
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2.2.11.3 NAG’ase activity

p -  N-Acetyleglucosaminidase (NAG’ase) activity was determined as described by St. 

Leger et al., (1986); briefly 0.5 ml of culture filtrate was incubated with /?NP-N- acetyle- 

/?-D-glucosaminide solution (1 mg/ml) in O.IM-citrate buffer for 1 hour at 37°C. After 

incubation, the reaction was stopped by adding 1ml of IN NH4OH containing 2mM 

disodium EDTA. Samples (200 pi) from each treatment were transferred to each well of 

96 well microtitre plate (Dynatec) and read for changes in absorbency. Absorbance was 

measured at 405 nm wavelengths and enzyme activity was calculated using the Ascent 

software. Each sample and the whole experiment were replicated twice. Controls 

consisted of buffer and substrate only. Activities were expressed as p mol p-nitrophenol 

(pNP) released/ml/hr.

2.2.11.4 Direct measurement of spore bound Prl

Conidia from different subcultures were used to study the spore bound Prl as described 

by St. Leger et al, (1991b) with minor modifications. Briefly, 10 mg of conidia were 

incubated in 1ml of 0.1 M Tris-HCl (pH 7.95) containing 1 mM Succinyl- Ala-ala-Pro- 

Phe-p-nitroanilide for 5 minutes at room temperature. After incubation the conidia were 

clarified by centrifugation at 12000g (in Sanyo, Harrier 18/80 centrifuge) for 5 minutes. 

The supernatant (200 pi) was transferred to wells of a microtitre plate (Dynatec) and 

absorbency was measured at 405 nm. Substrate and buffer without conidia were used as 

control. Each treatment and experiment was replicated twice.

2.2.11.5 Semi quantitative enzyme profiling (API-ZYM test) of the un germinated 

conidia from different subcultures

The enzymatic activities of 19 different enzymes (listed in tables 2.3-2.4) were 

determined with the semi-quantitative API-ZYM system (bio Merieux, U.K.) as 

described by the manufacturer. Briefly, 65 pi of conidial suspension (lx l07 conidia/ml) 

of each treatment was added to individual cupules (lined with buffer and enzyme
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substrate) of each strip followed by incubation at 37 °C for 4 hours. The pre supplied 

colour reagent (Fast Blue BB, laural sulphate, methoxyethnol and Tris) was added to 

determine enzymatic activity. Enzyme activities were scored from 0-5, with 0 

representing no enzyme activity and 5 representing maximum activity.

2.2.12 Production of destruxin

2.2.12.1 Inoculation of toxin induction medium

Czapek dox broth (Sucrose, 3%, sodium nitrate, 0.2%, K2HPO4, 0.1%, MgSC>4, 0.05% 

KC1 0.05% and FeSCU, 0.001%) supplemented with 0.5% peptone (Oxoid) was used as 
inductive medium. Conidia harvested from different subcultures were used to inoculate 

the inductive medium for destruxin production. Conidial suspension from each 

subculture was adjusted to a concentration of 1x10 7 conidia /ml. The inductive medium 

(250 ml) in conical flask (500 ml) was then inoculated with 2.5 ml of spore suspension 

of the respective subcultures. Following inoculation, cultures were incubated at 24°C, 

120 rpm for 7 days. Each treatment and the whole experiment were repeated twice.

2.2.12.2 Crude toxin extraction and HPLC analysis

Crude toxins were extracted from culture filtrates with dichloromethane: ethyl acetate 

(1:1) and analysed by HPLC as described by Wang et al. (2003). Briefly, each sample 

was diluted to 1 mg/ml of crude extract in HPLC grade Methnol, 25 pi of each sample 

injected in Dionex HPLC system, equipped with a C18 reverse phase column 

(Acclaim™, silica, particle size: 5 pm, pore diameter: 120 A, length: 4.6 x 250 mm, 

column temperature 30 °C) and a UVD 340U diode array detector. Samples were 

analysed at a flow rate of 1 ml/minute with the following gradient: eluent A = H2O with 

5 % acetonitrile, eluent B = acetonitrile with 10 % H2O: a linear gradient from 10 % to 

50 % eluent B for 17 minutes, a linear gradient from 50 % to 100 % eluent B for eight 

minutes and a linear gradient from 100 % to 30 % eluent B for five minutes; the column 

was left to re-equilibrate at 30 % eluent B for 10 minutes between runs. All the reagents
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were from Sigma except for solvents (Dicholoromethane, Methnol and Acetonitrile), 

which were obtained from Fisher scientific, U. K.

2.2.13 Statistical analysis

The whole study was repeated with each treatment replicated three times unless stated 

otherwise. Data was subjected to one-way ANOVA (Tukey test) for determining 

significant differences. For all statistical analysis SPSS 11 software was used.

2.3 Results

2.3.1 Effect of repeated subculturing on the growth of M. anisopliae

In general, non-significant (P < 0.05, Tukey Test) differences in radial growth were 

observed after repeated subculturing on SDA, however conidial yield varied 
significantly (Tables 2.1, 2.2). Conidial yield was high in 1st and 3rd subcultures of V245 

and V275 respectively. No significant difference in conidia yield was observed among 

3rd to 9th subcultures of V245, whereas in the case of V275, conidia yield was erratic 

among subcultures (Table 2.2).

2.3.2 Effect of repeated subculturing on the virulence of AT. anisopliae

Virulence of both strains fluctuated among different subcultures but the net result was a 

decline in virulence with increasing number of subcultures (Tables 2.1, 2.2). M. 
anisopliae V245 was most virulent as 1st and 3rd subculture with LT5o values of 4.79 and 

4.63 days post inoculation (dpi) respectively. The least virulent inoculum of V245 was 

that of the 9th subculture with LT5o value of 5.57 dpi (Table 2.1). A similar trend was 

also observed for V275, where, 1st and 3rd subculture were significantly (P < 0.05, 

Tukey Test) more virulent than those of 5-9*. Comparatively, there was more loss of 

virulence in V245 as it lost almost one day between 1st and 9th subculture (Table 2.1).
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2.3.3 Effect of repeated subculturing on conidial carbon and nitrogen ratios

Conidial carbon to nitrogen ratios of both strains varied among the different subcultures 

(Tables 2.1, 2.2). In all the treatments, carbon to nitrogen ratios were above 6:1. In the 

case of V245, highest conidial CN ratio was observed in the conidia from subcultures 

1st, 5th and 9th. These treatments varied significantly (P < 0.05, Tukey Test) with those of 

the 3rd and 7th subcultures (Table 2.1). Overall conidial CN ratios of V245 varied from 

6.52:1 (3rd subculture) to 7.06:1 (1st subculture). In the case of V275, conidial CN ratios 

varied from 6.12:1 (7th subculture) to 7.17:1 (5th subculture). Significantly (P < 0.05, 

Tukey Test) higher conidial CN ratios were observed in conidia from 1st and 5th 

subculture, followed by intermediate conidial CN observed in 3rd and 9th subcultures 

(Table 2.2). Lowest conidial CN ratios were observed in the 7th subculture (Table 2.2).

2.3.4 Effect of repeated subculturing on the speed of germination of M. anisopliae

Except for the 9th subculture of both strains, germination speed varied non-significantly 

(P < 0.05, Tukey Test) among the subcultures. Conidia from all the subcultures of V245 

germinated relatively slowly, as maximum germination recorded at 10 hours post 

inoculation was 38.66%. There was significantly (P < 0.05, Tukey Test) low 

germination speed for conidia from the 9th subculture of V245, which had only reached 

4.66% at 10 hours post inoculation.

Although V275 conidia from different subcultures had a similar trend to that of V245, 

there was relatively faster germination in all subcultures of V275. Fastest germination 

was observed for 3rd subculture but it varied non-significantly (P < 0.05, Tukey Test) 

with rest of subcultures except with the slowest germinating conidia from 9th subculture.
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Table 2.1 Vegetative growth, conidial yield, CN ratios, germination and virulence of 

different subculture of M. anisopliae V245. All the means within a column followed by 

the same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated three times. Values in parenthesis represent standard errors.

Subculture Radial
growth

(mm/day)

Conidial
yield/1

(xlO11)

Conidial 
Carbon to 
nitrogen 

ratio

Germination
(%)

Virulence LT50

(Days post 
inoculation)

1st 8.03ab 1.67a 7.06a 38.66a 4.79bc
(0.34) (0.01) (0.06) (1.45) (0.12)

3rd 7.16b 0.96b 6.52b 37.66a 4.63c
(0.42) (0.02) (0.00) (1.20) (0.18)

5th 8.04ab 0.87b 6.99a 31.66a 5.22ab
(0.28) (0.11) (0.01) (2.18) (0.10)

yth 7.76ab 0.92b 6.60b 33.00a 5.19ab
(0.32) (0.01) (0.01) (3.60) (0.02)

9th 8.73a 0.99b 7.03a 4.66b 5.57a
(0.20) (0.15) (0.00) (0.88) (0.09)
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Table 2.2 Vegetative growth, conidial yield, CN ratios, germination and virulence of 

different subculture of M. anisopliae V 275. All the means within a column followed by 

the same letter are not significantly different {P < 0.05, Tukey Test). Each treatment was 

replicated three times. Values in parenthesis represent standard errors.

Subculture Radial
growth

(mm/day)

Conidial
yield/1

(xlO11)

Conidial 
Carbon to 
nitrogen 

ratio

Germination
(%)

Virulence LT50

(Days post 
inoculation)

1st 8.48a 1 79ab 6.76ab 80.33“ 3.74°
(0 .21) (0.18) (0.08) (2.33) (0.06)

3rd 9.47a 2 .21a 6.32bc 82.00“ 4.01bc
(0.53) (0.35) (0.04) (4.58) (0.16)

5th 10.22a 2.08a 7.17a 66.33ab 4.45a
(0.29) (0 .20) (0.20) (3.17) (0.03)

yth 8.45a 1.19ab 6.12° 69.33“b 4.20ab
(0.52) (0 .01) (0 .01) (2.40) (0.08)

9* 8.48a 0 .86b 6.52ab 62.00b 4.46a
(0.26) (0.15) (0 .02) (5.13) (0.06)

2.3.5 Effect of repeated subculturing on the adhesion properties of M. anisopliae
Adhesion profile varied significantly among the different subcultures of both strains. On 
the stainless steel surface highest adhesion was observed for 1st subcultures. No 

significant differences in adhesion were observed for 3rd, 5th and 9th subcultures. Conidia 

from 7th subculture were more adhesive than these three subcultures but less than 1st 

subculture (Fig. 2.1). On culticular lipid coated glass surface, conidial adhesion was 

observed only from 5th, 7th and 1st subcultures. No adhesion was observed for conidia 

from 3rd or 9th subculture (Fig. 2.1).
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In the case of V275, adhesion decreased with increasing number of subcultures (Fig. 

2.2). Significantly higher adhesion was observed for the 1st subculture on both steel and 

lipid coated glass surface (Fig. 2.2). On the steel surface, no major differences in 

adhesion were observed among the conidia from 3rd, 7th and 9th subcultures. These 

subcultures had intermediate adhesion on steel. Conidia from 5th subculture were least 

adhesive on steel surface. On lipid coated glass surface, adhesion was observed only for 

the 1st and 3rd subcultures (Fig. 2.2).
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Fig. 2.1 Effect o f repeated subculturing on the adhesion of M  anisopliae V245 conidia 

to stainless steel and cuticular lipid coated glass surface under a flow rate o f 0.2 l./min.
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Fig. 2.2 Effect o f repeated subculturing on the adhesion o f M. anisopliae V275 conidia 

to stainless steel and cuticular lipid coated glass surface under a flow rate o f 0.2 l./min.

2.3.6 Effect of repeated subculturing on the zeta potential of the M. anisopliae 
conidia
Significant (P < 0.05, Tukey Test) differences in the zeta potential o f the conidia from 

different subcultures were also observed (Table 2.3). In the case o f V245, the conidia o f 

the 1st subculture had the least zeta potential (-27.69) which varied significantly {P < 

0.05, Tukey Test) with all other treatments (Table 2.3). The conidia of 3rd, 5th and 7th 

subculture varied non-significantly (P < 0.05, Tukey Test) with each other and had 

intermediate zeta potential (Table 2.3). The conidia of the 9th subculture had the highest 

zeta potential (-42.42), which varied significantly (P < 0.05, Tukey Test) with all other 

treatments (Table 2.3).

The conidia of V275 from different subcultures also varied significantly (P < 0.05, 

Tukey Test) but no clear-cut pattern was observed (Table 2.3). The conidia o f 1st, 5th,
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and 9th subculture varied non-significantly (.P < 0.05, Tukey Test) and had least zeta 

potential (Table 2.3). The conidia of 3rd and 5th varied non-significantly (P < 0.05, 

Tukey Test) with each other and constituted the middle range of zeta potential. The 

highest zeta potential was observed among the conidia of 7th subculture that varied 

significantly (P < 0.05, Tukey Test) with all other treatments (Table 2.3).

2.3.7 Effect of repeated subculturing on the hydrophobicity of the M. anisopliae 

conidia

Relative hydrophobicity varied significantly (P < 0.05, Tukey Test) among the conidia 

from different subcultures (Table 2.3). In the case of V245, conidia from the first 

subculture were significantly (P < 0.05, Tukey Test) more hydrophobic (92.84%) than 

rest of the subcultures. Subcultures 5th, 7th and 9th were intermediate in their 

hydrophobicity while the 3rd subculture was least hydrophobic (77.90%).

In the case of V275, conidia of the 1st subculture were more hydrophobic than the rest of 

the subcultures (Table 2.3). It had 93.90% hydrophobicity, which varied significantly (P 

< 0.05, Tukey Test) with all other its subcultures ranging from 86.22 to 89.25%. Except 

for the 1st subculture, all the subcultures of V275 varied non-significantly {P < 0.05, 

Tukey Test) among themselves (Table 2.3).
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Table 2.3 Effect of repeated subculturing on the zeta potential and relative 

hydrophobicity of M. anisopliae conidia. All the means within a column followed by the 

same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated three times. Values in parenthesis represent standard errors.

Subculture Zeta Potential Relative hydrophobicity
(mv2) (%)

V245 V275 V245 V275

1st -27.69a -34.56a 92.84a 93.90a
(0.46) (0.26) (0.35) (0.66)

3rd -34.47b -44.49b 77.90d 89.19b
(0.67) (0.42) (0.62) (0.51)

5th -32.75b -38.15ab 82.00b° 89.25b
(0.28) (2.66) (0.93) (0.15)

yth -34.24b -54.38° 87.47b 89.23b
(0.52) (2.28) (0.39) (1.07)

g\h -42.42° -32.803 84.26b 86.22b
(0.28) (0.27) (1.31) (1.63)

2.3.8 Effect of repeated subculturing on the production of CDEs

Erratic results were observed for total protein, non-specific protease, inductive Prl and 

NAG’ase activity among the different subcultures of V245. Total protein and NAGase 

was significantly (P < 0.05, Tukey Test) higher in 3rd subcultures. Inductive Prl was 

higher in 1st, 3rd and 9th subcultures and least in 7th and 5th subcultures (Table 2.4). No 

significant (P < 0.05, Tukey Test) difference in Pr2 activity was observed.
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Spore bound Prl activity of V245 varied significantly (P < 0.05, Tukey Test) among the 

different subcultures. Highest activity was observed for 1st and 3rd subcultures (1.30 and 

1.25 pmol/ml/min respectively), which varied significantly (P < 0.05, Tukey Test) with 

rest of subcultures. Subcultures 5th and 7th had lowest spore bound activity while 

subculture 9th was intermediates (Table 2.4). Significant ((P < 0.04, Pearson Correlation) 

negative correlation was observed between spore bound Prl and LT50 suggesting an 

increase in spore bound pr 1 would result im reduction of LT50 i.e. high virulence.

In the case of V275, protein and non-specific protease activity varied non-significantly 

(P < 0.05, Tukey Test) among the different subcultures. Inductive Prl activity was 

significantly higher in the 1^-7* subcultures than that of the 9th subculture. While Pr2 

activity was higher in the 1st subculture than the rest of subcultures but varied non- 

significantly (P < 0.05, Tukey Test) with that of 3rd and 5th subcultures (Table 2.5).

NAG’ase activity also varied significantly (P < 0.05, Tukey Test) among different 

subcultures of V275, highest activity was observed in 1st subcultures and least in the 9th 

subculture.

Spore bound Prl activity was significantly (P < 0.05, Tukey Test) higher in the 1st 

subculture of V275. Remaining subcultures varied non-significantly (P < 0.05, Tukey 

Test). Generally the protein and enzyme activities were lower in V245 subcultures than 

those of V275 (Tables 2.4-2.5). Significant ((P < 0.02, Pearson Correlation) negative 

correlation was observed between spore bound Prl and LT50 suggesting an increase in 

spore bound pr 1 would result im reduction of LT50 i.e. high virulence.
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Table 2.4 The total protein, non-specific proteases, Prl, Pr2 and NAG’ase activities of 

different subcultures of V245 in the inductive media in comparison with their spore 

bound Prl activity. All the means within a column followed by the same letter are not 

significantly different (P < 0.05, Tukey Test). Each treatment was replicated two times. 

Values in parenthesis represent standard errors.

Subculture Total protein 
concentration

(pg/ml)

Non-
Specific

proteases

(U/ml)

Inductive

Prl

(p mol/ml/min)

Inductive

Pr2

(|i mol/ml/min)

Exo - Chitinase 

NAG’ase 
(|i mol/ml/hr

Spore bound 
Prl

mol/ml/min)

1st 20b 1.23b 2.63a 0.52a 0.15b 1.30a
(0.03) (0.01) (0.08) (0.02) (0.01) (0.04)

3rd 77.5a 1.33ab 2.88ab 0.59a 0.20" 1.25a
(0.01) (0.26) (0.00) (0.03) (0.01) (0.14)

5th 10b 1.39a 2.64bc 0.66a © H—
» U) cr 0.44°

(0.00) (0.01) (0.00) (0.05) (0.00) (0.00)

*jth 5b 1.41a 2AT 0.56a 0.13b 0.48°
(0.00) (0.02) (0.08) (0.04) (0.00) (0.08)

9th 20b 1.32ab 2.90a 0.52a 0.15b 0.64b
(0.01) (0.03) (0.02) (0.03) (0.00) (0.12)
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Table 2.5 The total protein, non-specific proteases, Prl, Pr2 and NAG’ase activities of 

different subcultures of V275 in the inductive media in comparison with their spore 

bound Prl activity. All the means within a column followed by the same letter are not 

significantly different (P < 0.05, Tukey Test). Each treatment was replicated two times. 

Values in parenthesis represent standard errors.

Subculture Total protein 
concentration

(pg/ml)

Non-
Specific

proteases

(U/ml)

Inductive

Prl

(p mol/ml/min)

Inductive

Pr2

(p mol/ml/min)

Exo - Chitinase 

NAG’se 

(p mol/ml/hr)

Spore bound 
Prl

( P

mol/ml/min)

1st 85.0a 1.20a 3.05a 0.77a 0.28a 1.53a
(0.03) (0.03) (0.01) (0.09) (0.00) (0.11)

^ r d 72.5a 1.23a 2.86ab 0.58ab 0.16^ o ^ s 1*

(0.00) (0.01) (0.04) (0.00) (0.00) (0.04)

5th 65.0a 1.28a 2.89a 0.61ab o . i s 1* 0.74c
(0.02) (0.06) (0.04) (0.04) (0.00) (0.12)

y th 82.5a 1.14a 2.82ab 0.55b 0.15cd 0.57°
(0.01) (0.07) (0.03) (0.01) (0.00) (0.03)

Qth 42.5a 1.34a 2.52b 0.55b 0.12d 0.56c
(0.01) (0.05) (0.17) (0.00) (0.00) (0.05)
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2.3.9 Effect of repeated subculturing on the semi quantitative enzyme profile (API- 

ZYM test) by the conidia from different subcultures

For V245 no major differences among the conidial enzyme activities were observed 

(Table 2.6). The API-ZYM test showed highest acid phosphatase, naphthol-As-Bi- 

phosphohydrolase and leucine arylamidase activities. Intermediate enzyme activities 

were observed for esterase C4, esterase lipase C8 and p-glucosidase. Low enzyme 

activities were observed for alkaline phosphatase and N-acetyl-p glucosaminidase 

activities (Table 2.6). No enzyme activities were observed for rest of the evaluated 

enzymes (Table 2.6).

In contrast to V245, subcultures of V275 had higher enzyme activities for acid 

phosphatase, naphthol-As-Bi-phosphohydrolase, leucine arylamidase, valine 
arylamidase, P-glucosidase and a- mannosidase (Table 2.7). However, no N- acetyl-P 

glucosaminidase activity was observed for any of the subculture of V275 (Table 2.7). 

Two of its subcultures showed low a-chymotrypsin and a- galactosidase activity but no 

activity was observed in remaining treatments (Table 2.7). For remaining enzymes no 

major differences were observed among the treatments of both isolates (Table 2.7).
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Table 2.6 Semi quantitative enzyme profile (API-ZYM test) of M. anisopliae V245

conidia from different subcultures. Each treatment was replicated two times.

Enzymes Subcultures
1st 3rd 5th fjth t̂ta

Alkaline phosphatase 1 0.5 1 l 0
Esterase (C 4) 3 3 3 3 3
Esterase Lipase (C 8) 3 3 3 3 3
Lipase (C 14) 0 0 0 0 0
Leucine arylamidase 4 4 4 5 4
Valine arylamidase 2 2 1 2 2
Cystine arylamidase 0 0 0 0 0
Trypsin 0 0 0 0 0
a-chymotrypsin 0 0 0 0 0
Acid phosphatase 5 5 5 5 5
Naphthol -AS-BI- phosphohydrolase 4 3 4 4 4
a- galactosidase 0 0 0 0 0
(3 -  galactosidase 0 0 0 0 0
p -  glucuronidase 0 0 0 0 0
a- glucosidase 0 0 0 0 0
p -  glucosidase 4 3 4 3 3
N- acetyl -  P glucosaminidase 1 1 1 1 1
a- mannosidase 0 0 1 0 0
a- fucosidase 0 0 0 0 0
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Table 2.7 Semi quantitative enzyme profile (API-ZYM test) of M. anisopliae V275

conidia from different subcultures. Each treatment was replicated two times.

Enzymes Subcultures
1st 3rd 5th yth <jth

Alkaline phosphatase 1 3 3 3 3
Esterase (C 4) 3 3 3 3 3
Esterase Lipase (C 8) 3 4 4 4 4
Lipase (C 14) 0 0 0 0 0
Leucine arylamidase 5 5 5 5 5
Valine arylamidase 2 2.5 2 2 2
Cystine arylamidase 0 0 0 0 0
Trypsin 0 0 0 0 0
a-chymotrypsin 0 1 0 1 0
Acid phosphatase 5 5 5 5 5
Naphthol -AS-BI- phosphohydrolase 4 3 4 4 4
a- galactosidase 0 1 0 1 0
3 -  galactosidase 0 0 0 0 0
3 -  glucuronidase 0 0 0 0 0
a- glucosidase 0 0 0 0 0
3 -  glucosidase 4 4 4 3 4
N- acetyl -  3 glucosaminidase 0 0 0 0 0
a- mannosidase 0 3 2 3 3
a- fucosidase 0 0 0 0 0

46



2.3.10 Destruxin production by different subcultures

Destruxin production also varied significantly (P < 0.05, Tukey Test) in different 

subcultures. Generally, the higher total crude extract was observed in 1st to 5th
tlisubcultures of V245. Lowest crude extracts were observed in the 7 subculture, which 

was just 104.8 mg/1 in comparison to the highest level of 262.65 mg/1, observed in the 

3rd subculture. The total crude extract production in the 9th subculture was higher than 

the 7th subculture but was significantly (P < 0.05, Tukey Test) less than other 

subcultures. The HPLC analysis indicated least dtx A and E in 7th subcultures of V245,
th  t l iwhich varied non-significantly with 5 and 9 subcultures. The rest of the subcultures 

varied non-significantly for dtx A and E production. No significant difference was 

observed for dtx B in all the subcultures of V245 (Table 2.8).

The crude extract was significantly (P < 0.05, Tukey Test) higher in 1st and 3rd 

subcultures of V275 than its other subcultures. The highest crude extract was observed 

in the 1st subculture, which yielded 150.8 mg/1 while the 9th subculture had the lowest 

with 117.40 mg/1. The crude toxin production was relatively lower in the subcultures of 

V275 compared to those of V245. The HPLC analysis revealed significantly higher 

quantities of dtx A and E in the crude extract of 1st and 3rd subcultures of V275 than its 
other subcultures. Dtx B production was erratic among subcultures of V275 (Table 2.9).

The ratio of dtx A, B, and E also differed between different treatments of both isolates. 

The dtx E was relatively more expressed in all subcultures of V245 with the exception of 

the 7th subculture, where dtx A was slightly higher than E. In the case of V275 

subcultures, the dtx E production was higher in the 1st, and 3rd subculture. In rest of the 

subcultures, dtx A was produced higher than B and E. Dtx B was produced in the lowest 

quantities in all the subcultures of both strains.
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Table 2.8 Crude extract and destruxins profiles of different subcultures of V245. Each

treatment was replicated two times. Values in parenthesis represent standard errors.

Subculture Crude extract Dtx A DtxB DtxE Ratio of
mg/1 of 
medium

mg/1 of 
medium

mg/1 of 
medium

mg/1 of 
medium

A:B:E

1st 232.4a 13.08“ 2.09“ 16.42“ 6.22:1:7.8
(33.6) (1.56) (0.25) (3.43)

3rd 262.65“ 13.70“ 2.08“ 18.23“ 6.60:1:8.76
(36.0) (2.69) (0.45) (4.11)

5th 220.2“ 11.18“b 1.69“ 14.69“b 6.75:1: 8.85
(25.0) (0.03) (0.08) (0.04)

yth 100.8b 3.52b 1.46“ 2.77b 2.20:1: 1.91
(0.00) (0.00) (0.00) (0 .00)

pth 156.8“b 8.53“b 1.47“ 12.14“b 5.92: 1: 8.40
(2.4) (0.43) (0.05) (0 .20)
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Table 2.9 Crude extract and destruxins profiles of different subcultures of V275. Each

treatment was replicated two times. Values in parenthesis represent standard errors.

Subculture Crude extract
mg/1 of 
medium

Dtx A
mg/1 of 
medium

DtxB
mg/1 of 
medium

DtxE
mg/1 of 
medium

Ratio of 
A:B:E

1st 150.80a 25.15s 7.76a 30.73s 3.23:1:3.96
(4.0) (0.08) (0 .02) (0.08)

3rd 149.0a 22.58a 6.77ab 27.54a 3.33:1:3.80
(3.0) (0.51) (0.06) (0.58)

5th 120.20b 14.21b 4.37c 10.68b 3.25:1:2.44
(1.40) (1.38) (0.49) (1.15)

*ytb 123.0b 16.85b 5.29bc 13.02b 3.18:1:2.46
(3.0) (0.81) (0.24) (0.78)

pth 117.40b 15.54b 5.73bc 13.85b 2.71:1:2.41
(1.40) (0.91) (0.51) (1.10)

2.4 Discussion

The present study provides for the first time an insight of attenuation in M. anisopliae. 

Several important pathogenicity determinants appeared to be affected during successive 

in vitro subculturing. Virulence fluctuated between different subcultures but the overall 

trend was a decline in virulence upon successive subculturing.

Although no major differences in vegetative growth was observed after repeated 

subculturing, decline in conidia production suggested a shift towards sparse mycelial
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growth with partial or no sporulation with the increasing number of subcultures. As 

sporulation is triggered by the exhaustion of nutrients (Li and Holdom, 1995), repeated 

subculturing on nutrient rich conditions might act as a trigger to grow vegetatively, 

thereby, causing a reduction in total conidial yield. Several other reports also suggested 

morphological changes upon repeated subculturing of Verticellium lecanii and 

Paecilomyces Jumosoroseus (Hall, 1980; Vandenberg and Cantone, 2004).

Although erratic differences in the conidial CN ratios were observed, ratios were 

considerably high in all the treatments. Subsequent studies (see Chapter 3) show that 

virulent conidia consistently have a CN ratio below 5.2:1. These high conidial CN ratios 

observed in different subcultures suggest a maximum threshold level of around 7:1 

beyond which no increase in conidial CN ratios was observed. However, further studies 

are required to prove this hypothesis.

The decline in total adhesion and adhesive forces i.e. surface charge and relative 

hydrophobicity indicates modifications at the conidial surface. Significantly higher 

adhesion by conidia with significantly higher hydrophobicity and electrostatic charge 

explains the role of these two forces in adhesion. Hydrophobins induction in M 

anisopliae is regulated by starvation stress (St. Leger et al., 1992), which suggests that 

by repeated growth on nutrient rich media, the gene encoding hydrophobins may be 

down regulated or switched off. Our studies indicate that by repeatedly growing under 

nutrient rich conditions M. anisopliae conidia may undergo physiological modifications 

leading to decline in hydrophobins expression and deposition at the conidia surface. 

Another possible mechanism in the decline of adhesion and hydrophobicity could be by 

alteration in the surface carbohydrates of conidia. Changes in the surface carbohydrates 

of M. anisopliae conidia have been shown to influence adhesion and hydrophobicity 
(Jeffs et al. 1999; Ibrahim et al. 2002).
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The hydrophobicity of conidia of other fungi has also been shown to vary due to growth 

media, cell starvation and growth phases (Doyle 2000 and references therein). 

According to Wessels (1997), hydrophobins are deposited on the walls of aerial 

structures like conidia. The nature and number of hydrophobins deposited at the surface 

of conidia could therefore, depend on the nutritional composition and availability during 

conidia formation.

Exactly how subculturing could influence the surface charge remains unclear, however, 

it could be suggested that the type of molecules deposited at the conidia surface may 

vary in their surface charge and therefore influence the overall surface charge of the 

conidia. Repeated growth on the same nutritients may limit the number and types of 

molecules deposited on the surface, which could also result in reduction in electrostatic 

charge.

Speed of germination appeared to be less affected by repeated subculturing as only 

conidia produced after the 9th subculture germinated slowly. Differences in the 

germination speed of the two strains suggest the differential ability of the strains to 

germinate.

Many studies have shown a direct relationship between enzyme production and 

virulence (Gupta et al., 1994). Our studies indicated that repeated subculturing on 

nutrient rich media influences the ability of M. anisopliae to produce these enzymes. 

This reduction in cuticle enzyme production explains another possible mechanism by 

which repeated subculturing could cause an overall reduction in virulence. Reduced 

virulence was observed in protease deficient mutants of Beauveria bassiana (Bidochka 

and Khachatourians, 1990) and M. anisopliae (Wang, et al., 2002) but here we report 

reduction in enzyme production in the same culture but in its attenuated state. 

Repression of Prl by simple sugars and amino acids (St. Leger et. al., 1988, 1991;
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Paterson et al, 1994) explains the decline in its activity during in vitro subculturing on 

nutrient rich media.

Despite its role in digesting cuticle at very early stages of infection, spore bound Prl 

may also influence over all adhesion by influencing active phase of adhesion. The 

presence of spore bound Prl enables the attached conidia to digest the cuticle and get 

nutrients for further growth and ultimately influencing the virulence (St. Leger et ah, 
1991). In certain cases, higher levels of spore bound Prl appeared to compensate for low 

passive adhesion e.g. conidia from 3rd subculture of V245 had low passive adhesion but 

higher spore bound Prl and virulence. Decline in the spore bound Prl therefore, may 

influence secondary adhesion and over all virulence as observed in this study. Our 

studies also clearly showed that with each subculture, the spore bound Prl levels 

declines and it showed a direct relationship with decrease in virulence

Loss or reduction in spore formation in fungi is often linked with decline in secondary 

metabolite production (Adams and Hu 1998; Gao and Nuss, 1996; Kale et al, 1992). 
The simultaneous reduction in spore yield and destruxin production explains another 

possible mechanism of attenuation in M. anisopliae.

The present study is unique as it examines the effects of attenuation for the first time by 

using same genotype (strain) at differential levels of virulence. The comparative decline 

in virulence and some of virulence determinants e.g. spore adhesion, spore bound Prl, 

and destruxins confirm their role as virulence determinants. The erratic changes in 

virulence and some of the pathogenicity determinants further suggest that these 

attributes fluctuate between different subcultures but the net result is a decline in 

virulence. The interesting pattern of gradual shift from pathogenic mode to saprophytic 

mode (i.e. less expression of pathogenicity determinants) further suggests that the 

environment and in particular nutrition causes adaptive modifications in M. anisopliae.
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Chapter 3: Influence of nutrition on the growth and virulence 

ofM  anisopliae

3.1 Introduction

Conidia constitute the infective unit of insect-pathogenic fungi like M. anisopliae (Butt, 

2002). Inoculum produced on naturally infected arthropods is usually highly infective to 

susceptible hosts whereas that produced on artificial media can lose virulence (Butt, 

2002). For M. anisopliae, and other fungal biocontrol agents (BCAs), to be 

commercially viable, mass production has to be done on artificial substrates. This 

requires an understanding of the relationship between nutrition and virulence, which 

currently remains obscure. Nutritional studies to date reveal tenuous links between 

virulence and spore endogenous reserves (Hallsworth and Magan, 1994, 1995) and 
surface carbohydrates (Ibrahim et al., 2002). Specific conidial traits have been 

identified which are considered to be good indicators of virulence including spore size, 

adhesion, and germination speed (Altre et al., 1999; Jackson et al., 1985; Chandler et al., 

1993; Lane et al., 1991). However, these traits are peculiar to some species or strains of 
fungi and, consequently, have limited value for quality control (i.e. to ensure the 

inoculum is virulent) of insect pathogenic fungi in general. In contrast, all 

entomogenous fungi are dependent on the production of CDEs (lipases, chitinases, 

proteases) to help penetrate the host cuticle (Butt, 2002). One much studied protease, 

Prl, is an important virulence determinant which is induced by insect cuticle, de

repressed under starvation conditions and repressed in the presence of excess nutrients 

(Butt et al, 1998; Wang et al., 2002). Fungal pathogenicity is not determined by one 

single factor but is dependent on a coordinated interplay between many, disparate 

pathogenicity determinants. This study provides the first detailed analysis of the 

relationship between nutrition and virulence of conidia produced in vitro and in vivo. 

Most studies usually focus on inoculum produced on artificial media. Our study shows 

that nutrition influences the carbon and nitrogen composition of conidia, germination
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rate and levels of spore bound Prl and that these parameters can to some extent predict 

the virulence of the inoculum. The significance of these findings as regards the 

production and quality control of inoculum in commercial systems is discussed.

3.2 Material and Methods

3.2.1 Fungi

Cultures are same as described in section 2.2.1; however the following culture media 

were evaluated to determine their effect on M. anisopliae growth and virulence.

3.2.2 Culture media

Culture media representing disparate carbon and nitrogen sources and ratios were used 

in this study. They included: 1. Potato Dextrose Agar (PDA), 2. High CN (75:1) medium 

consisting of 9.1% glucose and 1% peptone, 3. Low CN (10:1) medium consisting of 

0.6% glucose and 1% peptone, 4. Intermediate CN (35:1) medium consisting of 4% 

glucose and 1% peptone (nutrition and CN equivalent to Sabouraud dextrose agar 

media), 5. Nutrient poor media consisting of either 2% peptone (2P) or 1% yeast extract 

(1Y) and 6. “Osmotic stress” medium consisting of 8% glucose, 2% peptone, 5.5% KC1. 

All the media were prepared using 2% agar except the osmotic stress medium, which 

required 5.5% agar to solidify.

All media were sterilized at 121°C at 15 psi for 15 minutes, and then poured (15ml) into 

each 9cm diameter Petri dishes. Glucose, yeast extract and KC1 were obtained from 

Sigma, while mycological peptone, agar and PDA were obtained from Difco.

3.2.3 Monitoring growth and sporulation

Growth and sporulation of M. anisopliae on different media was recorded as described 

in section 2 .2.2
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3.2.4 CN ratio of conidia produced on different media

The CN elemental composition of the conidia produced on different media were 

determined as described in section 2.2.4

3.2.5 Germination of conidia produced on different media

Conidial germination was determined as described in section 2.2.8, however, conidia of 

V275 germinated relatively faster on certain media therefore its germination was 

recorded 8 hours post inoculation.

3.2.6 Determining virulence of inoculum produced on different culture media

The inoculum from the above treatments was assayed against 4-5* instar larvae of 

Tenebrio molitor as described in section 2.2.3.

3.2.7 CDEs by conidia produced on different media

The production of CDEs was investigated as described in section 2.2.9. Conidia 

produced on different media were used as inoculum.

3.2.8 Protein assays

Protein concentrations were determined by the method of Bradford (1976) using bovine 

serum albumin as a standard.

3.2.9 Enzyme assays.

All enzyme assays including API-ZYM test were done as described in section 2.2.11, 

however, conidia produced on different media was used as inoculum.
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3.2.10 Effect of host passage on virulence and its determinants

In order to confirm above findings and to prove that host passage or growth on nutrient 

poor media up regulate the virulence, conidia produced either on intermediate CN 

(representing low virulence) and those produced on 1% yeast extract (representing high 

virulence) were passaged through 4-5* instar larvae of G. mellonela and T. molitor. All 

the dead insects were transferred to moist chambers to allow fungal emergence and 

sporulation. Conidia was harvested from cadavers, washed with distilled water to 

remove any traces of insect and used for virulence, conidia CN analysis, conidial 

germination, spore bound Prl determination (as described above) and gene expression 

studies as described below.

3.2.11 Quantitative RT-PCR analysis of CDEs in conidia from selected media.

Insect passaged conidia as well as those from intermediate CN (35:1) and 1% yeast 

extract media were selected for more detailed analysis of the expression of prlA  and 

three other genes (esterases, trypsin, chymotrypsin) linked to the infection process.

3.2.11.1 RNA extraction

Total RNA was isolated from the conidia using the RNAeasy kit from Qiagen (Valencia, 

CA), according to the manufacturer’s recommendations, which also allowed removal of 

DNA contamination using DNase I (Qiagen). The quantity and quality of RNA was 

assessed on a 1.2 % formaldehyde agarose gel.

3.2.11.2 cDNA synthesis

Total RNA from each sample was used to generate cDNA using Reverse iT ™ 1st strand 

synthesis kit from AB gene (UK) with oligo (dT) primers according to the 

manufacturer’s protocol. Briefly, 1 pg of DNase I treated total RNA was used as 

template, to which 2 pi of oligo (dT), 1 pi of 5mM dNTPs, 4 pi of 5x first strand buffer,
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1 (il of Reverse iT ™ blend and 13 fj.1 of sterile water were added. The reagents RNA, 

oligo (dT) and water was mixed first and heated to 70 °C for 5 minutes and chilled on ice 

to remove secondary structure. The samples were then incubated at 47 °C for 30 minutes 

followed by incubation at 75 °C for 10 minutes.

3.2.11.3 Real time PCR

The primers used for the target and house keeping genes (5.8 S rRNA genes) were 

designed using the program Primer3

(http://www.broad.mit.edu/cgibin/primer/primer3_www.cgi) and obtained from MWG- 

Biotech (Germany). The primer sequence and annealing temperatures for these genes 

were as follows:

Gene Primer Sequence Annealing
temperature

Protease (prlA)
Prl A U CAC TCT TCT CCC AGC CGT TC

56 °C
Prl A L TCG GCT TTG GAG GTA AGA GC

Chymotrypsin
(chyl)

ChyU AGA TCC TCC TTG GCC TTT TC
59 °C

ChyL GTT CGC TGG TGC TTG GAT TG

Esterase (ste 1)
Estl U TCT ACC ACG TTC TTC TCG CC

60 °C
Estl L GGC CCA GGT CCA AGG CTA CT

Trypsin (try 1)
Tryp U GCT GAC GAT GAA GGG GAA T

56 °C
TrypL GCT CTT TAT CTG CCC CTT TG

SSU (rDNA) SRT1 CGA AAC TGC GAA TGG CTC A
-SRT2 CCG AAG TCG GGA TTT TTA GC

Real-time quantitative PCR (RT-PCR) amplification was carried out in an I cycler 

(Biorad). The reaction mixture (20 pi) consisted of 2X PCR buffer containing SYBER- 

Green; lOOmM KC1, 40mM Tris-HCl, pH 8.4, 0.4 mM of each dNTP (dATP, dCTP, 

dGTP, and dTTP), iTaq DNA polymerase, 50units/ml, 6 mM MgCl2, SYBER Green 1,
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20 nM fluorescein, stabilizers, 50 ng cDNA template and lOOnM of the appropriate 

primer. The PCR conditions were 95°C for 4 minutes; followed by 42 cycles of 95°C for 

20 sec. and annealing temperature according to the target gene (see above) for 30 sec., 

one cycle at 95 °C and annealing temperature each lasting for 30 sec., followed by 40 

cycles of annealing temperature with each cycle lasting for 10 sec. The fluorescent 

spectra were recorded during the elongation phase of each PCR cycle. Standard curves 

were also generated for house keeping and target genes in a serial dilution using V275 

cDNA.

3.2.12 Statistical analysis

The whole study was repeated twice with each treatment replicated three times unless 

stated otherwise. Data was subjected to one-way ANOVA followed by the Tukey test. 

Wherever required, linear regression for the calculation of growth rate/day, LT50, and 

enzyme activities was also done. For all statistical analysis SPSS 11 software was used.
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3.3 Results

3.3.1 Growth of M. anisopliae on different media

Vegetative growth of M. anisopliae varied significantly (P < 0.05) on the different 

media ranging from 1.44 to 6.35 mm/day for V245 and 1.75 to 6.95 mm/day for V275 

respectively (Tables 3.1, 3.2). For both isolates, radial growth was highest on media 

with C:N ratio of 35 and 75:1 and was least on the high osmolarity medium (Tables 3.1, 

3.2). Intermediate growth was observed on the remaining media for both isolates. In 

most instances, V275 grew marginally faster and produced more conidia than V245.

Conidial production of M. anisopliae varied significantly (P < 0.05) on the different 

media (Tables 3.1, 3.2). Highest yields were obtained on CN 35:1 for both V245 (1.13 

X 1011 conidia/1) and V275 (3.56 X 1011 conidia/1) and the least on OSM. Intermediate 

conidial production (0.38 -  0.88 x 1011 conidia/1) was observed on the rest of the media, 
which varied non-significantly between the treatments (Tables 3.1, 3.2).

59



1 %  Y c a x t  E x t r a c t

D ouble SDA * KCI

\1. anisopliae \  245

Fig. 3.1. Phenotypic variation and growth of M. anisopliae V245 on different growth 

media. Note the conidial colour varies from typical greyish green conidia on CN 35:1 

(SDA) medium to light green colour conidia observed on KCI amended (OSM) medium.
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1 %  Y e a s t  E x t r a c t

D o u b le  S D A  -  K C I

M. anisopliae V 275

Fig. 3.2. Phenotypic variation and growth of M. anisopliae V275 on different growth 

media. Note the conidial colour varies from typical greyish green conidia on CN 35:1 

(SDA) medium to light green colour conidia observed on KCI amended (OSM) medium. 

Also note that V275 growth rate is higher on all media than that o f V245.

3.3.2 Virulence of inoculum produced on different media

Nutrition influenced conidial virulence for T. molitor larvae (Tables 3.1, 3.2). The most 

virulent conidia of V245 and V275 were produced on the OSM and/or 1% yeast extract 

media whilst the least virulent conidia were produced on PDA and/or C:N 35:1 (Tables 

3.1, 3.2). Conidia of V275 were marginally more virulent than those o f V245 when 

produced on the same medium (Tables 3.1, 3.2).
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3.3.3 Influence of nutrition on the conidial CN ratios

The CN ratio of the conidia produced on different media varied significantly (P < 0.05) 

between treatments. V245 and V275 conidia had similar CN profiles. For example, the 

CN ratios were significantly higher in conidia produced on C:N 35:1, PDA, C:N 75:1 

and OSM but were comparatively lower in 1% yeast extract, 2% peptone and C:N 10:1 

(Tables 3.1, 3.2). The highest CN ratios were in PDA and C:N 75:1 and the least in 1% 

yeast extract.
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Table 3.1 Vegetative growth, conidial yield, CN composition and virulence of M. 

anisopliae V245 conidia produced on different media. All the means within a column 

followed by the same letter are not significantly different (P < 0.05, Tukey Test). Each 

treatment was replicated three times except for CN analysis which was replicated twice. 

Values in parenthesis represent standard errors.

Media Radial growth 
(mm/day)

Conidial yield/1 
(X 1011)

Carbon to 
Nitrogen ratio 

of conidia

Virulence LT50

(Days post 
inoculation)

PDA 4.19b 0.50b 7.12a 3.9b
(0 .12) (0 .11) (0.00) (0.03)

1% Yeast 4.51b 1.07a 4.70b 3.72°
extract (0.08) (0.02) (0.13) (0.03)

2% Peptone 4.04b 0.63b 4.82b 3.70°
(0.09) (0.03) (0.07) (0 .00)

CN 10:1 4.82b 0.56b 4.87b 3.63cd
(0.36) (0.00) (0 .01) (0.03)

CN 35: 1 6.37a 1.13a 6.35a 4.12a
(0.09) (0.00) (0.47) (0 .02)

CN 75:1 5.55b 0.38b 7.06a 3.66cd
(0 .20) (0.01) (0.07) (0.04)

KCI 1.44° 0 .02° 6.49a 3.5 ld
(0.13) (0.00) (0.1) (0.03)
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Table 3.2 Vegetative growth, conidial yield, CN composition and virulence of M. 

anisopliae V275 conidia produced on different media. All the means within a column 

followed by the same letter are not significantly different (P < 0.05, Tukey Test). Each 

treatment was replicated three times except for CN analysis which was replicated twice. 

Values in parenthesis represent standard errors.

Media Radial
growth

(mm/day)

Conidial
yield/1

(X 1011)

Carbon to 
Nitrogen ratio 

of conidia

Virulence LT50

(Days post 
inoculation)

PDA 4.17° 1.05b 7.14e 3.93a
(0.06) (0.15) (0.06) (0.00)

1% Yeast extract 4.59c o.ss1* 4.05a 3.46d
(0.21) (0 .00) (0.00) (0.02)

2% Peptone 3.60° 0.87bc 4.39b 3.58^
(0 .11) (0 .02) (0.06) (0 .02)

CN 10:1 4.98b 0.25cd 5.1 lc 3.66bc
(0.13) (0 .00) (0.06) (0 .02)

CN 35: 1 6.95a 3.56a 6.84d 3.86ab
(0.09) (0.33) (0 .02) (0.09)

CN 75:1 6.36a 0.70^ 7.39f 3.89a
(0.26) (0.04) (0.04) (0.03)

KCI 1.75d 0.06d 6.67d 3.49cd
(0.28) (0.01) (0.01) (0.02)
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3.3.4 Influence of nutrition on the speed of germination of M  anisopliae conidia

Germination speed of conidia produced on different media varied significantly (P < 

0.05) between treatments and between the two isolates (Table 3.3). At 8 hours post 

inoculation significant germination was observed for V275 but ranged between 2-10% 

for V245. The percentage germination increased for both isolates at 10 hours post

inoculation but germlings were more developed in some media than others. For 

example, over 80% of V275 conidia had germinated irrespective of the substrate but the 

germ tube of germlings produced on 1% yeast extract or high C:N were over 4-5 times 

conidial length whereas germlings on CN 35:1 media had germ tubes equal to or less 

than the conidial length. The germination rate for both isolates was lowest on PDA and 

C:N 35:1 (Table 3.32). The highest germination rates for V275 (>90%) were noted for 

conidia produced on 1% yeast extract and C:N 10:1, while those of V245 (89%) were 

noted for conidia produced on OSM (Table 3.3).
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Table 3.3 Influence of nutrition on the germination speed of M. anisopliae conidia. All 

the means within a column followed by the same letter are not significantly different (P 

< 0.05, Tukey Test). Each treatment was replicated three times. Values in parenthesis 

represent standard errors.

Media Germination (%)

V245 (10 hrspost 
inoculation)

V275 (08 hrs post 
inoculation)

PDA 54.33c 32.66°
(4.25) (2.33)

1% Yeast extract 74.66b 93.0a
(2.40) (1.73)

2% peptone 78.66ab 87.0a
(1.73) (1.73)

CN 10:1 69.0b 93.0a
(0.57) (0.57)

CN 35: 1 47.0C 44.66b
(3.78) (2.96)

CN 75:1 67.0b 84.33a
(1.73) (2.84)

KCI 89.33a 83.66a
(0.88) (2 .02)
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3.3.5 Production of CDEs by the conidia produced on different media

Total protein production varied non-significantly (P < 0.05, Duncan Test) among the 

different treatments in case of V245 samples but it varied significantly (P < 0.05, Tukey 

Test) for those of V275 (Tables 3.4, 3.5). Generally higher protein concentration was 

observed in the samples of V275 as compared to those of V245. In case of V275, 

conidia produced on media with relatively low levels of nutrients e.g. 1% yeast extract, 

medium with CN of 10:1 exhibited higher protein concentration (Table 3.5).

Non-specific protease activity also varied non-significantly (P < 0.05, Duncan Test) in 

the samples of V245 (Table 3.4). In case of V275, generally non-significant differences 

were observed but two treatments CN 10:1 (highest activity i.e. 1.24) and OSM (lowest 

activity i.e. 0.94) varied with each other significantly (P < 0.05, Tukey Test). No 

significant differences were observed in remaining treatments (Table 3.5).

No significant differences were observed for inductive Prl or Pr2 activities among the 

various treatments of either V245 or V275; however, all the treatments of V275 had 

slightly higher Prl and Pr 2 activity than those of V245 (Tables 3.4, 3.5).

Significant differences were observed for inductive NAG’ase activity. NAG’ase activity 

was higher in samples inoculated with V245 conidia produced on PDA, while all other 

treatments of V245 varied non-significantly (Tables 3.4). In case of V275, conidia from 

CN 35:1 media had significantly higher in NAG’ase activity while conidia from OSM 

yielded lowest activity (Table 3.5). Remaining treatments varied non-significantly 

among them selves but varied significantly with these two extremes (Table 3.5).
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3.3.6 Influence of nutrition on the spore bound Prl activity

Spore bound Prl activities varied significantly (P < 0.05) depending upon the medium 

on which conidia were produced (Tables 3.1, 3.2). Highest activities for both isolates 

were observed for conidia produced on 1% yeast extract and C:N 10:1. V275 also 

appeared to have more spore bound Prl when produced on 2% peptone. V275 generally 
produced more Prl than V245 except for conidia produced on the C:N 10:1 and OSM 

(Tables 3.4, 3.5). Non significant (P < 0.05) corelation was observed for both isolates 

between spore bound Prl and virulence. However, correlation analysis was highly 

significant (P < 0.00., Pearson Correlation) for V275 when analysed by excluding high 

osmolarity media.
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Table 3.4 The total protein, non- specific proteases, Prl, Pr2 and NAG’ase activities 

of V245 conidia produced on different media in the inductive media in comparison 

with their spore bound Prl activity. All the means within a column followed by the 

same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated two times. Values in parenthesis represent standard errors. * Duncan test 
used for statistical analysis

Media
Total protein 
concentration

(pg/ml)

Non-
Specific
proteases
(U/ml)

Inductive
Prl

(P
mol/ml/min)

Inductive
Pr2

(P
mol/ml/min)

ExoChitinase
NAG’ase (p 
mol/ml/hr

Spore 
bound Prl

(P
mol/ml/min)

PDA 35.0a*
(0.02)

0.72a
(0.09)

2.74a
(0.02)

0.39ab
(0.06)

0.33a
(0.04)

1.33°
(0.14)

1%
Yeast
extract

35.0a
(0.03) 0.71a

(0.13)
2.90a
(0.01)

0.60a
(0.01)

0.18b 
(0.00)

2.92a
(0.03)

2%
Peptone < 20a 1.03a

(0.04)
2.77a
(0.11)

0.54ab
(0.01)

0.15b
(0.00)

1.49*
(0.05)

CN
10:1

52a
(0.06)

0.82a
(0.07)

2.83a
(0.02)

0.59a
(0.03)

0.16b 
(0.00)

3.27a
(0.05)

CN 35: 42.0a 1.13a 2.78a 0.54ab 0.13b 0.70d
1 (0.01) (0.08) (0.01) (0.05) (0.00) (0.03)

CN
75:1 < 20a 0.84a

(0.14)
2.73a
(0.09)

0.60a
(0.03)

0.13b 
(0.000)

0.81d
(0.02)

KCI < 20a 1.2a

(0.16)
2.76a
(0.00)

0.48ab
(0.01)

0.18b 
(0.00)

1.79b
(0.09)
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Table 3.5 The total protein, non- specific proteases, Prl, Pr2 and NAG’ase activities 

of V275 conidia produced on different media in the inductive media in comparison 

with their spore bound Prl activity. All the means within a column followed by the 

same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated two times. Values in parenthesis represent standard errors. * Duncan test 

used for statistical analysis

Media
Total protein 
concentration

(pg/ml)

Non-
Specific

proteases

(U/ml)

Inductive

Prl

(n
mol/ml/min)

Inductive

Pr2

(P
mol/ml/min)

ExoChitinase

NAG’ase (p 
mol/ml/hr

Spore 
bound Prl

(n
mol/ml/min)

PDA 43a* 1.08ab 2.87a 0.59a 0.20^

Oo

(0.01) (0.16) (0.03) (0.02) (0.0) (0.04)

1%
Yeast
extract

120bc 1.22ab 2.92a 0.59a 0.24ab 3.24a
(0.02) ((0.04) (0.02) (0.01) (0.01) (0.02)

2% 60ab 1.12ab 2.91a 0.673 0.211x5 3.15a
Peptone (0.03) (0.01) (0.01) (0.02) (0.00) (0.03)

CN 140° 1.24b 2.89a 0.68a 0.24ab 2.5 l b
10:1 (0.01) (0.07) (0.00) (0.05) (0.01) (0.03)

SDA 85^
(0.03)

1.20ab

(0.05)

2.90a

(0.01)

0.62a

(0.03)

0.28a

(0.02)

1.59°

(0.02)

CN 45a I.IX* 2.79a 0.57a 0.22b 1.51°
75:1 (0.01) ((0.03) (0.01) (0.04) (0.01) (0.12)

KCI 50a 0.94a 2.90a 0.56a 0.16° 1.17d
(0.01) (0.11) (0.04) (0.01) (0.00) (0.03)

3.3.7 Effect of culture media on the semi quantitative enzyme profile of the 

conidia

API-ZYM studies showed that enzyme activities varied between treatments and 

isolates. Both isolates varied in their enzyme profiles, however, none of the V245 

and V275 treatment showed enzyme activity for cystine arylamidase, trypsin, a -  

chymotrypsin, a- fucosidase. Weak p-galactosidase activity was observed in only one 

treatment i.e. V245 conidia produced on 1% yeast extract media. Similarly, alkaline
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phosphatase activity was observed in conidia of V275 if produced on 1% yeast 

extract, 2% peptone and CN 10:1 media (Table 3.7). Conidia of both strains 

secreted certain enzymes irrespective of the growing medium. These enzymes 

included: C4 and C8 esterase, leucine and valine arylamidase, acid phosphatase, 

Naphthol-AS- BI - phosphohydrolase and P-glucosidase (Table 3.6). The C l4 lipase 

was produced only by V245 conidia irrespective of the growing media on which they 

were produced (Table 3.6).

Table 3.6 Semi quantitative enzyme profiles of M. anisopliae V245 conidia produced 

on different media. No enzyme activity is represented by 0, while 5 represents the 

highest enzyme activity. Each treatment was replicated two times.

Enzymes SDA PDA
1%

Yeast
extract

2 %
Peptone

CN
10:1

CN
75:1 KCI

Alkaline phosphatase 0 0 0 0 0 0 0
Esterase (C 4) 2 3 3 3 2 2 2
Esterase Lipase (C 8) 2 3 3 3 2 2 1
Lipase (C 14) 1 1 1 0.5 0 0.5 0.5
Leucine arylamidase 3 5 5 5 3 4 4
Valine arylamidase 2 3 3 1.5 0.5 1 1
Cystine arylamidase 0 0 0 0 0 0 0
Trypsin 0 0 0 0 0 0 0
A-chymotrypsin 0 0 0 0 0 0 0
Acid phosphatase 5 5 5 5 5 5 4
Naphthol -AS-BI- 
phosphohydrolase 3 4 4 3 3 3 4

A- galactosidase 0 1 0.5 0 0.5 0 1
B - galactosidase 0 0 0.5 0 0 0 0
B - glucuronidase 0 0.5 0.5 0 0 0 0
A- glucosidase 0 0.5 0.5 0 0 0 0
B -  glucosidase 4 4 5 4 4 3 3
N- acetyl -  p 
glucosaminidase 2 3 0.5 3 2 4 2

A- mannosidase 0 1 0.5 0 0 0 0
A- fucosidase 0 0 0 0 0 0 0
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Table 3.7 Semi quantitative enzyme profiles of M. anisopliae V275 conidia produced 

on different media. No enzyme activity is represented by 0, while 5 represents the 

highest enzyme activity. Each treatment was replicated twoe times.

Enzymes SDA PDA
1%

Yeast
extract

2%
Peptone

CN
10:1

CN
75:1 KCI

Alkaline phosphatase 0 0 2 3 3 0 0
Esterase (C 4) 3 2 2 1 2 3 2
Esterase Lipase (C 8) 3 2 3 3 3 3 2
Lipase (C 14) 0 0 0 0 0 0 0
Leucine arylamidase 4 3 5 5 5 5 5
Valine arylamidase 1 1 3 3 3 3 3
Cystine arylamidase 0 0 0 0 0 0 0
Trypsin 0 0 0 0 0 0 0
A-chymotrypsin 0 0 0 0 0 0 0
Acid phosphatase 5 5 5 5 5 5 5
Naphthol -AS-BI- 
phosphohydrolase 3 3 3 2 4 3 4

A- galactosidase 0 0 0.5 2 1 0 0.5
B -  galactosidase 0 0 0 0 0 0 0
B - glucuronidase 0 0 0 0 0 0 0
A- glucosidase 0 0 0 0 0 0 0
B -  glucosidase 4 1 4 4 5 4 4
N- acetyl -  (3 
glucosaminidase 2 2 0 0 0 2 4

A- mannosidase 0 0 1 2.5 2 0 0
A- fucosidase 0 0 0 0 0 0 0

3.3.8 Effect of host passage on virulence

Both insect passaged and conidia produced on 1% yeast extract media were 

significantly (P < 0.05, Tukey Test) more virulent than those produced on 

intermediate CN media. M. anisopliae V245 conidia passaged from T. molitor were 

significantly more virulent than its conidia produced on either 1% yeast extract or 

intermediate CN media. In the case of V275, no significant difference between insect 

passaged and conidia produced on 1 % yeast extract media were observed but they 

varied significantly with those produced on intermediate CN media. No significant
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differences in virulence was observed for each strain whether they were passaged 

through Galleria or Tertebrio (Tables 3.8, 3.9)

3.3.9 Effect of host passage on conidial carbon and nitrogen ratio

Conidial CN ratios of all insect passaged conidia were significantly lower than those 

produced on media with intermediate CN (Table 3.8). Conidial CN ratio of conidia 

produced on 1% yeast extract varied non-significantly with insect passged conidia of 

both strains. Insect passaged conidia also varied significantly with all media 

treatments for their total contents, which were only 50-70% to those present in 

conidia produced on artificial media. The carbon content of conidia recovered from 

mycosed insects and artificial media ranged between 250-350 pg/mg of conidia and 

450 - 550 pg/mg of conidia, respectively.

3.3.10 Effect of host passage on conidia germination

Significantly (P < 0.05, Tukey Test) fast conidial germination was observed for the 

conidia produced either on 1% yeast extract media or passaged through insect hosts 

(Table 3.8). For both strains, conidia produced on intermediate CN had a 

significantly slow speed of germination (Tables 3.8, 3.9). M  anisopliae V245 

conidia produced on 1% yeast extract had intermediate speed of germination and 

varied significantly with both fast and slow germinating conidia (Table 3.8).

3.3.11 Effect of host passage on spore bound Prl

Spore bound Prl was significantly (P < 0.05, Tukey Test) higher in insect passaged 

conidia than those produced on artificial media. Conidia of both strains produced on 

1% yeast extract had intermediate spore bound Prl activity. For V245, they varied 

significantly with all insect passaged treatments, however, two of the V275 

treatments varied non-significantly with it (Tables 3.8, 3.9). Least spore bound Prl 

activity was observed in conidia produced on intermediate CN media. Spore bound 

Prl activities varied significantly between the two strains for conidia produced on 

artificial media but non-significantly for insect passaged conidia (Tables 3.8, 3.9).
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Table 3.8 Effect of host passage on the conidial CN, germination, spore bound Prl 

and virulence of M. anisopliae V245. All the means within a column followed by the 

same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated three times except for CN analysis and spore bound Prl which were 

replicated twice. Values in parenthesis represent standard errors.

Source of conidia Conidial CN Germination
(%)

Spore bound 
Prl (n 

mol/ml/min)

Virulence

LT5o
(Days post 

inoculation)

CN 35:1 6.35a 48.66° 1.08e 4.22a

(0.37) (2.02) (0.00) (0.05)

1% yeast extract 4.47bc 80.33b 1.94° 3.65b
(0.03) (2.33) (0.01) (0.03)

CN 35:1 passed through G. 5.12b 91.66a 2.64a 3.56bc
mellonela larvae (0.03) (0.88) (0.03) (0.03)

1% yeast extract passed through 5.08b 93.0“ 2.71a 3.61bc
G. mellonela larvae (0.00) (2.64) (0.03) (0.05)

CN 35:1 passed through T. 4.92b 92.66“ 2.75a 3.44°
molitor larvae (0.02) (2.02) (0.06) (0.02)

1% yeast extract passed through 5.15^ 92.0“ 2.75a 3.42°
T. molitor larvae (0.11) (1.73) (0.01) (0.04)
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Table 3.9 Effect of host passage on the conidial CN, germination, spore bound Prl 

and virulence of M. anisopliae V275. All the means within a column followed by the 

same letter are not significantly different (P < 0.05, Tukey Test). Each treatment was 

replicated three times except for CN analysis and spore bound Prl which were 

replicated twice. Values in parenthesis represent standard errors.

Source of conidia Conidial CN Germination
(%)

Spore bound 
Prl (p 

mol/ml/min)

Virulence

LT50
(Days post 

inoculation)

CN 35:1 6.84a 47.33b 1.67d 3.96a

(0.02) (2.02) (0.09) (0.02)

1% yeast extract 4.05c 93.33a 2.43b 3.47b

(0.00) (2.18) (0.00) (0.02)

CN 35:1 passed through G. 4.66bc 91.0a 2.69“ 3.40b
mellonela larvae (0.02) (2.08) (0.01) (0.03)

1% yeast extract passed through 4.64bc 92.33a 2.59ab 3.43b
G. mellonela larvae (0.01) (0.66) (0.01) (0.04)

CN 35:1 passed through T. 4.47bc 93.33a 2.61“” 3.44b
molitor larvae (0.02) (2.18) (0.03) (0.02)

1% yeast extract passed through 4.47bc 94.0a 2.75a 3.32b
T. molitor larvae (0.03) (2.30) (0.02) (0.02)

3.3.12 RT-PCR analysis of cuticle-degrading enzymes in conidia

Gene expression was significantly (P < 0.05, Tukey Test) higher in insect passaged 

conidia than those produced on artificial media (Fig. 3.1-3.8). Irrespective of strain 

or host, generally all the insect passaged conidia varied non-significantly (P < 0.05, 

Tukey Test) among them. Expression of prl A, try 1 and c hyl was 4-16 fold higher 

in insect passaged conidia than those produced on artificial media. However, ste 1 

expression was only 1-3 fold higher than the conidia produced on artificial media.
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Conidia produced on 1% yeast extract media had significantly (P < 0.05, Tukey 

Test) higher expression of prl A than those produced on intermediate CN media. For 

all other genes, these two treatments varied non-significantly (P < 0.05, Tukey Test) 

with each other (Figs. 3.1-3.8). Melt curve observations of each well for each Real 

time PCR amplification revealed single curve confirming specific amplification of 

the target gene. Gel photographs of the amplified gene products also showed a single 

band for each gene (Appendix 2).
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C:N 35:1 1% yeast C:N 35:1- 1% yeat C:N 35:1- 1% yeast
extract Galleria ex tract- Tenebrio extract-

Galleria Tenebrio

Media for conidia production

Fig 3.3. Relative expression o f p r l  A in un-germinated conidia o f M. anisopliae 

V245. Sources o f conidia include, conidia produced on intermediate CN (35:1), 

conidia produced on 1% yeast extract media (1% yeast extract), conidia initially 

produced on intermediate CN media but passaged through Galleria mellonella larvae 

(CN 35:1 -Galleria), conidia initially produced on 1% yeast extract media but 

passaged through G. mellonella larvae (1% yeast extract-Galleria), conidia initially 

produced on intermediate CN media but passaged through Tenebrio molitor larvae 

(CN 35:\-Tenebrio), conidia initially produced on 1% yeast extract media but 

passaged through T. molitor larvae (1% yeast extract -Tenebrio). Bars labelled with 

same letter differ non-significantly (P < 0.05, Tukey test).
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Fig 3.4. Relative expression o f try 1 in un-germinated conidia o f M. anisopliae V245. 

Sources o f conidia include, conidia produced on intermediate CN (35:1), conidia 

produced on 1% yeast extract media (1% yeast extract), conidia initially produced on 

intermediate CN media but passaged through Galleria mellonella larvae (CN 35:1- 

Galleria), conidia initially produced on 1% yeast extract media but passaged through 

G. mellonella larvae (1% yeast extract-Galleria), conidia initially produced on 

intermediate CN media but passaged through Tenebrio molitor larvae (CN 35:1- 

Tenebrio), conidia initially produced on 1% yeast extract media but passaged 

through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with same letter 

differ non-significantly (P < 0.05, Tukey test).
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Fig 3.5. Relative expression o f chy 1 in un-germinated conidia o f M  anisopliae 

V245. Sources o f  conidia include, conidia produced on intermediate CN (35:1), 

conidia produced on 1% yeast extract media (1% yeast extract), conidia initially 

produced on intermediate CN media but passaged through Galleria mellonella larvae 

(CN 35:1 -Galleria), conidia initially produced on 1% yeast extract media but 

passaged through G. mellonella larvae (1% yeast extract-Galleria), conidia initially 

produced on intermediate CN media but passaged through Tenebrio molitor larvae 

(CN 35:]-Tenebrio), conidia initially produced on 1% yeast extract media but 

passaged through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with 

same letter differ non-significantly (P < 0.05, Tukey test).
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C:N 35:1 1% y e a s t  C:N 35:1 - l% y ea t C:N 35:1- 1% y ea st
extract Galleria extract- T enebrio extract-

Galleria T enebrio

M edia for conidia  production

Fig 3.6. Relative expression o f ste 1 in un-germinated conidia o f M. anisopliae V245. 

Sources o f conidia include, conidia produced on intermediate CN (35:1), conidia 

produced on 1% yeast extract media (1% yeast extract), conidia initially produced on 

intermediate CN media but passaged through Galleria mellonella larvae (CN 35:1- 

Galleria), conidia initially produced on 1% yeast extract media but passaged through 

G. mellonella larvae (1% yeast extract-Galleria), conidia initially produced on 

intermediate CN media but passaged through Tenebrio molitor larvae (CN 35:1- 

Tenebrio), conidia initially produced on 1% yeast extract media but passaged 

through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with same letter 

differ non-significantly (P < 0.05, Tukey test).
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C:N 35:1 1% y e a s t C:N 35:1- 1% y ea t C:N 35:1- 1% y e a s t
extract Galleria ex tract- T enebrio extract-

Galleria Tenebrio

M edia for con id ia  production

Fig 3.7. Relative expression o f p r l  A in un-germinated conidia o f M  anisopliae 

V275. Sources o f  conidia include, conidia produced on intermediate CN (35:1), 

conidia produced on 1% yeast extract media (1% yeast extract), conidia initially 

produced on intermediate CN media but passaged through Galleria mellonella larvae 

(CN 35:1 -Galleria), conidia initially produced on 1% yeast extract media but 

passaged through G. mellonella larvae (1% yeast extract-Galleria), conidia initially 

produced on intermediate CN media but passaged through Tenebrio molitor larvae 

(CN 35:1 -Tenebrio), conidia initially produced on 1% yeast extract media but 

passaged through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with 

same letter differ non-significantly (P < 0.05, Tukey test).
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Fig 3.8. Relative expression o f try 1 in un-germinated conidia o f M. anisopliae V275. 

Sources o f conidia include, conidia produced on intermediate CN (35:1), conidia 

produced on 1% yeast extract media (1% yeast extract), conidia initially produced on 

intermediate CN media but passaged through Galleria mellonella larvae (CN 35:1 - 

Galleria), conidia initially produced on 1% yeast extract media but passaged through 

G. mellonella larvae (1% yeast extract-Galleria), conidia initially produced on 

intermediate CN media but passaged through Tenebrio molitor larvae (CN 35:1- 

Tenebrio), conidia initially produced on 1% yeast extract media but passaged 

through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with same letter 

differ non-significantly (P < 0.05, Tukey test).
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Fig 3.9. Relative expression o f chy 1 in un-germinated conidia o f  M  anisopliae 

V275. Sources o f  conidia include, conidia produced on intermediate CN (35:1), 

conidia produced on 1% yeast extract media (1% yeast extract), conidia initially 

produced on intermediate CN media but passaged through Galleria mellonella larvae 

(CN 35:\-Galleria), conidia initially produced on 1% yeast extract media but 

passaged through G. mellonella larvae (1% yeast extract-Galleria), conidia initially 

produced on intermediate CN media but passaged through Tenebrio molitor larvae 

(CN 35:1 -Tenebrio), conidia initially produced on 1% yeast extract media but 

passaged through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with 

same letter differ non-significantly (P < 0.05, Tukey test).
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Fig 3.10. Relative expression o f ste 1 in un-germinated conidia o f M. anisopliae 

V275. Sources o f conidia include, conidia produced on intermediate CN (35:1), 

conidia produced on 1% yeast extract media (1% yeast extract), conidia initially 

produced on intermediate CN media but passaged through Galleria mellonella larvae 

(CN 35:1 -Galleria), conidia initially produced on 1% yeast extract media but 

passaged through G. mellonella larvae (1% yeast extract-Galleria), conidia initially 

produced on intermediate CN media but passaged through Tenebrio molitor larvae 

(CN 35:\-Tenebrio), conidia initially produced on 1% yeast extract media but 

passaged through T. molitor larvae (% yeast extract -Tenebrio). Bars labelled with 

same letter differ non-significantly (P < 0.05, Tukey test).
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3.4 Discussion

Conidial yield of M. anisopliae is dependent upon the fungal strain and nutrition and 

does not appear to be linked with radial growth. Earlier studies also reported that 

optimum conidia production for Beauveria bassiana and M. anisopliae was 

dependent upon the isolate and the medium type (Kamp and Bidochka 2002). 

Conidial yields of V275 and V245 were optimal in the medium with a CN ratio of 

35:1 (similar to SDA) whereas studies on other isolates reported highest yields in 

PDA (Kamp and Bidochka 2002). Optimal spore yield of the mycoherbicide, 

Colletotrichum was also achieved in media with a CN ratio of 30:1 and not at higher 

or lower CN ratios (Jackson and Schisler, 1992). In contrast, spore production of M. 

anisopliae, B. bassiana and Paecilomyces fumosoroseus was highest in a broth 

medium with CN ratio of 10:1 (Vega et al., 2003).

Nutrition impacted not only on spore production but also spore quality. Media with a 

CN ratio of 35:1 and PDA resulted in poor germination and virulence for both V245 

and V275 but exactly why germination should be better at CN ratios higher and 

lower than 35:1 is unclear. Conidia of C. truncation also germinated more rapidly 

and were more virulent if produced in CN 10:1 media (Jackson and Schisler 1992). 

The rapid germination was linked to the relatively high protein content of this 

inoculum (Jackson and Schisler 1992). In our study, we did not discriminate between 

the different endogenous reserves but noted that virulent conidia of M. anisopliae 

had relatively low CN ratios and high germination rates. It is possible that the high 

nitrogen levels in M. anisopliae correspond to storage and structural (e.g. 

cytoskeletal, membrane) proteins as well as enzymes that facilitate rapid 

germination. Conidia produced in OSM were an exception; their rapid germination 

may be due to other reasons. For example, M. anisopliae conidia produced under 

osmotic stress have been observed to accumulate higher amount of polyols and 

consequently germinate faster (Hallsworth and Magan 1994; 1995).

The most aggressive inocula of M. anisopliae V245 and V275 were produced on 

insect hosts, OSM, 2% peptone and 1% yeast extract. These disparate substrates
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probably require different pathways for the utilisation of nutrients and subsequently 

regulation of sporulation and virulence genes. Indeed, earlier studies show that 

nitrogen compounds that support growth were less favourable for spore germination 

and, since different amino acids stimulated particular stages of growth and 

sporulation, a complex nitrogen source was required to optimise these processes (Li 

and Holdom 1995). Presumably, yeast extract, peptone and the insects used in our 

studies possess nutritional components not present in simple, traditional, inexpensive 

mycological media. We postulate that starvation conditions whether in vivo or in 

vitro results in de-repression of Prl and that elevated levels of this enzyme enhances 

fungal virulence. Prl is without doubt an important virulence determinant. Mutants 

lacking the prl gene are less pathogenic and those over-expressing Prl are 

hypervirulent (Wang et al., 2002; St. Leger et al., 1996). Nutrient deprivation 

triggers increased Prl transcription and rapid secretion of this enzyme (St. Leger et 

al., 1991,1992). Furthermore, Prl production far exceeds synthesis of other proteins 

when M. anisopliae differentiates infection structures (St. Leger et al., 1989). It is 

tempting to speculate that conidia with low levels of endogenous reserves would 

rapidly exhaust these reserves and starvation would induce Prl and other virulence 

determinants. This may explain why conidia from mycosed insects were aggressive 

since they had a low carbon content (ca. 30-50% lower than conidia from artificial 

media) and subsequently fewer endogenous reserves (e.g. glycogen, lipid).

Detailed studies of the virulent conidia produced on mycosed insects and 1% yeast 

extract showed that they shared several attributes including relatively high levels of 

spore bound Prl activity (>2pM/min/min), CN ratios <5.2:1 and high germination 

rates. Conidium from mycosed cadavers, i.e. passaged inoculum, was marginally 

more virulent than inoculum produced in vitro and clearly had higher germination 

rates and significantly more prl A mRNA. Conidia produced on yeast extract had 

comparatively more prl A transcripts and spore bound Prl than the least virulent 

conidia produced on CN 35:1 media. Besides prl A , virulent conidia, especially 

passaged inoculum, had significantly higher levels of transcripts of other 

pathogenicity related genes compared with less virulent conidia. High levels of 

transcripts of the cuticle degrading enzymes would accelerate production of these
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enzymes and result in faster germination and infection. The cuticle-degrading 

enzymes Prl and Pr2 have already been shown to release peptides that induce more 

Prl (Paterson et al., 1994). Presence of cuticle-degrading enzymes in the conidial 

cell wall suggest that enzymes were secreted during conidiation and the level of 

activity appeared to be correlated with the amount of transcripts in the cell. Higher 

levels of enzyme activity were detected on conidia from infected Manduca sexta 

larvae than those from SDA suggesting that environmental conditions in which 

conidia develop pre-adapts them for the pathogenic life style (St. Leger et al., 1991). 

Our study shows for the first time that the passaged inoculum is virulent irrespective 

of the original culture medium or insect host. The insect host clearly provides the 

nutrition and development cues for production of virulent conidia. This is quite 

important since the pathogen may only have a narrow window of opportunity where 

host density and environmental conditions are favourable for induction of epizootics 

in pest populations. Since it is uneconomical to produce conidia using insects, we 

have identified several parameters that could help monitor the virulence of M 

anisopliae in large-scale fermentation systems. These parameters could also help in 

the design of new, inexpensive production media.

Virulent conidia were also consistently produced on OSM but growth and 

sporulation were poor. The relatively high level of C and N in the conidia suggests 

that osmotic stress did not prevent nutrient uptake. Ibrahim et al. (2002) also noted 

that conidia of M. anisopliae produced in nutrient poor minimal media or OSM were 

more aggressive than those produced on nutrient rich media (Ibrahim et al., 2002). 

Since stress (osmotic, starvation) is a phenomenon independent of the strain, it 

suggests a shared pathway. The endogenous reserves of fungal spores include 

protein, glycogen, polyols, and lipids (Carlilie and Watkinson, 1996) but so far no 

worker has been able to establish a link between specific reserves and virulence. We 

have shown that CN ratios below 5.2:1 are a good indicator of virulence, particularly 

if used with other parameters such as spore bound Prl and high germination rates. 

The virulent conidia produced on OSM were an anomaly since these had CN ratios 

similar to those of the less virulent conidia produced on CN 35:1. The high salt levels 

did influence M anisopliae physiology since it resulted in conidia that were paler
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and less hydrophobic than those produced on the other culture media and infected 

insects (Ibrahim et al., 2002). Again this phenomenon was independent of strain. By 

comparing CN ratios we do not discriminate between the endogenous reserves since 

these may vary depending on the source of nutrients and fungal species or strain. For 

example, the polyol and trehalose content of conidia of B. bassiana, M. anisopliae 

and P. farinosus were influenced by the carbohydrate type and concentration in solid 

agar media (Hallsworth and Magan 1994).

Bio-manufacturers of M. anisopliae or any other fungal biocontrol agent must take 

into account several factors when developing inexpensive media for the mass 

production of these agents. Culture media must not only maximise spore yield but 

also enhance qualities such as desiccation tolerance, stability as a dry preparation and 

virulence. Much attention has focused on manipulating nutritional conditions during 

growth and sporulation towards accumulation of appropriate endogenous reserves so 

that the newly formed conidia possessed the above qualities (Wraight et al, 2001). 

Our study has helped identify specific quality control parameters that could help in 

the development of inexpensive media for the mass production of virulent inoculum. 

However, further work is needed to determine the relationship between endogenous 

reserves and the desired attributes of virulence and prolonged shelf life
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Chapter 4: Development of assays to quantify adhesion 

forces of M. anisopliae conidia and their application to 

study the effect of nutrition on the adhesion properties of 

M. anisopliae conidia

4.1 Introduction

For all pathogenic fungi (human, plant, invertebrate), adhesion of propagules 

(conidia, blastospores or hyphae) to the host surface constitutes the first and probably 

most important step in the infection process. Failure to adhere is one of the attributes 

of attenuated or weak pathogens (Alter et al., 1999). Adhesion is a two-step process; 

(1) the initial, passive event usually involves preformed factors and (2) the active, 

consolidation phase usually involves secretion of mucilage and enzymes (Fargues, 

1984; St. Leger et al., 1991b).

Conidia of many species of entomopathogenic fungi are thought to initially attach 

nonspecifically (Boucias and Pendland 1991). The specific mechanisms involved in 

spore attachment to host cuticle is not known, however, certain attributes of conidia 

are linked with their attachment to insect cuticle. These include electrostatic charges, 

lectins, surface carbohydrates and hydrophobins. (Fargues, 1984, Boucias et al., 

1988; Jeffes et al., 1999; Ibrahim et al 2002). The hydrophobicity and electrostatic 

forces of fungal spore and bacteria have been shown to vary in different isolates of 

same species and physiological state of the spore or bacteria (Grasso et al 1996; 

Giradin et al 1999; Pascual et al. 2000). Recently, Ibrahim et al (2002) reported that 

nutrition during conidia production of the M. anisopliae influence their adhesion 

properties by altering surface carbohydrates. However, very little is known about the 

role of nutrition on the hydrophobicity, electrostatic forces and in particular the 

adhesion strength of the fungal conidia.
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A major reason for this lack of information could be the unavailability of 

tools/methods to quantify adhesion forces. Most previous studies on adhesion forces 

have focussed on qualitative differences in adhesion with no information on the 

quantification of these forces. In the past, Radial Flow Chamber (RFC) assays have 

been used to quantify the adhesion of bacterial cells to different surfaces of varying 

physical and chemical properties (Tegoulia et. al., 2002). However, the assays 

require optimisation for the each test organism due to the variation in physio- 

chemical properties of each organism. The most important consideration is to select 

the surface chemistry simulating the natural adhesion site of the test organism. The 

insect cuticular lipids were observed to play an important role in M. anisopliae 

adhesion (Sosa-Gomez et al., 1997). The extraction and immobilisation of insect 

cuticular lipids on to the glass surface of the RFC could, therefore, provide an 

opportunity to quantify the adhesion of M. anisopliae conidia. Secondly, each 

organism varies in its morphology thus offering variable surface area which comes in 

contact with flow of liquid in the RFC. The same flow rate applied to different 

surface area would result in shear strength proportional to the surface area. 

Therefore, it is important to determine the flow rate proportional to the size of the 

test organism.

The present study was designed to address two important issues, firstly to optimise 

RFC assays for the measurement of adhesion forces of M. anisopliae conidia, 

together with measurement of electrostatic and hydrophobic forces contributing 

toward adhesion. Secondly, to see how the nutrition during the conidia production 

influences adhesion forces. The study provided optimised methods for the 

quantification of M. anisopliae adhesion forces and the role of nutrition in altering 

these forces has been discussed.
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4.2 Materials and Methods

4.2.1 Background of Radial Flow Chamber (RFC)

The Radial Flow chamber (RFC) provides a method of assessing adhesion by 

generating a shear force gradient across the collector surface in question (Tegoulia et 

al 2002). The geometry of RFC provides a well-defined laminar flow field. The 

RFC consists of two parallel discs (stainless steel disc and glass disc) which are 

separated at narrow space (1mm) to ensure high flow pressure.

The use of RFC in conjunction with a travelling microscope allows the observation 

of attachment in real time at various distances. The hydrodynamics in the RFC are 

well defined and shear rate varies inversely with radial distance in the chamber 

(Tegoulia et al 2002). The shear rate at the surface is defined as

S = 3Q/Jtrh2 Eq. 4.1

Where S is the shear rate at the surface of the disc, Q is the volumetric flow rate, r 

the radial distance and h the gap width.

4.2.2 The design of radial flow chamber

The RFC used in this study was originally designed to assess biofilm formation 

(Fowler and Mackay, 1980). The chamber consisted of a central inlet pipe of internal 

diameter of 5mm. The manifold outside radius of the chamber was 85mm, and inside 

radius of the collector disc was 50mm. The collector disc itself was 60mm radius. 

Three spacers separated the parallel plates by 1mm at 120° intervals. The outlet pipes 

were also equally spaced around the circumference of the chamber. Each outlet pipe 

had an external diameter of 10mm. The initial design is shown below in Figures 4.1 

and 4.2.
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Fig. 4.1 A diagrammatical representation o f the Radial Flow Chamber and 

supporting apparatus, A. reservoir, B. Pump, C. Camera attached to microscope, D. 

RFC surfaces, E. TV monitor, F. Computer for image analysis
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Fig. 4.2 Schematic representations o f Radial Flow Cham ber’s collector plates, 

Conidial attachment was assessed simultaneously on both glass and steel

93



4.2.2.1 Pump

The pump (model 5003U) used in conjunction with the RFC was supplied by 

Michael Smith Engineers (Surrey, U.K.). The maximum flow rate generated by the 

pump was 10 1/min. The flow rate was adjusted to 0.2 1/min. by using a clamp to 

restrict the flow and was kept constant throughout experiments. The pump was 

linked to the chamber by silicone tubing as shown in figure 4.2. The spore 

suspension was pumped through the chamber and returned to the pump through three 

outlet pipes via a reservoir. The reservoir consisted of a 250 ml Pyrex flask with a 

side arm at its base. The reservoir performed two functions. Firstly it enabled easy 

handling of the suspension within the apparatus. The second function was that the 

volume of the suspension ensured that concentration would not vary should large 

level of adhesion occur.

4.2.2.2 Collector Surface

Both glass and stainless steel were used in conjunction with the RFC. This allowed 

the comparison of results generated from two different surfaces i.e. non-specific 

stainless steel surface and cuticular lipid coated glass surface. The benefit of the RFC 

was that it enabled the adhesion to glass and steel to be assessed simultaneously in 

real time.

4.2.2.3 Glass surface

The glass disc used in the original design was 8mm thick. This proved to be far too 

thick for microscopic inspection of both surfaces due to the limited focal length of 

the microscopes objectives. The apparatus therefore required adjustment to minimise 

the thickness of glass to 2mm.

The stainless steel surface was used as provided by Swansea Precision Engineering. 

No alterations were required, except polishing with abrasive.
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4.2.3 Experimental procedure to study the adhesion of Af. anisoplaie using RFC

4.2.3.1 Adjustment of flow rate

As the RFC is mostly used to study the adhesion of spherical shaped bacterial 

organisms, the same flow rate described in earlier studies proved to be too high for 

rod shaped and relatively bigger M. anisopliae conidia. A range of flow rates (from 

0.2 to 1.4 1/min) were evaluated to determine an optimum flow rate, which could 

allow reproducible assays with M. anisopliae conidia.

4.2.3.2 Extraction of cuticular lipids and coating of the glass surface with lipid 

extracts

To mimic the adhesion surface with that of insect cuticle, glass surfaces were coated 

with cuticular lipid extracts from T. molitor larvae. Cuticular lipids were extracted as
t l idescribed by Sosa-Gomez et al., (1997), briefly, the cuticles of 4-5 instar T. molitor 

larvae were flushed with Hexane (Sigma) at room temperature for 5 minutes. The 

hexane extract was then concentrated under a N2 stream. Paste like lipid extract was 

then dissolved in hexane at a concentration of 10 mg/ml and stored at -20 °C until 

required. To coat the glass surface, a Langmuir -  Blodgett Film technique was used 

(Peterson, 1990). Briefly, One ml of lipid extract was applied at the surface of water 

in a tank. Glass surface was already embedded in this system at an angle of 45 

degrees. The glass surface was then slowly pulled out from the system, resulting in 

uniform distribution of hydrophobic lipid onto the glass surface. This method of 

coating has been assessed using atomic force microscopy to confirm complete 

coverage of the disc (Wright C.J., unpublished observations).

4.2.33 Video observations of adhesion

The RFC was mounted on the motorized stage of a Leitz wetzlar (Germany) 

travelling microscope. The microscope and accompanying video camera ((Panasonic 

(UK) TV camera, WV-1550/B), colour monitor (JVC (UK) video monitor, TM-123) 

comprised an automated video microscopy. Video microscopy allowed direct 

observation of the attachment of individual cells to the surface in real time under a
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600x magnification. Attachment of individual cells was observed at ten different 

radii (0-35 mm from centre) and ten different positions within each radius.

4.2.3.4 M. anisopliae injection into RFC

M. anisopliae conidia obtained from different media were suspended in 0.03% aq. 

Tween 80 (Fisher Scientific, U.K.) to the final concentration of lx l09 conidia/ml as 

described in section 2.2.3. The reservoir of the RFC contained 95 ml of deionised 

water. Conidial suspension (5 ml per treatment) was then introduced into the 

reservoir. The suspension was allowed to run at a flow rate of 0.2 1/min into the RFC 

for 15 minutes prior to adhesion observations. These conditions were kept constant 

for the study of all treatments.

4.2.4 Measurement of zeta potential (surface charge)

Surface charge of the conidia produced on different media was determined as 

described in section 2.2.6

4.2.5 Measurement of surface hydrophobicity

The relative hydrophobicity of the conidia produced on different media was assessed 

as described in section 2.2.7.

4.3 Results

4.3.1 Effect of flow rate on the adhesion of M. anisopliae

Adhesion of M anisopliae conidia was inversely proportional to the flow rate. At 

higher flow rates i.e. 1.4 1/min. to 0.61/min., no adhesion was observed either on 

stainless steel or cuticular lipid coated glass surface (Fig. 4.3). At slow flow rates of 

0.3 to 0.5 1/min, adhesion of M. anisopliae conidia gradually increased but adhesion 

was inconsistent among the replicate experiments (Fig. 4.3). Consistent and
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considerable higher adhesion was observed on 0.2 1/min flow rate, which was then 

used for all other experiments (Fig. 4.3).
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Fig. 4.3 Effect o f flow rate on the adhesion on M. anisopliae V275 conidia produced 

on CN 35: 1 media to the stain less steel and cuticular lipid coated glass surface.
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4.3.2 Effect of cuticular lipid coating on the adhesion of M. anisopliae on to glass 

surface

Immobilisation o f cuticular lipids on the glass surface significantly increased M  

anisopliae adhesion. In the absence o f cuticular lipid coating, very low adhesion was 

observed on the glass surface even at a very slow flow rate o f 0.2 1/min. After lipid 

immobilization, adhesion o f M. anisopliae conidia increased 10 fold on the glass 

surface (fig. 4.4). Adhesion to glass surfaces was independent o f adhesion to steel 

surface i.e. whether glass surface had low or high adhesion; it did not influenced 

adhesion to steel surface (Fig. 4.4).
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Fig. 4.4 Effect o f cuticular lipid coating on glass surface on the adhesion on M  

anisopliae V275 conidia produced on CN 35: 1 media conidia under the flow rate o f 

0.2 l/min
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4.3.3 Adhesion of M. anisopliae conidia produced on different media

Adhesion of M. anisopliae conidia varied significantly among the treatments as well 

as between the two surfaces. Irrespective of the treatment, adhesion was relatively 

higher on stainless steel surface than that of cuticular lipid coated glass surface. On 

the stainless steel surface, V245 conidia grown on 1% yeast extract and 2% peptone 

media were most adhesive. Remaining treatments had no major differences in their 

adhesion to stainless steel surface (Fig.4.5). On the cuticular lipid coated glass 

surface, conidia of V245, conidia grown on 1% yeast extract and 2 % peptone media 

were most adhesive while the conidia produced on KC1, CN 35:1 media and PDA 

were least adhesive (Fig. 4.5).

On Stainless steel surface adhesion of V275 conidia produced on 1 % yeast extract, 

CN of 10:1 and 75:1 were significantly higher than the conidia produced on the rest 

of the media (Fig. 4.6). Conidia produced on KC1 were the least adhesive while the 

rest had intermediate adhesion on stainless steel surface. On cuticular lipid coated 

glass surface, no major differences in adhesion were observed between the V275 

conidia produced on CN 35:1 media, PDA, 1% yeast extract and CN 75:1 media. 

However, adhesion was significantly lower for the conidia produced on KC1, 2% 

peptone and CN 10:1 media than the conidia produced on media described above 

(Fig. 4.6).
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4.3.4 Influence of nutrition on the zeta potential of the M. anisopliae conidia

Zeta potential varied significantly (P < 0.05, Tukey Test) among the different 

treatments. The conidia of V245 produced on intermediate and low CN media had the 

least zeta potential than rest of the treatments (Table 4.1). These two treatments varied 

significantly (P < 0.05, Tukey Test) with rest of the treatments. Highest Zeta potential 

was observed for the conidia produced on 2% peptone or 1% yeast extract media.

In the case of V275, the conidia produced on 1% yeast extract and 2% peptone had the 

least zeta potential. The conidia from different CN media varied significantly (P < 0.05, 

Tukey Test) and an increase in CN of the media resulted in a gradual increase in zeta 

potential of the conidia produced on these media. The conidia produced on PDA and 

KC1 had the highest zeta potential than all other treatments except for the conidia 

produced on high CN media (Table 4.1).

102



Table 4.1 Influence of nutrition on the zeta potential of M. anisopliae conidia. All the 

means within a column followed by the same letter are not significantly different (P < 

0.05, Tukey Test). Each treatment was replicated three times. Values in parenthesis 

represent standard errors.

Media Zeta potential (mV2)

V245 V275

PDA -31.72b -34.62f
(0.48) (0.32)

1% YE -36.74e -23.84a
(0.27) (0.11)

2% Pep -37.01° -27.4 lb
(0.16) (0.21)

CN 10:1 -28.0 la -29.41°
(0.19) (0.19)

CN 35:1 -28.01a -31.67d
(0.19) (0.40)

CN 75:1 -35.30d -36.77s
(0.21) (0.31)

KC1 -34.0° -33.26°
(0.20) (0.26)
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4.3.5 Influence of nutrition on the relative hydrophobicity of M. anisopliae conidia

Relative hydrophobicity of the conidia produced on different media also varied 

significantly among the treatments (Table 4.2). In the case of V245, inoculum produced 

on either low or high CN media were most hydrophobic. These conidia varied non- 

significantly (P < 0.05, Tukey Test) with the conidia produced on CN 35:1 media or 

PDA but varied significantly with the least hydrophobic conidia produced on either KC1 

or 2%  peptone media (Table 4.2).

In the case of V275 highly hydrophobic conidia were produced on 1% yeast extract, CN 

75:1, 2% Peptone and CN 35:1 (Table 4.2). Conidia produced on either PDA, KC1 or 

low CN of 10:1 were significantly (P < 0.05, Tukey Test) less hydrophobic.
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Table 4.2 Influence of nutrition on the relative hydrophobicity of M. anisopliae conidia. 

All the means within a column followed by the same letter are not significantly different 

(P< 0 .05, Tukey Test). Each treatment was replicated three times. Values in parenthesis 

represent standard errors.

Media Relative hydrophobicity (%)

V245 V275

PDA 89.42ab 74.99b
(0.44) (1.60)

1% Yeast extract 80.17bc 86.18a
(2.12) (0.99)

2% peptone 75.63c 84.26a
(4.21) (0.46)

CN 10:1 91.35a 75.98b
(0.94) (1.78)

CN 35:1 83.48abc 81.32ab
(1.12) (1.49)

CN 75:1 92.23a 83.77a
(1.44) (1.01)

KC1 78.74° 74.90b
(1.96) (2.30)

4.4 Discussion

The Radial Flow Chamber Assay proved to be an effective method for quantifying 

adhesive properties of M. anisopliae conidia. It also facilitated comparative study of 

adhesion to the cuticular lipid coated and inert surfaces simultaneously. Earlier uses of 

RFC had focussed on bacterial adhesion (Tegoulia et al., 2002); consequently the
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existing protocols did not work for M. anisopliae. In the RFC, the shear force is 

generated by the flow rate, which is a function of its speed as well the surface with 

which it strikes. The rod shaped M. anisopliae conidia provided too large a surface area, 

thereby, the minimum flow rate used for bacterial cells proved to be far too high for M. 
anisopliae conidia. Similarly, the smooth and hydrophilic surface of glass did not 

provide any physical or chemical cues for M. anisopliae adhesion; however, its 

immobilization with cuticular lipids not only simulated the real adhesion environment 

(biochemical cues) but also provided specific hydrophobic surface for adhesion.

The adhesion of fungal spores to a surface is a function of both the surface in question 

and the spores. Our study indicated that M anisopliae could attach to both specific and 

non-specific surfaces. Similar studies on fungal adhesion but using static conditions, 

(Sosa-Gomez et al., 1997: Hajek and Eastbum 2003) demonstrated that both surface 
topography and chemistry influence the attachment of M. anisopliae and Entomophaga 

maimaiga conidia to the surface in question.

Spore adhesion to the host cuticle is thought to be an important indicator of virulence. In 

our study the more aggressive strain V275 showed higher adhesion than V245. The 

adhesion profile suggested that though each isolate responds differently to the same 

nutritional environment, however, certain similarities were consistently observed. For 

example nutrient poor media e.g. 1% yeast extract appeared to positively effect the 

adhesion of both isolates, while an excess of carbon and salt negatively affected the 

overall adhesion. Nutrition has also been shown to affect the surface carbohydrates of M. 

anisopliae conidia, which in turn could alter the adhesion properties (Jeffs et al 1999, 

Ibrahim et al. 2002.).

The aerial conidia of M. anisopliae exhibit a distinct rodlet layer, which is highly 

hydrophobic (Bociaus et al., 1988). This rod like layers imparts hydrophobicity to the
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conidia. The hydrophobicity of conidia of other fungi has been shown to vary due 

growth media, cell starvation and growth phases (Doyle 2000 and references therein). 

According to Wessels (1997), the hydrophobins are deposited on the walls of aerial 

structures like conidia. The nature and number of hydrophobins deposited at the surface 

of conidia could therefore, depend on the nutritional level and/or composition of 

nutrition. Relatively high hydrophobicity observed in complex media like yeast extract 

and peptone based media suggest the deposition of more hydrophobic amino acids on 

the conidia surface.

The dry conidia of M. anisopliae are generally hydrophobic and possess a net negative 

charge on its surface (Boucias and Pendland, 1991). The zeta potential assays helped to 

determine the electrostatic force of M. anisopliae conidia. This is the first time that 

electrostatic forces of any entomopathogenic fungi have been quantified. Previous 
studies only describe the qualitative difference in the electrostatic forces but here it was 

shown that even the conidia produced under different growth condition could vary 

significantly for their electrostatic surface charge. On the basis of this study, it is not 

possible to describe the mechanism involved in altering the surface charges of conidia. 
However, it may be suggested that changes in surface properties of conidia on different 

type of nutrients (Jeff et al., 1999; Ibrahim et al., 2002) may have some role in this 
phenomenon.

Apart from hydrophobins, other molecules e.g. glycoproteins, lipids are also present on 

conidial surface (Cole et al., 1979; Latge et al., 1988; Tronchin et al., 1997). Different 

biological molecules e.g. lipids, proteins, carbohydrates exhibit varying levels of surface 

charge. Differences in nutrition during conidia production may alter the composition and 

or nature of these compounds, thereby, in directly influencing the surface charge. Both 

strains were observed to vary in their surface charge on complex media based on yeast 

extract and peptone suggesting a strain specific response to complex nutrition. Such
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strains specific response may have some role in altering the conidial surface, however 

further studies are needed to understand this mechanism.

Surface of the conidia exhibit a net negative charge but our results indicate that the 

growth medium on which conidia are produced influence this charge quantitatively. A 

higher negative charge on the surface of conidia would mean it would be repelled rather 

than attracted toward the negatively charged insect cuticle. On the other hand conidia 

with less negative value would be overridden by attractive forces. These forces come 

into play when conidia and cuticle are not in physical contact but are in the region of an 

electric field where they either repel or attract each other. Results of our studies 

confirmed this hypothesis, as relatively less negatively charged conidia e.g. conidia 
produced on 1% yeast extract media were more adhesive. However, in other cases, this 

effect was not very clear suggesting that electrostatic forces alone cannot exert a 

decisive role on adhesion but facilitates the adhesion process.

The adhesion mechanism appeared to be quite complex and involves numbers of factors 

e.g. hydrophobic forces, electrostatic forces, surface carbohydrates etc. The results of 

this study do suggest the nutritional conditions could be optimized to manipulate the 

adhesion properties of conidia. Such manipulations could prove very important in 

situations where pest is likely to have low exposure to M. anisopliae application, 

thereby, efficacy would rely mainly on good adhesion as mortaility is dose related (Butt 

et al. 2002)

108



Chapter 5: Influence of nutrition on the production and 

physiology of sectors produced by M. anisopliae

5.1 Introduction

Formation of distinct morphological variants or sectors are often observed in fungal 

cultures maintained on artificial media (Jennings and Lysek, 1996; Vannacci and 

Cristani, 1998). The type and frequency of sectoring varies among different fungal 

species and strains and has often been attributed to mutation, transposons, double

stranded RNA mycoviruses and genomic rearrangements (Becker et al., 2003; Firon et 
a\., 2002; Chu et al., 2002, Fowler and Mitton, 2000; Pontecorvo and Gemmell, 1944). 

Some studies suggest that sectors arise as a result of cultural degeneration caused either 

by the age of culture, method of propagation, or nature of the culture medium (Booth, 

1971; 1975). Sectors can differ from the parent culture in a range of morphological and 

physiological characteristics including a decline in the production of spores and certain 

metabolites (Chu et al., 2002; Guzman-de-pena and Jose Ruiz, 1997). Some plant 

pathogenic fungi, especially those containing mycoviruses, can decline in virulence 

(Chu et al., 2002; Chen et al., 1996).

There is much interest in the development of insect-pathogenic fungi as environmentally 

friendly alternatives to chemical insecticides for pest control (Butt, 2002; Inglis et al., 
2001). Formation of sectors in cultures of these biocontrol agents (BCAs) could have 

serious commercial implications. For example, avirulent inoculum would dilute the 

efficacy of the harvested inoculum making the product less efficacious. Sterile sectors 

would reduce spore yield thus raising production costs and making the BCA less cost- 

effective compared with competing agents. Knowledge of the factors triggering sector 

formation could help in developing strategies to prevent them forming. This study 

focuses on identifying the cultural conditions favouring sector formation in the insect 

pathogen Metarhizium anisopliae and the analysis of the physiological attributes of the
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sectors in particular the production of Prl and destruxins, two important pathogenicity 

determinants (St. Leger et al 1994; Kershaw et al. 1999; Amiri et al, 2000; Wang et al., 

2002).

5.2 Materials and Methods

5.2.1 Influence of culture conditions on sector formation

Two isolates of Metarhizium anisopliae V245 and V275 from Finnish soil and Cydia 

pomonella, respectively were passaged through Galleria melonella larvae and isolated 

on Oatmeal dodine agar. Single spore colonies were transferred to Sabouraud Dextrose 

Agar (SDA) and these cultures were used in subsequent studies.

The effect of nutrition on sector formation was investigated using seven different media 

as described in section 3.2.2 and shown in table 5.1. Each treatment was replicated 10 
times and the whole experiment was repeated four times. Each plate was inoculated with 

2mm diameter mycelial plugs taken from the edge of the colony. Cultures were 

maintained at 25°C and after 15 days of growth, the frequency and morphology of 

sectors were recorded. Each sector was subsequently subcultured by transferring a 2mm 

plug as described above to fresh SDA. After 15 days incubation at 25°C, sector 

morphology was recorded and those sectors that did not revert back to the parent 

phenotype were kept at 4°C until required. Twenty-two sectors (from >150) representing 

the different morphological groups, media and isolates were selected for further studies 
(Table 5.2).

5.2.2 Production of Prl and other enzymes by sectors

Parents and sectors (Table 5.2) were grown in Sabouraud dextrose broth for 3 days and 

washed with sterilized distilled water then 1 g wet weight of mycelium was used to 

inoculate 100 ml inductive medium (1% oven-dried cockroach Blaberus discoidalis
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homogenate in minimum medium) which is known to induce Prl and several other 

cuticle-degrading enzymes (Wang et al., 2002). Cultures were incubated in a 

GallenKamp orbital incubator (Sanyo) at 24°C and 120 rpm. Culture filtrates were 

collected 3 days post inoculation and assayed spectrophotometrically for Prl, Pr2, 

exochitinase and non -specific protease activity according to St. Leger et al., (1987) and 

Segers et al., (1995), respectively.

For selected sectors, an additional set of nineteen different enzymes was investigated 

using the semi-quantitative API- ZYM test (BioMerieux Vitek Inc., France). Briefly, 65 

pi of culture filtrate was applied to each well and incubated at 37 °C for 4 hr and the 

reactions scored as advised by the manufacturer.

5.2.3 RT-PCR analysis of cuticle-degrading enzymes in sector mycelium

Quantitative Real Time PCR was used to compare the expression of Prl and three other 

genes (esterases, trypsin, chymotrypsin) linked to the infection process in the mycelium 

harvested from the above cultures. Total RNA was extracted from the mycelium of 

sectors and parent cultures using the Qiagen RNAeasy kit (Valencia, CA). Rest of the 

procedure was same as described in section 3.2.11.

5.2.4 Production of destruxins

Three-day old mycelium (2.5g wet weight) of parent cultures and selected sectors 

produced in Sabouraud dextrose broth was used to inoculate 250ml Czapek dox broth 

(Sucrose, 3%, sodium nitrate, 0.2%, K2HPO4, 0.1%, MgSC>4, 0.05% KC1 0.05% and 

FeSC>4, 0.001%) supplemented with 0.5% peptone in 500 ml conical flasks. The flasks 

were incubated in an orbital shaker (120 rpm) at 24 °C for 7 days. Destruxins were 

extracted from culture filtrates using dichloromethane: ethyle acetate (1:1) and analysed 

by HPLC as described in section 2.2.12.
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5.2.5 Statistical analysis

The whole study was repeated twice with each treatment replicated three times unless 

stated otherwise. Data was subjected to one-way ANOVA followed by Duncan test for 

determining significant differences. For all statistical analysis SPSS 11 software was 

used.

5.3 Results

5.3.1 Influence of nutrition on sector production

The sectoring frequency of M. anisopliae varied significantly between the isolates V245 

and V275 (P < 0.05, Duncan test) with the former producing more sectors on all the 

media investigated (Table 1). Nutrition did influence sector formation, with the least 

sectors being produced on media with either low nutrients or low CN ratios (Table 5.1). 

Media containing >4% glucose yielded significantly (P < 0.05, Duncan test) more 

sectors for both isolates (Table 5.1). Sectors were either sterile or sporulated poorly. 

Rarely did sectors sporulate as profusely as the original parent cultures. Conidia, if 

present, were usually paler than those of the parent (Table 2). The sectors varied in 

shape and size (Figs. 5.1-5.6). Most sectors were a variation of a V-shape but 

occasionally other shapes were noted such as a square (Fig. 5.1). Whereas some sectors 

arose close to the culture periphery others appeared to arise close to the point of 
inoculation (i.e. near centre).
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Table 5.1 Frequency of sector formation by V245 and V275 on different media. All the 

means within a column followed by the same letter are not significantly different (P < 

0.05, Duncan Test). Each treatment was replicated ten times. Values in parenthesis 

represent standard errors.

Culture Media
% Frequency of sector formation

V245 V275

60a 22abcde

PDA
(9.1) (4.7)
30bc 10cde

1 % Yeast extract
(4.0) (4.0)

37b 05e
CN 8:1 (2% Peptone)

(4.7) (2.8)

32bc 07de
CN 10: 1 (0.6% glucose, 1% peptone)

(6.2) (4.7)

CN 35:1 (4 % glucose, 1% peptone, 65a j 2bcde

corresponds to SDA) (11.9) (2.5)

62a 2 'i abed
CN 75: 1 (9.1 % glucose, 1% peptone)

(9.4) (4.7)

KCl-amended medium (8% glucose, 60a jjbede

2% peptone, 5.5% KC1, 5.5% agar). (9.1) (2.8)
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Fig. 5.1 Culture o f M. anisopliae V 245 on culture medium with CN 75:1. Note square

shaped sector consisting o f fluffy, sterile mycelium (arrow). Sector initially arises as 

typical V shaped but can form any shape later depending on their growth rate.
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Fig. 5.2. Culture o f M. anisopliae V 245 on culture medium with CN 35:1. Note sterile 

mat like mycelium growth o f sector growing faster than parent colony.
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Fig. 5.3. Culture o f M. anisopliae V245 maintained on culture media containing 1% 

yeast extract as sole source o f nutrition. Note “V-shaped” sector formed at the cultures 

periphery (arrow).
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Fig. 5 .4 . Culture o f  M. anisopliae V 275 on PD A . N o te  typical V shaped sector w ith less

dense sporulation (arrow) as com pared to parent culture.
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Fig. 5.5. Two sectors formed in a culture of M. anisopliae V 275 maintained on 2% 

peptone. Note the sectors are less pigmented than parent culture.
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Fig. 5 .6 . Culture o f  M  anisopliae V 275  on PD A . N o te  typical V  shaped sector having

sparse growth and sporulation (arrow) as com pared to parent culture.
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5.3.2 Production of Prl and other enzymes by sectors

Sectors varied significantly (P < 0.05, Duncan Test) in the production of Prl and other 

cuticle degrading enzymes in inductive media (Table 5.2). Non-specific protease activity 

also varied between the two isolates and sectors. Prl production was highest in the 

parent strains of M. anisopliae and in sectors 12-22 and lowest in sectors 1-5 (Table 

5.2). The remaining sectors had intermediate Prl production (Table 5.2). In case of Pr2 

and NAG’sae production most of the sectors either had higher Pr2 and NAG’ase 

production or varied non-significantly (P < 0.05, Duncan test) with parental strains 

(Table 5.2). There appeared to be no obvious link between the production of Prl, Pr2, 

NAG’ase and non-specific protease activity, and the isolate, media and sector phenotype 

(Table 5.2).

The API-ZYM test revealed distinct physiological profiles for the parents and sectors 

(Table 5.3). Both parent strains had similar enzyme profiles except that V275 generally 

produced higher quantities than those of V245 in the inductive media. There were some 

exceptions; V275 produced comparatively less N-acetyl-P-glucosaminidase and no P- 
galactosidase. No obvious pattern was observed among the sectors. Sectors varied 

between each other and with the parent strains. However, it was higher a-chymotrypsin 

activity was noted in sectors S1 and S3 and higher N-acetyl-P-glucosaminidase activity 

in S7 (V275). Neither parents nor sectors exhibited P-glucuronidase, a-glucosidase and 
a-fucosidase activity (Table 5.3).
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Table 5.3. Enzyme activities of parent and sectors as determined by API- ZYM test.

Each treatment was replicated two times. Values in parenthesis represent standard errors.

Enzyme assayed V245 SI S4 S5 S9 V275 S3 S7 S 13 S 16
Alkaline phosphatase 1 2.5 2.5 1.5 4.5 4 0 3 1 0.5
Esterase (C 4) 2 2 1 2.5 2 3 3 2 2 1.5
Esterase Lipase (C 8) 1 2 2 3.5 2.5 4 3 3 4 3
Lipase (C 14) 1 1 1 1 1 1 1 2 1 0
Leucine arylamidase 4 5 5 5 5 5 5 5 5 5
Valine arylamidase 4 5 5 5 5 5 5 5 5 5
Cystine arylamidase 3 3 2.5 2.5 3 3 4 4 3 4
Trypsin 5 3 5 2.5 5 5 5 5 5 3
a-chymotrypsin 1 3 1 1 1.5 1 5 2 1 5
Acid phosphatase 5 5 5 5 5 5 5 5 5 5
Naphthol -AS-BI- 
phosphohydrolase

4 5 5 5 5 5 5 5 4 4

a- galactosidase 2 1 1.5 1 1.5 3 0 0 0 0
|3 - galactosidase 1 1 1.5 0.5 0 0 0 0 0 0
3 - glucuronidase 0 0 0 0 0 0 0 0 0 0
a- glucosidase 0 0 0 0 0 0 0 0 0 0
3 - glucosidase 3 2.5 3 2.5 2 4 3 2 1 1
N- acetyl -  3 
glucosaminidase

5 3 3.5 3 5 3 2 5 2 1

a- mannosidase 4 0 1.5 0 0.5 3 0 1 0 0
a- fucosidase 0 0 0 0 0 0 0 0 0 0

5.3.3 RT-PCR analysis of cuticle-degrading enzymes in sectors

Quantitative Real Time PCR showed that parent strains expressed more prl A than their 

corresponding sectors (Fig. 5.7). Sectors produced 6 to 100 times less prl A than the 

parent strains (Fig. 5.7). Only S9 (V245) and S13 (V275) varied non-significantly from 

the parent strains. The esterases (ste 1) expression ratio also showed the same pattern as 

that of pr 1A, however, two sectors S9 and S13 that varied non-significantly with their 

parents for pr 1A had significantly (P < 0.05, Duncan test) lower ste 1 expression. In
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general 1-2.5 fold decrease in ste /expression was observed among the sectors compared 

to their parent strains (Fig. 5.8).

Expression of the trypsin (try 1) and chymotrypsin (chy 1) genes differed in both parent 

strains and sectors (Figs 5.9-5.10). Up-regulation of try 1 usually resulted in a decline in 

chy 1 and vice versa in parent strains and sectors, with the exception of S9 and S13 

where the expression of both try 1 and chy 1 was high (Figs. 5.9-5.10). There was a 

tendency for V245 and all its sectors to be inclined towards expression of chy 1 whereas 

V275 was biased towards try 1. S7 and SI3, both derived from V275 expressed more 

chy 1 than any other treatment. All V245 derived sectors with the exception of S9 

produced up to 15-fold less chy 1 (Fig. 5.10). Similarly all the sectors produced by V275 
with the exception of S13 produced 6 fold less try 1 (Fig.5.9). Interestingly, S13 

expressed more try 1 than the parent culture.

In general, the parent strains had higher expression for prl A, ste 1 and either of try 1 
(V275) or chy 1 (V245). Sector SI had least expression for all the genes. Sectors S4, and 

5 had intermediate expression for all the genes while sectors S7, S16 and S3 had 

variable expression for each gene but ranged from intermediate to higher expression. 

Sectors S9 and S13 except for the ste 1 expression generally varied non-significantly 

with parent cultures (Figs 5.7-5.10). There appeared to be no obvious relationship 

between the expression of any specific enzyme(s) and sector phenotype or culture 

medium.
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Fig. 5.7 Relative expression of prl A by selected sectors and parent cultures.
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V245 V275 SI S3 S4 S5 S7 S9 S13 S16

Isolates

Fig. 5.9 Relative expression of trypsin {try 1) by selected sectors and parent cultures.
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V245 V275 SI S3 S4 S5 S7 S9 S13 S16

Isolates

Fig. 5.10 Relative expression of chymotrypsin (chy 1) by selected sectors and parent 
cultures.
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5.3.4 Destruxins production

Sectors showed a significant reduction in destruxin (dtx) production compared to the 

parent strains, usually declining more than half that observed in parent cultures (Table 

5.4). Both parent strains produced significantly (P < 0.05) higher quantities of dtx A, 

and E than the sectors. Dtx B production varied significantly both between parent strains 

and among the sectors (Table 5.4), but was significantly (P < 0.05) higher in V275 than 

all other treatments.

The ratio of dtx A, B and E also varied among the parents and sectors (Table 5.4). More 

dtx A, B and E was produced by the sectors than the parental strains. In both V245 and 

V275 parent cultures, the ratio of dtx A, B and E was such that dtx E predominated. 

Sectors produced more dtx A and B than dtx E (Table 5.4).
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Table 5.4 Crude toxin extract and destruxins (dtx) profile of selected sectors and their 

parent cultures. All the means within a column followed by the same letter are not 

significantly different (P < 0.05, Duncan Test). Each treatment was replicated two times. 

Values in parenthesis represent standard errors.

Sector’s ID
Crude toxin 

(mg/1)
dtx A 
(mg/1)

dtx B 
(mg/1)

dtx E 
(mg/1)

Ratio of dtxs 
A, B, E

V245
136.80a
(5.60)

25.94a
(0.02)

5.45b
(0.05)

29.94a
(0.02)

4.75:1:5.48

V275
157.80a
(18.20)

28.16a 
(4.42)

14.70a
(2.20)

31.72a
(5.09)

1.93:1:2.15

S 1
22.20®
(5.40)

0.56®
(0.17)

0.76®d
(0.24)

ND*®
0.74:1:0

S3
24.8®
(0.80)

0.24®
(0.00)

NDd ND®
0.24:0:0

S 4
42.80cd®
(8.80)

0.12®
(0.03)

0.10d 
(0.02)

ND®
1.15:1:0

S 5
38.00cd®
(12.4)

4.4 lb® 
(1.33)

1.89®d
(0.61)

1.15®
(1.15)

2.34:1:0.61

S 7
58.40cd
(6.80)

0.15®
(0.00)

NDd ND®
0.15:0:0

S 9
24.00®
(0.80)

0.03®
(0.00)

0.18d 
(0.00)

ND®
0.17:1:0

S13
54.80cd
(4.40)

2.20®
(0.16)

2.84®
(0.23)

0.59®
(0.59)

0.78:1:0.20

S16
97.10b
(1.70)

ND® NDd ND®
ND

* Not detectec
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5.4 Discussion

This study shows that sector formation is influenced by the fungal strain and nutritional 

conditions. Clearly, M. anisopliae V245 was less stable than V275 since it produced 

more sectors under a wide range of cultural conditions. The sectors could be divided into 

poorly sporulating or sterile colonies that arose almost anywhere in the parent colony, a 

phenomenon also observed in other fungal species (Jennings and Lysek, 1996; Vannacci 

and Cristani, 1998). Sector frequency appears to increase with increasing levels of 

glucose; presumably the sectors are physiologically adapted to exploit such conditions. 

Furthermore, by investing energy in growth as opposed to sporulation they avoid being 

smothered by the parent culture. These observations support one of the proposed 

models in which the differential growth rate was described as a selective advantage to 

sectors over the parent strain (Pontecorvo and Gemmel 1944). The varying sector size 

may reflect not just differential growth but the involvement of different numbers of 
hyphae. Since the sectors arose almost anywhere in the parent culture suggests that this 

was a spontaneous event. Exactly what triggers sector formation remains unclear, but is 

probably dependent on multiple cues, one of which would be differences between 

hyphae in their ability to utilize certain nutrients. In nutrient rich conditions, sectors may 

assimilate nutrients at a faster rate than the parent mycelium, hence the high frequency 

of sectors under such conditions. Even in the nutrient rich osmotic stress medium the 

frequency was comparatively high. In contrast, the low sector frequency on nutrient poor 

media was probably due to the sectors being unable to compete with the parent culture 
and establish their identity.

Whatever the cause of sector formation, we show for the first time that sectors do not 

respond to inductive media since they produce less Prl and other pathogenicity-related 

enzymes. RT-PCR confirmed fewer gene transcripts for pathogenicity related genes (prl 

A, chy 1, try 1, ste 1) in sectors than parent cultures. It is tempting to speculate that 

sectors have faulty transcription control mechanism(s) and/or receptors that do not 

respond to cuticular cues due to alterations in the receptor structure or composition (type
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and number). The importance of the signal transduction machinery in fungal 

development and pathogenesis is well documented (Bolker 1998). Recent studies have 

shown that disruption of the cpg-1 gene encoding for the Ga subunit, negatively affected 

the growth, reproduction and virulence of the plant pathogen Cryphonectria parasitica 

(Segers and Nuss 2003).

API-ZYM helped investigate the production of an additional set of enzymes in inductive 

media. It showed that the activity of some enzymes increased whilst that of others 

decreased or was lost altogether. Whether these enzymes are regulated by glucose has 

still to be substantiated but glucose is known to repress fungal genes used to metabolise 

alternate carbon sources (Ronne, 1995). Prl is known to be under carbon catabolite 

repression control and its production is repressed by excess glucose (Screen et al., 
1997). Sectors of the Metarhizium strains V275 and V245 differed in the type and 

number of enzymes affected. In a previous study, the production of ten enzymes by 

sectors produced by a single strain of M. anisopliae was examined and authors found 

that one sector had lost activity of three enzymes relative to the original profile (Ryan et 
al., 2002). In our study, RT-PCR showed that increased levels of try 1 transcripts often 

was accompanied by depressed levels of chy 1 transcripts and vice versa in parent strains 

and sectors, with the exception of S9 and S13 where the expression of both try 1 and chy 

1 was high. These observations confirm that different strains of Metarhizium differ in 

their physiology and stability and that the sector enzyme profile may differ from that of 

the parents and also between sectors.

Successive subculturing of M. anisopliae V275 may also result in whole cultures 

degenerating starting with silencing of the prl gene followed by the loss of the small 

chromosome carrying the prl gene (Wang et al., 2003). Similarly, chromosome loss has 

been reported to be associated with the “fluffy” sectoring in Agaricus bisporus (Horgen 

et al, 1996). However, our studies show that sectors exhibit Prl activity, therefore, are 

unlikely to have lost the small, conditional dispensable chromosome.
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Destruxins constitute one of the major secondary metabolites produced by Metarhizium 

anisopliae and are also considered to be an important pathogenicity determinant (Amiri 

et al., 2000; Kershaw et al., 1999; Wang et al., 2003). This study shows for the first time 

that M. anisopliae sectors produce significantly less destruxin A, B and E than the parent 

cultures. This is a more widespread phenomenon, since the production of fungal 

secondary metabolite production is frequently associated with developmental processes 

such as sporulation and pigmentation (Calvo et al., 2002). A loss or reduction in the 

production of secondary metabolites is often associated with phenotypic changes in 

particular reduced sporulation and pigmentation (Adams and Hu 1998; Gao and Nuss, 

1996 Kale et al., 1994). We show that if Metarhizium sectors produce conidia then these 

are sparse and always paler than those of the parent and that this is independent of the 

strain. Even whole cultures of a mutant strain of V275, which does not produce 

destruxins produced few pale conidia (Wang et al., 2003).

Production of sectors by fungal biocontrol agents like M. anisopliae has to be taken 

seriously since it could raise production costs and by diluting the virulent inoculum with 

less aggressive inoculum it could result in reduced efficacy and ultimately reduce sales 

of the product. By careful selection of stable strains and manipulation of cultural 

conditions it may be possible to minimise sector production. However, more work is 

needed to elucidate the underlying mechanisms for the localised instability. The fact that 

so many attributes of the sectors produced by M anisopliae have been described in other 

fungi suggests that similar mechanisms must be involved.
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Chapter 6: Influence of repeated subculturing on the virulence 

of single spore and parent cultures of M. anisopliae

6.1 Introduction

Cultural stability in terms of morphology and virulence is of paramount importance to 

ensure consistency and reliability of fungal BCAs e.g. M anisopliae. Degenerate 

cultures i.e. those that differ from parent are generally discarded and not used in any 

production systems (Jenkins et al., 1998). However cultures similar to parental 

phenotype may also differ in virulence. Single spore isolates of B. bassiana were 

observed to have enhanced virulence compared to parent cultures (Samsinikova and 
Kalalova, 1983). Single spore colonies have also been used to identify mutants but these 

studies are limited to first generation of the culture. The aim of this study was to 
determine the influence of successive subculturing on the variation within the parent 

culture. The study will help determine the stability of M. anisopliae, upon successive 
subculturing.

Attributes of phenotypical ly degenerate cultures are described in chapter 5 and therefore, 

the present study was focussed on the cultures identical to parent phenotype. The result 

revealed that single spore colonies vary in virulence and Prl production with their 

parents. Variation in the single spore colonies increased with successive subculturing 

suggesting a shift in the relative proportion of virulent and avirulent individuals in the 

culture.
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6.2 Materials and Methods

6.2.1 Fungal cultures

M. anisopliae V245 and V275 were passaged through G. mellonella and then repeatedly 

subcultured onto SDA media up to 10th subculture as described in Chapter 2.

6.2.2 Preparation of single spore colonies

Single spore colonies were produced from the selected multi spore subcultures (1st, 5th 

and 9th) of both strains. Single spore colonies were prepared by inoculating lOOpl of lx 

102 conidia/ml of each treatment on SDA plates. After inoculation, Petri dishes were 

incubated at 25°C for 48hours. Thirty single spore colonies of each treatment were then 

transferred to individual SDA plates. After 14 days of incubation at 25°C, all the single 

spore colonies of each subculture were then examined for morphological difference and 

divided into 3 main groups. These group included A. (parent type colonies), B. (sector 

forming colonies), and C. (colonies exhibiting differential morphology than parent 
culture). In order to determine whether morphologically similar colonies vary in 

virulence, five single spore colonies with identical morphology as that of parent culture 

were selected from each multi spore subculture as described in fig 6 .1.

6.2.3 Comparison of virulence between the single spore and parent

Virulence of selected single spore colonies and multi spore colonies were evaluated 

against T. molitor larvae according to the procedures described in section 2.2.3. Mother 

cultures of V245 and V275 were used as a positive control.

6.2.4 Comparison of CDEs production by the single spore and parent cultures

Production of CDEs and their activities were determined as described in section 2.2.9.
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6.2.5 Statistical analysis

The whole study was repeated twice, with thirty single spore colonies observed from 

each subculture for phenotypic grouping and 5 for other studies. Each treatment was 

replicated three times unless stated otherwise. Data was subjected to one-way ANOVA 

followed by Tukey test for determining significant differences. For all statistical analysis 

SPSS 11 software was used.
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Fig 6.1 Selection o f single spore colonies from different subcultures to compare their 

virulence and CDEs production with that o f parent cultures.
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6.3 Results

6.3.1 Phenotypic grouping of single spore colonies

M. anisopliae V245 was relatively unstable as its first subculture and subsequent 

generations produced a large number of sectors or colonies, which differed 

phenotypically with parent cultures (Table 6.1). V275 was more stable with only few 

sectors/phenotypes being produced (Table 6.1). In both strains, an increase in sectors 

and/ or different phenotype colonies was observed on successive subculturing (Table 

6 .1).

Table 6.1 Phenotypic grouping of single spore colonies of V245 and V275 subcultures

Phenotypic group 1st subculture 5th subculture 9th subculture
V245 V275 V245 V275 V245 V275

Parent type (greyish green 
conidia, uniform colony)

15 25 17 24 12 15

Sector forming colony 15 5 11 6 18 10

Phenotype varying from 
parent culture

0 0 2 0 0 5

6.3.2 Virulence of single spore and parent cultures

Generally virulence of single spore and parent cultures did not vary significantly (P < 

0.05, Tukey Test) but certain exceptions were observed. For example, single spore 

colonies of the 5th and the 9th subcultures varied significantly with their parent cultures. 

These colonies were more aggressive and varied non-significantly with those of first 

subculture (Table 6.2, 6.3). In the case of V245, one single spore colony from 1st 

subculture had significantly low virulence than its parent culture.
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In general, single spore and parent cultures of both strains declined in virulence upon 

successive subculturing (Table 6.2, 6.3). The LT50 ranged between 3.87 to 8.10 dpi and 

3.31 to 4.48 dpi for V245 and V275 cultures respectively (Table 6.2, 6.3).

6.3.3 CDEs production by single spore and parent cultures

6.3.3.1 Total protein production

The total protein and CDEs production varied significantly (P < 0.05, Tukey Test) 

among the different treatments (Tables 6.2, 6.3). The single spore colonies varied with 

each other and with parent cultures (Tables 6.2, 6.3).

In case of V245, highest protein concentration was observed in the multi spore colony of 

1st subculture, while the least was observed in one of its single spore colonies. Least total 

protein was also for all the single spore and parent cultures of 5th and 9th subcultures 

(Table 6.2). In the case of V275, Generally non-significant differences in the total 
protein production were observed (Table 6.3).

6.3.3.2 Non-specific protease activity

Non-specific protease activity varied non-significantly (P < 0.05, Tukey Test) among the 

most single spore and parent cultures of both strains (Table 6.2,6.3).

6.3.3.4 Prl activity

The Prl activity varied significantly (P < 0.05, Tukey Test) among the treatments. 

Highest activities were observed in single spore and parent cultures of 1st and 5th 

subcultures of both strains (Table 6.2, 6.3). Least Prl activities were observed in parent 

and single spore colonies of 9th subcultures. Occasionally single spore colonies had 

either higher or lower Prl activity than the parent cultures (Tables 6.2, 6.3).
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6.3.3.4 Pr2 activity

The trypsin like protease Pr2 varied non-significantly (P < 0.05, Tukey Test) in most of 

the single spore colonies and parent cultures of both strains (Table 6.2, 6.3).

Table 6.2 CDEs production and virulence of selected single spore and parent cultures of 

V245. All the means within a column followed by the same letter are not significantly 

different (P < 0.05, Tukey Test). Each treatment was replicated two times except for 

bioassays which were replicted three times. Values in parenthesis represent standard 

errors.

Colony ID
Total

protein
pg/ml

Non
specific

proteases
U/ml

Prl activity 
pmol/ml/min

Pr2
Activity

pmol/ml/min

Virulence
LT50
(DPI)

1st MS 332.5a
(13.1)

1.37“
(0.11)

2.40a
(0.02)

0.64abc
(0 .02)

3.87a
(0 .02)

1A245 252.5abc
(7.50) 1.43“

(0.02)
2.44a
(0 .02)

0.73abc
(0.05)

4.11abcd 
(0 .01)

IB 190.0abcd
(23.8)

1.65““
(0.08)

2.56a
(0.03)

0.57abc
(0.02)

4.04abc
(0.04)

1C 305.0ab 
(78.0)

1.52“
(0.0)

2.38a
(0 .01)

0.69abc
(0.07)

4 12abcd 
(0.06)

ID 07.5
(4.7)

2.04““
(0.13)

2.48a
(0.08)

1.20a
(0.07)

4.3 l cd 
(0.04)

IE 167.5bcde
(44.9)

1.50“
(0.11)

2.41a
(0.04)

0.64abc
(0 .01)

3.97
(0.02)

5th MS 057.5ael
(19.7)

1.31“
(0.07)

2.28a
(0.1)

1.12ab
(0.02)

4.3 lcd 
(0.04)

5A 057.5
(13.1)

2 .01““
(0.24)

2.42a
(0 .01)

1.20a
(0.07)

4.79e
(0.09)

5B 132.5cdet
(25.6)

1.61““
(0.03)

0.81b
(0 .02)

0.82abc
(0.34)

5.42
(0.08)

5C 70.0det
(10.8)

1.65““
(0.18)

2.44a
(0.05)

0.50bc
(0.24)

4.05abcd
(0 .02)

5D 100.0det
(21 .2)

1.94bcd
(0.25)

2.44a
(0.04)

0.3 8C 
(0 .12)

4.23bcd
(0.05)
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5E 70.0det 3.56a 2.37a 1.10ab 4.07abcd
(7.0) (0 .02) (0.03) (0.03) (0.04)

9th MS 95.0det
(55.4) 2.18bc 0.60b 0.99abc 4.88e

(0.43) (0.03) (0.08) (0.09)

9A 37.5et 1.92bcd 0.84b 1.13ab 4.32d
(11.0) (0.14) (0 .12) (0.03) (0 .02)

9B 22.51 1.60^ 0.56b 0.63abc 4.23bcd
(4.7) (0.17) (0.03) (0.0) (0.04)

9 C 40.0et 2.42b 0.90b 0.97abc 8.108
(4.0) (0.14) (0.17) (0.04) (0.02)

9D 55.0det 1.49cd 2.63a 0.39° 4.08abcd
(5.0) (0.17) (0 .11) (0.12) (0.04)

9E 40.0deI 1.21d 0.55b 0.54bc 5.61*
(8 .1) (0 .12) (0.03) (0.15) (0 .02)
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Table 6.3 CDEs production and virulence of selected single spore and parent cultures of 

V275. All the means within a column followed by the same letter are not significantly 

different (P < 0.05, Tukey Test). Each treatment was replicated two times except for 

bioassays which were replicted three times. Values in parenthesis represent standard 

errors.

Colony ID
Total

protein
Hg/ml

Non
specific

proteases
U/ml

Prl activity 
pmol/ml/min

Pr2
Activity

pmol/ml/min

Virulence
LT50
(DPI)

1st MS 212.5“
(18.8)

1.55bc
(0.28)

2.52a
(0.12)

0.98a
(0.07)

3.67abcd
(0.04)

1A275 47.5°
(17.5)

1.83b
(0 .02)

2.2 lab 
(0 .12)

0 .86a
(0.01)

3.58abc
(0.02)

IB 077.5°
(21-31

2.85a
(0.49)

2.16ab
(0.13)

0.9 la 
(0.03)

3.49ab
(0 .1)

1C 2 1 0 .0
(4.0)

1.46bcd
(0.14)

2.38ab
(0.15)

0.97a
(0.03)

3.47ab
(0.04)

ID 215.0“
(6.4)

j i^^bcde 

(0.02)
2.55a
(0.04)

0.91a
(0.03)

3.94cdei
(0.05)

IE 215.0“
(11.9)

0.95bcde 
(0.05)

2.5 la 
(0.04)

0.95a
(0.05)

3.3 la 
(0.02)

5th MS 157.5“
(68.2)

0.78cde
(0 .01)

2 .01b
(0.20)

0.87a
(0.06)

4.21s
(0.13)

5A 152.5“
(43.8)

0.96bcde
(0.08)

1.20°
(0.05)

0.63b
(0.04)

4.25s
(0.12)

5B 222.5“
(16.5)

0.66^
(0.16)

2.41
(0.08)

0.96a
(0.03)

3 .9 5 ^ 1

(0.11)
5C 225.0“

(13.2)
1.03bcde
(0.05)

2.35ab
(0.03)

0.96a
(0.07)

4.21detg
(0.13)

5D 292.5“
(69.2)

1 .1 0 bcde
(0.36)

2.21
(0.05)

0.97a
(0.06)

3.61
(0.05)

5E 142.5“
(10.3)

0.77cde
(0 .11)

2.15ab 
(0.08)

0.91a
(0 .01)

3.88bcdet
(0.05)

9th MS 485.0a
(30.1)

0.53e
(0.03)

0.48d
(0.04)

0.38°
(0.04)

4.48s
(0.10)

9A 170.0“
(37.6)

0.69cde
(0.08)

2.24ab
(0.02)

0.87a
(0.06)

3.82bcde
(0.02)
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9B 210.0bc 0 .66“* 0.70d 0.29° 4.04det
(57.8) (0 .00) (0.03) (0 .00) (0.09)

9 C 137.5bc 0.62de 2.42 0.94a 3.85bcdei
(13.7) (0.03) (0.03) (0.04) (0.09)

9D 122.5bc 0.75cde 2.23ab 1.00a 2 99cdet
(44.7) (0 .02) (0.06) (0.04) (0.07)

9E 180.0bc 0.56e 2.24ab 0.89a 3.36a
(18.2) (0.13) (0.06) (0 .01) (0.04)

6.4 Discussion

Parental cultures of M. anisopliae were shown to consist of individuals, which differ in 

their virulence even though they had parental phenotype. M. anisopliae V275 yielded 

more single spore colonies similar to parent in appearance and virulence than V245. 

This supports earlier findings that V275 is more stable than V245. There are about 109 to 

1011 air dried conidia/g of M. anisopliae. Each conidium is a potential infective unit and 

can establish a new culture. Under natural conditions, mutants or less virulent isolates in 

a mixed population would be removed due to selection pressure, however, under 

artificial conditions, these less virulent individuals would increase in number at the same 

rate (if not at greater rate) than those of virulent individuals, thereby out numbering the 

virulent individuals after several generations. The overall effect of such a situation 

would result in reduced efficacy over time. The result of this study clearly shows an 

increase in variability of the culture with increasing number of subcultures.

The changes in virulence among the single spore colonies and their parents further 

suggest that virulence is the net effect of its individual spores. Earlier studies conducted 

by Samsinkova and Kalalova, (1983) describe the variation in virulence of single spore 

colonies from the same parent culture. However, they did not look at the possibility that 

this variation in virulence among the single spore colonies may have some role in 

attenuation of virulence. Secondly, their studies were only based on bioassays, whereas 

the present study showed that these single spore colonies also vary in their physiological 

state particularly in the production of Prl.
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Similar observations were also made in other organisms e.g. Ferea et al., (1999) 

observed that under nutrient limited conditions; yeast clones of higher fitness 

successively replace one another over time. Such shifts had been observed to occur on 

the order of once every 50 generations. They demonstrated that evolved strains differed 

in their genome wide gene expression compared to the parental strain. Such adaptations 

may also be taking place in M. anisopliae resulting in the survival and selection of 

physiologically or genetically fitter individuals after host passage and an increase in the 

weak/avirulent individuals during successive growth under nutrient rich conditions.

In another report, Mostowy et al., (2003) demonstrated that the in vitro cultivation of 

BCG vaccine have undergone relatively much higher genetic loss than those observed in 

M. tuberculosis pathogen itself. They concluded that bacterial survival in the laboratory 

requires a different set of genetic tools than are needed to cause clinical tuberculosis. 

These authors explained their results in the light of M. tuberculosis culturing practice. 

M. tuberculosis grows as clumps and individuals were neither observed nor selected. 
Therefore each bi weekly transfer of BCG to fresh media involves million and more 

likely billions of individual bacteria, this serial passaging may then create a competitive 

environment within the culture, under which selectively advantageous mutants may out 

compete the wild type and thereby dominate the culture. A similar situation in fungal 

culture e.g. M. anisopliae is also very likely, where each laboratory subculture involves 

millions of individual conidia.

The relative virulence or its loss therefore, then partly depends on the population 

composition. A higher number of virulent individuals would result in virulent cultures 

but their loss or mixture with individuals of average or lower virulence than that of the 

parental population would result in more rapid loss of virulence.
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7.1 General Discussion

The stability and virulence of the entomogenous fungus M. anisopliae was influenced by 

nutrition and dependent on the strain. Nutrient rich conditions favoured good vegetative 

growth and high conidial yields but was also likely to result in attenuation and 

spontaneous production of sectors. Successive subculturing resulted in further 

degeneration of the cultures with increasing tendency to produce sectors or pale sterile 

mycelium. In contrast, nutrient poor or osmotic stress media gave rise to fewer but more 

aggressive conidia. These findings suggest that on exposure to stress conditions the 

priority of the M anisopliae changes towards survival in adverse conditions, which may 
limit its growth but make it more aggressive. Nutrient starvation is therefore likely to be 

a key environmental signal for the switch from a saprophytic to a pathogenic mode of 
nutrition (Clarkson and Chamley, 1996). This study shows that nutrient poor media e.g. 

1% yeast extract media provides a compromising balance between conidial yield and 

virulence. Though osmotic stress media also yielded highly virulent conidia, conidial 

yield was too low to be considered for cost effective mass production of the inoculum. 

Both strains varied in their virulence when produced on similar media but overall trend 

of high virulence under nutrient stress was strain independent.

Nutrition also influenced fungal stability, which was reflected in the sector frequency. 

Nutrient rich conditions yielded significantly higher number of sectors. Since this 

phenomenon was strain independent, these nutrient rich media could be used to 

determine fungal stability of other strains of M. anisopliae. Relatively fewer sectors 

formed by V275 on all media indicate its stability under different nutritional conditions. 

Studies on single spore cultures also confirmed that V275 is more stable as it yielded 

more single spore colonies identical to parental phenotype and virulence.

Prl, particularly spore bound Prl, appeared to be very good indicator of virulence. 

Levels of spore bound Prl were consistently higher in all the virulent conidia, which
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could be used as a potential quality control marker to monitor the changes in virulence. 

Earlier studies on null or over expressing prl mutants also indicate its role in M. 
anisopliae virulence (St. Leger et al., 1996; Wang et al., 2002). Significantly higher 

levels of transcripts for prl from virulent conidia observed in this study confirms its role 

in virulence. Low levels of transcripts for prl and a decline in spore bound Prl activity 

upon successive subculturing suggests a role for nutrition in predetermining the 

pathogenic or saprophytic mode of M. anisopliae. The levels of inductive Prl and other 

cuticle degrading enzymes were inconsistent in different studies suggesting the limited 

application of these enzymes to monitor changes in virulence.

Conidia CN ratios and speed of germination were also good indicators of virulence. 

Nutritional conditions appeared to influence conidial CN ratios as nutrient rich media 

consistently had higher CN ratios. Except for osmotic stress media, conidia with high 

CN ratio, i.e. above 5.2:1, germinated slowly, had low spore bound Prl activity and 

virulence. In contrast, virulent conidia from insect hosts or nutrient poor media had low 

CN ratios, germinated faster and had higher spore bound Prl activity. These findings 

further support the role of nutrition in virulence and highlights the coordinated events 

leading to changes in M. anisopliae virulence.

Nutrition also influenced several other pathogenicity determinants such as the adhesive 

properties of conidia and destruxins production; however results were inconsistent in 

different set of studies or strains. For example, overall adhesion, surface hydrophobicity 

and electrostatic forces of the conidia declined upon successive subculturing and showed 

a good relationship with virulence. In contrast, conidia produced on different media did 

vary in these attributes but the link with virulence was tenuous. It is possible that when 

grown on different media, other factors like surface carbohydrates; mucilage production 

may be affected, thereby influencing overall adhesion. Ibrahim et al. (2002) showed that 

nutrition influenced surface carbohydrates of M. anisopliae but its role in virulence
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remained unclear, therefore, further studies are required to determine the effect of 

nutrition on various factors contributing to the adhesion of M. anisopliae conidia.

Several factors appeared to contribute in the attenuation of virulence. Successive 

subculturing on nutrient rich media influenced important virulence determinants such as 

adhesion, Prl and destruxins. A decline in the expression and production of these 

attributes attenuated M. anisopliae virulence. Beside important virulence determinants, 

other attributes of M. anisopliae such as conidial yield, sectors formation or appearance 

of variant single spore colonies were also influenced by successive susbculturing or 

nutrition. Phenotypic changes particularly the loss of sporulation was observed to be 

linked with decline in the production of important virulence determinants suggesting a 

link between phenotypic stability and attenuation of virulence. This study also showed 

for the first time that cultures identical to the parental morphological phenotype may 

differ in virulence and this variability increases with successive subculturing. The 

relative ratio of virulent and avirulent single spore colonies is strain dependent; however, 
successive subculturing on nutrient rich media appeared to favour an increase in the 

population of less virulent individuals within the culture. Similar reports in other 

organisms suggest that this phenomenon may also have role in the long-term attenuation 

of virulence (Ferea et al., 1999, Mostowy et al., 2003).

Another important feature of this study is the optimisation and application of novel tools 

to monitor various attributes of M. anisopliae. The only notable study to date on the 

adhesive properties of entomogenous fungal spores is that of Boucias et al., (1988) 

which mentions various adhesion forces but provides no detailed measurement of the 

forces. Disparate adhesion assays developed in this project (e.g. Radial Flow Chamber 

assays, electrophoretic mobility, hydrophobicity assays) have helped to determine the 

contribution of the different adhesion mechanisms of spores during the initial, passive 

attachment phase of the infection process. Protocols developed for the Radial Flow
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Chamber assay could be adapted for more in depth analysis of adhesion to different 

substrates (e.g. cuticles from different hosts or regions of the same arthropod).

Similarly, this study is the first to quantify electrostatic forces, conidial CN ratios and 

attributes of insect derived conidia. This study showed for the first time that irrespective 

of strain or culture media, M. anisopliae regains its virulence upon host passage. 

Identification of several pathogenicity and or virulence determinants and the influence of 

nutrition on their expression would facilitate further studies on the underlying 

mechanisms of virulence of fungal pathogens.

In conclusion, this study has helped elucidate some of the underlying mechanisms of 

attenuation and virulence in M. anisopliae. Certain strain independent parameters such 

as conidial CN, spore bound Prl and the speed of germination were shown to be useful 

markers to monitor fungal virulence. Nutritional studies showed that there was much 

scope for developing inexpensive media for the mass production of stable, virulent 
inoculum.

It is suggested that future studies should be directed to understand how a particular 

nutrient or medium influences upsteam events e.g. signalling responses, gene expression 

and gene silencing of particular strain or set of strains. Similarly further studies on the 

genetic variability among single spore colonies could explain the role of culture stability 

in virulence. At present very little is known about the molecular mechanisms involved in 

sector formation therefore further studies on the genetics of sectors e.g. number of 

chromosomes, DNA sequencing, could be used to identify causes of sector formation. 

Further studies on attenuation of virulence should also take in account whether 

attenuation of virulence influence specifity of the strain or not. If specificity is lost or 

reduced upon attenuation, then it would be interesting to note which genes are involved 

in the attenuation and/or specificity of the M. anisopliae.
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Appendix 2



Fig. 1 Real Time PCR product (110 bp expected size) o f the ribosomal rDNA (5.8S) gene 

from the M. anisopliae conidia. Lane 1 (lOObp Ladder), lane 2 ( V245 conidia produced 

on intermediate CN (35:1), lane 3 V245 conidia produced on 1% yeast extract media (1% 

yeast extract), lane 4, V245 conidia initially produced on intermediate CN media but 

passaged through Galleria mellonella larvae (CN 35:\-Galleria), lane 5, V245 conidia 

initially produced on 1% yeast extract media but passaged through G. mellonella larvae 

(1% yeast extract-Galleria), lane 6, V245 conidia initially produced on intermediate CN 

media but passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 7, V245 

conidia initially produced on 1% yeast extract media but passaged through T. molitor 

larvae (1% yeast extract -Tenebrio. lane 8 ( V275 conidia produced on intermediate CN 

(35:1), lane 9 V275 conidia produced on 1% yeast extract media (1% yeast extract), lane 

10, V275 conidia initially produced on intermediate CN media but passaged through 

Galleria mellonella larvae (CN 35:1 -Galleria), lane 11, V275 conidia initially produced 

on 1% yeast extract media but passaged through G. mellonella larvae (1% yeast extract- 

Galleria), lane 12, V275 conidia initially produced on intermediate CN media but 

passaged through Tenebrio molitor larvae (CN 33\\-Tenebrio), lane 13, V275 conidia 

initially produced on 1% yeast extract media but passaged through T. molitor larvae (1% 

yeast extract -Tenebrio

ii



Fig. 2 Real Time PCR product (180 bp expected size) o f the prlA  gene from the M. 

anisopliae conidia. Lane 1 (lOObp Ladder), lane 2 ( V245 conidia produced on 

intermediate CN (35:1), lane 3 V245 conidia produced on 1% yeast extract media (1% 

yeast extract), lane 4, V245 conidia initially produced on intermediate CN media but 

passaged through Galleria mellonella larvae (CN 35:\-Galleria), lane 5, V245 conidia 

initially produced on 1% yeast extract media but passaged through G. mellonella larvae 

(1% yeast extract-Galleria), lane 6, V245 conidia initially produced on intermediate CN 

media but passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 7, V245 

conidia initially produced on 1% yeast extract media but passaged through T. molitor 

larvae (1% yeast extract -Tenebrio. lane 8 ( V275 conidia produced on intermediate CN 

(35:1), lane 9 V275 conidia produced on 1% yeast extract media (1% yeast extract), lane 

10, V275 conidia initially produced on intermediate CN media but passaged through 

Galleria mellonella larvae (CN 35:1 -Galleria), lane 11, V275 conidia initially produced 

on 1% yeast extract media but passaged through G. mellonella larvae (1% yeast extract- 

Galleria), lane 12, V275 conidia initially produced on intermediate CN media but 

passaged through Tenebrio molitor larvae (CN 35\\-Tenebrio), lane 13, V275 conidia 

initially produced on 1% yeast extract media but passaged through T. molitor larvae (1% 

yeast extract -Tenebrio
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Fig. 3 Real Time PCR product (138 bp expected size) o f the ste l gene from the M. 

anisopliae conidia. Lane 1 (lOObp Ladder), lane 2 ( V245 conidia produced on 

intermediate CN (35:1), lane 3 V245 conidia produced on 1% yeast extract media (1% 

yeast extract), lane 4, V245 conidia initially produced on intermediate CN media but 

passaged through Galleria mellonella larvae (CN 35:1 -Galleria), lane 5, V245 conidia 

initially produced on 1% yeast extract media but passaged through G. mellonella larvae 

(1% yeast extract-Galleria), lane 6, V245 conidia initially produced on intermediate CN 

media but passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 7, V245 

conidia initially produced on 1% yeast extract media but passaged through T. molitor 

larvae (1% yeast extract -Tenebrio. Lane 8 ( V275 conidia produced on intermediate CN 

(35:1), lane 9 V275 conidia produced on 1% yeast extract media (1% yeast extract), lane 

10, V275 conidia initially produced on intermediate CN media but passaged through 

Galleria mellonella larvae (CN 35:1 -Galleria), lane 11, V275 conidia initially produced 

on 1% yeast extract media but passaged through G. mellonella larvae (1% yeast extract- 

Galleria), lane 12, V275 conidia initially produced on intermediate CN media but 

passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 13, V275 conidia 

initially produced on 1% yeast extract media but passaged through T. molitor larvae (1% 

yeast extract -Tenebrio

iv



Fig. 4 Real Time PCR product (147 bp expected size) o f the chyl gene from the M  

anisopliae conidia. Lane 1 (lOObp Ladder), lane 2 ( V245 conidia produced on 

intermediate CN (35:1), lane 3 V245 conidia produced on 1% yeast extract media (1% 

yeast extract), lane 4, V245 conidia initially produced on intermediate CN media but 

passaged through Galleria mellonella larvae (CN 35:1 -Galleria), lane 5, V245 conidia 

initially produced on 1% yeast extract media but passaged through G. mellonella larvae 

(1% yeast extract-Galleria), lane 6, V245 conidia initially produced on intermediate CN 

media but passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 7, V245 

conidia initially produced on 1% yeast extract media but passaged through T. molitor 

larvae (1% yeast extract -Tenebrio. lane 8 ( V275 conidia produced on intermediate CN 

(35:1), lane 9 V275 conidia produced on 1% yeast extract media (1% yeast extract), lane 

10, V275 conidia initially produced on intermediate CN media but passaged through 

Galleria mellonella larvae (CN 35:1 -Galleria), lane 11, V275 conidia initially produced 

on 1% yeast extract media but passaged through G. mellonella larvae (1% yeast extract- 

Galleria), lane 12, V275 conidia initially produced on intermediate CN media but 

passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 13, V275 conidia 

initially produced on 1% yeast extract media but passaged through T. molitor larvae (1% 

yeast extract -Tenebrio
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Fig. 5 Real Time PCR product (120 bp expected size) o f the try I gene from the M. 

anisopliae conidia. Lane 1 (lOObp Ladder), lane 2 ( V245 conidia produced on 

intermediate CN (35:1), lane 3 V245 conidia produced on 1% yeast extract media (1% 

yeast extract), lane 4, V245 conidia initially produced on intermediate CN media but 

passaged through Galleria mellonella larvae (CN 35:1-Galleria), lane 5, V245 conidia 

initially produced on 1% yeast extract media but passaged through G. mellonella larvae 

(1% yeast extract-Galleria), lane 6, V245 conidia initially produced on intermediate CN 

media but passaged through Tenebrio molitor larvae (CN 35:\-Tenebrio), lane 7, V245 

conidia initially produced on 1% yeast extract media but passaged through T. molitor 

larvae (1% yeast extract -Tenebrio. lane 8 ( V275 conidia produced on intermediate CN 

(35:1), lane 9 V275 conidia produced on 1% yeast extract media (1% yeast extract), lane 

10, V275 conidia initially produced on intermediate CN media but passaged through 

Galleria mellonella larvae (CN 35:1 -Galleria), lane 11, V275 conidia initially produced 

on 1% yeast extract media but passaged through G. mellonella larvae (1% yeast extract- 

Galleria), lane 12, V275 conidia initially produced on intermediate CN media but 

passaged through Tenebrio molitor larvae (CN 35:1 -Tenebrio), lane 13, V275 conidia 

initially produced on 1% yeast extract media but passaged through T. molitor larvae (1% 

yeast extract -Tenebrio
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Fig.6 Real Time PCR product (110 bp expected size) of the ribosomal rDNA (5.8S) gene 

from the M. anisopliae sector and parent cultures. Lane 1 (lOObp Ladder), Lane lane 2, 

(SI), Lane 1 (lOObp Ladder), lane 2, (SI), lane 3, (S4), lane 4 (S5), lane 5 (S7), lane 6, 

(S9), lane 7 (S I3), lane 8, (S I6), lane 9, (S 21), lane 10 (V245), lane 11 (V275)
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Fig.7 Real Time PCR product (180 bp expected size) o f the p r l A gene from the M. 

anisopliae sector and parent cultures. Lane 1 (lOObp Ladder), lane 2, (SI), lane 3, (S4), 

lane 4 (S5), lane 5 (S7), lane 6, (S9), lane 7 (S I3), lane 8, (S I6), lane 9, (S 21), lane 10 

(V245), lane 11 (V275)
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Fig.8 Real Time PCR product (138 bp expected size) of the ste l gene from the M  

anisopliae sector and parent cultures Lane 1 (lOObp Ladder), lane 2, (SI), lane 3, (S4), 

lane 4 (S5), lane 5 (S7), lane 6, (S9), lane 7 (S I3), lane 8, (S I6), lane 9, (S 21), lane 10 

(V245), lane 11 (V275)
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Fig.9 Real Time PCR product (147 bp expected size) o f the chy 1 gene from the M. 

anisopliae sector and parent cultures. Lane 1 (lOObp Ladder), lane 2, (SI), lane 3, (S4), 

lane 4 (S5), lane 5 (S7), lane 6, (S9), lane 7 (S I3), lane 8, (S I6), lane 9, (S 21), lane 10 

(V245), lane 11 (V275)
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Fig. 10 Real Time PCR product (120 bp expected size) o f the try 1 gene from the M. 

anisopliae sector and parent cultures. Lane 1 (lOObp Ladder), lane 2, (SI), lane 3, (S4), 

lane 4 (S5), lane 5 (S7), lane 6, (S9), lane 7 (S I3), lane 8, (S I6), lane 9, (S 21), lane 10 

(V245), lane 11 (V275)


