
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

Software frameworks for embedding formal specifications and

documentation in object oriented programming languages.
   

Tao, Shu
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Tao, Shu (2007)  Software frameworks for embedding formal specifications and documentation in object oriented

programming languages..  thesis, Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42302

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42302
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Software Frameworks for Embedding Formal 
Specifications and Documentation in Object 

Oriented Programming Languages

Shu Tao 

Tutor: Dr. Neal A. Harman

Submitted to the University of Wales Swansea in fulfilment of the requirements 
for the Degree of Master of Philosophy of Computer Science

July 2007

1



ProQ uest N u m b e r: 10798010

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10798010

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



LIBRARY



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2 004-2007

Declaration

This work has not previously been accepted in substance for any degree and is 
not being con^up’̂ ntly submitted in candidature for any degree.

oi i  i y  2 q°Q

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. 
Also those other sources are acknowledged by footnotes giving explicit 
references an/tl that a bibliography is appended.

/ / / ? /  1

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for 
photocopying and for inter-library loan, and for the title and summary to be 
madefcyailabl>| to outside organisations.

2



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Dedication

To My Father and Mother!

3



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Acknowledgements

To ensure that this thesis is accurate, complete and targeted at the aim of the 
research, Dr. Neal A. Harman has not only reviewed this thesis and made 
extensive suggestions, but continually pointed me back at the practical 
problems in the progress of the research. A special thanks to Dr. Neal A. Harman 
for all his much-appreciated hard work and guidance. Thanks also to all my 
friends who had supported me in these three years.

4



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Summary

This thesis forms part of a project on formally specifying and documenting 
Object-Oriented programming languages. In particular, this thesis investigates 
the construction of a generic software framework which can provide a formal 
specification and documentation model for C# classes including important 
concepts such as inheritance.

Object-oriented languages are promoted for their ability to provide a modular 
approach to programming, allowing programmers to design classes that 
perform a common set of tasks that can then be easily reused and expanded 
upon. The syntax of the public interface of a class itself can and has been 
documented in a reasonably formal way, the semantics is usually defined simply 
with natural language. In order to try and solve this problem, we use 
self-defined utilities to include formal semantics to improve the quality of the 
documentation. By that means, we can also extract a complete formal 
specification.

Formal specifications and documentations have been proved to be a practical 
way of modelling and testing specific systems when applied to certain kinds of 
problem: mainly safety critical applications, where the need for specific 
mathematical expertise is outweighed by the consequences of system failure. 
What is lacking at the moment is there are no industrial toolsets to make 
development using formal specifications faster and easier. It is hard for people 
to understand and use specifications if they do not know any specification 
language. At the moment it is generally necessary to have substantial 
mathematical knowledge of the underlying logics used by the languages. This 
project is about building a generic toolset which is possible to make the task of 
producing formal specifications in a reasonable and easier way.

5



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Content

Dedication................................................................................................................................................3
Acknowledgements................................................................................................................................. 4

Summary..................................................................................................................................................5
Content............................................................................................................................................ 6

Chapter 1 Introduction............................................................................................................................8
1.1 A Brief Look at Examples...................................................................................................... 14

1.2 Overview of Thesis.................................................................................................................19
Chapter 2 Literature Review and Overview of Chosen Technologies.............................................. 20

2.1 Object-Oriented Programming and C# .................................................................................20
2.1.1 The Current State of Object-Oriented Programming............................................... 20
2.1.2 C #................................................................................................................................. 21

2.2 Documentation........................................................................................................................21
2.3 Formal Specifications............................................................................................................. 23
2.4 Attributes and Reflection in C#............................................................................................. 27

2.4.1 Attributes..................................................................................................................... 28

2.4.2 Reflection.....................................................................................................................30
2.5 X M L .........................................................................................................................................31

2.5.1 Easy Data Transfer and Exchange..............................................................................31
2.5.2 Customizing Markup Languages...............................................................................32
2.5.3 Self-Documenting Data.............................................................................................. 33
2.5.4 Structured and integrated Data...................................................................................34
2.5.5 The Five Pre-existing Entity References................................................................... 34

2.6 X S L ......................................................................................................................................... 35

2.7 Maude...................................................................................................................................... 36
Chapter 3 The Overview of the Research........................................................................................... 38

3.1 Motivation............................................................................................................................... 38

3.2 Bringing in the X M L Specification....................................................................................... 41

3.3 The Executable Algebraic Specification...............................................................................43
3.4 A More Generic Approach.....................................................................................................45

3.5 Overview of the Work in this Thesis.....................................................................................49
Chapter 4 Embedding Generic Formal Specifications and Documentation.....................................51

4.1 Transforming the EADF into C# Code.................................................................  51
4.1.1 Defining the Attributes in X M L .................................................................................51

4.1.2 Handling Constructors: An Extended XM L Format................................................ 59
4.1.3 The Attributes Generator............................................................................................ 63

4.2 Modelling the ESC into XM L Class Specification..............................................................64

6



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

4.2.1 The Structure and the Syntax of the Class Reader......................................................65
4.2.2 Modelling the ESC into XM L Class Specification................................................. 73

4.3 From XM L Class Specification to Maude Specification.................................................... 81

4.3.1 The Translator.............................................................................................................81
4.3.2 Class and its Name......................................................................................................82

4.3.3 Fields............................................................................................................................82
4.3.4 Constructors................................................................................................................ 84
4.3.5 Methods....................................................................................................................... 85

4.3.6 Equations..................................................................................................................... 88
4.3.7 Sorts, Subsorts and Hidden operators........................................................................ 90

4.3.8 Inheritance................................................................................................................... 90
4.4 The Future Development of the Current System.................................................................93

Chapter 5 Examples of Class Specification........................................................................................94

5.1 Array List.................................................................................................................................94
5.2 The Shapes Example............................................................................................................ 103

Chapter 6 Future Development.......................................................................................................... 114
6.1 A Prospect for a Universal Structure................................................................................... 114
6.2 A Prototype of the Universal Object-Orient Class Model..................................................117
6.3 An Alternative Formalism: Pre-Post Conditions................................................................ 121
6.4 Further Work.........................................................................................................................123
6.5 Conclusion............................................................................................................................. 124

Chapter 7 Bibliography.......................................................................................................................126

7



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 1 Introduction

This thesis forms part of a project on formally specifying and documenting 
Object-Oriented programming languages. In particular, this thesis investigates 
the construction of a generic software framework which can provide a formal 
specification and documentation model for C# classes including important 
concepts such as inheritance. The eventual aim of the work here is: to define an 
XML sub-language permits a wide range of formal specification methods to be 
declaratively defined and embedded within a range of different object-oriented 
programming languages; and to build a software system that actually generates 
the corresponding specification/ documentation. By building an 
XML-sub-language we are able to define the behavour we require declaratively 
-  in a style similar to, say, XAML [31] which permits declarative declaration of 
user interfaces. Declarative programming in this style only requires the user to 
state what is required, and eliminates the need to define how it is achieved. This 
is a very substantial project, and it is not possible to complete it within a single 
thesis. Here, we concentrate on a single (algebraic) 
specification/documentation style (though we do partially explore another, 
based on pre and post-conditions), and a single language (C#); the XML 
sub-language is only partially defined, and the corresponding implementation is 
not complete.

This research builds on the work of J. Biddle [1] by generalising it so that 
specification techniques other than algebraic can be used and implementing it 
for the C# programming languages ([1 ] uses Java). Also [1] concentrates on 
the underlying theoretical model of embedded algebraic specification: this 
thesis is concerned with the more practical problem of building a software 
framework for embedding specification (including algebraic specification, which 
forms our main example.) We will introduce the concept of an Embedded 
Specification, ES, which we will use as an intermediary stage in the specification 
process. The ES is intended to show what we consider to be the key information 
in the specification and documentation of an object-oriented class. Metadata and 
datatypes [17] are the fundamental blocks of every object-oriented program, 
and they can be hard to extract from the program due to their various forms. 
Here we combine the ES and XML to represent this data in a more generic way, 
which are more readable and easier to access as well as being less 
language-specific. In order to illustrate the generic tools we have built, we will 
illustrate them with an example based on equations and Maude [40] (which is 
an executable algebraic specification language, see details in Chapter 2.7).

We will also in this thesis address the following smaller aims:



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

1. To automate as much as possible of the generation of the formal 
specification and documentation.

2. To allow a way of embedding the formal specification and documentation in 
a simple format within the C# class itself.

Object-oriented languages are promoted for their ability to provide a modular 
approach to programming, allowing programmers to design classes that 
perform a common set of tasks that can then be easily reused and expanded 
upon. A fundamental concept is that all another programmer would need to 
know is the public interface of a class and they would then be able to utilise the 
class within their own programs. However although the syntax of the public 
interface of a class itself can and has been documented in a reasonably formal 
way, the semantics is usually defined simply with natural language. C# in 
particular offers an XML documentation comment style with three slash marks 
( / / /)  [2]. These comments can be extracted by associated software tools. 
Similarly, Java offers a method of embedding automatically extractable 
documentation in comments [77]. The Visual Studio [43] editor can recognize 
C# documentation comments and helps format them properly, and the C# 
compiler can process these comments into an XML file. The following example is 
a simple C# class with XML documentation comments [44]:

using System;

/ / /  <summary>

/ / / A simple C# Class about Person</summary>

/ / /  <remarks>

/ / /  This class is created fo r  document testing </remarks>  

class Person 

{
/ / /  <summary>

/ / /  In itia lise the myName property</summary>  

private string myName -  "N/A

/ / /  <summary>

///In itia lise  the m yAgeproperty</summary>  

private int myAge =  0;

/ / /  <summary>

/ / /  The class constructor. </summary>  

pub lic  PersonQ 

{}

/ / /  <summary>

///N am eproperty </summary>

9



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

/ / /  <value>

///th e  value o f  Name can be set by users</value> 

pub lic  string Name 

{
get

{
return myName;

}
set

{

myName = value;

}

}

/ / /  <summary>

///A ge  property </summary>

/ / /  <value>

///th e  value o f  Age can be set by users</value> 

pub lic  int Age 

{
get

{
return myAge;

I
set

{

myAge = value;

}

}

/ / /  <summary>

///ove rride  the method ToStringQ in C#</summary>

/ / /  <returns>

/ / /  which returns a string contains both Name and Age.</returns>  

pub lic  override string ToStringQ 

{
return "Name = " + Name +  ", Age -  "  +  Age;

}

/ / /  <summary>

/ / /  M ain code fo r  input and output</summary> 

pub lic  static void MainQ  

{
Console. WriteLine("Simple Properties");

10



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Person person -  new PersonQ;

Console. WriteLine("Person details - {0}", person); 

person.Name -  "Joe"; 

person.Age = 99;

Console. WriteLine("Person details - {0}", person); 

person.Age  + =  1;

Console. WriteLine("Person details - {0}", person);

}

}

We can compile the above C# example and generate the XML Documentation 
file:

<  ?xml version = "1.0 "?>

<doc>

<assembly>

<name>ConsoleApplication— XMLdoctesting</name>

</assembly>

<members>

<member name="T:Person">

<summary>

A simple C# Class about Person</summary>

<remarks>

This class is created fo r  documente testing </remarks>

</member>

<member nam e="FPerson. myName ">

<summary>

In itia lise  the myName property</summary>

</member>

<member name="F:Person.myAge">

<summary>

In itia lise  the myAge property</summary>

</member>

<member nam e="M:Person.#ctor">

<summary>

The class constructor. </summary>

</member>

<member name="M:Person. ToString">

<summary>

override the method ToStringQ in C#</summary>

<returns>

which returns a string contains both Name and Age. </returns>

</member>

<member nam e=”M:Person.Main ">

11



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<summary>

M ain code fo r  input and output</summary> 

</member>

<member name="P:Person.Name " >

<summary>

Name property </summary>

<value>

the value o f  Name can be set by users</value> 

</member>

<member name="P:Person.Age">

<summary>

Age property </summary>

<value>

the value o f  Age can be set by users</value> 

</member>

</members>

</doc>

As we can see, the XML documentation file could be very long if the source C# 
file is large, although it can be read, but it is not very useful in that format. 
Visual Studio also provides another tool to generate a Code Comment Web 
Report [3]. The result is a set of HTML files that can be viewed from a browser, 
which is simple and easy to use but contains too much information and feels 
tedious to read if the program is very big. The following is what the code 
comment web report looks like in the browser:

C:\DQCuments and Settings\5hu Tao\My Documents\Visual Studio Pro)ects\ConsoleApplication— XMLdoctestlifv |||

Code Comment Web Report

ConsoleApplication XMLdoctesting Solution
Pro ject

ConsoleApplication— XMLdoctesting

Description

Figurel: Code Comment Web Report Main Page

After we click on the link, we will get the following details of the sample C# class 
in the browser. Also we can get other details of each object by clicking the links:

12



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Person Class
A simple C# Class about Person

Access: Project 

Base Classes: Object

• • • • •  :
mvName

mvAoe

Person

Name

Age

[ToString

Main

Initialise the myName property 

Initialise the myAge property 

The class constructor.

Name property 

Age property

override the method ToString() in C#  

Main code for input and output

Remarks:

This class is created for documente testing

Figure2: Details of the Class

Person.ToString Function
override the method ToStringO in C# 

Public string ToString ( )

string
which returns a string contains both Name and Age.

Figure3: Details of ToStringO

This documentation provides very clear syntactic information -  it completely 
and unambiguously describes how to call the methods and create an instance of 
the class. However, the behaviour of the class is not as obvious -  at least, not in 
complex cases.

Java also offers similar API documentation [4] which specifies the syntax of the

13



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

public interface of all its built in classes together with an informal description for 
the semantics of the class and its methods, fields and constructors. The javadoc 
tool [77] is also able to generate API documentation in the same format for a 
programmer's own classes. As stated above, as with C# the syntax is formal but 
the informality of the semantic description means that all this automatically 
generated documentation can be often difficult to understand, ambiguous or 
even incorrect.

In order to try and solve this problem, we could extend the current 
documentation tools or use self-defined utilities to include formal semantics to 
improve the quality of the documentation. We need to note, the point of the 
work here is to specify and document C# programs (attributes, typing, 
information, etc.) but not the content of the programs. By that means, we can 
also extract a complete formal specification. If the formal specification is 
executable, it can also be used for testing. There are many different formal 
specifications that are possible, such as algebraic and equational specification, 
pre- and post- conditions and Z notation. Some specifications systems are 
executable and some are not. Also there are several tools available to reason 
about formal specifications such as ACL2 [5], PVS [6] and Maude. The generic 
tools we are trying to create are intended to be capable of generating the formal 
specification in many different forms, which should be highly configurable and 
extendible tools.

This research is based on J. Biddle's PH.D. Thesis [1], where the main interest 
was Algebraic Specification. Therefore, the examples in this dissertation to 
illustrate our tools and techniques will mostly be based on Algebraic 
Specification -  specifically using the Maude language. However it is not 
necessary for our generated specification that it should be written in Maude. It 
is simply the format we have chosen for our examples. The process could if 
desired be adapted to a different form of specification -  either a different 
Algebraic Specification language, or a different technique altogether. We will 
show an example based on a different specification technique in Chapter 6.

1.1 A Brief Look at Examples

The aim of the project is to produce a set of highly configurable tools that enable 
a range of different types of formal specification to be embedded in C# 
documentation. I t  is important that the specification notation closely adheres to 
the syntax and style of the programming language used in order to make it 
natural for a programmer to use. This we have attempted to do as much as 
possible with the syntax of our specification. For example, in the case of 
Algebraic Specification, we would like to use the following notation when

14



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

pushing an element x into a stack S:

S.push(x)

Instead of the (more usual for Algebraic Specification):

PushCS, x)

However, the second notation is commonly used in many algebraic languages. It 
is also important that the internal equations which define the common ancillary 
functions of the class (not the equations used to define the semantics of the 
methods themselves as written by the programmer) should be automatically 
generated as much as possible from the program source code.

For example, when representing the behaviour of a public field, we can 
automatically generate the required equations. Given, say, a field / in some class 
A, we could automatically generate something like (specific syntax being 
language dependent):

A .(i:=x).i = x

Where class field -> value" is the field lookup operator, and
class field value -> class" is the field assignment operator. See below for 

a definition of the use of in these operators.

The following C# stackOfElt class (an Integer Stack Class) with the embedded 
specifications will be the main illustrative example through out this dissertation 
(note we omit the details of method implementations as these are not needed 
here):

//an example code o f  an in t Stack Class 

pub lic  class stackOfElt 

{
pub lic  int E lt; 

pub lic  Stack myStack;

//constructor—create an empty stack 

pub lic  stackOfEltQ

//constructor—create an empty stack w ith a element 

pub lic  stackOfElt (in t E lt)

{ . . . }

15



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

//return the value o f  the f ir s t  element in the stack

pub lic  int top()

(... }

//remove the f ir s t  element from  the stack 

pub lic  vo idpop()

//add a new element into the stack 

pub lic  void push (in t E lt)

{ . . . }

//return the value o f  the f ir s t  element in the stack and remove it from  the stack 

pub lic  in t topAndpop ()

{ . . . }

}

Our methodology embeds specification information (ES) inside attributes (see 
more on Chapter 2.4.1). Here is the stackOfElt example with an embedded 
algebraic specification:

[H idden("op EmptyStack: ->  stackO fE lt")] 

pub lic  class stackOfElt 

(
[V ars("E :in t; S:Stack")] 

pub lic  in t E lt; 

pub lic  Stack myStack;

pub lic  stackOfEltQ  

{:■}

pub lic  stackOfElt (in t E lt)

{ . . . }

[Eq(("((S  .push(E)) .s) .top ()==  E . ",M Type="Query")] 

pub lic  int top()

( . . . )

[Eq("((S .push(E )) .s) .p o p ()~ -  S .",,M Type-"C om m and")] 

pub lic  vo idpop()

( . . . )

[E q("((S  .push(E)) .s) .p o p ()-~  S .",MType= "Command")] 

pub lic  vo idpush(in t E lt)

16



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

{ . . . }

[E qs(” ((S .push(E)) .s) .topAndpopQ .q = =  E ,;((S .push(E)) .s) .topAndpopQ .s = =  

S . ",MType="Query and Command")] 

pub lic  int topAndpop ()

}

We will use the stackOfElt class as a consistent example throughout this thesis. 
It is important to note that we are not concerned with the details of specifying 
stacks. In fact, specification of stacks is inherently difficult [32]. However, we 
are only using the stackOfElt class as a structural example -  although the 
equations we use are broadly correct, they are also rather simple (to make the 
example clear) and not intended to handle every difficult case.

The C# descriptions of the methods themselves contain much of the information 
to construct specifications, such as their return types and types of parameters -  
that is the syntax. But that is not enough. We use the attributes (see chapter 
2.4.1) in C# to embed the other necessary information and some 
documentation1. These attributes can be attached to most entities in the C# 
class. The following Maude code is generated by our software tools from the 
above C# class:

/m od stackOfElt is 

protecting s tack. 

sort s tackO fE lt. 

subsort stackOfElt < s ta ck . 

op EmptyStack: ->  s tackO fE lt.

var E : I n t .

var S : s tackO fE lt.

op _.top() : stackOfElt ->  s tackO fE ltln t.

subsort stackO fE ltlnt < s ta ck ln t.

op _.base.top() : stackOfElt ->  s tackO fE ltln t. 

var A : s tackO fE lt. 

eqA .base.topQ.q = 0.

1 We can see there are even duplicated equations existing in our original attributes (our tools 
are able to take out the duplications inside the ES). This is a consequence of our approach to  
algebraic specification (see details in Chapter 4 ).

17



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

sort s tackO fE ltln t.

op : stackOfElt In t  - >  s tackO fE ltln t.

op _.q : stackO fE ltlnt ->  I n t . 

op _.s : stackOfE ltlnt - >  s tackO fE lt.

op _.pop() : stackOfElt - >  stackO fE ltVoid.

sort stackOfE ltVoid.

op : stackOfElt Void ->  stackO fE ltVoid.

op _.q : stackOfEltVoid  - >  Void. 

op _.s : stackOfEltVoid  - >  stackO fE lt.

op _.push(_) : stackOfElt In t ->  stackOfE ltVoid. 

op _.topAndpop() : stackOfElt - >  stackO fE ltln t.

eq ((S .push(E)) .s) .top() .q -  E . 

eq ((S .push(E)) .s) .pop() .s = S . 

eq ((S .push(E)) .s) .topAndpopQ . q - E .  

eq ((S .push(E)) .s) .topAndpopQ .s = S . 

endfin

In the above Maude example, several sorts and operations are introduced:
•  That the presence of an in an operation name indicates syntactically 

where an argument to that operation is placed;
•  That the behaviour of the operations is defined by the equations -  which 

can be conditional though there are none here; and
•  That the variables are simply placeholders for the definition of the 

equations.

Sorts can be considered as an alternative name for type. A sort like 
stackOfEltlnt, is a pair which takes two arguments (sort stackOfElt and sort Int) 
and combines them into a new sort consisting of a pair (see more about Maude 
in Chapter 2.7 and see more about this example in Chapter 4.3). We can see it 
could be quite a lot of work if written by hand. Furthermore we have left out 
large amounts of supporting structural specification necessary when, say, a 
class involves inheritance. This code is generated from the C# stackOfElt class, 
and it is obvious that the result of this is to successfully ease the work of writing 
specification and documentation.

In our illustrative examples, we try and specify C# classes by modelling the 
structures and some features of C#. It is our aim to provide a strong basis for 
specifying C# classes that in future work can be extended and improved upon. 
We will also attempt to model functionality that we consider interesting such as 
modelling C# reflections. Of course it is not possible for us to model every



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007___________________________________________________________________________________________

feature of C# in this dissertation, but the generic framework we intended to 
build have the ability to model many other features if needed.

1.2 Overview of Thesis

The structure of this thesis is as follows:

Chapter 2 contains literature review and discusses the technologies that will be 
used. We will consider documentations and the formal specifications. We will 
look at the main technologies we have chosen in our project. C# is the main 
language used thorough this project and we will pay particular attention to the 
attributes and reflection. Also we will consider at XML which is used to store and 
transform data. Finally we will look at Maude which is an algebraic language 
which can be used to represent specifications.

In Chapter 3 we will have a brief look at the whole structure of our software tools. 
We will introduce the functions of the each part of our research, the motivation 
behind the design decision and present the overall scope of the work and its 
progress.

In Chapter 4 we will have a detailed look at the modelling system of our generic 
toolset. We will show how we can transform a C# class into an XML specification 
and then turn the XML file into another formal specification -  specifically using 
algebra. We will first examine how we fully model the basic structure of a class. 
We will then examine how we fully model the inherited features of a class. We 
choose Maude as a target language to illustrate the modelling process.

In Chapter 5 we will look at examples C# classes that we have pre-defined. We 
will look at modelling arrays and how to generate equations for arrays. We will 
look at a simple example to model multiple levels of inheritance.

In Chapter 6 we will summarize the work and suggest areas where further work 
can be done to build upon the work we have presented here. We will propose a 
prototype of the universal object-orient class model which can be used with 
other formalisms. We will consider a pre/post-condition 
documentation/specification model.

19



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 2 Literature Review and Overview 

of Chosen Technologies

This chapter discusses the main technologies we have used in this project and 
explains the reason we choose them. It also surveys the relevant literature.

2.1 Object-Oriented Programming and C#

In this section we will give a brief overview of the current state of 
object-oriented programming languages. We will pay particular attention to C# 
and will explain why we have chosen C# as the language that we wish to specify.

2.1.1 The Current State of Object-Oriented Programming

The first example of object-oriented programming dates back to Simula 67 in 
the 1960s [78]. But the first industrially successful object-oriented
programming language was C++ [7] [8]. The intention when it was designed 
was to make sure that the language would achieve a wide acceptance. One of 
the key factors in this was designing it to be a superset of the language C which 
was and is a very popular language particularly in its use for the development of 
the UNIX operating system [9] [10]. This means that both C and C++ code can 
be compiled in a C++ compiler [10].

Another popular object-oriented language in large commercial use today is Java. 
Java was developed by Sun Microsystems [11]. Java is a language that supports 
multi-threading, distributed programming and better security than C++ 
provided [12]. The chief advantage of Java and the one Sun Microsystems 
identifies as its core feature is the "Write once, run anywhere" (WORA) [13] 
principle. A Java program can be written on any platform and then can be run on 
any platform which has a Java Virtual Machine installed provided certain rules 
are obeyed.

20



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

2.1.2 C#

.Compared with Java and other object-oriented language, C# is the newest 
object-oriented programming language which is rapidly growing in popularity in 
recent years [14] [15]. C# is a strongly typed objected-oriented programming 
language written by Microsoft to target the .NET platform [16]. As a new 
language, C# draws on the lessons learnt on the past many years and has the 
influence of Java, C++ and many other languages. Microsoft expects C# 
combines strength of C (high performance), C++ (object-oriented structure), 
Java (high security), and Visual Basic (rapid development) [17]. It is intended to 
improve on the structure of C++ and especially Java in terms simplicity and 
performance. For Java programmers, the C# syntax is very similar and the 
semantics are familiar. One advantage C# has over Java is that it provides a 
better object-oriented syntax for much faster accessing member fields of an 
object than Java does using properties (It is certainly more convenient and 
syntactically more concise).

One of the important features of any object-oriented language is its support for 
defining and working with classes. Classes define new types, methods and 
constructors which allow the programmer to implement encapsulation, 
inheritance and polymorphism [18].

As stated in Chapter 1, C# supports a new XML style of inline documentation 
that simplifies the creation of online and print reference documentation for an 
application. C# also provides component-oriented features, such as properties, 
events, reflection and declarative constructs (called attributes) [18]. This 
feature benefits us a lot since attributes and reflection are both principle 
technologies we used in our project. We will explain them in detail in the 
following sections.

2.2 Documentation

When we build software or even just write a short program, code alone is 
insufficient. Also we may wish to enhance the software, either by improving 
present facilities, or by adding new ones. Furthermore, it may later become the 
responsibility of programmers who did not originally write it. Comprehensive 
documentation is usually considered to comprise these activities of error 
correction and enhancement [61]. Software documentation normally contains 
three parts:

•  Historic Documentation: This contains information about the creation of the

21



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

software, including general strategic plans and updates.
•  System and Programming Documentation: This gives full details of the 

program, describing various aspects of the class, fields, methods and so on. 
And this is the part relevant with our research. (Of course, classes, fields 
and methods are only relevant to Object-Oriented programming)

•  Test Documentation: This is a record of tests designed to prove that the 
software is working correctly, which includes test data and expected results.

Documentation is usually embedded within the source code and stays in the 
form of comments. For example, as we saw in the first example of Chapter 1, we 
can use triple slash ( / / / )  to write XML documentation (see Chapter 1). Most 
programmers would write this documentation while producing the source code. 
There are quite a lot of programmer software tools providing the utilities to 
integrate the documentation and source codes, and also able to automatically 
generate the documentation for programs, such as specifications of functions 
and parameters. Examples are the Code Comment Web Report for C# and 
javadoc for Java (both see Chapter 1).

It is important for a good program to have a clear, simple and detailed 
documentation which is not tedious to read, it should be able to answer all 
questions about the operational performance of the software. Otherwise it will 
be hard to maintain the source code once we want to update it. Also professional 
documentation should define and explain the application programming interface 
(API), data structures and even the algorithms. The documentation should be 
precise and unambiguous. That is a key reason for including formal, 
mathematical documentation.

Literate programming is a well known concept of software documentation, 
which is introduced by Donal Knuth in 1981 [62]. Literate Programming tries to 
combine the programming source code and the documentation together, which 
makes the program primarily for humans to read easily. This contrasts the 
traditional idea that we create the source code for computers to read [64] [65]. 
The following example is a simple program to calculate the area of a circle:

-  clearscreen

- p r in t text Please type your name:

- store input

- p r in t Hello  there,

- p r in t value

- p r in t . Nice to meet you.

- newline

- newline

- p r in t text Let's w ork out the area o f  a circle.

- newline

22



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

-  p rin t text Please enter the radius o f  the circle in fu rlongs:

- store input

- m ultiplyby value

- m ultiplyby 3.14159

- p r in t Thank you

- newline

- p r in t text The area o f  the circle is

- p rin t value

- p r in t text square furlongs.

- newline

- newline

This example is a basic literate programming, which runs in the query-response 
mode of operation. First, it asks the name of the user and gives greetings, and 
then it asks the value of radius of the circle and calculates the output. As we can 
see from this example, the basic principle of literate programming is easy to be 
read by human from the program itself. However, for complex cases, it is not 
clear that this form of documentation is sufficiently precise, or even that easy to 
read.

2.3 Formal Specifications

A formal specification is a description of a program in a mathematical form. It 
should precisely define some aspect of a system: typically, what the system is 
intended to functionally do, though other aspects could be defined (for example, 
in the case of concurrent/parallel systems, safety and/or liveness properties). 
Formal specifications can be used to prove the correctness of a system by 
formally showing that the specification and the corresponding implementation 
have the same behaviour [68].

There are several formal specification methods in existence. For example:
•  Pre- and Post- Condition
•  Algebraic and Equational Specification
•  Z Notation
•  B Method
•  Process Calculus

Design by contract (DBC) is a methodology for designing programs on the basis 
of mutual obligations and benefits based on Pre- and Post- Conditions [45] [46] 
[47]. By applying this principle to an object-oriented program, there is a client

23



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

and a supplier who both agree on a contract. The supplier has to satisfy some 
obligations for the client and the client has to give the corresponding benefits. 
The functions and procedures specify the Pre-condition and Post-condition. The 
Pre-condition is an obligation for the client and a benefit for the supplier. The 
Post-condition is an obligation for the supplier and a benefit for the client. This 
concept is defined by Bertrand Meyer with his design for the Eiffel programming 
language [48]. DBC has been accepted as a common concept of object-oriented 
languages and can be used in most popular object-oriented languages such as 
Java, C++ and C#. All the classes if design by contract is used, would define 
these relationships between Client classes and Supplier classes. A Client class 
can make calls to Supplier classes which can return the state of the Supplier 
class. And the Supplier class can provide a return state and data that is required 
by the Client class. Pre- and Post- Conditions can be used as a formal 
specification to verify if the implemented code does precisely do what the 
requirements claimed (see more on Chapter 6). The Java Modelling Language 
(JML) [81] which also embeds pre/post conditions -  as well as other stuff -  in 
javadoc comments.

Algebraic specification is an alternative formal method, and the one that will be 
principally used in this thesis. Let us have a look at a single-sorted algebra first 
[1, 49, 50, 51, 52, 53, 54, 55]:

B = (B | true, false, not, and)

We take the algebra B of Booleans with sort B = {true, false}, constants true 
and false, the negation function not and the function and defined as follows:

not(true) = false 
not(false) = true 
and (true, true) = true 
and (true, false) = false

and (false, true) = false 

and(false, false) = false

And here is a similar many-sorted algebra:

Nat Bool = (N, B\ true, false, not, and, succ,+, eq) 

eq: N 2*B N

24



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Algebraic specification is used as the basis of a range of tools and languages. 
The Common Algebraic Specification Language (CASL) is an algebraic 
specification based on first-order logic [66].

CASL was designed by CoFi (The Common Framework Initiative) [66] by 
introducing Partial functions and subsorting. It is an expressive language and 
can be used to specify conventional software. The following example is the stack 
class in CASL [58]:

spec
Stack[sort Elem] = 
sort 

stack 
ops

empty: stack
push: stack * Elem -> stack 
pop: stack ->? stack 
top: stack ->? Elem 

axioms

not def pop(empty) 
not def top(empty) 
forall s : stack; e : Elem

■ pop(push(s,e))  = s
■ top(push(sfe)) = e

end

The above specification is for a stack example of sort stack and with four 
operations:

•  Operation Empty, create an empty stack
•  Operation Push: add a new element into the stack
•  Operation Pop: a partial function remove the top element
•  Operation Top: a partial function return the top element

A partial function is the one which is not defined on all its arguments. For 
example "squareroot:N->R (N=naturals/ R=reals)" is a total function, because 
all natural numbers (i.e. >= 0) have square roots but "squareroot:Z -> R 
(Z -in tegers)" is not because negative numbers do not have square roots.

When we define the axioms, for partial functions top and pop, we specify them 
to say they are not defined on empty stacks. Also we define the equations for 
pop and top. The principle design paradigm is to use Abstract Data Types (ADT) 
to specify the function and design of software packages. CASL consists of three

25



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

types of specification [1] [57] [66]:

•  Basic Specification: specifications for single software modules
•  Structured Specification: present the specifications in modular style
•  Architectural Specification: allow a large specification to be represented in 

small logically organised smaller specifications.

Finally each of these three groups of specifications can be gathered together 
into libraries allowing the storage and distribution of named specifications [63].

Another important Algebraic specification language is Maude (see more in 
Chapter 2.7) which we have already introduced previously. Maude is a high level 
language that provides support for writing specifications that can then be 
executed using rewriting logic [40]. Maude also provides support for equational 
specification as Maude uses membership equational logic. Maude use functional

modules to define theories in equational logic using equalities of the form t  = t'

and conditional equalities of the form t  = t i f  t" ; and also membership

axioms of the form t:S  where t is a term of sort S (there are also conditional 
membership axioms). Maude can be used to module object-oriented systems by 
using its functional modules.

Consider the sorts Z of integer and N of natural numbers. We can define a 
subsort relation between these: "A/ < Z "  because all natural numbers are also 
integers - though not the other way around. A conditional membership axiom 
might be: "a :N ifa  >= 0", where a is a variable of type Z. That is, we can narrow 
a variable of one sort (Z) to another more restricted sort (N) if a condition is met 
(a >=0).

Another important specification formalism is the Z notation. The Z notation is a 
formal specification language used for describing and modelling computing 
systems [67]. Z was originally proposed by Jean Raymond Abrial in 1977 [59] 
and has been developed at the PRG (Programming Research Group) at the 
Oxford University Computing laboratory (OUCL) afterwards. Z is based on the 
standard mathematical notation used in axiomatic set theory, lambda calculus, 
and first order logic [60]. However, Z is a non-executable specification 
language.

The B method is a formal method based on AMN (Abstract Machine Notation), 
which supports development of programming language code from formal 
specifications [67] [70] [71]. The B method is similar to the Z notation since 
they were both developed by Jean Raymond Abrial. But the B method is more 
focused on the programming code rather than on the formal specification. There

26



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

is a good tool support for the B method to make it easier to implement a formal 
specification, which makes B practically useful in commercial design, such as in 
the Paris Metro Line 14 [79].

The last formal method we would like to talk is the family of the Process calculus. 
In computer science, Process calculus is mainly related to formally modelling 
concurrent systems, which includes n calculus, CSP and CCS. CSP 
(Communicating Sequential Processes) is a formal language for describing 
patterns of interaction in concurrent systems [72] [73]. CSP was developed by 
C. A. R. Hoare and has been practically used in industry as a tool for specifying 
and verifying concurrent systems. CCS (Calculus of Communicating System) 
was developed by Robin Milner, which models indivisible communications 
between exactly two participants [74]. Later on, Robin Milner, Joachim Parrow 
and David Walker together developed n calculus based on the work of CCS. n 
calculus is able to model concurrent computations whose configuration may 
change during the computation [75]. n calculus could be a universal model of 
computation and has been applied into several practical applications such as 
modelling business processes (which is also known as the basis of Business 
Process Modelling Language).

Formal specifications have been proved to be a practical way to modelling and 
testing specific systems when applied to certain kinds of problem: mainly safety 
critical applications, where the need for specific mathematical expertise is 
outweighed by the consequences of system failure. What is lacking at the 
moment is there are no industrial toolsets to make development using formal 
specifications faster and easier. It is hard for people to understand and use 
specifications if they do not know any specification language. At the moment it 
is generally necessary to have substantial mathematical knowledge of the 
underlying logics used by the languages. This project is trying to make a generic 
toolset which is possible to make the task of producing formal specifications in 
a reasonable and easier way.

2.4 Attributes and Reflection in C#

This project relies quite heavily on the attribute and reflection technologies of 
C#. In this section, we discuss and explain these technologies.

Before discussing attributes and reflection, we need to introduce Metadata. 
Metadata is information about the data stored along with your program, which 
includes data about the types, code, assembly and so on. Attributes are a 
mechanism for adding metadata, such as compiler instructions and other data 
about methods, and classes. Reflection is the process by which a program can

27



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007___________________________________________________________________________________________

read its own metadata, which is mainly about extracting metadata from a 
program itself.

2.4.1 Attributes

An attribute is an object in a C# program, which represents data that you want 
to associate with some elements or information of the code. The elements are 
referred to as the target of that attribute. For example, the pre-defined attribute 
[WebMethod], which is used in C# Web Service programs to invoke a method as 
a web service that is able to provide proper functions in the web browser [19]:

[W ebMethod]

Public string HelloW orld()

{
Return “H ello  W orld";

}

Attributes come in two forms: pre-defined and custom. Pre-defined attributes 
are supplied as part of the Common Language Runtime (CLR), and they are 
integrated into C# working as keyword-like descriptive declarations. So 
[WebMethod] is a pre-defined attribute [17] [20] [21]. Most C# Programmer 
would normally just use these pre-defined attributes to modify the C# source 
code. Custom attributes are attributes we create for our own purposes.

Custom Attributes are very powerful tool in C# and here we used it as one o f the 
main technologies in this research. For example, in a small library, we have a 
database to record all the books, but we may have some bugs in these records 
and we want to link these bugs report to specific fixes in the code. Then we can 
do like [17 ]:

[F ixA ttri(4978, “ Computer Graphic v 2 ” , “2 /21/2006” , “John Lee"

Comment = “Book Writer E d ited "]

We can now write a program to read through the metadata to find these 
attributes and update the database. The attribute would serve the purposes of 
a comment, but also allow us to retrieve the information programmatically 
through reflection which we will discuss later.

Like most things in C#, attributes are embedded in the classes. Before we 
create a custom attribute in our program, we need to derive the new custom 
attribute class from System.Attribute, for example [22]:

28



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

pub lic  class F ix A t t r i : System.Attribute

We also need to tell the compiler which kinds of elements this attribute can be 
used with by specifying the attribute target [23]:

[AttributeUsage(AttributeTargets.Class \

AttributeTargets. Constructor \

AttributeTargets.Field \

AttributeTargets.Method \

AttributeTargets. Property,

A llow  M ultip le  = true)]

In this example, A llow M ultip le  is set to true, indicating that class members can 
have more than one FixAttri assigned. In this case, FixAttri can be attached to 
classes, constructors, fields, methods and properties. Note that AttributeUsage 
is itself an attribute.

Every attribute must have at least one constructor. Attributes have two types of 
parameters: positional and named. In the FixAttri example, the comment is a 
named parameter (that is, identified as a name-value pair), and the others are 
all positional parameters (that is, identified by their position in the argument 
list). Positional parameters are passed in through the constructor and must be 
declared by the proper order in the constructor:

pub lic  F ixA ttri (in t bookID, string bookName, string bookDate, 

string bookWriter)

{
This.bookID -  bookID;

This.bookName = bookName;

This.bookDate -  bookDate;

This.bookWriter = bookWriter;

}  ■

Named parameters are implemented as properties [80] and we only have 
Comment as the Named parameter in FixAttri example:

pub lic  s tiing  Comment 

{
get

{
return comment;

}
set

29



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

{
comment = value;

}
}

Positional parameters are implemented as read-only properties:

public in t BookID  

{
get

{

return bookID;

}

}

The two types of the parameters make attributes more flexible. When using the 
attributes, the positional parameters must appear but the named parameters as 
optional.

The information in the Attributes can be considered as Embeded Specifications 
(ES) which we have introduced in Chapter 1.

2.4.2 Reflection

In order to access the attributes in the programs, we need to use reflection. 
Along with the Type and TypedReference classes in C#, reflection can 
dynamically create an instance of a type which binds an existing object, 
provides the access for examining and interacting with its metadata [24] [25].

Reflection is generally used for the following four tasks [24] [26]:
•  Viewing metadata
•  Performing type discovery
•  Invoking properties and methods on objects which can be identified only at 

runtime
•  Creating types at runtime

The full details of the usage of the reflection in C# are complex. In this project, 
we mainly use it to view metadata and discover types. Here we would give a 
brief idea how we would use it in C# and will describe it in more depth in the 
later chapters at the relevant points. Let us have a look at the following 
example:

30



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

System.Re flection.M em ber In fo  in f  —typeof(myExampleClass);

The object System.Reflection.Memberlnfo is pre-defined in C# to discover the 
attributes of a member and to provide access to the metadata [27] [28]. The 
operator typeof returns an object of type Type. The Type class is the root of the 
reflection classes and is the primary way to access metadata. Type derives from 
Memberlnfo and encapsulates information about the members of a class.

object[ ]  myAttributes;

myAttributes -  inf. GetCustomAttributes(typeof(FixAttri),false);

On the above example code, we could call GetCustomAttributes on the 
Memberlnfo object, passing in the type of the attribute we defined before in the 
previous examples [29] [26]. We get back an array of objects in FixAttri, which 
are bookID, bookName, bookDate and bookwriter in the proper order, for 
example:

Foreach (object attribute in myAttributes)

{
F ixA ttr i fa  = (F ixA ttri) attribute;

mybookID  = fa . bookID; 

mybookName = fa.bookName; 

mybookDate -  fa . bookDate; 

mybookwriter = fa .bookw rite r;

}

2.5 XML

XML is currently the main standard industry format to share and store data [30]. 
XML is derived from SGML (Standard Generalized Markup Language). SGML is a 
metalanguage to define markup languages for documents, which was 
developed in the 1960s by IBM [69]. SGML provides a variety of markup 
syntaxes that can be used for many applications, but its complexity prevented 
itself to be widely accepted. XML simplifies SGML (for example, by requiring all 
tags to be closed) while not significantly losing expressibility. In this project, we 
use XML files as the intermediate format to store, transfer and exchange data.

2.5.1 Easy Data Transfer and Exchange

31



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Programs could transfer and exchange data easily if all the data are in the same 
format, however, most programs have historically had their own specified data 
format. We always need conversion programs to let applications transfer data 
between themselves. The data formats have become so complex and even an 
upgraded software can not read data from an earlier version of the same 
software.

In XML, data and markup is stored as a simple text file that we can access and 
configure at anytime. And compared with many other data formats, like 
Microsoft Excel which can use up to five times as much space (you may try a 
simple experiment by just storing some texts in Microsoft Word and a XML file), 
XML files are smaller and more efficient in storage. Also at the moment, many 
modern programming languages (for example, Java and C#) have extensive 
APIs for parsing, manipulating and writing XML formatted data.

2.5.2 Customizing Markup Languages

<?xm l version = "1.0"?>

<Class>

<Name>Shape</Name>

<Hidden>

<O peration>op AShape : ->  Shape</Operation>

<Com m ent/>

</H idden>

</Class>

The XML above is a simple example of the notation that will be used in this 
thesis. As can be seen, the Markup is customizable. We have introduced the 
Class, Name, Hidden, Operation and Comment tags -  these do not pre-exist in 
XML. Note also the syntax of the empty Comment tag. So, if someone creates 
a data file based on XML, we can add the extension whatever we want easily, 
and which shows XML is very flexible [33]. For example, we can change the tag 
<Hidden> to <HiddenOperation> and extend the example with new tag content 
<MethodName>\

<?xm l version="1.0"?>

<Class>

<Name>Shape</Name>

<HiddenOperation>

<O peration>op AShape : ->  Shape</Operation>

32



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Comment />  

</H iddenOperation>  

<MethodName>Area</MethodName>  

</Class>

2.5.3 Self-Documenting Data

The data in XML files is self-describing if we pick good (semantically appropriate) 
tag names. Let us have a look at the following example which takes from the 
project:

<?xm l version="1.0"?>

<Class>

<Name>stackOfElt</Name>

<Hidden>

<O peration>op EmptyStack -& g t; StackOfElt</Operation>

<Comment />

</H idden>

< F ie ld  T ype="in t">E lt< /F ie ld>

< F ie ld  Type="Stack"> myStack</Field>

<M ethod Type="Query">

<Name>top</Nam e>

<ParameterType />

<MethodReturnType>System.Int32</MethodReturnType>

<Comment> Return the top element o f  the stack</Comment>

</M ethod>

</Class>

< ? xm lve rs io n= ” 1 .0 ” > , is standard XML processing instruction which indicates that 
this is a XML file and the version is 1.0. At the moment, this is the only version 
available. Based solely on the names of each XML element in the above example, 
we can determine fairly easily what is being represented. This example is simply 
given some basic information about a C# class, like <Name>stackOfElt</Name>  

tells us the class name is stackOfEit. Note that although XML files can be quite 
descriptive if good tag names are chosen, they are not that easy for humans to 
read. (For notation "&gt;" see Chapter 2.5.5)

33



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

2.5.4 Structured and integrated Data

Another useful aspect of XML is that it lets people to specify not only data, but 
also the structure of data and how various elements are integrated into other 
elements. This is very useful and important when we are dealing with complex 
data.

<?xml ve rs ion -"1 .0 "?>

<StudentList>

< UpdateDate >02192006</UpdateDate >

<Student>

<Num ber> 101 </Number>

<Name>James</Name>

</Student>

<Student>

<Num ber> 1 OS </Number>

<Name> Linon</Nam e>

</Student>

</StudentList>

In the above example, each <Student> element needs to enclose a <Number> 
and a <Name> element. But the <UpdateDate> element can not move into the 
<Student> element. This emphasis on the correctness of documents is strong in 
XML and we can use DTD (Document Type Definition) or XML schemas to make 
sure the data in XML file is kept in the proper format [33]. Most XML browsers 
are able to check the XML files to see if they are well-formed or valid according 
to a particular DTD or schema.

2.5.5 The Five Pre-existing Entity References

There are five pre-defined entity references in XML. An entity references is 
replaced by the corresponding entity when the XML document is processed. We 
would like to note them here as they appeared in our XML Class Specifications. 
The following are the five pre-defined entity references in XML and the 
corresponding characters they are replaced:

•  &lt; replaces <
•  &gt; replaces >
•  &amp; replaces &

34



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007____________________________________________________________________________________________

•  &apos; replaces'
•  &quot; replaces"

2.6 XSL

The Extensible Stylesheet Language (XSL) is a language for defining and 
transforming XML document [35]. XSL has two abilities: transformation and 
formatting [35]. The transformation part is able to transform the structure of 
XML documents into different forms such as PDF and HTML, and the formatting 
part is able to format and style the XML document in various ways [36]. In this 
project, we simply use XSL to manipulate our XML documents and transform 
them into a formatted file that is easy to read. For example, in some popular 
browsers like IE and Firefox, the XML documents we generate would be simply 
displayed using the XML as we created it:

<Hidden>

<O peration>op AShape : -> Shape</Operation>

<Comment />

</H idden>

But we can tell the browsers how to display the elements we have created in the 
XML document by using XSL. We need to add <?xml-stylesheet?> process 
instruction to indicate the XML ducoment is using XSL.

<?xml-stylesheet type-"tex t/xs l" href="classSpec.xsl"?>

Also we need to set the type attribute and the href attribute which defines the 
uniform resource identifier (URI) of the XSL file. The following is the main code 
in the XSL stylesheet file for the hidden example:

<xsl:for-each select -  "Hidden ">

<P >

<B>H idden < /B > {

< /P>

<P >

<xsl: apply-templates/>

< /P>

<P >

}
</P>

</xsl:for-each>

35



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<xsl: template m atch-"^/O peration ">

<P>

<xsl:va lue-o f select=". "/>

< /P>

</xsl:template>

<xsl:template match = "*/Comment">

Since in this project, we only use XSL as a tool to make some simply though 
important, for readability, visual change of our XML documents, it is not 
necessary to describe it in depth. We would have the following example 
displayed in a browser after we apply the XSL stylesheet to the Hidden code:

Hidden {

op AShape : -> Shape

/ /

}

Note that here the XSL transforms the code into HTML, and that the example 
above is showing a representation of the formatted HTML -  not the source code.

2.7 Maude

As we have already stated, there are many formal languages available for 
formal specification, Maude is just one of them. We have chosen Maude to 
specify classes algebraically in our examples in order for them to fit with the 
long history of algebraic research at Swansea University [1] [37] [38] [39]. Also 
Maude allows us to write specifications we can execute for testing and analysis 
purpose.

Maude is an executable language supporting both equational specification and 
term rewriting systems for a wide range of applications [40], though here we 
only use the equational specification capabilities. A main aspect of this project is 
researching the embedding of documentation and specification within programs, 
and Maude can be regarded as an equational logic sublanguage which just fits 
the needs of this research when we consider, as a major example, the 
embedding of algebraic specifications within programs. Note that there are 
many features of Maude we do not use. The following is a simple Maude module 
for the Natural numbers [41]:

fm od  BASIC-NAT is 

sort N a t.

36



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

op 0 : ->  N a t.

op s : N at ->  N a t .

op _+_ : Nat Nat ->  N a t .

vars N  M : N a t .

eq 0 + N  = N .

eq s(M) + N  = s(M  + N) .
end/m

A basic Maude functional module starts with " fmod name is" and ends with 
"e n d fm The example BASIC-NAT introduces a new sort called Nat and three 
operators. The first operator "op 0 : -> N a t is a function without arguments, 
and is therefore a constant since it always returns the same value 0. The second 
operator "op s ; N at->  N a t is intended to represent the successor function, for 
example, we can define constants "op 2 :->  Nat " which can later be defined by 
an equation "eg 2 = s(s(0)) The third operator "op_+_ : Nat Nat -> N a t is 
intended to represent the addition function, it can be considered as + takes two 
arguments: The characters mark the position of the arguments.
So we would write equations like "s(0) + s(0) = s(0+s(0)) Although we can 
infer the meaning of the functions from their names, they are actually defined 
by the pair of equations.

Maude supports an extensible algebra of module composition operations, which 
can be used to create executable environments for different logic models and 
theorem proving [40] [41]. The features of Maude lay a heavy emphasis on 
advanced meta-programming and meta-language applications [40] -  features 
we will not use here. We are interested in using Maude to model behaviour, 
which can be done adequately by using functional modules. Mapping from the 
C# Class with ES to a Maude Specification will involve lots of code and modelling 
work. We would wish to make as much of that as automated as possible since 
we intend to make the most robust generic tools in the end. Also we wish to 
minimize the work of the programmer in writing an embedded specification.

37



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 3 The Overview of the Research

In this chapter we would like to explain the overall concepts of this project and 
illustrate it with a simple case study. In addition, we will give a brief overview of 
each utility we have created so far and introduce the complete structure of the 
current state of the project.

3.1 Motivation

The initial motivation for this project was to build a well-engineered application 
based on the algebraic models in [1], The actual application has become more 
generic in the project progressed (see Chapter 4). We need to note, the point of 
the work here is to document and specify C# programs (attributes, typing, 
information, etc.) but not to extract behaviour from the content of the programs 
(which would basically be equivalent to the Halting Problem and hence not 
possible). Furthermore, the intention is not complete verification of C# 
programs. By embedding specification and documentation information in C# 
programs, we can minimize the effort required in building specifications and 
documentation by taking advantage of the syntactice information already 
present in the program -  which we would otherwise have to repeat. We will use 
the original algebraic example as an illustrative study.

38



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

An Embedded Selected Class

(A C# Class file with proper 
attributes)

Input

I
The Class Reader
(A C# file)

Output

r

Equational Specification

Figure3_l: Stage 1 of the System

The Figure3_l shows the basic structure of the planned application, explained it 
in detail below. Noted that in all the diagrams of this dissertation, we use the 
following shape conventions:

: Ellipse represents a configurable file in our system.

: Square represents a software utility we created to do a 

specific job, which normally is not configurable and 

functioning as an executable tool.

V
: Octagon represents an output which is normally an 

automatically generated specification or file.

39



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

An Embedded Selected Class (ESC)
As already described, we use C# attributes to embed the specification 
information in a C# class, which we denote the Embedded Selected Class (ESC). 
In the end product, the user should able to select any C# class and embed it 
with the proper attributes defining a formal specification which have been 
pre-defined, either by themselves or (more probably) some other programmer. 
In this chapter, we will use a stackOfElt class as the example. The following 
example code has two methods (top and pop) from the stackOfElt class:

[Eq("((S  .push(E)) .s) ,to p ()= -  E . ",Comment="S is myStack, E  is E lement.") ] 

pub lic  int top()

[Eq("((S  .push(E)) .s) .p o p ()= -  S . ",Com ment-"S is myStack, E  is Element." ) ]  

pub lic  vo idpop()

{ . . . }

In this example, the two methods are each tagged with an equation, defining 
the formal specification and documentation (actually, only part of the formal 
specification and documentation in this case) as well as a free text comment. 
Notice that both equations refer to another method (push) which is not present 
above.

Our application must extract the information in the attributes, together with 
other information already (implicitly) present in the program code to construct 
an equational specification. This is achieved by the Class Reader.

The Class Reader
The Class Reader is the first utility we have created in our project. It simply 
extracts the information we want from the Embedded Selected Class and puts it 
into a file.

Equational Specification
Generated by the Class Reader, this is a text file containing all the data 
(equations in this case) embedded in the attributes we have introduced. For 
example, we would have the following equations generated from the 
information encoded by the attributes of the above two methods (top and pop):

((S .push(E)) .s) .to p () -=  E .

((S .push(E)) .s) .pop()== S .

At this stage, the Equational Specification file is very simple. It is necessary to 
add other information from the program code by using other applications in the 
later stages.

40



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

3.2 Bringing in the XML Specification

The output of the Class Reader is only a list of equations. We need a well-defined 
formal format to represent the C# class we have selected in a widely useful way. 
Since there are many merits of XML that we have already introduced on Chapter 
2, an XML specification would be the best choice for us because it is easy for us 
to convert XML into other formats later on. At this stage, we refine the intended 
behaviour of the Class Reader.

The Class Reader*
(A C# file)

Output

The X M L  Class Specification
(The C# Class in XM L data format, extract from attributes)

V_____________________________________________

Figure3_2: Stage 2 of the System

Now the Class Reader generates XML-formatted data (the ESC is still the same 
so we did not include it in Figure3_2). The main progress we have made at this 
stage is in extracting embedded modelling information from the C# class into an 
XML representation of the class specification. We will explain what changes we 
have made in detail below.

The Class Reader*
The proposed functionality of the Class Reader at this stage has been greatly 
expanded. It has all the definitions of all the attributes we will need. It also has 
the required functions to extract the information for the Embedded Selected 
Class and output it into the format of the XML Class Specification. The 
information to be extracted is both embedded in user-defined attributes, and 
also -  using reflection -  from the actual program itself (for example, method 
names, parameters etc.).

The XML Class Specification
Generated by the Class Reader, an XML Class Specification is an XML file 
containing all the data and equations extracted from the class and its attributes.

41



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Now we have already extracted modelling information from both embedded 
attributes and also the actual program source text of a C# class into an XML 
data format, let us consider the example of two methods (top and pop) in the 
XML class specification:

<Method>

<Name>top </Name>

<ParameterType />

<MethodReturnType>System.lnt32</MethodReturnType>

<Equation>

<LHS>((S .push(E)) .s) ,top()</LHS>

<RHS> E . </RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>S is myStack, E is Element.</Comment>

</Method>

<Method>

<Name>pop</Name>

<ParameterType />

<MethodReturnType>System. Void</MethodReturnType>

<Equation>

<LHS>((S .push(E)) .s) .pop()</LHS>

<RHS> S </RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>S is myStack, E  is Element.</Comment>

</Method>

In this example, the two methods are defined in XML format by the sequences 
of Name, typed of the parameters, return types of the methods, equations 
(include the condition of the equations) and the comments.

Note that it would be desirable to construct an XML Schema defining the 
contents of the XML file. We omit this here, as it is just for illustration. However, 
in Chapter 4, we will define a schema.

It  is not easy to check the result by reading this XML file if the original C# class 
is very big (XML is general hard for humans to read). Here we could use an XSL 
stylesheet to transform the XML into a more readable form. The following is the 
result when we use the stylesheet (see more about XML stylesheets in Chapter 
2.6 and Chapter 4.2.2) into a "generic" (that is not in any specific language) 
algebraic specification:

Method top : ->  System.Int32{

42



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

eq ((S .push(E)) .s)  .top() = E .

IF  (N U L L )

//S is myStack, E  is Element.

}

Method pop : ->  System. Void {  

eq ((S .push(E)) .s) .pop() = S .

IF  (N U L L )

//S is myStack, E  is Element.

}

This result with the XSL Stylesheet is obviously more readable, as we can easily 
check the types, return-types, parameters and functions the two methods have. 
Furthermore, we can use other XSL Stylesheets to translate the XML into a wide 
range of other languages (for example, Maude).

At this stage, we have embedded specification/documentation information by 
using attributes (which we have not yet defined) and the actual program source, 
and partially processed the results, generating a simple algebraic specification. 
By choosing a different set of attributes, and a different XSL mapping, we could 
produce other forms of formal specification/documentation.

3.3 The Executable Algebraic Specification

The main aim of this thesis is to investigate the process of building a generic 
software framework which can provide formal specification and documentation 
in the form that users want for object-oriented classes. In Figure3_2, we have 
modelled the ESC into the XML class specification, and then the XSL stylesheet 
converted the XML Class Specification into a "generic" Algebraic Specification, 
but we still want an executable specification which can help us in testing and 
analysis. Note that although we consider executable specifications desirable, 
not all researchers agree, for example the arguments are [82] [83]:

•  Executability may limit the expressive power of a specification language and 
restricts the forms of specifications that can be used.

•  Though executable specifications permit early validation with respect to the 
requirements by executing individual test cases, proving general properties 
about a specification is much more powerful.

•  Executable specifications can unnecessarily constrain the choice of possible

43



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

implementations.

•  It could be easier to verify that an implementation meets a more abstract 
specification, than to match an executable specification against an 
implementation for which possibly different data and program structures 
have been chosen.

In choosing an executable algebraic specification language there are many 
possibilities but we have chosen the executable language Maude (see more 
about this in Chapter 4.3).

The X M L  Class Specification
(The C# Class in X M L data format, extract from attributes)

Input

The Translator
(Executable file, C# program)

Output

The Maude Specification
(The Original C# Class in Maude form)

Figure3_3: Stage 3 of the System

At this stage, we will use the XML class specification as an intermediate 
representation. We have created a new tool called the Translator which can 
convert the XML class specification into another formal specification language -  
i.e. in this case Maude.

The Translator
The translator is a standalone utility we created to output a Generated Formal 
Specification (GFS). The Translator helps us to automatically model the XML 
Class Specification into Maude Specification. At this stage, we have already 
started to try to automate as much as possible the generation of the

44



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

specifications and documentations. Note that it is not possible to simply use XSL 
to generate the Maude code (as with the "generic" algebraic specification 
notation) because we intend to substantially expand the detail and 
sophistication of the algebraic representation in Maude.

The Maude Specification
The Maude Specification is generated by the Translator from the original C# 
class in stages. The following is a fragment of the Maude code generated:

op _.top() : stackOfElt -> s tackO fE ltln t. 

sort s tackO fE ltln t.

op : stackOfElt ln t -> s tackO fE ltln t.
op _.q : stackO fE ltln t ->  l n t . 
op _.s : stackO fE ltln t ->  stackO fE lt.

op _.pop() : stackOfElt -> stackOfE ltVoid.

sort stackOfElt Void.

op : stackOfElt Void ->  stackOfE ltVoid.

op _.q : stackO fE ltVoid->  Void. 

op _.s : stackOfEltVoid ->  stackO fE lt.

eq ((S .push(E)).s).top().q = E . 

eq ( (S .push(E)).s).pop().s = S .

Noted that stackOfEltlnt represents a tuple type necessary to model methods 
that both modify an object's state and return a value (for more details see 
Chapter 4.3.5).

We have so far been able to model a C# class with ES using XML and an 
Algebraic Specification language. At every stage, the software framework we 
intended to build is more integrated and generic. But we still want to make it 
more configurable to fit the needs of other formal specification.

3.4 A More Generic Approach

We have made our XML Class Specification and Maude Specification (the GFS) 
both automatically generated. We let the users choose the original C# class and 
embed the attributes which we define. Obviously, there is currently a restriction 
in that the attributes are currently "hard coded" for algebraic specification. C#

45



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

gives us the ability to define our own attributes. Thus we should able to define 
different attributes and hence use different specification techniques. If we do so, 
our software tools become a highly configurable utility -  able to handle a range 
of formal specification techniques.

Embedded Attributes Description 

File

(XM L text file)

Input

The Attributes Generator
(Executable file, C# program)

Output

r

The Class Reader**

(An automatically generated C# file)

Figure3_4: Stage 4 of the System

Embedded Attributes Description File (EADF)
To extend the generic capability of our system, we add a further XML file. The 
Embedded Attributes Description File (EADF) is an XML file, configurable by 
users, which contains full details of data of attributes and other necessary 
information. The EADF works as a configuration file for the Attributes Generator 
which will create a specific set of attributes that can be attached to a C# class. 
The intention here is to allow users to more easily to define their own attributes 
and hence the specification system they are interested in. The following is an 
example which defines two attributes and their parameters (see more details 
including the XML schema of EADF in Chapter 4.1.1):

<A ttribu te>

46



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Name>Hidden</Name>

<Compact Type="accessor">operation</Compact>

<Compact Type="parameter">comment</Compact>

<Constructer />

</A ttribute>

<A ttribute>

<Name>MethodComment</Name>

<Compact Type="Parameter">mtype</Compact>

<Compact Type="parameter">comment</Compact>

<Constructer />

</A ttribu te>

The two attributes defined are Hidden and MethodComment. They are simple 
attributes and only contain 2 properties (the properties have 2 types, see more 
in chapter 2.4.1 about attributes).

The Attributes Generator
The Attributes Generator is also a standalone utility that reads data from an 
EADF description file and generates all the attributes in C# codes for the Class 
Reader. That is it generates the C# source code of the Class Reader with the 
same functionality as the one we have written by hand earlier. The user can then 
embed these (generated) attributes within their own C# code.

The Updated Class R eader**2
The Class Reader here is ideally to be able to be fully generated by the Attributes 
Generator, but also has the functions to extract the information for the 
Embedded Selected Class and output them into the format of the XML Class 
Specification. The following is the code automatically generated (for the detailed 
explanation of the following code see Chapter 4.2):

pub lic  class Hidden: System.Attribute 

{
string operation; 

string comment;

pub lic  Hidden 

(string operation)

{
this.operation -  operation

2 The Class Reader considered here has the same functional ability as the one in Chapter 3.2. The difference 
between them is the Class Reader here is automatically generated by the Attributes Generator, and the previous one 
is written by hand. Therefore, we can see the code is not well formatted and without comments since it is not 
generated for human reading. In addition, the member names (e.g. Aoperation) are automatically generated also, 
and hence not chosen to be easy for humans to read.

47



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

}

pub lic  s tring Aoperation  

{
get

{
return operation  

}

}

pub lic  string Acomment 

{
get

{
return comment 

}
set

{
comment -  value;

}
}
}

pub lic  class MethodComment: System.Attribute 

{
string mtype; 

string comment;

pub lic  MethodComment 

0 
{
}

pub lic  s tring Amtype 

{
get

{
return mtype 

}
set

{
mtype = value;

}

}

48



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

pub lic  s tring Acomment 

{
get

{
return comment 

}
set

{
comment = value;

}

}

}

3.5 Overview of the Work in this Thesis

The following diagram is the structure of the current stage of our project. As we 
can see, the project still has a lot of space to expand.

The Attributes Generator reads the EADF to generate the Class Reader. The 
Class Reader reads the ESC to output the XML Class Specification file. We may 
use XML stylesheets to generate the "Generic" Algorithms Specification. In 
order to produce an executable specification, the translator is created to model 
the XML Class Specification into the Maude Specification.

49



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Embedded Attributes Description 

File [EADF]

(XM L text file)

Input

The Attributes Generator
(Executable file, C# coded)

Output

The Class Reader**

( A C #  file)

An Embedded Selected Class 

[ESC] (A C# Class file with 

proper attributes)

Input

Output

The X M L  Class Specification
(The C# Class in X M L data format, extract from attributes)

Input

Input

The Translator
(Executable file, C# Coded)

X M L  Stylesheet

Output

Output “Generic” Algorithms Specification

The Maude Specification [GFS]

(The Original C# Class in Maude form)

Figure3_5: The Whole Structure of the Research at the current stage

50



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 4 Embedding Generic Formal 

Specifications and Documentation

In Chapter 3 we gave an overview of the aims and methodology of the work in 
this thesis. In this chapter we will explain our work in detail so that the functions 
of our generic framework can be understood. We will explain how we can define 
the required C# attributes in the EADF and how we can generate the Class 
Reader from the EADF. We will then explain the modelling process in mapping 
from a selected C# class into an XML class specification. Finally we will explain 
how we can model an XML class specification in Maude.

4.1 Transforming the EADF into C# Code

Here we will examine the process of creating the Class Reader from the EADF. 
The aim of this section is to show how to define attributes in a more generic way 
and how to translate them into a C# source program.

4.1.1 Defining the Attributes in XML

As we have already explained in Chapter 3, the aim is to create a highly 
configurable software framework for embedding formal specifications and 
documentation within program code. Attributes are the key element for our 
framework. We want to give the users the ability to modify the pre-defined 
attributes or create their own attributes, so that they can define specifications 
or documentation in a style of their choosing.

Definition: Embedded Attributes Description File
An Embedded Attributes Description file is an XML file that characterizes the 
attributes that define a particular formal specification/documentation style 
embedded in a C# program.

EADF files can be validated against the following XML schema:

<xsd:element n a m e - ’’A ttribute  ”  type= ’’AttributeType ”/>

51



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<xsd:complexType name= ’’AttributeType ” >

<xsd:sequence>

<xsd:element name= ’’Name ” ty p e - ”xsd:string”/>

<xsd:element ref= ’’Compact ”  m inOccurs= ” 1 ”/>

<xsd:element name= ’’C onstructor”  type= ”xsd:anyType ”/>

</xsd:sequence>

</xsd:complexType>

<xsd:element name= ’’Compact ” type= ’’CompactType ”/>

<xsd:element name="Compact">

<xsd:complexType>

<xsd:simpleContent>

<xsd:extension base= "xsd:string">

<xsd:attribute name= ’’Type ” >

<xsd:simpleType>

<xsd:restriction base= ”xsd :string” >

<xsd:enumeration value= ’’accessor”  />

<xsd:enumeration value= ’’param eter”  />
</xsd.restriction >

</xsd:simpleType>

</xsd:attribute>

</xsd: extension >

</xsd:simpleContent>

</xsd: complex Type >

</xsd:element>

The schema describes the following component parts of the EADF file:

•  Name of the attributes, type is string and is unique
•  Parameters of the attributes, and there are at least 1 parameter for an 

attribute. And there are two different types of the parameters.
•  Constructor of the attributes.

The following example shows how we define the two attributes (Hidden and 
MethodComment) in EADF format:

<A ttribu te>

<Name> Hidden</Name>

<Compact Type="accessor">operation</Compact>

<Compact Type="parameter">comment</Compact>

<Constructer />

</A ttribu te>

<A ttribute>

52



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 20S303 2
004-2007

<Nam e >M eth odComment</Nam e >

<Compact Type="parameter">mtype</Compact>

<Compact Type="parameter">comment</Compact>

<Constructer />

</Attribute>

Example4_l: Attribute Hidden and MethodComment in X M L  definition

As we can see in Example4_l, each attribute must be defined by starting with 
the tag <Attribute> and closed with </Attribute>. And we require each 
attribute to have 3 types of elements which are restricted in order to generate 
the attribute class. The three elements are: <Name>, <Compact>,
<Constructor>. We could use DTD or XML schemas to validate the data for 
these attributes' definition.

The tag <Name>...</Name> encloses the name of the attribute class, such as 
Hidden and MethodComment in the above code. Each attribute should only have 
one unique name, since this unique name will be the generated C# attribute 
class name. For example, the following is the attribute class generated from 
Example4_l:

pub lic  class Hidden : System.Attribute 

{... }

pub lic  class MethodComment: System.Attribute 

}

The tag <Compact>...</Compact> encloses the fields of the attribute class, 
which has two different types: "accessor" and "parameter". The type "accessor" 
means this variable is possibly present as a parameter of the constructor of the 
attribute class and it must be a read-only parameter. The type "parameter" 
means this variable is optionally a parameter of the constructor of the attribute 
class and its value could be set by the user. Of course, a class in C# could have 
multiple parameters, so we allow users to be able to define multiple elements 
<Compact> and the corresponding types must be set properly. In the attribute 
Hidden of Example4_l, we have:

<Compact Type= "accessor">operation</Compact>

<Compact Type= "parameter"> comment</Compact>

And similarly in the attribute MethodComment, we have:

<Compact Type="parameter">mtype</Compact>

<Compact Type-"param eter”>comment</Compact>

We translate an EADF file into C# code by using the Attributes Generator. The

53



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

following is the result generated3 from Example4_l (Detail of the modelling 
also see chapter 4.1.3 and Chapter 4.2.1):

pub lic  class Hidden: System.Attribute 

{
string operation; 

string comment;

pub lic  Hidden 

(string operation)

{
this.operation = operation 

}

pub lic  string Aoperation  

{
get

{
return operation 

}

}

pub lic  string Acomment 

{
get

{
return comment .

} i •
set 4,„

{
comment = value;

}
}
}

pub lic  class MethodComment: System.Attribute 

{
string mtype; 

string comment;

pub lic  MethodComment

3 The automatically generated C# source code is not designed for human reading since it would not contain any 
Comments and would not be well formatted. The purpose o f the example here is only to show what the generated 
C# source code looks like.

54



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

0
{
}

pub lic  s tring Am type 

{
get

{

return mtype 

}
set

f
mtype = value;

}
}

pub lic  s tring  Acomment 

{
get

{
return comment 

}
set

{
comment = value;

}
}
}

Attributes Hidden and MethodComment are very simple examples. A C# class 
could have many methods, fields and a complicated constructor to provide 
various functions. The following example is the attribute Eq used in the 
algebraic specification examples in this thesis:

<A ttribu te>

<Name>Eq</Name>

<Compact Type=”accessor">equation</Compact>

<Compact Type="accessor">condition</Compact>

< Compact Type= "accessor">lhs</Compact>

<Compact Type-"accessor">rhs</Compact>

<Compact Type= "parameter"> mtype</Compact>

< Compact Type=”parameter">comment</Compact>

<Constructer>

int isC ond ition -0 ;

55



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

int ix;

isCondition = equation.IndexOf(":"); 

i f  (is C o n d itio n = -- l)

{
this.condition = "N U LL";

}
else

f
this.condition = equation.Substring(isCondition+l); 

equation = equation.Substring (0,isCondition);

}
this, equation =equation;

ix=equation.IndexOf(” - - " ) ;

this.lhs = equation.Substring(0,ix).Trim(' ');

this.rhs -  equation.Substring(ix+2).Trim(' ');

</Constructer>

</A ttribute>

Example4_2: Attribute Eq in X M L  definition

The tag <Constructor>...</Constructor> simply encloses the code which is 
manually written by the user and will be copied as the content of the constructor 
of the attribute class. The reason we leave the format of constructors open is, 
the C# code for it is varied and hard to predict.

This is obviously not a completely satisfactory solution and we would prefer a 
method of defining constructors that more closely matches the way we define 
other components. However, we have designed the format to allow the current 
representation of constructors to be straightforwardly replaced (see chapter 
4.1.2). The following code for the attribute class Eq is also generated by the 
Attribute Generator from Example4_2 (as we explained in Chapter 3.4, the 
generator automatically generate the names like "Acondition"):

pub lic  class Eq: System.Attribute 

{
string equation; 

string condition; 

string Ihs; 

string rhs; 

string mtype; 

string comment;

pub lic  Eq

(string equation; string condition; string Ihs; s tring rhs)

56



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

{

in t isCondition=0; 

in t ix;

isCondition = equation.IndexOf(":"); 

i f  ( isC ond ition= = -l)

{
this.condition = "N U LL";

I
else

{
this.condition = equation.Substring(isCondition+l); 

equation = equation.Substring (0,isCondition);

}
this, equation =equation;

ix=equati on.IndexOf( " = = ”) ;

this.Ihs = equation.Substring(0,ix).Trim ('');

this.rhs = equation.Substring(ix+2).Trim (' ');

}

pub lic  s tring Aequation 

{
get

{
return equation 

}
}

pub lic  string Acondition  

{
get

{
return condition 

}
I

pub lic  s tring Alhs 

{
get

{
return Ihs 

}

57



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

}

pub lic  s tring Arhs

f
get

f
return rhs 

}
}

pub lic  s tring Amtype 

{
get

{
return mtype 

}
set

{
mtype = value;

}
}

pub lic  s tring Acomment 

{
get

{
return comment 

}
set

{
comment = value;

}
}
}

As we already stated in Chapter 3, the member names (e.g. Aequation) are 
automatically generated also, and hence not chosen to be easy for humans to 
read. Also it should be noted the constructor Eq has more parameters than we 
intended, which is the limitation of the usage of type "accessor" (see solution in 
Chapter 4.1.2).

Note that <Constructor> can be an empty element, like the one in the attribute 
Hidden. In this case, we would automatically generate code for the constructor 
of the attribute class in the following format:

58



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

pub lic  Hidden

(string operation)

{
this.operation = operation;

}

One of our aims in this project is to build generic tools that would be easily read 
and modified by the user. The use of code embedded in the element 
<Constructor> is something that should ultimately be replaced by XML.

4.1.2 Handling Constructors: An Extended XML Format

A significant drawback of our existing XML format is that constructors are not 
well handled. It is not convenient to directly embed the constructor source code 
in the EADF file. In this section, we extend our XML format for EADF to fix this 
problem. The extension we propose is able to accommodate all the examples in 
this thesis. It is possible that other, more complex, examples would not be 
adequately handled. However, the XML format could be extended further if 
necessary.

An example of the extended format is as follows:

< ?xml version="1.0 "?>

<ClassReader>

<ESC_Name>stackOfElt</ESC_Name>

<Attribute type="C lass">

<Name>Hidden</Name>

<Compact Type="construct">operation</Compact>

<Compact Type="parameter">comment</Compact>

<Constructor />

</A ttribute>

<Attribute type="M ethod">

<Name>Eq</Name>

<Compact Type= "construct">equation</Compact>

<Compact Type="accessor">condition</Compact>

<Compact Type="accessor">lhs</Compact>

<Compact Type="accessor">rhs</Compact>

<Compact Type="parameter">mtype</Compact>

<Compact Type="parameter">comment</Compact>

59



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

<Constructor>

<Separator>==</Separator>

</Constructor>

</A ttribute>

<Attribute type-"M ethod">

<Name>Eqs</Name>

<Compact Type= "construct”> equations</Compact>

<Compact Type= "accessor">condition</Compact>

<Compact T ype-"array ">eqArray</Compact>

<Compact Type="parameter">mtype</Compact>

<Compact Type= "parameter">comment</Compact>

<Constructor>

<Separator> ;</Separator>

</Constructor>

</A ttribute>

<Attribute type="F ie ld">

<Name> Vars</Name>

<Compact Type="construct">vars</Compact>

< Compact Type= "array ”> varArray</Com pact>

<Constructor>

<Separator>; </Separator>

</Constructor>

</A ttribute>

<Attribute type="Struct">

<Name> Varstruct</Name>

<Compact Type= "construct">var</Com pact>

<Compact Type= "construct"> varType</Compact>

<Constructor />

</A ttribute>

<Attribute type="Struct">

<Nam e > Eq struct </Nam e >

<Compact Type-"construct">equation</Com pact>

<Compact Type-"accessor">lhs</Compact>

< Compact Type= "accessor">rhs</Compact>

<Constructor>

<S eparator>=-< /Separa tor>

</Constructor>

</A ttribute>

<ESC_Path>C: \ ESC. txt</ESC_Path>

</ClassReader>

Example4_3: New Prospect of EADF format

Comparing Example4_3 with Example4_l and Example4_2/ we can distinguish 
the differences by the addition of several new tags:

60



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

•  Attributes Types. These indicate the location of the attributes in the 
object-orient class, i.e. "Class", "Method" and "Fields". The type "Struct" 
tells us the attribute is an abnormal one and works as an array of storage.

•  New Compact Type "construct". This means this variable must be present as 
a parameter of the constructor of the attribute class and it is a read-only 
parameter. Hence the type "accessor" is no longer considered a possible 
parameter for the constructor of the class and is now only read-only 
parameters.

•  New Compact Type "array". This means the parameter is a struct type in C# 
(or say an array). It links the new attribute type "struct", which will not only 
store an array of the content but may also work as a parser (see below tag 
<Separator> ).

•  New Parsing Tag <Separator>. This tells the program what "expression" we 
are using as a separator string to parse the content (normally a string type) 
in the attributes. Also it removes all the C# code in the Example4_2.

The tag <ESC_Name> and <ESC_Path> tells the class name of the C# class 
and the location of the source code.

With this new approach of the definition of the EADF, we are definitely able to 
generate a fully executable Class Reader if the time permits. This new format 
enables us to encode all the constructors used in our examples, without 
resorting to directly embedding the source code.

The new EADF file (Example4_3) can be validated against the following XML 
schema:

<xsd:element name= "ClassReader”  type= ’’ClassReaderType ”/>

<xsd:complexType name= "ClassReaderType ” >

<xsd:sequence>

<xsd:element name= ”ESC_Name ”  ty p e - ”xsd :s tring ”  />

<xsd:element ref=  ’’A ttribute ” m inOccurs= ” 1 ”/>

<xsd:element n a m e - ’’ESC P a th ”  type= ”xsd :s tring” />
</xsd:sequence>

</xsd:complexType>

<xsd:element name= ’’A ttribute ”  type= "AttributeType ”/>

<xsd:complexType name= ’’AttributeType ” >

<xsd:sequence>

<xsd:element name= ’’Name ”  typ e - ”xsd :s tring ”/>

<xsd:element re f-  ’’Compact”  m inOccurs= ” 1 ”/>

<xsd:element name= ” Constructor ” >

61



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<xsd: complex Type >

<xsd:element name= ”Separator ”  type= ”xsd :string”  minOccurs= ” 0 ”/>  

</xsd: com p i ex Type >

</xsd:sequence>

<xsd:attribute name= ’’type ” >

<xsd:simpleType>

<xsd:restriction base -  "xsd .string ” >

<xsd:enumeration value= "Class ”  />
<xsd:enumeration value = "M ethod”  />

<xsd:enumeration value— "F ie ld ”  />
<xsd:enumeration value= "Struct ”  />

</xsd:restriction >

</xsd: simpleType>

</xsd:attribute>

</xsd:complexType>

<xsd:element name="Compact ">

<xsd:complexType>

<xsd:simpleContent>

<xsd: extension base= "xsd:string ">

<xsd:attribute name= ’’Type ” >

<xsd:simpleType>

<xsd:restriction base= ”xsd :string ” >

<xsd:enumeration va lu e -"co n s tru c t”  />
<xsd:enumeration value= "accessor” />
<xsd:enumeration value = " a r ra y " />

<xsd:enumeration value= "param eter" />

</xsd:restriction>

</xsd:simple Type >

</xsd:attribute>

</xsd: extension >

</xsd:simpleContent>

</xsd:complexType>

</xsd:element>

The schema describes the following component parts of the EADF file:

•  <ClassReader> has three components: <ESC_Name>, <Attribute> and
<ESC_Path>.

•  <Attribute> has three components: <Name>, <Compact> and
<Constructor>. I t  also has four different types: Class, Method, Field and
Struct.

•  <Compact> has four different types: construct, array, accessor and

62



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

parameter. <Attribute> can have multiple sub-elements <Compact>.
•  <Constructor> can be an empty element or has one sub-element 

<Separator> .

We have noted in Chapter 4.1.1 that the left and right-hand sides of equations 
are simply unparsed strings, and that a better solution would be to represent 
equations as parse trees. The current XML format does not permit such a 
representation to be defined. There is no reason that our XML format cannot be 
extended to permit the definition of arbitrary grammars. However the need to 
represent expressions (in a typical object-oriented programming C-style 
language syntax style) is likely to be sufficiently common that it may be more 
appropriate to hard-code expression parsing into our program, and simply add 
a new XML 'expression' tag.

4.1.3 The Attributes Generator

In this section, we consider the Attributes Generator. The generator is an 
executable utility which reads the data from the EADF and outputs a 
well-constructed C# application which is known as the Class Reader.

We can divide the generator into three parts:
•  The attribute-classes generator
•  The ESC generator*(future development)
•  The main-code generator (future development)

The Attributes Generator processes an EADF file line by line and makes 
decisions to generate the proper data that we need. We will not explain the 
source code of this generator in details since it is not a complex application.

The ESC generator is functioning as its name explains, and generates the ESC 
from the EADF. Here we need to note that, for this generator, we need to write 
the ESC in the XML format within the EDAF. It may seem to be a bit complicated 
compared with what we could do in Figure4_l, but writing the ESC in the XML 
format makes our framework become a language independent generic tool 
which can be adapted to a range of object-oriented languages and not only C#. 
We will explain this Generator in more detail in Chapter 6. However, this 
Generator is not essential here since the transformation process could be done 
in some other way. An alternative way is to replace this generator with a simple 
windows program with user interface as in Figure4_l. Users may choose a C# 
class and embed it with proper attributes. The button Modify will combine these 
codes with the pre-generated Class Reader source code. We believe this is a 
good and easy alternative, however, we still prefer to try to put the ESC within

63



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007_______________________________________________________________________________________

the EADF. Then the users can define the attributes at the beginning of the EADF 
and embed them into the C# Class at the end of EADF. For now, we will just 
leave the ESC in C# format as we explained in Chapter 3.

Forml

[Hiddenf'op EmptySfack: ■> stackOfElt")] 
public class stackOfElt
I .

SAMPLE CODE

}

Modify

F ig u re 4 _ l:  Exam ple of W riting ESC in a form  application

The main-code generator is currently not implemented. First, we need to know 
how many attributes there are, and how many parameters each attribute has. 
Second, the format of the code we are going to generate is not that regular and 
is hard to normalize in a simple way (see more actual code of Class Reader in 
Chapter 4.2.1). We will leave it to a future study, however, there should be a 
solution and it is an important part of making the whole system more generic.

As the two parts of this generator is not properly running, we will consider the 
generator is an "Attributes Generator" in this dissertation instead of a 
"ClassReader Generator".

4.2 Modelling the ESC into XML Class Specification

In this part, we will examine the structure of the Class Reader, the process of

64



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

translating an embedded specification C# class (ESC) into the formal 
specification in XML data format. This XML class specification could be 
considered as a "universal" Algebraic formal specification notation (for the 
specific examples we have considered so far) which can be transformed into 
other specific Algebraic languages, such as Maude which we will introduce in the 
next chapter. Furthermore, by constructing a different set of attributes, we can 
develop other "universal" specification notations. For example, see Chapter 6.

4.2.1 The Structure and the Syntax of the Class Reader

The Class Reader4 is divided into two parts. The first part contains all the 
necessary attributes classes, and the second part reads the embedded 
specification from the selected C# class by using the reflection and outputs it 
into an XML Class specification.

In order to give a good idea what this Class Reader looks like and how it works, 
we take a look at C# stackOfElt class which has some common methods like 
pop(), top() and pushQ and consider how to algebraically specify it.

As we already mentioned in the previous chapter, we need to tell the compiler 
which kind of elements our attributes can be used with, AttributeUsage does 
this:

[AttributeUsage(AttributeTargets.Class \

AttributeTargets.Constructor \

AttributeTargets.Field \

AttributeTargets.Method \

AttributeTargets.Property,

A llow  M ultip le  -  true)]

Now we need to create all the attribute classes required for the C# stackOfElt 
class, which includes: Hidden (attribute for hidden object), MethodComment, 
Eq (attribute for a single equation), Eqs (attribute for multiple equations), CEq 
(attribute for a conditional equation), and Vars (attribute for variables). Let us 
consider the class Hidden:

//attributes fo r  hidden object 

pub lic  class Hidden : System.Attribute 

{
//private member data

4 The Class Reader here is the version o f manually written since the code w ill be easier to read and in the good 
programming style. Also the automatically generated version o f the Class Reader is still in Alpha and could not be 
executed smoothly at the moment (which we have already explained in Chapter 4.1.3).

65



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

private  string operation; 

private  string comment;

//a ttribute  constructor fo r  pos itiona l parameters 

pub lic  Hidden

(string operation)

{
this.operation  = operation;

}

//accessor, read-only properties fo r  the positiona l parameters 

pub lic  s tring Operation 

{
get

{
return operation;

}
}

//Namedparameters are implemented as properties 

pub lic  s tring Comment 

{
get
{

return comment;

}
set

{
comment = value;

}
}

}

To define each attribute class, we need to extend System.Attribute, and each 
attribute class would have its own private parameters (or fields) and constructor. 
The constructor should specify which parameters must be in the constructor. 
The parameters must be written in the order declared in the constructor. We call 
these parameters the positional parameters, in the above Hidden class, 
Operation is the positional parameter. The other parameter Comment is 
implemented as properties, and is a named parameter. Named parameters are 
not necessarily in the constructor and they are normally working as 
commentary.

Since all the parameters are private members of the attribute class, in order to

66



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

access them, we need to add accessor methods. Function get() will return the 
proper value of the parameters we require for access and function set() will give 
the proper value to the parameters we require to access. They are both 
pre-defined in C#. Positional parameters are normally read-only so that they 
may only have get() accessor methods. Named parameters normally have both 
get() and set() accessor methods.

The Hidden attribute class is one of the simplest in our algebraic example. 
Others, like class Eq and CEq, are much more complicated if we consider their 
constructors and methods in details, but they all have a similar structure.

//attributes fo r  equations

pub lic  class Eqs : System.Attribute 

{
//private member data 

private  string equations;

private  string condition; / /condition p a rt o f  eq. 

private  stidng comment; 

private  eqStruct[] eq A rray; 

private  string mType; //method type

//a ttribute constructor fo r  positional parameters 

pub lic  Eqs

(string equations)

{
in t isCondition=0;

isCondition -  equations.IndexOf 

i f  (isCondition- - - 1 )

{
this.condition -  "N U LL";

}
else

{
this.condition = equations. Substring(isCondition+1); 

equations = equations.Substring (0,isCondition);

}
this, equations—equations; 

in t i= 0 ;

foreach (string eq in equations.Split( '; ) )

{
/++;

}

67



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

eqStruct[] eq A rray; 

eqArray = new eqStruct[i]; 

i= 0 ;

foreach (string eq in equations. S p lit( ';) )

{
eqA rray [i] = new eqStruct(eq); 

i+ + ;

}
this.eqArray -  eqArray;

}

//accessor, read-only properties fo r  the positiona l parameters 

pub lic  string Equations 

{
get

{
return equations;

}
}

//accessor

pub lic  string Condition 

{
get

{
return condition;

}
}

pub lic  eqStruct[] EqArray  

{
get

{
return eqArray;

}
}

//Namedparameters are implemented as properties  

pub lic  s tring Comment 

{
get

{

68



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007___________________________________________________________________________________________

return comment;

}
set

f
comment = value;

}

//Namedparameters are implemented as properties 

pub lic  string MType 

{
get

{
return mType;

i
/

set

{
mType = value;

}

}

Now we consider the main code. The main code is principally about how to 
create a new XML file by extracting the embedded equational specification which 
is partly defined by the actual C# code that is being documented/specified and 
partly by the embedded attributes.

We have already introduced Reflection in C#. Here we would like to use it to 
read the metadata in the stackOfElt class. We initialized the object in f of the 
type Memberlnfo on the stackOfElf type, which would return us the necessary 
information about the members of the class, such as methods and fields.

//get the member information and use it  to retrieve the custom attributes 

System.Reflection.Member In fo in f  =typeof(stackOfElt);

Then we need to call GetCustomAttributes on the object inf, which would return 
us an array of objects of a-specified attribute. For example, for the attribute 
Hidden, we have:

ob jectf] attHidden;

attHidden = inf. GetCustomAttributes(typeof(Hidden),false);

Array attHidden contains all the objects we require, and now we need to iterate

69



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

over the array to retrieve the relevant properties. Also, we need to output it in 
the proper XML format:

//p rin t out the hidden object on the xm l f i le  

foreach (Object attribute in attHidden)

{
Hidden hd = (Hidden) attribute;

//output hidden: <Hidden>

writer. WriteStartElement("", "H idden","");

//output operation: <O pera tion> ... </Operation>  

writer. W riteStartElement("","Operation ", ""); 

writer. WriteString(hd. Operation); 

writer. WriteEndElementQ;

//output comment: <Com m ent>... </Comment> 

writer. WriteStartElement("", "Comment","");

writer. WriteString(hd. Comment); '

writer. WriteEndElementQ;

//end hidden tag: </H idden>  

writer. WriteEndElementQ;

}

The code about attribute Hidden is simple but also very specific as it is the 
unique attribute of the class. But how about the attributes embedded inside the 
class stackOfElt? Any class may have more than one field and may also have 
more than one method. Then we must search them one by one through the 
whole class.

//fie ld  object

foreach(FieldInfo f ln fo  in typeof (stackOfElt). GetFieldsQ)

{
object[ ]  attVars;

attVars - flnfo.GetCustomAttributes(typeof(Vars), fa lse);

foreach (Object attribute in attVars)

{
Vars va = (Vars) a ttribute;

//output vars

foreach (varStruct e in va. VarArray)

{
writer. WriteStartElement("", "F ie ld ",""); 

writer. W riteStartAttribute("", "Type","");

70



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

writer. WriteString(e. VarType); 

writer. WriteEndAtti'ibuteQ; 

writer. WriteString(e. Var); 

writer. WriteEndElementQ;

}
}

}

The code for finding attribute Vars inside the class stackOfElt is a little different 
from attribute Hidden. We need to retrieve the information from the object finfo 
of the type Fieldlnfo, which provides access to the metadata of the fields of the 
class stackofElt. And here we have to call GetFieldsQ on the typeof operator in 
order to get the specified metadata we actually need. As we know, all the 
parameters in the class have specified types, for example: String myName, 
String is the type of myName. Therefore we have a struct varStruct pre-defined 
in attribute class Vars, which can store both the value and the type of the 
parameters of the class.

Similarly to the attribute Vars, we have the following code to access the 
metadata we need from the attributes of methods.

//methods

foreach(MethodInfo m lnfo in typeof(stackOfElt).GetMethodsQ)

{...}

Although all the attributes of the methods like MethodComment, Eq and CEq, 
contain totally different metadata, the structure and the syntax of the codes to 
access this information is almost the same. Let us have a look at the attribute 
MethodComment:

ob jectf] attMethodComment; 

attMethodCommen t=

mlnfo. GetCustomAttributes (typeof(MethodComment),false);

//iterate through the attributes, retrieving the properties 

//hidden object

foreach (Object attribute in attMethodComment)

{
MethodComment M C  7 (MethodComment) attribute;

//output hidden

writer. WriteStartElement("", "M ethod",""); 

writer. W riteStartAltribute("", "Type", ""); 

w rite r WriteString(MC.MType);

71



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

writer. WriteEndAttributeQ;

//output method name 

writer. WriteStartElement("", "Name", 

writer. WriteString(mlnfo.Name); 

writer. WriteEndElementQ;

//output param eter type o f  this method

writer. WriteStartElement("", "ParameterType","");

foreach(ParameterInfo P ln fo  in mlnfo.GetParametersQ)

{
writer. WriteString(PInfo.ParameterType. ToStringQ);

}
writer. WriteEndElementQ;

//output the type o f  the method 

writer. WriteStartElementQ’", "MethodReturnType",""); 

writer. WriteString(mInfo.ReturnType. ToStringQ); 

writer. WriteEndElementQ;

//output comment

writer. WriteStartElementQ'", "Comment",""); 

writer. WriteString(MC. Comment); 

writer. WriteEndElementQ;

//end hidden tag 

writer. WriteEndElementQ;

}

In C#, all metadata about methods -  names, parameters, return type etc. -is 
accessible using Reflection. In order to access the parameters of the methods, 
we need to create a new object Plnfo of the type Parameterlnfo. As we can see 
in the above code, we already have the object mlnfo to grant access to the 
metadata of the current method. Then we can call GetParametersQ on this 
Methodlnfo object to get back the type of the parameter:

foreach(ParameterInfo P ln fo  in mlnfo.GetParametersQ)

{
writer. WriteString(PInfo.ParameterType. ToStringQ);

}

We have already looked through the whole program of the Class Reader. On the 
way of developing this software utility, we wanted to automatically generate the 
whole code of this part, but due to the complexity of the main code, we stopped

72



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007_______________________________________________________________________________________

at the midway and leave it to the future research. Since we have already known 
the code of translating the ESC into a XML class specification, we will have a 
close look at the both side.

4.2.2 Modelling the ESC into XML Class Specification

In this project, our program should able to pick any C# Class embedded with 
attributes and transform it into XML class specification. Since we have already 
used class stackofElt on the above examples, we shall continue to use it here to 
make things easy to understand. Consider the class stackofElt first (which we 
have introduced in chapter 1 and previous sections):

//an example code o f  a int stack

[H idden f'op  EmptyStack : -> stackO fE lt")] 

pub lic  class stackOfElt 

{
[Vars("E :Int;S :stackO fE lt") ] 

pub lic  in t E lt; 

pub lic  Stack myStack;

//constructor—create an empty stack 

pub lic  stackOfEltQ  

{

}

//constructor—create an empty stack w ith a element 

pub lic  stackOJElt (in t E lt)

{

}

[Eq("((S  .push(E)) .s) .top ()= =  E  . ",MType= "Query",Comment= "S is myStack, E  is 

Element.") ]

pub lic  int top()

{

}

73



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[Eq("((S  .push(E)) .s) .pop()== S .",MType="Command",Comment="S is myStack, E  is 

Element.") ]

pub lic  voidpop()

{

. }

[E q("((S  .push(E)) .s) ,pop()== S .",MType="Command",Comment="S is myStack, E  is 

Element.") ]

pub lic  vo idpush(int E lt)

f

}

}

[E qs(”((S .push(E)) .s) .topAndpop() .q - -  E  .;((S  .push(E)) .s) .topAndpopQ .s = = S 

M Type-"Q uery and Command",Comment-"S is myStack, E  is Element.")] 

pub lic  in t topAndpop ()

{

}
}

Attributes make the process of embedding and extracting information about a 
C# class straightforward. The attributes we have in this C# class are: Hidden, 
Vars, MethodComment and Eqs. They are written by users (not necessarily the 
same users who will embed and use them in C# classes) and all the data in the 
attributes is currently of the type string and must be arranged in the proper 
order:

Hidden [operation, comment]

Vars Ifie lds or parameters]

MethodComment [MType, comment]

Eqs [equations, MType, comment]

The "operation" in the attribute Hidden is in the format of an equation in Maude. 
(Note that a more sophisticated approach would structure the expressions on 
either side of each equation using XML tags, rather than simply representing 
them as text strings. However, since this would require parsing the equations, 
we leave this as a future enhancement. Note that this is means that the current 
implementation does not verify the equation syntax.) The "comment" is not 
required in the attributes but it enables an explanation to be given of what this 
method is for, which makes the attributes easier to understand. The 
"parameters" and "equations" are strings here, but they need to be in the

74



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

proper format shown in the example code since they contain important 
information we need to do the transformation. A common classification concept 
for methods in Object Oriented Programming is to distinguish between 
Commands -  which are methods that modify objects and Queries -  which are 
methods that return information about objects without modifying them. Some 
methods both modify objects and return information and hence fall into both 
categories. Information about the classification of a method in this style could 
be useful when defining its specification. For example, in the case of algebraic 
specification, the defining equations for Queries and Commands are simpler 
than for methods which are both. This is because methods that are both Queries 
and Commands must return data pairs -  representing the new value of the 
object and the value of the query. We use MType to represent a methods' type. 
Normally if the method does not have a return value (with a return type of Void), 
then we say MType is "Command". Otherwise we can say its MType is "Query", 
or "Query and Command" depending on whether the method simply returns 
information or additionally modifies an object's state. As we already stated in 
the earlier stage, these attributes could be customised in the way the users liked, 
and as far as possible we avoid forcing specific decisions on users. We also try to 
avoid restrictions that would prevent C# being replaced by another object 
oriented language (see more about Methods and MType in Chapter 4.3.5).

Now we consider the XML notation that we have developed to model the C# 
class. The XML file contains all the necessary information we need later on to 
create an executable specification in Maude, and it is automatically generated in 
the very strict format by the Class Reader. Here is a simple example:

<?xm l version="1.0"?>

<?xml-stylesheet type-"tex t/xs l" href="classSpec.xsl"?>

<Class>

<Name>stackOfElt</Name>

<Extend>stack</Extend>

<Hidderi>

<O peration>op EmptyStack: -> stackO fE lt</O peration>

<Comment />

</H idden>

< F ie ld  Type = "In t"> E < /F ie ld>

< F ie ld  Type= "stackOfElt ">S</F ie ld>

<Method Type = "Query ">

<Name>top</Name>

<ParameterType />

<MethodReturnType> System. Int3 2 </MethodReturnType>

<Equation>

<LH S>((S  .push(E)) .s) .top()</LH S>

75



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<RHS> E . </RHS>

</Equation>

<C ond ition>N U LL< /C ondition>

<Comment>S is myStack, E  is Element.</Comment> 

</Method>

<M ethod Type="Command">

<Name>pop</Name>

< Parameter Type />

<MethodReturnType>System. Void</MethodReturnType> 

<Equation>

<LH S>((S  .push(E)) .s) ,pop()</LHS>

<RHS> S </RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is myStack, E  is Element. </Comment>  

</Method>

<Method Type= "Command”>

<Name>push</Name>

<ParameterType> System. lnt32</ParameterType>  

<MethodReturnType>System. Void</MethodReturnType> 

<Equation>

<LHS>((S .push(E)) .s) .pop()</LHS>

<RHS> S . </RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is myStack, E  is Element.</Comment> 

</Method>

<Method Type-"Q uery and Command"> 

<Name>topAndpop</Name>

<ParameterType />

<MethodReturnType> System. Int32</MethodReturnType>  

<Equation>

<LH S>((S  .push(E)) .s) .topAndpopQ .q </LHS>  

<RHS> E . </RHS>

</Equation>

<Equation>

<LHS>((S .push(E)) .s) .topAndpopQ .s </LHS>  

<RHS> S </RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is myStack, E  is Element.</Comment> 

</Method>

</Class>

76



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The whole class is enclosed by tag <Class> and </Class> „ Similarly, the 
methods are enclosed by the tag <Method> and </Method>, and the equations 
are enclosed by the tag <Equation> and </Equation>. There is a "Type" in each 
tag <Method> to determine whether this method is " Query" or " Command" or 
both. And each equation has been divided into "LHS" (left hand side) and "RHS" 
(right hand side), in order to make the transformation easier from XML class 
specification to Maude specification. Tag <Condition>...</Condition> identifies 
if it is a conditional equation. Because this XML class specification is generated 
automatically, we can see some C# type declarations like "System.Void" and 
"System.Int32" in this XML file. All the tags and data in this XML class 
specification are clear and easy to understand, but it is still not that convenient 
for us to check if this file contains all the information we required from the 
original C# class. We can use an XML schema to define the structure of this XML 
specification file:

Definition
The XML Class Specification for C# class stackOfElt is syntactically defined by 
the following XML Schema:

<xsd:element name= ’’M ethod”  type = ’’MethodType ”/>

<xsd:complexType name= ’’MethodType ” >

<xsd:sequence>

<xsd:element name= ’’Name ”  type= ”xsd :s tring ”/>

<xsd:element re f=  ’’ParameterType”  m inOccurs= ” 0 ”  maxOccurs= ” 10”/>  

<xsd:element name= ’’MethodReturnType type ”  type= ”xsd :string ”/>

<xsd:element name= ’’Comment ”  type= ”xsd:anyType ”/>

<xsd: element re f=  ’’Equation”  m inO ccurs- ” 0 ”  maxOccurs— ” 10 ”/>

<xsd:element re f=  ’’Condition ”  m inOccurs= ” 0 ”  maxOccurs= ” 1 ”/>  

</xsd:sequence>

<xsd:attribute name= ’’Type ” >

<xsd:simpleType>

<xsd:restriction b a s e -”xsd :s tring ” >

<xsd:enumeration v a lu e - ’’Q uery" />

<xsd:enumeration value= ’’Command” />

<xsd:enumeration value= ’’Query and Command”  />

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:complexType>

<xsd:element name= ’’ParameterType ”  type= ”xsd :s tring ”/>

<xsd:element name= ’’Equation ’’ type= ’’EquationType ”/>

77



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<xsd:complexType name= ”EqualionType ” >

<xsd:sequence>

<xsd:element name= ”L H S ” type= ”xsd :s tring ”/>

<xsd:element name= ”R H S” typ e - ”xsd :string”/>

</xsd:sequence>

</xsd:complexType>

<xsd:element n a m e - ’’Condition ”  type= ”xsd :s tring ”/>

Here we need to note that the schema would be different for a different XML 
class specification (the names of the attributes are defined by the users, and 
different attributes will generate different XML tags). At the moment it is not 
clear how to generically define the output as a schema: in fact, no such ' meta 
schema1 definition method exists at all at the moment. Anecdotal accounts of 
attempts to define "generic meta schemas" so far seem to result in highly 
abstract definitions of limited usefulness. An alternative (and possible future 
extension) would be for the system to automatically output the schemas in 
conjunction with class specifications.

XML has offered us a mechanism to make the XML file transform into a simple 
class specification. The utility is Extensible Stylesheet Langugage (XSL). After 
we add the XSL stylesheet in our XML file: <?xml-stylesheet type="text/xsl" 
href="classSpec.xsl"?>, we have the following:

Class stackO fE lt:: stack Specification {

In t: E

stackOfElt: S 

Hidden {

op EmptyStack: ->  stackOfElt

/ /

}
Method top : ->  System.Int32 [Q u e ry ]{  

eq ((S .push(E)) .s) .top() = E .

IF  (N U L L  )

//S is myStack, E  is Element.

}
Method pop : -> System. Void [Com m and]{  

eq ((S .push(E)) .s) .pop() = S .

IF  (N U L L )

//S is myStack, E  is Element.

}
Method push : System.Int32 ->  System. Void [C om m and]{  

eq ((S .push(E)) .s) .pop() = S .

78



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

IF  (N U L L )

//S is myStack, E is Element.

}
Method topAndpop : ->  System.Int32 [Q uery and Command]{  

eq ((S .push(E)) .s) .topAndpopQ .q = E . 

eq ((S .push(E)) .s) .topAndpopQ .s = S .

IF  (N U L L )

//S is myStack, E  is Element.

}

}

The stylesheet code is shown below:

<?xm l version='1.0'?>

<xsl:stylesheet xm ln s :xs l-"http://www.w3.org/1999/XSL/Transform" ve rs ion = "l.0 ">  

<xsl:output m ethod -"xm l" indent="yes"/>

<xsl:template m atch="/”>

<xsl: apply-templates select="Class "/>

</xsl:template>

<xsl:template match= "Class ">

<P>

<B> Class < /B>

<xsl:va lue-o f se lect- "Name "/>

Specification {

< /P>

<xsl:for-each select= "F ie ld ”>

<P>

<xsl:va lue-o f select= "./@Type "/> :

<xsl:apply-templates/>

< /P>

</xsl:for-each>

<xsl:for-each select = "Hidden ">

<P >

<B>Hidden < /B > {

</P>

<P>

<xsl:apply-templates/>

< /P >

<P >

}

</P>

</xsl:for-each>

79



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<xsl:for-each select = "Method">

<P >

<B >M ethod </B>

< U > < xs l:va lue -o f select="Name"/> : <xsl:va lue -o f select-"Param eterType"/> ->  

<xsl:va lue -o f se lect=”MethodReturnType"/> < /U >

[ <xsl:va lue-o f se lect- "./@Type " /> ] {

< /P >

<xsl:apply-templates/>

<P >

}
</P >

</xsl:for-each>

<P>

}

</P>

</xsl:template>

<xsl:template match="Name'V>

<xsl:template match= "ParameterType "/>
<xsl:template match="MethodReturnType"/>

<xsl:template m atch="*/Equation ">

<P>

< I>eq  < /I>< xs l:va lue -o f se lect-"LH S "/>  = <xsl:va lue-o f select="RHS"/> .

< /P>

</xsl:template>

<xsl:template match= "*/Operation ">

<P>

<xsl:va lue-o f select= "/>

< /P>

</xsl:template>

<xsl:template match= " * /Condition ">

<P>

< I> IF  < / !> (  <xsl:va lue-o f se lect-". "/> )

< /P>

</xsl:template>

<xsl:template m atch-"*/C om m ent">

<B style="COLOR: green">//<xsl:va lue-o f se lect-". " /> </B>

</xsl:template>

80



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

</xsl:stylesheet>

This makes the output more readable, and more in the form we would typically 
expect for an Algebraic Specification. This XSL stylesheet is simply searching 
the data we want and displaying it in a clean and tidy way. For example, for all 
the data enclosed in the tag <Equation>...</Equation>, we only want to display 
the equation in the normalized form, like "eg LHS = RHS", and the XSL 
stylesheet actually gives us the result we wanted.

4.3 From XML Class Specification to Maude 

Specification

In this section we will examine the next stage in our modelling process where 
we convert an XML class specification into another formal specification language 
-  in a specific algebraic language instead of the generic "algebraic style" 
representation of the previous section. We have chosen Maude as the targeted 
language to illustrate the modelling process of our generic toolset. There are a 
number of languages available, but Maude is well-known and understood at 
Swansea. The purpose of creating a Maude specification is to provide a 
specification that we can execute for testing and analysis purposes. This process 
involves the creation of many special operations and equations which are 
needed to allow us to execute the specification.

4.3.1 The Translator

We created a utility to transform the XML class specification into the Maude 
specification automatically, which is called the translator. The translator is a C# 
coded program that is able to read from the XML file, and then generate 
operations and equations in Maude syntax. We would like to state that at the 
time we wrote the program and thesis, we did not think it was possible to do the 
transformation in XSL.However, having gained much more experience in using 
XML it clearly is.

It is not necessary to examine the Translator code in detail, but the process of 
modelling the XML class specification into Maude specification is interesting and 
we will discuss it in detail. In the following sections, we consider the 
representation of the various components of a class, with specific reference to 
our algebraic specification example in Maude, we will discuss the modelling 
process step by step and the mapping between the relevant C# entities and 
Maude entities.

81



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

4.3.2 Class and its Name

The identifier of a class is the classname. A classname is a unique name which 
can not be shared with any other class. In C# language, a typical example of a 
classname is (Actually, it would be stackOfElt -  since C# does not use the same 
naming conventions as Java):

pub lic  class stackOfElt 

{...}

And we would have the following format in the XML class specification:

<Class>

<Name>stackOfElt</Name>

</Class>

Strictly there is no "classname" in Maude, the nearest equivalent s the module 
name. We need to create a sort to represent objects of the class. Also, we need 
to represent not only classes, but object instances of classes. To do this, we also 
need to create a new sort, with the same name as the class. Therefore we 
should generate a new Maude file stackOfElt.maude from above example:

fm od  stackOfElt is 

sort stackO fE lt.

endfm

In this stage, we have the mapping:

Class Maude Functional Module + A New Sort

4.3.3 Fields

Fields are variables which belong to class instances. In the class stackOfElt there 
are three fields:

[Vars("E :in t; S:Stack")]  

pub lic  int E lt; 

pub lic  Stack myStack; 

pub lic  int E lt2

C# fields never map to variables in Maude. We normally need to map fields into

82



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

operations. Therefore we have the mapping:

Fields Operations

In order to model fields in Maude we define them as two operations. We need to 
define equations which allow us to get and set the field value of a given object. 
To a user knowledge of the implementation of this is not required and will 
appear to them as though they are assigning and accessing fields are they 
normally would in C#. First we need to define the get and set operations for a 
field:

op _ .f ie ld : class ->  fie ld_type . 

op .filed  : = class fe ld jty p e  ->  class .

For example, if we have field "int e" in the class A, we will have the following 
lines:

op _.e : A ->  in t . 

op _ .e :-_  : A int ->  A .

Also these operators can be used to define properties in a similar way. For 
example, the "standard" equation that would be generated for the field e above 
is

eq (A .e :=  x).e - -  x.

That is, if we store the value of x  in e and then look up the contents of e, we get 
x. In fact this equation can be very simply generated automatically (though our 
current implementation does not yet do so). In the case of "simple" properties, 
where a value is stored and accessed without any tests of its value, the process 
(and equation) is identical -  and can also be automatically generated. However, 
some properties are not so simple. For example, the following property stores 
zero if an attempt is made to store a negative number.

pub lic  in t e 

{
get

{
return e;

}
set

{
i f  (x < = 0)

e = 0;

83



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

else

e = value;

}

}

This case is similar, but we can no longer use the single, simple equation above. 
Instead we need the following pair of conditional equations:

ceq (A .e :=  x).e ==  x i f x > 0 .  

ceq (A .e : - x ) .e  —  0 i f  x < =  0.

4.3.4 Constructors

Constructors are used to create class instances. In C#, the name of the 
constructor is always the same as the classname, as is the case with Java. A 
class can have more than one constructor provided their signatures are different. 
A signature is defined by its name and its parameter list: and since the name of 
a constructor must be the same as its class, the parameters must be different. 
Two constructors differ in their signatures if they have different numbers or 
types of parameters. Therefore if a class has more than one constructor, then 
the number, order and types of input parameters entered will determine which 
constructor is called when a class instance is created. This is called operator 
overloading. Methods also have this similar attribute and we will discuss it in 
4.3.5. The following are examples of constructors:

pub lic  class stackOfElt 

{

//constructor—create an empty stack 

pub lic  stackOfEltQ

//constructor—create an empty stack w ith a element 

pub lic  stackOfElt (in t E lt)

}

Constructors are a special case here, since we can see in the previous chapters,

84



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

there are no constructors in the XML class specification. Because constructors 
only return the class type as there is no query part to constructors, they do not 
necessarily appear on the final generated Maude code5. In the case of a default 
constructor like, say, new StackOfElt() which returns EmptyStackofElt, then 
there could be no constructor in the Maude code -  it could just be reduced to 
EmptyStackofElt. But it doesn't have to be. However, we can still demonstrate 
the constructors in the Maude code, for example:

op emptyStack :->  S tackofE lt. //A constant representing an empty stack 

op new StackOfElt() : ->  S tackofE lt.
Eq new StackOfEltQ = emptyStack. //fo r a simple one that ju s t makes a new stack

op new S tackO fE lt/J  : E lt ->  S tackofE lt.
Var e: E l t .

Eq new StackofElt(e) = emptyStack.push(e). //fo r one that adds an in itia l element)

All constructors will return a new instance of the class initialised in some manner, 
defined by the constructor's equations and parameters. In the case of the 
default constructor with no parameters, this is generally some constant 
operator which symbolises the empty class or default class. This empty class is 
usually specified by the user in the Hidden attribute. Typically, we could still 
have the following mapping:

Constructor Operation

4.3.5 Methods

In C#, methods take on the role of procedures and functions in procedural 
programming languages (like Pascal). In this chapter, we want to do the 
mapping:

C# methods operations

A method consists of a name, a list of parameters and its return type. I f  a 
method returns no value, then its return type is void, for example:

5 The constructors in C# and in Maude are different. The constructor in C# creates a new object, but the 
constructor in Maude “ creates”  a new sort element. For example, in Chapter 3.3, we have an example o f Natural 
number, the equations could be: op 0 : -> Nat .[ctor] and op s : Nat -> Na t.[ctor], but 0 and s are not [ctor]. 
Actually the ctor -  constructor in Maude is a mechanism for enumerating all the elements o f a sort, which is 
related to but not exactly the same as a constructor in C#. In C# constructors also strictly speaking enumerate the 
elements o f a class. However, we do not generally think o f them in those terms.

85



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

public int top()

{ . . .  }

public vo idpop()

Methods may either solely return information about a class instance (we denote 
such methods Query as we already stated before (also see Chapter 4.2.2)), 
solely modify a class instance (Command) or do both (Query and Command).

<Method Type="Query">

<Name>top</Name>

<ParameterType />
<MethodReturn Type > System. In t 3 2 </MethodReturn Type >

<Comment> Return the top element o f  the stack</Comment>

</Method>

<Method Type-"Command">

<Name>pop</Name>

<ParameterType />
<MethodReturnType>System. Void</MethodReturnType>

<Comment> Rmove the 1st element o f  the stack</Comment>

</Method>

These equations in the attributes and XML class specification, represents the 
purpose and the functions of the current methods. The corresponding equations 
for topAndpop are as follows:

<Method Type-"Query and Command">

<Name>topAndpop</Name>

<ParameterType />
<MethodReturn Type> System. In t 3 2 </MethodReturn Type >

<Equation>

<LHS>S.push(E). topAndPopQ. q</LHS>

<RHS>E</RHS>

</Equation>

<Equation>

<LHS>S.push(E).topAndPopQ.s</LHS>

<RHS>S</RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>S is myStack, E  is Element. </Comment>

</Method>

Now we will show how to convert the methods from an XML class specification

86



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

into a Maude specification. As discussed before (see Chapter 4.2.2), methods 
can either change the state of an object, or return a value, or both. The obvious 
was to model this is to permit such operations to return both the result value 
(representing the Query) and a new instance of the object (representing the 
Command). But an operation in Maude can not directly model functions that 
returns two types. In order to do so we need to create a tuple sort of the two 
types that can be returned. And when it comes to the equations to define each 
return type, we have create separate equations defining a method's return type 
(query) and equations defining how a method changes the state of a class 
instance (command) by means of functions (projection operators) that extract 
each part of the tuple. We use q to represent the projection operator for queries 
and use s to represent the projection operator for commands (or states). Let us 
consider the method top in the Maude code:

op top() : -> I n t .

The above Maude code is correct, but we want to change the syntax of each 
method to more closely reflect the object-oriented member access notation. So 
we have the new operator for top:

°p_. top() : stackOfElt ->  I n t .

The input is a class instance variable of the class itself (i.e. an object). This 
allows us to use the object-oriented member access notation. We can also 
consider the example pop again:

°p_. pop() : stackOfElt ->  stackO fE lt.

The above examples top and pop are easily to be converted since method top is 
simply a query and method pop is simply a command. However, there are some 
methods like topAndpop we have shown above which are more complicated. We 
have to change the return sort to be a tuple which contains both the state 
change return type and the query return type. The definition of an appropriate 
tuple sort only needs to be done once for each different return type. In order to 
model this, we will need to add a new sort which will be the appropriate tuple 
sort type:

sort AB

A is the classname, and B is the MethodReturnType

We use the convention that the name of the tuple sort will be the concatenation 
of the two individual sort names. I t  is also of course possible that a sort of that 
name will already exist (or, strictly, that a type of that name will exist in the C# 
code). In this thesis, we neglect this possibility -  though a robust system must

87



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

be able to cope with it.

Now we apply it to the above examples and we will have the following generated 
code:

sort s tackO fE ltln t.

op : stackOfElt In t ->  s tackO fE ltln t.

op _.q : stackOfE ltlnt ->  I n t .6 

op _.s : stackOfE ltlnt -> s tackO fE lt.

op _.top() : stackOfElt ->  s tackO fE ltln t.

sort stackO fE ltVoid. 

sort Void.

op : stackOfElt Void ->  stackO fE ltVoid.

op _.q : stackOfEltVoid ->  Void. 

op _.s : stackOfEltVoid ->  stackO fE lt.

op _.pop() : stackOfElt ->  stackO fE ltVoid.

As for method topAndpop, we already have sort stackOfEltlnt created:

op topAndpopQ : stackOfElt ->  s tackO fE ltln t.

Notice also the two projection operators:

op _.q : stackO fE ltlnt -> I n t . 

op _.s : stackOfE ltlnt ->  s tackO fE lt.

Although at the moment these operators are not defined.

We have handled methods from XML class specification into Maude code, and 
now we need to consider equations.

4.3.6 Equations

We have already seen the equations when we were discussing methods. Each 
method will be defined in terms of equations and we will copy them directly from 
XML class specification into Maude code. Since we have already handled 
equations when we converted a general C# class into an XML class specification, 
it would be an easy job here for us to copy them into our Maude code. We have

6 The “_.q”  and “_.s”  are projection operators, for example, we could have (a,b,c) -> b.



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

the following form for equations:

eq LHS (left hand side) = RHS (right hand side) .

We could have conditional equations too:

eq LHS (left hand side) = RHS (righ t hand side) i f  Condition .

The equations LHS and RHS and the condition are all strings because we 
assumed they were already in the proper format in the attributes. Note that at 
the moment we do not do any error checking on the format of the RHS, LHS and 
condition (in the case of conditional equations). This is obviously not 
satisfactory in the long term and ultimately the expression structure of the 
components of equations should be properly parsed and represented. We omit 
it here because it would be time-consuming to implement, but is 
well-understood.

A method potentially returns a pair consisting of a return value and a new state 
for a class instance: something which would be reflected in the equations. For 
example, the following are the equations of method topAndpop in XML class 
specification:

<Equation>

<LHS>S.push(E). topAndPopQ. q</LHS>

<RHS>E</RHS>

</Equation>

<Equation>

<LHS>S.push(E).topAndPopQ.s</LHS>

<RHS>S</RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is myStack, E  is Element.</Comment>

Then we would have the following equations in our Maude code:

eq ((S ,push(E)).s).topAndpopQ.q = E . 

eq ((S .push(E)).s).topAndpopQ.s = S .

The variables used in the equations -  S and E - will have already been declared 
them in the field section.

89



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

4.3.7 Sorts, Subsorts and Hidden operators

Before we consider inheritance, we shall have a brief look at the sorts and the 
hidden operators. The hidden operators are used to define, for example, 
constants which are used in the equation definitions. For instance, in order to 
equationally define a stack in our example class stackOfElt, it is helpful to have 
a constant that represents an empty stack. This would be done by defining an 
operation:

op EmptyStack: ->  stackOfElt .

The EmptyStack operator is not an aspect of the original class stackOfElt that we 
are modelling but is considered to be useful for creating equational definitions of 
the class. Hence we need some mechanism to introduce it, and we have chosen 
to group all such operations together, and collectively call them hidden 
operators. The Hidden operators are usually trivial in practice and are copied 
unchanged when we transform the XML class specification into Maude code.

Sorts7 require a bit more work. In order to deal with inheritance, we have to 
define a subsort relating the inherited class type and the inheriting class type. 
Therefore the inheriting class sort is a subsort of the inherited class sort, we 
have the following form:

subsort InheritingClass < InheritedClass

Assume we have a C# class stack, and our example class stackOfElt is inheriting 
from stack, we would have the following line in our Maude code:

subsort stackOfElt < s tack .

4.3.8 Inheritance

In this section we will consider how we model inheritance and especially how we 
model inherited methods in Maude. In C#, we use the following syntax to define 
inheritance:

Public class stackO fE lt: stack 

{ . . . }

1 Note that for the moment, we do not consider simple types but only reference types. In general, the sort type can 
be either a primitive data type such as an integer or a real number or it can be a reference type such as an array or 
even a class instance o f a certain class type.

90



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

We know from above example, stackOfElt is the inheriting class and stack is the 
inherited class or we can say stack is the base class of stackOfElt. And we would 
have the following code in the XML class specification:

<Class>

<Name>stackOfElt</Name>

<Extend>stack</Extend>

</Class>

The tag <Extend>...</Extend> tells us the inheritance of the current class. 
When we transform the XML Class Specification into Maude code, we will have to 
check the Maude code for stack and decide whether there is any method 
overriding.

fm od  stack is 

protecting baseclass. 

sort s tack.

op _.top() : stack ->  s tack ln t. 

sort s tack ln t.

op : stack In t -> s tack ln t. 

op _.q : stacklnt ->  I n t . 

op _.s : stacklnt ->  stack.

var A : s tack.

eq A .topQ.q = 0 . 

end/m

As we can see, class stack has a method top and one related equation. When we 
are transforming the class stackOfElt from XML class specification into a Maude 
specification, we would have:

fm od  stackOfElt is 

protecting s tack. 

sort stackO fE lt. 

subsort stackOfElt < s tack . 

op EmptyStack: ->  stackO fE lt.

var E : I n t . 

var S : s tackO fE lt.

91



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

°P _• topQ •’ stackOfElt ->  s ta ckO fE ltln t.

subsort stackO fE ltlnt < s ta ck ln t.

op .base.topQ : stackOfElt ->  s tackO fE ltln t. 

var A : s tackO fE lt. 

eq A .base.topQ.q = 0.

sort s tackO fE ltln t.

op : stackOfElt In t ->  s tackO fE ltln t. 

op _.q : stackO fE ltlnt ->  I n t . 

op _.s : stackOfE ltlnt -> stackO fE lt.

eq ((S .push(E)) .s) .top() .q = E .

endfm

We know class stackOfElt is inheriting from class stack. Our program will check 
for overridden every time when modelling each new method in class stackOfElt. 
If  there is a method in class stackOfElt with the same name as one of the 
methods in class stack, we take class stack's method operators and tag "base." 
between the notation and the method name for each reference to the 
method name. So we have a new line in our Maude code for class stackOfElt'.

op _.base.top() : stackOfElt ->  s tackO fE ltln t.

Note that we retain the inheriting class' original return types8. And now we need 
to generate the equations for the overriding method:

var A : s tackO fE lt. 

eqA .base.topQ.q = 0.

The equations are simply copied from class stack and slightly modified by the 
tag "base." as we did with the operators.

The example stackOfElt is just a simple example. It is possible we have several 
selected C# classes and they have more than one level in their inheritance tree, 
which we called multiple level inheritances. We will consider this case in later

8 The behaviour o f the inherited methods could be virtual or non-virtual. For example:
Stack x = new stackOfElt()
What is the class o f x? There is 2 possibilities:
1. virtual, the class o f x is stackOfElt
2. non-virtual, the class o f x is stack
Java makes the determination at runtime o f the type o f the class o f x is stackOfElt. But in C#, it could be either, 
however by default, it makes the determination at compile time and consider the class o f x is stack.

92



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007____________________________________________________________________________________________

chapters.

4.4 The Future Development of the Current System

The implementation of the current system is really just a proof of concept, 
rather than an attempt to produce a production system. The following list is the 
work which have not been implemented:

•  A well designed XML format definition for "the constructor" of the attributes 
in EADF.

•  A well desgined XML format definition for ESC
•  An improved C# application of Attributes Generator, which will able to 

automatically generate a complete C# source code of Class Reader.

We will show a proposal of the solution to solve these problems in Chapter 6.

93



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 5 Examples of Class Specification

In this chapter, we will test several selected simple C# classes to see if we can 
model them accurately using the algebraic specification attributes we have 
defined. These examples are taken from [1] and have been modified to fit our 
needs -  for example changing Java to C#.

5.1 ArrayList

ArrayList is a commonly-used collection class in both C# and Java, with a range 
of operations. We define our own simple version of MyArrayList here. An 
ArrayList structure is defined in a similar way to the stackOfElt example. Note 
that a strong representation of ArrayList would include the ability deal with 
Exceptions. We omit that here. An ArrayList is defined as an empty ArrayList 
followed by add calls which add objects to the ArrayList. First we will examine 
the program of this MyArrayList class:

//an example o f  A rray  lis t

[H id d e n f’op Empty A rray  L is t : -> M yA rra yL is t")] 

public class M yArrayList 

{
[V a rs("C :In t;E :In t;A : M yA rrayL is t") ] 

pub lic  int Cap; //cap ic ity o f  the a rray lis t 

pub lic  int E lt; //element o f  the a rraylist 

pub lic  in t Count;

//constructor —  new. empty array lis t 

pub lic  M yArrayListQ  

{ . . . }

//constructor — new a rray lis t w ith a specified capcity 

pub lic  M yArrayList (int Cap)

{... }

//method add, s im ila r with push in Stack

[Eq("(((A  .add(E)) .s) ,rem ove(E))== A .",MType="Command",Comment="A is 

ArrayList, E  is Element.") ]

pub lic  void add (in t E lt)

{ ■■■

94



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

//method clear

[E q (”(A .c le a r())= -  Em ptyArrayList .", MType="Command", Comment="A is

A rray 'L is t")]

pub lic vo id clearQ  

{... }

//method size

[E q ( “ (((A .add(E)) .s) .sizeQ) ==  (A .sizeQ) + 1 . ” , M typ e = ” Q uery” , Comment=”A is 

A rray  List, E is Element”) ]  

pub lic  int sizeQ

//method contains

[Eq("(((A  .add(E)) .s) .contains (E) ) = = true .", MType = "Query", Comment = "A is 

ArrayList, E  is E lem ent. " ) ]

pub lic bool contains(int E lt)

//method insert, insert an element into a specified location o f  array lis t 

//The way this works is that i f  the element to be added is really at the end anyway, we ju s t use add; 

//Otherwise we move back through the lis t recursively (using the 2nd equation) until we get to a 

//po in t Where the f ir s t  equation *does * apply

[C Eqs(" (A ,insert(C,E)) .s - -  ((A .add(E)) .s) i f  A .sizeQ = C . ;

(((A .add(F)) .s) .insert(C.E)) .s ==  (((A .insert(C.E)) .s) .add(F)) .s) i f  ((A.add(F)).s) .sizeQ =/=  

C . MType -"Q uery",C om m ent-"A  is A rray  List, E  and F  are Elements, C is location o f  the

element.") ]

pub lic void insert (in t Count, in t E lt)

{... }

//method remove, remove the most recently added copy o f  an element 

[Eq("(((A  .add(E)) .s) .rem ove(E ))-=  A .", MType = "Command", Comment= "A is 

ArrayList, E  is E lem ent." ) ]

pub lic void remove(int E lt)

{... }

//method removeAt, remove an element at sepecified location

[Eq("(((A  .insert(C,E)) .s) .rem oveAt(C))== A .",MType="Command",Comment="A is 

ArrayList, E is Element, C is location o f  the element." ) ] 

pub lic  void removeAt (int Count)

{... }

//method indexO f, Returns the zero-based index o f  the f ir s t  occurrence o f  a value in the

A rrayList

95



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[Eq("(((A  .insert(C,E)) .s) , in d e x O f(E ))--  C .", MType -"Q uery", Comment="A is 

ArrayList, E  is Element, C is location o f  the element. ") ] 

pub lic  in t indexOf(int E lt)

{... }

/ /method lastlndexO f, Returns the zero-based index o f  the last occurrence o f  a value in 

the A rray  List

[Eq("(((A  .add(E)) .s) .removeAt((A .lastlndexOf(E)) .q ))==  A .", MType ="Command", 

Comment="A is A rray  List, E  is E lement")] 

pub lic  int lastIndexOf(int E lt)

{... }

}

/ /  method elementAt(int Count) that access the element at location C

[C E qs(“ ((A .add(E)) .s) .elementAt(C) ==  E  i f  ((A .add(E)) .s) .sizeQ = C + l . ; 

((A .add(E)) .s) .elementAt(C) == A .elementAt(C) i f  ((A.add(E)) .s) .sizeQ = /= C + l . ” , 

MType= "  Query", Com m ent-''A  is ArrayList, E  is Element, C is location o f  the element.") ]

Public in t elementAt(int Count)

{ . ..}

The class is embedded with three attributes Hidden, Vars and Eq. These 
attributes have been already introduced in the above chapters. We are 
interested to see the GFS we would get from the MyArrayList class. Let us have 
a look at the methods of the MyArrayList class:

//method add, sim ilar w ith push in Stack, Add one element into the A rrayL ist 

pub lic  vo id add (in t E lt)

{ . . . }

//method clear, Delete a ll the elements in the A rrayL is t 

pub lic  void clear()

{ . . . }

//method size, the size o f  the A rrayL ist 

pub lic  in t sizeQ 

{■■}

//method contains, Check i f  the A rrayL ist has the specified element 

pub lic  bool contains(int E lt)

{ . . . }

//method insert, Insert an element into a specified location o f  a rray lis t

96



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

pub lic  void insert (int Count, int Elt)

//method remove, S im ilar with pop in Stack, Remove an element o f  arraylist 

pub lic  vo id remove(int E lt)

//method removeAt, advanced version o f  remove at specified location  

pub lic  void removeAt (in t Count)

{...  }

//method indexOf, Returns the zero-based index o f  the f ir s t  occurrence o f  a value in the A rrayL ist 

pub lic  in t indexOf(int E lt)

( . . . )

//method las tlndexO f, Returns the zero-based index o f  the last occurrence o f  a value in the 

A rray List

pub lic  int lastlndexO f (int E lt)

{... )

//method elementAt, access the element at location C 

Public in t elementAt(int Count)

(...)

The above methods' list gives us a clear idea of their main functions and types. 
C# has its own integrated ArrayList class. We can find its members' list at [76], 
the methods we created here have the similar function to them. Now we use the 
Class Reader to generate the XML Class Specification:

?xml version = "1.0”?>

<Class>

<Name>MyArrayList</Name>

< Extend />

<Hidden>

<O peration>op E m ptyA rrayL ist: -& g t; M yArrayList< /O peration>

<Comment />

</H idden>

< F ie ld  T ype -"ln t">C < /F ie ld>

< F ie ld  Type="Int">E</F ie ld>

< F ie ld  Type -  "M yArrayList">A < /F ie ld>

<Method Type="Command">

<Name>add</Name>

<ParameterType> System.Int32</ParameterType>

<MethodReturnType>System. Void</MethodReturnType>

97



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Equation>

<LHS>(((A .add(E)) .s) .remove(E))</LHS>

<RHS> A </RHS>

</Equation>

<C ondition>N U LL</C ondition>

<Comment>A is ArrayList, E  is Element. </Comment> 

</Method>

<Method Type= "Command">

<Name> clear</Name>

<ParameterType />

<MethodReturnType>System. Void</MethodReturnType> 

<Equation>

<LHS>(A .clear())</LHS>

<RHS> Em ptyA rrayL ist. </RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>A is ArrayList</Comm ent>

</Method>

<Method Type="Query">

<Name>size</Name>

<ParameterType />
<MethodReturnType> System. Int32</MethodReturnType> 

<Equation>

<LHS>(((A .add(E)) .s) .size())</LHS>

<RHS> (A .sizeQ) + 1</RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>A is ArrayList, E  is Element ,</Comment> 

</Method>

<Method Type= "Query ">

<Name>contains</Name>

< Par am eterType > System .In t 3 2 </Parameter Type > 

<MethodReturn Type > System. Boolean </MethodReturn Type > 

<Equation>

<LHS>(((A .add(E)) .s) .contains(E))</LHS>

<RHS> true .</RHS>

</Equation>

<C ondition>N ULL</C ondition>

<Comment>A is ArrayList, E  is Element .</Comment> 

</Method>

<Method Type= "Query ">

<Name>insert</Name>

<ParameterType> System. Int32System.Int32</ParameterType> 

<MethodReturnType> System. Void</MethodReturnType>

98



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Equation>

<LHS>(A .insert(C,E)) .s </LHS>

<RHS>((A .add(E)) .s)</RHS>

</Equation>

<C ondition> A .size() =  C </Condition>

<Equation>

<LH S>(((A  .add(F)) .s) .insert(C.E)) .s </LHS>

<RHS> (((A .insert(C.E)) .s) .add(F)) .s)</RHS>

</Equation>

<Condition>((A.add(F)).s) .sizeQ = /=  C </Condition>

<Comment> A is A rra y  List, E  and F  are Elements, C is location o f  the element 

</Comment>

</Method>

<Method Type-"Com mand">

<Nam e>remove</Nam e >

<ParameterType> System.Int32</ParameterType>

<MethodReturnType>System. Void</MethodReturnType>

<Equation>

<LH S>(((A  .add(E)) .s) .remove(E))</LHS>

<RHS> A </RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>A is ArrayList, E  is Element ,</Comment>

</Method>

<Method Type="Command">

<Nam e>rem oveA t </Nam e >
<ParameterType> System. Int3 2 </ParameterType>

<MethodReturnType>System. Void</MethodReturnType>

<Equation>

<LH S>(((A  .insert(C,E)) .s) .removeAt(C))</LHS>

<RHS> A </RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>A is ArrayList, E  is Element, C is location o f  the element.</Comment> 

</Method>

<Method Type="Query ">

<Name>indexOf</Name>

<ParameterType> System.Int32</ParameterType>

<MethodReturn Type> System. Int32 </MethodReturn Type>

<Equation>

<LHS>(((A  .insert(C,E)) .s) AndexOf(E))</LHS>

<RHS> C . </RHS>

</Equation>

<C ondition>N U LL</C ondition>

99



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Comment>A is ArrayList, E  is Element, C is location o f  the element.</Comment> 

</Method>

<Method Type="Command">

<Name>lastIndexOf</Name>

<ParameterType> System. Int32</ParameterType>

<MethodReturnType> System. Int32</MethodReturnType>

<Equation>

<LHS>(((A .add(E)) .s) ,removeAt((A .lastIndexOf(E)) .q))</LHS>

<RHS> A .</RHS>

</Equation>

<C ondition>N U LL</C ondition>

<Comment>A is ArrayList, E  is Element</Comment>

</Method>

<Method Type -  "Query ">

<Name> elementAt</Name>

<ParameterType> System.Int32</ParameterType>

<MethodReturnType> System.Int32</MethodReturnType>

<Equation>

<LHS>((A .add(E)) .s) .elementAt(C)</LHS>

<RHS> E  </RHS>

</Equation>

<Condition>((A  .add(E)) .s) .sizeQ = C + l< /C o nd itio n >

<Equation>

<LHS>((A .add(E)) .s) .elementAt(C)</LHS>

<RHS> A .elementAt(C)</RHS>

</Equation>

<Condition>((A.add(E)) .s) .sizeQ - / -  C + l< /C o nd itio n >

<Comment>A is ArrayList, E  is Element, C is location o f  the element.</Comment> 

</Method>

</Class>

Reading the above XML Class specification is not a pleasure, and so we are 
transforming it into a generic Algebraic Specification by using the appropriate 
XSL stylesheet:

Class M yA rra yL is t:: Specification {

In t: C 

In t: E

M yArrayList: A 

Hidden {

op Em ptyA rrayL ist: -> M yArrayList

//
}
M ethod a d d : System.Int32 -> System. Void [C om m and]{

100



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

eq (((A .add(E)) .s) .remove(E)) = A .

IF  (N U L L  )

//A is ArrayList, E is Element.

}

Method clear : ->  System. Void [Com m and]{  

eq (A .clear()) = Em ptyArrayList.

IF  (N U L L )

//A is A rrayL ist 

}
Method size : -> System.Int32 [Q u e ry ]{  

eq (((A .add(E)) .s) .sizeQ) == (A .sizeQ) + I  .

IF  (  N U LL )

//A is ArrayList, E  is E lem ent.

}
Method contains : System.Int32 ->  System.Boolean [Q u e ry ]{  

eq (((A .add(E)) .s) .contains(E)) = true .

IF  (N U L L  )

//A is ArrayList, E  is E lem ent.

}
Method in se rt: System.Int32System.Int32 ->  System. Void [Q u e ry ]{  

ceq (A .insert(C,E')) .s = =  ((A .add(E)) .s) .

IF  (A .sizeQ = C)

ceq (((A .add(F)) .s) .insert(C.E)) .s = =  (((A .insert(C.E)) .s) .add(F)) .s) . 

IF  (((A.add(F)).s) .sizeQ = /=  C)

/ /  A is ArrayList, E  and F  are Elements, C is location o f  the element.

}
Method remove : System.Int32 -> System. Void [Com m and]{  

eq (((A .add(E)) .s) .remove(E)) -  A .

IF  (N U L L  )

//A is ArrayList, E  is E lem ent.

}
Method rem oveAt: System.Int32 ->  System. Void [Com m and]{  

eq (((A .insert(C,E)) .s) .removeAt(C)) = A .

IF  (N U L L  )

//A is ArrayList, E  is Element, C is location o f  the element.

}
Method indexO f: System.Int32 ->  System.Int32 [Q u e ry ]] 

eq (((A .insert(C,E)) .s) .indexOf(E)) = C .

IF  (N U L L  )

//A  is ArrayList, E  is Element, C is location o f  the element.

}
Method lastlndexO f: System.Int32 ->  System.Int32 [C om m and]] 

eq (((A .add(E)) .s) .removeAt((A .lastlndexOf(E)) .q)) = A .

IF  (N U L L )



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

//A is ArrayList, E  is Element 

}
Method elementAt: System.Int32 -> System.Int32 [Q u e ry ]{  

ceq ((A .add(E)) .s) .elementAt(C) = =  E .

IF  (((A .add(E)) .s) .sizeQ = C + l)

ceq ((A .add(E)) .s) .elementAt(C) = =  A .elementAt(C) .

IF  (((A.add(E)) .s) .sizeQ = /=  C + l)

/ /A  is ArrayList, E  is Element, C is location o f  the element.

}
}

The equations and types are clear in the example above, as is the relationship 
with the Maude code we can generate. By using the Translator, we can transform 
the MyArrayList class into a Maude Specification:

fm od  M yArrayList is 

protecting baseclass. 

sort M yA rra yL is t.

op E m ptyA rrayL ist: -> M yA rra yL is t.

var C : I n t . 

var E : I n t . 

var A : M yA rra yL is t.

op _.add(_) : M yArrayList In t -> M yA rrayL is tV o id . 

sort M yArrayL istV o id .

op (_,_) : M yArrayList Void ->  M yA rrayL is tV o id . 

op _.q : M yArrayListVoid ->  Void. 

op _.s : M yArrayListVoid ->  M yA rra yL is t.

op _.clearQ : M yArrayList ->  M yA rrayL is tV o id . 

op _.sizeQ: M yArrayList ->  M yA rra yL is tln t.

sort M yA rra yL is tln t.
op (_,_) : M yArrayList In t -> M yA rra yL is tln t.

op _.q : M yA rrayL is tln t -> I n t .

op _.s : M yA rrayL is tln t ->  M yA rra yL is t.

op _.contains(_J : M yArrayList In t -> M yA rrayL is tB oo l.

sort M yA rrayL is tB oo l.

op (_,_) : M yArrayList Bool ->  M yA rrayL is tB oo l. 

op _.q : M yArrayListBool ->  B o o l.

102



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

op _.s : M yArrayListBool -> M y A rra y L is t.

op _.insert(_,_) : M yArrayList In t In t -> M yA rrayL istV o id . 

op _.remove(_) : M yArrayList In t ->  M yA rrayL is tV o id . 

op _.removeAt(_) : M yArrayList In t ->  M yA rrayL is tV o id . 

op _ .indexO f(J : M yArrayList In t ->  M yA rra yL is tln t. 

op _.lastIndexOf(_) : M yArrayList In t -> M yA rra yL is tln t. 

op _.elementAt(_) : M yArrayList In t ->  M ya rra yL is tln t.

eq (((A .add(E)) .s) .remove(E)) .s = A  .

eq (A . clear()) .s = Em ptyArrayList.

eq (((A .add(E)) .s) .sizeQ) - -  (A .sizeQ) + 1 .

eq (((A .add(E)) .s) .contains(E)) .q = true .

ceq (A .insert(C,E)) .s - -  ((A .add(E)) .s) i f  A .sizeQ = C .

ceq (((A .add(F)) .s) .insert(C.E)) .s = -  (((A .insert(C.E)) .s) .add(F)) .s) i f  ((A.add(F)).s) .sizeQ

= / =  C .

eq (((A .add(E)) .s) .removeAt((A JastlndexOffE)) .q)) .s = A .

ceq ((A .add(E)) .s) .elementAt(C) = =  E  i f  ((A .add(E)) .s) .sizeQ = C + l .

ceq ((A .add(E)) .s) .elementAt(C) ==  A .elementAt(C) i f  ((A.add(E)) .s) .sizeQ - / — C + l .

endfm

Observe that we make use of the sort tupling described earlier (Section 4.3.5), 
together with tupling and projection operators. E.g. " My Array L is tln t"/' op 
: MyArrayList In t -> My Array Li stin t", and "_.<7 : My Array Li s tin t -> In t (and so 
on)". In this particular example, this may be considered unnecessary because 
there are no methods that are both commands and queries. However, this code 
is automatically generated.

Currently we can not guarantee all the C# system types can be normalized into 
Maude types (simply because not all types in C# have a corresponding type in 
Maude) and we can not handle the operations which have a lot of parameters.

5.2 The Shapes Example

In this section we will show the examples of Shape, Rectangle and Square9 as a 
class specification and the full Maude specification that will be produced from 
them. Also we consider inheritance again since the shape example includes 
multiple levels. The importing of methods from an inherited class is reasonably 
trivial but the modelling of method overriding and accessing overridden

9 These examples are taken from [1] and have been rewritten into C# version. In [1], all o f the examples are based 
on Java.

103



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

methods is more complex. In our examples and in C # generally, there exists 
only single inheritance so our model does not have to cope with multiple 
inheritance. However, we still have to be able to model a class with many levels 
of inheritance if needed.

For example, if we 3 classes in C+ + : class washingdryer, class washingmachine, 
class tumbledryer, we have the following mutilple inheritances:

class washingdryer : washingmachine, tumbledryer

It can be represented in Maude as:

sort washingdryer.

subsort washingdryer < washingmachine . 

subsort washingdryer < tub ledryer.

Class Shape is a general class for geometric shapes. It can be assumed that all 
classes that inherit from this class will have the general attributes of Shape. We 
know it is not a good way to write the Shape C# programs as we did, because 
we do not really need to override the area method. But we are doing it to show 
how overriding works when we model it in Maude.

The following is a very simple version of Class Shape:

//an example o f  Shape 

[H idden("op AShape : ->  Shape")] 

pub lic  class Shape 

{
[Vars("S:Shape ")]

pub lic  Shape S; / /  see below

//constructor 

pub lic  ShapeQ 

{}

[Eq("S.area() = =  0",MType="Query",Comment="S is Shape")] 

pub lic  int areaQ 

{
return 0;

}
}

Note that we are using the public field S purely as a placeholder to locate the 
[Vars] attribute. Attributes in C# must be associated with some element(s):

104



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

fields, methods, classes etc. This is somewhat annoying and we hope that a 
future version of the software would eliminate this need. 

The corresponding generated XML Class Specification is:

<?xm l version="1.0"?>

<Class>

<Name>Shape</Name>

<Extend/>

<Hidden>

<O peration> op AShape : -& g t; Shape</Operation>

<Comment />

</H idden>

< F ie ld  Type -  "Shape ">S</F ie ld>

<Method Type= "Query ">

<Nam e > area </Nam e >

<ParameterType />
<MethodReturnType> System. Int32</MethodReturnType>

<Equation>

<LHS>S. areaQ </LHS>

<RHS>0</RHS>

</Equation>

<C ondition>N U LL</C ondition>

<Comment>S is Shape</Comment>

</Method>

</Class>

After applying the XSL transformation we get the following:

Class Shape Specification {

Shape: S 

Hidden {

op AShape : ->  Shape

/ /

}
Method area : -> System.Int32 [Q u e ry ]{  

eq S. areaQ = 0 .

IF  (N U L L )

//S is Shape 

}
}

Class Rectangle will inherit from Shape. However Rectangle is a more specific 
Shape and is therefore less general. This means that it will override the Shape's

105



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

method area with Rectangle's own definition. Bellow are the C# code and XML 
class specification for Rectangle:

//an example o f  Rectangle 

[H idden("opARectangle : ->  Rectangle'')] 

pub lic  class Rectangle:Shape 

{
[Vars("R:Rectangle ; S idel :in t; Side2:int")J 

pub lic  Rectangle R; 

private int S ide l; 

private int Side2;

//constructor 

pub lic  RectangleQ 

0

[Eq("R.setSidel(Sidel).setSide2(Side2).areaQ  == Sidel *Side2",

MType= "Command",Comment= "R is Rectangle")] 

pub lic  void setS ide lf in t s ide l)

{
Sidel = s ide l;

}

[Eq("R.setSide 1 (Side 1).setSide2 (Si de2). areaQ ==  Sidel *Side2", 

MType="Command",Comment="R is Rectangle")] 

pub lic  void setSide2( in t side2)

{
Side2 = side2;

}

[Eq("R.setSidel(Sidel).setSide2(Side2). areaQ ==  Sidel *Side2", 

MType="Command",Comment="R is Rectangle")] 

pub lic  in t areaQ 

{
return S idel *Side2;

}

}

And the corresponding generated XML Class Specification is:

<?xm l vers ion -"1 .0"?>

<Class>

<Name>Rectangle</Name>

<Extend> Shape </Extend>

106



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Hidden>

<O peration> op ARectangle : -& g t; Rectangle</Operation>  

<Comment />

</Hidden>

< F ie ld  Type= "Rectangle "> R < /F ie ld>

<F ie ld  Type="in t"> S id e l< /F ie ld >

< F ie ld  Type="in f"> S ide2</F ield>

<Method Type="Comniand">

<Name>setSidel </Name>

<ParameterType> System. Int32</ParameterType>  

<MethodReturnType>System. Void</MethodReturnType> 

<Equation>

<LHS> R.setSide 1 (Side 1) .setSide2(Side2).area()</LHS> 

<RHS> S idel *Side2</RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>R is Rectangle</Comment>

</Method>

<Method Type= "Command">

<Name> setSide2</Name>

<ParameterType> System .In t 3 2 </ParameterType > 

<MethodReturnType>System. Void</MethodReturnType> ■ 

<Equation>

<LHS>R.setSidel (Sidel).setSide2(Side2).area()</LHS> 

<RHS> S idel *Side2</RHS>

</Equation>

<C ondition>N U LL</C ondition>

<Comment>R is Rectangle</Comment>

</Method>

<Method Type="Command">

<Nam e > area</Nam e >

<ParameterType />
<MethodReturnType> System. Int32</MethodReturnType> 

<Equation>

<LHS> R.setSide 1 (Side l).setSide2(Side2).area()</LHS> 

<RHS> S idel *Side2</RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>R is Rectangle</Comment>

</Method>

</Class>

Then we get:

107



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Class Rectangle : :Shape Specification {

Rectangle: R 

int: S idel 

int: Side2 

Hidden {

op ARectangle : ->  Rectangle

/ /

}
Method setSidel : System. In t32 ->  System. Void [Com m and]{  

eq R.setSidel(Sidel).setSide2(Side2).areaQ -  S idel *Side2 .

IF  (N U L L )

//R  is Rectangle 

}
Method setSide2 : System.Int32 ->  System. Void [Com m and]{  

eq R.setSidel (Sidel).setSide2(Side2).areaQ = S idel*S ide2 .

IF  (N U L L  )

//R  is Rectangle 

}
Method area : ->  System.Int32 [C om m and]{  

eq R.setSidel (Sidel).setSide2(Side2). areaQ = Sidel*S ide2 .

IF  (N U L L  )

//R  is Rectangle 

}

}

The final class we consider is Square. This will inherit from Rectangle. This 
means that Square is not only a more specialised form of Shape but also a more 
specialized form of Rectangle. This means it will override Rectangle's method. 
The following are the C# code and XML class specification for Square:

//an example o f  Square

[H idden("op ASquare : ->  Square")]

//[H idden("op Side : ->  In t" ) ]  

pub lic  class Square:Rectangle 

{
[Vars ("S: Square; Side: int")]  

pub lic  Square S; 

private  in t Side;

//constructor 

pub lic  SquareQ 

0

[Eq("S.setSide(Side).areaQ ==  Side*Side",MType="Command",Comment="S is

108



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented 
Programs languages Shu Tao 205303 2
004-2007______________________________________________________________________________________

Square")]

pub lic  vo id setSide( int side)

{
Side = side;

it

//method add, s im ila r w ith push in Stack

[Eq("S.setSide(Side). areaQ = =  Side*Side",MType="Command",Comment="S is

Square")]

pub lic  int areaQ 

{
return Side *Side;

}

}

And the corresponding generated XML Class Specification is:

< ?xml version="1.0 "?>

<Class>

<Nam e>Sq uare </Nam e >

< Extend> Rectangle</Extend>

<Hidden>

<O peration>op ASquare : -& g t; Square</Operation>

<Comment />

</H idden>

< F ie ld  Type="Square ">S </F ie ld>

< F ie ld  Type="in t"> S ide</F ie ld>

<Method Type="Command">

<Name>setSide</Name>

<ParameterType> System. Int32</ParameterType>

<MethodReturnType>System. Void</MethodReturnType>

<Equation>

<LHS>S.setSide(Side).areaQ</LHS>

<RHS>Side *Side</RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is Square</Comment>

</Method>

<Method Type="Command">

<Nam e > area </Nam e >

<ParameterType />
<MethodReturn Type> System. In t 3 2 </MethodReturn Type >

<Equation>

<LHS>S.setSide(Side).areaQ</LHS>

109



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<RHS>Side *Side</RHS>

</Equation>

<C ond ition>N U LL</C ondition>

<Comment>S is Square</Comment>

</Method>

</Class>

Then we get:

Class Square :: Rectangle Specification {

Square: S 

in t: Side 

Hidden {

op ASquare : -> Square

/ /

}
Method setSide : System.Int32 ->  System. Void [Com m and]{  

eq S.setSide(Side).areaQ = Side*Side 

IF  (N U L L  )

//S is Square 

}
Method area : ->  System.Int32 [C om m and]{  

eq S.setSide(Side).area() = Side*Side 

IF  (N U L L )

//S is Square 

}

}

The methods which Rectangle inherits from Shape and Square inherits from 
Rectangle do not appear on the above XML Class Specification. But when we 
generated them into Maude Specifications they will be presented.

fm od  Shape is

sort Shape.

op AShape : ->  Shape .

var S : Shape .

op _. areaQ : Shape -> Shapeln t. 

sort Shapelnt.

op (_,_) : Shape In t ->  Shapeln t. 

op _.q : Shapelnt -> I n t . 

op _.s : Shapelnt -> Shape .

110



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

eq S.areaQ .q =0 

endfm

The Maude Specification of Shape has one operation and one equation, which 
will have an effect on the inheritance.

fm od  Rectangle is 

protecting Shape. 

sort Rectangle. 

subsort Rectangle < Shape . 

op ARectangle : ->  Rectangle .

var R : Rectangle . 

var S idel : in t . 

var Side2 : in t .

op _.setSidel(_) : Rectangle In t -> RectangleVoid. 

sort Rectangle Void.

op : Rectangle Void ->  RectangleVoid.

op _.q : RectangleVoid ->  Void. 

op _.s : RectangleVoid ->  Rectangle .

op _.setSide2(_) : Rectangle In t ->  RectangleVoid. 

op areaQ : Rectangle -> R ectangleln t.

subsort Rectanglelnt < Shapelnt.

op _.base.areaQ : Rectangle -> R ectanglelnt. 

var S : Rectangle . 

eq S.base.areaQ .q =0

sort R ectanglelnt.

op : Rectangle In t ->  R ectanglelnt.

op _.q : Rectanglelnt ->  I n t . 

op _.s : Rectanglelnt ->  Rectangle .

eq R.setSidel (Sidel). setSide2(Side2). areaQ .q = S idel * Side 2 

endfm

Rectangle inherits from Shape, therefore in Maude Specification, it is a subsort

i l l



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

of Shape. And it overrides the operator "areaQ" from Shape which means we 
must introduce a new operator "base.areaQ".

fm od  Square is 

protecting Rectangle. 

sort Square.

subsort Square < Rectangle . 

op ASquare : ->  Square .

var S : Square . 

var Side : I n t .

op _.setSide(_J : Square In t ->  SquareVoid. 

subsort Square Void < Rectangle Void. 

sort Square Void.

op : Square Void ->  SquareVoid. 

op _.q : SquareVoid ->  Void. 

op _.s : SquareVoid ->  Square .

op _.area() : Square ->  Square lnt.

op .base.areaQ : Square ->  Square lnt. 

var R : Square .

eq ((((R .setS idel(S idel)) .s) .setSide2(Side2)) .s) .base.areaQ .q = Sidel * Side2 . 

subsort Squarelnt < R ectanglelnt. 

sort Squarelnt.

op (_,_) : Square In t -> Squarelnt. 

op _.q : Squarelnt -> I n t . 

op _.s : Squarelnt ->  Square .

eq ((S .setSide(Side)) .s) .areaQ .q = Side * Side . 

endfm

Similar to Rectangle, there are additional equations and declarations generated 
in Square to allow us access to the super or base class' original methods and 
fields. This is particularly important if they have been overridden by the 
inheriting class Rectangle. However, there will be a warning message when 
testing Square in Maude regarding of equation

112



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

"((((R  .setSidel(S idel)) .s) .setSide2(Side2)) .s) .base.areaQ .q = Sidel * Side2", because it 
refers to variables Sidel and Side2 which are defined in Rectangle, and not 
Square. Note that although this warning is irritating, it does not stop the Maude 
code working. It is possible to fix the warning message in two ways- either in 
the form of a "quick fix", by simply declaring the two variables Sidel and Side2 
in the Attribute Hidden; or with "a long term fix", by creating a utility in our 
program to scan through the base class and parse the inheriting equations to 
find out the undeclared variables. This extended work can be considered as Type 
Inference -  Hindley-Milner Algorithm [84], which we will leave here as it would 
be time-consuming to implement and would not influence this project a lot.

113



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 6 Future Development

This Chapter will discuss plans for future development and possible expansion. 
We will discuss how to model a C# class in a universal data format which could 
be adapted to many other object-oriented languages. We will explain the 
modelling process of generating a Pre-Post condition formal specification by 
using our current modelling system. We will also discuss the possible solutions 
for those unsolved problems in the development of this project.

6.1 A Prospect for a Universal Structure

The long-term aim of the work described in this thesis is to create a generic 
software framework that (a) can be adapted to a range of object oriented 
languages and (b) enables a wide range of formal methods to be embedded as 
documentation/specification within program code. So far, the framework only 
works for a single language, and has been demonstrated for only one 
documentation/specification formalism. Further work is needed to permit other 
languages to be used, and to demonstrate that the framework can be used with 
other formalisms. We begin to address the second point In Section 6.3, where 
the application of the current framework to a pre/post-condition 
documentation/specification model is considered. Below, we outline consider 
how the framework can be adapted to accommodate other languages.

114



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The Universal Class
(XM L)

Input

The Core System
(Pre-created utilities)

Output

The Universal Specification
(XM L)

Transformed

Generated Formal Specification and Documentation

Figure6_l: The Universal Structure

In Figure6_l, the universal class is an object-oriented class in the XML format. 
We can generate the universal specification from the universal class, which is 
also in the XML format, and then we can use XML stylesheet to transform the 
universal specification into some other formal specification and documentation 
format. We propose a modification of our current system with the aim of moving 
towards a universal structure:

115



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The Universal Class Definition File [UCDF]
(An XM L file Contains:

1. Embedded Attributes Description File [EADF]

2. Universal Object-Orient Class)

1
Input

r

The Attributes Generator*

(Executable file)

1
Output

r

The Class Reader**

Output

The X M L  Class Specification

(Considered as Universal Specification Model)

Input

X M L  Stylesheet

Output

Generated Formal Specification and Documentation

Figure6_2: New expanded System

Compared with the system we have described so far (Figure3_5), some 
significant changes have been proposed. We will explain each part which is 
different from the corresponding part in Figure3_5:

The Universal Class Definition File [UCDF]

116



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The Universal Class Definition File is an XML file which contains two parts: the 
Embedded Attributes Description File [EADF] and the Universal Object-Orient 
Class (see section 6.2). Here we want to create a universal model for an 
Object-Oriented Class that can be adapted to a range of object-oriented 
language and not only C#. Obviously, XML is a good representation for this 
universal model in this project. We combine the EADF with this universal 
object-orient class into the UCDF.

The Attributes Generator*
The attributes generator here is slightly different from the one in Chapter 4. It 
also needs to read information of the object-oriented class embedded in the 
UCDF and generate the class in C# class format. Now we can consider this 
generator as a "ClassReader and ESC generator".

The XML Stylesheet
The XML Stylesheet is considered as an important utility to transform the XML 
class specification into various formats.

The Generated Formal Specification and Documentation
This could be any specification and documentation depending on the XML 
Stylesheet.

6.2 A Prototype of the Universal Object-Orient Class 

Model

In this section we will explain how we could define the universal Object-orient 
class in XML. Let us look at the example code of the universal model in the UCDF 
(the code only contains the general structure of the universal model in XML 
format):

<Compound_Attribute_Class>

<Compound_Attribute>

<C_Name> Hidden</C_Name>

<C_Attribute>Input anything you like</C _Attribute>

</Compound_Attribute>

<Name> Temp_class</Name>

<Compound_Attribute>

<C_Name> Vars</C_Name>

<C_Attribute> Input types o f  variables here, ie: E :in t< /C _A ttribute>  

</Compound_Attribute>

117



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Constructor>  

pub lic  in t E lt;

(type your own vars. here)

</Constructer>

<Compound_Attribute>

<C_Name>Eq</C_Name>

<C _Attribu te>Input equations here, ie :x=y</C _Attribute>

</Compound_Attribute>

< C ompound_A t t r i b ute Function >

<C_Name>pop</C_Name>

<C_Type>void</C_Type>

<Constructor>

i f  (myStack.Count>0) 

myStack.PopQ;

//type anything here that should be in your function  

//u  may have more than one functions 

</Constructor>

</Compound_A ttribute _Function >

</Compound_Attribute_Class>

Example6_l: the Universal Model in X M L  format

The tag <Compound_Attribute_Class>... </Compound_Attribute_Class> 
encloses everything needed to generate the ESC. The tag 
<Compound_Attribute>...</Compound_Attribute> contains the data required 
for the embedded attributes of the Example Class. I t  normally has 2 elements: 
<C_name> and <C_Attribute>. Tag <C_Name> encloses the name of the 
embedded attribute and the tag <C_Attributes> encloses the proper content of 
the embedded attributes.

[H idden("op EmptyStack: ->  s tackO fE lt')] 

pub lic  class stackOfElt 

{... }

For example, in order to generate the above C# code, then we should have the 
following code in EADF (obviously we are using the same structure as in 
Example6_l):

<Compound_Attribute_Class>

<Compound_Attribute>

<C_Name>Hidden</C_Name>

<C_Attribute> op EmptyStack: ->  stackOfElt </C_Attribute>  

</Compound_Attribute>

<Name> stackOfElt</Name>

118



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

</Compo und_A ttrib  ute_C I ass >

Clearly the tag <Name>...</Name> encloses the name of the ESC. And the 
element <Constructor> is similar to the one we introduced before (see Chapter 
4.1.1).

At this stage we have not done anything special about the content enclosed in 
element <C_Attribute>, however, we purpose to format the content in a general 
regular expression-based structure. For example, if we have:

< C_Nam e>Eq </C_Name>

<C_Attribute> " a - b ” , “ e = f ’, “g = h ” , “ a b ig  test” </C_Attribute>

We could have the following generated code:

[E q("a=b", “a big test”) ]

[ Eq ( " e - f ,  ' 'a big test ’ ’) ]

]E q("g=h", “a big test”) ]  

pub lic  void testcodeQ 

{... }

The tag <Compound_Attribute_Function>... </Compound_Attribute_Fuction> 
encloses full details of a method of the selected C# Class, which has 3 different 
elements: <C_Name>, <C_Type> and <Constructer> .

pub lic  vo idpop()

{
i f  (myStack. Count> 0) 

myStack.PopQ;

}

For the above example method, we should have the following code in XML:

<C om poundAttribute_Function>

<C_Name>pop</C_Name>

<C_Type>void</C_Type>

<Constructer>

i f  (myStack.Count>0) 

myStack.PopQ;

</Constructer>

</Compound Attribute_Function>

As before <C_Name>...</C_Name> encloses the name of the method and 
<C_Type>...</C_Type> encloses the type of the method, and the element

119



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

<Constructor> is also as before. The following is generated from Example6_l:

[H idden(Inpul anything you like )] 

pub lic  class Temp_class 

{
[Vars(Input types o f  variables here, ie: E :in t) ]

pub lic  int E lt;

(type your own var s. here)

[Eq(Input equations here, ie:x=y)J  

pub lic  vo idpop()

{

i f  (myStack.Count>0) 

myStack.PopQ;

//type anything here that should be in your function  

//u  may have more than one functions

}
}

Since we are now considering the model to be "universal", it should be easy to 
adapt to at least some other object oriented programming languages. The 
following is a simple Java class without attributes:

class ASimpleJava {

int number = 0;

voidprintStatesQ {

System, out.prin tln f'num ber: "+number);

}
}

Example6_2: A Simple Java Class

The Java in Example6_2 can be transformed into the following:

<Compound_Attribute_Class>

<Name> ASimpleJava</Name>

<Constructor>

Public int number = 0;

</Constructor>

< Compound_A ttribute Function >

120



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

< C_Name>printStates </C_Name>

< C_Type>void</C_Type >

<Constructor>

System. w rite (”cadence: ” +cadence);

</Constructor>

</Compoimd_Attribute_Function>

</Compound_Attribute_Class>

Example6_3: The Java Class in the Universal Model

Note that although Java, like C#, has reflection capabilities it has historically 
lacked a counterpart to attributes. The usual mechanism for embedding meta 
information is to use an extension of the javadoc mechanism of special 
comments [1] [81]. However, newer versions of Java include annotations, which 
provide similar functionality to attributes. We do not consider these further 
here.

It should be noted that the universal model is still in a very early version and 
incomplete. It is still lacks many features to represent a complicated object 
oriented class, for example: if a method has parameters (i.e. push(int 
ANumber)), we do not have any element defined for them in the current model. 
Also the element <Constructor> here works like a string tag. And it could be 
noticed in Example6_3, the code in the tag <Constructor> has been modified 
into C# style manually. There are many issues with the currently-proposed 
universal model, but they can be fixed in the future development. The intention 
of this section is to show the flexibility of our original system and how we could 
model the universal object-orient class in times to come.

6.3 An Alternative Formalism: Pre-Post Conditions

In this section, we will discuss how to generate formal specifications and 
documentation based on Pre-Post conditions. Pre and Post-Conditions are 
typically embedded within programs (or specifications) to formally define 
program semantics (in other words, to document it). A Pre-Condition specifies 
conditions that must apply before a code fragment can successfully execute, 
and a Post-Condition specifies what can be assumed to be true after successful 
execution. Pre and Post-Conditions do not in themselves constitute a formal 
specification paradigm. However, they form an important part of formalisms 
such as Hoare Logic (also called Floyd-Hoare Logic) [85]. They are also 
important in models based on Weakest Pre-Conditions [86], [87]. A 
commonly-related concept is the invariant -  that is used to define the behaviour

121



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages ' Shu Tao 205303 2
004-2007

of loops. However, since our model is only concerned with the behaviour of 
programs at the level of public class components, and not lower-level constructs 
(loops, conditionals etc.), invariants are not something we can usefully 
represent.

A variety of notations are used to represent Pre and Post-Conditions. The most 
commonly-seen is the Hoare Triple:

<p} q  m

Meaning given Pre-Condition P, execution of program fragment Q will result in 
Post-Condition R being true.

Since we have developed a technique that is intended to be generic, this is an 
'experiment' to show the potential flexibility of our developed system that it 
applies to formal methods other than just algebraic specifications. Consequently, 
this example is just shown as a proof of principle, and not developed in depth. 
We will need to create a two new attributes for representing a Pre-condition and 
a Post-condition:

[P re ("cond ition " ) ]

[Post("condition ”) ]

The type of the parameter condition is string. Now we add these two attributes 
into the C# class Square from Chapter 6:

//an example o f  Shape 

[P re("x > = 0 " ) ]

[Post("sqrt(x) * sqrt(x) = x " ) ]  

pub lic  class Square 

{
pub lic  in t Side;

//constructor 

pub lic  SquareQ 

0

//method add, s im ilar w ith push in Stack 

pub lic  in t areaQ 

{
return Side *Side;

}
}

122



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

After we input this Square class into the class reader, we would have the 
following XML class specification:

<?xml version = ”1.0"?>

< ?xml-stylesheet type="text/xsl" href= "PrePostSpec.xsl"?>

<Class>

<Nam e > Square </Nam e >

<Pre>

<PreCondition>x & g t;=  0</PreCondition>

<Comment />

</Pre>

<Post>

<PostCondition>sqrt(x) * sqrt(x) = x</PostCondition>

<Comment />

</Post>

</Class>

It is easy to notice that we have used a new simple XML stylesheet 
PrePostSpec.xsl in the above class specification. The stylesheet will transform 
the universal class specification into the Pre-Post-condition specification:

[Pre-condition :: x >  = 0 / / ]

Class Square ::

[  Post-condition :: sqrt(x) * sqrt(x) = x / / ]

Specification {

}

It is a very simple experiment and we have omitted much code and many other 
features to keep this example simple and clear. As we can see, with a complete 
and functional system based on the universal structure, there is little work 
needed to do to generate a specific formal specification and documentation as 
required.

6.4 Further Work

The following significant issues remain to be addressed:

•  A consistent and complete Universal Class Model
•  A fully generated and functional Class Reader (from Attributes Generator)
•  A more friendly and easy to configurable and expandable XML stylesheet
•  Good quality user tools



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Refer to Chapter 6.1, there is still much work left to finish the Universal Class 
Model. It still requires that users have some basic knowledge of C# when they 
transform the object-oriented class into this model manually. Also it shares a 
weakness with the EADF (see Chapter 4.1.1), the content of tag <Constructor> 
contains strings that is not properly formatted and will be copied straight into 
generated C# files, which may cause unpredictable programming errors.

At the moment, the Class Reader could not be fully generated due to the 
difficulties of generating the main-code (see Chapter 4.1.2). The problem we 
mainly have is we are not sure of the targeted attributes location in the targeted 
ESC. The solution for this could be, to extend attributes to include location 
information, for example:

[H idd en (“equations ”, ’’comment” , "Location.C lass”) ]

[E q ( “ equations", "comment” , “Location: M ethod")].

It  is also possible to generate or automatically modify the XML stylesheet 
according to the UCDF. Currently, it is a limitation for us that we need to write a 
new XML stylesheet for every new specific formal specification style.

Also we could create a friendly and robust user interface for this system, it will 
be easy to run each utility and check the status of the system from the system 
log.

6.5 Conclusion

This thesis investigates the construction of a generic software framework which 
can provide a formal specification and documentation model for C# classes 
including important concepts such as inheritance. We have outlined a 
methodology that will allow other programmers to easily be able to declaratively 
define, using XML, the specifications and documentations for their own C# class. 
We have partially defined the declarative XML framework, and, specifically for 
C#, we have partially implemented the software system to translate XML 
descriptions of specification/documentation styles into operating, embeddable 
code. For those parts of the XML framework that are not yet defined and 
implemented, we have supplied a temporary 'bridge' in terms of 
example-specific code for" the algebraic case. We have shown how, in the 
algebraic case, the generation of many of the equations defining the 
functionality of C# classes can be automated thus reducing the work in 
specifying new classes. We have shown how we have algebraically specified the 
functionality of C# classes using Maude.

124



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The implementation had been done as following:

1. Allow User to customize "attributes" in the EADF.
2. Created a C# program (the Attributes Generator) which is able to 
transform the EADF (XML format) into C# source code.
3. Created a C# program (the Class Reader) which is able to extract the 
attributes from the ESC into the XML Class Specification.
4. Created a C# program (the translator) which is able to transform the XML 
Class Specification into the Maude Specification.
5. Proposed a prototype of a universal class model in XML format for Object 
oriented languages.

We would like to simplify the specification process as much as possible as the 
simpler the process is the easier it is for a user to specify classes. The framework 
and implementation are not yet complete (though this is to be expected, given 
the size of the project being attempted in the available timeframe). At present 
our framework specifically works with C#. With many object-oriented languages 
in Common use such as Java and C++ it would be desirable to adapt our 
framework to work with other languages. We feel that although our model is 
specifically aimed at C# it is sufficiently general in places when it refers to 
object-oriented concepts and features that it would be adapted to other 
object-oriented languages without a radical rewrite of the model of the 
modelling process.

125



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Chapter 7 Bibliography

Most internet link sources are followed by an access date.

[ 1]:
Algebraically Modelling Java Object-Oriented Programs, Justin Biddle PH.D. 
Thesis, University of Wales, Swansea, 2005

[2]
http://msdn2.microsoft.com/en-us/librarv/tkxs89c5fvs.71Taspx. MSDN,
Adding Comments in C# Code, 17/05/2007

[3 ]:
http://msdn2.microsoft.com/en-us/librarv/aa730781fvs.71Taspx. MSDN,
Viewing Code Structure with Comments, 17/05/2007

[4]
http://iava.sun.eom /i2se/l.5.0/docs/api/. SUN official web site, the API 
specification for the Java 2 Platform Standard Edition 5.0, 17/05/2007

[5]
Design Goals o f ACL2, Matt Kaufmann and J Moore, CLI Technical Report 101, 
Computational Logic, Inc., 1717 West Sixth Street, Suite 290, Austin, TX 78703, 
1994

[6]
PVS : A Prototype Verification System, Sam Owre, Natarajan Shankar, and John 
Rushby, from CADE 11, Saratoga Springs, NY, June 1992.

[7]
The C++ programming language, Bjarne Stroustrup, Addison-Wesley, 2nd 
edition, 1991

[8]
The annotated C++ reference manual, Margaret A. Ellis and Bjarne Stroustrup, 
Addison-Wesley, 1990

[9 ]

126



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

The UNIX C shell field guide, Gail Anderson and Paul Anderson, Prentice-Hall, 
1986

[10]
The C Programming Language (2nd Edition), by Brian W. Kernighan and Dennis 
M. Ritchie, Prentice-Hall, 1988

[11]
http://iava.sun.com/. Sun Microsystems official web site, 17/05/2007 

[12]
http://iava.sun.com/develoDer/technicalArticles/Securitv/whiteDaDer/JS Whit 
e Paper.pdf, Java Security Overview, white paper, April 2005

[13]
http://iava.sun.com/products/eib/pdf/white paper.pdf. White Paper, Sun 
Microsystems, 2000

[14]
The C# Programming Language, Anders Hejlsberg, Scott Wiltamuth and Peter 
Golde, Addison Wesley, 2003

[15]
Microsoft Visual C# .NET, Mickey Williams, Microsoft Press, 2002

[16]
Inside Visual Studio .NETMicrosoft Press International, by Brian Johnson, Craig 
Skibo, and Marc Young, 2003

[17]
Programming C#, Jesse Liberty, O'Reilly & Associates, 2003

[18]:
http://www.ondotnet.eom/pub/a/dotnet/2005/10/03/what-is-csharp.html7pa 
oe=2. What is C#, by Jesse Liberty, 2005

[19]
http://msdn2.microsoft.com/en-us/librarv/bvxd99hx(,vs.71J.aspx, MSDN, 
Using the WebMethod Attribute. 17/05/2007

[20]
http://msdn2.microsoft.com/en-us/librarv/xtwkdas5.aspx. MSDN, Attributes 
Overview, 17/05/2007

127



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[21]
http://msdn2.microsoft.com/en-us/librarv/z0wlkczw.aspx. MSDN, C#
Programming Guild: Attribute, 17/05/2007

[22]
http://msdn2.microsoft.com/en-us/librarv/sw480ze8.aspx. MSDN, Creating 
Custom Attributes, 17/05/2007

[23]
http://msdn2.microsoft.com/en-us/librarv/tw5zxet9.aspx. MSDN,
Attributellsage, 17/05/2007

[24]
http://msdn2.microsoft.com/en-us/librarv/msl73183.aspx. MSDN, C#
Programming Guild: Reflection, 17/05/2007

[25]
http://msdn2.microsoft.com/en-us/librarv/t0cs7xez.aspx. MSDN, View Type 
Information, 17/05/2007

[26]
Inside C#, Tom Archer and Andrew Whitechapel, 2nd edition, Microsoft Press, 
2002

[27]
http://msdn2.microsoft.com/en-us/librarv/609vztkt.aspx. MSDN, Reflection
and Generic Types, 17/05/2007

%

[28]
http://msdn2.microsoft.com/en-us/librarv/f7vkdhsv.aspx. MSDN, Reflection 
Overview, 17/05/2007

[29]
http://msdn2.microsoft.com/en-us/librarv/z919e8tw.aspx. MSDN, Accessing 
Attributes with Reflection, 17/05/2007

[30]
http://www.w3.ora/XML/. World Wide Web Consortium XML official web site

[31]
XAML in a Nutshell, Lori A. MacVittie, O'Reilly & Associates, Inc, 2006

[32]
An Exercise in Algebraic Specification with Total Functions, JA Bergstra, JV

128



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Tucker, Programming Research Group Report, University of Amsterdam, 1988

[33]
http://www.w3.Org/TR/20Q6/REC-xml-20060816/#svntax. specification for 
Extensible Markup Language (XML) 1.0 (Fourth Edition), W3C, 2006

[35]
http://www.w3.orq/Stvle/XSL/. W3C, XSL official web site, 17/05/2007

[36]
XSLT, Doug Tidwell, O'Reilly publishing, 2001

[37]
A Theory o f Software Interfaces, D.LI. L. RES, PH.D. thesis, University of Wales, 
Swansea, 2001

[38]
An Algebraic Approach to Syntax, Semantics and Compilation, Karen 
Stephenson, PH.D. Thesis, University of Wales, Swansea, 1996

[39]
Algebraic Models o f Correctness for Abstract Pipelines, A.C.J. Fox and N.A. 
Harman, The Journal of Algebraic and Logic Programming, 57 (2003), 71-107.

[40]
The Maude 2.0 System. In Proc. Rewriting Techniques and Applications, Manuel 
Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Martf-Oliet, Jose 
Meseguer and Carolyn Talcott Springer-Verlag LNCS 2706, 76-87, June 2003

[41]
http://maude.cs.uiuc.edu/maude2-manual/html/index.html. Maude Manual 
(Version 2.3), 13/07/2007

[43]
http://www.microsoft.com/china/msdn/vstudio/. Microsoft Visual Studio 
Developing centre, 17/05/2007

[44]
http://msdn2.m icrosoft.com/en-us/librarv/aztlzleh.aspx. MSDN, XML 
documentation Sample, 17/05/2007

[45]
Design by Contract, B. Meyer, Technical Report TR-EI-12/CO, Interactive 
Software Engineering Inc., 1986

129



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[46]
Design by Contract, in Advances in Object-Oriented Software Engineering, D. 
Mandrioli and B. Meyer, Prentice Hall, 1991

[47]
Applying "Design by Contract", B. Meyer, in Computer (IEEE), 25, 10, October 
1992

[48]
Object-Oriented Software Construction, B. Meyer, second edition. Prentice Hall, 
1997

[49]
Algebraic foundations o f systems specification, Donald Sannella and Andrzej 
Tarlecki, IFIP state-of-the-art reports, Springer, 1999

[50]
Initia l algebra semantics and continuous algebras, J. A. Goguen, J. W. Thatcher, 
E. G. Wagner, and J. B. Wright. JACM, January 1977.

[51]
Lecture notes on the algebraic specification of data types, E. G. Wagner, 
Research Report RC 9203 39787, Mathematical Sciences Center, IBM Thomas J. 
Watson Research Centre, Yorktown Heights, New York, 1981.

[52]
Algebraic Methods in Semantics, J. Meseguer and J. A. Goguen, pages 459-541. 
Cambridge University Press, 1985.

[53]
Fundamentals o f algebraic specification /': Equations and initial semantics, H. 
Erhig and B. Mahr, In EATCS Monograph, volume 6. Springer-Verlag, 1985.

[54]
Handbook of Logic in Computer Science, K. Meinke and J. V. Tucker., pages 
189-411. Oxford University Press, 1992.

[55]
Universal algebra for computer scientists, W. Wechler, In EATCS Monograph, 
Springer-Verlag, 1991.

[57]
Classical Logic I :  First Order Logic, the Blackwell Guide to Philosophical Logic,

130



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

Blackwell, 2001

[58]
http://www.kuro5hin.Org/st:orv/2005/7/29/04553/9714. A case for formal 
specification, Coryoth, 2005

[59]
A Specification Language, in On the Construction o f Programs, Jean-Raymond 
Abrial, Stephen A. Schuman and Bertrand Meyer, Cambridge University Press, 
1980

[60]
The Z notation: a reference manual, M. Spivey, Prentice Hall, 2001 

[61]
Documentation o f Software Products, J. D. Lomax, National Computing Centre 
publications, 1977

[62]
Literate Programming, Donal E. Knuth, Stanford, Califonia, Center for the study 
of language and information, 1992

[63]
CASL User Manual, Introduction to Using the Common Algebraic Specification 
Language, Michel Bidoit and Peter D. Mosses, Springer, 2004

[64]
A literate programming design language, Marcus E. Brown and David Cordes, In 
COMPEURO'90: Proceedings of the 1990 IEEE International Conference on 
Computer Systems and Software Engineering, May 8-10, 1990, Tel-Aviv, Israel, 
pages 548-549. IEEE CS Press, Los Alamitos,CA, USA, 1990.

[65]
Programming pearls — literate programming, Jon Bentley, Communications of 
the Association for Computing Machinery 364-369, CODEN CACMA2, May 1986

[66]
CASL Reference Manual, Reter D. Mosses, Springer, 2004

[67]
ZB 2005: Formal Specification and Development in Z and B, 4th International 
Conference of B and Z Uers, Guildford, UK, April 2005, Helen Treharne, Steve 
King, Martin Heson and Steve Schneider (Eds.), Springer, 2005

131



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[68]
Formal Specification and Documenting Using Z, A Case Study Approach, 
Jonathan Bowen, International Thomson Publishing, 1996

[69]
h tto ://www.w3.org/MarkUp/SGML/, W3C web site, Overview of SGML, 
17/05/2007

[70]
The B-Book: Assigning Programs to Meanings, Jean-Raymond Abrial, 
Cambridge University Press, 1996

[71]
Specification in B: An Introduction using the B Toolkit, Kevin Lano, Imperial 
College Press, 1996

[72]
The Theory and Practice o f Concurrency, A. W. Roscoe, Prentice Hall, 1998

[73]
Communicating Sequential Processes, C. A. R. Hoare, Prentice Hall, 1985

[74]
A Calculus of Communicating Systems, Robin Milner, Springer. 1982

[75]
Communicating and Mobile Systems: the Pi-Calculus, Robin Milner, Springer, 
1999

[76]
http ://msdn2. microsoft. com/en-us/librarv/svstem. collections, arravlistf vs. 71). 
aspx, ArrayList Class library, 17/05/2007

[77]
http://iava.sun.com/i2se/iavadoc/. Javadoc Tool Homepage, 17/05/2007

[78]
Simula Begin, G.M. Birtwhistle, O.J.Dahl, B. Myhrhaug and K.Nygaard, Publisher 
Chartwell-Bratt Ltd. 1979

[79]
Meteor: A Successful Application o f B in a Large Project, Patrick Behm, Paul 
Benoit, Alain Faivre and Jean-Marc Meynadier, Publisher Springer Berlin /  
Heidelberg, 1999

132



Software Framework for Embedding Formal Specifications and Documentation in Object Oriented
Programs languages Shu Tao 205303 2
004-2007

[80]
http://msdn2.microsoft.com/en-us/librarv/w86s7x04(,VS.80J.aspx, MSDN, 
Using Properties (C# Programming Guide) , 17/05/2007

[81]
JML Reference Manual, Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, 
Clyde Ruby, David Cok, Peter Muller, and Joseph Kiniry., February 2007

[82]
Specifications Are (Preferably) Executable, N E Fuchs, Software Engineering 
Journal, Vol 7, No 5, pp323-334, Sept 1992

[83]
Specifications are not (necessarily) executable, I Hayes and C Jones, Software 
Engineering Journal Vol 4, No 6, pp330-338, Nov 1989

[84]
Types and Programming Languages, Benjamin C. Pierce, the MIT Press, 2002, 
ISBN 0-262-16209-1

[85]
An axiomatic basis for computer programming, C. A. R. Hoare, Communications 
of the ACM, 12(10):576-585, October 1969

[86]
Guarded commands, nondeterminacy and formal derivation o f programs, 
Edsger W. Dijkstra, Communications of the ACM, 18(8):453-457, August 1975

[87]
Refinement Calculus: A Systematic Introduction, Ralph-Johan Back and Joakim 
von Wright, Springer, 1998

133


