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SUMMARY

Thin-walled cylinders are used extensively in the food packaging and cosmetics 
industries. The cost of material is a major contributor to the overall cost and so 
improvements in design and manufacturing processes are always being sought. 
Shape optimisation provides one method for such improvements.

Aluminium aerosol cans are a particular form of thin-walled cylinder with a complex 
shape consisting o f truncated cone top, parallel cylindrical section and inverted dome 
base. They are manufactured in one piece by a reverse-extrusion process, which 
produces a vessel with a variable thickness from 0.31 mm in the cylinder up to 1.31 
mm in the base for a 53 mm diameter can. During manufacture, packaging and 
charging, they are subjected to pressure, axial and radial loads and design 
calculations are generally outside the British and American pressure vessel codes. 
‘Design-by-test’ appears to be the favoured approach. However, a more rigorous 
approach is needed in order to optimise the designs.

Finite element analysis (FEA) is a powerful tool for predicting stress, strain and 
displacement behaviour o f components and structures. FEA is also used extensively 
to model manufacturing processes. In this study, elastic and elastic-plastic FEA has 
been used to develop a thorough understanding o f the mechanisms of yielding, 
‘dome reversal’ (an inherent safety feature, where the base suffers elastic-plastic 
buckling at a pressure below the burst pressure) and collapse due to internal pressure 
loading and how these are affected by geometry. It has also been used to study the 
buckling behaviour under compressive axial loading. Furthermore, numerical 
simulations o f the extrusion process (in order to investigate the effects o f tool 
geometry, friction coefficient and boundary conditions) have been undertaken.

Experimental verification o f the buckling and collapse behaviours has also been 
carried out and there is reasonable agreement between the experimental data and the 
numerical predictions.
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Chapter 1 

INTRODUCTION

1.1 Background

The use o f thin-walled cylinders in the food packaging and cosmetics industries is 

extensive and the demand for steel and aluminium containers is such that extremely 

high-volume manufacturing processes have been developed over the past two 

decades. The cost of material is a major contributing factor to the overall cost of the 

container and so improvements in design and manufacturing processes are always 

being sought.

The early cans were hand-made by practiced artisans who could produce up to six 

each hour. The process was laborious and required considerable skill and strength. 

The craftsman would cut a rectangular body and two circular pieces (for the lids) 

from a sheet o f tinned iron. The rectangular body would be bent around a cylindrical 

mould and the sides soldered together before affixing the ends. But the can opener 

was not invented until 1930 [1].

This project continues on from work carried out by Patten [2] in conjunction with a 

major manufacturer of aluminium aerosol cans for the cosmetics industry. The 

manufacturing process for these cans is described in detail in Chapter 2 but, in brief, 

they are manufactured from a cylindrical billet o f almost pure aluminium using a 

‘back-extrusion’ process. Prior to Patten’s work, ‘design by test’ was the recognised 

method of proving the designs and it was acknowledged that certain regions o f the 

can cross-section were ‘over-designed’ and that potential savings were to be made.
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Patten carried out an analytical study of the manufacturing process and developed a 

constant volume model to predict the thickness profile based on billet, punch and die 

dimensions. He also carried out finite element analyses in order to identify regions of 

the cross-section where stresses were low and hence potential material savings could 

be made.

An aerosol can is a thin-walled cylinder with a complex shape (see Section 1.2) 

which limits the amount of ‘design’ that can be undertaken using simple thin cylinder 

equations to estimating the burst pressure of the can. In reality, an aerosol can is 

subjected to a number o f loading patterns including internal pressure, axial and radial 

loading and although the behaviour o f a plain cylinder with constant wall thickness is 

well understood, very little research has been conducted into the design of these 

more complex shapes. What is required is an analysis method that can be used to 

accurately predict the elastic and elastic-plastic stresses and deformation of these 

cylinders due to internal pressure, axial and radial loading, as well as providing 

details o f the modes and behaviour during failure, including buckling. Finite element 

analysis (FEA) is such a powerful and comprehensive analysis method and has been 

used comprehensively in this project, supported by experimental validation.

1.2 Thin walled pressure vessels

A pressure vessel is a closed structure containing liquids or gases under pressure. An 

aerosol cans are one example o f a cylindrical pressure vessel categorised as a shell 

structure due to its thin wall in comparison to its radius and length. The current 

practice of pressure vessel design by analysis is most commonly based on elastic 

finite element analysis and the rules defined in codes such as BS5500 (the British



standard for unfired fusion welded pressure vessels) [3] and Section VIII of the 

ASME Boiler and Pressure Vessel Code [4]. This approach gives rise to two 

significant problems in the design: elastic analysis is used to assess possible inelastic 

failure mechanisms and the design by analysis rules is essentially based on shell 

theory. These problems introduce the concept o f stress categories into the design 

procedure. Some designers argued that plastic analysis should be the preferred 

method for assessing failure modes associated with gross distortion due to a single 

application o f pressure. Plastic and limit analysis can be performed using non-linear 

finite element analysis, which is much more difficult to perform than elastic analysis.

Furthermore, an aerosol can has additional complexities due to its shape which, for a 

one-piece aluminium can, consists o f an inverted base, a nominally constant

thickness parallel cylinder and a sloping top, as shown in Figure 1.1. The nature of 

the manufacturing process is such that there is a significant variation in thickness, 

particularly between the base and cylinder, which limits the usefulness of simple 

design rules. The thickness profile o f an aerosol can is such that a number of design 

requirements have to be met:

Cylinder - must be thick enough to withstand bursting due to overpressure

- must be thick enough to withstand radial buckling during 

bundling/packaging

- must be thick enough to avoid axial buckling/collapse under 

compressive axial load during manufacture and charging

Base - must be thick enough to withstand bursting due to overpressure
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- must be thin enough to facilitate ‘dome reversal’ at a specified 

pressure below the burst pressure

Top - must be thick enough to withstand bursting due to overpressure

- must be thick enough to avoid collapse under compressive axial load 

during manufacture and charging

and hence the design o f such components presents some interesting problems and 

complex balancing o f structural integrity and manufacturing economy, for which 

little detailed analysis has previously been undertaken.
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Figure 1.1: Typical aluminium aerosol can

1.3 Aims and objectives of the research

The aims of this research project have been to investigate the factors influencing the 

characteristic mechanical behaviour of these thin-walled pressure vessels subjected 

to internal pressure and axial loading and to provide a reliable analysis tool for future 

optimisation studies. Included in this has been an investigation into the modelling of 

the extrusion process by which such vessels are manufactured and an investigation
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The aims of this research project have been to investigate the factors influencing the 

characteristic mechanical behaviour o f these thin-walled pressure vessels subjected 

to internal pressure and axial loading and to provide a reliable analysis tool for future 

optimisation studies. Included in this has been an investigation into the modelling o f 

the extrusion process by which such vessels are manufactured and an investigation. 

The numerical analysis used the ELFEN Non-linear finite element program, which is 

an established commercial package [5] apart from the development o f (FE) analysis 

method.

The specific objectives are:

•  to further the understanding o f the process o f dome reversal (elastic-plastic 

buckling) of thin-walled cylinders with inverted bases subjected to internal 

pressure

• to investigate the application of the elastic compensation method for 

estimating upper and lower bound pressure loads

• to accurately predict axial buckling loads and buckling modes using 

experimental results for comparison

• to use finite element analysis to model the back-extrusion process and 

compare the predictions with analytical solutions and experimental evidence

• to carry out a preliminary investigation into the optimisation o f the can 

profile
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1.4 Structure of thesis

This thesis consists of eight main chapters:

Chapter 1 has provided an introduction to the project, stating the aims and 

objectives of the research.

Chapter 2 reviews the background information and literature relevant to all areas of 

the project.

In Chapter 3, using constant thickness models and a realistic thickness profile for an 

axisymmetric and a full three-dimensional model, elastic and elastic plastic finite 

element analysis predictions for the vessel subjected to internal pressure are 

presented. The application o f the elastic compensation method to provide upper and 

lower bound pressure estimates is also investigated.

The analyses in Chapter 3 are extended in Chapter 4 to predict the buckling and 

collapse behaviour under axial compressive loading. Experimental tests to validate 

the predictions are also described.

Chapter 5 describes the modelling o f the two-stage extrusion process, using billet, 

tool and die data from a local manufacturer, have been considered and comparisons 

with experimental measurements.

Chapter 6 describes a preliminary investigation into the optimisation of the 

thickness profile, as it is anticipated that material savings are possible, particularly in 

the base region. The results from a reduced thickness model are presented and an
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introduction to structured optimisation, using the DOT optimisation program, is 

described.

Chapter 7 presents an overall discussion of the research findings and conclusions 

and recommendations for further study are provided in Chapter 8.

The appendices contain information not included in the main body of the thesis.
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Chapter two

GENERAL BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

This Chapter reviews the background information and the appropriate literature 

relevant to this research work on one-piece aerosol cans, which are a specific form of 

thin-walled pressure vessel. It starts by considering the design and manufacture of 

these pressure vessels, the basic concepts o f elasticity and plasticity (with particular 

reference to finite element analysis) and appropriate theory for thin-walled cylinders 

subjected to internal pressure or axial loading (i.e. buckling loading). The relevant 

British and American standards for pressure vessel design are also reviewed. Also, 

approximate methods of determining pressure vessel limit loads, in particular the 

elastic compensation method, are reviewed.

An important element o f the research has been the modelling o f the extrusion process 

using finite element analysis and this subject is reviewed in Section 2.10. An initial 

investigation into the optimisation o f a typical vessel profile is described in Chapter 6 

and relevant background information is provided here. A considerable amount of 

research has already been carried out in the field o f extrusion and optimisation of 

aerosol cans and this is discussed in Sections 2.10 and 2.11.
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2.2 The design and manufacture of aerosol cans

Aerosol cans are generally made of tin-plated steel (normally constructed from three 

components; the base, the cylinder and the top, which are joined) or aluminium 

(normally produced in one piece [6] from a curved billet, using the ‘back extrusion’ 

process -  see Section 2.10). Examples of aerosol cans are shown in Figure 2.1.

Figure 2.1: Aerosol cans [6]

The thickness of the tinplate steel varies, depending on the size, the pressure of the 

contents and the location (i.e. cylinder or ends). For the cylindrical section, the 

thickness is typically in the range 0.18 mm to 0.25 mm whereas the tops and bottoms 

are made from material that is typically between 0.28 mm and 0.43 mm thick [6]. 

Aluminium cans produced by the back-extrusion process have a typical thickness 

variation of 0.31 mm to 0.41 mm in the cylindrical section and 0.7 mm to 1.31 mm at 

the ends [6].
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An aerosol can is a pressurised system and, as such, is governed by legislation. This 

not only covers the design and manufacture of the empty can, but also its subsequent 

filling [6].

Legislation governs the amount of product that may be contained in an aerosol can 

since, for safety reasons there must always be some space in the can, which does not 

contain liquid. The propellant occupies this empty space, which is greater when a 

compressed gas, such as air, is used since it operates at higher pressures than those 

for liquefied propellants.

2.2.1 Top and valves

A typical top with valve is shown in Figure 2.2. The components are:

•  Valve Cup: - typically constructed from tinplate steel or aluminium

• Outer Gasket: - this is the seal between the valve cup and the aerosol can

• Valve Housing: - contains the valve stem, spring and inner gasket

•  Valve Stem: - the tap through which the product flows

• Inner Gasket: - covers the hole in the valve stem

• Valve Spring: - usually stainless steel

•  Dip Tube: -allows the liquid to enter the valve

• Actuator: - fitted to the top of the valve stem.

When the actuator (red in the figure) is depressed it pushes the valve stem through 

the inner gasket, and the hole is uncovered, allowing liquid to pass through the valve 

and into the actuator and out to atmosphere.
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Figure 2.2: Aerosol can valve [6]

Figure 2.2 shows the top of typical tinplated steel can which is pressed from flat 

sheet. A typical one-piece aluminium top, shown in Figure 2.3, is less complex and is 

often a simple tapered section with central rim into which a valve system insert is 

added at a later stage.
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Figure 2.3: Aluminium aerosol can valve

2.2.2 Main body

The main body of a tinplated steel can is a constant-thickness rolled section, which is 

joined using the welded process. And the round end pieces (pressed from another 

sheet of steel) are then fitted by a clinching process known as double seaming- 

welded process [7]. Alternatively, the back-extrusion process for aluminium cans 

produces a thickness profile in the cylinder, which is discussed in more detail in 

Chapter 5.
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2.2.3 Base

Most cans have bases that curve inwards and this shape strengthens the structure of 

the can. The inverted base design is also an inherent safety feature as it provides a 

natural pressure release mechanism in the event of a pressure overload, with ‘dome 

reversal’ (which is a form of elastic-plastic buckling) of the base occurring. This 

sudden change in geometry (a) results in an immediate fall in pressure and (b) 

provides a visual indication, since the can is no longer stable. In order for this 

pressure release mechanism to be effective, the design must be such that ‘dome 

reversal’ occurs at a pressure lower than the burst pressure [2].

Also, the last bit of the product collects in the small area around the edges of the can 

and this makes it easier to empty almost all of the liquid as shown in Figure 2.4.

Figure 2.4: Aerosol can bottom [6]

The bottom dome-shape of the can base is produced by the forming process. This is 

produced by supporting the can on a mandrel and forming the can base with a punch 

as shown in Figure 2.5. This process has a direct effect on the pressure that the can 

will withstand. The bottom forming process increases the can strength and provides a

14



safety feature that is required according to customer specifications [2] This states that 

the can base must pop out at a pressure 20% lower than the can burst pressure.

The formation o f the base can take place either before or after the can is decorated 

and the support provided to the can during base formation is different for the two 

cases. The two types o f formation described and obtained by using finite element 

method in Chapter five.

Figure 2.5: Bottom forming process 

2.2.4 Principles of operation

The basic principle o f an aerosol can is very simple: One fluid stored under high 

pressure is used to propel another fluid out of the can [8]:

• A fluid is any substance made up of free-flowing particles. This includes 

substances in a liquid state, such as the water from a faucet, as well as 

substances in a gaseous state, such as the air in the atmosphere.
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• The particles in a liquid are loosely bound together, but they move about with 

relative freedom. Since the particles are bound together, a liquid at a constant 

temperature has a fixed volume.

• If the applied energy to a liquid is high enough (e.g. by heating it), the 

particles will vibrate so much that they break free o f the forces that bind them 

together. The liquid changes into a gas. This is the boiling process, and the 

temperature at which it occurs is referred to as a substance’s boiling point.

The force of individual moving particles in a gas can add up to considerable pressure. 

An aerosol contains two essential components (see Figure 2.6): -

• The product, in the form of a liquid, emulsion or suspension

• The propellant, which can be a liquefied or compressed gas

Liquefied propellants are gases that exist as liquids under pressure. Because the 

aerosol is under pressure, the propellant exists mainly as a liquid, but it will also be 

in the headspace as a gas. As the product is used up, some o f the liquid propellant 

turns to gas and keeps the head space full o f gas. In this way the pressure in the can 

remains essentially constant and the spray performance is maintained through the life 

o f the aerosol. Compressed gas propellants occupy the headspace above the liquid in 

the can. When the aerosol valve is opened the gas pushes the liquid out of the can. 

The mass o f gas in the headspace remains the same but it has more space, and as a 

result the pressure will drop during the life of the can.
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Figure 2.6: Liquid and compressed propellant [8]

2.2.5 Design

The integrity of the can is the key condition, since a failure (e.g. burst or leakage) 

could have catastrophic consequences. For a one-piece aluminium can, the thickness 

profile is the principle design consideration.

At the same time, overall weight should be minimised in order to keep material costs 

low (see Chapter 6). Experimental results from burst tests are discussed in Section 

3.6.
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2.2.5.1 Internal pressure

In practice, the customer generally specifies the minimum internal pressure, without 

showing any visible signs of deformation or failure. For the aluminium can 

geometries used in this project, internal pressures o f 12, 15 or 18 bar, depending on 

diameter, have been adopted.

2.2.5.2 Axial loading

The aerosol cans are required to support an axial load that is applied when the valves 

are inserted as part of the filling and charging process (see Figure 2.7). The cans 

must support this load and show no visible signs o f deformation (buckling). Any 

deformation of the can will take the form of flattening (collapse) of the top, as shown 

in Figure 2.8.
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Axial Load

Figure 2.7: Axial loading during valve insertion and filling

Figure 2.8: The buckling of the can top

Also, during the forming of the top, the plain can rim is also subjected to an axial 

force which may cause the cylindrical section to buckle, as shown in Figure 2.9.
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Figure 2.9: Axial loading during neck forming 

2.2.5.3 Dome reversal of the inverted base

As previously stated, the dome reversal (or plastic buckling or plastic snap-through) 

o f the inverted base is an important safety feature and design consideration. The 

pressure-deformation response o f an aerosol can is carefully monitored (by 

experiment) to ensure that this plastic buckling occurs at a pressure that is at least 

20% below the corresponding burst pressure for that geometry [2]. This requires a 

specific thickness profile, which must be controlled closely.

2.2.6 Manufacture

The production o f aluminium cans starts off in the form of aluminium curved billets. 

The process is shown diagrammatically in Figure 2.10 which is taken from [2]. 

Firstly the billet is coated in dry lubricant (graphite powder) and secondly the back 

extrusion process forms the basic can shape with a flat base. By using tapered 

extrusion dies the extrusion process allows the wall thickness to vary from the top o f
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the can to the bottom. The cylinder is then coated internally with a protective 

lacquer, which is cured in an oven. The base o f the can is formed, either before or 

after decoration and drying ovens, in the bottom-forming machine. A series of dies, 

for the purpose o f producing the shoulder and neck on the extruded cans, are 

designed to work within a tolerance range o f ±0.01mm on the thickness o f the top of 

the extruded can walls. This means that any changes to the thickness of the upper 

third o f the cans may require a complete new set o f tooling for the necking machine.

Ovenl

PackNeck

IX.Wash

O.V.

Oven2

Base
Cost

Oven4

Print

Ovcn3

Trim/Bottom 
form/ Brush

Acc2Accl

Acc3

Acc = Accumulator, LL, = Inside lining, O.V = Over varnish 

Figure 2.10: Schematic diagram of aerosol can production line [2]

2.3 Basic concepts of elasticity and plasticity

2.3.1 Elasticity

For a perfectly elastic material, the removal o f the loads returns the component to its 

original form with no permanent deformation. Most o f the equations used in design 

engineering are derived from such an assumption, where stress and strain have a
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linear relationship defined by Hooke’s law, [9] which is independent o f time and 

load history. This relationship can be expressed in a generalized form as:

where [cr] is the stress matrix, [s] is the strain matrix and [d] is the elasticity matrix 

For a generalised three-dimensional state-of-stress:

<Jxx ^  X X

£yy yy

°zz
a n d  [f] =

*zz

r*y

V r>*

J x z  _ y  xz _

. . . ( 2.2)

where cr^ ,<7 ,̂ and cr^ are the normal stresses and x^ , r  and xxz are the shear 

stress also £ „ , Syy and s „  are the normal strains and y v , Y „  and y o  are the shear 

strains

For an isotropic material with a two-dimensional plane stress assumption:

[D] =
1 - 1/

u  0 
1 0

0 0 ^

...(2 .3 )
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where E is Young’s modulus and v is Poisson’s ratio. Similarly, for plane strain,
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For an axisymmetric analysis:
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2.3.2 Plasticity

Figure 2.11 shows a typical stress-strain curve for simple one-dimensional tension 

(or compression) for an elastic-plastic material [10]. The stress at point A, which 

separates the curve into an elastic portion and a plastic portion, is defined as the yield
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stress crY. Because the yield stress is not always clearly identified, it is often taken as 

the limit of proportionality.

15
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Figure 2.11: Stress-strain curve for a simple one-dimensional tension (or

compression)

The general theory o f plasticity requires the following:

i. A yield criterion, which defines the onset o f plastic deformation under 

multi-axial conditions o f stress;

ii. A flow rule, which relates the stress to the increments o f plastic strain;

iii. A hardening rule, which describes the work hardening of the material and 

how the yield condition changes with progressive o f plastic deformation. 

The hardening rule also describes the material behaviour under cyclic 

loading conditions;
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2.3.2.1 Yield criterion

The purpose of the yield criterion is to define the point of yielding for a material 

subjected to general 3-dimensional multi-axial stress system [16]. In the case o f uni

axial loading, yielding occurs when the axial stress reaches the uni-axial yield stress 

for the material. However, for multi-axial loading, the effect o f all stress components 

must be considered. Yielding of an elastic-plastic material is defined by a scalar 

function termed the yield function F, which is a function o f the stress invariants. The 

yield function is written in the form, which leads to the conditions.

F < 0 for elastic behaviour

F = 0 for initial yielding and plastic

The most commonly used criterion for metals and that adopted by most finite 

element programs (including the program used in this work) is the von Mises 

effective stress criterion [12]. As early as 1913, von Mises suggested a yield criterion 

o f this type, which is applicable to metal plasticity. The yield criterion has been 

verified by a series o f experiments mostly on thin metal tubes under biaxial stress 

states. According to von Mises:

F =  ^ • { ( cV <t2 ) 2 + 0 2 - o-3) 2 + ( ( T 3- £T,)2 } - ( a , ) 2 . . . (2 .8 )

where <ry is the uni-axial yield stress of the material. Yielding is assumed to be 

unaffected by the hydrostatic stress. Thus, yielding occurs when F = 0 and

...(2 .9 )
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where creff is an effective stress for a mult-iaxial state-of-stress.

.̂ [(<7, -<r2)2 +(<t2 -<t3)2 +(<t3-c r ,)2] ...(2 .10)

In principal stress space, the yield condition F ( cTj, cr2, <j 3 ) = 0 defines a yield

surface. The von Mises yield criteria is independent o f the hydrostatic stress and the 

infinitely long cylinder shown in Figure 2.12 defines its surface. The axis o f the 

cylinder makes equal angles with the coordinate axes. Stress points, which lie inside 

the cylindrical yield surface, are associated with elastic stress states whereas those 

that lie on the surface represent yielding . The TT-plane is defined by:

<j 1 + a  2 + cr3 = 0 ...(2 .11)

and the intersection o f the 7T-plane with the von Mises yield surface, termed the yield 

curve, appears as a circle.
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Figure 2.12: Projection of the von Mises yield surface onto the TT-plane
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23.2.2 Flow rule (normality principle)

A flow rule defines the relationship between the stress components and the 

corresponding plastic strain components after initial yielding. The direction o f the 

plastic strain components is also defined through the flow rule by the plastic 

potentials expressed as follows [12]:

. . . ( 2 .12)
d{cr}

Associating equation (2.12) with particular a yield criterion (in order to obtain the 

plastic strain increments) is generally known as a flow rule. The above rule is known 

as the normality principle because equation (2.12) requires the plastic strain rate 

components to be normal to the yield surface. In 1924, Prandtl [13] proposed stress 

and strain relationships for an elastic-perfectly-plastic material under plane strain 

conditions and later, in 1930, Reuss [14] generalized these relationships which 

became known as the Prandtl-Reuss flow rule. Thus the Prantl-Reuss flow rule is the 

rule associated to the von Mises yield criterion and, again, this flow rule is used 

extensive by finite element codes (including the one used in this work) to predict 

plastic strain increments.

2.3.23 Material hardening models

The most common material models used to analysis the behaviour o f a material 

under elastic-plastic loading are elastic-perfectly-plastic (EPP), elastic-isotropic 

hardening (EIH) and elastic-kinematic hardening (EKH) [15, 16]. As shown in 

Figure 2.13.
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Figure 2.13: Isotropic and kinematic hardening models

Most engineering materials work-harden if taken beyond their elastic limit. If a stress 

reversal from tension to compression then takes place, there is a clear reduction in 

the compressive yield stress when compared to the original tensile yield stress o f the 

material. This is also true for stress reversal from compression to tension. This is 

referred to as the Bauschinger effect. As can be seen in Figure 2.13, the isotropic 

hardening model is based on the assumption that the hardening effect is the same in 

both tension and compression, in other words ignoring the Bauschinger effect. The 

onset o f compressive yielding will be initiated when:

where a  y is the current yield stress. For isotropic hardening the yield surface

increases in size but maintains its original shape under loading conditions. It can be 

seen in Figure 2.12 that the von Mises yield appears as a set o f concentric circles.

o = - o
y

...(2 .13)
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On the other hand, the kinematic hardening model assumes a constant elastic stress 

range of 2 ay and can be used to model the Bauschinger effect (see Figure 2.13)

2.4 Overview of non-linear finite element analysis

Many texts provide detailed information on the modelling o f non-linear problems 

(e.g.[12,17]) and only a brief summary is given here.

The majority of general engineering components and structures are considered to 

exhibit linear elastic behaviour under load and small deflection finite element theory 

is used where the response o f the structure or material is directly proportional to the 

load applied. Hooke’s law [16], which is illustrated by a simple spring problem, 

givers a simple linear relationship between the applied force, F, and the resulting 

deflection, u:

F = k . u ...(2 .14)

where k is the spring stiffness. The deflection can be calculated easily by dividing F 

by k. This is valid so long as the spring remains linear-elastic and the deflection is 

such that they do not cause the spring material to yield. Therefore, doubling the force 

doubles the deflection. In a finite element model, F and u are replaced' by matrices 

and K becomes a square stiffness matrix. However, in many practical situations, the 

force is not equal to K.u and these are referred to as non-linear problems. There are 

three types o f non-linear finite element modelling [17]:
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• Geometric non-linearity (GNL) -  where large deformations and large strains 

may be present. This includes snap-through buckling (see Section 2.8). The 

deformations are large enough to cause the loading direction and stiffness to 

change throughout the analysis.

• Material non-linearity -  where plasticity, creep or visco-elasticity is present 

in the material model and stress is not directly proportional to strain.

•  Boundary non-linearity -  where a status-dependant problem exists, in which 

two surfaces come into or out o f contact.

The problems being studied in this work contain geometric non-linearity, material 

non-linearity and boundary non-linearity.

The application in the finite element method to non-linear problems involves 

replacing the non-linear loading history of the structure by a sequence o f linear or 

weakly non-linear increments. This means that instead of applying the full load in 

one load step, it is applied as a number of small increments. An iterative procedure is 

used within each load increment to ensure that the solution has converged within an 

acceptable level.

2.4.1 Explicit and implicit methods

Numerical solution is often referred to as being explicit or implicit. When a direct 

computation of the dependent variables can be made in terms of known quantities, 

the computation is said to be explicit. In contrast, when the dependent variables are
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defined by coupled sets o f equations, and either a matrix or iterative technique is 

needed to obtain the solution, the numerical method is said to be implicit.

The principal reason for using implicit solution method which are more complex to 

program and require more computational effort in each solution step, is to allow for 

large time-step sizes.

In an explicit numerical method would be evaluated in terms o f known quantities at 

the previous time step n. An implicit method, in contrast, would evaluate some or all 

o f the terms in terms of unknown quantities at the new time step n+1.

The choice of whether an implicit versus explicit method should be used ultimately 

depends on the object of the computation. When time accuracy is important, explicit 

methods produce greater accuracy with less computational effort than implicit 

methods. Also the implicit options are important for other methods.

Explicit is a dynamic finite element tool specifically designed for application to 

complex non-linear finite element simulations [5].

Explicit may be utilized for multi-phase analysis, for example a produce made from 

sheet steel may be formed using four sets of tools [5].

The implicit neutral file contains the entire model data associated with the 

application

The explicit solver is more suitable for forming simulation. The analysis cost 

increases in direct proportion to the size of the mesh, whereas the implicit solver cost
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increased with the square o f the matrix bandwidth o f the mesh. In this thesis the 

implicit and explicit are used.

2.5 Thin cylinder formulae

Cylinders are usually considered to be either thick, where stress gradients due to 

relative curvature are significant, or thin in which case, stress gradients are 

negligible. If the ratio o f thickness to internal diameter is less than about 1/20 (D ;/t 

>20) it is considered to be a thin cylinder.

By symmetry the three principal stresses in a thin cylinder subjected to internal 

pressure are the circumferential (or hoop) stress, the longitudinal stress and the radial 

stress [18] (see Figure 2.12) where:

hoop stress = <j { = ~ “ » longitudinal stress =cr2 = and radial stress = cr3 = -

P_
2

These stresses only depend on pressure and the cross-section of the cylinder. The 

length of the cylinder has no effect, so long as the cylinder is long enough for ’end 

effects’ to be ignored in which case these formulae are correct away from the 

cylinder ends. Either the inside diameter Di, outside diameter Dc or the mean 

diameter, Dm, can be used in these equations since the difference between them is 

very small.

Using equation 2.10, yielding occurs when:
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...(2 .15)

2.6 BS5500

BS5500 is the British Standard for Unfired Fusion Pressure Vessels. It states wide- 

ranging requirements for design, construction, inspection, testing and verification of 

compliance for this type o f pressure equipment. Grip the fluid under pressure is the 

mean function of pressure vessels. BS5500 provides equations to calculate minimum 

thickness for vessels required to withstand a given internal pressure [3].

Figure 2.14: Hoop stress diagram

For equilibrium conditions from figure 2.14:

2 <retl = p l r l

33



This is a reasonable approximation of the circumferential stress, which is used in 

design because it is the largest, BS5500 takes cre to be the design stress / .

Substituting mean diameter D m = D  + t into Equation (2.16):

£ (£ + 0  *  t  = _ P » _  . . . (217)
21 2 f - p

For cylindrical shells:

, = ^ l .  or t = ^ _  (2 1 8 )
2 f - p  2 f - p

2.7 AS ME VIII

The American Society o f Mechanical Engineers set up a committee in 1911 for the 

purpose formulating standard rules for the construction o f steam boilers and other 

pressure vessels [4]. This committee is now called the Boiler and Pressure Vessel 

Committee. To determine minimum thickness o f shells under internal pressure by the 

following formulas:

For cylindrical shells:



where

t = minimum thickness

P = design pressure

R = inside radius

S = maximum allowable stress

E = efficiency o f appropriate joint in cylindrical shells

This, ASME VIII is very similar to BS5500

2.8 Buckling

When a component or structure is subjected to compressive loading, it may 

experience visibly large displacements a direction perpendicular to the load at a force 

well below the force required to cause the material to yield. This is known as elastic 

buckling.

The primary path (curve oac) in Figure 2.15 load-deflection curve is the perfect 

structure [19]. The second phenomenon is known as bifurcation buckling and this is 

a very different kind o f failure. At the buckling load or bifurcation point the curve 

will branch away from the primary path and continue on a secondary path (curve obd 

on Fig 2.15). The subsequent deformation will follow a new path, which differs 

considerably from the pre-buckling pattern.

This path will be followed if  the post-bifurcation load deflection curve has a negative 

slope and the applied load is independent of the deformation amplitude.

To clarify this somewhat, bifurcation buckling is what could be termed elastic 

buckling, as the branching point may be within the linear elastic region in which case 

at least part of the secondary path will be elastic.
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In the case o f real structures, which contain unavoidable imperfections, true 

bifurcation buckling occurs infrequently. In fact the structure will generally fail in 

the snap-through manner describe later on. Imperfections will reduce the structure’s 

strength and thus it will fail at a lower load than the perfect structure (represented by 

curve oac on Fig 2.15) and thus curve oef shown the response for an imperfect 

structure. Figure 2.15 also illustrates the varying buckling loads, where XCR is the

limit load of a perfect shell, XCRJ is the limit load o f an imperfection structure and

XB1R is the bifurcation load. [19].

X  CR

X  BIR

— - IMPERFECT 
STRUCTURE

PERFECT
STRUCTUREX  CRI

 BIFURCATION

0
Displacement

Figure 2.15: Load-deflection curves showing limit and bifurcation points [19]
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2.8.1 Bifurcation buckling

At a certain stage during the compressive loading of structures, the equilibrium state 

o f an ideal structure may reach a point beyond which two possible equilibrium paths 

exist. The point at which these two paths diverge is known as the ‘bifurcation’ point 

[20]. Beyond this point, the load-displacement characteristic o f the structure may 

either follow the initial equilibrium regime (corresponding to the stress-strain curve 

for the material) or follow a new path (associated with a different form of 

deformation). In practice, the characteristic follows the path that minimizes the total 

potential energy o f the system. An axially compressed column that fails by Euler 

buckling is an example o f this type o f failure. In a similar way, an ideal cylinder 

subjected to an axial compressive load reaches a critical load at which the 

deformation mode bifurcates from uniform axial compression into a pattern o f 

diamond-shaped radial indentations.

The elastic buckling load for a cylindrical shell in axial compression, based on 

classical theory, has been determined by many researchers and reviews o f early 

theoretical work are presented by Timoshenko [9] and Bushnell [19]. The critical 

stress <jcr, resulting from these calculations is:

where E is Young’s modulus, t is the wall thickness, D is the cylinder diameter and 

v is Poisson’s ratio.'

2Et
. . .  (2 .20)cr.cr
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The critical stress is the minimum axial stress for buckling in the cylindrical shell 

depending on the minimum buckling load which is a function o f X CR as can be shown 

in Figure 2.15.

2.8.2 Pre-buckling deformation

Farshad [21] emphasises the importance that the pre-buckling solution has on the 

prediction o f the bifurcation buckling loads by considering the pre-buckled state in 

an axially compressed cylinder. Bushnell [19] describes a bifurcation buckling 

failure mechanism of straight-walled collapse due to edge effects developed in the 

pre-buckled state. This type of failure is common in straight-walled cans. The edge 

buckling is mainly due to local hoop compression, which is greater nearer to the 

cylinder end. Bushnell states that in a near-perfect shell, where imperfections and 

end effects are negligible, edge buckling occurs before general instability remote 

from the edge or axisymmetric collapse near to the edge. (i.e. the plastic collapse 

observed in ‘thick’ shells). This study has shed light on the plastic failure in the can 

base by highlighting the mechanism of plastic hinge development.

2.8.3 Post buckling deformation

Experimental results suggest that actual collapse loads for axially compressed 

cylindrical shells may be as low as 10 to 20 % of the theoretical values. In 1932, 

Flugge [22] carried out experimental tests on cylindrical shells under axial 

compression in order to investigate this discrepancy. He found that his experimental 

buckling loads were approximately one-half o f the theoretical values. Later, in 1941, 

von Karman and Tsies [23] provided a major contribution to the understanding of the 

effects o f initial imperfections in cylindrical shells on the subsequent post-buckling
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compressive behaviour. Their analytical results showed that the secondary 

equilibrium path drops sharply downward from the bifurcation point.

2.8.4 Eigenvalue analysis

Eigenvalues are a set of scalar values that are used in the solution of a linear system 

of equations. They are also known as characteristic roots. (Eigenvalues and 

eigenvectors) have particular significance in science, particularly in physics and 

engineering. For example, in the context o f this research, they can be used to predict 

the critical load at which a structure will bifurcate and also the ‘shape’ of the 

subsequent buckling pattern. An eigenvalue buckling prediction is based on the 

determination o f singularities in a linear perturbation o f the structure’s stuffiness 

matrix [24]. Because the lowest buckling mode is expected to be non-symmetrical, 

an initial perturbation (small change) to the geometry is required to promote non- 

symmetric deformation. A finite element eigenvalue analysis can be used to provide 

the data necessary to locally perturb a perfectly symmetric geometry of a structure in 

order to create the non-symmetry of loading required for buckling.

However, the eigenvalue approach is only useful if  the perturbation is a realistic 

representation o f the structural displacement prior to buckling. Consequently, the 

method can only be used when displacements are small (and elastic) and, therefore, 

the structure is stiff [24, 25].

Robotham e t a l [24, 25] used this method to investigate the elastic-plastic buckling 

of shafts (thin-walled tubes) subjected to torsion, using finite element analysis. They
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demonstrated that accurate predictions for the collapse behaviour can be obtained 

using this method, which has significant advantages over existing analytical theories.

2.8.5 Rik's method for modelling snap through

‘Snap through’ behaviour is associated with large elastic displacements, which result 

in large changes in geometry prior to collapse. Structures that exhibit ‘snap through’ 

tend to reach a maximum sustainable load, which will then decrease or increase in 

the post-buckling regime. At the point o f ‘snap through’, zero stiffness is reached and 

a standard finite element analysis, based on the Newton-Raphson method, will 

predict an unbounded displacement increment which often causes the program to 

stop prematurely not allowing further prediction of the load deflection 

characteristics. The modified Riks method [26] is one approach that can be used to 

overcome this problem of zero stiffness.

A small imperfection (or perturbation) in the geometry is required and this is applied 

to the structure prior to loading. As discussed above, this comes from an eigenvalue 

analysis o f the structure. An incremental loading process is adopted and the modified 

Rik’s method is used to determine the quasi-static equilibrium state at each 

increment. However, unlike a traditional static non-linear analysis, the size of the 

load increment is variable in order to satisfy equilibrium conditions.

2.8.6 Buckling of thin-walled tubes

The buckling of thin-walled cylinder under axial compression and lateral pressure 

has been investigated by Flugge [22] who found that the effect o f the internal
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pressure on the buckling load is negligible. He considered a thin walled cylindrical 

shell o f length L, and wall thickness t.

The strength and stability o f a thin cylinder depends on a number of factors including 

the Young’s modulus and yield stress o f the material, the plate thickness and the 

cylinder diameter. The mode of failure may be buckling or yielding, whichever 

occurs at the lower level of applied force [7]. The compressive yield strength o f the 

cylinder subjected to a uniform compressive force around its rim can be estimated 

using:

<jy = yield stress of cylinder material

But it is suggest that measured values are typically between 40 and 60% of this 

theoretical value [7]. Then the predicted collapse load in buckling:

F ,̂ = 2 n R t c r y . . . ( 2 .21)

where F = yield force

R = cylinder radius

t = cylinder thickness

2

F' =0.4619 E . . .  (2 .22)

where F = buckling force
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2.9 Upper and lower bound analysis

The design o f pressure vessels and related components is usually based on a 

combination o f finite element analysis and rules contained within the appropriate 

codes o f practice such as BS5500 [3] and ASME VIII [4] where yielding is generally 

considered to be the upper bound. Post-yield design is becoming more extensive, 

with techniques such as elastic-plastic finite element analysis being used in order to 

study shakedown and ratchet-ting regimes as well as collapse conditions. To avoid 

the added complexities of non-linear analysis, a limit load approach has been 

suggested [27]. The lower limit is based on the lower-bound limit load theorem:

“If for a given load PL, a statically admissible stress field exists in which the stress 

nowhere exceeds the yield stress of the material, then P l is a lower bound limit load” 

Correspondingly, the upper limit is based on the upper-bound limit-load theorem 

“If, for a given load set, the rate o f dissipation of internal energy in a body is equal to 

the rate at which external forces do work in any postulated mechanism of 

deformation, the applied load set will be equal to or greater than the plastic collapse 

load”

Direct calculation o f limit loads using upper and lower bound theories is very 

difficult because it requires a statically admissible stress field and a kinematically 

admissible strain field. In order to determine the equilibrium equations between the 

external forces and internal stresses and the stress-strain relationships, a complicated 

collapse solution is required. To avoid this, several alternative approaches have been 

investigated see review in [30]. The reduced modulus method (see, for example, 

[29]) has been modified [30] such that the elastic-plastic solution is replaced by a 

series o f elastic solutions. After each elastic computation, the modulus o f elasticity is
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reduced until the conditions of admissible stress and strain fields, as lower and upper 

bound criteria respectively, are satisfied.

This method has been further developed by Mackenzie and Boyle [31] and 

Mackenzie e t a l [32], who have presented an elastic compensation method, where a 

series o f elastic finite element analyses are used to predict a converged solution, 

which meets either the lower or upper bound criteria. Applications such as beams in 

bending and/ or tension, nozzles in spheres and torispherical heads are considered. 

Gowhari-Anaraki and Adibi-Asl [33] have used the method to estimate upper and 

lower limit and shakedown loads for beam members and a thick sphere.

Hardy e t a l [34] have used the method to estimate upper and lower bounds for 

hollow tubes with axisymmetric internal projections under axial loading. They found 

that this method could be used successfully to determine upper and lower bounds for 

both limit and shakedown loading, when compared with elastic-plastic finite element 

predictions.

Seshadri and Kizhatil [35] have suggested that if  the procedure could not be verified 

for simple components, it was unsafe to use it for more complex design. Hence, in 

this work, a relatively simple geometry is used to further investigate the validity of 

the method.

2.9.1 Elastic compensation method

The aim of the method, as described in [31], is to systematically re-distribute the 

predicted stress field, while still remaining statically admissible, by carrying out an 

iterative elastic analysis and modifying the local elastic modulus at each stage. An
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initial elastic finite element analysis is performed with an arbitrary load set (e.g., Pd), 

using the true modulus of elasticity for the material, E 0. This is taken to be the zero

th iteration in a series of linear elastic analyses. In each of the subsequent analyses, 

the elastic modulus o f each element is modified according to the equation:

E , = E „  <j l t a ci„  ... (2.23)

where subscript ‘i ’ is the current iteration number, crL is a limiting value o f stress and 

<jchar is some characteristic stress within the element. It is suggested that this limiting 

stress is related to the material yield stress, <rY, by:

crL = a <jy ... (2.24)

where a  is an arbitrary constant between 0 and 1 ( l i  being found to provide suitable 

convergence. It is also suggested that the characteristic stress is the maximum 

(unaveraged) nodal equivalent stress associated with the element calculated in the 

previous iteration, defined ascrM. Hence the iteration on element modulus of 

elasticity becomes:

£ , . = 2 £ M a y /(3<rM) ... (2.25)

The iterative procedure redistributes the stresses in the component and, over a 

number o f iterations; the net effect is to decrease the maximum stress in the model to 

reach a converged constant value a d .
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2.9.2 Application to lower bound limit load

The lower bound limit load is calculated by applying the lower bound limit load 

theorem. The converged elastic compensation solution satisfies the first requirement 

o f the lower bound theorem in that it is statically admissible. Because the solution is 

linear elastic, there is a linear relationship between stress and applied load. A lower 

bound load, PL, can therefore be established as the load required giving a maximum 

(nodal equivalent) stress in the component/structure that is equal to the uni-axial 

yield strength o f the material, a y. for the worst point in the model and using 

proportionality:

v*  =  p P i

and g y = p PL

(where p is the constant o f proportionality) 

hence:

PL =  Pd ° r / c d . . . ( 2 .26)

The applied load setPrf, is not restricted to single loads and may represent multiple 

forces, moments, pressure etc., in the form of proportional loading.

2.9.3 Application to upper bound limit load

The upper bound limit load theorem for a complete plastic collapse solution can be 

expressed as:-
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£ / >  it = \ b  d V
v

. (2.27)

where D  is the rate o f dissipation of energy per unit volume, P is the set of 

equilibrium external loads and u  is the compatible set o f displacement rates, which 

requires details o f that complete plastic collapse solution.

Alternatively, an upper bound solution can be found when an incomplete or partial 

plastic collapse solution is available [32] and Equation (2.27) can be re-written in the 

form:

where the asterisk denotes an incomplete solution (i.e. a geometrically possible mode 

o f deformation in which the stress field is not necessarily defined).

For this incomplete solution, compatible sets o f displacement and strain rate 

increments are required and an iterative elastic finite element analysis, employing the 

elastic compensation method, will provide such information. However, the finite 

element predictions required to obtain the left hand side o f Equation (2.28) are not 

always readily available. However, since the solutions are elastic, the elastic strain 

energy increment can be substituted, i.e.:

... (2.28)
V

V V
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where & and s* are the elastically calculated stress and strain increments, 

respectively. Also, the increment of energy dissipation per unit volume for an elastic- 

perfectly plastic material, using the von-Mises yield criterion, can be expressed as 

[32]:

D = c r J j ( s , 2 + s 22 + s 32 ... (2.30)

where e i (i = 1, 2, 3) are the three principal strain rates.

Equation (2.28) can be re-written in simple form as:

U  < D

and, as shown in Figure 2.16, the dissipation energy, D , is linearly related to the 

applied load whereas the strain energy, £/, varies with the square of the load. 

Furthermore, the intersection o f the two lines represents the upper bound on the limit 

load.
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Pd Pu p

Figure 2.16: Variation in strain energy and dissipation energy with applied 

load, used in the calculation of the upper bound limit load

The upper bound limit load is therefore obtained using predictions from the 

converged elastic compensation finite element solution with the arbitrary load set, Pd 

,i.e.

since U  a  P2 and D  a  P

then Ud a  Pd2 and D ^ a P ^

and because the solutions are elastic:
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U  = P 2 and D  = P for any load set, P
P 2 Pd d

Equating U  and D  at the upper bound limit load, Pu , gives:

Pu = ^ - P d ...(2 .31)
U d

where D d and U d are found from the converged elastic compensation finite element 

solution.

2.10 Extrusion process and modelling

2.10.1 Process description

In 1797, Bramah [see [36]] described a press in which lead, maintained molten in an 

iron pot, was forced by a pump into a long projecting tube, which served as a die. 

This was the earliest example o f the extrusion process. A  tapered mandrel was 

supported concentrically with the tube by bridge in its enlarged end.

Extrusion is a forming method that is widely used in industry for producing a large 

variety o f products such as window frames, tubes, cans and cables. The cross- 

sections that can be produced vary from solid round, rectangular, to L shapes, T 

shapes, tubes and many other different shapes. The extrusion process is a simple 

method, which involves using a punch to press a ductile material through a die, thus 

causing gross plastic deformation and forming the required shape.
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The essential feature of the extrusion process is the occurrence o f extremely high 

pressures during the process, this being due to the constraints imposed by rigid tools. 

This high pressure may increase the ductility o f the material, which in turn enables 

large deformations to take place in one operation without the material cracking, 

achieving at the same time precise dimensional accuracy and shape o f the product. 

The process is particularly suited to high volume requirements and produces 

components free from porosity. Working the metal in the cold state creates a fine 

grain structure, which improves toughness, strength and hardness, and the high 

quality finish is ideal for polishing and anodising. These features combine to give 

price, quality and delivery advantages over other methods o f manufacture such as 

turned parts, castings and deep drawn components [37].

Although extrusion is a modem process it precedes the development of aluminium, 

which was only commercially available since 1886. There are two types o f extmsion 

commonly used in industry: direct and indirect extmsion as shown in Fig 2.17. In 

direct extmsion, the die is located at one end of the container and the metal to be 

extmded is pushed towards it, hence moving relative to the container. In the case of 

indirect extmsion, the die is placed on the end o f the ram, and moves through the 

container from one end (see Figure 2.17).
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Figure 2.17: Direct and indirect extrusion [36]

In indirect extrusion of aluminium alloys, the process is characterized by the absence 

of friction between the billet surface and the container. The load required is therefore 

always decreased, compared with direct mode (as illustrated in Figure 2.18) and can 

be reduced by as much as 50%. The advantages of indirect extrusion are partly 

related to the lower load needed and partly to the more uniform flow pattern 

developed because of the absence of relative motion between the billet and the 

container such that no heat is produced by friction [36].
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Figure 2.18 Extrusion load/displacement curves for direct and indirect

extrusion [36]

Impact (or back) extrusion is a type o f indirect extrusion process that produces 

components by striking a cold billet, or slug, o f metal contained in a die cavity. The 

metal slug is forced to flow around a punch by a single high-speed blow. The wall 

thickness is controlled by the clearance between the punch and die [37]. This type of 

extrusion process is used to form aluminium aerosol cans (see Section 2.2.6). The 

aluminium aerosol cans are manufactured in one piece by reverse-extrusion process 

and the tool used for manufacturing is shown in Figure 2.19.
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Upper corvamer

Figure 2.19: Tool setup used for the m anufacturing of the aluminium cans 

2.10.2 Constant volume analytical approach

Patten [2] developed a program to predict the height and thickness variation in the 

first stage of the back-extrusion process for aluminium aerosol cans, using a constant 

volume approach. The mathematical method involved the development of a 

volumetric model of the extrusion process based on billet, punch and die dimensions 

coupled with information on the punch travel. The profile is split into sections and a 

cumulative volume conservation principle applied. The results produced were 

validated through experimental measurement.
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2.10.3 Finite element modelling

The application of the finite element method to metal forming problems began as an 

extension of structural analysis techniques into the plastic deformation regime. Thus 

early applications o f the finite element method to metal forming problems were 

based on the plastic stress-strain matrix developed from the Prandtl-Reuss equations. 

Hydrostatic extrusion, compression, and indentations were analysed using this matrix 

and the infinitesimal variation formulations [38]. In recent years, a trend can be 

observed towards a more objective documentation o f the empirical knowledge 

available on extrusion components. The development o f automated design 

applications or expert systems can be seen as a part o f this trend. These systems 

require the explicit formulations o f the design rules. To formulate such rules more 

knowledge o f the mechanics behind the extrusion process is required. The finite 

element method can be a valuable tool in obtaining such knowledge, providing 

insight into the process that cannot easily be obtained in any other way [39].

The use of the finite element method (FEM) is becoming increasingly important in 

understanding the processes that occurs during aluminium extrusion.

Joeri [39] in 2000 described the finite element simulation of the extrusion process for 

aluminium prismatic sections with some new developments in the simulation of 

aluminium extrusion for complex sections and simple sections also hollow profiles 

was produced using the finite element method being reported. The simulation can be 

used to investigate particular aspects o f the extrusion process. The simulation can 

also be used directly in the design process to improve the design of specific dies in 

order to improve the performance o f these dies.
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Joachim in 2005 [40] studied the backward cans extrusion process. The study 

discusses the type of punch used in the backward cans extrusion process, which is 

commonly made with a cylindrical punch land. Using finite element analysis, the 

radial contact force of the punch has been determined. The results the finite element 

simulations of the process employing a new punch design show that a slight change 

in the angle o f the punch land causes a drastic change in the contact conditions 

between the punch land and can wall and the change in contact condition gives rise 

to a net radial force on the punch, which will deflect the punch off centre leading to 

variations in the can wall thickness. He does not consider the effects of friction 

coefficient or the relationship between punch force and punch travel.

2.10.4 Friction considerations

The effect of friction in metal forming operations is fairly complex. Friction occurs 

between the processed specimen and the forming tool in the appearance of surface 

shears, and therefore directly affects the position o f the planes of principal stresses. 

The effect increases with the increasing area o f contact between the specimen and the 

tools, and with the reduction thickness o f the processed material [41].

According to the Coulomb friction law [39] the standard coulomb friction model 

assumes that no relative motion occurs if  the equivalent frictional stress is less than 

the critical frictional stress. In the rough friction model for non-slipping case, it can 

be further assumed that there seems to be no relative motion as long as the two 

surfaces remain in contact. A penalty contact algorithm in the Lagrangian multiplier 

method was adopted to remove the relative motion by dividing the friction force by 

the penalty stiffness [42]. The effect on thickness o f friction coefficient is shown in 

Figure 2.20. The thickness decreased with increasing coefficient o f friction.
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Figure 2.20: Effect of friction on the thickness of the sheet model [42]

The effect of friction in the direct extrusion process is important in the commercial 

process because it determines the billet size, either by pressure limitation or by the 

surface at the end of the ram stroke. During the extrusion process the normal pressure 

on the interface between the aluminium and the die is so high that no slipping friction 

occurs [39].

The higher the contact friction the higher the forming costs, see Figure 2.21. 

Therefore, it is necessary to ensure that the contact friction is as low as possible in 

the forming process [43]. This is achieved by applying a dry lubricant to the billet 

before it enters the die.
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Figure 2.21: Effect of friction on the final forming time and pressure [42]

I

2.10.5 Unloading (spring back)

The unloading process following extrusion is primarily elastic. However, because the 

sheet is bent and unbent around the die and punch comers, some secondary yielding 

may occur. Spring back is additional deformation of the material that happens during 

unloading. In the extrusion process, spring back is a phenomenon, which takes place 

when the work-piece is removed from the tools after completing forming [44]. The 

degree o f change in the shape depends on the material properties as well as the 

technological parameters: restraining force, friction between the sheet and the tools. 

It is an important consideration in both pressing and forming since the final shape of 

the component is (slightly) different to that created by the punch and die geometry.

R. Akbari, et  a l  [45] described the finite element code used to simulate the spring 

back and sidewall curl in 2-D draw bending. Five stages have been applied for the 

simulation of the whole process.
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The results showed that the springback and sidewall curl phenomena could be 

completely simulated by ELEFEN software for sheet metal forming o f high strength 

steel.

Mercer et  a l  [46] have illustrated the effective use o f different solvers in the 

simulation of material forming processes. By combining the advantages o f the 

explicit and direct solvers, an effective solution scheme is obtained for simulating the 

complete sheet forming process as well as subsequent analysis o f in service loads.

Joannic and Glin [47] used finite element analysis to simulate stamping or deep 

drawing operations. A 3-D simulation code was used to design appropriate tools in 

sheet metal forming. They found that the springback procedure proposed can 

evaluate the amount o f springback in deep drawing processes in a realistic manner.

Narasimhan [48] studied numerical techniques for predicting springback deformation 

in sheet metal forming. He used implicit and explicit finite element methods to 

analyse the formation of an actual automotive module. He found that a finite element 

procedure that couples the implicit and explicit finite element methods accurately 

predicted spring back in the stamping of an automotive component. The overall 

number of iterations involved in the design o f die components could be significantly 

reduced. Hence the simulation saved design and production time for manufacturers.

Arwidson [49] studied the numerical simulation o f sheet metal forming for high 

strength steels very deep drawing situation was investigated both experimentally and 

by numerical simulation for four high-strength steels. He observed that the
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simulation is highly sensitive in the critical bending region. Also, varying the friction 

coefficient between 0 and 0.1 had a significant influence on the results.

In the case o f the back extrusion of aluminium aerosol cans and after these vessels 

have been formed, there will be a small amount o f elastic strain left within the 

aluminium. This will cause a very slight reduction in the dimensions and change in 

shape. Since these are thin-walled cylinders, where the wall thickness is very much 

less than the cylinder diameter, the mechanical elastic effects are very small and 

therefore can be neglected.

2.10.6 Other issues

2.10.6.1 Effects of punch speed

During the extrusion process, the punch speed should be selected to make sure that 

the dynamic effect on the deformable body is minimal. The final kinetic energy of 

the blank should be less than 5% of the internal energy. Even in the initial contact 

stage, the kinetic energy should not exceed 10% of the internal energy. Usually the 

peak punch speed is chosen to be in the range of lm/s-5m/s. [39].

2.10.6.2 Thermal effects

During the extrusion process, the temperature o f the aluminium increases. A 

significant portion o f this heating takes place during the early stages. The rest occurs 

when the material flows around the punch. Because the thermal conductivity of 

aluminium is high, it is expected that localised heating is limited.
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When the aluminium is plastically deformed, there is considerable heat generation. 

This will affect the tooling dimensions. However, it is considered that these changes 

in dimensions are small and are generally assumed to be negligible

2.11 Optimisation

Optimisation is the act o f obtaining the best results under the given or prevailing 

circumstances [50]. In the design, construction, maintenance and operation o f 

process plant, technological and managerial decisions must be taken at several 

stages. The ultimate goal o f such decisions is either to minimise the effort required or 

maximum the desired benefit. The effort required or benefit desired can generally be 

expressed as functions of certain decision variables. Thus optimisation can be 

thought of as the process of finding the conditions that produce the maximum or the 

minimum of such functions. (Note that maximisation and minimisation are 

interchangeable since the maximum of a function can be determined by seeking the 

minimum negative of the same function).

There is no single method for solving all optimisation problems successfully or 

indeed efficiently. Hence, it is important to identify the type o f optimisation problem 

involved and then apply the appropriate procedure for its solution. Some of the basic 

building blocks o f optimisation were developed in the time o f Newton, Lagrange and 

Cauchy [50], including the use o f calculus to obtain maxim and minima. There have 

been spectacular advances since the advent o f digital computers. Currently, 

optimisation in engineering covers a wide range o f applications.

The general optimisation problem may be stated as [50]:
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X,
X.

X = which minimises /(X ) ...(2.33)

X.

subject to the constraints:

g<- (X )< 0  i= 1,2 ...., m ...(2 .34)

h j  (X) = 0 j = l ,2 , . . . . ,p

where X is a non-dimensional vector

/(X ) is the objective function or performance index 

g . (X) are inequality constraints

h y (X) are equality constraints

An objective function is a function associated with an optimization problem that 

determines how good a solution is.

One particular area o f optimisation, which is o f particular interest to this project, is 

the area of shape optimisation where optimised shapes are investigated in order to 

reduce stress variations in components and to reduce the amount of material used.
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2.11.1 Previously published work

In 1984 Sodeik [51] published literature is not particularly helpful towards the 

specific the design issue o f optimisation of aerosol cans. He developed an equation 

for axial collapse based of a bead on the application o f the theory of the point of 

metal yield. In the development o f equation he considers a single triangular bead 

with three yield points but does not take into account the circular nature o f the 

problem and the development o f hoop stresses.

In 1992, Jing Han et  a l  [52] studied the application o f structural optimisation 

techniques to aluminium beverage bottle design to investigate the influence o f the 

design parameters to the buckling strength and rigidity o f the base under an axial 

load and internal pressure. His paper dealt with the shape optimisation o f the bottom 

of aluminium beverage bottles by applying the structural optimisation technique. He 

used non-linear finite element analysis to study the influence o f the design parameter 

on the buckling strength and rigidity o f the bottom under an axial load and internal 

pressure. The thickness o f the bottom and the top parts o f sidewall are t = 0.4 mm 

and 0.135 mm. The objective function which he used for optimisation to maximize 

the column strength o f the bottom is:

F  = P { X )

With design variables 

X  = {X i ] ,  i = l . . .n  

where n is the number o f design variable
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The results obtained a 50% increase in column strength. Also he established that 

using the progressive optimisation method can help designers to understand the 

optimisation problem more clearly and the computational cost was reduced.

In 1999, Benjamin [53] studied the computational strategies for the design and 

optimisation of three-piece steel food cans. He described the performance o f the 

finite element models across a range o f bead-depths. He used the suite to provide 

consultancy services to a number o f can-makers to study the effect o f geometry and 

material changes. This study calculated that using the current can material and 

geometry specifications finite element models should be constructed. He studied the 

effect o f imperfections on the post buckling behaviour o f food cans and the axial 

collapse of the beaded cans in 2-D and 3-D model

2.12 Closure

The background information and published literature relevant to this project have 

been reviewed. In particular, information on thin-walled cylinders under internal 

pressure and thin-walled cylinders subjected to axial loading has been presented and 

will be referred to in later chapters o f this thesis. The areas o f extrusion modelling 

and optimisation analysis have also been explored, since they also feature in this 

work.

Several observations are made based on this review:

1. there is a requirement for further understanding o f the process of dome reversal 

(elastic-plastic buckling) o f thin-walled cylinders with inverted bases subjected to 

internal pressure;
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2. similarly, a need for greater accuracy in the modelling and prediction o f axial 

buckling loads has been identified;

3. the British and American standards do not cover such design considerations;

4. further applications o f the elastic compensation method are required in order to 

validate the approach;

5. there is little evidence o f finite element analysis being applied to the modelling of 

the back-extrusion process;

6. the raw material costs associated with the manufacture o f aluminium aerosol cans 

are very high and, at the same time, the cans are often considered to be over- 

designed. Consequently, there is a requirement for the optimisation o f the can 

thickness profile such that material can be reduced while, at the same time, 

maintaining the same critical pressures for dome reversal and bursting.

These six issues are investigated further in the remaining chapters.

64



Chapter three

INTERNAL PRESSURE LOADING

3.1 Introduction

This chapter describes the results o f an analysis o f the aerosol can under internal 

pressure loading using finite element analysis, together with details o f the 

experimental validation o f the predictions. The analysis focuses on the base of the 

can, since this is the critical area for improvements to be made. Elastic analysis is 

used to study the elastic stress distributions and the onset o f yielding and elastic- 

plastic analysis is used to investigate the post-yield behaviour up to dome reversal 

and eventual failure. The application o f approximate methods, such as the upper and 

lower bound techniques, to this type o f component and loading is also investigated.

Full details of geometries, loading, boundary conditions and material models 

considered are given in Sections 3.2.1 to 3.2.3. The mechanisms are described in 

detail using one particular geometry-load combination and an elastic-perfectly- 

plastic material model. The maximum internal pressure that the charged pressure 

vessel will withstand is presented together with upper and lower bound estimates.

The finite element predictions have been obtained using ELFEN Version 3.0.4, [5] a 

finite element program for Microsoft Windows NT. The program allows pre

processing, analysis and post-processing stages to be completed within a single 

application. The program can be used to model a large number o f situations 

including buckling, plastic deformation, forming and stress analysis problems, etc.
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3.2 Elastic finite element analysis using axisymmetric models

3.2.1 Geometry and finite element models

In order to fully understand the stress response, predictions have been obtained for a 

series o f constant thickness can profiles as well as for an actual profile. This has been 

developed using the measured outside profile o f an actual can [2] and assuming a 

constant thickness throughout. The model used for the actual profile analysis and the 

corresponding results are presented in Section 3.3.5.

The basic shape is assumed to be axisymmetric about the Y-axis. The geometry of 

the base is described using six dimensions; H (the dome depth), t (the wall 

thickness), L (the flat base length), R (the major arc radius), r (the minor arc radius) 

and the angle#, as shown in Figure 3.1. Seven geometries have been considered in 

this analysis and the relevant geometric parameters are listed in Table 3.1. A detailed 

investigation o f geometry G4 is described and a summary o f results presented for the 

other geometries.
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Figure 3.1: Can base geometry (constant thickness)

Geometries H (mm) t (mm) L (mm) R(mm) r (mm) <9 (degree)

G1 7.5 0.4 8.924 13.75 3.20 87.8°
G2 8.5 0.6 8.924 13.75 3.18 86.7"
G3 8.5 0.8 8.924 13.75 2.73 67.3“
G4 8.5 1.0 8.924 13.75 1.94 50.5"
G5 8.5 1.2 8.924 13.75 1.62 30.4”
G6 8.5 1.4 8.924 13.75 1.50 25.2“
G7 8.5 vary 8.924 14.13 3.23 64.2°

Table 3.1: Geometric param eter

The basic finite element model is shown in Figure 3.2. During mesh generation, 

these "super elements" are sub-divided to create a suitable mesh, a typical mesh 

being presented in Figure 3.3 and discussed later in this chapter.



No Y (Utplat'nnnil

Figure 3.2: Basic finite element model of can base (constant thickness)

The top section of the can is not included at this stage to simplify the model. This 

will have little effect on the results, as it is known from experimental testing that the 

base of the aerosol can deforms first. On the basis of preliminary predictions, the 

cylindrical section was made long enough to ensure that a uniform stress distribution 

was reached away from the comers. Additionally, by removing the top section o f the 

can, the model accuracy and computation time is increased. 8 noded, axisymmetric, 

isoparametric elements have been used because of their efficiency and increased 

accuracy.

3.2.2 Loading and boundary conditions

The axisymmetric model shown in Figure 3.2 is constrained in the X direction along 

the plane AA to represent symmetry. It is also constrained in the Y direction along 

the plane GG. These constraints on the displacement are sufficient to prevent a 

singularity occurring in the finite element solution. Elastic finite element calculations
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have been performed for a pressure load of 1 bar (0.1 MPa) applied uniformly on the 

inner surface of the model.

3.2.3 Materials models

The material assumed for the elastic analysis is aluminium 1050, which is commonly 

used in this type o f application. This means that the aluminium is 99.50% pure, with 

0.5 % natural impurities [54] (and therefore no added impurities). The mechanical
i

| properties are given in Table 3.2 [2]. The results are generally normalized with
i
|

respect to these material properties.

Material properties Value

Density, p (kg/m3) 2700
Young’s modulus, E (GPa) 68.3

Poisson’s ratio, v 0.33
Yield stress (MPa) 100

Ultimate tensile strength (MPa) 156

Table 3.2: Mechanical properties of 1050 aluminium [2]

3.2.4 Constant thickness models

The region of the component under investigation is the can base, which is subjected 

to uniform pressure loading. In addition, the whole component is analysed in order to 

obtain ‘nominal’ predictions. Geometry G4, having t = 1 mm, is selected for a full 

review and a summary of the results is given for the other geometries. The mesh was 

generated using the ELFEN mesh generator and the mesh for G4, containing 1267 

elements, is shown in Figure 3.3(a).
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In finite element modelling, a better-quality mesh typically results in a more accurate 

solution. However, as a mesh is made better, the computation time increases. There 

is one way to perform a mesh convergence study as follows:

• Create a mesh using the fewest reasonable number of elements and analyze 

the model.

• Recreate the mesh with a denser (biggest number of element) element 

distribution, re-analyze it and compare the results to those of the previous 

mesh.

• Keep increasing the mesh density and re-analyzing the model until the results 

converge satisfactorily.

This type of mesh convergence enables an accurate solution with a mesh that is 

sufficiently dense and not overly demanding of computing resources, the mesh 

convergence for this analysis as shown in Figure 3.3(b).

Figure 3.3(a): Finite element mesh for geometry G4
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Figure 3.3(b): Mesh convergence

3.2.4.1 Results for geometry G4 (t = 1 mm)

Elastic principal stress contour plots for G4 for an internal pressure of 0.1 MPa are 

presented in Figures 3.4, 3.5 and 3.6. It can be seen that crx has a maximum localized 

value o f +15.72 MPa on the inside surface close to the intersection between the base 

and vertical sides (section EE in Figure 3.2). Elsewhere, cr1 is reasonably uniform 

and of low value. <j2 varies between +2.02 and -14.46 MPa with the maximum 

compressive value on the inside surface between sections CC and DD in Figure 3.2. 

<r3 varies between +9.26 and -11.43 MPa with a maximum tensile value close to 

section DD in Figure 3.2 and generally compressive stresses in the uniform base
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region, cii is the hoop stress, <Ji is the longitudinal stress and <53 is the radial stress 

approximately.

15 . 72170 
1 4. 283 44  
12 .84518 
11 . 40692 
9 . 968660 
8 .530399 
7 . 092140 
5 . 653 880  
4 . 215619 
2 . 777 359  
1 . 339099  
- 0  .09916 
- 1

Figure 3.4: cr, contour plot (G4, p =0.1 MPa)

2. 021949  
0. 648368 
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- 3 .4 7 2 3 8  
- 4 . 8 4 5 9 6  
- 6 . 2 1 9 5 4  
- 7 . 5 9 3 1 2  
- 8 .9 6 6 7 0  
- 1 0 . 3 4 0 3  
- 1 1 . 7 1 3 9  
- 1 3 . 0 8 7 4  
- 1 4 .4 6 1 0

Figure 3.5: (7-, contour plot (G4, p = 0.1 MPa)
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Figure 3.6: cr3 contour plot (G4, p = 0.1 MPa)

The corresponding principal stress distributions around the inside and outside 

surfaces between points A and G (see Figure 3.2) are shown in Figures 3.7 and 3.8 

respectively. It can be seen from figure 3.8 that the highest principal stress ( crt ) is at 

Section FF. Also cr1 is higher at Section CC then cr3 at Section EE. As can be seen 

from the figure, there are very sharp rise in cr0 at point E compared to the other 

stresses. The flat sections of these curves occur when two of the principal stresses are 

negative and the other (maximum) must therefore be zero.
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Figure 3.7: Principal stress distributions around the inside surface (G4, p = 0.1

MPa)
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The von Mises equivalent stress contour plot, for p = 0.1 MPa, is shown in Figure 

3.9. The equivalent stress distributions around the inside and outside surface are 

shown in Figure 3.10. The maximum equivalent stress is 13.88 MPa and occurs on 

the inner surface close to the point E in Figure 3.2. The maximum equivalent stress 

index, I e9(or elastic equivalent stress concentration factor), is obtained by dividing

the maximum equivalent stress by the nominal stress:

- ( 3 .1 )
( Oeq /  nom

where the nominal stress is found from:

Vt(CTl ~ a 2>2 +(<J 2 - C 3) 2 +(<T, -<T3)2] ...(3 .2 )

where a . = 0 ,=  ^ - ,  <7, = - — ...(3 .3 )
1 I t  2 At 3 2

and D is the inside diameter.

Using p = 0.1 MPa, D = 53 mm and t = 1 mm:

<Ti = 2.65 MPa, cj2 = 1.325 MPa, <33 = -0.05 MPa, (a eq)nom = 2.34 MPa and hence Ieq 

= 5.93.

It is clear that yielding will occur here first at a pressure which is well below the 

yield pressure for the plain tube region o f the can with 1 mm wall thickness, which is
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when ((Jeq)nom = 1 0 0  MPa. Hence, scaling up these elastic results, first yield occurs 

when:

p v = - ^ --.0.1 = 0.720 MPa -fo r the base 
y 13.88

compared with:

p v = - ^ - .0 .1  = 4.27 MPa - for the plain tube
y 2.34 F
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Figure 3.9: Equivalent stress contour plot (G4, p = 0.1 MPa)
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Figure 3.10: Equivalent stress distribution (G4, p =0.1 MPa)
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3.2.4.2 Effects of wall thickness

Equivalent stress contour plots for t = 0.4, 0.6, 0.8, 1.2 and 1.4 (which represents the 

variation in thickness seen in actual cans), with an internal pressure of 0.1 MPa are 

shown in Figures 3.11, 3.12, 3.13, 3.14 and 3.15 respectively.

The maximum equivalent stresses in each case are in the comer region close to the 

point E (see Figure 3.2) and decrease with increasing thickness. The equivalent 

stress for t = 0.4 mm (Figure 3.11) varies between 62.2 and 0.13 MPa close to the 

Sections DD and EE in Figure 3.2. For t = 0.6 mm, (Figure 3.12), the equivalent 

stress varies between 43.5 and 0.27 MPa close to the Section EE. For t = 0.8 mm 

(Figure 3.13), the equivalent stress varies between 24.9 and 0.03 MPa close to the 

Section DD and EE. For t = 1.2 mm (Figure 3.14) the equivalent stress varies 

between 8.48 and 0.06 MPa close to the Section DD and EE, and for t = 1.4 mm 

(Figure 3.15) the equivalent stress varies between 6.72 to 0.02 MPa close to the 

Section DD and in the Section AA in Figure 3.2. The relationship between thickness 

and maximum stress is clearly non-linear.
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Figure 3.11: Equivalent stress contour plot (G l, p = O.IMPa)

82



43 . 59052  
39 . 98 090  
36 . 37 128  
32 . 76 167  
2 9 . 15 2 04  
25 . 54 243  
21 . 9 32 81  
18 .32319 
14 . 71357 
11. 10395  
7 .494327 
3 .884708 
0 .275088

42.69052
99.90090
36.31126
32.16161
29.
25.54243
21.93261
18.32319
14.11351
11.10295
1.49432?
3.884108
0.215086

Figure 3.12: Equivalent-stress contour plot (G2, p = 0.1 MPa)
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Figure 3.13: Equivalent stress contour plot (G3, p = O.IMPa)
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Figure 3.14: Equivalent stress contour plot (G5, p = 0.1 MPa)
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Figure 3.15: Equivalent Stress Contour plot (G6, p = 0.1 MPa)

A summary of the maximum equivalent stresses, nominal stresses and maximum 

equivalent stress indices, together with the number of elements in each mesh, is
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presented in Table 3.3. These results are presented graphically in Figures 3.16 and 

3.17. It is clear that the relationship between I and thickness is reasonably linear for

t in the range 0.4 to 1.4 mm, whereas changes in thickness have a more marked effect 

on maximum equivalent stress particularly when the value o f thickness is at the 

higher end of the range considered.

These results are presented in an alternative form in Figure 3.18. Here, the diameter 

has been normalised by dividing by the thickness to give the dimensionless 

parameter D/t.

Geometry G1 G2 G3 G4 G5 G6
Thickness (mm) 0.4 0.6 0.8 1.0 1.2 1.4

D/t 132.50 88.33 66.25 53 44.16 37.85
62.23 43.59 24.96 13.88 8.48 6.72

( < j  )V eq /  nom
5.77 3.86 2.91 2.34 1.95 1.65

A
K

13.83 11.29 8.58 5.93 4.34 4.07

No of elements 424 889 894 1267 1514 1787

Table 3.3: The variation of maximum equivalent stress index with wall

thickness
i[
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Figure 3.16: The relationship between wall thickness and maximum equivalent

stress
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Figure 3.17: The relationship between maximum elastic equivalent stress index

and the wall thickness
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Figure 3.18: Maximum equivalent stresses, nominal stresses and maximum 

equivalent stress indices versus D/t ratio

3.2.4.3 Limiting pressures

Using the method of analysis discussed in Section 3.2.4.1, the elastic predictions 

have been scaled linearly in order to obtain values o f the limiting pressure (the 

pressure at which yielding will first occur) for the can base as well as for the plain 

tube region. These predictions are presented in Table 3.4 and Figure 3.19. It can be 

seen that the relationship is reasonably linear over the range 0.4 mm < t < 1.4 mm.
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Thickness
(mm)

D/t
Limiting pressure (MPa)

Can Base Plain Tube
0.4 132.50 0.16 1.73
0.6 88.33 0.22 2.59
0.8 66.25 0.40 3.43
1.0 53 0.72 4.27
1.2 44.16 1.17 5.12
1.4 37.85 1.49 6.06

Table 3.4: Limiting pressures for constant thickness cans

C a n  b a s e

P la in  tu b e

0 2 0.4

Plain tube

100 120 140

Figure 3.19: Variation of limiting pressure with wall thickness and D/t



3.2.5 Can with varying thickness

In practice, the actual thickness profile of a can is highly non-uniform for a number 

of reasons. Based on experimented measurements, Patten [2] obtained a thickness 

profile and this has

been used here to obtain realistic values of stress and limiting pressure. It was found 

that the thickness varies in the range from 0.31 mm to 1.31 mm. A variable thickness 

model, which reflects the true thickness profile o f measured cans has been used and 

it is clear that there is a significant difference between the thickness of the cylindrical 

section (0.31 mm minimum) and that o f the base (1.31 mm maximum). The basic 

finite element model is shown in Figure 3.20. The constraints, loading conditions and 

material properties are as discussed in Sections 3.2.2 and 3.2.3 for the constant 

thickness models. A suitable mesh of 8 noded, axisymmetric, isoparametric elements 

was generated using the ELFEN mesh generator and is shown in Figure 3.21.

Y No Y -d isp lacem ent

Axi8symetric about Y-axis

N oX -d isp la ce m e n t

Figure 3.20: Finite element model of can with varying thickness
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Figure 3.21: Finite element mesh for can with varying thickness

3.2.5.1 Results

The predicted variation in maximum equivalent stress, for an internal pressure of 

O.IMPa, is shown in the form of a contour plot in Figure 3.22. There are large stress 

gradients close to the regions CC and FF in Figure 3.2 and the maximum value of 

equivalent stress is 25.68 MPa at the interface between the base and the cylinder. The 

distribution of equivalent stress around the inside and outside surfaces is shown in 

Figures 3.23 and 3.24 respectively. Inner surface equivalent stresses are generally 

greater than the corresponding outer surface values.

From the experimental measurements, it is seen that the thickness in the plain region 

of an actual can is approximately 0.31 mm and this gives a nominal stress of 7.43 

MPa (Equation 3.2) and, therefore, a maximum equivalent stress index of 3.45.
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Figure 3.22: Equivalent stress contour plot at internal pressure of 0.1 MPa
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Figure 3.23: Equivalent stress distribution around inside surface
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Figure 3.24: Equivalent stress distribution around outside surface

The limiting pressure (the pressure at which yielding will first occur) has been 

obtained using the method described in Section 3.2.4.1 and a value of 0.38 MPa is 

predicted. This result is seen to compare to an average thickness of 0.73 mm. It is 

clear from Figure 3.22 that there are very low stresses in the central region of the 

base of the actual can, compared to the intersection region, and thus the amount of

94



the aluminium in this region can be reduced with no significant effect on the integrity 

o f the can. This will be the subject of the optimisation analysis discussed in Chapter 

6 .

3.3 Elastic-plastic finite element analysis using axisymmetric models

The finite element models and loading conditions considered here are the same as 

those used for the elastic analysis discussed in 3.2.land 3.2.2.

3.3.1 Constant thickness model

The objective o f this model is to predict the maximum possible internal pressure the 

pressurised can will withstand before plastic buckling (plastic snap-through) o f the 

base occurs. This model was used initially to investigate the stress concentrations, 

optimise the mesh density and provide a better understanding o f how to improve the 

can base strength. The basic geometry is identical to that used in the elastic analysis 

and shown in Figure 3.1. An identical mesh to that used for the elastic analysis and 

seen in Figure 3.3 has been used here. The finite element mesh was generated 

automatically using the ELFEN mesh generation. In the modelling o f aluminium 

cans, the deformation of the can base is non-linear. The material deforms plastically 

and also the deformations are large enough to cause the loading direction and 

stiffness to change throughout the analysis. This change in loading direction and 

geometry-dependent stiffness is referred to as a geometric non-linearity (GNL) and 

the GNL option within ELFEN was selected for these analyses. The non-linear finite 

element analysis is achieved by incrementing the applied load in very small steps 

allowing the stresses to be calculated at each load increment.
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3.3.2 Material models

The multi-linear uni-axial stress-strain characteristic for the aluminium used in can 

production is shown in Figure 3.25 and was derived by Patten [2] from experimental 

results. Two types of finite element model have been used to represent this data:

180

160 -

140 •

120 ■

I 1“ -

60 ■

Parallel spring plasticity40  ■

20 -

1 20.2 0.4 0 6 0.8 1 14 1.6 180
Strain (°«)

Figure 3.25: Parallel spring plasticity Vs multi-linear model

a) Elastic-perfectly-plastic (Figure 3.26)

Using this model, the von Mises equivalent stress cannot exceed yield stress ( cry =

100 MPa). Once yielding occurs across a section of the tube, the finite element 

procedure will no longer converge since the model predicts infinite strains and the 

‘plastic collapse’ condition is reached. This model is extremely conservative and 

under predicts stresses.
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1

Stress
crv

strain

Figure 3.26: Stress-Strain relationship for an elastic-perfectly-plastic material

model

b) Bi- and multi-linear work hardening

In order to improve the accuracy of the model, a simple solution is to assume a bi

linear relationship. This is known as a parallel spring model [17] as can be seen in 

Figure 3.27. The model will now predict stresses above the yield stress and the 

material is said to work (or strain) harden. However, this model will not predict 

collapse since the stress can continue to increase with increasing load.

The most accurate model is the one that uses a series of straight lines to model the 

true a-e  behaviour up to the ultimate tensile strength of the material (156 MPa). The 

data for this multi-linear o-e curve is shown in Table 3.5.
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Stress

wyv-M

Figure 3.27: Parallel-springs plasticity model

Plastic strain (%) Stress (MPa)
0 100

0.08 106
0.18 115
0.28 124
0.38 132
0.48 138
0.58 143
0.68 148
0.78 151
0.88 153
0.98 155
1.08 156
1.18 156

Table 3.5: Plastic stress-strain data for multi-linear material model [2] 

3.3.3 Finite Element results for geometry G4

A typical geometry (i.e. Geometry 4) having t = 1mm is selected for a full review. 

The pressure load was increased from 0 up to failure (collapse). The load was 

incremented from an initial time factor o f 0.1 to a total stage time 1.0. A Newton- 

Raphson iteration method [17] was used to perform an equilibrium check, to ensure 

that the predicted results satisfy the underling differential equation.
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3.3.3.1 Elastic-perfectly-plastic model

The results of the analysis are shown as stress contours in Figures 3.28 to 3.31 for 

pressure increments of 0.22 MPa and starting at 1.0 MPa. Equivalent stresses slightly 

higher than the uni-axial yield stress (100 MPa) are predicted due to the convergence 

criteria within the ELFEN program. These figures indicate that major plastic zones 

develop in the regions AA to BB and DD to FF (see Figure 3.2) and that failure 

ultimately occur when a plastic hinge forms between DD and FF. From these 

predictions, it was established that first yield and plastic hinge occur at pressures of 

0.72 and 1.60 MPa respectively.

These figures indicate the regions o f high stress and also the growth of the plastic 

zone. Yielding first occurs when p = 0.72 MPa, (Figure 3.28). As the pressure is 

increased, four plastic zones are clearly seen to develop, at points labelled A, B, C & 

D in Figure 3.2, for p = 1.2 MPa. A further increase in pressure to 1.4 MPa results in 

a ‘plastic hinge’ where the whole of Section XX (see Figure 3.30) has yielding 

because of the merger o f zones B, C, & D. The size of zone A has also increased. 

However, the pressure can be further increased to 1.6 MPa before final collapse 

occurs (Figure 3.31) with further growth o f the plastic zones.
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109. 3570 
100. 3987 
91 . 44039 
82 .48209 
73 .52379 
64. 56549  
55 . 60 719  
46. 64889  
37 . 69 059  
28 . 73 230  
19. 77400 
10. 81570 
1 . 857398

Figure 3.28: Von Mises stress contour plot for G4 with internal pressure = 1.0
M Pa and EPP m aterial model

3 6 . 3 3 5 0 3  
27  . 8 1 2 44  
1 9 . 2 8 9 8 6  
1 0 . 7 6 7 2 7  
2 . 2 4 4 6 8 0

1 0 4 . 5 1 5 7
9 5 . 9 9 3 1 5
8 7 . 4 7 0 5 7
7 8 . 9 4 7 9 8
70 .42538
6 1 . 9 0 2 8 0
5 3 . 3 8 0 2 1
4 4 . 8 5 7 6 2

Figure 3.29: Von Mises stress contour plot for G4 with internal pressure = 1.2
M Pa and an EPP m aterial model
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17 . 75 606  
9 . 097 729  
0 . 439 394

104 . 3394
95 . 68 108
87 . 02 274
78 . 36 440
6 9 . 7060 7
6 1 . 0477 4
52 . 38940
43 . 73 107

Figure 3.30: Von Mises stress contour plot for G4 with pressure = 1.4 MPa and
an EPP m aterial model

1 08 . 2539  
99 .27106  
9 0 . 28 825  
8 1 . 30 5 44  
7 2 . 32 262  
6 3 . 33 5 81  
5 4 . 3 5 7 0 1  
4 5 . 37 420  
3 6 . 3 9 1 3 8  
2 7 . 4 0 8 5 7  
1 8 . 4 2 57 6  
9 . 44 2 9 5 1  
0 . 46 014 0

Figure 3.31: Von Mises stress contour plot for G4 with internal pressure = 1.6
M Pa and an EPP m aterial model

101 ' ^

LIBRARY



The corresponding equivalent stress distributions around the inside and outside 

surfaces are shown in Figures 3.32 and 3.33 respectively. It can be seen that the 

maximum stresses not exceed the yield stress when the pressure is 1.6 MPa. This is 

to be expected since the equivalent stress (which cannot exceed the yield stress) is a 

combination of the three principal stresses, which can therefore individually be 

greater that the yield stress.

jji
gj 0 . 8 0

trUj

1.6 MPa

1.2 M Pa

00 0 . 8 0 1 . 2 0 1 . 6 0 2 . 4 0 2 . 8 0 3 . 2 0 3 . 6 0 4 . 0 0  20

Distance

Figure 3.32: Equivalent stress distribution around the inside surface for 

G4 and an EPP m aterial model
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Figure 3.33: Equivalent stress distribution around the outside surface 

for G4 and EPP m aterial model

3.3.3.2 Multi-linear work-hardening model

The results of the elastic-plastic analysis using a work-hardening material model are 

shown as equivalent stress contour plots in Figures 3.34 and 3.35 for pressures of 

1.50 MPa (just before collapse) and 1.59 MPa (at collapse) respectively. The plastic 

hinge is clearly seen in Figure 3.34 to occur at the sharp radius close to the 

intersection of base and cylinder. The shape after collapse is also clearly seen in 

Figure 3.35. Very large deformation has taken place in the region of the plastic 

hinge, allowing the base to plastically buckle from a convex shape to a concave one.

1.4 MPa 
1 .2  MPa

0 .0 0
A

0 . 5 0 1 . 5 0 2 . 0 0  2 . 5 0  3 . 0 0

B Distance C
3 . 5 0 4 . 0 0 4 .5 0  x i a 1 

D
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■ -  1 1 6 . 8 1 5 6  
I -  1 0 7 . 4 2 4 3  
I -  9 8 . 0 3 3 0 9  
—  8 8 . 6 4 1 8 5  
I -  7 9 . 2 5 0 6 0  
j -  6 9 . 8 5 9 3 5  
I -  6 0 . 4 6 8 1 1

5 1 . 0 7 6 8 6
4 1 . 6 8 5 6 1
3 2 . 2 9 4 3 6
2 2 . 9 0 3 1 2
1 3 . 5 1 1 8 7
4 . 1 2 0 6 2 6

Figure 3.34: Equivalent stress contour plot (P = 1.50 M Pa) for a multi- linear

hardening m aterial model
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1 3 7 . 3 3 9 1
1 2 6 . 2 5 9 8
1 1 5 . 1 8 0 5
1 0 4 . 1 0 1 2
9 3 . 0 2 1 8 9
8 1 . 9 4 2 5 9
7 0 . 8 6 3 2 9

-  5 9 . 7 8 3 9 9
-  4 8 . 7 0 4 6 9
-  3 7 . 6 2 5 4 0
-  2 6 . 5 4 6 1 0  

1 5 . 4 6 6 8 0  
4 . 3 8 7 5 0 0

A

Figure 3.35: Equivalent stress contour plot (collapse, p =1.59 MPa)

3.3.4 Effects of wall thickness

The above analyses have been repeated for the other thickness values, using the 

multi-linear hardening model. The EPP model was not considered because it is not 

realistic and was only included for t = 1 mm for illustration. A summary of the 

results for the range of wall thickness is presented in Table 3.6 and Figure 3.36. 

Whereas the variation in limiting pressure is reasonably linear, the curve for collapse 

pressure shows a clear increase in slope with increasing thickness. This is important 

for material optimisation, as discussed in Chapter 6.
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Wall thickness (mm) Limiting pressure (MPa,) Collapse pressure 
(MPa)

0.4 (G l) 0.16 0.73
0.6 (G2) 0.22 0.93
0.8 (G3) 0.40 1.18
1.0 (G4) 0.72 1.59
1.2 (G5) 1.17 2.37
1.4 (G6) 1.49 3.56

Table 3.6: First yield and collapse pressures for different wall thickness

3.5

2.5

0.5

0.2 0.4 0.6

Thick ness(mm)

Figure 3.36: The relationship between wall thickness first yield and collapse

pressure

3.3.5 Can with varying thickness

The geometry of the finite element model has previously been described in Section

3.2.5 and the finite element model is shown in Figure 3.20. The equivalent stress 

distribution just prior to collapse (at p = 1.50 MPa) and at collapse (p = 1.53 MPa) 

using the multi-linear work hardening material model previously described in
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Section 3.3.2 are shown in Figures 3.37 and 3.38 respectively, superimposed on the 

displaced shape.

1 1 9 . 5 3 3 8  
1 1 0 . 2 1 9 5  
1 0 0 . 9 0 5 1  
9 1 . 5 9 0 8 1  
8 2 . 2 7 6 4 7  
7 2 . 9 6 2 1 4  
6 3 . 6 4 7 8 0  
5 4 . 3 3 3 4 7  
4 5 . 0 1 9 1 3  
3 5 . 7 0 4 8 0  
2 6 . 3 9 0 4 7  
1 7 . 0 7 6 1 3  
7 . 7 6 1 7 9 6

Figure 3.37 Equivalent stress contour plot (pre-buckling, pressure =1.50 MPa)

128  . 9 4 3 5  
1 1 8 . 7 3 5 1  
108 . 5 2 6 7  
9 8 . 3 1 8 2 7  
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5 7 . 4 8 4 6 5  
4 7 . 2 7 6 2 5  
3 7 . 0 6 7 8 4  
2 6 . 8 5 9 4 4  
1 6 . 6 5 1 0 4  
6 . 4 4 2 6 3 1
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1 2 8 . 9 4 3 5
1 1 8 . 7 3 5 1
1 0 8 . 5 2 6 7
9 8 . 3 1 8 2 7
8 8 . 1 0 9 8 6
7 7 . 9 0 1 4 6
6 7 . 6 9 3 0 5
5 7 . 4 8 4 6 5
4 7 . 2 7 6 2 5
3 7 . 0 6 7 8 4
2 6 . 8 5 9 4 4
1 6 . 6 5 1 0 4
6 . 4 4 2 6 3 1

Figure 3.38: equivalent stress contour plot (collapse, pressure =1.53 M Pa

As for the constant thickness models, regions of high stress are apparent in the DD to 

EE region of the base (see Figure 3.2). Also, the stress levels close to the axis of 

symmetry o f the base are generally low because this region is significantly thicker 

than elsewhere. It is considered that shape optimisation could result in a significant 

reduction in material, while still retaining the plastic buckling and collapse 

characteristic of the can. This has been investigated in Chapter 6.

The internal pressure is a function of volume therefore any large deformation will 

cause the pressure inside the can to reduce.
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This cannot easily be modelled, therefore the assumption is made that the pressure in 

the pressure test is increased very slowly such that the water pump will prevent a 

reduction in pressure due to increased volume.

3.4 Elastic-plastic finite element analysis using 3D models

The analyses discussed previously in this chapter, although useful in studying the 

mechanisms involved and the accuracy o f the upper and lower bound estimates is not 

truly representative in one important respect. Experimental evidence suggests a 

slightly unsymmetrical buckling mode, due to minor radial variations in profile and 

there is a clear distinction between the elastic-plastic buckling o f the base and burst 

(collapse) pressures, where bursting occurs in the plain tube region. This behaviour 

cannot be predicted using an axisymmetric model. Therefore a full three-dimensional 

model was developed and elastic-plastic buckling o f the base replicated by the 

introduction of a small imperfection in a similar way to that reported by Robotham e t 

a l [25] for plain shafts in torsion.

3.4.1 Finite element model

The basic cross-section shown in Figure 3.20 using 6 super-elements has been used 

to create a three-dimensional model as shown in Figure 3.39 (half model shown for 

clarity). The boundary conditions are shown in Figure 3.40. The model was 

constrained along its line o f symmetry in the X direction see Figure 3.39 (plane 

ABCD). This does not allow X displacement o f these elements, to model the can as 

symmetrical. The top section of the can was constrained in the Z direction (plane 

ADE) to simulate the gripping o f the can in the pressure testing equipment. In reality 

the can is gripped at the shoulder during the pressure tests not in the midsection as in
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the model. Again, due to the large deformations, it was necessary to use a geometric 

non-linear analysis since the loading will change direction during the buckling 

process and the stiffness of the base changes significantly.

Y-

Figure 3.39: 3D finite element model geometry

/ /

Figure 3.40: Finite Element Constraints
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3.4.2 Material model and loading

The multi-linear material model for aluminium 1050, shown in Table 3.5, has been 

used. An incremental uniform pressure load was applied to the internal surface of the 

can. The mesh made up of 6315 four-noded three-dimensional elements, the finite 

element mesh is shown in Figure 3.41.

Figure 3.41: 3-D Finite element model mesh.

3.4.3 Eigenvalue analysis

From a preliminary eigenvalue analysis (i.e. lowest mode) and supported by 

experimental evidence, a small perturbation was introduced into the geometry to 

prevent a symmetrical deformation mode giving an increased load prediction at the 

limit point. This was achieved by increasing the radial coordinates of the nodes lying 

on one side of the half-model cutting plane from the centre to the edge o f the base by 

0.1mm (-10% of the wall thickness at that point). This provided a bifurcation point 

and enabled the snap-through buckling mode to be investigated. Robotham e t a l  [24] 

showed that imperfections in the range 1 to 10% produced very similar results. In the
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snap-through model, the load/displacement function will be cubic having a maximum 

at the point of buckling and a minimum after complete snap-through is achieved.

3.4.4 Results

The analysis resulted in stress contours plots for a number of incremental pressures. 

Finite element predictions of yield and elastic-plastic buckling pressures were 

predicted. Unlike the axisymmetric model, this model is able to resist a further 

increase in pressure, prior to collapse and the predicted collapse pressure is 2.02 

MPa.

It can be seen from Figure 3.42 that the stresses are high enough such that

The can base yields when the internal pressure is 1.50 MPa since the yield stress for

the aluminium is 100 MPa.

1 00 . 6710
9 4 . 68992
8 8 . 70883
8 2 . 72775
7 6 . 74667
70 . 76558
6 4 . 78450
5 8 . 80 3 4 1
5 2 . 82 2 3 3
4 6 . 84 1 2 4
4 0 . 86 0 1 6
3 4 . 87 9 0 7
2 8 . 89 7 9 9

y

Figure 3.42: Von Mises Stress C ontour Plot at internal pressure of 1.50 MPa

When the internal pressure is increased to 1.70 MPa Figure 3.43 shows that the 

deformation due to this pressure is clearly unsymmetrical, since it is not possible for 

an object to be perfectly symmetrical and will ultimately enable plastic collapse 

(snap-through) to occur at a pressure of 2.02 MPa, as shown in Figure 3.44, this
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shows that the finite element analysis predicts that the aerosol can base will be fully 

deformed at 2.02 MPa and that the stresses are now concentrated in the lower section 

of the can walls.

120 . 55 98  
1 1 3 . 4 0 0 4  
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7 1 . 0 0 4 4 7  
6 3 . 9 2 5 1 5  
5 6 . 8 4 5 8 2  
4 9 . 7 6 6 4 9  
4 2 . 6 8 7 1 7  
3 5 . 6 0 7 8 5

Figure 3.43: Von Mises stress contour plot at internal pressure of 1.70 M Pa

before snap-through
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Figure 3.44: Final von Mises Stress Prediction at pressure of 2.02 M Pa

mmsm
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For further investigation and information, two 3-D constant thickness models, for t = 

0.6 mm and 1.0 mm were created and analysed, using the same approach but without 

the nodal perturbations to produce the geometrical asymmetry. It can be seen from 

Figures 3.45 and 3.46 that the plastic collapse (snap-through) occurs at a pressure of 

0.83 MPa and 1.20 MPa for t = 0.6 and 1.0 mm respectively. These results show that 

the deformations due to this pressure are clearly symmetrical. This confirms the need 

for the original asymmetry in order to generate a realistic response.

1 0 6- 1 5 8 4  
93 -53969  
8 5 - 4 2 10 1  
7 7- 30 2 3 3  
69 - 1 8 3 6 5  
61 - 0 6 4 9 7  
5 2 - 9 4 6 29  
4 4- 8 2 7 6 1

-  3 6 - 7 0 89 2
-  2 8 - 5 9 0 2 4
-  2 0 - 4 7 1 5 6  

12 - 3 5 2 8 8  
42 34199

Figure 3.45: Von Mises stress contour plot at internal pressure of 0.83 M Pa and

0.6 mm constant thickness
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r
Figure 3.46: Von Mises stress contour plot at internal pressure of 1.20 M Pa and 

1.0 mm constant thickness

3.5 Upper and lower bound pressures

In this section, the elastic compensation method proposed by Mackenzie and Boyle 

and discussed in Chapter 2 is used to estimate the upper and lower bound limit 

(collapse) loads for the one-piece aluminium aerosol cans subjected to internal 

pressure loading. As in Sections 3.2 and 3.3, the wall of the can is initially assumed
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to be of constant thickness and results for six thickness values are presented. A 

realistic thickness profile is also used in a seventh model. Upper and lower bound 

pressures are found using axisymmetric models.

3.5.1 Material models, loading and boundary conditions

Since the analyses are elastic, only values for Young’s modulus and Poisson’s ratio 

o f 68.3 GPa (zeroth iteration) and 0.33 respectively (as before) are required. The 

loading and boundary conditions are as discussed in Section 3.2.2.

3.5.2 Constant thickness model

The basic finite element model, made up o f six ‘super elements’ and shown in Figure

3.2 for a can section that has a constant thickness o f 1 mm, has been used. Since the 

methodology involves an iterative finite element procedure, it was necessary to 

choose a mesh that meets both the condition o f convergence and that of economy of 

the solution. A preliminary investigation, starting with a mesh o f 296 elements (four 

through-thickness), was undertaken in order to establish a suitable mesh for which 

mesh convergence had been reached. For the elastic compensation method analysis, 

296 8-noded, axisymmetric elements were generated manually from the basic mesh 

in Figure 3.2 and the mesh for this analysis is shown in Figure 3.47.
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Figure 3.47: simple finite element mesh for geometry G4 

3.5.2.1 Geometry G4 (t = 1 mm)

Figure 3.48 shows the von-Mises equivalent stress contour plot for the initial elastic 

solution (i.e. zero-th iteration in the elastic compensation method) for an arbitrary 

pressure of 0.1 MPa. Regions of above-average stress occur in the transition region 

between cylinder and base and at the base centre. On the basis of the results shown in 

Figure 3.48, an internal pressure at which first yield occurs was found to be 0.75 

MPa.
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Figure 3.48: Equivalent stress contour plot for iteration 0

The iterative procedure described in Section 2.9 has then been employed (with the 

aid of a FORTRAN program) and the modulus of elasticity in each element modified 

according to Equation (2.25). The maximum equivalent stress at the end of the each 

subsequent iteration is shown in Figure. 3.49, from which it is clear that a converged 

solution occurs after 4 iterations with ad = 10.72 MPa. The elastic compensation 

method may, depending on the function used, caused the maximum stress to increase 

or decrease, but by careful selection of the function it is generally found that over a 

number of iterations there will be a net decrease in maximum stress with respect to 

the initial elastic solution.
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Figure 3.49: Maximum equivalent stress at the end of each iteration for t = 1

mm

The steady-state (converged) equivalent stress contour plot is shown in Figure 3.50. 

A redistribution o f stress has occurred with an initial stress range of 0.21 -  13.25 

MPa (see Fig. 3.48) reducing to 0.02 -  10.72 MPa. It is also apparent that the stress 

discontinuities at element boundaries have become more pronounced since the values 

of elastic modulus can now significantly vary from element to element.

3.5.2.2 Method of implementation of elastic compensation method

The procedure used in this approach is as follows:

(a) zero-th iteration. The initial elastic analysis is carried out with an arbitrary 

pressure, Pd, using E 0 throughout.

(i) store the elastic stress field, cre.
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(ii) identify the maximum stress in each element and use them to update 

elemental E values, using Equation (2.25)

(iii) identify the maximum stress in the model, <rd

(iv) re-create the finite element program input data file, using the new E

values

(b) i th iteration

(i) -  (iv) as above

(v) compare <rd with the value from the previous iteration (i.e. for 

convergence)

(c) converged solution. This occurs when Gd becomes constant

(i) calculate PL using Equation (2.26)

(ii) obtain U d and D d from the finite element program output (see note

below)

(iii) calculate Pv  using Equation (2.31).

Note that:

1. Strain energy values are obtained directly from the finite element program output 

file. The dissipation energy for each element is obtained from the three principal 

strains, the yield stress and the element volume, using a version o f Equation (2.30) 

based on total values, not rates. A simple FORTRAN program was therefore written 

to perform this calculation.
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2. The procedure in (i) to (iv) above is time consuming and prone to error, when 

performed manually. A FORTRAN program was written to perform these tasks 

automatically.

1 0 . 7 1 7 8 2  
9 . 8 2 6 5 3 7  
8 . 9 3 52 52  
8 . 0 4 3 9 6 6  
7 . 1 5 2 6 8 1  
6 . 2 6 1 3 9 6  
5 . 3 7 0 1 1 1  
4 . 4 7 8 8 2 5  
3 . 5 8 7 5 3 9  
2 . 6 9 6 2 5 4  
1 . 8 0 4 9 6 8  
0 . 9 1 3 6 8 3  
0 . 0 2 2 3 9 7 6

Figure 3.50: Steady state equivalent stress contour plot for t = 1 mm

From Equation (2.26), it follows that:

<T 100
Pl = —  Pd = — xO.l =0.93 MPa 

o\, 10.72

In order to obtain an upper bound estimate, values of dissipation energy and strain 

energy, for the converged solution, are required. A FORTRAN program was written 

to extract the stress and strain predictions from ELFEN and from which the
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dissipation energy was derived, using the method described in Section 2.9. Having 

done this and using Equation (2.30) and (2.31):

D. 0.001405
x 0.1 =2.20 MPa

0.00006384

3.5.2.3 Effects of wall thickness

This process was repeated for constant thickness models o f 0.4, 0.6, 0.8, 1.2 and 1.4 

mm, using 296 elements in each case. The resulting upper and lower bound pressures 

are summarised in Table 3.7. A comparison between the upper and lower bounds 

pressures and the yield and collapse pressures are presented in Table 3.8 and Figure

The results presented in Figure 3.51 show that the FE predicted collapse pressures lie 

between the upper and lower bound estimates, closer to the upper bound, and this 

provides a degree of confidence in these approximate methods. However, the range 

between the upper and lower bounds is large and, furthermore, the lower bound is 

always greater than the yield stress. This limits the use of these approximate methods 

for this type of geometry and loading to collapse pressure estimates. Nevertheless, 

the elastic compensation method is useful since it only requires elastic analyses.

3.51.
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Compensation method
t Pl Pu

(mm) (MPa) (MPa)
0.4 0.52 1.16
0.6 0.61 1.37
0.8 0.72 1.66
1.0 0.93 2.20
1.2 1.64 2.72
1.4 2.65 3.95

Variable 0.81 2.59

Table 3.7: Upper and lower bound pressures using elastic compensation method

Compensation method Finite element
t (mm) P7 (MPa) PM (MPa) Py (MPa) ? c (MPa)

0.4 0.52 1.16 0.16 0.73
0.6 0.61 1.37 0.22 0.93
0.8 0.72 1.66 0.40 1.18
1.0 0.93 2.20 0.72 1.59
1.2 1.64 2.72 1.17 2.37
1.4 2.65 3.95 1.49 3.56

Variable 0.81 2.59 0.38 1.53

Table 3.8: Results of elastic compensation and finite element analyses

4.5

3.5

CL.
2  2.5

0.5

0.2 0.6 0 8 1.2 1.60 0.4 1 4

Thicness(m m )

Figure 3.51: Com parison of finite element method and compensation method
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3.5.3 Can with varying thickness

A finite element mesh containing 296 8-noded, axisymmetric elements was 

generated manually from the basic mesh shown in Figure 3.21. The iterative 

procedure previously described for constant thickness models was repeated using this 

variable thickness model. A steady-state maximum equivalent stress of 12.4 MPa 

was predicted and from Equation (2.26):

P l =  —  Pd -  7J 7  0.1 =0.81 MPa
co 12.4

Values for the steady state dissipation and strain energies were obtained using the 

procedure described above and using Equation (2.30) and (2.31):

D d 0.001712 ocniV/m
pTI = — pA = --------------- 0.1 = 2.59 MPa

U d 0.0000659

The upper pressure bound estimate o f 2.59 MPa is higher than the predicted yield 

pressure o f 0.38 MPa (Section 3.2.5) and higher than the elastic-plastic buckling 

pressure prediction o f 1.53 MPa (Section 3.3.5). Therefore, the upper bound estimate 

has good application. In this variable thickness example, however, the lower bound 

estimate of 0.81 MPa is higher than the yield pressure.

By comparing variable thickness results with those for constant thickness models, it 

is apparent that the upper and lower bound estimates for the variable thickness model 

fall between the 0.7 to 1.0 mm constant thickness results, which might be considered 

to be reasonable since the region with the highest stress concentration and where 

buckling ultimately occurs (i.e. the comer between cylinder and base) has a thickness
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varying between 0.7 and 1.3 mm. However, the upper bound pressure estimate 

exceeds the collapse pressure.

3.6 Experimental testing

Experimental pressure testing of cans having various dimensions has previously been 

carried out by Patten and full details of the test procedure, the test equipment and 

results can be found in [2]. A typical burst can is shown in Figure 3.52, which also 

shows the buckling of the base, prior to failure. The non-symmetric nature of the 

deformed shape is clear and comparable with finite element predictions (see Figure 

3.44). There is a requirement that the buckling pressure is at least 20% below the 

actual burst pressure. In this practical situation, minimum burst pressures are 

specified by the customers.
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Figure 3.52: Deformation and burst pressure of can base

A typical pressure-time curve, taken from [2], is shown in Figure 3.53 and a 

summary of Patten’s findings are presented in Table 3.9. The results for the 53 mm 

can (which has been modelled here) shown very good agreement between the 

experimental burst pressure obtained by Patten and the analytical solution and finite 

element predictions obtained here. Similarly, the experimental buckling pressure of 

1.6 MPa compares favourably with the finite element prediction of 1.7 MPa.

Diameter
(mm)

W all thickness 
(mm)

Average actual 
burst pressure 

(bar)

Predicted burst
pressure(bar)

38 0.32 28 29.6
44 0.30 24 23.4
50 0.33 23 23.1
53 0.30 21 21.0
59 0.35 21 20.8
59 0.41 24 24.4
60 0.44 24 23.4

Table 3.9: Comparison between m easured and predicted burst pressures of cans

[2]
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Figure 3.53: Deformation and burst pressure [2]

3.7 Closure

This chapter has described the elastic and elastic-plastic analysis of the thin 

cylindrical component under internal pressure loading. Initially, axisymmetric 

constant-thickness models have been used to investigate the stress distributions that 

are set up, the yield pressures and the way in which the plastic zones develop, after 

yielding, leading up to elastic-plastic buckling. In addition, a realistic thickness 

profile has been modelled in order to more accurately study the pre- and post-yield 

characteristics. Emphasis has been placed on the base of the cylindrical can, since 

this is where the major deformation occurs.

However, the axisymmetric models are not capable of distinguishing between the 

elastic-plastic buckling of the base and the ultimate bursting of the can. In fact, these 

two events are predicted to be coincident, whereas experimental evidence suggests a
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slightly unsymmetrical buckling mode and a clear distinction between the elastic- 

plastic buckling o f the base and burst (collapse) pressures. A three-dimensional half

model was developed in order to investigate the elastic-plastic buckling o f the base. 

Finite element predictions o f yield, elastic-plastic buckling and collapse (burst) 

pressures have been compared with experimental evidence and analytical solutions 

and there is generally good agreement between them. Reasons for any discrepancies 

will be discussed in Chapter 7.

Finally, the elastic compensation method has been adapted in order to estimate upper 

and lower bounds on pressure for this type o f geometry and loading conditions. The 

method has been found to be o f limited use since the lower bound pressure is 

generally higher than the yield pressure.

In Chapter 4, the elastic-plastic behaviour o f these cylinders, when subjected to axial 

compressive loading, will be investigated.
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Chapter Four

AXIAL LOADING

4.1 Introduction

This chapter describes the analysis o f a thin-walled cylinder with inverted base 

(typically used as aerosol cans) under axial compressive loading in order to predict 

the limit and failure loads for this type o f loading. Such an analysis is important 

because aerosol cans are subjected to axial compressive loading:

a) when the neck is formed during the manufacturing process

b) when the valves are inserted and the vessel is charged

as shown in Figure 4.1. Elastic and elastic-plastic finite element analysis is used to 

predict the buckling behaviour and results are compared with those obtained from 

experimental testing, which is also described in this chapter. Case (a) is discussed in 

Section 4.3 and Case (b) in Section 4.4.
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Axial Load 
Ar 4 ^

Figure 4.1: Axial compressive loading on the can

4.2 Potential failure modes

The straight section is basically a thin-walled cylinder and it is thought that the base 

has little or no effect on the buckling process. Most o f the previous research has been 

conducted on plain cylinders and is directly applicable to cans. The collapse o f a 

cylinder under an axial load may occur in a number o f ways [21]. If the cylinder is 

slender (i.e. if the height to radius ratio is sufficiently large) then it will fail in a long

wave bending mode over its entire length (see Figure 4.2(a)). If the cylinder is 

moderately long with sufficiently thick walls, failure occurs plastically with an 

axisymmetric ‘diamond type’ buckling mode (see Figure 4.2(b)). For short cylinders 

with adequately thin walls, failure occurs elastically with an axisymmetric ‘ring type’ 

buckling mode as shown in Figure 4.2(c).



(a) Long cylinder (fc>) Moderately long cylinder (c) Very short cylinder

Figure 4.2: Effect of cylinder length on the buckling modes [21]

4.3 Case (a) - Compressive behaviour during neck formation

At the very start o f the neck formation process, it can be assumed that the loading is 

applied to the rim, as shown in Figure 4.1(a). At this point, the overall length is at a 

maximum and the cylinder will fail at the lowest axial load.

As the load is increased there comes a point at which the deformation mode suddenly 

bifurcates into a pattern running around the circumference o f the vessel (see Section 

2.8.1) and the deformation o f the buckle pattern is near the cylinder base.

4.3.1 Geometry and finite element model

The finite element model was produced in three dimensions by rotation of the cross 

section geometry shown in Figure 4.3 through 360° about the Y-axis. The cross 

section is based on measurements made by Patten [2] and so provides a realistic
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model o f the cylinder thickness profile. As with the dome reversed failure mode 

described in Chapter 3 the model needs to be ‘seeded’ with an imperfection in order 

to reproduce the correct buckling behaviour. A small perturbation in the shape o f a 

known buckling pattern to the geometry produces the corresponding failure mode 

upon collapse. The cylinder geometry was modified by shifting the radial positions 

of the nodes as one proceeds around the circumference by 0.2 mm (see Section 2.8.4 

for more information). The resulting three-dimensional shape is shown in Figure 4.4.

4.3.2 Loading and boundary conditions

At the rim of the cylinder, displacement is permitted along the axis but the rim is 

restrained in the X and Z directions. The bottom of the model is completely 

constrained to maintain a circular cross-section, as shown in Figure 4.5.

A face loading is applied normal to the horizontal rim surface o f the vessel as shown 

in Figure 4.6 to model axial loading. The loading is ramped up linearly with time. 

The user need only specify the loading rate since all other loading data for the 

analysis is generated automatically.

4.3.3 Material model

The material data described in Section 3.3.2 including the data for the multi-linear o- 

e curve, as shown in Table 3.5, was used for this analysis. A finite element mesh of 

7488 rectangular 4-noded shell elements and one element through the thickness was 

generated automatically using the ELFEN mesh generator and the mesh study result 

is shown in Figure 4.7.
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4.3.4 Finite element predictions

Predictions have been obtained using the elastic and elastic-plastic analysis facilities 

within ELFEN [5]. A geometric non-linear (GNL) analysis was performed since 

large deformations and strains, which can have a significant effect on the load- 

deflection characteristics o f the component, were anticipated. GNL considerations 

may have an influence on both the static and dynamic behaviour o f structures [17]. 

Also in snap-through buckling, deflections of the structure are large compared with 

the original dimension o f the structure. Changes in stiffness and load occur as the 

structure deforms. Geometry non-linearity occurs when the change in the geometry 

o f the structure due to its displacement under load are taken into account in analysing 

its behaviour. The equilibrium equations take into account the deformed shape, 

whereas in small strain analysis the equilibrium equations are based on the original 

un-deformed shape.

The von Mises equivalent stress contour plot for a pre-buckling (elastic) face load of 

-29.3N/mm2 and with a total load of 3247 N is shown in Figure 4.8. It is clear that 

the highest stresses occur close to the base o f the cylinder. The corresponding von 

Mises equivalent stress contour plot and deformed shape at buckling are shown in 

Figures 4.9 and 4.10 respectively. It can be seen form these figures that the buckling 

o f the cylinder is occur near the base and the mode shape has seven modes.

The load is increased and the load-displacement curve for the rim of the cylinder is 

shown in Figure 4.11. A reasonably linear response is seen up to a load of -2500 N 

and above this, the buckling process begins with failure occurring at a load of 3247 

N. The three stages o f pre-buckling, buckling and post-buckling are clearly seen.
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Figure 4.3: Cross-section geometry for the analysis of Case (a) axial loading

during neck forming
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Figure 4.4: Three-dimensional model for Case (a) axial loading analysis

135



. J * '

Figure 4.5: Structural constraints for Case (a) axial loading analysis
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Figure 4.6: Applied loading for Case (a) axial loading analysis
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Figure 4.7: Finite element mesh for Case (a) axial loading analysis
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1 5 5 . 2 4 1 2  
1 4 2 . 3 2 2 7  
1 2 9 . 4 0 4 3  
1 1 6 . 4 8 5 9  
1 0 3 . 5 6 7 4  
9 0 . 6 4 8 9 9  
77 . 7 3 0 5 6  
6 4 . 8 1 2 1 2  
5 1 . 8 9 3 6 8  
3 8 . 9 7 5 2 5  
2 6 . 0 5 6 8 1  
1 3 . 1 3 8 3 7  
0 . 2 1 9 9 3 4

Figure 4.8: Pre-buckling equivalent stress contour plot for Case (a) axial

loading analysis
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Figure 4.9: Equivalent stress contour plot at the point of buckling for Case (a)

axial loading analysis
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Figure 4.10: Buckling mode shape for Case (a) axial loading analysis
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Figure 4.11: Predicted rim load-displacement curve for Case (a) axial loading

analysis
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4.3.5 Experimental testing

Experimental testing on a can with outer diameter 53 mm, inner diameter 52.4 mm, 

wall thickness 0.315 mm and length 125 mm (see Figure 4.12) has been carried out 

in order to validate the finite element prediction in Section 4.3.4.

A Zwick 20 kN electrically driven tensile test machine has been employed with a 

compressive load being applied, as shown in Figure 4.13. A compressive load was 

applied to the rim o f the cylinder using a steel insert which was fixed to the 

uppermost part o f the cylinder using a standard jubilee clip (see Figure 4.14).

During the test the crosshead movement and the applied load, using a 15000 N load 

cell, were logged and a typical resulting load-displacement curve is shown in Figure 

4.15. A maximum load o f 3230 N was noted at a rim displacement of -0.86 mm, 

after which the load began to reduce until reach 2800 N  approximately. The resulting 

deformed cylinder is pictured in Figure 4.16. The test was then repeated several 

times and very similar results were obtained.

In one case, the test was continued well beyond the point o f first buckling and the 

resulting load-displacement curve is shown in Figure 4.17. It is clear that once a 

significant change in shape has occurred (i.e. for a displacement of approximately 3 

mm) the can stiffness starts to increase and an increase in load is seen up to 

approximately 2000 N for a total displacement of -5.5 mm. After this, a second 

buckling mechanism is observed with the load decreasing until the test was stopped 

when the rim displacement was approximately 6.8 mm. The final deformed shape is 

shown in Figure 4.18. It can be seen from the figure that the buckling occurs near 

the base and with a seven-lobed collapse pattern.
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Figure 4.12: Aluminium aerosol can used in experimental testing for Case (a)

axial loading analysis
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Figure 4.13: Zwick 20 kN tensile test machine
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Figure 4.14: Steel insert and jubilee clip arrangement used in experimental

testing for Case (a) axial loading analysis
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Figure 4.15: Experimental rim load-displacement curve for Case (a) axial

loading analysis
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Figure 4.16: Buckled can for Case (a) axial loading analysis

147



Lo
ad

 
in 

N

3000  -

2000  ~

1000  - ■

40 2 6
Displacement in mm

Figure 4.17: Extended experimental rim  load-displacement curve for Case (a)

axial loading analysis

148



Figure 4.18: Buckled can for Case (a) axial loading analysis

4.3.6 Analytical solution

For constant thickness thin walled tubes, the maximum buckling force can be 

calculated from the following formula [9]:

F ,  = j 2^  2 - ( 4 . 1 )
13(1- o 2)

Using this equation and assuming the aluminium material properties in Table 3.2 and 

a constant thickness of the 0.315 mm, the theoretical maximum buckling force is 

26,043 N.
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4.3.7 Comparison and discussion of results

4.3.7.1 Load-displacement characteristics

By comparing Figure 4.11 with Figure 4.15, it can be seen that the shape o f the 

experimental load-deflection curve is very similar to that predicted by finite element 

analysis. Furthermore, the predicted elastic-plastic buckling load of 3247 N is less 

than 1% greater than the experimentally observed buckling load o f 3230 N. Also, the 

predicted buckling displacement o f -0 .8  mm is similar to the observed value of 

-0.86 mm. There is excellent correlation between the two characteristics.

However the analytical solution, which is for the elastic buckling of a plain open 

cylinder with a constant wall thickness o f 0.315 mm (based on experimental 

measurements [Patten]), is 26,043 N. This higher value is to be expected as there is 

clearly a stress concentration at the base of the actual cylinder (see Figure 4.8) which 

acts as the catalyst and causes elastic-plastic buckling at a load far less than that 

estimated for elastic buckling o f the corresponding plain open cylinder.

4.3.7.2 Buckling mode shape

As the load increases there comes a point at which the collapse mode suddenly 

initiates. A linear buckling analysis indicates that for the lowest modes obtained from 

an eigenvalue analysis, the buckling mode for the open cylinder is a ‘diamond type’ 

inward and outward deformation see Figure 4.2(b) [21]. The predicted collapse mode 

of the cylinder with inverted base is shown in Figure 4.10 and the corresponding 

experimental results are shown in Figure 4.18.
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In both cases, the buckling modes are very similar but buckling occurs close to the 

base, unlike that shown in Figure 4.2(b), with a seven-lobed collapse pattern.

4.4 Case (b)-Compressive behaviour during valve insertion and 

charging

During valve insertion and charging o f an aerosol can, the loading is applied to the 

inner rim, as shown in Figure 4.1(b). As the load is increased, it is anticipated that 

the top will act as a belleville spring (washer) and will ‘flatten’ under load. Finite 

element predictions o f this behaviour are compared with experimental results from 

tests on an aluminium aerosol can.

4.4.1 Geometry and finite element model

The finite element model was produced in three dimensions by rotation of the cross 

section geometry shown in Figure 4.19 through 360° about the Y-axis. The cross 

section is based on measurements made by Patten [2] and so provides a realistic 

model of the cylinder thickness profile. The resulting three-dimensional shape is 

shown in Figure 4.20.

4.4.2 Loading and boundary conditions

The nodes at bottom of the model are completely constrained to maintain a circular 

cross-section, as is see in Figure 4.21.
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A face loading is applied normal to the rim of the vessel as shown in Figure 4.22. 

This load was incremented using the arc length method such that the pressure load 

was increased from zero up to failure. The load was incremented from an initial time 

factor of 0.01 to a total stage time of 1. For the non-linear solution o f the problem, an 

arc load incrementing method was used to increase the applied load such that the 

maximum load could be found. A Newton-Raphson iteration method was used to 

perform an equilibrium check. A residual level o f 0.1 was specified which would 

give sufficient accuracy for the analysis.

4.4.3 Material model

The material data described in Section 3.3.2 including the data for the multi-linear o-  

€ curve, as shown in Table 3.5, was used for this analysis. A finite element mesh of 

8548 triangular 4-noded shell elements and one element through the thickness was 

generated automatically using the ELFEN mesh generator and the mesh is shown in 

Figure 4.23.
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Figure 4.19: Cross-section geometry for the analysis of Case (b) axial loading 

during valve insertion and charging

153



Figure 4.20: Three-dimensional model for Case (b) axial loading analysis
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Figure 4.21: S tructural constraints for Case (b) axial loading analysis
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Figure 4.22: Applied loading for Case (b) axial loading analysis
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Figure 4.23: Finite element mesh for Case (b) axial loading analysis

4.4.4 Finite element predictions

Again, elastic and elastic-plastic GNL analyses have been performed using ELFEN 

[5]. The von Mises equivalent stress contour plot for a pre-buckling (elastic) face 

load o f -  4.5 N/mm2 and with a total load of 1617 N is shown in Figure 4.24. In this 

case, the highest stresses occur at the rim and at the intersection of the top and
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parallel sections of the cylinder. The load is increased and the load-displacement 

curve for the rim of the cylinder is shown in Figure 4.25. A reasonably linear 

response is seen up to a load of 1617 N and above this, the top buckles and a 

reduction in load is clear. The corresponding von Mises equivalent stress contour 

plot and deformed shape at buckling are shown in Figures 4.26 and 4.27 

respectively. It can be shown from the figures that the buckling occur in the ring top 

until reached the shoulder of the can.

—

1 5 5 . 9 0 0 0  
1 4 3 . 0 3 4 7  
1 3 0 . 1 6 9 5  
1 1 7 . 3 0 4 3  
1 0 4 . 4 3 9 0  
9 1 . 5 7 3 7 8  
78 . 7 0 8 5 4  
6 5 . 8 4 3 2 9  
5 2 . 9 7 8 0 5  
4 0 . 1 1 2 8 1  
27  . 2 4 7 5 7  
1 4 . 3 8 2 3 3  
1 . 5 1 7 0 8 2

Figure 4.24: Pre-buckling equivalent stress contour plot for Case (b) axial

loading analysis
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Figure 4.25: Predicted rim load-displacement curve for Case (b) axial loading

analysis
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Figure 4.26: Exaggerated equivalent stress contour plot at the point of buckling

for Case (b) axial loading analysis
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Figure 4.27: Deformed shape for Case (b) axial loading analysis 

4.4.5 Experimental testing

Experimental testing on a can with outer diameter 53 mm, inner diameter 52.4 mm, 

wall thickness 0.315 mm (see Figure 4.28) has been carried out in order to validate 

the finite element predictions in Section 4.4.4. Again, the Zwick 20 kN electrically 

driven tensile test machine was used with a compressive load being applied.
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A typical resulting load-displacement curve is shown in Figure 4.29. As the load is 

increased, the can is compressed until a maximum load of 1650 N is reached. Over 

the first 2 mm of the displacement, the load appears to increase linearly with 

displacement then the slope increases sharply until the point of buckling, with 

reducing load, is reached for displacement of approximately 2.9 mm. A second stage 

of buckling appears to start when the load is approximately 700 N. The load may 

increase again when the necked section is completely crumpled as can be seen in 

Figure 4.30. For this size of can, the minimum axial load that must be supported, as 

required by the customer specifications, is 1180 N [2] This suggests that it may be 

possible to make the top of the can thinner, therefore leading to further saving in 

material usage.

A number of compression test were carried out to investigate the axial loading that 

the aluminium cans are able to support.

4.4.6 Analytical solution

For a simple larg cylinder under purly compressive axial loading, the buckling load 

can be calculated from the following formula [55]:

P  =  - ( 4 . 2 )

The second moment of area for a tube section is given by:
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I =  j ( r .  2 - r, 2 ) (4.3)

Also, the maximum longitudinal compressive load may be calculated from:

F = UTS * A WJs ...(4.4)

the predicted maximum compressive load based on Equations 4.2 to 4.4 and actual 

failure loads for the cans is given in Table 4.1 below.

Diameter(mm) Length(mm)

Wall
thickness

(mm)

Actual
failure
load(N)

Predicted
maximum

compressive
load(N)

53 110 0.41 1355 10644.2

53 125 0.315 1617 8177.8

Table 4.1: Comparison of actual failure load to buckling and compressive

models

Table 4.1 shows that the cans are too short for failure to be caused by buckling and 

also, the failure is not caused by compressive stress in the can walls. Inspection of 

the aerosol cans after axial testing show that the compressive failure was 

concentrated on the can shoulder, as shown in finite element analysis.

It has been shown that the simple stress analysis equations cannot be used to model 

the deformation of the can base or axial loading.
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Figure 4.28: Aluminium aerosol can used in experimental testing for Case (b)

axial loading analysis
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Figure 4.29: Experimental rim load-displacement curve for Case (b) axial

loading analysis
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Figure 4.30: Buckled can for Case (b) axial loading analysis
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4.4.7 Comparison and discussion of results

4.4.7.1 Load-displacement characteristics

By comparing Figure 4.25 with Figure 4.29, it can be seen that the shape of the 

experimental load-deflection curve is slightly different to that predicted by the finite 

element analysis in the first 2 mm of the displacement no relation visible, although 

they both shown buckling at a rim deflection of ~3 mm with predicted and actual 

buckling loads of 1617 N and 1650 N respectively.

4.4.7.2 Deformed shape

Both finite element predictions and experimental results show that, as expected, 

progressive failure occurs with the top of the can/cylinder taking all the deflection up 

to a point where the top becomes flat.

4.5 Closure

This chapter has dealt with the elastic-plastic analysis of a thin-walled cylinder (a) 

with inverted dome base and (b) with inverted dome base and tapered top, in both 

cases subjected to axial compressive loading, using a multi-linear material hardening 

model. Predictions have been compared with the results of experimental testing on 

aluminium aerosol cans and, for Case (a), with an analytical solution (which is found 

to be inappropriate for reasons given).

In both cases, there is reasonable agreement between the predicted and experimental 

collapse loads, although the Case (b) load-deflection curves are slight different. The 

next chapter will consider modelling of the extrusion process.
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Chapter five

MODELLING OF THE EXTRUSION PROCESS

5.1 Introduction

In this Chapter, the finite element modelling of the can extrusion process is 

discussed. With reference to Chapter 1, there are two independent stages to the 

extrusion process:

Stage 1 -  formation of the side walls and (flat) base,

Stage 2 -  formation of the inverted dome base.

Furthermore, Stage 2 can be undertaken either before or after can decoration. In

which case, although the punch and die geometries are identical, the boundary

conditions are different and this leads to different profiles.

The application of finite element analysis to the extrusion process is well established 

and details of previous investigations are reported in Chapter 2. The aims of the 

modelling work described here are:

1. to validate the approach by comparing the numerical predictions with analytical 

predictions from Patten’s constant volume model [2] and with experimental data;

2. to study the influence of the coefficient of friction and the boundary conditions on 

the resulting profile;
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3. to obtain predictions for the forces required by the process;

4. to study the effects of punch and die slug (billet) geometry on the resulting profile.

Once a validated model has been produced, this will enable further investigation of 

punch, die, and aluminium billet geometries in order to generate an optimised can 

profile, an initial investigation in to which is presented in Chapter 6. Currently, 

industrial practice is based on a ‘trial and error’ method and relies heavily on 

extensive knowledge and experience to match the desired can profile with that of the 

slug, punch and die geometry.

A 53 mm diameter can made from aluminium 1050. has been selected for analysis. 

Clearly, there is a relationship between the accuracy of the predictions and the size of 

the can since a larger can requires a larger slug of material and greater deformation 

takes place.

5.2 Stage 1 modelling the base and side wall

5.2.1 Geometry and finite element model

The basic punch, die and billet geometry for a 53 mm can are shown in Figure 5.1, 

based on information provided by Envases (UK) Ltd. 'Although it is virtually 

impossible to produce a perfectly axisymmetric profile (due to tool wear, deflection 

of the punch etc.), an axisymmetric model has been adopted because of the benefits 

of reduced model size and consequent reduction in computing time that can be 

achieved.
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Punch 52.14 mm

$  7.02

Billet 52.88mm

£
E
<£>

mr>
CM

29.68mm

Figure 5.1: Die and punch geometry

Finite element predictions have been obtained using the large displacement elastic- 

plastic facilities in the ELFEN [5] suite of programs. The geometry in Figure 5.1 was 

then drawn into AutoCAD and the file was then transported in DXF format to 

ELFEN. The resulting model has 2309 eight-noded axisymmetric isoparametric 

elements.

5.2.2 Loading and boundary conditions

With reference to Figure 5.2, the model is constrained as follows:

1. the surface ABCDE (which represents the die) was fully restrained

2. the surface FGHJ (which represents the punch) was restrained in the X 
direction.
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Figure 5.2: Finite element model boundary conditions

Three contact sets are created for this analysis:

• Die-Slug

• Punch-inner slug

• Punch-outer slug

Contact with friction was used in this analysis. Objects defining the contact between 

the slug, punch and die were defined as:

Ob-die

Ob-punch_inner

Ob-punch_outer

Ob-slug_bottom
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Ob-slug_inner-top

Ob-slug_outer-top

A negative displacement of the punch in the Y direction was used to model the punch 

movement. A displacement in the Y direction of -4.5 mm was therefore applied to 

the punch using a rigid body load assigned to the top surface of the punch as shown 

in Figure 5.3.

-AppDA p p D -A p p BA p p © -

©-------A p p D A p p B ~A p p B

Figure 5.3: Displacement loading and contact objects 

5.2.3 Material models

The elastic-plastic material properties of the slug (billet) are those for aluminium, as 

discussed in Section 3.3.2 and presented in Tables 3.2 and 3.5. As before, yielding is
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determined using the von Mises yield criterion and post-elastic behaviour is based on 

the Prantl-Reuss flow rules (see Section 2.3). The material properties for the punch 

and die are based on steel. Values for the coefficient of friction at the contacting 

surfaces of 0, 0.1 and 0.25 have been assumed. The automatic mesh generation 

facilities were used to create the mesh shown in Figure 5.4.

bu

Figure 5.4: Finite element mesh

After the cans have been formed, there will be a small amount of elastic strain left 

within the aluminium, which will cause a very slight reduction in the can size. Since 

the cans are thin walled cylinders the diameters are small, thus the mechanical elastic 

effects are very small and therefore can be neglected.
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The aluminium is plastically deformed and then there is considerable heat 

generation. This will affect the tooling dimensions, since there are considered in this 

analysis however, it is very small and therefore can also be negligible.

5.2.4 Finite element predictions (p = 0.25)

Figure 5.5 shows the development of the extruded can for punch displacements of - 

4.5 mm with a coefficient of friction of 0.25. When the punch is moved down it 

pushes the aluminium billet down in to the die and the aluminium billet will start to 

deform. The punch is now in contact with the billet and the billet is drawn through 

the die to producing a profile as can be seen in Figure 5.5(a).

Also when the punch moves down by a distance the parallel section of the aerosol 

can is formed. Although the tapered section of the can is formed, as can be shown in 

Figures 5.5(b) and 5.5(c).

At the point when the can walls are about to be made, the aluminium fills the gap 

between the extrusion punch and the die base. Also the tapered section of the can is 

predicted see Figures 5.5(d) and 5.5(e).
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Figure 5.5(a): Stage 1 partially deformed mesh

Figure 5.5(b): Stage 1 partially deformed mesh
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Figure 5.5(c): Stage 1 partially deformed mesh

bu

Figure 5.5(d): Stage 1 partially deformed mesh
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Figure 5.5(e): Stage 1 partially deformed mesh

The profile at the end of the punch travel with load still applied is shown in Figure 

5.6, which also includes the corresponding details when the punch is retracted. It can 

be seen from the figures that the can walls and base are completely formed. The 

maximum equivalent stress at the end of the punch travel is shown in Figure 5.7, 

from which it is clear that gross yielding has occurred throughout the material. The 

force-displacement characteristic for the punch is shown in Figure 5.8. It can be seen 

from this figure that the displacement increases with increasing punch force and this 

increase depends on the value of the coefficient of friction, p. As the coefficient of 

friction increases, the force required for any given punch travel increases.
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The force-displacement curve was obtained by re-running the analysis using an 

applied force to the punch, as shown in Figure 5.9. An incrementally increasing force 

was applied and the punch displacement noted after each increment. Hence it was 

possible to determine the force at various stages of the extrusion process, knowing 

the punch displacement. The results of the analysis, shown in Figure 5.8, indicate 

that a maximum force of -45.7 kN is required to produce this profile. Up to a 

displacement of 1 mm the curve has a sharp rise with increasing force and 

displacement. Until reaches the highest point.

Figure 5.6(a): Stage 1 at the end of the punch travel
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Figure 5.6(b): When the punch retracted

1 5 6 . 0 5 3 0
1 4 3 . 0 4 8 6
1 3 0 . 0 4 4 2
1 1 7 . 0 3 9 8
1 0 4 . 0 3 5 3
9 1 . 0 3 0 9 3
78  . 0 2 6 5 1

1

65 . 0 2 2 0 9
5 2 . 0 1 7 6 7
39  . 0 1 3 2 6
2 6 . 0 0 8 8 4
1 3 . 0 0 4 4 2
0 . O O e + O Q O

Figure 5.7: Von Mises max equivalent stress contour plate at the end of punch
travel
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Figure 5.8: Comparison of punch load Vs punch travel displacement for

various coefficient of friction
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Figure 5.9: Stage 1 model with force loading
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The thickness profile, starting at the centreline of the base and moving along the 

base, around the comer and up the cylinder, is shown in Figure 5.10. This figure 

includes finite element predictions for p = 0, 0.1 and 0.25 (discussed in Section 

5.2.5). Figure 5.10 also included the results from [2], which is discussed in Section 

2 . 10.2 .

e
S

Result from [2]
Kw
e

P  = 0 .2 5
0.62v

' 9
H 0.4

0.2

Position from ran base (nun)

Figure 5.10: Comparison of the effect of coefficient of friction on the Stage 1 

extruded thickness profile with that predicted by the result from [2]

5.2.5 Effect of coefficient of friction

The effect of friction in the direct extmsion process is important in the commercial 

process because it determines the billet size and hydraulic pressure requirements, 

either by pressure limitation or by surface at the end of the ram stroke.
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The basic extrusion process was simulated with three different values for the friction 

coefficient on the contacting surface and the comparisons of punch force and 

resulting thickness profiles are shown in Figures 5.8 and 5.10 respectively. From 

Figure 5.8 it can be seen that the variation in punch load with p during the process 

can be significant (up to 5 KN) although the maximum force variation is less 

significant (45 KN). Figure 5.10 indicates that thicker sections in the base are 

produced when p is low but that the thickness at the start o f the cylindrical section is 

less affected by the friction. Also the effect increases with the increasing area of 

contact between the specimen and the tools, and with the reduction thickness of the 

processed material [43].

5.2.6 Comparisons with analytical solution

The results of this validation are shown in Figure 5.10. It can be seen from the figure 

that the extrusion model is reasonably accurate with the lower friction giving the best 

correlation with the constant volume results of [2].

5.3 Stage 2 modelling

The bottom forming process produces the dome in the can base. This is produced by 

supporting the can on a mandrel and forming the can base with a punch.

5.3.1 Geometry and finite element models

The basic punch and die geometry for the base of a 53 mm can are shown in Figure 

5.11, based on information provided by Envases (UK) Ltd. Again, an axisymmetric
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model has been adopted because of the benefits of reduced model size and 

consequent reduction in computing time that can be achieved.

Finite element predictions have been obtained using the large displacement elastic- 

plastic facilities in the ELFEN [5] suite of programs. The geometry in Figure 5.11 

was replicated in AutoCAD [56] and the file was then transported in DXF format to 

ELFEN.

5.3.2 Loading and boundary conditions

Two sets of boundary conditions have been considered. The formation of the base 

can take place either before or after the can is decorated and the support provided to 

the can during base formation is different for the two cases. Experimental 

observations indicate that a different base profile is generated for these two cases and 

an additional objective of this work is to confirm (or otherwise) this variation.

5.3.2.1 Stage 2(a) -  base formation before decoration

With reference to Figure 5.12, the model is constrained as follows:

The die is fully restrained in the X and Y directions, the punch is restrained in the X 

direction, and the can was constrained in the X-direction along the centre line.

5.3.2.2 Stage 2(b) -  base formation after decoration

With reference to Figure 5.13, the model is constrained as follows:
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The vessel is restrained in the X and Y directions in the inside of the cylindrical 

section. The punch is restrained in the X direction and the die restrained around the 

edge.

Figure 5.11: Impact extrusion dome base
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Figure 5.12: Stage 2(a) finite element model boundary conditions
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Figure 5.13: Stage 2(b) finite element model boundary conditions 

5.3.2.3 Stage 2 loading

A positive displacement of the punch of 8 mm ± 0.5 mm. in the Y direction was used 

to model the punch travel [57]. Three values of punch displacement in the Y 

direction of 7.5mm, 8 mm and 8.5 mm were therefore applied to the punch using a 

rigid body load assigned to the top surface of the punch, as shown in Figure 5.14

Objects need to be defined to account for contact between the tooling and the can. 

These were defined as:

■ Outer surface of can
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■ Inner surface of can

■ Top surface of mandrel

■ Top surface of punch

Two contact surfaces were defined using updated penalty:

• Punch can

• Can mandrel

AppR ppR p pR ppS -

bu

App&

Figure 5.14: Finite element loading
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5.3.3 Material models

The material models used are the same as those discussed in Section 5.2.3.

The automatic mesh generation facilities were used to create the mesh shown in 

Figure 5.15. The resulting model has 1325 four-noded axisymmetric isoparametric 

elements.

i i t t  n i l  \Z )-rT V W 7 7 v >r \ ^  \ i~ x \ \  \ i m r r r r  i

Figure 5.15: Finite element mesh
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5.3.4 Finite element predictions (p = 0.25)

5.3.4.1 Stage 2(a):' pre-decoration boundary conditions

Figure 5.16 shows the bottom forming simulation for a 53 mm aerosol can base at 

various stages during the loading process, with p = 0.25. The development of the 

inverted base shape is clearly visible. It can be seen from figures 5.16(d) (i) and 5.16 

(d) (ii) that the highest coefficient of friction the lower punch travel.

The deformed shape after unloading is shown in Figure 5.16(e). It can be seen from 

this figure that spring back (see Section 2.10.5) does occur, although the level is 

relative low. And it is clear in point 28 in both figures and nodes 20 that the Y 

coordinated for this point in figure 5.16 (e) (~ 5.3mm) is bigger than Y coordinate of 

the same point in figure 5.16(d)(i) (~4 mm).

The predicted thickness-displacement characteristic is shown in Figure 5.17, along 

with the experimental measurements taken from [2]. Figure 5.17 is discussed in 

Section 5.3.6.
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Figure 5.16(a): Stage 2 deformed mesh
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Figure 5.16(b): Stage 2 deformed mesh
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Figure 5.16(c): Stage 2 deformed mesh
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(i) ju = 0.25

(ii) p = 0

Figure 5.16(d): Stage 2 fully deformed mesh (max. punch travel 8.5 mm)
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Figure 5.16(e) Stage 2(a) with the punch removed

The deformed mesh for the other two values of maximum punch travel of 8.0 mm 

and 7.5 mm are shown in Figures 5.16(f) and 5.16(g) respectively. It can be shown 

from the figures that there are slight differences between the figures.

5.3.4.2 Stage 2(b): post-decoration boundary conditions

The fully deformed shape for Stage 2(b) is shown in Figure 5.18. By comparing this 

figure with Figure 5.16(d), it is clear that the final deformed shape is affected by the 

boundary conditions.
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Figure 5.16(f): Stage 2(a) punch travel = 8 mm

Figure 5.16(g): Stage 2(a) punch travel =7.5 mm
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Figure 5.17: Thickness-displacement characteristic after Stage 2(a)

Figure 5.18: Stage 2(b) fully deformed mesh (max. punch travel = 8.5 mm)
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5.3.5 Effect of friction coefficient

Figure 5.16(d) shows the punch travel changes by variation in friction coefficient 

however, the punch travel is slightly different with the coefficient of friction. It can 

be seen that the lower friction coefficient the higher punch travel.

According to Figures 5.16(f), 5.16(g) that the cans have diverse bottom forming at 

various punch travel. On the other hand the different coefficient of friction produces 

the different punch travel.

5.3.6 Comparisons with experimental data

According to the Figure 5.17 that the results from finite element analysis were then 

validated by comparison with the results of experimental measurements taken from 

[2] both in terms of the thickness values and the profile, the best correlation is 

achieved when p is set to 0.25 in the simulation. The results provide good qualitative 

agreement. This shows that the finite element analysis predicts that the bottom 

forming of aerosol cans is accurate to within a maximum error of 0.015 on thickness.

Figures 5.16(d) and 5.18 shows that the different boundary condition predict 

different can geometries.
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5.4 Closure

In this chapter, finite element analysis has been used to model the two-stage back 

extrusion process for one-piece aerosol cans. The effect of coefficient of friction on 

the thickness profile and the extrusion punch forces has been investigated.

This work shows that reasonable predictions can be achieved, when compared with 

experimental data and an analytical solution. The next chapter presents preliminary 

findings from an optimisation exercise. Having identified an ‘optimal’ profile, the 

work in this chapter can be expanded in order to investigate the punch, die and slug 

geometry requirements to produce this ‘optimum’ design.



Chapter six

OPTIMISATION 

6.1 Introduction

It has been shown in Chapter 3 that these thin-walled cylindrical pressure vessels 

with inverted bases are ‘over designed’ in some respects. In particular, it is 

considered that the base thickness profile could be reduced, while still maintaining 

the integrity of the vessel. However, care must be taken since the vessels are 

designed to accommodate any over-pressure by the mechanism of ‘dome reversal’ 

(or elastic-plastic buckling) of the base and this inherent safety feature must be 

retained in any revised design.

In this chapter, a preliminary investigation into the optimisation of the vessel base 

when under internal pressure, in order to reduce the thickness profile, is described. 

Initially, a simplistic approach of reducing the base thickness is used to examine the 

effect on stress distribution and elastic-plastic buckling pressure. Secondly, the DOT 

optimisation program [58] has been used in conjunction with elastic finite element 

analysis to provide a more structured approach to optimisation.

6.2 Simplistic approach

6.2.1 Geometry and finite element models

The basic geometry used in Chapter 3 has been modified by removing a horizontal 

slice of material from the inside of the inner section of the can base. The original and 

‘sliced’ axisymmetric finite element meshes are shown in Figures 6.1 and 6.2
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respectively. The thickness at the centreline has been reduced from 1.25 mm to 0.75 

mm in increments of 0.1 mm.

The three-dimensional model used to determine the elastic-plastic buckling pressure 

of the ‘sliced’ model is discussed in Section 6.2.5.

6.2.2 Loading and boundary conditions

The loading and boundary conditions are identical to those used for the analysis of 

pressure loading in Chapter 3 and described in Section 3.2 (axisymmetric model) and 

Section 3.4 (3-D model).

6.2.3 Material models

Elastic and elastic-plastic analyses have been carried out with values for Young’s 

modulus, yield stress and Poisson’s ratio of 68.3 GPa, 100 MPa and 0.33 

respectively. The multi-linear material hardening curve described in Table 3.5 has 

been used to model the post-yield stress-plastic strain behaviour.

Figure 6.1: Simplistic approach, finite element mesh before reduction 

(centreline thickness = 1.25 mm)
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Figure 6.2: Simplistic approach, finite element mesh after reduction (centreline 

thickness = 0.75 mm)

6.2.4 Results for axisymmetric model

The equivalent stress contour plot for the ‘sliced’ model with an internal pressure of 

1.20 MPa is shown in Figure 6.3 it can be seen from the figure that the equivalent 

stress varies between 122.66 MPa and 8.35 MPa this result comparison with the 

corresponding Figure 3.37 in chapter three which has equivalent stress varies 

between 119.53 MPa and 7.76 MPa and the maximum equivalent stresses in each 

case are in the comer region. Although Figure 6.4 compared with Figure 3.38 it can 

be seen from the figures that the collapse load is changes from 1.35 MPa to 1.53 

MPa when the thickness of the sliced model decreased by 0.75 mm.
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 r- 122.6648
112.1386
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----------  94.08633
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27.40322
17.87707
8.350908

Figure 6.3: Simplistic approach, equivalent stress contour plot for p =1.20 MPa

(centreline thickness = 0.75 mm)

The loading was then increased and collapse is predicted when the pressure reaches 

1.35 MPa (compared to 1.53 MPa for the original geometry). The corresponding 

equivalent stress contour plot is shown in Figure 6.4.
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42.46384

Figure 6.4: Simplistic approach, equivalent stress contour plot for p = 1.35 MPa

(centreline thickness = 0.75 mm)

6.2.5 Elastic-plastic buckling results using a 3-D model

Using the approach described in Section 3.4, a three-dimensional model of the 

‘sliced’ geometry has been created and the basic 3D model, constraints, loading and 

finite element mesh are shown in Figures 6.5, 6.6, 6.7 and 6.8 respectively.
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Figure 6.5: Simplistic approach, 3D model (centreline thickness = 0.75 mm)

Figure 6.6: Simplistic approach, 3D constraints (centreline thickness = 0.75 mm)
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Figure 6.7: Simplistic approach, 3D loading (centreline thickness = 0.75 mm)

Figure 6.8: Simplistic approach, 3D mesh (centreline thickness = 0.75 mm)
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The internal pressure load was increased incrementally until elastic-plastic buckling 

took place at a pressure o f 1.80 MPa (compared to 2.02 MPa for the original model) 

and the corresponding equivalent stress contour plots for the original model and the 

‘sliced’ model are shown in Figures 6.9 and 6.10 respectively.

In both cases and due to time restrictions, the buckling mode is symmetrical because 

a symmetrical model (without small-scale perturbations -  see Section 3.4) was used. 

This is an area for further investigation. Figures 6.9 and 6.10 show that the finite 

element analysis predicts that the aerosol can base will be fully deformed at 2.02 

MPa for the actual thickness and 1.80 MPa for the modified geometry and the 

maximum stresses are now concentrated in the lower section of the can walls in both 

cases.
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Figure 6.9: Simplistic approach, equivalent stress contour plot at the point of 

elastic-plastic buckling with p = 2.02 MPa (centreline thickness = 1.25 mm
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Figure 6.10: Simplistic approach, equivalent stress contour plot at the point of 

elastic-plastic buckling with p = 1.80 MPa (centreline thickness = 0.75 mm)

6.3 Optimisation procedure

6.3.1 Objective function and constraints

The choice of a suitable design variable (s) is very important as it can affect the 

degree of non-linear of the objective function or the constraints. It can also result in 

other implicit constraints, which are not necessarily obvious at first sight. It is 

recommended to have a direct connection between the values of the design variables 

and actual geometry [50]. In this work, the volume is indirectly used as the objective 

function.

An optimisation problem is stated as:

Minimize or maximize the objective function (F(x)), subject to:
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g , ( X ) < 0  }

} j = 1, NCON

h,(x) = c,. }

Inequality constraints

and

X.  < X,  < X f  }

} i = 1, NDV Side constraints

x ^ x < x „ }

If the objective functions to be minimised is the cross-sectional area:

F ( X ) = 2 4  . . . (6.1)
1 = 1

where A,, is the CSA of the i th FE.

and n is the number of elements.

Subjected to the constraints that the stresses in each element must be less than the 

yield stress:

Gj (x) < a y (j = 1 to n) .. .(6.2)

and hence:

O ’/ C * )  O ’/ C * )- J-  ■ < i -► 1 / - j <
G Gy y

...(6.3)
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where <jy is the yield stress

The selected design variables are the thickness values at the centre of each element 

around the profile and the objective function to be minimised becomes:

F(X) = ti + 12 + 13..................+ tn ... (6.4)

6.3.2 DOT optimisation program

DOT is a computer program for optimisation. Specifically, it is used to automatically 

adjust to maximize or minimize a calculated quantity, while satisfying a number of 

constraints [58].

A computer-based procedure was written using the FORTRAN programming 

language that reads the output file from an ELFEN analysis and extracts the 

equivalent stresses at each node in each super-element and determines the maximum 

values in each of these elements. The DOT program is called and these n values of 

equivalent stress together with the n thickness values are then used by DOT to 

generate a new set of thicknesses, based on the constraints in equation (6.3). This 

information is then used to manually generate a new set of nodal co-ordinates for the 

n+1 nodes on the inner surface of the profile (i.e. the outer profile is fixed and the 

cross-section is modified by moving the outside nodes). The new model then 

provides the input for the next iteration.

Details of the FORTRAN coding can be found in Appendix C.
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6.3.3 Geometry and finite element model

The basic geometry, using 6 super-elements, is that shown in Figure 6.11. A mesh of 

187 four-noded axisymmetric elements was created from this model, using the 

automatic mesh generator within ELFEN.

Figure 6.11 Optimisation analysis, basic model with six super-elements and six

design variables

6.3.4 Loading and boundary conditions

The loading and boundary conditions are identical to those used for the analysis of 

pressure loading in Chapter 3 and described in Section 3.2. An arbitrary pressure of 

0.50 MPa has been used in the pre-buckling analyses.

1
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6.3.5 Material model

Elastic and elastic-plastic material data are as discussed in Section 6.2.3.

6.3.6 Results

An initial (zero iteration) analysis using the original model in Figure 6.11 was 

performed and the procedure described in Section 6.3.2 was used to generate a 

revised model (with new thickness values from DOT) in this analysis the thickness of 

the base only considered due to the high stress in this region and the wall thickness is 

constant. ELFEN then re-generated the mesh and the process repeated.

After five iterations, DOT indicated that convergence had been achieved and the 

resulting ‘optimised’ shape is shown in Figure 6.12. The original and ‘optimised’ 

thickness values are given in Table 6.1 also the optimisation convergence is shown in 

Figure 6.13.

Original Iteration (1) Iteration2 Iteration3 Iteration4 Iteration5
1.25 1.15 1.05 0.95 0.82 0.81
1.1 1 0.9 0.8 0.71 0.70

1.07 0.95 0.85 0.75 0.63 0.59
1.13 1.03 0.93 0.83 0.70 0.68
1.05 0.94 0.84 0.75 0.61 0.59

I 5.6 5.07 4.58 4.08 3.47 3.37

Table 6.1: Thickness at each iteration
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Iteration

Figure 6.13: The convergence of the solution
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The ‘optimised’ shape was then analysed using the incremental elastic-plastic 

facilities within ELFEN to establish the pressure at which collapse occurs. (Note that 

axisymmetric models cannot distinguish between elastic-plastic buckling and 

collapse, as discussed in Section 3.4).

The equivalent stress contour plot, corresponding to a collapse pressure of 0.62 MPa, 

is shown in Figure 6.15 also the pre-buckling equivalent stress contour plot of 

pressure 0.50 MPa is shown in Figure 6.14. The equivalent collapse pressure for the 

original profile is 1.53 MPa (see Section 3.3.5). It can be seen from the figures that 

the thickness is reduced then the amount of materials will reduce hence, the collapse 

pressure also decrease.

126.9136
117.7516
108.5896
99.42763
90.26563

-  81.10364
-  71.94164
-  62.77965
-  53 .61766
-  44.45567
-  35.29367
-  26 .13168
-  16.96968

Figure 6.14: Equivalent stress contour plot (pre-buckling, pressure =0.50 MPa)
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20.65204

Figure 6.15: Optimisation analysis, equivalent stress contour plot at the point of elastic-

plastic buckling with p = 0.62 MPa

6.4 Closure

The results from a preliminary investigation into shape optimisation applied to these 

thin-walled cylinders have been presented. This work was carried out at a late stage 

in the project and, therefore, only provides a starting point for further, more detailed 

analysis. It is clear that significant reductions in the cross-section of the vessel base 

are possible, within the limits of acceptable burst pressure (which occurs in the plain 

cylinder region). At the same time, however, the elastic-plastic buckling pressure is 

significantly affected and this may adversely affect the lower operational pressure 

limits. The choice o f model, objective function and constraints is an area for further 

investigation and this is discussed in more detail in the final chapters.
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Chapter seven 

DISCUSSION

7.1 Introduction

The project has looked in-depth at the design and manufacture of aluminium aerosol 

cans, as a specific form of thin-walled pressure vessel which, due to its complex 

shape, cannot simply be designed around the traditional British (BS5500) and 

American (ASME VIII) codes for pressure vessel integrity. Also, the structural 

integrity of this vessel shape, which consists of an inverted dome end, parallel 

cylindrical section and truncated cone top, due to external loading is beyond the 

scope of these codes.

Furthermore, it has been established, from collaboration between the University and 

a local manufacturer of such vessels (through Knowledge Transfer Partnerships), that 

competition is fierce and material costs contribute at least 50% of the cost of 

manufacture. Therefore, it is essential that both the design and the manufacturing 

processes can be simulated in order to optimise on material usage, whilst still 

maintaining the integrity of the vessels. This requires:

• a thorough understanding of the yield, elastic-plastic buckling and ultimate 

failure of the vessels under internal pressure;

• accurate modelling of the buckling behaviour under compressive axial load;
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• accurate modelling of the back-extrusion process itself, thus providing the 

opportunity to investigate the effects of tooling geometry changes on the 

resulting vessel profile;

• optimisation studies which integrate with the above in order to reduce costs 

with no loss of integrity and still maintaining the inherent safety feature 

provided by the inverted base at an acceptable pressure below that at which 

burst occurs.

These four requirements have formed the basis of the work described in this thesis.

The literature review has concluded that little specific research has been carried out 

on the structural integrity of these complex vessels (in fact, ‘design by test’ appears 

to be the preferred approach) and there is little evidence of finite element analysis 

being applied to the modelling of the back-extrusion process. Where work has been 

carried out, it avoids the issue of friction and its influence on thickness profile and 

extrusion force requirements.

The research work reported in this thesis investigates the linear and non-linear, large 

displacement behaviour of aluminium thin-walled pressure vessels, in the form of 

aerosol cans, subject to internal pressure and axial loading using the elastic and 

elastic-plastic facilities of the ELFEN finite element program. Extensive elastic and 

elastic-plastic analyses have been preformed using both constant thickness and 

realistic thickness profile models to obtain a better understanding of the mechanisms 

of buckling and failure. Similarly, the yielding and flow of material under pressure 

during the extrusion process has been modelled using ELFEN explicit.
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7.2 Internal pressure loading (Chapter 3)

7.2.1 Elastic analyses

Initially, constant thickness (0.4 mm < t <1.4 mm) axisymmetric finite element 

models have been used to study the stress patterns that develop and hence establish 

the conditions for yielding and the variation with thickness profile. A typical 

geometry (i.e. Geometry 4) with t = 1mm is selected for a full review and the 

summary results of other geometries are presented. The predictions show that initial 

yielding will, as expected, occur on the inside surface at the relatively sharp comer 

close to the plain tube region, which acts as a significant stress concentration feature 

with Kt values between 4.07 and 13.83 (depending on thickness) being predicted. A 

non-linear relationship between maximum stress and thickness is also predicted, 

although when plotted against D/t, the predictions become more linear. However, the 

relationship between limiting (yield) pressure and thickness, for both the base and 

plain tube, appear to be reasonably linear. This clearly helps in any investigations 

into material optimisation.

A similar response is seen for the realistic thickness profile. This is based on 

experimental observations made by Patten [2], who found that although the 

cylindrical section is reasonably parallel (-0.31 mm), the variation in thickness along 

the base is significant (0.7 and 1.31 mm). This results in a reduced elastic stress 

concentration factor of 3.45 and a greater ‘spread’ of the stress contours, which is 

similar to that predicted for the 0.8 mm constant thickness model. The predictions 

also confirm that the base stresses are very low, compared with the comers and 

cylinder and this is considered to provide the impetus for material optimisation.
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7.2.2 Elastic plastic analyses

Elastic-plastic finite element predictions from the constant thickness axisymmetric 

models, using both elastic-perfectly-plastic (EPP) and multi-linear kinematic work- 

hardening (EKH) models for aluminium, have enabled the investigation of the 

development of the plastic zones as the pressure is increased above that required for 

initial yielding. A plastic hinge, where the complete cross-section has yielded, is seen 

to develop and (for the EPP model) no further increases in pressure can be applied. 

For the EKH model, further increases in pressure are possible until the UTS are 

reached. A similar response is seen for the realistic thickness model however, it is 

clear that these axisymmetric models cannot be used to simulate the elastic-plastic 

buckling (form of elastic-plastic ‘snap-through’, also referred to as ‘dome reversal’) 

characteristic exhibited by actual vessels under pressure.

In reality, the thickness profile is not entirely axisymmetric due to tolerances in the 

extmsion process and although variations in thickness are very small, they are 

sufficient to cause a slightly unsymmetrical buckling mode, due to minor radial 

variations in profile and there is a clear distinction between the elastic-plastic 

buckling of the base and burst (collapse) pressures, where bursting occurs in the 

plain tube region.

Consequently, a full three-dimension model was created and a small imperfection 

was introduced in the base, using results from an eigenvalue analysis (lowest mode) 

and based on the method described by Robotham et al [24]. There is good agreement 

between the predicted buckling mode (Figure 3.44) and that obtained experimentally 

(Figure 3.52) and there is reasonable agreement between the predicted buckling
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pressure (1.7 MPa) and the experimental value (1.6 MPa). Possible reasons for the 

discrepancy include:

• Variations in the level of material strain hardening that have occurred during 

the extrusion process (the material data used is from tests on specimens taken 

from the cylindrical section, which has been subjected to greater strain 

hardening than the base)

• The softening effects of temperature increase on material properties. A 

significant increase in temperature is apparent both during extrusion and 

internal coating which will cause the aluminium to soften. This effect has not 

been investigated.

• The approximate nature of the finite element method, particularly for non

linear analysis.

7.2.3 Upper and lower bound pressures

The elastic compensation method proposed by Mackenzie and Boyle has been used 

to estimate the upper and lower bound limit loads, using only elastic finite element 

analysis, for both constant thickness axisymmetric and realistic thickness profile 

models. The use of this method in a limited number of relatively straightforward 

components and loading arrangements has been reported in the open literature and it 

is considered that the application described in this thesis provides further, more 

detailed, information on the nature and limitations of the method which will be of 

interest and benefit to Engineers and Designers.
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The results for the constant thickness models show that the predicted collapse 

pressures are within the upper and lower bound estimates, closer to the upper bound, 

and this provides a degree of confidence in these approximate methods. However, 

the range between the upper and lower bounds is large and, unfortunately, the lower 

bound is always greater than the yield stress. This limits the use of these approximate 

methods for this type of geometry and loading to collapse pressure estimates. The 

upper and lower bound range for the realistic thickness model includes the predicted 

buckling and collapse pressures but, again, the yield pressure is outside the range. 

Care should therefore be taken when using this approximate method.

7.3 Axial loading (Chapter 4)

In practice, these components are subjected to axial loading during neck formation 

and valve insertion/charging. Under these conditions, the can must not collapse and 

this requirement provides the need for a study of thin-walled, complex shape 

pressure vessels subjected to axial loading. Again, the results will have direct 

implications to any subsequent material optimisation study. Also, the effect of strain 

hardening and temperature on material properties and finite element predictions, 

discussed in Section 7.2.2, is also relevant here.

7.3.1 Axial loading during neck forming

For this analysis, a model of the plain open cylinder with inverted base (to simulate 

the first stage of necking) was used with a multi-linear kinematic work-hardening 

model for aluminium. Small perturbations were introduced into the model to enable 

buckling, rather than compressive collapse.
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Experimental validation tests were also performed and the predictions compare 

favourably with the experimental results in a number of ways:

• Elastic-plastic buckling occurs at the base, which demonstrates the 

significance of the sharp comer on the stress distributions. The analytical 

solution for the equivalent plain cylinder in compression is clearly 

inappropriate.

• The predicted and experimental load-displacement characteristics are very 

similar with linear pre-buckling behaviour.

• There is excellent correlation between the predicted and experimental 

buckling loads.

One experimental test was extended in order to show the post-buckling behaviour 

with an apparent increase in stiffness prior to a secondary buckling process.

7.3.2 Axial loading during valve insertion/charging

In this case, the top and cylindrical sections of the thin-walled cylinder were 

modelled. Again, a multi-linear material hardening model was assumed. Small 

perturbations to the geometry were not necessary since the experimental results show 

the deformation to occur in the truncated cone-shaped top in preference to the plain 

cylinder or base.
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The finite element predictions indicate a reasonably linear load-displacement curve 

up to a deflection of ~3 mm, during which time the convex top is being flattened and 

the stiffness should increase slightly, although noted. After this, there is a reduction 

in load as the top becomes flatter towards becoming concave. A very different 

experimental response is observed with low loads up to a deformation of -2  mm and 

a rapid increase up to -3.5 mm. However, the angle of the cone on the finite element 

model is shallower than that for the components used in the experimental tests and a 

different response is, therefore, not surprising. A peak load is again shown and it 

appears that secondary stiffening may be taking place as the displacement

approaches -5  mm.

It is surprising therefore that the predicted and experimental ‘collapse’ loads are 

reasonably similar. This cannot be explained and further investigation is necessary.

7.4 Modelling of the extrusion process (Chapter 5)

The modelling of manufacturing processes is a more recent application of non-linear 

finite element analysis and, in particular, research into the modelling of the back- 

extrusion process is limited. In this chapter, particular attention has been paid to the 

effects of friction and boundary conditions on the forces required to extrude the 

material and the resulting thickness profile, for which no previous results could be 

found.

There are three independent stages to the deformation process:

• Stage 1 - formation of the side wall and flat base

• Stage 2 - formation of the inverted dome base

• Stage 3 - formation of the truncated cone top
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and the first two stages have been simulated in this project. Also, Stage 2 can take 

place either before or after decoration, in which case the boundary conditions and the 

subsequent thickness profile are different.

7.4.1 Stage 1 simulation

The effect of friction coefficient on the finite element predictions for the thickness 

profile has been investigated for 0 < p  <0.25, based on discussions with colleagues 

and industrialists. The maximum difference in predicted thickness (~ 0.2 mm) is in 

the base region close to the sharp comer and round into the first part of the plain 

cylindrical section. The results suggest that thicker sections in the base and cylinder 

are produced when p is low this is described in Section 2.10.4.

Predictions are compared with the predicted profile from a simple model of the 

punch and die geometry when the punch is fully inserted. It would appear that finite 

element predictions with p = 0 provides the best comparison. This seems reasonable 

as, in practice, a graphite powder is applied to the billet prior to extmsion.

The force-displacement curve for the punch clearly predicts two slopes and it is 

considered that the change in slope corresponds to the point at which the material 

starts to flow around the punch comer and up the die. The effect of friction on punch 

load is significant during the process (~ 5 KN) but the maximum force varies by less 

than 5% with the range of p considered. In practice, the predicted machine power 

requirements will vary little with friction.
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Unfortunately, the predicted length of the plain cylindrical section is significantly 

less than that for the actual cans. This is an area requiring further investigation.

7.4.2 Stage 2 simulation

The effect of friction coefficient on the finite element predictions for the bottom 

forming process produces the dome in the can base has been investigated for 0 <p <

0.25. The results suggest that the lower coefficient of friction the higher punch travel.

The finite element result at different boundary conditions shows that the different 

boundary conditions produce different cans.

The predictions suggest that the effects of springback, due to elastic recovery when 

the punch is removed, are minimal. This information is useful in the design of dies 

and punches however, if an optimised can had a thinner base then higher levels of 

springback would be expected.

7.5 Optimisation studies (Chapter 6)

The need for an ‘optimised’ thickness profile has been identified in Section 7.1. The 

results of the research presented in this thesis provide important background 

information on how thickness affects both the integrity and structural response of 

these complex thin-walled cylinders under typical loading conditions and it is clear 

that preferential thinning of the section is possible.

In this chapter, a preliminary look at optimisation has been carried out and it the 

results are far from conclusive. However, they do provide a valuable insight for 

future investigation.

225



7.5.1 Simplistic approach

Assuming that the base is the main section where material could be removed without 

affecting the integrity, the simplest form of optimisation is to remove a ‘slice’ of the 

material from the inner section of the base. In this way, the thickness at the base 

centreline was reduced from 1.25 mm to 0.75 mm in increments of 0.1 mm.

Using an axisymmetric finite element model, the reduction in ‘collapse’ pressure is 

relatively small (from 1.53 MPa to 1.35 MPa for a centreline thickness reduction 

from 1.25 mm to 0.75 mm). Similarly, using a three-dimensional model (but without 

any geometrical perturbation), the predicted elastic-plastic buckling pressure falls 

from 2.02 MPa to 1.80 MPa for the same thickness reduction. These results are 

encouraging and suggest that material savings may be possible without loss of 

structural integrity.

7.5.2 Structured approach using DOT

Section 6.3 has described a more structured approach to optimisation, using the DOT 

optimisation procedure. In this exploratory work, the sum of the thicknesses at 

particular sections in the model has been the objective function to be minimised with 

constraints on maximum equivalent stress.

The procedure requires interaction with the finite element program by way of a 

separate FORTRAN program (see Appendix), which acts as the interface between 

DOT and ELFEN.
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The optimised shape from this preliminary study shows some irregularities. This is 

probably due to the original stress distribution, since the regions where the thickness 

has been reduced significantly compare with the regions of high stress in the original 

model and a more ‘smoothed’ approach is needed. Also, the ideal situation of a 

constant stress cannot be achieved in this type of problem because the pressure 

loading produces a bending moment on the shell and so a stress variation between 

inside and outside surfaces will always exist in the base and comer. Further work on 

the choice of objective function and constraints is necessary.

7.6 Closure

The final chapter, Chapter 8, provides a summary of conclusions from the research 

and some recommendations for further studies.
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Chapter eight

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusions

The following conclusions are drawn from the research:

1. The finite element method provides a significant advantage over traditional 

experimental testing methods for proving and improving designs, as the method has 

the advantages.of repeatability, rapid re-analysis of geometry and loading changes
j

and reduced costs.

2. The aim of the research project was to develop a predictive tool that facilitates the 

can design and optimisation process and, in this respect, the objectives have been 

achieved. The models are capable of reasonably accurate quantitative assessment of

j  the effect of varying geometry and material properties and are invaluable aids in

| aerosol can design.
i

I 3. Constant thickness (axisymmetric) models can be used in a limited way to study
I

qualitatively the effects of changes in thickness on material and structural response 

but the actual thickness profile is far from constant and quantitative information can 

only be obtained when more realistic models are used.

4. Axisymmetric models generally provide some useful information on the behaviour 

of such structures under pressure and/or compressive axial load. However, they lack
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the ability to predict elastic-plastic buckling of the base due to internal pressure and 

of the side-walls due to axial loading.

5. Full three-dimensional models, with realistic thickness profiles, can be used 

successfully to predict the buckling and collapse conditions for both pressure and 

axial loading. However, the models need to be modified (by means of geometric 

imperfections) to enable the buckling mode to be simulated.

6. The elastic compensation method provides a straight-forward and useful approach, 

without the need for complex elastic-plastic analysis, which requires knowledge and 

modelling of the post-yield non-linear material behaviour. However, the method has 

limited application to this type of geometry. Although estimated elastic-plastic 

buckling and collapse pressures are below the upper bound estimates, the lower 

bound estimates are higher than the pressure at which first yield occurs.

7. Finite element analysis can be used successfully to model the back-extrusion 

process and good comparisons between predicted and experimental data have been 

demonstrated. The effects of the choice of coefficient of friction and boundary 

conditions on the extruded profile have been investigated and it appears that the best 

correlation between experiment and prediction is achieved with a low coefficient of 

friction being used.

8. In all cases, an accurate model for the non-linear material behaviour is necessary. 

It has been noted that strain rate variations and elevated temperature may affect the
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stress-strain characteristics and lead to variations in material properties across the 

section.

9. Material optimisation is an important consideration for the manufacturer. 

However, design constraints limit what can be achieved. The preliminary 

optimisation study has highlighted both the opportunity for reduced material and the 

complexities of using a structured approach.

8.2 Recommendations for further work

A number of recommendations for further investigation are drawn from the research:

1. Further studies of the extrusion process are needed in order to identify why the 

length of the plain cylinder is under-predicted.

2. Stage 2 of the extrusion process should be investigated further (and modelled more 

accurately) to understand the differences between the experimental results and finite 

element predictions of load-displacement for the punch.

3. A detailed investigation into shape optimisation is required where further thought 

and detailed analysis is given to the choice of objective function and constraints. 

Also the choice of element type and number of elements should be reviewed.

4. The spatial variation in material properties, due to strain rate and temperature 

effects, may be significant and require further investigation.
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5. Finally, there are areas outside the scope of this study, which should be addressed. 

For example, such components are subjected to radial loading during packaging into 

bundles. Radial buckling is a possible failure mechanism that needs to be considered, 

particularly if material optimisation is considered.
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Appendix A

DRAWING OF EXTRUSION TOOLING

PLATE-a INGOTi-v \ r
BLOCK INGOT d ie 1 \  DIE fBACKER

i
EXTRUSION
FLOW

RAM

CONTAINER

DIRECT EXTRUSION

HOLLOW
RAM

EXTRUSION
FLOW

CONTAINER 

INDIRECT EXTRUSION

Figure 1: Tooling and metal flow for direct and indirect extrusion process [41]
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Figure 3: Aerosol can dimension
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Appendix B

PROPERTIES OF ALUMINIUM FOR IMPACT EXTRUSION

In order to calculate the strength of the extruded cans and the required thickness of 

the can walls, the following mechanical properties are required:

» Ultimate Tensile Strength (UTS)

• Yield Strength

Knowledge of the UTS will be used to predict the burst pressure of the cans and the 

yield strength used to predict the deformation pressure. Both these properties will 

then determine the required can wall thickness and therefore the cost of each can.

For commercial aluminium, the yield strength is not always a clearly defined point. 

For this reason, most textbooks refer to percentage proof strains of aluminium rather 

than yield strengths.

The mechanical properties of aluminium from different manufacturers can vary by 

large amounts. This is due to differences in alloy content, grain structure and 

processing (heat treatment, rolling etc.).

At present, Envases (UK) Ltd. use three types of aluminium to produce extruded 

aerosol cans. These are summarised in the table below:

Supplier BS Code Purity Si, wt% Fe, wt% Hardness (Brunell)
Alucenca 1080 99.8 0.076 0.203 16-19
Hydroslug 1070 99.7 0.076 0.127 18-20
Inespal
Rhienfelden 1050 99.5 0.064 0.243 20-21

The following additional data is assumed about all three types:
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Density p =2700 K g / m 3
Poisson’s Ratio o = 0.33
Cost £6700 per m3 (£2.50 per kg)
Thermal Conductivity K = 230 W/m°C
Coefficient of Linear Expansion a =24x10"6
Y oung ’ s Modulus E = 68.3x10* N/mz

Chemical Properties

Alloy Si Fe Cu Mn Mg Zn Ga Ti %Pure
1080 0.15 0.15 0.03 0.02 0.02 0.06 0.03 0.02 99.80
1070 0.2 0.25 0.03 0.03 0.03 0.07 — 0.03 99.70
1050 0.25 0.4 0.05 0.05 0.05 0.07 — 0.05 99.50

Manufacturing Processes

Process Rhienfelden Alucenca
1 Melting Melting
2 Rotary Strip Casting Rotary Strip Casting
3 Hot Rolling («400°C) Hot Rolling («  400°C)
4 In line cooling and 

lubrication
Cooling

5 Cold Rolling («  60°C) Coiling
6 Shear Cool for 48 Hrs Minimum
7 Coil De-coil
8 Cool for 48 Hrs Minimum Cold Rolling ( » R.T.)
9 De-Coil Coil
10 Blank De-coil
11 Wash Blank
12 Anneal (500-520°C) Wash
13 Tumble Anneal (420-450°C)
14 Pack Tumble
15 Pack
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Appendix C

SIMPLE FORTRAN PROGRAM USING TO CALCULATE 

YOUNG’S MODULUS (E) AT EACH ITERATION

C PROGRAM ECM

INTEGER NNODE(8),NELEMENTS,NELEM,IBLANK,NEL 

REAL EFSTRS(8),ENEW(296),EFFMAX,SIGY,SIGMAD 

NELEMENTS=296

OPENUjFILE-ecn^Otempdat.dat',STATUS-OLD’)

DO J= 1 ,NELEMENTS 

READ(1,'(F4.1)') ENEW(J)

PRINTXEIOA)', ENEW(J)

ENDDO

SIGY=100.0

SIGMAD=0.0

DO K=1,NELEMENTS

EFFMAX=0.0

DO 1=1,8

READ( 1 ,'(21 X,I3)') NELEM 

READ(1,’(I1)') IB LANK 

READ(1,'(91X,F10.5)') EFSTRS(I)

READ(1,’(I1)') IB LANK 

PRINT*, I

IF(EFSTRS(I).GT.EFFMAX) THEN 

EFFMAX=EFSTRS(I)

ELSE

ENDIF

ENDDO

IF(EFFMAX.GT.SIGMAD)THEN

SIGMAD=EFFMAX

NEL=K

ELSE
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ENDIF

PRINT*, EFFMAX

ENE W (K)=2 *ENE W (K) * SIG Y/(3 *EFFM AX)

PRINT*, ENEW(K)

ENDDO

DO K= 1 ,NELEMENTS 

WRITE( 1 ,’(E 10.4)') ENEW(K)

ENDDO

WRITE( 1 ,'(A,F 10.5,A,I3)')'SIGMAD = ’,SIGMAD,'IN ELEMENT ’,NEL 

CLOSE(l)

END PROGRAM ECM
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C SIMPLE PROGRAM FOR CAN THICKNESS OPTIMISATION

DIMENSION X(7),XL(7),XU(7),G(7),SIG(7) 

DIMENSION WK(800),IWK(200),RPRM(20),IPRM(20)

NRWK=800 

NRIWK=200 

DO 101=1,20 

RPRM=1 

10 IPRM=1 

C TRY SQP METHOD 

METHOD=3 

NDV=7 

NCON=7 

C INTIAL THICKNESS VALUES 

X(l)=1.25 

X(2)=1.12 

X(3)=1.34 

X(4)=0.71 

X(5)=0.62 

X(6)=0.31 

DO 201=1,NDV 

XL(I)=0.0 

20 XU(I)=20.0

SIG(1)=10.766

SIG(2)=6.641

SIG(3)=20.648

SIG(4)=8.265

SIG(5)=27.078

SIG(6)=25.035

SIGMAY=100

IPRINT=1
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I

MINMAX=-1

INFO=0

100 CALL DOT (INFO, METHOD, IPRINT, NDV, NCON, X,XL,XU 

* OBJ, MINMAX, G,RPRM,IPRM,WK,NRWK,IWK,NRIWK) 

IF(INFO.EQ.O)STOP 

call system ("./elfendyn elastic3t 40");

CALL EVAL (OBJ,X,G)

GO TO 100 

END

SUBROUTINE EVAL(OBJ,X,G)

DIMENSION X(*),G(*)

OB J=X( 1 )+X(2)+X(3)+X(4)+X(5)+X(6)

| DO 30 1=1,

| 30 G(I)=1-SIG(I)/SIGMA

RETURN 

END

!
i
i[

i
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