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Abstract
Red-emitting quantum well (QW) 630nm laser diodes have many potential 
applications in industry and medicine. The main profiteers would be in areas such as 
the development of optica^ memory, barcode readers and in the treatment of cancer. 
The limitation of the low inherent band offsets of the materials used to create such 
devices, gives rise to a high percentage of electron leakage via thermal activation in 
the QW active region. However, implementation of Multiquantum Barrier (MQB) 
into the /?-type cladding region of the device enhances the effective conduction band 
discontinuity, thus increasing the reflection probability of carriers back into the device 
active region, consequently elevating output power of the laser device.
A study of (Alo.7Gao.3)o.5lno.5P/(Alo.3Gao.7)o.5lno.5P (barrier/well) MQB has been 
investigated as a feasible material structure to enhance electron confinement within 
laser diodes in the 630nm regime. The structure was optimised theoretically based on 
the r-X  transport mechanisms, using an effective mass approximation and the transfer 
matrix technique.
To accurately model such structures it is important to include possible distortion to 
the conduction band profiles induced by the different positions of the Fermi level with 
respect to the vacuum level. Thus, a dual-band device simulator was developed to 
model the band bending features, of both the T and X minima. This novel simulator 
simultaneously solves the constituent expressions making up the drift-diffusion 
equation set, which is then solved iteratively with Schrodinger’s equation to yield a 
self-consistent solution.
Using these two simulation models a novel MQB structure is proposed which inhibits 
electron transmission across it in both the T and X bands. Subsequently, this MQB 
structure predicts a theoretical effective enhancements of 50% the height of the 
intrinsic conduction band offset.
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Chapter 1

Introduction

1.1 Preamble
Semiconductor devices form the foundation of modem electronics, being used 

in applications extending from computers to satellite communication systems. A wide 

variety of devices are available, fabricated from a range of semiconductor materials. 

In order to characterise a semiconductor device it is necessary to obtain a suitable 

representation of the electrical and physical processes involved. It is also necessary to 

develop a description for the processes that cannot be directly observed. This is often 

achieved by implementing some form of analogy, which follows the behaviour of the 

device as closely as possible within the constraints of the defined operating 

environment. This process is termed numerical simulation or modelling.

There are currently a multitude of semiconductor devices under development 

and this research project will focus upon the numerical simulation of light emitting 

laser diodes, specifically, quantum well laser diodes in the 630nm wavelength regime, 

fabricated from the quaternary semiconductor material aluminium gallium indium 

phosphide (AlGalnP) and the ternary material gallium indium phosphide (GalnP).

Short-wavelength (600-700nm) visible laser diodes are of considerable 

technological interest. Lasers of this ilk have potential applications in consumer and 

professional markets, ranging from optical storage, bar-code readers, short-haul 

communication networks, laser printers and photodynamic therapy (PDT) treatment 

for cancer patients. Although the production of reliable lasers at wavelengths as short 

as 650nm is almost routine, it is found that as the emission wavelength is reduced
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further, lasers increasingly suffer from high-threshold current densities, low power 

output and low characteristic temperatures. This behaviour is caused by small 

conduction and valence band-edge discontinuities between the GaJn/JP and (AlxGa;. 

x^In/.^P alloys used in these visible lasers (predominantly the latter). The small band- 

edge discontinuities allow a significant portion of the injected electrons to leak over 

the cladding-waveguide hetero-barrier, a problem that is exacerbated as the operating 

wavelength is decreased [1,2,3,4].

Several techniques are used to minimize this problem such as increasing the 

level of ̂ -doping in the cladding region [1,2] and using highly disordered alloys to 

achieve the largest possible band offsets [5]. An alternative technique to inhibit 

electron leakage first proposed by Iga et al [6] in 1986, was to include a multi-layered 

structure called a multiquantum barrier (MQB) [7] into the jo-doped cladding region of 

the laser. A MQB consists of alternating periods of wide and narrow band-gap 

semiconductor material. By judicious choice of the superlattice period widths, 

inclusion of such structures can instigate a quantum mechanical interference effect, 

which sets up a high reflection coefficient for the implemented structure, i.e. the 

interference effect effectively enhances the intrinsic conduction band barrier height, 

culminating in reduced electron leakage from the vicinity of the active region and 

hence improved device performance [8,9]. Initial studies by Iga et al [6] predicted 

theoretical effective enhancements in excess of 50% of the intrinsic conduction band 

offset, this makes MQB’s an attractive stratagem to improve carrier confinement in 

the active region of AlGalnP laser diodes. In fact, MQB structures are regularly 

placed within infrared laser diodes composed from GalnAsP/InP material systems 

[10,11,12], to improve their operating range and performance.

Recent investigations conducted by Morrison et a l [13] and Raisch et a l [14] 

to determine how theoretically predicted effective enhancements associated with 

AlGalnP MQB’s correlate with those measured experimentally, revealed a big 

inconsistency between the two results. Hitherto, MQB structures have been optimised 

on the assumption that electron transport is only evident via the direct T-valley, 

however, at high aluminium compositions the (AlxGai.x)yIni.yP semiconductor alloy 

becomes indirect as the X-valley lies at a lower energy position, this detail is not 

accounted for in single-valley models, and it is this fact that is gives rise to the 

aforementioned disparity.
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To construct a MQB structure out of AlGalnP, it is the usual convention to 

have a low aluminium content within the well regions and conversely a high content 

in the barrier regions. Hence, from the previous statement, it is apparent that across 

the MQB the lowest lying conduction band minima switches between the direct T- 

band and the indirect X-band. This behaviour initiates inter-valley transport between 

these two minima and could theoretically destroy the enhancement effect associated 

with an optimised single-band MQB structure. This characteristic leads to an 

increased number of electron transport mechanisms, i.e. an additional loss mechanism 

which might involve the non-radiative loss of electrons via the X-minimum [15], such 

a mechanism would give rise to a significant proportion of the large excess currents 

measured in AlGalnP laser diodes. Recent experimental work by Blood et a l [16] 

found that this transport route was in fact the dominant contributor to the observed 

leakage currents in visible 630nm laser diodes.

Therefore, to theoretically model electron transport across AlGalnP MQB 

structures via the T-minimum only, appears to be a drastic oversimplification, 

implying that greater attention should be paid to other possible loss mechanisms. One 

of the focal points of this thesis is to address the above issues, by developing a 

numerical model that allows for the possibility of inter-valley scattering events to 

occur between the T and X conduction band minima across a MQB structure. 

Furthermore, the majority of authors in this field, work on the assumption that at the 

operating voltage of the laser diode, flatband conditions are evident across the active 

and immediately surrounding cladding regions, that is, there is negligible distortion to 

the energy band structure in these regions due to non-linear charge distribution 

initiated by charge injection. Although, this is a very good first approximation the 

effects of band bending and their subsequent effect on the reflective nature of the 

MQB should be taken in to account. Hence, a numerical routine has also been 

developed to theoretically optimise a MQB structure under lasing conditions of the 

device in order to acquire a maximum confining potential when there is the maximum 

amount of injected carriers within the active region. This was done in two stages; 

firstly, Poisson's equation was solved across the active region and a linear bias applied 

across the simulation area to mimic working condition of the device. Secondly, a 

complete coupled general steady-state device simulator was developed, which allows 

prediction of the energy band structure across the whole laser device under a user- 

defined bias. This simulator was then adapted specifically for imitation of 630nm
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laser diodes and its associated dual-band nature. The development of this simulator 

enveloped the majority of my time during my PhD studies.

1.2 Thesis Content
The initial Sections of Chapter 2, give a brief account of the solid-state physics 

required to obtain an understanding of the band nature of electrons in a periodic 

crystal and how these bands may be arranged to form metals, insulators and 

semiconductors. This is followed by a short interlude into some of the physical 

properties of semiconductors, pertinent to this thesis. These are semiconductor band 

structure, carrier recombination mechanisms, the phenomenon of effective mass, 

doping, alloy compositions and the formation of hetero-structures. This sub-section is 

followed by a brief description of the structure and operation of a general laser diode. 

The Chapter concludes with a material list, which presents all the physical parameters 

of the GalnP and AlGalnP semiconductor alloys used in the remainder of the thesis.

The analogous miniband effect present in semiconductor superlattices, to that 

of the allowed and non-allowed electron states within a periodic lattice is the main 

focus of Chapter 3. The initial Sections of this chapter deal with eigensolutions of 

confined particles in both the infinite and finite quantum well systems. This 

discussion is then moved on to specifically look at semiconductor quantum wells and 

the solution of Schrodinger’s equation. Utilising a simplified tight-binding 

approximation the occurrence of coupling of electronic states in closely positioned 

quantum well structures is deduced. This taken a step further by considering a 

collection of like structures closely positioned to form a superlattice structure; from 

this scenario the miniband effect is inferred. The final Section of this Chapter is 

devoted to the application of such superlattice structures within laser diodes. It is 

shown schematically how inclusion of such multi-layered structures, may improve the 

lasing efficiency of the device at elevated temperatures by judicious placement of the 

non-allowed electron states emerging from wavefunction coupling in the superlattice.

Within Chapter 4, a mathematical model that is capable of predicteding the 

theoretical extent of the confining potential associated with the multiquantum barriers
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is developed. Following this, the issue of conduction band crossover is investigated as 

a possible electron leakage source in AlGalnP laser devices. The existing numerical 

model is refined to account for inter-valley transport and tested against a more 

sophisticated psuedo-potential models of Marsh [17]. Chapter 4 finishes by firstly, 

detailing the optimisation procedure used to find the best enhancement properties of 

the superlattice structures, and secondly, a novel optimised MQB structure and its 

corresponding reflectivity spectra are deduced and displayed.

In Chapter 5, a multiquantum barrier structure is designed to give optimum 

performance under lasing conditions. To achieve this Poisson's equation is solved 

through an explicit integration method, in order to account for the effects of non

linear charge distribution. This method is applied to the T and X conduction band 

minima. To model the structure under working conditions a linear bias, which is 

doping and width dependent is dropped across the structure as a whole. Under these 

conditions a novel MQB structure is proposed that blocks transmission of electrons 

across the superlattice in both the T and X minima. This structure is compared with a 

previously designed single band structure and the results displayed.

Chapter 6 considers the numerical methods behind the steady-state simulation 

of general hetero-structure devices. The fundamental device equations, namely, 

Poisson's equation, and the two carrier continuity equations are presented and their 

one-dimensional solution is developed. Particular attention is paid to the Schafetter- 

Gummel discretisation scheme [18] for calculating the current density within 

heterogeneous semiconductor materials.

This Chapter also details the fundamental physical models required for the 

simulation of AlGalnP heterogeneous devices, i.e. the models that are required for the 

most basic simulation. To incorporate the changes in material composition (e.g. 

bandgap, effective masses etc.) two band parameters, 9n and 6P [19] are developed 

and are used as an additional parameter in the Maxwell-Boltzmann exponential. 

Models are also given for the different recombination mechanisms and composition 

dependent low field mobilities used in the simulator.

This is followed by the extension of the model to degenerate statistics. To do 

this, two additional parameters are derived, namely, Vn and Vp. Employing these extra
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terms within the carrier concentrations terms, enables Fermi-Dirac statistics to be used 

within the Maxwell-Boltzmann statistics framework. This is essential as the 

discretisation scheme is founded upon Maxwell-Boltzmann statistics. The use of the 

Maxwell-Boltzmann expression in the Newton-Raphson non-linear algebra scheme is 

complicated by the fact that the Fermi-Dirac parameters Vn and Vp depend on the 

potential. This therefore requires alteration of the Jacobian entries in the non-linear 

algebra scheme and this is discussed in detail with reference to Poisson's equation.

In the final Section of this Chapter the numerical simulation of quantised two- 

dimensionally confined electrons is considered. A model is developed for quantum 

transport, which employs a coupled solution to Schrodinger’s equation and the 

conventional device equations. To illustrate the effect that two-dimensionally 

confined carriers have on the carrier concentration, the solution of this improved 

numerical model to a quantum well structure under a forward bias is analysed and 

presented.

Chapter 7 gives a brief account of how the existing numerical model may be 

adapted to allow simulation of a second conduction band. Here, the recombination 

mechanisms are altered slightly to allow for recombination from both minima. Also, 

detailed is the method used to populate the conduction band minima, via an extra 

exponent in the Maxwell-Boltzmann formalism.

Utilising this new solution procedure, an investigation of the reflectivity 

spectra of previously designed multiquantum barriers is considered, and the results 

shown. The final Section of this Chapter details a novel multiquantum barrier 

structure that predicts high and stable reflection probabilities [20].

Finally Chapter 8 gives some conclusion of the work carried out in this thesis, 

and suggests a few ideas as to how this work may be taken forward to enable future 

research.
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Chapter 2

Semiconductor Physics, Laser Diodes 
and AlGalnP Material Issues

2.1 Introduction
The aim of this Chapter is to give a brief account of all the relevant solid-state 

and semiconductor physics needed to give a foundation to the numerical simulation 

routines developed in later chapters.

Section 2.2, begins by introducing the concept of A>space as a tool for 

presenting the electronic energies of a solid. This concept is illustrated, by considering 

two primary cases, namely, the Free Electron Model [1,2] and the Kronig-Penney 

Model [1,3]. The Kronig-Penney Model is included to demonstrate how electrons in 

solids exist in allowed energy bands subdivided by forbidden energy regions, and give 

an analogy to a similar effect induced by a multiquantum barrier in the following 

chapter. From this model, the energy band structures of insulators, metals and 

semiconductors is deduced in Section 2.3.

In Section 2.4, some intrinsic properties of semiconductors relevant to this 

thesis are outlined. Firstly, a brief discussion focusing on the lowest conduction band 

minima of some popular semiconductors used in device design is given. This is 

followed by overview of the direct and indirect recombination mechanisms. In sub

section 2.4.3 the concept of an effective mass is outlined. The effect of doping 

intrinsic semiconductors to n and p -type semiconductors is next described. Sub

section 2.4.5 details how semiconductor alloys may be formed and highlights their 

importance in semiconductor device design. The final topic in this Section gives a
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short account of semiconductor hetero-structures, detailing the ways in which two 

semiconductor materials of differing band-gap physically line-up.

In Section 2.5, a brief account of the construction of a general semiconductor 

quantum well laser device is given; this subject matter is followed by a basic 

interpretation of the operation of such quantum device.

In the penultimate Section of this Chapter, a short investigation focusing on 

the origin of the two main issues hindering development of 630nm laser diodes is 

presented. This is followed by a list of the material parameter used for simulation of 

laser diodes fabricated from the GalnP and AlGalnP alloys.

The Chapter concludes with Sections 2.7 and 2.8, where a brief summary of 

the main issues discussed within in the chapter and all referenced articles are listed 

respectively.

2.2 Electronic Energies of a Solid
The energy band structure of a crystal is usually presented by plotting the 

allowed energy values of the electron E, for different values of the wave vector k , in 

the first Brillouin zone [1,2,4] where the value of E  depends both on the magnitude 

and direction of k. In this section, the relationship between E  and k  is derived, by 

solving Schrodinger’s time independent equation, which may be given by

V2Z + ^ ( E - V ) (  = 0 , (2.1)
h

here E  is the electron energies, C, the wavefunction, V  the electrostatic potential, m  the 

electron mass, and h the reduced Plank constant.

Calculation of energy bands in real materials is a very complex mathematical 

process. At this stage two approximations are introduced, firstly the free electron 

model [1,2], which neglects any electron-ion core interaction, but provides an initial 

solution to the problem. Secondly, the Kronig-Penney Model [1,3], which treats the 

electron-core interactions and shows, qualitatively how electrons exist in allowed 

energy states subdivided by bands of excluded electron energies within crystalline 

materials.
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2.2.1 The Free Electron Model

The simplest approach is to assume that the electrons in a crystal behave in a 

similar manner to a gas of free particles. Removing the valence electrons from an 

atom leaves a positively charged ion core. The model ignores the repulsive interaction 

between the conduction electrons, and assumes that the charge density associated with 

the core is spread uniformly throughout the crystal so that the electrons move in a 

constant electrostatic potential.

By considering a cubic crystal of side L with faces perpendicular to the x, y  

and z-axes, without loss of generality, the crystal potential may be taken to be zero 

and thus Schrodinger’s one-dimensional time independent equation may be expressed 

as

under the above assumptions. If a periodic boundary condition of the form C,{x + L) = 

C,{x) is imposed then the solutions of equation (2.2) are Bloch waves [1,2] of the form

n is any integer value and C is introduced as a normalising factor. The corresponding 

electron eigenenergies of equation (2.2) are given by

(2.2)

where
2jm
L

(2.3)

„ h2k 2 E  = ------ (2.4)
2m

In three dimensions, the corresponding wavefunctions and electron energies are given



Therefore, from this model the allowed electron states are quadratic functions of k, 

and their energies are distributed continuously from zero to infinity.

2.2.2 The Kronig-Penney Model.

The Kronig-Penney Model assumes a periodic array of square potential wells 

and barriers as shown in Figure 2.1 where E  represents the energy of an electron and 

is an eigenvalue of the solution of the wave equation. The potential V(x), to be used in 

Schrodinger’s equation is shown, and its periodicity is that of a lattice with period I 

representing the unit cell length, which implies the following relation

V(x + nl) = V(x) where n = 0, 1,2,... . (2.6)

Figure 2.1: The Kronig-Penney periodic potential model.

In order to obtain a solution it is assumed that the one-dimensional crystal takes the 

form of a circular ring. Therefore, the wavefunction g  must repeat itself after a 

distance Nl. Where N  is the number of atoms in the crystal, such that

£(x + Nl) = ax)- (2-7)

With the use of Floquet’s theorem [5], the solutions to Schrodinger’s one-dimensional 

equation that also satisfy equations (2.6) and (2.7) have the form

f  (jc) = V(x)eikx (2.8)
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where

£ = —  (2.9)
Nl

and V(x) is itself periodic with period /, and could be complex. Here, the solution for 

the wavefunction of the 1st cell shown in Figure 2.1 is in two parts, the left-hand and 

right-hand sides of the cell respectively. By defining the electron energies on the left- 

hand part of the first cell as E = ti2k 2 /  2m , where kj ?±k, the wave equation for the 

left-hand part of the first cell is reduced to

dx2
k^y/ = 0, 0 <x <b. (2.10)

If the difference between the maximum potential Vo and E  in Figure 2.1 is given by 

V0- E  = fi2K l l l m , the wave equation for the right-hand part of the first cell maybe 

written as

a 2<r
dx‘

-K iy /  -  0 , b < x < l  (2.11)

Solutions to equations (2.10) and (2.11) may be given by

£(*) = A exp(ikxx) + B exp(~ikxx) 0 <x <b (2.12)

and

f  (x) = C exp(-i£2x) + D exp(^T2x) b <x <1 (2.13)

respectively. The dependency of the solution for the left-hand part of the second cell 

must be the same as for the left-hand part of the first cell, with x  replaced by (x - /). 

Furthermore, it must fulfil the periodicity condition given in equation (2.8), which 

implies

^(x + /) = U{x + 1) exp(/A;(x + /)) = U (x) exp(z'Ax) exp (ikl) . (2.14)
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Therefore, the solution for the left-hand part of the second cell contains a phase shift 

of exp(ikl), given by

C, (x) = [A exp(ikx (x -  /)) + B exp{-ikx (x -  /))] exp(ikl), I <x <1 +b (2.15)

By insuring that both C, and its derivative d ^ /d x , are continuous at the finite 

discontinuities in the potential at x = b, and x = I, a set of four homogeneous equations 

can be obtained for the constants A, B, C and D, through the use of equations (2.10) 

through to (2.13). This will have a non-trivial solution when the determinant of 

coefficients is exactly zero, given by the condition

cos kxb cosh(A'2 (/ -  b)) -  —— sin kxb sinh(^2 (/ -  b)) = cos k l , E  < Vo (2.16)
2kxK 2

Equation (2.16) is an implicit expression for the allowed energies E  determined by the 

values of k\ and K2. Due to the magnitude of the right-hand side being bounded by 

unity, not every arbitrary value of E  can satisfy the equation for a given Vo, which 

implies that the electrons cannot have these energies. The energy ranges for which 

solutions do not exist are thus termed ‘forbidden’ energy bands. For values of E  > Vo, 

equation (2.16) remains essentially the same, but here K2 is purely imaginary, and is 

replaced by ik2 for simplicity, thus yielding

cos kxb cos(&2 (/ -  b)) -  —— —  sin kxb sin(A:2 (/ -  b)) = cos k l , E >  Vo. (2.17)
2kxk2

Forbidden energy bands also arise in this energy range, along with allowed energy 

bands. The right-hand sides of equations (2.16) and (2.17) are both periodic, and 

rewriting k  as 2nn/N l (by equation (2.9)) the cosine terms go through a whole cycle 

as n changes by N  in very small discrete steps, which can be regarded as a continuum 

as the steps are so close together. The band boundaries occur at points where 

coskl=±l, or k = ±2/r// for »=1, 2, ... .

Taking the lowest possible energy band for each value of E , a corresponding 

value of k  can be found from equation (2.17). A plot of E  verses the corresponding k
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value called the dispersion curve can thus be derived and is shown in Figure 2.2(a). 

The first band, covering the ranges - n / l  <k <7r/l is called the first Brillouin zone;

the second, covering the ranges -z r / /  <|A'|<2zr// forms the second Brillouin zone,

and so on and so forth.

It is conventional to shift the second and higher Brillouin zones to the first zone along 

the A-axis by multiples of 2 zr// ,  since the left-hand sides of equations (2.16) and 

(2.17) are unchanged when kl changes by ±2nn. This yields Figure 2.2(b) and is 

called the reduced-zone representation in A-space.

k
-3 n /l  -2 n //  -n i l nil 2n/l 2>n!l

Allowed
bands

n =  3

n =  2

-n i l nil

1st zone 
2nd zone 
3 rd zone

Figure 2.2 (a) The E -k  dependence of the K ronig-Penney M odel, (b) The reduced-zone 
representation o f the Kronig-Penney M odel.

Each Brillouin zone consists of N  distinct values of A, each corresponding to a 

different energy state. Because each energy state can be populated by at most two 

electrons with opposite spin, each zone can therefore contain 2N  electrons. At the 

absolute zero of temperature, the electrons fill the lowest possible energy states, and 

so all states are filled from zero up to an energy Ef, known as the Fermi-energy. The 

energy band structure derived above is used in the following section to classify 

crystalline solids.
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2.3 Metals, Insulators and Semiconductors

The difference in energy between the highest energy level in the valence band 

(the highest completely full energy band at absolute zero) and the lowest energy level 

in the conduction band (the next lowest energy band) is known as the forbidden 

energy gap, Eg, and is of great importance in determining the conduction properties of 

the crystal. Each solid has its own characteristic energy band structure, which can be 

evaluated by solving equation (2.1) with the inclusion of the relevant electrostatic 

potentials. Solids can then be further subdivided into insulators, metals and 

semiconductors.

The trait that defines an insulator is that, as Figure 2.3(a) shows, the highest 

occupied level coincides with the top of a band. In addition, this band must be 

separated from the unoccupied region above it by a substantial energy gap. By 

definition, an insulator is a solid through which electrons cannot flow as a directed 

drift current. If an electric field is applied to an insulator it will exert a force, <?E, on 

each electron. Classically, this force will induce an increase to the electrons velocity 

in the direction of the field, subsequently altering its kinetic energy. In quantum 

terms, if the energy of an electron changes, the electron must move to a different 

energy level within the solid. However, in an insulator the Pauli principle prevents the 

electron from doing so because all other levels within the band are already occupied.

Insulator Metal Semiconductor

(a) (b) (c)

Figure 2.3: Simplified representation of the energy band structures o f (a) an insulator, 
(b) a metal and (c) a sem iconductor.
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Figure 2.3(b) indicates the idealised representation of the band-gap pattern of a 

metal at absolute zero. The highest occupied level falls approximately in the middle of 

a band. Electrons that occupy this partially filled band are the valence electrons of the 

atoms, which, being free to move throughout the solid, become the conduction 

electrons of the solid. At the absolute zero of temperature, thermal agitation plays no 

role and all electrons occupy states of the lowest possible energy. Thus, it is plausible 

to suggest with little error that the potential energy of conduction electrons remains 

constant as they move within the solid. This constant is set equal to zero; hence, the 

total energy E  associated with any level is equal to the kinetic energy of the electron 

that occupies that level.

The level at the bottom of the partially filled band corresponds to E = 0. The 

highest occupied level in this band (at absolute zero) is referred to as the Fermi level 

and the energy corresponding to it is the Fermi energy, Ep.

Comparison between Figure 2.3(a) and (c) shows that a semiconductor is like 

an insulator in that its upper most filled level (at absolute zero) lies on top of a band. 

A semiconductor differs from an insulator, however, in that the gap between this 

filled band and the next vacant band above it is much smaller than for an insulator, 

which vastly increases the probability that electrons will negotiate the forbidden band 

by thermal agitation.

2.4 Semiconductors
In this Section a brief summary of the major semiconductor properties that 

need to be considered for design and numerical simulation of laser diodes. Of 

particular interest are the band-edge properties since they dominate the transport and 

optical properties of most devices. Thus, in sub-section 2.4.1, the simplified energy 

band structures of two semiconductors, commonly used in device design are 

illustrated and discussed. From this discussion the concept of direct and indirect 

semiconductors is shown, also, the phenomenon of carrier recombination is 

mentioned.

Sub-section 2.4.2, briefly highlights why the mass of an electron within a solid 

i.e. semiconductor in this case, must be considered to have an effective mass as
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opposed to using the free-electron mass, which is some cases the magnitudes deviate 

quite strongly from the electron mass in vacuum.

In sub-section 2.4.3, it is detailed how the addition of impurities to a 

semiconductor crystal may result in an increase to electron or hole concentration, 

giving rise to «-type orp -type semiconductor material.

The following sub-section is extremely pertinent to semiconductor device 

design, i.e. the topic of potential barrier formation. Within this sub-section the 

properties of bulk semiconductors will be briefly analysed before moving on to 

discuss semiconductor alloys. The sub-section finishes with a short discussion of 

hetero-junctions and the way energy levels either side of these junction line-up.

2.4.1 Energy Band Structure

In Section 2.2, the concept of A>space was introduced to enable a means to 

represent the electronic energy band structure of a crystal, where the electron energies 

E  depend both on the magnitude and their orientation in A;-space. The characteristic 

features of the energy band are displayed by plotting E  versus k  (i.e. dispersion 

relation) at points of high symmetry and along the directions of high symmetry, 

usually given by the zone centre, and along the (lOO) and ( i l l )  crystallographic 

directions.

A simplified picture of the energy band structure for two of the more popular 

semiconductors used in device design, namely, silicon (Si), and gallium arsenide 

(GaAs) are presented below in Figure 2.4. These energy band diagrams can be 

calculated using non-local empirical pseudopotential methods similar to that detailed 

in [6,7,8,9], although the curves shown here are adapted from [10].

It can be seen from the E-k curves that for each semiconductor there is an 

energy gap, Eg, separating the conduction and valence bands; at 300K [10] these have 

been experimentally verified to be at 1.1 leV for Si and 1.424eV for GaAs. The tops 

of the valence bands are situated at the zone centre (T-point), whereas the bottom of 

the conduction bands are located at different points along different directions for each 

of the two semiconductors. In the case of Si Figure 2.4(a) the conduction band 

minima occur along the (lOO) (X-point) direction, however for GaAs semiconductor, 

the conduction band minimum occurs at the zone centre (T-point), directly above the
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valence band maximum. Gallium Arsenide is therefore, referred to as a direct band 

gap semiconductor, whereas silicon is referred to as an indirect band-gap 

semiconductor.

(a)

>
<D

60
S-H
<D
C2

w

in Figure 2.4(a) and (b) and in the aforementioned sub-section, consist of many 

discrete points, each corresponding to a possible electron or hole state, i.e. 

wavefunction, that is allowed to exist in the crystal. The points are so close together 

that it is normal practice to link the points in a continuous curve. Also, present in the 

above E-k curves are the forbidden energy ranges predicted by the Kronig-Penney 

Model in Section 2.2. It is also important to note that the minima and maxima of the 

conduction and valence band respectively, although look almost parabolic, they are 

not, this fact has important implications when attempting to determine the electron

Si GaAs
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Figure 2.4: D ispersion relations of (a) Si and (b) GaAs. Adapted from  [10]

As noted earlier in sub-section 2.2.2, all the E-k curves like the ones presented
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and hole effective masses (see sub-section 2.4.3). Above absolute zero of temperature, 

due to thermal excitation some of the electrons from the top of the valence band can 

be excited to the bottom of the conduction band. When the electron reverts to its 

initial state it recombines with a hole and a quanta of energy is emitted. The way in 

which the process occurs differs between direct and indirect semiconductors and is the 

topic of the following sub-section.

2.4.2 Direct and Indirect Recombination

When an electron in the conduction band loses its energy and subsequently 

transfers to the valence band, it will be captured by a hole therein, this process is 

known as recombination. Since the electron and the hole are in two separate energy 

bands, it is possible that there are different recombination processes. In this sub

section, two of these processes are highlighted, namely, direct and indirect 

recombination.

CBCB

— R
Direct Band- 
Gap

Photon Indirect
Band-Gap

VBVB

■k■k
(b) Si(a) GaAs

CB

Photon

VB

■k
(c) Si with recombination centre

Figure 2.5: Schematic diagram of the recombination processes that occur in both direct and 
indirect semiconductors, (a) The direct band-gap semiconductor GaAs showing direct 
recombination of a electron and hole pair, (b) Si the indirect band-gap semiconductor, (c) 
Recombination of an electron and a hole in Si involves a recombination centre (i.e. phonon).
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When an electron makes a transition from the conduction band to the valence 

band via the T-point (see Figure 2.5(a)), it is known as direct recombination, i.e. it 

occurs in a direct band-gap semiconductor material (e.g. GaAs), where the minimum 

of the conduction band aligns with the maximum of the valence band in &-space. 

Under this condition, an electron in the conduction band can simply recombine with a 

hole in the valence band without a change in momentum. When this happens, the 

energy given up by the electron will be emitted as a photon. Hence, the radiative 

recombination process in a direct band-gap semiconductor can be harnessed to 

produce light emitting diodes and lasers.

In an indirect semiconductor such as Si, the minimum of the conduction band 

and the maximum of the valence band are separated in momentum space (see Figure 

2.5(b) above). Therefore, in order for an electron to transit to the valence band via the 

X-point, requires a change in momentum as well as energy to satisfy the law of 

conservation. The most likely route for indirect recombination would be an electron 

travelling to a trap (assuming the state is initially vacant) and residing there before 

recombining with a hole in the valence band (see Figure 2.5(c) above) via a phonon 

interaction. This form of non-radiative process can also occur in direct band-gap 

materials if impurity atoms and defects are present in the crystal structure. These 

imperfections in the structure introduce electronic states, which are localised energy 

levels near the centre of the forbidden band-gap, acting as traps of recombination 

centres.

2.4.3 Effective Mass

In the introductory paragraph of this Section, it was mentioned that the shape 

of the conduction and valence bands near the minimum and maximum respectively, 

determines the motion of the electrons and holes under an applied field. Under the 

influence of such an electric field, an electron and hole in a semiconductor are found 

to possess an effective mass, ra*, which can differ substantially, from the mass of an 

electron in a vacuum. In the following discussion, an expression for the effective mass 

of an electron is derived which is dependent upon the curvature of the minima shown 

in the above dispersion relations.

The velocity and acceleration of an electron in the conduction band under the 

influence of a electric field acting in the one-dimensional negative x-direction,
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imposes an external force Fext = qEx in the positive x-direction. As the electron in this 

scenario is pictured to be a wave, it is necessary to evaluate its group velocity vg, 

which by definition is given by vg = dco/dk.

The time dependence of the electron wavefunction is given by exp(-iEt/h) 

where the energy E  is equal to the product of the angular frequency, co, associated 

with the wave motion of the electron and the reduced Plank constant, h. Both E  and 00 

depend on k. Thus, the group velocity is

d v ^ d E  ( 2 1 8 )

dk ti dk

Hence, the group velocity is determined by the gradient of the E-k curve. In 

the presence of an electric field, the electron experiences a force Fext = qEx, from 

which energy is gained. This increase in energy results in the electron moving to a 

higher position in the E-k curve, this motion is continued until the electron is scattered 

to a different position by a lattice vibration (i.e. phonon). During the time interval 

between collisions, the electron moves a distance equal to vgS t and hence gains an 

energy, SE, which may be expressed as

SE = FMvga .  (2.19)

By substitution of equation (2.18) in equation (2.19) the relationship between the 

external force and the energy may be given as

1 dE dk
— T  = t l^ :  ( 2 2 0 )vg dt dt

This equation is a re-statement of Newton’s second law of motion. Here, the change 

in momentum cannot be attributed to the electron only, but associated with the crystal 

lattice as a whole [11]. For this reason, the quantity hk is referred to as the crystal 

momentum of the electron.

Using this formalism the acceleration of an electron may be expressed as
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dk/dt may be substituted for a rearrangement of equation (2 .2 0 ) in equation (2 .2 1 ), 

which reveals a relationship between Fext and a, the electron acceleration of the form

(2 .22)

dk 2

Comparison of equation (2.22) with the more familiar expression of Newton’s second 

law of motion, namely

where me is the mass of a free electron in a vacuum, suggests the following expression

Thus, the electron responds to an external force and moves as if its mass were 

given by equation (2.23). The effective mass obviously depends on the E-k

relationship, which in turn depends upon crystal symmetry and the nature of atom 

bonding. Its value is different for electrons in the conduction band and for those in the 

valence band, and moreover, it depends on the energy of the electron since it is related 

to the curvature of the E-k behaviour by the second differential d 2E /d k2 . This 

behaviour can distort the magnitude of the effective mass to be substantially smaller 

than the free electron mass, e.g. the effective mass of GaAs is 0.067me for a electron 

residing in the parabolic part of the conduction band minimum.

A high majority of device modellers use the magnitude of the electron and

hole effective masses when they exist within the parabolic region of the

corresponding minima or maxima of the conduction and valence bands. Such values

(2.23)

ill

for the effective mass, m , in a crystal

(2.24)



have been repeatedly refined over the years and their magnitudes are now well 

established for the more prominent semiconductor materials. To a first approximation 

this is a very good assumption, however, as highlighted above, as the energy of the 

electron or hole increases they move out of these parabolic regions and the 

assumption that their effective masses remains at the magnitude of that measured in 

the parabolic regions becomes increasingly invalid. In an attempt to achieve a more 

accurate determination of the electron and hole effective masses, many researchers are 

turning to very complex k.p models [12,13]. Such theoretical models are capable of 

predicting energy dependent electron and hole effective masses, However,

these methods are very intricate and their application to ternary and quaternary 

semiconductors like those used in this dissertation are at present not well founded, 

subsequently, all values of effective mass used in the following discussion use the 

parabolic approximation.

Another very important issue in semiconductor device physics is the process 

of doping. This procedure is of great importance when fabricating laser diodes due to 

the fact that, the laser diode is essentially two differently doped regions, i.e. ap  and n- 

doped region, separated by a thin intrinsically doped region within which resides a 

quantum well hetero-structure (see sub-section 2.4.6).

2.4.4 Doping

As the temperature of a semiconductor is raised, some of the valence band 

electrons acquire sufficient energy to be excited across the band-gap to the conduction 

band. This excitation leaves a hole in the valence band and thus creates an electron- 

hole pair. The electron in the conduction band and the hole in the valence band can 

both move under the influence of an electric field. The number of electron-hole pairs 

created in this manner is strongly dependent on temperature, and the semiconductor in 

which the electrons and holes are as a result of the creation of electron-hole pairs 

alone is called an intrinsic semiconductor [14]. The intrinsic carrier concentration is 

defined as the electron concentration in the conduction band, which is thus also equal 

to the hole concentration in the valence band and may be mathematically expressed 

by the mass-action law [15]
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2 \ T  \ r  1 k a Tpn — ni — N cN ve * (2.25)

where p  and n are the electron and hole concentrations, is the intrinsic carrier 

concentration, Nc and N v are the are the effective density of states in the conduction 

and valence bands, Eg is the semiconductor band-gap, ks is the Boltzmann constant 

and T the temperature of the semiconductor. A simplified energy band diagram for an 

intrinsic semiconductor is illustrated in Figure 2.6(a). Here, Efi refers to the Fermi- 

level in the intrinsic semiconductor, which lies approximately midway between the 

conduction and valence band-edges in this case.
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band
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(a) (b) (c)

Figure 2.6: A sim plified energy band schematic showing allowed states created by the 
addition of im purity atoms, (a) An intrinsic sem iconductor, (b) a n -ty p e  sem iconductor.
(c) a p - ty p e  sem iconductor. In all cases n p  =  n f .

In practice doping with impurity atoms increases the conductivity of intrinsic 

semiconductors. If a dopant is added to the intrinsic semiconductor, an extrinsic 

semiconductor is formed, and doping serves to increase the conductivity of the 

material. If the added impurity donates excess electrons to the semiconductor, they are 

called donors, and the semiconductor is termed n-type as the majority of carriers are 

electrons. Suitable donors for silicon are the group V atoms phosphorus and arsenic, 

which fit into the crystal lattice in the place of silicon atoms. Four of the valence 

electrons will form covalent bonds with neighbouring silicon atoms, while the other 

valence electron remains weakly attached to the donor atom. Similarly, if a 

concentration of group III atoms (or acceptors), such as boron or gallium is 

introduced to an intrinsic silicon crystal a p-type material is formed, and holes are the
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predominant carriers. In this case the acceptor atom gains a valence electron from one 

of the original covalent bonds, thus producing an extra hole in the valence band.

The addition of dopants actually adds allowed energy states in the forbidden 

energy gap, slightly below the conduction band Ec at the electron quasi-Fermi level, 

EFn, in the case of donors, and slightly above the valence band Ev at thr hole 

quasi_Fermi level, EFp, in the case of acceptors. A schematic representation of this is 

shown above in Figure 2.6(b) and (c).

In the case of low and moderately doped n-type semiconductors at low 

temperatures, the extra donor electrons are still attached to their atoms and occupy the 

Epn levels (stable energy state of an electron) and it can be assumed that the impurity 

atoms are relatively far apart so that their effect on each other is negligible. As 

temperature increases to about 100K the thermal energy available enables the 

impurity electrons to shift into one of the many nearby conduction band states. 

Similarly in the case of low and moderately doped p-type semiconductors after an 

increase of thermal energy, electrons from the originally full valence band with 

energies Ey will transfer into the higher states EFp (stable energy state of a hole), thus 

leaving holes. In both cases the effect is a significant increase in electrical 

conductivity. It is noteworthy that in an extrinsic semiconductor even though the 

equilibrium electron and hole concentrations are different their product is constant, 

and is thus the same as the intrinsic semiconductor [4,14] as depicted in the equation

(2.25).

In the following sub-section a brief discussion on semiconductor alloys is 

presented. This topic has particular relevance in the simulation of red emitting laser 

diodes, as they are themselves fabricated from ternary and quaternary semiconductor 

alloys.

2.4.5 Semiconductor Alloys

The individual properties of binary compound semiconductors, of the form 

AC and BC where A and B are group III elements and C is a group V element, for 

example, can be combined by coupling an x fraction of one with a ( 1  -  x) fraction of 

the other. This method naturally produces an alloy, or ternary compound, of the form 

AjB/.jC, where the lattice spacing, a, of the ternary material can be obtained by 

applying Vegards law [15].
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d(AxBj_xC) = dACx + dBC(l - x ) = cl +c2x (2.26)

where ci and C2 are constants. Many other properties of the ternary compound 

semiconductor are also determined using this approximation, for example the energy 

band-gaps, effective masses and the elastic coefficients. However, experimental 

evidence has shown that for some systems, such as the gallium indium phosphide, 

GaxIn/.xP, a more correct approximation for the band gap (direct T-band) variation 

with x  is quadratic, and may be given by the following expression [16]

This idea can be taken a step further when considering quaternary materials such as 

aluminium gallium indium phosphide, (AbGay^Iny.^P, which is used in conjunction 

with GaJny.^P to produce laser diodes in the 630nm wavelength regime. Here, the y  

composition is chosen to be lattice matched with that of a GaAs substrate, and the x 

composition chosen to provide the desired band-gap. The relationship between band- 

gap and aluminium content in lattice matched AlGalnP has been experimentally 

deduced by Bour et al. [17] to be

at 300K for the direct T-band. In Section 2.6

In Section 2.6, a closer look at the direct and indirect band-gap parameters for 

the AlGalnP material system is taken. It becomes evident at high aluminium contents 

the material becomes indirect as opposed to direct at low contents. This feature has 

important implications to the design of laser diodes fabricated from this alloy. Also 

listed within this Section, are all the relevant semiconductor parameters of GalnP and 

AlGalnP used in the forthcoming Chapters of this thesis.

The following sub-section deals with semiconductor hetero-structures. Within 

this discussion, a brief look at semiconductor alloys is taken before detailing how the 

energy bands of two different semiconductor alloys might line-up in a useful way to 

produce semiconductor devices such as quantum well laser diodes. A short dialogue

E g (iGaxIn,_xP) = 1.34 + 0.69* + 0.48*2. (2.27)

Eg =1.91 + 0.61* (2.28)
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highlighting present band line-up models used in theoretical and experimental 

research follows this.

2.4.6 Hetero-Structures

Nearly all important semiconductor hetero-structures arise when two or more 

semiconductor materials of differing band-gap are brought together in intimate 

contact. As a consequence of this situation a potential barrier may be formed at the 

interface; this is usually referred to as a conduction or valence band discontinuity. The 

band alignment that results from this scenario is unique for a particular material pair 

and may depend on both the bulk and surface contributions from the materials 

involved. Any attempt to manipulate the magnitude of the potential barrier, of 

fundamental concern to band structure engineering, thus requires a understanding of 

the factors that dominate the manner of band alignment for the material pair in 

question.

In sub-section 2.4.6.1, three different ways in which semiconductor band 

alignment can occur to yield the aforementioned conduction and valence band 

discontinuities are shown and discussed. A brief overview of the microscopic and 

macroscopic methods used at present to determine the magnitudes of conduction band 

discontinuities are reviewed in sub-section 2.4.6.2.

2.4.6.1 Hetero-junctions

A hetero-junction is formed at the interface between two differently 

terminated semiconductor materials. Figure 2.7 is a schematic of the energy band line

up for a hypothetical hetero-junction. When two crystals are brought together into 

intimate contact charge will flow until the equilibrium condition is reached, at which 

point the Fermi-levels of both materials are coincident. The amount of charge transfer 

required to achieve this depends on the doping levels employed within each layer and 

may be so large that a region on either side of the interface may become depleted of 

electrons over a significant distance. This will cause the bands to bend upwards within 

this region towards the interface. On the other side of the interface, due to an excess 

of electrons, the bands bend downwards. If two semiconductors have different band
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gaps, i.e. EgA and Egs, then the difference in the band gap between these two materials 

can be written

* E g = E gB- E gA. (2.29)

a e ,

A&

Figure 2.7: Diagram to show the band line-up across a typical hetero-junction. The materials 
involved have different band-gaps, EgA and EgB, where Esb > EgA. Due to the charge transfer 
required to bring the hetero-junction into equilibrium, a triangular potential well is formed 
within the accumulation layer at the interface. Electrons contained within this well are 
quantised.

This magnitude is shared between the valence band discontinuity and the conduction 

band discontinuity such that

AEg = AEC + AEV . (2.30)

The electrical and optical behaviour of a hetero-junction is effectively dictated by the 

magnitudes of AE c  and AEy. Therefore determining how the difference in the band- 

gap is shared between the conduction and valence band discontinuities is of great 

importance for semiconductor device design.

Three types of band alignment can be defined for the semiconductor hetero

junction (see Figure 2.8 below). Type I occurs when the band gap of material B is 

nested within the band gap of material A. In this instance, both AEc and AEv are 

conventionally taken to be positive values. Type II occurs either when the conduction 

and valence band of A is below the conduction band and valence band of B, referred 

to as a staggered junction, or when the conduction band of A occurs at an energy
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below the valence band of material B. This is called a misaligned junction. Type III 

occurs when one of the semiconductors is, in fact, a semi-metal. It is the type I 

alignment that is used within devices where carrier confinement is important.

(a) A B

'Cl

'C2

'VI
'V2

(b) A I B B

'Cl

'VI

'C2

'V2

OR

'Cl

'VI

'C2

'V2

(c) B

'C2

'V2

Figure 2.8:Energy band diagrams for (a) a Type I, (b) a Type II and (c) a Type III band 
discontinuity.

2.4,6.2 Hetero-junction Models

Various models have been proposed which predict the band line-ups of hetero

junctions. In general, the models, which are based on some energy reference level 

upon which all semiconductors can line-up, are applicable to several material systems. 

However, none can be universally used with the same degree of success. The basis 

upon which the models are founded can be separated into two categories:
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(1) Macroscopic: these rely on the bulk properties of the materials. Models

include the Electron Affinity Rule developed by Anderson [18], the empirical 

Deep Level model [19] and the Common Anion model [20].

(ii) Microscopic: these include interface details of the materials. Models include

Frensley and Kroemers dipole reference potential [21], Harrisons theory of

band line-ups [22] and the Charge Neutrality model developed jointly by 

Tejedor and Flores [23], and Tersoff [24].

A full discussion of the advantages and disadvantages of these models can be found in 

Chapter 1 of [5].

An alternative approach is to use self-consistent interface calculations (SCIC)

[2]. In these calculations the values of the band offsets obtained are determined 

uniquely by the mathematical approached used. Generally, the principle upon which 

models are based is that the charge distribution for a particular interface is dependent 

on the potential at that interface, and vice-versa. This leads to the requirement that the 

calculations be performed in a self-consistent manner. This enables the charge 

distribution and any dipole effects occurring at the interface to be automatically 

included within the calculations. In order to establish the actual physical mechanisms 

that cause the predicted alignment it is then necessary to compare the theory with 

experimental results. From such comparisons over a wide range of material 

conditions, trends can be extracted to determine fundamental factors dominating band 

alignment for particular systems.

Comparison of macroscopic and microscopic models with experimental results 

generally gives good agreement. However, the agreement is consistently better for 

materials where interface effects and charge transfer are small and have little effect on 

the alignment. This is due to the use of bulk values for material parameters within the 

models. If the density of the interface states is large then the charge transfer across the 

interface to bring the system into equilibrium may be dominated by interface states 

and agreement between ‘bulk-based’ theory and experiment may be poor.

In the next Section, the previously discussed issues will be combined to 

explain the structure and basic operation of a general quantum well laser diode.

31



2.5 Quantum Well Laser Diodes

One of the major objectives of this thesis is to appropriately model the 

behaviour of 630nm visible laser diodes, details of which are presented in later 

Chapters. In this Section however, the basic physical idea behind such semiconductor 

devices is presented. Firstly, the main physical attributes of a general laser diode are 

reviewed and secondly its mode of operation.

2.5.1 Laser Diode Structure

Quantum-well laser diodes can be thought of as modified versions of the very 

important solid-state electronic semiconductor p n -junction device. These are modified 

in the sense that, they have a very thin additional intrinsically doped semiconductor 

layer sandwiched between both the p-doped and >7-doped regions, which comprise the 

so-called p-i-n junction. The semiconductor material or alloy within this intrinsic 

region has a smaller band-gap than that of the surrounding p  and «-doped layers 

constituting the formation of a quantum-well by the type I band line-up mechanism as 

illustrated above in Figure 2.8(a).

Metal 

Insulator 

GaA s (p+)

A10.4Ga0.6A s (P) ~~ 

A l0 3Ga0 7A s  (u.d) 

Quantum W ell 

A ln3Ga0 7A s  (u.d)

A1o.4Gao.6A s (")

GaAs substrate ( n + ^  

Metal

120pm

Active region 

Roughened surface

300pm Cleaved GaAs
<110> surface used 
as a mirror

Figure 2.9: A typical AlGaAs sem iconductor quantum  well laser device.
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In practice however, there are many more semiconductor layers than the three 

suggested above, each of which is specifically chosen to enhance the lasing efficiency 

of the device. For instance immediately surrounding either side of the quantum well 

layer there are so-called waveguide regions. These regions serve to guide the light 

within the active layer, maximising the interaction between the optical field and gain. 

In Figure 2.9 above, a typical AlGaAs quantum well laser device is illustrated in 

which the many different material layers of various thickness and doping content are 

shown. Immediately below and above the metal contacts on the top and bottom of the 

laser device respectively, are two highly doped GaAs cladding layers. As illustrated in 

Figure 2.9, the p -doped (p+) GaAs layer is relatively thin, whereas n-doped (n+) 

GaAs substrate layer is very thick at approximately 120 microns. Within these two 

layers exist two Alo.4Gao.6As layer each moderately p  or «-doped. These layers have a 

larger band-gap than the surrounding GaAs layers and are used primarily for charge 

injection into the active region of the device. Contained by these moderately doped 

AlGaAs alloys are the active regions of the laser diode. This region is undoped (ud) 

and consists of a GaAs quantum well surrounded by two waveguide regions 

constructed from the Alo.3Gao.7As alloy. The Alo.3Gao.7As alloy has a larger band-gap 

than GaAs but less than Alo.4Gao.6As semiconductor. The energy band structure under 

flatband conditions is schematically illustrated in Figure 2.10 below.

2.5.2 Laser Diode Operation

When a forward bias is applied across a laser diode, electrons and holes are 

injected into the active region of the device, as illustrated schematically in the band 

diagram shown in Figure 2.10.

The electrons in the conduction band of the quantum well make a direct 

transition to valence band where they recombine with holes. Such recombination is 

radiative and energy quanta in the form of photons are emitted during the process. In 

order to achieve stimulated emission, the emitted photons must be kept within the 

active region to activate subsequent emission. This process can be accomplished by 

using a resonant cavity consisting of two parallel mirrors, known as the Fabry-Perot 

resonantor. The stimulated photons are allowed to bounce back and forth within the 

cavity, creating an avalanche of photons until lasing threshold is reached and light is 

then emitted from the barrier. The resonant cavity is usually obtained by cleaving
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along the (l 10) plane, which is a natural cleaving plane for the GaAs semiconductor. 

Ideally, the two cleaved (l 10) surfaces would be optically flat, forming a pair of

parallel mirrors at the two ends of the laser device normal to the active region (shown 

in Figure 2.9).

-^o.4^ao.6^s I A l03Ga07A s | GaAs j A l03Ga07As j A l04Ga06As
i i i i

Injected

Photon

E
® © © © ©

Injected
H oles

Figure 2.10: Band diagram  of the active region in a typical AlG aAs quantum  well laser diode. 
Band diagram  illustrates the injection of carriers into the active region of the device under 
biased conditions (Diagram  not drawn to scale).

In the final Section of this Chapter some of the idiosyncrasies associated with 

the semiconductor materials used to construct 630nm visible laser diodes in particular 

are illustrated and discussed.

2.6 AlG alnP Material Issues and Parameter List

In Chapter 1 of this thesis, it was highlighted that there are two predominant 

issues delaying full exploitation of AlGalnP red emitting laser diodes. Both these 

issues relate back to the fact that such diodes are constructed from the quaternary 

semiconductor alloy AlGalnP. In sub-section 2.6.1 these issues are inferred from a 

plot indicating the variation of energy band-gap of both the T and X minima as a 

function of aluminium content. The final sub-section of this Section lists all the
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semiconductor parameters for the GalnP and AlGalnP material systems pertinent for 

laser diode simulation.

2.6.1 AlGalnP Band-Gap Variation

As mentioned previously, the two major idiosyncrasies that at present hinder 

development of 630nm laser diodes are associated with the AlGalnP semiconductor 

material used to construct them. These may be summarised as (i) small intrinsic 

conduction band discontinuities and (ii) the occurrence of inter-valley transport due to 

elastic scattering between conduction band minima. Both of these issues can be 

deduced from the variation of energy band-gap of both the T and X minima, which 

are plotted in Figure 2.11 below, as a function of aluminium content.

2.6

2.3

—  X

0.5 0.6 0.80 0.1 0.2 0.3 0.4 0.7 0.9 1

Aluminium Content (x)

Figure 2.11: Direct and nearest indirect energy gaps of (Al^Gai .^y\nj.yY as a 
function of aluminium content x. the smaller energy range covered by AlGalnP 
makes designing devices with good electrical confinement more difficult.

In sub-section 2.4.5, the variation of direct band-gap of the (AhGa/.^Iny^P 

alloy lattice matched to GaAs (i.e. index y  is in the range 0.49 to 0.51) was given by 

the following expression experimentally determined by Bour et al. [18]:
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E gV =1.91 + 0.61*. (2.31)

where x  is the aluminium content in the lattice matched (AfrGa/^In/^P alloy. A 

stronger aluminium content dependence has been reported at low temperatures by

[25.26], but for the laser diode device ultimately under consideration in this thesis, 

low temperature considerations are for the most part irrelevant. Thus, the weight of 

evidence supports equation (2.31).

A variety of values have been reported for an expression describing the 

correlation of the aluminium content and the energy gap of the indirect X-minimum

[17.26], in this study, an aluminium dependent expression determined from recent 

photoluminescence excitation measurements conducted by Krijn et al. [27], has been 

employed, namely

EgX = 2.242 + 0.022*. (2.32)

Here again, * refers to the aluminium content present within the AlGalnP alloy. As 

stated earlier, equations (2.31) and (2.32) have been plotted as the aluminium content 

is increased from 0 to 1 in Figure 2.11 above. It can be deduced from Figure 2.11, that 

the maximum difference in T-point energy across the full range of aluminium content 

is approximately 0.6eV, this magnitude is relatively small when compared with 

maximum difference of approximately 1.3eV for a corresponding band in the AlGaAs 

material system. Consequently, when a hetero-structure is formed by whatever band 

line-up mechanism, it is an inevitable result that the structure will exhibit small 

conduction and valence band offsets in comparison with other materials used to 

fabricate laser diodes. The method used to deduce the band line-ups to produce 

hetero-structure is presented in Chapter 4.

Figure 2.11 also indicates that there is a conduction band crossover point 

occurs at an aluminium content of approximately 0.56. Above this value the AlGalnP 

semiconductor switches from a direct to an indirect semiconductor. To produce 

hetero-structures such as a simple potential barrier in the AlGalnP material system, 

typically a low aluminium content such as 0.3 is used to define a well region and a 

high aluminium content of 0.7 is used to create the barrier. From Figure 2.11, it is 

evident that the lowest minima in the well regions is the T-point and the X-point in
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the barrier region, this fact gives rise to the possibility of elastic electron scattering 

events taking place between the two minima. Suggesting an incident T-electron on the 

aforementioned potential barrier may traverse it by means of switching to the lowest 

lying minima in each material region. A full account of the transmission routes 

available to an incident T-electron on a similar potential barrier constructed from 

AlGalnP alloys is discussed in more depth in Chapter 4 of this thesis.

The next sub-section details the expressions used in the remainder of this 

thesis to determine all the relevant material parameters for the GalnP and AlGalnP 

alloys.

2.6.2 Material Parameter List

Below is a list of all the material parameters used throughout the following 

discussion for the GalnP and AlGalnP semiconductor alloys. All the values shown are 

at present the best estimates for the particular material parameter and if possible a 

relevant reference is also given.

The material parameters for the Gajn/.^P semiconductor alloy are as follows 

where x refers to the gallium content:

Energy Band-Gaps (eV)

GalnP

E gr = 1.34 +0.69*+ 0.48*2 [17] 

E g x = 2.26 [17]

(2.33)

(2.34)

Effective Masses

meY = 0.064 + 0.086x [17] 

m *ex ~ 0-6 [17] 

m\ =0.6 + 0.19* [17]

(2.35)

(2.36)

(2.37)

Bulk Mobility (cm2V 1s~1}

Mer  = 600 [17] 

Hex =100 [17] 

Hh =170 [17]

(2.38)

(2.39)

(2.40)
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Relative Permittivity {Fm'1)

s r = * 0 (12.5-1.4*) [17] (2.41)

where £o is the permittivity in a vacuum.

Electron Affinity (eV)

X = 4.38-0.58* [28] (2.42)

AlGalnP

The material parameters for the (AhGa/.^Iny.^P semiconductor alloy lattice 

matched to GaAs are as follows where * refers to the aluminium content:

Energy Band-Gaps (eV)

E  = 1.91 + 0.61* [18] (2.43)
o T

E r = 2.242 + 0.022* [28] (2.44)
® X

Effective Masses

m*eT = 0.1079 + 0.036* [28] (2.45)

meX = 0.35 [28] (2.46)

mk = 0.4443 + 0.015* [28] (2.47)

Bulk Mobility (cm2V 1s~1)

p eY =525-100* [28] (2.48)

Mex = 170 [29] (2.49)

Mh = 7 [29] (2.50)

Relative Permittivity {Fm'1)

s r = e Q(l 1.76-0.954*) [4] (2.51)

where £q is the permittivity in a vacuum (i.e. 8.854187817xlO‘12Fm_1)

Electron Affinity (eV)

X  = 4.07 +1.424 + 7.2 + 0.25* -  6.92 -  EgY [28] (2.52)
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2.7 Summary

This Chapter starts with a review of electronic energies of a crystal. A 

mathematical formalism was derived that revealed electrons within a periodic crystal 

exist in bands of allowed and forbidden states. This idea is extended in the following 

Chapter to specifically look at analogous bands that exist in periodic semiconductor 

hetero-structures. From the existence of such allowed and forbidden bands, crystals 

were categorised into three main groups namely, metals, insulators and 

semiconductors. The following Section briefly described some fundamental 

semiconductor properties such as, energy band structures in which a distinction was 

made between direct and indirect band-gap semiconductors. Also, touched upon were 

semiconductor recombination, effective masses, doping of semiconductors and 

semiconductor alloys and hetero-structures.

In Section 2.5, a brief overview of the construction and operation of a general 

quantum well laser diode was given. Within this Section it was highlighted that such 

devices are constructed from many different material layers, each of which as a 

specific task to ensure optimum performance.

The final Section of this Chapter, briefly commented upon two of the main 

issues surrounding red emitting laser diodes, namely, inherently small conduction 

band discontinuities and the possibility of inter-valley transport due conduction band 

crossover between the V and X minima. It was established by means of an energy 

band-gap diagram, that both these problems are intrinsically associated with the 

semiconductor material used to construct such devices. The latter part of this Section 

all relevant material parameters of the AlGalnP and GalnP semiconductors used to 

simulate red emitting were listed and references to their origin given.

In the following Chapter a step back is taken in order to build-up an 

understanding of the origin of coupled electron states emerging from closely 

positioned quantum well systems. The coupling effect initiates minibands of allowed 

and non-allowed electron states across the multi-layered structure in a similar manner 

to that predicted in a crystal as shown in Section 2.2 of this Chapter. Chapter 3, goes 

on to look at implementing such a multi-layered structure within a 630nm laser device 

to increase carrier confinement within the active region and hence address the issue of 

small conduction band offsets evident in AlGalnP hetero-structures. The issue of 

multi-valley transport is addressed in Chapter 4.
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Chapter 3

Quantum Structures

3.1 Introduction
In the preceding Chapter an analytical model was presented that predicted 

bands of allowed and forbidden electron energy regions present in a periodic crystal 

lattice. A similar effect is present in periodic semiconductor hetero-structures, or so- 

called superlattices. Introduction of a superlattice potential perturbs the band structure 

of the host material, since the superlattice period is much longer than the original 

lattice constant. Consequently, the Brillouin zone is divided into a series of minizones, 

giving rise to narrow subbands, separated by forbidden regions analogous to the 

Kronig-Penny band model [1,2] for the conduction or valence band of the host crystal.

Also, previously discussed, was the fact that laser diodes constructed from the 

AlGalnP alloy suffer from small conduction band offsets. These confining potentials 

offer little hindrance to electrons injected into the active region of the device, and as a 

result a vast majority escape into the cladding regions of the device to produce high 

leakage currents.

It was postulated by Iga et al. [3] that implementation of a superlattice 

structure into the jo-doped cladding region immediately adjacent to the active region, 

might increase carrier confinement if a miniband of non-allowed electron states could 

be placed upon the intrinsic barrier height, which may be achieved by tuning the 

superlattice parameters. This situation would result in an effective increase to the
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height of the conduction band offset, thus amplifying the confinement characteristics 

and giving rise to an improved lasing action.

Thus, the aims of this Chapter are to firstly show, how the minibands of 

allowed and forbidden energy states arise from coupling of electron wavefunctions 

between closely positioned quantum wells. And secondly, indicate why embedding a 

superlattice structure within a laser diode may enable improved lasing performance at 

elevated temperatures.

Therefore, the structure of the following chapter is as follows; in Section 3.2, a 

brief introduction to quantum wells is given. Next, solutions to the infinite and finite 

quantum well systems in Sections 3.3 and 3.4 respectively are described. 

Additionally, Section 3.4 introduces the reduced electron wavefunction traditionally 

employed in quantum well analysis, namely, the mass-envelope wavefunction [4]. 

Furthermore, the boundary conditions needed to evaluate the mass-envelope 

wavefunction across a hetero-interface are discussed.

The issue of wavefunction coupling between closely positioned wells is 

discussed in Section 3.5 using a simplified tight binding approximation. The idea of 

coupled wells is extended to a multi-layered structure (i.e. the multi-quantum barrier 

(MQB)) in sub-section 3.5.2, from which it is possible to infer the existence of 

discrete bands of allowed and forbidden eigenenergies stretching across the 

superlattice.

Section 3.6, discusses how such multi-layered structures embedded within the 

active region of a laser diode may generate increased carrier confinement, as a direct 

consequence of fortuitous positioning of the forbidden electron states. Theoretical 

work already conducted is also acknowledged within this Section. The Chapter closes 

with a summary and a list of all referenced articles in Section 3.7 and 3.8 respectively.

3.2 Quantum Wells

The single most useful quantum-confined structure in opto-electronics is 

arguably the quantum well. The quantum well is a sandwich made of a thin (~7nm) 

layer of a narrower band gap semiconductor, surrounded by two wider band gap 

semiconductor layers, showing type-I band line up [5,6] (i.e., with the energy 

minimum for electrons and holes occurring in the narrower band gap semiconductor).
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The conduction and valence band profile of a quantum well structure are shown 

schematically in Figure 3.1 where the effects of band bending have been ignored. The 

conduction and valence band discontinuities between the two semiconductors provide 

the quantum well.

Potential well for 
electrons

Conduction band 
edge

Wider band gap Narrower band gap 
material material

Valence band edge 

Potential well for holes

Figure 3.1: Schematic diagram of a quantum well structure, illustrating the formation of 
the well, by enclosing a narrow band gap semiconductor material by two wider 
semiconductor materials.

Hence, the narrower band gap layer in the above structure is a potential well 

for both electrons and holes, both of which will find lower energy in that layer. If the 

layer is made sufficiently thin, quantum effects also become apparent. For layers of 

thickness ~ 1 0 nm, for example, these quantum effects are very obvious even at room 

temperature in typical semiconductors. The essence of the quantum effects can be 

understood qualitatively, and approximately quantitatively, through the simple 

infinitely deep quantum well model (see Section 3.3).

Quantum wells and related structures have a broad range of uses [7,8,9,10]. 

The use of quantum wells in some existing devices, such as laser diodes and some 

kinds of photodetectors, can lead to improved device performance. In other cases, 

such as quantum well modulators, inter-subband detectors, and quantum-cascade 

lasers, they make possible devices without analogs in bulk materials. They also can be 

used simply to adjust the effective band gap of materials without changing the 

underlying material compositions, an option that is useful especially when the 

material growth is constrained by lattice matching requirements [1 1 ].
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Because quantum-confined structures can be made relatively easily when one is 

growing hetero-structures using modem growth techniques [12], they have become a 

routine part of many advanced opto-electronic device structures, and they can be 

combined with mirrors, waveguides, transistors, and other optical and electronic 

structures. They have arguably revolutionised the opportunities for opto-electronics 

devices and systems. Figure 3.2 shows a scanning tunnelling microscopy (STM) 

image of an InP/InGaAs/InP quantum well structure published previously by Mitchell 

et al. [13],

— 1 nm

InGaAs

Figure 3.2: Atom ically sharp STM  image o f a quantum  well, published by M itchell e t  al. [13].

3.3 The Infinite Quantum W ell

To understand the infinite quantum well model, it is convenient to consider the 

simplest case i.e. that of a particle, of mass m, in a spatially varying potential V(x) in 

the x direction. For this discussion it is not essential to consider the fact that in a real 

structure the particle may also be free to move in the y  and z directions. In fact, that 

motion can be considered separately and its consequences added in later, strictly, the 

quantum-mechanical problem is separable mathematically in the three dimensions.

45



Thus, the (time independent) Schrodinger’s equation for the particle’s motion in the x 

direction is

+ V (x ) ax )  = EC(x) (3.1)

where E  is the energy of the particle and £{x) is the wavefunction.

In this particular case, the thickness of the well and the value of V in the well 

are chosen to be Lx and zero respectively. On the either side of the well (i.e. for x  < 0 

or x > Lx), the potential, F, is presumed infinitely high. Because these potentials are 

infinitely high, although the particles energy E  is finite, there can be no possibility of 

finding the particle outside the well; if this case were true, there would be a finite 

probability of the particle being in a region of infinite energy, which would mean the 

particle would have infinite energy. Hence, the wavefunction, of the particle must 

be zero at the walls of the well. Formally putting the infinite potential into equation

(3.1), gives

within the well, subject to the boundary conditions

The solution to equation (3.2) is very simple. Explicitly, the eigenfunctions are

C, = 0 at x = 0 ,LX (3.3)

nnx

\  j
(3.4)

where An is a normalisation constant and the associated eigenenergies are

(3.5)
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The index n is a positive integer, i.e. n = 1,2,....

The first three energy levels and wavefunctions are calculated and shown below

Figure 3.3: Infinite quantum  well, which shows the calculated eigenvalues (dotted  
lines) and their corresponding eigenfunctions (full line) for a well w idth o f 50A.

There are several basic points about quantum confinement that emerge from 

this classic particle-in-a-box behaviour characteristic of such quantum-confined 

systems. First, there is a minimum possible energy for the particle that is above the 

classical energy associated with the bottom of the well, i.e. corresponding to n = 1. 

(One might think that n = 0 would have zero energy, but since the wavefunction has 

to be zero at the well walls, the corresponding wavefunction will be zero everywhere, 

so this is not a physically meaningful state). States corresponding to negative n are not 

distinct from their positive counterpart, and hence do not need to be considered. The 

zero-point energy leads to one of the simple uses of quantum wells and related 

quantum-confined structures, i.e. it is possible to change the effective position of the 

band edge or the effective size of the band gap by alteration of the layer thickness, 

without changing material composition.

Secondly, the quantum-confinement energies, En, grow quite rapidly 

(quadratically in this case) as the thickness, Lx, is reduced. In practice this means that 

the quantum confinement tends to become important at a particular size scale, with a 

relatively abrupt onset; in semiconductors, this size scale for strong effects at room 

temperature tends to be around 1 Onm.
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A third point is that, in quantum-confined semiconductors structures, the 

quantum mechanical properties has to be somewhat different compared to bulk 

crystalline semiconductors. In the bulk materials, there are A-states as the eigenstates, 

which are momentum eigenstates corresponding to travelling waves going in 

particular directions. In the quantum-confined system, the eigenstates are generally 

standing waves, and the quantum number describing this behaviour in the quantum- 

confined direction is now n, where as before it was kx.

Another very important point about quantum-confinement effects is that the 

eigenenergies become larger as the mass of the particle is reduced, a fact that is 

particularly important for semiconductors where exploitation of small effective 

masses to get large quantum confinement effects is envisaged. In semiconductors, the 

quantum confinement can act on the ‘envelope function’ (see Section 3.4.1) and be 

based on the effective mass rather than the electron mass. Because, in particular, the 

electron effective mass can be relatively quite small, and subsequently the quantum 

confinement effect can be a particularly strong.

3.4 Semiconductor Quantum Wells

There are several differences in the semiconductor quantum well compared to 

the idealised ‘particle-in-a-box’ scenario. Firstly, the wavefunction of the particle in 

question is described by an envelope wavefunction, which is an approximation to the 

particles full wavefunction. Secondly, the quantum well will have only a finite depth.

3.4.1 Envelope functions

When considering wavefunctions in bulk semiconductors, it is standard to 

employ the Bloch formalism [14], i.e.:

£k (r) = “k (r) exp(/k • r ) . (3.6)

This follows from the fact that the semiconductor is a non-uniform crystal. When the 

only potential of interest or importance is strictly a periodic potential from the 

perfectly crystalline structure of the material, this Bloch form is correct, and is a
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rigorous solution to Schrodinger’s equation in the crystal. In many situations of 

interest, there are other potentials that are not necessarily completely periodic 

throughout the crystal. It is obvious in the case of a simple quantum well 

heterostructure, for example, that the potential does not repeat exactly every unit cell; 

some of the unit cells are different from the others because they are made of differing 

materials.

In general, it is possible to consider wk (r) as being the unit cell part of the 

wavefunction, and exp(zk-r) as being one example of an envelope function. In 

addition to the case of hetero-structures, there are several other situations where 

interest lies not simply in the perfect empty crystal, but in additional perturbations to 

the crystal by way of excitons for example, which lead to other forms of wavefunction

[2]. In many cases, however, the resulting wavefunctions can still be approximately, 

but usefully, written in similar form, especially where the perturbation is not large 

over a unit cell. Then it is possible to approximately separate the wavefunction into 

some envelope that is slowly varying over the unit cell, and that multiplies a unit cell 

function. Such an approach is labelled a ‘slowly-varying envelope function 

approximation’.

In this approximation, the wavefunction is written in the form

Z(r) = «(r)^„v(r) (3.7)

where Z(r) represents the actual electron or hole wavefunction, u{r) is an appropriate 

unit cell function, and <£>nv(r) is the envelope function. In quantum wells and similar 

structures, it is a valid assumption to work with such envelope functions rather than 

the full wavefunctions, and also to treat the particles as having effective masses. In the 

case of hetero-structures, the potential perturbation can be non-trivial at the interface 

between materials, but, with suitable boundary conditions, the envelope function 

approximation is still applicable. These presumptions can be justified to some extent 

by the effective mass approximation [15,16,17], which is detailed below. In the case 

of hetero-structures, the envelope function approach works much better than perhaps 

first envisaged; it is an effective and relatively accurate model, even in quite extreme 

situations where it might be expected to fail completely (e.g., for layers only a few 

unit cells thick inside a hetero-structure).
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3.4.2 The Finite Quantum Well

In practice, the barriers on either side of a quantum well are finite. In the 

semiconductor, they are generally as high as the appropriate band discontinuity 

between well and barrier material. This finite height introduces one other very 

important phenomenon, which is tunnelling of the wavefunction into the barrier 

material.

Returning to equation (3.1), and considering the situation where the 

eigenenergy, E, is less than the potential energy, V, in some region (as will be the case 

in the barrier on either side of the quantum well if an allowed state lies within the 

quantum well), then, in that region, the Schrodinger’s equation becomes

h2 d2£(x) 
2m dx2

+ = - ( V ( x ) - E K ( x ) (3.8)

where (V (x ) -E )  is positive. Rather than being sinusoidal, the solutions to this 

equation are exponentially varying, i.e.,

( f2 m ( V - E )
n2

+ B exp ]2 m { V - E )
n2

(3.9)

where A and B are constants determined by appropriate boundary conditions and 

normalisation procedures. In general, for a finite quantum well, sinusoidal 

wavefunctions in the well are expected (for states with energies inside the well), and 

exponentially decaying wavefunctions into the barrier regions. Though the solutions 

for the wavefunctions inside the well are still sinusoidal, the wavefunctions now do 

not, in general, reach zero at the walls of the well and, in general, do not have 

complete sinusoidal periods or half periods in the well.

At this point it would be straightforward to calculate the actual solution for a 

hypothetical quantum well that confines a real electron, by matching boundary 

conditions between the different regions of the quantum well. In the semiconductor 

case, however, it is important to examine the appropriate boundary conditions more 

carefully.
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3.4.3 Boundary Conditions

In the envelope function case, the electrons generally have different effective 

masses in the different materials that make up the structure. This means the boundary 

conditions needed to evolve the wavefunctions across a material interface need to be 

chosen very carefully. In the case of a simple ‘real’ electron, continuity is satisfied 

across a hetero-junction by matching the particular wavefunction, £  and its 

corresponding derivative, d£ jdx  at either side of the hetero-interface. If the mass is 

not the same on the two sides, however, these boundary conditions cause problems. In 

particular, particle current is not conserved. The choice of boundary conditions is still 

a subject of some debate and there are several conditions that will satisfy conservation 

of particle current [17,18].

The difficulty of deciding the correct boundary conditions arises because the 

wavefunctions proper are not dealt with, but their corresponding envelope functions. 

The envelope functions themselves are approximations, which are derived for slowly 

varying conditions, making it difficult to deduce what the boundary conditions should 

be.

Despite these formal complexities, very reasonable practical results, in good 

agreement with experiment, can be attained with the simple envelope function 

boundary conditions. Hence, the envelope function approach is used in the spirit of a 

model rather than the total rigorous theory. In practice, it is quite a reliable model, and 

is very useful for describing many kinds of properties in semiconductor structures, 

including electronic states and optical properties of quantum wells and superlattices

[19].

The most commonly used envelope boundary conditions are:

axY=axY
(3-10)

m (x) dx
1 d((x)

m (x) dx

where m*(x) is the effective mass either side of the material boundary. Presuming in 

the finite quantum well of interest, there are one or more bound states, there exist two 

distinct kinds of regions. In the well material, where E > V a sinusoidal solution is
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found. In the barrier material where E < V, an exponentially decaying solution into 

each wall on either side is supposed. Applying the above boundary conditions 

(equation (3.10)), after some algebra, the solutions for the energies of the states, j ,  of a 

finite quantum well, may be given by

E\\'2 tan

E x!2 cot

E*

1/2
m.
m, O'b ~

(3.11)

n M
1/ 2 "

2 J

1 / 2
m
m

H V b - E j )

where J?,00 is the energy of the lowest state in an infinite well of the same width, Vb is 

the height of the barrier relative to the well, and mw and mb are the effective masses of 

the well and barrier materials respectively.
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Figure 3.4: Graph showing the three lowest eigenenergy solutions to a le V  deep, 50A 
wide quantum  well. The eigenenergies are shown as the dotted lines, w hereas full lines 
denote their corresponding wavefunctions.
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The tan equation refers to even wavefunctions and the co-tan equation refers to odd 

wavefunctions [20,21]. These solutions are not in closed form; the equations (3.11) 

have to be solved numerically to find the eigenenergies, Ej. They do illustrate, 

however, that this finite well problem does have an exact solution. Once the energies 

of the state are known, it is a simple matter to calculate the sinusoidal and exponential 

wavefunctions in the well and barrier, respectively. The result of this analysis is 

illustrated in Figure 3.4 above. Here, the energy eigenvalues (intermittent lines) and 

their corresponding eigenvectors (solid lines) are shown for the three confined 

electron states in a leV potential well of width 50A.

3.5 Coupling between Quantum Wells

Hitherto, an isolation quantum well has only been considered. One of the focal 

points of this dissertation as a whole is to examine the consequences arising from the 

implementation of a multi-layered quantum well structure within a p-i-n laser device. 

Thus, in the following sub-sections, the coupling effect that occurs between two 

closely positioned quantum wells is outlined. Following this, the miniband effect 

(comprising of allowed and non-allowed electron states [2 2 ]), which arises from close 

positioning of many quantum well structures is discussed.

Quantum wells are frequently positioned quite close together [23,24]. If the 

barrier between two adjacent wells is sufficiently thin that there is significant 

tunnelling penetration between wells, then quantum mechanically it is necessary to 

consider them as a coupled system. As a very rough guideline, in most quantum well 

systems used practically, barriers of ~ 1 0 nm or thicker have little coupling (at least in 

the sense of influencing the energy levels), whereas a barrier thickness of ~lnm  will 

probably have very strong coupling between adjacent wells.

Two examples of such coupled systems are the coupled quantum well (a pair 

of quantum wells separated by a thin potential barrier) and the superlattice (multiple 

repetitive layers of adjacently positioned quantum wells and barriers e.g. the MQB or 

the MQW).
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3.5.1 Symmetric Coupled Quantum Well

A particularly simple case to analyse, and one that introduces many of the 

consequences of electronic coupling in quantum well systems, is the symmetric 

coupled quantum well, illustrated below in Figure 3.5(a). Here, the consequences of 

coupling between the two lowest lying energy states are illustrated. If the potentials 

illustrated were considered as, Vief t and Vright, separately (Figures 3.5(b) and (c) 

respectively), each of the quantum wells would have essentially identical 

wavefunctions in the lowest energy level. However, if the two wells are positioned 

less than 100A apart, a composite potential V is formed. By choosing the potential to 

be zero within the barrier material, the expression V = Vieft + Vright may be obtained, 

though the final result does not depend on the location of zero energy.

To illustrate the origin of the coupling behaviour a relatively simple approach 

may be utilised, whereby the coupling between the adjacent wells is not too strong. 

This approach is referred to as the Tight-Binding Model, so-called because its validity 

is most potent, when there is little coupling between adjacent wells, with the electrons 

then being viewed as being tightly bound within a quantum well. Thus, with 

aforementioned choice of energy origin, the Hamiltonian for this system may be given 

by the expression

—  h2 d 2
H  = - - = - r  + V,+V2. (3.12)

2 m dx2 ' 2

The wavefunctions in the isolated wells, Qeft and fright, are chosen to be the basis state, 

on the presumption that all other states are at such different energies and have such 

different forms of wavefunction that there will be negligible blends of them in the 

final results, at least approximately. Hence the wavefunction in this problem may be 

written approximately in the form

£  = (3.13)

This yields the following form of Schrodinger’s equation

Pi2 d2 

2m dx2
+ K + K ’ right left ' right - (3.14)
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Equation (3.14) may be recast in matrix form by pre-multiplying each side by the 

appropriate basis functions and integrating over distance, to obtain

’  Ex -A E a a
= E

- A E Ex -
b b_

(3.15)

(a) (b)

2aE

Figure 3.5: Schem atic illustration of a coupled quantum  well, showing the two-coupled states 
formed from  the lowest states isolated wells. The lower state is sym m etric, and the upper 
state is anti-sym m etric.

Here, E\ is the energy of the first state in the isolated well, and explicitly

A E = - \ C flHt;,lghtd(3.16)

where x, is the horizontal distance coordinate in Figure 3.5. (For simplicity, the 

wavefunctions are assumed to be real-valued). The minus sign is used in the definition 

of equation (3.16) because the result of the integral itself will be negative, given the 

choice of energy origin. In this approximation the following terms have been 

neglected

and f c eJtV2Crlgtld x . (3.17)
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At the positions where V2 is non-zero, the first integrand is proportional to the square 

of the amplitude of the tail of the Qeft wavefunction, which is very weak, and similarly 

for the second integral.

The energy eigenvalues of equation (3.15) are deduced by setting

det
Ex- E  -  AE 
-A E Ex- E

= 0 (3.18)

to obtain

E  = Ei ±A E .  (3.19)

Within the above approximations, the coupling between the wells splits the energy 

levels, approximately symmetrically about the original single well energy E\. By 

substituting the eigenvalues back into equation (3.15) it is possible to deduce their 

associated normalised wavefunctions

These wavefunctions are calculated and shown in Figure 3.5(d). The lower energy 

state is associated with a symmetric linear combination of the single well 

eigenfunctions (i.e. the wavefunction has the same sign in both wells), and the upper 

state is associated with the anti-symmetric combination (i.e., the wavefunction has the 

opposite sign in the two wells). Thus, it is not a valid assumption now to view the 

states as corresponding to an electron in the left or an electron in the right well; in 

both states the electron is equally in both wells.

3.5.2 Superlattices

If multiple quantum well systems are placed adjacently in a periodic manner, 

this gives rise to a so-called superlattice structure. Semiconductor superlattice 

structures can have two different definitions. Crystallographically, a superlattice 

would be any lattice of lattices. Any periodic arrangement of semiconductor layers
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would then be a superlattice. If a large number of quantum wells were evenly spaced 

with thick barriers, the structure would be crystallographically a superlattice, but, 

because of the thick barriers, the electronic states would be essentially those of many 

isolated quantum wells, and this is referred as a multiquantum well (MQW) structure.

Figure 3.6: Schem atic illustration of a superlattice. The red mesh region 
indicates the miniband of allowed energy states. One of the possible MQB  
w avefunctions is shown.

Alternatively, if the potential barriers separating the quantum well layers were 

sufficiently thin, strong quantum mechanical coupling between the layers would be 

evident (just as in the coupled quantum well system above), subsequently the 

electronic states would be substantially different. In fact, such a structure, known as a 

multiquantum barrier (MQB), gives rise to minibands of allowed and forbidden 

coupled states, analogous to that which arise when considering a regular arrangement 

of atoms or molecules in crystals [1,2].

As previously stated the multi-quantum barrier is the one of the major focal 

points of this dissertation; hence, in the following sub-section a detailed analysis of 

this type o f superlattice is considered, rather than the crystallographic one. A MQB 

superlattice is illustrated above in Figure 3.6, illustrating the position of a miniband of 

allowed energy levels, and one representative wavefunction. There is a clear link in 

the properties of superlattices and those of coupled quantum wells, this can be made 

explicit by constructing a tight-binding model of a superlattice.
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3.5.3 Superlattices -  Tight-Binding Model

As mentioned earlier, the tight-binding model works well as long as the 

coupling is not too strong between adjacent wells. The treatment for analysis of a 

superlattice follows exactly the approach of the tight-binding model sometimes used 

to analyse electron states and bands in crystals [1,2]. The only difference being in this 

case the envelope function is considered rather than the true wavefunction itself.

Elementary solid-state physics predicts that the allowed wavefunctions in a 

periodic potential take on the Bloch form, which for the true wavefunction in a crystal 

can be written as

4k(r) = uk(r) exp(ik • r ) (3.21)

where wk(r) has the periodicity of the crystal lattice. In other words, the electron 

wavefunction £k (r), is the product of a unit cell wavefunction, uk (r), that is the 

same in every unit cell, repeating throughout the entire crystal, and a plane wave 

exp(z'k • r ) . The Bloch theorem comes from the presumption that the wave in a crystal 

must obey periodic boundary conditions. In the case of the superlattice, the envelope 

function must have a Bloch form because it must be a solution in this periodic 

superlattice potential. The approach of the tight-binding model is to assert that, 

because the coupling is presumed weak between adjacent wells (or unit cells), the unit 

cell function will be taken to be the unperturbed atomic function. In the superlattice 

case, the equivalent statement is that the unit cell function will be at the isolated well 

(i.e., one of the wells from the set of wells that make up the superlattice, considered 

on its own). This is equivalent to the statement that all other states are at different 

energies and have different forms of wavefunction, such that there will be negligible 

admixtures of them in the final results. Hence, these are omitted from the basis set of 

functions used to address this problem; thus, the basis set will be the isolated well 

functions for each of the wells in the superlattice. Thus, this is an analogous but 

extended procedure, to that followed in sub-section 3.5.1 when the coupled quantum 

well case was considered.

For notational purposes, it is presumed there are N  periods within the 

superlattice, where the envelope function in the Bloch formalism is given by
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(3.22)

Here, Xj is the position of the centre of a given well in the superlattice, and Qw(x) is the 

wavefunction in the isolated well. K  can take on the values

where asi is the superlattice period or repeat distance. Equation (3.22) is in a slightly 

different form from equation (3.21) above, because the unit cell function is not 

periodic throughout the crystal, but still satisfies the fundamental Bloch condition

for any translation T, of an integer number of superlattice periods, as is easily 

confirmed by direct substitution into equation (3.22).

Given the above assumptions, it is apparent that these Bloch functions must be 

energy eigenfunctions of the problem, within the approximations. The energy 

eigenfunctions have to be in Bloch form as the potential is periodic, also, it has been 

explicitly presumed that none of the other possible single well basis functions matter 

(e.g., the second level of a given quantum well is not important here for calculating 

these properties associated with the first quantum level). Furthermore, a linear 

combination of the single well basis functions has been constructed using the Bloch 

formalism.

The Hamiltonian for this problem is a simple extension of the Hamiltonian for 

the previous scenario, except now the potentials corresponding to each individual well 

in the superlattice are added in (as before, the top of the barriers is referenced to zero 

energy). Therefore, the following Hamiltonian may describe the N  well superlattice

(3.23)

£k(x + T) = exv(iKTKk(x) (3.24)

2m dx2
(3.25)
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It is now possible to evaluate the energy of any of these Bloch functions, where there 

are Ek energy states, i.e.

Ek = \C (x )H £ t (x)dx. (3.26)

Here, it is presumed that the wavefunctions are normalised (which will be the case if 

the single well wavefunction is normalised). Substituting the wavefunction from 

equation (3.22) into equation (3.26), gives

E k =  ~  x p ) f c , » ( x  -  x P )H ( J x  -  x , ) d x  (3-2?)
j  p

where for simplicity, the isolated wavefunction Qw, is chosen to be real. Taking a 

nearest neighbour approximation, for any given lattice period j  (i.e. centered on xj), 

the only integrals that survive will be those where xp = xj (i.e. same well terms) or 

those with xp = xj ± asi (adjacent well terms). Since, by assumption, the isolated well 

wavefunctions \ îw are too small to give any significant contributions once a well more 

than one period away is considered.

Summing over j  simply reduces to a factor N  if all of the integrals are assumed 

the same regardless of the initial superlattice period position, yielding

Et = exp(-iKasl) f e :J x  + ad)H i; jx )d x

+ ^ J x m , J x ) d x  (3.28)

+ exp (iKasl) fc,„(x -  a„)H(lw(x)dx

The individual integrals are now the same as the ones dealt with for the coupled 

quantum well system earlier in Section 3.5.1. Utilising the same approximations, 

gives

AE = - ^ J x  + as, )H£,„ (x)dx = - \ i „ ( x -  a„ (x)dx (3.29)

as previously calculated in equation (3.17), and
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f £ J x ) H £ J x ) d x  = E1 (3.30)

for the first energy level in the isolated well. Evaluating equation (3.28) yields

Ek =E1-  2AEcos(Kasl) . (3.31)

Equation (3.31) predicts a miniband of states, of total width 4AE. The lowest energy 

value for K  = 0, at E} -  2AE, corresponds to the wavefunctions in the adjacent wells 

having the same sign, where the highest value occurs for K  = ±Jt/asl, which

corresponds to the wavefunctions in adjacent wells having opposite signs. The 

superlattice miniband width is twice the separation of the levels in the coupled 

quantum well, since in the superlattice case it is possible to couple both to a well on 

the left and right-hand sides.

3.6 Embedded MQB Applications
In the preceding Section, a physical understanding that permits an approximate 

mathematical description, of the allowed and non-allowed electron energy states 

apparent across a MQB superlattice was presented. In the following sub-sections it is 

highlighted why implementation of such structures are able to improve carrier 

confinement in laser diodes, subsequently increasing device performance at elevated 

temperatures. Also, theoretical and experimental work previously achieved by other 

authors in the AlGalnP diode lasers research field is reviewed.

3.6.1 MQB Application to a Laser Diodes

In Section 2.6 of the previous Chapter, it was highlighted that visible 630nm 

laser diodes comprised of the AlGalnP material system have intrinsically low 

confining potential barriers [25,26,27,28]. The efficiency of these barriers to retain 

electrons has increasingly little impact as the temperature of the device is increased 

(i.e. at applied bias) as lattice vibrations impart a supplementary thermal energy to the 

electrons entering the active region for recombination. The additional energy gain 

allows a high percentage of hot electrons to overcome the small inherent confining
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potential and escape into the cladding regions of the device, subsequently giving rise 

to high leakage currents [29,30] and breakdown of the laser diode.

This process is illustrated schematically in Figure 3.7(a). Here, a conduction 

band profile of the active region and immediate surrounding cladding regions of a 

laser device are shown under flatband conditions. An electron injected from the /r-type 

cladding region into the active region is depicted. The incident electron has an energy 

slightly greater in magnitude than the confining potential barrier, U, in the /?-type 

cladding region. Hence, the electron surmounts the barrier and passes into the p-doped 

region of the device adding to a thermal leakage current.

Intrinsically doped 

active region

ft-doped 

cladding region

MQB and /?-doped 

cladding regions

Figure 3.7: Illustration of the M QB effect on an electron injected from n-type cladding region. 
In (a) the electron has sufficient energy to escape from the active region by overcom ing the 
inherently low conduction band barrier, (b) Im plem entation of a M QB into the /7-doped 
cladding region through a quantum  m echanical interference effect effectively enhances the 
conduction band offset such that the incident electron is now reflected back into the active 
region o f the device.

However, in 1986 Iga et al. [3] envisaged that MQB superlattices could be 

implemented within the active regions of light-emitting devices to enhance carrier and 

optical confinement. The physical idea behind this proposal was that through astute
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tuning of the superlattice periods, it would be possible position a band of non-allowed 

electron energy states upon the existing intrinsic barrier maximum, U, (as illustrated 

in Figure 3.7(b)). This subsequently results in an effective increase, Ue, to the intrinsic 

barrier height. This suggests classically, that any incident electron must possess at 

least an energy greater then U+Ue to negotiate its way over the augmented confining 

barrier as apposed to U previously. Theoretical enhancements of this nature have been 

reported to be in excess of 30% the original barrier height [3,31], indicating why 

implementation of superlattice structures into AlGalnP laser diodes is such an 

attractive prospect.

The effective enhancement to the intrinsic barrier height can most easily be 

theoretically determined by calculation of the quantum mechanical reflection 

probability of the structure; this process is discussed in the following Chapter. The 

outcome of this numerical analysis is a reflectivity plot similar to the one shown 

below in Figure 3.8.
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Figure 3.8: An exam ple of a reflection probability plot indicating an enhancem ent, Ue to 
the natural barrier height, U.

The reflectivity spectra displayed in Figure 3.8 shows the extent of the effective 

enhancement, Ue, resulting from a band of non-allowed electron states being 

positioned directly upon the intrinsic barrier height, U.
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3.6.2 Previous Work

Hitherto, there has been much theoretical and experimental work regarding the 

implementation of superlattice structures within laser devices. Initially, the majority 

of work has focused on GalnAsP/InP and GaAs/AlGaAs material systems [23,32,33], 

which are capable of dispensing wavelengths in the infrared regime. Theoretical work 

in this field has predicted high effective enhancements to the intrinsic barrier heights 

consequently reducing thermionic leakage currents. Experimental work by Takagi et 

al. and Kishino et al. when attempting to verify theoretical predictions found fruitful 

evidence when analysing comparisons between the reflectivity of a bulk barrier and a 

MQB were investigated [34,35]. Takagi found that the effective enhancement of the 

MQB almost matched that predicted by theory in devices comprised of the 

aforemented materials.

The increasing complexity of devices has developed in parallel with the 

improved sophistication of the growth techniques available to produce the structures. 

It is now routine for multi quantum wells (MQW’s) and MQB’s to be included within 

the active region of a laser in addition to the MQB contained within the p -type 

cladding layer [24] in GaAs/AlGaAs laser devices.

Within the last decade or so, authors in this field have reverted to the 

quaternary AlGalnP semiconductor alloy in a bid to produce laser diodes of even 

shorter wavelength, i.e. in the range 600nm to 700nm. If devices of this nature could 

be realised they would have a myriad of potential applications open to them spanning 

both the professional and consumer markets for example, optical memory, laser 

printers and bar code readers.

However, as previously acknowledged in sub-section 3.6.1, the confining 

potentials of AlGalnP barriers are relatively small and consequently laser devices 

constructed of this material suffer from a low characteristic temperatures and high 

threshold currents, making it difficult to operate them at high temperatures. Thus 

embedded MQB structures like that in the GaAs/AlGaAs material system seemed the 

perfect candidate to enhance carrier confinement and improve lasing efficiency of 

such AlGalnP devices.

Most theoretical work looking at the reflective properties of AlGalnP MQB 

structures have focused solely on transport via the direct T-minimum only [16,36,37], 

and have shown that theoretically predicted effective enhancements do not coincide
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favourably with that found experimentally [38,39]. The candidate most authors 

attribute to this discrepancy is elastic inter-valley scattering between the lowest lying 

conduction band minima [36,40]. Scattering of this nature introduces further transport 

mechanisms other than single T-valley transport (see sub-section 4.3.1 in the 

following Chapter).

Experimental work by Bour [9] and Krijn et al. [41] have shown that for low 

aluminium contents the (AlxGai-x)yIni_yP material is direct, however, as the aluminium 

content is increased beyond 0.56 the material becomes indirect. This factor is 

important when constructing an AlGalnP superlattice, where typically the constituent 

potential barriers and wells are constructed from aluminium contents of 0.6-1 and 0.4- 

0 respectively. As illustrated in Figure 2.11 of Section 2.6 in the previous Chapter, T- 

point potential barriers will have a lower lying X-point well within them, and 

similarly, a T-point well will have a X-point barrier situated above it at a higher 

energy. This situation gives rise to the possibility of inter-valley transfer of electrons 

between the two conduction band minima. Hence, there exists a possibility that an 

incident electron will pass through the MQB via the T-band, or the X-band or a 

combination of both these transport modes. Recent experimental evidence reported by 

Blood et al [Error! Bookmark not defined.] confirmed that the dominant leakage 

currents in visible 630nm laser diodes are associated with X-band electrons. Thus, it is 

crucial to include scattering mechanisms that take account of inter-valley transport 

when considering the reflective nature of material systems that exhibit conduction 

band crossover.

3.7 Summary

In the opening Sections of the Chapter, a brief discussion highlighting of the 

continuing importance of quantum well structures to the welfare of the semiconductor 

device industry was presented. In Sections 3.3 and 3.4.2, the eigensolutions to the 

infinite and finite quantum well systems where considered respectively.

Using a simplified tight-binding approximation, the phenomenon of 

wavefunction coupling between adjacently positioned quantum wells, separated by a 

small (less than 100A) potential barrier was investigated. It was deduced that for 

structures of the aforementioned dimension, it is imperative to recognise that
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wavefunctions are strongly coupled, and consequently, they should not be considered 

as an individual electron residing in one well or the other, but as a superposition of 

states residing within both.

The idea of a superlattice structure was considered in sub-section 3.5.2. 

Superlattice structures were categorised into two main genuses; firstly, the 

multiquantum well, which consists of regular quantum well structures isolated from 

each other by thick potential barriers, implying no coupling of states. Secondly, the 

multiquantum barrier or MQB, this consists of quantum wells separated by very 

narrow layers of barrier material. As a consequence of the small widths of the 

potential barriers strong coupling between adjacent quantum wells throughout the 

MQB superlattice is observed. Hence, it was inferred that: (i) there are extended 

states, i.e., states that in principle extend throughout the entire structure rather than 

being confined to individual quantum wells; (ii) there are minibands, ranges of energy 

in which there are allowed states, with mini-bandgaps between them; (iii) the width of 

the minibands depends very much on the coupling between adjacent wells.

The final issue was discussed in Section 3.6, where it was demonstrated how 

application of a judiciously designed MQB, may result in placement of a forbidden 

energy band directly on top of the natural barrier height, which may be viewed sas 

effectively enhancing the intrinsic barrier height. This situation will result in 

amplified carrier confinement, giving increased device performance. Further to this, it 

was suggested that MQB structures would be an ideal candidate to help prevent 

electron loss in AlGalnP visible 630nm laser diodes where huge leakage currents are 

evident due to inherently low conduction band offsets.

However, in sub-section 3.6.2 it was emphasised to numerical model the 

reflectivity probabilities and design MQB structures constructed from the AlGalnP 

alloy, it is essential that elastic scattering processes between the T and X conduction 

band minima are taken into account.

In the following Chapter, a numerical model is presented which determines the 

reflectivity profile of a user-defined MQB structure. The model is built-up in stages; 

firstly, a step back is taken and a single-band Schrodinger solver based on the 

aforementioned mass-envelope function approximation is established. Following this, 

the model is extended to allow inter-valley across material hetero-interfaces. These 

first two stages consider MQB structures in the flatband zero-biased regime, which for
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a first approximation is adequate. However, real MQB structures are to be correctly 

modelled the effects of band bending which occur at applied biases need also be 

accounted for. This matter is dealt with in Chapter 5.
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Chapter 4

Multiquantum Barrier Numerical
Model

4.1 Introduction
The premise of this Chapter is to develop a numerical simulation package able 

to calculate the quantum mechanical reflection probability associated with a user 

defined multiquantum barrier (MQB) reflector. This subsequently will allow any 

effective enhancement to the natural stopping potential barrier arising from extended 

non-allowed electron states (minibands) within the structure to be determined. To 

achieve this task the numerical model describing the path of the electron across the 

MQB reflector has been assembled in stages.

Firstly, transport across the MQB is considered initially to take place via the 

direct T-point alone, consistent with calculations presented by the majority of authors 

in this field. However, in Chapter 2 it was highlighted that the AlGalnP material 

system needed to produce visible wavelengths in the 600 to 700nm regime is subject 

to a conduction band crossover at aluminium contents of 0.56 and above, whereby the 

lowest conduction band minima reverts from the direct T-minimum to the indirect X- 

minimum. Thus, in the second instance the numerical model is adapted to consider the 

possibility of inter-valley transport from the T to the X-valley and visa-versa. To 

simplify the initial analysis all MQB structures in this Chapter are considered under 

flatband zero-biased conditions. In the following Chapters a more realistic conduction 

band is presented where Poisson's equation is solved across the simulation region to 

imitate the effects of band bending present in laser diodes under applied bias.
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Therefore, the structure of this chapter is as follows; in Section 4.2, the 

transfer matrix method (TMM) employed to evolve the wavefunction and its 

derivative of an incident electron in the mass-envelope function approximation and 

solve Schrodinger’s equation across a MQB structure is summarised. This procedure 

is presented for electrons in the direct T-valley only. The TMM is illustrated by 

calculating and comparing the reflection spectra associated with a classical potential 

step, a single potential barrier and a theoretical MQB reflector.

The numerical model is evolved in Section 4.3, to include the additional 

electron transport mechanisms that arise if inter-valley transport between the T and X 

conduction band minima is considered. These transport modes are illustrated across a 

single AlGalnP hetero-barrier structure. To verify the applicability of the improved 

simulation package, the calculated the reflectivity spectra across a single aluminium 

arsenide potential barrier is compared with a more sophisticated psuedo-potential 

technique used on this material system.

Section 4.4 of this Chapter outlines the optimisation procedure utilised 

throughout this investigation to achieve the greatest barrier enhancement through 

astute tuning of the MQB’s periodicity. An additional physical problem associated 

with the AlGalnP material system used to develop 630nm laser diodes is also 

discussed here. This primarily is a growth issue concerning superlattice hetero

interface roughness.

Using the optimisation procedure a single T-band and a novel dual T-X band 

MQB reflector is presented in Section 4.5. Comparison of the reflectivity spectra from 

both MQBs is displayed and some remarks concerning the impact of inter-valley 

transfer on these structures is given.

The Chapter concludes with a summary of the main aspects encountered 

within the above Sections and all cited articles are referenced in Sections 4.6 and 4.7 

respectively.

4.2 Single-Valley Reflectivity Model

In the preceding chapter, it was mathematically deduced that within the 

multiquantum barrier there exist allowed and forbidden energy regions (i.e., 

minibands), analogous to those found in a periodic crystal lattice [1,2]. It was
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established that these minibands originate from wavefunction coupling between 

adjacent well layers, and may extend across the whole superlattice structure. By a 

judicious choice of the superlattice parameters (i.e. material, widths and doping 

values), a miniband of non-allowed energy states may be placed directly upon the 

barrier height maximum enhancing its effective height. As briefly discussed in 

Chapter 3 sub-section 3.6.1, a simple way to determine the effective enhancement 

associated with a particular MQB arrangement is to calculate the reflection and 

transmission probabilities across it for a specified energy spectrum. The reflectivity of 

a MQB is most easily ascertained by utilising the mass-envelope function approach 

[3,4,5] introduced in the previous chapter, in conjunction with the transfer matrix 

method (TMM) [3,4,5], which is briefly outlined in the following Section.

4.2.1 Transfer Matrix Method

In this investigation the electron reflectivity only is evaluated, although the 

following method is equally valid for the calculation of the reflection spectra of holes 

with only one additional requirement concerning the average value of the effective 

mass due the three different valence band maximums. However, very good 

quantitative results can be obtain by considering just the heavy hole mass [2 ].

V(x) = U

V(x) = 0
Cavity Number 1 2 3 4 5 6 n - 1  n

Figure 4.1: Schematic diagram indicating the conduction band of superlattice structure 
comprising of n material layers. The potential of the quantum wells is referenced to zero for 
simplicity and the height of the potential barriers is given by the value U.

To evaluate the reflection probability the one-electron Schrodinger equation 

(equation (4.1)) needs to be solved to determine the wavefunction, £  of the electron.
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h2 8 1 8£(x) ..
2  ax m(x) ax

(4.1)

here h is Plank’s reduced constant, V(x) is piecewise constant potential and has a

is the position dependent effective mass and E  is the total energy of the electron. 

Solution of equation (4.1) may be written as a plane wave and subsequently the 

wavefunctions of the first and second cavities may be expressed as

where A and B are the amplitudes of the incident and reflected waves respectively. 

The wavevector, k, in first cavity can be given by

in the second cavity.

The problem is set-up such that the energy of the electron impinging on the 

MQB structure is always greater than zero. Subsequently, k\ will always be real and 

the wavefunction will be propagating, whilst ki will be imaginary for electron 

energies less than U and real otherwise resulting in wavefunctions that will be 

evanescent and propagating respectively in these energy ranges.

Previously in Chapter 3 Section 3.4, equation (4.1) was applied to a quantum 

well hetero-structure to yield the energy eigenfunctions and eigenvectors of the 

confined electron states within. In this scenario, continuity of the wavefunction and its

value V(x) = U if  the layer number is even and zero otherwise (see Figure 4.1), m*(x)

(4.2)

= A2elklX + B2e-iklX (4.3)

(4.4)

and by

(4.5)
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derivative multiplied by the reciprocal effective mass across a material interface was 

upheld. The same continuity scheme is also adhered to when calculating the quantum 

mechanical reflection probabilities of a particular structure in the mass-envelope 

approximation. Equation (4.6) below gives the continuity condition across the first 

hetero-interface sandwiched between the first and second material layers.

- h 2 (
Si=Ci 

1 ____
m*(x) dx m*2(x) dx

=  0
(4.6)

Expressing the wavefunctions and their corresponding derivatives fully across the first 

material interface the matching conditions above may be given by the following 

matrix equation

j k ] Z

ih1

e~ikiZ
Zj^Leik\z ( A )

1 ^ 1/

j h 2z

V

e
i k 2

-ik2z  ^

-  ik.̂ e iklZ
( 4
A l J

(4.7)

Equation (4.7) may be rewritten more compactly as

M, ( AA  „  ( A \  

A
= M (4.8)

Similar matrix equations may be determined for the material interface between layers 

2 and 3, i.e.,

A = Mi f4l
A ;

(4.9)

Eliminating the coefficients A2 and B2 from equations (4.8) and (4.9) yields

( A) 1 1(4 'i1 = M, M2M, J

A ;
1 1 5

A ;
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By continuing on in this manner the coefficients of the «th layer can be related to 

those of the first via the M  matrices, which transfer information about the 

wavefunction and its derivative at each of the material interfaces across the whole 

MQB structure. It is assumed in this case and all others in this investigation that the 

outgoing (transmitted) wave has no reflected component, which allows the matrix 

equation (equation (4.10)) to be written as

( 4 ) M, M 2M 3~m 4..• . M n

( A ) f1!1 = M
,0,

f1!
' A

(4.11)

and the reflection and transmission coefficients R and T respectively are given by the 

squared modulus of the amplitude coefficients B\ and^i respectively, i.e.

M.21
M n

(4.12)

(4.13)

4.2.2 Reflective Nature of Quantum Structures

To illustrate the above numerical model the reflection probabilities for three 

gallium-arsenide/aluminium-arsnide (GaAs/AlAs) quantum structures under flatband 

zero-biased conditions as shown in Figure 4.2 are analysed. Here, the AlAs 

semiconductor generates the barrier structures and GaAs the quantum wells. There 

exists a conduction band discontinuity, U, of 0.96eV between the GaAs wells and 

AlAs barriers, corresponding to 60% the difference between their respective energy 

gaps [6,7]. The effective electron masses for GaAs and AlAs are taken as 0.063mo [8] 

and 0.15mo [9] respectively, where mo is the rest mass of an electron. Figure 4.2 

schematically illustrates (a) a classical potential barrier, (b) a single potential barrier
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of width 17A and finally, (c) a MQB structure. The individual layer widths of the 

MQB reflector are displayed below in Table 4.1.

(a) (b) (c)

£/=0.96

_ 4 J  — — -J u  U U U U L E C
Figure 4.2: Schematic diagrams of three GaAs/AlAs quantum structures, namely, (a) a 
potential step, (b) a single potential barrier of width 17A and (c) a MQB. In each case the 
barrier and wells are constructed from the AlAs and GaAs semiconductor. The height of the 
conduction band offset between these two materials is taken to be 0.96eV [7,8].

For an infinitely thick potential step, classically all electrons with energy 

below that of the conduction band offset, U, are reflected and conversely electrons 

with an energy greater then U are transmitted over the barrier. This behaviour is 

confirmed numerically in Figure 4.3 where the calculated reflectivity profile is given 

by the black vertical dotted line (here the actual width of the potential step was taken 

to be 3000A).

Layer No. 1 2 3 4 5 6 7 8 9 10 11

Width (A) 56 200 56 28 56 23 56 23 56 17 56

Table 4.1: Individual material layer widths of the MQB reflector displayed in Figure 4.2.

However, for a potential barrier of finite thickness electrons have a finite 

probability traversing the barrier due to quantum mechanical tunnelling through the 

barrier, which can be quite significant at layer widths considered in the next example, 

a barrier of width 17A. The corresponding reflectivity profile of the single potential 

barrier (solid blue line in Figure 4.3) shows an almost immediate drop in reflectivity 

probability as a consequence of the onset of electron transmission across the thin 

barrier layer.

Finally, the third reflection spectra (solid red line in Figure 4.3) calculated for 

the MQB reflector detailed in Table 4.1 indicates an effective potential barrier height 

enhancement, Ue, of approximately 25% to the classical barrier height U. This 

illustrates, why MQB structures are such an attractive solution to the carrier leakage 

problem apparent in many laser diode devices as the discontinuity is effectively
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increased. However, this can only be achieved by astute tuning of the MQB 

periodicity.
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Figure 4.3: Reflection probability profile indicating the reflection spectra o f an incident 
electron im pinging on a classical potential step (black dotted line), a potential barrier 
(blue solid line) and a M QB (red solid line). Each reflectivity profile is normalised with 
respect to the barrier height U.

It is important to note in this example and for reflectivity profiles analysed in 

the remainder of this thesis, the enhancement effect is deduced by finding the 

difference between the leading edge of the reflection probability and the intrinsic 

barrier height, U. The leading edge of the reflectivity spectra refers to the point where 

the reflection probability first falls below a value of 0.99.

4.3 Inter-Valley Transport Model

In Section 2.6 of Chapter 2 the occurrence of conduction band crossover 

between the direct T and indirect X-bands in the AlGalnP material system was 

discussed. This phenomenon arises as a consequence of varying aluminium content in 

the AlGalnP semiconductor, which is necessary to construct the barrier and well 

layers within MQB superlattice. Figure 2.11 illustrated how the magnitude of the 

energy gaps of the T and X-bands varied as a function of aluminium content. At
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aluminium contents of 0.56 or above the AlGalnP material reverts from a direct (T- 

band) semiconductor to an indirect (X-band) one. This fact strongly suggests the 

possibility of carrier exchange between the two conduction band minima at hetero

interfaces. Such inter-valley transport can in principle completely negate the 

enhancement effect posed by the periodicity of the MQB superlattice and is presently 

the overriding favourite to explain the discrepancy in the numerically predicted and 

experimentally observed barrier height enhancements [10,11,12]. Hitherto, a very 

high percentage of authors attempting to model the enhancing effects of MQBs 

constructed from the AlGalnP material system have considered electron transport 

across the superlattice via the direct T-band only [13,14,15]. This presumption has 

recently been proved experimentally to be inaccurate, analysis of the leakage current 

from 630nm laser diode devices by Blood et al  [16] found that the magnitude of the 

electrons mobility corresponds with that of electrons present in the indirect X- 

minimum as opposed to the direct T-minimum as is previously supposed.

In sub-section 4.3.1, analysis a single AlGalnP hetero-barrier structure is 

discussed. This, investigation uncovers two additional modes of transport available to 

an incident electron when elastic inter-valley scattering is considered. Hence, it is 

essential to include these extra transport routes when numerically simulating and 

designing AlGalnP MQB structures for operation in 630nm laser diodes. Therefore, 

sub-section 4.3.2 discusses the necessary modifications to the previously presented 

single band reflectivity model to allow for possible inter-valley scatterings at hetero

junctions in the mass-envelope function approximation. The predicted reflectivity 

profiles from the improved numerical model is compared with that calculated via a 

more sophisticated psuedo-potential technique of Marsh and Inkson [17,18,19] across 

a single aluminium arsnide (AlAs barrier) sandwiched between two gallium arsnide 

(GaAs well) layers in sub-section 4.3.3.

4.3.1 Inter-Valley Transport Modes

Below a (AlxGai-x)yIni_yP potential barrier is presented where the well and 

barrier regions are constructed using aluminium contents of 0.3 and 0.7 respectively. 

Using the appropriate energy gap equations [20,21] and the two-thirds conduction 

band offset approximation [22,23,24] the potential barrier height with respect to the 

T-band is 0.163eV higher than that of the well energy position, which for convenience
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is set to OeV. The positions of the X-minimum with respect to these energies are 

deduced by finding the difference of the T and X energy gaps in each of the respective 

layers. These positions are 0.156eV and 0.083eV in the well and barrier layers 

respectively. This structure is presented below in Figure 4.4(a). Here, the solid dark 

blue line and the red intermittent line denote the T and X conduction band minima 

respectively.

(Alo.3Gao.7)o.5lno.5P (Alo.yGaojb.sIno.sP (MnGao.yVsIno.sP
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Figure 4.4: (a) conduction band edge profiles for both the T and X minima (solid navy and 
dashed red lines respectively), (b), (c) and (d) representations of the direct T and indirect T-X 
transfer tunnelling processes available to an incident electron. Scattering events occur only at 
the hetero-interfaces represented by the vertices Y rx and V xr.

The lower parts of Figure 4.4, i.e. plots (b), (c) and (d) schematically illustrate 

the physical transport mechanisms available to an incident electron. The propagations 

of the T and X electrons are represented by wavy and zig-zag lines respectively in all 

three transfer processes and inter-valley elastic scatterings at material boundaries are 

represented by the two vertices Vrx and VXr-

The first transfer mechanism Figure 4.4(b) represents an incident T electron 

traversing the potential barrier, solely within the T-valley (equivalent to the single

band model encountered in sub-section 4.2.2). Hence, no change in the propagation
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line shape is observed. Electrons with energy less than the X-well minimum in the 

(Alo.7Gao.3)o.5lno.5P alloy can only exist within their original T-state. In this energy 

interval incident electrons have only two transport options open to them, either they 

penetrate the barrier by quantum mechanical tunnelling or they are reflected, there is 

no chance for these electrons to scatter to the X-minimum as it lies at an energy 

higher than they posses.

However, a second mode of transport becomes apparent within the energy 

interval between the bottom of the X-well and the top of the X-barrier (i.e. in the 

energy range 0.083 < E < 0.156 eV). Electrons with energies in this range may 

experience two elastic inter-valley scattering events, firstly, at the Vrx potential 

vertex, where an electron may transfer to the lower X conduction band minimum and 

exist as a quasi-bound state, due to the fact that it is situated with in a well region but 

is still propagating. A second scattering event may occur at the Vxr potential vertex, 

the electron may again revert to the Y minimum, which in the T well region has the 

lower energy minimum. Electron transport of this type gives rise to very sharp 

resonant tunnelling spikes as a consequence of the presence of the quasi-bound states 

in the X-well (see sub-section 4.3.3); these have been experimentally verified in 

single hetero-layered structures of the GaAs/AlAs/GaAs material system where 

conduction band crossover between the T and X minima is also evident [25,26,27,28]. 

This transport process is illustrated in Figure 4.4(c).

The final possible mode of transport illustrated in Figure 4.4(d) is similar to 

the previous mechanism shown in Figure 4.4 (c), in that the incident Y electron reverts 

to the lower lying energy X-valley at the first material interface (i.e. the Vrx potential 

vertex), however, at the second potential vertex, the electron remains within the X- 

band minimum. This transport mechanism is reported to be the dominant mode at 

applied biases in 630nm laser diodes [29], culminating in the previously mentioned 

X-band leakage currents [38].

4.3.2 Dual-Band Schrodinger Numerical Model

There have been various investigations into electron transport across a single 

hetero-barrier structure in an attempt to model or to experimental verify the resonant 

tunnelling mechanism predicted by [17-19,23-26] like that illustrated in Figure 4.4(c). 

Most authors in this field have concentrated their efforts on the GaAs/AlAs/GaAs
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structure shown schematically below in Figure 4.5. This material structure exhibits a 

similar conduction band crossover between the T and X minima like the AlGalnP 

semiconductor. Therefore, the improved numerical model developed in this sub

section is based on a numerical model developed by Lui [30], which originally 

described electron transport across a single GaAs/AlAs/GaAs hetero-barrier taking 

account of inter-valley scatterings.

This model is based on a similar mass-envelope function approximation as 

that of the previously described single-band model (see Section 4.2). This fact 

minimised the numerical algorithm building, as the foundations were previously laid. 

However, this technique is not as physically rigorous as the pusedo-potential method 

proposed by Marsh and Inkson [17-19], but as shown in the following sub-section, the 

calculated reflection spectra correlates very well with that predicted by Marsh and 

Inkson.

GaAs AlAs GaAs

X

_________________  r
Figure 4.5: Schematic diagram of a single AlAs hetero-barrier structure embedded between 
two GaAs well layers. The diagram indicates the relative position of the direct T and indirect 
X-bands in all three material layers.

Thus, to account for potential electron band-to-band transfer at the material 

boundaries an extended effective mass-envelope model has been employed. This 

model amounts to the solution of a coupled set of time-independent Schrodinger 

equations, where transfer between the T and X conduction band minima is mediated 

by off-diagonal elements in a potential energy matrix, and is allowed to occur only 

across material interfaces, whereas the diagonal terms represent pure T and X 

conduction band discontinuities. By employing a spinor like matrix notation the T- 

wavefunction may be described by the upper component, while the lower component 

describes the X-wavefunction. Therefore, for a single heterointerface located at x = 0, 

it is possible to define a 2x2 potential energy matrix of the form
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V(x) =
r Vr (x) aS(x)^ 
a5(x) Vx (x)y

(4.14)

for a two-component (T-X) wavefunction

Z(x) = (4.15)

where a  is the inter-valley mixing parameter, d(x) is the Dirac-delta function, Vr and 

Vx are the band offset discontinuities for the Y and X minima (unless otherwise 

stated, these magnitudes are determined via the method discussed previously in sub

section 2.4.6 of Chapter 2). The off-diagonal terms aS(x) quantify the inter-valley 

transfer potentials (Vrx and Vxr)- In this discussion, the inter-valley mixing parameter 

was positive and real-valued, but in general it could be complex.

Due to the nature of the effective mass envelope approximation the detailed 

shape of the inter-valley transfer potential in the neighbourhood of the heterojunction 

is not important, and hence, a delta-function approach is adequate to describe the 

inter-valley transfers. The coupled Schrodinger’s equation set then reads:

TZ + VZ = EZ (4.16)

where E  is the eigenenergy of the system, T is the kinetic energy operator, and is 

defined to be

T =

n2 d l d
2 dx mT (x) dz 

0 n2 d i
2 dx mx (x) dx

(4.17)

here, h is the reduced Plank’s constant and mr,x are the effective electron masses 

corresponding to the Y and X conduction bands. Matching conditions for the wave
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function and its derivative across a material interface (x = 0) may be given by the 

following expressions:

'C r '
\ £ x ) x=+ 0 V5XA=-o

(4.18)

h2 f 1 d fr 1 dCr \

2 Kmr (x) dx x=+0 m r  ( x )  d x o1IIX

+ a £
X \ x = 0

= 0

(4.19)

n 2 f 1 K x 1
2 mx (x) dx „+o mx(x) dx x=-0 J

+ aCT I = 0

where equation (4.18) is the wavefunction continuity condition, and equation (4.19) is 

obtained by integrating the two Schrodinger equations across the material interface. 

Equations (4.18) and (4.19) are the two-valley equivalent of the single-valley 

continuity conditions given in equation (4.6). To evaluate the above matrix formalism, 

the transfer matrix approach was implemented in a similar fashion to that detailed in 

sub-section 4.2.1.

4.3.3 Verification of Dual-Band Schrodinger Algorithm

To validate the above extended mass-envelope function model, the 

transmission spectra determined from analysis of the electron transport across a single 

GaAs/AlAs/GaAs potential barrier (illustrated below in Figure 4.6) with that of Marsh 

and Inkson [17-19], who investigated the structure using an empirical many band 

psuedo-potential technique.

To be definite, the exact material parameters and conduction band offsets for 

both the T and X bands as used in Marsh and Inkson’s paper [17-19] have been 

adhered to, although these values have since been updated through more sophisticated 

experimental techniques.

The material parameters used in the numerical calculation are the magnitudes 

of the conduction band offsets and effective electron masses for both the Y and X 

minima; these values are displayed below in Table 4.2.
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Parameter GaAs 
r  X

AlAs
r  x

Conduction Band Offset, AEc (eV) 0 0.365 0.88 0.195
Effective Masses (me/m) 0.069 0.169 0.124 0.224

Table 4.2: Material parameters for the GaAs/AlAs/GaAs potential barrier.

Using the above material parameters the total electron transmission spectra 

(i.e. the sum of the T and X band transmission probabilities) has been calculated for 

two potential barrier widths, namely 5.64A and 14.1 A (i.e. 2 and 5 monolayers (1 

monolayer ~ 2.83A)) in conjunction with that presented by Marsh and Inkson [17-19]. 

Furthermore, in these simulations the magnitude of the mixing parameter a  was set to 

a value of 0.155eVA in accordance with experimentally determined value reported by 

Stoner et al[31] for the GaAs/AlAs/GaAs material system.

GaAs AlAs GaAs

OeV

0.88eV

0.365eV

0.195eV

Figure 4.6: Schematic diagram indicating the relative conduction band offsets of the T and X 
minima. All positions of the band edges are referenced with respect to the bottom of the GaAs 
T band.

The first transmission profile associated with the very thin AlAs material layer 

of 5.64A is displayed in Figure 4.7(a). Here, as expected there is a high probability of 

electron transfer across such a thin layer, which sharply increases from the origin as 

the energy of the incident electron energy is increased until an energy equivalent to 

approximately half the barrier height is reached whereby the transmission probability 

plateaus. This general trend would be evident if the transmission spectra were 

calculated using single T-valley model. Actually this behaviour has already been 

indicated in sub-section 4.2.2 in Figure 4.3 where the inverted transmission spectra 

(the reflectivity probability) is displayed by a blue solid line calculated from a single 

thin barrier schematically shown in Figure 4.2(b). However, there are additional
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componenst in the transmission spectra associated in the dual-band Schrodinger 

model, namely the resonant tunnelling spike centred about an electron energy of 

0.34eV.
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Figure 4.7: Comparison of the extended effective mass m odel with the em pirical pseudo
potential model o f M arsh [17-19] for single G aAs/AlAs potential barrier o f thickness (a) 
5.64A and (b) 14.lA.

This sharp transmission feature is a consequence of inter-valley transport across the 

thin AlAs layer, where an incident electron in the T-minimum is elastically scattered
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to the lower lying X-band at the first material interface where it exists as a quasi

bound state in the X-well and is scattered back to the initial T-band at the second 

hetero-interface.

Independent work by Mendez et al  [23,24] and Bonnefoi et al. [25,26] have 

experimentally verified the presence of such resonant peaks for single tunnelling layer 

GaAs\AlAs\GaAs structures validating this theoretical data. Figure 4.7(b) indicates 

similar transmission traits to that of the Figure 4.7(a), but in this case the tunnelling 

probability is less severe due to the increased thickness of the potential barrier. On 

both Figure 4.7(a) and (b) the transmission probability data obtained from Marsh and 

Inkson’s [17-19] theoretical results have been superimposed on the transmission data 

collected from the dual-band Schrodinger model. In general, the extended effective 

mass-envelope approximation demonstrates very good quantitative information in the 

transmission spectra when compared to that of the many band pusedo-potential model 

of Marsh and Inkson. There is however, an underestimation of the predicted 

transmission probability associated with the two differing potential barrier widths 

particularly at higher incident electron energies. This is primarily due to the fact that 

in the author’s calculations, contribution from the two lowest conduction band 

minima is considered only, whereas the model proposed by Marsh and Inkson sums 

over all such minima. Additionally, as a first approximation it has been assumed that 

the shape of the two conduction band minima employed within the model exhibit a 

parabolic behaviour, but in reality the shape of these are different and fairly complex.

Therefore, from the above analysis, it is possible to conclude that the extended 

effective mass-envelope model presented can give very good quantitative information 

of the tunnelling processes present when two conduction band minima overlap.

In the following Section, the optimisation process utilised to design a MQB 

reflector to subsequently give maximum enhancements to the intrinsic conduction 

band offset is discussed.

4.4 MQB Design and Optimisation

In order to achieve optimum reflection of electrons back into the active region 

by means of an embedded MQB structure, it is essential that all the constituent MQB 

parameters be chosen in a methodical way. This systematic process should yield
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maximum effective enhancement to the existing conduction band offset when these 

parameters are combined to form a MQB. Furthermore, for the particular case in 

question, namely, development of a MQB structure via the AlGalnP material system 

it is essential to seek also a ‘stable’ greatest enhancement. Stable in this sense refers to 

the widths of the elemental layers of the MQB. Growth techniques at present are 

unable to repeatedly grow the thin layers of the superlattice with sufficient accuracy 

to fully exploit the reflective nature of the theoretically designed structures. Hence, it 

is imperative that allowances are made when designing such structures and that some 

leeway is made for inaccuracies in experimental layer width. Thus, all optimised 

structures are designed with a layer width tolerance of ±1 monolayer, that is, the 

optimum MQB structures retain their fruitful effective enhancements if their 

superlattice periods are altered either way by a width of one monolayer.

Another growth related problem associated with the AlGalnP material system 

is that concerning the aluminium content in the constituent barrier and well layers of 

MQB. The magnitude of the aluminium content determines the intrinsic height and 

depth of these layers respectively. Hence, it is intuitive to choose a scenario whereby 

the conduction band offset is at the greatest magnitude it can be, however due to inter- 

diffusion of zinc between the barrier and well layers this is not physically a great idea. 

In sub-section 4.4.4 this issue is discussed in greater detail. First the optimisation 

procedure used to design each MQB structure in this thesis is discussed.

The MQB structure has the following variable parameters:

(i) First barrier thickness

(ii) Widths of wells and barriers

(iii) Number of periods

Understanding how the magnitude of the barrier enhancement depends on these 

parameters, is fundamental to the effective and controlled use of a MQB in the 

modification of a conduction band offsets. For simplicity, the following analysis 

considers a MQB structure constructed solely from the T-minimum of the AlGalnP 

material system, and in the flatband zero-bias regime.
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4.4.1 Variation in first barrier width

To prevent low energy electrons from tunnelling through the thin material 

layers of the MQB superlattice, a thick barrier is employed, typically of width several 

times that of the constituent barriers within the superlattice [32]. To assess how the 

probability of electron reflection changes by varying the width of the initial barrier, a 

single (Alo.3Gao.7)o.5hio.5P/(Alo.7Gao.3)o.5hio.5P/(Alo.3Gao.7)o.5lno.5P potential barrier was 

investigated, by altering its width from 20A to 200A (see sub-section 4.4.4 for choice 

of aluminium content in these layers). The results are shown by means of reflectivity 

plots in Figure 4.8. In each of the four reflectivity profiles presented here the incident 

electron energy has been normalised with respect to the height of the potential barrier, 

which in this material set-up has a magnitude of 0.163eV. Hence, a value of one on 

the x-axis in Figure 4.8 is equivalent to the height of the potential barrier in question 

(also, marked by the black intermittent line).
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Figure 4.8: Reflectivity plots for an (AlojGaoAo.sIno.sPTAlo.TGaojiksIno.sP/ (Alo.3Gao.7k 5Ino.5P 
single potential barrier of width (a) 20A, (b) 50A, (c) 150A and (d) 200A. As the barrier 
width is increased further beyond 200A, the reflectivity plot remains unchanged, indicating  
that the maximum  barrier to electron transport has been attained.

As established earlier in sub-sections 4.2.2 and 4.3.2, thin material layers less 

than approximately 100A provide no significant impediment to the electron transfer



through it. This fact is emphasised in Figures 4.8(a) and (b), where the reflectivity 

profiles corresponding to the (AlojGao^o.sIno.sP potential barrier of widths 20A and 

50A are displayed respectively. However, as the barrier is increased further to 150A 

and then to 200A, (Figures 4.8(c) and (d) respectively), the effective barrier height is 

increased as the probability of transmission is reduced due to increased barrier 

thickness (i.e. the leading edge of the reflectivity probability remains at unity for a 

wider energy spectrum). With an initial thick barrier of 150A Figure 4.8(c), the 

energy range of total reflection extends up to the intrinsic barrier height, i.e. unity in 

the normalised representation. However, as the width of the barrier is increased 

further to 200A (Figure 4.8(d)) and beyond, the probability of reflection remains fixed 

at a position equivalent to the intrinsic conduction band offset.

The only observable difference between the last two reflectivity profiles 

Figures 4.8(c) and (d), is that the leading edge of the reflection probability becomes 

increasingly defined as the width of the potential barrier is increased, which again is a 

feature previously noted in sub-section 4.2.2 when considering the reflection 

probability of a classical potential step.

4.4.2 Variation of Superlattice Barrier and Well Width

Altering the widths of the wells and barriers induces an energy shift in the 

position of the allowed and forbidden minibands. If the widths of the barrier and well 

layers are reduced, the positions of the minibands are shifted upward in energy and 

vice-versa. From comparing the condition for interference within both well and 

barrier layers with the solution of a particle in an infinite well [33], the relationship 

between band position and width of well and barrier regions was established to be an 

inverse square law (when considering the T-band only). Hence, it is advantageous to 

have these layers as thin as possible. However, this condition is limited by the 

accuracy and consistency of the growth techniques employed to deliver these material 

layers at present. Thus, in this study a minimum layer width of 42A (15ML) has been 

employed in an attempt to balance the beneficial shifting of the forbidden minibands 

with layer widths that modem growth techniques can reliably produce.
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4.4.3 Variation of Superlattice Periods

In this sub-section the reflection probability is examined as the number of 

superlattice periods varied from two to eight (Figure 4.9). This investigation at first is 

undertaken with no initial thick stopping potential like that previously discussed in 

sub-section 4.4.2. However, at the end of this sub-section an ideal reflectivity profile 

is displayed which is calculated from a MQB structure that incorporates a thick 

stopping potential and an optimum superlattice period number (see Figure 4.10 later).
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Figure 4.9: Reflectivity plots for an (Alo.aGao.TksIno.sP/tAlo.TGaojksIno.sP/CAlojGaojksIno.sP M Q B 
structure consisting o f (a) 2, (b) 4, (c) 6 and (d) 8 superlattice periods. The width of the wells and 
barriers within the superlattice were 15ML. The maximum  num ber of periods was restricted to 8, 
for this study, in accordance with the coherence lim its reported by M endez e t  al. [34].

In practice, it is important to maintain electron coherence across the MQB 

structure to ensure that the allowed and forbidden miniband effect arising form 

coupled electron states do not diverge from what is theoretically assumed. Any 

deviation by off-axis scattering would render the optimised MQB structure 

ineffective. It has been reported by Mendez et al. [34] that electron coherence can be 

maintained at room temperature, through a MQB of total width 1000A obtained for

Regions o fh igh  reflectivity
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the GaAs/AlGaAs material system. However, to the author’s knowledge, no 

experimental data for the electron coherence length in an AlGalnP superlattice is 

currently available. Therefore, for a first approximation an upper limit of eight 

superlattice periods at a total width of no more than 900A (here one period comprises 

a barrier and well layer) was adhered to when designing the superlattice in order to 

maintain electron coherence throughout and avoid losses due to scattering.

Figure 4.9 above, indicates the reflection probabilities calculated by solving 

the one-electron Schrodinger equation across the four superlattice structures, where 

the electron coherence restriction was upheld. Widths of both the constituent 

superlattice wells and barriers are set to an optimum value of 42A (see sub-section 

4.4.2). Superlattice layers thicker than this become increasingly susceptible to X-band 

transfer. Figure 4.9 (a) illustrates the reflection spectra of a double barrier system. 

This single band material system displays an analogous behaviour to that of the 

resonant dual-band single barrier layer presented in sub-section 4.2.2. In both cases a 

sharp resonant transmission peak is evident separating two regions of high 

reflectivity. In the dual-band case this emerges from quasi-bound states in the X-well, 

whereas in the single band case under consideration here, results from a bound state 

present between the two T-band potential barriers.

As the superlattice period number is increased to four, six and eight as shown 

in Figures 4.9(b), (c) and (d) respectively, the regions of high reflectivity are 

separated further by fine tunnelling spikes. Also the position of the observed 

transmission features is shifted toward the origin as layer number is increased. It is 

also noticeable that the leading edge of the reflectivity profile above the intrinsic 

conduction band offset becomes increasingly more defined as the period number is 

increased in a similar fashion to that observed in sub-section 4.4.1.

The most important feature of all four reflectivity plots shown in Figure 4.9 is 

the fact that the periodicity of the superlattice periods has produced an effective 

enhancement, (i.e. the leading edge of the reflectivity extends beyond the classical 

barrier height, marked by the black intermittent line) if  the obvious low energy 

transmission spikes are ignored. Thus, by combining the low energy reflectivity and 

the effective enhancement characteristics associated with the stopping potential 

barrier and the superlattice period width and number, it is possible to obtain a 

reflectivity profile exhibiting high effective enhancement with no transmission 

features present below the leading edge of the reflectivity spectrum. This concept is
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illustrated in Figure 4.10 below, which displays the reflectivity spectra associated 

with a 200A thick initial barrier, i.e. plot (a), an eight period superlattice structure 

where each individual material layer is 42A thick, in plot(b) and a composite structure 

combining the stopping potential and the superlattice structure described previously in 

plot (c). The reflection probability of the thick barrier exhibits no transmission 

features up to the normalised barrier height, U, as previously seen.
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Figure 4.10: Reflectivity plots for an (Al0jGao.7)o.5lno.5P/(Alo.7Ga<u )o.5lno.5P/(Al<uGao.7)o.5lno.5P 
M QB structure illustrating the benefit to the m agnitude o f the barrier height enhancem ent 
by inclusion of a first thick barrier within the M Q B design. Cases shown are (a) a single 
barrier o f w idth 200A, (b) a M QB consisting of 8 barrier-well periods of w idth 15ML and (c) 
a com pound structure containing both structures described in (a) and (b) in series. The 
enhanced barrier height is approxim ately 5% of the intrinsic barrier height.

The reflectivity spectrum of the superlattice structure indicates that it is 

susceptible to low electron tunnelling, but importantly produces an enhancement 

feature, Ue, if  this is ignored. The reflectivity associated with the composite material 

possesses an effective enhancement, Ue in excess of five percent of the intrinsic 

barrier height, U, similar to that of the superlattice reflectivity (when ignoring the 

low-energy transmission spikes). In addition, there are no transmission features 

evident at all below the leading edge of the reflectivity spectrum like that of the thick
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barrier reflection probability. Thus, it is reflectivity probabilities with the same 

characteristics like that displayed by the composite MQB structure, which are most 

beneficial to augmented carrier confinement in laser diode devices, and it is these the 

above optimisation procedure is designed to uncover.

4.4.4 Superlattice interface diffusion

As mentioned in the introductory paragraphs of this section, the optimum 

theoretical choice of aluminium content used in the AlGalnP semiconductor material 

was not employed in this investigation due to growth issues, reasons for which are 

summarised below.

Figure 4.11: STM  image depicting the extent of interface roughness in the A lInP/G alnP  
barrier well superlattice.

The intrinsic barrier discontinuity between the constituent ternary materials of 

AlGalnP (i.e. GalnP and AllnP) is relatively small, thus, it is intuitive to implement 

the material composition where the barrier discontinuity is maximum. This choice 

corresponds to an aluminium content of zero and unity in the well and barrier regions 

respectively, resulting in a GalnP/AlInP superlattice structure [35,36]. However, 

recent experiments conducted by Teng et al. [37], which investigated superlattices of
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this material type, using cross-sectional scanning tunnelling microscopy (XSTM), 

have shown the interfaces between such material layers to be non-abrupt, and the 

layer widths to be non-uniform; a XSTM image of an AlInP/GalnP superlattice is 

shown above in Figure 4.11. Teng et al. postulated that these effects might be 

attributed to inter-diffusion of the aluminium and gallium atoms across the 

superlattice structure. Vacant gallium atoms within the GalnP (well) layers giving rise 

to preferential aluminium-gallium bonding at the hetero-interfaces are thought to 

promote this process. Thus a graded AlGalnP alloy is generated across the original 

AlInP/GalnP interfaces. This gives the impression of larger than prescribed well 

regions, evident in Figure 4.11. Interface roughness and non-prescribed layer widths 

both contribute to loss of superlattice periodicity, subsequently altering the location of 

the theoretically predicted forbidden energy minibands predicted by the theoretical 

model.

To limit the above behaviour, the barrier and well regions have been 

constructed of AlGalnP with aluminium contents 0.7 and 0.3 respectively. Due to a 

reduced number of gallium vacancies, the migration of aluminium atoms toward the 

well layers should be reduced, lessening the influence of the grading and alloy- 

clustering mechanisms mentioned above. Furthermore, as mentioned in sub-section 

4.4.2 the optimisation process involves altering all the constituent material layer 

widths of the MQB by one monolayer in an attempt to find a reasonably stable 

effective enhancement to reduce the need for an idealised MQB structure to be grown.

Section 4.4, is of the utmost important to the whole design and numerical 

simulation of the novel MQB structures presented in this thesis. To stress this 

significance and to further underline the volume of work needed to realize the 

optimisation process, a small summary is given below before some new MQB 

structures are presented in the following Section.

Each MQB structure presented in the remainder of this thesis has undergone 

the above optimisation process, whereby the main parameters of the MQB i.e. the 

initial thick stopping potential and the superlattice are optimised as described in sub

sections 4.4.1 and 4.4.3 respectively. All MQBs are constructed from aluminium 

contents of 0.7 and 0.3 for barriers and wells respectively to reduce the effect of
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interface roughness and alloying. Also, the overall width of the MQB was set to a 

limit of 900A to diminish losses resulting from lack of electron coherence.

The optimium initial thick barrier and superlattice structures are combined to 

yield a composite structure and the corresponding reflection probability noted. The 

magnitude of the layer widths are increased and decreased by one monolayer and the 

reflection probabilities compared to determine if a stable enhancement has been 

established. Here, each reflection spectra should exhibit the characteristics displayed 

in Figure 4.10(c), namely, high effective enhancements with no evidence of electron 

transmission below the leading edge of the reflection probability. If these criteria are 

not met the process is repeated until a MQB structure that exhibits the aforementioned 

qualities is found.

In the following Section, a typical AlGalnP MQB structure designed for 

operation in 630nm laser diodes is analysed. Initially, this structure is optimised 

considering single T-band transport only and its reflection spectra determined. This 

structure is then evaluated using the dual-band Schrodinger solver, a reflection 

probability generated, and the two compared. Using the above optimisation procedure 

the structure is re-designed to take account of the additional transport mechanisms 

present in the inter-valley numerical model.

4.5 Single and Dual-Band models: Application to MQB

Previously, it was postulated that the predominant factor initiating the 

apparent rift between experimentally measured and theoretically predicted barrier 

height enhancements arising from the periodicity of a AlGalnP MQB was due to X- 

valley electrons propagating through the structure into the cladding regions resulting 

in high leakage currents [11,12,38,39]. In sub-section 4.5.1 this proposition is 

investigated, using the optimisation technique detailed in Section 4.4 a MQB structure 

is designed based solely on single T-band transport in the flatband zero biased regime. 

The reflective nature of this structure is deduced using both previously presented 

single-valley and inter-valley transport models and the results compared.

To inhibit the proposed transfer of X-band electrons across the single-band 

MQB structure, its periodicity is again re-optimised in conjunction with the dual-band
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inter-valley transport model (see Section 4.3) and its improved reflection probability 

presented in below sub-section 4.5.2.

4.5.1 Optimised T-Band MQB Structure

After following the aforementioned optimisation process the T-band MQB 

reflector comprises of an initial thick barrier of 150A. The superlattice itself consists 

of eight well barrier pairs, each of which is 42A in width, consistent with the total 

width limit set previously to retain electron coherence [32]; the structure is illustrated 

below in Figure 4.12 and all layer widths and alloy compositions displayed in Table 

4.3.
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Figure 4.12: Schematic diagram of the optimised single-valley MQB structure.

The reflection probability calculated from this structure is displayed in Figure 

4.13 below. Here, the incident electron energy has been normalised to the T-band 

maximum, which from Figure 4.12 can be seen to be 0.163eV. The reflection spectra 

associated with the single-band MQB structure predicts an effective enhancement of 

approximately 5% the intrinsic conduction band offset. Although, this enhancement is 

not as great in magnitude as that predicted by [13-15] due to reasons outlined in

-r
x
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Section 4.4 it is still remains non-trivial for the AlGalnP material system, which 

suffer from small conduction band offsets.

However, if this structure is solved with dual-band Schrodinger solver detailed 

in Section 4.3 the observed reflection probability breaks down due to the onset of 

sharp resonant tunnelling modes and electron leakage across the structure via the X- 

band minimum. The reflection and transmission probabilities associated with this 

structure are displayed below in Figures 4.14(a) and (b) respectively.

Layer
Number

A lG alnP
A lloy

Layer Type 
(w.r.t. T-band)

Structure 
W idths (A)

1 (Alo^GaoAo.shio.sP barrier 2 0 0

2 (AlojGaoAo.sIno.sP w ell 42
3 (Alo.7Gao.3)o.5ln0.5P barrier 42
4 (Alo.3Gao.7)o.5ln0.5P w ell 42
5 (Alo^GaoAo.sIno^P barrier 42
6 (A l0 .3Gao.7)o.5lno.5P w ell 42
7 (AlojGaoAo^Ino.sP barrier 42
8 (AlojGaoAo .slno 5P w ell 42
9 (AlojGao 3)o.5ln<) 5P barrier 42

1 0 (Alo.3 Ga0  7 )0 .5 1 1 1 0 .5P w ell 42
1 1 (Alo.7Gao.3)o.5ln0.5P barrier 42
1 2 (Alo.3Ga0 .7)o.5ln0.5P w ell 42
13 (Alo.7 Gao.3 )o.5 lno.5 P barrier 42
14 (AlojGaoAo.sIno.sP w ell 42
15 (Alo.7Gao.3)o.5lno.5P barrier 42
16 (AlojGaoAo.sIno.sP w ell 42
17 (AlojGaoAo.sIno.sP barrier 42

Table 4.3: A lG alnP layer width and com position for the M QB structure displayed in Figure 4.12.
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Figure 4.13: Two norm alised Reflectivity plots, calculated from the proposed  
optim ised single-band M QB structure, considering single band transfer via the T 
m inim um  only.
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The first plot in Figure 4.14(a) indicates the normalised total reflection 

spectrum (i.e. sum of the T and X reflection probabilities) for the single-band MQB 

structure. Here, there is an apparent loss of reflection probability at an energy of 

approximately 65% of the normalised barrier height (marked by the pink intermittent 

line). This corresponds to the presence resonant tunnelling modes at electron energies 

of approximately 0.1 eV. As discussed earlier, these energy modes are associated with 

quasi-bound states present within the X-well in the (Alo.7 Gao.3 )o.5 lno.5 P material layers. 

Electron transmission of this type is associated with the transport mechanism 

illustrated in Figure 4.4(c). Modes associated with this resonant behaviour can also be 

identified at higher energies particularly in the normalised energy range 0.9eV to 

0.95eV. Both these resonant features are more easily identified in Figure 4.14(b) 

where the transmission probabilities for the T and X bands are shown (green and red 

solid lines respectively). The transmission associated with T-band resonant modes 

mirror that present in the total reflectivity shown in Figure 4.14(a).

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Norm alised Electron Energy (eV)

Figure 4.14: (a) illustrating inter-valley transfer o f the electrons via the T and X minima, (c) 
Indicates the transm ission spectra o f electrons via the T and X conduction minima (green  
and red lines respectively).

Figure 4.14 (b) also indicates total transmission via the X-band state, (solid red 

line) this corresponds to the final transport mechanism displayed previously in Figure 

4.4(d). In this case electrons do not revert back to the initial T-state at the end of the
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MQB structure but remain in the X-minimum, consequently, giving rise to X-band 

leakage current. Both the transmission features present in Figure 4.14 suggest a high 

probability of substantial leakage currents if the above single-band MQB structure 

was to be embedded within a laser diode.

Comparison of the predicted total reflectivity profiles by the dual-band 

Schrodinger model and the more simplistic single-band Schrodinger model differ 

quite considerably. This fact adds weight to the previously proposed argument that 

current single-band models are inadequate when modelling structures where inter

valley transport is probable and furthermore, details one factor that may influence the 

disagreement btw experimentally determined effective enhancements and that 

predicted theoretically.

4.5.2 Optimised T  and X Band MQB Reflector

To combat transmission via the X-minimum and the piercing resonant 

tunnelling spikes, a novel MQB superlattice structure [40] is proposed below. A 

flatband zero-biased representation of this structure is displayed below in Figure 4.15. 

The material layer widths are displayed below in Table 4.4.

Layer
Number

AlGalnP
A lloy

Layer Type 
(w.r.t. nr-band)

Structure 
Widths (A)

1 (Alo.7Gao.3)o.5lno.5P barrier 90
2 (Alô Gaô o.sInô P well 60
3 (Al0.7Gao.3)o.5lno.5P barrier 90
4 (Alo.3Gao.7)o.5lUo.5P well 42
5 (Alo.7Gao.3)o.5lno.5P barrier 42
6 (Alo.3Gao.7)o.5ln<).5P well 42
7 (Alo.7Gao.3)o.5lno.5P barrier 42
8 (Alo.3Gao.7)o.5ln0.5P w ell 42
9 (Alo.7Gao3)o.5lno.5P barrier 42
10 (Al0.3Gao.7)o.5ln0.5P well 42
11 (Alo.7Ga0.3)o.5ln0.5P barrier 42
12 (Alo.3Ga0.7)o.5ln0.5P w ell 42
13 (Al0.7Gao.3)o.5lno.5P barrier 42
14 (Al0.3Gao.7)o.5lno.5P well 42
15 (Alo.7Gao.3)o.5lno.5P barrier 42
16 (AlojGaô o.sIno.sP well 42
17 (Alô GaojVsIno.sP barrier 42

Table 4.4: Layer widths of the optimised MQB structure displayed in Figure 4.15.

The dimensions of the MQB structure after the re-optimisation process 

comprises of two initial thick barrier-well systems of 90-60 angstroms and 90-42
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angstroms in width respectively, followed by seven barrier-well periods of 42A each, 

which comprise the superlattice.
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Figure 4.15: Schem atic diagram  of proposed A lG alnP f -X  M QB reflector.
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Figure 4.16: Reflection and transmission probability plots indicating the total reflectivity (i.e. the 
sum o f the f  and X reflectivity’s)
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Here, three thick initial material layers have been employed. This idea is 

simply an extension of the thick initial barrier in the single-band regime, utilised to 

inhibit low energy tunnelling. However, in this case a supplementary thick X-band 

barrier (i.e. a (AlojGaojVsIno.sP material layer) has been added to suppress X-valley 

transportation. In addition, the number o f superlattice periods has been reduced from 

eight to seven, to hinder the onset of resonant tunnelling modes.

Figure 4.16 above displays the calculated total reflectivity of the novel MQB 

structure displayed in Figure 4.15. In this simulation the magnitude of the inter-valley 

mixing parameter was held constant at a magnitude of 0.155AeV [27]. At this 

magnitude no visible resonant tunnelling modes or direct X-band leakage is evident 

and the size of the effective enhancement is approximately 5% the intrinsic T-band 

maximum. Hence, the effective enhancement of the single-band MQB analysed via 

the single-band Schrodinger solver has been regained.
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Figure 4.17: Calculated T and X-band reflection and transm ission probabilities, plot(a) and 
(b) respectively.

In Figures 4.17(a) and (b) above, the reflection and transmission probabilities 

are displayed for the individual T and X conduction band minima respectively. From



Figure 4.17(a) it is easy to see that the sum of the T and X reflection probabilities 

(blue and green solid lines respectively) approximately results in the total reflectivity 

profile shown in Figure 4.16. The missing transmission features can be envisaged by 

addition of the transmission profiles shown in Figure 4.17(b). Here, the magenta 

coloured line corresponds to T-band tunnelling and the red to X-band. No 

transmission processes are evident for energies equivalent to 5% the intrinsic barrier 

height.

Thus, from this initial results section, it has been demonstrated that the popular 

single-band effective mass-envelope model is inadequate when considering the 

reflectivity properties of multi-layered structures where conduction band crossover is 

apparent. The oversimplification of the transport mechanisms in the AlGalnP material 

under the single-band method, reveals one factor to explain the degree of difference 

seen between theoretically predicted effective enhancements and of those determined 

experimentally.

4.6 Summary

In Section 4.2 of this Chapter a mechanism to theoretically deduce the 

reflection properties of a multi-layered structure has been detailed. To do this a 

numerical routine was developed that via the transfer matrix method solved 

Schrodinger’s equation across the structure in question, yielding the transmission and 

reflection probabilities of an incident electron. Furthermore, by way of an example, 

the routine was applied to three quantum structures, namely, an infinite step potential, 

a potential barrier and a MQB structure, and their corresponding reflection profiles 

displayed.

It was discussed in Section 4.3, that to accurately model the reflection spectra 

calculated from multi-layered structures comprised of the AlGalnP semiconductor, it 

was important to include the possibility of elastic inter-valley transport of electrons 

between the T and X conduction band minima at material interfaces. The additional 

transfer possibilities arising from elastic scattering events were then subsequently 

discussed.
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To allow for these additional transfer mechanisms to occur, the simple 

effective mass-envelope model was extended to solve simultaneously two 

Schrodinger equations, one for each conduction band minimum. Here, inter-valley 

transport of electrons was mediated by a mixing parameter added into each 

Hamiltonian.

This model was then verified quantitatively, by comparison of the 

transmission spectra acquired from a single layer GaAs/AlAs/GaAs potential barrier 

at various widths, with that of more complex psuedopotential models of Marsh and 

Inkson [17-19]. It was shown that each of the two models predicted the presence of 

resonant tunnelling modes present within the X-band well in the AlAs material layer, 

signifying the dual-band Schrodinger solver fairs favourably with the more 

complicated model.

Section 4.4 of this Chapter dealt with the important issue of MQB design and 

optimisation. It was established here that there were physical limitations to the choice 

of individual AlGalnP material layer thickness, overall MQB thickness and choice of 

aluminium content in the AlGalnP alloy used to comprise the constituent barriers and 

wells. This first limitation is imposed by modem growth techniques, to have any 

confidence applying the numerical model to a physical structure, the dimensions of 

the physical structure should be as near as possible to those used in the numerical 

model. From STM experiments it was established that a material layer minimum of 15 

monolayers should be adhered to. As seen in Chapter 3, the thinner the well layers the 

more the forbidden minibands get pushed above the intrinsic barrier height. Hence, 

the optimisation procedure always started with superlattice layer widths of 15 

monolayers. Also, a limit to the overall width of the MQB was instigated; this was set 

at a maximum of 900A in order to retain electron coherence throughout the structure.

The final physical restriction was set on the composition of the barrier and 

well layers. In sub-section 4.4.4, STM images looking at a MQB structure composed 

of the ternary semiconductors AllnP (barriers) and GalnP (wells), evidence of alloy 

intermixing gave rise to graded regions of the quaternary semiconductor AlGalnP. By 

using AlGalnP material with aluminium contents of 0.7 and 0.3 for the barriers and 

wells respectively, the detrimental effects of alloy clustering and grading are kept to a 

minimum.

The optimisation process itself detailed how variation of the width of an initial 

thick barrier can alter the reflection probability to leave no low energy electron
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tunnelling features below the intrinsic barrier height. Also, it was shown that by 

varying the number of superlattice periods an effective enhancement might be 

achieved if the low energy electron tunnelling is ignored. Finally, it was shown that a 

composite of the aforementioned structures predict high reflectivity with no low 

energy transmission features.

Using the optimisation procedure, a single band MQB structure was optimised 

for single-valley transport in Section 4.5; this yielded an effective enhancement of 5% 

to the conduction band maximum. However, re-solving this structure with the dual

band Schrodinger solver resulted in the intrinsic barrier height being reduced to 

approximately 65% of its initial T-band barrier height maximum. Here, sharp resonant 

transmission peaks were evident at energies equivalent to the well regions of the X- 

minimum; also, direct X-transmission across the structure was observed, implying a 

X-band leakage current. However, these effects were negated by the proposal of a 

novel MQB design, consisting of a double T and X barrier. The corresponding 

reflectivity plots gained from the analysis of this structure, found that transmission via 

both conduction band minima was subdued, regaining the effective enhancement of 

5% predicted by the single-band model.

Thus, from this initial study it has been shown that it is possible to consider 

inter-valley elastic scatterings, and still theoretically predict effective enhancements 

equivalent to that of the popular single-band model.

In addition to the above comments, it was mentioned that the majority of 

authors in this field tend to use the flatband zero biased approximation, to construct 

the conduction band profiles of their MQB structures. This standard approximation 

may be superseded, by consideration of the distribution charge across the active 

region of the device, as a consequence of differently doped regions.

As the structure designed in this thesis are to be grown and experimentally 

examined, it is of utmost importance to be able to mimic the physical behaviour of the 

bands within a PIN junction. To tackle this issue, in the next chapter Poisson's 

equation is numerically solved across the active region of the device to approximate 

the conduction band profile in a more physically correct manner, and by recalibrating 

the dual-band MQB structure favourable enhancements to the intrinsic conduction 

band potential barrier are produced.
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Chapter 5

Effects of Non-Linear Charge 
Distribution

5.1 Introduction

The main focus of this chapter is the design and optimisation of a novel dual

band (i.e. T and X) MQB reflector that predicts good enhancements to the intrinsic 

conduction band offsets, when evaluated at the working bias of a visible 630nm laser 

diode. To achieve this goal, it is necessary to employ Poisson's equation to predict the 

band bending effects emerging from the non-linear doping concentrations across the 

device. To imitate approximate lasing conditions a doping and dimension dependent 

bias is dropped linearly across the simulation region. Under these biased conditions 

the MQB barrier and well periods are optimised to achieve a high and stable effective 

enhancement.

Therefore this Chapter is structured in the following manner; in Section 5.2 

Poisson's equation is derived from Maxwell’s equations and arranged into an 

appropriate form that can be of functional use in semiconductor analysis.

An explicit integration method is developed in Section 5.3 to numerically 

solve Poisson's equation across the active and MQB regions of the laser device. In 

addition to this, a simple linear bias method is detailed, which allows the Poisson 

solved structure to be adjusted to mimic the laser diode when lasing.

The single T-band and the dual-band (T and X) MQB reflectors detailed 

previously in Chapter 4 sub-sections 4.5.1 and 4.5.2 respectively, are re-optimised in 

Section 5.4 under applied bias to achieve a good effective enhancement whilst taking
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account of the increase in transmission modes attributed to band bending features. 

The reflectivity of both these structures are analysed and a comparison made, where it 

becomes apparent that once more that the inter-valley transport mechanism is the 

dominant issue in the simulation.

Sections 5.5 and 5.6 give some conclusions on the theoretical work carried out 

in this chapter and all referenced articles and books are listed respectively.

5.2 Poisson’s equation

In this section, a viable form of Poisson’s equation applicable specifically for 

the analysis of semiconductor devices is derived, by means of Maxwell’s equations. 

The section concludes with an explanation of the constituent terms within the derived 

Poisson equation necessary to initiate its solution.

5.2.1 Derivation of Poisson’s equation

Poisson's equation is essentially a limiting case of the Gauss-Maxwell 

equation (equation (5.1)). However, to make this equation directly applicable to this 

semiconductor problem, some manipulations have to be undertaken.

V.D = p ,  (5.1)

Firstly, the electric displacement vector D may be related to the electric field 

vector E by the following expression

D = £ -E (5.2)

where s denotes the permittivity tensor. This relation is valid for all materials, which 

have time independent permittivity. Furthermore, polarisation by mechanical forces is 

ignored [1]. Both assumptions hold reasonably well for the intended semiconductor 

application.

The electric field vector is related to the electrostatic potential, \p, by invoking 

Maxwell’s magnetic flux equation:
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V.B = 0 (5.3)

and introducing a vector field A, and the following identity

V.V a  A = 0 (5.4)

to propose

B = V a  A . (5.5)

Substituting equation (5.5) into the Faraday-Maxwell equation yields

V a E = - 5(V a A ) (5.6)
dt

which maybe rearranged to give

V a  Te + Â1 = 0 • (5.7)

Using the vector identity

V a V ^  = 0, (5.8)

the gradient scalar field Vi//, may be related to the bracketed expression in equation 

(5.7) (in this particular circumstance a more physical interpretation is gained by 

choosing the negative gradient of the scalar potential), hence

dA
E  = - — - W W . (5.9)

dt

Substituting for the electric field E, in equation (5.2) via equation (5.9) yields,
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D = ~£
d t

(5.10)

Exchanging the electric displacement vector D in equation (5.1) by the relation 

derived in equation (5.10) gives,

Here, the first term is zero if the permittivity s  can be considered to be homogeneous. 

Thus, equation (5.11) finally reduces to the well-known form of Poisson’s equation 

applicable semiconductor device analysis.

From herein the permittivity, £, will be considered a scalar constant within a particular 

semiconductor material. Thus, Poisson’s equation in one-dimension may be expressed 

in the following form:

where the space charge density p, can be broken down into the product of the 

elementary charge q times the sum of the positively charged hole concentration p , the 

negatively charged electron concentration n, and the ionised donor and acceptor 

concentrations No and Na respectively, i.e.

5.2.2 Analysis of Constituent Parameters in Poisson’s Equation

To solve equation (5.13) for the electrostatic potential, \p, requires evaluation 

of each individual term within the expression. Firstly, the electron density n maybe 

determined from the following integral

(5.11)

V .fV  if/ = - p (5.12)

p  = q ( p - n  + ND- N A). (5.14)
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00
n= \N(E)F(E)dE

Ec

(5.15)

where N(E) is the density of states, and may be approximated to

N ( E ) = ^ t r i i s L)  i E ~ E ' )V2 ( 5 1 6 )

where Me is the number of equivalent conduction band minima and rride is the density 

of states effective mass for the electrons and is given by:

mde = (5.17)

where m* (i = 1, 2, 3) are the anisotropic components of the effective mass tensor [2]. 

F(E) is the standard Fermi-Dirac distribution function given by

F(E) =
1 + exp ' e - e ^

(5.18)

Substituting this into equation (5.15) and using the relation

nl + expw-^)
(5.19)

with

Vf =
( e c - e f '

kBT  j
and 7j = f E - E c N

v kBT j
(5.20)

yields

n — N c ,— FXj2 
Vn

Ec EF 
kBT

where N c = 2
( Irnn^.kS ' ^ 1

J C

de B ‘ M, (5.21)
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where Nc is the effective density of states in the conduction band and F 1/2(11) is the 

Fermi Integral of order Vi which, unfortunately does not have a closed form solution. 

Due to the complexity involved in calculating the F  1/2( 7]) analytically, a set of 

approximations proposed by various authors has been employed to evaluate the 

integral over the entire real number range of 77. In the two extreme cases, i.e. 7 7 «  -1 

and 7 7 »  +1 the integral can be expressed in the form of a rapidly converging series. 

For 7 7«  -1 the Fermi-Dirac integral reduces to the following form

+ exp(77 -  x)

and hence, may be expressed as follows

f V2 tn )  = ~ F  exp(v)(l -  2_2/3 exp(^) +...) (5.23)

For 7 7»  +1 the Fermi-Dirac integral can be presented in the form of a series [3]

F,/2(n)=̂ v1121 + - x 2t]~2 + 0.267?7“4 + (5.1)

In the transitory interval -A < r\ □< D+10 the Fermi-Dirac integral is approximated 

by the function [4]

1   (  -2   _3/g \  1
Fyi(ri) = --J x  ~ 4 na^i) +exP(-'7) (5-24)2 V 4\

where

a(r]) = r]4 + 3 3 .677(1 -0 .68  exp(-0.17(77 + l)2))+50

The relative error of the above expressions is less than 0.4% and is not a major factor 

with respect to numerical convergence of the simulation program detailed in the 

following sections, due to the error incurred by the overall solution process.
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Utilising a similar argument to the one presented above for electrons, the 

following expressions for the hole concentration p  and the density of states in the 

valence band Ny may be deduced to be

P = N V
k„T

(5.25)

(5.26)
I. h ‘

where mdh is the density of states effective mass for holes given by

(5.2)m

and mih and mhh are the effective masses for the light and heavy holes respectively.

Finally, the ionised donor and acceptor impurities are evaluated by invoking 

the following expressions.

n d+= n l 1 -
,  11 + — exp

g

I_______

f ED- E F^
k„T

(5.27)

J )

where ks is the Boltzmann constant, T is the lattice temperature (unless otherwise 

stated assumed to be 300K), g  is the degeneracy of the donor level, ED is the energy 

level of the donors below the conduction band edge and No is the total density of 

donor atoms in the semiconductor.

TV, .  =■
TV,

1
1 + — exp 

g

r EA- E F^
ksT

(5.28)

114



Similarly, EA is the energy level of the acceptors above the valence band edge and NA 

is the total density of acceptor atoms in the semiconductor.

5.3 Poisson Solution Procedure

Having ascertained expressions for the constituent parameters in the space 

charge density p , the explicit integration method used to evaluate the variation of 

electrostatic potential, \p, across the active and MQB regions of the laser device is 

next reviewed.

5.3.1 Numerical Algorithm

Numeric solution of Poisson's equation is initiated firstly, by approximating 

the electrostatic potential between adjacent nodes by the following truncated Taylor 

series expansion

step-size between adjacent nodes. Secondly, the second order derivatives present in 

the truncated series are exchanged for their corresponding charge densities, p t, on the 

corresponding node. The third order derivative of the electrostatic potential in 

equation (5.29), is approximated by the following backward difference relation

Substitution of equation (5.30) and the aforementioned charge densities in equation

(5.29) yields

Equation (5.31) with the addition of suitable initial conditions is now able to predict 

the variation of the electrostatic potential \p, across a desired semiconductor interval.

(5.29)

where i denotes the i node along the simulation area, and A is the magnitude of the

(5.30)

V 3 o J
(5.31)
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However, due to the explicit nature of the above discretisation technique an associated 

error of the order A2 is endowed upon the value of the electrostatic potential on each 

subsequent node calculated from a prior node. To reduce this cumulative error, which 

is an unfortunate artefact of this type of solution procedure, the node spacing has been 

maintained at a magnitude of lA  and the Richardson improvement formula [5] has 

been implemented into above numerical routine. This formula amounts to a more 

accurate way of discretising the third order derivatives present in equation (5.29). 

Using Richardson improvement formula the third order derivatives may be 

approximated by the following expression

= (5.32)
A

Substitution of equation (5.32) into equation (5.29) yields the following improved 

estimate for the calculated electrostatic potential on the (z + 1) node

A2
V M = ¥ i + 8 v ' i + -  (5a - A - 2)- (5-33)6

In Figure 5.1, a flow chart is presented depicting all the major steps of the 

solution procedure used to solve Poisson's equation for both the T and X conduction 

band across the active and MQB regions of the laser diode.

The preliminary step of the program ascertains the basic structure of the 

simulation region of interest. Wherein, each individual semiconductor material or 

alloy layer is given a particular spatial width and doping magnitude. Utilising this 

information a flat-band zero biased conduction band approximation is determined. In 

this idealised conduction band profile the two-thirds approximation was used to 

determine the conduction band offsets. From this the magnitude of the energy 

separation between the Fermi-level and the conduction band minima at the beginning 

and end of the structure is determined. It is not necessary to evaluate the Fermi-level 

at each node, as by definition it is constant across the structure under zero bias 

conditions. The Fermi-level is always referenced to zero unless otherwise stated. 

Three trial values of the Fermi-level are needed to initiate to calculation of true self- 

consistent energy separation. These initial guesses assume that the aforementioned
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energy differences be bounded within the energy interval ±2Eg, This approximation 

allows the charge density to be deduced through equation (5.14). Under flatband zero 

biased conditions, the charge density should be zero. Therefore, a comparison of the 

three trial values may be conducted to test if they are within a set tolerance from zero. 

If this test is found to be true the simulation procedure moves on to the main part of 

the program where the conduction band profiles are determined, if  not, a simple 

bisection algorithm adjusts the starting values of the Fermi-level separation and the 

procedure repeated until convergence is obtained.

START

Set-up data values for different materials 
Set-up defintion o f  structure (flatband)

Main
Initialise values for y/ 

and y/ i x  'a t i  =  0

Compare y /x  (n) 

with Fermi level 
converged ?

Compare y /r (n) 

with Fermi level 
converged ?

No No

Yes Yes

STOP STOP

Calculate y /x 0 )Calculate y / r ( i )

B isec tion  : update y> x  and 

y /x ' at i =  0

B isec tion  : update y/ r  and

Calculate Fermi level throughout structure 
based on charge neutrality

Figure 5.1: Flow chart illustrating the main steps involved in the explicit integration method  
used to determ ine the conduction band profiles by solution o f Poisson's equation.

To commence the main part of the program initial values for the electrostatic 

potential )// and the electric field at the first node (/ = 1) are required. Subsequent 

values of 1// are determined via equations (5.29) or (5.33) depending on node position. 

The conduction band minimum is calculated via the following expression
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Ec (i) = - y i i )  + ECfb(i) + Ef (i) (5.34)

where Ecjb is the conduction band in the flat-band approximation, which essentially is 

required to add in the predetermined conduction band offsets, and Ef if  the calculated 

Fermi-level separation. Convergence of the solution is determined, when direct 

comparison between the conduction bands minus the Fermi-level separation on the 

last node is below a set tolerance. If this criterion is not met, a bisection algorithm 

amends the initial starting values of the electric field until convergence is achieved.

across the active region of a AlGalnP laser device.

5.3.2 Linear bias

To achieve the conduction band profile at a working voltage, a simple linear 

voltage drop across the device has been employed. It was assumed that the resistance 

across a particular semiconductor layer was uniform and varied proportionally as a 

function of layer width and reciprocal doping:

2.5

Gamma Conduction Band 

X  Conduction Band

0
0 1000 2000 3000 4000

Width (Angstroms)

5000

Figure 5.2: Calculated conduction band profile o f the f  and X minima.

Figure 5.2 above shows the numerically determined f  and X conduction band profiles

(5.35)
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where Nt is the sum of the donor and acceptor concentrations and j  is an index to the

the effective resistance of each individually doped layer to be determined. By 

multiplying the required applied bias voltage Va , by the individual layer resistances, 

the voltage drop across each semiconductor layer can be deduced; it is then a simple 

case to divide each layer by its corresponding width, to determine the voltage drop per

Examples of the active region and surrounding cladding region under the 

aforementioned linear bias are shown in the following sub-sections.

5.4 Simulation of the Active Region
In this Section, the above solution procedure is implemented in conjunction 

with the linear bias approximation, to obtain a more realistic approximation of the 

conduction band profile within the active and MQB regions of the laser diode under 

operating conditions.

Firstly, in sub-section 5.4.1 the single-band MQB structure designed 

previously under flatband conditions (sub-section 4.5.1) is placed adjacent to the 

active region of the device and the aforementioned simulation routine is utilised to 

approximate the conduction band profile across these regions under lasing conditions 

of the laser device. This MQB structure is then re-optimised via the procedure 

detailed in Chapter 4, Section 4.4 to achieve a stable maximum enhancement. In 

addition to this simulation, the newly optimised single-band MQB structure is then 

solved using the dual-band Schrodinger solver developed in Section 4.3 of the last 

Chapter. This analysis is performed to re-emphasise the importance of taking into 

account inter-valley transport within the numerical model where appropriate and its 

ability to destroy the effective conduction band offset enhancements predicted by the 

single-band theoretical model.

j th layer. From this expression, a proportionality constant may be calculated to enable

unit length (A-1) across the laser device

RUWa 
L U )

(5.36)
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In a similar manner, sub-section 5.4.2 takes the optimised flatband dual-band 

(T and X) MQB reflector presented in sub-section 4.5.2 of Chapter 4. Again this 

structure is placed next to the active region of the device, and then the conduction 

band in this area is Poisson solved and a linear bias dropped across it to imitate the 

conduction band under operating conditions. The structure is re-optimised to null any 

resonant tunnelling or X-band transmission features via the optimisation process 

presented previously to thus exhibit high reflective enhancements. Additionally, the 

magnitude of the mixing parameter is varied to investigate if the predicted reflection 

probabilities behave in a similar manner.

5.4.1 Optimised Single-Band MQB Structure

The individual layer alloy compositions, doping and widths for the single

band MQB structure after the re-optimisation process are shown below in Table 5.1.

Material Layer Type 
w.r.t. nr-band

Doping
(cm'3)

Layer Width (A)
Optimised T-band 

Structure

(Al0 .7Gao.3)o.5lno.5P cladding 5 e l7  (n+) 50
(Al0 .5iGao.49)o.5lno.5P cladding 5 e l7  («+) 945
(Alo^Gao^o.sIno.sP waveguide Undoped (p+) 900

Gao.4 9 Ino.51P quantum well Undoped (p+) 68

(Alo^Gao^o.sIno.sP Waveguide Undoped ( p + ) 900
(Alo^Gaojlo.sIno.sP barrier 5 e l7  (p+) 200
(Alo^Gaojlo.sIno.sP well 5 e l7  ( p+) 42
(Alo^Gao^o.sIno.sP barrier 5 e l7  ( p+) 42
(Alo.BGao/ylo.sIno.sP well 5 e l7  ( p+) 42
(AlojGao.slo.sIwo.sP barrier 5 e l7  (p+) 42

(Al0.3Gao.7)o.5lno.5P well 5 e l7  (p+) 42
(Alo^Gaojlo.sIno.sP barrier 5 e l7  (p+) 42
(Alo^Gao^VsIno.sP well 5 e l7  (p+) 42
(AlojGaojlo.sIno.sP barrier 5 e l7  (p+) 42

(Alo.3Gao.7)o.5lno.5P well 5 e l7  ( p+) 42
(Alo^Gao^lo.sIno.sP barrier 5 e l7  ( p+) 42
(Al0.3Gao.7)o.5lno.5P well 5 e l7  (p+) 42
(Alo^Gao^o.sIno.sP barrier 5 e l7  (p+) 42
(AlojGaojlo.sIno.sP well 5 e l7  (p+) 42
(AlojGao 3)o.5lno.5P barrier 5 e l7  (p+) 42
(Alo.3Gao.7)o.5lno.5P well 5 e l7  (p+) 42
(Alo^Gaojlo.sIno.sP barrier 5 e l7  (p+) 42
(Alo^Gaojlo.sIno.sP well 5 e l7  (p+) 45
(AlojGao^lo.sIno.sP cladding 5 e l7  (p+) 200

Table 5.1: List of physical parameters of the T-band MQB.

From the above physical parameters, it can be seen that the dimensions of the 

single-band MQB reflector have retained their original form, to that described
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previously in sub-section 4.5.1 except that the thick initial barrier layer has been 

increased in width from 150A to 200A.

5.4.1.1 r -  Valley Transport Only

Figure 5.3 below, displays the T conduction band across the active and MQB 

regions predicted by solution of Poisson's equation using the aforementioned explicit 

integration technique, also a turn-on voltage of 2V has been dropped across the whole 

quantum device to simulate lasing conditions of the quantum device.

2.3
T-Point Maximum

> 2.2 4

01

2.0

—  Gam m a C onduction  Band

1.8
0 1000 2000 3000 4000

Width (Angstroms)
Figure 5.1: Num erically determined T (solid blue line) conduction band m inim um  at a working  
voltage of 2.6V. The interm ittent purple area denotes the energy range of an incident electron, 
over which the reflectivity spectrum of the M QB was analysed.

In addition to the position of the conduction band minimum in the three 

regions, Figure 5.3 also illustrates the range of energies an electron incident on the 

MQB reflector may possess. This energy spectrum is normalised to the T-band 

maximum also highlighted in the Figure. The lower limit of the energy spectrum 

coincides with the highest energy point across the MQB region, (E min). The upper 

limit of the energy spectrum is given by the energy of the T-band barrier height 

maximum plus a small energy offset, (E max). Electrons with energy beyond this point 

have no immediate bearing on the size of the effective enhancement, although

121



electrons in this range may be reflected back toward the active region by higher lying 

forbidden minibands (see Figures 5.4 and 5.6).

It is apparent from Figure 5.3, that electrons incident on the MQB with 

energies less than that of the T-point maximum, will be totally reflected back toward 

the quantum well region, simply because there is no other path available. This is a 

consequence of the T-band maximum being situated in the cladding region of the 

device, which would in the physical situation extend to a length of approximately 

9000A, which suggests that the likelihood of a tunnelling event occurring is so 

negligible it may be ignored.

Higher miniband o f  non

allow ed  electron states

X«Xo2mQm
&o

0.0
0.0 0.2 0.4 0.6 1.0 1.2 1.40.8

Normalised Electron Energy

Figure 5.2: Reflectivity plot of the Poisson solved optim ised single-band M Q B m odel, where transport 
m odes via the T-m inimum  considered only.

Figure 5.4 above displays the calculated reflectivity profile associated with the 

single-band MQB structure detailed above. The electron energy on the x-axis of 

Figure 5.4 has been normalised to the highlighted T-point maximum and subsequently 

predicts a non-trivial effective enhancement, Ue, of approximately 10% with respect 

to this point.
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5.4.1.2 Inter-Valley Transport

The optimised structure of the last sub-section is now evaluated using the 

dual-band Schrodinger solver developed in Section 4.3 of Chapter 4. The position of 

the calculated X-band relative to the T-band is displayed in Figure 5.5 below. In 

addition to the T-point maximum present in Figures 5.3 and 5.5 it is also appropriate 

to include a corresponding point for the X conduction band when inter-valley 

transport is considered. The X-point maximum will now be the lower limit on the 

energy spectrum, as below this energy all electrons will be reflected back toward the 

active region no matter what minima they reside in.

2.3
T-Point Maximum

> 2.2

2.1

2.0
X-Point Maximum

—  Gamma C onduction Band

—  X  C onduction Band

1.9
U

1.8
0 1000 2000 3000 4000

Width (Angstroms)
Figure 5.1: Num erically determ ined T  and X conduction band minima (solid blue and solid 
green line respectively) at a working voltage of 2 V. The interm ittent purple area denotes the 
energy range of an incident electron, over which the reflectivity spectrum  of the M Q B was 
analysed.

Figure 5.6 predicts the reflection spectra of the same optimised single-band 

MQB reflector when inter-valley transport is considered over the aforementioned 

energy range. Examination of the reflectivity in this regime predicts a similar 

deterioration in the reflection spectra at a comparable energy to that calculated under 

flatband zero biased conditions seen previously in Chapter 4.
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Figure 5.2: Reflectivity plot of the Poisson solved optim ised single-band M QB model, where inter
valley transport is considered.

Although, the enlarged forbidden energy peaks, that separate the regions of 

high reflectivity, are associated with X-band transmission in this case, and not 

resonant tunnelling modes in the T-band as seen previously in Chapter 4. The onset of 

the X-band leakage current coincides with energies just above the X-band maximum 

indicated in Figure 5.5, which corresponds to the placement of the X-well in the 

flatband zero biased case. In both cases, a surge of transmission by either resonant 

tunnelling modes or via the X-band or indeed a combination of both these processes is 

apparent whenever it is physically possible to do so. Thus, it seems plausible for 

structures constructed out of semiconductor materials that experience conduction 

band crossover, to reference the intrinsic barrier height from highest point (in energy) 

of the lowest lying conduction band minimum. In this case, this value corresponds to 

the X-point maximum and unless otherwise stated from herein, all reflection spectra 

are normalised to this point.

In the following sub-section the previously optimised flatband dual-band 

MQB structure proposed in Chapter 4, sub-section 4.5.2 to inhibit electron 

transmission in both the T and X bands is placed adjacent to the active region and like
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the previous sub-section Poisson solved and biased. The structure is then re-optimised 

in order to exhibit high reflective properties as that seen in Chapter 4.

5.4.2 Dual-Band Reflector

The individual layer alloy compositions, doping and widths for the dual-band 

(T and X) MQB structure after the re-optimisation process has been completed are 

shown below in Table 5.2. The optimisation procedure resulted in the dimensions of 

the two initial low energy electron-stopping layers being increased from 90A and 

60A, to layers of width 150A each. Also the number of superlattice periods has been 

reduced from seven to six.

Material Layer Type 
w.r.t. □ T-band

Doping
(c m 3)

Layer Width (A)
Optimised 

Dual-Band Structure

(AlojGaofro.sIno.sP cladding 5 e l7  («+) 50
(Alo.siGao^lo.sIno.sP cladding 5 e l7  (/!+) 945
(AlojGao^lo.sIno.sP waveguide Undoped (p+) 900

Gao.4 9 Ino.5 1P quantum well Undoped (p+) 68
(AlojGao^lo.sIno.sP Waveguide Undoped ( p+) 900

(Alo.7Gao.3)o.5lno.5P barrier 5 e l7  (p+) 150
(Alo.3Gao.7)o.5lno.5P well 5 e l7  (p+) 150
(Alo.7Gao.3)o.5lno.5P barrier 5 e l7  (p+) 96
(Alo.3Gao.7)o.5lno.5P well 5 e l7  (p+) 42
(Alo.7Gao.3)o.5lno.5P barrier S e l l  (p+) 42
(AlojGaô lo.sIno.sP well 5 e l7  ( p+) 42
(AlojGaofro.sIno.sP barrier 5 e l7  ( p+) 42
(AlojGaojlo.sIno.sP well 5 e l7  ( p+) 42
(AlojGaô lo.sIno.sP barrier 5 e l7  (p+) 42
(AlojGaô lo.sIno.sP well S e l l  (p+) 42
(AlojGaô lo.sIno.sP barrier 5 e l l  (p+) 42
(Alo.sGaô jo.sIno.sP well S e l l  ( p+) 42
(Al0.7Gao.3)o.5lno.5P barrier 5 e l7  (p+) 42
(Alô Gaô o.sIno.sP well 5 e l7  (p+) 42
(AlojGaofro.sIno.sP barrier 5 e l7  (p+) 42
(AlojGaojlo.sIno.sP well S e l l  (p+) 45
(Alô Gaofro.sIno.sP cladding S e l l  ( p+) 200

Table 5.1: List of physical parameters of the dual-band MQB structure.

The relative positions of the re-optimised dual-band MQB reflector and the 

active region of the visible 630nm laser device can be seen in Figure 5.7. Again for 

clarity the energy range over which an incident electron is also illustrated where the 

boundaries of which are located at the X-band maximum and just above the T-band 

maximum.
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Figure 5.1: Conduction band profiles o f both the T and X minima, solid blue and green lines 
respectively, within the active region of a laser diode, biased at a lasing voltage of 2V. The hatched  
purple area represents the energy interval for which analysis o f the reflection probability of the 
novel M QB structure was taken.

The greater width of the two initial layers can be directly attributed to the band 

bending effects present across the simulation region. The first two thick materials 

within the MQB reflector are severely distorted in comparison to their flatband zero 

biased counterparts (see sub-section 4.5.2) and consequently require a greater width to 

impart equivalent inhibition of the low energy T and X electrons respectively. The 

number of barrier/well periods within the superlattice is reduced from seven to six in 

comparison with the optimised dual-band flatband zero biased MQB structure also 

during the optimisation procedure. This action reduced the extent of the sharp 

resonant tunnelling modes present due to quasi-bound electron states within the X- 

band well situated in the T-barriers. Thus, reducing the number of superlattice X-band 

wells/T-band barriers reduces the probability of the transmission states occurring. 

However, if the number o f periods was reduced further a surge in X-band 

transmission was observed. The reflection probability calculated for this novel MQB 

structure is shown below in Figure 5.8, the incident electron energy has been 

normalised to the energy of the X-band maximum, also the magnitude of the mixing 

parameter, a, was set at 0.155eVA.
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Figure 5.2: Reflectivity plot o f the (Al0.3 Ga0.7)o.5 lno.5 P/(Alo.7Gao.3)o.5 lno.5 P proposed novel T- 
X reflector, optimised at a working voltage of 2.0V.

The reflectivity spectra presented in Figure 5.8 reveals an effective 

enhancement of the order of 20% that of the X-band maximum, which corresponds 

directly with the position of the T-point maximum illustrated in Figure 5.7. Hence, the 

effective enhancement o f above Poisson solved dual-band MQB structure cannot 

surpass the T-point maximum like that of the flatband dual-band MQB presented in 

Chapter 4. However, this novel MQB design [6] does regain an effective enhancement 

corresponding to that of intrinsic conduction band offset associated with T-band 

barrier height, as opposed to that of the X-band maximum (shown in Figure 5.7) of 

the optimised single-band MQB structure when inter-valley transport was initiated.

Figure 5.9 below shows three reflection spectra calculated from the MQB 

structure developed in this sub-section. Each of the three reflection probabilities 

corresponds to a particular magnitude of the mixing parameter, «, which are 0.1, 

0.155 and 0.2eVA. This has been done to investigate what affect the inter-valley 

mixing parameter or, impacts on the predicted reflection spectra of a particular MQB
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design. Each of the above reflection spectra in Figure 5.9 have been nonnalised with 

respect to the X-band maximum

JBcc-CoUa-
s
.2
(joGo
X

1

0
1

0
1

0
0.0 0.5 1.0 1.5 2.0

Normalised Electon Energy (eV)

Figure 5.3: Reflectivity profiles o f the proposed T-X M QB reflector, optim ised at a working voltage 
of 2.0V. Plots (a), (b) and (c) correspond to the m agnitudes 0.1, 0.155 and 0.2eVA of the inter-valley  
mixing param eter a.

Comparison of the three reflectivity spectra presented in Figure 5.9, reveals 

that there is no apparent difference in the reflectivity spectra below the leading edge 

of the reflection probability. Also, it can be noted that they all fall below a reflection 

probability of 99% at the same energy (i.e. at an effective enhancement of 20% the 

height o f the X-band maximum). Thus, altering the magnitude of the inter-valley 

mixing parameter has negligible influence on the calculated reflection spectra; and 

implies a more physically stable MQB structure has been discovered.

5.5 Summary

The principal objective of this chapter has been to develop and design a 

simulation package that allows the reflective probabilities of an embedded MQB 

reflector to be determined under working conditions of the visible 630nm laser diode.
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This task has been completed and may be broken down into the following main topic 

areas

(i) Derivation of Poisson's equation to a form appropriate for numerical 

analysis of semiconductor devices.

(ii) Development of an explicit integration technique used to solve 

Poisson's equation.

(iii) Re-emphasis of the inadequateness of single-valley models where the 

possibility of inter-valley transport is apparent.

(iv) Proposal of a novel dual-band reflector to predict good effective 

enhancements to the intrinsic conduction band offsets.

The first point in the above list amounts to suitable substitution and 

rearrangement of Gauss’ law to reveal Poisson's equation in a suitable form directly 

applicable to the numerical simulation of semiconductor materials. The derived form 

of Poisson's equation detailed in Section 5.2.1 indicates how the electric field across a 

semiconductor material varies in proportion with the various types of carrier 

concentration present within the material. To complete the analysis of Poisson's 

equation in the semiconductor formalism each of its constituent parameters have been 

detailed.

To solve the derived form of Poisson's equation an explicit integration method 

has been developed and detailed in Section 5.3.1. This technique in conjunction with a 

numerical shooting method routine allows simulation of the active and MQB regions 

of the laser diode, which predict band-bending features due to the non-linearity in 

charge distribution in these areas. In addition to this a simple dopant and dimension 

dependent linear biasing technique was introduced in Section 5.3.2 to enable 

prediction of the conduction band profiles at the operating voltage of the laser device.

By employing the above solution procedure with the previously described 

dual-band Schrodinger solver described previously in Chapter 4, both the single and 

dual-band MQB reflectors were re-optimised. The MQB reflector optimised on the 

premise of single-band transport was shown to further highlight the need to consider 

inter-valley transport in superlattice structures when the semiconductor material they 

are constructed from experience switching of conduction band minima. Two 

reflectivity plots have been calculated and displayed for the single-band reflector, the 

first indicating approximately 10% enhancement to the T-band maximum in single
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transport mode, the second depicts total breakdown of the reflectivity spectra to 

approximately the height of the X-band maximum when inter-valley transport is 

considered. It was seen that, below the X-band maximum (illustrated in Figure 5.3) 

transmission through any of the two conduction bands cannot occur and it should be 

this potential that all reflective spectra should be normalised with respect to. This 

suggests that the designed single-band reflector have very little impact inhibiting 

transfer of X-band electrons across the superlattice.

To combat increased X-band tunnelling and the occurrence of additional 

resonant tunnelling modes present in the Poisson solved single-band reflector and the 

previously optimised dual-band reflector under flatband zero biased conditions a 

novel dual-band reflector has been proposed. The re-optimised dual-band model, 

gives an enhancement corresponding to the height of the maximum T-point shown in 

Figure 5.7, this is analogous to a gain of 20% with reference to the X-point maximum. 

It has also been shown that a stable enhancement to the intrinsic conduction band 

offsets has been located due to the fact that variation in magnitude of the inter-mixing 

parameter had very little effect on the predicted reflection spectra.

When solving Poisson's equation by the explicit integration method outlined 

above to achieve convergence of the numerical simulation a few physical assumptions 

had to be made. Firstly, it was supposed that there are flatband conditions across all 

cladding regions either side of the simulated area. Due to cumulative errors inherent 

to the solution routine it was only possible to achieve convergence across a small area 

of the device, namely, the active and MQB regions which account for less than twenty 

percent of the overall device length. The application of a linear voltage across the 

simulation region is to a first approximation is adequate, but again physically 

improbable. To overcome these numerical and physical limitations the following 

chapter develops a full device simulator using a much more computationally robust 

and physically rigorous implicit method where the full drift-diffusion equation set is 

solved. Development of this simulator has been the major focus of my PhD study.
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Chapter 6

Quantum Device Simulator

6.1 Introduction
To achieve optimum performance of an embedded MQB reflector within a 

visible 630nm laser diode it was shown in the previous chapter that it is advantageous 

to optimise the periodicity of the structure under operating conditions. To a first 

approximation the method outlined in Chapter 5 to determine the position and the 

extent of the band-bending features across the active and MQB regions of laser device 

is satisfactory. However, the underlying idea behind this research is to eventually 

manufacture these devices commercially, which requires a simulation procedure with 

more physical and mathematical rigour. Hence, this Chapter focuses solely on the 

development of a general one-dimensional semiconductor simulation package. Here a 

step back is taken, in that the following semiconductor device simulator deals solely 

with the T-band. The dual-band simulator is developed in the subsequent Chapter. It 

was envisaged that simulation in one-dimension was sufficient to accurately model 

the behaviour of laser diodes as the current flow and electric field in such devices are 

predominantly unidirectional. Also, to develop a two or three-dimensional simulator 

with all the added features required to accurately model AlGalnP visible 630nm laser 

diodes would require more time than the three years dedicated to this thesis.

Therefore the following chapter is structured as follows; in Section 6.2 the 

semiconductor equations that constitute the drift-diffusion model, which the 

simulation suite is based upon, are detailed and presented in their residual form i.e. as 

they appear in the simulator. Also, it is described how these equations are discretised

132



on a one-dimensional non-uniform mesh, paying particular attention to the numerical 

stability of the carrier density equations.

The two solution procedures used to determine a solution to the drift-diffusion 

equation set namely, the Gummel and Newton methods, respectively are detailed in 

Section 6.3.

To account for the different semiconductor materials and alloys present within 

a laser device the band parameter model is introduced in Section 6.4. The inclusion of 

this model allows material parameter variations across abrupt and non-abrupt hetero

junctions and lends itself neatly to the simulation procedure. In addition, the physical 

models describing the various carrier recombination processes and the dopant 

dependent mobility model implemented are detailed.

Due to the highly doped cladding layers present within the laser diode it is 

essential to incorporate effects of degeneracy in the simulation model. Therefore, in 

Section 6.6, the existing numerical model based on Maxwell-Boltzmann statistics is 

modified to include the more physically plausible Fermi-Dirac statistics.

In Section 6.5 the capability of the theoretical simulation program is enhanced 

by adapting the model to take account of two-dimensionally confined electrons 

present within user defined quantum regions i.e. the quantum well in laser diodes.

Finally, in Sections 6.6 and 6.7 some conclusions on the work carried out in 

this Chapter are given and all referenced used in the development of this work are 

displayed respectively.

6.2 Discretisation of the Device Equations
The basic semiconductor equations consist of Poisson's equation (6.1), the 

continuity equations for electrons (6.2) and holes (6.3) and the current relations for 

electrons (6.4) and holes (6.5). In the one-dimensional steady-state situation these 

equations may be written as

(6.1)
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where e is the material dependent relative permittivity, q is the magnitude of the 

electron charge, p  and n are the hole and electron concentrations, and No and Na are 

the ionised donor and acceptor concentrations respectively.

1 dJB- ~ ^  = U (6.2)
q ox

ldJ-± = U (6.3)
q dx

Here, Jp and Jn refer to the hole and electron current densities, and U  denotes the sum 

of the recombination and generation rates (see Section 6.4.2). Jp and Jn are given by

j  q D ^ q M p 8J L  (6.4)
" p dx dx

. dn d y
J «=<lDn-z— <lPnn—  (6.5)

OX o x

where Dp and Dn are the hole and electron Einstein relations, given by

k DT , _ k„T
D = l-s—M„ and A, =— P, (6-6)p  ‘ pq q

pp and pn are the material and dopant dependent hole and electron mobilities (see 

Section 6.4.3).

. h \ N) . h \ N +l)

Anode M-l M M+l Cathode

N -l N N+l N+2

 ̂ /*(M-1) ^  /*(M) ^  h(M+l) ^

Figure 6.1: Main and auxiliary division points for one-dimensional DC analysis.
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In order to execute numerical analysis, these equations must be transformed into 

difference equations in which the program variables p, n and in this case are defined 

at a finite number of division points, as illustrated in Figure 6.1. The main nodes in the 

simulation program are denoted by N, with N =  1 and N  = L corresponding to the anode 

and cathode, of the device respectively. In addition, auxiliary points are defined such 

that the point M  is located exactly halfway between the main nodes N  and N + l .

The mesh point spacing is defined as a function of the space coordinate x. The 

main program variables are p , n, and i//, and are estimated on the main nodes; and the 

derivatives of these quantities are estimated on the mid-interval auxiliary points. In the 

following sub-sections, each of the five above equations are analysed and discretised in 

a form to fit the meshing scheme depicted in Figure 6.1.

6.2.1 Poisson's Equation

In Chapter 5, Poisson's equation was derived from Maxwell’s equations to an 

appropriate form suitable for numerical analysis of semiconductor materials, i.e.

= ~ q ( p  ~ n + n d —n a )ax ax
(6.7)

By expanding the derivative on the left-hand side, Poisson's equation may be 

expressed in a more general form appropriate for evaluation of hetero-structures as

d 2\j/
dx1

= ~—{p — n + N d — N a )—
1 ds d\f/ 
s  dx dx

(6 .8)

It may be noted that the final term in equation (6.8) vanishes for a device fabricated 

from a homogeneous material, as de/dx = 0 . Discretisation of equation (6.8) can be 

achieved directly for evaluation on the above meshing scheme, to yield the following 

expression

1
h'(N) h(M)

= -q (N t + p (N )-n (N ))

h ( M - 1)
(6.9)
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where

h'(N) = - [h(M)  + h(M- \ ) ] (6.10)

and Nt is the sum of the donor and acceptor concentrations Nd and NA. Equation (6.9) 

can be re-written more succinctly in residual form as

Rv W  = 7 \V(.N -1 ) + y2ii/(N) + y3i//(N +1) + q(Nt + p (N ) -  n(N )) = 0 (6.11)

where R^(N) is the residual of the node in Poisson's equation and /i, fi and are 

given by

e { M -  1)
Y\ =

7 2 = h'(N )
s(M ) s { M -  1) 
h(M) + h ( M - 1)

(6 .12)

7s =
£{M) 

h(M)h'(N)

6.2.2 Current Continuity Equations

In one dimension, under steady-state conditions the hole and electron current 

continuity equations may be expressed in the following form:

1 dJBp = -U  (6.13)
q dx

- ^ R  = u  (6.14)
q dx

Again, these two equations are easily projected on to the aforementioned meshing 

scheme and in residual form on the are given by the following expressions:
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(6.15)

n q h'(N)
-U (N )  = 0 (6.16)

for holes and electrons respectively.

6.2.3 Current Density Equations

Substitution of the corresponding Einstein relations into equations (6.4) and 

(6.5) yields the following expressions for the hole and electron current densities

expediency.

By directly discretising the current density equations in sympathy with the 

predefined meshing scheme, it is possible to deduce, that to sustain numerical stability 

requires the potential difference between adjacent nodes be less than twice the thermal 

voltage, 2kBT/q, approximately 0.052eV (A fuller discussion of numerical instability 

is given in Appendix A). In order to maintain this proviso, an excessive amount of 

nodal points would be mandatory across most semiconductor devices, which is 

subsequently very expensive to computation times.

6.2.4 Scharfetter-Gummel Discretisation

In 1969, Scharfetter and Gummel [1] proposed a novel integration scheme that 

allowed larger potential variation between consecutive nodes due to an exponential 

interpolation between carrier densities on the corresponding nodes, which in turn

(6.17)

(6.18)

where the reciprocal of the thermal voltage vTl = q /kBT  is denoted as 6 for
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decreases numerical instability, hence, allowing the number of nodes to be reduced, 

consequentially increasing computation efficiency.

Below the integral form of the electron current density equation is described 

and then discretised to a form similar to how it appears in the simulator. Considering 

equation (6.18)

( dy/ dO \  qfin dn . . .J  n = -QUnn —— + — -  + —  (6.19)
" , dx dx , 0 dx

where dy//dx  is the electric field dOnldx  is the derivative of the electron band

parameter (a more detailed discussion of this quantity is given in Section 6.4.1).

By assuming that electric field, mobility, and current density are constant over 

the spatial interval N  to TV + 1 in the x  domain, equation (6.19) may be integrated with 

the addition of an appropriate integrating factor to yield

= [ n e ^ '  (6.20)
a

where

f  d\u d & '—*- +  ”
dx dx

a = - 0 (6.21)

By evaluating the limits of equation (6.20), and through some simple algebra the 

following expression for the electron current density may be deduced

J  (M) = (n(N  + l)ea(u> -  n (N )) . (6.22)
0h(M) (ea(M)-1)

Rearranging this expression in a more convenient form, gives
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where A(M) is the sum of the differences between the potential and the band 

parameter between nodes N  + 1 and N, i.e.

A (M) = (y (N  + l ) -  y (N ))  + (<9n (N  + l ) -  6n (N)) (6.24)

and B(A) is the Bernoulli function, which is defined as:

(6.25)

In order to avoid over and underflows due to floating point arithmetic, it is 

necessary to pay particular attention to the implementation of the Bernoulli function. 

In this device simulator the numerical procedure outlined in [2] has been utilised to 

achieve individual machine floating point accuracy and thus program accuracy on any 

personnel computer.

By an analogous procedure, the hole current density may be expressed in a 

similar manner, namely

Hence, equations (6.23) and (6.26) are the discretised forms of the electron and hole 

current density relations respectively, used in the simulator when their corresponding 

continuity equations are evaluated.

6.3 Simulation Procedure

Equations (6.11), (6.15) and (6.16) are all residual equations for a typical node 

N. Upon convergence these residuals will be approximately zero, and the Newton- 

Raphson iteration process seeks this condition. However, before the fully coupled 

equation solver is considered, which was found to be the most appropriate solution 

method and the one employed in the final simulation routine, it is appropriate to

(6.26)
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discuss the decoupled (Gummel) procedure initially developed to evaluate the drift- 

diffusion equation set.

6.3.1 Gummel Iteration

In this numeric routine equations (6.11), (6.15) and (6.16) are solved in a de

coupled manner, whereby each equation is evaluated in turn and the resulting revised 

variable estimate is used in the assessment of the other program variables in a Gauss- 

Seidel type iteration until global convergence is attained.

Below the Newton-Raphson technique used to up-date each of the program 

variables is outlined for all three of the governing equations.

6.3.1.1 Poisson fs Equation

As stated above, equation (6.11) represents the residual equation for a single 

node A  of Poisson’s equation. If there are Nmax nodes in the mesh, this can be stated as

equation (6.27). This can then be solved for the vector \p, using the Newton-Raphson 

method that at each iterative step requires the solution of the following linear set of 

equations,

F v'(y/) = 0 (6.27)

where ^  is an Amax dimensional vector and the N01 component of F* is represented by

(6.28)

This set can be evaluated by either direct or relaxation methods [3,4,5]. ^  is the 

Jacobian matrix defined as

(6.29)

the vector is then replaced by
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y/w+l =y/w+Sy/ (6.30)

where

by rearranging equation (6.28) and w is the iteration index.

6.3.1.2 The Solution of the Current Continuity Equations

Similarly equation (6.16) represents the residual equation for a single node N  

o f the electron current continuity equation. For an Nmax nodal mesh discretisation this 

can be stated as

F n(n) = 0. (6.32)

The equation set given by (6.32) can be solved using an analogous Newton-Raphson 

scheme to the one used when solving Poisson's equation. Here, at each iterative step, 

the vector n is updated by

n w+l = n w+Sn  (6.33)

where

Sn = -[7"" («)]"' F"(n)  (6.34)

J nn the Jacobian matrix is defined as

J""(n) = d F "tnl  (6.35)
dn

and w is the iteration index.
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Thus, the decoupled procedure can now be initiated; firstly Poisson's equation 

is solved in the manner described above until numeric convergence is achieved. The 

updated electrostatic potential is then inputted with the initial estimate of the hole and 

electron concentrations into the hole continuity equation to yield an up-dated estimate. 

These two revised parameters are then used to produce a similar up-date to the 

electron concentration from solution of the corresponding continuity equation. This 

procedure is repeated until global convergence of the three equations is achieved.

6.3.2 Coupled Newton-Raphson Solution

The solution variables p , n and become increasingly coupled as an applied 

bias is dropped across the laser structure. Therefore, it is much more convenient to 

solve the drift-diffusion system using a fully coupled solution scheme, which may be 

written as

" J P P J PH J P W ' dp FpiP,n,w)
j n p j n n j n V Sn = - F*(P>n >¥)
J W J ¥ n J W Sy/ Fv (P,n,y/)

using the following notation

d F x(x) (6.37)
dy

Here x  and y  represent p, n or \j/, and the diagonal terms of the Jacobian matrix are 

given by equation (6.28) and a rearrangement of equation (6.34) respectively. The 

coupled system has the drawback that off-diagonal terms of the Jacobian matrix of 

equation (6.36) have to be calculated, but is far faster that the decoupled Gummel 

scheme [6]. As an initial estimate for the coupled solution however, it is convenient to 

calculate the diagonal terms by the Gummel method [1,6] described in previous 

sections.

Upon evaluation of the solution from equation (6.36), if the convergence 

toleration is attained, the scheme is repeated for the next bias step, otherwise another

142



Newton iteration is required. This procedure is illustrated in the flow diagram shown 

in Figure 6.2 below.

Start

Initialise arrays 
from input data

Calculate P oisson  
(zero bias)

No Apply
bias

Yes

Com pute Derivatives for New ton Schem e

S olve Coupled Solution

Improve Varibles y = y" + dy

NoJudge for Convergence 
|dy/y|<tol

YesUpdate
Bias

No

Stop

Figure 6.2: Flowchart of the main steps used in the Coupled Drift-Diffusion  
sim ulation routine.

The first step of the solution procedure involves initialising array space from 

user-defined information about the device to solved such as, number o f material 

layers, width and doping of these layers, what recombination mechanism to 

implement (see sub-section 6.4.2), how many bias points are needed etc. Once all 

relevant input parameters have been assigned the solution procedure begins. Firstly, 

Poisson's equation is solved under zero-biased conditions and the relevant variables 

saved to a user-defined file. A bias is next applied to these initial results and the 

coupled scheme discussed above is iteratively solved until convergence is met and
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again the program variables saved to the designated output file. This process is 

repeated until all bias points have been evaluated.

6.4 Physical Models

In order to obtain reliable and accurate results from simulation it is necessary 

to include a comprehensive set of physical models. Of these models only a certain 

number may need to be included depending on the actual device being simulated.

Thus, the following Section focuses on such physical models. Firstly, the 

fundamental device equations are adapted to deal with the presence of hetero

materials. Secondly, the recombination processes built into the simulation model are 

discussed highlighting the processes particularly relevant to laser diodes, and finally, 

the dopant dependent mobility model used to estimate the electron and hole mobilities 

within each semiconductor material is outlined.

6.4.1 The Band Parameter Model

This method used to include the effects of non-uniform composition upon 

electronic band structures is that proposed by Sutherland and Hauser [7], as apposed 

to the two-thirds approximation [8,9,10] used in Chapters 2, 3 and 4 to determine the 

conduction band offsets. However, as can be seen in sub-section 7.3.1 of the 

following Chapter the two models predict almost identical conduction band offsets.

Sutherland and Hauser’s model involves using the energy band alignment of 

Anderson [11] to calculate the band parameters 0n and 6P, and uses the vacuum level 

as the reference for the electrostatic potential, implying that the conduction band 

discontinuity AEc is given by the difference in the electron affinities of the two 

materials.

This may not be valid assumption [12] and various alternative schemes have 

been proposed, such as using the intrinsic level as the potential reference [13] or using 

a continuous conduction band edge [14]. There is however contradictory and 

supportive evidence for all models mentioned due to the problems of obtaining 

reliable consistent data especially in the case of AlGalnP. The Anderson model was
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chosen for its simplicity and the ease with which it can be included into this numerical 

solver [15,16].

Using the notation in Figure 6.3 it is possible to define the conduction and 

valence band edges (Ec and Ey respectively) in terms of a reference potential \p o , the 

electrostatic potential;//, the electron affinity x  and the band-gap Eg.

Ec =q(¥  o - r ) - Z  (6-38)

E v = q(¥o ~ V )  ~  X ~ E g (6-39)

Voltage Reference

Xref

'gref

Reference Material

Figure 6.3: Equilibrium energy band diagram for an abrupt heterojunction for the 
calculation of the band parameters.

The electron and hole concentrations can be related to the conduction and 

valence band edges and the electron and hole quasi-Fermi levels, and can be recast in 

terms of voltage to give

<1
(6.40)

k = - ~ e fp
q

(6.41)
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Nc and Ny are the effective densities of states and are given by

N c =2 27zkBTm
3 / 2

(6.42)

(
N v =2

2nkBTmh
J T ~

\  3 / 2

(6.43)

where me and mC are the electron and hole effective masses and h is Planck’s 

constant. Using the expressions for the conduction and valence band edges along with 

the definitions of the quasi-Fermi levels the expressions for the carrier concentrations 

may be recast to yield

n = nir exp
(  (  

e
V

X 1
¥  ~</>n +  V o  + ' ^ l nq 9

( N , YA

V n ir J  J  J
(6.44)

P = nir eXP
( ( 

e
\  v

X E- 1. ( N* w \
K - v - —— s- + r 0 + a lna a 0 \  n ir J  J  J

(6.45)

where 6 = q/kBT and nir is the intrinsic carrier concentration of the reference 

material. The composition dependant terms may then be combined together as band 

parameters.



The band parameter expressions (6.46) and (6.47) are dependent only on 

values that are related to the material parameters of the device, and not on the solution 

variables n, p  and \p. The equations for the carrier concentrations may now be written 

in a more convenient and recognisable form.

n = nir exp(<9(^ -</>„+0n)) (6.48)

p  = nir exp(<9(^ -yr + Gp)) (6.49)

6.4.2 Recombination Models

There are three recombination mechanisms incorporated within the numerical 

model, namely, Direct, Shockley Read Hall (SRH) and Auger recombination. The 

form of these mechanisms is briefly discussed below.

(i) Direct Recombination

This process involves the direct transition of carriers between the conduction and 

valence bands. Electrons are excited to the conduction band from the valence band by 

gaining energy from incident photons. Alternatively electrons lose energy (Eg), which 

is emitted as a photon and moves from the conduction band to the valence band. This 

process is significant in narrow bandgap and direct semiconductors such as GaAs and 

GalnP, hence, should be an integral part when considering simulation of 

AlGalnP/GalnP laser diodes. The net generation-recombination rate due to photon 

transition is given by the expression:

RDir = B(n> P)(nf ~ Pn) • (6.50)

Here B(n,p) is the carrier dependent radiative recombination coefficient defined as,

B(n, p)  = B0 -  B] min(/?, n) (6.51)

where Bo and Bi are dependent on doping and temperature [2].
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(ii) SRH Recombination

The thermal contribution to the recombination processes is due to phonon transitions 

occurring as a result of traps, which is usually characterised by the Shockley Read 

Hall model. This mechanism is termed an indirect process since it involves a trap 

centre in the energy band gap with associated two-stage capture and emission 

processes. The net generation-recombination rate for the Shockley Read Hall model is 

given by,

Rsm =  ~ pn  . (6.52)
r„(p + /’,)+*■„(»+»,)

Where t„ and tp are the non-radiative electron and hole lifetimes and are dependent on 

doping and temperature [2]. The carrier concentrations p t and nt depend on the 

position and occupancy of the traps. In this numerical model, it is assumed that the 

trap centres to lie in the middle of the band gap, and these concentrations are replaced 

with the reference intrinsic concentration

(iii) Auger Recombination

Auger recombination comprises three particles and involves the recombination of an 

electron-hole pair and the emission of energy to a third particle. Auger recombination 

may be considered in terms of direct band gap generation-recombination (i.e. where 

carriers move across the band gap) and the indirect process involving trap centres. 

The net Auger recombination rate is given by,

RAug = (c nn + c PP)(nf ~ Pn) • (6-53)

Where Cn and Cp are the Auger coefficients, and are dependent on temperature and 

material type [17].

6.4.3 Mobility Model

The hole and electron low field mobilities may be expressed as a function of 

doping and temperature as given in [17] and [18] as,
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(6.54)

for electrons, and for holes

(6.55)

where jup] =50cm 3V ]s \  N ref = 3.232 xlO17 cm 3 and a  = 0.4956. Parameters juno

and nPo in equations (6.54) and (6.55) refer to the magnitude of the bulk electron and 

hole mobilities of the particular material respectively.

Where relevant, the mobilities of the ternary and quaternary materials are 

reduced as the mole-fraction of aluminium is increased as a result of alloy scattering. 

This effect is included by the following simple relationship,

where x is the aluminium mole-fraction and ju(x) is a linearly decreasing function. 

This simple relationship is employed because compositionally dependent mobilities 

for the semiconductor material AlGalnP are not well documented at the present time.

6.5 Fermi-Dirac Statistics
Due to the highly doped cladding regions in the laser diode it is necessary to 

include the effects of carrier degeneracy. In this Section the band parameter model is 

adapted to include Fermi-Dirac statistics. Therefore, this Section is organised as 

follows; Section 6.5.1 discusses the calculation of the carrier densities with reference 

to both Maxwell-Boltzmann and Fermi-Dirac statistics, section 6.5.2 considers the 

implementation of Fermi-Dirac statistics within a numerical model. Sections 6.5.3 and 

6.5.4 deals with the recalculation of the Jacobians partial derivatives for Poisson's

//(jc) = m(x) /u{x = 0) (6.56)

149



equation due to the admission of Fermi-Dirac statistics and finally the numerical 

algorithm used to evaluate the Fermi-Dirac integrals respectively.

6.5.1 Calculation of Carrier Densities

In a semiconductor the carrier densities are calculated by multiplying the 

density of states function by the carrier distribution function and integrating over the 

required energy band, i.e.

00

n = \ Pc(E )fJE )d E  (6.57)
Ec

Ec

p =  \ p J E ) f p(E)dE (6.58)
- 0 0

where E  is the energy, pc(E) and pv(E) are the density of states functions and f n(E) and 

f p{E) are the distribution functions given by

/„ (£ )=
1 + exp ' E - E ^

\  kBT j

(6.59)

1 + exp
( E r - E ^

(6.60)
Fp

V k B T  j

where ks is Boltzmann’s constant, T is the lattice temperature and Epn and Epp are the 

Fermi levels for electrons and holes respectively. Assuming isotropic parabolic bands 

Pc(E) and pv{E) are given as:

_  mnJ 2 m ( E - E c) ^  ^
P c ( E ) = 173-------- >  E > E cn  n

(6.61)
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m*J2m*(Ev -  E)
p v(e }=

n  n
E <Ei (6.62)

where Ec and Ey are the conduction and valence band edges, mn and mp are the 

electron and hole density of states effective masses and h is the reduced Planck’s 

constant. The integrals (6.50) and (6.51) above can be evaluated to

(
n N c j—Fx/:

yl7T
E F n ~ E C

\

v KT
(6.63)

P Ny i  Fxjl
V 71

( E y - E Fp\  
k ,T

(6.64)

where Nc and N v denote the effective density of states in the conduction and valence 

band respectively.

(
N c = 2

27tkDTm *  \ 3 / 2

V *  J
(6.65)

N v = 2
/  ,  * \ 3 / 2
' 27ikBTmh '

(6 .66)

e i/2(x) is the Fermi integral of order Vi, which does not have a closed form solution. 

However, for a large negative argument it can be expressed analytically as

Fm (x) ® -y -ex p (x ), x « - i (6.67)

equations (6.56), and (6.57) then reduce to

(
n = N c exp E Fn E C

v kBT
(6 .68)
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(6.69)

Hence, it is only when the Fermi levels are far from the band edge that the Maxwell- 

Boltzmann approximation is valid. In the existing device simulator a discretisation 

scheme was used which was formulated upon the Maxwell-Boltzmann approximation 

thus the expressions for n and p  must be recast into a modified Maxwell-Boltzmann 

expression for use with Fermi-Dirac statistics as follows,

where nir is the intrinsic carrier concentration, \p is the potential, ^  and ^  are the 

quasi-Fermi potentials and 6n and 6P are the corrections for heterogeneous materials 

as discussed earlier. Vn and Vp are the Fermi-Dirac corrections given by

n = nir ex]P (^ (W -A + ^n + K )) (6.70)

(6.71)

(6.72)

(6.73)

where rjc and rjv are the degeneracy factors

(6.74)

(6.75)

which maybe recast to a more suitable expressions
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nc=0(v'-fa+°n)+la
K * C J

(6.76)

Vv = v \ ? „ - v  + e ) + \ n (6.77)

To show that the equations (6.61), (6.62) and equations (6.63), (6.64) are equivalent 

consider the substitution of Vn into equation (6.63)

n = nlr exp(tf(y/ -</>,+9, ))Fin<fc c) (6.78)

Substituting for 6n

* 1
q e \ n ir J

(6.79)

AT.  ̂ (  (n = «...
V n ir J

exp e F\/2 Ole)
Sc (6.80)

Substituting for the degeneracy factor 7jCi

n c = Ef: * c (6-8 l>kBT

Ec = <i{y/ o - y / ) - x (6.82)

q
(6.83)

gives

n = N c exp
( e ^ - e Afit  c

v b̂T j
(6.84)
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Therefore the two formalisms are equivalent. Hole statistics maybe treated in exactly 

the same manner.

6.5.2 Addition of Fermi-Dirac Statistics

The above method for incorporating Fermi-Dirac statistics within the 

Maxwell-Boltzmann type formalism is simple to implement for the calculation of 

carrier densities. First the modification factors are calculated and then introduced into 

the exponential of the Maxwell-Boltzmann equation. However, problems arise in the 

Newton-Raphson method, where the partial derivatives of n and p  are required with 

respect to the potential and the quasi-Fermi potentials. This is a major problem as the 

expressions for Vn and Vp are dependant on the potential and the quasi-Fermi 

potentials. Therefore, to ensure quadratic convergence the derivatives must also be 

recalculated to include the effects of Fermi-Dirac statistics. These issues are 

considered next.

6.5.3 Recalculation of Partial Derivatives

The residuals and Jacobians for all equations must be recalculated to include 

the dependence of Vn and Vp on the potential and quasi-Fermi potentials. For example 

the solution to Poisson’s equation involves the solution of

J „ ( v ) 8 v  = - F v (y') (6.85)

where J  is the Jacobian matrix

(6 .86)

and F ¥ is the residual of the N th component which may be expressed as

F, (N) = —qp(N) -  yx¥{N -1) -  ylW{N) -  n y,{N +1) (6.87)
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when using Fermi-Dirac statistics the residual will be automatically adjusted provided 

n and p  in the charge term p(N) have been already adjusted. However, the Jacobian 

requires the derivative of the charge density with respect to potential.

f -  = - ^ - ( .N „ -N a+p - n )  
dy/ dy/

Consider for example the electron concentration

dn_ f dexp{6(y/-<t>„+9n + Vn) ) \ 
dy/ "1 8 W J

dn f n dexx)(6(y/- 6 „+0n)) „  , _ Sexp(0Fr_)l—  = n ,i  exp(0F„) w  ^  + exp(0(y/ + 6 J ) -----
dip [ oy/ oy/ J

=  n i r eXP{9(W ~ h + 0 „ + V , ) )  + SXp(0(l// -</>n + 0 n

In F^iJlc) hence, eev" = F\n (flc)
e7c e11c

deev„ d d FmiVc) diic
dy/ e nc d*lc enc dy/

where

^ = e .
dy/

If a new variable Yn is defined, such that

Y« = —  dnc
F\I2̂ J1c)

Jlc — e 710 [F11/2(77c) -̂ 1/2 (̂ 7c)]

(6 .88)

(6.89)

(6.90)

(6.91)

(6.92)

(6.93)

(6.94)
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Then the derivative of the electron concentration with respect to the potential is then 

given by

= 19nlr {exp(0(y/ -  </>n + 0„ + Vn)) + exp(0(y/ -  (£„ + <9„))7„} (6.95)
dy/

^ -  = 0n + 0 exp(0(^ -$>„+<?„ ))Y„ (6.96)

A similar procedure is used to determine the derivative of the hole concentration with 

respect to the potential. Thus, the total is then given by

This can clearly be broken down into the part that comes from Maxwell-Boltzmann 

statistics and the correction that is derived from Fermi-Dirac statistics.

The recalculation of all other partial derivatives (for example in the coupled 

scheme there are nine derivatives, which must be calculated corresponding to the nine 

derivative elements within the Jacobian matrix) may be calculated based on the 

method described above. The partial derivatives for the continuity equations are 

considerably more involved than for Poisson's equation due to the complicated 

discretisation scheme for the current density. For the sake of brevity these derivatives 

are not shown here nor those for the different recombination mechanisms that must be 

included, nor those for the recalculated boundary conditions. It is sufficient to say that 

provided the derivatives of the carrier densities are recalculated (as described with 

respect to the potential) then the implementation only involves algebra

dp _ (  dp dn > (6.97)
dy/ \dy / dy/ ,

Op - OYpnir Gxp(0(<f>p - y /  + Op)) + On + OYnnir exp{0{y/ -</>n +0n)) (6.98)
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6.5.4 Calculation of the Fermi-Dirac Integrals

The Fermi-Dirac integral is defined as

n /+ n ) iI X / + 1) „ 1 + exp(x - r jF)
dx

where the coefficient in front of the integral is a Gamma function.

To solve this integral numerical solutions are used, which have been 

determined by Bednarczyk and Bednarczyk [19] for Fm  and by Aymerich-Humet 

[20] forF-i/2. These will be considered in turn.

' 1/2

The approximation is given by

F\n(n) = ~ J x V ~ 3 / 8  _ 1 _  r , - 1!

a(rj) = rj* + 50 + 33.6?;{l -  0.68e_0'n<''+,)2}

The relative error of the above expression is less than 0.4%.

F.1/2

Aymerich-Humet used the fitting form

*./207)

£-1/207) =
7j + b + (\r}-b\c + a)

/ 2

where a = 7.94, a = 1.63 and c = 4.05. This expression gives a maximum error of 

0.76 percent.

(6.99)

(6.100)

(6.101)

(6 .102)

(6.103)
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It is important to consider the accuracy of the approximations. They are of the 

order of 0.5%, which is not particularly impressive, especially for a numerical model, 

which requires accuracy in the order of 10~15. The error becomes significant as the 

solution to the non-linear algebra is approached (very high doping) and quadratic 

convergence is lost. However, there are approximations available to the Fermi-Dirac 

integrals in the order of 10~30 [21,22,23]. These work on some form of polynomial 

approximation, notably rational approximations [22,23] for which claim the best 

accuracies. An additional advantage of the polynomial approximation method is 

speed. If the area over which the degeneracy is modelled is split into many different 

intervals (32 in the case of [22,23]) and a polynomial is used for each interval, the 

calculation time can be greatly reduced. Initially, the polynomial method was not 

introduced as it was felt that the deterioration in quadratic convergence was not 

significant enough (in the order of an extra iteration) to necessitate the lengthy coding 

of all the polynomial coefficients.

In later versions of the code (as discussed in Chapter 7), an additional 

continuity equation has been added to the coupled set to allow simulation of both the 

T and X conduction band minima. This action results in amplified non-linearity in the 

Jacobian matrix, to minimise numerical floating-point errors and achieve global 

convergence, it was necessary to implement the rational approximations given by 

Antia [23] to evaluate the Fermi-Dirac Integrals. The algorithm describing this 

function is given in Appendix B.

6.6 Simulation of a Laser Diode

Using the above models it is possible to simulate an entire laser structure, 

details of which are given in the following table for the single T-band only. The 

structure consists of two heavily doped GaAs outer cladding regions in both the p  and 

n doped domains. Within the GaAs boundaries various alloys of the AlGalnP 

semiconductor material are employed, until the active region of the device is reached 

where there exists GalnP quantum well sandwiched between two undoped waveguide 

regions. Built in to the /?-doped cladding layers is a monitor pit; the intention of this 

layer is to experimentally verify the dominant carrier leaking through this region [24]
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by colleagues based at Cardiff University. As hypothesised earlier, this is almost 

certainly associated with X-band electrons in 630nm visible laser diodes.

Layer
Number

Material
Composition

Structure 
Widths (A)

Doping
(cm’3)

1 GaAs 6000 5 e l8  p-type
2 Gao.4 9 Ino.5 1P 1 0 0 2 e l 8  /?-type
3 (Al0.7Gao.3)o.5lno.5l> 5000 5 e l7  p-type
4 (Alo^Gao.olo.sIuo.sP 5000 5 e l7  p -type
5 (AlojGao.sio.sIno.sP 9000 5 e l7  p -type
6 (A l0.5iGao.49)o.5lno.5P 945 5 e l7  p -type
7 (Al0.3Gao.7)o.5bio.5P 900 Undoped p -type
8 Gao^Ino.siP 6 8 Undoped p-type
9 (Alo.sGao^lo.sIno.sP 900 Undoped p -type

1 0 (AI0.51 Gao.49)o.5lno.5P 945 5 e l7  n -type
1 1 (Alo.vGao.sio.sIno.sP 1 0 0 0 0 5 e l7  n -type
1 2 Gao.4 9 bio.5 1P 1 0 0 2 e l 8  n-type
13 GaAs 6000 5 e l8  n-type

Table 6.1: Input parameters for diode laser.

In this simulation example, the multiquantum barrier structure has been excluded; in 

the following Chapter an improved MQB design is considered.

Figure 6.4(a) below illustrates the zero bias form of the laser structure detailed 

in Table 6.1. As expected, both the electron and hole quasi-Fermi levels are zero in 

magnitude across the whole of the structure. Figure 6.4(b) displays the carrier 

concentrations throughout the laser device; there are fairly abrupt features in the both 

carrier concentrations stemming from the fact that there are differing alloy 

compositions along the structure.

Figure 6.5(a) and (b) display similar plots as previous except here an applied 

forward bias of 2 volts, which is the experimentally determined ‘turn-on’ voltage, has 

been dropped across the whole device, to illustrate the position of the energy bands 

under lasing conditions.

These plots verify that the theoretical simulation model outputs energy band 

diagrams that were expected. In the next Section, the simulation package is extended 

to incorporate the contribution to the electron concentration from confined electron 

states present within the quantum well position in the active region of the device.
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6.7 Self-Consistent Solution
A high majority of semiconductor devices have regions where two- 

dimensionally trapped carrier states are apparent such as quantum wells in laser 

devices or accumulation layers in resonant tunnelling diodes. The magnitude of the 

carrier concentration in these layers outweighs the surrounding semiconductor layers 

and may distort the present band-bending features further. To take account of 

electrons confined in this way Schrodinger’s equation must solved in this region to 

yield the two-dimensional electron density. The simulation program was modified to 

iterate in a self-consistent manner between the fundamental drift-diffusion set and 

Schrodinger’s equation until global convergence was acquired. In this Section the 

numerical methods employed to achieve this task are outlined and then illustrated by 

considering the effect two-dimensionally confined electrons have on the electron 

concentration in and around a quantum well embedded in a -junction as an initial 

example.

In the following analysis it is assumed that a quantum structure may be 

computationally split into two distinct segments. A quantum mechanical window [25] 

separates the conventional part of the device from the area of quantum mechanical 

operation (i.e. the quantum well within the active region of the device). This enables 

the parts of the device outside the quantum window to be analysed using conventional 

carrier statistics as previously described. In this way it acts as a computational tool as 

it provides a method to consider Schrodinger’s equation within a specific region of 

the device.

6.7.1 Governing Equations

In this investigation, the quantum mechanical effects for electrons are 

considered only and it is assumed that the effective mass approximation 

[26,27,28,29,30,31] is valid. Abiding by this conjecture, the electron wave function 

Q(x) may be obtained from the following one-dimensional time-independent 

Schrodinger’s equation

r n2_ 8 _ r
2 dx

1
m (x) dx

A
+ V(x) + Vxc(x) £l(x) = A £ i(x) (6.104)
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where x  is the one-dimensional coordinate, h is the reduced Plank constant, and m is 

the effective mass of an electron. is the z,th eigen-energy that is the z-th eigenvalue of 

equation (6.97). V(x) is the potential associated with the conduction band minimum. 

Vxd*) is the local exchange correlation energy due to the many body and correlation 

effects and its magnitude determined by a local density functional approximation. 

Q(x) is the envelope wavefunction of an electron.

The correlation energy, Vxc(x), is deduced as a function of the local electron 

density n(x) only. The following expression reported by Stem et al. [32] for Vxd x ) is 

employed in the quantum simulator.

where

Vxc(x) = -[l + 0.7734/? ln(l + /T 1)!
nar,

R (6.105)

a  -

9 n
(6.106)

P ( x ) =  —  21
(6.107)

rs (x)=  —m*3n(x) (6.108)

a =
47T£Q£rfr 

m (x)q2
(6.109)

where Ry is the effective Rydberg constant, and a = — -
$7T£0£ra

If the simulation region is partitioned, the electron wavefunctions must match 

with each other at the boundaries between sub-regions. The conventional drift- 

diffusion model (see earlier sections), which is used outside the quantum region,
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implicitly assumes that the electron wavefunctions are plane waves in all directions 

and that the density o f states is continuous within the conduction band.

3-D Electrons

C L

b o u n d

Q uantum  Region

Figure 6.6: Schematic conduction band diagram  illustrating a quantum  well structure and 
indicating the quantum  region, in which Schrodinger’s equation is evaluated. Additionally, the 
position o f E bound the boundary separating the two-dim ensionally confined electron states and the 
three-dim ensional electrons is illustrated.

Therefore electrons whose energy in the x-direction is higher than the 

conduction band edge at one of the boundaries {Ebound) (see Figure 6.6) are not 

confined in the quantum region, because these electron wavefunctions must be 

connected to plane waves at the boundary and are considered as part of the previous 

simulation, based solely on the drift-diffusion model.

On the contrary, electrons whose energy in the x-direction is lower than Ebound 

are confined two-dimensionally within the quantum region because there is no density 

of states outside the well region corresponding to energies lower than Ebound• As a 

result, the two dimensional electrons should have discrete energy levels which are 

eigenvalues of Schrodinger’s equation in the x-direction. The boundary condition for 

Schrodinger’s equation in this case, assumes that the wave function decays 

exponentially into the adjacent materials.

However, it is not practical for all electrons in all sub-bands of the quantum 

well to be treated as two-dimensionally confined electrons because summation of
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electrons over all sub-bands is needed in order to know the electron concentration at 

one space location. In this model, it is assumed that electrons in the sub-bands below 

the highest confined state are two-dimensional in nature, and all other electrons are 

treated as three-dimensional.

No significant error is expected from the approach because the occupancy 

probabilities at the sub-bands with higher energy are relatively low due to the Fermi- 

Dirac statistics. Thus, according to this prescription, the electron concentration within 

the quantum region may be expressed by the following expression

n(x) = n2D(x) + n3D(x ) , (6.110)

where represents the contribution from the two-dimensionally confined electrons, 

and ri3D that from the three- dimensional electrons.

The two-dimensional electron contribution, n2D, can be obtained from the 

summation of the electron population on each sub-band, which is, in turn, the integral 

of the product of the distribution function and the wavefunction over the entire ky-kz 

plane; where ky and kz are the wave numbers in the y  and z directions, respectively:

4 +00

n2D (*)= T yyz J1
dkydkz

31 + exp
r E - E Fy

kBT

If, Ml' (6 .111)

This double integral may be recast in following form

^r m*kT
niD<,x ) = ZJ~ ^ r Xn i 7tn

r
1 + exp Fn

k„T | f « | : (6.112)

with

E = Ei + ^ ( k 2y+kl ) .  
2m

(6.113)

On the other hand, the portion of three-dimensional electrons yî d can be expressed as
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1 +00 

n3d(X) = T < ^ j I \  f'
dkxdkydkz

(
-1  + exp

E - E
~ T bt

;»(kx) (6.114)
Fn

with

E — Ec + + * }+ & ■2m
(6.115)

where D(kx) is the density of states in the k = kx momentum plane. Calculation of the

density of states may be achieved by solving Schrodinger’s equation with respect to 

the eigenenergies higher than Eb0Und• However, this task is considerably simplified if a 

constant value of the density of states D(kx) is assumed, given by

2k

D{kx) = \

r
> Ebotmd ~ Ec

2m

( n2

y
(6.116)

V2m

Substituting equation (6.116) in equation (6.114) and integrating it in ky and kz, yields

n3D ~ '

Nr
J x k BT

(QW)

t-uu i

f lnj 1 + exp 'Fn C

kBT

(6.117)

N r
'jftkgT Q

(Elsewhere)

JlnJ 1 + exp E*Fn Ec Ex 
kBT

1 dE,

where
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(6.118)

N c =2

and where ‘QW’ refers to the quantum well region where the conduction band 

minimum is lower than the lowest energy of the three-dimensional electrons (i.e. 

Ebomd) (see Figure 6.6). The preceding expressions can be rewritten as equation 

(6.111) by implementation of the partial integration method:

Equation (6.119) satisfies the continuity condition at the boundary of the quantum 

well (Ec = Ebound), and also continues outside the quantum region because the formula 

for Ec > Ebound in the equation is exactly the same as the conventional expressions for 

the carrier concentration.

6.7.2 Solution of Schrodinger’s Equation

The first task in the evaluation of Schrodinger’s equation in this context is to 

apply a suitable discretisation scheme to allow its projection on the predefined mesh. 

It is a simple algebraic task to recast equation (6.104) in the following discretised 

form

bound

' bound

(QW)
(6.119)

(Elsewhere)
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n 2

2h \N )
f , (  N + l ) - ^ N )  £ (J V )- f f( t f - l )

m (.M )h{M ) m {M -  \)h(M - 1)

+ { V ( N )  +  Vx c ( N ) } ; i ( N )  =  Ai( i ( N )
(6 .120)

which may be recast in a more succinct form as

H£i =AlC, (6.121)

where H  is the tri-diagonal Hamiltonian operator comprising of the kinetic and 

potential energy components (see equation (6.115)), Q is the eigenfunction 

corresponding to the i eigenenergy

22  23  '

•• a j _ 2 j _  i

0 ay_w_2

(6 .122)

where the index j  refers to the node index within the predetermined quantum region, 

and the elements % refer to the coefficients of the wavefunction on that node. To 

evaluate equation (6.120) requires the calculation of its eigenvalues and eigenvectors. 

There are many algorithms available for solution of this type of problem. Initially, a 

numerical routine based around the transfer matrix method (a modified routine to that 

encountered previously) [29,30,31] was developed [33,34], however, application of 

this technique proved very computationally expensive. Hence, a more rigorous routine 

comprising of the union of the QR Algorithm and the Inverse Iteration Method was 

implemented to determine the eigenvalues and eigenvectors confined in the user- 

defined quantum windows. These numerical techniques are described briefly in the 

following sub-sections.
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6.7.2.1 QR Algorithm

The QR algorithm of Francis [35] is an iterative procedure designed to reveal 

the eigenvalues of a matrix A. This algorithm is often used in the evaluation of 

eigenvalue problems, due to its high stability [36,37]. The algorithm works by 

successively transforming the coefficient matrix A  according to the following method:

(i) Set k  = 0

(ii) Decompose Ak into Qk and Rk such Ak = RkQk where Ak is the

Schrodinger tri-diagonal coefficient matrix, R  is upper triangular and Q 

is the unitary matrix.

(iii) Compute Ak+l = R kQk. The estimates of the eigenvalues equal the

leading diagonal o f^+ y  i.e. diag^+z)-

(iv) Check the accuracy of the eigenvalues. If the process has not

converged, k = k+ \ ; repeat procedure from (ii).

This procedure may be put more concisely in the following expression

Initially, Ak=0 = A  and provided A  is tri-diagonal then A k is also. The algorithm

works because A k tends to a diagonal matrix with the eigenvalues along its diagonal 

as the iteration index k  increases.

6.7.2.2 Inverse Iteration

The By subtracting from both sides of equation (6.121), the following 

expression is yielded

Ak+,= R kQk =(QTkAk)Qk =QTkA kQk (6.123)

( H - g I ) £  = (X-Li ) t (6.124)

which may be rearranged to give
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(6.125)

Thus, if the following iterative scheme is executed, initiating with the trial vector Q

Iteration of this equation will lead to the largest value of 1/(2 - / / ) ,  i.e. the smallest 

eigenvalue of (2 -  ju) . The smallest value of (2 -  //) implies that the value of 2 will 

be closest to fj. and Q+\ will have converged to the eigenvector corresponding to this 

particular eigenvalue. Thus, by a suitable choice of //, i.e. using the aforementioned 

QR algorithm values, a simple procedure for determining the eigenvector for any 

particular eigenvalue of the system is possible.

Termination of this iterative procedure is commenced when Q+\ is sufficiently 

close to Q i.e. when |£.+] || = 1. Once this criteria is met i.e.

— -— = IIC, II (6-1:( X- n)  11 ,+1|L 

is true. The eigenvalue, 2 nearest to fi is given by

The rate of convergence of this algorithm is extremely fast, due to the fact that 

the eigenvalues have already been determined. However, equation (6.126) becomes 

singular if  these values are directly inputted into the program, it is necessary to add a 

small increment to these values to maintain numerical stability.

Figure 6.7 below, displays a flowchart depicting the major steps involved in 

the above iteration routine used to calculate the eigenenergies and eigenvectors of a 

potential induced quantum well. Firstly, in the program variables deduced by the drift-

yields

(6.126)

(6.128)
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potential induced quantum well. Firstly, in the program variables deduced by the drift- 

diffusion equation at particular bias point and read in. From the conduction band edge 

the lowest conduction band point either side of the quantum well (i.e. Ecl see Figure 

6.6) is determined.

Start

End

Determine Schrodinger’s Tri- 
Diagonal Coefficient Matrix

Input Program Variables Via 
Drift-Diffusion Model

Determine Eigenvectors by 
Inverse Power Iteration

Update Electron Concentration 
via Equation (6.110)

Determine Eigenvalues by Iteratively 
Solving the QR Algorithm

Calculate 2D and 3D Electron 
Concentrations via Equations (6.112) 

and (6.119)

Figure 6.7: Quantum iteration flowchart, showing the major numerical 
steps involved when finding a solution to Schrodinger’s equation.

The elements of the tri-diagonal coefficient matrix are next determined. 

Utilising the QR algorithm all the eigenvalues of this system are ascertained. The 

program then discards all eigenenergies greater than Ecl (see Figure 6.6). Using the 

remainder the program calculates their corresponding eigenvectors via the Inverse 

Iteration routine. Following solution to Schrodinger’s equation the program proceeds 

to evaluate equations (6.112) and (6.119), giving an updated approximation to the 

electron concentration within the quantum window.
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6.7.3 Overall Solution Procedure

The overall self-consistent solution method utilised to evaluated quantum 

devices is illustrated in Figure 6.8 below. The solution is initially obtained first 

without considering quantisation effects. An iterative loop is then entered into where 

Schrodinger’s equation is solved across the user-defined quantum region to reveal an 

up-date to electron concentration by summing the calculated two and three- 

dimensional electron concentrations.

Start

No
Converged

Yes

YesUpdate
Bias

No

End

Update n in Quantum 
Region

Solve Coupled Drift-Diffusion Model 
and Fermi-Dirac Statistics

Solve Problem Using Coupled Drift-Diffusion 
Model and Fermi-Dirac Statistics

Solve Schrodinger’s equation in Quantum Region

Figure 6.8: Flowchart illustrating the overall solution process.

The revised value of the electron concentration is then re-substituted into 

Poisson's and the electron current density equation and the coupled drift-diffusion set 

is again solved until numerical convergence is found. This iteration procedure is 

repeated until the global convergence criteria are met. The system is then continued at 

a further bias step, or terminated.

6.7.4 Self-Consistent Solution of a Quantum Well

To illustrate the effect the confined two-dimensional electrons have on the 

total electron concentration, the case of a simple heterostructure comprising of a
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quantum well of width 100A embedded at the mid-point of a /^-junction is 

considered. The material system used in this example is AlGaAs/GaAs/AlGaAs, and 

is shown at a forward bias of 0.2V in Figure 6.9. All relevant material parameters for 

this simulation have been taken from [33,34]. Figure 6.9(a) indicates the relative 

positions of the conduction and valence bands E c  and Ey, respectively, also shown are 

the hole, electron, and intrinsic Fermi levels EFn, EFp and EFi. Figure 6.9(b) shows the 

extent of the quantum region, highlighted in (a), where calculation of the two- 

dimensional electrons is considered.

2.5

1.5

•£ 0.5

£? p
c  -0.5W

-1.5

-2.5 0 7
0 0 1.0 2.0 3.0 4.0 5,0 6.0 7 0 3,47 3.48 3.49 3 50 3.51 3.52 3.53 3.54

Device Width (jim) Device Width (mm)

Figure 6.9: Diagram (a) is the calculated energy band profile for the / 7/1-junction at zero bias. 
Plot (b) is an enlargem ent o f the highlighted area in Plot (a), this depicts the position o f the 
quantum  well em bedded within the /7«-junction.

Comparison of the electron concentration calculated initially by the drift- 

diffusion and the self-consistent methods yields a fairly big disparity in magnitude 

across the quantum well region of the simulation due to the two-dimensionally 

confined electrons in agreement with separate work of Fukuma et al. [33] and Jonsson 

etal. [34].

—  Self-C onsistent

—  D rift-Diffusion

« 1 .E + 0 6

© 1.E +04

w 1.E +02

1.E+00
3 .52 3.53 3 .543 .47 3 .48 3.49 3 .50 3.51

Device W idth (pm )

Figure 6.110: Indication of the degree of variance between the electron concentration  
calculated using the standard drift-diffusion (solid green line) and the self-consistent 
iteration procedure.

173



The dissimilarity is shown graphically in Figure 6.10 above. Thus, it is 

apparent that it is vital to take account of two-dimensionally confined carriers in 

device structures where quantum structures such as wells are implemented to ensure a 

more physically realistic picture of the devices nature. In addition to the electron 

concentration the converged energy eigenvalues and their corresponding eigenvectors 

with reference to their confining potential are displayed below in Figure 6.11.

1.2 

1.1

1.0
>O
ojd 0.9
<u
SU

0.8 

0.7 

0.6
3.47 3.48 3.49 3.50 3.51 3.52 3.53 3.54

Device Width (pm )

Figure 6.11: The converged position o f the three confined two-dim ensional eigenvectors 
superim posed on top of their corresponding eigenvalues (E \,  E 1 and E-j) is shown.

Figure 6.11 shows a magnified view of the quantum well under investigation 

in this sub-section (blue solid line). The eigenvalues of the three confined electron 

states present within the well are given by the three intermittent lines, also shown are 

the corresponding eigenvectors (same coloured solid lines).

6.8 Summary

The major points of discussion within in this chapter have concentrated around 

the development of a general one-dimensional quantum device simulator. Although, 

most of the main issues have been implemented with reference to the numerical 

simulation of laser diodes this simulation package can be applied to a number of other 

semiconductor devices and each of the above processes may be switched on or off 

depending on the device of interest.
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To lay the foundations of the numerical model the basic equation set to be 

solved was displayed in their discretised form to allow their projection on a user- 

defined non-linear mesh in Section 6.2. Particular attention was given to the 

discretisation of the current density equations to allow greater numerical efficiency.

In Section 6.3, the two solution procedures used to solve the aforementioned 

equation set were detailed. This comprised of an uncoupled Gummel and the coupled 

Newton schemes. Also, the Newton-Raphson iteration scheme was given as the 

method in which Poisson's and the two carrier continuity equations were solved to 

find an improved up-date to the program variables.

To enhance physical robustness of the model and make the numerical model 

applicable to heterojunction devices, in Section 6.4, a selection of physical models 

was introduced. Firstly, the band parameter model was added into the numerical 

simulation enabling simulation of abrupt or graded material junctions. Also, the 

recombination processes numerically embedded in the model were given, namely, 

Spontaneous, Shockley Read Hall and Auger Recombination mechanisms. Finally, 

this section closed with a brief look at the doping dependent electron and hole 

mobility models used in the program.

Hitherto this point, the model was founded on the basic assumption of the 

validity of Maxwell-Boltzmann statistics to all simulated devices. However, due to 

the highly populated outer cladding regions of a laser diode, the electron and hole 

Fermi-levels approach and indeed exceed the conduction and valence band edges 

respectively, severely questioning the validity of Maxwell-Boltzmann statistics. 

Therefore in Section 6.5, to make the simulation more physically plausible, Fermi- 

Dirac statistics was incorporated into the model in a formalism that meshed 

favourably the already written Maxwell-Boltzmann code. This was achieved by the 

introduction of an additional exponent containing all the information of the Fermi- 

Dirac corrections in the expression dictating the electron and hole concentrations. 

Utilising this technique required an extra Newton iteration in the overall solution 

process to obtain equivalent numerical convergence as that seen under Maxwell- 

Boltzmann statistics.

The final topic encountered in Section 6.7 of this chapter discusses the onset 

of perturbations to the electron concentration as a result of two-dimensionally 

confined electrons in the conduction band.
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To permit the simulation of quantised electrons the simulation area was split in 

to two distinct regions, namely, a region where electron concentration was governed 

by the normal drift-diffusion equation set and a quantum window in which the 

program sought a self-consistent solution between the drift-diffusion set and 

Schrodinger’s equation to estimate the electron concentration.

In Section 6.7.2 Schrodinger’s equation was discretised in manner that ensured 

wavefunction continuity across heterointerfaces and allowed non-linear node spacing 

across the quantum region. In this Section the methods used to evaluate Schrodinger’s 

equation to yield the eigenvalues and eigenvectors of the confined electron states were 

detailed. Calculation of these values allows estimation of the electron concentration in 

the quantum window by summing the two and three-dimensional contributions. This 

updated concentration can then be placed in the drift-diffusion set and the whole 

process repeated until global convergence is met.

To illustrate the importance of this self-consistent procedure, the method was 

applied to a simple p«-juntion with a 100A quantum well embedded at the junction. 

Huge differences in electron concentrations between the standard drift-diffusion and 

self-consistent models around the quantum well region, which underlines the need for 

this type of model when two-dimensionally confined electrons, were apparent.

In the following chapter, the simulation package is adapted specifically for 

simulation 630nm visible laser diodes including a MQB structure. A second 

conduction band is included in the coupled scheme to allow simulation of both the T 

and X conduction band minima. This model is then used in conjunction with the 

coupled Schrodinger solver to design a novel dual-band MQB reflector under 

operating conditions of the laser device.
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Chapter 7

Coupled Dual-Band Model and Final
Results

7.1 Introduction
Within the following chapter, the general device simulator developed 

previously in Chapter 6 is extended specifically for numerical analysis of visible 

630nm laser diodes. The major obstacles that need to be overcome to achieve this 

goal are integration of a supplementary continuity equation into the coupled scheme 

and population of the two conduction band minima in a physically viable manner. 

Addressing these issues allows simulation of the relative positions of both the T and X 

conduction band minima across the whole laser device.

Subsequently, the discussion topics in this chapter are primarily two-fold; 

firstly, the necessary changes to the previous coupled iteration procedure to allow a 

second conduction band are detailed in Section 7.2. In addition, this Section also 

considers the numerical refinements needed to instigate the dual-band recombination 

mechanisms needed when considering two conduction band minima. Furthermore, 

this Section details the initial and final procedures used to populate the T and X 

minima.

Secondly, in Section 7.3, the coupled dual-band simulation program is used in 

conjunction with the dual-band transfer matrix Schrodinger solver detailed in Chapter 

4, to investigate the reflective nature of the MQB structures previously displayed, i.e.:
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(i) The flatband dual-band MQB reflector developed in Section 4.5.2

of Chapter 4.

(ii) The Poisson solved dual-band MQB reflector presented in Chapter 

5, sub-section 5.4.2.

Taking the calculated reflectivity profiles of the aforementioned dual-band 

MQB structures, the optimisation procedure detailed in Section 4.4 of Chapter 4, is 

again utilised to design novel MQB structure. Here the dual-band Schrodinger solver 

(Section 4.3) is used in conjunction with the coupled dual-band simulator presented in 

Section 7.2 to predict high stable effective enhancement to the intrinsic conduction 

band offset.

This chapter closes with Sections 7.4 and 7.5, where conclusions on the main 

issues discussed are given, and referenced articles are listed respectively.

7.2 Development of Dual-Band Drift-Diffusion Model
The first topic addressed in this Section is the inclusion of an additional 

electron continuity equation and its corresponding current density equation into the 

existing coupled equation set introduced previously in Section 6.3. Within this 

modified equation set the recombination mechanisms used previously for the single

band simulator have to be slightly modified to account for transfers between the two 

conduction bands and the valence band. It is assumed in the steady-state regime 

employed in this study, that there is no transfer of electrons between T and X minima 

in the bulk regions of the laser device. Processes of this type are only assumed to be 

present across the thin material layers within the MQB region, where inter-valley 

transport is mediated by the mixing parameter, a , introduced in Chapter 4.

Sub-section 7.2.2 tackles the issue of conduction band population. To apply 

the solution procedure in the steady-state regime, it is necessary to populate each 

conduction band minimum as a fraction of the total user defined electron 

concentration entered at the initialisation stage of the program. This problem was 

initially tackled by calculating the electron temperature across the device. From this, it 

is possible to deduce what percentage of electrons have sufficient energy to reach and 

exist in the higher lying minimum, which subsequently makes it possible to populate 

the bands accordingly. However, due unforeseen device dynamics this method could
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not be realised, hence, an alternative mechanism was used in the final simulation 

model is also detailed in sub-section 7.2.2.

7.2.1 Second Electron Continuity Equation

Under steady-state conditions, the electron continuity equation and 

corresponding electron current density equation were originally given by the 

equations

ld J -  = U„ (7.1)
q dx

and

dn ( dy/ 39—  qti nn — + —  (7.2)
OX I ox ox

By indexing equations (7.1) and (7.2) the pair of electron continuity equations utilised 

within the simulation, may be given by

1 3Ja
~ —  = Uan (7.3)
q dx

and the corresponding current densities given by

dn0
j :  = & : - — q u :

ox

( dy/ , 58°
+

dx dx
(7.4)

In both cases (equations (7.3) and (7.4)) the superscript index a  refers to the 

upper and lowest conduction band minima (U or L respectively).

Instead of perhaps the more conventional T-X band formalism, the simulator 

calculates the position of the two conduction band minima by evaluating the lower 

and upper conduction band minima, which are both combinations of the V and X 

minima. This convention is illustrated below in Figure 7.1(a). The basis for this 

preference is predominantly due to numerical idiosyncrasies. Utilising the upper and
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lower band formalism it was found numerically a much easier task to populate the two 

conduction bands (see following section), secondly, the global convergence of the 

overall solution procedure was greatly improved, due to the reduced non-linearity in 

elements of the extended Jacobian matrix. Once convergence is achieved, it is a 

simple process to revert the calculated program variables (i.e. electron concentrations) 

to a form that depicts the position of the T-X bands (see Figure 7 .1(b)).
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Figure 7.1: Diagram s displaying the calculated position o f the conduction band edges of a 
laser diode under a forward bias o f two volts. Plot (a) indicates the position o f the upper 
and lower conduction bands as outputted from  the solver, and plot (b) displays the 
conduction band edges o f the f  and X m inim a deduced from  the upper and lower bands.
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The recombination-generation terms present in equation (7.3) now have 

attached superscripts because they now take different forms depending on which 

electron-valley is being considered. This adjustment is true for all the recombination 

mechanisms given previously in Chapter 6. However, for the sake of brevity, the 

adapted Shockley Read Hall (SRH) mechanism employed is detailed only. Here, 

recombination terms are given by

R?=-
nj —nl

t  (na + n i) + Tn( p  + ni)
<j= U or L (7.5)

for electrons in either band and

ni - n  p
(na + n i) + Tn( p  + ni)

(7.6)

for holes. The other recombination mechanisms, namely, optical and Auger, are 

treated in an analogous manner to that described above.

The above equation modifications throws out an additional primary variable, 

namely, the upper conduction band electron concentration nu. The necessary changes 

to the coupled non-linear equation set, are succinctly given by the following matrix 

expression:

■ J P P j p n L j p n v J P H > ~ dp Fp(.P,nL,nv ,y')
J nLP j n Ln L J n LnU J n* SnL FnSP'n L’n u>V)
j n uP J nUn L J nUnU j nuV Snv F .a(P’n L'n u ’V)
J W j v n L j W u Si// Pv {P,nL,nv ,\ji)

The main differences to the previous equation set are the additional Jacobian 

entries, detailing the extra derivatives with respect to the new variable nu, on the left- 

hand side of equation (7.7), and the corresponding residual form of equation (7.3) on 

the right-hand side. The chief problem when evaluating equation (7.7) from a 

computational point of view is the inclusion and calculation of the extra derivatives 

associated with the additional continuity equation, and coding in an efficient manner
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the increased complexity of the recombination processes. Both these issues have a 

substantial effect on the simulation time. Thus, to reduce time congestion the total 

node point number was kept to a minimum. However, this was not an easy task, as it 

was necessary to specify a node spacing of lA  across the quantum sectors of the 

device, which encompassed both the quantum well and MQB regions, where self- 

consistent calculation of the electron concentration and evaluation of the reflectivity 

probabilities are respectively initiated. Elsewhere, the node spacing across the device 

varied non-linearly as a function of material layer width, where each individual layer 

was initially allocated 20 nodal points. However, as one of the quantum regions in the 

device is approached the program alters the nodal positioning such that, the lA 

spacing apparent in the quantum region stretches into each of the adjoining cladding 

layers for at least 150A. Thus, at least 1300 nodal points are typically required to 

evaluate the laser device as a whole. Hence, using this nodal number as an example, 

and excluding all zero elements form the total matrix, approximately 62304 scalar 

elements for each bias point need to be evaluated, which is non-trivial. Also, it was 

noted that the existing matrix inverting routine, based on Sylvester’s algorithm [1] did 

not cope effectively or efficiently with the increased non-linearity of the matrix 

elements. To combat this numerical issue, a more efficient and much more complex 

matrix inverting routine based on the complete scaled pivoting method given in [2] 

was implemented.

7.2.2 Electron Dual-Band Population

In this sub-section, the procedure employed to populate the two electron 

conduction bands and maintain particle conservation is described. However, prior to 

the final method used to perform this task, the initial course of action to address this 

issue is briefly detailed.

Originally, the energy transport equation (equation (7.8)) was solved 

iteratively in union with the coupled single band model.

dS+ = J E - ^ z E ,  ( 7 .8 )
dx r(<J)
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where is the position dependent average electron energy, W = n%, z(<J) is the 

energy-dependent relaxation time, taken from data obtained through Monte-Carlo 

simulations [3], and

S. = -/t,  (g)KE -  f e -d{M" f )WT"} 1 (7.9)
y q ax J

is the energy flux. This equation calls for energy dependent mobilities [3,4], in 

addition to the previous material and dopant dependent model detailed earlier Chapter

6. The electron energy is given by,

# = f  V .  (7-10)

in this work [3]. To complete this procedure, an additional term is needed within the 

electron current density to account for temperature flux, (i.e. last term in the following 

expression)

r (d w  d0n \̂ dn dTn / - , , v
j ,  = - 9 " / d  -Z T 2- \  + k BTn K - z - + k Bn f t , - f -  (7.11)v ox ox J dx dx

From this solution procedure it was envisaged that a variation in the electron 

temperature with that of the lattice would be evident. If any such deviation occurred, 

the following expression proposed by Bozler and Alley [5] to populate the two bands:

\ kBTn =$T -G u( $ ) ^ ul (7.12)

may be utilized. Here ks is the Boltzmann constant Tn is the electron temperature, 

A£ul is the separation between the lower and upper valley’s (0.36eV in GaAs), 

is the proportion of electrons in the upper valley and is the total energy.

In this study, an attempt to analyse the reflective nature of an embedded 

multiquantum barrier in a laser diode, when the device is operational is the main
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objective. As detailed previously, in this mode of operation the laser diode is forward 

biased to an extent such that approximate flatband conditions are observed across the 

active region of the device. This regime is adhered to, to maximise the amount of 

injected carriers into the active region of the device. As a consequence of the 

approximate flatband condition, the electric field across the active region is at its 

minimum. Thus, using the equation set outlined above it was found that this field 

minimum is insufficient to accelerate the electrons and subsequently raise the electron 

temperature from that of the lattice anywhere across the device. Therefore, to evaluate 

this problem an alternative approach has been adopted, which is detailed presently.

The premise of the final method employed to populate the two conduction 

band minima was thus, firstly, as mentioned above the T and X bands are split in to 

upper and lower lying bands. For each minimum a position dependent band parameter 

0% or Qun is deduced from the input parameters in a similar manner to that described

in Section 6.4 of Chapter 6. For the lowest lying band the electron concentration is 

deduced in a similar fashion to that of the single band model i.e.

nL =nty (' ' - * - ^ r- ) . (7.13)

Whereas to calculate the population of the upper band, a similar principle to that 

given in equation (7.12) is adopted, that is, inclusion of an extra term in the exponent 

corresponding to the material dependent energy-gap difference AgUL, between the 

lower and upper bands. This modification yields the following expression

n ^ n ire/ ^ e”^ ~ ^ \  (7.14)

To uphold particle conservation, the sum of electron concentrations are normalised 

with respect to the user defined value, such that

n = nL +nv (7.15)
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in zero bias conditions. Here, n is the user defined electron doping concentration in 

each material region. This procedure may not be maintained at applied bias due to 

loss of carriers through the various recombination mechanisms.
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Figure 7.2: Plots showing the m agnitude of the carrier concentrations across the laser device 
under forward bias conditions of two volts. Plot (a) indicates concentrations in the upper 
and lower band form alism  and plot (b), in the T and X band representation.

It has been shown by [6] that ordinarily a very high percentage of electrons 

would occupy the lowest lying conduction band «/,. This postulate is upheld as 

indicated in Figure 7.2(a) where the laser diode is forward biased to the lasing voltage 

of two volts. Stark difference between the electron concentrations in the upper and 

lower conduction bands is observed, in fact, if the sum of the magnitudes is deduced
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and expressed as a fraction of the whole, it is found on average, the population 

percentage is of a ratio 99:1 in favour of the lower band. This figure is in agreement 

with that proposed by [6]. However, at low biases in the self-consistent scheme this 

behaviour is not always true locally as it is globally. In the self-consistent regime the 

two-dimensional electron contribution to the overall electron concentration is only 

evaluated for the lowest lying conduction band minimum only, as the upper 

conduction band has no quantised states in the quantum well region (see Figure 

7.1(a)).

However, as a result of the conversion from the upper and lower conduction 

band formalism to the more conventional T-X form, the X-band electron 

concentration is exaggerated in magnitude either side the quantum well giving rise to 

an unphysical discontinuity in the electron concentration. This is attributed to the fact 

that the wave guide regions either side of the quantum well were part of the lowest 

lying conduction band in the self-consistent simulation, this inconsistency is most 

evident at forward biases less than half a volt. This phenomenon is not physically 

probable, and is a numerical artefact of the steady-state approximation used in the 

numerical routine. The discrepancy may be removed if a transient solution to this 

problem is supposed, whereby, carriers evolve in time as well as spatially. In this 

regime it would be possible to implement a bulk scattering mechanism, which would 

permit inter-valley transitions between the upper and lower conduction band minima. 

Thus, enabling the top-heavy conduction band population to scatter back to the more 

energetically favourable lowest lying conduction band minimum. However, at the 

working bias of two volts, the contribution from the confined carriers is overwhelmed 

by the injection of minority carriers across the intrinsic region of the device, 

consequentially, no significant discontinuities in the carrier concentrations are 

evident.

7.3 Final Results

The final result of this thesis will be an optimised multiquantum barrier 

structure designed using the above coupled dual-band self-consistent solver, detailed 

above in Section 7. 2. However, prior to this result, a study comparing the reflectivity 

profiles of the previous proposed dual-band MQB structures is presented.
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To initiate this investigation, the optimised flatband and Poisson solved dual

band MQBs presented in sub-sections 4.5.2 and 5.4 of this thesis respectively, are 

implemented within the p-doped region of the laser device. Their corresponding 

energy band diagrams are then determined via the coupled dual-band drift-diffusion 

solved outlined above. Finally, from these results their corresponding reflectivity 

spectra are determined and compared in sub-section 7.3.1. A novel MQB structure is 

then proposed in sub-section 7.3.2. This structure was determined via the optimisation 

procedure detailed in Section 4.4, using the dual-band drift-diffusion model in 

conjunction with the dual-band Schrodinger solver to locate a suitable MQB structure 

that predicts high, stable effective enhancements.

7.3.1 Reflection Spectra of Previous Dual-Band MQB’s

The calculated conduction band profiles, corresponding to the previously 

proposed optimised flatband and Poisson solved dual-band MQB structures using the 

above dual-band drift-diffusion model are displayed below in Figures 7.3 and 7.4 

respectively.
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Figure 7.3: Energy band profiles of the previously optimised flatband M Q B structure 
em bedded within a laser device (see Chapter 4). Figures (a) indicates the position of the 
conduction bands across the device and (b) a zoom ed in view across the active region.
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Figures 7.3 and 7.4 indicate the relative positions of both the F and X 

conduction band minima across the laser diode. Each of these Figures contains two 

plots (a) and (b). Plot (a) indicates the position of the T and X minima across the 

whole of the laser device and plot (b) which shows an enlargement of the active 

region and the immediately surrounding p  and tf-doped cladding regions, of which the 

former contains the dual-band MQB structures. Each energy band diagram is shown 

under a forward bias of two volts, corresponding to the turn-on voltage of the laser 

device.
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Figure 7.4: Energy band profiles o f the previously optim ised Poisson solved M QB  
embedded within a laser device. Figures (a) and (b) refer to the positions 
conduction bands across the device and a zoom ed in view across the active region 
respectively.

From the both Figures 7.3(b) and 7.4(b), it can be observed that the relative 

positions of the T and X conduction band minima calculated using the Anderson 

electron affinity rule [7], differs slightly to that of the two-thirds approximation 

suggested by [8,9,10] and used previously in Chapters 4 and 5. The potential barrier 

height with respect to the T-band and the X-band well within the T barrier remains 

fixed at approximately 0.16eV and 0.08eV respectively, however, the position of the 

X-band barrier height is located at a higher position of 0.175eV compared to the two- 

thirds model of 0.156eV. The discrepancy between these two values occurs as a direct 

result of the electron affinity rule, as the same equations predicting the magnitude of
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the T and X energy band gaps were consistently used throughout all the investigation. 

The magnitude of the electron affinity employed was obtained through the 

experimental work conducted by Krijn [11]. However, the two-thirds approximation 

suggested by [9,10,11] is given for the single T-band only. The position of the X-band 

with respect to the T-band is calculated by determining the difference in band gap 

between each of these bands in every individual material layer. This suggests the 

electron affinity model at present is a more physically accurate model where 

prediction of the relative position of the X-band minima is concerned, simply because 

all factors in this calculation i.e. the energy band gaps have been acquired 

experimentally. Whereas, previously in Chapters 4 and 5 the assumption that the 

position of the X-band relative to the T-band is explicitly the band gap difference 

between the two in each material layer, has no scientific grounding. Nevertheless, the 

two-thirds approximation seems to be a very good first approximation when 

predicting the relative positions of the T and X minima in both the flatband and 

Poisson solved MQB structures. To gain further insight into the ‘true’ positioning of 

the bands, would require either a full psuedo-potential model like that of Marsh 

[12,13,14], for the AlGalnP material system, or the development of more 

sophisticated experimental techniques to deduce these values.

The principal discrepancy of this behaviour amounts to a shift in the energy 

where the onset of transmission or reflection through the X-minimum occurs. To re

iterate, it was stated that the X-band barrier height resides at a relative position of 

0.175eV in the electron affinity model as opposed to 0.156eV in the two-thirds 

approximation, corresponding to a upwards energy shift of 19meV. From a designing 

standpoint this energy shift is a welcome one; an incident electron has to acquire a 

further 19meV to exist in the X-band minimum, hence transmission and reflection 

through the X-minimum will be reduced to that previously seen in Chapters 4 and 5. 

However, the most destructive transport mechanism in this context still remains, i.e. 

the quasi-bound transmission states that may be evident for energies greater than the 

0.08eV. The reflectivity spectra of these two structures are displayed overleaf in 

Figure 7.5, where both plots have been normalised with respect to the X-band 

maximum, a procedure illustrated previously in Chapter 5. Investigation of these two 

reflection spectra reveals good enhancements with respect to the X-band maximum, 

both of which are more than double the normalised energy. It is interesting to note 

that the optimised Poisson structure (Figure 7.5(b)) predicts a greater enhancement
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with respect to the X-maximum, than that of the flatband optimised structure (Figure 

7.5(a)). This result is not surprising result considering the extent of the band bending 

occurring across the active regions of the two laser structures. In both cases, the band 

bending features appear very similar to that predicted by the simplistic Poisson 

routine detailed in Chapter 5. The Poisson solved MQB structure is designed to cope 

with the band-bending features, whereas the flatband structure is not. Thus, it is 

expected that the Poisson solved MQB reports a superior compared to that of the 

flatband structure.
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Figure 7.5: Norm alised reflectivity plots o f (a) the optim ised flatband M QB structure and,
(b) the optim ised Poisson solved M QB superlattice when determ ined via the dual-band  
drift-diffusion model and the dual-band Schrodinger solver.

In both the above reflectivity plots, the existence o f the aforementioned quasi

bound states present within the X-band well may be observed and are suppressed 

more efficiently as expected by the optimised Poisson MQB structure. Thus, this 

section has highlighted the importance of relative band alignment when designing 

such MQB structures, and emphasised the validity o f the Poisson approximation with 

respect to the dual-band model. In the following sub-section, the dimensions of the 

Poisson solved MQB structures are re-optimised to gain maximum reflectivity when 

the energy band profile is deduced via the coupled dual-band model.
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7.3.2 Re-Optimisation of Dual-Band MQB Structure

In this sub-section, a novel MQB structure is proposed by re-optimising the 

Poisson solved dual-band MQB structure presented previously in Chapter 5. To obtain 

this re-optimised structure, the above coupled dual-band drift-diffusion model and the 

dual-band Schrodinger solver were used in unison within the optimisation procedure.

Thus, sub-section 7.3.2.1 presents the optimised structure and its associated 

reflectivity profile and sub-section 1 3 .22  illustrates the effect on the aforementioned 

reflectivity plot when the inter-valley mixing parameter, a , is varied.

7.3 ,2 .1  N o v e l  D u a l - B a n d  M Q B  s t r u c t u r e

From the information acquired from the reflectivity profiles presented in sub

section 7.3.1, it was apparent that the flatband MQB structure detailed in Chapter 4 

gave the best enhancement. Thus, the optimisation procedure initially began with this 

structure. After many iterations around the optimisation procedure a MQB stucture 

which predicted a high stable effective enhancement was uncovered. The material 

alloy, doping and widths of each individual layers that comprise this MQB structure 

are shown below in Table 7.1.

Material Layer Type 
w.r.t. the T-band

Doping
(cm'3)

Structure Widths
(A)

Optimised 
Dual band

(AlojGao.slo.sIno.sP barrier 5 e l7  p -type 159
(Alo.sGaojlo.sIno.sP well 5 e l7  /7-type 129
(AlojGao.slo.sIno.sP barrier 5 e l7  /J-type 120
(AlojGao.Tlo.sIno.sP well 5 e l7  /7-type 42
(AlojGao^o.sIno.sP barrier 5 e l7  /7-type 42
(Alo^Gao^o.sIno.sP well 5 e l7  /7-type 42
(Alo.yGaojlo.sIno.sP barrier 5 e l7  /7-type 42
(Alo.3Gao.7)o.5lno.5P well 5 e l7  /7-type 42
(AlojGao.slo.sIno.sP barrier 5 e l7  /7-type 42
(AlojGaojlo.sIno.sP well 5 e l7  /7-type 42

(AlojGao.Blo.sIno.sP barrier 5 e l7  /7-type 42
(Alo.sGao.Tlo.sIno.sP well 5 e l7  /7-type 42
(AlojGaojlo.sIno.sP barrier 5 e l7  /7-type 42
(Alo.sGao.vlo.sIno.sP well 5 e l7  /7-type 42
(Alo^Gao^o.sIno.sP barrier 5 e l7  /7-type 42
(Alo^Gao^o.sIno.sP well 5 e l7  /7-type 45

Table 7.1: Optimised MQB structure obtained from analysis of the coupled dual-band model.
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Figure 7.6: Full energy band structure of laser device under forward bias conditions of two 
volts. Embedded within the device, is the optimised M QB structure devised via the coupled  
dual-band model.
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Figure 7.7: M agnification of the active region of the laser device, indicating the relative 
positions o f the two conduction band minima.

The re-optimised MQB structure tabulated above, has retained the main

features of the Poisson solved structure, i.e. thick initial stopping layers designed to

reduce low electron tunnelling in both the T and X bands. The only difference being
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that the two initial T-barriers have been increased further and the X-barrier (T-well) 

has been reduced slightly. The two to T-barriers were increased to lessen the influence 

of band-bending across the superlattice and the X-barrier reduced inhibit sharp 

resonant tunnelling spikes associated with quasi-bound electron states. These layers 

were refined from 150-150-96A to 159-129-120A. The whole energy band structure 

and an enlargement focusing on the active region are displayed above in Figure 7.6 

and above in Figure 7.7 respectively.

0.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0

N orm alised E lec tron  E nergy  (eV)

Figure 7.8: R eflectivity profile associated with the optim ised M QB structure given in 
Table 7.1.

Figure 7.8 above shows the calculated reflectivity spectra gained from 

examination of the MQB structure displayed in Figures 7.6 and 7.7 and given in Table 

7.1. This structure predicts the ideal reflectivity characteristics outlined in Chapter 4

i.e. high effective enhancements, no low energy transmission, no occurrence of 

transmission spikes due to quasi-bound electron states and no electron leakage via the 

X-band minimum. In fact, it can be observed that the reflectivity profile produces a 

reflectivity profile that exceeds the X-band maximum by some margin.
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7.3.2.2 Variation o f Inter- Valley Mixing Par am eter

The reflectivity probabilities associated with the above MQB structure are 

displayed below for various magnitudes of the interface mixing parameter a.
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Figure 7.9: Reflectivity spectra of the proposed coupled dual-band M QB structure under 
lasing conditions, where plots (a), (b) and (c) correspond to the m agnitudes 0.1, 0.155 and 
0.2eVA of the inter-valley mixing param eter a .

Figure 7.9 above indicates the calculated reflectivity profiles of the newly 

proposed coupled dual-band MQB structure, for magnitudes of the inter-valley 

mixing parameter of 0.1, 0.155 and 0.2eVA. Each plot produces a reflectivity profile 

that exceeds the X-band maximum by approximately 60% in all cases. As mentioned 

in the previous sub-section this also corresponds to an effective potential barrier 

enhancement with respect to the T-maximum of 2% [15].

The magnitude of the mixing parameter has been varied to investigate any 

additional amplification or reduction in the transmission associated with quasi-bound 

electron states. However, no significant supplementary features are observed in the 

enhanced area. This implies a theoretically stable MQB structure has been found; in 

that variation in amount of inter-valley transport predict enhancements that deviate 

with no effect to the theoretically predicted reflection spectra.
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7.4 Conclusion
The main issues covered in this chapter were the development of a simulation 

program to incorporate a second conduction band, and the re-evaluation of previously 

designed MQB structures using the improved numerical procedure.

To integrate a supplementary conduction band into the existing program 

required the addition of a second electron continuity equation into the coupled solver. 

The main difficulties to overcome this task were the evaluation of an additional set of 

derivatives in the global Jacobian, which become quite time congestive as the 

problem is also treated utilising Fermi-Dirac statistics. In addition, the recombination 

mechanisms have to be coded in a more complex manner than that of the previous 

coupled single-band model, due to possible recombination processes from either 

conduction band minimum.

A lot of time was spent developing the energy transport model, whereby; 

temperature characteristics of the electrons were to be deduced, in order to populate 

the conduction bands in a physically viable manner. However, this part of the study 

proved fruitless in the sense that ultimately it was not feasible to populate the two 

minima due to inadequate electric field strength at applied bias, to initiate sufficient 

acceleration of the electrons to achieve a higher velocity, and hence gain energy. This 

setback was overcome by splitting the T and X conduction bands into two composites, 

an upper and lower band. The lower band was then populated using the usual Fermi- 

Dirac equations, and the upper similarly but with additional exponent, which 

comprised of the energy difference between the upper and lower bands in each 

particular material region. Both these electron concentrations were then normalised to 

the user defined electron concentration inputted for each individual layer.

The population fraction at an applied working voltage across the laser device 

was next investigated. At a lasing bias of two volts, approximately 99% of electrons 

was found to exist in the lower conduction band, which agreed faithfully to previous 

theoretical work proposed by Boltekjaer [6].

An issue that became evident when approaching the problem this way was the 

possibility of discontinuities and over or under estimations of the electron 

concentrations in the T and X conduction bands arising from the coupled dual-band 

procedure. These discrepancies arose from the fact that in the coupled dual-band 

routine deduced a solution for two-dimensionally confined electron states in the lower
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conduction band only. When reverting back to the T and X regime, some regions that 

where previously in the lower band with high a population density, are transform to 

the higher lying X-band which should be considerably less populated than the lower T 

conduction band. This problem occurred for applied biases up to half a volt, 

thereafter, the contribution of the two-dimensional carriers was overwhelmed by the 

injection of the minority carriers across the active region of the device. This 

inconsistency would disappear if the problem were to be solved in a transient manner. 

In this scenario a bulk scattering mechanism could be implemented to allow a transfer 

of electrons between conduction bands in a time dependent manner, this would allow 

the over-estimated electron concentration present in the upper bands to scatter to the 

more energy favourable lower bands.

The second main topic of this chapter, revolved around the simulation of the 

previously optimised MQB structures, solved numerically utilising the coupled dual

band model. Subsequently, these results were evaluated by the dual-band Schrodinger 

solver, allowing any differeces to the previously predicted reflectivity probabilities to 

be stressed.

In both cases deviations from previously achieved results were observed. It 

was found that at a bias that mimics the ‘turn-on’ voltage of the laser device, that 

approximate flatband conditions are generated. However, there is residual band- 

bending features across the MQB layers due to doping, and thus, to no surprise the 

Poisson solved MQB structure produced a superior reflectivity enhancement to that of 

the flatband MQB structure. However, both cases yielded high reflectivity 

probabilities with respect to the X-band.

In each of the two structures, some disparity in the relative positions of the T 

and X conduction band minima calculated via Anderson’s electron affinity rule [7], to 

that predicted earlier using the two-thirds approximation [8,9,10], is evident. Here, it 

was found that the X-band barrier within the superlattice was at a higher energy 

position than previously deduced, consequently, transmission or reflection through the 

X-band minimum is reduced, as an incident electron needs a higher energy to access 

the X-band states for this type of transport to occur. However, the more destructive 

resonant transmission features that emanate from quasi-bound states within the X-well 

regions of the superlattice still persist.

In the final section of this chapter, the development of a novel MQB structure 

is the main focus. Here again, the coupled dual-band model is used in conjunction
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with the dual-band Schrodinger solver to first mimic the position of the energy bands 

under lasing conditions and then calculate the corresponding reflectivity profile of the 

MQB structure. From the optimisation procedure a stable MQB structure was arrived 

at, which predicted large enhancements with respect to the X-band maximum and also 

surpasses the height of the intrinsic T-point maximum by 2%. This structure was 

tested with varying magnitudes of the inter-valley mixing parameter and yielded a 

consistent stable enhancement for all values.

7.5 References

[1] M. Kurata, ‘Numerical Analysis for Semiconductor Devices’, Lexington Books, Toronto, 
Canada, (1982).

[2] D. Kincaid and W. Cheney, ‘Numerical Analysis 2nd Edition’, Brooks/Cole, (1996).

[3] E, A, Cole, C. M. Smowton and S. Hussain, ‘Hot Electron Modelling of HEMTs’, VLSI 
design, 13, Nos. 1-4, pp. 287-293, (2001).

[4] Chapter 6, Section 6.4.3, this thesis.

[5] C. 0. Bozler and G. D. Alley, ‘Fabrication and Numerical Simulation of the Permeable 
Base Transistor’, IEEE Trans. Electron. Devices, ED-27, pp.l 128-1141, (1980).

[6] K. Boltekjasr, ‘Transport Equations for Electrons in Two-Valley Semiconductors’, IEEE  
Trans. Electron. Devices, Ed-17(l), pp. 38-47, (1970).

[71 R. L. Anderson, ‘Experiments of Ge-GaAs heterojunctions’, Solid-State Electron., Vol. 
30, p. 341,(1962).

[8] H. Tanaka, Y. Kawamura, S. Nojima, K. Wakita, and H. Asahi, ‘InGaP/InGaAlP double
heterostructure and multiquantum-well laser diodes grown by molecular-beam epitaxy’, J. 
Appl. Phys., Vol 61, pp. 1713-1719, (1987).

[9] R. P. Schnieder, Jr., R. P. Bryan, E. D. Jones, and J. A. Lott, ‘Excitonic transitions in 
InGaP/InAlGaP strained quantum wells’, Appl. Phys. Lett., Vol 63, pp. 1240, (1993).

[10] X. H. Zhang, S. J. Chua, and W. J. Fan, ‘Band offsets at GalnP/AlGalnP (001) 
heterostructures Lattice matched to GaAs’, Appl. Phys. Lett., 73(8), pp. 1098-1100, (1998).

[11JM.P.C.M. Krijn, 'Heterojunction band offsets and effective masses in HI-V quartemary 
alloys', Semicond. Sci. Tech., Vol 6, pp. 27-31, (1991).

[12] A. C. Marsh, ‘Indirect bandgap tunnelling through a (100) GaAs/AlAs/GaAs 
heterostructure’, Semicond. Sci. Technol., 1, pp. 320-326, (1986).

[13] A. C. Marsh, ‘Electron tunnelling in GaAs/A/GaAs heterostructures’ IEEE J. Quantum. 
Electron., 23, pp. 371-375, (1987).

199



[14] A. C. Marsh and J. C. Inkson, ‘An empirical pseudopotential analysis of (100) and (110) 
GaAs-AlxGai_xAs heterostructures’ J. Phys.C: Solid-State Phys., 17, pp. 6561-6571, (1984).

[15] M. R. Brown, K. S. Teng, and S. P. Wilks, ‘AlGalnP Multiquantum Barriers Designed 

and Optimised Using a Novel Dual-Band Drift-Diffusion Simulator’, Submitted to Journal of 
Quantum Electonics June (2004).

200



Chapter 8

Conclusions and Future Work

8.1 General
The underlying purpose of this research project has been to develop a 

theoretical model capable of calculating the potential confining capabilities of a 

multiquantum barrier (MQB) placed within a 630nm laser diode under operating 

conditions. To achieve this goal the project as a whole has been split into six main 

topic areas, each of which concern the development of a numeric routine. These may 

be categorised as follows:

(i) A single-band Schrodinger solver and an optimisation routine that allows the 

best arrangement of superlattice material widths to be determined to achieve 

large and stable theoretical effective enhancements to the intrinsic barrier height.

(ii) A coupled dual-band Schrodinger solver able to take account of elastic inter

valley scattering between the T and X conduction band minima evident in 

AlGalnP MQBs across a user-defined structure. This numerical routine was 

subsequently used in conjunction with the aforementioned optimisation 

procedure to locate dual-band MQB structures that predicted high and stable 

effective enhancements of the same order as was found by analysing single-band 

MQB structures.
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(iii) An explicit integration routine to solve Poisson's equation, in order to give an 

indication of how band bending features arising from non-linear charge 

distribution across the active region of the device effect the reflectivity spectra 

of a user-defined MQB. This process was performed on both the single and 

dual-band cases, and using the optimisation process, a novel dual-band MQB 

structure was proposed that showed stable effective enhancements.

(iv) A general coupled and uncoupled single conduction band drift-diffusion device 

simulator. This numerical simulator allows the energy band diagram of the 

whole laser device to be determined under forward and reverse bias conditions. 

This routine has inbuilt recombination and mobility mechanisms that can be 

used at the users discretion. Also, the user has the ability to alter the input 

parameters to simulate their choice of semiconductor device.

(v) A self-consistent solution procedure to take account of two-dimensionally 

confined electrons present within the quantum well region of the laser device. 

This scheme iterates in a self-consistent manner between the fundamental device 

equations of the drift-diffusion model and Schrodinger’s equation. Again, this 

routine was designed to be as general as possible, whereby, the area in which 

self-consistency is attained may be controlled by the user.

(vi) A coupled dual-band device simulator, whereby, the coupled single band model 

was extended to incorporate a supplementary electron continuity equation to 

allow simulation of the X conduction band minimum and hence take account of 

the intrinsic switching of the lowest conduction band minima evident in a laser 

diodes fabricated from the AlGalnP semiconductor alloy. This routine was then 

used in union with the dual-band Schrodinger solver and the optimisation 

procedure to determine a more physically accurate novel dual-band MQB 

structure that theoretically predicted a high and stable effective enhancement.

The numerical results attained from this thesis may in a similar manner be 

broken down into four main sections. Firstly, comparison of the predicted reflection 

spectra obtained from evaluation of a GaAs/AlAs/GaAs potential barrier of various 

widths by the dual-band Schrodinger solver based on a model presented by Lui [1], 

with work published by Marsh et a l [2,3,4]. The psuedo-potential method presented
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by Marsh et al. is extremely complex and very computationally expensive, and 

subsequently, not really suitable for the kind of application required in this thesis. The 

reflection spectra gained from both these numerical models was presented in Figure 

4.7 of Chapter 4, analysis of which reveals very good quantitative agreement in the 

predicted reflection spectra across a single-layer GaAs/AlAs hetero-structure.

Secondly, the dual-band Schrodinger solver was applied to a flatband MQB 

structure that was optimised on the premise that electron transport across the hetero

structure occurred via the direct T-point minimum only. Using the single-band 

Schrodinger solver this MQB predicted high stable enhancements approximately 5% 

of the intrinsic barrier height. However, the reflection probability fell to almost two- 

thirds the intrinsic barrier height when solved using the dual-band Schrodinger solver. 

At this energy the previously high reflection probability was drastically reduced by 

resonant tunnelling modes situated in the X-band well regions across the structure. To 

combat these transmission modes the MQB structure was re-optimised by repeatedly 

iterating between the optimisation process detailed in Chapter 4 Section 4.4 and the 

dual-band Schrodinger solver until a MQB structure was found that predicted a high 

stable enhancement [5]. This dual-band MQB structure regained approximately the 

same effective enhancement as that predicted by the single-band model when electron 

transport was considered via the T-minimum only.

The next set of results concerned the design and optimisation of the novel 

dual-band MQB structure under working conditions of the laser diode. From 

experimental analysis it was found that the laser diode reached lasing conditions at a 

forward bias of approximately two volts. To mimic the band bending effects across 

the active and surrounding cladding regions emanating from charge transfer due to 

differently doped material layers Poisson’s equation was solved numerically across 

the active region of the device. In addition, the turn-on voltage was dropped linearly 

across the device to yield an improved depiction of the relative positions of the two 

conduction bands as opposed to the flatband approximation used previously. Here 

again, the optimised dual-band structure was compared with an optimised single-band 

model to re-emphasise the importance of accounting for transmission states via the X- 

band minimum. The optimised dual-band MQB structure indicated good stable 

enhancements as the magnitude of the mixing parameter was varied [6].

In the final result section, a novel MQB structure was again proposed [7], in 

this case the more physically rigorous coupled dual-band simulator developed in
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Chapter 7 was utilised to predict the energy band diagrams across the whole device at 

the working bias. This model was used in conjunction with the optimisation process 

and the dual-band Schrodinger solver to locate a MQB structure that predicts stable 

and high effective enhancements. Before optimisation of this structure was 

established, the reflectivity of the previously optimised dual-band MQB structures 

was calculated using this model. It transpired that both MQB structures predicted 

good enhancement with respect to the lowest X-point, with the Poisson solved 

structure yielding a slightly greater enhancement.

8.2 Future Work
There are many possible avenues open for improved simulation ability, which 

due to time constraints have been unable to be addressed in this research project. The 

most obvious of these is to investigate what effect inclusion of the MQB structure has 

on hole transport under flatband and lasing conditions. This may be achieved by 

employing a separate Schrodinger solver able to determine the reflection and 

transmission probabilities across the MQB in the valence band. This solver could be 

used also in conjunction with the dual-band drift-diffusion model to attain more 

accurate valence band profiles.

By solving the gain equations at each bias point in the dual-band solver the 

optimum lasing conditions could be deduced and subsequently a MQB structure could 

be designed and optimised at this point instead of at the turn-on voltage of the device, 

which has hitherto been used.

Another welcome addition would be to include into the existing framework 

the effects of strain on conduction and valence band alignment. Such effects could be 

easily fitted into the pre-processing routine at the start of the program.

As pointed out in Chapter 2, all values of effective mass used in this thesis 

have been independent of electron energy. From the analysis shown Section 2.4 of 

Chapter 2, this is to a first approximation adequate as the energy ranges used to 

deduce the reflectivity profiles are not very large. But to achieve a better 

approximation the energy dependence of the effective masses should be taken into 

account.
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For the area of study presented in this thesis it has been sufficient to model the 

laser diodes in one-dimension only due to the unidirectional movement of the carriers. 

However, to make the simulation package more general and applicable to a different 

range of semiconductor devices, the numeric code could be extended to two- 

dimensions. However, this upgrade would constitute a whole PhD thesis in itself.
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Appendix A
Matrix Non-Singularity Considerations 

Related to Current Density Equations
The implicit method always involves a solution procedure for the matrix- 

vector equation of the form A X  = B, where it is required that the matrix A is non

singular. In general, the non-singularity is guaranteed by the condition,

k * i

k p Z K I  for 1 </ </,
k = \ , l

where ay denote elements of the matrix A. This matrix property, in mathematical 

terms, refers to the matrix A being strictly diagonally dominant. In order to investigate 

the condition with respect to the matrix appearing in the device analysis, the electron 

current density equation encountered in Chapter 6 may be transformed to a difference 

form in a natural manner, to field the following expression

j„ = + !) - 1" W ]  * [ " W  + < N  + !)]2 n(M)

+ ̂ 7T W JV + 1>-”W]Qh(M)

The continuity equation for electrons is given as before, by,

q h'(N)

If equation (A.2) is substituted into equation (A.3), and for simplicity, mobility and 

node spacing is taken to be constant, and additionally, the potential between nodes 

N  - 1, N  and N  + 1 varies linearly and their difference denoted by V^, the following 

expression can be obtained:

(A.1)

(A.2)

(A.3)
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¥ ( N - \ ) - V (N) = V { N ) - V (N  + l) = VD, 

Following this, it is possible to express equation (A.3) as:

(A.4)

f r  { ^ - v X ( N - l ) ~ n { N )  + [ ^  + v X { N  + \) =R{N)h 
An \ u  y tf y

(A.5)

Thus, unless the generation-recombination terms on the right-hand side of equation 

(A.5) are of great enough magnitude to deform the matrix coefficients on the left, the 

diagonal dominant condition is approximately satisfied, provided that \VD\«  2 /6 . On

the contrary, if |FD|> 2 /^ is  true, then the diagonal dominance is lost. The only

possibility of satisfying the condition in this case is to reduce the spacing between 

consecutive nodes, h, so much that Vd becomes sufficiently small. However, this will 

often cause the total point number to increase excessively, ultimately reducing 

computation efficiency. However, as shown in Chapter 6, this defect may be removed 

by employing an integral form of the current density equations, as proposed by 

Schafetter and Gummel [1].

Utilizing the aforementioned integral method and employing the same 

conditions used to deduced equation (A.5), the following form of the electron 

continuity equation may be acquired

Here, in the case where VD » l / 0 ,  the ratio of the three coefficients is equal too

-  e~  ̂ : 1 -  e~p : 1. Also. If Vd is negative and |Fd| » 1 / 0 ,  the ratio is -1 :  (ep +1): - e p ,

so that in both cases, deviation from the diagonal dominant condition is non-essential. 

Hence, employment of the Schafetter-Gummel integral discretisation scheme for the 

current equations substantially improves the matrix property, in that the non

singularity condition is at least approximately satisfied even for very high potential 

differences between consecutive nodes.

(A.6)
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Appendix B
Rational Function Approximations for 

Fermi-Dirac integrals

The complete Fermi-Dirac integrals are usually defined by

(B.1)

These integrals appear in various applications of Fermi-Dirac statistics in the non- 

relativistic limit, the most frequently employed values being -Vi , Vi and V/2  in 

semiconductor device analysis. For example, in Chapter 5, 6  and 7, the number 

density of electrons in a degenerate electron gas is given by

electron mass multiplied by the free electron mass, kB is the Boltzmann constant, T  is 

the temperature, and 77 is the degeneracy parameter.

In Chapter 7, there are three variables to be determined like that shown in 

equation B.l. Hence, it is essential to incorporate a temporally efficient and 

numerically accurate scheme to evaluate these equation and the various associated 

derivatives at each nodal point. The procedure utilised employs the rational function 

approximation proposed by Antia [2].

The Fermi-Dirac integral in this numerical scheme is divided into two distinct 

ranges i.e.

n = - T (2mekbT)3l2F]l2(r1) 
n

(B.2)

where n is the number density of electrons, h is Plank’s constant, m is the effective

( x < 2)

(B.3)
x ^ R 2 \ t i(x~2) (x > 2)
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where

a0 + a}x-\— amx 
b„+blx  + ---bk x ‘

(B.4)

^ U ( 0 =
C0 + C jX  +  ' Cm x

m 2

m2

d0 + d)X-\— dk x  2
(B.5)

i at bi Ci dt
0 5.57834152995465e06 6.49759261942269e06 4.85378381173415e-14 7.28067571760518e-14

i 1.30964880355883e07 1.70750501625775e07 1.64429113030738e-ll 2.45745452167585e-l 1

2 1.07608632249013e07 1.69288134856160e07 3.76794942277806e-09 5.62152894375277e-09

3 3.93536421893014e06 7.95192647756086e06 4.69233883900644e-07 6.96888634549649e-07

4 6.42493233715640e05 1.83167424554505e06 3.40679845803144e-05 5.02360015186394e-05

5 4.16031909245777e4 1.95155948326832e05 1.32212995937796e-03 1.92040136756592e-03

6 7.77238678539648e02 8.17922106644547e03 2.60768398973913e-02 3.66887808002874e-02

7 l.OOOOOOOOOOOOOOeOO 9.02129136642157e01 2.48653216266227e-01 3.24095226486468e-01

8 1.08037861921488e00 1.16434871200131eOO

9 1.91247528779676e00 1.34981244060549e00

10 l.OOOOOOOOOOOOOOeOO 2.01311836975930e-01

11 -2.14562434782759e-02

Table B .l: Coefficients of the Rational Function Approximation for Fu2(x).

Thus, utilising the coefficients given in Table B.l together with equations B.4 and B.5 

to evaluate equation B.3 approximation to the Fermi-Dirac integral can be achieved to 

an accuracy 10"15 for the entire range of the degeneracy factor.

The MATLAB function used to implement this procedure is given below,

function f  = fphalf(x)
ml=7;
kl=7;
m2=10;
k 2 = l l ;
al = column 1 of Table B.l 
b l = column 2 of Table B.l 
a2 = column 3 of Table B.l 
b2 = column 4 of Table B.l

if x<2
xx = exp(x); 
m = xx+al(ml); 
for i = m l:-l:l 

m  = m*xx+al(i);
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end
den = b l(k l+ l); 
for i = k l:- l:l

den = den*xx+bl(i); 
end
fermi = xx*m/den; 

else
xx = l/xA2; 
m=xx+a2(m2); 
for i = m 2:-l:l 

m  = m*xx+a2(i); 
end
den = b2(k2+l); 
for i = k2:-l:l

den = den*xx+b2(i); 
end
fermi = (xxA(an+l))*m/den; 

end
f = fermi;
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