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Summery

We study non-abelian T-duality as a supergravity solution technique and 
explore its application to holography We consider well understood geometries 
which describe the strong coupling regime of minimally supersymmetric gauge 
theories in 3 and 4 dimensions. We then use non-abelian T-duality to generate 
new solutions in type-II supergravity and use these to define new gauge theo­
ries with interesting dynamics such as confinement. The work contains exten­
sive field theoretic analysis of these new solutions.

We explore how the supersymmetry of the "seed" solutions is preserved 
under T-duality transformations by employing the powerful techniques of G- 
structures and generalised geometry. As well as giving a geometric description 
of non-abelian T-duality, this also enables us to extend the duality to cases with 
calibrated sources. We find that quite generically SU(3)-structures in 6d are 
mapped to SU(2)-structures. Further we find an intimate relationship between 
dynamic SU (2)-structures and confinement in these new solutions.
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Chapter 1 

Introduction

The notion of duality within physics is of course quite old, going back to well- 
known examples like the Maxwell equations in vacuum. The true power of 
the idea became clear around 1940 with the Kramers-Wannier [1] duality of 
the Ising model. In more recent times dualities have continued to be a driver of 
theoretical progress with examples including Bosonisation [2], Montonen-Olive 
duality [3], S and T-dualities, Seiberg-Witten duality [4], Seiberg duality [5] and 
more general String dualities (U dualities). The duality conjectured by Malda- 
cena [6], also called AdS/CFT or Gauge-Strings duality or simply holography, 
is arguably the most powerful, widely applicable and conceptually deep dual­
ity of all known at present. These dualities present common features: the de­
grees of freedom on both sides of the dual descriptions are in principle quite dif­
ferent; a strongly coupled (highly fluctuating) description of the system is char­
acteristically mapped into a weakly coupled (semiclassical) one, in the same 
vein a phenomena that is TocaT in one set of variables becomes 'non-local' in 
the other (as exemplified by order-disorder operators and their typical 'uncer­
tainty7 relations), global symmetries are common to both dual descriptions, etc. 
In this thesis, we will mostly work with two dualities, the one conjectured by 
Maldacena and its extensions (see the papers [7, 8] for a sample of represen­
tative work and reviews) together with what is called 'non-Abelian T-duality7 
[9,10].

In its original formation [6] the gauge-gravity correspondence was a con­
jecture between type-IIB supergravity on AdSs x S5 and strong coupling limit 
of J\f = 4 super Yang-Mills with gauge group SU(NC). The latter has not only 
maximal supersymmetry in 4d, it is also conformal invariant (hence the name 
AdS-CFT). Many superconformal field theories are well understood and this is 
especially true of M  =  4 SYM. This is principally due to its abundance of sym­
metries which allows a vast array of powerful mathematical tools to be applied 
to it. However, many interesting physical processes which had been imper­
vious to analytical study for many years are scale dependent, and of course
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supersymmetry has not, as yet, been observed. AdS-CFT provided such an an­
alytical tool, however it clearly needed to be extended to non conformal gauge 
theories, with less supersymmetry, if it were to be a viable probe of many phe- 
nomenologically interesting strong coupling dynamics, such as confinement in 
QCD. These extensions necessitated a rebranding of the correspondence, hence 
the names gauge-string and holography.

Since the original work of Maldacena there has been significant progress in 
constructing geometries dual to gauge theories with minimal supersymmetry. 
Two important early examples are the Maldacena-Nunez [11] and Klebanov- 
Strassler solutions [12]. These both provide holographic descriptions of strongly 
coupled confining gauge theories that flow in the IR to M  = 1 SYM in 4d. In 
the UV, unlike M  = 1 SYM which is asymptotically free, they remain strongly 
couple which is a general feature of holography. None the less they have both 
shone a bright light on strong coupling dynamics of "realistic" gauge theories. 
It is fair to say however that there are in general considerable difficulties in 
constructing such supergravity solutions and any help in doing so is extremely 
useful.

One method of constructing new holographic duals which has borne much 
fruit is to use supergravity solution techniques. Indeed the Maldacena-Nunez 
solution itself was derived by lifting a gauged supergravity in 4d [13] to a full 
solution of type-IIB supergravity using [14, 15]. Further, it was later shown 
in [16] that U-duality could be used to map a deformation of the Maldacena- 
Nastase solution [17] to the Baryonic Branch of Klebanov-Strassler [18]. This 
is a particularly striking result because the "seed" solution is dual to a QFT 
with an irreverent operator insertion dominating the high energy dynamics. 
Klebanov-Strassler has no such operator and so U-duality provided a method 
of UV completing the original QFT.

Another method of constructing relevant supergravity solutions is to use the 
powerful techniques of generalised geometry and G-structures [19]. These pro­
vide a geometric description of the supersymmetry conditions for both back­
grounds and probe branes [20] and originate from work relating to string com- 
pactifications (see [21] for a review). They have proved very useful in holog­
raphy in resent years either as an aid to direct construction or as a framework 
in which to construct new solution generating techniques. One such technique, 
known as G-structure rotation [22], is actually equivalent to U-duality. In fact 
rotation/U-duality has lead to the construction of many new supergravity solu­
tions in resent years, see for example [23, 22, 24, 25, 26, 27, 28, 29], and by now 
its effects on the gauge theory side is well understood.

The focus of this thesis will be to use non-abelian T-duality as a supergravity 
solution generating technique. The aim will be to generate new geometries 
dual to gauge theories with minimal supersymmetry in 3 and 4 dimensions.
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As "seed" solutions we will consider backgrounds of Type II Supergravity that 
have a well understood (strongly coupled) field theory description. This will 
lead us to the construction of new solutions of ten-dimensional Supergravity 
and, as advocated in [30], we will use these new backgrounds to define new 
field theories at strong coupling. We will then study the effect of this generating 
technique on the field theory side.

Although the idea of generalising T-duality to non-Abelian isometry groups 
has rather old roots [9], it is only recently that it has been studied as full solution 
generating symmetry of supergravity [30, 31, 32, 33, 34, 35]. This is in part 
due to the fact that it was took some time to appreciated how to perform the 
duality in the presence of a non trivial RR sector [31]. Since then, most attention 
has been focused on dualising along SU(2) isometries, because they are quite 
simple and it has been explicitly shown (for a quite general ansatz) that they 
are always a map between SuGra solutions [36]. This has already bore some 
quite interesting results, for example a new AdSe solution was generated in 
type-IIB [34], which promises to shed some light on CFT'S in 5-d (see also [37]). 
Attention has also been focused on performing SU(2) T-dualities on type-IIB 
conifold solutions [30, 35].

The minimally supersymmetric solutions considered in this thesis have a 
well understood description in terms of G-structures. An important focus of 
this thesis will be how these are transformed under non-abelian T-duality. This 
will not only furnish us with information about the supersymmetric cycles and 
brane embeddings in the geometries the duality generates, but will also allow 
us to classify the geometries. We will see that quite genetically non-abelian T- 
duality provides a map between a background supporting a common structure 
such as SU(3) in 6d, to a rather more exotic one, particularly when the "seed" 
solution confines.

The outline of the thesis is as follows:

In chapter 2 we review the process of T-dualising a type-II supergravity so­
lution along a isometry group G. Most attention shall be given to the cases 
where G =  U( 1) or SU(2). This is because all the new solutions generated in 
this thesis are generated by SU(2) isometry non-abelian T-duality. The abelian 
case is explained principally to aid the understanding of T-dualityas second 
most simple case, namely SU(2). This chapter reviews established work in the 
literature in particular [10,38,39,40,30]

In chapter 3, based on [41], we show how the techniques of G-structures 
and generalised geometry can aid the understanding of non-abelian T-duality. 
We give a first example of how G-structures and calibrated sources in 6-d are 
transformed under the duality. This enables us to show solutions with smeared 
sources transform, which gives hints of how fundamental matter is effected by
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the duality.
In chapter 4, based on [42], we generate new solutions in massive type-IIA 

supergravity. Analysis indicates that these are dual to 3d Yang-Mills Chern- 
Simons like theories and some of their dynamics are studied. This is aided by a 
comparison to G2 -structure rotation. In addition we take the first steps toward 
extending the results of chapter 3 to G-structures in 7d.

In chapter 5, based on [43], we study the SU(2)-isometry T-dual to the Bary­
onic Branch of Klebanov-Strassler derived in [30]. We show that this this mas­
sive type-IIA solution supports what is called a dynamical S 11(2)-structure (see 
appendix B), which is intimately tied up with confinement. We also perform a 
detailed field theoretic analysis determining how many observables are trans­
formed under non-abelian T-duality.

In chapter 6, based on [44], we extended the ideas of the previous section to 
generate new solutions in type-IIB describing confining QFTs in 4d. We once 
more find that supersymmetry is preserved in the form of a dynamical S u b ­
structure and perform an extensive QFT analysis both before and after the du­
ality.

Finally we summarise the results of the previous sections and comment on 
some future directions and possible limitations in chapter 7.
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Chapter 2

(non-Abelian) T-duality: A 
Pedagogical Review

2.1 Abelian T-duality

We will start this chapter with a review of T-duality in the abelian case where 
the isometry group on which one dualised is Lf(l).

T-duality has roots that dates back to the early 1980s [45]. Its most simple 
avatar can be explained in terms of the spectrum of mass states of a string prop­
agating in ]R1/8 x S 1. Let the compact coordinate x9 satisfy

x9 ~  x 9 +  2kR.  (2.1.1)

The momentum of the string in the compact direction must be quantised in 
integer units as

p = j ,  n e  Z . (2.1.2)

It is possible for the string to wrap the compact direction with the consequence 
that the world sheet coordinate a  need not be single valued. This may be stated 
as

x9 ( t ,  a  -I- 27r) ~  x (t, cr) +  2nRm, m t ’Z., (2.1.3)

where m is the winding number of the string around x9. It is possible to show 
that the mass spectrum of such a string is expressed in terms of n and m as

n 2 rrp-R?-
M2 =  - ^ 2  H— —f H oscillator part. (2.1.4)
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Figure 2.1: Strings propagating on a manifold with a compact direction. The 
Winding num ber m is indicated in each case.

This equation is invariant under the exchange

a! 2
n <— » m, R <— > ——, (2.1.5)

which exchanges m om entum  and winding modes of the string but also inverts 
the radius of the circle. This has the rather striking consequence that a string 
moving on a circle of radius R has the same mass spectrum  as one moving on a 
circle of radius oc' /  R. This equivalence of the string spectrum  extends to string 
interactions, m odulo some subtleties concerning the dilaton (see below), and 
goes by the name T-duality.

2.1.1 Buscher T-duality

There is a path integral derivation of T-duality due to Buscher [46, 47] that en­
ables one to perform  the duality on any geometry with a ( i( l )  isometry. This 
implies that the target space metric may be expressed as

ds2 = G}W(x)dx}ldxv +  2Gy0(x)dx}id6 +  R(x)2d62, (2.1.6)

with an equivalent expressions for the NS two form and dilaton. This m ethod 
acts on a sigma model defined in terms of the combination

— Gjjv +  B̂ vr = G^q +  B^q,  ̂ ^

Bdv = Gev +  Bqv, Eqq = R2.
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The action of the sigma model is given by

d2a R2d+9d-6 +  Ejad+xPd-O +  E0vd+0d-xv

+  Euvd+xVd-X]

where (f- =  (cr+,£7_ ), we have set od =  1 and the Euclidean partition function 
is Z — f  V9Vxe~s x̂,ê . The U(l)  isometry manifests itself via an invariance of 
this action under the shift 6  —> 6  +  A. The first step of the Buscher "recipe" is to 
gauge the this symmetry by promoting derivatives to covariant ones

—>■ D±9 = d±9 +  A±, (2.1.9)

where A±  -> A±  — 3±A. In general this will change the theory the action de­
scribes, which is not what we want. We wish to describe T-duality, under which 
the partition function of the theory should be invariant. However we do not 
change the theory, at least locally, if the gauge fields are non dynamical which 
is ensured if they are pure gauge. This can be achieved by imposing a flat con­
nection with a Lagrange multiplier term so that the new action reads

Integrating out 9 in the path integral leads to F = 0, which on a topologically 
trivial worldsheet imposes that A±  is pure gauge. We are then free to set A± = 
0 and arrive back at the theory described by eq (2.1.13).

However a when the worldsheet is not topologically trivial F = 0 does not 
necessarily imply that A±  is pure gauge. The gauge fields can have non trivial 
holonomy around cycles in the world sheet. These can only be made to be 
gauge trivial, but only when 0 < 9 < 2zr. In this case we can set A± = 0 and 
the partition functions defined by eq (2.1.13) and eq (2.1.10) coincide.

So what of the T-dual solution? This is actually extracted from eq (2.1.11) in 
a surprisingly simple fashion, one simply integrates out 9 instead of 9. This can 
be achieved gauge fixing 9 = 0 and after an integration of the multiplier term

S[x,0,0,A) = 2 -  f  d2a  R2 D+0D-0 + E^d+x^D^e + E0vD+0’d-Xv
71 L - (2.1.10)

where F =  dA and A = A^da* and the partition function is

Z = J  V 9 V x V A V 9 e ~s^'eM 1 (2.1.11)
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by parts the action becomes

Finally we must integrate out the gauge field and we arrive at the T-dual sigma 
model

form which the dual metric and NS 2-form may be easily extracted as

Notice that the inversion of radius has been reproduced.
There is a subtlety that one must take account of if one wishes to embed

the whole story, the dilaton receives a shift due to an anomaly at 1-loop and is 
given in in fact given in the T-dual theory by

We will close this subsection with a comment about the period of dual co­
ordinates. It is the requirement that the partition functions associated with eq 
(2.1.13) and eq (2.1.10) coincide that enabled the period of the T-dual coordi-

been able to come up with an equivalent worldsheet criterium for the case of 
non-abelian T-duality.

2.1.2 On Generating the RR Sector

It is actually possible to modify the approach of the previous subsection to in­
clude a non trivial RR-sector. This was done using a pure spinor approach in

SM ] = ^  I  d2a -^d+Sd-9 -  -jpEjiod+xVdS + ^ E evd+§d-Xv

+ {Efiv — 'EjieEve)d+x}id-xv ,
(2.1.13)

(2.1.14)

this sigma model in type-IIB supergravity. What is described above is not quite

- 2 6  r>2 - 2<t>e — R e (2.1.15)

nate 6  to be fixed. Despite many people working on the topic, no one has ever
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[48]. However it is the indirect method of Hassan [39,40] which will be describe 
here as this is the method we use in the non-abelian T-dual case.

If one expresses the metric of a type-II solution in terms of vielbeins ea, then 
the T-dual solution has two sets of vielbeins e± given by

4  =  ea®±, (2.1.16)

which couple naturally to either left or right movers. The matrices giving rise 
to the T-duality transformation of the vielbeins are

(0±) = ( OT^

i   I TR2 ± ( G = f B)eH
(2.1.17)

/ =cJ?z 4- fn  =c RW \
(®±) =  ,v \ 0  I

As both sets of vielbeins are describe the same T-dual geometry they must be 
related by a Lorentz transformation A,

e*+ =  A ah$L. (2.1.18)

Using the matrics in eq (2.1.17) it is possible to show that

A‘* = s°b ~ i ^ 6”- (2-L19)

where detA = — 1.
The critical realisation of Hassan was that one could use this Lorentz trans­

formation to define an action on spinors O by demanding that

n - ' r n  =  A abv b. (2.1.20)

This condition is solved for
n  = r(i°)re. (2.1.21)

In order to construct the T-dual RR-sector on first needs to construct polyforms 
by summing the democratic formalism RR fluxes as

FlIB =  Fln +l f  ^11A =  n- (2 .1 .22)
n—0 n—0

These are then mapped to bispinors under the Clifford map which relates forms
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to spinors:

X  =  Xaia2.,eai A e“2 A ... <— >• X =  Xaia2.T aiai" - (2.1.23)

The RR sector then transforms as

e*UAtiiA  =  e*"BF iiBn _1. (2.1.24)

Notice that eq (2.1.21) contains a single gamma matrix T®. This means that a 
component of an n-form with a leg in 9 will get sent to an (n — l)-form. A 
component with no leg in 6  will be sent to an (n +  l)-form. This is just one 
of many way that one can see that T-duality must map between Type-IIA and 
Type-IIB.

We will now proceed to give some general details of T-duality for non- 
abelian isometries.

2.2 Some Generalities of non-Abelian T-duality

In this section we present some useful details of non-Abelian T-duality (this is 
based on the review sections of [41, 42]), a comprehensive treatment may be 
found in [30] and further details, pertinent to the SU(2) isometry case, in the 
following section.

The three step Buscher procedure of gauging a ( i( l)  isometry, enforcing a 
flat connection for the corresponding gauge field with a Lagrange multiplier, 
and integrating out these Lagrange multipliers provides a powerful way to con­
struct a T-dual (7-model. This approach can be readily generalised to the case of 
non-Abelian isometries and provides a putative non-Abelian T-duality trans­
formation. Unlike its Abelian counter part, this non-Abelian T-duality typically 
destroys the isometries dualised (though they may be recovered as non-local 
symmetries of the string (7-model). Due to global complications, it is thought 
that this non-Abelian dualisation is not a full symmetry of string (genus) per­
turbation theory however it remains valid as a solution generating symmetry 
of supergravity. In this regard its status is rather similar to fermionic T-duality
[49], which has proven to be very useful in the context of the AdS-CFT cor­
respondence in providing an explanation of the scattering amplitude/W ilson 
loop connection at strong coupling [50].

Let us first consider a bosonic string (7-model in a NS background. We will 
assume that this background admits some isometry group G and that back­
ground fields can be expressed in terms of left-invariant M aurer-Cartan forms, 
Ll = —iTr(g-1dg), for this group. That is to say the target space metric has a
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decomposition

ds2 = G}iV{x)dx^idxv -\-2G}li(x)dx^Lt +  gjj(x)LlU
• 1 (2-2.1)

B = Bj4V(x)dx}l A dxv +  Bjii(x)dxP A V  +  -bjj(x)Ll A Z7

with corresponding expressions for the dilaton O. The non-linear cr-model is 

S =  J d 1(o-Qllvd+x<id-Xv + Qpid+xVLL +  QipU+d-xP + Ei;L'+ L;l )  , (2.2.2)

where

Qjiv = Gpv +  BpV , Qpi = G^i -T B^i, Ejj =  gij +  bzy, (2.2.3)

and Lz± are the left-invariant forms pulled back to the world sheet. To obtain 
the dual cr-model one first gauges the isometry by making the replacement

d±g D±g = d±g ~ A ± g , (2.2.4)

in the Maurer-Cartan forms. Also, the addition of a Lagrange multiplier term 
—iTr(vF+- ) enforces a flat connection, where v is a vector with dimG compo­
nents.

After the multiplier term is integrated by parts the gauge fields can be solved 
for which gives the T-dual sigma model. At this point there are actually twice 
as many coordinates needed as both the Euler angles and Lagrange multipli­
ers are present, namely (0, (p, xp, i?2 , 0 3 ,..) in total, the redundancy must be
eliminated by choosing a gauge. This may be parametrised by the matrix [30]

Dt =  Tritigtjg-1) (2.2.5)

where where fz are the generators of G. The T-dual coordinates are then given 
by

v = Dtv (2.2.6)

where half of the 2dimG combination of angles and multipliers must be fixed 
such that dimG independent coordinates remain in v.

We then obtain the Lagrangian,

£  = Q}lvd+xtid_xv+(d+Vi +  a+^ Q ^ ) (M zy)-1 (a_z;y -  Q ^d-X ^ ) , (2.2.7)

where
My =  E{j +  (2.2.8)
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The Buscher rules defining the dual NS sector may be read off from this as

Qjiv =  Qpv -  Q p iM ^Q jv ,  E(j =  M-y \  (2 2 9)

Qjii — QNMjt , Qipi = Qjji,

from which the dual metric and NS 2-form may be extracted as symmetric and 
anti symmetric components. As with Abelian T-duality the dilaton receives a 
shift from performing the above manipulations in a path integral given by

<&(*,») =  <!>(*)- i ln ( d e tM )  (2.2.10)

Using the equations of motion, one can ascertain the following transformation 
rules for the world sheet derivatives

L'+ = (d+fij + Qpjd+x?) ,

LL =  M ^1 (d-Vj -  Qjf td-x^) , (2.2.11)

d±xP = invariant.

These relations provide a classical canonical equivalence between the two T- 
dual cr-models [51].

The consequence of this is that left and right movers couple to different sets 
of vielbeins for the T-dual geometry. Suppose that we define frame fields for 
the initial metric eq (2.2.1) by

dimG
ds2 = r]ABeAeB +  X3 ^abe<teb / eA — eAdxP , ea — xfL1 +  A^dx^ . (2.2.12)

2 =  1

Then by making use of the transformation rules in eq (2.2.11) one finds that 
after T-dualisation left and right movers couple to the vielbeins

e% = —KM~T(dv +  QTdx) +  A dx , e+ =  eA 
+ y '  + (2.2.13)

= kM  1 (dv — Q dx) +  A d x , eA = eA .

Both these frames fields define the T-dual target space metric obtained from eq 
(2.2.7) given by

^  2 dim G dim G
ds = ijABeAeB +  £ )  <W+^+ = riABeAeB + £  . (2.2.14)

2 =  1  2 =  1

Since these frame fields define the same metric they must be related by a Lorentz

17



transformation and indeed

e + = A e - ,  A =  -k M “ t Mk“ 1 . (2.2.15)

We note that detA  =  (—l ) dunG, which implies that the dualisation of an odd 
dimensional isometry group maps between type HA and IIB theories whereas 
the an even dimensional isometry group preserves the chirality. This Lorentz 
transformation induces an action on spinors defined by the invariance property 
of gamma matrices 1;

r r V n  =  A ^ r * . (2 .2 .1 6 )

We are particularly interested in performing this duality in supergravity 
backgrounds of relevance to the AdS/CFT correspondence which are typically 
supported by RR fluxes. Then one ought to, in principle, reconsider the above 
derivation in a formalism suitable of including RR fluxes. In the case of Abelian 
and Fermonic T-duality this has explicitly been done in the pure spinor ap­
proach [48, 52] and and a simple extrapolation of these results to this non- 
Abelian context leads to the following conclusion which can also be motivated 
from the considerations of [39, 40]. The dual RR fluxes are obtained by right 
multiplication by the above matrix O on the RR bispinor (this can be viewed 
equivalently as a Clifford multiplication on the RR poly form /pure spinor). Ex­
plicitly, the T-dual fluxes are given by

e’fcf =  e * f  • r r 1, (2.2.17)

where the RR poly forms are defined by

4 5
IIB : F =  £  F2„+1, IIA : F =  £  F2„ , (2.2.18)

n—0 n—0

and the slashed notation in eq (2.2.17) indicates that we have converted these 
polyforms to bispinors by contraction with gamma matrices. Here we are work­
ing in the democratic formalism in which all ranks of fluxes are considered as 
independent and Hodge duality implemented by hand afterwards2.

For many applications knowledge of the transformation laws for the gauge 
invariant field strengths is sufficient. However, in some applications we will 
also be interested on how the RR potentials themselves transform. We define

Unfortunately, the existing notation in the literature means w e have the same symbol O for 
the spinorial transformation matrix and for the S IT (3)-structure three-form. We trust the reader 
will infer from the context which is meant.

2See the appendices for details of the conventions used.
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potentials as
4 4

IIB : C =  £  C2„ . IIA : C =  £  C2n+i . (2.2.19)
n=0

related to the field strengths by
n—0

HB : F =  (d -  HA)C . IIA : F =  (d -  HA)C +  meB , (2.2.20)

in which m is the Romans mass parameter of type HA. Actually we will need to 
be a bit more general than this when we consider the addition of sources, see 
appendix D.

The potentials so defined have a straightforward transformation rule:

We should comment briefly about a subtlety; the potentials in the equation 
above have to be chosen in such a way that the non-Abelian duality can be 
performed. This applies also in the case of usual Abelian T-duality, one must 
choose the potentials Cp so that they respect the same isometries as the fields 
FP+1- In other words, the choice of potentials Cp should be compatible with the 
isometries. A less judicious choice of potentials would require composing the 
above transformation law with an appropriate gauge transformation that first 
brings the potential into the desired form (this is well explained in [53] for the 
NS two-form potential which need not have a vanishing Lie derivative under 
the isometry dualised but instead obey £ kb = d£).

We conclude this section by remarking the status of supersymmetry un­
der non-Abelian T-duality. Supersymmetry need not be preserved by T-duality 
(Abelian or not).3 Whether (and how much) supersymmetry is preserved de­
pends on how the Killing vectors about which we dualise act on the supersym­
metry. The action of a vector on a spinor, which is only well defined when the 
vector is Killing, is given by [54,55]

If, when acting on the Killing spinor of the initial geometry, this vanishes au­
tomatically for all the Killing vectors that generate the action of G then we an­
ticipate supersymmetry to be preserved in its entirety. If on the other hand this 
vanishes only for some projected subset of Killing spinors then we expect only 
a corresponding projected amount of supersymmetry to be preserved in the T-

3In principle, supersymmetry can even be enhanced by T-duality but given that non-Abelian 
T-duality destroys isometry this seems rather unlikely in this case.

=  e®£ • rr1, (2.2.21)

jrke = kVDpe + ^ V pkv ̂ ve . (2.2.22)
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dual.4 In this thesis we will consider the case of Af  =  1 supersymmetry which 
is invariant under the above action of G so that the non-Abelian duality should 
preserve supersymmetry. Suppose we start with ten-dimensional MW Killing 
spinors e1 and e2, then the Killing spinors in the T-dual will be given by

e1 = e \  e2  = n - e 2 . (2.2.23)

2.3 Details in the SIT(2) Isometry Case

In this section, which essentially reviews some salient results from [30], we will 
specialise to the T-duality transformations on G =  SU(2) isometries. It is this 
type of T-duality that will be considered in this thesis and so it is here that we 
fix the duality conventions used throughout.

Group Theory Conventions

We define the SU(2) generators as

(' =  X t„ (2.3.1)

where r z Pauli matrices which are given by

One can show that the generators then obey the relations

Tr(t‘ti) = 6 ‘K [t‘, t'] =  i f ktk =  i 'J le ijktk. (2.3.3)

An arbitrary element of SU(2) may be defined in terms of Euler angles as

g = el/ 2<PT3 e l / 2° T2 ei/2̂ 3 ' 0  < 6  < 7T, 0  < (p < 271, 0 < ip < 2n. (2.3.4)

Finally the left invariant 1-forms are defined by

V  = - i T r ( f g - ldg), (2.3.5)

4In all examples so far considered this holds but an explicit detailed proof has not yet been  
given.
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such that
dV  =  ± f ) kU  A Lk. (2.3.6)

It is the the g in eq (2.3.5) in which the gauge fixing procedure is performed.
Specifically in these conventions the left invariant one forms are given by

1

—=. (— sintpd9 +  cosip s m 6 dq>), 
v 2  

1

—=. (cosipdO +  sint/;sin9d(p), (2.3.7)
v 2  

1

—j=. (dip +  cos 6 d(p) .

Li =

Explicit Form of the RR Transformation Matrix

We will now proceed to give some details necessary for an explicit calculation 
of the spinor transformation O which is used to derive the dual RR sector. Since 
our isometry group is 3 dimensional we can define a vector

=  —Cjjkbkj (2.3.8)

so the the transformation matrix M in eq (2.2.8) my be expressed as

hAij — g{j +  €ijk/ yi — (2.3.9)

To derive O we must construct the explicit form of the Lorentz transformation 
of eq (2.2.15) which requires that we invert M. To this end we define an anti­
symmetric density and vector on the group manifold as

eiik = V ^ i g e ijk, Z' =  - | =  =  X _ .  (2.3.10)

Indices of zl can be raised and with gjj and M can be written as

M ij = gij +  gijkZk- (2.3.11)

The inverse can now easily be shown to be

(M -1)y =  — {gi  + z'z’ -  e ’kzk), z2 = z'zj. (2.3.12)
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We are now in a position to compute A which we remind the reader takes the 
form

A =  - kM~t M k - 1 =  —K~TM M ~ TkT. (2.3.13)

At this point it is convenient to introduce the flat coordinate

C  = AzK  (2.3.14)

this will play an important role through out the thesis as well as here. First note 
that

(k-T M k- ' U  = Sab +  eaic? .  (2.3.15)

Inverting this expression leads to

(KM-'KT)ab =  — U  (S“b + ? ?  -  e°bc?) ■ (2.3.16)

It is now possible to calculate O by demanding that eq (2.2.16) is satisfied, 
this leads to

n  = r<n>~ rif  + ^ r”. (2 .3 .17)
V i + p

Notice that this is rather more complicated than in the abelian case. It consists 
of a part with product of 3 gamma matrices and a part which is a sum of sin­
gle matrices. This means that a form with n legs can be mapped to forms with 
(n ±  3) legs and (n dt 1), with ±  depending on whether the component in ques­
tion is parallel or orthogonal to the directions being dualised. Clearly, as with 
the abelian case this is consistent with a map between type-IIA and type-IIB. 
However, unlike the abelian case the duality will genetically turn on a many 
fluxes.

Gauge fixing

In this thesis we will work with the gauge fixing 6  = (p =  v\ =  0. This implies 
that

( cos ip sin xp 0 \
D =  —sin xp costy 0 (2.3.18)

\ o  o \ )

with the immediate consequence that

v = (— sin \pV2 , cos ipV2 , 0 2 ) • (2.3.19)

This is the same gauge fixing convention used in [30] and is motivated by the 
fact that it leaves the l!( l)  R-symmetry of the 4-d gauge theories untouched,
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as this is parametrised by the ip in the conifold solutions in type-IIB. It is less 
well motivated for the geometries dualised in chapters 4 and 6, where the R- 
symmetries have been less studied. However this this gauge fixing none the 
less aids in writing solutions compactly.

One could of course choose different gauge fixings, however these will all 
be locally diffeomorphic to the choice made here.

One should realise that the method laid out in this chapter is not the only 
one that may be used to generate the NS and RR sectors of a non-abelian T-dual 
solution. An alternative is to use a consistent truncation to 7-d and match the 
original solutions there [33]. Another interesting method is given by [56] where 
topological defects that generate the duality are constructed. This later method 
guarantees the Bianchi identities, but has not yet been shown to match the other 
methods in all cases. Finally this section has only discussed the dualising along 
SU(2) isometries acting without isotropy, for more general isometries the inter­
ested reader is referred to [32].



Chapter 3

G-structures and a Geometric 
Description of non-Abelian 
T-duality

3.1 Introduction

This chapter, based on work done in collaboration with Barranco, Gaillard, 
Nunez and Thompson [41], presents the first time the techniques of G-structures 
and generalised geometry where used to gain a geometric view of non-abelian 
T-duality. It answers two questions important for better understanding how 
non-abelian T-duality is transforming the field theory the original geometry 
describes. How G-structures/pure spinors transform and how fundamental 
quarks transform.

The recent work of Itsios et al. [35, 30] considered the application of an 
SU(2) non-abelian T-duality transformation in KB supergravity backgrounds 
preserving Af  =  1 supersymmetry. For instance applying an S 11(2) non-Abelian 
T-duality to the internal space of the Klebanov-Witten background (AdS5 x 
T1,1) results in a solution of type IIA which retains the AdS$ factor and has 
a lift to M-theory which corresponds to the geometries obtained in [57] from 
wrapping M5 branes on an S2. In [30] similar dualisations were applied to non- 
conformal geometries (Klebanov-Tsetylin, Klebanov-Strassler and wrapped D5 
models) resulting in a new class of smooth solutions of massive type IIA super­
gravity. The field theory interpretation of these massive IIA solutions is, as yet, 
undetermined however an analysis of the gravity solution indicates they retain 
rich RG dynamics displaying signatures of Seiberg duality, domain walls and 
confinement in the IR.

A common feature of the geometries obtained in [30] is that they retain four 
dimensional Poincare invariance and it was argued that they should also retain
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M  — 1 supersymmetry. The conditions for a solution of type II supergravity 
to possess these symmetries can be very elegantly stated using the language of 
G-structures [19]. The existence of a single four dimensional conserved spinor 
implies that on the six dimensional internal manifold M we have two spinors 7 71 
and rj2. If these spinors are proportional, the structure group of TM is reduced 
to SU(3) and can be characterised by an invariant real two-form /  and complex 
three-form d  with /  A O  =  0 and i d  A O =  | / 3. If on the other hand the two 
spinors are nowhere parallel they each define a separate S 11(3)-structure and 
together equip M  with an S U (2)-structure consisting of a complex nowhere 
vanishing vector field v +  iw, a real two-form j  and a complex two-form co.

These conditions can also be restated using the language of generalised 
complex geometry in which we consider the bundle TM 0  T*M. The alge­
braic conditions of supersymmetry imply that there exist two pure spinors 
<T± =  77+ 0 77^". Using the Clifford map these pure spinors can be described as 
a formal sum of forms, for instance in the case of S LI(3)-structure we identify 
0 +  =  e~^ and <$>_ =  d .  The differential conditions of supersymmetry can 

1 be succinctly expressed in this language (as closure conditions for the annihila-
| tor space of these pure spinors under the H-twisted Courant bracket) and are
| schematically given by
[

| dn<& 1 =  0 , dn ® 2  = Frr / (3.1.1)

| where dn = d +  HA, Frr denotes the RR fields and O 1 2  are related to the pure
| spinors <3>± depending on the type of supergravity in question,
i  This approach also makes clear the transformation rules under T-duality;

these pure spinors essentially transform in the same way as Ramond fields. 
Indeed, in the case where M is Calabi-Yau, mirror symmetry serves to inter­
change the pure spinors e1! o  O. The extension of this, a la Strominger, Yau 
and Zaslow, to general S U (3)-structures has been developed in [58].

The first purpose of this chapter is to study the effects of non-Abelian T- 
duality on these G-structures and thereby giving credence to the conjecture 
made in [30] that in general the result of the dualisation will be to take an S U(3) - 
structure background to one with S U (2)-structure. An heuristic reason for this 
can be found by looking at the abelian case following [53]. After T-duality, left 
and right movers couple to different set of frame fields for the same geometry 
call them e \  and el_ . In the simplest case we can understand the effect of T- 
duality as a reflection on right movers so that in directions dualised el+ = —el_. 
The /  and O of the starting S 11(3)-structure gives rise, after dualisation, to a J 
and Q which may expressed in terms of either the left or right moving frame 
fields giving a corresponding J± and Q±. Suppose that the expression for /  is

/± =  4 a 4 + 4 a 4 + 4 a 4 -  (3-i-2)
j

i

25



Consider the case where the dualised directions are 1 and 2, then /+ =  /_ and in 
this case the T-dual also has SU(3)-structure. Now consider the dualisation of 
two directions that are not paired by the complex structure, say 1 and 3, in this 
case /+ 7  ̂ /_  and type changing has occurred; the SU (3)-structure gives rise to 
a T-dual SU (2)-structure. Since the non-Abelian T-dualisations performed in 
[30] involve three directions they can necessarily not respect the paring of the 
complex structure and so we anticipate them to be type changing. One goal of 
this chapter is to make this reasoning precise and to provide explicit examples 
where the T-dual SU (2)-structure can be obtained.

The second part of this chapter concerns a topic which at first sight might 
seem rather disconnected from the above discussion, namely the application of 
non-Abelian T-duality in the construction of new 'flavoured' solutions of su­
pergravity. The string dual view on the addition of fundamental matter to the 
field theories has a rich history. Starting from the study of the 'quenched' dy­
namics of fundamental fields, equivalent to the addition of probe branes in the 
string backgrounds to the case in which flavour branes (sources) backreact and 
change the original geometries, various technical problems have been resolved. 
For reviews see [59], [60, 61].

In the case of backgrounds preserving some amount of SUSY, the first tech­
nical point to be addressed is to find SUSY embeddings for these sources or 
flavour branes. The embedding were initially found solving differential equa­
tions associated with the kappa-symmetry matrix. A more refined and efficient 
way of expressing the same conditions relies on G-structures and calibration 
forms. Indeed, the findings of papers like [17, 62, 28, 63, 29] among many oth­
ers can be thought as examples of the generic formalism developed in [20], [64] 
and more explicitly laid-out in [65], [22].

A generic feature about these solutions encoding the dynamics of Nf  fields 
transforming in the fundamental representation of the SU(NC) gauge group is 
that the string backgrounds should in principle represent sources localised on 
those SUSY-preserving submanifolds. The complications associated with the 
non-linear and coupled partial differential equations this problem requires, lead 
to the consideration of 'smeared' sources. The field theoretical effect of such 
simplification is the explicit breaking of SU(Nf)  —>• U (l)Nf. The SUSY preserv­
ing way of implementing this smearing is also described by the G-structures 
classifying the original (unflavored) background, see [65], [22] for details.

Hence, there is a rich interplay between G-structures and the dynamics of 
SUSY sources in Supergravity. This is one of the themes of this chapter. Using 
the results established in the first part of this chapter we will be able to construct 
the non-Abelian T-dual of a flavoured background.

In section 3.2 we provide some more details on SU(3) and SU(2)-structures 
and their transformation rules under non-Abelian T-duality. In section 3.3 we 
look at examples of the T-dual of the un-flavoured Klebanov-Witten model
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studied in [35, 30] and explicitly construct its SU(2)-structure. In section 3.4 
we present the flavoured Klebanov-Witten model and its T-dual. Finally the 
chapter closes with some concluding remarks in section 3.5.

3.2 G-structures and their transformations

We now give a brief summary of the important details concerning G-structures.
We follow the conventions of [20] except where indicated otherwise. We con­
sider ten dimensional backgrounds consisting of a warped product of four di­
mensional Minkowski space and a six dimensional internal manifold M:

dsio — g2 A^si , 3  +  ds2 ( M ) . (3.2.1)

Since we re q u ire d  =  1 supersymmetry there should exist a single four-dimensional 
conserved spinor. The ten-dimensional MW spinors of type II supergravity are 
decomposed as

e1 = £ + ® > ) 1  + £-®>jL,  

e2 = ® ® t/i  ,

where the upper sign in e2 corresponds to IIA and the lower to IIB— here ±  
denotes both four and six dimensional chiralities and we choose a basis such 
that = tj~. From the internal spinors we define two C l i f f  (6 , 6 ) pure
spinors (or polyforms):

= v i  ® (7±)f- (3 -2 .3)
We define the norms of the internal spinors | \rjl \\2 =  \a\2 and | \rj2 \ \ 2 = \b\2. The 
dilatino and gravitino equations can be recast succinctly, for the type DA case, 
as

e -2A+*(d  +  HA) e2* - * ® -  = dA A O - +  V ^ * 6  Fi ia,, 2  A-&,
<t>

(d + HA) e2A~*<3>+

8  (3.2.4)
=  0 ,

The RR fluxes entering on the right hand side of this equation are defined for 
the type IIA case as,

Fiia = F0 + F2 + F4 + F6. (3.2.5)

Similar expressions hold in the case of Type IIB after exchanging 0 +  ++ <F_ and 
Fiia ++ FuBf see [2 0 , 6 6 ] or appendix B for details.

Two important extreme cases are when the internal spinors are always par­
allel (corresponding to SU(3)-structure) and when they are nowhere parallel 
(that corresponds with SU(2)-structure). In the first case there is a single spinor 
of unit norm such that rj\ =  arj+, tj\  =  brj+ for \a\2 = \b\2 = eA. The spinor
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bilinears then define a two form and a complex three form with components

Jmn — y “+ 'YmnV+ ' ^mnp — — ̂ 2  *7 —̂7w*npT/+ • (3.2.6)

These are normalised such that J3 =  A O and obey J A O =  0. The corre­
sponding pure spinors are

SU(3) structure : 4>+ =  — , <t>_ =  — — f i . (3.2.7)
8 8

The second case when the spinors are nowhere parallel we have a non­
vanish complex vector field defined by rj\ = at]+, = b(vi +  iwl)jir]-. In
this case one can show that the corresponding pure spinors have the form

n n l i

SU(2) structure : <!>+ =  ——e- lvNw a  to , 0 _  =  —e~^ A (v +  iw) . (3.2.8)
8 8

We can express the forms v, w, to and j  directly in terms of the spinors (see for 
example [67]):

1 2t lVm-lWm  =  ~  — rj_7mV+r

°Jmn — / (3.2.9)

/mn =  2j^j2;7+7mn7/+ — *7+7mn7+ •

To ascertain the non-Abelian T-dual of these structures one can work explic­
itly with the T-dual Killing spinors defined in eq (2.2.23) and construct from first 
principles the pure-spinors <E>± defined above. Alternatively, for the spinor- 
phobic one can circumvent this by using the following transformation rules on 
the polyforms

$SU(2) = ^Sli(3)n _i^ ySU( 2) =  ySU{ 3)n - i  (3.2.10)

The D-brane generalised calibrations, follows from this as shown in appendix 
C.

Let us just remark at this stage that the condition of supersymmetry being 
preserved as detailed in eq (2.2.22) simply translates (using the Liebniz deriva­
tion property obeyed the Lorentz-Lie derivative [54, 55]) into the invariance of 
the pure-spinors under the regular Lie derivative acting on forms:

£ ke = 0 ^  £ k<$>± = 0 . (3.2.11)
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For the case of the abelian T-duality one can show that this criteria does indeed 
ensure that supersymmetry is preserved after T-duality [53]. The essence of the 
proof is that up to terms proportional to this Lie derivative, the twisted differ­
ential dn commutes with the Clifford multiplication rule (c.f. eq (3.2.10)) used 
to extract the T-dual pure spinors. Using this, one can infer that supersymmetry 
is preserved by the dualisation. Although we have not verified the details the 
situation here appears to be exactly analogous, indeed as we shall shortly see 
one can find a basis in which the non-Abelian T-duality essentially mimics the 
Abelian case.

In the following sections, we will consider two examples that will make 
clear various points discussed above. The first case-study will be the non- 
Abelian T-dual of the Klebanov-Witten system as presented in [35, 30]. We 
will explicitly show the SU(2)-structure of the solution (and hence its SUSY 
preservation). We will then consider the background obtained by adding fun­
damental fields (quarks) to the Klebanov-Witten field theory [6 8 ] (conversely, 
we will consider the addition of source-branes to the Klebanov-Witten back­
ground). With the essential help of the S U (2)-structure formalism described 
above, we will find the non-Abelian T-dual of this configuration.

3.3 Example 1: Un-flavoured Klebanov-Witten and 
its T-Dual

In this section we shall examine the T-dual of the Klebanov-Witten geometry 
and explicitly demonstrate its SU(2 )-structure.

The theory living on D3 branes placed at the tip of the conifold was studied 
by Klebanov and Witten in [69]. The gauge theory describing the low energy 
dynamics of the branes is an J\f = 1  superconformal field theory with product 
gauge group SU(N)  x SU(N). It can be described by a two node quiver and 
has two sets of bi-fundamental matter fields A* in the (N , N ) representation of 
the gauge group and Bm in the (N, N). The indices i and m correspond to two 
sets of SU(2) global symmetries. The super potential for the matter fields is 
given by

w  = J e ‘’emnTr (AjBmAjBn) . (3.3.1)

This gauge theory is dual to string theory on AdS5 x with N  units of 
RR flux supporting the geometry:

ds2 = y jd y l z  +  dr2 +  L2 ds2 (T^1,:l̂ ) ,
4  r (3.3.2)

F(5 ) =  (vol(AdS5) -  l^volCT^1'1))) .

2 L2
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We will work with the following frame fields for this geometry

ey —dyV , er =  —d r , = Ai sin ddcp, e — k \d 9 ,L y r i r  ( 3  3  3)
e1 =  Ai(7j , e2  =  Ai(7 2  , e3  =  A (cr3  +  cos 9d(p) ,

in which A2  =  ^  and A2  =  ^  and we have introduced SU(2) left invariant 
one-forms parametrised by Euler angles:

(7i =  (— sin ipd6  +  cos ip sin Qd<p) ,
(3.3.4)

0 2  — (cos tydQ +  sin ip sin Qdcp) ,  cr3  =  (cos Odcp +  dip) .

For reference we state the ten-dimensional spinors of KW in this basis are given 
by

ei =  w £ ( s + ® i / + + £ - ® > / - ) /  £ 2  =  J j / ( i £ + ® rl+ ® y - )  ■ (3-3'5)

The chiralities in these expressions are defined with respect to four and six­
dimensional chirality matrices

7(4) =  i 7yV yV  - 7(6) =  - i  y fei23r, (3-3.6)

such that under the ten-dimensional chirality operator is T(10) =  7 (4 ) <S> 7 (6 )
both e\ and e2  are positive. In addition the spinor t]+ is constant and normalised 
such that rj+t]+ = 1. Supersymmetry imposes the following projections on the 
spinor (as above 77+ =  (7 -)*),

7 r3>/+ =  7 1 2 *7+ =  7 veV+ = ~ i y +■ (3-3.7)

Using this expressions, we can determine the S U(3)-structure of KW in this
basis to be

J = e ^ - e 12 + e3r
(3 3 8 )

O =  (e1 +  ie1) A (e6 +  i e?) A (e3  +  i er) .

The non-Abelian T-dual of this geometry with respect to the SU(2) global sym­
metry defined by the ( 7  was constructed in [35, 30]. The result is an M  =  1
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supersymmetric solution of type IIA whose NS sector is given by 1

ds2  =dsAdSs +  A2 (d0 2  +  sin2  6 dcp2) H— *1 ^ 3

x\  +  A2  A \)dx\  +  ( ^ 2  +  A^dxf +  2 x\X2 dx\dx2 j
(3.3.9)

B = — — ^ 1 X2 ^ 1  +  ( * 2  +  Af)dx2  A ,

where £ 3  =  dxp +  cos 0 d<p and

A =  A2 * 2  +  A2 ( ^ 2  +  A}) . (3.3.10)

The metric evidently has an SLI(2) x LI( 1)^ isometry and for a fixed value of 
(x i,x2) the remaining directions give a squashed three sphere. This geometry 
is supported by two and four form RR fluxes which may be computed using 
eq (2.2.17) and whose explicit form can be found in [30] or eq (3.4.17) once the 
limits of footnote 9 are taken. We remark in passing that the lift of this geometry 
to eleven dimensions has an interpretation in terms of recently discovered M  = 
1 SCFT's obtained from wrapping M5 branes on a Riemann surface (of genus 
zero in this case) [57].

One can establish the left and right moving T-dual frames for this geome­
try along the lines of eq (2.2.13). The frames in the AdS direction are unaltered 
as are ee and e?. In the directions dualised we find new frame fields el± for 
i = 1 . . .  3. The plus and minus T-dual frames are related by a Lorentz transfor­
mation which, as described in chapter 2 , induces a transformation on spinors 
given by 2,

Implementing the four-six decomposition one finds from eq (3.3.5) using eq

VA v

This defines the Killing spinors of the T-dual to be

€\  — €\ , €.2 =  n  • €2 . (3.3.12)

1 We have set L =  1 which may be restored by appropriate rescaling.
2The careful reader will not confuse this matrix O and its inverse O -1 with the complex 

three-form defining an S 11(3)-structure, that appears for example in eq (3.3.8).



(3.3.7) that

ei =

A

£ 2  =

l [ Z + ® y +  + C-

j ( C + ® i £ +  f-

7 - ) ,  

) ■

(3.3.13)
* 2
>77

where

?/?. =  — ̂  ( ^ i^ 7 r +  A i* icos $  7 1 +  ^ ix i siR V7 7 2 +  A^273)  7+ /

#  =  w d *-
(3.3.14)

It is clear that in this basis, the T-dual Killing spinors depend not only on the 
radial coordinate but also on the T-dual coordinates X\,X2 . It is helpful work 
in a different basis in which this new spinor can be expressed as simply as 
possible. In addition, we would like the new vielbein basis to preserve the ge­
ometric structure defined by 77+, because €\ is invariant under the non-Abelian 
T-duality. To do so we perform a rotation to a new basis e =  Re (ordered as 
r, (p, 6 , 1 , 2 ,3) with the rotation matrix

R =
V T + U

with,

/ 1 0 0 c 1 c2 c3

0 y/l + 0 0 0 0

0 0 V i +  U 0 0 0

-C 1 0 0 1 - c 3 £ 2

- £ 2 0 0 1 - c

V 0 0 V- 1

c 1

_  Xi COSt/7
AAj ' £ 2

X\ sint/7
AAi . ? II

>\
 *

 
H-‘ 

SJ| 
N)

(3.3.15)

(3.3.16)

Notice that these parameters are reflecting the structure of the spinor transfor­
mation matrix O. The rotated vielbeins are given, in coordinate frame, by:

er = \k \ d r  — r(x\dx\  +  X2 dxz) 
r\JA

, e? = Ai sinOdcp,

A rA(xi sin 7/7 (7 3 — cost/7 dx{) — x\ cos ipdr ^
£ = A\------------------------- ■=---------------------- , £ = A\du, (3.3.17)

rk(x\  cos t/7 ^ 3  +  sin xpdx 1 ) +  x\ sin ipdr 3  Axzdr +  A^r dx2

“ Al------------------ 7 7 Z  ' e = --------- 7 7 e — '

Then in this new basis (in which the gamma matrices are of course also
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rotated y  — Ry), we can easily show that,

=  \ y k + ® t l +  + Z-®y- )  -
V (3.3.18)

e-2 =  \ f l ( Z +  ® V -  +  £ -  ® V+) <■ 

with fj\  =  (fj-)* and,
V-  =  - i  YV+ ■ (3.3.19)

Note that, as required for type IIA supergravity, the new spinors have opposite 
chirality. With this simple relation between fĵ _ and rj+, we clearly see that they 
are never parallel, hence we have an SU(2)-structure. Because we were careful 
about the definition of our new vielbein basis, the projections on rj+ are not 
modified,

7  r3 t]+ =  7 1 2 j/+ =  7 ^!/+  =  - ! ) /+ ,  (3.3.20)

but the projections obeyed by t/ 2  are different

— y r3 V- — 7 1 2 *7 -  — y ^ f j -  =  —ifj-  • (3.3.21)

The Killing spinors define two different S If (3)-structures 

J 1 =  # 9  +  g 2 1  -  ,

0 1 =  (e2 +  i e1) A ( f  +  i e?) A (—e3 +  i f ) ,
j 2  _  _|_ ^ 2 1  +  ^3r ^

0 2 =  (e2 +  i e1) A (e0 -I- / e?) A (—e3 — i er ) ,

whose intersection is the SU(2)-structure given by

v +  iw = —e3 +  i f  ,

j  = (?<P + e21, (3.3.23)

00 =  (e2 +  z e1) A (e0 +  i f?) .

(3.3.22)

An explicit check shows that these do indeed satisfy the dilatino and gravitino 
equations that follow from eq (3.2.4).

Note that it makes sense to mix er with e1, e2 and e3 when performing the 
rotation of eq (3.3.15) because the geometric structure links f  and e3 in the pro­
jection 7 r3 t]+ = —i t]+. Actually the choice of this rotation appears clearer when 
considering that, because of the geometric structure, the transformation of the 
spinor e2  can be written very easily as 0 ^ 2  =  — f 7 €2 - It is in this new basis that
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the transformation closely resembles the T-duality of the abelian case.

3.4 Example 2: Flavoured Klebanov Witten and its 
T-Dual.

An important step if one is to try and use the AdS/CFT paradigm to under­
stand QCD-like dynamics is to incorporate fundamental flavours (quarks) into 
the gauge theory and corresponding gravity descriptions. A first step in this 
direction is to add a finite number N f  of fundamental flavours which in the 
IIB set-up is typically achieved by the inclusion of a finite number of flavour 
D7 branes. This is the probe or quenched limit; the colour D3 branes gener­
ate the geometry but the flavour branes do not back-react and only minimise 
their world volume (DBI) action without deforming the geometry. Remarkably 
one can even work beyond this quenched approximation by allowing a large 
number of flavour branes (Nf  ~  Nc) in which case the D7 branes deform the 
geometry, see [60,61] for reviews.

In the case at hand we will consider adding N f D 7  branes to the KW geome­
try in such a way that supersymmetry is preserved. We first describe the gauge 
theory engineered from the D3-D7 system in the conifold. We consider D7 
branes parallel to the D3 stack in the Minkowski direction with the remaining 
four direction embedded holomorphically and non-compactly in the conifold. 
The strings that run between the D7 and the D3 give rise to massless flavours. 
To avoid gauge anomalies on the field theory side of the description and super­
gravity tadpoles on the string side of it, one must include two branches of D7 
branes giving rise to fundamental chiral superfields for each gauge group (q, q 
in the (N,  1) and (N, 1) and Q, Q in the (1, N)  and (1, N)). The super potential 
for this theory is given by [6 8 ],

w  =  ^ e ‘iemnTr (AiBmA jBn) +  hrfA^Qa + h2 Q ‘B1qa . (3.4.1)

Notice that the SU(2) global symmetries are explicitly broken by the embed­
ding of the D7 branes - this symmetry will be recovered by smearing the sources, 
when we go beyond the probe limit. The addition of flavours implies that the 
theory looses conformality; a positive beta function is generated and a priori one 
expects a Landau pole in the UV.

We now turn to the gravity description. By considering the K-symmetry pro­
jectors one can determine that the supersymmetric embeddings of D7 branes in 
the KW background to lie along two branches (the yV denote the Minkowski 
directions) [6 8 ],

f  =  ( / ,  r, ip, S2), £ =  ( / ,  r, ip, S2) (3.4.2)
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where S2  and S2  are the 2-spheres parametrised by 9, cp and 9, <p respectively. To 
avoid the D7 charge tadpole we must include Nf  branes on both branches. One 
can write an action for the whole system consisting of supergravity together 
with DBI and WZ terms of the D7 branes (in string frame)

S d b i  =  - T D 7 E  [ d 8 ae~^^\P[g]\ -  T D 7 J ^  I[d8 ae~^yJ\P[g]\,
Nf  % N f J *

1 (3.4.3)
$WZ = ^7^2  /

Nf

where P indicates the pull back to the appropriate cycle, sometimes also de­

noted below as g . We do not activate the gauge field on the brane itself and
£

since there is no NS two-form in this geometry the WZ-term is simple. Now 
we consider the case where the number of flavour branes goes to infinity in 
which case they can be smeared. In other words we consider that each stack is 
distributed homogeneously across the two sphere it does not w rap . 3  In a field 
theory perspective the U(Nf )  flavours symmetries are broken to their maximal 
torus. The supergravity effect can be encoded by introducing a smearing form:

N f ,
E2  =  — ̂  (sin 9d9 Adcp + sin 9d9 A dcjp) . (3.4.4)

The smearing procedure essentially boils down to replacing the DBI and WZ 
contributions of eq (3.4.3) with

Sdbi ->• - r D7 ^ / ( s i n0^| P[g] |  +  sin0^/|P[g]|^ ,

7  (3.4.5)
S w z  y T7 /  ^2 A Cg •

Nf

Once consequence of this smearing is that the Bianchi identities are modified

dFi = Z2 , dF5 = 0.  (3.4.6)

The D7 brane back-reaction is accommodated by the following ansatz (as above

3This smearing procedure overcomes the bound on the number of D7 branes that comes
form looking the deficit angle of the D7 solution so N f may indeed be taken large.
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we work in string frame)

* /
ds2 = =dy\ , 3  +  e* ^dr2  +  A2 e2£ (sin2  0 d(p2 +  d0 2) +

Â £2̂  ((7^ +  0 2 ) +  A2 e2 - ^ ( ( 7 3  +  cos 0d<p)2 ĵ , (3.4.7)

Fi =  j ^ ( ^ 3  +  cos 6 dcp), F5 =  (1 +  *)dt A dx1 A dx2  A d r 3 A Kdr ,

where the warp factors / ,  g, /i and the dilaton O are functions of the radial 
variable r and A2  =  A2  =  1/6, A2  =  1 /9  and as a consequence of the Bianchi- 
identitiesKh2 eA8 +f = 27nNc. 4  Them's are SU(2) left invariant 1-forms defined 
in eq (3.3.4). A convenient basis of vielbeins is given by:

eyF = e^^h~l̂ d y y , er = e ^ h ^ d r ,

^  sin Odv, i  =  ,

e1 =  Aie*+*/ 4 /i1/ 4 (7i, e2  =  A 1 ^ +#/4 fc1/V 2  ,

e3  =  A/z1 / 4 ^ + < i > /4 ( ( 7 3  +  cos 0 d<p).

Like the unflavoured version, this solution supports an SU(3)-structure:

J = — ( er 3  +  ev6 +  el2\  = — +  d  dr A F\\
V J 3Nf  \ 2  J (3 .4 .9 )

O =  (e2  +  ie1) A (e0  +  ie?) A (e3  +  zer).

With these and the structure conditions for SU(3) it is possible to derive a set 
of first order BPS equations for the various functions introduced thus far:

/ '  =  e~f (3 — 2e2f~ 2g) — , gr = ê ~2g,
87r w  (3-4.10)

h' = - 2 7 n N ce~f-*8 , O' =  .
471

The RR potentials can be expressed in terms of these the SU(3)-structure forms

4The unflavoured Klebanov-Witten can be recovered with the following:

N / =  0 , k = g ^ ’ ^  = e2g =  r2 ' e*  = gs
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C8  =  - l e ~ *  ( -y-voLi] A ] A } ,  Ci = e ~ ^ (% -v o h  ) . (3.4.11)

as:

2  \ h  "  \ h

where F9  =  *Fi. The reason why we did not cancel both factors of the dilaton 
is just for comparison with formulas below.

Finally for the brane embedding to be supersymmetric it must obey the cal­
ibration condition:

o
(3.4.12)^ d8?=-Kr^4) A/A/

where gg is the induced metric on £ whilst indicates the pull back onto £,
£

and similarly for £. This allows the DBI and WZ actions of the smeared brane 
embedding to be expressed as:

S d b i  =  I  f  e ~ * (  % -vo l 4) A / A / A E 2 , S w z =  f  Cs A S 2 , (3.4.13)
2 Jm w \ h  J JMio

from which it is immediate that Sdbi + $wz — 0, as required by SUSY. As the 
sources are calibrated the dilaton equation of motion, Einstein's equations and 
the flux equation for H  are all satisfied once the Bianchi identities are imposed. 
This is proved for any SU(3) x S li(3)-structure background in [64].

We will now find the non-Abelian T-dual of this system involving metric, 
fluxes and sources. The interest of this problem is two-fold. On the one hand, 
it teaches us the effect of the non-Abelian duality on the Bom-Infeld-Wess- 
Zumino Action. On the other hand, it will tell us how to find the new smearing 
forms. Both these points give clues to a generic procedure.

3.4.1 The T-dual

We perform the non-Abelian T-duality along the SU(2) directions as before. 
To compactly display the results it is convenient to perform a supplementary 
rotation as detailed in equation (3.21) of [30]. We find the frame fields for the 
T-dual metric to be,
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e1 =

a2er =

e3  =

— ̂ - ^ +?/z1 / 4  ((A2  A2 he2f +2g+ip +  x2)dxi +  x\X2 {dx2 +  \ 2 Vhe2̂ +^  ,

^■eg+* ( A 2 X2 e2fdx\  — A2 x\e2g(dx2 + \ 2 \fhe2f +* (7 3 )^ , (3.4.14)

— ̂ -e^+?/z1 / 4  [x\X2 dx\ +  (A\he*g+® +  x2 )dx2 — \ 2 Vhx 2 e2g+*a^j .

where we recall 0 3  =  cos 6 d(p +  dip and

A =  ^A4 A2 /ie2̂ +4£+<I> +  \ 2 x 2 e2g +  A2* ^ 2-^ • (3.4.15)

The T-dual NS sector is then given by

ds2 = (eyv) 2 +  (er ) 2 +  (e? ) 2 +  (e9 ) 2 +  (e1 ) 2  +  (e2 ) 2  +  ( £ 3 ) 2  ,

g =  A e f - g x 2 £ l3  , A A ig /^ + fy ^ ^
AiJti *i ' (3.4.16)

H = dB,

e~24> =  8 Ae_2<I> .

This geometry is supported by RR fluxes, obtained using the general formula 
eq (2.2.17),

N f

£ O
F2 =  A^ a  T (4?rAi A2K e2/+ g feVV ’9 +  AAiNfef+S+^Vhe12 (3 4 1 7 ^

- X i N f e * e 13)

F4  =  —2'/2e~<thKe‘l’e A (AA ê- ê1 2  +  AiXie^23)  .

Although there is an Fo, it is possible that one should not regard this as a so­
lution of Massive IIA -  the would-be mass parameter is neither constant nor 
quantised— but rather, as we shall discuss, this should be thought of as a solu­
tion to Type HA in the presence of D 8  sources. Now since the original Bianchi 
identities were not satisfied (due to D7 source) one would not expect these new 
fluxes in eq (3.4.17), to obey standard Bianchi identities after the non-Abelian
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T-duality. Indeed, one finds T-dual smearing forms enter the game

dFo = Si

dF2 -  F0H =  Si A B +  S 3  (3.4.18)
1

dF4  — H A F2 = - S i  A B A B +  B A S 3

We find a rather nice result, the T-dual smearing forms which can be calculated 
directly as

= Nf e~g~* ( V  +  AA, = -F ^ d x o
v ^ t t A ^  I  1 lV  )  V 2 n  2

-  =  Nfe~2g T e*e A ( s / t o i * ?  + y/2x2 ef<?) (3-4'19)
7l/z1/4

N f
= J. sin 0 (x\d6  Ad(p A dx\ +  Ad(p A dx2) 

y 2 n

These may be obtained equally using a transformation rule much like that of 
the RR fields

e®a2 n _ 1  =  e ^ B  (3.4.20)

where Sg = eB A (Si +  S 3 ). The active smearing forms indicate sources for 
both D 6  and D8  branes.

3.4.2 A Nice Subtlety

There is a subtlety here. A naive reasoning would lead us to believe that when 
the non-Abelian T-dual is applied to D7 sources, it will generate charge for 
D8 , D6 , D4 branes, whilst in eq (3.4.19) we only have D 8 , D 6  charges, since S 5 , 
the smearing form for D4 charges is absent in eq (3.4.18). Below, we will solve 
this apparent contradiction.

If we consider the Bianchi identity of the RR polyform

dF — H A F  = & A eB , (3.4.21)

it is clear that since the LHS of this equation is gauge invariant the RHS must 
also be. Throughout this note we have set to zero gauge fields on the world vol­
ume however one should remember that they occur in conjunction with the NS 
two from in the gauge invariant combination T  =  B +  Inoc'dA. Then the most 
conservative view is that performing a gauge transformation on the NS B-field 
simply activates appropriate compensating world volume gauge field. There is 
however another point of view which is to keep the world volume gauge fields
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turned off and instead compensate for a B-field transformation with an appro­
priate redefinition of the smearing form S. This is best not thought of as a gauge 
transformation but rather as a mapping. In this picture the transformation of 
the NS potential, B —>■ B +  AB, mediates a redistribution of source charge be­
tween the D4 and D6  branes. The reason to prefer this second viewpoint is that 
turning on a one form gauge field on the brane would break either the S U ( N f )  

or the U(l)Nf symmetry.
To explain this second viewpoint, we consider the transformation B -* B' =  

B +  AB. Such a transformation m ust be supplemented by a transformation of 
the smearing polyform E —> S ' so that the Bianchi identity of the RR polyform 
is unchanged. This requires that

S'  A eB’ = & A eB . (3.4.22)

As an example consider a transformation for which Ei A AB =  0 then we still 
have

dF0 = Ei, dF2  -  HF0 = S 3  +  B A S : . (3.4.23)

The final Bianchi identity of the RR sector then becomes:

dF^ — H A F2 = S 5  +  B A S 3  -f -B A B A Ej (3.4.24)

where S 5  =  AB A E3 . So we generate an explicit source for D4 branes under 
such a transformation. Clearly there are always source D8  branes but wether 
we have explicit source D6 's or source D6  and D4's is a gauge dependent state­
ment. We do not believe it is possible to find a gauge in which we only have 
explicit D8  sources. This appears to be related to the fact that the original type 
IIB D7 brane embedding has two branches. This may seem rather mysterious, 
however one should understand that the total DBI and WZ actions of the source 
branes depend only on the sources through the gauge invariant quantity E A eB. 
The higher potentials in the WZ action, C5 , C7  and C9 , are gauge invariant as 
consequence of the SU(2) SUSY conditions (see appendix C for details on this). 
So, it is only the 'portion' of the sources that are viewed as being explicit rather 
than induced that changes, the equations of motion, the Bianchi identities and 
the total Maxwell charge are all invariants.

In summary, we advocated a picture in which gauge transformations medi­
ate a redistribution of the source charge between the D4 and D6  branes. This 
could be thought of as an 'inverse' of the Myers effect.

To emphasize these points above, we can consider their Page charges [70]
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defined as

Q m * =  L
, i (3-4.25)

Qpage =  /  ( h  ~  B A F2 + -F 0B A B)

the Maxwell charges are invariant under a shift in the B-field described above. 
While the shift of the Page charges is given by:

&Qpage =  [  FoA B 
J M-2

AQ S L  =  f  ( -AB A (F2 -  FoB) +  JfoAB A AB)
>M4

As these these integrals are defined over compact manifolds these quantities 
are invariant for small gauge transformations. The integrands are exacts so the 
integrals are zero. It is of course a generic feature of Page charges that they are 
only defined up to quantised shifts under large gauge transformations5. This 
is generally interpreted in the literature as a Seiberg duality in the dual gauge 
theory as in [6 8 ].

3.4.3 Potentials, S U ( 2)-structure and Calibration.

We may use the formula for the T-dual RR potential eq (2.2.21) to find the RR 
potentials. These are given in coordinate frame by (for alternative expressions 
see below),

c5 =  e~* (% vol4)  A r

£    e ~ ^  VOl  ^ A ^ /̂ ig2*+̂ sin ^̂ Arf<pA(Aê ;r2d7'+Aie2Sd;x:2) +

AA hi
W 2

A2 e2g{x\dr A dx2  +  Ae? dx\ A dx2 ) —

A2 e2f x 2 dr A dx 1 A d s ) ,  (3.4.27)

C9  =  e ^  A (^AA\ef+ ^ + 3 2 x \hi  sin 6 d6  A dcp A £3 ^ A

f  (h\2\^e2f+2̂ + >̂+x^)drAdxi+xiX2drAdx2+Mfx2dxiAdx2 
^ P72

This background is again of SU(2)-structure where the defining forms v +  
iw,j, co are the same as in the un-flavoured case —see eqs (3.3.23)— the only

5Large gauge transformations are topological in nature and always induce quantised shifts.
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difference being that the parameters entering the rotation matrix used in eq 
(3.3.15) become

! =  e - / - g - * S i C 0 6 » .  f  =  e - f - * - t X l s  i n » ; ^3 =  ^ ^ 2  ( 3 4 2 8 )

A A i\//z  A A i\fh A^y/h

This rotation leads to the following simple vielbeins for the dual geometry

hAAlef+18dr — (x\dx\  +  X2dx2)

* = 7 K  '
e? = h*A\eg+i  sin Qdq), $  =  hAA\eg+ * d Q ,

~i / T i  g+®/2 - x i  cosxp, dr -  e?A(cosipdxi  -  x i s m i p f o )  
e = V h A ^  -------------- *    , ( 3  4  29)

_2 _  ^ + < d /2 *1 sin tydr +  ef A(sin xp cos xp a$)

y/K
~ 3  /y $ hefx2dr +  A\e28 dx2

This whole background is indeed a solution to the combined (massive)-IIA 
supergravity plus DBI plus WZ action (the details are explicit in appendix D).

S =  ^Massive IIA +  SdBI + $WZ • (3.4.30)

In the gauge in which the B-field is given by eq (3.4.16) and there are no explicit 
D4 sources, the appropriate WZ terms are given by,

c    c D 8  _i_ c D 6Z>wz — ^wz ■+■ owz

s “ z =  I M m ( C 7  -  b a  Cs) a  S 3  ( 3  4  31)

= - /  ( c 9
oV

f > W Z  =  — I [ Cg — B A Cy +  — B A B A C5  ) A Si

whilst the DBI action, expressed in terms of the D8  and D6  calibrations -c.f. eq
(3.4.13)- is given by,

c  _ c D 8  _i_ c D 6
Z>DBI —  Z>DBI &D B I '

Sdbi =  -  (yW >/4)  a  A /2 -W 1 A BJ A Ss, (3.4.32)

s d Ii =  ~  JMe~^  ( y 00^ )  A Q W1 A ) 2  A / 2  +  »i a  7 2  A B -  iw i AB AB^ ASj.
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Operating with the SU(2) structure we can recast the RR potentials as

C5  =  e ^ (^ -u o / 4 ) A W\

® g*
C7  =  e (— 1 7 0 /4 ) A / 2  A V\

1  e®C9 = - - e  ^(-r-voU)  A ; 2  A j 2 A

(3.4.33)

This makes it clear that on shell, as is required by sypersymmetry, Sdbi +  
Syjz =  0- This reflects the fact that the branes are calibrated, a fact that we 
now discuss in some detail.

3.4.4 Analysis of the dualised geometry

One is often interested, particularly in the context of the AdS/CFT correspon­
dence, in the possibility that D-branes may wrap certain sub-manifolds of the 
geometry in a way the preserves supersymmetry. One approach to check whether 
a brane embedding is supersymmetric is to look carefully at the K-symmetry 
projectors. An alternative approach is the use of calibrations. We recall that a 
calibration CD is a closed /-form that bounds the volume of any oriented I di­
mensional submanifold L by,

A submanifold is said to calibrated when this bound is saturated and it follows 
that such a calibrated cycle will have the minimal volume within its homology 
class. Of course in the geometries described above we have both NS and RR 
fluxes and this simple calibration is not enough to establish supersymmetric D- 
brane confirguations. For this one needs a generalised calibration, CD which is a 
d jj  =  d +  HA closed poly form such that for any D-brane with world volume 
field strength T  =  B|z +  2noddA wrapping an internal cycle E, one has

where E is the energy density of the D-brane. When this bound is saturated 
the D-brane minimises its energy and is supersymmetric. SU(3) x SU(3) back­
grounds admit a rich structure of supersymmetric cycles and the poly forms 
(or rather the appropriate imaginary parts) serve as generalised calibrations as 
detailed by Martucci and Smyth in [20].

For the case of SU (2)-structure backgrounds with non-trivial NS 3 form the 
calibrations for odd cycles are given by (and here we assume no gauge field on

(3.4.34)

E > cd|e A e * , (3.4.35)
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the brane world volumes ) 6

' i 'c ;  odd = —8 /i*e“ *Im(<l>_) A eB , (3.4.36)

while those for the even cycles by,

Y d / even =  - 8 hie~hm(<P+) A eB , (3.4.37)

<1>
where the pure spinors are given by eq (3.2.8) for \ab\ — eA =  Specifically

h'i
this gives:

C\ — —w\

C2 — —Re(c^2 )

C3 =  v\ A 72 — w\ A B

C4 =  — £>1 A ^ i A Im(o>2 ) — BA Re(o>2 ) (3.4.38)
1  1

C5  =  -w \  A 7 2  A 7 2  +  i>i A 7 2  A B — -W\  A B A B
1

< ? 6 =  — ^ 1  A W\ A Im(o;2 ) A B — -Re(o;2 ) A B A B.

A cycle in the internal space is SUSY if it satisfies the calibration condition

V a  +  W'ff =  (3-4-39)

One can explicitly check that spacetime filling D4, D6  and D8  branes wrap­
ping the following cycles are indeed supersymmetric:

^D4  — ( / , r) with x\ = X2 = 0

^D6  — (y^/T/iprXi) with x\ + x\  =  const. (3.4.40)

^D8  =

some further SUSY cycles can be found in section 5.5, however an exhaustive 
list is left for future work.

6Here w e calibrations for cycles defined on in internal space, an additional warp factor is 
required if the sub manifold under consideration includes the space time directions as in eq 
(C.14)
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3.5 Discussion and Conclusions

In this chapter we have clarified the action of non-Abelian T-duality in the con­
text of backgrounds possessing SU(3) x SU(3) structure and J\f = 1 supersym­
metry.

We saw that rather generically the effect of performing a dualisation along 
an SU(2) isometry group is to map an SU(3) structure background to an SIT(2) 
structure background. Such geometries remain an interesting sector of com- 
pactifications which are much less well explored than their type-IIB SU(3) struc­
ture cousins. This work then opens the door to constructing a rich class of such 
geometries. Indeed although we have illustrated this with the Klebanov Wit­
ten geometry everything we have said holds true for the wide variety of N  = 1 
backgrounds presented in [30] (details and extensions of this appear in chapters 
5 and 6  ). A particularly noteworthy direction is to consider the dualisation of 
more general toric Calabi-Yau geometries [71].

One feature of the geometries presented above was that they possess static 
SU(2) structure (that is the pure spinors are of type (2,1) everywhere). An in­
teresting question from the point of view of generalised complex geometry is 
whether backgrounds with a dynamic SU(2) structure can be found using these 
techniques.
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Chapter 4

Dualising a 3-d QFT and a 
Comparison to G2-Structure 
Rotation

4.1 Introduction

This chapter is based on [42] which I completed alone. The purpose of the 
original work was two fold. First to perform a SU(2 )-isometry dualisation on 
a geometry that gives a holographic description of a confining gauge theory in 
3-d. Secondly to compare the solution generated by non-abelian T-duality to 
that generated by U-duality, which is better understood. The starting point in 
both cases is (a deformation of) the Maldacena-Nastase solution [72].

The Maldacena-Nastase solution consists of wrapped D5-branes wrapping 
a 3-cycle in a manifold that supports a G2 -structure. The field theory living on 
the world volume of these branes is only effectively 3-d in the IR and so the 
geometry is only a good description of the low energy dynamics of SYM in 
3-d. A UV completion is provided by another solution generating technique, 
G2 -structure rotation [24], which is analogous to U-duality. This acts on the S- 
dual of a deformation of the Maldacena-Nastase solution [73] and maps it to a 
geometry supporting D2 and fractional D2 branes that asymptotes to AdS^ x Y 
in the UV and is the G2  analogue of the Baryonic Branch [18] of Klebanov- 
Strassler [12]. The compact metric Y has finite volume in the UV and so the 
fractional branes which wrap cycles in Y remain effectively 3-d in the whole 
geometry. A gauge theory analysis of the G2 -structure rotated solution was 
performed in [29] which suggested that the dual QFT was likely a confining 2 
node quiver with a Chern-Simons term that dominates the IR dynamics and a 
conformal fixed point in the UV. This clearly presents an improvement on the 
UV behaviour of the geometry and coupled with the possibility of a duality
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cascade by analogy with Klebanov-Strassler, indicates that the dual field theory 
is potentially very interesting.

In this chapter a new type-IIA SuGra solution, dual to a confining gauge 
theory in 3-d, is generated by performing a T-duality along one of the SU(2) 
isometries of the deformed Maldacena-Nastase solution [73]. This new solu­
tion preserves M  = 1 SUSY in the form of a dynamic SU (3)-structure in 7-d 
[74, 75]. Some details of the G2 -structure rotation [24] are also given so that 
the two solutions may be compared. This also includes a new proposal for the 
Chern-Simons term of the G2 -structure rotation in term of a probe D8  brane 
with the level given by the D6  Page charge. Such a proposal was absent from 
the literature until [42]. The gauge theory dual to the T-dual geometry is anal­
ysed and compared to that of the original wrapped D5 brane and G2 -structure 
rotated solutions. A more specific outline is as follows:

In section 4.2 the deformation of the Maldacena-Nastase solution is briefly 
reviewed. Details of the metric and RR sector ansatz and G2 -structure SUSY 
equations are all presented. SUSY preserving semi-analytic solutions of the 
ansatz are given that are characterised by either a UV constant or UV linear 
dilaton. And finally some cycles and charges that will be of relevance to the 
field theoretic description are introduced.

Section 4.3 gives some details of the solution generating technique G2 -structure 
rotation and presents the result of applying this to the deformed Maldacena- 
Nastase solution. Some details of the rotated G2 -structure SUSY conditions are

| given and cycles and Page charges, that will be of interest in penultimate sec­
tion, are introduced.

Section 4.4 is where the new results begin, the reader familiar with the 
salient features of the Maldacena-Nastase solution and its G2 -structure rotation 
may wish to start here. The section begins with a brief review of non-abelian 
T-duality on SU(2)-isometries before the dual geometry is presented in as con­
cise way as possible. After this attention is turned to the generalised geometric 
description of the dual solution. It is shown that the dual structure is dynamic 
SU(3) in 7-d which is characterised by a non-constant angle between the two 
10-d MW Killing spinors of type-IIA. Finally some cycles and Page charges are 
introduced that will be important in the field theory analysis.

Section 4.5 contains a field theory analysis of each of the solutions presented 
in the previous sections. The analysis of the deformed Maldacena-Nastase and 
its G2 -structure rotation is mostly a review of what can be found in [72, 29, 73, 
63] although additional clarifications are made. In particular further details of a 
Seiberg like duality in the G2 -structure rotated solution are given and how this 
effects the Chern-Simons level, the proposal for which is new. The analysis of 
the T-dual geometry suggests that it is dual to a confining Chern-Simons like 
gauge theory that is potentially a 3-node quiver.

I The chapter is finally closed with concluding remarks and an outlook in
li
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section 4.6

4.2 Wrapped D5 Branes on E3

The Maldacena-Nastase solution [72] is a solution of type-IIB (first presented in 
[76]) that consists of D5 branes wrapping a 3-cycle in a G2 -structure manifold 
and is dual in the IR to Af = 1 SYM in 3-d. The purpose of this section is 
to review its deformation due to Canoura, Merlatti and Ramallo [73], as this 
constitutes more general ansatz to a set of wrapped D5 brane solutions [73, 24, 
63,29, 77] which contain the Maldacena-Nastase solution as a special case 

The string frame metric is given by

where the internal part of the metric, ds2, describes a manifold supporting a 
G2 -structure and is given by

The functions g, h, w and the dilaton (p all depend on the holographic coordinate

These can be represented by introducing 3 angles for a1, (0\,<pi,tpi) and a fur­
ther 3 for (ol, (02/ <pi, $ 2 ) such that:

and similarly for col. The angles are defined over the ranges: 0 < 0^2 < n,

(4.2.1)

r p2 h p2g . 1  '
ds2 = Nc e2gdr2 +  —  (crl ) 2 +  —  (to1 -  -(1  +  w)a1) 2 , (4.2.2)

r only, a 1 and col are 2 sets of SU(2) left invariant 1-forms which satisfy the 
following differential relations:

cr1 = cos \p\d6 \ + sin tpi sin 0 \d(p\, 

a2 =  — sin xpid6 \ -h cos ipi sin d\d<p\, 

o3  = drpi +  cos Q\d<p\,

(4.2.4)

1 Actually further modification of the RR 3-form is required to include sources, which is the 
main focus of the majority of these references.



0 < <?i, 2  < 2 7T and 0 < ip\ f2 < 4 n. The solution has a non-trivial RR 3-form:

F3 = ^  ( a 1 A c t2 A o3 — to 1 A  co2 A  co3) +  I f  d r  A c t1 A col+

<4-2-5)
( ( 1 + 7 ) o'* A a i A o;fc— ( 1 + 7 )  col A ^  A <7*)

which satisfies the simple Bianchi identity

dF3 = 0. (4.2.6)

This solution preserves Af = 1 SUSY in 3-d, which is 2 real supercharges. This 
can be expressed in terms of the following differential constraints on an asso­
ciative 3-form O 3 :

d(e2A~<P) = 0,
O 3  A d<J>3  =  0,
* ( ^ - ♦ * 7 * 3 )  = 0 , { ’
d{e?A-*<t>3 ) + e3 '4  * 7  ? 3  =  0,

where A  =  (p/2. Generically the 3-form O 3  may be expressed in terms of an 
auxiliary SU (3)-structure as [78]:

<1>3 =  er A /  +  ReCl^i, * 7 0 3  =  —/  A /  H- A er. (4.2.8)

A convenient set of vielbeins for the metric are given by

exi = e^l 2 dx{, er — \[Wce$l 2 +%dr, el = \fWce<p/̂ h a1,

4 =  1 ( 1 +  10)0 *)
(4.2.9)

with respect to which the auxiliary SU(3)-structure of the deformed Maldacena- 
Nastase solution can be expressed as [79, 24]

/  =  A e1 +  A e2 +  A e3,
(4.2.10)

Clhoi = iem(e* +  ie1) A (e^ +  ie2) A (e? +  ie3, )

where oc depends on r. Plugging eq (4.2.10) into eq (4.2.7) gives rise to a set of 
first order differential equations that are presented, for example, in appendix A 
of [29]2. The solution of these equations is only known semi-analytically in the 
IR and UV, but it is possible to numerically interpolate between these two sets

2There a flavour brane profile P(r) is also considered which should be set to zero when there
are no sources.
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of series solutions.
In the IR where r ~  0 the solution is regular and is given by

^  =  g o + ( g ° - y o  +  5 ) r 2  +  0 (r4)/
12go

e » = g 0 * - 3 & - * S0 + i r* + O (i6),Mgo

w =  1 -  ^ z l r2 + Q ( r (4.2.11)

7 = 1- ̂'2 + 0(r*)l
* - * "  + W o r'-

Notice that go = 1 seems to be special, the solution to e28  truncates and 7  =  w, 
indeed this persists to all orders in r. This is the Maldacena-Nastase solution, its 
UV expansion about r ~  0 0  is characterised by an asymptotically linear dilaton

e1* =  1,

e2* =  2r +  h0 +  i  +  +  0 (r ~ 3) ’

w = i + ^ 2? + 0 ( r ~3)' (42-12)
7  = w,

3 3/io _ ,</> =  ôo +  r - - l o g r -  —  +  0 (r 2),

where the constant needs to be fine tuned to the value ho = — \  so that the IR 
and UV numerically matched.

When go > 1 the solution is a deformation of Maldacena-Nastase charac­
terised by an asymptotically constant dilaton

=  ce4 r / 3  -  1  +  ^ e ~ 4 r / 3  +  0 (e~8r/3),
4 c

glh =  3C 4r/3 +  9  _  Z L e-4 r /3  +  Q l g - S r / S )
4 4 16c v u

W = - e ~ 4 r / 3  + 0 ( e - 8r/3), (4.2.13)
c

1 = \  + 0 (e~8r/3),

<p = <poo + ^ e  8 r / 3  +  0 (e 2r).
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At higher orders polynomial terms also appear and a sub expansion in odd 
powers of e~ 2 r / 3  has been set to zero [29]. The UV constant c must be tuned 
for specific choices of the IR constant go such that the series solutions may be 
smoothly connected numerically

It is possible to show that the flux equation of motion

d* F 3  =  0 (4.2.14)

is satisfied once eq (4.2.7) is imposed and likewise are Einstein's equations and
the dilaton equation of motion. The last line of eq (4.2.7) gives a definition of
the potential C& such that dCs = F7 :

C6  =  e3AVols A <E> 3 (4.2.15)

There are several important 3-cycles in the geometry which are related to 
gauge theory observables that shall be discussed at length in section 4.5 , these
are:

S3 = {crl\cvl = 0 }, S3  =  {(jol\al = 0 }, £ 3  =  {a 1 = co1}. (4.2.16)

The induced metrics on S3  and S3 are non-vanishing in the whole geometry 
and are thus suitable for defining flux quantisation. The integrals of F3  on these 
cycles give respectively

L * > ~ L *
(4.2.17)

once one sets 2k 2q = (2n ) 7  and Tp = The pullback of F3  onto L3  is zero,u10 _  XP ~  ( 2 n)P'
while the induced metric

ds2  - * N‘E 3 -  4 e2h +  -~r(w — l ) 2  4 y
(c/y (4.2.18)

vanishes in the IR and blows up in the UV. This is the 3-cycle on which the D5 
branes are wrapped, their world volume becomes 3-dimensional in the IR as 
the cycle shrinks to zero but the background remains non-singular because F3  

vanishes on £ 3.
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4.3 Solution Generating Technique I: G2-Structure 
Rotation

In [24] a solution generating technique was found by Gaillard and Martelli that 
maps any unwarped type-IIA G2 -structure solution with asymptotically con­
stant dilaton and NS 3-form flux H to a more exotic G2 -structure solution with 
a non-trivial RR sector. This method of solution generating is referred to as Ro­
tation, as it acts on the space of Killing spinors thus, but can also be viewed as 
a U-duality3.

If one dimensionally reduces the M-theory solution of [75] one is left with a 
G2 -structure solution in type-IIA. Its string frame metric is:

ds2tr =  e2A+2^ 3 (dx2f 2  +  ds2), (4.3.1)

where <p is the dilaton and ds2 is any G2 -structure manifold. The condition 
that Af = 1 SUSY is preserved can be expressed as the following differential 
relations between the fluxes, the 3-form <f> 3 and a phase £

<i> 3 A d&3  =  0, 

d ( e ^ * 7 $  3) = 0 , 

d(e2A+24>/3 cos£) =  0,

2 d£ — e~3A cos £d(e3A sin £) =  0, (4.3.2)

_ ^ e-*A+2V 3 *7 d(eeAc o s & 3) = H3,

Vol3 Ad(e3 Asin£) -  ^ ^ e ~ 3Ad(e6A cos £6 3 ) =  f 4.

The central observation of Gaillard and Martelli was that if one sets £ =  0 eq
(4.3.2) truncates to the S-dual of eq (4.2.7), that is:

<40) A <M>£0) =  0,

d (<r2*(0) * 7  <40)) =  0, (4.3.3)

e2 ^(0 )d (e- 2 ^<0 ,4>i0)) +  *yH3  =  0 ,

3for closely related work on SlZ(3)-structure rotations in IIB see, for example, [22,26,27,28] 
and for U-duality [16,25]
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and the metric is simply
ds20̂  =  dx2 2 +  dsf^2. (4.3.4)

Any solution of this simplified system will also be a solution of eq (4.3.2) when 
the following identifications are made:

3 <l>i0), e2$ =  ^ i e 2̂ ,

’ (43 '5)2 .  / „ . r s 2  ( 0)

^  =  ( ^ ) 2 ,I4 0>2- =  *2 *

where K \  and k 2  are integration constants and ( p ^  must be bounded to satisfy 
the last equation.

It is possible to perform a rotation of the deformed Maldacena-Nastase so­
lution, detailed in the last section, once an S-duality has been performed on it. 
This sends

T3  —y U3 , (p —̂ (p̂  — —(p, ds2tr —y 6 ^ds2̂  (4.3.6)

so that the resulting metric is unwarped. Specifically it is the solution with UV 
given by eq (4.2.13) that is suitable for this as the dilaton is bounded. The 3- 
form, is still given by eq (4.2.8) but with the auxiliary SU (3)-structure of 
eq (4.2.10) with no dilaton factor

?  = e~^/ 2 ea. (4.3.7)

As the solution is now in the common type-II NS sector it can be viewed as a 
type-IIA theory, as required by the rotation. The interested reader is referred to 
[24] for further details of the solution generating algorithm.

The rotated solution has a warped metric and modified dilaton, which after 
fixing the integration constants and rescaling the field theory coordinates may 
be expressed as:

ds2s*r = 7j H dXl 2 + ^H d s2f

e2$ =  cv^He2^ - ^ ,  (4.3.8)

H = 1 -

where (p is the new dilaton, (poo is the UV value of (p^  and c is a constant which 
appears in the UV series solutions to the BPS equations [29], but which will not 
play an important role here. The metric in string frame tends in the UV towards 
AdS^ x Y where Y is the metric at the base of a G2 ~cone, however the dilaton
is not constant, e2$ ~  e~8r̂ 3, and so the solution does not enjoy full conformal
symmetry.
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The NS 3-form is unchanged but an RR 4-form has been generated:

H3 =  f (a1 A a1 A a3  — co1 A co2 A a;3) +  \ d r  A a 1 A col+ 

\eifi ( (I+7)  a 1 A cri A cok — ( I+7)  co1 A coi A crk) (4.3.9)

F4  =  V0I3 A dFT 1 +  j££<>2(*»-*(0)) * 7  H3/ 

These obey the Bianchi identities

dH$ — 0 , dF.4  =  0 ,

and flux equations of motion

(4.3.10)

d ★ F4  -f- H3  A F4  =  0, 

d{e~2̂  * H3) -  |F 4  A F4  =  0.

One can use eq (4.3.2) to define a canonical potential C3  such that dCs = F4

(4.3.11)

c 3  =  -^Vo/ 3  A dH _ 1  +  -^=e2 ('Z’~_^<0 ))O^0).
C yC

(4.3.12)

In [29] some cycles of interest were identified. Those that give flux quanti­
sation are:

t ?  =  1?  =  { a 1 =  co1} , £ 6 =  { a 1, cP~, a3 , co1, co2, a;3}. (4.3.13)

The Maxwell and Page charges [70] coincide for the NS5 brane (as they did for 
the D5 brane in the previous section). However the flux equation of motion for 
F4 implies that this is not so for the D2 brane and it is only the Page charge that 
is quantised for this object. Define F& = — ★ F4 , then the following charges are 
quantised.

Q n S5 = = N.Cr

Qd2 = Jz6 ( f 6  +  H 3  A C3) =  0  mod Nc
(4.3.14)

Actually substituting eq (4.3.12) into the definition of Q 02  gives zero, but C3  is 
not a gauge invariant quantity and this gives rise to non-zero integers under 
the large gauge transformation. Let Q0 2  = then consider the large gauge
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transformation C3  —)■ C3  +  AC3  where

AC3  =  —
71

cr1 A a2  A a3  +  a ; 1 A a ; 2  A co3 (4.3.15)

This will shift the Page charge as Qd2 —>• — Nc.
Another cycle with interesting properties is the 2-cycle at constant r

t?  = {Q\ = 0 2 / (pi = = $ 2  = constant}. (4.3.16)

On this cycle £ 4  vanish and the induced metric

dst 2 = VH(e2h + ^ ( w  — l ) 2) [d0\ +  d(p{), (4.3.17)

has vanishing volume in the IR and constant volume in the UV.

4.4 Solution Generating Technique II: non-Abelian
| T-duality
|

The purpose of this section is to present the first non-abelian T-dual of a back- 
| ground with minimal SUSY in 3-d, specifically a dual of deformed Maldacena-
| Nastase along an SU(2) isometry.

4.4.1 non-Abelian T-dual of wrapped D5 branes on E3

In this section a non-abelian T-duality transformation is performed on the wrapped 
D5 brane solution of section 4.2. It acts along the SU(2) isometry parametrised 
by co1 and gauge fixing is imposed such that:

V\ =  02 =  (p2 = 0. (4.4.1)

The dual NS sector is by,

e~ 2 9  =  det Me~2t

det M =  iN c3 e6*+3^ +  N c ^ + ’t’vj  +  N c e ^ v j ,  ^
8
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for the dual dilaton <3>,

D ( w  +  1 ) N ce 2g+<^ (N 2e4S+2<P +  8U3) ( a 1 A d v 2 — c/i>3 A cr3)
~~ 16\/2detM

U2(^ +  l )N ce2S+<P ( i ^ 1 A ^ 3  — v $ d v 2 A c t 3 )

2y/2detM  
V 2 ( w  +  1 )N 3e6S+3<P<72 A

16\/2detM  (4 4 3)
(t?2 ~  P3) ( P 2 +  P3) (w +  \ ) N c& + * f r l  A d v 2 t 

2 \/2de tM  
i?2Nce2S+<P ( v 2d v $  A dt/?2 — 3̂ ^ 2  A d i p 2 ) 

v /2detM
(w +  l ) 2N 3e6S+3<P (^2^2 A o 3 +  V3&1 A cr2)

32\/2detM  '

for the NS two-form potential and

^  dx2 2 +  e 2g d r 2 +  e—  { [ a 1)2 +  ( a 2 )2 +  (a 3)2)  j +

4 dgtM  +  l ^ V x + ^ a -1 +  ljcr3 j

^N2e4£+2<̂ d̂u2 + ^ 3) + 8 (v2dv2 + v^dvz)2̂  -f 

(w + ^ N 2^ " 1"2̂  (v^dv2 — V2dvs) +  (4.4.4)

v2 N 2 e^g+2<̂   ̂dxp2 ~  +  l)^3^ +

+  l ) 2 N 2 ^ +2 ^(a-1 ) 2  +

\  (t£  + o§) (w +  l ) 2Nc2e4x+2^ ( ^ ) 2

ds2 =

+

for the dual metric. The new hatted 1-forms are simply a rotation in al ,cr2'.

(7 1 =  cos \p2 (Tl — sin t/7 2^2, d2  = sin facr1 +  cos ip2 &2 , (4.4.5)

that enables compact expressions.
The RR sector of the solution is rich including a quantised Fq meaning that 

the solution is massive type-IIA. In order to express them compactly it is helpful
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to introduce the following basis of spectator vielbeins

ex' — e^^dx 1, er =  y/Wce^^2+2^dr, 
e\,2 y/Nce?/2+h£.12f e3 =  y/TTc<*/2+h ^ (4.4.6)

with dual vielbeins given by 

I N |/ 2 e3 S+?e =
16 det M

4 ( a2  (v 2 +  v^j (zv + 1) +  2 (v3 dv2 -  v2 dv3)̂ J -  

VlNce2̂  + 1 ) +  2 u2  ^ # 2  -  +  1 ) ^  ^ ,

2 v/2 N 2 e4£+2(̂  ^ 2 U3 (w +  1 ) +  dv-ij — 16^/lv2 (v2 dv2 +  v3 dv3) — 

4v3 Nce2s+<̂  ^d-l v3(w + 1 ) +  2z>2  ^dt/>2  -  ^(w  +  1 ) ^ ^

2 _  s/N~ce8 + i 
* “  16 det M

(4.4.7)

5  _  y/Nceg+%er =
16 det M

V 2 N 2 e4s+2<̂  (c ^ v ^ w  +  1 ) — 2 dv3 ĵ — 1 6 v̂ 2 u3  (v2 dv2 4 - v3 dv3) +

4u2 Nce2£+<*> 0 3 ( 1 0  +  1 ) +  l v 2 (dip2 — i(w; +  Vjo3

which is a rotation of the rather complicated vielbeins generated by the duality
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procedure. The fluxes are then:

Nc
Fo =

V 2 '

F2 =  y/2 + e21 + e11') Nc(w - 'y)eix+h+‘t’ -

8 elk (v 3 e ^  — v ze^ j  — 2e2%U (e2 3V2 +  e1 2vg)  +

2eg+h (y ' î>3er3 +  v2erlJ +  2(w  — y ) (v$ fel2 — e2̂  j  — v2 (e32 +  e23 ĵ) )

(4.4.8)
_  ( w - l ) V ^ - 3hNc (xiA

F4 -  — m — e +

-U e~ 2h~'tl
8

lLe-(g+h+(p)er a 

8

i V(w -  l ) ^ 3 3  -  v2 eel) -  ^ Ue~2h-*  (s/2Nce12e2̂  -  4z>2e13)  1 A e12 +  

A/2Nce13e2«+  ̂+  4i?2ei2 +  4z>3e2SJ A e13 +

4v3 (e1̂  +  e2̂ *) +  4 v 2 e ^  — —

V 2 Nc(ei n  -  em  -  e312) ^ ^ !  +  ^Ue~2h“ ^e2 3 5  ( s /2 ^Nce2̂  -  4elvsj  +  

e~ ^ g + h + ^ ( w  — 7 )  ( e l V2  +  e 3 v $ ^  

where the functions

V = 4 + w2 — 3wy + w — 3y, U = l  + w2 — 2w7 , (4.4.9)

were introduced for convenience. Its interesting to see that F4  has legs on the 
field theory directions. This tells us that, like the non-abelian T-dual of wrapped 
D5 branes on S2 [30], the RR sector contains magnetic fluxes of D 8 , D6  and D4 
branes, but here there is also an electric flux of D2 branes.

It is simple to check that the RR fluxes automatically satisfy the Bianchi iden­
tities

dF0 = dF2 -  F0H = dFA -  H3  A F2  =  0. (4.4.10)

The flux equations of motion

d ★ F2 +  H3  A ★F4  =  d ~k F4  -f- H3 A F4  =  0, (4.4.11)

as well as Einsteins equations and the dilaton equation of motion all follow
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once eq (4.2.7) is imposed. One may also confirm that NS flux obeys

d (e~z* * H3) =  F0  * h. + h  A *F4  +  h 4  A F4. (4.4.12)

4.4.2 Supersymmetry

In this section the issue of how much SUSY the non-abelian T-dual background 
preserves is addressed. There is a simple criterium which determines this, 
which is detailed in [31, 30]. One needs to consider the Kosmann derivative 
along each of the Killing vectors k associated with the isometry on which one 
wishes to dualise. This acts on the Killing spinors of the initial solution e and is 
given by

Cke = k^D^e + (4.4.13)

Dp is the spinor covariant derivative, while is the ordinary covariant deriva- 
i tive of the geometry. The Kosmann derivative should vanish along the isometry
| of the dualisation. Each additional projective constraints that needed to be im-
! posed to ensure this reduces the SUSY of the non-abelian T-dual by half. If no
: new constraints are required then all the SUSY of the original background is
I preserved.
j The Killing vectors associated with the relevant SU(2) isometry of the met-
! ric eq (4.2.1) are,

I i-:ii =  — cos (p2 ^e2 +  cot # 2  sin (p2 ĉp2 ~  csc 0 2  sin (p2 \̂p2,

k'-v = — sin (p2 ^e2 ~  cot 0 2  cos <p20<p2 +  csc 02 cos q>2 x̂p2f (4.4.14)

fc(3) = - s n ,

and it is possible to show (using Mathematica) that

^kil)e = ^k(2)e = ^k^)€ =  ^  (4.4.15)

where e only depends on r (appendix B of [73] provides further details). Thus 
one expects the non-abelian T-dual of wrapped D5 branes on Z3  to preserve 
Af = 1 SUSY.

A more explicit check that SUSY is preserved was provided by [41], which 
shows how non-abelian T-duality acts on the g-structure of the original geom­
etry. The original geometry supports a G2 -structure, which is characterised by 
parallel €\ and € 2  in e =  (e\, €2 )T- The SUSY conditions of the G2  may be written 
in terms 2 real 7-d bispinors [78]

O-f. =  1 — *7 ^ 3 / <1)— — —4̂ 3 T V0 /7 , (4.4.16)|
t
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that obey the conditions [79,80]

< Y 1 / F > = 0 /

(d -  H3A)(e2'4“ 'f<D± ) =  0, (4.4.17)

(d -  H3 A)(e?A- ‘P<P1:) + e3A * 7  A(F) =  0,

where the upper signs are taken in type-DB and lower in type-IIA. These are the 
conditions for N  = 1  for a generic Gz x Gz structure manifold, where e2A is the

/  \  /  \  P(P~ 1)warp factor of the Minkowski directions, A(Xp) =  (—1 ) 2 Xp and < X, Y > 
is the Mukai pairing which selects the 7-d part of X A A(Y). As the original 
solution is in type-IIB one should identify =  Y+/_, with the opposite iden­
tification made in type-IIA. The relevant observation of [41] is that non-abelian 
T-duality acts on the bispinors of the geometry as

t +  = y_rr1,
(4.4.18)

y_ = y+n - 1

It is possible to show (in Mathematica) that eq (4.4.17) is satisfied with Y \ fz = 
Y_/+ and F and H3  given by eq (4.4.8) and eq (4.4.3) respectively, which shows 
that M  = 1 SUSY is preserved. The action of non-abelian T-dual on the 10-d 
MW Killing spinors is:

€\ =  €\, £z = C1.CZ/ (4.4.19)

which is a rotation. Since the G2 -structure of the original geometry requires that 
the spinors are parallel, the dual structure must be something more exotic. To 
identify the structure of the dual geometry it is sufficient to calculate how the O 
matrix transforms the G2 -structure spinors. There exists a basis4  such that the 
projections the original killing spinor obeys are given by

— e, T-ĵ £ ~  T ^e — Tg^e. (4.4.20)

One may decompose the 10-d geometry into a 3+7 split using an auxiliary 2-d 
space so that the gamma matrices are given by

IV =  ® ^3 ® 1 /
I a =  10(71 (g>7 fl, (4.4.21)

r<10) = —I  ®cr2® I,

4This is a rotation of the basis of eq (4.2.9) such that e1 —> cos ae1 — sin ote1 and e1 -+ cos ael +
sin cte1 with all other vielbeins unchanged.

60



where ]i =  0,1,3 and a = 1,2,3,1,2,3. The killing spinor may be decomposed 
such that they have positive chirality as

ei , 2  =  f  ® y  _ .  j  (4.4.22)

where £ and ^  are spinors in 3-d and 7-d respectively. In such conventions the 
3 form associated to G2  is then given by =  —ixiabcX• H is possible to show 
that in this decomposition the T-dual Killing spinors are given by

£ 1  =  ? ® I I ® £ 1 / e2 = £®  ® £ 2 / (4.4.23)

which have the correct chirality for type-IIA. Using the projections of eq (4.4.20) 
the 7-d spinors may be massaged into the form

sin a /cos2  oc + 1 2 .
Xi = x ,  X2 = - 7= = X  +  \ l  I , r 2  X / (4.4.24)

where ans is given by eq (2.3.14). As the notation suggests Xi is a
sum of parts which are parallel and orthogonal to Xi- The orthogonal comple­
ment to x  is

±  =  i K  K  =  COS a y r  +  C l  c o s  a y j  + ^ 7 i  +  & 7 $  +  C l  s in  « 7 l  ( 4  4  2 5 )
\ /  COS2 tt +  p

where K defines the 1-form associated with an S li(3)-structure in 7-d when 
contracted with the vielbeins of eq (4.4.7) 5. Specifically the structure is what 
should be called dynamical SU(3), by analogy to dynamical SU (2 )-structures 
in 6 -d [81]. This is because the coefficients of x  and x 1  are not constant through 
out the space, in fact sin oc —>■ 0  as r —> 0 0  so the structure becomes orthogo­
nal SU(3) in the UV, but through out the whole space the coefficients change. 
The details of this calculation and presentation of all the forms associated with 
SU(3) shall be left for forthcoming work.

4.4.3 Cycles and Charges

The T-dual geometry supports many fluxes and so contains several different 
branes. Since the internal space is 7-d, the possible quantised charges are given

5The contraction should be performed once the vielbeins have been rotated to the canonical 
frame of footnote 4.
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by

Qm = kb h ~ F o B z '

Q D 4  =  i / £/ 4 “ B2 A f 2 + y 5 2  A B2' (4-426)
1 C 1 F

Qd2  =  -  32^5 /£6 ̂ 6  -  ^ 2  A F4  +  -B 2  A B2  A F2  -  - ^ ^ 2  A B2  A B2 .

Sensible cycles over which to define these quantities are

t?  =  {01, <pi|u2  = V3 = 1p1 =lp2 = 0},

E4  =  (0i, i?2 1̂ 3 = 0 ,ip2 — constant}, (4.4.27)

£ 6  =  {01/^l/^l/®2/^3/^2>-

Actually E2  shrinks to zero in the IR, but as F2  and B2  vanish on this cycle this 
will not cause a singularity in the geometry as a non-zero Page charge must be 
pure gauge in origin. On these cycles eq (4.4.26) takes the simple form:

Qd6  — 0  up to large gauge transformations,

®D4 =  8 7 ?  I t 4 H ^2V2 Sin°lde A d<Pl A d^ 1 A ^ 2' (4.4.28)

® D 2  ~ 3 2n5 L  -^-V2 sin 0id0i A dpi A dz>i A d? ? 2 A dip2 -

to make further progress one needs to fix the periods of the dual coordinates 
V2 , V3 . A rigorous prescription for doing this is absent form the literature, but 
it is at least reasonable to assume that they are compact. Here the periodicities 
shall be chosen such that

J  V2 dv2 = tc, J  dv3  =  V ln ,  (4.4.29)

with these choices the D2 and D4 Page charges coincide with the Romans mass,

Qd 4  =  Qd 2 = F0  = ^ .  (4.4.30)
V2

Since these charges contain explicit B2  terms in their definitions they can expe­
rience quantised shifts under large gauge transformations B2  -* B2  +  AB2 . For 
example

AB2  =  - £ s m f t » , A M ,  AQd6 =  AQm  =  AQD 2  =  0 . (4.4.31)
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Finally there are 2-cycles on which the induced metric takes a particularly 
simple form. On £ 2  the induced metric is given by

dsg2 = Nc—- — (d6 2 +  dcp2), (4.4.32)

this cycle vanishes in the IR, blows up in the UV and F2 and B2  vanish on it. 
The second is the 3-sphere S3  =  (6 \, q>\, tp\) on which the metric is

p2h+(p
dsg3 =  Nc—- — (d0 2 +  dcp2 +  2cos9idcp\dxpi +  dtp2), (4.4.33)

which has the same asymptotic behaviour as the previous cycle.

4.5 Probe Analysis and Comparison of the Gauge 
Theories

In this section some field theory observables shall be studied via a probe brane 
analysis. To begin, the results of [73] and [29] shall be reviewed to study the 
field theories dual to the wrapped D5-brane solution and its G2 -structure rota­
tion respectively. A new proposal for the Chern-Simons level of G2 -structure 
rotated solution will be made before the non-abelian T-dual solution is consid­
ered.

The analysis of this section will rely on two important observations. They 
give a prescription for defining gauge couplings and Chern-Simons levels from 
probe branes.

Gauge Coupling

A gauge coupling may be defined in terms of the DBI action of a probe Dp brane 
wrapping an n-cycle, where the embedding of this brane is £ =  (t, x1, x2, Ln). 
In the following it shall be assumed that the induced metric can be expressed 
as

=  e2Adx2f 2  +  ds\n, (4.5.1)

where its components Gm,n  are decomposed as M =  (ji, a) for }i = 0 , 1 , 2  and
a = 1,..., p — 2. In addition the only non-zero part of the world volume gauge
field F and pull back of B2 will be

Tp'/ Babr (4.5.2)
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and the dilaton shall be (p. The DBI action of this probe Dp brane may be fac­
torised into R 1 , 2  and parts

s dbj = ~ TDr [  d f + 'S e - t J -  det (Gm n  + $nm  + 2mx'FMN) (4.5.3)
JMp+1 v

=  - T D p  [  +  f  _ d ^ Y e - ^ ^ d e t ( d ab +  S ab) .
JR1’ i/Sî

One may then expand the R 1 , 2  determinant for small values of od, which leads 
to

J -  det(G +  InodV) =  e3Aj - d e . \ . ( l  + 2nodG-'F)

(2 ncc' ) 2 (45-4)
= e3A[l — -—-j^—e 4Atr(rj 1Frj 1F) +  O (a ')4],

where indices have been suppressed. tr(rj~xFrj~l F) =  F^VF^V is the standard 
object appearing the in YM action

Sym =  i  /  d3 xFHVFPv (4.5.5)

and so one may relate the oc' 2 term in the expansion of eq (4.5.3) to this coupling 
which leads to the identification

- 3  =  TDp J ^  2 d ,P ^ l .e -1 l- A^d e t(G ab + Bab), (4.5.6)

A second way one can define a gauge coupling is with a Euclidean Dp brane. 
The DBI action of such a brane will wrap a compact (p+l)-cycle L p + 1  in the 
internal space and is given by

SeIn* = TP d ^ Z e - t j  d e t ( 6 ab + nab). (4.5.7)

This can be identified with the action of an instanton

87T2
e- s inst _  e (4.5.8)

Thus for a Euclidean Dp brane can give a gauge coupling

Y ~ = T p L d(p+1) E<r * (4-5-9)
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In 4-d one would also include the WZ term to define a 0  angle. However the 
ideas behind this do not necessarily extend to 3-d so this term will be ignored 
here.

Chern-Simons level

A Chern-Simons level can be be extracted from the WZ action of a Dp brane 
with embedding £ =  ( f ,!1, ! 2, En) in a similar fashion. The exact prescription 
is dependent on what conventions are being used. For instance in conventions 
such that the RR ployform may be expressed as

Fpo,v = d C - H 3 AC + FoeB* (4.5.10)

where C is the sum over the potentials of type-IIA or type-IIB (additionally Fq 
should be taken to be zero in this case). Define also the Page charge of D(10-p) 
brane on a (p — 2 )-cycle l(p -2) to be

0 ° M  -  2^^ L„ (V ,  A «-• -  M, (4.5.11)

where — Fo ensures that the D8  brane Page charge, which is really the Romans 
mass is not included. The orientation of the cycle is parametrised by S(io-p) =  
±1. Finally the WZ action of a Dp-brane shall be given by

Sw z = sPTp [  C A e - ^ - 2nci'F (4.5.12)
F r Jm p+1

where the action is allowed to come with an overall positive or negative sign, 
i,e. Sp = =hl. A Chern-Simons term in a gauge theory is given by the action

Sqs = --!— [  d3xCcs = — t -  f  d3 xtr(d A A A  +  \ a  A A  A A) (4.5.13) 471J 471J 3

where A is a gauge field with field strength F =  dA +  A A A  and so dCcs =  
F A F. The order F A F term in eq (4.5.12) may be manipulated by adding an 
exact to give a Chern-Simons term,

d [C A e A i  C A^ A F A F = (dC — H3  A C) A 6 A C,qs
/  _ g  \ (4*5-14)

=  (Fpoly Ae  2 -  Fo) A Cqs•
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where the + / — sign is for IIA/IIB. The Chern-Simons term is then given by

t e  (V ,  A -  ft) /rij C CS

q D (  1° - P) ,  (4 'b '1^

JlRU “471

where s^sio-p =  — 1 and 2K20 TpTio-p =  (27r)-3 have been used. This shows 
quite generally that the WZ action of a Dp brane contains a Chern-Simons cou­
pling of level Qio-p. Actually this is not the whole story as the true Chern- 
Simons level can experience an additional shift when all the p-dimensional KK 
modes are integrated out. Extra care must be taken when different conventions 
are used, indeed this is the case in the G2 -structure rotated solution, where fur­
ther details will be given.

4.5.1 Wrapped D5 Branes and Af =  1 SYM with Gauge Group
SU(NC) _̂

The solution of wrapped D5 Branes on E3 is dual in the IR to Af = 1 SYM in 3 
dimensions. It contains Nc color branes as can be seen from the flux quantisa­
tion condition

- d ? L r> - N- <4 5 I6 >

so the gauge group is SU(NC). The geometry only gives a good holographic 
description of a field theory in 3-d in the IR where r ~  0. This is because E3 
vanishes in the IR and the QFT living on the wrapped D5 branes is effectively 3 
dimensional there, however in the UV the cycle blows up and the world volume 
is explicitly 6 dimensional.

A suitable definition of the gauge coupling is given by a probe D5-brane 
extended along Minkowski and wrapping E3. Once a gauge field F with legs 
in the Minkowski directions is turned on, the action of such a brane is given by

Sprobe  =  I 5  /* 1 2  cPxdl?e~$yj — det(Gind + Inoc'F), (4.5.17)

there is no WZ contribution as F3  =  0 on E3. At this stage it will be instructive 
to reintroduce gs and a! so that the induced metric is given by

dsM  = e* dx \ 2 + + e_ L [p  -  1  )2 )(<r! ) 2 (4.5.18)
J

This and the fact that (2 n ) 2 oc,3gsT5 = 1 gives the following a! expansion of the
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DBI action,

SF *  ~  ^ ^ 3 / 2 ^ ( e2k +  T (W ~  1 ) 2 ^ / 2  /  ^  [ ^ “ ^ v ^ V 2] (4-5.19)

where indices are contracted with the Minkowski metric. One can then identify 
F2  term with the Yang-Mills action and make the identification

- | L  =  -  1)2)3/2. (4.5.20)

which gives a coupling of mass dimension 1, as it should have in 3-d. The RHS 
of eq (4.5.20) blows up in the UV and vanishes in the UV, which is consistent 
with the asymptotic freedom and confinement on expects of SYM in 3-d. The 
second of these is further supported by a Wilson loop calculation as in [73, 63], 
which gives an area law with string tension a = 2 ^ 7  e °̂-

One can also calculate the Chern-Simons level from a probe brane. Consider 
a D5-brane extended along Minkowski and wrapping S3, the WZ action of such 
a brane is

Swz = T5 /  (C6  +  (27ia')2C2 A f A f ) ,  (4.5.21)
J R1'2 x S3

where F is once more a world volume gauge field with legs in the field theory 
directions. Integrating the second term in this action by parts gives the Chern- 
Simons action [72]

J d3 x tr (d A + l A A A A A ) = ~ i t I d3%Ccs' (4-s -22)

where k& = Nc. There is no gs or a.' factors because they cancel with those in F3  

once they are reimposed. The ks here is to distinguish this object from the true 
CS level k which gets an extra contribution when one integrates out all the 6 -d 
Kaluza Klein modes6  . The Chern-Simons level is then

1 1 Nc /AT- rtr-w
k = k6~ Y  = Y  ( ^

which is half integer as one expects due to the parity anomaly in 3-d.
The wrapped D5-brane solution has two distinct UV solutions characterised 

by an asymptotically linear and constant dilaton, i.e. eq (4.2.12) and eq (4.2.13). 
The field theoretic interpretation for this is that the constant dilaton solutions 
have an irrelevant operator insertion in their Lagrangian.

specifically  this it is integrating the massive fermions that generates the shift [72].
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4.5.2 The G2-structure Rotation and a 2-node Quiver Chern- 
Simons Theory

In [29] much of the gauge theory analysis of the G2 -structure rotated solution 
was performed. It was concluded that the gauge group was that of a 2 node 
quiver of the form SU(ri) x SU(rs), where r/ > rs, by analogy with the Bary- 
onic Branch of Klebanov-Strassler. The objects that must give rise to the ranks 
of this product group are the Page charges of the D2 and NS5 branes. As ex­
plained at length in [62], under a Seiberg duality the ranks of the gauge groups 
transform as r| =  rs and r' =  2rs — r/. It is possible to see this manifestly in the 
supergravity solution if one defines

Qnss = ri ~  rSf Qd2 =  rs. (4.5.24)

The Page charges on the LHS of these equalities transform under the large 
gauge transformation of eq (4.3.15) in precisely the same way as the ranks on the 
RHS do under a Seiberg duality. Thus large gauge transformations are equiva­
lent to Seiberg duality. This along with the fact that there is a running integral 
of C3  at infinity [29] is very suggestive of a duality cascade, once more by anal­
ogy with Klebanov-Strassler. It is reasonable then to propose that in the UV, 
where Q0 2  =  Mc, the gauge group is SU(NC +  Mc) x SU(MC) and this then 
cascades down in ranks as one flow towards the IR terminating at SU(NC) as 
Klebanov-Strassler does.

It is possible to define two couplings for this quiver7, g\ and g2 in the same 
spirit as in the previous section. A probe D4 brane with (f,*1,* 2, ^ ) ,  with E 2  

as in eq (4.3.16) defines a coupling

=  y/cc'e<̂co~ <̂0 +  ^e2g(w — l ) 2). (4.5.25)

while a probe D2 brane extended in Minkowski can be used to define the cou­
pling

J_ =  ^*LefP~-'P0 (4.5.26)
8 2  8 s

where both of these couplings have mass dimension 1 as they should. The LHS 
of eq (4.5.25) vanishes at r ~  0 and becomes constant as r —> 0 0 . This indi­
cates that the coupling g\ is consistent with confinement in the IR and dilation 
invariance in the UV. On the other hand the LHS of eq (4.5.26) interpolates be­
tween a smaller and larger constant between the IR and the UV respectively. 
In [29] the difference in the IR behaviour of g2 was interpreted as a signal of

7In [29] a third coupling is also proposed in terms of a D2 instanton, however this is probably 
not a good definition because the the WZ term is not quantised.
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a confining Chern-Simons term dominating the gauge theory dynamics there. 
This can be understood because in a YM-CS like theory the level k induces an 
effective mass for the gauge field, gyM|fc|, which causes the Yang-Mills cou­
pling to freeze at a constant value in the IR. Further evidence of confinement 
is given by Wilson loop calculations which obey an area law with string ten­
sion a  =  ( c \ / l  — However a proposal for the Chern-Simons term
which is claimed to be dominating the dynamics in the IR has been absent from 
the literature until now, the expression is provided below.

Indeed consider a probe D8  brane with embedding (f, r 1,* 2,!!6) on which 
a world volume gauge field is turned on with support in the Minkowski direc­
tion, the order F  A F  term of the WZ action of such a brane is

Scs =  - (2 n * r T* [  (C5 + B2 AC 3 ) A F A F .  (4.5.27)
2 J rU x l 6

The integrand can be manipulated by adding an exact

(C5  4- B2 A C3 ) A F  A F + d  [(C5  +  B2 A C3 ) A £ c s ]  — ( ^ 6  + H$ A C3 ) A Cqs/ (4.5.28)

where Fts =  dC $  +  B2 A F4, F4 =  d C s  and F  A F  =  d £ c s  have been used. Plug­
ging this back into eq (4.5.27) and taking note of the definition of the D2 Page 
charge in eq (4.3.14) gives

Scs =  - % T  / , , £ cs (4-5.29)47T JRl,2

thus if one takes into account the definitions of the ranks in eq (4.5.24), a Chern- 
Simons level can be defined which is equal to the rank of smaller group

k = rs. (4.5.30)

Of course it is possible that the level will experience a shift when one integrates 
out the 8 -d KK modes, therefore this result should be viewed as correct up to 
the possible effect of this subtlety. Clearly k is not a fixed number from the 
perspective of supergravity, it shifts under large gauge transformations of C3 , 
however it is always quantised as a Chern-Simons level must be. In eq (4.5.29) 
only the positive orientation of Z 6  is considered, indeed it is possible to define 
another with the negative orientation, ie k\ = — k2 = k. This is what happens 
in the ABJM [82] where the AdS^ x S7 /Z ^  geometry in M-theory is dual to the 
2 node quiver SU(N)_]C x  SU(N)]C. This suggests that the quiver of the rotated 
solution could be SU (ri)-Ts x SU(rs)rs by analogy with ABJM. If this is correct
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the effect of the Seiberg-like duality of eq (4.5.24) on the field theory is such that 

G -  SU(NC +  M c)_k x SU(Mc)z , k = M c (4.5.31)

becomes

G' =  SU(MC -  Nc)_fr x SU(Mc)jc, , K = M c - N c (4.5.32)

and so clearly any cascade in the ranks of the groups must be associated with a 
corresponding cascade in the Chern-Simons levels.

The G2 -structure rotation acts on the SuGra solution that is dual to a QFT 
with an irrelevant operator that dominates the UV. The rotation induces addi­
tional warping on the metric by the function H  which makes the new metric 
asymptotically AdS^, this means that the rotated solution no longer contains 
this operator. These warp factors also pre-multiply the internal space dsy and 
ensure that in the UV this remains finite. The field theory lives on the world vol­
ume of D2 and fractional D2 branes which do not unwrap like the D5 branes 
of the original solution, so the rotated solution gives a good holographic de­
scription of a 3-d gauge theory throughout the whole space. In this sense the 
rotation procedure can be seen as providing a UV completion to the original 
QFT dual to the wrapped D5 solution with asymptotically constant dilaton.

4.5.3 The non-Abelian T-dual: Probe Analysis

The geometry of the non-abelian T-dual of the wrapped D5 solution supports 
all possible fluxes. This fact and comparison to the rotated solution suggest that 
the field theory is a type of quiver. As discussed in section 4.4.3, it is possible 
to define several quantised charges once the periods of the dual coordinates 
V2 and 0 3  are fixed. Note however that the charges defined in eq (4.4.30) have 
a common y/2 factor. This is an artefact of the conventions used in the dual- 
isation procedure, it has no deep meaning and so it makes sense to make the 
redefinition

where Nc should now be thought of as integer valued. The Page charges sup­
ported by the dual geometry are then

This is enough charges to potentially define a 3 node quiver, but the identifica­
tion of this quiver will not be pursued here, instead this section will focus only 
on probing the dynamics of the dual gauge theory. These probe calculation in

(4.5.33)

Qd6  =  0  mod Nc, Qd4  =  Qdi = Nc. (4.5.34)
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the T-dual solution will be more complicated than the previous examples, for 
that reason the units as well as multiplicative constants in the couplings will be 
suppressed.

Like the rotated solution it is possible to define a coupling via a D2 brane 
parallel to the field theory coordinates. The dilaton, which is expressed in eq
(4.4.2), depends on the dual coordinates that shall be set to constant values on 
the world volume of the brane. The simplest choice is that V2 =  =  0 for
which the coupling is given by

1  3„ f C1 ' SO2) r ~ °_  ~   ̂ (4.5.35)
£ 1  y ( l , c3 ^2 e2r) r —y 0 0

where the brackets correspond to asymptotically (Linear, Constant) dilaton so­
lutions. The coupling is constant for the linear dilaton solution however this is 
clearly not a sign of conformal invariance as the non-compact dual metric is not 
AdSi and the dilaton is not constant. The coupling for solutions with constant 
dilaton in the UV are more interesting, asymptotically it is free and increases as 
one flows towards the IR finally freezing at a constant at r = 0.

Another way to define a gauge coupling is a probe D4 brane with embed­
ding (f, x^,x 2 ,t?-), where the induced metric is given by eq (4.4.32). B2 as de­
fined in eq (4.4.3) vanishes on this cycle, however non-vanishing contributions 
can be induced by large gauge transformations as in eq (4.4.31). Generically the 
F2 contribution to the DBI action gives a coupling of the form

|  =  TD 4  Jt 2  e - 3f / 2 y /de t{ 6 ab + nab)

J  dd\ y j _|_ 2 n2 sin2  6 \ (4.5.36)
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7T

=  2 N c e 3* + 2h + lPE ( nl \
TC \ e4h + 2<pfij2 '

where B = n /2 s in  Q\dQ\ A dcpi, to include the effect of large gauge transfor­
mations. The function E is a complete elliptic integral, which as a statement 
is not very illuminating. When n = 0 there is no gauge transformation and 
E( 0) =  71 /  2 so the coupling is simply

1 ( (e<pQr 2 g ^ 2 e^°T2) r ~  0
3 X + 2  *+, I V 2 0  ; (4537)

8 2  y (2 e^°°r , 3 c5 /̂ e<ft” glOr/3  ̂ r qq

where the brackets correspond to asymptotically (Linear, Constant) dilaton so­
lutions. This coupling is consistent with confinement in the IR and asymptotic
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Figure 4.1: Plot of the coupling g2- Blue shows n = 1 where the coupling freezes 
in the IR, whilst red shows n — 0 where the coupling blows up in the IR.

freedom in the UV, in fact it is much like the coupling of the original back­
ground in eq (4.5.20). For non-zero values of n the UV behaviour is unchanged 
because e4h+2(P becomes large and the elliptic integral is well approximated by

w  ~ nl \ n  e- 4 *1 - 2 ^ 2  

(gih+tyfii) ~  2  +  4 ft? '

where the second term vanishes as r —»• oo. The IR behaviour changes quite 
dramatically under large gauge transformations because for r ~  0 ,

J eM+2<pN 2 + 2n2sin26i ~  s/2Ncn sin 6\ and so the coupling tends to

< ?2

2'/2|«l^0 _ (4.5.39)
0 71

so the effect of the large gauge transformation is to freeze the coupling in the IR 
making n =  0 a special case. The coupling g2 is plotted in the whole space in 
figure 4.5.3

A third coupling may be defined in terms of Euclidean D2 on S3. B2 van­
ishes on this cycle up to the same large gauge transform ations as before and the 
induced metric is given by eq (4.4.33) which leads to the coupling

~  2n2+e*h+2*N? ~  <

(e2</>or3  ̂ ety°(gor)3) r ~  0, n = 0

( e2(poor3/2 ' c3c4r) y —v 00 (4.5.40)

#oM V ^ r ~  0 , n ^  0

this coupling is consistent w ith a strong coupling in the UV and asymptotic 
freedom in the IR. The effect of the large gauge transformation is less pro­



nounced than it was for g2 the behaviour in the IR is modified such that the 
power law changes, but the RHS of eq (4.5.40) still tends to zero in the IR.

The confining behaviour of the g$ coupling should come as no surprise, the 
field theory and holographic directions are the same in both the original and 
dual geometries and so the conclusion of confinement from the Wilson loop 
studies of [73, 63] transfer to this solution also. That all the coupling exhibit 
asymptotic freedom is tied up with the fact that the bad UV behaviour of the 
original geometry, fractional branes unwrapping in the UV, is not being fixed 
by the T-duality, the irrelevant operator of the asymptotically constant dilaton 
solution will also still be present. As the original wrapped D5 brane solution is 
dual to a gauge theory with a Chern-Simons term it is reasonable to expect that 
the non-abelian T-dual geometry will be dual to a theory that also contains this 
type of term. That the couplings g\ and (after a large gauge transformation) g2 

freeze out in the IR is certainly suggestive of a Chern-Simons term (or terms) 
that dominate the physics there.

At the beginning of this section it was shown that it is possible to define a 
Chern-Simons level for each Page charge in the geometry. For the non-abelian 
T-dual solution this gives 3 possible definitions

• Probe D8  brane on ( t ,x l , x2, HL̂ ) gives k\ = Q m  =  Nc

• Probe D6  brane on (t, x1, x2, £ 4 ) gives k2 = Qd4  =  Nc

• Probe D4 brane on (t, x1, x2, £ 2 ) gives k3  =  Qde = nNc

up to possible shifts from integrating out all the massive KK modes. The n in
the definition of k$ comes from the large gauge transformation.

The Chern-Simons level defined in the w rapped D5-brane solution is calcu­
lated on the 3-cycle S3  =  (a1, a2 , 0 s ). This cycle is orthogonal to the directions 
on which the dualisation is performed and so must be m apped to a 4-cycle and 
6 -cycle. This accounts for k\ and k2 and suggests that the D8  and D 6  branes 
may be probing the same gauge theory object. k$ is unambiguously distinct, it 
is zero when B2 is defined as in eq (4.4.3) but is shifted by large gauge trans­
formation which is analogous to the Chern-Simons level of the G2 -structure 
rotated solution. It is interesting to see that when k^ = 0 the couplings g2 and 
# 3  behave quite differently than when it is not. Most pronounced is the effect 
on g2 that exhibits typical confining behaviour when n = 0 but freezes in the IR 
becoming constant otherwise. This can be interpreted as a clear example of the 
effect a non-zero Chern-Simons term can have on a Yang-Mills coupling, see 
the discussion below eq (4.5.26).
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Comments on Large Gauge Transformations and the Range of V2 , v$

Although we have discussed the possibility of performing large gauge trans­
formations on B2  of the form AB2 =  —n /2 s in  6 id6 \ A dcp\, it should be pointed 
out that n cannot take arbitrary values. String theory requires that

bo =  ~ h L B l & m  ( 4 5 ' 4 1 )

which restricts the value n can take. On S2 = E2  (see eq (4.4.27)), after perform­
ing n large gauge transformations one has

b0 = 1
47T2

■ e4g+2(pj^2n v ^(1 _|_ w )2
2 /̂  j (, I ■■■

y/2(e4S+2<PN? +  8 (v2 + v2))_
(4.5.42)

In the UV it is possible to show that bo < \  where the upper bounds of 
V2 , v$ in eq (4.4.29) have been assumed so that

v 2 e  [0,7r], v 3 e  [0, y/27r] (4.5.43)

and we take e48 +2(P 8 ( ^ 2  +  ^3 )* This implies that n = 0,1,3,4s are allowed,
indeed a numerical study shows that up to go  < 4 eq (4.5.41) is satisfied for all 
r. However as go  increases it is possible to perform less gauge transformations 
and still satisfy eq (4.5.42) until go ^  12 where it is impossible to perform any 
such transformations.

As further evidence of the range of dual coordinates taken in eq (4.5.43) 
consider the following. For go ^  4, bo takes its maximum value at r = 0, in 
the IR. When one considers n = 0 and plots the relationship between go and 
bQR one finds that when (v2 , V3 ) take the upper bounds in eq (4.5.43), bo —> las 
go increases. Taking an upper bound greater than eq (4.5.43) causes bo to fall 
outside the bound of eq (4.5.42) for large go, see figure 4.5.3. This indicates that 
i?2 , need to be finitely bounded for the solution to remain sensible and that 
the maximum range they may take is precisely as in eq (4.5.43)

4.6 Concluding Remarks

In this chapter the results of applying two solution generating techniques to the 
wrapped D5 solution of Maldacena and Nastase [72] (and its deformation [73]) 
were studied, with the aim of better understanding the dual gauge theories that 
are generated.

8We are excluding the possibility of negative n as we do not wish to encounter negative 
ranks for the gauge groups.
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Figure 4.2: Graphs of the IR value of bo as a function of go > 4  for V2 = mrr, v3 =  
\Z lm n  and n = 0. Purple is m = 1 /2 , blue m — 1 and green m =  2 . Notice that 
each graph asymptotes to m as go increases.

The first technique, G2-structure rotation [24], which is equivalent to U- 
duality, has an action on the field theories that is already quite well understood, 
partially due to explicit calculation [24, 29, 63, 77] and partially by analogy to 
its 6 -d S 1/(3)-structure equivalent [22, 26, 27, 28, 16, 25]. The rotation acts on 
the w rapped D5 solution with asymptotically constant dilaton which is dual to 
a M  =  1 SYM-CS in 3-d with an irrelevant operator insertion. After the rotation 
this operator is removed and the metric is asymptotically AdS^ x Y, where Y 
has finite volume. It was shown in [24, 29] that the rotated geometry is dual 
to a 2-node quiver that very likely exhibits a duality cascade like the Baryonic 
Branch [18] of Klebanov-Strassler [12], due to similarities between the two so­
lutions. One way in which the solutions differ is that the G2~structure rotated, 
being a holographic description of a 3-d QFT, can contain a Chern-Simons term. 
Evidence for this was given in [29] where, through a probe brane calculation, a 
YM coupling was shown to freeze in the IR. This was interpreted as a signal of 
a Chern-Simons term that was dom inating the IR, but no proposal for the level 
of this theory was given. This is resolved in section 4.5.2 where it is shown that 
a probe D8  brane w rapping the whole compact part of the rotated G2-manifold, 
gives rise to a Chern-Simons level which is equal to the D2  Page charge. Thus 
the putative duality cascade m ust be accompanied by a cascade in the Chern- 
Simons level, which is very interesting and deserves further study. This will 
be left for future study as the main purpose of introducing the rotated solution 
was to aid, by comparison, the understanding of the main focus of this chapter.

A non-abelian T-duality [9, 31, 32, 33] was perform ed on the SU (2) isome- 
try param etrised by the left invariant 1-forms co1 of the deform ed Maldacena-
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Nastase solution. The result of this is a rather complicated solution in massive 
type-HA with all possible RR forms turned on. As the duality does not change 
the directions orthogonal to the isometry, it does not improve the asymptotic 
behaviour of the field theory directions and holographic coordinate as the rota­
tion does, this of course was to be expected. It was possible to explicitly show 
that under the T-duality the G2 -structure of the original solution is mapped 
to a dynamic S 11(3)-structure in 7-d [74, 75]. This is the analogue of result of 
[41] where it was shown that the 6 -d S lI(3)-structure of Klebanov-Witten [69] 
is mapped to a static SU (2)-structure for the T-dual solution [35, 30]. Indeed 
the structure of the dual geometry considered here becomes static SU(3) in a 
limit in which, like Klebanov-Witten, there is no rotation in the projections of 
the original background (see appendix A of [73] for details of the projections).

A rigorous prescription for fixing the periodicities of the dual coordinates is 
lacking. The view taken in this chapter was that the coordinates were at least 
likely to be compact. If this were not the case it would only be possible to define 
a D6  brane Page charge and this seems strange given the rich variety of fluxes. 
Periods were chosen for the dual coordinates such that Page charges for D2 
and D4 branes could also be defined and such that these charges were equal. 
It is important to realise however that it should be possible to fix the periods 
of the dual coordinates by some requirement on the global properties of the 
dual manifold and that such a prescription may not match the choice made 
here. At any rate, it is unlikely that the specific choice would drastically change 
the salient features of the manifold so a probe analysis of the geometry was 
performed with periodicity thus fixed to gain some insight into the possible 
dual QFT.

That it is possible to define 3 Page charges suggests, by analogy with the 
rotated solution, that the dual gauge theory may be a 3 node quiver. How­
ever, unlike the rotated solution, it is possible in this case to define as many 
Chern-Simons terms as there are charges. The most interesting of these is the 
Chern-Simons term with level that coincided with the D6  Page charge k3 . This 
experiences shifts under large gauge transformations of B2 in much the same 
way as is true for the level in the rotated solution (albeit with that shift medi­
ated by large gauge transformations of C3 ). A new feature in the T-dual solution 
is that the large gauge transformation actually changes the IR behaviour of two 
of the couplings that can be defined, this is most pronounced for the coupling 
g2 - When /C3  =  0 the coupling exhibits typical confining behaviour, it tends 
to infinity as when flows towards the IR. However when k$ ^  0 the coupling 
freezes in the IR, a sign that a confining Chern-Simons term is now dominating 
the dynamics this coupling is sensitive to. This constitutes a very clean exam­
ple of such behaviour, and it is nice to see a familiar dynamical effect in this 
complicated SuGra solution. It is probable that this solution also experiences 
some shift in the ranks of gauge groups of the QFT and that it can perhaps
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be identified with a Seiberg/level-rank like duality, this will be left for future 
work.

I

ii
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Chapter 5

On the Dual of the Baryonic Branch 
of Klebanov-Strassler

5.1 Introduction

This chapter is based on collaborative work done with Gaillard, Nunez and 
Thompson [43]. The system on which this work was focused is the Baryonic 
Branch of the Klebanov-Strassler field theory [12], [83], [18]. This is perhaps, 
among the minimally SUSY examples known at the moment, the one that bet­
ter passed test of the correspondence between geometry and (strongly coupled) 
field theoretical aspects. Besides, the Baryonic Branch field theory and geome­
try unifies the original Klebanov-Strassler system and the system of five branes 
wrapping a two cycle inside the resolved conifold [11, 84]. Field theoretically, 
this unification can be thought as a Higgs-like mechanism and a particular limit 
where an accidental symmetry appears. See the papers [16, 25, 26] for different 
geometric and physical aspects of this connection.

In this Chapter, we will perform an SU(2) non-Abelian T-duality on the 
Baryonic Branch geometry. This is a geometry described by an SU (3)-structure. 
All features of the geometry are characterised by a couple of forms J2 , 0 3  that 
also encode many aspects of the strongly coupled dual field theory. Using non- 
abelian T-duality, we will obtain a new background in Massive Type IIA Super­
gravity. The G-structure will change to what is called SU(2)-structure, charac­
terised by forms j2 ,W\, V\,u)2 . The SU (2)-structure will transition from being 
static in the large radius region of the geometry, corresponding to high energies 
in the dual field theory, to being dynamical once the small radius region of the 
geometry is considered. Hence, the phenomena of confinement and symmetry 
breaking are given a geometric description by the change in SU (2 )-structure 
from static to dynamical.

The action of non-Abelian T-duality on the G-structures has been studied in
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many backgrounds which we take the opportunity to summarise in the table 
below . 1

Seed Solution Seed Structure Dual Structure

Klebanov-Witten SU{3) Orthogonal SU(2)
Klebanov-Tseytlin SU{ 3) Orthogonal SU(2)
YM SU( 3) Orthogonal SU(2)
Klebanov-Strassler SU( 3) Dynamical SU(2)
KS Baryonic Branch SU{ 3) Dynamical SU(2)
Wrapped D5's on S2 SU( 3) Dynamical SU(2)
Wrapped D6 's on S3 SU( 3) Dynamical SU(2)
Wrapped D5's on S3 g 2 Dynamical SU(3)

The contents of this chapter are organised as follows. In section 5.2 we 
will briefly summarise the original background and field theory correspond­
ing to the Baryonic Branch of the Klebanov-Strassler. This is the seed back­
ground/field theory pair on which we will apply an SU(2) isometry T-duality. 
In section 5.3 the new solution is presented explicitly.

In section 5.4, we will organise all the previous information using the lan­
guage of G-structures. This will lead to a compact way of writing things, that 
can be very useful for other studies. We will study how the dynamical or static 
character of the G-structure depends on the field theoretic low energy dynam­
ics captured by the original solution. In section 5.5, we will discuss different 
aspects of the field theory dual to our new backgrounds. We close the chapter 
with a list of possible future problems and conclusions.

5.2 Generalities on the Baryonic Branch

The Klebanov-Strassler field theory is a two-group quiver with bifundamental 
matter, charged under a global symmetry of the form SU( 2 ) x SU (2) x U(1 )k 
U(1)b• The ranks of the gauge groups are (N, N  -f M) and the bifundamental 
matter A \,  A2, Bi, B2  self-interact via a superpotential of the form W  ~  ABAB. 
For a very clear explanation of many of the details of this quantum field theory, 
see [85], [8 6 ]. One detail that will be crucial to our present work is the fact 
that the so called 'duality cascade', a succesion of Seiberg dualities, ends in a 
situation where the quantum field theory may choose to develop VEVs for the 
Baryon and anti-Baryon operators.

1The details of the case of Y p,Cj are to appear in [71] and a detailed study of the D6 branes on 
S3 appears in chapter 6 in [44].
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In the last step of the duality cascade the gauge group is SU(M) x SU(2M). 
This theory has mesons M  = and also baryonic operators [83]

X (A2)JM+1 (A2)«™  x ....(A2) T - 1  ( M ) T

and similar for 8  made out of (B/)f fields. One can see that both baryons and 
anti-baryons are neutral under SU(2 ) x SU(2) transformations.

The moduli space consists of two branches - the mesonic and the baryonic 
[8 6 ]. On the mesonic branch the baryons are zero ( 6  = 8  = 0) and the mesons 
satisfy detM. = A4M. The non-perturbative contribution to the superpoten­
tial means that the associated moduli space can be identified with a symmetric 
product of the deformed conifold. On the Baryonic Branch the mesons are zero 
(M. =  0 ) but the baryons acquire expectation values,

B =  A2M, B = U 1M , (5.2.2)

where A is the strong coupling scale of the group SU(2M). Notice that both
VEVs are equal only if J  =  1. This corresponds to a Z 2 -symmetric point, repre­
sented by the exact solution in [1 2 ].

On this Baryonic Branch the 11(1 )g symmetry is spontaneously broken and 
the associated massless (pseudo-scalar) Goldstone mode corresponds to the 
phase of £. By supersymmetry this Goldstone lives in a chiral multiplet and 
comes along with scalar partner, the saxion, which corresponds to changing the 
modulus of £. As discussed in [8 6 ], the VEV of the operator,

U =  Tr[A{A- -  BjBj], (5.2.3)

which contains the U ( 1 ) b  current as its 6 cr̂ 6  component, encodes the motion 
along the Baryonic Branch (the different values of f ) according to

(U) ~ M A 2 ln |f | . (5.2.4)

Let us focus on the situation where the field theory chooses to move to the 
purely Baryonic branch. In this case, there is a smooth solution of the equations 
of motion of type-DB supergravity, that describes the strong dynamics of this 
field theory, including the spontaneous breaking of the 11(1) b  symmetry [83], 
[18]. In the notation that we will adopt in this work, such background can be
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written compactly by introducing the (string frame) vielbein basis,

ex 1 =  e*h *dxl , ep = e*+kh\dp, e9 = e*+hh*d0 , e? = e*+hh* sinOdq?,
1  Oxrtf 1 / o 1  <I> i ^ 1

2
1  <i>

e2 = ^e? +gh*(cd2 —a smOdcp), (5.2.5)

e3  =  - e * +kh* (d>3  +  cos Od(p) ,

where d)z are the left invariant forms of SU(2). The metric, RR and NSNS fields 
are

10
ds2 =  f^(e')2 ,

i=1

F3 =  W i  [f i e 123+ /2e<,f3+ /3 (e623 + e f l 3 )  +  / 4 ( e p w + e W 2 )

e® rB2 = K | ^ 3  — cosoc(ed(f> +  e12) — sina:(e0 2  +  e<pl)

H3 = - k
e i *
p /4
,2 <D

-  f ie d<pp -  f ie p 1 2  -  / 3( ^  +  <?^) +  / 4 (e1 0 3  +  e*23)

C4 =  — k  ——dx° A dxl A dx2 A dx3, 
ft

2 <t>\ r 0̂̂ 123 _  gX°xlx2x3p
h

F5 = Ke 2 °  kh*dp ( 1T - (5.2.6)

We have defined

cos x =
cosh(2 p) — a 2 eh 8

s in  a: = h = 1  — k  e2 „ 2< £ (5.2.7)
sinh(2 p) ' sinh(2 p ) '

where k  is a constant that we will choose to be k  =  e_<3E>(°°). The functions are,

f i  = - 2  Nce - k~2S, f 2 = ^ - e  k 2h (a2 -  2ab + V),

f s  = Nce - k- hS  ( a - b ) ,  U  = ^ - e - k- hS b ' .
(5.2.8)

The system has a radial coordinate p, on which (a, b, <E>, g, h, k) depend, and we 
have set a!gs = 1. The background is then determined by solving the equa­
tions of motion for the functions (a, b, <f>, g, h,k). A system of BPS equations is 
derived. These non-linear and coupled first-order equations can be arranged in 
a convenient form, by rewriting the functions of the background in terms of a 
combination of them, that decouples the equations (as explained in [87]-[88]). 
We will not go over these in this thesis. Enough will be for us to state that
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the whole dynamics of the string background is controlled by a single function 
P(p), subject to a second order non-linear and ordinary differential equation. 
This function P(p) can be determined numerically and has IR and UV behav­
iors

UV : P = e4? ' 3  \c+ + .. .]  , p-+  oo,
(5.2.9)

IR : P = hip + £>(p3) , p -*■ 0 .

There is only one independent parameter, c+ >  0 (the constant h\ is determined 
by c+) and it is this parameter that can be identified with the Baryonic expecta­
tion value

U ~  —  . (5.2.10)
C+

It is convenient to define a dimensionless quantity A =  l 2 ^3 c+e~ 4 ^ 3 where e 
may be identified with the conifold deformation. See the paper [28] for a good 
account of the logic and technical details.

5.2.1 SU(3) structure of the Baryonic Branch

The Supergravity background above is characterised by what is called an SU(3) 
structure. That is, there exists a couple of forms J2 and O 3 , in terms of which the 
BPS equations, the fluxes and various other quantities characterising the space 
can be written.

The observation of [22], is that the forms J, O, describing the full Baryonic 
Branch can be obtained from the simpler ones describing a set of D5 branes 
wrapping the two cycle of the resolved conifold. We will not repeat the details 
of the derivation here, but we quote the results to the extent that we will find 
useful.

In general, an SU(3) structure solution can be described by the following 
pure spinors in type-IIB [20],

Y+ = Y_ = -i~Clhol, (5.2.11)

where e2A is the warp factor of the metric. Let us define

jar) = c  + iS (5.2.12)
where C2 + S 2 =  1. It is possible to show that for zero axion field, that is F\ =  
0, SUSY requires the following equalities to hold (these are the BPS equations
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previously mentioned)

d(e~®S) = 0, d l ^ - ^ C )  = 0,
(5.2.13)

d (e3A-*Clh0,) = 0 ,  d (e4A~2<t} A /) =  0.

The fluxes are determined as

B2 =  p , ^ d ( e 2A]) =  e4A *6 F3 , d(e4A~^S) =  - e 4A *6 Fs . (5 .2 .14)

The system of Nc D5 branes wrapped on the resolved conifold is supported 
by just Fs flux and is a solution to these equations when 5  =  0. The (string- 
frame) frame fields that describe this geometry can be obtained from those of 
eq (5.2.5) by setting h = 1. In terms of these, the J2 , ̂ 3  ( denoted without hats 
to distinguish them from those of the Baryonic branch) are given by

J = er3 + (cosoceV +  sinoce2) A ee +  (cos oce1 — s in ocê ) A e1, (5.2.15)

CLhol = (er +  ie3) A ((cos oce* +  sinae2) +  ie6) A ((— sin ocê  +  cos oce2) +  iel ),

which obey the relations /  A Clhol /  A /  A /  =  A Clhol- The BPS
equations for the functions h, g, k, a, b, O and the RR three-form flux, are

d{J A /) = 0, d(e*/2n M ) =  0
(5.2.16)

d(e°/) +  e2 <I,* 6 F3  =  0 .

Then the results of [22] show that the /, O of the full Baryonic Branch solution 
are obtained by introducing a non-zero phase or rotation parameter2  £(r) into
(5.2.11) and defining:

}  =  CJ, n h0, =  C3/2n hol, e2A =  ^ = ,  S =  6 ° - ° “ , (5 .2 .17)

where e2A is the warp factor of the Baryonic Branch solution. For further details 
on the geometry and physics implied by this "scaling of forms', we refer the 
reader to the original papers [16, 22, 25, 26].

2This parameter can also be understood in terms of the boost parameter that enters in the
I duality chain that relates the wrapped brane geometries to the Baryonic Branch [16,25,26].
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5.2.2 A useful gauge transformation

Let us comment on a small subtlety that will be important in what follows. The 
above rotation argument makes it quite clear that by sending £ —>• 0 , the geom­
etry becomes that of the wrapped D5 branes. On the other hand taking £ —> J  
accompanied with A — 0, the geometry becomes that given by Klebanov and 
Strassler i.e. the Z 2  point of the Baryonic branch. Taking this limit is slightly 
delicate. One finds that sin £ —> 1 and cos £ —y jhxs  where h^s is the Klebanov- 
Strassler warp factor. Expanding the functions (a, b, <I>, g, h, k) in the large A 
limit and rescaling Minkowski coordinates jq —>• xz-A- 1  one finds that leading 
term of the metric is independent of A and reproduces the KS geometry. The 
limit applied on the NS two form is less trivial, in fact its expansion in inverse 
powers of A is

B2  = A ^ r L d i P i f a  +  cos 6 d<p) -  Bks + 0 (  A"1) . (5.2.18)
2\/3kPi J  P[

However the form of Pi (the leading contribution of P(p) in this expansion) en­
sures that the pre-factor on the first term in this expression reduces to a constant 
and one recovers the Klebanov-Strassler NS two form modulo a pure gauge term.

In fact it is going to suit our purposes to perform a similar gauge transfor­
mation across the whole Baryonic Branch eq (5.2.6). We do this by defining

# 2  —> Bi + d(Z(c)(aJ 3  + cos6 dq>)), Z  = f  e2k p̂^ +^ p̂ S(p')dp' (5.2.19)2 Jo

In the KS limit this reduces to exactly the gauge transformation required in 
(5.2.18) and it has the effect of removing certain mixing between the angular di­
rections and the radial direction in the NS two-form . 3  This will greatly simplify 
matters upon performing a duality transformation.

5.3 Non-Abelian duality on the Baryonic Branch

In this section, we will present the result for the non-Abelian T-duality when 
applied to one of the SU(2) isometries of the Baryonic Branch background in 
eq (5.2.5)-(5.2.6). We extend the results of [30] in which the NS sector was es­
tablished but full details of the RR sector were not provided . 4  We will perform

3This transformation leaves unchanged the gauge coupling defined through the integral of 
B2 however it is non-vanishing at infinity and so one should exercise appropriate caution.

4The results of [30] lead at first sight to a geometry that has a mixing between angular and 
radial directions. This is however a gauge artifact as will be made clear in appendix F. By mak­
ing the gauge transformation eq (5.2.19) to the seed geometry, as we do here, one removes this
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the transformation described in [30] to the coordinates ( 6 , (p, ip), present in the 
left-invariant forms of SU(2), i =  1,2,3 of eq (5.2.5). We will choose a gauge 
where the new coordinates after the duality will be (v2 , V3 , xp). We present the 
results here and refer the reader to the appendix F for details.

We will start by specifying the vielbeins. The components

ex' = e^h~*dxl , ep = e?+kh*dp (5.3.2)

do not change. The vielbeins in the (6 , <p) directions are also unchanged by the 
duality however we find it useful to introduce a rotation in (ed,eV) such that 
the dual solution has no explicit ip dependence.

= VCeh+^ / 2 cvlf e$ = VCeh^ / 2 cv2f (5.3.3)

where we have introduced left invariant SU(2) forms for the angles {$,</>, t/?}. 
The vielbeins in the directions 1,2,3 and NS 2-form potential can be compactly 
written in terms of the quantities defined as,

_  2 y/2 v3  +  4Z  +  cos a.
H =  '

Z  = - I  [ PSe*+2kd p ', (5-3-4)
2 Jo

]i\ =  ae% cos 0i +  2 eh sin a .

The function Z  was introduced as a gauge transformation to the seed solution

mixing. Alternatively one can perform the following coordinate transformation to the solution 
presented in [30] to obtain the solution presented here:

v{here v \ ere +  V 2 Z ,  (5.3.1)
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already in eq (5.2.19). With these, we have 

e8+<t>/2e =
8 W

V C  4e2k+®C'H(a'Hcoi — V2 W3 ) — V le 2 8̂ +k+^ C 2 (dv2 +  aHco2 ) 

-8\/2v2{v2dv2 + Hdvs) +

\}i\Se8+® (8v2(02 + e2k+̂ C(el8+^Ccv2 — ly/ll-Lcvi))

e =
eg+3<P/2+g

8 W
q>3 / 2  4 .e2gV2(dV3 _  CIV2 CJO2 ) — 4:We2k(dv2 +  aWt0 2 ) (5.3.5)

— \/2Ce2k+2g+® (aHaJi — V2 CV3 ) +

ImSeX+X+^^+^Cu)  1 + 2y/ZHw2)

e =
,k+Q>/2

8 W
x/C 4 Cu2^ +^(u2o;3 — a h i w i )  — y / l C 2 ( d v 3 — V2C10J2)

—8\/l'H{v2dv2 + Wdvs) + e£+0^ii>2£(\/2Ce2s+<I)a;i + 47^^)

We will then have a metric that in terms of these vielbeins reads, ds2t = (e1)2.
In terms of these vielbeins, the NS two-form B2 reads,

B2 =
4i?2

2e~ha(e*v2e91 + / H e 93) -  i / - ^ H e i3 + V iC e ^ + ^ e 23 ) +

S
C

Hek (2e~gJ3 h j  3ae e ) +
eg+k+®-h

C(]t i / 3 - 2 e'1e23) -  (5.3.6)
2v 2 v ’ k \ / l V 2

(2e~h~ ® ^  +  2eh cos cc — ae8 sin oc)e®$ — -̂— (ae8e^  +  Ji\e®2)

The dual dilaton is given by

$  =  <!>—I l n W ,  W =  | (e ^ + 2k+3*C2 + 8 e2 *+4 ’i>| +  8e2k+<!,H 2)  . (5.3.7)
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And the RR sector is given by,

r  _  Nc
Fo - 7 T

-<D

Fi = 4 C ■Nr 2e 2h( l + a 2 -  2ab)'He®‘? +  e $ h kC(a — b )(V 2 e 2%+k+® +

4 -  e#1) -  4v2 ^ e ^ J  -  8 e~2W e n  -  8 e~2 - kv2 en  -  2 e~h- kv2 er° 

SeX~h
\ / 2 C sin a:

Ncb +  a(e2g cos2  oc — Nc) +  eg+h s in 2 oc) ee<? , (5.3.8)

p -g —h-k-Q?
h  = ----- ^ ----- Nc

8  C
C(1 +  a2 -  2ab)e^  A (^< ?S+ k+*-he11 + 4e2S~hen ) 

Cb'erS A (4^ H e n  -  V2e2S+k+*<&) -  8 eSv2{a -  b)em  

ery  A (4 e ^ v 2e ^  — b 'ek ( V 2 e 2z + ® e ^  +  i H e 22))

2 Se~Z~h~k~® 
C2 sin oc : (elg cos2  oc — Nc) +  (Ncb +  e*+** sin 2 a) J  ^Heke® ^  +

Warning on potentially confusing nomenclature: The Nc appearing in the 
above originated as the number of D5 branes wrapping the resolved conifold 
which was then rotated to give the Baryonic Branch and then T-dualised to 
this solution. Prior to T-duality, Nc corresponds to the D5 charge which is also 
commonly denoted by M (which we will also use in section 5.5 when we spe­
cialised to the Klebanov-Tseytlin geometry). We hope the reader will not get 
overly confused by this point.

5.3.1 UV asymptotic behaviour

Using the semi-analytic UV expansions that can be found, for example, in [28] it 
is possible to calculate the UV behaviour of the dual metric. The dual vielbeins 
at leading order in the UV are given by

1 2  / xi2c+e_2p/3 (2 4 P - 3 ) 1 / 4  3 23/431/4 ,e ’ — ( —) ----~,A -----  \— ^ 1 2 / £ = ---- ==--------- 7 7 7 7 ^ 3 . (5.3.9)
V '  23 ^y /W c( l - 2 p )  ' y/N^(Sp — 1) 1 / 4

Thus the dual 3-manifold shrinks as one flows towards the UV, in line with 
our expectations from abelian T-duality, where big circles are mapped to small 
circles.

One may worry that this vanishing manifold is a signal of a singularity in 
the UV, however, an explicit check shows that the curvature invariants: Ricci
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scalar, R ^yR ^  and R^va k ^ vAk are finite. In other words, both the gs and the 
oc' expansions are under control and the background is trustable in the far UV. 
Notice that there is a one-cycle, labelled by the coordinate ip in co3, that shrinks 
to zero size in the large-p regime. This implies that strings wrapping this cycle 
will become light and will enter the spectrum of the dual QFT at high energies.

The dual dilaton is defined as e2̂  = ^  where

W  = 3c+NcJ l 2 p - ^ e sP/ 3  (5.3.10)

asymptotically, and so the dilaton is UV vanishing.

5.3.2 IR asymptotic behaviour

Let us now study the small radius regime of the metric, corresponding with the 
low energy regime of the dual QFT. Things are a bit less-simple. At leading 
order, terms in the metric depend explicitly of the original IR-parameters of 
the Baryonic Branch solution, but they also depend on the values of the v2, v3 

coordinates. The dual vielbeins in the IR tend to

32^° 1 2 2 (  l  \
e1 = ----------- g ----- —  \ v 3 (dv2 +  v2 cv3) +  v2 (v2 cv2 '  ^ ( ^ 1  ~  <*>2 ) J

e2 = ——-------------------------------------- — \Zlv2 J:e®0w3+

16h\ (v3 dv2 — v2 dv3 +  (V2 +  0 3 ) ^ 2 ) ̂  (5.3.11)

2e_^o/2. [h\ , *
e* = -------------- —  ^y /ZF 2eZ0 o( ^ = d v 3 -  v2 co2) -  \Qi\v2 T (v 2 (jo3 -  ^3 ^ 1 )+

\ / 2 \ 2 %}\\v3 (v2 dv2 +  v3 dv3)^

where we have defined

T 2  =  4 ( 2 ) 3 / 2 ( / Z j / 2  -  Q =  e2^ T 2 + \l%h\{v\ +  v\). (5.3.12)

for convenience. The function W  tends to

( V v * "  +  128(o£ +  4 ) )  (5-3.13)

Here again, it happens that the dilaton is bounded and the Ricci scalar and
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Ricci and Riemann tensors squared are finite. This was expected, as we are per­
forming a duality transformation on a space that in the small-p regime was of 
finite size (the S3  in the deformed conifold). Dualities typically invert 'sizes' (or 
couplings). This example is not an exception. One may start with a background 
solution where Supergravity is a good approximation and obtain that in the far 
IR the new generated solution is still a supergravity background we can trust.

A point that we want to emphasize again is that in the far IR, the param­
eter that was labelling the different 'positions' on the Baryonic branch (that is 
the different baryonic VEVs) still appears in the small-radius expansion above. 
There is a still a one-parameter family of solutions. Indeed, notice the depen­
dence on the integration constants and h\ as defined in [2 2 ], both related 
to the number parametrising the Baryonic branch.

5.4 S U ( 2) Structure of the background

We will now study the associated G-structure with this solution. Again, we will 
postpone details to the appendix F. The geometry supports two pure spinors 
given by

<!>_ =  l̂ - e td~ (v +  iw) A (k±e~li +  ikuco) . 
8

(5.4.1)

In the case at hand we find

e*A -  —

C
e+ =  Q, 0 _ = £ ( r )

*« v T + T ?  k± V 1  + (5A2)

z =  w — iv  = 7—  ....... {VAe3 +  £ 2  sin ol$ +  i(y/Kep +  £ 2  sin ae^))
V cos2  oc +  £.£

j  = eP3 +  e? 6 +  e21 — v A w

+  i(?) — £2 s in a (^  +  ie3)) A (e2 +  ie1).co -  -

yj  cos2  oc +  £.£

Here the frames e are obtained by a rotation, given by eq (E.19), of those in 
eq (5.3.5) and the parameters A, £; which enter into this rotation are specified 
by eq (F.15).

There are various immediate things to observe. If we move to the large ra­
dius region of the geometry, the functions sin a(p) b(p) —> 0. The
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formulas simplify and we obtain, among other things that —>■ 0. This implies
that, as happens in chapter 3, the two pure spinors are 'perpendicular' in the 
large radius regime of the solution and the SU (2)-structure is static. Similar be­
haviour was found in [42], where a dynamical SU(3)- structure in 7-d becomes 
orthogonal in the UV. This changes as we evolve to the small radius regime 
of the background, the SU(2)-structure is said to become dynamical. In section 
5.5, we will discuss the physical effects that are associated with a change in the 
SU(2)-structure, from static in the far UV to dynamic in the IR.

5.5 Correspondence with Field Theory

In this section, we will connect our previous geometrical studies with aspects 
of the quantum field theory that our background is dual to. As it was antici­
pated in the paper [30], we believe that the field theory dual to our massive IIA 
background should be a non-conformal version of the Sicilian gauge theories 
presented in [89, 57] or the linear quiver field theories studied in [90]. There 
are certain things that can be inferred immediately, like for example the con­
fining character of the QFT. This follows from the fact that the calculation of 
the Wilson loop will proceed exactly as in the case of the Baryonic Branch field 
theory. Indeed, the R1 , 3  x p part of the geometry is unchanged, hence, the Wil­
son loop will give the same result as before the non-Abelian T-duality. Never­
theless, many calculations done with the Klebanov-Strassler/Baryonic Branch 
background involved the 'internal' five dimensional space. The purpose of this 
section will be to learn how some of those calculations for field theory observ­
ables change (or not) for the new geometries in massive IIA.

The idea that will guide us is that for a given correlation function or related 
QFT observable, that in the original background was calculated in a way that 
is 'independent' of the SU(2 ) isometry used to perform the non-Abelian du­
ality, will give the same result in the transformed background. We can think 
about those operators or correlators as 'uncharged' under the SU(2) symme­
try in question. Ideas of this sort already worked in other solution generating 
techniques, like T-s-T dualities. Similar ideas also appeared in large Nc (planar) 
equivalences between parent-daughter theories. The physics of the common or 
'uncharged' sector goes through to the new field theory. The rest of the chapter 
deals with observables that are, in principle 'charged' under the SU(2) symme­
try.

In the paper [30] it was shown that the cascade of Seiberg dualities-defined 
geometrically as a large gauge transformation of the NS two form and its ef­
fect on Page charges, persisted in the massive IIA background. In chapter 3, 
we started to geometrise some of the field theory effects corresponding to the 
Klebanov-Witten non-Abelian T-dual. In the rest of this section, we will focus
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our attention on the relation between the dynamical character of the S u b ­
structure and the field theoretical phenomena of confinement and discrete R- 
symmetry breaking. We will show how the presence of domain Walls with an 
induced Chern-Simons dynamics on their world-volume follows as a conse­
quence of the confinement and the dynamical character of the SU(2)-structure. 
Then, we will make clear that the symmetry associated with changes in the in­
direction is related with an anomalous U(1)r R-symmetry in the field theory. 
We will define an instantonic object using an euclidean DO brane; this will lead 
us to a possible definition for a ©-angle and gauge coupling. We will find that 
this coupling has a non-conventional running in the far UV. We will then move 
into studying different aspects of the 'baryonic branch', also present in our new 
backgrounds. We will find that a given fluctuation of the RR background fields 
can be put in correspondence with a global continuous symmetry that the IR 
dynamics breaks spontaneously. We will find the associated Goldstone boson 
and an expression for the conformal dimension of such a baryonic operator.

5.5.1 Dynamic SU(2): A pathway to confinement

In this section, we will make more concrete the relation between the QFT phe­
nomena of confinement and the dynamical character of the SU(2)-structure. 
The first observation is that the 'parallel projection' between both spinors, rep­
resented by k|| in eq (F.3), is proportional to the quantity sin a. This quantity 
is related to the background functions as can be read from appendix B of the 
paper [17],

4
sin oc(p) =  (5.5.1)

y  a2 +  2fl2 (4e2 /l_2 S) +  (4e2̂ -2^ + 1) 2

This is compatible with the expression in eq (5.2.7) after following the algebra 
in appendix B of the paper [17].

The presence of the functions a(p), b(p) in the Baryonic Branch solution-see 
eqs (5.2.5)-(5.2.8)—are responsible for the de-singularisation of the space (the 
appearance of a finite size S3) and the IR minimization of the dilaton and warp 
factor. These have as a consequence the linear law, E q q  =  <j L q q  for large 
distance separations between the quark-antiquark pair. In other words, the 
functions a(p),b(p) and their effects on the warp factor and dilaton 'produce' 
confinement. In the same vein, at the level of the metric, the presence of a(p) 
implies the breaking of the symmetry xp —>■ xp +  e into xp —> xp +  In .  This is the 
remaining Z 2  symmetry after the spontaneous discrete R-symmetry breaking. 
So, we see clearly that confinement and spontaneous R-symmetry breaking go 
hand-in-hand with the function a(p). Hence, these phenomena in the dual QFT 
are closely related to the presence of kp  which as we made clear is related to
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the dynamical character of the S If (2)-structure. In the papers [91,92], the point 
was made that the functions a(p),b(p) were directly related with the gaugino 
condensate. This suggests that in our massive IIA picture, there exists a relation 
of the form < AA > rS° ^11 *

5.5.2 A comment on domain walls

It was proposed in [30], that domain wall objects were realised in the Non- 
Abelian T-dual of the geometries we are considering, as D2 branes that extend 
on R1,2. Indeed, the induced metric, action and tension of a (2 + 1 ) -dimensional 
object are,

We have used that a new WZ-like term appears in Massive IIA as explained in 
[93]. The Chern-Simons term is quantised, being proportional to TqiNc-5

In the type-IIB Baryonic Branch solution(s), domain walls were realised by 
D5-branes extended on R 1,2 and the three-sphere S3  =  [6 , q>, tp]. Once a gauge 
field is turned on, a Chern-Simons terms was induced, proportional to Tp5  fg 3 F3 . 
Naively, we can think that both objects are 'connected' by the non-abelian T- 
duality, under which the directions on S3 disappear and we are left with a D2 
brane as described above.

Supersymmetry gives support to this. Indeed, around eq.(6.19) of the paper 
[2 0 ], we are presented with the calibration form for a domain-wall like object, 
which is given by the real part of the pure spinor Y+. Using that \a\2 =  eA = 
e*/2 f r M ,  we obtain that the BI action equals the calibration form. Notice also 
that this selects the component of the pure spinor.

As it was shown in the paper [30], once the R-symmetry is broken in the 
type-IIB set-up, the non-abelian T-duality maps these backgrounds to their part­
ners in Massive IIA. In a minimally SUSY quantum field theory, the presence of

5Note that it is the presence of an Fo that allows D2 branes to be interpreted in this way, by 
way of comparison in [94] the relevant branes with Chern-Simons dynamics are D4 branes with 
a bulk F2 turned on.

dsfnd = e®h 1 / 2 (—dt2 +  dx2 +  dx^),

Sbi = —Tq2 J  d3xe®/2ti~3̂ , Tpw =  TD2̂ ^2h~3̂ \p=o
If we also turn on a gauge field in the world-volume of this D2 brane, a Chern- 
Simons-Maxwell action will be induced, at leading order in a.' on this D-brane,

Sbiwz =  -  Td2 J  <P+1 xe*/ 2 h - 3/*yfl  -  a 'F ^F ^

+  Td2  J d 2+1xFoAi A i~>. 
(5.5.2)
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domain walls is tied up with confinement and the spontaneous breaking of the
^ 2NC-symmetry. As we emphasized, these phenomena are related to the 'dy­
namical' character of the S 11(2)-structure, hence to the presence of the part 
of the pure spinor.

In the backgrounds presented in [30] and those of this chapter it is somewhat 
natural to expect that the coordinate xp is singled out as being related to an 
R-symmetry of any putative field theory dual. That this is true is by no means 
obvious, after all in the technical process of dualisation the fact that we retained 
the coordinate xp was purely a result of a judicious gauge choice. Here we pro­
vide evidence that this is indeed the correct identification and furthermore that 
this U( 1) is afflicted with an anomaly, breaking it down to a discrete subgroup.

A robust understanding of how dy plays the role of the R-symmetry in 
the holographic dual was given in [95] with several important details of the 
supergravity solution clarified in [96]. The essential point of [95] is to intro­
duce a bulk 5d gauge field that gauges this li(l)^, by making the replacement 
dxp —y x  — dxp — 2A in the metric. This must be supplemented with an ap­
propriate ansatz for the fluxes. In the case of the Klebanov-Witten background 
one finds that the resultant gauge field is massless and is the dual fluctuation 
to the global U(1)r of the gauge theory. However, in the non-conformal cases, 
the correct ansatz for the fluxes actually yields a massive gauge field (the mass 
here comes from a Stiickelberg rather than Brout-Englert-Higgs mechanism).

Let us begin our discussion with the non-abelian T-dual of the Klebanov- 
Witten backgound. The NS sector of the geometry is given by

where cr§ =  dxp +  cos 6 d(p. This metric is supported by RR two and four form 
fluxes. The 11(1) acting as dy can be gauged by making the replacement # 3  —>> 
X = cr$ — 2A in the NS sector above. The potentials corresponding to the correct

5.5.3 The fate of the U(1)r anomaly

(1 +  27v2)dv\ +  54:V2Vsdv2dv3 +  -  ^A — 54#

lSy/2 . (A -  54171)
—-— 0 2 0 3 CT1 A dv2 -h  -----7= — — o'* A dv3  ,

A J v2A *

81 A" 1 -  81 ( 2  +  5 4 ^ 2  +  3 6 ^ )  _ 1  ,
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modification of the RR forms that support this fluctuation are given by

Cl =  (cos 8dtp +  A) ,
I 7  2  (5-5.3)

C3 =  -y jV sX  A (W2 -  dA) +  -z>3 *5 d A ,

where we introduce the volume form on the S2, d>2  =  sin 0 d6 d(p and * 5  is 
the Hodge dual in the AdSs directions. This solves the linearised equations 
of motions, linearised Einstein equations and Bianchi identities provided that 
the gauge field obeys the equation d *5 dA . This, together with the fact that 
the Killing spinors of the geometry are charged under U(l)xp identifies this as 
the dual to the R-symmetry. Upon substitution of this ansatz into the action one 
finds all the gauge field dependance gives a field strength squared contribution,

SS = (5.5.4)

for some function f ( v 2 ,^ 3 ) of the internal coordinates that will be integrated 
over in a reduction to a five-dimensional theory.

Now we turn to the non-conformal geometry obtained by transformation 
of the Klebanov-Tseytlin geometry (since we are only interested in the UV be­
haviour we will not need the full Klebanov-Strassler or Baryonic branch). The 
NS sector, with the U( 1)^ gauged, is given by

7 1 * ? 7 — 1 7 ? r2/ẑ  ~ o
ds = h*dr + h  2 ds^ 1/3 -I— — ds$2 H-----a ~ ^

6
+  A

(r4h +  27v2)dv\ -I- 5 4 v2 V3 dv2 dv3 +  7  ( — — 7  — 5 4 ^  ) dv\
4  \ r 2hi )

18^2 ( a  -  54r2/z2i>2)  r5hf ^
B2 = —£ - v 2 V3X A dv2 +  A -----  Lx  A d v 3  +

(5.5.5)

e2* = 81A-1 =  81 (lr%  +  54*% +  36V|) 1

Here h(r) is the usual Klebanov-Tseytlin warp factor and V3 = V3 +  

Without the gauging this is a solution of massive IIA with Romans mass pro­
portional to M. By examining how the non-abelian T-duality transformation 
acts on the ansatz given by Krasnitz in [96], we can determine a suitable ansatz
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for the fluxes:

M M  r- r-
Ci =  -  — v scos6 d(p +  — ipdv3  — 2y2K\ — V 2Co (Vsdvs +  ^2 ^ 2 )

M \/2
C3  =  2 V3 K3 ----- - — ipa>2 A (0 2 ^ 2  +  ^3 ^ 3 ) (5.5.6)

2 ^ / 2
+  /( r )C 0 d> 2 A (i?2 ^ 2  +  V3 rfU3 ) -  2 ^3 ^  A dKq -  4 y3 d>2 A fCi +  0 3

The remaining term in the three-form potential is given implicitly by6

d© 3  =  4=M /i» * 5  | C0dr +  |rW  ) +  td r  A K3  . (5.5.7)
v 2  V 3 /  v 2

Here W is a gauge invariant 1-form that combines the gauge field A  with a 
Stiickelberg scalar scalar W = A — d \  though for practical purposes we follow 
[96] and chose a gauge in which W = A. This is a solution to the linearised 
flux equations and Bianchi identities provided the fields introduced obey the 
constraints on the ansatz required in [96]:

3

Ks =  y *5 dK\ ,
rh*

dK3 =  - | i -  * 5  (Ki +  / ( r )  W) , (5.5.8)

°  =  ( r h ^ n )  +  +  \ d ^ h ~ 1C o )  -  + / ( » ■ ) W r)  ,

_ 1 _ /  5- _ \ r5 /z__ _ M 2  3M2

0  =  54 V  drC°) + "54" “  2 h Wr “  W Co •

Here * 5  is the Hodge dual with respect to the metric ds\ = hhdr1 +  /z_ zds213. 
In [96] it was shown how these eqs (5.5.8) can be diagonalised by defining

w l =  w “ S K l ' w 2  = w + -g*K l - (5-5-9)

The mode W1 corresponds to a massive gauge field whose mass as a result of 
the spontaneous (anomalous) breaking of R-symmetry. The mass of this mode 
is given by [96]:

m 2  =  _ J _  (5 .5 .10)
a'(37i)5 (AN) 1

The interpretation is identical here and we conclude therefore that the U(1)r 
symmetry is anomalously broken.

6The exterior derivative of right hand side of this expression vanishes on the eqs (5.5.8).
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Dependence on ip in the potentials and DO brane instantons

To understand this breaking as an anomaly it is informative to look at the forms 
of the RR potentials. For the non-Abelian T-dual of the Klebanov-Witten we 
have following potentials

^  NzrCi =  —= cos 6 d(p,
(5.5.11)

N tcv̂
C3  =   — sin OdO A d<p A dip .

For the dual of the Klebanov-Tseytlin (which has Romans mass proportional to 
M) we have

Ci =  — i>3cos Odcp -  — ipdv3 ,

\/2M  (55-12)
C3  = ------— ^ 2  +  sin OdO A dtp A dtp .

Note how the dependence on ip in Ci is quite different in the potentials in the 
conformal and non-conformal cases.

Let us now consider DO branes. These DO branes will move in the v3 direc­
tion, leaving all other coordinates fixed, in particular we will choose V2 = 0. We 
can then calculate using eq (5.5.5) the induced metric for this DO brane, relevant 
gauge potential and its BIWZ action, that will read

9  7  9 9  M
dsind =  gv3v3dvi =  2r2 hU2dvi, Cj =  - y t pdv3,

Sb iw z  =  - T o o  J  d v 3 e ~ * ^ g V3V3 +  (5.5.13)

Too j  Ci =  Tm  j  d v 3 ] j r̂  +  ^ f 2 - T D0^  J  dv3.

We use now that Tnn =  ■ Also, we call \[ol,Lv̂  =  f dv3 , the dimensionlessgsVK
length of the u3  direction.

We will equate the BIWZ action of this euclidean DO brane with the gauge 
coupling and the 0  angle imposing that S b i w z  =  other words, we
consider this DO brane to be an instanton in the dual gauge theory.

Analysing the WZ term, we have that (like above, we choose gs = 1),

Swz =  y i / ^ 3 =  ©• (5.5.14)

Using that the theta angle should be periodic, we can impose that the allowed
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changes in the angle ip get selected to be

which implies that

M—  {ip +  Aip)LV3 = ®  + 2kn  (5.5.15)

4/:7r
=  M L ^  ' (5-5 1 6 )

So, we see that there is a breaking of the global continuous symmetry into a 
discrete one. The residual discrete symmetry is determined by the domain of 
the coordinate 1 7 3 . In the case in which we would like to impose this discrete symmetry 
to he the same as before the non-Abelian duality we should impose that LV3 — 2. In­
deed, one of the major challenges with understanding non-abelian T-duality is 
to identify the periodicities of the coordinates of the T-dual geometry. Here we 
see a direct link between a field theory property (the anomaly) and the global 
properties of the geometry.

Let us look at the BI term. We have that the gauge coupling associated to 
this is

8- f  =  Tdo /  * *  [ M *  +  ^ ( , 3  +  ^ ^ ) 2 ] V 2  (5.5.17)

We can perform the integral explicitly, but it is perhaps more illuminating to 
look at the large radius limit of the expression above. After all, we are doing 
this calculation in the non-Abelian dual of the Klebanov-Tseytlin solution, we 
should only trust the result in the far UV. We have then, considering the leading 
term in the large-r expansion,

i  ~  (logr ) 3 / 2  (5.5.18)
o

this reproduces a result obtained by other means in [30].

5.5.4 The fate of 17(1 )g

The Klebanov-Witten SU(N) x SU(N) conformal field theory coming from D3 
branes at the tip of the conifold has a l i ( l )  baryonic number symmetry acting 
as Aj  —> elDCAi, Bj —» e~l0cBj. In the gravity dual this number current gives rise 
to a massless AdS 5  gauge field

SC4 = Wo, A A , (5.5.19)
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where 0)3 is the usual closed three form on T1,1. The non-abelian T-dual of the 
AdSs x Tlfl geometry was obtained in [35]. In the T-dual geometry, this U(1)b 
mode translates into a perturbation, which solves the linearised supergravity 
equations of motion, given by

SCi =  I A ,

1  \ / 2  ( 5 ' 5 ' 2 0 )
6C3 =  W2 A A  +  -udu  A T  +  ——udv3 A .

9 6

The final two terms in SC3 come from the a contribution from 5C& under the 
T-duality transformation7. Although the two-form W2  has a simple form

W2 =  ^ d a -3 +  ^  ^  A (2v3 dv2 -  3v2 dv3 ) (5.5.21)

it can not easily be written in terms of the invariant tensors that define the 
SU(2) structure of the geometry.

The existence of this mode is suggestive that the field theory duals corre­
sponding to the conformal geometries constructed in [35] have a global 11(1) 
symmetry in addition to the preserved U(1)r. In fact, the geometry T-dual to 
the Klebanov Witten is closely related to those proposed in [57] as the grav­
ity duals to M  = 1 SOFT'S formed by wrapping M5 branes on Riemann sur­
faces (which in this case is genus zero giving rise to many subtleties). These 
SCFT's do indeed have U(1)r x U(1)f Abelian global symmetries which are 
seen geometrically as isometries of the corresponding eleven-dimensional su­
pergravity solution. Upon reduction to ten-dimension one of these U(l)'s gets 
de-geometrised corresponding to the above gauge field SC\ — A.

In this paper our main focus has been the cascading field theory where at the 
last step of the cascade when the gauge group is SU(M) x SU(2M) the baryons 
acquire expectation values,

B =  %A2M, B =  l- K 2M . (5.5.22)

On this Baryonic Branch the U(1)b symmetry is spontaneously broken. To see 
this from the gravity perspective it is sufficient to work with the Klebanov- 
Strassler geometry corresponding to the field theory at the Z 2  symmetric point 
of the Baryonic branch. As shown in [83], there is a massless glue ball corre­
sponding to a Goldstone mode associated with changing the phase of £ which

7For the Ad.S$ x T1,1 we use ds2AdS =  du1 +  e2u(rjijdxldxj).
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is given by8

SH = 0 ,

SFs = f i  * 4  da — d(f2 (r)da A g5) ,

(  ei5Fs = f \  I * 4 da — A d r  A g 5 ) A B2  .

(5.5.23)

The linearised supergravity equations are solved when the pseudo-scalar is a 
harmonic function in R 3 / 1  and the function / 2 ( t)  obeys a second order differen­
tial equation admitting a normalisable solution.

The non-abelian T-dual geometries considered also admits a similar mode, 
which can be obtained simply by performing a T-dualisation of the ansatz for 
the scalar modes in the seed IIB solutions. The T-dual of the Klebanov-Strassler 
geometry was obtained explicitly in [30]. Performing a dualisation of the ansatz 
eq (5.5.23) gives rise to a perturbation SF2 and 6 F4 . This perturbation solves the 
supergravity equations of motion when fz  obeys the same differential equation 
as for the ansatz eq (5.5.23). The expressions for F2 and F4  are not particularly 
enlightening though for completeness let us provide a few details. Here we 
display the results in the UV regime where the geometry is given by eq (5.5.5). 
The corresponding deformations to the potentials are given by

<5Ci =  (2v3f 2 (r) + f 3 (r))da

SC3 = ★ 4  da— (5.5.24)
m - M 4 + { v 3 ~ ^ )2)

A < 73 A d(v\ +  u§) — ~ ^d a  A cr3  A dv3  +  da A sin OdO A d(p — ~ ^ f ^ j

The extra functions introduced above are completely determined by f \  and / 2  

according to

f ' =  0 , 2 r4 / 2  =  - 6 r3 / 2  +  16r2/ 2 +  27M2/ i  log r /r 0 ,

f 3 = \  ( -3 V ^ r /ifc (r )  log r/ro  -  2T (r ) /j )  , f t  =  ^ rf2 , (5.5.25)

& = m  = l&Mrfih(r)T(r)logr/ro — 3V2T(r)2f ^ j  ,

where T(r) = log r/ro  and h(r) = (3M2  +  8 Nzr +  12M2 log r/ro ).

The existence of this mode suggests a spontaneously broken global U (1) in

8Here and elsewhere w e use the standard notation for the deformed conifold and Klebanov 
Strassler geometry which can be found e.g. in appendix of [83]. For the KS we stick with the 
notation r  as the radial coordinate but will use r elsewhere.

99



the field theories dual to the geometries obtained in section 5.3. In the con- 
formal case, the unbroken U( 1) becomes geometrised upon lifting to M-theory 
whereas these non-conformal backgrounds are solutions of massive IIA and so 
can not be lifted. This further underlines the expectation that a U(l)  is broken.

In the same multiplet as the pseudo-scalar Goldstone is a scalar perturba­
tion corresponding to changing the magnitude of £. In the same vein as above, 
one could deduce the fate of this scalar perturbation under the T-duality trans­
formation; it will give a similar, albeit complicated, perturbation in the dual 
IIA background. Since the full Baryonic Branch geometry found in [18] can be 
thought of as exponentiating such transformations to give arbitrary values of 
the Baryonic VEV, implicitly in the geometries presented in section 5.3 we have 
already done just that.

5.5.5 The fate of the baryon condensate

In Klebanov-Witten theory the closest analogy to a baryon vertex - the object 
to which N external quarks can attach [97] - would be a D5 brane wrapping 
the T1 ' 1 space with world volume coordinates {xo, 6 i, (pi, 6 2 , (p2 , ty} [98]. The 
primary reason for this identification follows the argument made in [97]; since 
we have

the WZ term induces a charge to the world volume U( 1) gauge field A  via the 
coupling

This introduces N units of charge which must be canceled by some other source 
to give zero net charge in a closed universe. This cancelation is achieved by N 
elementary strings stretching from the boundary to the brane whose end points 
are external quarks. A perhaps naive approach would be to suggest in the IIA 
geometry dual to the Klebanov-Witten theory a similar role could be played by 
a D2 brane wrapping the S2  with world volume coordinates { x q ,  6 , (p}. Indeed, 
since in the case of T-dual to Klebanov-Witten we have C\ cx cos 6 d(p the WZ 
coupling T  A C\ produces a charge contribution for the gauge field that could 
be cancelled with external quarks just as in the Klebanov-Witten scenario. It 
would be of some interest to study the baryon vertex in the massive DA back-

This baryon vertex should however be distinguished from the configuration 
representing the actual baryon condensate - which should be supersymmetric,

(5.5.26)

(5.5.27)

grounds . 9

9 Before duality in the cascading theories this is a D3 brane and it seems quite possible that 
DO branes might play this role of the baryon vertex in the cascading massive IIA geometries. 
We thank O. Aharony and J. Sonnenschein for this suggestion.



gauge invariant and not require Blon spikes. The configuration that describes 
the baryon condensate is a Euclidean D5 brane wrapping the T1 , 1  and the radial 
directions [98]. This D5 has D3 branes dissolved within [99] which are traded 
for a world volume gauge field. Following the logic applied to the baryon ver­
tex one might anticipate that in the IIA geometries presented here, the role of 
the condensate is played by a wrapped Euclidean D2 brane on the S2 x R  with 
a world volume gauge field.

To determine the existence of such a configuration, rather than calculate 
the kappa symmetry projectors, we will harness the power of the G-structure 
and the calibration techniques of [20]. The condition for a supersymmetric Eu­
clidean p brane on a cycle E is essentially the same as that of a Lorentzian p +  4 
brane that is spacetime filling in the Minkowski directions. This condition is 
given by

e“ f i / - d e t ( g |E +  T )d ? v  =  8 A (5.5.28)

where the world volume field strength is J 7  =  B |e +  Inodd A  and the pure 
spinor entering the calibration form is given O =  Y+ for IIB and O =  Y_ for 
IIA.

Before looking at this question in the context of the full Baryonic Branch let 
us address it in the conformal case in which we would still anticipate a super- 
symmetric configuration to exist. In the Klebanov-Witten theory the E5 config­
uration of a brane extended along E =  {r ,6 \,<p\, 0 2 , tyi, with a world volume 
gauge field

1

A  = «C(r) (dip +  cos6 \d(pi +  cos #2 ^ 2 ) / (5.5.29)J
obeys the calibration condition eq (5.5.28) provided that

= (5.5.30)

which of course can be readily integrated.
In the IIA non-Abelian T-dual of the Klebanov-Witten geometry we find an 

E2 configuration extended along E =  {r ,6 ,(p} at the point V2 = 0 but with a 
non-trivial embedding v$ =  f (r).  We search for a supersymmetric configura­
tion solving the calibration condition eq (5.5.28) when supported by a gauge 
field

1

A  = -j=ot(r) cos6 d(p . (5.5.31)

From the calibration condition one finds firstly that the embedding f ( r ) and 
the gauge field should differ only by a constant Co- The gauge field should then 
obey an equation

1  — 18cqa: — 18a2



which can also be readily solved and one notices that when cq =  0 , this equation 
has the same form as eq (5.5.30) governing the configuration in IIB.

Let us move on to the KT geometry working in the exact logarithmic solu­
tion10. First we recapitulate the calculation for the baryon condensate in the 
IIB background. Using the calibration technique one readily finds the E5 con­
figuration is the same but with the gauge field equation of motion eq (5.5.30) 
modified to be

_ 2,Ah(r) + T ( r ) 2 -  8 £ M 2  «  <r
f  “   t o f t )   '  (5'533)

where T(r) = - ^ M logr/ro  and h(r) =  ^  (3M2  +  8 N 7r-|- 12M2 logr/ro ). 
This equation may be integrated to yield

£(r) =  ( c +  3r2  — 4r2  log(r) -I- 8 r2 log(r)2  ̂5  , (5.5.34)

where c is a constant of integration which we now set to zero since its contribu­
tions are in any case sub-leading. Inserting this into to the DBI action one finds, 
changing variables to t = log r,

Se 5  =  T5V0 UT1'1) f ‘UV dt———̂=(l + 2t2 + 8f3)(3 -  4f +  8 f2)j . (5.5.35)
J 64\/2

In [98], e~ SE5 was identified with the bulk field dual to the baryonic condensate. 
Using the standard asymptotic expansion the field theory scaling dimension 
can be extracted (at least in the large t regime) as

A(r) =  J ^ r  =  l I ? M 3 ( l o S r ) 2  +  0 { l° S r ) ' (5'536)

reproducing exactly the result of [98] notable for the scaling dimension depen­
dence on the energy scale of the baryons as anticipated from the field theory.

In the non-abelian T-dual the situation is already rather involved. We search 
for an E2 configuration extended along E =  {r, 6 , (j)} at the point V2 =  0 and 
now with U3  =  x ( r) and an ansatz for the gauge field

A  =  4=C(r) cos 0d<p. (5.5.37)
v 2

We take the square of the calibration equation eq (5.5.28) and first consider

10This is considerably simpler than the deformed conifold of the KS and reproduces all the 
main features of the calculation in [98] with the conformal dimension of the condensate agree­
ing to leading order. Using the calibration technique we checked that the resultant gauge field 
equation of motion agrees exactly with that of [98].
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terms proportional to cos2  6 . From these one finds a first equation relating the 
gauge field and the embedding in v$\

Cf( r ) = x f(r). (5.5.38)

We let Co be the additive constant between £ and X- Then from the remaining 
terms in eq (5.5.28) one finds a differential equation for the gauge field

r f  W = (2rihW “ 6c°T + T2~ 36c°£ “ 36̂ )  ' (5'539)

Changing variable to t = log r one can solve this equation on the exact logarith­
mic solution:

—3/2
f(r)  =  -  Q  ±  ——  [64rc + r3 ( l 6 ck +  3M(8\/2co +  9M -

2  8  L v u u (5.5.40)
4(4\/2co 4- 3M) logr 4- 24M logr2 ) ) ] 1

here c is an integration constant giving sub-leading contributions that we hence 
ignore.

Using eq (5.5.39) we find that the DBI action is given by 

s ”  - * / >Z ( ^ +  1 » ; )  ■ (5 .5 .41 )

If we expand out asymptotically we find that

ftlJV 27M3t2 9M.2t (  r r  r r  bJ \  s r \ / L 0 \  /P- r- * r\\
Sdbi ~  K J ~S \/2— —̂ 32~ \  ~  0 +  0 ( f  ) ,  (5.5.42)

which suggests an operator with a scaling dimension

27k m 3 ,. x 2  / r r ^A =  — = -(lo g r ) 2  (5.5.43)

where k  —  T d 2 V o 1 ( S 2 )  =  g .  It would be interesting to pursue this line of rea­
soning further by extracting the value of the condensate across the Baryonic
branch. This is technically rather involved and we do not pursue this here.
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5.6 Conclusions and Future Directions

In this chapter we have examined a new family of solutions of massive IIA 
supergravity. These new backgrounds were obtained by performing a non- 
abelian T-duality on the geometry that describes the non-perturbative physics 
of the baryonic-branch of the Klebanov-Strassler field theory. We have explored 
the transition from SU(3) structure, characterising the 'seed' backgrounds to 
the dynamical SU (2)-structure that describes the resulting massive HA solu­
tions. We made clear-at least for the type of backgrounds studied here- that 
the dynamical character of the S lI(2)-structure is directly related to the phe­
nomena of confinement and symmetry breaking. We believe that all these new 
features have not been discussed in previous literature, in a context as clear and 
unifying as the one presented here.

The new backgrounds discussed in this chapter display a host of interesting 
non-perturbative phenomena that 'define' the dual field theory. Some of these 
are,

• The non-conformality of the geometry is enabled by a non-zero Romans' 
mass.

• Whilst the UV geometries proposed in [30] are characterized by static 
SU(2) structure [41] the full IR complete geometry of this chapter has 
dynamic SU(2) structure.

• The transition to dynamic SU(2) structure gives a geometric realization of 
confinement and permits supersymmetric D2 branes that act as domain 
walls in the IR. This realises geometrically the relation between confine­
ment, the spontaneous breaking of a discrete R-symmetry and the pres­
ence of domain walls.

• The U(1)r symmetry is realized by the vector dy and the corresponding 
fluctuation, which is a massless gauge field in the conformal case, acquires 
a mass indicating an anomalous breaking.

• Euclidean 'instantonic' branes reproduce this anomaly of the R-symmetry 
and at the same time suggest a non-conventional running for a suitably 
defined gauge coupling.

• A further U (l) (baryonic) symmetry is broken. In the conformal case of 
[30] this symmetry is unbroken and is realized geometrically by the M- 
theory circle. In our backgrounds, once conformality is broken by the 
addition of fractional branes, the symmetry is no longer geometrical as 
we are now in a massive HA context. The U(1)b symmetry is sponta­
neously broken and we identified a corresponding massless glueball (the 
associated Goldstone boson).
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• We give evidence that this U(1)b may be thought of as baryonic and that 
a baryonic condensate is given by a Euclidean D2 brane wrapping a two- 
cycle in the geometry.

Although we do not yet have a complete understanding of the field theory dual 
to this new geometry, the results of this chapter together with those in [30] 
suggest that it may be a non-conformal and cascading version of the Sicilian 
theories of [89,57] or the linear quivers of [90].

We would like to close this chapter on a forward looking note. We suggest 
that the features mentioned above may be prototypical of a wider class of holo­
graphic duals. The theories in [89, 57] and also the HA linear quivers of [90], 
present a wide new class of interesting examples of Af =  1 SCFTs. We an­
ticipate that by a modification of these theories (this chapter suggests that the 
modification will involve adding D8  branes in IIA) one can obtain a variety of 
non-conformal gauge theories. Some of the non-perturbative features of these 
new field theories should be the ones we are describing in this chapter.

Aside from this and on a more geometrical note, we believe the backgrounds 
presented in this chapter may serve as a prototype for new dynamical SU(2) 
solutions of massive IIA supergravity that will be the corresponding string du­
als to the new field theories described above. This is, of course, in the same 
vein as the route from the conformal geometry of Klebanov-Witten to the non- 
conformal geometry of Klebanov-Strassler.
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Chapter 6 

Generating new type-IIB solutions

6.1 Introduction

This chapter is based on work performed in collaboration with Caceres and 
Nunez [44]. It broadens the scope of the previous chapters by generating, via 
non-abelian T-duality, a new type-IIB solution dual to a 4-d QFT with minimal 
supersymmetry.

To begin we will consider the case in which D6  branes wrap a calibrated 
three-cycle inside the deformed conifold. Extensions of this case to different 
numbers of dimensions, a different number of preserved supercharges, etc; 
have been studied. In particular, if these configurations in type-IIA string the­
ory are lifted to eleven dimensions, the configurations become purely geomet­
ric, leading to the associated seven-dimensional spaces possessing G2  holon- 
omy. This line of research [100, 101, 102, 103, 104, 105, 106], was quite fertile, 
especially on the mathematical side where it lead to the construction of new 
metrics with G2  holonomy. However, it did not give as many physically inter­
esting result as its type-IIB counterparts [107,12,11]. In this work we present a 
family of those 'old' G2  metrics, reduce the system to type-IIA and study some 
of its physical implications, making clear the reasons for which they failed to 
capture some of the phenomena their type-IIB counterpart were able to calcu­
late.

It was in parallel with these 'physically motivated' discoveries that the pow­
erful line of research involving G-structures began to grow [74, 6 6 ]. In particu­
lar, in these four dimensional and SUSY preserving examples, it is possible to 
encode all the information about the background (BPS equations, metric, fluxes, 
calibrated sub-manifolds, etc), in a set of forms defined on the space 'external' 
to the Minkowski coordinates. Furthermore, the SU(2) and SU(3) structures 
typical of these backgrounds, their associated pure spinors and forms encode 
in subtle ways quite common operations in QFT [16,22,25,108, 27, 26,28].
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In this chapter we complement the above mentioned study of the type-IIA 
backgrounds associated with the wrapped D6  branes and their precise descrip­
tion in terms of G-structures.

We also perform an SU(2) non-Abelian T-duality isometry on the geometry. 
We generate new type-IIB solutions that preserve four supercharges; hence it is 
dual to a minimally SUSY 4-d QFT. We describe the result of the non-Abelian T- 
duality in terms of the generated G-structure. We believe, ours is one of the first 
few examples of dynamical SU(2)-structure in type-IIB. We will use the word 
'dynamical' to denote the fact that the quantities fry defined in eq (6.3.20), are 
point dependent, changing value through out the internal manifold. We will 
propose a relation between the 'dynamical' character of the SIT(2 )-structure 
and the phenomena of confinement in the dual QFT.

The structure of this chapter is the following. In section 6.2—that contains 
a fair amount of review but also various original pieces, we will summarise 
the eleven-dimensional and type-IIA supergravity solutions that will act as the 
'seed backgrounds' for our non-Abelian T-duality generating technique. Their 
G-structure will be carefully discussed. We will also present the explicit nu­
merical solutions to the BPS equations and clarify their asymptotics. In section 
6.3, the action of non-Abelian T-duality on the type-IIA backgrounds, the new 
generated solutions in type-IIB and a discussion of their G-structure will be 
spelled-out in detail. Different dual field theory aspects of the original and of 
the generated solution will be described in section 6.4. Finally, we close the 
paper in section 6.5 with some global remarks and propose topics to be inves­
tigated. In appendix G gives details of the delicate numerical study performed 
on this solution and complements the presentation.

6.2 Presentation of the Background.

We will start with the pure metric configuration in eleven-dimensions found in 
[104], [102]. We consider the family called Vj .  The notation we will adopt is 
that of [102]. We will have two sets of left invariant forms of SU(2),

<j\ = cos ipi d6  +  sin ipi sin 6  d(p, Ei =  cos ip2 d0  +  sin xp2 sin 6  dip
cr2  =  — sin ipi dO +  cos xp\ sin 0 d(p, E2  =  — sin xp2 dQ +  cos tp2 sin 0 dip (6.2.1)
( 7 3  =  dxpi -I- cos 6  d(p, E3  =  dxp2 +  cos 6  dxp2

which satisfy the SU(2 ) algebras

d<i\ =  — ( 7 2  A ( 7 3  +  cyclic perms., dEi =  —E2  A E3  +  cyclic perms. (6.2.2)

107



The eleven dimensional metric is of the form ds2 1 = dx\ 3  +  ds2, with

ds} =dr2  +  a2  [(Ei +  g (7 i ) 2  +  (E2  +  g  <r2)2] ^

+  b2 (af + a%)+ <?(Z 3 +  g3 cr3 ) 2 +  f 2 o$ ,

where a, b, c, / ,  g  and go, are functions only of the radial variable r. The six 
functions are not all independent, the relations

g(r) =  2 i ( r ) c ( r ) ' g3^  =  _ 1  +  2 (6’Z4)  

are necessary for the BPS system

c a5f 2 • c a2 (a2 — 3c2) f 2a = -------- 1------  — b = -------------- -------------——
2  a 8 fc4 c3' 2 b 8 b3 c3

c2 c2 3 a2f 2 2- aV 3

C~  + 2 £  + 2 ( *

to satisfy the equations of motion. We have checked that these equations imply 
that the eleven dimensional metric satisfies R^v = 0 .

6.2.1 The Type-IIA Version

For our purposes, we need the type-IIA version of the configuration presented 
above and we need to pick a LZ(1) isometry to reduce on. The relevant U( 1) 
isometry is generated by the Killing vector 9 ^ 9 ^ . Having this in mind we 
rewrite the metric in a way which makes the isometry manifest,

ds fi = dx 1,3 +  dr2 +  b2 [(0 1 ) 2  +  (0 2 )' 

f c 2

-b cf ( £ 1  +  8 ai ) 2 +  ( ^ 2  +  gci)'

/ 2  +  ( l + g 3 )2 c2  

+ \  [ / 2  +  (! +g3?c 2

( 0 3  -  £ 3 )'

*  4. V ■ / 2 - C 2( l - g j )  _
<7-3 + S 3 +  / 2  +  ( 1 + ^ ) 2c2 (0-3 I 3 ) ($.2.6)

Note that in this metric nothing depends on the combination (tp2 +  t/ î). Now 
Kaluza-Klein reduction simply amounts to dropping the last line in eq (6.2.6) 
which has been written as a complete square for that purpose. In particular we
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can now read off the dilaton and the RR one-form gauge field,

3/4gf  = 2 -3 /2

f 2._q2. / ̂    p-2 \ ^
Al = f 2 + (I + g ^ i c 2 ~~ +  COS ed(P +  COS ̂  ‘

The ten-dimensional metric in string frame is given by

(6.2.7)

dsnA —=  \ { d x h  +  b 2 (<?l) +  t o )  +  a I (E 1 +  g a l )  +  (E 2 +  go-2)

1/2
+ / 2  +  ( i + g3)2 c 2  -  S 3 ) 2  +  dr2} x [ /2 +  (1 +  g3)2c2] (6.2.8)

Notice that the metric depends explicitly on xp =  xp2 — xpi and not on the coordi­
nate on which we reduced, xp+ — xp2 +  ipi. It is then advantageous to introduce 
a third set of one-forms:

d>i =  cos xpdO + sin xp sin 6  dq>, Co2 = — sin xpd6  + cos xp sin 6  dcp, 

0)3 =  dip -I- cos ddq>.
(6.2.9)

Upon rescaling the Minkowski part of the space by a constant \i and reinstating 
the factors of od ,gs, the full metric, dilaton and RR field strength are 1,

d s UA* t =  *'gsN e
,2 A ,^- ^jdxir. +  dr2 +  b2 (dO2 +  sin2 Qd(pz)+  (6.2.10)

oc’gsN  ^  v T
, 2  / J£»2

/z =

^ (d )1 +gdd ) 2 +  a2(d)2 +  gsin0d<p)2 +  h2 (Co3 — cos 6 d(p) 2

r 2 r2  r 2  r2  „2 ( 2C J g4/3<p = c J

\fodgsN

where

/ 2 +  c2 ( l + £ 3)2 ' 4 { g s N Y W  4/z2

— (1 +  K) sin OdO A d(p +  (X — l ) ^ 1 A d )2 — K'dr A (d>3 — cos Odcp).

K(r) =
/ 2  +  C2 ( l + g 3)2 '

!One can send —> A^ds^, F2 —>• A2F2, e 4<̂ /3 —>• A3e P̂̂ 3 and still have a solution of 
IIA supergravity, preserving M  =  1 SUSY provided A^A3 =  A4. We choose A \  =  a.'gsN,  
A2 =  y / a g s N  and A3 =  (gsN ) 2/3, so that the dilaton is independent of a' . The parameter }i is 
just a scaling the R 1,3 coordinates.
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Note that £ 2  contains two components with no 'legs7 on the radial coordinate r:

= —NgsVoJ (K +  1) s m 6 d6  A d<p — (K — 1) sin 6 d6  A dcp^. (6.2.11)
r=r0

Thus, we only have flux quantisation on cycles for which the K(r) parts m utu­
ally cancel. For example on L2  = [6 = 6 , qj = (p], xp ^constant, which is a SUSY
cycle in the IR, we have

=  — IgsNy/cJ sin OdO Ad(p. (6.2.12)

As we will see below, under the non-abelian T-duality, these two terms in F2 

will not be mapped to the same dual flux. We require that the flux on Z2  is 
quantised in the usual fashion

-  J  F2  =  2 k1 0T6 N. (6.2.13)

To achieve this we use,

TP = --------h ± r - '  2kio = 4(2tt )7 ct'Ys. (6.2.14)
(27r)Pa'V gs

So that we may associate the charge of the D6  branes N  with an SU(N) gauge 
group in the dual QFT.

6.2.2 G-Structures: from G2 to SU(3)

We derive the G-structures and SUSY conditions at each step going from M- 
theory to type-IIA. For clarity in presentation, in this section gs = ot' = N  = 1.

As is shown in [102], the M-theory background obeys the condition of G2  

holonomy. Hence, following [102], but in notation suggestive of dimensional 
reduction, we introduce a set of vielbeins for the 7d internal space as defined in 
eq (6 .2 .6 ),

er =  dr, e6 = ba\, eV — ba\, ez -- e2(P/3(dz +  A\)
(6.2.15)

ex =a(?Li+gi7 i), e1 = a(L2 + g^i) , e3 = h(Z3 -  a3).

Here we have used the definitions introduced in previous sections (the reason 
for the cluttered by tildes definition will become clear shortly). The following
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three-form can be constructed from the projections on the SUSY spinor, needed 
to derive the BPS system [102],

<j>3 =er A ($le  +  f r  +  e3z) +  (e12 -  e6*) A (a e3 +  £ ? )  

+  (e1* -  f 6) A (a$  -  p ? )
(6.2.16)

where

* ( r ) =  / t f !  2  2 '  ^  =  / hl [  2  2 r « 2  +  /8 2  =  1- (6-2-17)« g +  a g

It is then simple to show that the three-form obeys

d® 3 = 0 , d * 7 0 3  =  0 , (6.2.18)

once the BPS eqs (6.2.5) are imposed. We would now like to dimensionally
reduce the G2  SUSY conditions to find the corresponding conditions in type-
IIA. Fortunately, this was done in full generality in [109] and in a rather similar 
scenario in [110]. The corresponding conditions are those of an SU (3)-structure. 
All one needs is to convert eq (6.2.16) to Scherk-Schwarz gauge then follow the 
prescription of [109]. This is achieved through a rotation in both the e6, e? and 
I 1 , 1 1 planes such that:

$  =  cos xpe6 — sin xpe? = bd6  

e? = sin tpe9 +  cos xpe? = b sin ddcp 

e1 =  cos xpe1 — sin xpe1 — a(cvl +  gdO) 

e2 = sinxpe1 +cosxpP- — a{w2 + g s m 6 d(p).

(6.2.19)

The corresponding three-form, <E>3 is the same as eq (6.2.16) with I  —> e and is 
obviously still both closed and co-closed. The vielbeins of the new 6 -d internal 
space can be neatly expressed as

er = e^/ 3 dr, ee = e^^bdO, eV = e^/ 3 bs in 6 d(p (6 .2 .2 0 )

e 1 _  _|- gdd), e2  =  e^/ 3 a(cb2 +  gsinOdq)), e3 =  e^l 3 h{Cb3 — cos6 d(p),

while the 11-D vielbeins are of the form eA — (ea,ez). The SU(3) structure is 
then given in terms of the 3-form by:

Jab =  ^ a b z r  hol)abc =  ^ a b c  ~~ * (*6*&)abc- (6 .2 .21)
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which amounts in this case to

/  =  — e3r +  (oce2  +  fieV) A ee +  e1 A (—cce? -f f$e2)
(6 .2 .22)

^hoi — ( — £ 3  +  ^ r) A ((ae2  +  fie?) +  iee) A (e1 +  z( — +  /te2))- 

These can be used to construct two pure-spinors,

Y+ =  Y_ =  ~ C lhol, (6.2.23)

that can be shown to satisfy the pure spinors SUSY conditions 

d(e2A- ,t ' ¥ + ) = 0

d(e2 /'- 'fY _) =  e ^ - U A  A Y_ +  i ^ -  * 6  F2, 

which, collecting forms of equal size, gives

dj = 0

d(e3 A-P) = 0  

d ( ^ A-<t>Rea hol) = 0 

d{eiA~^lmClho{) - e 4 A *6 F2 = 0

(6.2.24)

(6.2.25)

these relations are all satisfied once eqs (6.2.5) are taken into account. We will 
choose 3A  =  (p. Also, notice that F4  =  0 for backgrounds of SLf (3)-structure.

Potential and Calibrations.

It is useful to derive an expression for the seven form C7  that acts as a potential 
for Fg, i.e. Fg = * £ 2  =  dCj. One finds,

c 7 = eiA~^voli A ImCihol. (6.2.26)

The calibration form of space-time filling D branes is given by [6 6 ],

Y ca, =  ( I m Y - )  = - e iA ^ l m a M . (6.2.27)
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Clearly we have vol4  A YCfl/ +  C7  =  0 so any space-time filling D6  brane wrap­
ping a 3-cycle L3  such that the calibration condition

e4A~<P y/detGZ 3 =  eiA~^ImClhoi (6.2.28)
E3

is satisfied will be SUSY2. The same condition must be satisfied for any odd 
cycle and so the only non vanishing odd cycles are 3-cycles (if B2 were turned 
on we could also have 5-cycles). A similar calculation shows that potential even 
SUSY cycles are E2, Z6  such that (these are calibrated by Im Y +),

\J detG^i — /
E2

y j  d e t G j p  — —t / A / A /  
o

(6.2.29)
E6

All the information above, only relies on the backgrounds in eq (6.2.3), (6.2.10) 
and their BPS equations (6.2.5). We will now describe some solutions to this 
system of first order, ordinary and non-linear equations.

6.2.3 Explicit Solutions

Let us first describe a couple of known exact solutions. There is a simple solu­
tion to eqs (6.2.5) given by,

a(r) =  c(r) = - r~, b(r) = f ( r)  =  ^ = .  (6.2.30)

This solution corresponds to a K1 , 4  x M .7 space with metric eq (6.2.3),

ds\x =dx\z + dr2 + r— [ ( £ 1  -  L i ) 2  +  ( £ 2  -  L 2)2]
2  2 1  2  (6.2.31)

+  J2 ^  +  4 ) +  j f a  -  i f z ) 2 +

When reduced to ten dimensions the resulting IIA dilaton behaves as e4 (^ 3  ~  
r2. This solution present a singularity at r = 0 and the need to lift this back­
ground to M-theory for large values of the radial coordinate, to avoid strong 
coupling in IIA. This solution is the 'unresolved' version of the one written 
in—for example- eqs.(3.16)-(3.17) of [111]. In that case, we will have

dr = - ^ = ,  b2 = f 2 = L ,  a2 = c2 = ^ (  1 - ^ ) .  (6.2.32)

1 _ ?

2We work in conventions where the DBI and WZ actions have a relative sign difference
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This solution avoids the singularity by ending the space at p = a. Still, the be­
haviour of the dilaton is such that it the type-IIA description is strongly coupled 
for large values of the radial coordinate r. To avoid this last issue and to have 
a background fully contained in type-IIA, we will describe new solutions that 
are both non-singular and with bounded dilaton. These new solutions, turn 
out to not be known in exact form, but semi-analytically, that is as series expan­
sions for large and small values of r, complemented with a careful numerical 
interpolation. We will study them below.

6.2.4 Semi-analytical solutions.

Since our goal is to work with backgrounds in type-IIA in which we can trust a 
holographic description, we will be mostly interested in solutions with bounded 
dilaton and everywhere finite Ricci and Riemann invariants. The asymptotic 
large radius r —> oo, form of these solutions is,

= _t_ _  V3qxRx +  21y/3Ri2  +  63V3qiRi5 ,
V e  V 2  \ / 2 16 r y /2 16 r2

9\/3  (672^12 +  221) Rj4  81n/3<?i (224qi2 +  221) R j5

H r )

V2512 r3 y/2 512 r4

V3  (2048/ii +1377 (768<?i4 +  1632<ji2 +  137) Rx6) 
v/2 8192r5 

r VSqiRi 3V3R\ 9v/3<jiRf

+

V 6  V2 4 V2r 4 V2r2 

9\/3(37 +  96<^)Rl4 8lV3qi(37 + 32qf)R%
128 V 2 ) 3  128 v/ 2  r*

v/3(512fei -  81(133 +  1910q\ +  960qf)Rf)

f  (6.2.33)

52048\/2 r
r „ 9R? 2 7q1 R 3

c ( r ) = ~ i  +  q i R i  1 ^ 1

+

f ( r) =Ri ~

3 1 8  r 8  r2

9(17 +  36g?)R| 81^(17 + 12^)R f hx
32 r3 32r4 +  r> +
27Ri3 81<?iRi4 243Ri5 (12<?i2  + 1 )

8  r2  4r3 Sir*
729R]6 (4qi3  +  qx)

8  r5

where q\, R\ and hi are constants.

+
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Close to r —>> 0 one has

„(r\ =  r (gQ +  2 ) r 3  ( - 7 4 - 2 9 ‘?0 + 3 1 ‘?0 )>J .
1 2 288Rq 69120Rq

_  P (9 o - 2 )r2  ( 1 3 - 2 1 ^  +  1 1 ^
6W  -  Ro------ I 6 R0 ---------------- ------------------+  • • • '

C(r) =  r (5l?o ~  8 ) r 3  (2 3 2 -3 5 3 ^  +  1 5 7 ^
1 ; 2 288Rq 34560Rq

„(,) =  go , ^0(90- 1) 2 , . , ,  
g {J  2  24Rq '

g3W 2 +  12Rq +

Note that a(r) and c(r) collapse in the IR and the other two functions do not. 
The constants qo and Ro determine the IR behaviour. Similarly, q\, Ri and h\ 
are the UV parameters. Not for every set of qo,Ro,qi,Ri,hi there will exist a 
solution that interpolates between eqs (6.2.33) and (6.2.34). For example, as 
seen in Figure 6.1, if we numerically integrate forward from the IR, not every 
value of Ro, qo leads to a stabilized dilaton. Similarly if we integrate back from 
the UV using eq (6.2.33) as boundary conditions we do not necessarily get to 
an IR like that in eq (6.2.34). Nevertheless, it is possible to show numerically 
that solutions interpolating between the behaviour of eqs (6.2.33) and (6.2.34) 
do exist.

In Figure 6.2 we present representatives of such solutions. To obtain these 
numerical solutions we shoot from the IR and minimize the mismatch between 
this forward integrated solution and the required UV behaviour. This mini­
mization procedure determines the UV parameters (see appendix G for more 
details). Also, we have defined some other functions in terms of the above, 
their expansions read, for r —)> 0 0

e*A = (gsN ) 3 / 2 e4<P/ 3

4 A _  R l _ 9 _ r*
e  ~  4 Sr2

h2 = ^  — \r  (qiR \ ) +  \  (2q2 +  l)  R2 +  ...
^  _  6 5 6 1 ,  (6.2.35)
K ~  (At4  -

3Ri . 27(l6*?-l)R?
8 -  ~2T + ~~2p~ + --- 32̂ ------- + -

1 , 9R? 27**? 81(24*?-1)R}
8 3 -  - - l + 2 ^  +  - 7 5 -  + ------I&a +  -
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and for r —> 0, we have

A A  _  Itf2p 2 | 3 4r2 . r f (37? 0 -40) r4 ,
e -  4%K0 + M%r + -3072Rq-+  -
. 2  =  £  , (1 q- 1 6 > 4 ,

4 1  576Rp h "■

* =  i - 4 + % ^ ! + -  (6Z36)
1o I 1 o(lo-l>2 I ‘lo(9m-^94+88y  

% 2 1 24Rq ^ 13824Rq "1” "*
„ -  1  t - 2  ^  , li(H5^-227^+112)r« ,
g 3 2 Wo Z)  ̂ 12Rq ' 6912RJ '"

The numerical solutions presented in Figures 6.2 satisfy Fo0 o =  2. This cor­
responds to choosing the normalization of the dilaton such that (gsN ) 3 ^2 e^ 0^ 3 = 
1, where (po is the value of the dilaton at r = 0. Also, since we want solutions 
with monotonically increasing dilaton, we require comparing eq (6.2.35) with 
eq (6.2.36), that R2 > cjô Q.

Asymptotic behaviour

After reducing to ten dimensions the simple exact solution mentioned above 
leads to a background with metric easily obtained from eq (6.2.31), dilaton e i  — 
36 and F2  =  — y/a gsN(sm0d0  A dcp +  d) 1 A d)2). Notice that the space is
not asymptotically T1 , 1  for the exact solutions. On the other hand, the numerical 
solutions with stabilized dilaton behave in the UV as,

d s U A ,s t  =  a ' g s N ^ ~
Vdx\r

7  +  dr2+ (6.2.37)

r2'

u'gsN

1 1

( - ( d 0 2  -j- sin2 6 d(p2 +  (d) 1 ) 2  +  (d>2)2) +  ^(d ) 3  — cos 0 dcp)2 Ĵ +  . . .

with

{gs 1 4 8  r2  4r3

81.R2
F2 = — y/ccgsN[( 1 — -I- . . . )  sin 0d0 A dq>+ (6.2.38)

81R? •. 2  /81-R?  ̂ .(1 +  +  . • • W  A d) 2  — ( ~ ^ ±  +  . . .  )dr A (a; 3  -  cos0d<p)]

~  — \fcJgsN  (sin OdO A d<p +  d) 1 A d>2)
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0 5 10 15 20 25

4  (p
Figure 6.1: e 3 for different values of cjq and Rq. We keep qoRo = 2 fixed which 
am ounts to fixing the normalization of the dilaton in the IR.

In the UV the five dimensional internal space is T1,1. Thus, the space is asym p­
totically R 1 ,3  x c r 6 w ith a constant dilaton and constant F2 . This 'flat space' 
asymptotics is characteristic of duals to QFTs whose UV behaviour is controlled 
by an irrelevant operator—this will come back when dealing with the QFT anal­
ysis. Somehow the field theory is taken out of the 'decoupling limit'. On the 
other hand, in the IR the metric, dilaton and RR form asymptote to,

2  _  qoRooc'gsNr ~ 2

d s l l A , s t r \idx2 3 -F dr2 -F R^dO2 +  sin2 6dcp2) +  dO 3

dCl3 =  (d> 1 +  d6)2 +  (co2 +  sin 6d(p)2 +  (6)3 — cos Odcp)2,

{gsN ) 2/3ei1,/3 = ^ 2  +  +  ...

F2 = —2\/x 'gsN  sinffdd Adcp + ... (6.2.39)

The material discussed in this section is not all original; we have rewritten 
some of it to ease the analysis of the next section. Ffowever, we should point 
out that the semi-analytic solutions w ith stabilized dilaton and no singularities 
(though have been discussed in [104] and [102]) are found explicitly. The ex­
plicit delicate numerics are delt with here w ith further details in appendix G . 
These solutions will play an im portant role in the next sections.

6.3 Non-Abelian T-duality.

In this section, we will present completely original material. We will construct a 
new solution in type-IIB supergravity preserving four supercharges. Imposing 
smoothness on this new solution will restrict the range of the new coordinates. 
This background will have S U (2)-dynamical structure. We believe this type of 
solution is new in the literature. The technique we will use to construct this
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c(r) f(r)
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Figure 6.2: A numerical solution for a(r),b(r),c(r) and f(r)  obtained by forward in­
tegration of the BPS equations with eq (6.2.34) as boundary conditions, Ro = 10, and 
qo =  1/5. After the minimization procedure explained in the appendix G we find that 
for the UV parameters q\ =  1.31946, R\ =  —2.03087, h\ = 1.9733 this solution has the 
required UV behaviour eq (6.2.33). We also plot h(r)2 and e*<p/3 defined in eq (6.2.10)
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new background is once more non-Abelian T-duality, detailed in chapter 2 
We will straightforwardly present the new background in type-IIB super­

gravity. Following the conventions of Section 2 of the paper [30] and starting 
from the background in eq (6.2.10) we perform a non-Abelian T-duality trans­
formation on the SU(2) isometry parametrised by (6 , (p, xp) and gauge fix such 
that 6 = (p =  V \  =  0, so that the solution generated still depends on the angles 
(9, (p, xp) and on the new coordinates (pi, v$). We remind the reader that col,

Cb\ =  cost/;d9 +  sint /7 s in 9d(p, C0 2  =  — sinxpd9 +  cosxp s in 6 dcp, 

d>3 =  dxp +  cos 9 d(p.

In the process of doing this non-Abelian T-duality, we generate an entirely new 
NS and RR sector and type-IIB metric. The T-dual metric is given by (we take 
gs =  a' =  fi =  1)

rfc 2 — p2A
a s IIB,st ~ e

detM

dx i / 3  + Ndr2 +  Ndz(d92 +  sin2  Bdcp2)

2 {v2>dv2 +V2,dv3 ) 2 + 4N 2 e4Ab ^b2(dv3  -F CV2 0J2 )2+ (6.3.2)

h2 (c2 v2 co2 +  (dv2  -  CV3 C0 2 )2) +  2 6 V2 V3 CO1CO3 +  ^2 ^ 3 )^

where
detM  =  4e2AN  ( 2.e*AN 2 b*h2 4 - b2 v2 +  h2 v^j , (6.3.3)

which also appears in the definition of the dual dilaton

e~2* = det M e-2*, (6.3.4)

and we have introduced the following functions for convenience of presenta­
tion

a = 7P$P|r 6 = e =  w j i & -  ( 6 3 5 )

The many and complicated forms that this background supports can be ex­
pressed in a relatively compact manner through a judicious choice of dual viel-
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bein basis namely

ex}l — eAdxV, erH — eA\[Ndx}i, e1,2 = eAy/Ndcbif2

— \/lv2{v2dv2 +  Vzdvz) — 2y/2e*AN 2b2h2(dv2 — 0730)2) +  

2 e2ANh2 V3 (v3 C(di + 0 2 0 )3 )

i _  2s/NeAb 
6 detM

j  _  4e3AN 3/2b 
6 detM

3  _  2 eAV N h  
detM

V2b2(dv3 + CV2CO2) +  h2(ci730)2 — 173^2) — 

2\/2e2ANh2b2(cv3o)i +  i72 d>3)

—  V 2 v 2 { v 2 d v 2  +  X73 r f z 7 3 )  —  2 \ f 2 e ^ A N 2b^ {dv3  +  O 7 2 o ) 2 )

2 e2ANb2 V2 {cv3 U)\ + V2 &3 )

(6.3.6)

With respect to this basis the NS two-form is given by

B2  =  77- dhz72e ^  — bchv3e13 — S2 (^i72el i  +  V 2e2ANdhe23),l3 £2 /-
abv2

The RR sector is given by, 

2 £rA^N (K  +  l)

(6.3.7)

F i =

F3  =

db

2(K + l)e~Ay/N  
ab2

b(cv2e2 +  V 2e2ANdhe3) — dz72^ -  2e-Ay/NK'v3 er,

b2 cv2 e +  Sc/zi73  (e2̂  — e1̂ )  —

\ / 2 e ^ N P c ^ e 1̂  +  e2̂ )  +  ahv3 e ^ + (6.3.8)

2 e~Ay/NbK' 
h

\[2e2ANbher^  +  i72 er^ +
2 e~AV N U

bv2 e121 +  hv3 e123

F5  =
2V 2eAN 3/2bhU _ 1̂2123

3Note that the procedure of [30] actually gives the NS two from up to an exact B2/e(/(6.3.7) 
Bi ,n a t d  +  ^ d i p  A ^ 3. The choice we make is merely more simple in vielbein basis.
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where
U = e(K + l ) - ( K - l ) , (6.3.9)

has been defined for convenience. We also note that the potential such that 
F\ = dCo is actually very simple, namely Co =  —2N(K  + 1 )^3 . We have checked 
using Mathematica that this background solves the Einstein, dilaton, Maxwell 
and Bianchi equations of type-IIB, once the eqs (6.2.5) are imposed.

Notice, that like in the paper [112], our background's warp factors and dila­
ton depend on more than one coordinate- (r, v2 / 0 3 )- in our case.

6.3.1 Asymptotics

In the IR the new 3 manifold that is generated has induced metric 

d2 s3  =  2 m ?~r3 172  ( ^ v\&v\  +  4v2 v3 dv2 dv3 +  (N 2 qlR.Q +  2v3)dvsj  +  ... (6.3.10)

The form of this metric suggests that v2 =  0 produces a singularity and indeed 
calculating the curvature invariants in the IR are all inversely proportional to 
some power of v2. For instance

,8 (21^ 8-15 ,,,)+4,j
2 N?0 1?8 ^

because of this we choose to restrict the range of the coordinate v2 > 0  to ensure 
our solution is non singular. This is a physical requisite on a coordinate, that the 
process of non-Abelian duality gives no information on. It should be interesting 
to determine if there is any geometrical obstruction to such restriction.

The appearance of this possible-singular behaviour at v2 =  0 is due to the 
fact that we are T-dualising on a manifold (6 , (p, xp) with a shrinking fibre xp. See 
eq (6.2.10) together with eq (6.2.36). Since the non-Abelian T-duality (at least 
at the supergravity level as we are doing it) does not restrict the range of the 
coordinates, we have chosen this restriction v2 > 0. Recent developments on 
the sigma model side of the formalism [113] may illuminate these issues, but 
still more work on the topic is needed. It may be that the restriction v2 > 0 
is not feasible an d /o r generates a manifold with a boundary. In that case, our 
solution would present a singularity at v2 =  0. Physical observables would be 
trustable as long as they do not 'sit' on the point v2 =  0 .

In the UV the 3 manifold has induced metric

d2s3 =  ?  —7- ( 2dv\ +  3dv\ +  l v 2(dxp +  cosxpd6 ) ] +  ... (6.3.12)
NR\rz \  J
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Although this is vanishing, in line with our expectations from dualising a man­
ifold which blows up, all the curvature invariants remain finite. Related to 
this is the fact that, whilst the induced metric gs vanishes, the string volume 
e~® y/detgs is finite.

Finally, let us quote the asymptotics of the dilaton of type-IIB. For small 
values of r, we have

*  =  _ q o _  _  r2 (qo (N 2qlR% +  2  (p§ -  fog -  1) p g ) ) )

4N v 2 64 (NRguf)

while the dual dilaton for r —> oo is,

»  9 81flKi 243V2tfR*
VZbPr3 X/2 N V  N 2 r5

6.3.2 G-structure.

The seed type-IIA solution of section 6.2.1 exhibits confinement and supports 
an SU(3) structure as discussed in section 6.2.2. The results of [43] suggest that 
the T-dual solution should support a dynamical SU(2)-structure, defined by 
a point dependent rotation between the two 6 -d internal killing spinors. This 
is indeed the case, we will present the structure here and refer the reader to 
appendix D of [43] for the details of the calculation4  To express the structure 
succinctly it is useful to introduce a new set of vielbeins, which are a rotation of

4Actually it is the isometry defined by (6, <p, ip) that is dualised in appendix D of [43], but this 
calculation is completely analogous to our's. Our result is non-singular in the radial coordinate
r.

(6.3.13)

(6.3.14)
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eq (6.3.6),

er = eAVN dr ,  $  = eAy/Nad§ , fie*? +  ae2 = eAy /N a s m 6d<p, 

2 eAVNb
e1' =

detM
— l\/2e*AN 2 b2h2 ( cos ipdv2 — ^ ( s i n  ipcu i +  co s  ipti 2 ) — Z72  s in  ipca 3)

— \ / 2 v2 co s  ip(v2 dv2 +  v^dv^) +  2 e2AN  ( — b2 V2 s in  t/7(di73 +  CV2 CO3 )

oce1 -  £e2' =

+  h2 V3 ( s in  xpdv 2 +  c i s c o s  1/70)1 — s in  1/70)2) +  V2 cos 1/70)3)

^ j  ~~ 2 y /2eAAN 2b2h2 (  co s  ipdv2det M [ \

— ci7 3 (s in  tpoj\ +  cos tpcb2) — ^2 s in  1/70)3^

— \ f l v 2  co s  t/7 (i 72 dz72  4 - v s d v z )  +  l e 2AN  ^ — b2V2 sinxp(dv^  +  CV2003) 

+  /z2 Z73  ( s in  xpdv2 +  ci73 (co s  xpcbi — sin  1/70)2) +  I72  co s  1/70)3)

3'r  =
2eA^ N h

detM
— \ f lv 2 ip 2 d v 2  +  v^dvs) — 2 V l e 4AN 2b4 (dv3 +  cz72d)2)

— 2e2AN b 2V2{cv3U>i +  i72 d)3) (6.3.15)

One then takes these vielbeins ordered as (rftyl'2'3') and rotates to define an­
other basis of vielbeins as

e = R.e'. (6.3.16)

The matrix with which this rotation is performed is

R =

f  P
0 0 Ci S 2P S3 \

0 7 a 0 0 0 0

1 0 0 7 a 0 0 0

7 a S i 0 0 S3 S2P

S2P 0 0 S 3 fi S i

V S 3 0 0 S 2P s 1 p  J

(6.3.17)

where
(6.3.18)
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and

e~2AV2 COSib _ e~2AV2 sin ib _ e~2Avo.
= -------- 7=—x---- , £ 2  = ------- 7=— ----- / £ 3  ~ -----7 =— (6.3.19)

y/2 Nbh V iN bh  V 2  Nb2

Let us now express the forms of the geometric structure, following the con­
ventions of [114] we have

1c * 1c =II J T + U  L V 1 + ̂
z =  w — iv  = . . ..= (\/~Ker +  LicuF — i iy fb #  +  £2 ^ ) )

y / F + U  } (6.3.20)
j  = er3 +

W =  / r f l r r ^  +  +  A ( ^  +  i?1)'V r  +  M

In terms of those forms, we can define two 6 -d pure spinors as:

iel
<D+ =  ^— e - lvtKW{ k ^  -  ik±co)

8
ieA

(6.3.21)
0 _ =  -g~{v +  i™) A (k±e l} +  ik\\(x))

Notice that because fry is point dependent we have a dynamical S ti(2)-structure. 
To have a good idea of the dynamical character of the SU(2)-structure, we can 
expand the quantities k«,k± . For the solution in eq (6.2.32), we have for p —> 0 0 ,

V3 V3a3  , 1 3 a3

k ± - " T  + T 6 p * +   “  ~ 2  +  W  +  - •  {6322)

While for p —>■ a we have,

— -  —

On the other hand for the semi-analytic solutions we have,

k± =  1 - 1 1  +  ..., *|| =  - ^ L  +  ... (6.3.24)
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Figure 6.3: Solid line: oc(r) for the numerical solution with Rq = 10, qo = 1/5. 
Dashed line: a.(r) for the exact solution of eq (6.2.30), ocexact(r) = \

for the large radius expansion and

r4  (qnRn) t 1 (q^Ro)
( 6 -3 -2 5 )

for the case of r —y 0. These expansions make clear the dynamical character of 
the structure. Also very descriptive is the quantity a(r) shown in Figure 6.3.2.

It is interesting to notice that for the non-Abelian T-dual of the exact and 
singular solution in eq (6.2.30), the S 11(2)-structure is not dynamical. It is pre­
cisely the deformation of the space, displayed by the non-singular solution or 
the semi-analytical ones that makes the structure dynamical. This may be re­
lated with the phenomena of 'confinement' and 'symmetry breaking' that occur 
in the dual field theory.

The calibration forms of SUSY cycles in the 6 -d internal space are defined by

(6.3.26)

where on the left hand side it should be understood that we restrict to the part 
with n-legs and the even/odd calibrations are given by Y± respectively. In the 
bibliography, one can find examples of SuGra solutions with SU (2)-dynamical 
structure [115,116,117], however these remain rare.

6.3.3 SUSY Cycles

Here we present a list of supersymmetric sub-manifolds, that while not exhaus­
tive, gives at least some indication of the types of SUSY cycles this type-IIB 
solution supports. Attention shall be restricted to cycles with no legs in the
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r-direction.

One-cycles

These may be defined by imposing ^2 (^3 ) with all other coordinates constant. 
The DBI action is given by

^ dbi = t i J  dvzCoBi

=Ti J  dv2,e~^\J2e4AN 2(b4 +  b2h2vf2) +  (V3 +  V2 v'2): 

and the behaviour of the integrand in the IR and and UV is

(6.3.27)

VN(n2̂RS 3+ + - aŝ °
l ^ 2 ^ j m ^ 2 . r2 +  _  as r —> 00

£ dbi = { V 0 (6.3.28)

Ri

A one-cycle is SUSY when £}DBldv^ = Yi on that cycle. This may be used to fix 
^2 (^3 )* The calibration 1-form on {^3 ^ 2  — ^2 (^3 )} is given by

4e6A- * m P - J  \  R(’(N^ o) d V 3  +  "• a s r ^ °
Yl =  ^ f 2 ~ d v 3  =  ) , (6.3.29)

4&2 +  [  6v^— +  — as r —> oo

It is a simple matter to show that a 1-cycle which is SUSY in the UV is given by

1 3V2 = - ^ - s ] R \ - 1 6 v 3 + c  (6.3.30)

where C is any real constant and a real solution requires |Ri| > 2 which is 
consistent with the numerical solutions presented in Section 6.2.4. Whilst there 
is a one cycle which is SUSY in the IR whenever

” 2 = 1  M<j0 R W 2RfaS -  32”3 -  4^3 +  4 ( 6 . 3 . 3 1 )

where C is a different real constant. Notice that this simplifies to v$ + v$ =  C2 
when Roqo = 2 and then the cycle defines a circle, a similar cycle was defined 
for a flavour D6 brane in [41].
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Two-cycles

There are some cycles which preserve SUSY for large values of r. One of them 
is given by (Q,v3 ) such that xp — 0 and V2 = R4 ^ 6 ^ 3  5- For this cycle the DBI 
action is obtained by integrating

where

3
e2

=  B \lv l  + C (6.3.32)

B = e * ^ t 6\ /2N(a2 + h2S2)
r  _  2eiAN2(R*—16) b2 (24b2 c2h2+ft2 ((Rf—16) b2+24h2)) 

(rf+8)2(d2+b2c2)

One can integrate this to get the volume of the cycle to behave as

J  dv3e 0  \ f  g + B2 !N2R2Av3 3 ,n } . r6 +  ..., r 0 0

3y/6y /R \ -16

{Fipza) -  T ( v 3b))r + ..., r -> 0where

(6.3.33)

(6.3.34)

N  (R\ + 8 ) (v3yjvl + A +  Alog ( ^ 3  +  A +  i73^

V2q0Ro (R\ -  16) (6 .3 .3 5 )
_  N 2 cj20 R§ {Rf -  16) 2  

2 (K} +  8) 2

The behaviour is similar for the exact solution, although that is not SUSY on 
this cycle. In all cases the cycle blows up in the UV and contracts to zero in the 
IR.

We do not report about calibrated three-cycles or higher.

6.4 Comments on the Quantum Field Theory.

In this section, we will study some aspects of the four dimensional QFTs dual 
to the background we presented in eq (6.2.10). Comparisons with a suitable 
analysis for the solution after the non-abelian T-duality written in eqs (6.3.2)- 
(6.3.8), will be made when possible.

We emphasize that the field theory dual to the type-IIA backgrounds is char-

5Or equivalently (<p, v3) such that 6 =  xp =  n / 2, i72 —
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acteristically non-local or 'higher-dimensional'. This should not come as a sur­
prise, as it was already observed in [7], full decoupling of the gravity modes 
is not achieved for the case of flat D6  branes. We will make this point via the 
study of some observables that will be sensitive to the high energy properties 
of the QFT. We will analyse Wilson loops, with emphasis on its UV behaviour. 
We will then study the entanglement entropy and central charge. Both observ­
ables will present signs of non-locality. We will also discuss the behaviour of 
Wilson, 't Hooft loops, domain walls and gauge couplings, when studied as 
IR effects. These observables are well-behaved for the solutions presented in 
this work. In other words, the dual QFT to our background in eq (6.2.10) or 
our new background in eqs (6.3.2)-(6.3.8)—together with the solutions in sec­
tion 6.2.3, behave as QFTs that at low energies show signs of the expected four 
dimensional behaviour, like confinement and symmetry breaking, but need to 
be defined with a UV-cut off, or need a UV-completion.

Various properties are 'inherited' (in a sense that will become clear) by the 
new type-IIB solution that we have constructed. We will finally calculate the 
Page charges of this new solution. We will propose a possible quiver suggested 
by these charges.

It will be clear by analysing the backgrounds that the initial QFT, corre­
sponding to the compactified D6  branes has global symmetries given by SIT(2) x 
SU(2), while the QFT dual to the type-IIB background will only have SU(2). 
This reduction of global symmetries (isometries, for the dual backgrounds) is 
characteristic of non-Abelian T-duality.

6.4.1 Some useful sub-manifolds

It will be useful for the analysis below, to define some sub-manifolds of the
metric in eq (6.2.10). We can define then

^ 3  =  [0, q>f ip\, t 3 = [0 , q>,1p], ± 3 = [e = 0 ,<p = q>, ip]. (6.4.1)

The volume element of each of these cycles is,

\J  det gz3 = 16n2(oc'gsN )3/2e(f,h(b2 +  a2g*),

yjdet gz3 = l 6 n 2 (oc,gsN f / 2 e(phci2, (6.4.2)

^Jdetg t 3  = 16n2(a.f gsN) 3 / 2 e<t>h(b2 +  cP'ig2 + 1)).

We can see using the IR expansions that each of these cycles vanish at r —»• 0 
and diverge as r —»■ 0 0  for the explicit solutions presented in section 6 .2 .1 .

If we consider the three-cycles after the non-Abelian T-duality, we have the
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submanifold defined by the coordinates (0, q>,v2 ). This cycle is not calibrated.

6.4.2 Wilson and't Hooft loops.

The type-IIA background in eq (6.2.10), ends in a smooth way, with finite values 
for the combinations F2 = gttgxx, G2 = gttgxx• This might suggest that the sys­
tem confines as usual. But there are some subtleties. Indeed, when calculating 
the Wilson loop with the prescription of hanging a fundamental string from a 
brane very far away in the UV of the geometry, we are assuming that this string 
will end on the D-brane satisfying the boundary condition of ending 'perpen­
dicularly' to the brane. This is discussed, for example in [118]. Following the
formalism in [118], the boundary condition boils to defining Vef f  = ^ y F 2 - F 02  

and imposing that for large values of the radial coordinate Vef f  diverges. In our 
present case, F2 =  G2  =  {a!gsN ) 2 e ^  (we choose }i = 1). The value of

Veff  ~  ^ / e # /3  _  e4fo /3a 'g s N

is a finite constant for the semi-analytic solutions. This suggests, that the QFT 
needs to be UV-completed or be supplemented by a hard UV-cutoff which in 
turn suggests that the QFT is afflicted by the presence of an irrelevant operator. 
Conversely, one can consider the case in which the dilaton diverges at infinity, 
as described by eq (6.2.32). In that case, the UV-boundary conditions are satis­
fied, but one will find that there is a minimal length-separation for the quark- 
antiquark pair. For r* close to the boundary L q q ( v *) is finite, instead of van­
ishing. This indicates the presence of a minimal length in the dual QFT. Hence, 
some form of non-locality. In summary, regardless the solution we choose, the 
high energy behaviour of the dual field theory seems to be not the expected one 
for a 4-dimensional QFT.

Once assumed a UV-cutoff, the Wilson loop can be calculated. The QCD 
string tension is finite (suggesting confinement) and given by,

1 I _  1 gZA(O) _  (<70K0)2

The components of the metric that enter this particular Wilson loop calcula­
tion are gtt,gxx,gn• These components are not changed by the non-Abelian 
T-duality. We should then expect that the comments above should be valid also 
for the QFT dual to the background in eq (6.3.2).

In contact with the discussion on the dynamical character of the S u b ­
structure, notice that this is a consequence of the deformation of the space as­
sociated with the confining behavior. Relations of this kind have been reported 
in [43].
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't Hooft loops.

In a very similar way as described above, we could wrap a D4 brane on any of 
the three-cycles in eq (6.4.1) and extend the brane on [t, X\], to form a magnetic 
string-like object. We propose that this object computes th e 't  Hooft loop in the 
QFT. On the type-IIA side, let us consider the different three-manifolds in eq 
(6.4.1), we will have that the effective tension of th e 't  Hooft string-like object is

Notice that all these present a vanishing tension-hence screening- of the monopole- 
antimonopole pair. Again, the behavior of this low energy observable is in line 
with the expected.

We can define a screened magnetic string in the type-IIB picture. To do so, 
we will use the two cycle described below eq (6.3.32) and wrap a D3 brane on it, 
also extending the brane on the two directions For the effective tension
we will get,

We observe using the asymptotics associated with this cycle a tensionless mag­
netic string or conversely, a 'screened' force between a pair of monopoles, as 
expected. Let us move to study another IR-observable.

6.4.3 Domain Walls

In our type-IIA geometry of eq (6.2.10), there is a natural two-cycle defined by

for some fixed value of the angle xp =  xpo, which is SUSY in the IR.
The objects of potential interest to represent domain Walls, are D4 branes 

that wrap the two-cycle above and that extend on the Minkowski directions 
( t ,X\, X2 ). If this object has finite tension, then it may act as a domain Wall, 
separating different vacua. Let us study the object in more detail.

The induced metric (for constant radial coordinate and constant angle xpo)

16n2TD4(a'gsN )V 2 

Te f f t 3

1 6 7 i 2 r D4 (a'gsN )3 / 2

Teff,t3

16n2TD4(u'gsN )3' 2

= e5A *h(bl + a2g l ) |r=0.

^ h { b 2 + a2 {g2 + l ) ) | r=0.

(6.4.3)

s 2 =  [0 =  0, <p = f \ ,
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IS,

d s l d , s t  = e 2 A  [ F d x l , 2 +

oc'gsN (b 2 + a2 (g2 + 1  +  Igcosxpo)^ (d6 2 +  sin2  6 d(p2)
(6.4.4)

So, the action of the object (choosing ]i = 1 ) is,

S = -  Teff  J  d3x,
Tef f  =16n2e5A ^ ( ^ SN)TD 4 ^ 2  +  ^ ( g 2 +  1  +  2£cost/>0 ) ) | r=o-

(6.4.5)

We can use the IR expansions of eq (6.2.34), to check that this object has a con­
stant tension in the far IR of the geometry. If we follow the logic presented in 
[94] and add a gauge field (a\, with curvature fo — da\ ) on the Minkowski part 
of the world volume of the brane This will create a Wess-Zumino term of the 
form

Syjz =  ^D4 J  Ql A f 2 A f 2 =  — Tp4 J  d0dcpF2 J  d3x f 2 A a\. (6.4.6)

Using that on the particular cycle F2 = —2N  sin 6d0 A dtp, we have induced a 
Chern-Simons term. These domain walls, should separate vacua coming from 
the breaking of some global (discrete) symmetry, see [119].

After the non-Abelian T-duality, we can define domain Walls by using the 
calibrated one-cycle defined around eq (6.3.28) and extend a D3 brane on the 
(t,x  1 ,^ 2 ) directions, also wrapping the one-cycle parametrised by U3 . We will 
have a simple induced metric

ds2m  =  e2A(—dt2 +  dx2 +  dx\) +  dH2. (6.4.7)

The Action and effective tension of this object will be given by,

Sd3 = - T d 3 ^ a ~ ^y jd e tg zx J  dv3  J  d2 +1x,

Tef f  = Td3 J  dvse3A~®yldetgxi |r=o- (6.4.8)

Notice that imposing that the domain Wall has a finite tension implies a finite 
range of values (or periodicity) for the coordinate U3 . Here again, like when we 
restricted the range of V2 to avoid singularities— see around eq (6.3.11), we find 
that a 'physical' requirement implies conditions on the range of coordinates. 
These conditions are not imposed by non-Abelian T-duality when thought as a 
solution generating technique in supergravity.
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We can also turn on a gauge field A  with curvature T 2  on the R 1,2 directions. 
The Wess-Zumino term will read

Swz = (Tds J  £i|r=o^ J  d2 ^ x A \  A J~2 = k J  d2Jr̂ xA\ A J~2 - (6.4.9)

Using that the Ramond form Co =  2N ( K  + 1 ) 0 3 —see below eq (6.3.9)— implies 
that the 'charge' of the domain Wall (or the coefficient of the Chern-Simons term 
induced on it) is

k =  2N(K(0) + 1 ) i  dv3. K ( 0) =  1 (6.4.10)

Let us move now to the definition of a gauge coupling.

6.4.4 A gauge coupling

We can define the gauge coupling of the QFT, by wrapping a D6  brane on any 
of the three-cycles in eq (6.4.1). We turn on a gauge field on the brane (for the 
argument, it is enough to turn on just FtXl), and we also turn on a pure gauge 
C3 -field of the form

k ~ ~

C3  =  ^ n 2 s*h Adcp A dtp,

we will have, for the cycle £ 3  in eq (6.4.1) 6  that the induced metric and Born- 
Infeld-Wess-Zumino-action are,

= e2<P/3 \jidx\>?) + oc'gsN  + CV2) + h2cv^j J,

Sbiwz = ~ T d6 J  e~ ^ \ /~  det[gab + 2na!Fab] + 

Td6 J  C7 + C3AF2A F2.

S b iw z  T o ^a 'g sN c f^U T i 2  J  e ^ i i 2 ha2(l -  A 1 e ^ / 3 4n 2 a'2 Fln,Fl4V)

+TD6k J  F2 A F2 + TD 6  J  C7, (6.4.11)

where the last contraction F ^ F ^  is in Minkowski space and we have expanded 
for small field strengths (equivalently for small values of a!). This leaves us with 
a gauge coupling of the form,

A t  =  f e W)1 / 2 0 -  (6.4.12)
%y m ^ c

6We found that this cycle fails to be calibrated, in far UV, by a factor of 1 /2 .
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with asymptotic behaviour as r —> oo,

(6.4.13)

(6.4.14)

Notice that there is no effect of the rescaling by }i. This is expected, because this 
defines a a four-dimensional gauge coupling, that should be classically invari­
ant under dilations.

We can run this calculation for the other three-cycles defined in eq (6.4.1) 
and get analogous expressions. All these expressions present a divergent gauge 
coupling in the IR—in the solution of eq (6.2.32) it diverges at p — a— while 
vanishing in the far UV. This should not be taken as a sign that the QFT is 
weakly coupled in the far UV. Indeed, these QFTs contain also superpotential 
couplings that make the whole system strongly interacting. This is in agreement 
with the dual spacetimes being weakly curved and trustable in the far UV.

After the non-Abelian T-duality, we can define a gauge coupling in the type- 
IIB dual by using D5 branes; extend them on R1 / 3  and wrapping the calibrated 
two cycle defined below eq (6.3.32). We should also turn on a gauge field on 
the R1 '3  directions and also consider the projection of the NS B2  field on the 
two-cycle. We find that this gauge coupling reads,

T  =  4n2 Kl2 TD5 e~<p J  y/de f e  +  B j (6.4.15)

Using the asymptotics associated with the cycle above, we see that this gauge 
coupling 'confines' in the IR and vanishes in the far UV. The Wess-Zumino term 
for this D5 brane should define the 0-angle.

In summary, we see that these observables, behave in the far IR as expected 
for a confining four dimensional QFT. Nevertheless, the Wilson loop indicates 
the need for a UV-completion. Below, we will briefly discuss another observ­
able showing the same need for UV-completion.

6.4.5 Central Charge and Entanglement Entropy

A couple of quantities that characterise nicely the QFT dual to a geometry are 
the central charge and entanglement entropy of the QFT. These quantities have 
been studied in many different papers. Let us quote a couple of original refer­
ences [1 2 0 ], [1 2 1 ].

1  (& N ) 1 / 2  /  r3  \
g2YMNc 2n* \1 8  )

and as r —> 0

1 (gsN)1/2 /  r 3 \
g2YMNc 2n* \ 8  J
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We will follow the systematic treatment summarised in [122]. Consider a 
metric of the form,

dSgj =  ccfidr1 +  ccdx\ d +  gijdyldyi, (6.4.16)

we can compute the following quantities in our generic background of eq (6 .2 .1 0 )

Vint = J  d8~dy^det\gij] = {infbla1h{ot'gsN f/2e5d’n ,
cc =  }i<?A, d = 3, (6.4.17)

V-
H = e~4<PV?tad = (4n)6 fi3 bi a*h2 (a'gsN ) 5 e16A- ‘lt', 
ds\ =  K[dx2̂  + dr2], k3  = H

This implies that the central charge is given by,

r_r7/2
c ~  27N3/2„ .  (6.4.18)

The UV and IR behaviour of the central charge for the solution with stabilized 
dilaton is

log(c) 81og(l/r) H , r —► oo

log(c) ~  61og(r) H , r —► 0 (6.4.19)

For comparison, we note that the central charge of the exact solution is, in the

UV, \og(ceXact) ~  log (2239488^)' 1 1 1  FiSure 6 A '5  we Plot the central charge for a 
numerical solution with stabilized dilaton and for the exact solution with linear 
dilaton. If we calculate the central charge after the non-abelian T-duality using 
the background of eq (6.3.2), we follow [122] and write the relevant quantities 
are,

a — e2Ay / ft = Dc.3 .̂ c.f V = f  d6 d(pdipdv\dv2 e 2^y/gint- (6.4.20)
fAr JV

and the we will have
h ? / 2

H = V2 o? c ~ -------
(H f ) 3

Following the algebra, one gets

cneiv — TcM  CqI^,
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Figure 6.4: The central charge for a numerical solution with stabilized dilaton 
(red dashed curve) and for the exact solution with linear dilaton (green curve).

where J\f is an radius (energy) independent factor. Then, the central charges 
of the original and T-dual solutions differ by a constant with no much dynam ­
ical content. This can be traced to the invariance under NATD of the quantity 
y/Sinitiale~^initial, being equal, up to a Fadeev-Popov like factor to the same quan­
tity in the dual background. This is explained in [30]. The Fadeev-Popov factor 
is associated with the scale independent num ber J\f above. This central charge 
and the entanglem ent entropy described below are two observables whose be­
havior is 'inherited ' by the non-Abelian T-dualised background QFT pair.

Entanglement Entropy.

We now turn to the entanglem ent entropy. Consider a boundary region R ^_1  x 
Xi where Xi is a line segment of length L. We calculate the entanglem ent en­
tropy following [1 2 2 ] and obtain,

L(r,) = 2yJH(r , )N £

/ OO

dr\/~H

dr
v 'H ( r ) - H ( r * ) ' 

r V h -  1

(6.4.21) 

drsfH.  (6.4.22)
A

Evaluating eq (6.4.21) using the numerical solutions with stabilized dilaton 
found in Section 6.2.3 we can show that L(r*) grows indefinitely and has not 
a m aximum value. The non-existence of a m aximum and hence the absence of 
double-valuedness for L(p*), suggests the absence of a first order phase transi­
tion in the entanglem ent entropy. This falls w ithin the description of [123] for 
the entanglem ent entropy of non-local QFTs. Same behaviour will present the 
background of eq (6.3.2).

A tricky point that should not confuse the diligent reader is that if a UV

135



cutoff is imposed on the geometry, numerically a double valuedness of L(r*) is 
obtained and correspondingly, a first order transition in the entanglement en­
tropy will be observed. But a more detailed analysis will show that changing 
the position of the cutoff, moves also the position of the maximum of the sep­
aration L(r*) and the maximum of the phase transition. Hence, this is a cutoff 
effect and should perhaps be taken as non-physical. The resolution is that a 
cutoff in the radial direction is needed to solve some stability problems in the 
configurations that compute the Entanglement Entropy. At the same time a 
Volume-law for the divergent part of the Entanglement Entropy will take place. 
A more detailed analysis of these issues appears in [124].

6.4.6 Page Charges

Finally, we will study some global quantities in the QFT that are defined using 
the background of eqs ((6.3.2))-((6.3.9)). Following [70] we write some given 
currents at constant radial position,

where Vg-p is the transverse space of the corresponding Dp brane. Using Stokes 
theorem these may be expressed as integrals over three compact spaces. Notice 
that we demand that v2 and v3 are compact to have these charges well-defined. 
Let us propose the following cycles at constant radius,

* J o / e =dFh  

* J m ‘ =d(F3 - B 2 AF1)

* J o 3ge = d(Fs -  B2 A F3  +  \B 2 A B2 A F,).

(6.4.23)

In terms of these we can define three Page charges,

(6.4.24)

Zi =  (i73), E3  =  (9 ,$ ,V 2 = v3), E5  =  (0 ,<p,i?2 ,u 3 ,t/?) (6.4.25)

Then the Page charges in our conversions are expressed as,

Qr>3 =  ^ ^ 4  J f 5 - b 2 a f 3 - - B 2 AB 2 A F\.
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We then get that the relevant quantities are,

Fi = -2 N {K  + l)dv 3

F3 — B2 A F\ = \ / lN (K  — 1 ) s m 0 (v2 dv2 +  v3 dv3) A d6  A dq> (6 .4 .2 6 )

F5 — B2 A F3 +  2B2 A B2 A F\ = 0 .

Performing explicitly the integrals, we get

Q d 7 =  —NA(K  +  1), QD 5  =  N(K — 1 )B, Qds =  0 . (6.4.27)

Importantly, we have imposed that the range of the coordinates V2 , v3 is finite. 
We have defined them as periodic with periodicity of the coordinate v3 being A  
and that for V2 being B, according to,

A  =  l l dz>3' ® =  I V2dVi  ( 6A 28)

The integrals are performed over the range of those variables V2 ,v 3. We can 
form the combination,

Qint = ~ (Q d 7  +  QD5 ) (6.4.29)

If we impose that the periods A, & are equal and integer, we have defined a 
quantised quantity Qjnt. This together with Q d 3, suggest a situation reminis­
cent of the Klebanov-Strassler QFT, with two gauge groups and one of the Page 
charges (that associated with D3 branes), vanishing.

This suggests that we are dealing with a two-node quiver, plus some bifun­
damental matter. It is certainly not the KS-field theory. We leave for future 
studies to describe the precise matter content and interactions of the bifunda­
mental matter.

6.5 Conclusion

Let us start by briefly summarising what we have done in this chapter. We 
started with backgrounds in M-theory, reduced them to type-IIA, wrote the 
conditions for these backgrounds to preserve minimal SUSY in four dimensions 
(this was material already present in the bibliography). The first piece of new 
material consisted in explicitly solving the differential equations with a careful 
numerical integration that used as boundary conditions the asymptotic solu­
tions, obtained analytically by solving (asymptotically) the BPS system. This is 
why we called our solutions 'semi-analytical'. We then studied the transition
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between G2  structure (in eleven dimensions) to SU(3) structure in type-IIA. We 
constructed explicit expressions for the potential and calibration forms.

Then, we performed a non-Abelian T-duality transformation on this type- 
IIA background. We obtained a family of backgrounds in type-IIB with all Ra- 
mond and Neveu-Schwarz forms turned on. This is a new family of solutions. 
We established its SU (2 )-dynamical structure, pure spinors, calibration forms 
and found some calibrated cycles. Restrictions on the range of the T-dual coor­
dinates were imposed, by requiring the smoothness of the generated space and 
the good behaviour of field theoretical observables.

After that, we moved into the study of the correspondence between the fam­
ily of type-IIA solutions and its dual QFT, also extending the study of vari­
ous observables to the QFT's dual to the new family of IIB backgrounds. In 
this line, we made clear that the QFTs are non-local and in the need of a UV- 
completion (this is especially clear from the behaviour of the Wilson loop and 
central charges at high energies). On the other hand, observables relevant to 
the IR dynamics show the expected four-dimensional behaviour. Finally, based 
on global charges, we loosely proposed a possible two-nodes quiver describ­
ing the QFT dual to the new type-IIB background. Notice that in the logic we 
are advocating, the background is defining the QFT via its observables at strong 
coupling.

A couple of points emerged as especially interesting from the previous study. 
If we impose that some physical observables of the QFT dual to our new back­
ground behave as expected, this in turn imposes constraints on the new co­
ordinates 'after the duality'. We also restricted the range of one of the dual 
coordinates Vi in order to avoid singularities. This is not free of ambiguities, 
unlike the restriction imposed on v$ to be periodic, such that the domain wall 
charge is quantised.

These new coordinates originally play the role of Lagrange multipliers in 
the sigma model Action. Working at the genus-zero level in the sigma model 
gives no information on the periodicity (or possible non-compact nature), of 
such new coordinates. It is quite nice to find some conditions imposing the 
good-behaviour of the dual QFT.

It is also quite interesting to have found an S ll(2)-dynamical structure in 
type-IIB for a solution preserving four supercharges. It is our understanding 
that such backgrounds are not easy to come by. The technique presented here 
provides a way of generating these and other backgrounds with similar fea­
tures.
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Chapter 7 

Concluding Remarks

Let us now summarise the results of this thesis. We used non-abelian T-duality 
as a supergravity solution generating technique. Or goal was to construct new 
type-II solutions that describe the strong coupling regime of minimally super- 
symmetric gauge theories. Our starting point was existing solutions with well 
understood gauge theory descriptions that exhibit interesting dynamics such as 
confinement, duality cascades and chiral symmetry breaking. The geometries 
of each of the solutions considered has an SU(2) isometry. We performed a non- 
abelian T-duality transformation on this isometry and generated new type-II 
solutions which we used to define new strongly coupled gauge theories.

In chapter 3 we considered a solution originally generated in [30] by act­
ing on Klebanov-Witten with non-abelian T-duality. We used this as a test­
ing ground in which to implement, for the first time, the powerful techniques 
of generalised geometry and G-structures within the context of non-abelian T- 
duality. We found that the 6 d SU(3) structure of Klebanov-Witten was mapped 
to an (orthogonal) SU(2)-structure, in a way that indicated a general rule m ap­
ping S U (3)-structures. Equipped with geometrical information about how SUSY 
is preserved it was possible to ascertain how calibrated sources transform under 
non-abelian T-duality. We used this information to generate a new flavoured so­
lution in massive type-IIA, which indicated how the SU(2) isometry T-duality 
acts on fundamental quarks in the field theoretic description.

Chapter 4 considered how non-abelian T-duality acted on the holographic 
dual of J\f = 1 SYM-CS in 3d and its deformations. As an aid to this we com­
pared this new solution to that generated when G2 -structure rotation is applied 
to the same "seed" solution. We found, rather stinkingly, that both generated 
solutions described field theory's containing Chern-Simons levels that could be 
shifted by large gauge transformations of B2 . Both were also confining in such 
a way that it was evident that a Chern-Simons term was determining (at least 
some of) the IR dynamics. This pointed evidenced by the fact that certain cou­
plings began to "freeze" as one flowed towards the IR, tending to a constant.
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However, despite some "cosmetic" similarities the solution of G2 -structure ro­
tation and non-abelian T-duality describe quite different gauge theories. The 
most sticking difference being that the AdS4 asymptotics of the former provides 
a UV completion of the seed solution, while the latter does not.

Chapters 5 and 6  dealt with the dualisation of confining conifold solutions 
in type-IIB and type-IIA respectively. We found in both cases that the structure 
of the T-dual solutions supported a dynamical SU(2). The dynamical structure 
seems to be closely related to the confining behaviour of the gauge theories. In 
particular, the angle between internal spinors only changes noticeably in the 
confining regime. The structures tend quickly to static SU(2) as one flows to­
wards the UV. In addition to this we performed an extensive field theoretic anal­
ysis of the gauge theories generated by the T-duality transformation. We ascer­
tain how many field theoretic observables are transformed, giving credence to 
the proposal that field theory observables not charged under the global SU(2) 
on which the duality is performed should remain present in the T-dual solution.

Extending our results on the transformation of G-structures to other dimen­
sions seems like a fruitful avenue of further research. We make the first steps 
towards this for the case of 7d structures in chapter 4 where we show that G2  

is mapped to dynamical SU(3) in the case considered there. This needs to be 
fleshed out though and other examples considered. It would be particularly 
interesting to know to what extent the interplay between confinement and dy­
namical structures persist across diverse dimensions and examples. We have 
shown in the thesis that non-abelian T-duality provides a prescriptive method 
of generating solutions with G-structures that are quite rare. One may hope to 
learn from this something about the general construction of such solutions.

The general outlook for non-abelian T-duality as a SuGra solution generat­
ing technique with applications to holography seems good. This thesis con­
tains concrete examples where interesting dynamics are generated by the dual­
ity. Given the wide range of backgrounds that have an SU(2)-isometry, there 
must be much more of interest that can be generated in a similar way to what 
is shown here. It would however be desirable to have greater general under­
standing of the effect on the gauge theories before one actually performs the du­
alisation, like one does for G-structure rotation. It would be interesting to add 
flavours to the dual background considered in chapters 4,5 and 6  in the spirit of 
chapter 3, where it is shown that one may flavour the dual solution by simply 
dualising the original solution with smeared flavours added. This would surely 
work and it would be particularly interesting to see the effect this had on the 
Chern-Simons levels of chapter 4. Flavour is added to the Maldacena-Nastase 
solution in [63, 73]. It would also be interesting to dualise the G2 -structure ro­
tated solution.

The main confusing aspect of non-abelian T-duality is whether the dual co­
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ordinates V{ are compact or not. We cannot rely on a direct worldsheet method 
to determine this as is possible in the abelian case. There imposing that holon- 
omy's on non trivial topologies are gauge trivial fixes the period of the dual 
coordinate when the original coordinate is compact. In this thesis we have used 
arguments motivated by holography to fix the periods of the dual coordinates. 
We required that Page charges are quantised which leads to a restricted range 
for dual coordinates. As further evidence for finite limits on the dual coordi­
nates we find in chapter 3 that the flux of B2  over S2  is only constrained to lie 
within [0,1] up to a finite upper bound on the the dual coordinates. This is- 
plies that out side this region our supergravity solutions are not well defined 
globally.

At this point we should make some comments about something that was 
largely sidestepped in this thesis. What does restricting the range of actually 
mean? First off we could assume that v\ G IR however this raises some prob­
lems motivated by AdS-CFT considerations. Firstly if our T-dual geometry has 
an AdS factor we expect it to describe a strongly coupled CFT. However, as 
pointed out in [37], G K would lead to a CFT containing operators with di­
mension proportional to a continuous parameter. If we restrict to V[ G [vai, v ^]  
the T-dual geometries do indeed have discrete spectrum of fluctuations that 
may be identified with a discrete spectrum of conformal dimensions, but this re­
striction raises some question on the supergravity side. Requiring v  G [0, v max] 
say, means that the geometry is terminating at at at a regular point v max• This 
indicates that we should have localised delta function sources to satisfy the 
equations of motion at v max.

So what are we to make of this? One attractive explanation is that there 
exists a regular and well defined solution which the non-abelian T-dual is ap­
proximating within some range of the coordinates uz [125]. Recently this idea 
was given support by [113] where non-abelian T-dual sigma models arise as 
the end point of a whole line of integrable deformations of exact CFTs. There 
a WZW model is added to the "seed" sigma model and a continuous param­
eter interpolates between this and the T-dual solution . For generic values of 
this parameter all coordinates remain compact. But when it comes infinitely 
large one can effectively rescale the compact coordinates and zoom into the 
manifold. Thus the apparent non-compactness of non-abelian T-dual variables 
would appear to be much the same as if we were to use planer coordinates to 
describe a sphere, which only works locally. If one can embed such a construc­
tion in type-II supergravity, the problem of the range of the dual coordinates 
is resolved. Finding such an embedding is clearly the most urgent avenue of 
future research.
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Chapter 8 

Appendices

A Supergravity Conventions without Sources

We work in string where the action of type-IIB in the absence of sources is given 
by The action of type-IIB without sources is given in string frame by

S i ,b = L f g  e~ 2*  ( 3! 2 5!

— — (C4  A H A (IC2 ) •

While the equivalent action in massive type-IIA is

^MassIIA =  /  y / g  e 2* (
M o  V o + ? + 312 4!

-  M  dC3  AdC3  A B +  ^ d C 3 A B3 + ^ B 5

(A.l)

(A.2)

The 10-d hodge dual is defined such that

(A.3)

where Fn are the RR fluxes of either type-IIA or type-IIB supergravity. The 
fluxes may be used to define a polyform F such that

F =
Fo + F2 + F4 + F6 + Fg + F1 0  for type-IIA
F\ +  F3  +  F5 +  F7 +  Fg for type-IIB

(A.4)
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In terms of the polyform the Bianchi identities may be expressed as

[d -  HA)F  =  0, dH = 0. (A.5)

It is easy to show this is satisfied with the definition

F = (d — HA)C +  Foe®2  (A.6 )

where C is a polyform constructed from the RR potentials in the same fashion 
as above and Fo should be taken to be zero in type-IIB. The flux equations of 
motion are expressed as

(d +  HA) * F  =  0, d(e_ 2 ® *H ) =  ^ F „  A*F„ (A .7)

where the sum needs to me taken over the appropriate RR fluxes of type- 
IIA/IIB.

The dilaton must obey the equation of motion

R 1
d ★ dO +  *— — dO A *dO — - H  A *H =  0, 

4 8

while Einstein's equations are in type-IIA by 

Rftv =  —2 D„D„<fc +  t H 2„+

, 2 0

4!

with the equation in type-IIB given by

(A.8 )

(A.9)

Rjiv — 2D^DvO +fi L-yv

,2 0
4 (^3 )pv +  gfi(F£)}iV + 3 1 3̂ )

(A.10)

In section D, we will give expressions for the fluxes and their Bianchi identities 
in the presence of sources.

B Pure Spinors

Here we follow the conventions of [117] except for a difference in the self dual­
ity condition of the RR section which leads to a few sign differences. We work
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in string frame and consider solution with metrics that can be expressed as

ds2 = e2Adx2fl +  dsl (B.l)

and preserve J\f = 1 SUSY in 4-d with non trivial RR sector. This means that 
the internal space, with metric d s must support an SU(3) x S17 (3)-structure 
[20]. We decompose the 10-d MW spinors into a 4 +  6  split as

e1 =  £ + (g> 77+ +  £ - (g> 77]1, e2 =  £+ (g)77!+?_(g>77!. (B.2)

where in e2  the upper/low er signs should be taken in type-IIA/B, the =b indi­
cates chirality of both 4-d and internal 6 -d spinors and we choose a basis for the 
internal spinors such that ( 77+)* =  77- .  It is possible to define two C l i f f  (6, 6 ) 
pure spinors on the internal space as

<J>± =  T]\ ® ((/!)+ (B.3)

which may be identified with polyforms under the Clifford map. The internal 
spinors are decomposed as

r]\ =  eAe'?±i ^ i ] +, rj\ =  eAe~t k̂T ^ (k ^ +  +  k±x +) (B.4)

where kj, +kj_ = 1, 17+ 17+ =  X+X+ = 1 and X+V+ = 0- The M  = \  SUSY condi- 
tions for such a S17(3) x S 17(3)-structure solution are given by the differential 
conditions

(d -  HA)(e2A- ^ ± )  = 0

(B.5)
(d -  HA)(e2A~<f,^ T ) = e2A-$dA  A <J>2 =F \e3A * 6 *A(F)

where A(An) = (—1) ( 2 * A n and F is the internal part of RR polyform in type- 
IIA/B where the RR forms are each decomposed such that

Fn =  F„ q= e^vol^  A A(*6 Fio-n)- (B.6 )

As before upper/low er signs correspond to type-IIA/B
Clearly in general 77+ is composed of a parts that is parallel and a part that is 

orthogonal to 77+. The SU(3) x S17 (3)-structure can categorised into 3 distinct 
cases depending on the values of the coefficients kj_ and k :̂
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SU (3)-structure

When k± = 0 the internal spinors are parallel and the pure spinors define an 
SU (3)-structure in 6 -d such that

<K+ =  - e ,6+e- e - l ,

■» eA 
=  ~iel8- — n hoi

(B.7)

where /  and O^0/ are the two and holomorphic three forms associated with 
SU(3), they are defined as in terms of the 6 -d gamma matrices as

=  ~ i> ] - 'Y a b c t1 + ' Jab =  - i v i ' Y a b V - b ,  (B-8)

and satisfy
3 .

/  A Clh0i = 0 ,  /  A /  A /  =  -^ Q hol  A ^ hoi• (B*9)

Orthogonal SU (2)-structure

When fc|| =  0 the internal spinors are orthogonal and the pure spinors define 
an orthogonal SU(2)-structure in 6 -d such that

0 +  =  - i e ie+e-^-e-vAw Au>,

eA (B'10)
0 _  =  ie l9~ +  iw) A e~li 

8

where the SU (2 )-structure one forms v, w and two forms /, to are defined as

Wa -  i v a =  t ] l y aX+> iab =  - i V + 7 a b V + + iX + 7 a b X + ,  ^ a b  =  V - 7 a b X ~ -  (B -H )

and obey the relations

j  A CO =  CO A CO =  L(w—iv) (^0 =  L(w—iv) (/) ®
1  (B.12)

j A j  = -coAco.

Intermediate and Dynamical SU(2)-structure

For intermediate SU(2)-structure and k± are non zero constants, this and the
previous example are also referred to as static Slf(2)-structure. For dynamical 
SU (2)-structure k\\ and k± are point dependent. For both these cases the pure
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spinors are given by

8
4>+ =  t ^ eie+e~ivAw(kue~'i -  ik±u>)

** , (B.13)
0 _  =  l-^-e l0~ (v +  iw) A (k±e li +  iknto)

8 11

where eq (B.12) and eq (B.ll) still hold.
In these conventions the SUSY conditions (here we consider type-IIA, details 

of type-IIB are given in appendix E) may be split up as follows:

d[e3A~^k\\] = 0

d[e3A~^(k\\(j + v A w) +  k±co))] — ie3A~^k\\H = 0 

d [e3A~^  Q/cy (j +  v A w ) 2 +  k±v A w  A co)] — 

ie3A~ ^H  A (fey (j + v A w) +  k±cv) =  0

(B.14)

where the second of these gives a definition for H  which can be combined with 
the first to give a definition of the NS potential, namely

B2 = (B.15)
ll

this is not the same as the NS potential generated by non-abelian T-duality but 
must match it up to an exact.

The rest of the SUSY conditions are

*6 f  6 =  0

d[e4A~^k±W-] =  — e4A*6-F4

d ^e^-^kxw + l = 0 (B.16)

d[e*A~^(k\\cv- A w — k^w+ A v + kj_w+ A j)] +  e4 A~^k±H  A w -  -- —e4 A *6 ^2 

d[e2A~^(k\\to+ A w + fc||co- A v — k±W- A;)] +  k±e2A~ ^H  A w+ =  0
j

d[-e4A~^k±j A j  A id _ ] — e*A~ ^H  A {k\\W- A w — fc||a;+ A v +  k±w+ A j)

1
d [ t e2A ®kj_j A j  A w+\ — e2A H  A (k\\(v+ A w +  k^co- A v — k±w - Aj)
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where

w + = sin 0_i7 +  cos 6-W, W-  =  sin0_ — cos0-V ,

(v+ =  sin 0_Rea; +  cos 0-Ima;, co- = sin 0_lma; — cos 0_Rea;

from which it is possible to define the higher forms of the RR sector as:

Fs = dCs

F% =  d(Zj — H  A C5

F1 0  — dCg — H  A C7

(B.17)

(B.18)

where we assume # 2  A B2 A B2 = 0 as required by J\f =  1 SUSY. The RR poten­
tials are given by

C5  =  e4A °i;o / 4  A k± ( sin0-w  — cos6 - v )

C7  =  — e4A—<*vol4 A /C||(sin0_lmo; — cos 0_ Rea;) A w — (B.19)

k || (sin 0_Rea; +  cos0_lma;) A u  +  k^(sin 0 _i7 +  cos0_n;) A j

AA &v o i  ̂ a  k± j  /\ (cos — sin 6 - w )  

The calibration is given by

=  - 8 e3 A_4 Im<J)_e“ B 2 (B.20)

where =b depends on our conventions in the WZ action. That Sqbi +  Swz — 0 
is trivial because we have:

C5  +  C7  +  C9  =  —8 ^0 / 4  A e3A-< TmO. (B.21)

C On static SlZ(2)-Structures in 6-d

In this section, we give further details regarding the SU(2) structure that are 
used through out the main body of this text. We sketch the derivation of the 
conditions that the S17(2)-structure must satisfy for J\f =  1 SUSY in type-IIA. 
We will also use these to define potentials for the space-time filling RR-fluxes 
and the calibrations for space-time filling D4, D6  and D8  branes. We assume a
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string frame metric of the form:

ds2 = e2Ady2 3 +  ds\ (C.l)

with a dilaton O and a NS three form H =  dB. We further assume that <J>(z), A(z) 
with z any coordinate in d s Expanding out the SU(2) pure spinors in eq (3.2.8) 
gives:

<*>+ =

o _  =  

o _  =

\ab\
~8 ~

^ ■ (1  -  i] 2  -  A jz) A (vt + iwi).

(0 2  — i(0 2  A v\ A w\ — -a ?2 A v \  Azv\ A v \  Aw\  

1 . (C.2)

\cib\ 1

ui -  iw\ + j 2 A (wi +  mi) -  - ) 2  Ay2  A (z>i -  m>i)

Supersymmetry requires that |a| =  \b\, we define:

|afr| =  \a\2 = (C.3)

Plugging eq (C.2) into eq (3.2.4), equating forms with equal number of legs and 
separating real and imaginary parts gives,

e3A~®co2 =  0

e3A ®a>2 A V\ A W\ +  ie3A~®H A w2  =  0.
(C.4)

For two forms,

3 4 —<i> e wi

— e3A ®dA A v\ = 0.

_l_ eSA-'&dA A w\ = —e3A *6 F4.
(C.5)

For four forms,

- d e3A-®j2 A wx — e3A-0 HAi»i +  e3A ®dA A 7 2  A W\ =  0,

e3A~*j2 A v 1 — e3A—<E>H A W\ +  e3A ®dA A ]2  A v \ =  e6/i * 6  F2 ,3A
(C.6 )
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while for the six-form,

e3A <1>j2 ^  y2  ^  ^

„3A—<E>

+

H  A jz A W\ +  ^ e3A ®dA A 72 A 72 A =  0.

e3A-®j2 / \ j i / \ w i

, 3 A - 0  ;

2

+
1

A ]2 A iq  +  ^ e 3A ® d A  A 72 A 72 A zoi =  *5 Fq.,3A

Finally, we have for the zero-form

*6 Fs =  0

(C.7)

(C.8 )

where the fluxes Fq, F2 and F4  are understood to have legs in the 6 -d internal 
space only. These equations can be further simplified as follows:

3 4 —<I>e co2

a>2 A 

d 2A-<t>e v\

\ d

\ d

=  0

d(v  1 A Wi) + iH  = 0  

=  0

=  —e^A ~k(y F4

+  e2A~*H A v i = 0  

- e4

— e2A~ ^H  A 72 A W \  = 0

4A-<t>e w\

e2A ^72 A w \  

eAA~ ® j2 A v\ AA-® h  a  wi = e4A * 6  F2

e2A ^72 A 72 A v\

4A~<t> • A ■ Ae 72 A 72 A Wi _l_ g4A <D^ ^  y2 a ^ i  =  e4/i *6 Fq4A

*6 Fe =  0 .

(C.9)

We clearly now have a definition of the Minkowski space-time filling RR-sector 
in terms of the SLT (2)-structure:

Fe = d 

F$ = d

,4A-<t>V0 I4 A W\

„4A—<t>vol4 A 72 A Ui ,4A-0 H  A 170/4 A lOi (C.10)

F1 0  =  ~-jd ,4A-0,V0 I4 A 72 A 72 A Wi +  e*A ° H  A 00/4  A 72 A z>i,
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where the remaining fluxes can be obtained from the duality condition F2n =  
( —) n ★ Fio—2n- With these fluxes it is possible to derive expressions for the po­
tentials associated with these fluxes. They take the most compact form when

We must have — H  A C3  +  ^FqB3 =  0 for J\f =  1  SUSY, otherwise the final line 
in eq (C.9) cannot hold. This allows the derivation of canonical potentials in 
terms of the SU(2)-structure,

expanding this out and extracting the terms with an equal number of legs gives:

Which makes it clear that an SU(2)-structure in 6 -d can potentially support 
Minkowski space time filling D4, D6  and D8  branes wrapping one, three, and 
five-cycles respectively.

D Some Details of the Flavoured S U ( 3) and S u b ­
structure solutions

We will start analysing the case of the addition of flavors to the Klebanov- 
Witten field theory [6 8 ]. This will be explicitly dealt with using the language 
of SU(3)-structures. Then, we will extend the analysis to the background gen­
erated in section 3.4. This will require the full SU(2)-structure formalism, de­

1We are assuming B is defined only on the internal space so that B4 =  0.

the space time filling part of the RR flux ployform is expressed as1,

Mink d C ^ in k  H  A (C.ll)

C5  =  eAA ^vol^ A W\

C7  =  eAA~®vol4 A ]2  A v\

C9  =  - - ^ A~^VOl\l\]2 ^ ) 2  A W\.

(C.12)

The calibration for type-IIA space time filling D branes is defined as

Ycai = -8 g 3A" 0 ( Im Y _ ) A eB, (C.13)

cal
4 A -O

—  — e

(C.14)
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veloped above.
We consider the addition of Minkowski space time filling sources to an 

SIT(3)-structure background in type-IIB. The action of type-IIB in string frame 
is modified as:

S = Sub +  Sdbi +  Swz- (D.l)

With pure spinors defined as in eq (3.2.7) the calibration condition is given by:

YCd iib =  - & A~* (W+) =  e -*  f  1 -  1/ A j )  (D.2)

is compatible with source D3 and D7 branes We are assuming, as it is true for 
the Klebanov-Witten model with massless flavours, that H = 0. The combined 
DBI action of such a system will be given by:

C _  c D 3  I c u 7  
S D B I  —  Z>DBI '-’ DBI '

<t>\  / _<p j >-
DBI

c D 3  _  ‘Jnnr —

While the WZ terms will be given by:

(D.3)

c    q D3  i c D 7^WZ — Dwz ^WZ'

S™z =  " Im10 ° 4 A S6' (D-4)

D7, =  [  c 8 a e 2.
JM-iq^wz —

The fluxes, in the presence of sources for the case of B = 0, should be defined 
as,

H = dB, F\ = dCo, F3  =  dC2 , F5  — dC4  (D-5)

and the Bianchi identities are modified as follows:

dH = 0, dF\ = S 2 , dF?, — H  A F\ = 0,
(D.6 )

dF$ — H  A F3  =  £ 5 .

where which of the S/'s are non zero is determined by the specific source brane 
content. The dual fluxes, related by the expression F2 „+i =  (—)n *F 9 _ 2 n/ are 
defined as:

* F5  =  F5 , Fj — dC(>, F9  =  dCs (D-7)
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and the fluxes have the following equations of motion:

d ~k F\ = 0 , d~k F3  =  0 (D.8)

for Klebanov-Witten with massless flavours we should set E& = 0 and then the 
equation of motion of the dilaton and Einstein's equations can be shown to be 
satisfied also as in [60, 61].

D .l Analysis of the Solution Generated

In chapter 3 we generated a flavoured type-IIA solution which supports an 
SU (2)-structure and non closed B. The action of (massive) type-IIA in string 
frame, is now modified,

As shown around eq (C.14), an S li(2)-structure can in general support smeared 
source D4, D6  and D8  branes that extend in the Minkowski directions. The 
combined DBI and WZ actions of this system are given by:

S =  SMassive IIA +  S d BI +  S\WZ (D.9)

and

c    c D 8  1 c D 6  1 c
2WZ — J WZ >" J w z  d" D4

WZ'

(D .ll)
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In the presence of such sources we should define the RR-potentials as:

F0, F2 = dC1 +F0 B, F4  =  dC3  +  BAdCi +  y B A B ;  (D.12)

this ensures that we have no ill defined potential terms appearing explicitly. We 
note that source D8  branes imply that Fo will no longer be quantised. In general 
the Bianchi identities are given by,

cIFq = S i, dF2  — FqFI = E3  +  B A Ej;
1  (D.13)

dF4 — H  A F2 =  S5 +  B A S3 +  —B A B A  S j

The dual fluxes, related by the expression F̂ n =  (—)n ★ Fio-2 n/ are defined as:

F(, =  dCs, F% =  dC? — H A  C5,
(D.14)

F\o — dCg — H A  C7 .

Here, we did not write the terms that are zero due to the SU(2) SUSY conditions 
in 6 -d. The flux equations of motion for the RR sector are given by:

d -k F2 T- H  A *F4 —— 0, d ★ F4 +  H  A F4 =  0, (D.15)

while for the NS sector we find:

d (e ~ 2* * H )  =  Fo * i~> + 1 7  A *Fj +  -F j A Fj — (D.16)

uo/4 A (w i  A B — V\ A  72) A S i +  uo/4 A W\ A  S3
e*-'

h

A  careful calculation shows that the potentials do not enter into this equation 
explicitly [64]. We can express the variation of the dilaton as an integral for 
compactness,

Sdb/ =  -  / 8 e“ 2 ^(d*d<l> +  *^ - d< l > A * d < l> - i H A * H )  (D.17)J 4 8

It is useful at this stage to introduce the following notation,

W ( P ) J A ( P )  =  ( D -1 8 )
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where the following identity is helpful,

(D.19)

Then Einstein equations can be expressed in a gauge invariant fashion as:

The eqs (D.13)-(D.20) are solved by the metric, fluxes and sources of section 3.4 
once the BPS eqs (3.4.10) are imposed.

E Details of the non-Abelian T-duality on the D5 
branes solution.

The purpose of this section is to give some details of the SU(2) isometry T-dual 
of Wrapped D5 branes on S2. This was first derived in [30], but in slightly dif­
ferent conventions and the G-structure was not found. This is the C =  1, <S =  0 
limit of the full Baryonic Branch dual solution, and as the procedure for find the 
the G-structure is the same in both case we hope that this more simple example 
will be instructive.

Solution of wrapped D5 branes on S2 [17] has string frame metric given by

e * +4> r  1  „  1
~h—  48 Ei)pai...«4 *  {pol4 A w i ) ? 1"’*4

-  i ( S 3 +  B A S i ) m a 2  ★ (vol4 A v i A  j2 ) i l0C2 

1

-  -H i H * (voU A w i A  j2 A j2)v

1  /  1
-  - g Hv f (H5 +  H3 A B +  -B  A B A H i) j  *  (vol4 A zvi )

-  (H3  - f  B A H i) j  *  (170/4 A z?i A j2)

(D.20)

il j  ★ (1 7 0 / 4  A W\ A j2 A j2)

ds2  =e® \d x \ f 3 +  e2kdp T- e2h (dO2 +  sin2  Odcp2) +

a
4
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where the functions a,b,g,h,k  and the dilaton O only depend on the holo­
graphic coordinate r. The a); are SU(2) left invariant 1-forms which can be 
parametrised as

Cb\ — cos ipd6  +  sin ip sin Odcp,

d> 2 =  — sin ipdO +  cos ip sin 6 dq>,. (E.2)

CD3  =  dip +  cos Qdcp.

A convenient set of vielbeins is given by

ex'= e * d x l , ep = e*+kdp, ee — e*+hd6 , e<p = e*+hsin 9 dcp,
1 1 

e1 =  2 e * + S ( ^ 1  +  a dO) / e2 — 2 ^ + , ? ( ^ 2  ~  a s n̂ ® dcp),
-1

e3  =  - e ^ +fc(d> 3 +  cos 0 dcp) . (E.3)

with respect to which the non trivial RR flux £ 3  may be expressed as

F3  =  <rz* [/ie 1 2 3  +  / 2  A 3  +  / 3 (e0 2 3  +  e^13) +  f A{epie +  e ^ 2)] (E.4)

where the fi are given by eq (5.2.8). In these conventions the projections the
10-d Killing spinor e obeys are

Ei2 £ =  r e<p€, r rl23e =  (cos oc +  sin ocY^e, ie* =  e , (E.5)

with respect to the 4 +  6  split we can define components of e to be equal with 
positive chirality as

e\ = e2 = eA(£+ 0  77+ +  £_ 0  rj-) (E.6 )

where 2 A =  O. Once the usual decomposition of gamma matrices,

=  'fy 0 1, Ya =  1 0  y a (E.7)

is performed it is a simple matter to derive the S U (3)-structure forms of eq
(5.2.15) using eq (B.8 ), where we have chosen i'yr9<pi23rJ+ = *]+■ To do this it is 
helpful to perform a rotation in , e2 which will also be useful later

e? =  cos oceV +  sin oce2

e2 — — sin ocê  +  cos oce2  (E.8 )

&1 =  ea for a 7  ̂ cp, 2 .
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The rotated 6-d projections are then simply

1 >0 *7 + =  7r3*7+ =  721*7+ =  i rj+ (E-9)
and the SU (3)-structure becomes canonical.

We want to T-dualise this wrapped D5-brane solution along the SU(2) isom- 
etry parametrised by cDj. Section 2 and appendix B of [30] give all the details of 
the algorithm one must follow to do this and so we direct the interested reader 
there for details of the NS sector. For the RR sector we only give details that 
will be relevant for later calculations.

The duality will drastically change the vielbeins that contain the SU(2) left 
invariant 1-forms e1, e2, e3 and leave the others untouched. For the dual of the 
wrapped D5 brane solution gauge fixed such that the remaining dual coordi­
nates are Vi, v$ and xp, the canonical vielbeins given by the procedure of [30] 
are

eV =
eg+*

k+<z> ^ _  ^ e 2g+it> (cos xp(aco2 V3 +  dv2 ) +  smxp(acoiv^ — 0J3 V2 )) —
8W

4v$ sin xp(acv2V3 +  dv2 ) +  4 v3 cos xp(aco\V3 ~  ^ 3 ^2 ) J  — 

4 v2 e2%*® sin xp(aco2 V2 — dv 3 ) — 8 \ / l v 2 cos xp(v2 dv2 +  v^dvs) (E.1 0 )

1'e =
eg+i

2k+® ^ / 2 elg^ ( c o s  tp(oJ3 V2 — acoiVs) +  UCO2 V3 sin 1/? +  dv2 sin xp) —

«/ ek+t
e = ------

8 W

8W

4v3(cosxp(acv2V3 -I- d v 2 ) +  sinxp(acviV3  — CV3 V2 ))  J  —

4 v2 e2 g + 0  cos tp(aco2 V2 — dv 3 ) +  8 \fl.V2 sin xp(v2 dv2 + 1*3 ^ 3 ) 

y/2e4g+2<i\ac0 2 V2 — dv 3 ) +  4v2e2g+̂  (CO3 V2 — ato 1V3 ) — 

8 V 2 v3 (v2 dv2 +  v3 dv3)

with the remaining vielbeins still given by eq (E.3), that is ea = ea for a ^  1,2,3. 
The (Vi are defined as in eq (E.2) but with 6  —> 9, q> -> cp. It is possible to re­
move all the explicit angular dependence from the dual solution by performing 
a rotation in the 9, (p directions such that

ee _  gh+<&/2w  _  cos y e6 _j_ s n̂  ^ (p
, , (E .ll)

e<P _  ^ 1+ 0 / 2^  _  _  s in  _(_ c o s  t
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and an additional rotation in 1',2 ',3 ' directions such that

1 1 1 •e  = cos ip e  — sin ip e

e 2 = sin ip e 1 +  cos ip e 2 (E.12)
3 3'e  —  e  .

Theses rotation make the expressions for the vielbeins and fluxes a lot more sim­
ple than they otherwise would be, they are given for the dual of the wrapped 
D5 solution as in section 5.3 but with S  — 0, C =  1. However, it is the ea viel­
beins rather than the ea ones that are more suited to calculating the G-structure
of the dual solution.

It was shown explicitly in [41] that the 10-d MW Killing spinors transform 
under an SU(2) isometry T-duality as

Cl =  Ci, C2  =  Oc2 - (E.13)

where O is given by
n  _  r (10) ~ r l23 +  £ fl=1 l < F a

y r r ?

and for the wrapped D5 background we have

£* =  2 V 2 e~8~k~^V2 Cosxp, £ 2  =  — 2 \ / 2 e~8~k~<l>V2 sirup,

£ 3  =  2V2

(E.14)

(E.15)

Starting from eq (E.10) we first rotate the vielbeins as in eq (E.8 ) so that the 
projections are canonical. The O matrix then becomes

cos a f 1 2 3  +  s in a f 1 ^ 3  +  ^ i f 1 +  & cos a t2 +  ^ s in a P P  +  ^ f 3  
12 = ---------------------------------------------  :------------------------------------------  (E .I6 )

\ / i  + U

where we have used y l'f3t]+ = it]-. The new spinor £ 2  is:

h  =  e*/4 (f  + (E.17)

where

^ 2  C O S  ocyr +  C1 7 1 +  £ 2  C O S  ocy2 +  £3 7 3  +  £ 2  sin olY
---------------------------- 7 1 + n ------------------------- , * +  ^

. sin Di 
1—= -  r\-.
v 'T + T T
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It is clear here that, as long as sin ft ^  0, we are in the dynamical S U (2)-structure 
case, because ft =  cc(r). In order to simplify the expressions we perform another 
transformation of the vielbein basis:

\

R =

COS ft 0 0 Cl £ 2  COS ft £ 3

0 x/A 0 0 0 0
1 0 0 VA 0 0 0

Va - f i 0 0 COS ft — £ 2  COS ft
— £ 2  COS ft 0 0 - £ 3 COS ft £ 1

-£ s 0 0 £ 2  cos ft - £ 2 COS ft

(E.19)

where

We define a new basis:

A =  cos2 f t+  £ 2  +  £fcos2 f t+  £ 2

e = R.e

where the order is r6cpl23. In terms of this new basis, the spinor is:

(E.20)

(E.21)

. sin a
rj+ + 1  rj-

v t + u

And the projections in this basis are still:

7<p0*l+ =  7r3*7+ =  721*7+ =  irj+

(E.22)

(E.23)

Let us now express the forms of the geometric structure, following the conven­
tions of appendix ??.

e+ = o e _ = o

sin ft
kw =

V T + T 7

z = w — iv  =

k ±  =  

1

cos2  ft -I- £.£
! + £.£

(x/Ae3  +  £ 2  sin oce6 +  z(x/~Aer +  £ 2  sin

(E.24)

; =  er 3  +  e?6 +  e21 -  v A w

co =

x /c o s 2 f t +  £•£
-v  A w

(x/A(e^ -I- ii?) — £ 2  sin ft (er +  ie3)) A (e2  +  ie1)
y j  cos1 ol +  £ .£  

which is a dynamical SU(2)-structure.

158



F Details of the non-Abelian T-duality on the Bary- 
onic Branch solution

In this section we give some details of the SU(2) isometry T-dual of the Bary- 
onic Branch of Klebanov-Strassler. This was originally derived in [30] with 
gauge fixing such that v\ =  q> = 6 = 0. The previous derivation indicated 
a departure in the T-dual from the log corrected AdS 5  asymptotics of the Bary- 
onic branch. Let as begin by giving some details of original calculation in our 
current conventions

F.l Dual of the Baryonic Branch without the shift in B2

Once more we will start by specifying the dual vielbeins. The components

ex1 = e*h~*dxl , ep = e*+kh*dp (F.l)

do not change. The vielbeins in the 6, cp are also unchanged by the duality
however we find it useful to introduce a rotation in ee, e? such that the dual
solution has no explicit tp dependence.

£  =  y/Ceh+* n  o>!, e® =  VCeM / 1  o>2, (F.2)

The vielbeins in the directions 1,2,3 can be compactly written in terms of the 
quantities defined as,

e2g+®
V3  =  v3 H cos oc,

2y/2

e<&-2h /  \
A =  dV3  +  S N C ye2g +  2elh — aeg (beg — 2eh cot a) J d p ,

,4>—2 /i
SN~ ( f?2# 4 - 2 p^ 1 — ap%(hp8 — 2 p*1 r o t  a') ] dn .

(F.3)

]i\ =  ae% cos oc +  2eh sin oc,
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With these, we have

t eg + * / 2

16W
■ y/C e2fc+<̂  ^ 8 V3 (flV3 a;i — V2 CO3 ) — 2\/2.elg+®C(dv2 +  C1V3 CO2 )

— 2 y / l e g + ® SV3}iiCVi  +  e3g+2^ C S j4 iU )2 \

+  8 v2 (eg+®V2 S}ii(V2 — 2\/2(V3A +  ^2 ^ 2 ))

g+<&/2 r /
i  = 16VV~g3/2 ^  ( ~~ 2 v^e 2 x+4 >C(«V3wi -  p2 w3) -  8 V3 (di>2  +  flV3 aJ2)

+  e3*+2,I>C«Ŝ 1a;1 +  2\/2ex+<t,5V3^1a;2 j  (F.4)

— 8^U 2(~ A  +  CIV2CV2 )

* pk+&/2
* - e  V c

16W ^ +<1>i ;2 ^y/2.e2g+® C(aegC u?2 +  < ^ 1^ 1)

— 4 ^ C (a V 3ci;i — ^2^ 3 ) +  4<9V3^ ia ;2^

-  V 2 . A (e4g+2<t>C2 +  8V3) -  8 \ f 2 v2 V3 dv2

where the rotation of eq (E.12) has been performed 2. We will then have a metric 
that in terms of these vielbeins reads, ds2t = (e1)2. Notice that the quantity
A in eq (5.3.4) will, when squared to construct the metric with the vielbeins 
above, imply the existence of crossed terms gpV3 and also the change of the 
asymptotic behaviour of gpp away from log corrected AdSs.

In terms of these vielbeins, the NS two-form B2 reads,

B2 = _ 4 v~ 6 ha(egv2e^  ek^ 3e^ )  — ^  s V3e ^  +  y/ 2 Ceg+k+<pe ^ J  +4^2 
5  
C

V3 e* (ae~her§ -  2 e~geri) +
eg+k+<P-h

C (2e2her̂  + B\e01) — (F.5)$ 1 '

2 v 2 v" ' '  '  '  / ■ 4 y/ 2 y 2

e—— (2 eh cos a: — aeg sina)e^ +  efi —

2Actually this differs from [30] in orientation which can be compensated for via 1 2.
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The dual dilaton is given by

$  = <£—I  In W, W  = c (  I e4g+2*+3<I.C 2 +  e2g+<t>v2 +  e2k+<t>v 2  ̂ (F6)

And the RR sector is given by,

Nc
0  =  7 T

e~*
h  =  - — NcC 2e~2h(l + a2 -  2ab)V3e ^  + e~^-h~kC{a -  b) ( V ie 2̂ *  (en  -  e<&) +

4efcV3 (e^  -  e^1) -  4v2eSe&\ -  8 e“ 2 *V3 e1 2  -  S e S ~ kv2e2 3  -  2e~H- kv2erS

Set'
yflC  sin cl

,—g —h—k—<t>

—  ( Ncb +  a(e2g cos2  oc — Nc) +  eg+h s in 2 a ̂  , (F.7)
n cc\ J

F* = — S ( ^ N‘ C(1 +  a2 -  2ab)<** A (i/w e2g+k+<t~he ^  + 4e2 «-'1e13) 

Cb'erS A (4ekV3ei% -  3/2e2S+k+'t’e®) -  8 <*v2{a -  b) / 1 2 3  

er$ A (4e*D2 e1 2  -  b'ek(y/2e2 ^+4 ,e1 3  +  4V3en ))

2 S e ^ - h~k- *
C2 sin oc

^a(e2g cos2  oc — Nc) +  (Ncb +  es+h sin 2a.) ̂  ^V3 e M ^  +  V2 ege ^^^ j

We will now proceed to show that the bad asymptotic behaviour and off diag­
onal p terms of the metric are actually a gauge artefact.

F.2 The dual of the Baryonic Branch with the shift in B>i

The NS 2-from of the original solution contains the term

& 2 = — ̂ e2k+®S(0 ) 3  +  cos 6d(p) A dp. (F.8 )

It is this term, when dualised, that gives rise to the undesirable behaviour as 
this will contribute to the dual metric in both gpp and gp v 3  via the dual vielbeins
el which will have legs in p. This happens because of the dp A d>* term in B2 

which is not a spectator under the duality transformation3. However, one is 
always free to add an exact to the NS potential as this will not change the fluxes

3See section 2 of [30] for details of how the initial B2 enters into the definition of the dual
vielbeins.

161



or metric of the original solution. Consider adding a closed form to the initial 
B2

B2 -> # 2  +  d(Z (r)(u >3 +  cosOdq))) (F.9)

This precisely cancels the effect of B2 in the dual solution when Z ’ — — jS e 2k+® 
because

B2 +  d(Z(r)d>3 ) =  —Z(d>i A d> 2 +  s in 0d6 A d(p)
1 (F.10)

+-(<Se2*+<*> +  2Z')dp  A (d> 3 +  cos Qdq>).

As there is no longer a dp A C0 i term in the NS 2 form before dualisation, the dual 
vielbeins will have no legs in p and so there will no longer be a modification to 
gpp and gpv3. The trade off is that the function Z  will now enter into the dual 
solution.

We now once more follow the procedure of [30] with gauge fixing, as before, 
such that V\ =  cp = 6 =  0. We are lead to the dual vielbeins

t - eS+* V ce —
8 W

,2k+<&̂  _  y/2Ce2g+®(cosxp(acv2H +  dv2) +  s\nxp(a(V\H — cv3 ^2 )) —

4H  sin xp(aco2H +  dv2) +  4H  cos xp(acviH — cjo$v2)^ —

4v2Ce2g+(p sin xp(aco2v2 — dv 3 ) — 8\Plv2 cos xp(v2dv2 +  'Hdv 3 ) +

Seg+<p ^8v2cosxpco2 +  Ce2k+,p(cosxp(Ce2g+®cv2 —

(F.ll)smip(Ce2g+®cvi +  lV27ico2)) j

8 W
e2k+®C (^s/lCe2g+̂  (cos xp(cv 3 V2 — aw\K) +  acv2H sin xp +  sin xp)

4H(cosxp(acv2/H +  dv 2 ) -F sm.xp{aw\H — o;3 i;2 ))J  —

4v2Ce2g+® cos xp(aco2v2 — dv3 ) +  8^/lv2 s in xp(v2dv2 +  Hdv^B- 

^p iS e g+® ^ — 8v2 sin xpcv2 +  Ce2**® ((Ce2g+<$>tv\ +  2 \f7ZK<x)2)  cos xp—

(Ce2g+®<jo2 — 2 V 2.KCO1 ) sin 1p)^j

8W y/2C2eAg+2̂  (aco2v2 — dv 3) +  4 i;2 ^ ^ +4 >(^3^2 — acoiH) —

8 \f7ZH(v2dv2 +  Hdv$) +  p \v2Seg+® (4'Hcv2 +  \ / 2 Ce2 £+(I>a;2 )
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which upon rotating according to eq (E.12) give the vielbeins of eq (5.3.5).
A valid question at this point is whether there is a local diffeomorphism 

which maps us from the Baryonic Branch dual solution as defined in section 
F.l to the solution defined as in section 5.3. The answer is yes, and it may be 
most easily found by comparing the dilaton as defined in eq (5.3.7) and eq (F.6 ) 
. Examining these makes it clear that one needs to transform V3  such that it is 
mapped to %. This may be achieved with a transformation in v3 only

V3 - *  v$ +  V~2Z (F.12)

under this which
V3  H, A —► dv3 (F.13)

and so vielbeins of eq (F.4) are mapped to those of eq (5.3.5). The map on the 
RR sector also follows trivially whilst the NS 2-form of eq (5.3.6) is mapped to 
that of eq (F.5) up to an exact.

So it is clear that one may "cure" the bad asymptotics and gpV3 mixing of 
section F.l either by a gauge transformation in the NS 2-from before dualisa- 
tion, or by a local diffeomorphism on the dual coordinate v3 after the duality 
procedure is performed.

F.3 Details of the Dual Baryonic Branch Structure

All that remains to compete the elucidation of the baryonic dual is to give sup­
plementary details to section 5.4 on the dynamical SU(2) structure. Actually, 
the derivation of the structure is essentially the same as that of the dual of the 
wrapped D5 solution in section E, so we will only focus on the differences here.

The 10-d MW Killing spinors of Baryonic Branch obey the same projection 
as the wrapped D5 spinors (see eq (E.5)). However, whilst the internal spinors 
are still parallel, they now differ by a point dependent phase e1̂  = C + iS

ei =  eA(£+ ® (e'£M/ 2 J7+ ) + £ -  ®
(F.14)

€2 =  eA(£+ 0 (e~l̂ /2rj+ ) +  £_ 0) (el̂ /2t]-))r

where the Minkowski warp factor is now e2A — ^r. We now follow the steps 
illustrated between eqs (E.7) and (E.9) such that the SU (3)-structure of the Bary­
onic Branch takes canonical form.

The dual 10-d Killing spinors are given as in eqs (E.13),(E.14), however the
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£fl entering into their definition are now given by

i 2y/2e~8-k-<Pv2 cosip 2   2\/2e~8~k~<t>v2smip

r «  ^  (F.15)
3  _  2 V 2 .

c ~  V c  -

The new spinor e2 is:

pfc/2
e2 =  (£+ ® (e~l̂ r)/2fj-) + C -®  {el̂ r)/2fj2+)) (F.16)

where is still given by eq (E.18).
The dynamic SU (2)-structure supported by the dual Baryonic Branch solu­

tion may be expressed as

0 + =  ^ e - l’Aw(k .e - ,l -  ik±co) ,
8a (F .l 7)

4>_ =  (v +  iw) A +  ifciic )̂.

The forms and functions entering into these expressions are given by

2 A e* 
e ~  C 
e'fM = C  + iS

fc|1 s/ t + u  k ± V i+ jf (R18)
z = w — IV =

\JCOS2  OC +
j  = ep 3  + e(p9 + e21 —v A w

(\/Ae3  +  £ 2  s i n - I -  i{\/~Kep +  £2 s in a ^ ) )

a; =
x/cos2a +  £*£

(>/£(** +  i(?) — ^ s i n a ^  -I- ze3)) A (e2  +  ze1),

with defined by eq (F.15). Specifically the vielbeins e that the structure is ex­
pressed in terms of a rotation of those in eq (F.ll). First one preforms a rotation 
by oc

e? — cos oce? +  sin oce

e2 = — sin oce? +  cos oce2 (F.19)

= ea for a ^  q>, 2l,
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and then rotates these vielbeins to get e =  Re, where the matrix R is given by 
eq (E.19) with £a by eq (F.15).

G On the Numerics for Chapter 6

Our goal is to numerically find some particular solutions of the equations

j c a2 (a2 —3c2) f 2
2b 8  b3c3
a*f3

( a i )

In general this system will have four integration constants. We can find series 
solutions of these equations as r —>• 0  and choose the the zeroth order term 
in each expansion to be the independent parameter. Thus, generally the IR 
expansions will have the form,

a(r) ~  a0 +  ai{aQ,bQ,co,fo)r +  a2(a0/ b0/c0ffo)r2 +  • • • (G.2)

and similar expressions for all the other functions. However, we are interested 
in solutions dual to a 4 dimensional field theory, thus we want the 3-cycle that 
the D6  brane wraps to shrink to zero as r —> 0. From the IIA metric (6.2.10) we 
see that this requirement fixes ao = 0, cq = 0 and we are left with only two 
independent parameters in the IR, bo and /o that we label Ro and qoRo respec­
tively. Similarly, in the UV generically we have 4 independent parameters but 
since we want solutions with a stabilized dilaton, we set the coefficient of the 
linear term in the dilaton expansion to zero and are left with three independent 
parameters R \,q i, hi in terms of which a UV solution to arbitrary order can be 
found.

To find numerical solutions we have the choice of starting in the IR and in­
tegrate forward or start in the UV and integrate backwards. We choose to solve 
the equations of motion starting from the IR, using the IR expansions as bound­
ary conditions. Our motivations for doing so are two-fold. First, the parameter 
space in the IR is smaller, {Ro, qo}, than the one in the UV, {R \,q i,h i} , this facil­
itates the search of a solution with the required behaviour. Second, the expan­
sion of the equations of motion around r = 0  is less computationally-intensive 
than the one around r —> oo allowing us to use very high order expansions as 
boundary conditions. More precisely, in our code we use IR expansions of the 
functions a(r), b(r), c(r), f ( r )  up to order 0 ( r 27) as boundary conditions. By

. _  c a5f 2
a = ~ ^  + m ? '

c2 c2 3 a2f 2 
C= 2 ?  +  2 fc2  _ _ 8  W
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way of illustration, we present here the IR expansions up to order 0 ( r 13),

r (2 +  q i y  (74 +  29q2 -  3 1 ^
V ’ 2 (288Rg) (69120Kq)

(-7274 +  546q% +  5043($ -  2473g£)r7 
(34836480Rq)

(-2767396 +  2066644^ +1326639^ -  2267840^ +  761969<$)r9
(60197437440R®)

Pw(qo)rn_________________ Pn(qo)r13________
(158921234841600Rg°) (297500551623475200RJ2)

Pioiqo) =  -1732820552 +  2661492292^  -  714674162^ -  1616450167^ +  

1494468524^ -  388078387^°

Pu(qo) =  809180302184 -  1936619471316^+

1686929485098ijo +  13678188077<jj;

-  1046636256642^ +  694139577405^° -  148147907158<jJ2 (G.3)

hM  - P ( - 2  +  'Jo) ' ' 2  (13 -  2 1  q20 +  1 1 4 )t*
b{r) - R° — ( w i --------------- m m —

(3268 -  8 8 6 6 gg +  9U9q% -  3209q^t*
(1658880Rg)

+  Pbs(qo)r8 + Pbw(qo)r10 + Pbi2(qo)r12
(557383680Rg) (1203948748800Rg) (3814109636198400R” )

Pbu(qo) =  -96075595496 +  555977381336^- 

1393711678048^ +1890154422552^

-  1451154850145(/o +  596013842074^0° -  102144488257(?J2 

1 *6 1 0 (9 0 ) =  120346756 -  576435426^ +1165086146^ -  1196194108^+ 

617593365(^0 -  127804976gJ°

Pbsiqo) =  -235082 +  885868^ -  1355526^ +  938210^ -  244621^ (G.4 )
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r ( 8  -  5 qpr3 (232 -  353q2 + 1 5  7*$)r5

 ̂  ̂ 2 (288Rq) (34560Rq)
(31168 -  76440*$ +  68637*$ -  21286<$)r/

(17418240Rq)
Pcip(i?o)r1 1  +  Pcs(qo)r9 + Pcu(qo)r13

(39730308710400Rj°) (15049359360Rg) (74375137905868800RJ2)

Pcio(<?o) =  5716032512 -  24717750400*$ +  44863517744*$- 

41761366916*$ +19753037956*$ -  3779455283*$°

Pcs (qo) = -7527424 +  25507072*$ -  34570320*$ +  21451291*$ -  5080615*$

Pcu(qo) = -3137711476736 +16500424668672*$- 

37556084710560*$ +  46609546892530*$- 

33023463748437*$ +12612429685326*$° -  2023272290207<$2
(G.5)

f M - n K  , ^  , ‘?o( - 1 4  +  1 1 ‘?o) ' - 4  , <$(2152 -  3473*$ +  1492*$)r° 
/ (  ) qo o R o l 6  (1152R5) (829440Rq)

. P fs(q p y°  
(1203948748800Rq)

Pfe(qo)rs Pfwiqo)1"12
(557383680Rq) (238381852262400Rj1)

Pfs(qo) =  <$(170283008 -  568700672*$ +  744979116*$- 

446064434*$ +  102094739*$)

Pfeiqo) =  <$(-329536 +  813288*$ -  705252*$ +  210349q60)

Pfioiqo) = <$(-8376443008 +  35383047296*$ -  62151718900*$+

55981055275*$ -  25662630839*$ +  4767879802*$°) (G.6 )

Using 40-digit WorkingPrecision in NDSolve, Mathematica 8 , we gener­
ate, using the IR expansions as boundary conditions, solutions that extend in 
the UV. We observe that not for all values of {Ro, qo} we get solutions with sta­
bilized dilaton. Thus, the behavior of the dilaton serves as a first indication of 
a potential solution with the required UV behavior. We use UV expansions up 
to order G ( l / r 9) for all the functions. We show here, as an example, the UV
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expansion for a( r ) .

/ \ _  r V ^qiR i 21y/3R\2 63y/3qiR\3
a[r>~ 7 6  \ f l  16r s/216r2

9 / 3  (672gi2 +  221) R ] 4  81\/3<?i (224^ 2  +  221) Rj5

\/2  512r3 /2512 4

+

r
■s/3 (2048fti +  1377 (768<?i4 +  1632gi2 +  137) Rj6) | 

s/2 8192r5

3 \ / i? iR i  (10240^1 +  81(11645 +  68000^ +  22272q\)R\)
8192r6

+  3 6 7 Qq1 6 ? . 7  (27 y ^ R ?  (8192/*! (27 +  560^) +  27(583399 +17765952^+ 

68376576(j4 +  20299776gf)Rf))

+  5 2 4 ^ 8  (2 7 v f ‘?lRi ( 8 1 9 2 , I l ( 8 1  +  560‘??) +
81(583399 +  7332032^ +  20121600^ +  5849088^ )Rf))

9 ,/ fR f
s X s - 5P«»>'ta.i!1.»1) + -  (G.7)

where,

Pa^v (g1 ,R 1 / h1) =  (4096fti (3941+ 93312^+  322560^)

+  243(3297681 +  129163840^ (G.8 )

+  912975360ij4 +  1851260928^ +  528482304</?)Rf)

(G.9)

We then have to analyse if this candidate solution obtained by forward inte­
gration has indeed a UV where the functions are given by eq (6.2.33) or not. To 
this end, we define a mismatch function,

m =  E ( 1og ( l / r mm'M'(W d ,) l)  -  log ( | ^ pflnsion(r) |)  ) 2, (G.10)
i

where /*■ e {a, b, c, /} ,  f ^ umerical refers to the solution obtained by forward 
integration and j?xPanslon refers to the UV expansion. We then minimize m using 
NMinimize and AccuracyGoal =  20 . If the minimization procedure yields 
a small value (m < 10-4) this setup determines the UV parameters R \,q \,h \ 
for which our numerical solution has the required UV behavior. Some sample 
solutions obtained with this procedure are presented in Figure 6.2. Note that
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we choose to normalize the dilaton such that

( g s N f^ e 1̂ 3 =  1 (G .ll)

where (po = (p(r = 0 ).
A natural question to ask is to what extent integrating back with the param­

eters found through the minimization procedure will reproduce the integrated

will not be very accurate in the IR. We present plots comparing the backward 
and forward integrated solutions in Figure G.l. In order to verify that the small 
discrepancies in the IR are due to accumulated numerical error we evaluate the 
residual. Namely, we define a function res^ that evaluates the equation of mo­
tion for k(r) using the numerical solution. If the solution were exact res^ should 
be identically zero. Since it is a numerical solution there will always be certain 
deviation form zero.

In Figure G.2 we see that the integrated forward solution is more accurate for 
all values of r. Also note, (Figure G.2 a, b and d ) that the integrated back

forward solution. Since the IR expansions are of very high order (0 (r27)) while 
the UV expansions are only of order 0 ( l / r 9) we expect that the UV solution

resb(r) = \ 

resc(r) = \

resf (r) = \

resa{r) \ a5 f 2Un u m j num.um

8fr4 C3 "num '-num
n2 ( rp- —  3 C2  ^ f 2Un um  \ u n um  ^ n u m J J n t

num

num.

num nu m ^nu m

3 a2 f 2^ “-n u m j numnum num

2a2 2b2*-u num  *-u num

a 4 f 3u num J num  \

num

nu m '-n um

num

(G.12)

solution fails considerably close to the IR (resa(riR) ~  10 2) and this explains 
the differences in figure G.l.
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200

(a)
c (r )  f(r)

(c)

200

(e)

Figure G.l: The blue curves are the result of forward integration with Rq =
10, qo = 1/5. After the minimization procedure we obtain the UV parameters 
c\\ =  1.31946, R\ — —2.03087, h\ — —1.9733 and plot (dashed red lines) the result 
of integrating back with these parameters to show that it coincides with the forward 
integration. The small discrepancies in the IR are due to accumulated numerical er­
ror. The mismatch function for this solution is m < 10~4. We also plot h(r)2 and c4<̂/3 
defined in eq (6.2.10)
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L o g [resa(r))
L o g (re sb (r)]

'
|lII

50

(a)

L og(rcsc(r)]  L og(resF(r)J

IIII

50

(c)

Figure G.2: log10 plot of the residuals defined in eq (G.12). The solid blue line is for 
the solution obtained by integrating forward (IR to UV), dashed line is for the solution 
obtained by integrating from the UV back to the IR.
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