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Summary

This thesis examines some effects of fitting the wrong distribution to reliability data. The
parametric analysis of any data usually assumes that the form of the underlying distribu-
tion is known. In practice, however, the choice of distribution is subject to error, so the
analysis could involve estimating parameters from a mis-specified model. In this thesis,
we consider theoretical and practical aspects of maximum likelihood estimation under such
mis-specification. Due to its popularity and wide use, we take the Weibull distribution to
be the mis-specified model, and look at the effects of fitting this distribution to data from
underlying Burr, Gamma and Lognormal models. We use entropy to obtain the theoretical

counterparts to the Weibull maximum likelihood estimates, and obtain theoretical results '
on the distribution of the mis-specified Weibull maximum likelihood estimates and quantiles

such as Bjyg.

Initially, these results are obtained for complete data, and then extended to type I and II
censoring regimes, where consideration of terms in the likelihood and entropy functions leads
to a detailed consideration of the properties of order statistics of the distributions. We also
carry out a similar investigation on accelerated data sets, where there is additional complex-
ity due to links between accelerating factors and scale parameters in reliability distributions.
These links are also open to mis-specification, so allowing for various combinations of true
and mis-specified models. We present theoretical results for general scale-stress relation-
ships, but focus on practical results for the Log-linear and Arrhenius models, since these

are the two relationships most widely used.

Finally, we link both acceleration and censoring, and obtain theoretical results for a type

II censoring regime at the lowest stress level.
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Chapter 1
Introduction

The study of the reliability of electrical components, biological systems or any other item
with a life span is a well established and specialised area in the field of statistical investiga-
tion, with many texts covering solely this area; see, for instance, Nelson (1982) or Crowder,
Kimber, Smith and Sweeting (1991). Engineers and scientists use reliability distributions
to model lifetimes of items in order to make inferences concerning such items. They are
also widely used in the field of medical statistics to model survival times of people and
animals. For example, we might be interested in the time at which 10% of light bulbs fail,
the probability that an electrical component fails in a given time interval, or the chances
of a certain number of people surviving past age 40. These calculations gene'ra.lly involve
using a mathematical model to represent the data set, and assume that the data follows
some underlying distribution. In practice, however, the identification of the correct distri-
bution is subject to error, and consequently, the analysis may involve estimating parameters
from a mis-specified reliability distribution. This thesis considers various aspects of fitting
a mis-specified distribution to a data set.

Our approach thus involves assumptions concerning underlying distributions. From the
literature, we see that the Weibull distribution (Weibull, 1951) seems to be the distribution
most commonly fitted to survival data. Reasons for this include relative ease of fitting, and
the fact that its variety of different shapes provides a good fit to many types of data. Thus,
most statisticians tend to choose the Weibull -distribution over any other reliability distribu-
tion and so will usually fit this to a set of survival data. However, this might not always be
the best distribution to use, and many other reliability distributions might prove a better
fit. For instance, consider the ball bearings data (Lieblein .and Zelen, 1956; Dumonceaux
and Antle, 1973), subsequently discussed with proposed corrections in Caroni (2002). Table
1.1 shows the usual n = 23 lifetimes (in millions of revolutions), and Dumonceaux and Antle
(1973) model this data set using both Weibull and Lognormal distributions. However, they
make no attempt to fit any other reliability distribution, although, on the basis of maximised
likelihoods, the Burr distribution provides an even better fit for this particular set of data.

This is just one example, of many, where the Weibull distribution is chosen to model a
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17.88 | 28.92 | 33.00 | 41.52 | 42.12
45.60 | 48.48 | 51.84 | 51.96 | 54.12
55.506 | 67.80 | 68.64 | 68.64 | 68.88
84.12 | 93.12 | 98.64 | 105.12 | 105.84
127.92 | 128.04 | 173.40

Table 1.1: Lifetimes (in millions of revolutions) of 23 ball bearings; from Lieblein and Zelen
(1956); Dumonceaux and Antle (1973).

data set, when, in fact, another distribution represents it better, and many statistical tests,
such as those in Watkins (2001b) and Cain (2002), determine if other distributions such as
the Burr and Lognormal represent a data set more adequately than the Weibull. Mackisack
and Stillman (1996) also outline some of the possible perils of fitting Weibull distributions
to data, and illustrate these with a published data set. We examine the effects of fitting the
wrong distribution to a data set, when, in fact, that data has some kind of other underlying
distribution. We first outline some necessary background.

1.1 Key references and basic definitions

1.1.1 General definitions

In this section, we summarise basic properties of probability density functions (pdf), cu-
mulative distribution functions (cdf), hazard functions, survivor functions and quantiles,
and then give specific examples in the next section. We let the continuous random variable
Y > 0 represent the time to failure. The pdf g of Y defines the probability of a failure in a
very small interval. It is given by

t+dt
P(t<Y<t+dt)=/ g(y)dy ~ g (t)dt.
. t
The cdf is based on cumulating probabilities, and is defined as

G (t) =/0 g9 (y)dy.

The hazard or failure rate function indicates the proneness to failure of a unit at time ¢,
given successful operation up to this time. It is thus based on conditional probabilities and
is defined as

__ 9@
Many authors also write
ht) = 20
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where S (t) is called the survivor function and gives the probability of an item surviving
past time ¢. The cumulative hazard function is given by

t
H (t) =/ h(u) du, -
0
and it can be easily shown that

S(t) = exp{—H (¢)}. (1.1)

When examining lifetime data, we are often interested in estimating a percentile of the
lifetime distribution, which is the time at which a specified percentage or proportion of the
items fail. We use Bj, to denote 100pt* percentile of a distribution, the time by which a
proportion p (0 < p < 1) of the population will fail. If a distribution has cdf G (y), then the
100pt" percentile is defined by

p = G(Byp),
and, on rearranging, we have

B,=GT'(p)=Q(n),

where the quantile function Q(p) is the inverse of the cdf. These percentiles are usually
used to determine a warranty period for the items under consideration, since a balance is
needed between the proportion of items failing within the warranty period and the length
of the warranty period itself. Generally, we do not want too many items failing during
the period, otherwise the company that sells the goods have to face considerable costs in
repairing them. The quantile function is also used in the simulation of random variables
from a specific distribution, as illustrated below.

The 10" percentile Bjp, commonly used in reliability analysis, concentrates on -early
failures and is of particular relevance in electrical and mechanical engineering. Other widely
used percentiles include the median or the 50th percentile, which gives the time at which

half the observations or items have failed; this is more commonly used in medical statistics.

1.1.2 Particular distributions

There are numerous descriptions of different reliability distribution functions and proba-
bility density functions, along with their properties. For example, see Ansell and Phillips
(1994), Nelson (1982) and Leitch (1995); Richards and McDonald (1987) also summarise
the relationships that exist between various distributions. Throughout this thesis, we will

require the following distribution functions.
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Figure 1.1: The function Gw for varying (3

The Weibull distribution

The Weibull distribution is the most common and well known of all the reliability distribu-
tion functions, and reasons for this include the fact that it is a relatively robust distribution
that can be fitted to data very easily without too many numerical problems. It was intro-
duced by Weibull (1951), and has pdf defined by

gl =10 Vexpf- (17 fory>o (1.2)

and cdf given by
Gw(y;0,0) = 1-expj-(J) ) for y > 0. (1.3)
The Weibull distribution has two positive parameters; /3 is the shape parameter and 9 the
scale parameter. Figure 1.1 shows how varying (3 affects the shape of the Weibull cdf; larger

values of (3 correspond to steeper distribution functions that tend to 1 more rapidly. The
hazard function for the Weibull distribution is given by
-1
hw (  p=

and, by integration or via (1.1), the cumulative hazard function takes the form

Hw(PI3,0)= (1)
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The quantile function for the Weibull distribution is defined as
1
Bup=Gg' () =6{-In(1-p)}?.

The Burr XII distribution

The Burr XII distribution (from now on abbreviated to Burr distribution), was first.in-
troduced by Burr (1942), and has received considerable attention by Wingo (1983) and
Tadikamalla (1980). It has pdf given by

T—1 7y —(o+1)
o (y;7,0,0) = m;’;f {1 + (%) } fory > 0,

and cdf

Gb(i‘/;"'aa,@:l-{l‘l— (%)T}_a fory>0, (14)

where the positive parameters o and 7 control the shape of the distribution, and ¢ > 0 is
a scale parameter. We see that it is a three parameter distribution, but can be reduced to
just two parameters, o and 7, by rescaling the data by ¢. Thus, the two parameter Burr
distribution is a special case of the Burr distribution with ¢ equal to 1; it is often convenient
to derive results for this special case and then generalise to the three parameter Burr dis-
tribution. The effects of changing the shape parameters from the Burr distribution can be
seen by examining plots of G for varying o and 7. Since ¢ represents a scale parameter, it
will not affect the shape in any way. Figure 1.2 and Figure 1.3 show distribution functions
for ¢ = 1. Figure 1.2 shows the effect of changing 7 when a = 1, whilst Figure 1.3 gives a
similar comparison for varying «, with 7 = 1. Increasing 7 produces a steeper distribution
function, so that most of the probability is contained at the smaller data values. The func-
tion also tends to 1 much more quickly with large values of 7. A similar pattern is observed
when « is allowed to vary, and we see, for larger values of o, a much steeper distribution

function that tends to 1 extremely quickly. The hazard function for the Burr distribution

T— Ty —1
hb(t;na,qs):?%,——l{u(é)} |

with cumulative hazard function

#(nad) =an{1+ (3) ],

is given by



1.1.

KEY REFERENCES AND BASIC DEFINITIONS

Tau=4 " 1 Tau=7 |

«——
1
0.8
g 0.6
'—E 0.4
0.2
0
2 7
Dat:
" Tau=0.5 =, 1" Tau=2
Figure 1.2: The function Gb for a = 1 and varying r.

Figure 1.3: The function

Gb for r

1 and varying a.
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The quantile function for the Burr distribution is

Al

Bop =Gy (p) = ¢{(1-p) 7= 1} .

The Burr distribution has the important property of including the Weibull model as a
limiting case. This property, and the consequences of it, will be considered in detail in '
Chapter 2. '

The Gamima distribution

The Gamma distribution is not as widely used as the Weibull and Burr distributions, since
the form of its hazard function makes it less suitable to use in some cases; see Nelson (1982)
and below. It has pdf defined by

7—1 Ki
y"lexp (-2 .
9 (y;7, ) = ——a,ﬂ%—) for y > 0, (1.5)

where I' (.) is the gamma function given by
o0
T (r) = / L exp (2) dz. (1.6)
0

By integration, we see that the cdf of the Gamma distribution is

| (%)
Gy (y;7,0) = T (r) for y > 0,
where
I'(z,7)= / u" " lexp (—u) du (1.7
0

denotes the incomplete gamma function. Here, o represents a scale parameter, whilst 7
is the shape parameter. Figure 1.4 shows that, as 7 decreases, the distribution function
generally becomes much steeper for smaller data values. The effects of increasing 7 seem to
shift the distribution curve along the horizontal axis. The hazard function for the Gamma
distribution is given by

() e (1)

a{T'(r)-T(£,7)}’

h'g (t; T, Ol) =
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Figure 1.4: The function Gg for varying r.

and, therefore,

Hgr,a) = - Injl =

The fact that these functions cannot be expressed in closed form is a considerable practical
barrier to the use of this distribution. A further related disadvantage is that the quantile
function must be obtained numerically, since we cannot explicitly write down the inverse of

Gg.

The Lognormal distribution

The Lognormal distribution empirically fits many types of data adequately, because it has
a great variety of shapes; see Nelson (1982). The distribution is often used when the range
of data is extremely large, as is sometimes the case for data on metal fatigue and electrical
insulation life, and, away from a reliability setting, economic data and responses of biological
material to stimulus. This distribution function is closely related to the Normal, in that,
if ¥ follows a Lognormal distribution, then In (Y) has a Normal distribution with mean fi

and standard deviation a. Thus, the Lognormal cdf is defined to be
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Figure 1.5: The function G\n for varying /i.

where <is the usual standard Normal cdf; from this, the pdf is

gin(y:y, a) = — exp f — 2 1 for y > 0, (1.9)

where the parameter fi is the mean of the log of life and may take any value; again, see Nelson
(1982). The parameter o is called the log standard deviation and must be positive; it is the
standard deviation of the log of life. The value of a determines the shape of the distribution,
whilst /x determines the 50% point and the spread. Figures 1.5 and 1.6 illustrate how the
parameters of the Lognormal distribution affect the shape of the distribution function. We
see that increasing p, (keeping a fixed at 1), even by just a small amount, flattens the cdf
and prolongs the period it takes for the function to tend to one. Increasing a (and keeping
/i fixed at 1) has a similar effect but there are also high probabilities associated with smaller

data values. The hazard function for the Lognormal distribution is given by
i exD(~(n

AN (Y. Yo y I ——
1—$

with cumulative hazard function of the form

Ini—
Hn® <= -Iil.s D07

on using (1.1). We see that the cumulative hazard function involves a function that must

be evaluated numerically.
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Figure 1.6: The function Gjn for varying cr.

1.1.3 Censored data

More often than not, observed reliability data have the complicating feature of containing
censored values. Censoring occurs when the exact lifetime of an item is not observed, but,
for example, is only known to exceed a certain time, possibly the lifetime of another item
that has failed. Such a situation arises when an experiment is terminated before all items
fail, leading to an incomplete set of data. Reasons for termination may include the fact
that waiting for all items to fail may take several days, weeks or even longer. Thus, we
may observe the first few failures, but then stop the experiment as the other items continue
to function. If we do observe all the failures, then we have a complete data set, which
contains more information than a data set of the same size that has undergone some form
of censoring. There are many ways in which observations can be censored. We list some of

these below, but just consider the first two in this thesis.

Type I censoring

Items are said to have undergone a type I censoring regime if the experiment is terminated
after some specified fixed time yc, also called the stopping time. As a result, the number
of observed failures N (0 < N < n) is a random variable, and the remaining (n —N ) items
are censored at the stopping time. This type of censoring has the practical advantages of
known experimental duration, but the statistical disadvantage of prior uncertainty in the

precise number of failure times available for analysis.
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Type II censoring

Type II censoring occurs when n items are tested, and the experiment is halted after the
rth (r < n) failure. Thus, the remaining (n — r) items will yield censored times in service.
Type II censoring has the statistical advantage of ensuring a precise number of failure times
for analysis, but experimental duration is not known precisely in advance, and it is possible

for an experiment to continue for long periods until r failures are observed.

Interval censoring

This occurs when units are put on test, but only checked for failure every hour, every day,
or at other specified time points. If a unit is found to have failed during the last period,
then we do not know precisely its time to failure, and can only estimate the failure time as
a point in this period.

Progressive censoring

Progressive censoring occurs when test units are removed at different stages during the
_experiment for various reasons. These may include the removal of items for more thorough
inspection, or use elsewhere. There are many different methods of specifying the removal
times and the number of items withdrawn at each removal time. For instance, Tse, Yang
and Yuen (2000), assume a progressive censorihg regime with Binomial removals.

1.1.4 Mathematical functions

We have already seen that the basic reliability distributions introduce the gamma function.
Our analysis will require the consideration of other related functions, and we now list these;
we refer to Abramowitz and Stegun (1972) for further details.

The gamma and incomplete gamma functions

The gamma function, at (1.6), satisfies the following recursive relationship
| F(f+1) =rl(r),
and for n, an integer, we write
Fn+1)=n!

The incomplete gamma function arises in connection with type I and II censoring, where

we may also use

I'(z,a) = 2°U1 (2,0), (1.10)
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where

Ui(z,a)zz(;z)n_

= (n+ a)'n!

with the property that

oU;
Oa

= —iUi41.
The incomplete gamma function also has an important recurrence relationship given by
T (z,a+1) =al'(z,a) — 2% exp(—2). (1.11)

Derivatives of the gamma function

The psi function is defined as the derivative of the log of the gamma function, given by

dinl'(2) TI'(2)
dz T (2)’

U (2)=
and satisfies the recursive ielationship
U(z+1)=¢(z)+2z7" (1.12)
We write
¥(1)=-,

where v = 0.57721--- is known as Euler’s constant. We can also differentiate the psi

function to obtain the trigamma, function defined as

av (z) _ T'(2) r (2) =T (z)z'
dz {T(2)}?

Further derivatives of the gamma function can be found in Abramowitz and Stegun (1972).

In particular, we have

" () = (—1)H /0 ” ?—n_e’;)lz;—(‘fgdu.

Beta and incomplete Beta functions

The Beta function is defined in terms of gamma functions, and is given by

I AN Y L _T(T ().
B(a,b)_/ot (1-1) dt_fo (1+t)a+bdt_r(a+b), (1.13)
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recursive relationships also exist for this function. In particular, we have

abB (a,b) =b(a+b)B(a+1,b) =a(a+bd)B(a,b+1). (1.14)
The incomplete beta function is defined as

B, (a,b) = /0 * e (1—-t)>1at (1.15)

Hypergeometric functions

These arise when considering type I censoring, but also appear in results for joint ex-
pectations of random variables that have undergone type II censoring. The generalised
hypergeometric function is defined as

0o
o (ap)y 2
FP,(I ({alvaZ» ap} {bl, ba, ... Z k (bp) k E’
k=0 RN Y S

where (z),. is called Pochhammers symbol, given by

_T(z+r)
(m)r—w-

For later use, we note that
(2)r = 2(z + 1)r-1,

and

(:c+r)

(@ +1)r = ——(2)r-

We can also express the incomplete Beta function in terms of hypergeometric expressions,
and note that '

B,(a,b) = a7! anl({a 1-b};{a+1};2)

= g lz° Z G i I)b)“ — (1.16)

See Slater (1966) for other results.

Order statistics

To analyse observations that have undergone type II censoring requires ordering the data
set from the smallest to the largest. The ith largest item in a sample of size n is usually
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denoted by

Yim)»

and, by ordering the data set, we will always have

Yam) S Yen) < - < Ymm)-

See David (1981) for results on order statistics and their properties.

1.2 Numerical and computational aspects

In order to check theoretical results developed, this thesis will rely heavily on programming
and computational packages such as SAS and Mathematica; we refer to Der and Everitt
(2002) and Wolfram (1988), respectively, for further details. We use Excel for simpler
calculations and graphs.

Throughout this thesis, we will need to maximise functions [ () based on likelihoods with
respect to model parameters 7; in most cases, only limited analytical progress is possible,
so that maximisation must be performed numerically. Our approach is as follows: we
discount the possibility of multiple stationary points, and regard the maximisation of I ()
as equivalent to finding the roots of % We generally locate these roots using the Newton-
Raphson computational procedure. This is the quickest and probably most straightforward
method to program in SAS, although other procedures, such as the Bisection, Iterative and
Secant methods, can be employed; see Kennedy and Gentle (1980) for further details. We
will provide additional references as necessary; for instance, when we need to employ more
sophisticated algorithms. In certain situations, any numerical method may fail to locate the
roots of ngr§ we only accept proposed solutions 7 for which each element of % is less than
1079 in absolute value; this cut-off value is regarded as sufficiently close to zero to indicate
convergence, and in simulations, we usually observed values considerably smaller than this

(generally less than 107%%).

1.3 Sample procedures

We list some standard sample procedures used throughout this thesis below. Most will be
used to compare models based on both true and mis-specified distributions for data.

1.3.1 Hazard and cumulative hazard plots

As mentioned above, the hazard function indicates the proneness to failure of a unit at time
t, given successful operation up to this time. From the literature, we see that the empirical

hazard and cumulative hazard functions can be calculated in different ways. Crowder,
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Kimber, Smith and Sweeting (1991) suggest that the empirical survivor function 5 (t),
defined as

number of observations greater than or equal to ¢
n

S(t) =
should first be calculated. The empirical cumulative hazard fuﬁction is then defined as
Ht)=-In8 ().

On the other hand, Newton (1991) counted the number of observations greater than or
equal to each data point, and then used this number to estimate h (t). Cumulative values
then estimate H (t). As both methods give very similar results, we use the method given in
Crowder, Kimber, Smith and Sweeting (1991). We note, but do not use, the Kaplan-Meier
estimate, which provides another way of estimating the survivor function, and is particularly

useful when the data set has undergone some form of censoring.

1.3.2 Kolmogorov-Smirnov distances

These procedures are used when a theoretical distribution, usually with unknown parameters
replaced by maximum likelihood estimates, are used to model data. The distance between
the fitted theoretical cumulative distribution and the empirical distribution functions is then
calculated to produce the Kolmogorov-Smirnov test statistic. We denote this by D, with
appropriate subscripts for Weibull, Burr, Gamma and Lognormal distributions. Since the
test statistics is based on the maximum of D, then the larger this statistic is, the worse
the fit between the theoretical distribution and data set. If D is significantly large, then we
reject the hypothesis that the underlying data is adequately modelled using the distribution
specified. For further details on this distance, we refer to Lawless (1982).

1.3.3 Data simulation

Since this thesis will involve fitting the Weibull distribution to data with other underlying
distribution functions, then we will need to simulate data from such distributions. To

generate data y; from a distribution with cdf G, we compute

yi =Q (i) =G (w),

where the u; are independently and Uniformly distributed on [0,1]. Thus, to simulate a set
of data from a Weibull distribution with known, specified parameters § and 6, we use (1.3)

and compute

yi =6 (= In[1— )3 (1.17)
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For the Burr, we use (1.4) and calculate
-1 1
yizd){(l—ui) a —lr}.

As previously noted, quantile functions for the Gamma and Lognormal distributions cannot
be expressed explicitly. Consequently, we rely on the quantile functions defined in SAS to
compute a set of data from both distributions. For the Gamma distribution, the RANGAM
command in SAS produces random numbers from G4 with specified shape parameter 7 and
scale parameter & = 1. Thus, we use aXRANGAM[7] to simulate a set of data with general
shape and scale parameters. To simulate data from a Lognormal distribution, we again
exploit the link between this distribution and the Normal; see (1.8) and (1.9). Thus, if we
simulate ¢; from N (g, 02), then y; = exp (¢;) will be a random sample from Gy,.

1.4 Structure of thesis

The remaining chapters of this thesis are as follows. Chapter 2 examines the effects of
fitting the Weibull distribution to data from the Weibull, Burr, Gamma and Lognormal
distributions, and assessing the goodness of fit. Chapter 3 considers theoretical counterparts
to the parameter estimates from the mis-specified Weibull distribution; this involves entropy
functions, and we also derive the variance covariance matrix of the estimates under mis-
specification. Chapter 4 derives similar results for data that has undergone type I and type
II censoring regimes. In Chapters 5, 6, 7 and 8, we extend the ideas of mis-specification to
deal with accelerated data sets. Finally, Chapter 9 finishes with a summary of our work,
together with a brief outline of any future research.



Chapter 2

Maximum Likelihood: Some

Practical Considerations

2.1 Introduction

As previously noted, the process of modelling a set of reliability data usually involves three

main steps. These are

e Identifying a suitable model for the data.
¢ Estimating the parameters contained in the model.

e Assessing the goodness of fit to ascertain if an adequate fit has been achieved. If not,
a different model is chosen and the three steps are repeated.

Numerous methods have been devised for selecting models, obtaining parameter esti-
mates, and for assessing the goodness of fit of the proposed model. Model selection is based -
on graphical methods; see Chapter 1 above. Methods for fitting a distribution to a data set
include the widely used maximum likelihood (ML) approach, where we obtain maximum
likelihood estimates (MLEs) for the true parameter values. We denote these by a caret,
so, for example, the MLE for « is @. For more details on MLE, and on the asymptotic
properties of the MLEs, we refer to Cox and Hinkley (1974). Other approaches include
least squares and the method of moments. To assess the adequacy of the fitted distribution
usually involves graphical techniques such as plots of the fitted cdf against the empirical
cdf obtained from the data set. The agreement between the two functions can then be
summarised by measures of functional distances, such as the Kolmogorov-Smirnov distance.
We may also consider examining plots of theoretical and empirical hazard and cumulative
hazard functions, and observe whether any large discrepancies occur between the fitted dis-
tribution and data set in this case. Other plots, such as Kaplan-Meier plots, can consider
distances between sample and theoretical cdfs for data containing censored observations.

For further details on such sample procedures, we refer to Chapter 1.
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This thesis is concerned with the effects of mis-specification and choosing an incorrect
distribution function to represent a particular data set. Most statistical analyses implicitly
assume that the underlying model is correctly specified, and the question of model choice
has received relatively little attention. However, Marshall, Meza and Olkin (2001) address
this problem briefly, and examine maximised likelihoods and Kolmogorov-Smirnov distances
between true and mis-specified distributions, when a range of underlying models are used.
White (1982) looks at the .properties of MLEs of mis-specified models, whilst Hutton and
Monaghan (2002) examine mis-specification of accelerated life and proportional hazard mod-
els for survival data. We begin to consider the problem of model mis-specification in this
chapter, but first summarise the theory for fitting the various distributions given in Chap-
ter 1. Thus, we consider fitting the Weibull, Burr, Gamma and Lognormal distributions
to data using ML techniques. We then address the problem of mis-specification, and fit-
ting the incorrect distribution function. From Chapter 1, and the references given there,
we saw how the Weibull distribution was the most common reliability distribution fitted
to data, and, in some cases, is wrongly chosen to represent a particular data set although
another distribution provides a better fit. Thus, due to this wide use, we always take this
as our mis-specified model, and look at the effects of fitting it to data with an underlying
Burr, Gamma and Lognormal model. Of course, there are many other possible variants we
could consider, since any other distribution could be mis-specified, so that, for example, we
could try to fit the Lognormal distribution to data from an underlying Burr model. Such
scenarios will be considered elsewhere. We first derive results for complete data, and give
corresponding results on type I and type II censoring in Chapter 4.

2.2 Fitting G,

Likelihood may be defined as the joint pdf based on a specific distribution at the observed
sample points. The MLEs of the parameters in the specified distribution are then the
values that maximise the likelihood function. Equivalently, (since the likelihood function
for independent observations involves taking products of terms) we usually consider the
natural logarithm of the likelihood function, and obtain the maximum of the log-likelihood.
This approach converts products to sums, which are easier to manipulate when we consider
locating maximum turning points. Since In is a monotonic increasing function, the log-
likelihood has the same stationary points as the original likelihood. The likelihood for the
Weibull distribution is given in Cohen (1965), and expectations of terms that appear in
the log-likelihood and score functions are summarised in, for example, Watkins (1998). We
briefly outline the important functions below for a complete data set yi, ¥2,..., Yn. The
likelihood and log-likelihood based on (1.3) are

n n/n B8-1 n B
Lu(Y1,Y2, -+ Yn3 B,6) = | [ 9w (433 8,6) = (-9’%) (Hyi) exp <_ Z_g>
=1 .

=1 =1
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and
n n
lw=nlnﬁ—n,6’ln0+(ﬂ—l)Zlnyi—Q_ﬁZy.ﬁ. (2.1)
i=1 ' i=1

We will find it convenient to define

n
Se=) Iny
=1

and

Si(r) = i (lnw),
i=1

for real > 0 and integer j > 0, taking 00 = 1 if necessary; note that for j > 1

&S (r)  dSj_1(r
S;(r) = dfﬂ“: 7d7{().

Then (2.1) can be written
ly=nlnB—nflnd+(8-1)S. —07°5, (B);

MLEs are obtained by maximising [, or, equivalently, finding the roots of the score function,
based on the two partial derivatives given by

Ol

5 - nft —nnd+ S, + 6P 1nbS, (B8) —67P8: (B), (2.2)
%L;" = —nBo~t + po~ B Sy (6). (23)

There are no analytic expressions for these roots. However, we note that if we equate (2.3)
to zero, then we can express 6 in terms of the data and the shape parameter 3; we obtain

ez{w}? 2.4

n

By substituting (2.4) into (2.1) and (2.2), we obtain our profile log-likelihood
=nlnf-nlnSy(B)+n(lnn—-1)+(8—-1)S. (2.5)

with first derivative

dl;) — n,B_l +S. — TLSl (ﬂ)

e “T 5% 0) (26)
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Iteration E %2;“ i—zl}

1 1.989760 | 1.0796821 | -9.989062
2.097846 | 0.0390496 | -9.281992
2.102053 | 0.0000541 | -9.256282
2.102059 | 1.045%x10~19 | -9.256246
2.102059 0 -9.256246

Y x| Wb

Table 2.1: Summary of iterations for fitting Gy, to the ball bearings data in Table 1.1.

Locating the root of (2.6) is now considerably easier, since it is a univariate function of 3.
Our MLE for @ is then obtained by substituting the MLE for g into (2.4). As noted in
Chapter 1, many methods have been established to locate roots of functions like (2.6). We
use the Newton-Raphson approach, which requires the derivative

Ply 5o [50)50) - 50
ag S0 (6)° ’

and an initial starting value. This starting value should be close to -ﬁ, otherwise the Newton-
Raphson process may fail to converge; Farnum and Booth (1997) discuss initial starting
values; for a complete data set, the quantity

V=In (y(n:n)) - n_lse

measures variation in déta, and a good starting point for locating E is 2V 1, since conver-
gence is then guaranteed. We locate the MLEs for G,, for the ball bearings data given in
Table 1.1. Here, n = 23, Se = 95.4605 and y(n.n) = 173.40, so we have V' = 1.0051. Using
2V 1 = 1.9898 as a starting value for E, the Newton-Raphson process converged in just five
iterations to ﬁ = 2.1021 for which § = 81.8783. We summarise these iterations in Table
2.1, and observe how the profile score function for § tends to zero very quickly; note that
the second derivative is negative, indicating that we have found a maximum of {3, This

maximum value is I3, = —113.6913.

2.3 Fitting G,

We now fit the Burr distribution to 41,2, ..., ¥n. This requires the likelihood

n ar\" 2 . Yi 7y —(a+1)
Lb(ylayZa"-,yn;T’a)qs) ZHgb (yi;T)a, ¢) = (F) Hy:'— {1+ (z) } ’

=1 i=1
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from which the log-likelihood is

lb=nlna+nlnt—nrlng+ (1 -1)S, — (a+1)zn:ln{1+ (%)T} 2.7

i=1

‘We will find it convenient to write

T=gm{1+ (%)}

with partial derivatives given by

o _ ooy (8) (E)

ar

% = Tz,o*é(yq{s—i

and

or _ o e (8)
59 0,1 7T

5 : 2 )"
R ¥ RNy

. _ 8T0,1_—1 ~ %) T -
Tia = 5 —?ZT(—-—T‘EZ

The subscripts in this notation indicate differentiation with respect to 7 and ¢; note that
Watkins (1999) used a slightly different convention, linking subscripts to powers of terms in
summations. By differentiating (2.7) with respect to the three parameters, we obtain the
score function; its components are

% = nT_l—nln¢+5e—(a+1)T1’0’

ol -1

5o no 3 N (2 8)
ol

3_(5 = —nré¢ ! - (a+1)To,a,
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while the six second partial derivatives are given by

g—?} =-nr"2 - (a+1) oo

‘g—ilf = —na 2 ‘

g—z& = n7¢"2 —(a+1) Toz > @ 9)
3@—317- -Tip '
59(»6 TO 1

Zh=—ng' —(a+1)Tu1

The components of the score function have no analytic roots, so numerical techniques must
be used to locate them. Some simplifications occur on equating (2.8) to zero, yielding

a=nT"1 (2.10)

However, maximising the resulting profile log-likelihood is problematical; for instance, the
Newton-Raphson process is sensitive to starting values, and iterations diverge if inappropri-
ate initial values are chosen. This divergence is linked to the fact that the Burr has a limiting
Weibull distribution, and, if this distribution provides an improved fit over the Burr to a
data set, then the Burr cannot be fitted by ML. We also note that, unlike the Weibull, which
seems a relatively robust distribution to fit, we may encounter further numerical problems
(such as the selection of initial values and speed of convergence) when fitting the Burr to
data. We therefore adopt the method outlined by Watkins (1999) to fit the three parameter
Burr distribution, and briefly outline the steps in the'next section.

2.3.1 The limiting distribution and A

Tadikamalla (1980) showed that the Weibull distribution is a limiting case of the Burr
distribution. We reparameterise (1.4), using

A=¢"

so that

aman=1- i ()} "= [ (0]

If we let a, A — o0, so that § = d% remains constant, then the distribution function becomes

1— [exp (y7)] >,
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on recognising the limiting form of the exponential function, given by

lim (1 + —:—l)m = exp (z) .

m—0o0

Then, by rearranging, we see that the limiting form of the Burr is

Gb(y;'r,a,/\)=1—exp<—%—):1—exp - y1 ,
A a T

which is G,, with shape parameter 7, and scale parameter Y ¢.

This results suggests that, if a Weibull distribution provides a better fit to a set of data.
than the Burr, and we try to fit the Burr distribution, then we will observe ¢ and a becoming
very large, rather than converging on finite numbers. Such observations prompted Watkins
(2001b) to derive a function to determine which of the Burr or Weibull provides a better
fit to a set of data. We mention it here since we require it for our simulation studies, and
consider it in detail later. For complete data, the function A is given by

() @)

2 n

if A > 0, then the Burr distribution provides the better fit, in terms of maximised log-
1ikelihood, to a set of data, whilst a negative A suggests that the Weibull distribution models
the data set more appropriately, and in fact, the Burr distribution cannot be fitted by ML
in this case. Other methods have been derived to assess whether a limiting distribution
(sometimes called an embedded distribution) should be chosen in favour of an underlying
model. In particular, Crowder and Kimber (1997) derive a score test to determine whether
the multivariate Burr should be used in preference to the multivariate Weibull model. Cheng
and Iles (1990) also provide formal tests to decide if the embedded model should be fitted
instead of the three parameter distribution. They do this for a general distribution that
contains an embedded model, but also consider specific cases as examples. In particular,
they show that the three parameter Weibull model contains the Extreme Value distribution
as an embedded model, and derive statistical tests to deduce if the corresponding embedded
model should be chosen in prefer'ence ‘to the three parameter distribution.

2.3.2 Fitting the three parameter Burr distribution

Watkins (1999) presents an algorithm for fitting the three parameter Burr distribution to
a data set, using A to eliminate the possibilities of fitting the Burr with ¢ — oo to data
better modelled by the Weibull distribution. The method utilizes the Weibull MLESs, with
9 scaling the data. The algorithm is also described in detail in Johnson (2003). We outline
the main steps below.

STEP 1. We first fit the Weibull distribution to the data, using the profile log-likelihood
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given by (2.5). This yields estimates for § and 6.
STEP 2. The original data is then rescaled using 9, so that
Yi

Yi ==,

and A is calculated for these scaled values. This rescaling introduces some numerical sta-
bility in the calculation of A, especially in the computation of Sy (23) Also, the rescaled

data values are now centered around one, thus providing us with a starting value for a,
denoted by ¢y, if necessary.

STEP 3. If A > 0, then we proceed to locate the MLEs that maximise l; using the
Newton-Raphson method. We set ¢; = 1, and fit the two parameter Burr distribution using
a profile approach. Thus, we iterate on 7, setting our initial estimate equal to B This
provides us with a new estimate for 7, which we denote by 71; we then obtain o using 71
in (2.10).

STEP 4. Using «; and 71, we calculate the three score functions and six second partial
derivatives at (2.9), and use these values to obtain a new estimate of ¢, ¢,. There are
two ways we can update the estimate for ¢ in the Newton-Raphson approach. We either
use the full-matrix of second derivatives, given by (2.9), or take the ratio of %% with its
corresponding second derivative; the former usually results in faster convergence, but we
illustrate both approaches in examples below. We then further scale the rescaled data by
¢4, and obtain new estimates of & and 7, now denoted by ag, T2.

STEP 5. Step 4 is repeated until we converge onto 3, a and 7. We finally undo the effect
of the initial rescaling by multiplying 5 by 8 to obtain 8 for the original unscaled data.

Example

To illustrate this method, we consider the ball bearings data given in Table 1.1. The first step
is to fit the Weibull distribution to this data set in order to obtain a value for A. From the
above section, we have ﬁ = 2.1021, and so Sy (ﬁ) = 241725.08 and Sy (ZB) = 5.55078 x 10°;
this gives a value of 234911677 for A. Since A is positive, the Burr distribution will provide
an improved fit, in terms of maximised likelihoods, over the Weibull. We rescale the data
by @, and to this rescaled data, fit the three parameter Burr model. Table 2.2 shows results
of the first 7 iterations for the rescaled ball bearings data. The first line shows starting
values for fitting the two parameter Burr distribution. In this case, we set 7 = B and give
corresponding results for a and %%. The remaining lines shown the iterations on the three
parameters when fitting the Burr distribution. Note that we have used the full matrix of
second derivatives to iterate on ¢, as the MLEs converge much more quickly in this case.
The second approach of using the reciprocal of the second derivative with respect to ¢ also
eventually results in convergence, but this takes place well after the 100*" iteration. The
final step is to undo the effects of scaling by multiplying $ by 8. Thus, the Burr MLEs for
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Iteration a T - 4
1 1.7062008 2.1020589 1 3.5692577
2 1.6570158 2.8899107 1 0.0920201
3 1.7859946 2.8368636 1.0407981 0.0113776
4 1.8071976 2.8288123  1.0474051  0.0002448
5 1.8076752  2.8286330 1.0475536  1.20x 10-7
6 1.8076754 2.8286329 1.0475536 3.84x10~14
7 1.8076754 2.8289329 1.0475536 -9.59-15

Table 2.2: Summary of iterations for fitting Gb to the ball bearings data in Table 1.1.

0.8

0 20 40 60 80 100 120 140 160 180 200

Figure 2.1: Empirical (¢) and fitted (—-) cdfs for Gw for the ball bearings data set.

the ball bearings data set are

a - 1.8077, r = 2.8286, %= 85.7719,

which gives a maximised log-likelihood 0f-113.2498. Although we know that the Burr distri-
bution provides an improved fit over the Weibull for this particular data set, we still assess
this goodness of fit for both distribution functions. Plots of the empirical cdf (ecdf) and
fitted Weibull and Burr cdfs, given by Figures 2.1 and 2.2, clearly show larger discrepancies
for the Weibull model. This fact is further strengthened when we compare the Kolmogorov-
Smirnov distance for the Weibull, with that of the Burr. In the notation of Chapter 1,
we have Db = 0.1116, which compares with Dw = 0.1511. Thus, the Kolmogorov-Smirnov
distance also supports the fact that the Burr distribution provides a better fit than the
Weibull model. Plots of the cumulative hazard functions for the Weibull and Burr (given
by Figures 2.3 and 2.4, respectively) are also consistent with this, and we observe a larger

maximum absolute distance between sample and theoretical cumulative hazard functions
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Figure 2.2: Empirical (#) and fitted (--—-) cdfs for Gb for the ball bearings data set.

for the Weibull distribution.

2.4 Fitting Gg
Using (1.5), we see that the likelihood function for data yi,y2, *= yn is given by

n n ur-lexD(-")
Lg (yi,2/2>-..,2/n3r,a) = (2/tjrya) = Q ,

i=1 =1 !
from which

lg=(r —1)Se—a~ISo (1) —r Ina —InT (1). (2.11)

The maximum of this function clearly has no analytic form, and must therefore be found

numerically using iterative techniques. Equivalently, we seek the roots of
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Figure 2.3: Sample (¢) and fitted (— ) cumulative hazard functions for Gw for the ball
bearings data set.

Figure 2.4: Sample (#) and fitted (—— ) cumulative hazard functions for Gb for the ball
bearings data set.
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It . drg d2*
eration T =2 #
1 3 1.069620 -1.416817

3.754946 | 0.223208 | -0.887050
4.006576 | 0.014534 | -0.775282
4.025323 | 0.000070 | -0.767812
4.025415 | 1.65x1079 | -0.767776
4.025415 | 3.55x10~° | -0.767776

SO x| W N

Table 2.3: Summary of iterations for fitting G4 to the ball bearings data in Table 1.1.

Equating (2.12) to zero yields « in terms of the data and 7; we have

o= 0 (2.14)

and substituting (2.14) into (2.11) yields the profile log-likelihood, which again offers the
practical benefit of depending only on the single parameter, 7. We have

F=(r-1)Se—nr—nrlnSo(1)+nrlnn+nrlnt —nlnl (1),

g
and
aly
—#=S’e—nlnSg(l)+n1nn+nln7-—n\11(7—). (2.15)
In order to use Newton-Raphson to locate the root of (2.15), we also require the second
derivative, '
a2 ,
9 _ -1
g2 =7 —n¥ (7).

We now have all the necessary terms to locate MLEs of parameters from a Gamma distri-
bution, and, with previous distributions, illustrate this with a worked example. Thus, we
fit this distribution to the ball bearings data set given in Table 1.1, and find it convenient
to set our initial value for 7 equal to 3; this is consistent with MLEs of shape parameters
of previous distributions. We note, but do not use, a method established in Hirose (1998)
to locate MLEs for the three parameter Gamma distribution. Details on the iterations
are shown in Table 2.3; we see convergence after just 6 iterations, and the MLEs for this
particular data set .a,re |

7 =4.0254, & = 17.9421,

which gives a maximum log-likelihood of -113.0293. Thus, in terms of maximised log-
likelihoods, the Gamma distribution provides a better fit to the ball bearings data than the
Weibull, and is also a further improvement over the Burr. We illustrate this by comput-

ing the Kolmogorov-Smirnov distance when we assume that the theoretical distribution is
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Gamma with the above parameters. We have
D, =0.1230,

and note that Dy, > Dy > Dy. Thus, in terms of maximised likelihoods the Gamma distri-
bution provides the best fit to the data set, but when we consider the Kolmogorov-Smirnov
statistic, then we favour the Burr. This example highlights some of the inconsistencies
between methods for assessing the goodness of fit of a distribution to data.

2.5 Fitting Gy,

The final distribution we consider is the Lognormal distribution. Using (1.9), we write the

likelihood function as

n n 2
11 H 1 ~(ny; —p)
Lln (yl,y2;--~>yn;ﬂv,0) = Gin (yi;,u,o) = e exp{ 2 )
i=1 27T0'y1' 20

=1
with log-likelihood
. . ,
_.n n. 9 (Iny; — p)
l]n———Eln(27T)—§th' _SC_ZT' (216)

i=1

We exploit the link between the Lognormal and Normal distributions described in Chapter
1, to write down explicit expressions for the MLEs from the Lognormal model. Using the
fact that InY "N (u,0?), we have

o=n"ts,,

and

5 \/Z?=1 (ny; —pw)?
n b

thus, in contrast to the other distributions studied, we do not need to use numerical methods,
since explicit expressions for the MLEs of this distribution are available. We illustrate this
by fitting the Lognormal distribution to the ball bearings data given in Table 1.1, and assess
the goodness of fit by calculating the Kolmogorov-Smirnov distance. Our MLEs are

i = 4.1505, 5 = 0.5216,

which gives a maximum log-likelihood of -113.1286. This suggests that the Lognormal pro-
vides an improved fit over the Weibull on the basis of maximised likelihoods. This is further
strengthened by the fact that Dy, = 0.0898 < D,,. If we consider all four distributions
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l D
Weibull -113.6913 | 0.1511
Burr -113.2498 | 0.1116

Gamma -113.0293 | 0.1230
Lognormal | -113.1286 | 0.0898

Table 2.4: Comparison of maximised log-likelihoods and Kolmogorov-Smirnov tests for the
Weibull, Burr, Gamma and Lognormal distributions when these are fitted to the ball bear-
ings data set.

simultaneously, then we see that fitting the Weibull model to the ball bearings data actu-
ally results in the worst fit, when we use both maximised log-likelihoods and Kolmogorov-
Smirnov distances; see Table 2.4. This example illustrates some of the problems of choosing
a distribution based on popularity.

Now that we have all the theory developed to fit our four main distribution functions to
data, we extend the results by examining the effects of mis-specifying the Weibull distribu-
tion and using this to model data with underlying Burr, Gamma and Lognormal models.
We address this below, but first consider the results when we fit the correct distribution.
This is, from a statistical perspective, the best scenario, and provides a standard against
which all other analyses can subsequently be compared.

2.6 Fitting G, to G, data

We simulate data from G,, using (1.17) with
B8 =2,0=100,

for n = 50, 100, 300, 500 and 1000, and summarise the behaviour of the MLEs and §w,10
when we fit the correct distribution to this data. Note that we can compare our sample
values of Ew,lo with the true value given by

Bu,10 = 100{~1n (0.9)}? = 32.4593.

Our results are summarised in Table 2.5. We observe excellent agreement between true and
estimated results, even. for small sample sizes, and this improves as n increases. We also
see the sample standard errors for the Weibull MLEs and ﬁw,1o decrease as the sample size
increases. A natural extension would be to examine how the Weibull MLEs are distributed,
especially for large sample sizes. This will not be considered here, since the asymptotic
distribution of these MLEs is well known; see, for instance, Bain (1978).
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n ' 50 100 300 500 1000

B : mean 2.0558 | 2.0286 | 2.0099 | 2.0051 | 2.0017
(st.err.) (0.2357) | (0.1606) | (0.0901) | (0.0704) | (0.0493)
9 : mean 99.8239 | 99.9358 | 99.9847 | 99.9735 | 99.9629
(st.err.) (7.4000) | (5.2494) | (3.0497) | (2.3615) | (1.6880)
Bu1o: mean | 33.2009 | 32.9027 | 32.6175 | 32.5341 | 32.4731
(st.err.) (5.4256) | (3.7708) | (2.1497) | (1.6924) | (1.1959)

Table 2.5: Summaries of the MLEs for G,, when fitted to Weibull data generated with
6 =2, 6 =100. Figures are based on at least 10000 replications.

2.7 Fitting G, to G data
We now simulate data from Gp with
a=4,7=23, ¢=100;

as above, these values are somewhat arbitrary. For a set of data, we first calculate the
Weibull MLEs, and find the sign of A to determine whether the Burr distribution can
provide a better fit. If it does, then we fit this distribution using the algorithm outlined
above, and obtain the Burr MLEs. We repeat this proce‘dure at least 10000 times, and
summarise the MLEs for both distributions; see Table 2.6 for n = 50, 100, 300, 500 and
1000. We also show the average value of A and the probability of fitting the Weibull
distribution based on the proportion of times this function is negative. Finally, we include
the estimate of Byg from both true and mis-specified distributions. Since we have used
simulated data, then we can compare these estimates with the true value given by

' 1
By10 = 100 {(1 ~0.1)7% - 1}3 = 20.8848.

The results show that for small sample sizes, the Burr MLEs, especially for a and ¢, do not
agree with the true values very well at all, and it is only really for a sample size of 500 that
we begin to obtain similarities between observed and expected results; even this agreement
is not particularly good. We further note, for small sample sizes, particular replications with
large estimates of o and ¢; such values will clearly affect the sample mean and standard
error. The reason for this seems to be linked to the fact that the Weibull is the limiting
distribution for the Burr. The smaller the sample size, the less information we have, thus
increasing the chance of choosing the incorrect distribution. Thus, if we almost, but not

quite, prefer the Weibull distribution in favour of the Burr then the limiting arguments

- concerning « and ¢ apply and we see their estimates becoming extremely large. This occurs

far more often for smaller sample sizes because of the lack of data, and leads, on occasion,
to considerably larger estimates for o and ¢. We note that these estimates do not affect
the estimate of By 1o for the true distribution, and across all sample sizes, the agreement
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n 50 100 300 500 1000
B : mean 2.6531 | 2.6035 | 2.5706 | 2.5649 | 2.5592
(st.err.) (0.3222) | (0.2232) | (0.1304) | (0.1014) | (0.0726)
9 : mean 67.1717 | 67.2201 | 67.2263 | 67.2715 | 67.2597
(st.err.) (3.9092) | (2.7712) | (1.6188) | (1.2433) | (0.8809)
By, 10 : mean 28.5667 | 28.2215 | 27.9774 | 27.9549 | 27.9062
(st.err.) (3.4209) | (2.4139) | (1.4219) | (1.1089) | (0.7908)
A : mean 3.2630 | 9.3855 | 35.1285 | 61.7992 | 129.9680
(st.err.) (5.7515) | (11.0927) | (26.5352) | (40.2960) | (68.9834)
Pr (Fit Weibull) | 0.3120 | 0.1696 | 0.0241 | 0.0051 0
7 mean 3.2453 | 8.1210 | 3.0205 | 3.0085 | 3.0048
(st.err.) (0.5356) | (0.3907) | (0.2273) | (0.1782) | (0.1272)
& : mean 58481 | 6.0846 | 5.6085 | 4.9535 | 4.3944
(st.err.) (7.6847) | (7.3206) | (6.0028) | (3.4441) | (1.6074)
 : mean 104.4379 | 108.5870 |.108.8744 | 106.1578 | 102.8393
(st.err.) (45.8092) | (42.4754) | (32.1425) | (23.6247) | (14.5185)
By, 10 - mean 30.7167 | 30.2949 | 29.9458 | 29.9275 | 29.9059
(st.err.) (3.5238) | (2.5300) | (1.4970) | (1.1670) | (0.8302)

Table 2.6: Summary statistics of the MLEs for Gy and G,, for data generated from Gy with
a=4,17=3, ¢ =100.

between Bb,m and its true value is relatively good. When we estimate this quantile using
the mis-specified distribution, we generally seem to be under-estimating the time to which
10% of the observations fail. In all cases, the sample standard errors of the MLEs from
both Weibull and Burr distributions decrease. The MLEs for the Weibull also seem to be
centering around some limiting values as n increases (8 ~ 2.55, 6 ~ 67.25).

2.7.1 Assessing the goodness of fit

When we consider mis-specification using the Burr distribution to generate the underlying
data set, we have a.numerical method to determine which is the preferred distribution.
When we consider using other distributions as the underlying model, then, as we see below,
there are no discriminating functions. Consequently, we should assess the goodness of fit of
Burr and Weibull models to Burr data using alternative techniques, since.such procedures
must be used for the other distribution functions. It is also of interest to assess whether
these procedures give results consistent with A. We examine two such procedures below,
based on Kolmogorov-Smirnov distances and cumulative hazard plots.

The Kolmogorov-Smirnov distance

We use this test to determine whether the true distribution or mis-specified Weibull provides
a better fit to a set of data, and calculate this statistic for the 10000 replications of data,
with n = 50, 100, 300, 500, 1000, in each case using the MLEs as the parameter values in
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n 50 100 300 500 1000
D,, : mean 0.0897 | 0.0680 | 0.0461 | 0.0398 | 0.0339
(st.dev.) (0.0213) | (0.0168) | (0.0112) | (0.0094) | (0.0071)
Dy : mean 0.0781 | 0.0564 | 0.0332 | 0.0259 | 0.0183
(st.dev.) (0.0172) | (0.0125) | (0.0073) | (0.0057) | (0.0040)
Dy — Dy : mean 0.0147 | 00135 | 0.0132 | 0.0140 | 0.0156
(st.dev.) (0.0178) | (0.0149) | (0.0108) | (0.0093) | (0.0073)
A : mean 32630 | 9.3855 | 35.1285 | 61.7992 | 129.9680
(st.dev.) (5.7515) | (11.0927) | (26.5352) | (40.9260) | (68.9834)
Pr(A > 0) 0.6880 | 0.8304 | 0.9759 | 0.9949 1
Pr(Dy > Dy A >0) | 0.7929 | 08247 | 0.8999 | 0.9420 | 0.9848

Table 2.7: Summary statistics for comparing D,, with D. Data is simulated from a Burr
distribution with a = 4, 7 = 3 and ¢ = 100 and for n =50,100,300,500 and 1000.

both distributions. From Chapter 1, we noted how this test could be used to accept or reject
the hypothesis that a data set is adequately modelled using a distribution specified. If the
- probability of observing a value of D, derived from this test, was small (that is, less than
some specified significance level), then we reject the null hypothesis that the distribution is
a good representation of the data set. We do not use this interpretation here, but as above,
base our choice between true and mis-specified distributions on the size of the test statistic.
For example, if D, < Dy then we prefer the mis-specified distribution over the true. We
summarise the results in Table 2.7, and also include the summary statistics for A, after this
has been rescaled using 9 from the Weibull distribution, to gauge the consistency between
the discriminating function and the Kolmogorov-Smirnov distance. We note that results for
Dy, are only recorded when A > 0, since, if this condition is not satisfied, we cannot fit the
Burr distribution, and so do not obtain results for the Kolmogorov-Smirnov distance for this
model. An alternative approach would be to set Dy = D,, since the Weibull is embedded in
the Burr, thus resulting in no difference between true and mis-specified distributions. The
results show a decrease in the Kolmogorov-Smirnov statistics for both distributions as the
sample size increases. In all cases, the average of Dy is always less than the average of D,,
s0, on the whole, we prefer to fit the true distribution. We also see the number of times both
methods reach the same conclusion increases with n; this suggests the tests are increasingly
_consistent for larger samples. Figures 2.5, 2.6, 2.7, 2.8 and 2.9 illustrate the rélationship
between D,, — Dy and A for n = 50, 100, 300, 500 and 1000 respectively. Generally across
all sample sizes, large values of A correspond to large differences. We also see more extreme

values of A for larger n.

Hazard plots

We also assess the goodness of fit between the Burr and mis-specified Weibull using cumu-
lative hazard functions. We compare these continuous functions for both distributions with

the empirical counterparts obtained from the data. To illustrate this procedure, we consider
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Dw-Ob

Figure 2.5: Dw—Db against A for data generated from Gb with a =4, r = 3 and 0 = 100
(n = 50).

Figure 2.6: —Df, against A for data generated from Gb with ¢ = 4, r = 3 and 4= 100
(n = 100).
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Figure 2.7
(n = 300).

Figure 2.8: Dw—Db against A for data generated from Gb with a =4, r =

(n = 500).
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Dw —Db against A for data generated from Gb with ¢ = 4, r = 3 and ¢ = 100
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Figure 2.9: Dw —Db against A for data generated from Gb with @ = 4, r = 3 and = 100
(n= 1000).

1000 observations simulated from the Burr with the above parameter values. To this, we fit
both the Weibull and Burr distributions, and obtain the following MLEs

p = 24171, 7 - 66.9221, r = 29101, a = 3.4480, £= 94.6071

We then construct the sample cumulative hazard function for data, and compare this to
Hw [y\P,Q~ and Hb S,r, ; see Figures 2.10 and 2.11. These show generally good
agreement between sample and theoretical results, although there are some discrepancies
for the Weibull distribution, especially for large y. When we compute the maximum ab-
solute distance between the sample cumulative hazard function and the theoretical hazard
function for both the Weibull and Burr, we see that the larger distance occurs for the
Weibull distribution; we denote this distance by C H, with corresponding sub-scripts for the
appropriate distributions. Thus, for the Weibull we have CH W = 3.8455, which we compare
to CHb — 0.8780 for the Burr. So, for this particular data set, we conclude, by examining
hazard plots, that the Burr distribution provides a better fit over the Weibull. Note that
this is consistent with a positive value of A (137.8498), and Dw > Db-

This procedure is repeated at least 10000 times each for varying values ofn, and we record
the percentage of times the three methods for comparing goodness of fit are consistent. This
is achieved by examining, for A > 0, the number of times Dw > Db and CHW> CHb; the
results are summarised in Table 2.8. The table shows CH W increasing as the sample size
increases; the distance for the Burr remains constant at around 1. The average difference
between the two distances also increases for larger n, so suggesting that the Burr is favoured

over the Weibull for such sample sizes; this is consistent with observing small probabilities
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100 m 140 160 180 200

Figure 2.10: Sample (#) and theoretical (----) cumulative hazard functions for Gw with
(3= 2.4171 and 6 = 66.9221. We simulate 1000 data values from Gb with a = 4, r = 3 and

+= 100.

Figure 2.11: Sample (#) and theoretical (-—) cumulative hazard functions for Gb with

r = 29101, a — 3.4480 and d = 94.6071.
a =4,r =3 and ¢= 100.

We simulate 1000 data values from Gb with
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n 50 100 300 500 1000
CHW: mean 1.6247  2.1566  3.3522  4.1039  5.3849
(st.dev.) (1.1714)  (1.6574) (2.5253) (3.0929) (3.9183)
CHb : mean 1.0057 09872 1.0078  1.0250  1.0624
(st.dev.) (0.4547)  (0.5476)  (0.6804)  (0.7251)  (0.7778)
CHb~ CHW: mean 10527 14748 24099  3.0964 43225
(st.dev.) (0.8987)  (1.2989) (2.0316) (2.5414) (3.3019)
Pr (CHW> CHbA > 0) 0.9985 09971  0.9814  0.9797  0.9875

Pr (CHW> CHband Dw > DblA > 0) 0.7917 0.8219 0.8825 0.9223 0.9725

Table 2.8: Summary statistics for comparing CHW with C H Data is simulated from a
Burr distribution with = 4, r = 3 and 0 = 100 and for » =50,100,300,500 and 1000.

CHw-CHb

Figure 2.12: CHW—CHb against A for data generated from Gb with a = 4, r = 3 and
0 = 100 (n = 50).

for fitting the Weibull distribution in our simulation studies. The agreement between the
number of times A > 0 and CHW > CHb is very good across all sample sizes, and never
goes below 97%. There is also a 20% improvement over the Kolmogorov-Smirnov distance,
when we compare this method with A for a sample size of 50. As n increases, we see the
agreement between all three methods improve. Figures 2.12, 2.13, 2.14, 2.15 and 2.16 show
CHW—CHb against A for n = 50, 100. 300, 500 and 1000. The plots have a distinct linear
structure, with some discrepancies at the tails, usually corresponding to the more extreme

values of A.
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CHw-CHb

Figure 2.13: CHW—CHb against A for data generated from Gb with @ = 4, r = 3 and
0 = 100 (n = 100).

CHw-CHb

Figure 2.14: CHW—CHb against A for data generated from Gb with a —4, r = 3 and
0= 100 in = 300).
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Figure 2.15: CHW—CHb against A for data generated from Gb with «

$ = 100 (n = 500).
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Figure 2.16: CHW—CHb against A for data generated from Gb with ¢ = 4, r = 3 and

@ =100 (n= 1000).
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n 50 100 300 500 1000
B : mean 1.8080 | 1.8679 | 1.8439 | 1.8391 | 1.8368
(st.err.) (0.2130) | (0.1461) | (0.0828) | (0.0644) | (0.0454)
9 : mean 169.3207 | 169.2524 | 169.3936 | 169.3192 | 169.3600
(st.err.) (13.8920) | (9.7800) | (5.6231) | (4.3701) | (3.1471)
Buwio : mean | 51.4429 | 50.6017 | 49.9438 | 49.7806 | 49.7313
(st.err.) (8.0651) | (5.6769) | (3.2634) | (2.5433) | (1.8006)
7 : mean 31849 | 3.0962 | 3.0286 | 3.0155 | 3.0104
(st.err.) (0.6401) | (0.4238) | (0.2341) | (0.1840) | (0.1288)
@ : mean 48.9377 | 49.3171 | 49.8312 | 49.9124 | 49.0143
(st.err.) (10.2611) | (7.2266) | (4.1609) | (3.2788) | (2.3188)
B,10: mean | 56.5015 | 55.8505 | 55.3384 | 55.2008 | 55.1875
(st.err.) (8.4512) | (5.9162) | (3.3787) | (2.6646) | (1.8817)
Pr(l, >1;) | 02975 | 0.2084 | 0.0724 | 0.0303 | 0.0040

Table 2.9: Summaries of the MLEs for G, and G , when fitted to Gamma data generated
with 7 =3, a = 50. ‘

2.8 Fitting G, to G, data

We now carry out a similar investigation when the data set is simulated from Gy, and we fit
Gy and Gy to data for a selection of sample sizes. Unlike the Burr distribution, however,
we can always fit G4 to data, but cannot determine in advance whether this distribution
or Weibull distribution is preferred, since there is no counterpart to A here. We rely on
other techniques to assess the goodness of fit between the distributions, and can also use
maximised log-likelihoods as a basis for determining the better fit. If l; > I, then we
conclude that Gy is to be preferred to G, whilst I, > lg gives the opposite conclusion. For
illustration, we simulate data from a Gamma distribution with

T =3, a=50;

we consider the effects of changing parameter values below. As before, we also compare
our estimates for Bjp from true and mis-specified distribution functions, comparing these
estimates with the true value By 19 = 55.1033. The results from the simulations are sum-
marised in Table 2.9 for varying sample sizes. As expected, we see the MLEs for the Gamma,
distribution converging towards their true values, and the standard errors of these MLEs
decrease. The estimates for the Weibull again seem to be centering around specific values;
here E ~ 1.84, 9 ~ 169.4. When examining log-likelihoods, we see that the probability of
choosing the Weibull distribution over the Gamma decreases with increésing sample size.
As with the case of the Burr distribution, when we mis-specify the Weibull model and fit
this to data with an underlying Gamma distribution, we always seem to under-estimate
Bjg. When we fit the true distribution, there is excellent agreement between estimates of

this quantile and its true value.
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n 50 100 300 500 1000

Dy, — Dy : mean 0.0050 | 0.0079 | 0.0123 | 0.0145 | 0.0168
(st.dev.) (0.0178) | (0.0155) | (0.0117) | (0.0097) | (0.0075)
CH, — CHg : mean 0.5142 | 0.7947 | 1.3516 | 1.6879 | 2.2007
(st.dev.) (0.4460) | (0.6405) | (1.0043) | (1.1780) | (1.3791)
Pr(lyg > ly) 0.7025 | 0.7916 | 0.9276 | 0.9697 | 0.9960
Pr(Dg < Dy,) 0.6401 | 0.7146 | 0.8479 | 0.9066 | 0.9667
Pr(CHy, < CHy) 0.8966 | 0.8934 | 0.9096 | 0.9226 | 0.9510
Pr(ly > ly and Dy < Dy,) 0.5658 | 0.6596 | 0.8276 | 0.8975 | 0.9653
Pr(lg > ly and CHy < CHy) 0.6882 | 0.7619 | 0.8642 | 0.9041 | 0.9488
Pr(Dy < Dy, and CHy < CH,,) | 0.6060 | 0.6653 | 0.7823 | 0.8427 | 0.9209
Pr (Consistent conclusions) 0.55648 | 0.6339 | 0.7712 | 0.8382 | 0.9205

Table 2.10: Summary statistics for comparing Kolmogorov-Smirnov and hazard functions
for Gy and Gg4. Data is simulated from Gy with o = 50, 7 = 3, and for n =50,100,300,500
and 1000.

2.8.1 Assessing the goodness of fit

As in the case of the Burr distribution, we use Kolmogorov-Smirnov and cumulative hazard
distances to assess how often we would prefer to fit the mis-specified distribution over the
true Gamma. We summarise results in Table 2.10 for varying sample sizes, and note the
probability that the tests give the same result. This is achieved by recording the number
of times D,, > Dy, CHy, > CHy and l,, < lg. We also include the number of times when
two of the three tests result in the same conclusion. The table shows the difference between
 both the Kolmogorov-Smirnov statistics and cumulative hazards increase as the sample size
increases, and always remains positive. Such results suggest that the true distribution is
preferred over the mis-specified for all sample sizes considered, but particularly so as n
increases. When looking at agreement between the methods, we see these proportions also
increase for larger n. For smaller sample sizes, maximum absolute distances between hazards
agrees far more with maximised likelihoods, than the Kolmogorov-Smirnov distance. We
also construct plots of Dy, — Dy against {; — l,,; see Figures 2.17, 2.18, 2.19, 2.20 and 2.21,
and CH,, —CH, against I, —l,,, shown by Figures 2.22, 2.23, 2.24, 2.25 and 2.26, for varying
sample sizes. They both show that as the distances between either the hazard functions
or cdfs increase, so does the difference between the maximised log-likelihoods. ‘This is true
across all sample sizes.

2.9 Fitting G, to G, data

We simulate data from a Lognormal distribution with x4 = 2, ¢ = 3, and fit the Weibull
distribution to this data set. As in previous studies, these parameter values are arbitrary,
and are used only to illustrate some effects of mis-specification; we examine the effects of
varying such parameter values in Chapter 7. This process is repeated for at least 10000
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Dw-Ofl

Figure 2.17: Dw—Dg against [g —Iw for data generated from Gg with r —3 and a = 50
(n = 50).

10

§.i—

Dw-Og

Figure 2.18: Dw—Dg against [g —/w for data generated from Gg with » = 3 and a = 50
(n = 100).
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20-

-0.04

Figure 2.19: Dw—Dg against /g —I/w for data generated from Gg with » = 3 and a = 50
(n = 300).

-10-1—
Dw-Og

Figure 2.20: Dw—Dg against lg —I/w for data generated from Gg with » —3 and a = 50
(n —500).
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Figure 2.21: Dw—Dg against g - /w for data generated from Gg with » —3 and a = 50
(n = 1000).

CHw-CHg

Figure 2.22: CHW—CHg against lg—Iw for data generated from Gg with » = 3 and a = 50
(n = 50).
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CHw-CHfl

Figure 2.23: CHW—CHg against Ig—Iw for data generated from Gg with » = 3 and a = 50
(n - 100).

Figure 2.24: CHW—CHg against [g—{w for data generated from Ggwith r = 3 and a = 50
(n = 300).
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CHw-CHfl

Figure 2.25: CHW—CHg against [g—Iw for data generated from Gg with r = 3 and a = 50
(n = 500).

CHw-CHg

Figure 2.26: CHW—CHg against Ilg—w for data generated from Ggwith » = 3 and a = 50
(n = 1000).
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n 50 100 300 500 1000
B : mean 0.3526 | 0.3437 | 0.3372 | 0.335 | 0.3347
(st.err.) (0.0465) | (0.0323) | (0.0192) | (0.0151) | (0.0108)
9 : mean 36.1582 | 34.5009 | 33.5641 | 33.4747 | 33.2101
(st.err.) (17.4014) | (11.2337) | (6.2663) | (4.8275) | (3.3867)
Buw10 0.0678 | 0.0527 | 0.0437 | 0.0419 | 0.0403
(st.err.) (0.0597) | (0.0320) | (0.0161) | (0.0122) | (0.0085)
7 : mean 2.0054 | 20010 | 1.9998 | 2.0020 | 1.9988
(st.err.) (0.4279) | (0.2964) | (0.1738) | (0.1343) | (0.0948)
G : mean 2.9554 | 29783 | 2.9918 | 2.9962 | 2.9976
(st.err.) (0.3023) | (0.2120) | (0.1223) | (0.0962) | (0.0678)
Binio: mean | 0.1980 | 01761 | 0.1642 | 0.1618 | 0.1597
(st.err.) (0.1220) | (0.0722) | (0.0390) | (0.0295) | (0.0204)
Pr(ly > lm) | 0.0930 | 0.0275 | 0.0005 0 0

Table 2.11: Summaries of the MLEs for G,, and Gy, when fitted to Lognormal data gener-
ated with u =2, 0 = 3.

replications for each value of n, and, for each replication, we calculate the MLEs for both
distributions. We also compute the estimates for B;g and compare these with the true value
of 0.1581. The results for varying sample sizes are shown in Table 2.11. As expected, the
estimates for the parameters from the Lognormal distribution converge to the true values
as the sample size is increased. The Weibull MLEs also seem to be converging to some fixed
value for large n (8 ~ 0.335, 6 ~ 33.21). With respect to the log-likelihoods, we see much
smaller probabilities associated with fitting the Weibull distribution than previously. Thus,
we are less likely to fit the Weibull distribution, if the underlying data set is Lognormal
with parameters similar to the ones used in this simulation. When we compare estimates of
Big, we see good agreement for the true distribution. However, the estimate of this quantile
from the mis-specified model is particularly bad, and the time to which 10% of observations
fail is grossly under-estimated.

2.9.1 Assessing the goodness of fit

This final section of Chapter 2 will consider just how good a fit the Weibull distribution
is to data simulated from the Lognormal. Some attention has been received in this area,
and Croes, Manca, De Ceuninck, De Schepper and Molenberghs (1998) derive a method
for choosing between the Weibull or Lognormal distribution. They calculate the correlation
coefficient of the points on the Weibull and Lognormal probability plots of the experiment
under consideration, and then consider the ratio of these coefficients to determine whether
to choose the Weibull or Lognormal distribution. Cain (2002) further discusses this test, but
we do not consider such procedures here. As with previous distributions studied, we compare
sample and theoretical cdfs and cumulative hazard functions for varying sample sizes, and
when we set 4 = 2, 0 = 3. We also use maximised log-likelihoods from the Weibull and
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n 50 100 300 500 1000
Dy — Dy, : mean 0.0281 | 0.0350 | 0.0438 | 0.0467 | 0.0502
(st.dev.) 0.0281 | 0.0223 { 0.0142 | 0.0112 | 0.0082
CH,, — CHy, : mean 1.4982 | 2.4269 | 4.6655 | 6.0091 | 8.3187
(st.dev.) 0.9497 | 1.5248 | 2.8354 | 3.4914 | 4.8120
Pr(ln > lw) 0.9070 | 0.9725 | 0.9995 1 1

Pr (D, < Dy) 0.8377 | 0.9214 | 0.9932 | 0.9992 1

Pr(CHy, < CHy) 0.9553 | 0.9674 | 0.9894 | 0.9959 | 0.9997
Pr (lin > Iy and Dy < Dy,) 0.8115 | 0.9135 | 0.9930 | 0.9992 1

Pr (i > ly and CH), < CH,y,) 0.8929 | 0.9496 | 0.9892 | 0.9959 | 0.9997
Pr(Dy, < Dy, and CHy, < CH,,) | 0.8160 | 0.8968 | 0.9829 | 0.9951 | 0.9997
Pr (Consistent conclusions) 0.7997 | 0.8925 | 0.9829 | 0.9951 | 0.9997

Table 2.12: Summary statistics for comparing Kolmogorov-Smirnov and hazard functions
for Gy and Gy,. Data is simulated from Gy, with 4 = 2, o = 3, and for n =50,100,300,500
and 1000 '

Lognormal distributions to determine the better fit. The results are summarised in Table
2.12. We include details on the number of times test methods agree with one another. The
final row shows the percentage of consistent results. This is calculated by recording the
number of times all three test methods agree out of the total number of simulations; this
always exceeds 10000. The results show an increase in the difference between D,, and Dy, as

n increases, which suggests, for larger sample sizes, the Lognormal is preferred. The standard |
deviation for this function also decreases, so the chances of having a negative value is much
less for larger sample sizes. This is consistent with the probabilities associated with choosing
the Weibull over the Lognormal when we examine maximised log-likelihood. When we look
at differences between cumulative hazard functions, we prefer the true distribution over
the Weibull far more often for smaller sample sizes (there is a 5% increase when compared
to maximised log-likelihoods, and a 10% rise when compared to the Kolmogorov-Smirnov
distance). The percentage of consistent results between all three methods is very good,
even for small sample sizes. This tends to one for larger values of n. We construct plots
of Dy, — Dy, against Iy, — l; see Figures 2.27, 2.28, 2.29, 2.30 and 2.31, and CH,, — CH,
against lj, — L, shown by Figures 2.32, 2.33, 2.34, 2.35 and 2.36, for varying sample sizes.
They both show that as the distances between either the hazard functions or cdfs increase,
so does the difference between the maximised log-likelihoods. This holds across all sample

sizes.

2.10 Summary

In this chapter, we outlined the theory necessary to fit Weibull, Burr, Gamma and Log-
normal distributions to data using ML techniques. We then considered mis-specifying the
Weibull distribution, fitting this to data with an underlying Burr, Gamma and Lognormal

model. In each case, we constructed a set of simulations for varying sample sizes, each time
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Dw-DIn

Figure 2.27: Dw—D\n against /in —/w for data generated from G\n with n = 2 and a = 3
(n = 50).

Figure 2.28: Dw—D\n against /in —/w for data generated from Gin with /i = 2 and I= 3
(n = 100).
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Figure 2.29: Dw —D\n against /in —/w for data generated from G\n with (i = 2 and @ —3
(n = 300).

-0.02 0 0.02 0.04 0.06 0.08 0.1
Dw-DIn

Figure 2.30: Dw—D\n against /\n —/w for data generated from G\n with /i =2 and a = 3
(n = 500).
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Figure 2.31: Dw —Dl\n against /\n —Iw for data generated from Gln with fi = 2 and a = 3
(n=1000).

CHw-CHIn

Figure 2.32: CHW—CH \n against /in—w for data generated from Gin with = 2and a =3
(n = 50).
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CHw-CHIn

Figure 2.33: CHW—CH\n against /\n—/w for data generated from with f, = 2and a —3
(n = 100).

CHw-CHIn

Figure 2.34: CHW—CH\n against /in—w for data generated from Gin with fi = 2 and a —3
(n = 300).
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CHw-CHIn

Figure 2.35: CHW—CH\n against /\n—Iw for data generated from Gin with fi = 2 and ¢ —3
(n = 500).

-10 0 10 20 30 40 50 60 70
CHw-CHIn

Figure 2.36: CHW—CH\n against [\n—Iw for data generated from Gin with fi = 2 and a = 3
(n = 1000).
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noting the average MLEs from true and mis-specified distributions, and their corresponding
standard errors. We also included details on Bjg, and compared estimates with the true
value from running simulations. Finally, we assessed the goodness of fit of both true and
mis-specified distributions, via a number of techniques. These included numerical tests such
as Kolmogorov-Smirnov distances, and we also examined the maximum absolute distances
between fitted and empirical cumulative hazard functions.

In the next chapter, we consider the entropy function, which provides an explanation
for the values onto which the MLEs from the mis-specified Weibull distribution converge as
the sample size increased. This is considered first for complete data; results for censored
data sets are given in Chapter 4.



Chapter 3

Maximum Likelihood: Some

Theoretical Considerations

The simulation studies reported in Chapter 2 for the Burr, Gamma and Lognormal dis-
tributions indicate that, as sample size increases, the MLEs for the mis-specified Weibull
distribution converge to some fixed parameter values, with decreasing standard errors. In
this chapter, we derive theoretical counterparts for both mean and standard errors of the
MLEs for parameters in the mis-specified model. We also consider this for the correct dis-
tribution function, where results are known. We first outline some general theory; results

for specific distributions will then follow.

3.1 Analysing data using the correct distribution

Asymptotic properties of the distribution of MLEs when we assume the correct distribution
function is specified are relatively well known; see, for example, Cox and Hinkley (1974). In
summary, for model parameters T = (71, 72,... ,7k), the asymptotic distribution of 7 will
be Normal with mean 7, and variance covariance matrix equal to the inverse of the Expected
Fisher Information matrix (from now on, abbreviated to EFI matrix); this is symmetric,

with (i, )" element

o[ 23],

we exploit this symmetry, and give only the lower triangle of elements. We use this matrix
to derive the asymptotic distribution of §10, which, in general, is a non-linear function of
7. Consequently, a first order Taylor series about the true parameter 7 (for which the mean
and variance can be computed) is used to approximate the quantile; we have

Bl =B+, (F—7)
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where

_ 0By
T oon

For large samples, we therefore have
E [EIO] = Bio,

since, asymptotically, the expected values of the MLEs tend to their true values. Similarly,

for the variance, we have
Var (ﬁw) = A e, (3.2)

and further note that, in this limit, the distribution of §10 is Normal with the above mean
and variance. This follows from approximating the quantile as a linear combination of
the MLEs. We refer to Mardia, Kent and Bibby (1995) for a further discussion on the
asymptotic distribution of non-linear functions of MLEs.

We now consider the form of the EFI matrix and the distribution of Ew below, for the
Weibull, Burr, Gamma and Lognormal distributions.

3.1.1 The Weibull distribution

Watkins (1998) computes expectations of second derivatives from G,, given by

2—2;% = —nB2+20~P1n 05, (8) - 6=° (n6)* Sp (B) — 6785, (B), (3.3)
.

T = npg? - (e +1) 0PI (6), (3.4)
2

g 52“; = —n0~ 1+ 97BN g () {1 - BIn o} + Bo~ B (). (3.5)

~
Using these, we state that the distribution of (ﬁ, 9) is Bivariate Normal with mean (8, §)’

and variance covariance matrix A~!, where

A:n{ﬂ‘z{%“r(v—lf} }
-7 (1—-7) B2

and use this result to compute the variance of Ew,m, from (3.2) with

8Bu,10 —6(—1n0.9)7 In(—1n0.9)
Cr = ( 638510 > = < @ ) = s 1 . (36)
o8 c6 (—1n0.9)8
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n 50 | 100 | 300 | 500 | 1000
St.err.(B) 0.2205 | 0.1559 | 0.0900 | 0.0697 | 0.0493
St.err.(é) 7.4454 | 5.2647 | 3.0396 | 2.3544 | 1.6648
St.err.(éw,m) 5.3059 | 3.7519 | 2.1661 | 1.6779 | 1.1864

Table 3.1: Theoretical standard errors for the MLEs of G, for varying n. Data is simulated
from G,, with g =2, § = 100.

We compare sample results, summarised in Table 2.5, with theoretical counterparts, when
B =2, 8 = 100; for this particular set of Weibull parameéters, the variance covariance matrix
is

-1

- visd 2
n_1|:22{T+(7—1)} 2} =n_1{ 2.4317 |
10071 (1-v) (F) 25.7022 2771.6622

and this matrix yields the theoretical standard errors of the Weibull MLEs and Ew,m for
varying sample sizes. The results are shown in Table 3.1; we see excellent agreement between
theoretical and sample values of the Weibull MLEs and Ew,lo- This is true across all sample

sizes.

3.1.2 The Burr distribution

To calculate the EFI matrix from G, we need the expected values of the six second partial
derivatives given by (2.9). Again, we refer to Watkins (1997) for details on this, and list the

required expectations below. From (2.9), we require

(%) 1o (-;;)] _1-7-%() (3.7)

F 1+(§)T T(a+1) '

}2 a{%2+72—27+2(7—1)\1:(a+1)+\Ir(a+1)2+\1/(a+1)}
2| 7 2 (a+1)(a+2) ’

(3.8)

o

T a+1’
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i (%)T _ a (3.10)
(L ()| ey |
and |
i ) m(x)] afl-y-Y(a+1)} (3.11)

Y\ 12| Tla+1)(a+2)
{1+(3)}
Using these, we write the EFI matrix for the Burr distribution as

Sy na| 242~ 29+2(r-1)¥(@t ) H¥(a+ 1)+ (a+1)]

7 7-2§a+2)
A=n 1—y—¥(a a2

(1)

_ o 1—y—¥(a+1 T ar?
== P(at2) #atl) ¢*(at2)

‘We use this to compute the theoretical variance of ﬁb,m from (3.2) with

~6(097% 1) " (09~ -1)
Cr 7
cr=| ca | =] ¢097F1) ’_1(0.9-% 12.0.9)
Co 1-1042 1
(0.9 -1)"

We compute the theoretical values of the asymptotic variance covariance matrix of the Burr
MLEs, and compare with simulated counterparts; the theoretical values can be obtained
using Mathematica or SAS. We take 7 = 3, a = 4 and ¢ = 100, so that

2
Y -2y
4 42(y-1)T(4+1)

A = n|ge, | F{EE+DP+T @+

72(4+2)
1—y—T(4 4_2
3(4+1)
4{1—y—T(4+1)} 3 4x32
100(4+2) T 100(4+1) 100%2(4+2)

0.2622 _
= n| —0.0556 0.0625 )
| 0.0072 —0.0060 0.0006
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n 50 100 300 500 1000
St.err.(T) 0.5583 | 0.3948 | 0.2279 | 0.1765 | 0.1248
St.err.(@) 4.6747 | 3.3055 | 1.9084 | 1.4783 | 1.0453

St.err.(aL 52.5738 | 37.1753 | 21.4631 | 16.6253 | 11.7558
Sterr.(By1o) | 3.6844 | 2.6053 | 1.5041 | 1.1651 | 0.8239

Table 3.2: Theoretical standard errors for the MLEs of G for varying n. Data is simulated
from Gy with 7 =3, @ =4 and ¢ = 100.

and so

15.5843
=n"!| —103.8953 1092.6351
—1226.5413 12176.9419 138200.0084

Var

©) Q) W

Table 3.2 summarises the theoretical standard errors of the MLEs and Eb,m when n =
50, 100, 300, 500 and 1000; we may compare these to sample counterparts shown in Table
2.6. We observe considerable differences between sample and theoretical standard errors
of Burr MLEs, especially for & and 5, and small sample sizes; some intuitive explanation
for this has been provided in Chapter 2, when we compared average MLEs with their true
values, and observed averages for & and $ considerably larger than expected. This will also
affect the corresponding standard errors. We run a further set of simulations, this time with
n = 2000. The theoretical variance covariance matrix is given by

0.0078
—0.0581 0.7592 )
—0.6502 7.7668 81.6661

which we compare to the sample counterpart

0.0078
—0.0515 0.5417
—0.6089 6.0373 68.5361

Increasing the sample size has improved the agreement between theoretical and sample
variances and covariances for the parameters quite considerably. When we examine resulfs
for the quantile §b,10, we observe sample means approaching the true value of 29.8848 as
the sample size increases. The agreement between theoretical and observed standard errors
is generally quite good, even for small sample sizes. This is somewhat surprising, given the
poor agreement between sample and theoretical standard errors of the Burr MLEs, which
then contribute to the standard error of this quantile.
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3.1.3 The Gamma distribution
We consider (3.1) for G. Differentiating (2.12) with respect to o gives
8%l -3 -2
Bz = —2a7°8y (1) + nTa™%;
similarly, we differentiate (2.13) with respect to 7 to obtain
8219 U
2 = Y (7);
finally, we see that
8%, -1
dadr ~ %
Hence, by taking expected values of these second derivatives we have
82lg /
—-F [—6-;2-] = n¥ (T) ,
&%l -
T [Baar] = "
and
-E 8_2l_g = 2na 3E[Y] - nra™?
Ha? )
We note that
o™ (m+ 1)
m) _
and so
E[Y]=oar.
Hence,

2
-F [g—ég] =nra~2.

Thus, for large sample sizes, (7,@)’ will be Normally distributed with mean (7,a) and

variance covariance matrix

) -1
| Y (7)
—1_ -1
AT =n [a‘l Ta‘zJ '
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n 50 100 | 300 | 500 | 1000
St.err.(7) 0.5678 | 0.4029 | 0.2326 | 0.1802 | 0.1274
St.err.(a) 10.3370 | 7.3004 | 4.2201 | 3.2688 | 2.3114
St‘err.(B\g,lo) 8.3188 | 5.8823 | 3.3961 | 2.6306 | 1.8601

Table 3.3: Theoretical standard errors for the MLEs of Gy for varying n. Data is simulated
from Gy with 7 =3, o = 50.

Unlike the Weibull and Burr distributions, we cannot write down analytic expressions for
the mean and variance of Eg,lo. However, we can compute this quantile using Mathematica

to solve

L' (r)

for y, using the Inverse Gamma Regularised function, for given 7, . ‘Thus, B ,10 is obtained

" from

InverseGammaRegularized [7,0,0.1] x a.

Ma,thematica can also compute derivatives of By, 10, required for (3.2). Although further an-
alytical progress is possible, ultimately, their evaluation must be numerical, and we therefore
omit these simplifications. We compute the theoretical standard errors of the MLEs and

—~

By,10 for varying n. For 7 = 3, a = 50, we have -

o'(3) 5071 ]_n[o.3949

501 3 x 5072 0.02 0.0012 } ’
16.
Var =n1 6.2336 .
—270.5595 5342.6591

We summarise theoretical results in Table 3.3, and compare with simulated counterparts

so that

Q) )

shown in Table 2.9. We see good agreement between observed and expected results, es-
pecially for larger sample sizes. This is true for both the Gamma MLEs and §g,10. We
also note that the theoretical mean of 55.1033 is close to the sample means, even for small

sample sizes.

3.1.4 The Lognormal distribution

The Lognormal distribution differs from other reliability distributions, in that explicit ex-
pressions exist both for the MLEs of this distribution, and the elements in (3.1). The score
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for this distribution is obtained on differentiating (2.16), which gives

ou o2 '

and

O _ =n 3oy (nYi-p)*

Oo bos o3

The second derivatives are then

Pl _ —n
ou o2’

Ol n 3% %, (Y —p)?
do2 o2 o4 ’

and

Pl _ ~2Y %, (% - p)
dudo o3

We take expected values of these to obtain the variance covariance matrix for the MLEs of

the Lognormal distribution. These are given by

and

B [6%] _-n % [k (i - ]

ot ’

where, on exploiting the link between Normal and Lognormal distributions, we write

E [i (InY; — u)z} = no?.

i=1

Thus,

02l 2n
—F [W] =52

Finally, we have

p[a] 2B Yo
Oubo |~ o3 e
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n 50 | 100 | 300 | 500 | 1000
St.err.(2) 04243 | 03 |0.1732 | 0.1342 | 0.0949
St.err.(5) 0.3 | 0.2121 | 0.1225 | 0.0949 | 0.0671
Sterr.(Bin0) | 0.0905 | 0.0640 | 0.0370 | 0.0286 | 0.0202

Table 3.4: Theoretical standard errors for the MLEs of Gy, for varying n. Data is simulated
from Gip with p =2, 0 =3.

Thus, (%, )" will have a bivariate Normal distribution with mean vector (i, )’ and variance

covariance matrix

When we compute the mean and variance of §ln,10, then, as with the Gamma, distribution,
we are not able to write down a theoretical expression for this quantile. We can, however,

use Mathematica to compute numerical values, by solving

01— 8 (L)
g

for y. The command Quantile[LogNormalDistribution] provides solutions to such an

equation for a particular set of Lognormal parameters. Thus, Eln,lo will be Normally dis-
tributed with mean F [Eln,lo] = Bin,10 and variance given by (3.2) with

c 9Bin,10
_ (3 _ [2)
Cr = - 331::.10 .
Co oo

where these derivatives can also be obtained using Mathematica. Again, as with the Gamma
distribution, some simplification for these derivatives is possible, but will not be considered
here. We compare theoretical results with our simulated values in Chapter 2, noting that

the variance covariance matrix for our particular set of parameters is

32 9
0 % 0 3

We use this matrix to summarise the results in Table 3.4 for varying n; we compare this
with the values in Table 2.11. As previously noted, the results show very good agreement
between observed and expected values, and this improves as the sample size increases. The

average of Eln,_lO also seems to be tending to its true value of 0.1581 as n increases.
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3.2 Analysing data using the incorrect distribution

When we fit the incorrect distribution to data, the distribution of the mis-specified MLEs
will change to compensate for this. Work in this important area can be traced back at least
as far as Cox (1961), who considers the expected score equations, and shows how to obtain
asymptotic parameter means from the mis-specified model; these values can be defined in
terms of the true parameter values. The asymptotic distribution of the mis-specified MLEs
is also considered. As previously discussed, we always consider the Weibull distribution as
the mis-specified model. Consequently, now the asymptotic distribution of (B,?)l will be

Normal with mean (8g,60)’, where (Bg,00) are the roots of the expected score equations

oy
Et |:-5E-:| = 0,

o]
E, [_89} - o

Here, E; indicates that expectations are taken with respect to the true distribution function
with known parameter values. Equivalently, we maximise E [l,,], the entropy function; see
Shannon (1948) and Jaynes (1957). From (2.1), we obtain

E; = Eyfly] = ninB — nBlné + (8 — 1) E¢[Se] — 6P E:[So (B)],
and, via independence, this can be expressed as
n{lnﬁ—ﬁ1n0+ (6-1)E;InY] - 0~PE, [Yﬁ] } . (3.13)

We differentiate this function to obtain the entropy score function with elements

%—JZE —n [5-1 —Inf+E[InY]+67P {1n 0E, [Yﬁ] _E [Yﬁ In Y] }] ,
and
% =n{-p07+ 561 E, [v?] }, (3.14)

and note that we can equate (3.14) to zero to obtain

6= {Et [Yﬂ] }% . (3.15)

Thus, the profile entropy function is

Et*:n{lnﬁ—lnEt [Yﬁ] +(B-1)E [1nY]—1}, (3.16)
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and the profile entropy score function is given by

dE; E [YPInY
Fﬁt_ =n {ﬁ_l - tE[,’TYE]] + Et [lnY]} y (3.17)

with derivative

o { B [v* (a¥)] B [v] - (B [Yﬁw]f}
=-n{f "+ :

ag* (B [Y#])°

We can locate the root of (3.17) either numerically (for instance, using Newton-Raphson)
or graphically; we denote this root by By, and obtain 6y on taking 8 = B, in (3.15). We use
these entropy values to derive the variance covariance matrix of the mis-specified MLEs.

This matrix is given by

ATlVATL (3.18)

(evaluated at [y, 6o) where, now,
-E
A= ‘
—E,

vor: () )}

Cov; (%ﬁ, a—g;}) Var: (%31

i)
ot

81,

9po6

)|

and

V =

This variance covariance matrix reduces to (3.1) when ¢ = w. We use (3.3), (3.4) and (3.5)

to write the elements of the matrix A as

8l,] B2~ 207PIn6E; [YPInY] + 677 (In6)” E; [Y7] -

- [B_ﬁf- T +02E, [Y4 (Y]  (319)
o

—FE; [%GZ—;JJ = —nph? {1 —(B+1)07PE; [Yﬂ] } , (3.20)

—-E, [_g;laweq =.no! {1 — H_ﬂ (1 —fFln 0) E; I:Yﬁ] — ﬁe_ﬁEt [Yﬁ lny] } ) (321)

From (2.2) and (2.3), we evaluate the elements of V' as follows: we first need

Se
Var; (%%3) =MVary | So(B) | M, (3.22)
S51(B)



3.2. ANALYSING DATA USING THE INCORRECT DISTRIBUTION 67

where
M = ( 1 6% —6F ) ,
and the elements of the matrix in this variance are

Vari(Se) =n {Et [(lnY)z] — Ei[ln Y]Q} ,
Vari{So(8)} =n {Et [Y?B] — By [Yﬂ]z} ;
Vare {S1(B)} =n {Et ‘[Y2ﬂ (In Y)2] — E; [Yﬁ In Y] 2} ,

Cov {5, 50 (8)} = n{ B [P Y| - B, [v*] B [m Y1},

Covs {Se, 51 (B)} = n { E, [Yﬂ (In Y)2] — E,[InY]E, [Yﬁ In Y] } ,
and

Cow {So (B), 51 (B)} =n {Et [Yzﬁ In y] —E [Yﬁ] E, [yﬂ In y] } .

For V, we also need

Vars (%%") = B2~ 28+t Dy qr, {So (B)}, (3.23)

and

) CO’Ut {Sez SO (ﬁ)}
Cou (ZZ_Z %) ="M | Var{Si@®} |, (3.24)
Cov; {51 (6) , S0 ()}

where the elements in this vector are given above. Thus, we require four different expecta-
tions to evaluate the entropy function and variance covariance matrix of the mis-specified
MLEs. These are E;[(InY)™, E;[Y™?], E; [Y™InY] and E; [Ymﬁ (In Yﬂ. We also

consider the asymptotic distribution of Ew,lo; again, we use a linear approximation to the
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quantile based on a first order Taylor series centered on (8, 6o)’. Hence, we have

E’w,lo = Bw,lO (ﬂOaOO) +( cg Cp > ( ,g*_go ) ’
— U0

v

!
where By, 10 (B9, 60) denotes the quantile evaluated at the entropy values, and ( cg Co )
is given by (3.6). Thus, we have

- s
E [Bw,w] ~ By 10 (8g,00) = 60 (—1n0.9)P0

and

Var (Ew,m) ~ ( c3 Co )A‘IVA‘1 ( cp ) . (3.25)

Ca

3.2.1 Entropy for fitting G, to data from G,

We first list the required expectations to compute entropy values from the Weibull distri-
bution. From Watkins (1997), we have

¢™P P,

Ey[Y™) = @

: (3.26)
where
P =T (Zﬁ + 1) T (a - jﬁ) (3.27)
T T

is defined for o > PB7~!. This condition must be satisfied to ensure the fourth moment
exists; see Tadikamalla (1980) for further details. For future reference, we note that

P}:%:jr—lpj{w(i?H)-qf(a—-jg)}, (3.28)
and

) A (L 41)-0(a-2 ’

LA v |

We differentiate (3.26) with respect to 5 to obtain

, s ,
E, [Ymﬁ In Y] - I‘i(—a_) {111 ¢Ppm + %—} , (3.30)
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and setting 8 = 0 in (3.30), we have
EylnY]=ln¢+7H{¥ Q) -V ()} =lng¢ -7 {y+ T (a)}. (3.31)

We also require

E, [Ymﬁ (In Y)2] _ {(m )2 P +

2lngF, P
) —rmy } (3.32)

m m?
and we see that if we put 8 = 0 in (3.32) then we obtain an expression for E; [(ln Y)2] ,
given by

[ng -7 {y+ 2@} +r 2 {¥' 1)+ ¥ (@)} o (333)

Using these expectations and (3.13), we can derive the entropy function for the Weibull
distribution. This is given by '

By = Byfly] = n ! g+ B ($) - {y+¥ (@)} - {%} ]
~lng+r7H {y+ ¥ (a)} |

which, we note, is a function of 8 and 8; a, 7 and ¢ are effectively constants. On using
(3.15) and (3.26) with m = 1, we have

9=¢{FP1)}%, (3.34)

and, from (3.16), we obtain

pr_ ] mB-P ~ By 4+ ¥ ()} +InT ()
- —lng+7 {y+¥(a)} - 1 '

As in the general case, the maximum of this function can be located from a plot; equivalently, .

we can compute the first and second derivatives

By .1 P
B n {ﬂ ) T {y+ T (a)}y, (3.35)
and
dZE* P1P1”—- Pl
2 =-nqb7+ 2( 1) : (3.36)
g %)
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and use Newton-Raphson to locate the root of (3.35). Using the latter approach, we now
compute g, Op for 7 = 3, @ = 4, ¢ = 100; this enables comparison with Table 2.6. After
just five iterations, we obtain 8, = 2.5528, 6y = 67.2620; we note that these values are very
close to the sample means of the MLEs obtained in Table 2.6, especially for large sample
sizes.

Now that we are able to obtain theoretical counterparts to the MLEs of the Weibull
distribution under mis-specification, we can obtain the asymptotic distribution of these

estimates. We address this in the next section.

The variance structure of the mis-specified MLEs

We now derive the distribution of the Weibull MLEs, after this distribution has been wrongly
fitted to data with an underlying Burr model. We first consider expected values of second
derivatives given by (3.19), (3.20) and (3.21). Using the appropriate expectations, we can
write the matrix A4 in (3.18) as :

—0—5——{ 2P1+2,0P1+Pl}

g1 000 Bop)Ps _ fubP09P0R | BolBatO O R g ga |
o - I'(e) 0¥0

() INa)

where

()

In order to calculate the distribution of the mis-specified MLEs, we also require the variance
covariance matrix of the Weibull score. By examining (3.22), (3.23) and (3.24), we list the
functions that appear in the elements of this matrix:

Varb (Se) = n{ﬂlﬁzﬂﬂ}
Vary {So (B)} = e {P2 gﬂ&%}
(1n¢)2{ ) — }+1n¢{P2 %—’}}
+z_=z G |
4 I(a)
Covy {Se, So (B)} = pﬂ(% [Pll““Pl{ﬁ%@}],

Coup {Se, 1 ()} = 3 h“bpﬁfl{;z;% P }Pl},

2 /
Conis(®). 510} = Ho{mer+ 5 - BB - AL

}é
(%
»

Vary {S1 (ﬂ)}_ =

—
N
&)

‘We can now list the elements of the variance covariance matrix of the Weibull score functions.
Using (3.22), we first consider Vary (%ﬁ“) This is given by
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([ (Yasv@), @)7r _ ($)PAmr )
= T(a) {T(@)}?
($)%ep

¢ / é 26 _n & B P 283 /
6) P2 (9) ) _2£§2 P 2(5) pRIP
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" @H(F @) (e[
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2(3) o[ 1L} py
\ I(e) J

Next, we use (3.23) to write

N
Vm(%):M{P 721,

T (a) " T(a)

finally, on using (3.24), we write Cou (%lﬁ“, %lgl) as

. (2)°F
pl_ie%P2+{7+‘i’(é)}Pl

nB~1 (£ g ,
—F <a‘()o) +£—%%rﬁfi§ (?f)ﬂppz
+ er(cfp1

We can now compute theoretical standard errors of the MLEs and §w,10, for data generated
from a Burr model with our usual set of parameter values. When 7 = 3, @ = 4 and
¢ = 100, we have 3, = 2.5528, 0y = 67.2620, and these correspond (to 4 decimal places)
to P, = 2.1801, P, = 1.8029, P = —0.4783, P, = 0.2387, P’ = 0.3676, Py = 0.8248 and
p = 0.3966. As a result, A simplifies to

. 0.3053
.| —0.0067 0.0014 |’

and V becomes

. 0.5408
—0.0184 0.0018 |

Var (

Hence,

) W)

) = A"y AL



3.2. ANALYSING DATA USING THE INCORRECT DISTRIBUTION 72

n 50 | 100 | 300 | 500 | 1000
St.err.(B) 0.3303 | 0.2335 | 0.1348 | 0.1044 | 0.0738
Sterr.(9) 3.9313 | 2.7798 | 1.6049 | 1.2432 | 0.8791
Sterr.(Bu,o) | 3.5838 | 2.5341 | 14631 | 1.1333 | 0.8014

Table 3.5: Theoretical standard errors for the MLEs of G, for varying n. Data is simulated
from Gy with 7 =3, a = 4 and ¢ = 100.

‘becomes

-1 —
1 [ 0.3053 0.5408 0.3053 '
—0.0067 0.0014 —0.0184 0.0018 | | ~0.0067 0.0014

_ 1] 54536
B 0.6263 772.7363 |

We use this to construct Table 3.5, which lists the standard errors of the MLEs and Ew,m
for n = 50, 100, 300, 500 and 1000. We compare these theoretical values to their simulated
counterparts shown in Table 2.6. The sample standard errors are very close to the theoretical
values, even for small sample sizes. We compare sample values of §w,10 with the theoretical

estimate given by

1

Bu 10 = 0 (—1n0.9)% = 67.2620 (In 0.9)755% = 27.8565,

and observe good agreement between observed and theoretical results, especially for large
sample sizes. Since the true distribution is Burr, we must also compare these results with

the true value given by

A=

Byio=¢ {0.9%1 - 1} — 29.8848.
In all cases, the average of the sample values of E’w,lO under-estimate By 1.

Relationships between [, 6y and the parameters in Gy

In this section, we consid(;r how S, 6o vary with parameters in Gj, and determine the
extent to which there is a relationship between parameters of the two distributions. Given
parameter values from the Burr distribution, we wish to find 3, and 6y as easily as possible.
We begin by varying each pa.fameter from the Burr.

When ¢ varies There is no relationship between ¢ and 3, as is clear from the profile
entropy score function (3.35), which is independent of ¢. Thus, its maximising value S,
does not depend on the scale parameter of the Burr distribution. When we look at how ¢
affects 6, (3.34) shows that this entropy value is linearly related to ¢.
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Figure 3.1: Ej versus m for a = 4.

When 7 and a vary We still have to find 3, for given o and 7 before we can calculate
6o. We seek some relationship between 3, and the shape parameters in Gp. We first note
that (3.35) can be expressed as '

dE}
dp

=nmfH{m™ —y -V (a) - ¥ (m+1)+ T (a—m)},

where m = 377! < a. For fixed o, we see that changes in 7 induce a corresponding change
in By, with 87! constant. Hence, there is a linear relationship between 7 and 8, and we

therefore have 3, = moT, where mg is the root of
m T (m+1)+T¥(a—m)—vy—T(a). (3.37)

We next show that (3.37) will have a unique root in the interval (0, ), and then give a

1 — o0, and so (3.37) is positive here; as m — o,

simple example. As m — 0%, m~
U(a—m) - —oo, since ¥(07) = —oco and so (3.37) is negative here. Since (3.37) is
continuous, this change of sign establishes the existence of a root in the interval. We can
show that this root maximises Ej, since the second derivative at (3.36) is negative, as

PLP!' > (P})2

Example Using Mathematica, and the usual parameter values for «;, 7 and ¢, we see
that the root of (3.37) is mg = 0.8509. This is shown both in Figure 3.1, which illustrates the
maximum of the profile entropy function, and in Figure 3.2 which shows that this maximum
corresponds to a unique root of (3.37). Using this value of mg, we have
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Figure 3.2: %—?nb- versus m for o = 4.

B, = 0.85097 = 2.5528,

and

— 67.2620,

6o = o {F (1.8509) T ( — 0.8509) } R
o o)

which are the values obtained from maximising the entropy function. Hence, we see that
if we specify parameter values from the Burr distribution, we can obtain, with very little
computation, the theoretical equivalents of the MLEs of the Weibull, under mis-specification;
all we require is the root of (3.37). We can further improve on this, and show that the root
of (3.37) always lies in the interval (0,1) for & > 1. At m =1, (3.37) reduces to

1
a—1

< 0.

At m = 07 this derivative is positive, so the root must occur somewhere in this interval.
This is illustrated in Figure 3.3, which shows mg as a function of . We see that as o
increases, mg tends to 1. This implies that for a large value of a, 7 and §, are equal, which
is consistent with the asymptotic theory on the Burr distribution, since we know that as «
and ¢ tend to infinity, the Burr distribution tends to a Weibull with shape parameter equal
to 7.

Note that, we now have a relationship between parameters from both distributions,
although we do not have explicit expressions for 8, and 6. We still have to find the root
of (3.37) in order to relate 7 and ;. One exception is when o = 1. In this case, we need
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Figure 3.3: Plot of mg against a.

the root of
mt—-T(m+1)+¥(1-m),

and, using the fact that we can rewrite ¥ (m + 1) using (1.12), and (6.3.7) of Abramowitz
and Stegun (1972) to write ¥ (1 — m) as

U (m) + 7 cot mm, (3.38)
we see that we must solve
mcotmm = 0.
for m. As we require 0 < m < 1, the only root occurs when
m T = m, 1
il = = = -,
2 0739

Thus, when o = 1, 7 = 3 and ¢ = 100,

.
Bo=75=15

and

L

1.5 _ 15 1.5
90=100{P(3+1)P(1 3)} = 135.128.

T Q1)
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o 1 2 3 4 5 6 7 8
mg | 0.5 | 0.7129 | 0.8032 | 0.8509 | 0.8801 | 0.8998 | 0.9140 | 0.9246

Table 3.6: Values of my for varying a.

Simplifications can be made to (3.37) when « is a positive integer, but numerical methods
are still needed to locate the root of the resulting equation. For example, if we put o = 2,
then using (1.12) and (3.38), we see that (3.37) reduces to

1
1—-+7rcot7r( m—1)—1,

so we must solve

1
1———+7rcot7r( m-—1)=1

for m. In general, for a > 2 the equation becomes

1 1 | 1
o —— t -

which involves numerical techniques to find m. Table 3.6 contains some values mg for
different values of ¢; as noted, we see mo tending to one as « increases.

The effects of changing the parameter values from G,

So far, we have used the same parameter values in the Burr distribution to simulate data.
This has provided us with parameter estimates from the Weibull distribution or theoretical
counterparts to the MLEs under the assumption of mis-specification. In order to assess the

agreement between this distribution and the Burr, we can examine plots of both cdfs and

observe whether any significant differences occur, and measures based on functional dis-

tance would be one procedure to summarise such differences. Since we have two theoretical
distribution functions, we will, for given sets of 7 and «, calculate the entropy values, and
then find the largest absolute distance between the two cdfs.

Note that we look at distances between cdfs. Since the general discussion is on rehablhty

distributions, we could consider hazard functions or cumulative hazard functions, since these

indicate the probability of failure after a given time has elapsed. We, however, choose to
examine cdfs, since the maximum difference can never exceed one. Also, if we allow time to
substantially exceed the scaling parameter from the Burr distribution, we observe quite large
discrepancies between both cumulative hazard functions, and it becomes very difficult to

locate the maximum difference. With cdfs, we know that as we increase time, the maximum

_absolute distance will have to tend to zero eventually, as both functions tend to one.

As an example, we will carry out this procedure below for the usual set of Burr parameter
values and entropy estimates, and then construct a grid of maximum absolute distances for
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Figure 3.4: Comparison of Burr (---—-) and Weibull (--—--—-) cdfs for Burr parameters » —
3, a = 4 and $= 100, and entropy values 0O= 2.5528, #o = 67.2620.

appropriate ranges of a and r. We first construct plots of the two cdfs, in order to illustrate
how close a match the Weibull is. Figure 3.4 shows good agreement between the true
distribution and fitted Weibull, and it seems surprising that during the simulations, for a
sample size of n = 1000, not once did we choose to fit the Weibull over the Burr. In order

to calculate the maximum distance between the two functions, we consider
IGw (v:,(30,60) - Gb(y; r, a, >\

Plotting this function using the above parameter estimates yields Figure 3.5, and, using
Mathematica, we locate its maximum at 71.0614, with a distance of 0.0231.

We use this approach for values of @ and r ranging between 0.5 and 4 in steps of 0.5,
keeping ¢fixed at one. Each time, we record the maximum absolute distance between the
two cdfs. Note that keeping the scale parameter of the distribution fixed at 1 has no effect
on the maximum absolute distances between true and mis-specified distribution functions,
since it does not alter the shape of the distribution function in any way at all. The results

are shown in Table 3.7. There are a number of points to note when considering this table :

1. We present the maximum absolute distance to 14 decimal places. This reflects the
fact that when we allow r to vary for fixed a, there is very little difference between
the distances of the cdfs. It is quite surprising that, for such contrasting distribution
functions, we have virtually the same distance between true and entropy distributions
(for example, when r = 0.5 and a = 0.5, = 0.14469 and do = 236.11452; this gives
the same distance to 5 decimal places when we use the same value for a, but take
r = 4,50 /30 = 1.15749 and 60 = 1.97989). We conclude that varying r has little effect
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Figure 3.5: Maximum absolute distance between G} and G,, when 7 = 3, a = 4, ¢ = 100,
and B, = 2.5528, 6y = 67.2620.

(6]
0.5 1 15 2
0.5 | 0.16304477172366 | 0.09143926829390 | 0.05909502750956 | 0.04546627471506
1 | 0.16304477173675 | 0.09143926832861 | 0.05909504694886 | 0.04546627471309
7 [1.5 | 0.16304477173539 | 0.09143926742652 | 0.05909504170759 | 0.04546628640850
2 | 0.16304477173669 | 0.09143926832867 | 0.05909503816060 | 0.04546628348530
2.5 | 0.16304477173282 | 0.09143926832872 | 0.05909503602986 | 0.04546628172821
3 | 0.16304477173706 | 0.09143926832869 | 0.05909504170620 | 0.04546628056191
35 | 0.16304477173672 | 0.09143926832748 | 0.05909503968020 | 0.04546628473824
4 | 0.16304477173707 | 0.09143926832873 | 0.05900503816014 | 0.04546628348525
[0
2.5 3 35 4
0.5 | 0.03674306450371 | 0.03075737624454 | 0.02641969879506 | 0.02314093454044
1 | 0.03674308012891 | 0.03075736167293 | 0.02641971265422 | 0.02314093455289
7 [ 1.5 | 0.03674307495140 | 0.03075736653089 | 0.02641970803745 | 0.02314094345737
2 | 0.03674308017500 | 0.03075736167201 | 0.02641971265080 | 0.02314094112818
2.5 | 0.03674307704095 | 0.03075736457341 | 0.02641970988491 | 0.02314093989572
3 | 0.03674308017509 | 0.03075736167328 | 0.02641971254615 | 0.02314093900651
3.5 | 0.03674307793576 | 0.03075736375422 | 0.02641971066981 | 0.02314093836659
4 | 0.03674308017420 | 0.03075736166972 | 0.02641971265612 | 0.02314094123198

Table 3.7: Maximum absolute distance between Gj and G,, for varying 7.and a.
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Figure 3.6: Maximum absolute distance between G,, and Gp for 0.5 < oo < 4; 7 = 0.5 and

é=1.

on the maximum absolute distance between the true and mis-specified distribution

functions.

2. The largest value for the maximum absolute difference occurs for the smallest value
of a, and we generally see a decrease in the maximum distance between Burr and
Weibull, as « is increased. We suspect that if we allowed a to get quite large, but still
kept ¢ fixed at 1, then 8y and the maximum absolute difference would tend to zero,
as the Burr tended to a Weibull distribution. In fact, by considering the structure of
(3.34), if we let & — o0, then g — 0. As an example, we let o = 100, and set 7
at 0.5. These correspond to 3, = 0.496962, g = 0.000101501; the maximum distance
between the true distribution and the fitted Weibull is just 0.000922399.

Figure 3.6 shows a plot of the maximum absolute distance between the two cdfs and
varying o, with 7 = 0.5 and ¢ = 1. We generally see a decrease in the maximum absolute
distance for increasing . This might have been expected, since increasing a quite sub-
stantially results in the Weibull distribution emerging as the limiting distribution of the
Burr. Thus the distances between them will become less, as the Burr distribution becomes
more and more like the Weibull. We also examine how changes in parameter values from
the Burr distribution affect By, 10 (8, 60) when this quantile is compared to the true value.
Table 3.8 summarises the results for a and 7 ranging between 0.5 and 4. We observe the
largest relative errors for small values of o and 7; this corresponds to the largest maximum
absolute distance between the cdfs of the two distributions. Generally, as we increase both
shape parameters from the Burr distribution, we observe the Weibull and Burr quantiles

becoming more alike.
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p
0.5 1 1.5 2 2.5 3 3.5 4
0.0550 0.2346 | 0.3803 | 0.4843 | 0.5599 | 0.6167 | 0.6608 | 0.6959
0.5 | 4.15x107% | 0.0064 | 0.0346 | 0.0803 | 0.1329 | 0.1861 | 0.2366 | 0.2833
99.9 97.3 90.9 83.4 76.3 69.8 64.2 59.3
0.0123 0.1111 | 0.2311 | 0.3333 | 0.4152 | 0.4807 | 0.5338 | 0.5774
1 0.0008 0.0274 | 0.0909 | 0.1655 | 0.2372 | 0.3014 | 0.3578 | 0.4068
93.9 75.3 60.7 50.4 42.9 37.3 33.0 29.5
0.0053 0.0728 | 0.1743 | 0.2698 | 0.3506 | 0.4175 | 0.4730 | 0.5194
1.5 0.0011 0.0334 | 0.1037 | 0.1827 | 0.2567 | 0.3220 | 0.3786 | 0.4275
78.9 54.1 40.5 32.3 26.8 22.9 20.0 17.7
0.0029 0.0541 | 0.1430 | 0.2326 | 0.3114 | 0.3782 | 0.4345 | 0.4823
2 0.0010 0.0322 | 0.1012 | 0.1795 | 0.2530 | 0.3182 | 0.3747 | 0.4236

64.6 40.5 29.2 22.8 18.7 15.9 13.8 12.2
o 0.0019 0.0430 | 0.1228 | 0.2075 | 0.2842 | 0.3505 | 0.4071 | 0.4555
2.5 0.0009 0.0293 | 0.0951 | 0.1713 | 0.2438 | 0.3084 | 0.3649 | 0.4139
53.5 31.8 22.5 17.4 14.2 12.0 10.4 9.1

0.0013 0.0357 | 0.1085 | 0.1891 | 0.2638 | 0.3294 | 0.3860 | 0.4348
3 0.0007 0.0264 | 0.0887 | 0.1626 | 0.2338 | 0.2979 | 0.3541 | 0.4032
45.3 26.1 18.2 14.0 | 114 9.6 8.3 7.3
0.0009 0.0306 | 0.0977 | 0.1748 | 0.2478 | 0.3126 | 0.3691 | 0.4181
3.5 0.0006 0.0238 | 0.0828 | 0.1544 | 0.2243 | 0.2878 | 0.3438 | 0.3929
39.2 22.0 15.3 11.7 9.5 8.0 6.9 6.0
0.0007 0.0267 | 0.0893 | 0.1634 | 0.2347 | 0.2988 | 0.3551 | 0.4042
4 0.0005 0.0216 | 0.0776 | 0.1470 | 0.2157 | 0.2786 | 0.3344 | 0.3834

34.4 19.0 13.1 10.0 8.1 6.8 5.8 5.1

Table 3.8: Thearetical quantiles for G, (top) and G,, (middle), with their corresponding
relative percentage errors (bottom).



3.2. ANALYSING DATA USING THE INCORRECT DISTRIBUTION 81

3.2.2 Entropy for fitting G,, to data from G,

We consider (3.13) when the underlying distribution of the data is Gamma. In order to

obtain expectations such as Eg [Ymﬁ In Y] , we apply similar techniques to those used with

G- The easiest approach is to use
1d

Ey[Y™my] = a5 [y =

a™PT (mB +7)
L' (7)

{lna+ ¥ (mB+ 1)}, (3.39)

where E, [Ymﬁ] can be derived from (3.12). To obtain higher order expectations of the
form Eg [Ymﬁ (InY)¥], we just differentiate (3.39) the appropriate number of times. In
particular, we see that

1d _ [oms

o™ (mB + 1)

_ o) [{m a+T(mB+7)2+ T (mb+ 'r)] . (3.40)

E, [Ymﬁ (In Y)z]

Substituting 8 = 0 in (3.39) yields
EgInY]=lna+¥(7), (3.41)
and, similarly, taking 8 = 0 in (3.40) gives
E, [(m Y)z] ={lna+ ¥ (NP +¥ (7).

Hence, using (3.13), (3.12) and (3.41), we have

Ey=E, [l =n {mﬁ +ﬂin (-‘;-‘) + BT (1) ~‘%{?—T> —lna-T(r)|.
On using (3.15), we obtain
9=a{££1,@—(j)—7)}%, (3.42)
from which we obtain the profile entropy
E;:n[lnﬁ—ln{a—ﬁ%-(—%;_—ﬂ}—k(ﬂ——1){1na+\Il(T)}—1 . (3.43)
with first and second derivatives
4Eg =n{ft+U(r)-T(B+7)}, (3.44)

ag
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and

d;;;; =-n {ﬁ_2 + 0 (B + 7')} )

As in the general case, the maximum of (3.43) can be located from a plot. Equivalently,
we use Newton-Raphson to locate the root of (3.44); for example, with 7 = 3, a = 50, we
obtain

Bo = 1.8328, 6y = 169.3772.

From Table 2.9, we observe excellent agreement between the MLEs of § and 3, and the
theoretical estimated counterparts.

Now that we are able to obtain the entropy values, we continue by deriving the distri-
bution of the Weibull MLEs under mis-specification. We begin this in the next section.

The variance structure of the mis-specified MLEs

We derive the distribution of the Weibull MLEs under the assumption that this distribution
has been mis-specified and fitted to data with an underlying Gamma model. Using (3.18),
+we require expectations of second derivatives of the parameters from the Weibull distribu-
tion, where these expected values are taken with respect to the Gamma distribution, and
the variance covariance structure of the score functions. We begin with examining second
derivatives. Using (3.19), (3.20), and (3.21), we write the matrix A as

{In (% )+11; ﬂ+¢)}
+7 (B+T)

g1 - BT [Hﬂ{ ;“(é%l; } po~{(8+1) (5)" gt -1}

($)Pr(B+T)
g2+ s [

n 3

where the required expectations with respect to the Gamma, distribution are obtained using
(3.12), (3.39) and (3.40), with appropriate substitutions for m. We now consider the ele-

ments that make up the variance covariance matrix of the score functions from the Weibull
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distribution. We first list functions that make up the elements of this matrix below.

Varg (Se) = n¥ (1),
Vary{S(8)} = 22 {rp+n) - HE5LY,
L@8+7) [{na+¥(26+m) +¥ (26+7)
S — noa 2 ,

Vers (51 (0] o [ ~HEE) {ina+ ¥ (8 + 7)) }

Covg {8, S0 (B)} = nef L) (9 (+7) — W (1)},
, nafrtr) | {Y(B+7)—¥ (1)} {lna+ ¥ (B+1)}

CO’Ug {Se) S1 \ﬁ)} = ——ﬁIF_((‘rB)Ll +\IJT (,3 + ,;.3)[ " ’

s | T(2 ] 4 T
Covg {50 (B),51(B)} = nfa(fTﬁ [ _(gé{ﬁ) ilzzi \Ifgzﬂ‘:;);}

We use (3.22) and the above expectations to write

o )28 o )
W (7) + (B)TTCI{(§) reasen)
_(8)”re+n? {in(g)+ w64}

, Ol s I(r)*
Varg B =n! 23 )r(ﬁ+f){\p(ﬂ+f) —¥()HIn(§)+¥(8+7)}

T)
+%ﬁ (% ) (2,8+T)lIf(2ﬂ+7')
Hr —T (B+71)¥ (B+T)

Now, using (3.23), we see that

(O _ B (5)” _TB+7)*
vers (G ) =" T {08+ - TR b

and finally, by using (3.24), we have

F(ﬁ+%){\11(ﬂ+r) W ()} -
Oy 0l,\ 1867 (2)° | o
Covg | w257 | = —7— L2684+ 7){In (&) +¥(26+7)
7 (85 o6 ) I'(7) ®° )Br(ﬂﬁ{z{lg( ))+\If(ﬂ+-r)} )
I'(r)

We compute theoretical standard-errors for the MLEs of the Weibull distribution for varying

sample size, and when 7 = 3 and a = 50; this corresponds to entropy values of §; =

1.8328, 6y = 169.3772. We note that

0.5892
A=n ,
—0.0027 0.0001
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n 50 100 | 300 | 500 | 1000
St.err.(B 0.2021 | 0.1429 | 0.0825 | 0.0639 | 0.0452
St.err.@ 13.8474 | 9.7916 | 5.6532 | 4.3789 | 3.0964
St.err.(ﬁw,m) 7.9918 | 5.6510 | 3.2626 | 2.5272 | 1.7870

Table 3.9: Theoretical standard errors for the MLEs of the Weibull distribution for varying
n. Data is simulated from a Gamma model with 7 = 3, o = 50.

0.7595
V=n ,
—0.0058 0.0001

which gives

Var é =A"lvAal=p"1 2.0424 .
7 5.8722 9587.5795

The results are summarised in Table 3.9, and we compare these to the simulated counterparts
shown in Table 2.9. The results show excellent agreement between observed and expected
values across all sample sizes. We also include details on Ew,lO, with

1

Bu,10 (B, 80) = 80 (—1n0.9)% = 169.3772(~ In 0.9) 782 = 49.7779.

The sample mearns of this quantile are relatively close to this value, even for small sample
sizes. We also compare this theoretical estimate with the true value of By given by

By 10 = 55.1033,

and note that the Weibull estimate under-estimates this quantile for this particular set of

Gamma parameter values.

Relationships between 3, §p and the parameters in G,

In this section, we consider how , 6y vary with parameters in Gy, and determine the
extent to which there is a relationship between parameters of the two distributions. We
first note that, just like the Burr distribution, 8, is independent of the scale parameter from
the Gamma distribution. This becomes evident from examining the profile entropy score
function, given by (3.44), and noting that the function is independent of o. We use (3.42)
to conclude that 6, is linearly related to .. Unlike Gy, however, we cannot really say much
more about the relationship between 5, and 7. Figure 3.7 illustrates this relationship, but,
from (3.44), it is clear that we can only locate the root of this function numerically.
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Figure 3.7: The relationship between 7 in Gy and fy.

The effects of changing the parameter values from Gy

In this section we assess the goodness of fit between a mis-specified Weibull distribution
(where the parameter values are obtained by maximising the entropy function) and the
corresponding Gamma distribution. We will begin by specifying particular parameter ranges
for the Gamma distribution, and will first set @ equal to 1, since it represents a scale
parameter and so does not alter the shape of the distribution function. We have seen, with
Gy, that particularly small values for the shape parameters resulted in a relatively poor fit
between Weibull and Burr, and this was where the largest values of the maximum absolute
distance between both cdfs occurred. We will examine the extent to which a simila.rvpattern
holds in this case, for an appropriate range for 7.

As an example, consider 7 = 3, a = 50. Figure 3.8 shows the Gamma and Weibull cdfs,
when we use entropy values for the parameters in the Weibull. We see, for this particular
case, that there is very little difference between the Weibull and Gamma distributions. To
get a summary measure of how different they are, we plot the absolute distance between
them; that is we calculate

IGQ (y; T, a) - Gw (y; ﬁo, 90)| .

Figure 3.9 shows this distance and, we see that the maximum absolute difference between
the two cdfs is 0.0263.

The above process is repeated for a range of values for 7; Table 3.10, and Figure 3.10
summarise these results. As with Gp, we observe the maximum absolute difference between
the two cdfs for small values of 7. At 7 = 1, there is no difference between the cdfs of the
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Figure 3.8: Comparison of Gamma (—) and Weibull (- - -) cdfs for Gamma parameters
7 =3, a = 50 and entropy values 3y = 1.8328, 6y = 169.3772.
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Figure 3.9: Maximum absolute distance between G4 and Gy, when 7 = 3, o = 50 and
By = 1.8328, 6y = 169.3772.
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7 | Maximum distance | 7 | Maximum distance T Maximum distance
0.1 0.0737794 2.5 0.0229684 6.5 0.0373599
0.2 0.0584186 3 0.0263246 7 0.0381965
0.3 0.044574 3.5 0.0289099 7.5 0.0389465
0.4 0.033503 4 0.0309793 8 0.0396239
0.5 0.0247552 4.5 0.0326836 20 0.0471572
1 0 5 0.0341189 100 0.0542719
1.5 0.0115462 5.5 0.0353491 500 0.0574571
2 0.0183709 6 0.0364187 1000 0.0582134

Table 3.10: Maximum absolute distance between G4 and G, for varying 7; o = 1.

Figure 3.10: Maximum absolute distance between G4 and G, for 0 < 7 < 20; a = L

0.08 -+ ——— e e
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-
0.5 1 1.5 2 2.5 3 3.5 4
Bg 10 0.0079 | 0.1054 | 0.2922 | 0.5318 | 0.8052 | 1.1021 | 1.4166 | 1.7448
By, 10 (ﬂo, o) | 0.0104 | 0.1054 | 0.2737 | 0.4863 | 0.7285 | 0.9923 | 1.2728 | 1.5668
% Rel error | 31.2 0 6.3 8.6 9.5 10.0 10.1 10.2

Table 3.11: Theoretical quantiles for G4 and G, with their corresponding relative percent-
age €rrors.

Gamma and Weibull distributions; here, the Gamma distribution reduces to the Negative
Exponential distribution, which is also a special case of G,. Thus, the best Weibull fit to
the Negative Exponential is the Negative Exponential itself, and leads to unit scale and
shape parameter estimates in this case. As we allow 7 to become very large, we see the
maximum absolute distance begin to level off at approximately 0.06. In practice, however,
we do not expect to observe such extreme values of 7.

We also summarise the effects of changing parameter values from the Gamma distri-
bution on Bjg from both models, and compare By 19 with By, 10 (B9, 60). The results for
varying 7 are shown in Table 3.11, along with the relative percentage error. We observe

- similar results to those obtained when we examined the maximum absolute distance between

theoretical cdfs. The largest relative error occurs for smaller values of 7, and levels off at
10% as 7 increases. We observe no difference between the quantiles when 7 = 1.

3.2.3 Entropy for fitting G,, to data from Gy,

We consider (3.13) when the underlying distribution of the data is Lognormal. We obtain an
expression for Ej, [Ymﬁ] by making use of the relationship between Normal and Lognormal
distributions, and the moment generating function from the Normal distribution. From
Mann, Schafer and Singpurwalla (1974), we know that when X is Normally distributed

with mean p and variance o2, the moment generating function is given by

E [exp (tX)] = exp {m+ @} .

Now, using
Y=exp(X) <= (YY) =X,
we have

By [Y™] = E [exp (mBX)] = exp (6m), (3.45)
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where

o* (mp)?

Om = ump + 2

We differentiate (3.45) with respect to 8 to obtain
Ein [Ymﬁ In Y] = (u+0"mp) exp (6m) (3.46)

and also differentiate this expgctation to get

By, [Y’"ﬂ (In Y)2] - {(u +o*mB)” + 02} exp (6m) - (3.47)
By setting 8 = 0 in (3.46) we have

Eip[nY]=E[X] = p
and an equivalent substitution in (3.47) yields
B [(0Y)’] = B[X?] = u2 + 2.

Thus, we see that the entropy function can now be expressed as

' 2
Eln—Eln[lw]—nlnB nBlnd+n(B—1)u— n9 ﬁexp(,@u+ 2ﬂ)

Using (3.15), we have

o2
6 = exp (,u + Tﬂ) o (3.48)

and using (3.16) we obtain

o2

By =nlnf— nﬂ( f) Frp(B—1) -

-+

with first derivative
dE}

= (5%, (3.49)

The root of (3.49) is

-1
ﬂo=0 3
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and, inserting this into (3.48), we obtain
g
6y = exp (,u—*— —) .
2
We compare our entropy values to the simulated results summarised in Table 2.11. Here,
we set u = 2, o = 3; this yields

0o = exp (2 + g) = 33.1155,

and
1
Bo = 3

The table shows how the sample means for B and 6 seem to be tending to their entropy

values for larger n. We use these entropy values in the next section, where we derive the
distribution of the MLEs from the mis-specified model. '

- The variance structure of the mis-specified MLEs We evaluate each element of
the matrix A in (3.18) below, and first consider —Ej, [%ﬁ*]; using (3.20) and (3.45), we see
that this simplifies to

—nB0~2 {1 —(B+1)0Pexp (51)} .
Next, we examine Ey, [%%g*]; using (3.19), we have

0%l

_B, [6_ﬁ2] —n [ﬁ-z + 0P exp (61) {(M + B0 — n6)” + 02}] :

and finally, by making use of (3.21), we write
—FE Qz—l‘i’- =ng! [1 — 0P exp (67) {1+8 (n+ Bo? — 111'0)-}] .
006
We now consider elements which make up the variance covariance matrix of score functions
from the Weibull distribution. As with previous distributions, we first list variances and
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covariances of functions which make up these elements.

Vary, (Se) = no?,
Vari, {So (8)} = n {exp (82) — exp (261)},
Varn {S1(8)} = n[{(n+260%)"+0*}bexp (82) - (u+ B0?) exp (261)] ,
Coujy {Se, So (B)} = nBa?exp (61),
Covyy, {Se, 51 (B)} = , n{Bo? (u+ Bo?) + o2} exp (61),
Covy, {So (B8),S1(B)} = n [(u+2B0?) exp (62) — (u+ Bo?) exp (261)] .

Using (3.22), we have

02 + 0% exp (62) [{;L +2B02% — lnG}2 + 02]

Ol
Vary (_6?) =n —0~% exp (261) {u+ Bo? —ng)}?
~207P exp (81) [Bo? {u + Bo? — In b} + o?]

Next, we derive Vary, (%lﬂéi), which, by using (3.23), takes the form

nB2072~2 {exp (62) — exp (261)} .

Finally, using (3.24), we see that

Ol, Ol _p_1 | Boexp(61) — 6P exp (62) {p+2B0%—1n6}
Covy | ==, =2 | =npoP1
ou ( 8B’ 08 > np [ +8~Pexp (261) {p + Bo? — In 6}

We compute theoretical values for the standard errors of the Weibull MLEs, and compare
these to simulated counterparts shown in Table 2.11. We also compute the theoretical
standard error of §w,10, and note that this will take the same form as (3.25), but with the
entropy values and variances of MLEs replaced by expressions derived in this section. As

in previous cases, we evaluate

A=n

- 20.25
—0.0151 0.0001 |’

and

59.2597
V=n ,
{—0.0778 0.0002]
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n 50 100 300 | 500 | 1000
St.err.(ﬁ) 0.0496 | 0.0351 | 0.0203 | 0.0157 | 0.0111

St.err. 5) 14.9774 | 10.5906 | 6.1145 | 4.7363 | 3.3491
St.err.(éwm) 0.0381 | 0.0270 | 0.0156 | 0.0121 | 0.0085

)

Table 3.12: Theoretical standard errors for the MLEs of G, for varying n. Data is simulated
from Gy, with u =2, o = 3.

which gives, for this particular set of Lognormal parameters, a variance covariance matrix
~ ~\/
for (ﬁ, 9) of the form

- [ 0.1232 ]
—10.0860 11216.1833 |
The results are summarised in Table 3.12; we note that
Bw,lO (Bg, 60) =80 (— ]n0.9)315 = exp (p + %) {-1n0.9}° =0.0387,
which we can compare with the true quantile from the Lognormal distribution given by
~ Binj0 = 0.1581.

We compare Table 3.12 with Table 2.11, and observe that the MLEs for the Weibull distri-
bution seem to be tending towards their corresponding entropy values for large sample sizes.
The agreement between observed and expected standard errors also improves for larger n,
byt is very good even for small sample sizes. When we examine B, 10, the sample mean
matches up reasonably well to the estimated value from the Weibull distribution. When
we compare these to the true value from the Lognormal, we see the time to which 10% of

observations fail is very much under-estimated when we fit the wrong distribution function.

The effects of changing the parameter values from G,

To assess the agreement between the Weibull and Lognormal distributions, we will use
similar techniques to those established for the Burr and Gamma distributions. That is,
we choose an appropriate range of values for the Lognormal parameters, calculate entropy
values for parameters in the Weibull, and then assess, by plots, if the fitted Weibull is
close to the Lognormal. As an example, we will carry out this process using the usual
set of parameter values. Figure 3.11 shows the agreement between true and mis-specified

distributions. By computing the maximum of

|Gin (y; 4, 0) — Guw (35 Bo, 00)| »
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Figure 3.11: Comparison of Lognormal (-—-) and Weibull (-----) cdfs for Lognormal param-
eters /x = 2. a = 3 and entropy values 30 =  do = 33.1155.

we see that the largest distance between the two cdfs is 0.0605. This process can be repeated
for a range of parameters from the Lognormal distribution, where, we recall that the pa-
rameter /i can take any value, whether it is negative or positive, but ¢ must be larger than
zero. However, it is not necessary to construct the table of values showing the maximum
distance, since the same maximum absolute distance is observed no matter what parameters
we use from the Lognormal distribution. Thus, we can choose any values from the Lognor-
mal distribution, fit a Weibull to this, and be sure that we will always observe an adequate
fit, the largest distance between the two distribution functions being just 0.0605. We can
further simplify this maximum distance, and write /20, #o m terms of the parameters from

the Lognormal distribution. Thus, we seek

max exp Y -1+ 8% <In Y
y>o exp (x+ |) exp (%)

a function that gives the same answer no matter what parameter values we use. We note

that this maximum is a function of

y
exp O)
further examination of this is possible, but omitted here.
We also summarise the effects changing parameter values from the Lognormal distribu-
tion has on the theoretical quantiles from both models. The results are shown in Table 3.13

for varying fi and a: We see that, although varying /x changes the values of both quantiles,
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1 2 3 4 5

0.0138 | 0.0038 | 0.0011 | 0.0003 | 8.20x10~°

-3 | 0.0086 | 0.0015 | 0.0003 | 4.53x107° | 7.87x10~°
374 | 608 | 75.5 84.7 90.4
0.0376 | 0.0104 | 0.0029 [ 0.0008 0.0002

-2 1 0.0235 | 0.0041 | 0.0007 | 0.0001 | 2.14x107°
374 | 608 | 75.5 84.7 90.4
0.1021 | 0.0284 | 0.0079 | 0.0022 0.0006

-1 0.0639 | 0.0111 | 0.0019 | 0.0003 | 5.82x10~°
374 | 608 | 75.5 84.7 . 90.4
0.2776 | 0.0771 | 0.0214 | 0.0059 0.0016

0 | 0.1737 | 0.0302 | 0.0052 | 0.0009 0.0002
" 374 | 608 | 755 | 847 90.4
0.7546 | 0.2095 | 0.0582 | 0.0161 0.0045

1 | 0.4722 | 0.0820 | 0.0142 | 0.0025 0.0004
374 | 608 | 755 84.7 90.4
2.0513 | 0.5694 | 0.1581 | 0.0439 0.0122

| 2 | 1.2836 | 0.2230 | 0.0387 | 0.0067 0.0012
374 | 60.8 | 755 84.7 90.4
5.5759 | 1.5479 | 0.4297 | 0.1193 0.0331

3 | 3.4891 | 0.6061 | 0.1053 | 0.0183 10.0032
374 | 608 | 75.5 84.7 90.4

Table 3.13: Theoretical quantiles for Gy, (top) and G,, (middle), with their corresponding

relative percentage errors (bottom).
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it has no effect on the relative error between them. As we increase o, the error between the

two quantiles increases considerably.

3.3 Summary

In this chapter, we obtained the EFI matrix for the MLEs from the Weibull, Burr, Gamma
and Lognormal distributions. We then considered mis-specifying the Weibull distribution,
and developed general results to obtain theoretical counterparts to the MLEs from this
mis-specified distribution using the entropy function. We used these estimates to derive
the theoretical variance covariance matrix for the MLEs, and also considered the mean and
variance of §w,10- Results were then obtained when we assumed the underlying distribution
was Burr, Gamma and Lognormal. In all cases, we also examined relationships between
parameters from the true distribution, and our entropy values. Finally, we considered sets of
parameter values from the true distribution, where the Weibull did not provide an adequate
fit.

The following chapter extends these results when we assume the data set has undergone

censoring.



Chapter 4
Censoring

In Chapters 2 and 3, we examined the effects of mis-specifying the Weibull distribution
to a complete set of data. In practice, life data rarely contains all observations that have
failed. Instead, the running time is shortened using a technique such as censoring. This

chapter examines the effects of mis-specifying the Weibull distribution when the data set

has undergone a type I and type II censoring regime. Unlike Chapter 3, where we varied
the 'underlying distribution of the data, this chapter will focus on only using the Burr
distribution as the true underlying model. Thus, censoring will not be considered for the
Gamma or Lognormal distributions. The Burr does have asymptotic links with the Weibull,.
and so is of interest for this reason. We begin with type I censoring, and consider this below.

4.1 Type I censoring

Recall, from Chapter 1, that if we subject data to type I censoring, then all items start
in service at the same time, and there is some pre-specified (fixed) time ¥, after which the
experiment is terminated. The number of failures N is random. We begin by first deriving
the theory necessary to fit the Weibull and Burr distributions to a set of data that has
been censored using a type I regime, and also examine the variance covariance structure
of their MLEs, under the assumption that the models have been correctly specified. Next,
we examine the effects of mis-specifying the Weibull distribution, and, as in Chapter 2, use
simulations to study MLEs from true and mis-specified distributions, and the preference
for fitting the Weibull over the Burr. The final sections examine the theory to explain
our simulated valﬁes, and discuss the agreement between the true Burr distribution and

mis-specified Weibull.
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4.1.1 ML estimation for G,, under type I censorihg

Here, we assume that the lifetime of items follow G,,, so that the probability of an item
failing in the interval (0,y.) is given by

1—exp {— (%)ﬁ} =1—exp(—z),

where
ze = yP07P.

Here, N will follow a Binomial distribution with sample size n, and probability to failure
1 —exp(—=z), so that

E [N} =n{1 —exp(—2)} .

The observed times to failure follow the truncated Weibull distribution with pdf .

o en {-(3)°)

1 — exp(—2c)

(4.1)

for 0 < y < y.. We note that Z = (%—)ﬁ , follows the truncated Negative Exponential
distribution with pdf ‘

exp(—2)
1 —exp(—zc)’ (42)

for 0 < z < z.. Without loss of generality, the likelihood for data under this censoring regime

is

o= T125 oo (- (5} TT oo {- (%)),

=1

where y1,2, ..., ynv are observed times to failure, and yn+1,YN+2,---,Yn = Yc are censored
times in service of items still operational at y.. The log-likelihood is

ly=NlnfB - NFInbo+(8-1)S. —07PS, (), (4.3)

where

N
Se=) Iny,
i=1
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and
N | |
5;(8) =Y _u (ny:)’ + (n~ N)yf (lnyey
i=1 A
with the property that

5, ()= P00 _ 51 (6)

@ dB
In what follows, we assume N > 0. The score function will contain the elements
Do~ NG+ 0550 (6), (4.4)
?—g — NG = NnO+S.—68{S (8)—1n6S(8)}. (4.5)

We equate (4.4) to zero, to obtain

1

substituting this into (4.3) gives the profile log-likelihood I3,
IZ =Nlnf+NInN-NInSy(B) + (8 —1)Se = N,

with first derivative

iy _ g1 _ NS (B)
ap = VP S5y
and second derivative
&1 _ S2(B) So (B) — 81 (B)°
Y _NB2~-N )
dp’ g { So (8)°

We also note the derivatives of the score function with respect to § and 6, which will be
used in the computation of the EFI matrix. We have

oLy, —2 -p-2

6I32 = —NBg2%2-9¢ {,5'2 (B) —2In6S; (B) + (In6)* Sy (ﬁ)}’
2

geg% = N6 4+ 07185, (B) + {1 - Bln6} So (B)].

Thus, we have all the necessary terms to compute the MLEs for the Weibull distribution,

which, as before, must be obtained numerically. Convergence requires a suitable starting
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value for f; see Farnum and Booth (1997) for details on an initial starting value for 5 when
data has undergone any form of censoring (including type I). This method will be used when
we compute MLEs from the Weibull distribution in later sections.

We carry out a similar analysis for G} below.

4.1.2 ML estimation for G, under type I censoring

We outline the theory necessary to fit Gy, using properties of the two parameter Burr
distribution. We include only the main points in the following sections, and refer to Johnson

© (2003) for further details. We now assume that the lifetime of items follow Gy, and are

subject to type I censoring at y.. The probability that an item fails in (0, y.) is given by

Qroja =1 — {1 + (%)T}_ =1-—(1+2])"%,

where, now, z. = yf The random variable N will have a Binomial distribution with

parameters n and g, «, S0 that
E[N] =ng;. -
The observed times to failure are from a truncated Burr distribution with pdf

gf_g;__l {1 + (g)r}—(oﬁl)

Qze,0

for 0 < y < y.. The likelihood is

N —1 Ty —(a+1) n—N Ty —a
aTy,; Yi Ye
Tl ¢ Ul ¢

where y1,%2, ..., yv are observed times to failure, and yni1,YN+2, .-, Yn = Y are censored

times in service of items still operational at y.; the corresponding log-likelihood is
lb=Nlha+Nln7 - N7ln¢+ (1 —1)Se — (a + 1)T5 — o7,

where

and
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For future use, we also introduce the following notation:

AT 5
Tios = % _ iw

=1 1+ (%})
ro O _ (n— N) (%)Tln (%>
Loe = “5r T 1+ (%)‘r
T o (%) {= () }2
Topr = or —; {1+(%)T}2 )

Tyoe = 0Tv0e _ (n—N) (% T§1n g%)}z,

and

Topyr = %=—T¢_1i (%) =,

o =11+ (%)
o . L _Te-N) (%)T
Ole = Hp = - (%C)T

oy adn () e (8)
e TR T )T
oo (3 oo (e)

T0,2c =

T = 3_To,_1f:_¢_1§: (%)j ;T¢41i (}L Tln(i‘f_’i)z,

¢
R R ()

1y = e (7N (%27 r(n=N) (%)Tlng%)
o gli+ (%)} o{1+ (%)}
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where sub-scripts indicate differentiation with respect to 7 or ¢, and f and ¢ denote failed

and censored items, respectively. Using this, the score function for [ is

ol _

gaé = Na 1 —_ Tf - TC) (4'6)
ol

57% = N77'=Nln¢+ S — (a+1)T1 05 — T 0c (4.7)
ol _

5£ = —Nr¢~t- (a+1)Tp15 — oTp1c- (4.8)

" We can equate (4.6) to zero and insert the expression into (4.7) and (4.8) to obtain a profile

score function. However, this function is not required, and so will not be considered here;
we use the same approach to fit the Burr distribution as with complete data, outlined in
Section 2.3.2. To compute the EFI matrix, we require the expectations of the following
second derivatives

% = —Na7?,

g_j_lzé = —N77%2—(a+1)Tros — T,
%}2‘1 = N1¢72— (a+1)Tozs — aTo2e
afelabr = ~Thos = Thoe

—a%%% = —To17r — To1c

;fé; = —N¢ '~ (a+1)T115 — T 10

which will be considered in later sections. ‘
We continue by looking at the effects of fitting G, to type I censored data from G, via
simulations.

4.1.3 Fitting G, to G, data

Our analysis of mis-specified distributions fitted to data subjected to censoring follows a
similar structure to the complete scenario. Since we are interested in fitting the Weibull
distribution to Burr data, we begin by simulating sets of data from a Burr distribution with
appropriate parameter values and stopping times. Once this is done, we fit the Weibull
distribution and obtain MLEs. We compute the sign of A to deduce if the Burr distribution
can be fitted, and, if A > 0, we fit this distribution to the data. The form of A will be
slightly different from the complete case, since we have to take censoring into consideration.
Watkins (1999) computes A for data that has undergone type I censoring, as
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n 100 300 500 1000
Ve 80 80 80 80
Jé) 2.8046 2.7786 2.7715 2.7686
(st.err.) (0.2589) | (0.1458) | (0.1133) | (0.0794)
0 66.1870 66.2424 66.2488 66.2561
(st.err.) (2.7074) | (1.5609) | (1.2023) | (0.8429)
Buy,10 29.6507 29.4334 29.3902 29.3803
(st.err.) (2.5156) | (1.4430) | (1.1195) | (0.7886)
A 0.9362 3.6542 6.1797 12.2826
(st.err.) (1.9718) | (3.6568) | (4.7207) | (6.4424)
Pr (Fit Gy) 0.3145 0.1823 0.1197 0.0473
T 3.2541 3.1414 3.0891 3.0439
(st.err.) (0.4107) | (0.2691) | (0.2151) | (0.1545)
a 3.9590 4.2679 4.4653 4.5488
st.err.) (5.1291) | (5.1448) | (4.6451) | (4.3040)
¢ 89.4824 94.8136 98.0404 | 100.6558
(st.err.) (32.6317) | (29.9797) | (28.0450) | (23.9417)
Bs,10 30.4023 30.1723 30.0509 29.9689
(st.err.) (2.5520) | (1.4849) | (1.1596) | (0.8236)

Table 4.1: Sunimary statistics for G, and G, for varying sample size, when these dis-
tributions are fitted to data that has undergone a type I censoring regime from Gy with .
parameters 7 = 3, a = 4 and ¢ = 100.

A_50(2E) {%(E)}Zfiﬂ?
T2 N '

We run a series of simulations for varying stopping times and sample sizes, and obtain MLEs
and the probability of choosing the Burr distribution over the Weibull. As usual, we set

a=4,T1=3,¢=100,

and for each particular set of parameters, run the simulation at least 10000 times to ensure
accurate average MLEs are computed. Table 4.1 summarises the results for varying sample
sizes, keeping the stopping time fixed at 80, whilst Table 4.2 shows the results for varying
stopping times, keeping the sample size fixed at 1000. When we vary the sample size, the
standard errors for both the Weibull and Burr MLEs, and their quantile functions, decrease
as the sample size increases. However, when compared to complete counterparts in Table 2.6,
the standard errors for @ and 25 do appear smaller than expected for lower stopping times.
In these cases, however, we do prefer to fit the Weibull distribution far more often than in
the complete counterpart; for example, for n = 100 complete data values, we preferred to
fit the Weibull 16% of the time, whilst this figure doubled for an equivalent sample size and
a stopping time of 80 time units. Thus, one possible explanation for observing this decrease
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n 1000 1000 1000 1000 1000

Yo 50 70 100 120 200

B 2.9251 | 28229 | 2.6786 | 26188 | 2.5611
(st.err.) (0.1408) | (0.0920) | (0.0675) | (0.0645) | (0.0710)
9 64.7115 | 65.8055 | 66.8310 | 67.0847 | 67.2608
(st.err.) (1.4894) | (0.9027) | (0.8398) | (0.8541) | (0.8744)
Bu.10 29.9329 | 20.6351 | 28.8398 | 28.3998 | 27.9251
(sterr.) .| (0.8528) | (0.8227) | (0.7476) | (0.7387) | (0.7774)
A 0.1938 | 5.7325 | 34.2733 | 62.3454 | 122.5729
(st.err.) (1.1996) | (4.4817) | (11.4573) | (17.3012) | (46.2282)
Pr(Fit G,) | 0.4624 | 01381 | 0.0013 | 0.0002 0
7 3.1466 | 3.0840 | 3.0148 | 3.0072 | 3.0026
(st.err.) (0.1820) | (0.1666) | (0.1425) | (0.1328) | (0.1252)
a 2.0402 | 3.8614 | 4.6429 | 44702 | 4.4050
(st.err.) (2.0585) | (3.4429) | (3.0844) | (2.0114) | (1.7421)
é 73.6130 | 93.6691 | 103.6084 | 103.1065 | 102.9414
(st.err.) (17.1919) | (23.0911) | (20.3540) | (16.6039) | (14.5409)
Boio 20.8380 | 29.9943 | 29.9276 | 29.9009 | 29.8966
(st.err.) (0.8483) | (0.8363) | (0.8277) | (0.8272) | (0.8253)

Table 4.2: Summary statistics for G, and G} for varying ., when these distributions are
fitted to data that has undergone a type I censoring regime from G} with parameters 7 = 3,
a =4 and ¢ = 100.

in sample standard errors from Gy, is that the figures are calculated after conditioning on
A > 0. The probability of fitting G,, decreases as n increases, and is as high as 31% for a
sample size of 100. When we compare estimates of the quantile functions with a true value
of 29.8848, we see that §w,10 is closer to By 10 for smaller n, but the standard errors are then
larger. On the whole Eb,m matches up very well to its true value across all sample sizes.
When we vary the stopping times, again the standard errors for the MLEs of G,, and E’w,lo
decrease as Y. increases, but this is not true for & and $ from Gp. In fact, we observe smaller
standard errors for these estimates for lower stopping times. The probability of choosing
Gy over Gy is very high for small y., and for y. = 50, we prefer to fit Weibull over Burr
46% of the time, even though the sample size is as large as 1000.

We continue by obtaining the theory necessary to explain these simulated values, and,
as in Chapter 3, first assume that no mis-specification has taken place. Thus, we derive the
EFI matrix for Gy, and Gy for type I censored data.

4.1.4 Analysing data using the correct distribution

Asymptotic results for the distribution of the MLEs when no mis-specification has taken
place are well known, and have been outlined in Chapter 3. We use these results to obtain
the EFI matrices for the Weibull and Burr distributions below.
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The Weibull distribution

On examining second derivatives from Gy, we see that we will require E [Y?], E [Y#InY]
and E [Yﬁ (In Y)Z] . We use the relationship between truncated Weibull and Negative Ex-

ponential distributions to compute these, and first consider
E [Yﬁ} = 09E (2],

for Y, Z following (4.1) and (4.2), respectively. We first note that we can write expectations
with respect to Z in terms of the incomplete gamma function given by (1.7). Thus, we have

[ (zeyr+1)
Bl = ———2—ou-—t_
[ ] 1—exp (_zc) ’
which simplifies to

I (2¢,7) — 25 exp (—2)
1—exp(—z)

)

on using (1.11). We further exploit properties of the incomplete gamma function, and use
(1.10) to write

r2gU1 (%e,T) ~ 2¢ exp (—2c)

r
= 4.
ElZ] 1—exp(—2c) (4.9)
Thus, on substituting 7 = 1 into (4.9), we have
1—exp(—2;) — zcexp (—zc)
Bl _ pB P c 4
E [Y ] 9 { Ry : (4.10)
We differentiate (4.9) with respect to r to obtain
ZT - .
EZ" In Zl= 1_—6}{;(—_2—‘:) {1+ rlnz) Uy (2,7) = rUs (2¢,7) — Inzcexp (—zc)}, (4.11)

and use this to write

E [Yﬁ In Y] = 6% {In0E (2] + B E[Z1n 2]}

6P {1 —exp (—2) — zcexp (—2zc)} {In6 + ' In 2}
1 —exp (—2c) +67 {1 — exp (—2)} — 287 Uz (2, 1)
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Finally, we consider E,[Yﬁ (In Y)Z], and differentiate (4.11) with respect to r, to write

FA { Inz.(2+4+rlnz)U; I(zc,'r') —2(1+rlnz.) Uz (2c7) }

T 2] _
E [Z (ln2) ] C 1—exp(—z +2rUs (2e,7) — (In 2c)” exp (~2)

Thus, we have

({1n0+6 1(l—l-lnzc} — "2)i_ exp(—z)}

2c

6Pz, 267 {Inf+ B~ (1 +1nz)} Ua (2¢,1)
1 —exp(~2c) +2872U3 (2¢,1)
—exp(—z;) (In6+ B 'In zc)2

E [Yﬁ (lnY) ]

Using these expectations, we now compute the elements in the EFI matrix for G,. We

consider F [%&L], and note that we must first condition on the random variable N, before

taking expectations with respect to Y. Thus, with a slight abuse of notation, we write

_ —ex] (-—zc)—zc exp(—zc)
B[Zha] g NN e |
96 —(n*N)(5+1)Zc

Thus, on taking expectations with respect to N, we have

Oy —2p-2
-E [692 ] =nf7%07“{1 —exp(—2.)}-

We use similar arguments to derive the other elements of the EFI matrix; these are given
by '

_E [%] — g2 1—exp(—2c)+1Inz. {1 —exp(—2:)} {2+ Inz}
o lep?] =22, (1 + In2o) Us (26, 1) + 22cUs (2¢, 1) ’

and

_E [ 9%l ] e 1 —exp(—2;) — zcexp (—zc) + Inz. {1 —exp (—2z.)}
606 —2Us (2c,1) + Bln 6z exp (—zc) '

This list provides us with the elements required to compute the EFI matrix from the Weibull
distribution, after the data has undergone type I censoring. We carry out a similar analysis
for the Burr distribution below.
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The Burr distribution

To compute the elements of (3.1), we make use of the relationship between the Burr and its
two parameter counterpart. Note that Z = % has a two parameter Burr distribution, and
we can compute expectations in terms of this variable. We also use a similar technique as
that established in Watkins (1997), who writes expectations as E, to emphasize the role of

the parameter .. Thus, we write

z" z"
E[l-{—ZT] =P [H—Z]

and, by exploiting the role of & in Gy, can write this as

a
PSR [Z7].
On closer examination of the second derivatives, we see that we require £ [Z™], E [Z™In Z]
and E [Zm (InZ )2] We consider these next, and first compute E [Z™]. This is given by

o
my _ . _
E[Z™ = qzc,aB‘f-‘i‘iI(ml’a mo),

where B, (a, b) is the incomplete Beta function (1.15), and

m .
m; = — +1.
T
We obtain an expression for E[Z™(In Z)"] by differentiating this expectation r times with
respect. to m. In order to obtain the derivative of the incomplete Beta function, we re-write
it using its hypergeometric counterpart given by (1.16). Then, using (15.3.4) of Abramowitz
and Stegun (1972), we have

m—+T
az,

E[Z™ = Foi({my, a+ 1}; {ma} ; ~27). (4.12)

Ze,x

To differentiate this function with respect to m, we first note that the arguments m;, mo are
separated by unity. Watkins and Johnson (2002) consider hypergeometric functions with
this property, and prove that a hypergeometric function of the form

fq(a,b,2) = Fyy14({a, ...,a,b}; {a+1,...,a+ 1}; 2)

has derivative

ga? bz
(—a,_—|——1)‘1‘*'_1fq+1 ((l+ 1, b + 1,2) .
They also examine relationships between neighbouring hypergeometric functions, and es-
tablish two results which help simplify such functions. We use these results to simplify our
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expectations. Thus, the derivative of E[Z™] with respect to m is given by
X T+m T
E[Zman]Z az {lnchl(ml,a‘f‘l,_ZZ)'— fz(m17a+1, zc)}. (413)
QZc,a Tml .
We differentiate this function again to obtain
m+m [ {Inz }2 filmy,a+1,-27) — 21n zc fa(my,04-1,~27)
E[Z™(InZ)?) = e ¢ " htmetiem ™ . (414
[ ( ) ] Q2.0 +2f3 nz,:',:;xl-ll-)l, z ( )

‘We use these results for the two parameter Burr distribution to list the expectations required
for the EFI matrix from the three parameter model :

E;‘-:f (2 oa+2,— ),

_ EAER
f?} _
E T - 2qz

f1(2 a+3,— ),

2qzc '

—lfg (2,a+2,-27)

azn

2QZC a

Inz.f1 (2, + 3, —
f2(2,043,—=27)
2T

E ﬁ%)"ln!%) — az2” { Inzef1 (2, 0 + 2, —27) },

Z7) — }’

{Inz}? f1 (2, + 3, -2)

z "I x x 02T 1
E < = 5 T nz.f2 (2,04 3,—27)

2¢zc,a
{1+(%) } ! f3(2,a43,—z7
+ 27
We now list the elements in the EFI matrix for Gp:
-E [ﬂf] = na"2gz, as
-2 o(l—qz,,0)2l (lnzc)
T "Qzp0 t+ {127} =+
AR (nz)? fi (2,0 +3,—27)
- 27 3
or ﬂa—"'zl)ﬁc— T nz.f2 (2, + 3, —27)
+f ,a+3 —=z7
aj 1-gzc 0 tz
—E [8_21'3] = nr¢ 2 1422 {1 1z T G
o¢ a(a+1)z§"'f1(2,a+2,—z;’) + Ta(a+1)zg"'f1(2,a+3,—zg) ’
2,042,~
] ] Pl - b=y
dadr c {1 Qzc, a}lﬂzc )
- - +—
1+2z7
3%, | - 2,a+2,—27 1~z .0
B[] —nrglzy [ethlaiton) 4 {1 }]
) a{l —Qze, a}z _ ar{l—gz o}zl Inz
ch,a 1+z‘r‘ {1+z1—}‘2
_g |84 ] ng1 ﬂo”—4'1)—zi‘=—f1(2 a+2,-27)
5735,

lnchl (2,C¥+3

_ -roz(a+1)z2:" {
2

_ 22,043,z
2T

, c>}
)
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This matrix will be used to derive the mean and variance of ﬁb,lo; see (3.2).
We continue by examining the effects of fitting the incorrect distribution to data from
Gp.

4.1.5 Analysing data using the incorrect distribution

In Chapter 3, we used the entropy function to obtain theoretical counterparts to E and 8 of
G, when this distribution was fitted to a set of data simulated from G, and no censoring
took place. We now examine similar results for data that has undergone type I censoring.

Recall that the theoretical counterparts to B and 0 are obtained by maximising the
expected value of the log-likelihood [,,, with respect to G. Since type I censoring introduces
another random variable N into the analysis, we must first condition on this. Using (4.3),
we see that

NInB—NB6+(B-1) T, InY; ]

E[ly|N] = E! _9—/3{ ;.’ilyf+(n—N)y£’}

= NInf—NBhO+N(B-1)E[lnY] - No—PE [Yﬁ] — (n— N) Py

We use (4.12) to write

ad™zItm

mi4qz.,a

E[y™ = fi(my, 0 +1,-27), (4.15)

and note that
E[lnY])=In¢+ E[n Z],

where E [In Z] is obtained by setting m = 0 in (4.13). Thus,

E[lnY]=1In¢+

oz { Inzefy (1, +1,~2]) } (4.16)

—T_1f2 (1, o+ 1,‘ —ZZ)

Ze,

The conditional entropy now becomes

#\°
Nlng—- NBnd — (n— N) <5) 2P

ozl { Inz.fi (1,a+1,-27)— }jl

. +N(B-1) |ln¢+

(L, a+1,-27)

-B T+8
—Mfl (_’B_ +1,a+ 1,_Z‘cr) ,
Gresar (2 + 1) T

Ze, O
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and, taking expectations with respect to N, we see that

B8
s AN
Ey, = n(Inf)gsa—nf(nb) g, qo—nz +ng: a0 2 zZ

azl | Inzfi(L,a+1,—27)—
+nqzc,a(ﬂ -1) [lan' Gz, { 7 o (L,a+1,—27) }]
r+2 (4)P
noze
_#ﬁ( +1a+1—z> (417)
(g + 1) ‘

We differentiate (4.17) with respect to 6 to obtain

B B
(%) ZE — Qze,0o — (%) zcﬁqzc,d

(+1) f1< +1, a+1——z)

’

and equate this to zero to get

#P28(1 } o) + a2l tP P (Q + 1) 4 (é +la+1, —zg)

ch ,Q
We let

~1 .
= gbﬁzf (1-Gr,a)+ azZ*'ﬂqSB (—f— + 1) f (g +1,a+1, —zg) ,

SO

Wi

9:{?1%} . | | (4.18)

For future use, we also let

_ 891
g2 = 8ﬂ

aczSﬁzZJ’ﬁ{ ln(qﬁzc)fl( +l,a+1,-% )

TN f2(B+1,041,—27 )
(2+1) s

= P22 1n (¢2c) {1 — Gzea} +
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and
_ 092 _ 58 N
B = Gy = #H M (6) (1~ 0
{In (¢2:)}* fu (g +La+1, 'ZZ)
a¢ﬂ2z+ﬂ ln(¢zc) 1 é ]
+(—é+_1) "2{7(‘;’4-1) _"2(§+1)2 +1}f2 (,,+1,a+1,_zc>
T +2f3 (§+1,a+1,_z:)

Inserting (4.18) into (4.17) will give the profile entropy

Inf—1Ing +1ng,, o — 1+

B-1) {m¢+%{ Inzef(La+1,-2) - H , (4.19)

Eg = Ngz.,«
' 7 (,a+1,—27)

where here, we are using the fact that

NGz, {91 — PP - ch,a)} nadPzi P, ofy (g +1la+1, ——22)
91 o (2+1)

We could plot (4.19) with respect to 8 and locate the maximum, or use the Newton-Raphson

process to obtain the root of

. . n-1
dEb = N4z« T ﬂ - ;L? +In ¢+ (420)
g N 2z at+l,—2) -1 o (Lat+1,-2)} |

with derivative

dzEg Qé 9193 — gg) }
= —n B4+ [ = .
lﬂ2 Az, { ( %

We are now in a position to obtain theoretical counterparts to the MLEs from G,,. We
first note, by examining (4.19), that maximising the entropy function is not affected by
the sample size. Thus, entropy values for n = 100, y. = 80 are the same as those for
n = 576, y. = 80. They are, however, affected by the stopping time. Figures 4.1 and 4.2
show how S, and 6y vary with y., when we set 7 = 3, @ = 4 and ¢ = 100. We observe
how the entropy values tend to their complete counterparts as y. increases. We also note
how well the entropy values match up with simulated counterpé.rts in Table 4.2. We could,
at this point, examine relationships that exist between parameters from G} and §; and
6o. The above investigation shows how 3, and 6y vary with y, and, on examining (4.20),
we also note a relationship between [, and ¢; this is contrary to what we observed in our
investigations on complete data. Due to this added complication, we omit any further details

on relationships between true and mis-specified parameters.
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Figure 4.1: (3, versus y. for 7 = 3, a = 4 and ¢ = 100.
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Figure 4.2: §p versus y. for 7 = 3, @ = 4 and ¢ = 100.
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Now that we have theoretical counterparts to the MLEs from the Weibull distribution,
we can use these to derive the asymptotic distribution of these estimates. We consider this
below.

The variance structure of the mis-specified MLEs

From our work on the distribution of the mis-specified Weibull MLEs for complete data, we
know that, asymptotically, (ﬁ,@)l will be Normally distributed with mean vector (8, 6o)’,
and variance covariance matrix given by (3.18). As a result, we require expected values
of second derivatives from the Weibull distribution, and variances and covariances between
score functions. On closer examination of these functions, we require expressions for E [Y™],
EY™InY]and E [Y"‘ (In Y)2] , where Y is a random variable from G. E [Y™] is given by
(4.15). We compute the remaining two expected values by using the relationship between
G and its two parameter counterpart. Thus, we have

ag™zItm In(¢zc) f1 (B +1,a+1,-27)

Elymmy]= 2% A(E+1atta) SN CE Y
G (B +1) T EN) :
and
{In(gz)}° A (2 +1,0+1,—2])
m_T+m 2ln(¢zc)f2(-'$+1,d+1,—zg)
E [Ym (1nY)2] - _o¢ Ze - (E+1) L (422)
Qzc0 (? + 1) 2f3(%+1,a+1,—z;’)
2 (z41)’

Using these, we first list the elements of the matrix A:

a(B+1)(ﬁ)ﬁzg+ﬂf1 (g+1,a+1,—zz)

2
2] | IS0 ]
+z£ (992) (,3 + 1) {1 - ch,a}‘ —Qz.,a .

52t 2 (8) (1= g {1n (52) )’

2
. (%)} i (2 +1,041,-27)
-E [— =n T+6 (9P 2In(262) (£ +1,041,—27) ,
a 2] azl _ 7 2( 7 B 'y~ Z¢ '
g +r (&)

2f3 ( g+1,a+1,—z:)
1'2(€+1)2
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and

2 Gz —
-k [__8 lw] =nf!

po0

ey ({1480 (52)} A (E+1041,-2)
(g) ?L) (-}-la—{-l—z)

2(8)" 01~ gued 145 (%2)}

|

Next, we consider the elements in the matrix V, and first examine Var (%5*). We have

Var (%%’)

‘We consider

En |Ey

(o)1) - (oo o 1)

N == (§) {on - 0 )2 (3)°]

+N (N -1)67% (B [Y?])®

N} =507 | _ong-p {N —(n~N) 22 (g)" } E[Y#] + N6—2PE[Y?] |

and note that substituting expressions for expectations in the above function produce no

simplifications; we just end up with higher order hypergeometric functions with different

arguments. Thus, we will keep the variances and covariance between the score functions

from the Weibull distribution in terms of their expectations. After taking expectations with

respect to N, we see that

Al \ 2 _
E[<5—9—> J = 3%072 ¢

Since

we have

E[N?] - 2F (%)ﬁE[N(n N)]

$\* p E|[(n- NY?| —20E [v?] E [V?]

) E[YP] E[N (n— N)]+ 6 E [Y?%] E[N]
+072 (E[YP])*E[N (N - 1)]

E[N] = ngz,a;

Var (N) = N4z, {1 - ch,a} )

7
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and

E [Nz] = nqzcaa {1 - ch,a} + nzqzc,on

and hence can obtain the necessary expectations with respect to N. Using these, we have

E

(

Ol

00

2 .
) :I =n,829_2

We also require

9zc, {1 —Qzea T anc,a} -
B
2 (n - 1) Qze {]- - ch,a} zcﬂ (%)

22 (%)w { n{l— g o}’ + }

Gz, {1 - ch,a}
1-9z,0+ NG ,0—
B
(n-1) zg (%) {1-gza}
o Y] ¢

_2qzC’ae—ﬂ

(n— 1) o072 (E [Y#])?

i)

Ol
(EN [EY [?ﬁ

I

in order to calculate Var (%), and see that

"Thus,

and so

Var (%) = Ngz,a02072 5

E

0o

09

5]

B
qzc’ao_ﬁE [Yﬂ] + Z? (%) (1 - qzc,a) - qzc’a} .

i 6-%¢ o (B [Y7])"+
225 (%)ﬂ 9z {1 - qzc,a} 0~FE [Yﬁ]
2 (3)7 002 oB [Y7] + {1 -

B .
—235 (%) 9z, {1 - ch,a} + qgc,a

¢

1= oo+ 228 g%)ﬂ {1 Gl +
2 (8)" (1~ guo)
~207P {1 — g, o} {1 + 28 (%)ﬁ} E [Y#]
+67PE [Y¥] - 087 (B [17])°

E[Y?P]

-

- )

)

V

7
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We use similar techniques to calculate the variance of %’—EL, and first consider
Al \ 2
— | |N]|.
( 96 ) }

P?+2NPE[nY] - 2N6~# (P —1n6)E [Yﬂ In Y} +2NPOPInbE [Yﬂ]

Ey

Using (4.5), this simplifies to

+NE [(ln Y)"’] +N(N-1)(E[nY))? - 2N6~PE [Yﬁ (In Y)2]
_2N(N-1)6PE [Yﬁ In Y] EnY]+2N (N —1)6~n6E [Yﬁ] E[nY)
+N§~2PE [Yzﬂ (In Y)2] FN(N-1)62 (E [Yﬁ In Y])Z |
_2NG~P 1 6E [Y” In Y] _ON(N-1)§"10E [Yﬂ In Y] E [Yﬁ]

+NO~% (1n6)*E [Y2/’] + N (N —1)67% (1n.9)>? (E [Yﬁ] ) 2
where

B
P=NB1-Nlnf-(n—N)z? (%) ln<ch¢>.

We now take expectations with respect to N, and see that we require

aa = E[P]l=n

IB_IQZc,a — Gz Iné—
ﬂ bl

25 (%) {1 -¢z,atln (%—Q)

{1 - ch,a + nqzc,a} (,B_l — ln9) —_ }

and
* Qzc,0 {1 - q.z;a + anC,a} (,6_‘1 —1n 6)2 —

2(n—1) 2 (8)" groa {1 - ra} I (%2) (57 ~ 100}
. +z§ﬁ (%):m {1- ch,a} {n(1- ch,a) + ch,oz} {ln (Z_Z)Q) }2

3

c3=E[P? =
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2
Hence, E [(%ﬁ) ] becomes

s +20E[InY] — 2077 (c; — ngs o In0) E [YPInY] + 2¢,6 P In0E [Y7]
1. B [(1n Y)2] +n(n—1)g2 E[InY]? — 2n6~Pg, oE {Yﬁ (In Y)2]
—2n(n—1) G_ﬁqfc’aE [YPmY]E[lnY]+2n(n—1) 9+ InbgZ E [YP] E[InY]
+nf2g, E [Yﬁﬂ (In Y)2] +n(n—1)6"%g E[YPnY]’

—2n8~# In6g,, o E [Y#InY] —2n(n—1)6~*In6q2 ,E [YPlnY] E [Y7]
+167% (106)2 g, o E [Y?] + n(n—1) 62 (n6)? g2 E[YF]?

([25))- o o [5])'

E [‘Zl_;] = 1 + s 0B InY] — n8Pq,, o E [Yﬁ In Y] +n8P1nbg, o F [Yﬁ] .

In order to calculate Var (%lﬂ , we also require

and note that

T\ 2
Hence, (E [%%]) equates to

& + 210z, o B 0 Y] — 2nc10 g, o F [Yﬁ In Y]

+2nc167P 1 0g;, o B [Yﬁ] +n2g2 JE[InY]?

~2n207Fg2 E[InY)E [Y" In Y] +2n207PIn6g2 E[InY]E [Yﬁ]
+n20~8g2 E [Yﬂ In Y] * on20-Pn6g E [Yﬁ In Y] E [Yﬁ]'

2
+n207% (In6)2 ¢, o E [Yﬁ] +n2¢ , (In6)?,
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and, after much simplification,; we see that Var ( o ) becomes

[ 02 {1 = gra} + 20 {1 = Gro} EInY] =20 {(A(1 = gz..0) ~In6} B [YAInY] |
+200P 100 {1 — g, o} E[YP] + E [(m Y) ] G oE [0 Y]?
~207PE [Y# (1nY)?] + 264, oE [Y*lnY] ElnY]
Nz,a 2671064, [YP] E[lnY] + 0~ E [v* (lnY)’] E
0%, oE[YPInY]’ - 207 1n0E [Y?PInY]
+207%$1nfg, oF [YPInY] E [YP] + 672 (In6)® E [Y%]
~ea8 % (n6)’ E [¥F]?

where

B
A=f"1—1n6+2° (%) In (%)

The final function we require is

ol, Oly Ol azw
Cov (W’Tﬁ) En [E"[ae Y

o] - [

w|| B (B | 3

I

From the calculation of the variances of both score functions, we see that we already have

N].

expressions for

5[ 2%

: Oly,

We write E [%%L %ﬁ*]

B I

| (ne1 —c2) zc (%) c2
+NGz 0 {(n - 1) (1 - QZc,a) ZE (%)ﬁ - (1 _' QZc,a) - anc,a} E [1n Y]

B8
_ne—ﬁqzha {(n -1)(1-¢z,a) zf (%) - (1-¢za) =Nz — 1} E [Yﬂ In Y]

61 8 ’
IB +9—ﬁ n (n — ]-) chya (1 - ch,a) zcﬁ (%) lne E [Yﬁ]

NGz o In0 (1 — @o 0 + NGz a) + C2
+n(n—1)07Pq, oFE [YP] E[lnY] — n0~q, E [Y?’InY]
—n(n—1)0"2Pq, E[YP]E [YPInY] +n6~*#Inbq,, oE [V
+n(n—1)6"**nbg, o (E [Yﬁ])2




4.1. TYPE I CENSORING 118

and E [%lgl] E [%ﬁé‘] as

i | &1 {Zc (%)ﬁ (1- ch,a) Qze,x }
NGz 0 (%)[3 QZc,a (Izc,oc E [ln Y]
nB6-1 18Pz 0 2 (%)ﬂ = Gze0) = Gzea p B [YPInY]

+07Pg; 0 {nzf (%) Inf(l—gso) —nlnbg, o+ cl} E[YP]

+n6~Pg2 E[YP] E[InY] - n6~**2, B [Y#] E[YPInY]
+n6~?In6g? E [Yﬂ] '

Oly Ol
Cou (W’a—ﬂ) ..

Hence, we see that

can be expressed as

—{1-gz,a} (ﬁ_ —In 9) B ( ) {1 - g0} {ln (z_;fé) }
—22 (0)2;3 {1-gz}ln (z—Q) —{1-Gza}(1+2 (%)ﬁ} E|[nY]
nB0 ¢, 0 +677 |2 { — Gz, T 2 ( ) {1-¢so}| E[YPInY]

077 {1~ g0} {ﬁ‘l —2In6+ 28 (%)ﬁm (%2) } E[v?)

~07Pq, o EY]|E [YP] — 0¥ E[YPInY] + 6~ %q, oE [YP] E [Y#PInY]
+0-2P I 0E [Y?F] — %P Inbg,, oE [YP)?

We now have all the required terms and expectations to obtain the variance covariance
matrix for the MLEs of the Weibull distribution, when this distribution is fitted to Burr
data that has undergone btype I censoring. This matrix will be used to calculate the variance
of §w,10, using (3.25). We do not give explicit results for these functions since the algebra
is very complicated, especially with the addition of hypergeometric functions that appear
in the expectations. Thus, as already stated, we leave all functions in terms of expected
values.

In the next section, we check our theoretical results by comparing them with simulated

values.

Agreement between theoretical and sample results

We present the theoretical standard errors of the MLEs from the mis-specified Weibull

distribution for varying sample sizes and stopping times, and compare these to the sample
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n 100 300 500 | 1000

80 80 80 80
St.err.(ﬁy 0.2527 | 0.1459 | 0.1130 | 0.0799
St.err. (@) 2.6995 | 1.5586 | 1.2073 | 0.8537
E[Ew,loj 29.3690 | 29.3690 | 29.3690 | 29.3690
Sterr.(Buo) | 25129 | 14508 | 11288 | 0.7946
St.err.(7) 0.5364 | 0.3097 | 0.2399 | 0.1696
St.err.(@) 7.8509 | 4.5379 | 3.5151 | 2.4855
St.err.(a) 81.8466 | 47.2542 | 36.6029 | 25.8822
St.err.(éb,m) 2.6700 | 1.5415 | 1.1941 | 0.8443

Table 4.3: Theoretical standard errors for the MLEs from G, and G} for varying n. Data
is subjected to type I censoring, and simulated from G} with 7 = 3, o = 4 and ¢ = 100.

n 1000 1000 | 1000 | 1000 | 1000

50 70 100 120 200
St err. (ﬂj 0.1405 | 0.0919 | 0.0677 | 0.0643 | 0.0703
St.err. (9) 1.4777 | 0.9017 | 0.8484 | 0.8621 | 0.8787
[Bw,mJ 20.9160 | 29.6233 | 28.8172 | 28.3809 | 27.8857
St.err. (Ew m) 0.8606 | 0.8202 | 0.7552 | 0.7379 | 0.7730
St.err.(7) 0.2875. | 0.1929 | 0.1440 | 0.1327 | 0.1250
St.err. (@) 12.1483 | 3.6561 | 1.5340 | 1.2191 | 1.0482
St.err() 112.9568 | 36.8359 | 16.7029 | 13.5529 | 11.7869

St.err.(Bb@ 0.8632 | 0.7145 | 0.8378 | 0.6907 | 0.6791

Table 4.4: Theoretical standard errors for the MLEs from G,, and G} for varying y.. Data
is subjected to type I censoring, and simulated from G} with 7 = 3, o = 4 and ¢ = 100.

results presented in Tables 4.1 and 4.2. We also include details of theoretical results from
Gy, for both the Burr MLEs and §b,10. Note that we are comparing all values of Bjg with
the true value given by

Wik

¢ (0-9'?1 - 1)% = 100 (0.9:4l - 1) — 20,8848,

The results for varying sample sizes are summarised in Table 4.3, and for varying y. we
present the results in Table 4.4. We outline the main points when varying n.and y. below.

When n varies For G, there is excellent agreement between observed and expected
results across all sample sizes, and the theoretical standard errors decrease as n increases.
When we compare sample and theoretical values from Gy, we observe some surprising results.
Firstly, the sample standard errors for & and a; are smaller than their theoretical counterparts
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when n is small, and also less than their complete counterparts. An intuitive explanation
for this has been provided when we examined simulated values. When we examine §b,10,
the agreement between expected and simulated results are good, even when n is relatively

small.

When y. varies When we examine results for G,,, we note that for large stopping times,
the theoretical standard errors of ﬁ, 9 and §w,1o tend to their counterparts from the complete
scenario. There is one surprising outcome; when we vary the censoring time, and kéep the
sample size fixed at 1000, there is a decrease in the theoretical standard errors of both ﬁ
and 9 for smaller stopping times. This result seems counter-intuitive, since smaller stopping
times result in a larger proportion of censored observations. Thus, we would expect standard
errors to increase. We also examine the effects of how the theoretical mean and standard
errors for §w,10 change with varying stopping times, and note that, for smaller values of ¥,
larger values for the mean of Ew,m are observed. For example, when y. = 50, the theoretical
mean of Ew,lo is 29.9160; this figure decreases to 27.8857 for large stopping times. Such
results imply that when we have more censoring, the time to which 10% of the data values
fail is much higher than if we had a complete data set. Since we are comparing this mean
with the true value of 29.8848 from the Burr distribution, then we see an improved agreement
between means when we have more censoring. We do not pay a very significant penalty with
regard to the standard error for censored data, and just observe a small rise for equivalent
sample sizes from complete and censored data when y. = 50. In fact, for y. = 120, we
actually observe a smaller standard error and a closer mean than the complete counterpart.
An intuitive explanation for this could be linked to the fact that when we censor,' we only
have to match the lower tail of the distribution function which contains the estimate for
By9. When we have complete data, we have to match both tails, so the estimate might not
be as good as the censored counterpart.

A further point concerns the stopping time of 100 time units. This choice of censoring
time causes problems with convergence of hypergeometric functions, since the stopping time
is the same as the scale parameter from the Burr distribution, and the final argument in
the hypergeometric function

) FP,(I ({011,052, ""ap}’ {pl; P2s "'7pq},z) )

then has a modulus of unity, so that we are on the boundary for convergence. There are

rules governing the convergence of this type of function if the final argument is of unit size,

and if ¢ = p + 1; see, for example, Luke (1969). However, theoretical results still match up

very well with simulated countérparts for such stopping times. '
Below, we carry out a similar investigation for type II censored data.
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4.2 Type II censoring

This section extends the discussion in previous chapters to deal with type II censored data.
Its structure is similar to the above section on type I censoring, and we examine the theory
required to fit Weibull and Burr distributions to data from a type II censoring regime. We
then look at the effects of fitting G, and G, to data from G, via simulations, and consider
changes as we vary the observation number that we stop the experiment at. We continue
by deriving the EFI matrices for Gy, and G, when we assume no mis-specification has taken
place, and finish with a discussion on the entropy function and the agreement between

theoretical and sample results.

4.2.1 ML estimation for G under type II censoring

We begin by considering the Weibull distribution, and derive the necessary theory to fit
this distribution to a set of data that has undergone a type II censoring regime. We assume
that the data y1,¥2,...,yn comes from a Weibull distribution with pdf given by (1.2). The
experiment is terminated after the rth component has failed. Thus, the first r observations
will each have their own distribution, depending on their order, whilst the remaining (n—r)
will be censored with distribution function equal to ¥{.p,), where we refer to Chapter 1 for
our notation representing order statistics. The likelihood and log-likelihood are reasonably
simple to construct; we first derive the likelihood, given, without loss of generality, by

>

Ly = 9w ®:6,0) [T [t - Gu(y:58,6)]
i=1

i=r+1
. ﬂyﬁnﬁ Yin)\P) 1T Y(rin) \ B
= e (- ()} 1L e {- ("5}
=1 i=r+1
from which the log-likelihood is
by =7l B+ (8—1)S£,1(0) =B — 67 {S50 (B) + Seo (B)} (4.23)

where

St (k) = Zyﬁm) (ln y(i:n))j )

i=1 -

n

Sc,j (k) = Z y&:n) (h’l y(i:n))j = (n - r) yécq—;n) (ln y(r:n))ja
i=r+1 :
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~ with the property that

55*,3' (k)

B = Omitl (k) for x= forec.

The score function is based on the elements

e — 107 + 60757 (S0 (6) + Se (O)) 429
and
=B+ 512.(0) = rIn— 67 512 (6) + 501 (6) ~ 10 {50 (6) + Su (Y] (429
We equate (4.24) to zero, to obtain an expression for 6 in terms of 3. This is given by
. {Sf,o GREAE }% | 4.26)

Inserting (4.26) into (4.23) yields a profile log-likelihood given by
By=rlnB+(8~1)S£1(0) —rIn{Sso (B) + Sco(B)} +rlnr —r,

and a profile score function with respect to 8 of the form

S51(B) + Sea(B) }
Sto(B)+Sco(B) )

di
ag

=rBf 1+ 871(0)—r { (4.27)

We use the Newton-Raphson method to locate the root of (4.27), and so require

2,

=T

[ 1522.(8) + S22 (8)} {510 (8) + Se0 (B)} = {54 (8) + S (ﬂ)}z}
{80 (B) + Se0 (B)}Y '

In later sections, we will compute the EFI matrix of the Weibull MLEs. This requires results *

on second derivatives, which we list below:

2
% =rB672 = B(B+1)67° 7 {50 (B) — Se0 (B)}, - (4.28)
Pl _ a2 gp| Sr2(B)+S:2(8) — 26 {Ss1 (B) + Ser (B)}
o =~ " +(In6)* {S£,0 () + Sc0 (8)} (429
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and

Py ro-1 4 g-b-1 B{Ss1(B) + Se1(B)}

9606 ~ +(1-B1n0) {Ss0(B) + Seo (B)) (430)

We continue by deriving a similar set of results for Gy

4.2.2 ML estimation for G, under type II censoring

As with the Weibull distribution, we construct likelihood and log-likelihood functions when
the data has undergone type II censoring. We assume that the experiment has been stopped
after the r** observation has failed, and that the data has an underlying Burr distribution.
Wingo (1993) has considered ML estimation of parameters from G, when the data has
undergone type II censoring. We write the likelihood as

L, = Hgb(ym o, ¢) H {1-Gy(yi;7,0,9)}

i=r+1

r aTy(i:n){ (y(zn)> }—a TR { (y(r'n)> } B
g & 1+ p z-=111 1+ p ,

from which the log-likelihood is

lhb=rlna+rlnr—rrlng + (T; 1)S§1(0) — (@ +1)Tf — oT, (4.31)

where

o - ol ().
i=zr-{:-11n{l+(g%n_))r}—( —’r)ln{1+(y(;n)> }

For future use, we introduce the following notation; note that f and c indicate a failed and

T.

censored item, whilst the other sub-scripts represent differentiation with respect to 7 or ¢ :

oy s {(*"zﬂ)fin(”‘z"’)},

£1,0 67— 1 + (y(zd)n))‘r

=1

and, in general;

_orny [ () {m ()"
e a7y
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Similarly, for the censored data

oT,
TC,].,O = 57_21

and

() )}
()]

If we consider derivatives with respect to the parameter ¢, then we see that

Temo=(n—r

(y(i:n! )T

=1 @
T T .
Tro2 = gzz

Y(n) T
¢

e

}in ()

and

Tc,O,l = T )
1+(4——1y;")
Y(r:n) T Y(rin) T
7 T(n—r) ( é ) T( ) )
02 = 5 e =+ p—
) e )]

The score function contains the following elements

aly

— -1 _ 7, _
e ra Ty - T, (4.32)
ol
6—: = 7'7’"1 - rln¢ + Sf’l (0) - (Ot + 1) Tf,l,O - aTc,l,O,
and
ol -
8_(; =—rr¢~! — (a+1)Tfo1 — oTco,a-

Equating (4.32) to zero yields an expression for « in terms of the other two parameters. We

have
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and inserting this into (4.31) gives the profile log-likelihood

o= rln(Tf:_T)+r1nT——r'rln¢+(7'—1)Sf,1(0)'

T T
1 (1 _T .
f( +Tf+TC) C(Tf+TC>

We will not need the two profile score functions with respect to 7 and ¢, since we use the

approach outlined in Chapter 2 to compute MLEs from the Burr distribution; this requires
the full score vector. At this point, we also give second derivatives for the three parameters
of the Burr distribution, since they will be used in the derivation of the EFI matrix. We
list these below:

_8a2 =-Ta °,

2l _
_87'—3 =—rr 2~ (a+1) Tfo0 — ale20,
o, ‘
_g = rT¢ 2 - (a + 1) Tf10,2 - aTc’0’2’
o¢
0%l
_a_aé;—T = ~way]-ro - Tc,l,Oa
02,
0adp “Tron—Teon
and
4!
E_-é =—-rdp+ (a+1) Tf,1,1 +ale11,
where
Yam) \7 Yem) )" g (Y
Tf11=:_12r: (¢5)) -23 (¢)1n( )
™ QS — Yy \7 ({b — ) Yiiin) 2 ’
i=1 1-|—( p ) =1 {1+( 3 )}
and
an T Yirn T an
() e () (%)
61,1 -
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Now that we have the results to fit both the Weibull and Burr distributions to type II
censored data, we continue by examining the effects of fitting G,, and G to data from Gp.

4.2.3 Fitting G, to G, data

In this section, we summarise a series of simulations that fit G, and Gp to a set of data
from G} that has undergone a type II censoring regime. As in previous chapters, we use the
discriminating A to determine which distribution offers the better fit, and if A < 0 conclude
that the Weibull distribution is an improvement over the Burr. We use the algorithm
outlined in Watkins (1999) to fit the Burr distribution, with one additional feature to allow
for observations exceeding the r** item to be censored. Summary statistics for varying
sample sizes are shown in Table 4.5, and for varying r, these are summarised in Table 4.6;

both correspond to the usual set of Burr parameter values given by
=3, a=4, ¢=100.

We also show the average value of A for each set of simulations, and the probability of
choosing the Weibull over the Burr. Note that the censoring time chosen when we vary
the sample size remains the same, and we censor 20% of the observations. This figure has
been chosen arbitrarily; we just wish to see how MLEs chahge for a censored-sample, as we
lower the overall sample size. The tables show an increase in the probability of fitting the
Weibull distribution over the Burr, as the number of censored observations increases. We
also see the scale parameter of the Weibull distribution decrease, and the shape increase,
as 7 is lowered. For smaller sample sizes, just as in the complete case, the probability of
fitting the Weibull is higher. We also observe a surprising high probability for fitting the
Weibull over the Burr, when we have a large sample size, but censor more observations.
For example, when n = 1000, » = 600, the probability for fitting the Weibull distribution
is 0.2526, slightly higher that the equivalent figure for n = 300, r = 240. We also note, as
with type I censoring, surprisingly small standard errors associated with @ and a for lower
sample sizes; these are less than the complete counterparts in Table 2.6.

“We continue by deriving the theory necessary to explain these results, and first consider
the best scenario, where no mis-specification has taken place. The effects of getting the

distribution wrong will be considered in later parts.

4.2.4 Analysing data using the correct distribution

We present the theory necessary to compute the EFI matrices for G, and G, and give some
new results on expectations of order statistics. We include these when they are needed.
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n 100 300 500 1000

r 80 240 400 800

I} 2.8373 2.7898 2.7822 2.7750

(st.err.) (0.2743) | (0.1551) | (0.1174) | (0.0825)
0 66.0652 66.1864 66.2064 66.2332
(st.err.) (2.8509) | (1.6351) | (1.2639) | (0.8956)
By,10 29.7497 29.4965 29.4602 29.4231
(st.err.) (2.5155) | (1.4508) | (1.1139) | (0.7874)
A 0.5503 3.0045 5.4573 11.3106
(st.err.) (1.8942) | (3.6759) | (4.7326) | (6.4684)
Pr(Fit Gy) | 0.3925 0.2388 0.1517 0.0634

T 3.2739 3.1391 3.0892 3.0446

(st.err.) (0.4135) | (0.2707) | (0.2098) | (0.1514)
a 3.6849 4.1201 4.3167 4.4157

(st.err.) (3.7204) | (3.7840) | (3.1696) | (2.6624)
¢ 88.5262 94.7945 97.8293 | 100.3893
(st.err.) (29.9935) | (27.9583) | (25.4579) | (21.7425)
By,10 30.5910 30.2008 30.0917 29.9914
(st.err.) (2.5434) | (1.4974) | (1.1497) | (0.8154)

Table 4.5: Summary statistics for G, and G} for varying n with r = %’l. Both distributions
are fitted to data that has undergone a type II censoring regime from G, with parameters
'r=3, a=4and¢=100.

n 1000 1000 1000 1000

r 500 600 _ 700 900

B 2.8960 | 2.8609 | 2.8218 | 2.7136

(st.err.) (0.1188) | (0.1049) | (0.0933) | (0.0750)
9 65.0710 | 65.4556 | 65.8338 | 66.6368
(st.err.) (1.1822) | (1.0340) | (0.9609) | (0.8864)
Buw,10 29.8853 | 29.7851 | 29.6373 | 29.0672
(st.err.) (0.8486) | (0.8481) | (0.8177) | (0.7775)
A 1.1557 | 2.8633 | 5.7853 | 23.9459
(st.err.) (2.2855) | (3.3930) | (4.7861) | (9.7901)
Pr(Fit Gy,) | 0.3600 | 0.2526 | 0.1585 | 0.0117 |
7 3.1475 | 3.1189 | 3.0826 | 3.0205

(st.err.) (0.1777) | (0.1732) | (0.1645) | (0.1441)
a 2.4560 | 3.0699 | 3.7438 | 4.6757

(st.err.) (1.5860) | (1.9146) | (2.5077) | (2.7572)
¢ 79.4887 | 86.5411 | 93.5683 | 103.5577
(st.err.) (17.1498) | (19.0298) | (20.6538) | (20.9846)
B 10 29.9585 | 30.0115 | 30.0145 | 29.9492
(st.err.) (0.8417) | (0.8502) | (0.8342) | (0.8348)

Table 4.6: Summary statistics for G,, and G} for varying r and n = 1000. Both distributions
are fitted to data that has undergone a type II censoring regime from G with parameters
T=23, =4 and ¢ = 100.
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The Weibull distribution

On examining the structure of the second derivatives from G,,, we see that we require
expectations of the form

E [h (Yim)]

for an arbitrary function h. We use the recursive result linking expectations of order statis-

tics with different sample sizes given by
oE [h (Y-(i+1:'n+1))] + ('I’L -1+ 1) E [h (}f(i:n+1))] = (n + 1) E [h (nzn))] ) (433)

found, for example, in Balakrishnan and Rao (1998a) and David (1981), to write this ex-
pectation as

‘ r—1 r—1—i (r—1 ’
n (=1) ("3 )
‘ E|h(Yim-a)l, 4.34
(1) 2 B O (430
where expectations of the first order statistic are usually the most straightforward to calcu-
late; we refer to Appendix A for the proof of (4.34). We extend this result by deriving an
expression for the expected value of the sum of the first r order statistics, given by

—1—difr-1
r—1 (=1)7 i

r (n—r+1)(n-r) (1) X (s y ooy ol & [h (Yain—)]
ZE[h(Y(im))]: forl<r<n-1,
= nE [h(Y)) forr=n

(4.35)

the proof of which can again be found in Appendix A. We also note that summations such
as

ZE (b (Yam)] + (n—7) E[A (Yirm))] »

which appear on numerous occasions when examining second derivatives, can be simplified

as follows

r—1 (_1>r—i—1 (r—.l

nmr e =) (7)) 2 e e (o)

+o-nr(7) S LB ()]

n—1
1=0 .

r=1/ \r—1—i r—1 ‘
= (n—r+1)(n—r)( n )Z( D (s )E[h(Y(lm_i))]. (4.36)

r—1 = n—i—1
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We use these results to derive expected values of (4.28), (4.29) and (4.30). On examining

these second derivatives, we list expectations required, and first consider

E[Sf,g(ﬁ)+5c0 ]—ZE[ (zn)]+(n—r) [ (rn)]

On using (4. 36) we write this as

(n—r+1)(n—r) < _Ji( 1):"_({ 1)E[Y(‘fn 5]

=0

and note that
m m .
™ l=n 80| —
B [Yy| =n"%0 I‘( 5 +1), (4.37)
1
since Y(y.5) is from Gy (ﬁ, on ﬁ). Hence, we have

r—1—i¢ (r—1
E[S0(8) + Seo (B)] = (n =7 +1) (n—7) (rfl) ﬁz(n_lz_l)((ni_)z)

We use a series of results from John, Johnson & Watkins (2003) to simplify the summation
in this expected value, and list these below; we refer to Appendix B for the necessary proofs.
Let k and m be non-negative integers and a a constant, where a > m. We define two forms

of summations of reciprocals and their powers. These are given by

Frx(a)=) (a—i)7",

i=0

and

(@) =3 (- ™ ()@=,

=0

and note that, when k =1,

Api(a)=B(a—m,m+1), (4.38)
where B is the usual Beta function given by (1.13). For k = 2, we have

Amz (@) =B(a—mm+1) Fn1(a) = An1 (2) 1 (a). (4.39)
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We use these results to simplify our expected values, and first use partial fractions to split
the denominator of the summation. Hence, we see that

r—1—i (r—1
E(n—IZ—l)( ))_Ar 11( —1)-AT_1’1(71),

which we can write as

(n—r—1)l!

Thus, we obtain

E[S;0(B) + Sco (B)] = ré°.

Next, we consider

E[S51(8) + Se1 (B)],

and so require an expression for £ [Y('l’fn).ln Y(lm)]. On differentiating (4.37), with respect

to m, we have
E [Y(Tm) In Y(lm)} — g™ BT (% 4 1) {ﬂ—qu (% + 1) +Inf—F'In n} . (4.40)
and, on simplifying, we see that

E[Sf1(B)+ Sc1(B)] = 7"05{1119—1—»,6_1(1—'7)}—Gﬂﬂ_l(n—r+'i)(n—r)( n )

r—1

XZ )rlz(r—)ln(n_i).

2 (n—i-1)(n—1i)

Finally, we consider

E[S;2(B) + Se2 (B)];
we use the fact that

{1119 + 471w (Lg- + 1)' - p7t lnn}2

R (20)] A
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to write this expectation as
r0? [{In0+ 87 (1- )} + 672 (2)]

r—1 r—1—i r— .
2+ (")t mos o)« L -9

= (n—i-1)(n—1)

(—1 1 (r— n 2
o-rene-n (" )eﬂwg (n_f_l)){(ln(_z) s

‘We now list the elements of the EFI matrix as follows:

B [%] = 214 T @)

+(n—r+1)(n—r) (Tﬁ1>ﬁ_2
XZ () In(n—4) {ln(n—1) —2(1 - )}

— (n—i—-1)(n—1) ’
~and
2 ' n
—E[g—ﬁg—”g] = —r0—1(1—'y)+(n—r+1)(n—r)(T_l)e_l
y l)r—l z(r 1) n(n-—i)
; (n—i—1)(n—1)

‘We now give a similar analysis for Gy.

The Burr distribution

To compute the EFI matrix of the Burr MLEs, we use expectations listed in the complete
scenario, and the fact that Y{y.n) is from Gy (7, nc, ¢). We first consider

B [(ﬁﬂ)'{ln@;_nl)}z} \
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We replace a with na in (3.8) to derive an expression for

(5 fn ()

3

and use (4.36) to write

as

r—1 _1yr—1-i (r-1 n—i
= e+ ) (-1 (7)) Y e e

r—1)/<m-i-1)(n—it+at)(n-i+2a71)

. 2 . . )
><{%+’y—2’y+2(’y—l)lIl{(n—i)a+1}+\I/{(n——i)a+l}2+\Il {(n—i)a+1}}.
Now, we use (4.35) to obtain
Yi:n T . Yi:n 2
" 1 C8) {1 (52)}

=1 {1 + (—'”(:bn )T}z
r—1

1 " U 7
= T 2047 (n—-T+1)(n—T) (fp—l);(n—?:—1)(n—i+a—1)(n_i+2a_1)

r—1

><{%2+7—27+2(7—1)\1!{(n—7;)a+1}+\11{(n—i)a+1}2+\p’{(n_i)a+1}}_
Hence,

-E [%] = 2471 (m—r+1)(r-1) (T " 1) :z;; = E——li‘;_(;_i(;z).za—l)

A EH 2D (- e+ B+ T{(n-)a+1)
40 {(n—i)a+1} |

Next, we have

9 ,
-F [6 lb} =ra"2

da?
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Now, we derive

2 T
-E [%J = —rr¢ 2+ ragp? {ZE’

=1

Using (3.9) from the compléte scenario, and (4.36), we see that

E i —————(%)T +(n—r)E —(ﬁ%ﬁ)T
=Y
n nl(n+at—r+1)

(4.41)

a+1 (m—-r—Dl(@+)T(n+al+1)

We then use (4.35) to write

[0 ]
ey

i=1
n nlal (n+a™t—r+1)
= —(n-—7)+ = .
a+1 m—r—-DHa+)T(n+al+1)

To derive the remaining expectations, we use (3.10) with a replaced by na, and (4.36) to

el G ] ] B
ey )

a_l(n—r-i-l)(v/z—r) (r

n \ = (1)1 () (n—1)
)s

-1 = Mmh-i-m-ital)(n—i+2a71)
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Finally, we use (4.35) to obtain an expression for

this is given by

B n \ & (- ()
o (n—r 1) (n=r) (r—l)g(n—i—l)(n—wa D(n—i+2a7)

To simplify this, we write

(GO )
Z(n~'z—1 (n—z+a‘1)(i7,—z+2a“1)

I‘Ln+2a‘1 —r+1)
(a+2)['(n+2a~1+1)

n—r—1)! I(n+a~l—r41
o? (r _ 1)!{ (e+1)(a+2)(n-1)! = (@+D)I'(n+a-1+1) }

and so the required expectation becomes

na nlal (n+a™t —r+1)
(a+1)(a+2) (@+)(n—r-DIT(n+a-l+1)
nlal (n+ 207t —r+1) :
+(a+2)(n—r-—1)!I‘(n+2a‘1+1)'

Hence, we write —F [g—g&] as
nrla B nlr?al’ (n+a™t —r+1)
2(a+1)(a+2) *(a+)(n—r—DT(n+al1+1)
nir?al (n+2a7! —r +1)
#(a+2)(n—r—-DC'(n+2a"1+1)
A ( 1)rlz(r—)(n_z)
+7%¢ “(n—r+1)(n T>(—1>§(n Y

n—i+al)(n—i+2a1)

The next expected value we compute is

62l T (Zﬂl)fln (Y(z-n)> (M)Tln(h)
B [3&867}:E[; f+(ﬁ;ﬁ)‘f +(n-1)E j+(ﬁ¢_ﬂ)f ,
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we use (3.7) and (4.36) to write

SESCIC TN (€ DETLED)

.
=1 14 (—ly(":" )T

¢

1 B n r—1 (_1)1'—1——'5 (r—;l)
el l(1-9)(n—-r+1)(n-r) (r—l); i) (m_i+taoT)

r—1 r—1—i (r—1 -
— n DT ()Y {(n—i) o}
—a T (n—r+1)(n~r)<r_1); hi-Dm—ita)

Now, using partial fractions, we write

o Vi s TG { Sy - }

Z(n_i_l)(n_i+a—1)_ at+l I'(n4+a~1—r+1

i=0 F(n+a=141
Thus,
) ()] ) e ()
E; 2 () +(n-r)E 1+(ﬁ#>}
becomes
n(l-q) _ nl@-yC(+a™—rt1)

T(a+1l) 71l@+1)n—-—r-)Tn+al+1)

1 - n \ =2 (1) T;I U{n—-i)a
—a7'r l(n—r—{—l)(n-—r) (r—l)z (n)—z’—(l)(fz—{i(—{—a‘z) }’

=0

and so we have

(]« e e oy
0adr| = T(@+l)(n—r-DT(n+at+1) 71(a+1)

r—1 r—~1—1 (r—1 .
—o Y T n—r+1)(n-r) n (=1) ((3)¥{(n-1) 01}'
(1) 25

n—i—1)(n—i+al)

‘We now derive

s ) P (Yo Yem |7
E|gag| = {E [ %(;)“)‘} HnmnE [‘1 E——(ilﬂ }

_ g n_ nT(n+al—r+1)
-7 a+l (n-r-D(a+1)T(n+a1+1)|’
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which is obtained using (4.41). Finally, we compute

_E[;:g;b] - T¢—1_a¢—1{ZE Lgégg_zl)r}-!—(n—r)E[

Y.(i:‘n. T
()

1+ (ﬁ;;m))’

—¢? iE
i=1

We use (3.11) with «a replaced by na to obtain an expression for

and (4.36) to write

r—1 r—1—i (r— . .
el (n—r+1)(n-7) (rﬁ1>z<_1) ( il) (”_Z)[l—’Y—‘I’{(n—z)a+1}].

&~ - (n-i-1)(n—itat)(n—i+2a7)

Finally, using (4.35), we express

oo
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na(l—7) nla(l1-9)T(n+at=r+1)
r(@+1)(a+2) Th-r—Dl{a+)T(n+al+1)
nla(1-7T (n+2a7t—r+1)
T(n—r—1)a+2)T(n+2a"1t+1)

’ r—1 N\l r=1\ g n—19a
—T“la_l(n—r+1)(n—r)(rfl>z( =1 ()T {( )a+1}

n—i—1)(n—i+al)(n—1i+2a"1)

1=0
521
Thus, —F [m‘;] becomes
—na(l—7) nla(l-y)T(n+at—r+1)

da+1)(a+2) ¢(n—r—D(a+1)I'(n+a1+1)

nla(l-7)T (n+2at —r+1),
pn—r—Dl(a+2)T(n+2a1+1)

_ n r—1 . (_1)7'—1'—12 (r;l)
-9 1(n_r+1)(n_r)(r—l)}4:6(n—z’—1)(n—i+a‘1)(n—z‘+2a*1)
x[(n—9)(1-7)-¥{(n—-i)a+1} (n—i+a"1)].

We now have all the elements that make up the variance covariance matrix for the MLEs
of the Burr distribution. We check the results in later sections when we compare simulated
values with their theoretical counterparts. These theoretical values are computed relatively
quickly using Mathematica, even for large sample sizes. We continue by examining the
effects of mis—speéifying Gy to type II censored data from Gp.

4.2.5 Analysing data using the incorrect distribution

We compute theoretical counterparts to the MLEs from Gy; this will allow comparison with
Tables 4.5 and 4.6. Using (4.23), we write the entropy function as

Z In Yv(i:n)

i=1
—gF { E [; Y(‘Zn)J +(n—r)E [Y(fm)] } .

We use (3.31) with a replaced by na to write down an expression for £ [ln Y(lm)] , and (4.35)

E, = rlnB+(B-1)E

—~rBInd

to write

E

S ¥i| = rns 0} -t (1)
i=1

S VT ()= a)
XZ (n—i—l)(n—j) '

=0

(4.42)
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To compute the remaining expected value, we use (3.26) from the complete scenario, and
(4.36). Thus

EYM) )E[ (Tr'?m] )

simplifies to

¢"T (—? + 1) (n=r+1)(n—r) (r i 1) TX_% (- '(’;1)1‘{ —i)a- _}

pard (n—i—-1)T{(n—-1)a}

and we have
Ey = rlnf—rfnf+rBlng—ring+r(8—1)r 1T (1)

~e-r4@-n (") SV

n—t—1

=0

. [(ﬂ— Q¥ (el , T (24T Do~ g}} SCY)

0°T {(n — i) o}

We can either maximise this entropy function, or compute the roots of the entropy score
functions. These are given by .

OBy _ .91 4 o-P-14fT (-f— + 1) (n—r+1)(n—r) (r . 1)

86
=1 (- 1)" = {m-ia-2}

Xzz_; m—i-1)F({n—i}a) ’ -
and
%EBQ = rﬂ‘l—rln9+rlp¢+TT_l‘P(1)_

r=1 , Jy\r—1—i 'r—‘l
(n—r—i—l)(n—r)(?.fl)z( lri_in(l'z)

\Il“('rz—i))at_i_
x| ¢fr(f+1)r{(n-i)e-£} | In¢—1Ind+ T (g + 1)
6°r{(n—i)a} —r {(’I’L _ Z) a— ﬁ}

We can equate (4.44) to zero to get

r—1 CDT N (ni)e- 2}
=0 (n—i—L)I{(n—D)a}

_ [r—1¢ﬂr(§+1) (n—r+1)(n—r) (") r
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and insert this into (4.43) to obtain the profile entropy and profile entropy score function,
here given by

Tlnlg_rﬁ—llnqﬁ—rlnl‘(g—kl) —rln [<n_r+1><n_r> (Tflﬂ

r=1 (1) (T {(n —Ha- é}
r(0 — n 1 —7ln
n ) i D) (N {(n—i)a}

r—1) < n—i—1)(n—1) ’

——'r‘l(,B—l)(n—r-fl)(n—r)(

rBl+r6%Ing —rri¥ (g

i n VSR U () (=)
i n—-r+1)(n—r) o ,
(n (r—1>i§=:0 (n.—z—l)(n—z)

1 (=1)7720 T:1 14 (n—i).a—-g r ('rz—'i)t::—‘gl
r&:o, ( (72—:'{—151"{(11—1')(}1}{ :
r—1 (=)D {(n—i)o—E ’
T im0 Tn—(i)r{)(n{—i)a} !

+ 1) +r{ln¢+771¥ (1)}

respectively. We try and maximise the profile entropy function, or equivalently, find the root
of the profile score, using Mathematica, for a particular set of Burr parameters. Further
investigations in Mathematica indicate that commands currently used to locate roots, or
find the maximum of functions, fail to locate the maximum of the profile entropy function, or
to locate the root of the profile entropy score. Thus, we are currently limited to constructing
a grid of values of the profile entropy function for varying 5. We do this using our usual set

of Burr parameters, given by
T=3, a=4, ¢ =100,

and a sample size of n = 1000. We also censor values that exceed the r = 800" data point.
In Mathematica, we construct a table of values for the entropy function, for 2 < 8 < 3.5,
a range based on the sample average MLE of g for this set of parameters. A plot of these
values is shown in Figure 4.3. A clear maximum exists at around § = 2.77, so we refine the
search in Mathematica, and calculate values for the profile entropy function around a smaller
interval containing this point. We see that the maximum still occurs when 8 = 2.770 (to
three decimal places) which corresponds to a value of 66.217 for §. Comparing these values
with the simulations run in the previous section, we see that the MLEs for 8 and 6 are close
to their theoretical counterparts, considering that one fifth of the data has been censored.

‘Unfortunately, we cannot easily improve on this technique for locating the maximum of

the entropy function, and the problem seems to arise from evaluating summations in Ej,
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1240

1230

Profile entropy
-
8
B

8

1180

1170

Figure 4.3: E} vs 8 for data simulated from Gy with 7 = 3, o = 4 and ¢ = 100, and subject
to type II censoring with n = 1000 and r = 800.

especially for large sample sizes, where the computational demands on Mathematica cause
problems. We must also choose an appropriate range for 8 when constructing the grid search.
For a large enough sample size, this task can be simplified on exploiting the fact that we
expect the MLE for this parameter to be close to its theoretical counterpart. Consequently,
we may choose the range of possible values of 3 close to the sample average of the MLE.
For smaller sample sizes, we do not expect such good agreement between observed and
expected counterparts, and as a result, have to consider increasing the range of values that
we take for 8. However, for small sample sizes, the Mathematica program is reasonably
quick at computing the values of the entropy function, so increasing the range does not
really lengthen the running time.

Now that we are able to compute these theoretical counterparts, we use these in the
computation of the variance covariance matrix of the mis-specified Weibull MLEs. We

consider this below.

The variance structure of the mis-specified MLEs

We consider the variance covariance matrix of the Weibull MLEs, after this distribution has
been fitted to data from a Burr model that has undergone a type II censoring regime. We
refer to our previous work on complete data to state that the asymptotic distribution of the
mis-specified MLEs from the Weibull distribution will be Normally distributed with mean
vector (By,00)’, and variance covariance matrix given by (3.18). Thus, we require expected
values of second derivatives and variances of score functions from the Weibull distribution,

when the data is simulated from a Burr. From our work on obtaining the variance covariance
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matrix of the MLEs from Gy, we have seen that deriving the matrix of second derivatives is
relatively straightforward, and will be so even when we have mis-specified the distribution.
However, we encounter problems when evaluating the variance covariance matrix of the
score functions from the Weibull distribution. For example, if we consider Var (%), then
using (4.24), we see that this is equal to

Var {—rﬁ@ + Bo—A1 (Z an) +(n—-r) Y(fm)) }

2n—23—2 _ )
g0 Var (Z (i:n) + T) Yr(r:n)) ’

=1

We split this variance into

e|(Srtromnren) |-

and observe that the second term can be evaluated relatively easily using (4.36). The term

2
B
Z (in) + (TL - T) }/('r:n):| ’

that causes the problem is

2 ” '
(Z Lyt (—1) (m)) = ;E‘[Ygi)]%—(n_r)?E[y(iﬂn)]

r-1 r .
n—r) iE [Y(in)y(in)] + 22 Z E [Y(ﬁn)ng)] ’

i=1 i=1 j=i+1

and in particular, taking expectations of products of order statistics. We extend our results
on expectations of single order statistics, to allow for the product of two order statistics,
and to do so, require the recursive relationship between expectations of joint order statistics.
We use Balakrishnan and Rao (1998a) to write

nk [Y(’f—lzn—l)}/—(lg'—1zn—1)} =(Gi-1)E [Y(’f:n)y(lj:n)] +(-9)E [}Qlf~lzn))f({j:@)]
+ (= + 1) E [V V1w (4.45)

and use this to state that

ZZ (—1)** " (4 g— ) (s+j—i—2)
ql

E[Y(’")Y(]”)] n—jiNi—g—8)!(s—D(n+qg+s—1)

__l
‘7 v 1slq—O

k
xE [Y(Ln—z'+s+q)Y(j—i+s:n~i+s+q)] : (4.46)

where the proof can be found in Appendix C. Obtaining expectations of joint order statis-
tics simplifies considerably when considering specific distribution functions. We outline our
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approach for the Weibull and Burr distributions, and refer to Balakrishnan and Rao (1998b)
for equivalent details on the Negative Exponential distribution. Dyer and Whisenand (197 3)
derive joint expectations when the underlying distribution has a Rayleigh model, and Bala-
sooriya and Hapuarachchi (1992) compute these expectations for the Gamma distribution.

Joint expectations for the Weibull distribution We start by deriving a useful result
with direct applications to the problem under consideration; the lemma concerns a partic-
ular integral that appears in the product moment of the first order statistic with the j*
(for j > 2) for the Weibull distribution. We define, for arbitrary positive 3, p, g, k and I,

oo t 3 s
7 (B) =/ / tpHA—Le=kt" gatB—1o-1s" gogt,
=0 Js=0

- and now prove the following.

Lemma 1 We have
+q+26T (Pt
grra+a0r (25 4 2)
2
B2k2+(+0)/B (% + 1)

l
xpz,l(%ﬁ,m”hz;_g).

pq
I (B) = 5 5

Proof. From its definition, we may write

0 t
@)= [t [ [ et as) a

in which

t 8 gat8 (%)’ ga+h A
q+B-1 ~l5 - q/B,~u g, — hd g
/szos e (%) ds_ﬁll“"q/ﬂ/u__.o ulPe%dy ﬁll"“I/ﬁP l(g) ,6+1 )

obtained by writing u = l(%)ﬂ, s00<s<te 0y l(%) , and 5 = 6 (%)
ds = 681 ~Y/Byl/B-14y, Thus, we have

QQ"I',B (e} +\8 t B q
Pq p+B-1 _—k(% e 1
79(6) = lHq/ﬁ/ tP+h-1e (9)1"(1(6) g1

Using (1.10), we now write

r (l (%)ﬂ : % + 1) = 9/B+1 (g) qw; m(' (211(1 lm)

1/B so
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so that

oo 8 & (=)™ ()™
IZJ (B) = %/ tp+q+2ﬁ—1e—k(§) ( ) (Q) dt
t=0 0 m! (% +1+ m)

/ °° (=)™ tp+q+(m+2)5-1e'k(5>ﬁ
ﬁ m=0 m‘ ('(1 + 1 -+ m)

pg+(m+2)8—1,—kt?
Z [ / =i dt] ,
/3 t=0

™ m! (% +1+ m)

dt

on reversing the order of integration and summation. We thus have .

I (6) = 2 Z U / " ratm+2)8-1,-k(4)” 44
B a0 _9mﬁm! (%-i—l-i—m) 0
B Z;o ml (% +1+4 m) X BRI et m1A}/6
Therefore,
kLAY B2 k24 (p+e)/B ot o (% it m)

We now introduce a hypergeometric function, writing the summation as

o [F(%+1+m)r(-”—;§9+m+2) (_%)m}

X
m= P(%+2+m> m!
r(-g+1)r(w+2) N :
_ F(§+2§ x Fyy (2+1p5q+2@+2 k)
r(-‘%‘lm)

p+gq l
= 7/ b +2;= +2__
341 XFl(,B L, ﬂ k>

Hence we have

greo+20r (242 4. 2)

Ipq
(B) = B2k2+(o+0)/B (2 + 1)

l
x Faq (%+1 p;q+2 =+2;— )

as required. W
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We now present a general result on the expectations of products of arbitrary powers of
Y(in) and of Y{;.,y). We note the possibility of using our recursive result, given by (4.46), to
obtain this joint expectation, where the lemma above can be used to compute the expected
value of ¥{;.n) with ¥{;.,). However, this joint expectation can be computed directly without
having to use the recursive form. This approach also results in a simplified expression

containing one less summation. The joint pdf of ¥{;.,) and ¥{;.,) is

i-1 j—i—1
29_2[3 . g sﬂ_ltﬂ_l 1-— e_(%)ﬁ e_(%)ﬁ — e_(%)ﬁ e_(n_j+1)(%)ﬁ6_(%)ﬁ
IB GL,_’].TI, )

for 0 < s <t < o0, where

n!
Gin = NG —i- Dl (n— )

The expectation FE [ [ n) ( ] thus takes the form

jn)
i-1 joie1
26-%c, ., / / oot fy i)'} {e—(s)"_e—(sf}
s=0
xe= =38 e=(5)" dsat.

We now expand both brackets inside the integral, writing

- e_@)B}H' -5 () i eeimaY,

g=0

{e_(%)ﬁ “e—(%)ﬁ}j_i—l —]il (J_z—l) (—1)7=i 1P ¢=p(§)" ~U=i-1-0)(3)°

p=0
so that the expectation takes the form

i-1

ﬂzg—%qj_n/oo /t gh+B—140+p-1 Z(’ - 1)( 1)i=1-4 ¢=(i-1- 0)(5)°
T Jt=0 Js=0 a/

q=0

j—i—1 j—i—l ilep (2)5 —(j—i-1— (_t_)ﬁ —(n—j+1 (1 B _ 5)!3
X Z( )(—1)J PeP(3) e~ (=-1-P)(5)" | ¢~ (n=3+1(5)" e=(5) gsat.
p=0 P
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This reduces to

e B ()0 e

g=0 p=0
/ / GEHB=14+6-1,~(4p=0)(3)° o~ (n—i—-2)(%)° 4o gy
t=0 Js=0
izli—iTl j—i—1
_,820 2'301,,_'/"12 Z ( )( D )( 1)_7—1) qI‘flE't—pH'P q(ﬁ)
g=0 p=0 ‘

Using the Lemma, and simplifying the Binomial coeflicients, we see that the expectation

can be written as

; P (_1)j—pfq i-1\(j—i-1
g+ke; il (%4-%4_2) i—1 j—i-1 ( ?+)£+2p )
Z (n z—p)F B
(E + 1) q=0 p=0 XF2,1 ( + ]_ + 3 + 2 + 2 n!zj—:;_pq!)

We note, but do not here exploit, some scope for simplification, through symmetry in the
binomial coefficients, the alternating signs of terms in the summation, and the structure in

the arguments of the hypergeometric function, particularly in the important case k = [ = 1.

Joint expectations for the Burr distribution Unlike G,,, we cannot compute a direct
expression for E [ (3n) ( i n)} when the underlying distribution is G. As a result, we use
(4.46), and note that we require the expected value of the first order statistic with the jth
Thus, we require the joint pdf between such order statistics. This is given by '

"9 T~ £\ 7y —a]972
frointst = w00 () [ 5} (]
£\ 7Y ~n=d) g1 s\ " gl £\ 7)ol
{”(z) } 5 {“(a) } T{”(a) } |
Using this, we have

E [Y(Iimy(ljzn)] = n(n-1) (?_;) /0 ——aTtZT : {1+ (;) }_a(n_j+1)_1dt .
arsgktT— s\7) ¢! T T 7y —a]I7
e O A O RS I ON N

Just as in the case of the Weibull distribution, we use the Binomial Theorem to write

[EORESION

Jj—2
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p=0

so B [Y(’{m)}fém)] becomes

o (1) B () [

t qrghktT—1 3>‘r}——a(1+p)—1 ‘
—_— <14 | = ds.
L))

We now set

so that

t qrsttT=1 s\7 —a(1+p)-1 (
S ds =
LG =

and if we now put

then this integral becomes

T

(5)
. /1+ -é— a¢kzé (1 _ z)a(l-l-}?)"é——l dz = a¢kB
0

r
If we also set ©u = (%) , then we have

j—2

B [Y'(’in)%:n)] = n(n-1) (?:;) >

p=0

. poo
/ w7 (1 + )~ D-1 ;1 (
0

()

+(3)

1+%

t

¢

S (@@

7y —a(n—p-1)—1
)} d

a¢ku§ (1+ u)—a(1+p)_1 du,

(é—l—l,a{l.-%p}—é).

(_l)j—2—P <j - 2) ¢k+la2

p

k k
241 ).
—+ ;a{l+p} T)
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In order to evaluate this integral, we rewrite the incomplete Beta function in terms of a

hypergeometric function, given by (1.16). Therefore

1
r(ﬁ—a{1+p}+1)

xz -—a{1+p}+1+m)( v >m+§+1’

+1+m)m! 1+u

B (k+1 a{l-l—p}—-li> =

m=0

and we have

J )J 2P (J gHa’T (8 —a{l+p} +1+m)

E[Y('im)y(ljm)] = ”(”“1)(n §>ZZ (F+1+m)T(F-a{l+p}+1)

p=0 m=0

o Likimyl —a(n—p—1)—m—E_2
urTT (14w) “ du.
0

‘We now see that

© ikl ( 1)t oo ik imil
/ urtr ML (] 4 g)TORTPTUTM T gy = / T
0 0 (1 + u)a(n—p—1)+m+;+2

o o] =+Z24+m+2-1
= / T,k 2 N1 du
0 (1 + u);+;+m+ +a(n—p— )—;

= B<£+E+m+2,a{n—p—1}—£)
T T T

Tt+k+m+2)T(a{n—p—1}-1)
FkE+m+2+a{n-p-1})

Hence, E [Y(’gm)Y(ljm)] becomes

n—2 ()P A (af{n-p -1}~ 1)
n(n—l)( >¢k+l 22 F(?_a{1+p}+1)

3 P(;—a{1+p}+1+m)r(£+-f—+2+m)
m!(§+1+m)I‘(§+a{n—p—1’}+2+m)’

m=0

and finally, using the definition for a hypergeometric function, we see that

i T —a{l+p}+1+m)T(:+E5+2+m)
m(E+1+m)T(E+a{n-p-1}+2+m)’

m=0
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simplifies to

i1“(§+1+m)1‘(§—a{1+p}+1+m)1“(§+§+2+m)£
= F'(4+24+m)T(E+a{n—p-1}+2+m) m!
Tt —a{l+p}+1)T(t+%+2)
E+1)r(t+a{n—p-1}+2)

k

k k I k
F2 ({—+1’__a(1+P)+1a—+—+2};{—
T T T T T

+2,§+a(n~—p—1)+2};1),

giving

E[Y(’im)y(ljzn)] = n(n-1) (] )¢’°+’ 22 (—1)~ 2—1’( p2)

p=0
Dlafn-p-1-HT(L+£+2)
E+1)T(E+a{n-—p-1}+2)
Fus {(E+1k—a(+p)+1,L+E 42},
’ {E+2,5+a(n-p-1)+2};1 '

Thus, using (4.46), we can compute an expression for E [Y(z n) ( i n)] We note that the

- form of this will contain a triple summation and a hypergeometric function which itself is an

infinite sum. The current capabilities of Mathematica will be severely tested when evaluating
numerical values for these joint expectations, especially for large sample sizes. Thus, due
to limited numerical progress for joint expectations of the Burr, we omit any further details
on the variance covariance matrix of the mis-specified Weibull MLEs. In fact, if we were
to examine (4.25), then we see that we would have to derive joint expectations of functions
of order statistics from the Burr distribution, for example, F [Y(f n) In Y(im)ng) In Y(jm)].
The theoretical and analytical progress possible with such functions is currently limited,

and hence will be considered elsewhere.

Agreement between theoretical and sample results

We compute theoretical standard errors for the MLEs from G} for varying sample sizes and
censormg values, and compare these to sample counterparts shown in Tables 4.5 and 4.6. We
also include theoretical standard errors for Bb 10, using our work on the complete scenario
for results on the mean and variance of this quantile. We note that equivalent results for
the MLEs from G, can not be obtained due to reasons given above. The results for varying
sample sizes are summarised in Table 4.7, and equivalent figures for vé.rying r are shown in
Table 4.8. 'We observe similar outcomes to our type I investigations. Surprisingly, we see
small sample standard errors for @ and 8 when compared to the theoretical vélues, across
most sample sizes. As in our type I scenario, we can oniy provide an intuitive explanation

for this occurrence.
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n 100 300 500 1000
r 80 240 400 800
Sd.err.(7) 0.5339 | 0.3112 | 0.2415 | 0.1710
Sd.err.(@) 7.8364 | 4.6215 | 3.5956 | 2.5500

Sd.err.@) 81.5245 | 48.0255 | 37.3559 | 26.4983
Sderr.(Byo) | 2.6690 | 15415 | 11942 | 0.8444

Table 4.7: Theoretical standard errors for the MLEs from G}, for varying n and r = %". Data
is subjected to type II censoring, and simulated from G} with 7 = 3, @ = 4 and ¢ = 100.

n 1000 | 1000 | 1000 | 1000

r 500 600 700 900

Sderr.(r) . | 0.2408 | 0.2136 | 0.1910 | 0.1517
" Sderr.(a) 7.1393 | 4.9722 | 3.5524 | 1.7863

Sd.err.(a) 68.4824 | 48.9090 | 35.8706 | 19.1727
Sderr.(By10) | 0.8479 | 08455 | 0.8453 | 0.8407

Table 4.8: Theoretical standard errors for the MLEs from G, for varying r and n = 1000. .
Data is subjected to type II censoring, and simulated from G, with 7 = 3, & = 4 and
¢ = 100.

4.3 Summary

This chapter examined aspects of mis-specifying G,, when the underlying distribution was
Gy, and the data was subjected to censoring. We first considered type I censoring, and
derived the EFI matrices for both Weibull and Burr distributions when we assumed no
mis-specification took place; we extended these results to calculate the variance covariance
matrix of the mis-specified Weibull MLEs. This then allowed us to examine theoretical prop-
erties of Ew,m, and enabled us to compare true and mis-specified quantiles. All results were
checked using simulations, and the effects of varying the stopping time was also considered.
Our results on type II censoring followed a similar structure, and we also examined aspects
of mis-specifying GG, when the underlying distribution was Gp. In doing so, we derived
a series of new results on expectations of single and joint order statistics, and used these
to compute the EFI matrix from G and Gp under the assumption that the distributions
were correctly chosen. We used simulations to examine how mis-specified MLEs and §w,10 '
Changed with varying r, and completed the chapter with a brief introduction on computing
the variance covariance matrix of the mis-specified MLEs. This brought in expectations
of joint order statistics, and due to the complexity of such joint expectations from G, we
omitted any further details on the variance covariance matrix of the mis-specified MLEs.
We continue by examining another technique for speeding up the running time of an

experiment, and consider mis-specification for accelerated data sets.



Chapter 5

Acceleration In Life Testing

5.1 Introduction

We extend our ideas of mis-specification to data sets obtained from experiments that have
undergone some form of acceleration. Like censoring, acceleration is used to speed up the
running time of an experiment, and results in a data set that typically contains a larger
number of failed observations than would be obtained by conducting the experiment under
normal conditions. Acceleration thus subjects items to higher levels of stress, which in turn

induces early failures. For example, if we consider modelling the lifetimes of ball bearings,

then, under normmal operating conditions (known as design stress), each bearing will operate
in oil at a temperature of 50°C. Here, temperat{lre is the stress, denoted by X, and 50°C.
is the design stress, denoted by X,. In practice, we may have to wait months or years for
an appropriate number of ball bearings to fail. Thus, we accelerate the failure times by
increasing the temperature of the oil in which the ball bearings operate; we then expect a
reduction in the lifetime of each bearing. Typically, (for practical reasons) accelerated tests
use a set number of stress levels (usually 3 or 4), which we denote as X for 1 < ¢ <k, at
which failure times are observed. We denote these failures as y;;, for 1 < j < n;. We thus
haven = Zi;l n;, the total number of failures across all stress levels. In all accelerated tests,
we have X; < X1 < X3 < ... < Xi; if Xg = X3, the experiment is described as partially
accelerated. For example, consider the accelerated data set from Nelson (1990) shown in
Table 5.1, which comprises the hours to failure of n = 40 motorettes with a new type of
insulation. The experiment was conducted at 190, 220, 240 and 260°C with 10 observations
at each stress level. Thus here, £ = 4, X7 = 190, X = 220, X3 = 240 and X4 = 260, and
n; = 10 for all 1 < ¢ < 4. The test is not partially accelerated, since X = 180°C <’ X3.
The aim of an accelerated life test is to make inferences about the lifetimes at design
stress -. usually, to describe Bjg at normal operating conditions. This requires a scale-
stress relationship, which links the scale parameter 6; (or ¢;) of the underlying distribution
to its corresponding stress level X;. This implies that stress only affects the scale of the

distribution; the other remaining parameters are then assumed to remain constant across
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7 1 2 3 4
Xi | 190°C | 220°C | 240°C | 260°C
yij | 7228 1764 1175 600
7228 2436 1175 744
7228 2436 1521 744
8448 2436 1569 744
9167 2436 1617 912
9167 2436 1665 1128
9167 3108 1665 1320
9167 3108 1713 1464
10511 3108 1761 1608
10511 3108 1953 1896

~ Table 5.1: Hours to failure (y;;) of n = 40 motorettes with a new type of insulation (Nelson,

1990), based on an experiment with k¥ =4, n; = 10 for 1 < < 4, and the X; as shown.

stress levels. Nelson (1990) describes models and methods for analysing data when this
assumption needs to be relaxed, and Hirose (1993) considers likelihood ratio tests on the
use of fixed shape parameters, against the alternative of allowing such parameters to depend
on stress levels. Further recent research in accelerated testing is also discussed in Meeker and
Escobar (1993), and Johnson (2003) considers numerous examples of accelerated data sets,
and the possibility of using separate analyses at each stress level as a basis for identifying
and fitting the accelerated model. Here, however, we will always assume that the underlying
data set can be modelled using fixed shape parameters. Thus, the set of observations from
each stress level are assumed to have the same underlying distribution but with varying
scale parameters. We can link 8; to the stress level X; in various ways.

5.1.1 Scale-stress relationships
Log-linear model

This links stress and scale by
; = exp (a + £X;); (5.1)
note that
Inf; = a+ BX;,
so the logarithms of the scale parameter are linearly related to stress.

Arrhenius model

Nelson (1990) states that the Arrhenius relationship is widely used to model life times as-a

function of temperature, where temperature is usually measured in degrees kelvin (which is
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273.16 plus the temperature in degrees centigrade). This model is most commonly used in
these circumstances, but can also be used elsewhere. The scale is linked to stress by

0; = exp <a + XB+ c) , (5.2)

where ¢ = 273.16 converts temperature from degrees centigrade to degrees kelvin. Equiva-
lently, this relationship can be expressed as

Inb;, =a+ Xiﬁ—l- =
Inverse power model
Here, we assume that scale is linked to stress by
exp (@)

or, equivalently,
ln@i = — ,BlnX.i.

Exponential power model

This relationship is most often used when the stress X denotes voltage or the inverse of
absolute temperature. It is defined as

6; = exp (o - ﬂXf) ,
or
nf; = o — BX}

unlike previous scale-stress relationships, this model has three parameters. We note that
the Log-linear and Arrhenius models are special cases of this relationship.

Quadratic and Polynomial models

These types of relationships are often used when a linear form (such as (5.1)) does not

provide an adequate fit; the quadratic form is
n6; = a+ 1 X; + X7,

and the extension to higher powers is clear.
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Extensions to two or more stresses

The relationships listed above link scale to a single stress level X. However, some acceler-
ated tests involve more than one accelerating factor. For example, electrical items such as .
capacitors are affected both by high voltage and high temperature. More general mathe-
matical formula can describe such relationships, but generally at the expense of increasing
the number of parameters in the model.

Here, we only consider using the Log-linear and Arrhenius scale-stress relationships;
the literature shows these to be the most common models used. For convenience, we will

also refer to stress as temperature when we run simulations. For the Log-linear model,

" temperature will be in terms of degrees centigrade, although it makes no difference whether

we work in degrees centigrade or degrees kelvin, whilst, for reasons described above, we
convert temperature for the Arrhenius model to degrees kelvin. In the next section, we
discuss possible choices for the number of stress levels, the corresponding values of the X,
and the number of observations at each level; such values will then be used in our simulation

experiments.

5.1.2 Choice of sample size and stress levels

We consider the choice of k, the X; and n; for Log-linear and Arrhenius models. We also
derive some sensible parameter values in each scale-stress relationship, calculated on the
basis of what we expect to see in practice. We list some possible choices for these below.

e We allow k to range from 2 to 4; these seem to be the number of stress levels most

commonly used.

e For each value of k, we can then allow the sample size to vary, first keeping equal
proportions of observations at each level. For. k = 2, we consider total sample sizes of
100, 200, 500 and 1000, so, for example, when n = 500, n; = ne = 250; for k = 3, we
let n = 75, 150, 300, 900 and 1500. Finally, for k& = 4, we set n = 100, 200, 400, 800
and 2000.

e Again, for each value of k, we can keep n fixed but vary the proportion of observations
" at each X;. Based on practical considerations of actually conducting experiments, we
will assume that n; > 25. Thus, for k¥ = 2, we consider a total sample size of 200,
and so, for example, can consider n; = 25 (so ng = 175), n1 = 50 (so ng = 150), and
so on. For k = 3, we take n = 300; finally for ¥ = 4, we have n = 200. Different

arrangements of n; for varying k will be listed in our tables of simulations.

o We also allow the parameter values of the underlying distribution to vary, but fix the
values taken in the scale-stress relationship. Values for these parameters will rely on

the distribution function used, and will be listed as appropriate.
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e Many other aspects of the experiment can also be varied; for example, Johnson (2003)
examines the effect of varying the middle stress on the standard error of §10~ We
could also vary the parameters of the scale-stress relationship, and examine cases
where we have more extreme levels of acceleration. However, such experiments will

be considered elsewhere.

We consider how to choose X;, a and g for Log-linear and Arrhenius models below.

The Log-linear model

Reviewing examples from Nelson (1990), we see that temperatures, especially of industrial
experiments, are typically quite high, and range from 50°C to 250°C. As a result, we take
X, =50°C, X) = 200°C, and let the scale parameters at these stress levels be 2000 and 200,
respectively. These figures (and their units) are arbitrary, but can be related to practiéal
situations, and we would not generally see items placed under higher stress having longer
lifetimes, and hence larger scale parameters, than their lower stress counterparts. These
figures correspond to an acceleration factor of 10; published data sets show that this figure
is quite reasonable, and the accelerated data set in Table 5.1 has a similar acceleration
factor. For these scale parameters and stress levels, and the Log-linear relationship (5.1),

we therefore need
a = 8.36843, 8 = —0.01535;
on rounding, we take
a=_8, f=-0.02

We will also assume that X; = 50°C, so we ha{re a partially accelerated experiment. For

simulations with k = 3, we have
X1 =50, Xo =150, X3 = 200;
for k = 4, we use
X3 =50, X =150, X3 = 180, X4 = 200.

The Arrhenius model

We adapt the above approach to obtain parameter values for the Arrhenius relationship.
Thus, X; + ¢ = 323.16°K, X} + ¢ = 473.16°K, and again let the scale parameters at the
lowest and highest stress levels be 2000 and 200 respectively. From (5.2), and after rounding,
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we have
a=0.3, f=2347.
For k = 3, we have
X1+ c¢=323.16, X + c = 423.16, X3 + ¢ = 473.16;
for k=4
X1+¢=32316, Xo+c= 423.16, X3+c = 453.16, X4 + c = 473.16.

Again, we consider a partially accelerated experiment with X + ¢ = X; 4+ ¢ = 323.16°K.

We first derive the theory necessary to fit the Weibull, Burr, Gamma and Lognormal
distributions to an accelerated data set containing all failures, when we have either the Log-
linear or Arrhenius model linking scale to stress. We also consider the EFI matrix of the
MLEs, when we assume the correct model is specified; in later chapters, we discuss the effects
of mis-specification and censoring. We use similar notation to that previously established,
but now denote pdfs and cdfs with capital subscripts. Thus, for example, the cdf from the
accelerated Weibull Arrhenius distribution is denoted by Gw 4; we also introduce further
notation to include the Log-linear and Arrhenius scale-stress relationships simultaneously,
writing Gwx, where we set x = P if we are using the Log-linear model to link scale to stress,
and * = A for the Arrhenius relationship.

5.2 Fitting Gy,

We assume that the data y;; represents the 4" observation from stress level X;, where
the underlying distribution is Gw. (yij; Bx, 0ix). We also let Y;; denote the corresponding
random variable, and Y; represent a random variable from stress level X;. Watkins (1991)
outlines ML estimation for the accelerated Weibull distribution; we summarise the main -

points here, where now, using the above notation,
6;p = exp (awp + BwpX;)  for x =P,

and

. Bw 4 _
0;4 = exp (aWA+ Xi 10 for * = A.

Using this notation, the pdf of Gy, is

Byb ( Yij ) B
exp< — for1 <j<n;
exp {awn + Prap (X0} 2 exp {awn + Bwap (Xa)) 7
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where

X; for x =P
X;) = 5.3
p (i) { (X;+c¢)' forx=A (5:8)

Thus, the theory developed can cover both scale-stress relationships simultaneously. The
likelihood is

k n; B,—1

B.y,;
LW* (B*7 QWwx, ﬁW*
zI_Il ,Hl exp {aws + Buw.p (Xi)} ™"

v B.
o {— (exp {aw + Bw.p (Xi)}> } ,

from which the log-likelihood is

k
lws =nlnB, + (B* -~ 1) Se — nBiaw. — B*,BW* Znip (Xz) — €Xp (_B*aW*) S (B*) ﬂW*) )

i=1
(5.4)
whefe, now,
k ng
Se = Z Z In y;;,
i=1 j=1
and
k n;
S(Bu,Bws) =Y >t exp {—BuBw.p (Xi)}-
i=1 j=1
The three partial derivatives are
ol n k
W
3B, ~ B + Se — naws — Pw. ;nm (Xi) —
exp (—B*CMW*) {51,0 (B*HBW*) — awsS (B*) ﬁW*)} ) (55)
Ows B, + B,exp(~B.aws) S (Ba,Bws) | (5.6)
80£W*
and
ol u
7t = B, Y nip(Xi) — exp (—Buaws) So1 (B, Bw) » (5.7)
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with

0

51,0 (B*,ﬂw*) = a—B—S(B*,IBW*)

k n;
= Z Zyij' exp {—BuBw.p (Xi)} {Inyij — Bwwp (Xi)},

=1 j=1

5 .
SO,l (B*s;BW*) = aﬂw S(B*,IBW*)

kK ny
= =3 > Bup(Xi)yi exp {—BuBw.p (Xi)} -

i=1 j=1

As above, we can reduce the number of parameters we estimate, and make use of a profile
log-likelihood in order to obtain the remaining MLEs. By equating (5.6) to zero, we see
that

b

S (B»;, Bw+) }

aw*zB:lln{ -

using this, we can write the profile log-likelihood as

=1

k
Iy, =nln By + (B, ~ 1) Se = nln S (By, Bw,) — BeBws Y _mip (Xi), (5.8)

and the two profile score functions are

al;{/* — i_{_S — nSlyo(B*’IBW*
8B, B, ' “°" " S(B.Bw.)
Oy,  nSou(Bs,Bws
8IBW* S(B*,BW*)

) k
) - ﬁW* anp(X’L) )
=1

) k
— B, anp (X’l) :

We use the Newton-Raphson method to locate the roots of these derivatives, and so also

require second partial derivatives of (5.8). For completeness, these are given by

622{,’1-’* - _n 50,2 (B*)ﬂW*) S(B*:IBW*) — 50,1 (B*MBW*)2
OB+ S (B, Buwa)” !

where

0

5/BW*
k

= Y > Blp(X:)* vy exp{—B.Bw.p (Xi)},

i=1 j=1

50,2 (Bs, Bws) 50,1 (B, Bw)
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?

62“},-[/* — __n__ _ S2 0 (B*,ﬁW*) S (B*,IBW*) Sl,O (B*aﬁW*)2
0B} B; S (Bp, Buw)? '

where

0

0B,
k

=SS B exp {— Bubwp (Xo)} {Ingis — Burap (X012,

=1 j=1

S2,0 (B, Bw)

)

*)

and finally,

2, S1.1 (B, Bw) S (B, Bw.) — S1,0 (B, Bw) So,1 (B, Bya) )
3B 06w, Z”’p ) - { S (By, Bus)’ } ’

i_

with 5171 (B*,,BW*) equal to

k Nng

=" o (Xi) v exp {—BuBw.p (Xi)} 1 + Bu {lnysj — Buwup (X:)}]-

i=1 j=1

To obtain starting values for B, and Byy,, we can fit separate Weibull distributions to each
stress level, and chose a value of B, based on these. To find an initial value for By,, we
take the first and last estimates, 61, and 0., and use the fact that

14 _ €xp {aW* + ﬁW*p (Xl)} _ €Xp {ﬁW*p (Xl)}
ks exp{ows + Bw.p(Xk)}  exp{Bw.po (Xk)}

So, on solving, an appropriate starting value for Gy, is given by

1n§1* — lngk*
p(X1) —p(Xk)

Next, we consider the EFI matrix of the Weibull MLEs, and include a discussion on the
asymptotic variance of §W 10, since this is of considerable use when we extrapolate back to
design stress, and make inferences concerning the reliability of items at normal operating
conditions. Again, this is carried out simultaneously for both Log-linear and Arrhenius

relationships.

5.2.1 The EFI matrix of the Weibull MLEs

From our previous work, we state that, asymptotically, the Weibull MLEs, under the as-
sumption that this distribution has been chosen correctly to model the data, will have a
Normal distribution with mean (B, awsx,Bws) and variance covariance matrix equal to

(3.1). Thus, we require expected values of second derivatives. Using (5.5), (5.6) and (5.7),
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we obtain the six partial second derivatives

82,0 (B*> ﬁW*)

Pl -n
BBW; = B2 exp (—B*aw*) —2C¥W*Sl,0 (=B=n ﬁW*) |
* * +a%}V*S(B*aﬁW*)
lw. 2 : \
5ol = —B{ exp (—Biaw) S (Bx; Bws) »
Wx .
Ol
8,6’;}[, = —exp (—Bsaws) S0,2 (Bx, Bwx)
Wx
2 B '
ag ZBW* - = —n+exp(—B.aws) <510 (Br, ) + ,
00w« {1 - B*CYW*} S(B*MBW*)
82w k 51,1 (Be, Bws) — |
———— = =) n;p(X;) —exp(—B.aws) ’ )
58,08 ; p(X) ( v ){ aw«So,1 (B, Bw+)
8l | -
Wﬁwﬁv_ = B.exp(—Biawx) So1 (Bs, Bw.) -

To obtain the variance covariance matrix of the MLEs, we take expected values of these sec-
ond derivatives. We take into account that, across stress levels, observations are not identi-

cally distributed, but within stress levels they are independently and identically distributed.

On examining the second derivatives, we see that we require expected values of S (B*; Bw)s

Sl,O (B*aBW*)i 50,1 (B*aﬁW*)) 52,0 (B*)/BWt)) 50,2 (B*,ﬁW*) and Sl,l (B*’ﬁw*)' We first
consider

S |
E[S(BuBws)] = E|> Y Y72 exp{—B*ﬁW*MXi)}}

i=1 j=1

-k
- E ZniYiB’“ exp {—Bufw.p (Xi)}J

Li=1

= zk:ni exp {—B*ﬂw*P (Xi)} E [Y;B*] ,

1=1

Using results in, for example, Watkins (1998), we may immediately state that if Y; is from
Gwx (y; B, 0ix) then

E[Y] = 6mT (gi + 1) — exp (maws) exp {mBu.p (X:)} T (3’? + 1) , (5.9)

and hence

E[S (B, By.)] = nexp (Byaws) .
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Next, we consider

E[S1,0 (B, Bws)] = ini exp (—BuBy»p (X3)) {E [YiB‘ In Yi} — Bup (X;) E [Yf*] }

=1

We differentiate (5.9) with respect to m to obtain

E¥"hY] = eXP(maW*)GXP{mBW*P(Xi)}F(g+1)

U2 +1
X {aw* + BwpP (Xz) + LBBZ-—)} ; (5.10)

we therefore have

B (510 (B )| = newp (Buaw) {aws + Z2

Now, we examine

k
B(S01 (B Bwa)] = = miBup(Xi) exp {~B.Bwap (X0} B Y]
k

= —B.exp (B«awx) Z nip (X;).

i=1

Next, we consider

. B (Y (n¥:)?]
E[S2,0 (Bs, Bw)l = > _miexp{—BuByw.p (X))} —2Bw.p(X:) E [YiB* In YE]
- +B%.0 (X B [V7]

We differentiate (5.10) (again with respect to m) to get

E [Y;m (In Yi)'?] = exp (maw.)exp {mpBw.p (Xi)}T (g* + 1)

v(g+1) }2 Y (& +1) -

X {CYW* + Bwep (Xi) + N

and we see that

2 !
E [S2,0 (Bx, Bw.)] = nexp (Beaw.) Haw* + ‘I’Bgf)} N \I/B(;)




'
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Next, we need

k .
B[S0z (Be Bwa)] = Y miBlo(X:)’ exp{~BBw.p(X:)} B 1> ]
=1

k
BZexp (B.aw) Z nip (X;)2.

i=1

Finally, we examine

k
E[S11(Bu,Bws)] = — > mip(Xi)exp{—B.Bw.p (Xi)}
i=1

x {B*E [Yﬁ* lnYi] — (BuByap (Xi) — 1) E [YB]}
~ k
= — {1+ B.aw. + ¥ (D} exp (Buaw) Y nin (Xs).
' i=1
Now that we have these functions, we can derive the elements of the EFI matrix. The

diagonal elements are

Flws] _ n " E[S20(Bs, Bwa)l —
‘E[aBz] = g ol B*“W*){QaW*E[sl,()(B*,ﬁW*)]+a%V*E[s<B*,ﬂW*>1}
= S{1+veP+v ),

Bl ) 2
-B Baz. - B* €xp (—B*aW*)E[S (B*,ﬂW*)] = In’Bxa
W

Pl k
—E [3ﬂ2W ] = exp (—B.awx) E [So0 (Bs, Bws)] = B? Zmp (X:)?,
W x =1

while the off diagonal elements are

PN i
B[S | = exp(~Buaws) (BB [S10 (Be, )] + (1 — Buaws) BIS (Bur )]
L «*OQW « |
= —n¥ (2) 3 ‘ '
I 2 b k
-E _—ag*lav;:v*_ = ;mp (X:) + exp (—Buaws) {E [S1.1 (B, Bws)] — aw+E [So1 (Bx, By )]}
k
= —0(2)) me(Xi),
=1
E Pl - _pB B ES.- (B _ k x
- [—aaw*aﬁw*] = —Dyxexp (_ *OZW*) [ 0,1( *’ﬁW*)] =D, anp( 2) .

=1
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~ —~ !
Using these in (3.1), we see that, asymptotically, <B*, QW+, ﬁW*) has a Normal distribution

with mean vector (B., aws«, Bw.) and variance covariance matrix A~!, where

nB;? {1 +UE?+ T (2)}
A= —n¥ (2) nB2
~U Q)T (X)) BIYi e (Xs) BIYEme(Xi)

5.2.2 The asymptotic variance of EW,10

Estimation of the quantile Bjg at design stress plays a significant role in determining'and as-
sessing the reliability of items, since the experimenter is really interested in the performance
of the items at X,. Thus, we extrapolate back to assess the reliability of the components,
using the relationship between scale and stress. At X, §W, 10 is given by

-~ =+
exp {@w. +By.p (X.) } (- 1n09) %

we obtain a linear approximation to this quantile using a Taylor series centered on the true

values aws, By, and By; we have

B* - B*
BI’V:IO = BVVJ-O + ( CB. Cowe. cﬂw, ) aW:k — OW« )
BW* - IBW*

where

1
— exp{aw.+Bw.p(Xs)}(—1n0.9) Bx In(—1n0.9)
BZ

CB.

CC!W‘ = BI/V,]_() (5'12)
1

B p (Xs) exp {aw + Bw.p (Xs)} (—1n0.9) 3

On taking expected values, we have E [éW, 10] ~ Byy,10; the variance of the estimator of this
quantile is given by the appropriate application of (3.2). We check these results, and those
based on the EFI matrix of the Weibull MLEs, in the next section, where we summarise a

series of simulations for various sets of parameter values, sample sizes and stress levels.

© 5.2.3 Fitting Gyp

Possible choices for k, X;, n and n; are outlined in Section 5.1.2; we use these .values
throughout our simulations. As discussed, we can also vary the parameters of the underlying
distribution. We run experiments with Bp equal to 0.5, 1, 2 and 3, but here only report
results for Bp = 2, since they show the same features for all values of this parameter. The
simulations are summarised in Tables 5.2, 5.3 and 5.4, for k = 2; 3 and 4 respectively. For
each set of stress levels, we vary the overall sample size, and the number of observations



5.2. FITTING Gw.

ni,mz | 50,50 | 100,100 | 250,250 | 500,500
B 2.0381 | 2.0197 | 2.0078 | 2.0040
S 0.1623 | 0.1140 | 0.0706 | 0.0490
T 0.1559 | 0.1103 | 0.0697 | 0.0493
awp | 7.9956 | 7.9991 | 7.9993 | 7.9994
S 0.0987 | 0.0693 | 0.0437 | 0.0309
T 0.0986 | 0.0697 | 0.0441 | 0.0312
Bwp | -0.0200 | -0.0200 | -0.0200 | -0.0200
S 0.0007 | 0.0005 | 0.0003 | 0.0002
T 0.0007 | 0.0005 | 0.0003 | 0.0002
Bwao | 362.5252 | 359.6669 | 357.2740 | 356.6435
S 45.6550 | 31.9996 | 19.9137 | 13.9800
T 44.8286 | 31.6986 | 20.0479 | 14.1760
ni,nz | 25175 | 17525 | 50,150 | 150,50
Bp 2.0205 | 2.0207 | 2.0201 | 2.0206
S 0.1116 | 0.1133 | 0.1120 | 0.1132
T 0.1103 | 0.1103 | 0.1103 | 0.1103
awp | 7.9873 | 80024 | 7.9941 | 8.0004
S 0.1363 | 0.0619 | 0.0964 | 0.0607
T 0.1344 | 0.0615 | 0.0960 | 0.0605
Bwp | -0.0199 | -0.0201 | -0.0200 | -0.0200
S 0.0007 | 0.0007 | 0.0006 | 0.0005
T 0.0007 | 0.0007 | 0.0005 | 0.0005
Bwo | 358.1386 | 359.9149 | 358.9636 | 359.8369
S - | 44.3080 | 29.9109 | 36.2418 | 30.5286
T. 44.2165 | 20.4795 | 36.3534 | 29.9869

Table 5.2: Fitting Gwp to Gwp for k = 2, Bp = 2. We show the sample means and
standard deviations of parameters, where figures are based on at least 10000 replications.
Throughout, sample standard errors are denoted by S, and their theoretical counterparts
by T.

used at each stress. We include details on the sample means of the MLEs, the sample
standard errors of these estimates, the value of EVV, 10 (which we compare to a true value of
355.9593 for Bp = 2) and the standard error for this quantile. We also include theoretical
counterparts for all estimates, since this will verify the results established above.

The effect of varying n

As expected, when we increase the overall sample size, we observe an improved agreement
between sample and theoretical values of the standard errors of the MLEs, and these stan-
dard errors for §W, 10- These standard errors also decrease as n increases. We observe the
sample means of the MLEs and EW, 10 tend to their true values for larger sample sizes; this

is true across all values of k.
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ny, N2
n3

25,25
25

50,50
50

100,100
100

300,300
300

500,500
500

Bp
S
T

2.0566
0.1938
0.1801

2.0268
0.1321
0.1273

2.0145
0.0913
0.0900

2.0038
0.0521
0.0520

2.0025
0.0402
0.0403

awp

S
T

7.9933
0.1384
0.1376

7.9970
0.0978
0.0973

7.9989
0.0687
0.0688

7.9996
0.0397
0.0397

7.9998
0.0307
0.0308

Bwp
S

T

-0.0200
0.0009
0.0009

-0.0200
0.0007

0.0007 -

-0.0200
0.0005
0.0005

-0.0200
0.0003
0.0003

-0.0200
0.0002
0.0002

Bw,10
S
T

366.0449
56.7415
54.8755

360.8025
39.5388
38.8028

358.7481
27.3622
27.4377

356.6466
15.8955
15.8412

356.4166
12.2724
12.2705

ni, n2

50,100
n3 150

25,200

75

25,25
250

200,50

50

Bp

= »

2.0123
0.0903
0.0900

2.0120
0.0903
0.0900

2.0143
0.0916
0.0900

2.0122
0.0911
0.0900

7.9968
0.0889
0.0909

7.9955
0.1231
0.1211

7.9888
0.1296
0.1282

8.0001
0.0541
0.0532

-0.0200
0.0005
0.0005

-0.0200
0.0008
0.0008

-0.0199
0.0007
0.0007

-0.0200
0.0005
0.0005

358.0819
31.2101
31.6150

358.3118
37.3768
36.8697

357.2576
40.5615
40.0490

358.2118
25.0714
24.7807

Table 5.3: Fitting Gwp to Gwp for k = 3, Bp = 2. We show the sample means and
standard errors of parameters, where figures are based on at least 10000 replications.
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ni,ng | 2525 50,50 | 100,100 | 200,200 | 500,500 | 25,25,
ns,na | 25,25 50,50 | 100,100 | 200,200 | 500,500 { 75,75
Bp 2.0392 | 2.0208 | 2.0112 | 2.0054 | 2.0021 | 2.0201
S 0.1624 | 0.1128 | 0.0793 | 0.0559 | 0.0351 | 0.1112
T 0.1559 | 0.1103.| 0.0780 | 0.0551 | 0.0349 | 0.1103
awp | 7.9907 | 7.9953 | 7.9968 | 7.9994 | 7.9995 | 7.9897
S 0.1368 | 0.0973 | 0.0686 | 0.0477 | 0.0301 | 0.1330
T 0.1363 | 0.0964 | 0.0682 | 0.0482 | 0.0305 | 0.1311
Bwp | -0.0200 | -0.0200 | -0.0200 | -0.0200 | -0.0200 | -0.0199
S 0.0009 | 0.0006 | 0.0004 | 0.0003 | 0.0002 | 0.0008
T 0.0009 | 0.0006 | 0.0004 | 0.0003 | 0.0002 | 0.0008
Bw1o | 362.1429 | 359.3485 | 357.6686 | 356.9730 | 356.3001 | 358.5559
S 51.0878 | 36.1488 | 25.4415 | 17.8975 | 11.2579 | 43.0575
T | 50.5236 | 35.7256 | 25.2618 | 17.8628 | 11.2974 | 42.8015
ni,ng | 75,75 25,75 75,25 100,50 25,25 25,75
nsg,ma | 2525 25,75 75,25 25,25 50,100 75,25
Bp 2.0203 | 2.0232 | 2.0212 | 2.0215 | 2.0184 | 2.0189
1S 0.1134 | 0.1142 | 0.1124 | 0.1123 | 0.1111 | 0.1129
T 0.1103 | 0.1103 | 0.1103 | 0.1103 | 0.1103 | 0.1103
awp | 79971 | 7.9932 | 7.9960 | 7.9991 | 7.9897 | 7.9897
S 0.0835 | 0.1284 | 0.0818 | 0.0736 | 0.1307 | 0.1331
T 0.0829 | 0.1262 | 0.0817 | 0.0731 | 0.1301 | 0.1319
Bwp | -0.0200 | -0.0200 | -0.0200 | -0.0200 | -0.0199 | -0.0199
S 0.0006 | 0.0008 | 0.0006 | 0.0006 | 0.0007 | 0.0008
T 0.0006 | 0.0008 | 0.0006 | 0.0006 | 0.0007 | 0.0008
Bw 1o | 359.5264 | 359.9914 | 359.3948 | 360.0602 | 358.2204 | 358.3142
S 33.5322 | 42.2586 | 33.2908 | 31.7788 | 42.7243 | 42.4734
T 33.0141 | 41.4431 | 33.1637 | 31.5513 | 42.7478 | 42.1629

Table 5.4: Fitting Gwp to Gwp for k = 4, Bp = 2. We show the sample means and
standard errors of parameters, where figures are based on at least 10000 replications.
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n1,m2, 13 100,100,100 | 200,50,50 | 25,25,250
nY ¥ nX? 1.95x10° | 1.09x10° | 3.19x10°
2
(T, mx:) 1.60x10° | 7.56x108 | 3.03x10°
2
nyb X2 - (ThynXs) | 350x10° | 331x10° | 1.63x108

Table 5.5: Breakdown of the denominator of the variance of awp and BW p for various n;.

The effect of varying n;

When we vary the allocation of items at each stress level, the theoretical standard error of
Ep is not affected, and remains constant. This is consistent with the EFI matrix A above,

since, from the inverse of this matrix, we have

~ B2
14 (B ) SR

T\ TR v @)
which only depends on n, and not the allocations n;. In contrast, the theoretical standard
errors of awp and BW p are greatly affected by this allocation of the total sample size,
and the more observations we test at the higher stress levels, the larger the theoretical and

sample standard errors of this parameter. Again, from the inverse of the EFI matrix, we

have
Var (Qws) =~ Sk mip (X3)° >
B? {n Sk nip (Xa)? - (Zill nip(Xi))' }
v (2)?
BTV}
and

n

B {n S mp (0" - (Shey i (00) |

Var (EW*> ~

If we examine the variance of G, then the numerator of the first term of this function
will increase if more observations are allocated to the higher stress levels, since the p (X;)
increases with Xj;. It is the denominator of this variance, which also appears in the variance
of EW*, that we next investigate. We consider specific examples to illustrate the behaviour of
the denominator as the number of observations allocated to the higher stress levels increase.
Table 5.5 summarises numerical results for terms in this denominator, together with the
denominator itself, for ¥ = 3, x = P, and various n;. We observe that the two functions
which make up the denominator of both variances are closer to one another for larger ny;
the difference then decreases, and so the variance, and hence the standard error, increase as
we divide by a smaller denominator. The theoretical standard error of EW 10 is also greatly
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ni,n2 | 50,50 100,100 | 250,250 | 500,500
Ba 2.0394 2.0201 2.0076 2.0038
S 0.1630 0.1142 0.0710 0.0494
T 0.1455 0.1029 0.0651 | 0.0460
awa | 0.2959 0.2963 0.2092 0.3000
S 0.2734 0.1925 0.1221 0.0858
T 0.2705 0.1913 0.1210 0.0856
Bwa | 2347.4312 | 2347.6175 | 2346.9822 | 2346.9073
18 103.4943 | 72.5092 | 45.9857 | 32.2951
T 101.9376 | 72.0808 | 45.5879 | 32.2355
Bwio | 637.4767 | 631.0271 | 627.1464 | 626.0630
S 80.6346 | 56.6498 | 35.8077 | 24.8922
T 74.1278 | 53.1234 | 33.5982 | 23.7575
ni,na | 25,175 175,25 50,150 150,50
Ba 2.0195 2.0195 2.0222 2.0207
S 0.1132 0.1119 0.1122 0.1128
T 0.1029 0.1029 0.1029 0.1029
awa | 0.3199 0.2720 0.3063 0.2917
S 0.2460 0.3290 0.2002 0.2448
T 0.2465 0.3260 0.1998 0.2400
Bwa | 2337.4794 | 2355.8518 | 2343.9445 | 2349.5583
S 108.8290 | 109.9314 | 83.4924 | 84.8016
T 108.9759 | 108.9759 | 83.2317 | 83.2317
Bwo | 628.2301 | 631.2518 | 631.7653 | 631.8486
S 776324 | 52.1920 | 64.4974 | 53.0745
T 75.82907 | 49.0286 | 61.6288 | 49.9675

Table 5.6: Fitting Gwa to Gwa for k = 2, B4 = 2. We show the sample means and
standard errors of parameters, where figures are based on at least 10000 replications.

affected by how we allocate the overall sample, and generally, the more observations we
have at the lower stresses, the more accurate this function becomes as the standard error
decreases. However, in practice, we will need to strike a balance between the number of
observations we have at the lower stress level, and the length of time the experiment takes

to run.

5.2.4 Fitting GWA

We consider a similar scenario for the Weibull Arrhenius combination. Again, we report
results only for B4 = 2, although results for the remaining values of the shape parameter
show similar patterns, with k = 2, 3 and 4. The results for these are summarised in Tables
5.6, 5.7 and 5.8 respectively. This tifne, we compare the sample means for By,jo with a
true value of 624.8256.

We observe similar outcomes to those observed with Gwp. Across all stress levels, we

see an improved agreement between MLEs and true values as the overall sample size is
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n,m2 | 25,25 50,50 100,100 | 300,300 | 500,500
ns 25 50 100 300 500
Ba 2.0530 2.0264 | 2.0130 2.0048 2.0025
S 0.1907 0.1310 | 0.0921 0.0518 0.0401
T 0.1680 0.1188 | 0.0840 0.0485 0.0376
awa | 0.3049 0.3027 | 0.3009 0.3010 0.2996
S 0.3610 0.2527 | 0.1778 0.1032 0.0798
T 0.3552 | 0.2512 0.1776 0.1025 0.0794
Bwa | 2343.5976 | 2344.8688 | 2346.3270 | 2346.3993 | 2347.0150
S 140.8301 | 98.5410 | 69.3635 | 40.3990 | 31.1881
T 138.6989 | 98.0749 | 69.3495 | 40.0389 | 31.0140
Bwao | 641.1912 | 632.3986 | 629.0613 | 626.1164 | 625.6107
S 98.3663 | 68.9104 | 48.6823 | 28.1455 | 21.7993
T 93.1172 | 65.8438 | 46.5586 | 26.8806 | 20.8216

ni,m2 | 50,100 25,200 25,25 200,50

n3 150 75 250 50

Ba 2.0132 2.0133 2.0143 2.0137

0.0909 0.0918 0.0909 0.0902

0.0840 0.0840 0.0840 0.0840

awa | 0.3035 0.2848 0.2414 | 0.2948

0.1999 0.2848 0.2414 0.2002

0.1987 0.2796 0.2357 0.2001

Bwa | 2344.9974 | 2340.5408 | 2340.1997 | 2348.5658

' 83.5548 | 119.7570 | 108.3593 | 70.4635

83.2302 | 117.7030 | 105.4980 | 70.4134

Bwio | 628.9102 | 6283078 | 628.3623 | 629.4926

56.6169 | 68.8487 | 73.4151 | 43.6691

54.9008 | 66.7847 | 70.0641 | 41.3968

Table 5.7: Fitting Gwa to Gwa for K = 3, Ba
standard errors of parameters, where figures are based on at least 10000 replications.

= 2. We show the sample means and
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ni,na | 25,25 50,50 100,100 | 200,200 | 500,500 | 25,25,
ns,ma | 25,25 50,50 100,100 | 200,200 | 500,500 75,75
B4 2.0428 2.0193 2.0088 2.0053 2.0016 2.0218
S 0.1634 0.1116 0.0787 0.0551 0.0348 0.1126
T 0.1455 0.1029 0.0728 0.0514 0.0325 0.1029
awa | 0.3054 0.3075 0.3031 0.3021 0.2993 0.3147
S 0.3246 0.2311 0.1617 0.1158 0.0719 0.2641
T 0.3211 0.2271 0.1606 0.1135 0.0718 0.2657
Bwa | 2343.7594 | 2343.0682 | 2345.2921 | 2346.0596 | 2347.1858 | 2340.1936
S 131.0662 | 93.0792 | 65.1852 | 46.7073 | 29.0391 | 113.8765
T 129.6222 | 91.6568 | 64.8111 | 45.8284 | 28.9844 | 114.2882
Bwao | 638.8891 | 629.6424 | 627.0709 | 626.4082 | 625.4034 | 630.8959
S 91.3794 | 62.9155 | 44.5901 | 31.4284 | 20.1260 | 76.5852
T 86.2528 | 60.9900 | 43.1264 | 30.4950 | 19.2867 | 74.3920
ni,na | 75,75 25,75 75,25 100,50 25,25 25,75
ns,na | 2525 2575 | 75,25 25,25 50,100 75,25
Ba 2.0185 2.0193 2.0186 2.0188 | 2.0204 2.0203
S 0.1119 0.1109 01110 | 0.1128 0.1118 0.1125
T 0.1029 0.1029 0.1029 0.1029 0.1029 0.1029
awa | 0.3010 0.3173 0.3021 0.2958 0.3155 0.3132
S 0.2328 0.2767 0.2145 0.2276 0.2619 0.2927
T 0.2306 0.2742 0.2135 0.2268 0.2605 0.2911
Bwa | 2345.7314 | 2338.8762 | 2345.5608 | 2347.8035 | 2339.7362 | 2340.6945
S 88.9141 | 117.1067 | 83.0034 | 83.9079 | 113.3066 | 123.0327
T 87.9890 | 116.0506 | 82.5293 | 83.5440 | 112.4357 | 122.1216
Bwio | 630.0202 | 629.0101 | 630.3646 | 630.6534 | 630.1513 | 630.4483
S 58.7288 | 74.7967 | 57.8297 | 56.4989 | 79.9088 | 76.4958
T 55.7990 | 72.9099 | 55.9419 | 52.9770 | 74.3177 | 73.7202

Table 5.8: Fitting Gwa to Gwa for k = 4, By = 2. We show the sample means and
standard errors of parameters, where figures are based on at least 10000 replications.
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n Non-accelerated Accelerated
k| n; | Log-linear | Arrhenius
75 4.3323 ‘3| 25 5.0040 4.8374
100 3.7519 2| 50 4.0878 3.8509
4|25 4.6072 4.4808
150 3.0634 3| 50 3.5384 3.4205
200 2.6530 2| 100 2.8905 2.7597
: 4] 50 3.2578 3.1684
300 2.1661 3| 100 2.5020 2.4187
400 1.8759 4 1100 2.3036 2.2404
500 1.6779 2 | 250 1.8281 1.7454
800 1.3265 4 | 200 1.6289 1.5842
900 1.2506 34300 1.4445 1.3964
1000 1.1864 2 | 500 1.2927 1.2342
1500 0.9687 3| 500 1.1189 1.0817
2000 0.8389 4 | 500 1.0302 1.0019

Table 5.9: The theoretical standard errors of §10 from accelerated and non-accelerated
Weibull data for varying n and & (at design stress). Calculations use a shape parameter of
2 and a scale parameter of 100.

increased. When we begin to vary n;, we observe smaller standard errors for the MLEs and

§W, 10 if we have more observations at the lower stress levels.

5.2.5 Comparison between accelerated and non-accelerated Weibull dis-
tributions

We compare theoretical standard errors of §10 from accelerated and non-accelerated Weibull

"distributions; we have observed throughout, that the agreement between theoretical and

sample results for the Weibull distribution (both in the accelerated and non-accelerated
case) always match up very well, even for small sample sizes. Thus, we compare theoretical
quantities, making the necessary adjustments to give a scale of 100 at design stress, and
taking # = 100 in the non-accelerated case. Table 5.9 summarises the theoretical standard

errors for the non-accelerated Weibull distribution, and the accelerated Weibull model with

both Log-linear and Arrhenius relationships. We list the results for k = 2, 3 and 4, and for
equal n;. We compute the corresponding non-accelerated counterpart for equivalent values
of n. So, for example, if we take n = 100, then we compare the theoretical standard error
of By for the non-accelerated case, with the equivalent value for k = 2, n; = 50, and k = 4,
n; = 25; the n; are as used in our simulations. Due to the extensive number of ways we
can allocate the n;, we do not include results for different loadings. When we have an equal
allocation of items at each stress level, we always observe larger theoretical standard errors
of Blo for the accelerated case, although figures for the Arrhenius relationship are slightly
smaller than the Log-linear counterparts. Thus, if we accelerate an experiment, and keep

the allocation of items equal at each stress level, then we pay the penalty by observing
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larger standard errors of §10. There are a few exceptions to this; for.example, if we take
k =2, n = 200 and n; = 175, then the theoretical standard error of this estimate with an
Arrhenius relationship is slightly smaller than its non-accelerated counterpart. However, for
the majority of cases considered above with unequal allocations, we observe a rise in the

theoretical standard error.

5.3 Fitting Gp,

As with previous work, we now present the theory necessary to fit the accelerated Burr
distribution to a set of data, and derive the EFI matrix of the Burr MLEs. As above, the
theory covers both Log-linear and Arrhenius models simultaneously. Unlike the Weibull
distribution, however, we do not present results from simulations in this section to verify
our theory, since these will be considered when we examine the effects of mis-specification
in the next chapter. Now, y;; represents the ji* observation from the it* stress level, for
which the pdf is

| ™ —(a+1)
aTy;;
9Bx (y':,], T, a, ¢i*) = ¢71:-7 {1 + (Zzy) } ,
i* %

for x = A or P, with

@i = exp {ap + Bpp (Xi)}.

Here, the shape parameters a and 7, remain constant across stress levels, ¢,, is the scale
parameter at stress X; and ap and g are the parameters of the Log-linear or Arrhenius
model linking stress X; with ¢;,. Assuming y;; form a complete set of observations, the
likelihood and log-likelihood are given by

yz Yii Ty —(a+1)
LB (T)a,aBaﬂB HH J { <¢_J) } 3

i=1j=1 “‘
and
k
lg = nlna+nln7+(1—1)S. —nrag —708p Zn,—p (X2)
=1
- (a + 1) F (Ta aBaIBB) ) (513)
where

k n;

F(r,08,8g)=» Y _In[l+yjexp(—rap)exp{-7Bpp(Xi)}].
i=1 j=1
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To evaluate derivatives of (5.13), we note

oF (T; apB, ﬁB)
or
i i yi; exp (—Tap) exp {~78pp (Xi)} {lnyi; — ap — Bpp (Xi)}
1+ yf; exp (—Tap)exp{—TBpp (Xi)}

Figo =

b]

i=1 j=1

o . OF (T’QB:/BB)

oL = T
~ _Z’”‘Z Tyl exp (o) exp {—7Bpp (Xi)}
P e 1+yZJ exp (—7ap)exp {—78pp (Xi)}’

and
OF (1,ap,
Fogy = (r,ap,88)

o= 3ﬁB

L Xi) yj; exp (—7ap) exp {-7Bpp (Xi)}
ZZ 1+y,3exp (—rap)exp{-7Bpp (X:)}

=1 j=

We can now evaluate the four score functions. These are given by

Ol _n .
EJJ‘ =32 F(r,aB,Bp), (5.14)
ol n k
57? = ;+S’e—na3—,BB izzlnip(Xi)—(a—l-l) Fl,O,O, (5.15)
ol .
i = —n7 —(a+1) Fo1,0, (5.16)
and
613 )
353 T;n,p (X;) — (a+1) Fop,- (6.17)

For later use, we also evaluate second derivatives required for the variance covariance matrix
of the Burr MLEs. We write

0F10,0
or

;;exp (—ragp) exp {~76pp (Xi)} {Inyi; — ap — Bpp (X:)}
_ zzyje p B
i=1 i=1 [1+le exp(—Tag)exp{—78gp (X’L)}:I2

Fr00

)



%

5.3. FITTING Gp. 173

OF
Fo,2,0 —5%
& Ty exp(—Tas) exp {—aBpp (Xi)}
i=1 j=1 [1 + yf; exp (—Tap) exp {~7Bpp (Xz)}]
OFo0,1
Foo2 = —J7—
9Bp
_ {: i 72p (X;)? y7; exp (—Tap) exp (—7Bpp (X:))
= -
=131 [1+yfexp (—ras) exp (~7Bpp (X))
OF10,0
F —_ i)
1,1,0 Bag
& yhexp(-Tap)exp{-7fpp (X))}
= - 3
=1 521 [1+ 4] exp (~rap) exp {—76pp (X:)}] |
x [1+yf;exp (-Tap) exp {—7Bpp (Xi)} + 7 {lnyi; — ap — Bpp (Xi)}],
' O0F100
Fion = —z—
1 %8s
& & p(X) v exp (—Tap) exp {~78pp (Xi)}
= - )
i=1 j=1 [1 + yi; exp (—7ap)exp {—70pp (Xi)}]
x [14 y5; exp (—Tap)exp {~7Bpp (Xi)} + 7 {lnyi; — B — Bep (Xi)}],
and, finally,
OF
Foan = ——62’;1
k

o 72p (X:) yf; exp (—TaB) exp {-7Bpp (Xi)}

i=1 j=1 [1 +yjjexp (—Tap) exp {~7Bpp (Xi)}] i

Using (5.14), (5.15), (5.16) and (5.17), we now list the second derivatives for the accelerated

Burr distribution as follows.

g _ _n
da?2 a2’
32lB_ n

52 = 3 (a+1) Fa0,0,
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0%lp
7B _(a+1)FR
aazB (a+ ) 07270’
8%lg
I5 —_(a+1)Fpos,

&l _

Badr 100

lp

= —F
Oadap 0.1,0,
g
= —F
aaaﬂB 0,0,1)
?g
5rd0p = —-n - (a + 1) Fl,l,O,
%5 b
=S np (X))~ (a+ 1) F
87—8[33 ;nzp (X'L) (a+ ) 1,0,1,
and
0%lg
5—07;5‘3_3 = — (CL + 1) FO,l,l-

As previously, we can make limited algebraical progress, and reduce the number of model
parameters under active consideration by one. Here, we can equate (5.14) to zero to obtain

_ n
F(TaaB):BB)’

insert this into (5.13), and derive the profile log-likelihood as

a

T = 1 " — —
5 nln{F(T,aB’ﬁB)}+nlnT+(7' 1) Se —nTap

k
~7Bp Znip (Xi) = F (r,05,8p) .

i=1
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The three profile score functions for 7, ap and g are then

U P00 LR g e g in (X:)~ F
aT - F(’r, aB’IBB) T e aB B ' 'l-p 1 1,0,0’

i=1

8l§ _ ——'rLFo,l,o
aaB F(T7aBJ/BB)

—-n1 — Fy1,0,

and

6lj§ ——an 0.1 k
= ! -7 n;p (X;) — I .
aﬂB I3 (7_’ as, ﬂB) ; p( ) 0,0,1

To fit the accelerated Burr distribution to a set of data, we will use the Newton-Raphson
method to iterate on the three parameters until they converge onto their MLEs. Thus, we

require profile second derivatives, which, for completeness, we list below.

_6_2_=_n ) ——2—_F2,0,0>
T F(TaaB,ﬁB)' T

32l§ ’ F (T,O!B,ﬂB) FO’Q’O — F(?,I,O
Y A P) — Fy 2,0,
&g F (T)‘aBaﬁB)

*1f F(r,ap,Bp) Fop2 — Fgoa
2 — N ) — Fpp,2,
663 F(T,aB)ﬂB)

Ly _n {F(T, ag,Bg) Fi,1,0 — Fo,1,0F1,0,0

= —n—Fi1,
aTaaB F(Tr OfB, /83)2 } 1,1’0

021 F Fioy — FopiF E
B _ —n{ (1,08, Bp) F1,01 — Fo0,1 1,0,0} =S nip (X)) - Fuos,
i=1

67‘663 - F(T7aB;IBB)2
and, finally,
e {F (1,0B,Bg) Foa1,1 — Fo,1,0F0,0,1 }
Yy 5 —Fp1,1-
aaBa’BB F(Ta aB:ﬁB)

MLEs may be obtained in the usual way, provided sensible initial starting values are chosen
for the three parameters. In the next section, we consider how to fit an accelerated Burr

distribution to a set of data, and in keeping with the non-accelerated scenario, derive a
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discriminating A to determine whether the Burr or Weibull distributions provide a better
fit. This will be carried out for a general scale-stress relationship, with the Log-linear and
Arrhenius forms as special cases.

5.3.1 Fitting the accelerated Burr distribution and A

In this section, we derive the form of A for a general scale-stress relationship linking the scale
parameters from the Weibull and Burr distributions with stress. The work is a generalisation
of Johnson (2003), who presents results for the Log-linear relationship. Given the form of

many scale-stress relationships listed in Section 5.1.1, we write a general relationship as

¢i = ¢sh' (X'i,Xs:ﬂBl, “":BBm) = Qf (XS) h(XhXSaﬁBlu -"’ﬂBm) ’

for m = 1,2, ..,p, where @ is a constant independent of stress, f (Xj) is a function of design
stress and h (X;, X5, Bg1, - Bpm) & function of design and accelerated stress levels and the
parameters 3p,,, with the property that

h:(Xins)ﬁB]_, ""ﬂBm) = 1.for X’i — Xs’

so that the scale @, at design stress is @f (Xs). Thus, for example, we write the Log-linear
and Arrhenius relationships as

¢ix = exp (aB) exp {Bpp (Xs)} exp [Bp {p (Xi) — p (Xs)},
giving m = 1 and

Q@ = exp(ap),
f(Xs) = exp{Bpp(Xs)},
h(Xi, Xs,Bp1, - Bpm) = exp[Bp{p(Xi)—p(Xs)};

this argument extends to more complex relationships such as the general polynomial. We
refer to Appendix D for an outline of the proof for obtaining the form of the discriminating
function A, given by

k n; Yij

| 2B B
Z’L:l E;L}—_l { f(XS)h(XiaXs,JﬁW]_,u.,ﬁwm) } [Z'L:l J=1 {f(X.s)h'(X'ivX5;BW1""’ﬁWm) } }

A= —

2

2 , n
' (5.18)
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Thus, we have

. ' 2
2B. B.
k " Yij I.c_ nl ——;Pl————-yi.
=t ?zl{m+{ﬂw.p(xi)}} ) [Z"l o (e ) }

A, =
* 2 n

We next consider fitting an accelerated Burr distribution to a set of data; the key is to start
by fitting the corresponding Weibull distribution with the same scale-stress relationship
(here, either Log-linear or Arrhenius). We refer to Watkins and Johnson (1999), which

outlines fitting the three parameter accelerated Burr Log-linear distribution, and now adapt

that approach for both Log-linear and Arrhenius models. We list the main points below.

e We first fit the accelerated Weibull distribution to the set of data using the profile log-
likelihood given by (5.8). For real life data, this will usually involve fitting the Weibull
distribution to each subset of data, and then use the MLEs from these to obtain initial
starting values for the MLEs from the accelerated model. When we consider simulated
data from a Burr distribution with known parameters, initial starting values for the
Weibull MLEs can be obtained relatively easily from these, and we set B, = 7 and
Bw. = Bp- Alternatively, we can maximise the entropy function for the accelerated
Weibull distribution, and use entropy values as initial estimates.

e We next rescale the subsets of data by their appropriate scale estimates from the
Weibull distribution. Thus, the data becomes

Yij
exp { G + Bup (X)}

Yij —

This rescaling effectively removes the effects of the stress factor, with all data centered

around one; the notion of acceleration is largely reduced.

e Since the Burr distribution is the limiting distribution of the Weibull, then we use
the appropriate discriminating A., which takes into account the small amount of
remaining acceleration, to determine which distribution function provides the better
fit. If A, > 0, then we proceed to the next stage of fitting the accelerated Burr

distribution.

e This stage of the algorithm involves fitting the non-accelerated Burr distribution to the
rescaled y;;, following Watkins (1999), as outlined in Chapter 2. This is equivalent to
fitting the accelerated model with S = 0 to the rescaled data, and leads to estimates
of the single scale parameter ¢ (~ 1) and shape parameters a and 7. These MLEs
then provide us with suitable starting values to fit the accelerated Burr distribution.
We then move to the final stage of the algorithm. '

e We fit the accelerated Burr distribution using the profile log-likelihood to the rescaled
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data, with starting values based on estimates found in the previous stage. Thus, we
start with 7 in the accelerated model equal to the same shape parameter from the non-

accelerated case, fg = 0 and ap = In(¢). We then reverse the effects of rescaling, ‘
noting that estimates of the two shape parameters a and 7 are not affected by scaling,
and so remain the same. The scale estimates are found by adding aw,. and EW* to

the estimates of ap and By respectively.

. We see that the above algorithm accommodates both Log-linear and Arrhenius rela-
tionships, and further generalises. Note that the limiting link between Weibull and Burr
distributions means that A can only be calculated when using the two distributions with

the same scale-stress relationship.

5.3.2 The EFI matrix of the Burr MLEs

In this section, we derive the asymptotic variance covariance matrix of the Burr MLEs for
a set of accelerated observations, and consider both the Arrhenius and Log-linear models
simultaneously. Such results will enable us to compare theoretical and simulated values, and
also deduce how accurate the MLEs are for various sample sizes, stress levels and parameter
values. The derivation of expected values of such derivatives will be simplified considerably
if we first obtain the expectations of the functions that make up these derivatives. For

instance, we consider

5 &Y exp (—Tap) exp {—78pp (X:)} {InY;; — ap — Bpp (Xi)}

E[F00) = ; JZ_; -+ 1+ YT exp (—Tap)exp {—70pp (Xi)}

To derive such expectations, we convert back to ¢;, and use work on the non-accelerated
Burr distribution. Thus,

Y; Yi;
F100 z;z;E (75:3) (ln(;;)
== Pi

For stress level ¢, the Y;; are independently and identically distributed. Therefore, this

expectation becomes
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where Y; is a random variable from Gp, (7,a, ¢;,). We now use (3.7) to write

E {(%)Tm(%)} _1-7-Y()

1+(¢“)T T(a+1)

y

and hence,

n{l-y-¥(a)}

E{F,00] = T(a+1)

Similar procedures are used for eight other expectations, which we now list.

g1+ YT exp (—Tap)exp {—~70pp (X;)}

k 2 xp (—Tap)ex T
E[Fo10] = { ZZ Y exp(—rap)e (- ﬂBp(X)}}

¢1.

on using (3.9); while

E[Fop1] = 1+ Y7 exp(—7ap)exp{~7Bpp (X

70 ( X,)Y'rexp( Tap)exp{—70pp (X;)}
SHY o) ]

i=1 j=1

i=1

’ = —Tzn (X:)E (%LY r Xk:n'p(X-)
@ = L+ (B)) T enigmr

Next, we compute

ElFso0] = ZZ Y7 exp (—Tap) exp {—7Bpp (X:)} {InY;; — ap — Bpp (Xi)}

SHiE [+ vgenren)en {-mimp ()]

& |G (=)}

1l

na{%z+72—2'y+2 y=1)T(a+1)+ ¥ (a+1)? +\If'(a+1)}
2(a+1)(a+2) ’
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from (3.8). Next, we look at

E & Y] exp(—Tap)exp{~TBpp (X))

i=1 j=1 [1 + Y;; exp (—Tap) exp {—7Bpp (Xi)}] i
|G
i=1 {1 + (;’;’E‘:)T}Q ,

which, on using (3.10) becomes

E[Fo20] = E

=T

nar?

@+ (@a+2)
we now examine

k& 20 (X,)? Y exp (—ToB) exp {—TBpp (X:)}
S [+ Yy e (—rap)exp (~rBa0 (X))]

¢i
2 d

(e @)}

(a+1)(a+2) ;nip (%:)°

E[Fop2] = E

k
= ) np(Xi)*E
i=1

Next, we consider

L5k g YGewlren)ow(-78sp0X0)
=1 £vj=1 [1+Y{§ exp(—7'ozB)e)(p{—‘r'ﬁBp(X,~)}]2

E[F10 = FE .
X [1 + Y exp (—Tag)exp{—7Bpp (Xi)} + T{In Y — ap — Bpp (Xi)}]

Y; \7T :\7
C s T ET
=1 TE d%:'i: ln%?:
{i+(35)
‘We note that
: (%:%)21' ) -
(o (2))] @rDer?)
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and that

is given by (3.11). Thus,

n{2(a+1)—a’y—a\If(a+1)}
(a+1)(a+2)

E[Fi10] =

Now, we examine

El_c ni  PX)Y exp(—Tap) exp{—TBpp(X:)}
i=1 £vj=1 [1+Yi’]7 exp(—Tag) exp{—-rﬁB,o(Xi)}]2
 [14 ¥ exp (~rap) exp {0 (X0)} + 7 {In Yy — ap — Bpp (X0)]]

27

k { GE) [ (3£)
— —ZniXi l+ EY:: {1+ ‘%:':) }
i=1 .

E[Fip1] = E

+

Y:
Fin

:)'}
{a’y+a\I’(a+1)_2(a+1)}' k | |
@+1)(at2) Y e (Xi).

—r—
—
+
—~
o
S| 5

Finally, we compute

k&L 20 (Xi) Y exp (—Tap) exp (—78pp (Xi))
i=1 j=1 {1 + Y exp (~TaB)exp (—TBpp (Xi))}2
(&)
3
{1+ ()}
k

ar?
= m ;nil) (Xi).

E[FRai1 = E

k
= 72 Znip (X)) E
=1

The expected values of the second derivatives are

5 [a%BJ _5[2]-2

Oa? a? a?’
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62lB n
-F [_5772_} = ﬁ‘i‘(a-i—l)E[Fz,o’o]
o a{%z+72—2’y+2('y—1)\I’(a+1)+1P(a+1)2+111'(a+1)}
= — |1+
T2 (a+2)
8%lp nat?

_g |28 1 =
E[aaQB] (a+1) E[Foz2,0] st

_E &lp = (a+1)E[Fopa] = at? i 0 (Xa)?
= (a 0,02) = 3 2 nip (Xi)*,

dp% a+
lp] _n{l-y-¥(a)}
—F [aaaT]_E[Fl’O’O]‘ r(a+1)
_E &lp = E[Fy10] = ——_-
dabap| 010l = T T
B[ 218 - piRg = - S e (0
50085 | 0,0,1] = s+l nip(Ai),
B[ 2B ] (4 ) E R = " {1 v+ T (at 1)}
drdag| " T\@ LLOE= 702 v @ '

2 k
-E [a?algBJ = ;niﬁ (Xi) + (a+1) E[F101]

, k
= — S U T @D} Y me (X)),

i=1

and, finally,

82l3 ‘ a’T‘Z k
-F [m] = (a+ 1)E[F0,1,1] = a+2 ;ntp(Xl) .

We use these results to derive the asymptotic variance of B B,10 in the next section.

b
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5.3.3 The asymptotic variance of EB,m

In this section, we derive the asymptotic variance of B B,10, again for both Arrhenius and
Log-linear models simultaneously. If ¢, is the scale parameter of the Burr distribution at

design stress X, then
¢’s* = exp {CYB + ,BB,O (Xs)} .
Thus, at X, we have
~ = —~ 1 %
Bp,10 = exp (@p) exp {ﬂBp (Xs)} {0.9? - 1} ,

and this is, asymptotically, Normally distributed with mean Bpg 19 and variance given by

!
(3.2) with ¢, = ( Cr Ca Cap CBg ) , where

—‘exp (ap) exp{Bpp (Xs)} {O.Q—T1 - 1}% In (0.9_71 — 1)

2

Or=

Y

- 11
exp (ag) exp {Bgp (Xs)} {0.9“«1‘1 - l}T 0.9% 1n0.9

Cqhp =
@ Ta? ’

Al

cas = exp (aB) exp {Bpp (X)} {0.9% —1}7,
and
cp, = p(Xs)exp (ap)exp {Bpp (Xs)} {0.9:11l - 1}; .

We check these results in later chapters, when we examine the effects of mis-specification.

5.4 Fitting Gg.

In the calculations below, we include how to fit both the Gamma Log-linear and Gamma Ar-
rhenius distributions at once. Using our usual notation, the pdf of the Gamma distribution

is Ggx (Yij; 7, aix) for x = A or P, with

aip = exp (ag + BeXi)



5.4. FITTING Gg« 184
if we are using the Log-linear relationship, and
_ Bc
a;p = €exp (ac + X, + ¢
for the Arrhenius model. The likelihood and log-likelihood are given by
k- ny Yij
<Y ( exp(ac)exp{ﬁcmxi)})
(1, aq, ,
&:fe) = HJH exp mc> exp {7fp (X:)} T (7)
and
lg=(1—-1)Se —exp(—ag) F (ﬁG) —nrag — 7l¢g Z n;p(X;) —nlnl (1), (5.19)
i=1
where
k n;
F(Bg)=Y_> wiexp{—Bap(Xi)}.
i=1 j=1
The three score functions are given by
ol .
5 = Se — nag — ﬁG;nm (X;) —n¥ (1),
ol
-6—G = exp(—ag) F(Bg) —nr, (5.20)
ag
and
Olg k
- =—exp(—ag) F1(Bg) — 7Y _ mip (Xi)
where

k ni
Fm (Be) = (1)™ > p(X:)™ i exp {—Bgp (X3)},

i=1 j=1
and, for future reference, the second partial derivatives are

ole)

-—8-7_—2'=~—TL\I’I(T),

Pl

@ = —exp(—ag)F (ﬁG) )
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9%l
bﬂ—g = —exp(—ag) F2(Bg),
&g B
8T10ag ’
lg k

and

We can equate (5.20) to zero to obtain

e {EC2Y,

and substitute this into (5.19) to derive the profile log-likelihood given by

k
15 =(1-1)Se—nT—nrtlnF(Bg) + nrlnnt — 708g Znip(Xi) —nlnT (7).
i=1

The two profile score functions are then given by

k

=S, —n—nlnF(Bg)+n(nnr+1)— ﬁgznip(Xi) —-n¥ (1),
=1

o
- oT

and

alg _ —nTFl ﬁG)
9B —T;mp (Xi),

and, to use the Newton-Raphson process to obtain the roots of these profile functions, we

also include, for completeness, second derivatives given by

82l+ n ’
T = v,

H

&g _ . [ F(Be) P (Bo) - Fi (Be)’
86¢ F(Bg)°
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and

62lg _ —TLF]_ ﬂc)
5798 F(Ba) Z”’p (Xe).

So we now have all the functions to fit a Gamma distribution with either a Log-linear or
Arrhenius relationship to an accelerated data set. We continue by deriving the EFI matrix
for the Gamma MLEs.

5.4.1 The EFI matrix of _the Gamma MLEs

Before deriving the EFI matrix of the Gamma MLEs, we first compute

k

E[F(Bg)] = ZZYuexp{ Bep (X))

=1 j=1

= an exp{—Bgp (X:)} EYi],
=1
where Y; is a random variable from Gg« (vi5; 7, g, Bg). We therefore have

exp {ac + Bep (X)) T (m+7)

B = s ,

(5.21)
BlY]=rexp{ac +Bap (Xi)},
and
E[F (Bg)) = nTexp(ag) -

Next, we consider

k n;

E[R(Bg)] = E|->.) p(X)Yiexp{—Bgp(X:)}

i=1 j=1

k
= - nip(X:)exp{-Bgp(Xi)} E[Y]]
i=1 .

ko
= —Texp (ac)zniP(Xz)

=1
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and, finally

k ng

ERBe) = E|Y > p(X:)?*Yijexp{—Bap(X:)}

i=1 j=1

k
= Y nip(Xi)*exp{—Bgp (Xi)} EY)]
i=1

k
= Texp(ag) an (X:)

=1

Using these, the EFI matrix from the Gamma distribution is

n¥’ (1)
A= n nr
Yk e (X)) TSN nip(Xi) TN i (Xi)?

We check these results in later chapters, when we begin to examine the effects of mis-
specification in accelerated data sets.

At this point we would usually proceed by considering the asymptotic variance of §G’10.
Due to the form of the Gamma cdf, we cannot write down a theoretical expression for this
quantile. The function can only be computed, for various parameter values, using SAS or
Mathematica. For instance, Mathematica not only has the ability to compute values for
Eg,m, but also differentiate this function with respect to the distributional parameters, so
that a value for the theoretical standard error can be computed. Thus, we may state that

Bg,10 is given by
InverseGammaRegularized [7,0,0.1] xexp {ap + Brp (Xs)} .

EG,lO will be Normally distributed with mean Bg 10 and variance (3.2), where numerical

results for

J = 0Bgo 0Bgio 0Bg,o
==\ Tor dac e )

are obtained using Mathematica.

5.5 Fitting GLN*

We assume that the underlying distribution is now Lognormal, and derive the theory neces-
sary to fit this to a data set when either the Arrhenius or Log-linear scale-stress relationship
is used. The accelerated Lognormal pdf is grn (yij; i, o) Where

pis = LN + Bryp (Xi) -
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This parameterisation suggests that the mean of log life is a linear function of the stress
level. We recall (using Nelson, 1982) that the parameter y;, really determines the scale of
the data, whilst plots from Nelson (1982) show that o influences the shape of the distribution
function and typically ranges from 0.5 to 5. Thus, if we wish to have a set of data with
values which lie around 2000, then we would have to set u;, = In2000. To see why this
is so, recall the link between Lognormal and Normal distributions. Namely, that if ¥ has
a Lognormal distribution with parameters y,, and o, then InY has a Normal distribution
with mean u,, and standard deviation o. Thus, if we want an average value of around 2000,
then we have to set i, equal to the log of this number. This fact will be used in later
sections when we begin to run simulations on the Lognormal distribution, and we have to
chose sensible parameter values that mimic real life experiments. By substituting y;, in

terms of ayn and B, the pdf of the Lognormal distribution becomes

202

— l i
9rnx (Yij; 0, aLN, Brn) = \/_Uy exp [ {lny;; —ary — Brype (Xi)} ]
'L] .

The likelihood and log-likelihood are given by

k n;

- ]. it — X; 2
Lin (o,0zn, Bon) = [[ T 1 \/2_an exp [ {Iny;; OlLéVJ2 Brnpe (Xi)} ] |
ij

i=1 j=1
and so

SE Yo {Inyi; — oLy — Brne (X))}
202 '

ity =-nlnvV2r —nlno — S, —
The three score functions are given by

OlLn 2?:1 ?;1 {Inyi; — Ly — Brye (Xi)}

6aLN 02

b

olry i Yoty p(Xi){Inyy — oLy — ﬂLNP( i)}
OBy o? ’

and

Oluy _ m + Y Pie {Inyi; —arn — Brnp (X))
oo o a3 ’

As previously, equating these score functions to zero and solving yields explicit parameter
estimates. We note that the first two score functions effectively yield the Normal equations;
see, for instance, Montgomery (1997). We can write the equations based on equating these
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derivatives to zero as

- SE Y Iny; _ n Sk i (Xi) QLN
Y > i Inyiip (X) SF (X)) TF e (XG)? By
and then solve for arn and B . Substituting these solutions into %ﬁ_ﬂ = 0 will then yield
the MLE for o, so that all MLEs can be obtained explicitly.

5.5.1 The EFI matrix of the Lognormal MLEs

To obtain the asymptotic variance covariance matrix of the Lognormal MLEs, we consider
the expectations of -second derivatives below, and on differentiating the Lognormal score

function, we have

Pliy _ n 3 e Sri {lnyi; — onn — Brne (X)Y

80'2 - ;2— 0-4 ’
Fln _.n
daty o2’
PN _ Thamip (X:)?
BN o? ’
Oy —2X 1 Tpty {lnyi; — arn — By (Xi)}
E)aé)aLN - 0'3 ’

Py 2 Y o1 p(Xi) {Inyi; — arn — Bryp (Xi)}
60’8ﬁLN o 0'3 ’

and

Py Y mip(Xa)
OarnOBrNn o? '

On taking expectations of these second derivatives, we see that we require expressions
for E[InY;] and E [(ln Yi)z]. We again use our work on the non-accelerated Lognormal

distribution to write

2,,2

B = exp [m {an + Bue (X)) + T . (522
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Thus, on differentiating with respect to m, we have

E[Y"nY;) = (arn + By (Xi) + 0?m) exp {m {arn + Brwp (Xi)} + 02;12 , (5.23)
so
EnY;] =arn + Bryp (Xi) .
By differentiating E [Y™] twice, we obtain an expression for
. 2,2
By = exp |mlow +Buwe () + S5 |
X {02+ (Ln + Brnp (Xi) +a2m)2} , (5.24)

thus giving
E [(ln Yi)z] =0” + {on + Brne (Xi) 1.

Using these expectations, we write the EFI matrix as

A=0¢"2| 0 n
0 21;1 n;p (X;) Ef:l nip (Xi)z

We use this matrix to compute the asymptotic variance of §LN’10. From above, we have
seen that Mathematica can compute numerical values for the theoretical mean and variance
of this quantile function. Thus, B n,10 Will be Normally distributed with mean By 10 and

variance given by (3.2), where

d = 8Brnjyo  9Brnjio  8Brin,io0
T oo 005(; 6ﬁLN ’

is evaluated numerically using Mathematica.

5.6 Summary

This chapter outlined the theory neceééary to fit accelerated Weibull, Burr, Gamma and
Lognormal distributions to data sets, under the assumption that the distributions were cor-
rectly chosen. Our notation allowed us to include details for both Log-linear and Arrhenius
scale-stress relationships simultaneously. We also considered the EFI matrix, and discussed
the distribution of Bjg. When we examined the Weibull distribution, we reported on a series
of simulations to assess the effects of fitting this model to data, when no mis-specification

had taken place. We did this for various parameter values and sample sizes, and outlined
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how changes in various aspects of the experiment affect the standard errors of the Weibull
MLEs and §W, 10- We also compared theoretical standard errors of §10 for the accelerated
and non-accelerated Weibull distributions for varying sample sizes, in order to deduce if
acceleration greatly increased this quantity. The results will be used in the next chapter as
a benchmark for mis-specified scenarios, where we assess the effects of mis-specification for
the accelerated Weibull distribution.




Chapter 6

Mis-specification In Accelerated
Life Testing : Some Theoretical

Considerations

6.1 The scope for mis-specification

In this chapter, we examine the theoretical aspects of mis-specification in accelerated life
testing. In keeping with our work on non-accelerated data sets, we always have the Weibull
distribution as the mis-specified model, and fit this to data with an underlying Burr, Gamma
or Lognormal distribution. However, when we consider accelerated models, there are other
aspects of the model which can be mis-specified. We can also choose the wrong relationship
between stress level and scale parameter, and so, for example, fit the Weibull Log-linear
model to data from an underlying Burr Arrhenius model. Thus, there are many possible
combinations to take when considering the effects of mis-specification in accelerated dis-
tributions. Of course, our best case scenario would be no mis-specification, so that the
distribution we fit is the same as the true distribution of the data; this has been covered
in the last chapter, and provides a benchmark for the results here. We limit ourselves to
examining the following cases of mis-specification :

e We mis-specify the scale-stress relationship, but choose the correct underlying distri-
bution. We keep the Weibull distribution as the true underlying model, and look at
the effects of mis-specifying the Log-linear and Arrhenius relationships.

e We correctly specify the underlying scale-stress relationship, but mis-specify the dis-
tribution function. We keep the Log-linear model as the true relationship, and fit the
Weibull distribution to data with an underlying Burr,’Gamma and Lognormal model.

e The final scenario involves mis-specifying both the scale-stress relationship and un-
derlying distribution function. The cases we consider are shown in Table 6.1.
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True Mis-specified
Burr Log-linear Weibull Arrhenius
Burr Arrhenius Weibull Log-linear
Gamma Log-linear | Weibull Arrhenius
Gamma Arrhenius | Weibull Log-linear
Lognormal Log-linear | Weibull Arrhenius
Lognormal Arrhenius | Weibull Log-linear

Table 6.1: Types of mis-specification for accelerated data sets.

In all the above cases, we examine the effects of mis-specification using methods estab-
lished for the non-accelerated case. Thus, in this chapter, we derive the entropy function,
and the asymptotic variance covariance matrix of the mis-specified MLEs, from which we
can obtain the asymptotic variance of §10- A more practical approach of running simula-
tions to assess the effects of using the mis-specified model is discussed in Chapter 7. Since
we always take the Weibull as the mis-specified model, we can generalise the form of the
entropy function, and the asymptotic variance covariance matrix of the mis-specified MLEs
for any true underlying distribution functtion and scale-stress relationship. We introduce

some further notation, and write

p: (X;) = p(X;) from the true distribution
Pm (Xi) = p(Xi) from the mis-specified distribution

So, for example, if we are fitting the Weibull Arrhenius to data with an underlying Burr
Log-linear distribution, then

'pt(Xi) = Xi
pm(Xi) = (Xi+c)™}

Using (5.4), we write the entropy as

. k k
By = Eillws=nlnB.+(B.—1)> niE[nY] - nB.ows — BBy, Y nipy (Xi)
i=1 =1
k \ .
—exp (~Buowa) Y mi exp {~ BB, om (X:)} B Y] (6.1)

=1

where the expectations Ex[.] are with respect to the true model, and involve parameters
from the underlying distribution and p, (X;). If we differentiate E; with respect to ayy,

and equate to zero, then we obtain

Sk niexp {~BuBw. o (X:)} By [ ¥

n

aws = B 'In (6.2)
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Inserting this into (6.1) yields the profile entropy

k k
Ef = nlnB,+(B.,—-1) ZniEt (InY;] — BB Znipm (X3)

=1 i=1

k .
—nln {Zni exp {~BuBwoom (Xi)} By [V"] } , (6.3)

=1 :

with score functions

8E+ k k
T -1 ) '
3B, nB."+ ; n;E [lnYi] - Bw, ; N3P (Xi)
n S mienp (=B fyso (X} { B [V InX] — Byyopm (X B [ ]
Zf:l T €Xp {_B*'BW*pm (Xz)} Et I:Yz"B*:I ’
and
aa 5 —B. Y nipp (Xi) + % D:: o (e B*ﬂ.w*pm ) BE : [}q ]
ﬁW* =1 Ei=1 i €eXp {—B*,Bw*pm (Xl)} Et [}/"L ~:|

Second derivatives can also be written down but are omitted here. The roots of these
profile entropy score functions are obtained by using the iterative Newton-Raphson process.
For convergence, we choose appropriate starting values for the Weibull parameters B, and
B« In simulation experiments, these are obtained by making use of the true relationship
between scale and stress,-and the true parameter values set by the experimenter. For
example, suppose we fit Gy 4 to data from Gpp. Choices for stress levels and values in the
scale-stress relationship (either Log-linear or Arrhenius) are outlined in Section 5.1.2. Thus,

here we set
ap =8, fg = —0.02;
this results in first and k** scale parameters from Ggp given by

$1p = exp{8~0.02(50)} = 1096.6332,
$kp = exp{8—0.02(200)} = 54.5982.

To obtain starting values for B4 and By 4, we set B4 = 7, and use the scale parameters
above to derive an initial estimate for By, 4 given by

In (1096.6332)

‘P \"si8082 )
A9~ ~ 3058.

323.16 473.16
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A similar approach can be used for any other forms of mis-specification. _

We extend the details on the distribution of Weibull MLEs for non-accelerated data sets,
to incorporate the extra parameter for the accelerated model. This enables us to state that
the asymptotic distribution of (B, aws, Bw.) is Normal with mean (E*, OW e, EW*)/, the
entropy values obtained from maximising (6.1), and variance covariance matrix based on
(3.18), with

2
—E [-aa’é%‘]
A _E [ Pw. _E 621545*
- t 3B*gaw* t dayy,, ’
Uy, ly. 62151*
—Et 68*6[3‘,‘/ _Et [aaW*aﬁW-t:] _Et [6ﬁw*j|

and

_ Olws Olwa Ol
Alws Olye Olwe Ol Bl
Cou (B ) Cove (R, 83x) Vore (B22)
We first list the elements that make up the matrix A :

82Uy _ i |
5 |G| = nBr e (B 3o mexp (= Bfpesn (X0}
* i=1
B [V (lnY)?]
x{ =2 {awa + Bapm (X} B [YP-m¥i] 4, (6.4)

+{ows + Bwebm (X)) Ex [YiB*]

. 82lW* ) k . 5.
—E; [6%2”*] = B; exp(—B*aW*);m exp {—B:Bw.pm (Xi)} Bt [Y; ] : (6.5)

k
_Et{

= B:o2= €Xp (—B*OCW*) Z NiPm, (Xi)2 €Xp {—B*6W*pm (Xl)} E4 [Y;‘B*] ) (66)

=1

By ]
OB

—E, [m} = n—exp(—Biawx) an’ exp {"'B*ﬁW*pm (Xz)}

i=1
B.E; [Yf‘ In Y,-]

X [ + {1 — B {ow« + Bwupm (Xi)} Ex [Y;B]} ,  (6.7)
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52lyy. k :
_E, [m] = ; NP, (Xi) — exp (—Braw+) ; 1P, (Xi) €xp {— BBy« (Xi)}
. B*Et [1,;3-« In Y;]
y a1 | (68)
+ {1 — Bu{aws + BwpPm (Xi)} Bt [Y; ]} |
and, finally,

ale* -I _ 2 : B
B [WJ = B; exp (—Bxaw.) ;"u"m (Xi) exp {—B.Byw.pm (Xi)} E [Yi ] '
(6.9)

Now, we list the elements that make up the matrix V :

Var, (%lg) = én {B: [0 %] - (B Im ¥}

k
+exp (—2B.aws) Y _ niexp {—2B.Bypm (Xi)}

i=1
E, [},;23.. (lnY})z] _ {Et [YiB" lnYi] }2
+{aw + Bwupm (X} $ By [Yiw*] B (Ei [Y"B‘])z
E, [YiB. In Yi] B [YiB.]
_E, [YiZB,. In Yz]

+2 {OLW* + IBW*pm (Xl)}

L

k .
~2exp (—B.aws) Y niexp {—BuByw.om (Xi)}

=1

E; [YiB* (lnYE)Z] - E; [Y;B’ In Yi] Et[InY))

x | E, [Yf’* In Y] . (6.10)
- {C!W* + IBW*pm (X‘I:)} _Et [Y-B‘] Et [hl YL]
ol 5
Vare (Gows) = Blem(-2Baws) S mex (-2B.Guwuon () (611

f b - e

k
Var, ( S;W* ) = Blexp(-2B.ow.) ) mipm (Xi)' exp {-2B.Byypm (Xi)}
W

i=1

Arpe b)) e
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CO’Ut (alW* 6lW* ) _

k
3. Fon. By exp (—Byaw.) Y _ 1iexp {—BuByrupm (X:)}

i=1

X {Et [YiB* In YZ] - E; [YiB'] B [In Yz]}

k .
— By exp (—2B.aws) Z n; €xp { —2B By P (Xi)}
i=1
B [v2P Y| - B, [Y7] B [¥ ]
X —{aws + Bwpm (Xi)} , (6.13)

(o] - (5] )

k
Covy < OB, ’ 5ﬁW*) = B €xp ( B*aW*) ; i Pm (Xz) €xXp {”‘B*ﬁw*pm (Xz)}

x{B, [vP Y] - B [¥2] B Y3}
—B, exp (—2B.awx) i NP, (Xi) €xp {—2BuByupm (Xi)}

=1
E, [Y;w. m“yi] _ B, [Yf‘] B, [Y;B; In Y]
x —{ew« + Bwupm (Xi)} ,  (6.14)

[ ] - (m )}

alW* alW* _ 2 . |
Cou (e, 280 ) = B exp (~2Buaw.) Y- it (X6) 50 {~2Bufi o (X0)

{m - e ) o

We can also write the approximation to the variance of §W,10 in terms of these matrices.
Again we adapt the results from the non-accelerated Weibull distribution to state that,
asymptotically, EW, 10 is Normally distributed with mean '

~ ~ ~ ' 1
Bw,10 (B*a aW*;ﬂW*) = €xXp {aW* + BwsPm (XS)} (~1n0.9)5. ,
and variance

CB,
( CB. CaWn C.BWs )A_IVA—I caWt ) (616)

cﬂW*
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where ( CB. Coaw. Chy. ) is given by (5.12). Thus, to derive entropy values, the variance

covariance structure of the mis-specified MLEs, and the asymptotic variance of §W, 10, We
require E; [Y"], B [Y/"InY;] and E; [Yim (In Yi)2]. Using these results, we consider the
above three scenarios of mis-specification; to do so, we first derive explicit results for the

entropy function of our four distribution functions.

6.2 Entropy for Weibull to Weibull

We assume data has an underlying Weibull distribution, and mis-specify the scale-stress
relationship. We extend notation established to distinguish between the p (X;) in true and
mis-specified models to distinguish between the parameters from the Weibull distributions.
Thus, we denote parameters from the mis-specified model as Bp,, By and awn; for the
true, these become By, By and aw;. So, for example, if we were fitting Gw 4 to data from
Gwp, then we would set m = A and ¢t = P. On examining our results for the general case
above, we require Ewy [Y™], Ew: (Y7 InY;] and Ew; [Yim (In Y})z]; these are given by (5.9),
(5.10) and (5.11) respectively, with * replaced by t. We use (6.1) to write

k .
Ew: = Ewt(lwm]=nlnBn+ (Bm—1) {na’Wt +nB; W (1) + By Y mipy (Xi)}
i=1
k
—nBmawm — BmBwm Zn‘ipm (Xi) -
i=1
B
exp (—Bmawm) exp (Bmow:) T (—Bg@ + 1) R (Bm, Bwm) »
* t
where
k
R(Bos Bym) = 1550 {~BrnBigmp (X0} 50 {BrBageps (X} (617)

i=1

We also require derivatives of this function; these are given by

k ' :
Ri1,0 (Bm, Bwm) = > _ 1 €Xp {—BmBwmbm (X:)} exp { BBy (Xi)} Buwepe (Xi) — Bwmbm (Xi)]

=1

k .
RO,l (Bm, 6Wm) = - Z niBmpm (X't) €xp {—Bmﬁmem (Xl)} €xXp {Bmﬂtht (Xl)} )
=1
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k
Roo (Bm, Bwm) = Z 1 €XP { —BmBwmbm (Xi)} exp { BmByw:p; (Xi)}

i=1

x [ﬁtht (X’L) - ﬂmem (X’L)]2 >

k
R0,2 (Bm: ﬁWm) = Z n‘iBfnpm (X2)2 exp {_B'mﬂmem (X'L)} exp {erthpt (Xl)} ’

=1

and

k
Riy (B, Bwm) = =D miPm (Xi) e {~BmBwmpm (Xi)} exp {BmBwepy (Xi)}
=1

X [1 + Bm {6tht (X’L) - IBmem (Xl)}] .

We use (6.2) to write

AWm = B;ll In

)

n

{exp (Brawi)T (52 +1) R(Bm, Bwn) }

and now use (6.3), with appropriate substitutions to write the profile entropy as

k
E;[-/t = nln Bm + (Bm — 1) {TLBt_l‘I/ (1) + IBWt Znipt (Xz)}

i=1

—nInT (%ﬂ + 1) —nlnR (Bma.ﬁWm)

t
k

- mﬁWmZniPm (Xi) + n{lnn — aw: — 1},

=1

with first derivatives given by

6E{/*_Vt —nRy 1 (Bma ﬁWm) - ) )

— s — B - MiPm Xi),
Brwrm R (B, Bwrm) " Zl om 1)
OEH - - k t =
aBZt' = nB;'+nB7 10 (1) + By ;mpt (X)) ~nB ¥ (F? * 1)

k .
an 0 (Bma IBWm)
— 2 ; - 6 m TiPm Xi).-

6.2.1 The variance structure of the mis-specified MLEs

We derive the variance covariance structure of the mis-specified Weibull MLEs, when this
model is fitted to data arising from Weibull distributions with a different scale-stress rela-
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tionship. We first consider the elements that make up the matrix A, and use (6.4) to write
2
—Ewt [aaleé ] as
Bm
nB + exp (—Bmowm) exp (Bmaw:) I | — +1

y ({aWt awm + Byl ( )} + B 20 (%:L + 1)) R(Bmwé;wm)
+2 {aWt — awm + By MY (%m 1) } R10(Bm, Bwm) + B2,0 (Bm, Bwm)

Next, using (6.5), we consider

62le]

~-F
Wt [aa%vm

A B,
= Bv?n €Xp (_Bman) €xXp (BWmaWt) r (E + 1) R (Bma IBWm) .

Now, we examine

Pl B o
4] — exp (- Bawm) 0 (B (22 +1) Rog (B ),

"y o —_m
we [aﬂ%m

2]

obtained from (6.6). Next, we derive —Ep; [wam%m—] from (6.7), this is equal to

B
n — exp (—Bmawm) exp (Bmaw:) T <E + 1)

BmR1, (Bm, Bwm)
[ + (1 + B, {aWt — owm + BT (%—3 + 1) }) R (Bm, Bwm) }

Now, on using (6.8), we consider

k
lwm | _ (X _ Bm
EWt {m] = ;n,pm (X:,,) + exp( Bman) exp (BmCXWt) P ( Bt + 1)
9 I: {aWt — Qwm + Bt_lll’ (%:}' =+ 1) } RO,I (Bm::BWm) ] ’

+R1,1 (Bm, Bwm)

and finally, using (6.9), we have

2
—E [ 0 le

' B
6awmaﬁwm] = — B, exp (—Bmawm) exp (Bmow:) T (FT: + 1) Ry,1 (B,‘n, ,BWm) .

‘We now list the elements which make up the matrix V, and to simplify our results write

k
Aj = exp (1 Bmawt) Z 1; €XP { —J BmBwmPm (Xi) } exp {j BmBwp: (Xi)},
i=1
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)+\If(ig%"+1)'

n; = awt + Byoy (X B, )

and

5j = n? + {ﬁmem (XZ)}Z - 277j:6mem (X't) + a%’m - 2awm {77_7' - ,BWum (Xt)} )

for § = 1,2. Using this notation, and (6.10), we see that Varwy; (%%f) becomes

nB; 2 (1) + Ag exp (—2Bmawm)
r( 5 +1> {52+Bt v ( 5 +1>} I‘(—E—+1> 81
B,
—2X; exp (—Bpowm) T (— + 1)
4 By

B {0 (B2 +1) = YO 1~ Bymim (X5) — o)
g +B720 (Bp +1) '

X

‘We now have

: 2B B 2
Va’rWt ( ale ) = )\2B'r2n €xp <—2Bman) {F (_'rn + 1) -T (_m + 1) } )

By

on usiﬁg (6.11). Next, we use (6.12) to write

Varw: (—al—WT—n—) = Ayexp (—2Bnawm) {Bmpm (Xi)}2

e G

We now consider covariances, and use (6.13) to obtain

ale 8le Bm
T — - —_n
Covw: (83 '3 ) A1Bm exp (—Bmowm) I (Bt + 1)

x Bt {\IJ (% +’1) - (1)}

~A9 B, exp (—;Bmawm)

y [ r (%f"‘ + 1) 2{712 = Pwmbm (Xi) — awm} — J
(% +1) (01 = Bwmbm (Xi) —owm} |
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Next, we use (6.14) to derive

Covwy (%lg;l—, g;::;;) = Ajexp (_Bman) {Bmpm (Xl)} r (EB[E + 1)
xB;! {\I! (-B—"l + 1) - (1)}
By
—Ag exp (—2Bman) {Bmpm (Xl)}
r (%fn“ + 1) {772 - ﬁmem (X‘L) - Ole}
9 .
T (8 +1) {m — Bwmpm (X:) — awn)

X

Finally, we use (6.15) to write

Covwt ( 8le 6lwm ) = MABpexp (—2Bman) {Bmpm (Xz)}

dawm’ OBwm
| 9B, B, \?
X{I‘(Tt-Fl)—F(E—}-l) }

This list provides us with all the elements required to obtain the variance covariance matrix
of the MLEs from the Weibull distribution, after this has been fitted to data also with an
underlying Weibull distribution, but different scale-stress relationship. It also enables us to
compute the distribution of Byy,1o from the mis-specified model; (6.16) gives this asymptotic

variance.

6.3 Entropy for Weibull to Burr

We generalise results for the Arrhenius and Log-linear relationships, and derive the entropy
function for the Weibull distribution, when this model is fitted to data with an underlying

Burr distribution. Using previous results, we have

exp (mB.ap) exp {mB.Lpp; (Xi)} Prm

) , (6.18)

Egp [};imB*] _

exp (mB.ap) exp {mB.fpp, (Xi)}
I'(a)

X [{0‘3 + Bpp: (Xi)} P + %] , (6.19)

Ep [Y"P Y| =

and

exp (mB.ag) exp {mB.fgp; (Xi)}
I'(a)

[ {as + Bpp: (Xi)}? Pt

2{ap+Bpp (Xi)} Py, | P
B‘ Bmt +#

(6.20)
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where P;, P/ and P;’ are given by (3.27), (3.28) and (3.29), with 3 replaced by B, and «
replaced by a. Using (6.1), we write the entropy function as ‘

T (1) — ¥ (a) £
Ep = El[lw.=nlnB,+n(B,-1) {aB + —T—} + Bg (Bs — I)Znipt (X3)
: =1
k
—nBraws — Bifw. Z P (Xi)
i=1
_exp (—Bsaws) exp (Biag) P

_I‘(a) R(B*aﬁW*))

where now
k
R (B*, ,BW*) = Z n; €xXp {_B*ﬁW*pm (Xl)} €xp {B*:BBpt (Xl)} .
i=1

Note that, with our usual convention for partial derivatives,

OR (Bx, Bws)
OB,

k
> niexp{—BuBuw.pm (X:)} exp {BuBroy (Xi)} [Bpoe (Xi) = Buwapm (X)),

i=1

Rl,O (B*))BW*) =

fl

OR(Bu, Bw)
aﬁW*

k
= =) Bunip, (X:) exp {~B.Bw.pm (Xi)} exp {B.Bpp, (Xi)},

i=1

RO,l (B*)IBW*) =

and, for later use,

OR1,0 (Bx, Bws)
0B,

. .
= Zni exp {—B*ﬂW*Pm (Xi)} €Xp {B*ﬁBPt (Xz)} [53»0:3 (X:) = BwPm (Xi)]z',

i=1

R2,0 (B*: ﬂW*)

a1%0,1 (B*, ,BW*)
aﬁW*
k

= > BInip, (X:)’ exp {~BuBuwuom (Xi)} exp {B.Bpp; (Xi)},

i=1 :

R0,2 (B*, ﬂW*)
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and

BRI,O (B*v ﬁW*)
8IBW*

k
= =) nipp (Xi) exp (~BuBiwsm (Xi)) exp (B«Bppy (X))
=1

X [1 + B. {ﬁBpt (X'L) - IBW*pm (X’l»)}] :

Rl,l (B*a ﬂW*) =

We use (6.2) and (6.18) to write

aws = B*—l In {exp (B*CYB) PlR(B*aﬁW*)} ,

nl (a)

- and (6.3) to derive the profile entropy function; this is given by

U(1)- k
Bp = niBo+n(B- 1o+ T4 5y 5 o) Y a0
i=1
—-nBy,ag — nln Py — nln R (B, Bw.)
k

+nln{nT (a)} = BeBw. > nipm (X:) =1,

=1
and has first derivatives

OEf 1 -1 B, B,
3B, nB, " +nT {i[’(l)—‘?(a)—‘l’(—;_—+1>+\Il(a—7>}

an,O (B*> ﬂW*)
R (B*> )BW*) ’

k
+ Zni {ﬂBpt (Xz) - ﬂW*pm (X‘L)} -
=1

and

8E§ — _nRO,l (B*v ﬂW*
OBw s R (B, Bw)

) k
- B* Znipm (X,) .
i=1

6.3.1 Simplifications when p,, (X;) = p, (X3)

If we set p,, (Xi) = p, (Xi), then, with equal scale-stress relationships, the entropy values

will have the following properties:

Property 1

The first property is

~

Bw. = Bp-
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+
We prove this by examining the form of 36—55— for p,, (Xi) = p; (X;); this is given by

OBf _ By i nipy (Xi) exp {=Bupy (Xi) (Bws — Bp)
OBw+ i1 7 €xp {—Bup, (Xi) (B — B5)}

k
) - B Zmpt (X3),
=1

which, if By, = Bp, reduces to zero. Hence, B is a root of this function. To show that this
is the only root, we consider the gradient of this function for 8y, > g and By, < Bp. If
the gradient is always increasing or always decreasing, then this will prove that the root is
unique, since the function will never cross the horizontal axis again for values greater than
or less that Bg. The gradient of this profile score function is given by %?—VE* which now, with

EW* = B, simplifies to

Bz k ) k 2
—-7* 'nz;mpt (X)) = Enmt (Xs) :
1= 1=

a term which is now independent of Sy,,. Hence, this gradient will always have the same
sign, thus proving that Bg is the only root of the profile entropy score function. In fact,
the gradient is negative, since the term in brackets summarises the spread of p, (X;), which
is positive. The function also appears in the denominator for the variance of aw. and
Bw. above, which, as Table 5.5 shows, is positive. This property will simplify matters
considerably, since functions like (6.17) then reduce to n. We also have one less entropy
value to estimate, so simplifying the search for entropy values to one dimension. The algebra
for obtaining the variance covariance matrix of the mis-specified Weibull MLEs will also be

greatly simplified.

Property 2

The profile entropy function is directly proportional to the sample size, and its maximising
value is independent of k, X; and n;. We prove this second property by using the first, so
that BW* = Bp. Using this, the profile entropy function becomes

n 1nB*+(B*—1){aB§Lw}—B*aB—ln{r<%+1>r(a—%->}] +C,

where

v
C=nInT(a)—n-PBp Y nip (Xi).
i=1

If we ignore this term, since this is independent of B,, and hence does not contribute to E*,

then we see that the maximising value of this function is independent of the sample size,
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how this sample is arranged within stress levels, and the values and number of stress levels

used.

Property 3

The entropy value for the Weibull shape parameter B, is identical to the entropy value
for the shape parameter of the Weibull distribution when no acceleration takes place and
the same shape parameters from the Burr distribution are used (remember that B, is not
affected by the value of ¢;,). This final point does not really require a proof, since we use
our work from the non-accelerated case. Here, we saw that the entropy value of the shape
parameter from the Weibull distribution was independent of the scale parameter from the
Burr. Thus, no matter what value of ¢ was chosen, the value of B. (denoted by S, in
the non-accelerated case) always remained the same. Since the process of acceleration is
equivalent to fitting a distribution with varying scale parameter at each stress level, then
the entropy value for B, will be the same as the non-accelerated parameter, simply because
it is not affected by the value of the Burr scale parameter chosen and set at each stress level.

6.3.2 The variance structure of the mis-specified MLEs

We list the elements that make up the variance covariance matrix of the mis-specified MLEs.

We first consider expected values of second derivatives, and use (6.4) to write

exp (—B.aw.) exp (B«ap)
I'(a)
R0 (Bx, Bw) P+
X 2{(ap — aw:) P1 + P{} R1,0 (B, Bw.)
+{(az - aw.)’ P + 2 (a5 — aws) B + PY'} R(B., By.)

2
o lW*] nB % +

b [ 5B?

We now make use of (6.5) to write

3zlw*] _ BZexp (—Biaw) exp (Bsa) PiR (B, By.)

~Es [aaev,, T'(a)

Using (6.6), we see that

82lw*] _ exp (—Bu«aws) exp (Beap) P1Ry 2 (B, ﬂvlv,.‘)
80%., T (a)

Next, with (6.7), we have

_EB[

Iy« _ o (—B.awx) exp (Bsap)
8B.oaw.| T (a)

% PIB*RI,O (B*):BW*) +
[P1 + B« {(a — aw+) PL+ P} R(B., Bw.) |

_EB[
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Now we use (6.8) to write

_EB

0B,8Bw. I'(a)

% {(CYB _QW*)PI +P{} RO,I (B*nBW*)
+P1Ry 1 (Bx, Bw)

62l * k eX —B*CY * eX B*Of
i=1 .

Finally, using (6.9), we consider

ale* :| _ —B, exp (_B*aW*)exP (B*aB) PIRO,l (B*,,BW*)

Bow-0Buwe| T (a)

_Eg [
We introduce further notation to write the elements which make up the matrix V, and write

3—j
5

and

g; =ap+

Thus, using (6.10), we have

8B, ) 72 T (a)
Ty {g2 — aw«}? = T1{g1 — aw.}?

: ' (2Bs '(g—2Bx R (2B., Bw.

) m{w Al ,g} (2B., Bw)

+2{T2 (g2 — awx) = T1 (g1 — @)} R10 (2Bu, Bws)
+{T2 — T'1} Ra0 (2Bs, Bw.)
2exp (—Bsaw«) exp (Bsap)T (% + 1) T (a _ %)
I (a)

x [ {(g | — aw) (g1 — go) + LG (=) } R(B., Bw.) } .
+ (91 — 90) R1,0 (Bs, Bw.)

Vars (8lw*) - . { \f' (1) — ¥ (a) } L &P (—2B.aws) exp (2B.ag)

Now, using (6.11), we see that

Olw« ) _ B2 exp (—2B.awx)exp (2B.ap) (T2 — I'1) R (2B, Bw,)

Varg <6aw* T (a)
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Next we consider Varg (%“ﬁ), which, using (6.12) equates to

exp (—2B.awx) exp (2Bxap) (T2 — I'1) Ro2 (2Bx, Bw..)
4T (a)

We now start to examine the covariances; from (6.13)

Cow Olw. Olw.\ _ B.exp(—B.ow)exp(Buap)T (B +1)T (a— 2=)
#\8B." daw.) ~ T (a)
B, exp (—2B.«aws) exp (2B.ag)

X {gl - gO}R(B*’ IBW*) - T (a)

N {T2 (92 — awx) —T'1(g91 — awx)} R (2B, Bw.)
+{T2 —T'1} R10 (2Bs, Bws)

Next, we consider (6.14)

Cow Olws Olwy\ _ —exp(—B.aw.)exp(Bsap)T (B2 +1)T (a—2)
B\ 8B, 08w, I (a)
exp (—2B«aws) exp (2B.ap)
2I' (a)
{P2 - Pl} Rl,l (2B=n ﬂW*) +

8 { {Fz (92 — awx) = T1 (g1 — aws) — Eﬁh} Ro,1 (2Bx, Bw+)

+ x {91 — go} Ro,1 (B, Bws) —

and finally, from (6.15), we derive

Covs < Olws Olw. ) _ —B.exp (—2Bsaw.) exp (2Bsap) {I's —T'1} Ro1 (2B., Bw.)

daws’ Bws) 2l (a) |

We now have all the elements required to compute the variance covariance matrix of the
MLEs from the mis-specified Weibull distribution, when this is fitted to data with an un-
derlying Burr model and either Arrhenius or Log-linear relationships are used in both cases.
These elements are used in the derivation of the mean and variance of §W,10.' The form
of this has been considered in previous scenarios, and so we just note that, asymptotically,
EW, 10 will be Normally distributed with mean Bw,10 (E*, AWx, EW*) and variance given by
(6.16).

6.4 Entropy for Weibull to Gamma

We derive results to obtain theoretical counterparts to the Weibull MLEs when this distri-
bution is fitted to data with an underlying Gamma model; as in previous cases, we do this
simultaneously for both Arrhenius and Log-linear scale stress relationships. We first derive

expectations required to compute the entropy function and its derivatives, and use (5.21)
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to obtain an expression for Eg [Y;™]. The remaining expectations are given by

o [y tny] = oo InPen CNEMAT) (05 1 5gp, (X) + W (m+7)},

(6.21)

and

exp (mag) exp {mPBgp; (Xi)} T (m + 1)
I'(r)

x {{ag +Bepy (X)) + T (m+7)2 + T (m+ 7‘)] . (6.22)

B [y (nYi)?] =

Thus, with appropriate substitutions for m, and (6.1), we have

k
Ec = Ellw«=nlnB.+n(B.i—1){acg+ ¥ (1)} +Bg(Bs—1) Znipt (X;) — nB.aw«
. . i=1
k : )
e &P (=Buows) exp(B.ag) T (Ba +7) R(Bu, )
—B*ﬂW* ; iPm (X‘L) r (T) )
where
k
R(B.,Bw.) = Y_ 1 exp {~BuBiysPm (Xi)} exp {B.Bps (Xi)}-
- i=1
A slightly more compact notation is possible here; we have
_ ®R(B.,By.)
R0 (Bx, Bws) = T
k
= > niexp{—BuBw.pm (Xi)} exp {B.Bep: (Xi)}
i=1
x {8t (X)) = Bwapm (XY,
aJR B*) ﬂ *
Ry, (Bs, Bw.) —%
aﬁW:u:

k .
= (1> niBip,, (X:) exp {—B.Byw.pm (Xi)} exp {B.Bop; (Xi)}

=1
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and, for later use,

8R1,0 (B*) ﬂW*)

aﬁW*
k

= = ipp (X5) exp {~BuBwrupm (X:)} exp { BBy (X:)}
=1

X [1+ B {Bp: (Xi) — Bwpm (Xi)}] -

Rl,l (B*7 IBW*)

We use (6.2) to write the parameter ap. as

3 exp (Byag)T (B« + T) R (Bx, Bws)
.B*lln{ g nT () W },

and (6.3) to derive the profile entropy; this is given by
-k
Ef = nlnB.+n(B.—1)¥(r) —nag+Bg(Be—1)> nip, (Xi)
i=1

k
—nlnl (By +7) +nlanl (1) = nln R (Bs, Bw.) = BuBw Y Mibm (Xi)

i=1
which has profile score functions
Q_E_ZE = nB 1+ n¥(7) +,3Ginipt (X;) —n¥ (Be+71) —
0B i=1

an,O (B*) IBW*
R (Bx, Bw.)

k
) - ﬁW* Zntpm (XZ) )
=1

and

BEE _ _nRO,l (B*aﬂW*
aﬁW’k R(B*)ﬂW*)

) _p%
- B* Znipm (X,L) .
i=1 .

As for the Burr distribution, we note that considerable simplifications take place if the same

- scale-stress relationship is used in the true and mis-specified distributions. These include

the fact that the theoretical counterpart to EW* is Bg, while the entropy values are not
affected by the overall sample size, how this sample is arranged among the stress levels, the
number of stress levels we take and how we chose the stress values. The proofs for such
results are analogous to those for the Burr distribution, and hence are omitted. We further
note that the value of B, is not influenced by the scale parameters chosen from the Gamma
distribution, and that entropy values for this parameter are the same as the non-accelerated
counterparts provided the same shape parameters from the Gamma distribution are taken.

‘We continue by deriving the variance covariance matrix of the mis-specified Weibull
MLEs. Again, considerable simplifications take place if the same scale-stress relationships
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are taken for the true and mis-specified distributions.

6.4.1 The variance structure of the mis-spéciﬁed MLEs

Below we list the expectations and variances that make up the variance covariance matrix
of the mis-specified Weibull distribution. We first consider the elements which make up the
matrix A; these are given by

%l _o . exp (—Biaws)exp (Biag) ' (By + 7)
_E [O%lw«] _ 2 p W G
| ar| = et T ) '
[{ac — aws + ¥ (B + 1)’ + ¥ (B, +7)| R(B., Bw.)
X +2{ag — aw« + ¥ (B, +7)} R1,0 (Bx, Bw+) ,
+R2,O (B*a ﬂW*)
82ZW* BE €Xp (_B*aW*) exp (B*Oé(;) I (B* + T) R (B*’ ﬁW*)
—Eg - ’
da,, I (7)
62lW>l= €Xp (_B*aW*) exp (B*aG) r (B* + T) R0,2 (B*a IBW*)
—EG D) = ’
OB I'(r)
_E O?lw. _ X (—B.aws«) exp (Bsag) I' (By + 7)
¢ OB.0aw.| L' (7)
| B.Ri1o (Bs, Bw) +
1+B* {QG— aW*+\IJ(B* +T)}R(.B*,,BW*) ’
. , exp (—Biaw.) exp (Bxag) ' (Be + 7)
e [53*55W*:! ; ribm (X) + ()
X [{ag — aws + ¥ (B« + 7)} Ro,1 (Bx, Bw) + R1,1 (Bx, Bw)]
and
5 Plw. | —B.exp(—Biaws)exp (Beag) T (Bs +7) Ro (B, Bys)
¢ | Baw.08w.| T (1) '

We next consider the variance covariance structure of the scores; with

_D(jB.+7)*7
! L(r)?7 7’
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and
hj=ag+¥(jB.+7),

we can list the elements which make up the matrix V below : the three variances are

Olw«\ ' exp (—2B.aws) exp (2B.ag)
Varg ( 5B, > = n¥ (1)+ T (r)
{1“2 (ha — aws)? = T1 (h1 — aws)? + D20 (2B, + 7‘)} R (2B, Bur.)
X +2{T2 (h2 — awx) — T'1 (h1 — aw.)} R1,0 (2Bx, By)
+ (I = T'1) R20 (2Bs, Bwy)
2exp (—Beawsx) exp (Bsag) ' (Bs + 1)
- I'(7)
y [ { (= ho) (b~ aw) + ¥ (B. +7)} R(B.. Bu.) }
+ (h'l - hO) Rl,O (B*; ﬁW*) ,
( Olw« ) B2 exp (—2Bsaw.) exp (2Bsag) {Ts — T'1} R (2B, Bw)
Varg = )
aaW* I (T)
and
Var ( Olw ) _ exp (—=2B«aw.) exp (2Bsag) {I's = T'1} Ro2 (2Bs, Bw.)
“\®Bw.) 4T (1) !

while the three covariances are

Covg (BIW* Olw« ) _ B, exp (—Biaws) exp (Bag) I' (B + 7) {h1 — ho} R (B, Bw.)
OB, ’ Oaw« r(r)
B, exp (—2B.awsx) exp (2B.ag)
- I'(7)

v {].—‘2 (hz — aW*) - Fl (hl - QW*)} R (2B*; ﬂW*)
+ (T2 = I'1) Ra,0 (2Bs, Bwa) ’

( Olws Olwy ) exp (—2B.aw.) exp (2B.ag)
C ovg =

5-B—»:’ 8ﬁW* 2r (T)
) [ {T2(hz - aws) = Tt (1 — aw) — S35} Ro (2B, By ]
+ (T2 = I'1) Ru,1 (2By, Bws)

_exp (=B.ows) exp (Brag) T (By +7) {h1 — ho} Ro,1 (Bs, Bw.)
I'(7) ’
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and

Covg < 8lW* alW* ) _ —B, €xp (_QB*CYW*) exp (ZB*QG) {P2 - Fl} RO,I (2B*> IBW*)

daws’ 0Bw.) 2T (1)

Using all these elements, we are now able to construct an asymptotic theorgtical correlation
matrix for the MLEs from a mis-specified accelerated Weibull distribution, when this has
been fitted to data with an underlying accelerated Gamma model. We can also use this to

compute the theoretical mean and variance of §W, 10-

6.5 Entropy for Weibull to Lognormal

We derive entropy values for the Weibull distribution when this model has been fitted to
data with an underlying Lognormal distribution. The expectations required to do this are
given by (5.22), (5.23) and (5.24). Using (6.1), we write the entropy function as

k
Eiy = nlnB.+napny (Be—1)+ By (Bx —1) Z”iﬂt (X3)
i=1

k .
—TLB*QW* - B*ﬁW* Z'n’%pm (X’t)
i=1
o2B2
—exp (—B.aw.) exp (B*QLN +— *> R (Bx, Bws)

where

k
R (B*j7ﬂW*) = Zni exp {_B*6W*pm (X‘t)} exp {B*'BLNpt (XZ)} :

i=1
For future reference, we also note that

OR (B, Bws)

RI,O (B*:ﬁW;k) = aB

k
= Z i €Xp {— BaBwsPrm (Xi) } exp { B« Brnps (Xi)}

i=1

X {Brnos (Xi) — Bwsbm (Xi)},

OR (B, Bws)
8ﬂW*

L .
= —B.> nipy (Xi) exp {—B.Bw.pm (Xi)} exp {BuBrnp; (Xi)}
=1

RO,l (B*) ﬂW*)
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0?R (B, By,
- Ropo (Bs, Bw) = %TﬁW)

k
= Z n; €xp {— B« BwsPm, (Xi)} exp {B«BLn o (Xi)}

i=1

X {BLnpe (Xi) = Buwubm (Xi)}>,

&R (B, By.)
0B%y.

k .
= B2 nipp (X:)? exp{—BuBwpm (Xi)} exp {BuBrypy (X)),
=1

R0,2 (B*7 ﬂW’*)

and

OR1,0 (B, Bwx)
6ﬂW:o:

k
= - Z NP, (Xi) €Xp {“B*ﬁW*Pm (Xi)} exp {B*:BLNpt (Xi)}
i=1

x [1 + B. {ﬂLNpt (Xl) - ﬂW*pm (X'L)}] -

Rl,l (B*7 IBW*) =

We use (6.2) to write

n

22
1 exp (B*aLN + Z%) R (B*,ﬂW*)
QW* = B*_ h’). )

and insert this into the entropy function to obtain the profile entropy given by

no?B?
2

k
Efy = nlnB.—norn + By (Be—1)> nip, (Xi) —
=1

k
-nlnR (B*a ﬂW*) - B*BW* Znipm (X@) .

=1

This has first derivatives

. an,O (B*,ﬂW*)
R (B*) IBW*)

OFEfy
0B,

K
= nB;'+ By Y nip, (Xi) —no’B,

=1

.
—Bw+ Zmpm (Xi),

=1
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and

(9E'2'N — —nRo,l (B*)ﬂW*
8BW* R(B*)/BW*)

) k
— B, Z TiPm (X'L) .

Using these functions, we are now able to derive theoretical counterparts to the MLEs of
the Weibull distribution, when this has been fitted to data with an underlying Lognormal
distribution, using either Arrhenius or Log-linear scale-stress relationships. As in previous
cases, considerable simplifications take place when deriving entropy values for the Weibull
distribution if the same scale-stress relationship is used for this mis-specified distribution

and the true Lognormal. If we set

P (Xi) = o (Xa)

then EW, = Bn- Using this, we see that the profile entropy score function with respect to

B, becomes

6EZN — -1 2
8__B*— = ’I'LB,,= — no B*,

giving
B, = 0_1,

a result analogous to that in the non-accelerated scenario. Also, if we have the same scale-
stress relationship for true and mis-specified models, then entropy values are independent
of the sample size, number of stress levels and the values that these take, with proofs as
for the Burr distribution. If different scale-stress relationships are used for the true and
mis-specified distributions, then entropy values do not undergo such simplifications, and
we only note that they are independent of the total sample size if the sample is arranged
equally amongst the stress levels.

Now that we can derive theoretical counterparts to the MLEs from the Weibull dis-
tribution, the next step is to use these to compute the variance covariance matrix of the
mis-specified Weibull MLEs. We consider this in the next section.

6.5.1 The variance structure of the mis-specified MLEs

In order to obtain the distribution of Weibull MLEs when this model has been subjected
to mis-specification and fitted to data with an underlying Lognormal distribution, we must
obtain expected values of second derivatives and the variance covariance matrix of score

functions, where variances and expectations are taken with respect to the Lognormal dis-
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tribution. We first list the elements which make up the matrix A :

2Ly, ]

o?B2
b { 5B? )

nB;? + exp (—Byaws) exp <B*aLN +
{0-2 + (aLN — OWx + 0'23*)2} R(B*aﬁW*)
X +2 (aLN_aW*+J2B*) Rl‘O (B*)IBW*) ?
+R2,0 (B*uﬁW*)

Oy 2p2\
—FErn [ ;’V } = B2 exp (—B.aw.) exp (B*aLN 4+ 7 > R (Bx, Bw.),
6aW*
Olw.] 2B?
—Ern [—;V] = exp (—Biaws) exp (B*QLN + ) Ro2 (By, Bws)
6;6W* 2
ale* O'ZB,%
~Ern I:——OB*@O/W*] n — exp (—Bxawx) exp (B*aLN + 5 )

v {1+B* (aLN_aW*+UzB*)}R(B*7:6W*)
+ByR1,0 (Bs, Bw) ’

82Uy i oB?
fELN [m] = ;nil’m (X;) + exp (—Byawy) eXP <B*apN + ) )

x {(aLn ~ aws + 0®B.) Ro,1 (B, Byys) + Ru1 (Bs, Bws) }

and, finally, we have

2p2

.ale* g B*
2

6aW* aﬁW*

—FErn [ ] = — By exp(—B.aw.) exp (B*aLN + > Ro1 (Bx, Bws) -
We now list the elements that make up the matrix V, writing
Ej =exp (jo*B2),

and

hj = QN +j0'2B*.
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Thus, the three variances are

Varrn (c’(;lg/*) = na? + exp (—2B.aw.) exp (2B.arn)
{5202 + By (hy — aws)? — Ey (hy — CYW*)2} R (2Bs, Byy)
X +2{Ey (hg — awx) — E1 (h1 — aws)} R1,0 (2Bs, Bwy)
+{E2 — E1} R20 (2Bx, Bwy)
5282\ -
—20% exp (—Byaw.) exp < 5 )
o {1+ Bu (h1 — aws)} R(Bx, Bys)
+ByRig (B, Bws)
: Olw «
: Varrn <3a‘;VV ) = BE exp (—2B.aw«) exp (2B*aLN) {Eg — E1} R(2B,, )BW*) ,
‘ and
v ' Olw«\ _ exp (—2B.aw+) exp (2B«arn) {E2 — E1} Ry 2 (2Bs, Bywyx)
1 a'rLN 8ﬁW —_ 4 3

while the three covariances are

O.ZBZ

) = B20?exp (—B.aw.) exp (B*aLN + 5 ") R (Bx, Bws)
— B, exp (—2Bsaw.) exp (2B.arn)

{E> (hg — aws) — E1 (h1 — aws)} R (2Bx, Bws)
+{E2 — E1} R1,0 (2Bx, Bw) ’

6lW* 8lW*
8B* . aaW*

OO’ULN (

| Olw. Olwe\ _ ) o?B2
\ Courn (8_}3*’ 5 ﬂw*) = —B.o”exp (—~Bsow.) exp (B*auv +— Ro,1 (Bx, Bye)
exp (—2B.aw.)exp (2B.arn)
+ 2
{Ez (ha — aws) — By (h1 — ows) — } Ry 1 (2B, Bw.)
+ (B2 — B1) Ry (ZB*,ﬁW*)
and
C 6lW* 8lW* _ —B* €Xp (—QB*OZW*) exXp (2B*aLN) {Eg — El} RO,l (QB*, ,BW*)
OULN bl - .
Oaw. aﬂW* 2

These expectations, variances and covariances provide us with all the elements required to

compute the variance covariance matrix of the Weibull MLEs when this distribution has
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been fitted to a set of data with an underlying Lognormal distribution. We check our results
in the next chapter.

6.6 Summary

This chapter outlined the theory required to compute entropy values from the Weibull
distribution, and the variance covariance structure of the mis-specified MLEs. The added
relationship linking scale to stress further complicated rhis—speciﬁcation, and we had to allow
for mis-specifying this relationship also. We derived the theory necessary to obtain entropy
values when we mis-specified just the scale-stress relationship (either Log-linear or Arrhe-
nius), when we mis-specified the Weibull distribution and fitted this to data from another
model (either the Burr, Gamma or Lognormal), and finally, when we mis-specified both the
distribution function and scale-stress relationship. The theory we developed allowed us to
consider the three scenarios simultaneously. In the next chapter, we take a more practical
approach to mis-specification in accelerated life testing, and use the theory outlined in this
chapter to assess the effects of using the Weibull distribution to model a data set with some .
other underlying distribution.



Chapter 7

Mis-specification In Accelerated
Life Testing : Further Practical

Considerations '

In the last chapter, we outlined the theory required to compute entropy values and standard
errors of the mis-specified MLEs. We now use this theory to assess some of the effects of
mis-specification, and to consider how well a mis-specified distribution fits the data. We
take a similar approach to the non-accelerated case, and first use simulations to examine
the effects of mis-specification. This also provides us with a check on the theory developed
above, and enables us to assess how often we prefer the mis-specified distribution over the
true, using a criterion based on maximised likelihoods. Running simulations also allows
comparison between estimates of By from true and mis-specified distributions. We then
assess the agreement between the mis-specified distribution and the true underlying model,
and compute maximum absolute distances between the cdfs of true and mis-specified dis-

tributions, across all stress levels, and for varying true parameter values. This approach

- is carried out for the scenarios described above; thus, we begin by first mis-specifying the

scale-stress relationship.

7.1 Getting the scale-stress relationship wrong

7.1.1 Fitting GWA to GWP
Simulation studies

We report simulations to assess how well sample MLEs and their standard errors agree with
theoretical counterparts, when we vary the true parameter values, number of stress levels
and sample sizes set at each stress. As in cases where we specify the correct underlying
distribution and scale-stress relationship, we split the results into three main parts corre-
sponding to k£ = 2, 3 and 4 stress levels. We then set Bp equal to 0.5, 1, 2 and 3, since
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in practice, these values cover most of the cases of interest, but here only report results for
Bp = 2; possible variations for k, X;, n and n; are discussed in Section 5.1.2 above. When
we run simulations for all sets of stress levels, we record the MLEs from both the true and
mis-specified distributions, and their standard errors, the entropy values corresponding to
the MLEs from the Weibull Arrhenius model, and the theoretical standard errors from both
distributions. We also include EW,lO for both cases and the corresponding standard errors
of these estimates. We compare this quantile with a true value of 355.9593 for Bp = 2. The
results are summarised in Tables 7.1 and 7.2 for £ = 2, Tables 7.3 and 7.4 for £ = 3, and
Tables 7.5 and 7.6 for k = 4. Generally, we see excellent agreement between sample and
theoretical standard errors of MLEs from both true and mis-specified distributions across

~ all values of k. As the sample size increases, this agreement improves. We also observe

good agreement between MLEs from Gw 4 and the corresponding entropy values, even for
relatively small sample sizes. The probability of fitting the mis-specified model for k£ > 3, is
as high as 18% for small sample sizes, but decreases to zero as n increases. If we compare
these probabilities for equal and non equal allocations, then we generally see a rise if we
place more observations at the higher stress levels. For example, when k& = 3 and we have
100 observations at each stress level, then we prefer Gw 4 approximately 3% of the time.
In contrast, if we allocate 250 observations to X3 and 25 to the remainder, then this figure
increases to 14%. We also observe an increase if we allocate 200 observations to X; and 50
to X5 and X3. The standard error of ﬁw, 10 for both distribution functions increases as the
number of observations in the middle and higher stress levels increases. On the whole, there
is generally good agreement between EW, 10 from true and mis-specified distributions, and
when we carry out simulations for 2 stress levels, there is no difference at all. This reflects
the fact that with k = 2, we effectively have a reparameterisation of the model, so whether
we express this in terms of awp and By p or awa and By, makes no difference.

We conclude that theoretical results match up with simulations, and that we have derived
the correct entropy values and standard errors of the mis-specified MLEs, and proceed, in

the next section, by examining the penalty we pay for fitting the wrong distribution function.

The effects of mis-specification

" By maximising the -entropy function, we obtain the parameter values for the mis-specified

distribution that provides the best possible approximation, in the circumstances, to the true
underlying model. It is appropriate to assess just how well this mis-specified distribution
does this, and if, for a particular set of true parameter values and stress levels, we may pay
a large penalty by fitting the incorrect distribution. We can approach this problem in a
number of ways; firstly, by comparing theoretical hazard functions of true and mis-specified
distributions, and seeing whether significant distances occur between these. Since we also
have a relationship linking scale and stress,' then we could also compare these functions for
both distributions, or report the relative error between the scale parameters of true and mis-

specified models. However, we take a similar approach to that used in our non-accelerated
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n1, N2 50,50 100,100 250,250 500,500
By 2.0412 2.0179 - 2.0076 2.0031
By 2 2 2 2
S 0.1644 0.1124 0.0699 0.0491
T 0.1559 0.1103 0.0697 0.0493
aw A -2.4647 -2.4603 -2.4638 -2.4638
aw A -2.4632 -2.4632 -2.4632 -2.4632
S 0.2729 0.1837 0.1269 0.0859
T 0.2706 0.1914 0.1210 0.0856
Bw 4 3057.5631 | 3056.5117 | 3058.0804 | 3058.2086
Bwa 3058.1277 | 3058.1277 | 3058.1277 | 3058.1277
S 103.0099 69.0940 45.8022 32.3376
T 101.9376 72.0808 45.5879 32.2355
Bwo(a) 363.3199 | 358.9180 | 357.2736 | 356.4884
46.2130 31.5229 19.9463 14.0966
T 44.8286 31.6986 20.0479 14.1760
Pr (Fit Gwa) - - - -
Bp 2.0142 2.0179 2.0076 2.0032
S 0.1644 0.1124 0.0699 0.0491
T 0.1599 0.1103 0.0697 0.0493
awp 7.9966 7.9974 7.9992 7.9997
S 0.1002 0.0678 0.0442 0.0312
T 0.0986 0.0697 0.0441 0.0312
Buwp -0.0200 | -0.0200 | -0.0200 | -0.0200
S 0.0007 0.0005 0.0003 0.0002
T 0.0007 0.0005 | 0.0003 0.0002
BW,m(p) 363.3199 | 358.9180 357.2736 | 356.4884
S 46.2130 31.5229 19.9463 14.0966
T 44.8286 31.6986 20.0479 14.1760

Table 7.1: Fitting Gwa to Gwp for k = 2, Bp = 2 with equal allocations. We show the
sample means and standard errors of parameters, where figures are based on at least 10000

replications.
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n1,m2 25,175 175,25 50,150 150,50
By 2.0200 2.0228 2.0194 2.0195
By 2 2 2 2

S 0.1149 0.1140 0.1117 0.1136
T 0.1103 0.1103 0.1103 0.1103
awa 24440 | -2.4876 | -2.4553 | -2.4760
awa 24632 | -2.4632. | -2.4632 | -2.4632
S 0.2472 0.3302 0.2007 0.2403
T 0.2465 0.3260 0.1998 0.2400
Bwa 3048.9370 | 3065.9691 | 3054.3836 | 3062.1271
Bwa 3058.1277 | 3058.1277 | 3058.1277 | 3058.1277
S 109.2660 | 110.2739 | 83.5282 | 83.2521
T 108.9759 | 108.9759 | 83.2317 | 83.2317
Bwo(a) 358.1367 | 360.4713 | 359.1105 | 359.7035
S 445876 | 30.1261 | 36.1343 | 30.4144
T 44.2165 | 29.4795 | 36.3534 | 29.9869
Pr (Fit Gwa) - - - -

Bp 2.0200 2.0228 2.0194 2.0195
S 0.1149 0.1140 0.1117 0.1136
T 0.1103 0.1103 0.1103 0.1103
awp 7.9878 8.0025 7.9951 8.0008
S 0.1348 0.0618 0.0959 0.0604
T 0.1344 0.0615 0.0960 0.0605
Buwp -0.0199 | -0.0201 | -0.0200 | -0.0200
S 0.0007 0.0007 0.0005 0.0005
T 0.0007 0.0007 0.0005 | 0.0005
Byw10(p) 358.1367 | 360.4713 | 359.1105 | 359.7035
S 445876 | 30.1261 | 36.1343 | 30.4144
T 44.2165 | 29.4795 | 36.3534 | 29.9869

Table 7.2: Fitting Gw 4 to Gwp for k = 2, Bp = 2 with unequal allocations. We show the
sample means and standard errors of parameters, where figures are based on at least 10000

" replications.
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n1,ny 25.25 50,50 100,100 | 300,300 | 500,500
ns 25 50 100 300 500
By 1.9955 1.9699 1.9575 1.9499 1.9481
By 1.9451 1.9451 1.9451 1.9451 1.9451
S 0.1858 0.1279 0.0895 0.0510 0.0395
T 0.1757 0.1242 0.0878 0.0507 0.0393
awa 21442 | -2.1513 | -2.1509 | -2.1551 | -2.1552
awa -2.1558 | -2.1558 -2.1558 -2.1558 -2.1558
S 0.3626 0.2582 0.1808 0.1037 0.0809
T 0.3589 0.2537 0.1794 0.1036 0.0802
Bwa 2063.7244 | 2967.2885 | 2067.5143 | 2969.3653 | 2969.4507
Bwa 2069.7718 | 2969.7718 | 2969.7718 | 2969.7718 | 2969.7718
S 141.2752 | 100.3784 | 70.3140 | 40.3386 | 31.5862
T 139.7392 | 98.8105 | 69.8696 | 40.3392 | 31.2466
B 10(4) 365.7774 | 361.3433 | 358.8949 | 357.6428 | 357.3055
57.8430 | 40.1802 | 28.2605 | 16.2582 | 12.6514
T 56.2254 | 39.7573 | 28.1127 | 16.2309 | 12.5724
Pr(Fit Gwa) | 0.1738 0.0923 0.0299 0.0009 0
Bp 2.0545 2.0269 2.0135 2.0048 2.0032
S 0.1903 0.1314 0.0920 0.0522 0.0405
T 0.1801 0.1273 0.0900 0.0520 0.0403
awp 7.9929 7.9971 7.9977 7.9994 7.9996
S 0.1390 0.0980 0.0691 0.0396 0.0312
T 0.1376 0.0973 0.0688 0.0397 0.0308
Bwp -0.0200 | -0.0200 | -0.0200 | -0.0200 | -0.0200
S 0.0009 0.0007 0.0005 0.0003 0.0002
T 0.0009 0.0007 0.0005 0.0003 0.0002
Bwo(p) 365.5324 | 360.8675 | 358.2848 | 356.8197 | 356.5389
56.2596 | 39.1775 | 27.6762 | 15.7984 | 12.3582
T 54.8755 | 38.8028 | 27.4377 | 15.8412 | 12.2705

Table 7.3: Fitting Gwa to Gwp for k = 3, Bp = 2 with equal allocations. We show the

replications.

" sample means and standard errors of parameters, where figures are based on at least 10000
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n1,na 50,100 | 25,200 25,25 200,50
ns 150 75 250 50
By 19513 | 1.9578 | 1.9891 | 1.9844
Ba 1.9392 | 1.9473 1.9763 1.9710
S 0.0900 | 0.0888 | 0.0906 | 0.0903
T 0.0878 | 0.0872 | 0.0897 | 0.0889
awa 23742 | -2.3049 | -2.5369 | -2.0766
awa -2.3842 | -2.3116 | -2.5531 | -2.0726
S 0.2001 | 0.2841 | 0.2381 | 0.2041
T 0.1988 | 0.2797 | 0.2369 | 0.2050
. | Bwa 3056.0636 | 3059.8002 | 3100.9965 | 2935.3286
Bw a 3060.6083 | 3063.0995 | 3108:5634 | 2934.1459
S 83.8062 | 119.6057 | 106.6882 | 71.7443
T 83.2419 | 117.7164 | 106.1167 | 71.9604
Bw104) 376.5582 | 410.6235 | 376.8391 | 355.2084
34.2805 | 45.0224 | 43.0858 | 25.1451
T 34.1132 | 44.5839 | 42.8641 | 24.8686
Pr(Fit Gwa) | 0.0248 | 00205 | 0.1374 | 0.0885
Bp 2.0138 | 20125 | 20134 | 2.0139
S 0.0923 | 0.0916 | 0.909 | 0.0914
T 0.0900 | 0.0900 | 0.0900 | 0.0900
awp 7.9952 | 7.9976 | 7.9902 | 8.0004
S 0.0916 | 01228 | 01289 | 0.0534
T 0.0909 | 01211 | 01282 | 0.0532
Bwp -0.0200 | -0.0200 | -0.0199 | -0.0200
S 0.0005 | 0.0008 | 0.0007 | 0.0005
T 0.0005 | 0.0008 | 0.0007 | 0.0005
By o(p) 358.0148 | 358.8638 | 357.4852 | 358.7051
31.8111 | 37.2861 | 40.2532 | 25.0573
T 31.6150 | 36.8697 | 40.0490 | 24.7807

Table 7.4: Fitting Gwa to Gwp for k =3, Bp = 2 with unequal allocations. We show the
sample means and standard errors of parameters, where figures are based on at least 10000
replications.
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ni,ng 25,25 50,50 100,100 | 200,200 | 500,500
n3,ng 25,25 50,50 100,100 | 200,200 | 500,500
By 1.9978 1.9762 1.9670 1.9632 1.9600
By 1.9583 1.9583 1.9583 1.9583 1.9583
S 0.1611 0.1114 0.0778 0.0538 0.0341
T 0.1532 0.1083 0.0766 0.0542 | . 0.0343
aw A -2.1466 | -2.1512 | -2.1555 -2.1572 | -2.1580
Gwa -2.1588 | -2.1588 | -2.1588 | -2.1588 | -2.1588
S 0.3278 0.2307 0.1613 0.1152 0.0722
T 0.3227 0.2282 0.1613 0.1141 0.0722
Bwa 2964.8558 | 2967.4456 | 2969.3863 | 2970.4403 | 2970.8105
Bw a 2971.2285 | 2971.2285 | 2971.2285 | 2971.2285 | 2971.2285
S 1317773 | 92.9593 | 65.0521 | 46.4406 | 29.0535
T 130.0480 | 91.9578 | 65.0240 | 45.9789 | 29.0796
Bw,10(4) 366.7286 | 363.0111 | 361.3588 | 360.9709 | 360.3351
52.5689 | 37.3911 | 26.1470 | 18.3668 | 11.5104
T 52.0054 | 36.7734 | 26.0027 | 18.3867 | 11.6288
Pr(Fit Gwa) | 0.1785 0.0957 0.0306 0.0051 0
Bp 2.0413 2.0195 2.0091 2.0051 2.0017-
S 0.1647 0.1130 0.0792 0.0550 0.0347
T 0.1559- | 0.1103 0.0780 0.0551 0.0349
awp 7.9914 7.9955 7.9972 7.9990 | 7.9994
S 0.1375 0.0971 0.0684 0.0487 0.0304
T 0.1363 0.0964 0.0682 0.0482 0.0305
Bwp -0.0200 | -0.0200 | -0.0200 | -0.0200 | -0.0200
S 0.0009 | 0.0006 0.0004 0.0003 0.0002
T 0.0009 0.0006 0.0004 0.0003 0.0002
Bw,10(p) 362.7668 | 359.1653 | 357.2686 | 356.8567 | 356.2038
51.3522 | 36.1960 | 25.4149 | 17.9461 | 11.1902.
T 50.5236 | 35.7256 | 25.2618 | 17.8628 | 11.2974

Table 7.5: Fitting Gwa to Gwp for k = 4, Bp = 2 with equal allocations. We show the
sample means and standard errors of parameters, where figures are based on at least 10000

replications.
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ni, No 25,25 75,75 25,75 75,25 100,50 25,25 25,75
ng, N4 75,75 25,25 25,75 75,25 25,25 50,100 75,25
By 1.9850 1.9810 1.9612 1.9997 1.9900 1.9852 1.9806
EA 1.9671 1.9642 1.9438 1.9781 1.9692 1.9647 1.9630
S 0.1110 0.1104 0.1100 0.1117 0.1109 0.1111 0.1105
T 0.1089 0.1082 0.1074 0.1094 0.1086 0.1090 0.1083
awA -2.3134 -1.9092 -2.3463 -2.0893 -1.9671 -2.3919 -2.1012
aw A -2.3330 -1.9096 -2.3617 -2.0920 -1.9659 -2.4022 -2.1232
S 0.2712 0.2319 0.2771 0.2173 0.2298 0.2655 0.2959

1T 0.2662 0.2335 0.2745 0.2146 0.2302 0.2606 0.2917
Bw a 3025.3077 | 2884.6033 | 3054.1205 | 2940.4122 | 2901.0047 | 3053.4610 | 2961.7871
BWA 3034.4916 | 2885.3982 { 3061.2082 | 2941.7754 | 2901.0464 | 3058.4162 | 2971.6532
S 116.7780 88.2932 117.5091 83.9001 84.5961 115.0169 | 124.3637
T 114.4705 88.9126 116.1886 82.8637 84.6132 112.6270 122.3030
BW,lO(A) 371.9306 | 358.5057 | 387.9019 | 359.6745 | 357.6604 | 375.1829 | 376.8334

45.9648 33.6998 46.7418 33.9304 32.1787 46.4254 46.4861

T 45.2440 33.4826 46.2290 33.4293 31.7638 45.3332 45.4895
Pr(Fit 0.1242 0.0968 0.0570 0.1720 0.1212 0.1252 0.0931
Gwa)
Bp 2.0193 2.0180 2.0197 2.0222 2.0214 2.0216 2.0194 °
S 0.1124 0.1125 0.1128 0.1125 0.1125 0.1123 0.1127
T 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103 0.1103
awp 7.9889 7.9985 7.9924 7.9984 7.9991 7.9938 7.9899
S 0.1338 0.0823 0.1276 0.0824 0.0735 0.1331 0.1346
T 0.1311 0.0829 0.1262 0.0817 0.0731 0.1301 0.1319
Bwp -0.0199 -0.0200 -0.0200 -0.0200 -0.0200 -0.0200 -0.0199
S 0.0008 0.0006 0.0008 0.0006 0.0006 0.0007 0.0008
T 0.0008 0.0006 0.0008 0.0006 0.0006 0.0007 0.0008
Bu/,m(p) 358.2741 | 359.2730 | 359.0701 | 360.2508 | 360.0243 | 360.0105 | 358.5769
S 43.6121 33.1719 41.8448 33.6557 31.9490 43.7611 43.1995
T 42.8015 33.0141 41.4431 33.1637 31.5513 42.7478 42.1629

Table 7.6: Fitting Gw4 to Gwp for k =4, Bp = 2 with unequal allocations. We show the
sample means and standard errors of parameters, where figures are based on at least 10000

replications.
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work, and examine distances between cdfs of true and mis-specified distributions across
all stress levels; comparisons based on other approaches will be considered elsewhere. We
illustrate this approach using the true parameter values

Bp = 2, awp = 8, ﬁWP = —0.02,

with £ = 3 and the usual X;. When we have equal sample sizes at each stress level (irre-
spective of the overall sample size), the entropy values are

Ba =1.9451, Gwa = —2.1558, By 4 = 2969.7718.

As with our work on non-accelerated data, we examine the maximum absolute distance
between true and mis-specified cdfs across the three stress levels. Thus, we will have three
different distributions to consider. With the true Weibull Log-linear model, we-have scale
paraméters

91p = 1096.6332, O2p = 148.4132, f3p = 54.5982,
which we compare to the mis-specified Weibull Arrhenius entropy values
B14 = 1134.5459, B4 = 129.3190, B34 = 61.6001,

where the shape parameters from each distribution remain constant across stress levels. The
table of figures, Table 7.7, shows the three different distribution functions corresponding to
each stress level for the true and mis-specified models. The fit between true and mis-specified
distributions for the lowest stress level is the best, in terms of having the smallest maximum
absolute distance. The second stress level seems to give the worst fit, and we observe a
maximum distance of 0.10018 between the two distribution functions.

We now carry out a similar procedure for varying k, n; and Bp.

Two stress levels We first consider results for 2 stress levels, and set the stresses and
scale-stress parameters to values used in simulation experiments. When we allow Bp to
vary, we observe that BW 4 and aw 4 are unchanged, and B 4 = Bp. Also, neither of the
three parameters depend on how the sample is arranged across stress levels. ‘Thus, for any
sample size, and any value of Bp, we have

a