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A b stra ct

A directed labelled graph may be used, at a certain abstraction, to represent a 

system ’s behaviour. Its nodes, the possible states the system can be in; its arrows 

labelled by the actions required to move from one state to another. Processes are, 
for our purposes, synonymous with these labelled transition systems.

With this view a well-studied notion of behavioural equivalence is bisimilarity, 
where processes are bisimilar when whatever one can do, the other can match, 
while maintaining bisimilarity. Weak bisimilarity accommodates a notion of silent or 
internal action. A natural class of labelled transition systems is given by considering 

the derivations of commutative context-free grammars in Greibach Normal Form: 
the Basic Parallel Processes (BPP), introduced by Christensen in his PhD thesis. 
They represent a simple model of communication-free parallel computation, and for 
them bisimilarity is PSPACE-complete. Weak bisimilarity is believed to be decidable, 
but only partial results exist.

Non-bisimilarity is trivially semidecidable on BPP (each process has finitely many 
next states, so the state space can be explored until a mis-match is found); the 
research effort in proving it fully decidable centred on semideciding the positive case. 
Conversely, weak bisimilarity has been known to be semidecidable for a decade, but 
no method for semideciding inequivalence has yet been found -  the presence of silent 
actions allows a process to have infinitely many possible successor states, so simple 
exploration is no longer possible.

Weak bisimilarity is defined coinductively, but may be approached, and even 
reached, by its inductively defined approximants. Game theoretically, these change 
the Defender’s winning condition from survival for infinitely many turns to survival 
for k turns, for an ordinal «, creating a hierarchy of relations successively closer to 

full weak bisimilarity. It can be seen that on any set of processes this approximant 
hierarchy collapses: there will always exist some k such that the /cth approximant 
coincides with weak bisimilarity. One avenue towards the semidecidability of non- 
weak bisimilarity is the decidability of its approximants.

It is a long-standing conjecture that on BPP the weak approximant hierarchy 

collapses at u  x 2. If true, in order to semidecide inequivalence it would suffice to 

be able to decide the u> +  n approximants. Again, there exist only limited results: 
the finite approximants are known to be decidable, but no progress has been made 

on the u;th approximant, and thus far the best proven lower-bound of collapse is 
uqcK (the least non-recursive ordinal number). We significantly improve this bound
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to cukx2 (for a variable BPP); a key part of the proof being a novel constructive 

version of Dickson’s Lemma.

The distances-to-disablings or DD  functions were invented by Jancar in order to 

prove the PSPACE-completeness of bisimilarity on BPP. At the end of his paper is a 
conjecture that weak bisimilarity might be amenable to the theory; a suggestion we 

have taken up.
We generalise and extend the DD functions, widening the subset of BPP on 

which weak bisimilarity is known to be computable, and creating a new means for 
testing inequivalence. The thesis ends with two conjectures. The first, that our 

extended DD functions in fact capture weak bisimilarity on full BPP (a corollary of 

which would be to take the lower bound of approximant collapse to cu2); and second, 
that they are computable, which would enable us to semidecide inequivalence, and 
hence give us the decidability of weak bisimilarity.
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Chapter 1

Introduction

A system -  be it a vending machine, a computer program or an aeroplane -  can be 

described or specified at many levels of abstraction, just as a house can be presented 
as “tree bedrooms, detached”, or a set of blueprints, or a model. One begins with the 
greatest abstraction, the briefest expression of what one wants, what is required; this 
is expanded, refined, the precise details of its implementation added, until one has an 
object far more solid than the original expression, but perhaps greatly more opaque. 
The question is: does this implementation -  this model -  meet our intentions? Is 
the process of refinement faithful? Travelling in the other direction, if we wish to 
prove that a device operates in a certain way, obeys a certain law (that a vending 
machine will always give the correct change; that a credit card system is secure from 
man-in-the-middle attacks; that a floating-point unit is correct), we can derive from 
it an idealised expression, an abstraction amenable to mathematical reasoning.

The level of abstraction this thesis is concerned with is to view a system as a 
(potentially infinite) collection of states, each representing one of its possible arrange­
ments, and incorporating a notion of how it can move from one state to another. 
For example, one might model a clock as a set of times -  its states being each 
hour:minute:second -  together with an action tick which links successive moments. 
So, graphically, the node named 19:31:01 will have a single tacfc-labelled arrow con­
necting it to the node 19:31:02.

But we are not concerned with creating models per se (none of the examples in 

the thesis are “real world”), but the question of what happens when one wants to 

compare models already created: when one can say that this expression is essentially 

the same as this one (and the various meanings one can attach to “essentially the 
same”).

7
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1.1 Infinite state and infinitely-branching system s

Recent decades have seen a flourishing of research into the specification and verifica­
tion of infinite-state systems. Automata invented to generate or recognise languages 

have been turned to use as models of behaviour, and novel machines, such as Petri 
Nets, developed; conceptions of equivalence have been imported (traces) and subse­
quently modified (failures), and new notions discovered: bisimilarity and its family 

(whose antecedents lie in logic). Process calculi have enabled infinite state, reac­
tive, parallel and potentially non-terminating systems to be built, reasoned about, 
and validated [Mil8 8 , BPS01]. The theory of sequential computation has a canon­
ical model, the A-calculus; concurrency still waits for unification. The schools of 
CSP (Hoare, [Hoa78a]), CCS (Milner, [Mil80, Mil89]) and ACP (Bergstra and Klop, 
[BK85]), each with a different emphasis -  denotational or operational semantics, or 
geared towards equational reasoning -  have produced rich familes of formalisms in 
which to define processes, so that, for instance, while it is in principle impossible 
to say whether an arbitrary program will halt, when defined within an appropriate 
framework its behaviour becomes both discoverable, and mechanically so.

Latterly, interest has alighted upon systems which may not only evolve into po­
tentially infinitely many states, but can do so in a single step: infinitely branching 

systems, against which the usual methods for testing inequivalence fail, and for which 
new branches of theory are in the process of being grown. Our subject formalism 
is the Basic Parallel Processes, defined by context-free grammars in Greibach Nor­
mal Form, and found (by restriction) in ACP, CCS and Petri Net theory, which 
together with weak bisimilarity as a notion of equivalence defines infinite state, in­
finitely branching processes. While the decidability of strong bisimilarity (under 
which BPP processes branch finitely) has been met successfully, in its course giving 

rise to a formidable set of techniques -  tableaux [BS90], Caucal bases [Cau90], Hir- 
shfeld trees [CHM93], Jancar’s DD functions [Jan03] -  weak bisimilarity remains an 
open problem, solved only for restricted subclasses (the totally normed [Hir96], and 

normed purely generated BPP [StiOlc]) using approaches of tenuous applicability to 

the general case1. The main work of this thesis is the development of a technique 

based upon Jancar’s D D  functions, and inspired by his paper, with the potential -  

and with partial results to support its case -  to settle the full problem positively.

1 As is true on BPA, the sequential cousin of BPA, where Stribrna and Cerna have attempted 
unsuccessfully to apply Hirshfeld trees to weak bisimilarity, [SC02].
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1.2 Labelled Transition System s

Expressing the semantics of a process denotationally entails producing a function 

which maps processes to meanings, an approach which began with the work of Scott 
and Strachy (originally in terms of functions mapping input to output). (Structural) 
Operational semantics is an intuitive alternative, originating with Plotkin in [Plo81] 
([Plo04]), in which the meaning of a program is exactly the steps it is able to perform: 
a directed labelled graph, whose nodes are the possible states the system can be 

in, and whose edges are labelled by the actions required to move from one state to 
another [AFV01]. Each path through the labelled transition system  is then a possible 

execution run. For example, Figure 1.1 represents two processes, v and u, one of 
which can perform an a action and become a process capable of performing either a 
b or a c to get back to the original process, and the other able to choose between an 
a transition to a process whose only enabled action is a 6 back to u , or one whose 
sole action is a c back to u.

a c

Figure 1.1: Behaviourally distinct, trace-equivalent processes

This offers a unified way to talk about processes: we can write u-^v  to mean 
the process u performs an a to become the process v, whether u is modelled by, say, 
a Petri Net or CCS expression, and define equivalence relations independently of 
particular process calculi or automata.

1.3 Equivalence relations on processes

Van Glabbeek’s Linear/Branching time hierarchy, Figure 1.2, presents twelve defini­
tions of equivalence, arranged according to their coarseness, and topped by bisimi­
larity. At the bottom lies trace equivalence, the classical notion of equivalence from 

automata theory, and the least discriminating relation on processes. As noted above, 
each path traced through an LTS represents a potential run of the system, its se­
quence of labels is called a trace; two processes are trace equivalent when they pro­
duce identical sets of traces. No account is taken of branching structure; returning to 

Figure 1.1, u and v generate the same traces, but the first move of u decides whether 

its second move can be a b or a c, while v can perform either: their behaviour differs.
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Bisimulation equivalence

2-nested simulation 
equivalence

2-bounded-tr-bisimulation

Ready simulation equivalence

Ready trace equivalence
Possible-futures
equivalence

Simulation equivalence

Failures trace 
equivalence

Readiness equivalence

Failures equivalence

Completed trace equivalence

Trace equivalence

Figure 1.2: Van Glabbeek's linear/branching time hierarchy, [vGOl]

Moving up the van Glabbeek hierarchy one finds an increasingly tight fit 011 what 
one would consider “behaviour” to be; bisimilarity ([Par81, Mil80]) is commonly 
referred to as the canonical notion of behavioural equivalence2. Processes are 
coinductively bisimilar when whatever one can do, the other can match, while 
maintaining bisimilarity.

O

Figure 1.3: Two functionally equivalent, statically inequivalent processes

The processes of Figure 1.3 are bisimilar, as any a from one can always be matched 
by an a from the other; conversely, u and v of Figure 1.1 are not bisimilar, since a
move of u-^u i can only be matched by and u\ is clearly not bisimilar to vp.

c . cVi—>, while u\-f+.

2For example, isomorphism (structural equivalence; equality up to the renaming of states) is 
stronger than bisimilarity, but distinguishes processes whose behaviour does not differ. In Figure 
1.3 both u and v can do nothing more or less than an infinite sequence of a actions; their transition 
systems differ structurally, bu t produce the same behaviour. (T hough of course, when one comes to 
implement a system, whether it has one or infinitely many sta tes is a difference one would not wish 
to overlook.)
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Bisimilarity exhibits numerous pleasing properties (see e.g. [Sti98b]). It has a 

natural game theoretic formulation (§4.3.2); the property “this relation is a bisim­
ulation” is expressible as a simple formula of first-order logic (Equation 5.27, page 
72); if two processes are bisimilar, they will be considered equivalent under any in­
terpretation (within van Glabbeek’s hierarchy). Bisimilarity has been found to be 

tractable when all coarser notions are intractable, and often decidable where they 

are undecidable. On finite state automata trace equivalence is PSPACE-complete, 
while bisimilarity is decidable in 0 (n log n) time; it is a classical result that trace 

equivalence is undecidable on pushdown automata ([HU87]), yet in the past ten years 

bisimilarity has been proven decidable ([Sen98])3.

1 .3 .1  S ile n t  a c t io n s

To accommodate an idea of internal action, a silent or unobservable action name r  
is introduced; a silent or weak transition involves a single observable action buffered 
before and after by any number of r-labelled transitions (§4.5),

u ^ v  =def u— (1-1)

Every notion in the linear/branching time hierarchy of Figure 1.2 has its weak ana­
logue, obtained by substituting —>■ arrows by =>. On finite transition systems this 
introduces no difficulties; on an infinite LTS, such as that generated by a pushdown 
automaton, CCS expression, BPP process, etc, it can be that one goes from having 
finitely many possibilities per transition to infinitely many.

1.4 Grammars as processes

Classically, grammars are used to generate languages -  be they natural languages in 
the case of Chomsky [Cho56, Cho57]4 (and, long before him, Panini [Ing67, Kak87]), 
the syntax of programming languages [Knu64]; or more abstract finite and infinite 

words, in the early-20th century work of Axel Thue [Thul4] and Emil Post [Pos43]5. 
The motivating questions have been, respectively: understanding natural language 

(could English be described in terms of a context-free grammar, or something like

3The decidability of trace equivalence for deterministic pushdown automata was open for 30 years 
before Senizergues’ demanding paper [Sen97]; a proof a third the size was subsequently found by 
Stirling, [StiOlb], based on the observation that on deterministic processes, trace and bisimulation 
equivalence coincide (see §4.3).

4 An example of a non-context free aspect of natural language is the crossing dependencies in 
subordinate clauses in Dutch.

5Published in 1943, but developed in the 20s.
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it?); parsing computer programs (from text to syntax), [Joh75]; and the (Hilbert) 
programme of mechanising theorem proving (see e.g. [Boo87, MS05]).

Restriction Language type Machine
Type 0 a  —»■ ft Recursively enumerable TM
Type 1 aAj3 —► cry/? 7  +  e Context-sensitive LB-TM
Type 2 A —> 7 7 7̂  e Context-free PDA
Type 3 A  —*■ aa a  6  V  U {e} Regular FSA

Figure 1.4: Chomsky hierarchy

The Chomsky hierarchy, Figure 1.4, divides grammars into four tiers, each with 

an elegant machine characterisation. We begin with a variable, and successively 
rewrite it according to the transition rules; our output is a string of terminals, 
a word (which, in the case of unrestricted grammars, can still be rewritten). A 

(standard) example, with variables V  =  {X ,  Y, C} terminals £  =  {a, 6, c}, and six 
transition rules is presented in Figure 1.5.

Their role as generators of behaviour, and specifically of labelled transition sys­
tems, is more recent, and begins with Caucal’s On the regular structure of prefix 
rewriting, [Cau92] (see [EspOl] for an informal introduction). Terminals become 
action names; transition rules rewrite variables to variables,

a-^P a e X , a , ( 3 e V *  (1.2)

As a further distinction, we can choose whether a state is a sequence or multiset 
of variables -  whether it models a sequential or parallel system. In the Chomsky 

process hierarchy, Figure 1.6, unrestricted (Type 0) sequential grammars correspond 
to pushdown automata (Type 2 in the Chomsky hierarchy), while with parallel 
composition the machine equivalent is the Petri Nets. Type 2 processes are context- 
free grammars in Greibach Normal Form ([Gre65]); when interpreted sequentially 
we call them Basic Process Algebra (BPA) -  PDA with a single control state and no 

e-transitions -  while in parallel they are the Basic Parallel Processes. (For surveys 

on decidability questions on processes generating labelled transition systems, see 

[Mol96, BE97] and [Srb02b].)

1 .4 .1  M a y r ’s P r o c e s s  R e w r it e  S y s t e m  h ie r a r c h y

In his Process Rewrite System hierarchy, [MayOOb], Figure 1.7 (based on work by 

Moller in [Mol96]), Mayr generalises the Chomsky process hierarchy, allowing tran­
sitions to have forms that are sequential (S), parallel (P) and both (G), creating a
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X  -> abp X  -»■ aYbc L {X ) =  {an6ncn | n > 1}
y  -> aYbC , y  a 6 C 
C b -^ b C  
Cc —* cc

X -----------------^ abc

a Y b c  »■ aabCbc------------ ^ aabbCc----------** aabbcc

aa YbCbc.----- ^ aaabCbCbc aaabCbbCc aaabCbbcc 

aaabbCCbc

aaaYbCbCbc

Figure 1.5: A context-sensitive grammar, and its transition diagram
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Restriction
on a —>/3

Restriction 
on F

Parallel
composition

Sequential
composition

Type 0 none none PDA PN
Type 1^ a £ QT 

(3 £ QT* 
v  = q w  r

F  = Q PDA MSA

Type 2 Q <= V F = { e ] BPA BPP
Type 3 ft 6  V, (3 £ V  U {e} F = {( } FSA FSA

Figure 1 .6 : Chomsky Process hierarchy, [BCMS01]

hierarchy that incorporates many of Chomsky’s machine equivalents, and is strict 
with respect to bisimilarity6.

(1.3)

|| E  (1.4)

E  (1.5)

\E \E .E  (1.6)

1 : E  ::= e\\x
P  : E  ::= c|\x
S  : E  ::=e |\x
G : E : : = e \ X

PRS (G,G)

PAD (S. G) PAN (P,G)

FSA (1,1)

Figure 1.7: Mayr’s Process Rewrite System Hierarchy,

For the state of the art in decidability on process rewrite systems, J in  Srba 
maintains the Roadmap of Infinite Results, [Srb02b]'. The studied problems are 
strong and weak bisimilarity, strong and weak bisimilarity with finite state systems,

'T h e  formalisms, as with pushdown au tom ata  and Petri Nets (§2.5.2)), fall short of full Turing 
power; reachability is decidable even for full PRS, [MayOOb]. For extensions with weak finite sta te  
units, see [KRS04]

'h t t p ://www.brics.dk/~srba/roadmap/
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and strong and weak regularity (whether there exists a finite state process strongly 
or weakly bisimilar to a process in question), and results are given for each process 

rewrite system, and its normed subclass. A process is normed when no matter what 
sequence of transitions it performs, there is always a sequence which takes it to an 

“empty process” -  if we (as in Equation 1.3) denote this process e, a process a  is 

normed iff a —>*/3 j3—>*e8. Many decidability results have often come first
for a process class’s normed subset, and afterward in full generality -  bisimilarity 

on normed BPA was proved decidable in 1990, and for BPA in 1993. In 1999, 
bisimilarity was shown to be decidable on normed PA ([HJ99]); the general problem 

is still open. For both normed BPA and BPP there exist polynomial algorithms 
([HJM96a] and [HJM96b, JK04] respectively). The only PRS for which bisimilarity 

is known to be decidable, but weak bisimilarity not, is PDA9.

1 .4 .2  B a s ic  P a r a lle l  P r o c e s s e s

A BPP is defined by a context-free grammar in Greibach Normal Form; its states 
are commutative sequences (or multisets) of variables; its transitions are given by 
the rule,

X H Xot- ►7 0 : (1.7)

BPP represents a simple model of communication-free parallel computation, and was 
introduced by Christensen in his PhD thesis [Chr93]. (In the following example, e 
denotes the empty process. The process M C  may either make an a-transition from 
its M  variable to M C C ,  a 5-transition to C, or a c-transition from its C  variable to 
M .)

M

M

C

M C

e

e

M M C

C

M C C

b

C C *

Bisimilarity is PS PACE-complete on BPP [Jan03], while trace equivalence is un­
decidable [HJM96a]. Weak bisimilarity is believed to be decidable, but only partial 
results exist [Hir96, Str99, StiOlc]. This aim of this thesis is to add a fourth reference 
to the preceding list.

8Note that this is not in general the same as saying that from every node in the LTS one can 
reach a node with no arrows leading from it. A Petri Net can have places marked but still be 
incapable of action. However, for BPA and BPP (communication-free Petri Nets), the notions do 
coincide.

9Note, on its parallel counterpart, PN, bisimilarity is already undecidable; bisimilarity might 
seem to favour sequential over parallel systems: on PAN and PRS it is undecidable, but for PAD 
the question is still open (this does not bode well, for the purposes of this thesis).
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Non-bisimilarity is trivially semidecidable (each process has finitely many next 
states, so the state space can be explored until a mis-match is found); the research 

effort in proving it fully decidable centred on semideciding the positive case. Con­
versely, weak bisimilarity has been known to be semidecidable for a decade [Esp97], 
but no method for semideciding inequivalence has yet been found -  the presence 

of silent actions allows a process to have infinitely many possible successor states 
(Figure 1.8); simple exploration is no longer possible.10

M
M

C

M C
e
e

b

M C

b

c

M C C

b

C C ^

Figure 1.8: For every n, M=^Cn, M ^ M C n and M ^ M C n

1.5 Approximant collapse

Weak bisimilarity is defined coinductively, but may be approached, and even reached, 
by its inductively defined approximants (§4.3.3). Game theoretically, these change 
the Defender’s winning condition from survival for infinitely many turns to survival 
for k, turns, for an ordinal k , creating a hierarchy of relations successively closer to 
full weak bisimilarity. It can be seen that on any set of processes this approximant 
hierarchy collapses: there will always exist some k such that the Kth approximant 
coincides with weak bisimilarity (§4.4.2). One avenue towards the semidecidability 
of non-weak bisimilarity is the decidability of its approximants.

It is a long-standing conjecture that on BPP the weak approximant hierarchy 

collapses at to ■ 2. If true, in order to semidecide inequivalence it would suffice to be 
able to decide the uj +  n approximants. Again, there exist only limited results: the 

finite approximants are known to be decidable, but no progress has been made on 

the u;th approximant, and thus far the best proven bound of collapse is ctqck [Str99] 
(the least non-recursive ordinal number). We significantly improve this bound to 

cuk'2 (§5.7; for a /c-variable BPP), a key part of the proof being a novel constructive 

version of Dickson’s Lemma [Dicl3] (presented at CSL 2006, [HMS06]), covered in

10Dispiritingly, there is evidence that in sharp contrast to the situation between traces and strong 
bisimilarity, weak bisimilarity is much harder to decide than weak trace equivalence. For example, 
on processes with a finite state unit, weak (and strong) trace equivalence is Ili-complete ([Jan95a]; 
the first level of the arithmetical hierarchy, [Rog67, Kec95]), yet weak bisimilarity is -complete, 
[Srb03] (highly undecidable). Transplanted to BPP, this would at least suggest that weak bisimilarity 
is undecidable.
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depth in Chapter 3.

1.6 D istance to disablings

The distances-to-disablings or D D  functions were invented by Jancar to prove the 

PSPACE-completeness of bisimilarity on BPP [Jan03], and deployed subsequently 
to produce a 0 ( n 3) algorithm for its normed subset [JK04], and an algorithm for 

deciding bisimilarity between BPP and its sequential cousin, BPA [JKM03]. At the 

end of the paper he writes,

. . .  the author conjectures that the method introduced here for strong 

bisimilarity will also turn out useful for showing decidability of weak 
bisimilarity for BPP

-  a suggestion that has inspired the bulk of the work in this thesis. While the naive 

weak analogue of the distances-to-disablings is easily seen to fail to capture weak 
bisimilarity (even on finite processes), a small modification suffices to express weak 
bisimilarity across a wide class of processes. In order to keep the functions finite we 
introduce further extensions, which are then applied to BPP.

1.7 Organisation

The thesis is organised as follows:

•  Chapter 2 contains standard definitions and lemmas, chiefly on ordinal num­
bers, monoids, semilinear sets and Presburger Arithmetic.

•  Chapter 3 concerns a constructive version of Dickson’s Lemma (and is largely 
self-contained).

•  Chapter 4 begins by defining a general process as a rooted, directed labelled 

graph, and defines and describes equivalence relations and approximant col­
lapse with relation to them.

•  Chapter 5 is on processes derived from context-free grammars. It reviews the 

current techniques for deciding bisimilarity and weak bisimilarity on BPP; the 
original work is a significant improvement on the bound of weak approximant 
collapse (making use of the work found in Chapter 3).

•  Chapter 6 gives a generalisation of Jancar’s D D  functions, and further extend 

them to accommodate silent moves -  the D D r functions, and beyond, to the 

DDI^ functions.



In Chapter 7 we apply the theory developed in Chapter 6 to the problem of 

weak bisimilarity on BPP. Although the greater problem remains unsolved, a 

number of partial results are found, and the thesis ends with:

Chapter 8 , conclusions, and a research programme.



Chapter 2

Prelim inaries

Ordinal numbers, well-founded trees; monoids, semilinear sets and Presburger Arith­
metic; finite and pushdown automata, and Petri Nets.

2.1 Ordinal Numbers

The counting numbers form an infinite sequence 0,1, 2 , . . .  which may nevertheless 
be extended: define u j  to be the smallest number greater than every member of N, 
and we can write,

0 ,1 , 2 , . . . ,  u j , u j  T 1, u j  +  2 , . . .  (2-1)

and continue to u j  x 2, u j  x 3, and on u j 2 , u 3, and on,

^ , 0^ , ^ , . . . , 60,60 +  1 , . . .  (2.2)

(where eo is the smallest number k such that k =  ku). These are the (transfinite) 
ordinal numbers, denoted O; and each is either a successor ordinal (k +  1 for some 

ordinal /t), or a limit ordinal. All finite ordinals but 0 are successor ordinals, but uj 

is a limit ordinal as there is no n s.t. n +  1 =  u j .

An intuition to the meaning of “a sequence of length which will be useful 
when we come to consider games of an ordinal length §4.3.3, is to read u j  as meaning 
“go arbitrarily far” , u j  • 2 is, then, an arbitrary distance, followed by an arbitrary 

distance; u j 2  is an arbitrary number of arbitrary distances.

E xam p le  2.1 (arb itrarily  far) Consider an aeroplane which can, at the start of 
its journey, take on board any amount of fuel. It is capable of flying any (finite) 
distance, so we say its potential range is u j  kilometres. If allowed a single mid-air
refuelling session, its potential range would be uj  • 2; if permitted to decide, before
take-off, on how many (finite) refuelling sessions it will have, the potential range

19
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becomes uj2.

While each successor ordinal has a unique immediate predecessor, if A is a limit 
ordinal there is no greatest element smaller than it. Any strictly decreasing sequence 
of ordinals will be finite, allowing a transfinite form of induction. If, whenever 

a property is true of every ordinal less than k it must also be true of k , we can 

conclude that the property holds of all ordinals.
We can make sense of this idea in terms of set theory using a realisation that 

owes to John von Neumann,

D efin itio n  2 .1 .1  (von  N e u m a n n ’s ord ina ls) A set S  is an ordinal iff

1. R  C  S  =>• R E S; and

2. C  is a total order on S, i. e. for R, R' C  S, R  C  R! or R! C  R  

One can then represent the natural numbers as,

0 =  0 (2.3)

n +  1 =  7i U {71} (2-4)

That is, 1 =  {0} =  {0}, 2 =  {0 ,1}, n =  { m \ m  <  n}.  These are ordinals, in the 

sense above, and extend naturally into the transfinite: uj —def {0) !>•••}•

L em m a 2 .1 .1  (S  C  O  ==> sup S' € O)  The supremum sup S of a set of ordinals S  
is an ordinal.

Ordinals can be uniquely expressed in base uj, Cantor Normal Form:

T h eorem  2 .1 .1  (C an tor) For every ordinal k there exist unique sequences of nat­
ural numbers c i , . . . ,  cm and ordinals fa >  . . .  >  /j,m such that,

K  =  U J ^ C i  +  U J^2 C2 +  . .  • +  UJ^'TnCm

In particular, when each fa is a natural number we are able to express every ordinal
less than uju . This form is employed in support of Conjecture 5.7.1 (page 76).

2 .1 .1  O r d in a l a r ith m e t ic

The usual recursive definitions of addition and multiplication on natural numbers 

extend to the ordinals:

K +  0 =def k (2-5)

K  +  ( / I  +  1 )  = d e f  (/£ +  1 )  +  /I  ( 2 - 6 )

k, +  A =def sup{ft +  /i | \i <  A} where A is a limit ordinal (2.7)
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and,

K .0  — def 0  ( 2 . 8 )

« • ( / / +  1 )  = d e f  ( «  • M) +  V  ( 2 - 9 )

K  • A = d e f  S U p { f t  • n  \ H <  \ }  ( 2 . 1 0 )

While addition and multiplication are associative, they need not commute: 1 +  uj =  

sup{l +  n \ n  <  u j }  =  w  <  u j  +  \ \  and 2 • uj  =  sup{2 • n \ n <  u j }  =  u j .

2 .1.2 W ell-fo u n d ed  tree s

Figure 2.1: A tree of height uj

A tree is a directed rooted graph in which there exists exactly one path (unique 

sequence of edges) from the root to each of its nodes1. A tree is is well-founded 
when no infinite paths exist within it: every sequence of steps that starts with the 
root and takes at each time a child to proceed with is finite. The height of a tree is 

defined,

D efinition  2.1.2 (h) If t is the root of a tree, h(t) = d e f  sup{/i(s) +  1 \ t  —>■ s} .  If t 
is not well-founded, h(t) = d e f  °o. ■

Lemma 2.1.1 and the principle of well-founded recursion imply that if t is well- 
founded, h(t) G O. Conversely, any ordinal k, G O  can (with transfinite induction) 

be recast as a well-founded tree of height k :

1. The root t  is labelled k ;

1For example, Figure 2.1. Note that neither Figure 1.2 (page 10) nor Figure 4.10 (page 55) are 
trees, as their paths are not unique.
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2. For each p  <  k , add the well-founded tree which corresponds to fi as a child, 

hence by hypothesis, h(t) =  sup{ju | p, <  k } — k , and we find:

Lem m a 2.1.2 (ordinals and w ell-founded trees) k G O iff h(t) =  k for some 

well-founded tree t.

Exam ple 2.2 (addition o f w ell-founded trees) Given two well-founded trees s , t ,  
define s +  t  to be the result of substituting every childless node of t with s. The re­
sultant operation is associative (t-\-(s +  u ) =  (t +  s) +  u), but not commutative. If tn 

is a tree of height n, and tu —> tn for all n (i.e., h { t j )  =  w>), then h{tu +  £i) =  t v 1 ,  
while h(t\ T  tff) =  u j  (see $2.1.1).

E xam ple 2.3 (O  is a proper class) For each k G O, Lemma 2.1.2 implies the 
existence of a tree tK with h(tK) =  k; if O were a set, we could construct a tree t 
with children t —> sK for all k, G O. The same Lemma implies G 0 .h { t ) =  pi, but 
by definition h(t) >  /i +  1.

2.2 Cardinal numbers

Two sets have the same size or cardinality when their elements can be paired, one- 
to-one. w +  1 is a strictly larger ordinal than to, but when viewed as sets -  as 
( 0 , 1 , . . .  ,cj} and { 0 , 1 , . . . }  respectively -  they are of equal cardinality: u j  maps to 
0, 1 to 2, 2 to 3, etc. A cardinal number is an ordinal which can be used to describe 
the size of a set (i.e. any smaller ordinal must have a smaller cardinality). The first 
transfinite ordinal is uj; when interpreted as a cardinal it is written No- As p  and k 
range over the ordinals, N ranges over the cardinal numbers, and we will denote its 
class by C.

On the finite numbers ordinality and cardinality coincide: \n\ =  |{ 0 ,1, 2 , . . . ,  n — 
1 }| =  n; into the transfinite, |cj| =  |N| =  No, but

and even |eo| =  No- The first uncountable ordinal is denoted u j \ ,  u q  =  { k  \ | k |  <  No} 
-  though we will touch here only briefly on numbers this large (§4.4.2, §5.7). The 

next largest cardinal from No is denoted Ni; Nw =  sup{Nf | i < u j } .  The successor of 
a cardinal N is defined to be,

\u j  • 2 | —  | { 0 , 1 , . . . , c j  + 1 , c j  +  2 , . . . } |  —  | N  • 2 | —  N o (2 . 11)

succ(N) = def | inf{A G O  | N <  |A|}| (2 .12)

(So, every successor cardinal is a limit ordinal.)
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We use ordinals to measure the heights of trees, and cardinals to measure their 

widths. Graphs and trees may be classified according to their branching-degree: to 
what strict upperbound can be put on the number of children any node or vertex 

exhibits.

D efinition  2.2.1 (sub-H-branching) A graph or tree is sub-H-branching when the 

vertex degree of each of its nodes is bounded strictly above by H. I

(See Definition 4.1.5 for the sub-H-branching processes.)

Exam ple 2.4 (K onig’s Lem m a)
A well-founded tree t is sub-^Q-branching iff it is finite ([K6n36]).

E xam ple 2.5
For every graph G there exists an H 6 C s.t. G is sub-'R-branching. Specifically, 

denoting the vertex set of G by V{G), G is a sub-succ(\V(G)\)-branching graph.

2 .2 .1  R eg u la r  card in a ls

H is a regular cardinal when it is greater than the supremum of any set of lesser 
cardinals fewer than H. That is, any sequence of ordinals (each strictly less than 
H) which converges on H must itself have at least H elements2. For example, Ho is 
regular, since it is greater than the supremum of any subset of Ho, while Ĥ , is by its 
definition not regular.

T heorem  2.2.1 (sub-regular cardinal-branching trees)
If t  is a sub-H-branching tree, for a regular H, then h(t) <  H.

Proof: An induction on h(t). Imagine that t  —> s = >  h(s) <  H. Let A  =
{ h(s) +  1 11 —> s ) , then \A\ <  H, and h(t) =  sup A <  H. □

We use regular cardinals to simplify several proofs; it is useful to observe,

Lem m a 2.2.1 (regular cardinals) For every cardinal there exists a regular cardi­
nal greater than it. In particular (assuming the Axiom of Choice), the successor of 

any infinite cardinal is regular, [End77j.

2.3 M onoids

D efin ition  2.3.1 (m onoid) A monoid (S , +) is a set S  with an associative binary 

operation +  : S  x S  —> S and identity element 0  6 S  (Vs £ S.s +  0 =  0  +  s =  s). It 
is commutative if  Vs, t £  S.s +  t =  t  +  s. ■

2 A cardinal is either finite, regular or singular.
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E xam p le  2 .6  (w ords over E) Let E* denote the set of sequences over E, with e 
as the empty sequence, and • be a concatenation function (so E* is better expressed 

as the closure of E with ■), then (E*, •) is a monoid with identity e.

A vector or fc-tuple is sequence of natural numbers of fixed length,

x =  ( x i , x 2, . . .  , x k) e  Nk (2.13)

We refer to x \ , . . . ,  x k as its components, and write,

x ( i ) = deixi (2.14)

The free commutative monoid over a set V =  { X i , . . . ,  X k} is (F®,U),  where V ® 
represents the set of multisets over V,  and U is multiset union. This is essentially 

the same as a recurring monoid, the fc-dimensional vector space (Nfc, + ) (where +  is 
pointwise addition), in that they are related by the monoid isomorphism,

f ( x lt X2, ■ ■ ■, Xk) = def X f ' . . .  X l k (2.15)

(using monomial notation to express multisets). A useful monoid homomorphism is 
the Parikh mapping from sequences (over E) to vectors (of size |E|):

D efin ition  2 .3 .2  (parikh  m ap p in g) If w € ( a i , . . .  ,a m}*

w = d e f ( w ( a 1) , . . . , w ( a m)) (2.16)

where, w(ai) =def the number of ais in w . ■

E xam p le  2 .7  (lan gu age) A language is a subset of words over an alphabet E,
L C E*; o commutative language is the parikh mapping of a language L, {w  \ w  G L],  
i.e. a subset o/N Is L

2 .3 .1  E q u iv a len ce  re la tio n s  an d  co n g ru en ces

D efin itio n  2 .3 .3  (eq u iva len ce  re la tion s) A binary relation R  on the monoid (S, + )  

is an equivalence relation when it satisfies, for all u , v , s  £ S,

1. uRu (identity);

2. if uRv then vRu (symmetry); and

3. if uRv and vR s then uRs (transitivity).

if, moreover, it satisfies Vu, v, s .uRv  = >  u +  sRv  +  s we call R  a congruence. ■
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E xam p le  2 .8  (su m  eq u iva len ce) On the monoid (Nk, + ) ,  define two vectors x ,y  

to be sum-equivalent, x = s  y, when Yli=i ^ (0  =  'Ya =\V{^)- =S  *s an equivalence 
relation, and in fact is a congruence, since x = s  y  implies, for any z, that x +  z  = s  

y +  z.

Extending Example 2.6, a monoid (S , + ) is generated by S' C S  when S  equals 

the closure of S' under + , S'* =  S. Every monoid is generated by itself; the rank of 

a monoid is the cardinality of its smallest set of generators.

E xam p le  2 .9  ((N*, x ) and  (Nfc, + ) )

1. (Nk, x) ,  the k-tuples with pointwise multiplication, is not finitely generated. 
Consider any finite set of vectors M  C Nk, and let p be a prime number larger 

than any component of any element of M , then Nfe 3 (p, 0 , . . . ,  0) 0  M * .

2. (Nfc, + )  is finitely generated, and of rank k. Let,

0*0’) = ^  ( „  (2'17)

i.e. 01 =  ( 1 , 0 , . . . ,  0), 0  ̂ =  ( 0 , . . . ,  0,1),  then equals the closure o f { 01, . . . ,  0fc} 
under pointwise addition.

T h eorem  2 .3 .1  (R ed e i, [R ed65, Fre68]) If R  C S  x S is a congruence on a 

finitely generated commutative monoid  ( 5 , + )  then R  is finitely generated?.

E xam p le  2 .10  (fin ite ly  gen era ted  su m  con gru en ce) By Theorem 2.3.1 the con­
gruence = s  of Example 2.8 is finitely generated. Indeed,

= s  =  { (3 i,3 ,')1<ij<fc}* (2-18)

A concept we will return to with Caucal Bases in §5.3.1 is that of a congruence 

base (or Thue congruence),

Ft Ft
D efin itio n  2 .3 .4  (= )  If R  is a binary relation on (S, + ) , =  is the least congruence

R  . R  . . R  . _
containing R. That is, u =  v A u =  v ==> u +  u =  v +  v . m

2.4 Semilinear sets

A set A  C Nfc is linear iff there is a finite sequence of vectors (its base) x , x \ , . . . ,  xm G 

Nk with A =  {x  +  x \n \  +  . . .  +  xmnm | n i , . . . ,  nm G N}. For example, that (Nk, +)

5This holds even if (S , + ) does not have an identity element.
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is finitely generated is enough to show that is linear. The semilinear sets are the 

finite unions of linear sets; the base of a semilinear set is the collection of bases of 
its linear constituents.

T h eorem  2 .4 .1  (E ilen b erg  and S ch iitzen b erger , [ES69]) If R C N k x N k is a 

congruence on a finitely generated commutative monoid (Nfc, + ) then R is semilinear.

E xam p le  2 .11 (sem ilin ea r ity  o f  = s ) = s  (Example 2.10) is in fact linear,

= s  =  < (0,0) +  Y .  K j  6 N ? (2-19)
y 1 <i , j< k  )

The importance of this result rests on the intimate connection between the semi­
linear sets and Presburger arithmetic, the first-order theory of addition.

2 .4 .1  P r e s b u r g e r  a r ith m e t ic

Presburger Arithmetic  is the first-order theory of addition: first order logic over 
N — (N, -f < ). By 4>(xi , . . . ,  we mean a formula with free variables aq, . . . ,  Xk■ If 
there exist instantiations a \ , . . . ,  ak 6 Nfc for the variables which make the formula 
true, we write, 0 [ a i , . . . ,  a^]. The set of satisfying tuples is denoted,

[[<£]] =def {(o i, . . . , a k) e N k \ <f>[ai, . . . ,  ak]} (2.20)

Unlike Peano Arithmetic (the first-order theory of addition and multiplication),

T h eorem  2 .4 .2  (P resb u rger , [P re29, Tar51, F R 74]) Presburger Arithmetic is 

decidable in 2-EXP time (and any decision procedure must have at least a double­
exponential worst-case run time).

A set A  C Nfc is Presburger when there exists a formula of k free variables 
<f>(xi , . . . ,  x k) with A =  [[</>]]. A relation R  is Presburger computable if and only if it 
a Presburger set.

T h eorem  2 .4 .3  (G in sb erg  and Sp an ier, [G S66]) A set A G Nk is semilinear if 

and only if it is Presburger; and, each description is effectively calculable from the 

other.

An easy consequence of this is,

L em m a 2 .4 .1  (sem ilin ear  se t m em b ersh ip ) Semilinear-set membership is de­
cidable.
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E xam p le  2 .12  (su m  eq u iva len ce) To continue the thread of Example 2.11, The­

orem 2-4-3 implies that = s  is Presburger. Easily, let . . . ,  Xk, yi, ■ ■ •, Vk) =  
xi  +  . . .  +  xk =  yi +  . . .  +  yk, then

= s  =  [[0]] (2.21)

C orollary  2 .4 .1  (con gru en ces on  (Nfc, + ) )  If R  is a congruence on (Nfc, +) ,

1. It has a finite representation as the base of a semilinear set;

2. If this can be found, it is possible to produce a statement of Presburger Arith­
metic (f)R which expresses R, and thereby R  is decidable.

2 .4 .2  F in i t e  a u t o m a t a

A finite automaton is a finite directed graph A  =  (V, E, —>, u, F) with vertices V, 
start-state u E V, and final states F C 7 ,  whose edges are labelled from E [JJ79]. 
It recognises a word w E E* exactly when there exists a sequence of edges from u to 
a state in F , whose labels equal w. The language of a finite automaton is, then,

L(A)  =def { a i . . .  o„ I » A . . .  2 V  6 F }  (2.22)

while its commutative language (Example 2.7) is LC (A )  =def { w \ w  G L(A)} .  Here 
we find a further connection to the semilinear sets. First, define an inverse Parikh 
mapping (where E =  { a i , . . . ,  am}),

word(xi , . . . ,  X m )  =def a*1 . . .  afz1 (2.23)

then given a semilinear set,

S  =  {£i,o +  £ i ,in i +  • • • +  xi,ainai 17ii, • • • , n fli e  N} U (2.24)

(2.25)

{ f i)0 +  xitiTii +  . . .  +  xi,ainai | n i , . . . ,  nai G N} (2.26)

it is easy to construct an automaton A  with LC (A ) =  S. Namely, for each linear set 
{%i,o +  Xi,in\ +  . . .  +  Xi!ainai \ n \ , , nai € N} draw a word(xijo)-labelled sequence of 

arrows from u to a final state fi E F,  and add to f i , for each xi j ,  j  >  1, word(xj;j)- 

labelled self-loops. I.e. we generate Xito, then allow any combination of Xij  (j  >  0) 
to be added.

E xam p le  2 .13  (= s  as a fin ite  a u to m a to n ) Since = s  is a set of k x 2-tuples, we 
can represent it as the following 2k2 -j- 1-state, 4k2-edged finite automaton over the
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language S  — {&i) ■ • • » •  • • t f̂c} >

bj bj

w ZH Z v i  <  i, j  <  k
(Li (Li

with F  =  {it}.

For the reverse direction, given an automaton A  over E  =  { a i , . . . ,  am} we wish
to produce (the base of) a semilinear set S  C Nm s.t. LC (A ) =  S. To this end, we
define the pumping paths and pure pumping paths of A.

A pumping path from a node v G V  is a sequence of edges i;— a 
pumping path is pure when it contains no other pumping paths. Clearly, for a k 

state automaton A, any sequence of k or more edges must contain a pumping path,
and the number of pure pumping paths is finite. We observe, for an automaton A
with start-state it,

1. If v has a pumping path . . .  ^ v ,  and there is a sequence of edges u^+ . . .  -^i;, 
the commutative language of A  contains the linear set

{ai .7. ai +  b\ . . .  bm.n \ n €E N} (2.27)

2. If u’s pumping path is not pure, i.e.

— 6l bn jpn-\-l bn +m jpn+ l + 1 bm ( c\ o o \d£.u—►... —>t . . .  -+v (2.28)

then we can widen the above linear set to,

{ ( a i . . . a z) +  b \ . . .  bnbn+i+ i . . .  bm.n\ (2.29)

+  &71+1 • • • frn+Z-n 2 (2.30)

\ n! , n2 e N }  C L C ( A )  (2.31)

3. In such a way, every sequence rooted at u can be decomposed into a path, 

followed by a series of pure pumping paths.

Since there are finitely many pure pumping paths, bounded in the size of the au­
tomaton, we are able to effectively compute the bases of a semilinear representation 

of its commutative language. That is to say:

T h eorem  2 .4 .4  (sem ilin ear  se ts  and fin ite  a u to m a ta ) A set S  G Nfc is semi­
linear if and only it is recognised as the commutative language of a finite automaton 

(and the translations between the two representations are effective).
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The star height of a language is a measure of how many nested loops are required 

to generate it (in fact, the number of nested Kleene-star operators when given as 
a regular expression). It is a classical result that there are languages of arbitrary 

star height [Coh70]. When looking at commutative languages, a corollary of the 

construction used in Theorem 2.4.4 gives us:

C orollary  2 .4 .2  (co m m u ta tiv e  regu lar lan gu age star  h e igh t) The star-height 
of a commutative finite automaton language is at most 1.

2.5 Two machines

We have already seen one class of automata, the finite state machines, §2.4.2. Here 
we give two more, each with a connection to the Basic Parallel Processes §5.1.2.

2 .5 .1  P u sh d o w n  A u to m a ta

Pushdown automata add to the finite automata of §2.4.2 an unbounded stack. A 
pushdown automaton is a quintuple, (P, T, £ , —>, Z,p)  of,

1. Control states P;

2. Stack symbols T;

3. Initial stack symbol Z  6 T;

4. Initial state p  € P; and

5. Transition relation, P x T x E - ^ P x r *

A position is a pair of control state and stack (note that this would be our usual 
meaning of “state”), (q,a)  (a  € T*). If in position (g, X a ) , a rule (q, X ) —>(q', (3) 
means the automaton can read an a and move to position (q', (3ct)] we say that a has 

been accepted. This notion extends to sequences of letters; the language of a PDA  

is the set of words it accepts. These automata can evolve into potentially infinitely 
many positions; their languages -  the context-free languages -  are of a strictly greater 

complexity than those given by the finite automata [JJ79].
The automata’s power as language generators does not increase with the num­

ber of control states; the single-state PDA already generate all of the context-free 
languages. As process generators this does not hold (see Lemma 5.1.2): increasing 

the number of control states widens the class of processes which may be described. 
Single-control-state PDAs, as used to define processes, are called Basic Process Al­
gebra, and represents the sequential cousin of the Basic Parallel Processes.
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2 .5 .2  P e tr i N e ts

The first well-studied theory of concurrency is a class of automata called the Petri 
Nets, invented by Carl Adam Petri in his PhD thesis, [Pet62] (see e.g. [Rei85, EN94], 
of the extensive literature available4). They are able to model true concurrency -  the 

actions of a pushdown automata can be totally ordered by time, but for a Petri Net, 
time can be made a partial order5. (However, it is only the interleaving semantics, 

not the concurrency semantics of Petri Nets which interests us here, as we wish to 
use them to generate Labelled Transition Systems, in which every action is totally 

ordered by time.)
A net (P, Tr, E, I, W )  is a finite collection of places, P , each holding some (finite, 

unbounded) number of tokens, and connected by transitions, Tr, labelled with action 

names, I : T r  —► E. The weight function W  connects places and transitions6:

W  : ( P x T r )  U (Tr x P ) —► N (2.32)

A transition can fire when all of its input places contain at least one token; it then 
removes one token from each of its inputs, and adds tokens to each of its outputs. 
A state is a vector of natural numbers: the number of tokens in each place, and in 
this Petri Nets are an example of /c-tuple processes (§4.1.1).

Exam ple 2.14 (a P etri N et) ( This example comes from [BCMS01].)
Define a net J\f =  ( P ,  Tr, E, I, W ), with places P  =  {p, q , r, s}, transitions T r  =  

{t i ,  t 2 , £3 , £4, £5 , to},  actions E =  {a, b, c, d}, labels l(t i) =  l(te) =  a, Z( 2̂) =  Z(£3) =  b, 
(̂£4) =  c, l(t§) =  d, and weight function,

W(p, t1) =  1 W(p, t4) =  1

W (r,t6) =  l W(r, t3) =  1 W(r, t4) =  1

W(q, t2) =  1 W(q,U) =  1

W(s, t  i) =  l W(s , t2) = 1

W(tu s) =  1 W(t2,s) =  1

W(t3,r) =  l W(t3,g) =  1 W(tt , r)  =  1

W(t5,s) =  1 W(i6,<j) =  l W(t6,r) =  l

4Petri Nets World, http://www.informatik.uni-hamburg.de/TGI/PetriNets/
5There is a disparity between the way a physicist sees a system (which might be as a set of 

interacting particles, with no notion of a global clock), and how it is seen by computer science (a 
next-state function, stepping through time). Petri Nets are an attempt to bridge this divide.

6Petri Nets can be viewed as a generalisation of the Vector Addition Systems of [KM69] -  the 
reachability sets of an n-place feedback-free Petri Net (that is, whose transitions do not have self­
loops) is isomorphic to an n-dimensional VAS. The (n-dimensional) Vector Addition Systems with 
States, [HP79], are essentially Petri Nets with no more than n unbounded places.
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(with W  being 0 on all other place/transition pairs). Though cumbersome to express 

in terms of functions and sets, the key to Petri Nets is their graphical representation:

(Places are circled, transitions boxed.) If r is given one token, the set of possible 

firing sequences -  the language generated -  happens not to be context-free.

Petri Nets are not Turing complete -  the reachability problem (whether there 
exists a sequence of transitions between two given states, analogous to the Halting 
problem) is decidable [EN94]7 -  but become so if inhibitor arcs are included (transi­
tions which fire when their input places are unmarked8, i.e. tests for zero). Similarly, 
pushdown automata are not Turing complete -  there, the addition of a second stack 
is enough to allow them to compute everything that is computable -  but although 
bisimilarity (§4.3) is decidable for PDAs ([Sen98]), on Petri Nets it is already unde- 
cidable ([Jan95b]); weak bisimilarity (Definition 4.5.1) is undecidable for Petri Nets 
with even a single unbounded place ([May03a]; it is unknown whether bisimilarity is 
decidable on such nets), as is true of PDAs with a single stack symbol (in addition 
to a bottom-of-stack symbol which cannot be removed; ibid).

A marking M  is a tuple of natural numbers expressing the number of tokens on 

each place, M  G (so, if p  G P, M(p)  equals the number of tokens on p); a Petri 
Net process is a pair of net and marking, (Af , M) .  We write when a net
marked from M  has an a-labelled transition enabled, which when fired produces a 

marking of M ' . That is,

M A M ' iff 3t e  =  a A Vp 6 P-W(p, t )  >  0 M(p)  > 0 and
^  1 Vp G P.M (p) -  W(p,  t) +  W(t , p )  =  M'(p)

Analogously, we write for a t  E T r ,  to mean t is enabled in M , and produces

from it M'  when fired. A standard result from Petri Net theory is,

7On PAN (Figure 1.7), the least generalisation of Petri Nets and PA, reachability remains decid­
able, [May97].

8It has recently been found that reachability is decidable for nets with a single inhibitor arc, 
[BLM89, Rei04].
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Lem m a 2.5.1 (P etri N et transition  sequences) For a  G Tr*,

M ^ M '  = >  Vp G P.M (p) +  ^  (W(Z,p) -  VF(p, t)) • B(t) =  M'(p)
te.Tr

2 .5 .3  C o m m u n ica tio n -free  P e tr i N e ts

A net is communication free when its transitions have exactly one input place a piece; 
we cannot synchronise places, cannot say “if this place and this place are enabled, 
fire” (analogous to the divide between context-sensitive and context-free grammars).

D efinition  2.5.1 (com m unication-free P etri N ets)
A Petri Net J\f =  (P, Tr, E, Z, W ) is communication free when, for  p,p' G P , t  G

Tr, W(p , t )  >  0 A W(p' , t )  >  0 ==> p  =  p'. ■

Graphically, each box has exactly one arrow entering it.9 A place p is markable 
in J\f from M  if there exists a transition sequence the result of which puts a token in 
p. The subnet generated by a sequence of transitions a  G Tr* has as transitions, 
T ra =  { a ^  and places,

Pa = d e f  {P € P \ 3 i . W ( p , a i )  >  0 or W(<7i,p) >  0} (2.34)

For the communication-free nets, Esparza has found a stronger version of Lemma
2.5.1 ([Esp97]):

Lem m a 2.5.2 (com m unication-free P etri N et transition  sequences)
For a  £ Tr* , M-^> if and only if,

1. Vp G P, M (p ) +  YsteTr^W&P) ~  >  0/ and

2. every p  G Pa is markable from M  in the subnet generated from a.

And goes on to prove that,

Lem m a 2.5.3 (E sparza’s Reach) Reach =def { {M,  &■> M')  I is effectively
semilinear.

9 A useful shorthand, employed in Chapter 5, in defining transitions is X A a , where X  is a place, a 
the transition’s action, and a  a tuple of each place (possibly repeated) to which the transition outputs 
tokens. The net can be described as a commutative context-free grammar in Greibach normal form 
-  it is, in fact, exactly a BPP, §5.1.2. (The connections between commutative grammars and Petri 
Nets have long been of interest to researchers -  see for example [CRM74].)



Proof: For P'  C P  and V  C Tr, define sets of markings and Parikh-mapped
transition sequences restricted to P' and T' respectively,

M { P ' )  —def { M | M ( p ) > O i f f p G P ' }

T(T')  = def { a \ a ( t )  > 0  iff t e T ’}

Define, Reach(P',T') = def {(M ,<r,M ') \ M  G M ( P ' ) , a  G T(T') and and
find that:

Reach =  ( J  Reach(P/,T ') (2.35)
P 'C P ,T 'C T r

Since semilinearity is preserved by finite union, it suffices to prove that each set 
Reach(P', T') is effectively semilinear. Note that if a place is markable from some 
marking in M.(P'), it must be markable from every marking in that set. Consider 

some <t G T', and the subnet J\fa it generates. There are now two cases:

1. Every place of Ma is markable from A i(P ') .  Applying Lemma 2.5.3, we find 
that Reach(P;, T ') equals the solutions (M, <r, M 7), for all p  G P , to,

M(p)  =  M'(p)  +  ^ 2 ( W ( t , p )  -  W(p , t ) ) . a { t )
t e T r

2. Some place is unmarkable, but then Reach(P',T') =  0.

The second case is trivially semilinear; the first is the set of natural number solutions 

of a finite system of linear equations, which is an effectively semilinear set. □



Chapter 3

Constructive D ickson’s Lemma

3.1 Dom ination

Domination is a generalisation of the greater-than relation to monoids (§2.3):

f > 9  =def Bh.f =  g +  h (3.1)

A sequence / i , / 2, • • • is domination-free or non-dominating when no element dom­
inates a predecessor: jBi <  j . f \  <  fj .  Clearly, on ( N, +)  (the natural numbers 
with addition), the length of every domination-free sequence n i, 712, . . .  is both finite 
and bounded by n\ .  Conversely, on (N, x ) there exists an infinite domination-free 
sequence: the prime numbers.

If we move to (N2, + ) (the two dimensional vector space with pointwise addition), 
it is no longer possible to put a finite bound on the length of a domination free 
sequence as a function of its first element. For example, from (0,1) we could have,

(0 , 1), (0 , 0 ) 

or. (0,1), (1,0), (0,0) 

or, (0,1), (2,0), (1,0), (0,0) 

or, (0, 1) , (3, 0) , (2, 0) , (1, 0) , (0, 0)

all domination-free sequences. However, they are bounded in length by the second 

component of their second elements: no infinite domination-free sequence rooted at 
(0,1) exists. Dickson’s Lemma states that in fact any domination-free sequence from 
(Nfc, + ) is finite.

34
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Lem m a 3.1.1 (D ickson’s Lem m a, [D icl3]) For any infinite sequence drawn from  

Nk, x i , x 2, . . .  we can always find indices i <  j  such that x\ < Xj.

Proof: For a contradiction, let x \ , x 2,  G Nfc be an infinite domination-free
sequence, x ^  y ==> 30 < I <  k.x{l ) >  y(l)', that is, for each j  >  1 there exists an 

index 0 < I <  k such that,
x \ (I) >  Xj(l) (3.2)

The pigeonhole principle implies the existence of an infinite subsequence y i , y 2, ■ ■ • 
with Vi.yfil) <  x\{l)', a further application of the principle gives us an infinite subse­
quence z[, 22, . . .  in which z[(l) =  z2{l) =  . . . .  Reapply the construction k — 1 times 
to yield an infinite sequence v \ , v 2, . . .  in which Wi,j.vl  =  vy. a maximally domi­
nating sequence, yet any subsequence of a domination-free sequence must itself be 
domination free. □

It does not, however, help in putting ordinal bounds (§2.1) on the lengths of our 
non-dominating sequences. It is possible to say, for example, that the unfolding of a 
domination-free sequence of N2 is curbed in the following way: it is allowed a finite 
number of arbitrary increases in length, therefore it is limited strictly above by u j 2 . 

Before we prove this, a diversion into a forest.

3 .1 .1  D o m in a tio n -free  tree s

A tree labelled from Nk is domination-free when every path through it forms a 
non-dominating sequence.

D efinition  3.1.1 (largest dom ination-free tree) The maximal domination-free 
tree rooted at x  G Nk, DO M( x ) ,  is a tree t, with

1. The root o f t  is labelled x;

2. If u is a node of t and a  =  x \ ,  x 2, . . . ,  xfn is the sequence of labels in the path 
from t to u, then for each x' G such that ax' is a domination-free sequence, 
add u —> v! and label u' by x f.

I.e., t  holds all possible non-dominating sequences beginning with x. M

Lemma 3.1.1 is equivalent to asserting that for any x  G Nfc, DO M { x )  is well-founded. 
Returning to the sequences rooted at (0,1),  we find,

h( DO M( (  0,1)))  = u  (3.3)

and for sequences of natural numbers, a forest: DOM( 0) ,  D O M ( l ) ,  D O M ( 2 ) , . . . ,  
whose height is sup{ h{DOM{ n) )  \ n G N} =  u j  -  i.e. the order type of domination-
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free sequences of natural numbers is uj. We wish to find a full generalisation of this 

result, and thus a constructive version of Dickson’s Lemma.

3.2 Lexicographically ordered sequences

A lower bound for the height of the maximal domination-free tree is provided by 

considering lexicographically-ordered sequences,

D efinition  3.2.1 (lexicographic ordering) x > i exy =def 3i.y{i) <  x{i)  A V? <
i .y(j )  =  x{ j )  M

In distinction to the non-domination relation >iex is a total order. For example, 
there are two permutations of (0 ,1), (1,0) which make non-dominating sequences, 
(0,1) ^ (1,0) and (1,0) ^ (0 ,1), while for any A  C there is exactly one way of 

making a lexicographically ordered sequence of its elements, x  > iex y = >  y^iex x 1. 
(There are, in this sense, more non-dominating sequences of any given length than 
lexicographically-ordered ones.)

If <t =  # 1, X2, . . .  is a lexicographically-ordered sequence from Nfc,

X \  ^> leX^2 ^ l e x  • • •

it is easily seen that cr is domination free (x > \ exy = >  3l.y(l) <  x(l) x ^  y).
Define L E X ( x ), the largest lexicographically-ordered tree rooted at x analogously 
to D O M ( x )  (Definition 3.1.1). Clearly, h ( D O M ( x )) >  h ( L E X ( x )); we find the 
following (well known) result,

Lem m a 3.2.1 (T he order-type o f > iex on Nfc) For x  G Nk, h( LEX(x) )  <  uok, 
and

sup{ h ( LEX{ x ) )  | £  G Nk} =  ujk

Proof: Sketch. An induction on k. Consider x =  ( a i , . . . ,  an+i) G Nfc+1. If the
first component is pinned at a i, we have (by hypothesis) a tree of height bounded 
strictly above by u k. Each time the first component is reduced, we can raise the 

other components arbitrarily high while retaining the >iex order, that is, a\ trees of 

height cvk, stacked upon each other. □

Corollary 3.2.1 sup{ h ( DOM( x) )  | x G Nfc} >  ujk

1I.e. it makes sense to write, ^ iex =  <iex, but not to have ^ =  >
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3.3 A reification

We will construct a function r  : (Nk)+ —> with the property that, if x[,X2, ■ ■ ■ i xni xn+1

is non-dominating,

r(i?1 ,X2 , >lex r(x1, X*2,...,Xn, xn+1) (3.4)

This proof is taken from [HMS06], and owes to Faron Moller. For sequences on  G N+ 

we set r(on)  =def n • For sequences of pairs, define, on o =  x[,  X2 , . . . ,  xn G (N2)+ ,

min(cr) =def min{a%(l) | 0 <  j  <  m } min(cr) =def m in{x)(2) | 0 <  j  <  m }  (3.5)
x y

and, second, the set of possible elements with which to extend a sequence while 
maintaining non-domination and its minimum values:

{x  | minx(a) <  x( l ) ,  mmy(o) <  f ( 2 ) and 
* 2(cr) = def wn _ w (3.b)

VU <  i < m.Xi % x

First, note that S^io) is always finite; second, that on o  G (N2)+ , the following meets 
our needs:

r{o)  — def (min(o-) +  min(fj), IS2M I) (3.7)x y

That is, if ox  G (N2)+ is domination-free, either:

1 . minx(x) < mincer);

2 . miny(:r) <  miny(cr); or

3. x  G S2 (o) (i.e. |5 2W | > \S2 {ox)  +  1|)

hence, r(o)  >\exr(ox) .  We are now in a position to prove the result stated at the 
end of §3.1. Consider how a sequence of pairs rooted at x can unfold. r(x) =  (x,y);  

in the next step, either we reduce the y  component (and keep x constant), or reduce 

x (and raise y  to whatever we please). That is, we have x  many opportunities to 
increase the potential length of our sequence arbitrarily far.

The construction proceeds by induction. Define a function to project out the ith  

component of a sequence,

^- i ( ( ® l >  • • • i ® n ) )  —def ( ®l j  • • • j Qi—1) O'i+li • • • j ®n) (3.8)
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then, for cr =  x \ ,  x*2 , , x^  E (Nn) + , define the set of non-dominating subsequences 
of cr in which the ith component has been deleted:

NDi(tr) —def {(TT-tOziJj • • • , 7T-j(xTp) ) \ p  >  0 ,0  < i\  <  . . .  <  ip <  m  and 

( ^ ( x q ) ,  • • •, 7T-t(®Tp)) is non-dominating}

Finally,

min(a) = def min{rn_i(<r') | o' E ND^tr)}
i <lex
S n ( & )  —def (x  | VO <  i  <  n.m in(x) =  min(crx) and

i i
VO <  j  <  m.Xj  x}

L em m a 3 .3 .1  (Sn) For o  E (Nn)+ .S'n(cr) is finite.

Proof: For o =  x[, X2, . . . ,  x^ , we wish to prove that for any x E Sn(cr), and any
0 <  i <  n, there exists a 0 <  j  <  m  with x(i) <  Xj(i).

Let 0 <  i <  n and i\  <  . . .  <  ip be such that,

min(cr) =  rn_ i ( 7T.j(xi1) , . . . ,  n.fix* ))
t

and suppose that x E Sn(o). If (7r_j(x71) , . . . ,  7r_j(x7p)) is non-dominating, then by 
induction,

min(crx) < iex rn_ i (7r_» ) , . . . ,  7T-i(x7p), 7r.i(x))i
■^lex r n —1 (^’- i ( X j 1 ) , . . . ,  -̂i{p îv))

-= min(cr)
i

But then, x Sn{p). TT.fix̂ ) , . . . ,  7r.j(xTp), K-i(x) is dominating: Bj.ir.fix^) <  7r_*(f), 
yet x7- ^  x, hence x(z) <  x7-(i). Since we can do this for each component of x, the 
members of Sn(o ) must be bounded as a function of cr, and be finitely many. □  

Finally, define

D efin itio n  3 .3 .1  (rn) For cr £ (Nn)+ ,

f  n

rn(cr) =def ( I5 " M l
\ i = 1

where the sum is componentwise (i.e. rn(cr) E Nn).



L em m a 3 .3 .2  (rn) For a  G (Nn)+ , x G Nn, i f crx is non-dominating then,

rn{(?) >iexrn(<7x)

P roof: For all i, ND_i(cr) C ND_i(crx), hence min^crx) <  mincer). If equality
holds in all cases, then Sn(ax ) C Sn(a),  since Sn(ax) C Sn(a), but x G Sn(a).  That 

is to say, rn(ax)  < iex rn(a).  □
We are left with the situation that, although non-domination is a strictly weaker 

condition than lexicographical ordering, nevertheless:

T h eorem  3 .3 .1  (n o n -d o m in a tin g  v ec to r-la b e lled  trees)
If t  is a non-dominating tree labelled from Nk, then h(t) <  uA

Proof: Label each node u of t by rn(a),  where t  —» t \  —■> . . .  —> tm —► u is the path
leading to u , and a  =  l(t), l ( t \ ) , . . . ,  l (tm), l(u) is the (necessarily domination-free) 
sequence of labels. By Lemma 3.3.2 we have a lexicographically-ordered tree, and 
applying Lemma 3.2.1 gives us h{t) < u k. □

3.4 Further and related work

(This work forms part of [HMS06], and first appeared as a CALCO-jnr 2005 Swansea 
University Research Report in [HM05]; it was presented at CSL 2006 by Anton 
Setzer.) Other constructive proofs of Dickson’s Lemma have been undertaken, in 
particular in the field of term rewriting. Martfn-Mateos et al formalised the proof 
of Dickson’s Lemma using the ACL2 theorem prover2 in [MMAHRR03] (without an 
ordinal mapping), while at the same time and for the same end Sustik produced an 
explicit ordinal mapping on sequences3, [Sus03], though not an optimal one, giving 

only an eo result -  so, for example, the bound on pairs is already
As noted by Setzer, very recently -  preprint March 2006, [BG06] -  Blass and 

Gurevich have defined the stature, ||P ||, of a well partial ordering P  as the order 
type of nondominating sequences of P ; they derive the ujk result found in Theorem 

3.3.1 as a special case. Their interest is in program termination (using ordinals is 

an approach that goes back at least as far as Turing, [MJ84]); their proofs are both 

more general and more difficult than ours.

2http://www.cs.utexas.edu/users/moore/acl2/
3The stated motivation behind such work has been the formalisation of Buchberger’s Algorithm, 

an important tool for creating Grobner bases. Note that Strfbrna has found a nice connection 
between Basic Parallel Process bisimilarity and polynomial rings, which itself uses Grobner bases 
for decidability, [Str99].



Chapter 4

General Processes

A process acts, and becomes a new process.

4.1 Labelled Transition System s

A unifying view for the automata and process algebras glossed in the Introduction, 
which stems from the Structural Operational Semantics of Plotkin [PI0 8 I, AFV01], 
is the labelled transition system.

D efin itio n  4 .1 .1  (LTS)
A Labelled Transition System is a directed labelled graph: a tuple (S, £ , —>) of 

states S, action names £  and transition relation -> C  5  x E x 5 . ■

At this level of description no weights are given to the actions, no propensities, 
stochastic or otherwise, no timing1, no distinction between causal and contingent, 
and no true concurrency. The processes that can be described by LTSs we name the 

general processes.

D efin itio n  4 .1 .2  (gen era l p rocesses) A general process is a pair (L,u) ,  where 

L  =  (S, £ , —►) is a LTS, and u g 5 .  That is, a rooted LTS. I

If (L, u) is a general process, and u-^v  is a transition in L, we say (returning to 

this chapter’s opening) that u may perform the action a to become the process v. 
We will typically refer to a process (L, u) as u, its LTS left implicit. The collection 

of all general processes is a proper class (since there is no set of graphs); everything 

that follows will take place within it.
We will later garnish the A  relation with information as to the change wrought 

by the action modulo some function (§6.1, Equation §6.5), and the (ordinal) number

1See e.g. [Emm88].

40
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of times this can be done (§6.4). But for now, a standard notation for when an 

action cannot be made,
u-f* :iff (4-1)

and the usual extension from actions to sequences of actions: Vu.u-^u, and if w =  

( a i , . . . ,  an+i) £

W / • rr Q-n ®n+1 / / . r.\u—*u :irx dui, U2 , .. •, un.u—>u\ . . .  —>un —> u (4-*)

UJ U)' '̂Moreover, u-^u' :iff 3n.u—>uf.

4 .1 .1  S im p le  c la sses  o f  g en era l p ro cesses

A void process is one whose only transition is the void transition, u-^u,

void (u) :iff Va 6  T.u-f* (4-3)

The norm  of a process is the minimal distance from it to a void process,

norm (u) =  m in{|u;| | u ^ u '  A v o id (r /)}  (4-4)

(By convention, m in0 =  oo.) A LTS L  =  ( 5 ,  S, —►) is normed when all u G S  have
finite norm. A process is normed when it has a finite norm, and cannot reach a
process with infinite norm. Our formal definition is a little stronger:

D efinition  4.1.3 (norm ed processes)
(L, u) is a normed process when L is normed. ■

A LTS is well-founded (§2.1.2) when every sequence of transitions u^>ui-+U2 . . .  
within it is finite (a sufficient but not a necessary condition for normedness, Figure 
4.1).

Figure 4.1: A normed but non-well-founded LTS

D efinition  4.1.4 (w ell-founded processes) (L,u)  is a well-founded process when 

no infinite paths exist through L. ■

The well-founded processes are a class intimately bound to the ordinal numbers 

(§2.1). Define the height of a process,

h(u) =def s u p {h(v) +  1 1 u-^v} (4.5)
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then, h(u) £ O  if and only if u is a well-founded process, and moreover for every 

ordinal k E O  there exists a well-founded process u with h(u) =  n (see Lemma 2.1.2).
A transition u—>u' is norm reducing when oc > norm(u) >  norm (it') (norm(u) =  

norm(u/) +  1). A LTS is normed if and only if every u E S  possesses at least one 
norm-reducing transition; the LTS is well-founded if (but not only-if) all transitions 

are norm reducing.
If, for each u E S(L),  there is at most one transition of any given label (i.e. u-^u' 

and u-^u" implies u' =  u") then L is termed deterministic. If in the LTS of a process 
u there can only ever be finitely many choices for the next state (as is true of all of 

the systems introduced in the previous chapter) we say that u is finitely branching, 
or, sub-#o-branching (see §2 .2).

Generalising,

D efinition  4.1.5 (sub-H-branching processes)
(L, u) is sub-H-branching when the vertex degree of L is bounded strictly above 

by H. ■

Further, the sub-Hi-processes correspond to those whose branching is countable. 
A studied subset are those processes which can be represented as vectors from Nfc. 
For example, Petri Nets (§2.5.2) and BPPs (Chapter 5), with or without silent 
actions (§4.5).

D efinition  4.1.6 (fc-tuple processes)
(L,u) is a k-tuple process when S (L ) ~  Nfc. ■

4.2 Equivalence relations on processes

Given two processes, the first question one might ask is whether they represent the 

same system: are they equivalent? There are dozens of studied notions of equiva­
lence (many summarised by van Glabbeek in [vG90]). Since processes are, for our 

purposes, directed labelled graphs, a natural first attempt is graph equivalence: that 
they share an identical structure. But a process essentially models action, and it 
proves easy to find an example of structurally different graphs whose behaviours 

are indistinguishable. Our second attempt will draw from automata theory: pro­
cesses are equivalent when they can exhibit identical sequences or traces of actions. 
But here we will find the notion too permissive -  necessary but not sufficient. This 

holds too of a variant known as failures equivalence, the native idea of equivalence 

for Hoare’s CSP [Hoa78a]. The concept we will reach, bisimilarity, owes to David 

Park [Par81] (though it has antecedents in logic: p-morphisms [Seg71], and zig-zag 

relations [vB76]), and was originally used in Milner’s CCS [Mil80, Mil89].
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We draw a line between a static or timeless notion of equivalence and an opera­
tional one; and subdivide the latter into linear and branching time2. Our aim is to 

find a definition of equivalence which captures reactive behaviour.
Static notions of equivalence treat processes as objects, with no idea that they 

do anything -  generate a language, model a system.

D efin itio n  4 .2 .1  (G raph  eq u iva len ce) (L,u)  and (M, v) are graph equivalent 
u ~  v iff there exists an isomorphism f  : L —> M  and f ( u ) =  v. ■

This is an equivalence relation, yet one too restrictive when we consider processes 

in terms of what they can do (an idea which will become more precise in the course 
of this chapter), u and v  of Figure 4.2 are not structurally equivalent, but act 
identically; since a process is about action, we would not wish to distinguish them, 
nor use a notion of equivalence which does.

a

Figure 4.2: u v

4 .2 .1  T race an d  fa ilu res eq u iv a len ce

A trace of a process u is a sequence of actions w £ £* with (see Equation 4.2, 

page 41). A completed trace from u is a sequence of actions which brings u to a void 
process, u ^ v  A void(v). Two processes are (completed) trace equivalent when their 

sets of (completed) traces are equal:

D efinition  4.2.2 (trace equivalence)

L{u) =def {w  I U ^ v  A void{v)} LT{u) = def {w \ u ^ }  (4.6)

Two processes u ,v  are trace equivalent, u = lt  v when L T (u ) =  LT(v) .  They are 

completed trace equivalent or language equivalent, u = l v , when L(u ) =  L(v).  ■

(See the introduction to Chapter 5 for more on completed traces and languages.) 
Considering again the processes of Figure 4.2, LT(u ) =  {an \ n G N} =  LT(v)  and 
L(u) =  L{v) =  0. However, completed trace equivalence only makes sense for normed

2Likewise, temporal logics are commonly characterised as either linear (e.g. Linear Temporal 
Logic), each moment has only one future, or branching, taking into account a multiplicity of future 
worlds (e.g. Computation Tree Logic) -  see [VarOl, HR04].
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processes (4.1.1), while trace equivalence fails to capture deadlock3. The processes 

u, v of Figure 4.3 have the same traces, but while one can halt, the other cannot.

a

o
u -< v  >-a a

Figure 4.3: v  is capable of deadlocking, u is not

To account for deadlock, we might follow CSP [Hoa78a, BHR84] and generalise 

completed traces to failures equivalence:

D efin itio n  4 .2 .3  (fa ilu res eq u iva len ce) A failure of u is a pair (w,A) ,  with w G
w a£*, A  C  £ , and 3u'.u^>uf A Va 6  A . u f ( u )  denotes the set of failures of u; two 

processes are failures equivalent, u = f  v, when they have the same failures. ■

Traces and failures are linear-time notions of equivalence: they take no notice 
of the branching structure of processes. This structure is, however, important if we 
wish to truly capture reactive behaviour. In Figure 4.4, L (s ) =  L (t ) =  {a&, ac}, 
but after the initial a action s evolves into a process capable of doing b or c, while 
t has to choose, either moving to a state which can perform b, or to one with a c 
action enabled. The processes of Figure 4.5 have the same failures sets, but their 
behaviour clearly differs. Branching time semantics pulls us back towards isomor­
phism: behaviour cannot be determined as a set of runs, as this ignores divergent 
action [vG94]. Its most studied example is bisimilarity.

s t

si t\  t2
c b c

Figure 4.4: s = l t

4.3 Bisim ulation equivalence

In [Ace03], Luca Aceto gives the following as a prominent open question,

Can one prove in a formal sense that bisimulation equivalence is the finest 
reasonable behavioural equivalence?

3For our purposes, a process is deadlocked iff it is void.
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>   >-  >-

Figure 4.5: u = f V

Intuitively, two processes are bisimilar when whatever one can do, the other can 
match, such that the resulting processes are still bisimilar. Technically, processes 

are bisimilar when they are related by a bisimulation:

D efin itio n  4 .3 .1  (B isim u la tio n ) A binary relation R  on general processes is a
bisimulation relation exactly when uRv implies,

1. If u-^u' then 3v'.v-^v1 s.t. u'Rvf; and

2. If v —*v' then 3u'.u-^-u' s.t. u'Rv'

Two processes u , v are bisimilar
u ~  v

if and only if they are related by a bisimulation; that is, ~  is the union of all bisimu­
lation relations.4 (Note that we have elided the labelled transition parts of the general 
processes in our definition.) ■

E xam p le  4 .1  (b isim ilar and  non -b isim ilar p rocesses) The processes of Figure 

4-2 are bisimilar, while those of Figures 4-4 and 4-5 are not. For the former, imagine 
we have a bisimulation R with sRt. Then, since t —>ti, we must have s \R t \ ,  but s\-^>

c
and t\-f*.

L em m a 4 .3 .1  (b is im ila r ity  on  d e term in istic  p rocesses) On deterministic pro­

cesses, ~  =  = LT; on normed deterministic processes, ~  =  = l .

w wP roof: Since 3w.u—> v-f+ = >  u /  v it suffices to prove that = lt  and
=L are bisimulation relations on deterministic and normed deterministic processes 

respectively.
For the former, let u = l t  v , and wlog u —>u'. Since there is exactly one action 

v-^v' from v, and the sets of a-prefixed words of u , v are identical, it must be that

4 A simulation relation is defined by using only the first clause; u simulates v iff they are related 
by a simulation relation. Note that mutual simulation does not imply bisimilarity (easily seen), and 
in general simulation is a harder problem to decide -  for example, bisimilarity is decidable on BPA 
§5.3, simulation is undecidable already for normed BPA, [GH94]. In [KM02c], Kucera and Mayr 
show that there exists a polynomial reduction of bisimilarity to simulation equivalence across a wide 
range of processes.
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u’ = lt  v'. The sequel is similar; we only need note that normedness implies that 
any action u-^u' contributes towards some completed trace. (For a discussion of 

bisimilarity and language equivalence, see [StiOla].) □

4 .3 .1  B is im ila r ity  on  fin ite  p ro cesses

(L, u) is a finite process w hen L is a  fin ite graph. T h e language equivalence problem  

is know n to  be PS PACE-complete on such processes [MS72], w hereas b isim ilarity  is 

P-com plete [ABGS91], and indeed:

L em m a 4 .3 .2  ( ~  on  fin ite  p rocesses)
Bisimilarity is decidable on finite processes in 0 ( n  log n) time.

Proof: [MolOO]. See [KS90, PT87] for the bisimulation colouring algorithm. □

4 .3 .2  B is im u la tio n  g a m es

Bisimilarity admits a natural game-theoretic characterisation,

D efin itio n  4 .3 .2  (G ( u , v )) The game G{u\ ,U2 ) is played between I  and II .  First, I  
chooses a process Ui and a transition (which may include the void transition, u ^ U i ) ,

I  : u A u ' i (4.7)

to which I I  must respond with a transition of the same action-name from the other 
process,

I I : (4.8)

If no such move exists, the game ends. Otherwise, continue with G{u'l ,v!'2) .  All finite 
games are won by I; all infinite games, I I . 5 M

The following is a standard result (see e.g. [StiOld]):

T h eorem  4 .3 .1  (G(u, v))  u ~  v iff I I  has a winning strategy for G(u,v) .

E xam p le  4 .2  ( ~  C  = l t )  To prove that ~  C  = l t  it suffices to show that if there
W

exists a w with it—> <=> v-f* then  I  has a winning strategy on G{u , v ). ( That strat-
y j  CL CL CL CL

egy being, if wlog u—> Av-f*, at each turn, successively perform it—>iti—>it2—̂►... - W , 
where w — a \ . . .  an; there must come a transition against which I I  has no response.)

5Note, the more common definition of the game does not allow u A u  transitions, and adds to 
the winning conditions that the first player who cannot make a move loses. These definitions are 
equivalent; the one used here has the advantage that it is identical (with for A ) to the weak 
bisimulation game, and simplifies the construction of optimal move trees, §4.4.1.
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4 .3 .3  B is im u la tio n  a p p ro x im a n ts

Rather than require that the game must be infinite for II  to win, we set an ordinal 

bound, moving from G to GK. The game GK(u\,U2 ) is played between I  and II. 
If k, =  0, player II  wins. Otherwise, I  chooses a process iq , one of its transitions 

Ui—tu'i and a /i <  k; II  has to respond with an identically-named move from u^-i. 
If there are none, I  wins; otherwise the game proceeds on G^u'^u^)6.

Turning from games to relations, the bisimulation approximants, or stratified 

bisimulations, are defined:

D efin ition  4 .3 .3  (B isim u la tio n  ap p rox im an ts) The bisimulation approximants 

for all ordinals n 6 O, are

1. u ~o v for all processes u and v.

2. u ~ „ +i v iff

(a) if u-^u' there is a transition v- +̂v' such that u' v'; 
and

(b) if v-^v' there is a transition u-^u" such that u' v'.

3. For all limit ordinals A, u ~ \ v  iff u ~ K v for all k < \ .

■

L em m a 4 .3 .3  II  has a winning strategy for GK(u,v) iff u ~ K v.

For convenience, a  (3 abbreviates a (3 A a  7̂ + i  p.

E xam p le  4 .3  In Figure f.6, II  has a winning strategy on Gu(u,v), but not for 
Guj+i (u, v), therefore u v.

Figure 4.6: The Fan, u v 

6Implicitly, G  =  Goo, where I  never winning is equivalent to a victory for II .
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E xam ple 4.4 (trace equivalence and finite approxim ability)
W

Q = l-  Imagine that u v ,  i.e. 3w.u—> <==> v-f*. Clearly I has a
winning strategy on G\w| (u, v): perform, one by one, the sequence of actions w from 
the process which is capable of doing it. To make the inclusion strict, note that (in 
Figure 4-6), s = l  t, but s ^ 2  v.

Exam ple 4.5 (failures and readies equivalences) See Definition 4-2.3. The read­
ies of a process are [OH86],

r(u) = {{w,A) | 3u'.u^u'3/a E A.vl-̂ L •<=>• a E A}

f{u) /  f(v) or r(u) ^ r(v) gives I a winning strategy on the game Gu{u,v). Let 
(w,A) witness inequivalence, then I can force play to a pair of processes u',v' such 
that 3a E A.uf A  v'yL.

4 .3 .4  S em id ec id in g  7£ on  f in ite ly -b ra n ch in g  p ro cesses

On finitely branching processes with an effective next-state relation (a description 
which includes Petri Nets and pushdown automata, §2.5) we are able to semidecide 
non-bisimilarity by playing the bisimulation game on successively larger finite graphs.

If u, v are processes of finitely branching LTSs, the set of reachable states in the 
game Gn(u, v) is itself finite7. If the next-state relation is effective, this finite graph 
is computable. The game Gn{u,v) is then equivalent to ~  on finite processes {any 
u', v' more than n transitions away from u, v respectively can be removed without 
affecting the outcome of Gn{u,v)) -  which is decidable (Lemma 4.3.2). By Lemma 
4.4.4, u rf v = >  u v ==> 3n.u 7̂ n v; we conclude that:

Lem m a 4.3 .4  (sem ideciding /  on finitely-branching processes)
7̂  is semidecidable on finitely-branching processes with an effective next-state 

relation.

(It is easy to define a process which branches finitely but cannot have an effective 

next-state relation. Name the root A. The children of a node u are uO and u l , and 

if u is represents the binary code (modulo some fixed universal Turing Machine) 
of a program M  which halts given its own Godel number as input then u has an 

additional transition, uĥ s. This LTS cannot be explored.)

7Moreover, if their branching is bounded above by some N , the set of possible states for Gn is 
at most N 2 .
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4 .3 .5  F in ite  a p p ro x im a n ts  w ith  fin ite  a lp h a b ets

The zeroth approximant ~o relates all processes; the first approximant ~ i  relates 
those processes u, v for which,

Va <= S .n A  <^> (4.9)

If £  is a finite alphabet, the total number of equivalence classes modulo ~ i  is simply 
2ls L That is, given any set of processes A,

\X /  | <  2|e| (4.10)

Imagine there are N  possible equivalence classes modulo ~ n, T i , . . . ,  T/v, and £  =
{ a i , . . . ,  am}. Considering ~ n+i, & process is either able to perform an a\  action to
reach a process in T\ or not; able to perform an a\ to a process in X2, or not, and so 
forth. (Note that we have assumed nothing about the branching structure of these 
processes.) We find,

Lem m a 4.3.5 (F in ite approxim ants over finite alphabets)
Let | ~ n | =def sup{|-A/ ~n  | | -4 a set of processes over the finite alphabet £ } ,  

then

H > i |  =  2 P | 2l ^ ' - 2lE| }» ( 4 U )

We will use this result in Chapter 6 (in the proof of Lemma 6.2.3). Of interest 
for its own sake is the situation when £  is infinite. This is not an avenue we have 
explored, but the Generalised Continuum Hypothesis appears to imply that,

|£ | =  Ni = H  ~ n + l  | =  Ni+n+1 (4-12)

4.4 Approximant hierarchy

On general processes there exists a strict approximant hierarchy,

L em m a 4 .4 .1  (ap p roxim an t h ierarchy) p  <  k ==>■

Proof: For any KinO we wish to (transfinite inductively) construct two processes

u,v  with u v. Define uQ to be a void (actionless) process, void(uo). Given 
processes u  ̂ for all p <  k, let uK have exactly the transitions, V/i <  n .u ^ u ^ .  We 

will prove that,
k, < k ==> uK uK> (4-13)

by an induction on k. Of course, if k >  0 then uo uk . Let k <  and consider 
the game GK(uK,u Kr). To show that uK uKr, note that any move from uK can be
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replicated exactly from uK>, so player I  must move uK/-^uK» with k" >  k . But now, 
for any p < k I I  can move uK-^u^, and by hypothesis u^ uK» (but I I  has no
move uK- >̂uK). □

E xam ple 4.6 (approxim ant collapse on finitely branching processes)
Let u v, and wlog I  : u-^u'. By definition, for each i <  cj we can find a

process v-^Vi such that V{ u1 but Vi 7̂  u'. This is only possible if v can reach
infinitely many processes in a single step, hence on all finitely branching processes,

~  M

4 .4 .1  O p tim a l m ove tree s

Informally, on a game G (u ,v ), u-^u' is an optimal move for Player I  if no other 
move exists which will end the game sooner. Formally, if u v , u-^+u' is an optimal
move for Player I  iff there does not exist a v-^v' with u' v'. If u ~  v, all moves
are optimal (i.e. equally suboptimal).

D efinition  4.4.1 (om t) o m t(u ,v ) is constructed,

1. The root is (u,v).

2. For a node (s, t),

(a) If s-^s' is an optimal move for I  then, for all t '.t-^t', (s , t ) —> (s ' , t '); and

(b) If t-^t' is an optimal move for I  then, for all s'.s-^s', (s, f) —> (sf, t ')

(If I I  has no responses, i.e. u v, the tree will be empty (denoted by fy).) ■

Then, u ^  v if and only if om t(u , v) is well-founded. And further,

Lem m a 4.4.2 (om t) u v iff h(om t(u ,v))  — k

Proof: u ~q v iff 3a.wA v-/+ iff omt(u, v) =  0 iff h(omt(u, v)) =  0. Let

u ^  u, and u-^+ui, U2 , . . v-^v\, V2 , . . .  be the optimal moves for I  (not necessarily a
countable sequence). For each of I F s possible responses, u-^u', v-^v' (respectively) 
we have (by hypothesis) h(omt(ui,v')),h(omt(u',Vi)) < k, while for any p <  k we 
can find a pair (u*, v') or (v', uf) with h(omt(ui, v')) >  p  or h{omt{u’, vi)) > p. That 
is, h(omt(u,v)) =  sup{// +  1 \ p  <  k} =  k. Conversely, h(omt(u,v)) =  k implies the 
existence of a winning strategy for I I  on GK(u,v), and a winning strategy for I  on 

G k+i {u , v ). □
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4 .4 .2  A p p ro x im a n t h ierarch y  co lla p se

Lem m a 4.4.3 (collapse on sets o f  processes) On any set S of processes there 
exists a k, s.t. ~

Proof: For each pair (u, v) £ S x S, either u ~  v or 3fi.u 7̂  v. Let C — {/i | u 7̂

v}; either C is a set, in which case k  =  supC, or C is a proper class, but then so 

must S be. □

E xam ple 4 .7  (w ell-founded processes) If u,v are well-founded processes, and 
k =  max{/i(u), h(v)}, then u ~  v iff u v (an induction on k).

Lem m a 4.4 .4  (sub-N-branching approxim ant collapse)
On the sub-#-branching processes, where # is a regular cardinal (§2.2.1),

Proof: Imagine there exist sub-N-branching processes u , v, for a regular N, with

In particular, it is well known that on finitely branching processes, ~  =  
(Example 4.6), and on countably-branching processes (e.g. the fc-tuple processes, 
Definition 4.1.6),

u v tor k >  is. omt{u, v) is av for k > N. omt{u, v ) is a sub-N-branching tree, hence h(omt(u, v )) < N
(Theorem 2.2.1), but h(omt(u,v)) = k ># . □

(4.14)

4.5 Silent actions

We use a r  to denote a silent action (as opposed to an observable or strong action 
a ^  t ) 8. While a (strong) transition u-^u' involves a single step through the LTS of 

u, a weak transition u^u' (a £  E U {e}) incorporates any number of silent moves, 
and at most one strong action. Formally,

u' otherwise
(4.15)

8In CCS-like formalisms -  for instance, B PPr of §5.2 -  r denotes an (internal) synchronisation; 
in ACPt , [JJ85], observable actions are abstracted into silent actions, renamed r.
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Every concept introduced so far has a natural weak equivalent. Weak trace and

completed trace equivalence, = rLTi = t L ? become

u =tlt v =def Vit; G £*.?!=>• (4-16)

u =tl v = d e f  Vu? G £ * .u ^ u '  A void(r/) (4-17)

<S=>- A void(i/) (4-18)

while a weak bisimulation relation is,

D efinition  4.5.1 (weak bisim ulation) R  is a weak bisimulation relation when 

uRv implies, for a G £  U {e},

1. If u ^ u '  then 3 v ' .v ^ v '  s.t. u ' R v a n d

2. If v=̂ >v' then 3 u ' .u ^ u f s.t. u'Rv'

Two processes u , v are weakly bisimilar

u «  v

if and only if they are related by a weak bisimulation9. ■

and the weak bisimulation approximants are defined analogously to (Defini­
tion 4.3.3); namely, with ^  for A . The weak bisimulation game becomes,

D efinition  4.5.2 GTK (iq, U2 ), the weak bisimulation game up to k, is played between 
I  and II ,  analogously to GK $4-3.3. ■

Note, in G(u, v ) we allow empty moves to be played, but they cannot change 
the state of the game, u—>v = >  u =  v. In G T(u,v),  every move may admit silent 
transitions. A standard theorem:

T heorem  4.5.1 (GT) u ~  v iff II  has a winning strategy on GT(u, v), and u v 
iff II  has a winning strategy on GTK(u,v).

E xam ple 4.8 ( u ^ v ^ u )

1. Trivially, U\-^U2 = >  u\ =  U2 ;

2. With silent actions, if u \^ U 2 and U2 =>u\ then u\ ~  U2 , since whichever move 
I  plays, Ui=>u'i, I I  can respond with u ^ - i^ ^ u ^ .

9 Also known as o b serva tio n  equ ivalence , [Mil89], and as r-bisimulation equivalence in [JJ85].
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u « S3 v and v ~ S3 s but u s

T  T  T

a,r a,r a,T
a,T

a ,r

Figure 4.7: The single-step weak approximants are not transitive

E xam p le  4 .9  (s in g le -step  w eak  b isim u la tion s) Let a binary relation R be a 
single step weak bisimulation when uRv implies that, for a £ E U {e},

1. u-^u' implies 3 v ' .v ^ v '  with u!Rv', u ^ u '  implies 3v' .v ^ v '  with u'Rv'; and

2. v-^v' implies 3u'.u=>u' with u'Rv', v ^ v '  implies 3u'.u=^>u' with u'Rv'

Two processes are single-step weakly bisimilar, u v if and only if they are 
related by a single-step weak bisimulation.

That is to say, a move for player I  is a strong transition, a move for Player I I  
is a weak one -  and yet, it is a standard result that «  =  « s . A winning strategy for  
I  on gives I  a strategy for  ss; conversely, a winning strategy on «  can be used by 
I  on ms . I fum'K v we continue by induction on k. A move u ^ u '  can be decomposed 

into u^>u\^>. . .  -^*ui—>ut+1~>. . .  -^u'. Make each of these transitions in turn; I I ’s 
responses are . . .  =M/. If u! v' then (by hypothesis) in the game
u & v to I  : u=̂ >u' I I  can answer u=W ; hence, u' v ' .

It is worth noting that their respective approximants do not coincide: the &Sk 

relations are not even equivalences (see Figure f.7).

Note that the correspondence between (completed) trace equivalence and bisim­
ilarity on (normed) deterministic processes (Lemma 4.3.1) does not hold between 

weak trace equivalence and weak bisimilarity. Figure 4.8 shows two normed, deter­
ministic processes which both have the weak trace language (a, 6} but are not weakly 

bisimilar. (The inclusions ~  C  = t l t ,  = tL  are still valid.)
The T operator is a tool for showing the correspondence of strong and weak 

bisimilarity. A graph with r  transitions is transformed into a graph with arrows:

D efin itio n  4 .5 .3  (T) For L =  (S', E, —>), T{L)  =  (S', E, =>), where for a £  E,
a t * a t * j  e t * _u=>v u —►—>—>v, and u=>v < = >  u—>v. m
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X  Y

Figure 4.8: X  = tL Y  but X  96 Y

If u is a finitely-branching process, T{u)  need not be (Figure 4.9). We find the 
folklore result,

L em m a 4 .5 .1  (T)

1. u «  v  <t=>- T(u)  ~  T(v)

2. u ^ K v T(u) T(v)

An easy consequence of Lemma 4.5.1 is that weak bisimilarity on finite processes is 
decidable.

t  a t  a

a t  a t

Figure 4.9: u is finitely branching, T(u)  branches infinitely

W ith silent actions, any process reachable from (L, u) can potentially be reached 
in a single transition. If the vertex-set of L is S(L),  then

\S(L)\ <  N = >  u is a sub-N-branching process (4-19)

Since the set of reachable processes from a finitely-branching process is countable, 
we find that

L em m a 4 .5 .2  (T  on  fin ite ly -b ran ch in g  p rocesses) If u is a finitely-branching 

process then T (u ) is sub-'&i-branching.

As a corollary, on the finitely-branching processes,

~  =  « W1 (4.20)

4.6 Other notions of weak bisimilarity

With only strong transitions, there is no concept of livelock -  either a process can 

act, or it has no transitions at all: (dead)locking means termination.

a
voidr (u) :iff Va € (4.21)
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A process is livelocked when it can only act silently -  if u is livelocked it is voidr 

but not void. Weak bisimilarity cannot distinguish between live and deadlocking -
between, in computing terms, a hanging system, and one which has been switched
off10. A more subtle point levelled against weak bisimilarity is illustrated in Fig­
ure 4.10: u and v are weakly bisimilar, yet their branching structure differs: v has 

the additional capability of choosing to do only a b action after the first transi­
tion. Branching bisimilarity was developed to ensure that the intermediate steps of 

equivalent processes are matched, and thereby be more sensitive to their branching 

structure.

D efin ition  4.6.1 (branching bisim ulation) A symmetric relation R is a branch­
ing bisimulation when, if uRv then

1. If u^u' then u'Rv; and

2. If u-^u' then v^-^-v' with u'Rv'

Processes are branching bisimilar if and only if they are related by a branching bisim­
ulation.11 ■

Figure 4.10: Two weakly bisimilar processes which are not branching bisimilar

Two other approaches to silence, lying in between weak and branching bisimi­
larity, and mutually incomparable, are the delay bisimulations of [Mil81b], and the 
77-bisimulations of [BvG87]. Each is a refinement of Condition 2; the first changes it 

to,
u- -̂u' = >  3v', v".v^-^v'^v" u'Rv' and u'Rv'' (4.22)

and for 77-bisimilarity,

u-^u' = >  3vf ,v" .v=>v'-^*^v" uRv' and u'Rv" (4.23)

(See [vGW96] for more on this quartet.)

10If u ^ u  and void(7;), u ~  v.
11 The proof that this does in fact constitute an equivalence relation has an interesting history, 

[Bas96],



Branching 
bisimilarity, [GW89]

Delay bisimilarity, 
[MilSla]

77-bisimilarity,
[BvG87]

Weak
bisimilarity

Figure 4.11: Bisimilarity-like relations incorporating silent actions, [vGW96]

Weak bisimilarity can itself be cast in these terms, see Example 4.9. It is the 
least observant of processes’ branching, but since our criterion is the expression of 
behaviour, not fidelity to graph structure, we can return to u and v of Figure 4.10 
and ask: is there a reason why they should be distinguished 011 the basis of their 
behaviour?
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Branching bisimilarity
U-------- V V --------- u

e a

v'
a

Branching-, Delay- and 77-bisimilarity
u  v v  u

u v

Delay bisimilarity
u  v v  u

u v

,// / /v u

77-bisimilarity Weak bisimilarity (equivalent definition)
U  ------------- V V    U U --------------V V   u

a v

a

e

, / / HV u

Figure 4.12: Four approaches to silence (to be read left to right, top to bottom)



Chapter 5

Processes from context-free 
grammars

A grammar or formal rewriting system is a means to generate complex, potentially 
infinite systems from the exhaustive application of a finite set of rules. Classically 
these systems have been languages, sets of sequences over an alphabet ([Cho56, 
Cho57]; though they could be trees [GS97], or terms over an algebra [DJ90, Klo90], 
or even formalisms of biological systems, [Lin6 8 , Pru90]). With symbols a, 6, c, X  
and the rule that, in any string of symbols, an X  may be rewritten either to b or 
aXb, we may generate the language {anbcn \ n (E N} (Figure 5.1).

X  ^ b  X  —> aXc 

X ----- >■ a X c ----->■ aaXcc-----  ̂aaaXccc----  ̂• • •

b abc aabcc aaabccc

Figure 5.1: A context-free grammar, and its transition system rooted at X

This is an example of a context-free grammar (Type 2 in Chomsky’s Hierarchy, 
see Figure 1.4); a distinction is made between terminal (alphabet) symbols E and 

non-terminal or variable symbols V, with only the latter being rewritten. Each 

transition rule allows a single variable to be substituted by a sequence of variables 
and terminal symbols; one cannot restrict the applicability of one rule based upon 

the applicability of another (as the enabledness of a Petri Net transition may depend 

on multiple places); there is no synchronisation, no communication. The language 
of such a grammar is written on the leaves of its transition system.

58
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T heorem  5.0.1 (Language equivalence on context-free gram m ars) Itisun- 
decidable whether a context-free grammar over E can generate E* (the universality 
problem,), [Gre68]; and (as a corollary) it is undecidable whether two context-free 
grammars generate the same language.

5.1 GNF grammars as processes

It is a fundamental result of formal language theory that any context-free grammar 
can be effectively transformed, preserving its language, into Greibach Normal Form: 
a grammar whose transition rules —> are of the form —> C  V x E x V* ([Gre65]). 
Its original application was in proving the equivalence of context-free grammars 

and pushdown automata; for our purposes, the interest lies in producing labelled 
transition systems (§4.1; an approach initiated by Caucal, [Cau92]). In GNF, each 
transition is of the form X  —> aa, where X  € V and a £ V*. It is a small step to 
recast this as,

(5.1)

from, UX  becomes a a ” to UX  performs the action a, and becomes a ” (see [EspOl] 
for grammars as processes, and [MSS04] for a more technical view). In Figure 5.2, 
the language of M  is the set of sequences of edge labels from M  to e; it equals 
[anbcc \n €  N}.

M -
b

e ■<-

■ > M C

b

c

+  MCC
b

c c *

Figure 5.2: A context-free grammar in GNF

5 .1 .1  B a sic  P r o c e ss  A lg eb ra

Let A — (V, E, —>) be a GNF grammar. A BPA process is a sequence of variables, 
a £ P ;  the transition relation —> is extended by the rule,

X A 7 = >  X a ^ j a  (5.2)

Figure 5.2 is an example. Only the head variable of the process sequence is capa­
ble of performing an action (by which we will argue that BPA is marginally less 

context-free than its parallel cousin, BPP). It was introduced in [BK85] as a simple 

model of sequential processes. Since they generate exactly the context-free lan­
guages, trace equivalence §4.2.1 is, as a corollary of Theorem 5.0.1, undecidable (as
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is failures equivalence, Definition 4.2.3, and indeed every notion of equivalence of 
van Glabbeek’s hierarchy (Figure 1.2) coarser than bisimilarity, [GH94]).

Bisimilarity (§4.3) was first proved decidable for its normed subset [Cau90, BBK93, 
Gro92], and then for full BPA, [CHS95] (subsequently a polynomial-time algorithm 

for normed BPA has been found, [HJM96a]). But whether weak bisimilarity (§4.5) is 

decidable remains open1; while it is decidable on totally normed BPA, [Hir96], even 
a non-trivial bound on its level of approximant collapse (§4.4.2) has yet to be found 

(see §5.7 and Equation 5.42).

5 .1 .2  B a sic  P a ra lle l P r o c e sse s

In §2.3 we went from sequences to multisets (see Definition 2.3.2, the Parikh homo­
morphism) -  from languages to commutative languages. A BPP is a GNF grammar 

A  =  (V, £ , —*) in which concatenation is commutative,

Va, P e  V*.a/3 = /3a (5.3)

—> is extended to BPP processes by the same rule as for BPA (Equation 5.2), but 
with the effect that any variable of the process can act; there is no notion of left­
most derivation, or ability to arbitrarily postpone the enabledness of a variable (i.e. 
the BPA process X nY  has to remove n instances of X  before it can perform an 
action from Y,  while as a BPP process Y  can act immediately; in this, BPP is more 
context-free than BPA: only the presence or absence of a variable determines whether 
its transitions can be made). An equivalent view takes BPP processes as multisets 
of variables, with —► extended, for a,  (3 £ V®, by

a A/? :iff l G Q , l A 7 a n d ( a - { I } ) U 7  =  /? (5.4)

Clearly, every BPP process over V  can be represented as a IV^-vector of natural 
numbers, and so are examples of /c-tuple process (k =  \V\, Definition 4.1.6).

E xam p le  5.1 (B P P )  A two-variable BPP and the LTS generated from its process 

M  (see Figure 5.2),

M  A  M C

M  - i  e

C  A  e

a a a

M I  " M C  M C C  7"
c

c < „ cc
1 Branching bisimilarity (§4.6) was proven decidable for the totally normed BPA in [Hiit91b], and 

a PS pace algorithm for normed BPA was given in [CHT95]; there does not appear to have been 
much research interest in broadening this result.
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BPP was introduced by Christensen in his thesis [Chr93] as a simple model of 

parallel processes. Where a BPA can be viewed as a single control-state Push­
down automaton, BPPs are effectively communication-free Petri Nets ([Hir94b]; see 

§2.5.3); the applicability of much Petri Net theory has proven useful (e.g. §5.5).
Christensen shows in [Chr93] that a BPP can generate a non-context-free lan­

guage. His example is

A-^e, B-^e, C ^ e ,  X -^ B C X ,  BC, X ^ A C X ,  AC,  X - ^ A B X ,  A B  (5.5)

Then, L( X)  =  {w E {a ,b , c}  \w(a)  =  w(b) =  'in(c)}, so L' =  L{ X)  D a*b*c* — 
{anbncn | n >  1}. But L' is not context-free (using the Pumping Lemma [HU87]), 
yet the intersection of two context-free languages must be context-free, therefore 
L( X)  is not context-free. He goes on to provide a Pumping Lemma for BPPs,

Lem m a 5.1.1 (B P P  P um ping Lem m a) Let a  be a BPP process, and L =  L{a) .  
Then there is a constant n such that i f w E L  with \ w\ >  n then there exist u , v , s  E E* 
such that,

1. w =  us;

2. |v| >  1; and

3. \/i.uvls E L.

He uses it to show that the BPP languages are disjoint from the context-free lan­
guages, using the example {an6n | n >  1}. Trace (language) equivalence was shown 
to be undecidable by Hirshfeld, [Hir93].

E xam ple 5.2 (m axim al finite norm s) L e t A  =  (V ,E ,—>) be a normed BPP whose 

variables are ordered according to non-decreasing norm, V  =  { X \ , . . . , X k }  , i <  
j  norm(Xi) <  norm(Xj) .  M ( i ) =^e/ m ax{norm (Xj) \ j  <  i};  of course,
M ( X i) =  1, and if mi =  m ax{|7 | | X ^ ' y }  then M{Xf )  <  m i . M ( Xi - i )  +  1. If it 
requires n bits to define A , then M( Xk)  can be written in 0 ( n ) bits (and all of 
M { X l ) , . . . , M { X k) in 0 ( n 2)).

For bisimilarity, decidability was proven in [CHM93], and for its normed sub­
set a polynomial algorithm was found in [HJM96b] (though without an explicit 

degree). PSPACE-hardness was proved in [Srb02c] (by a reduction from QSAT 

[Pap94, GW99]; Mayr previously found a co-NP-hardness result [MayOOa] using 

3-SAT) and -completeness by Jancar in [Jan03]; a proof which also furnished a
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0 ( n 3)-time decision procedure for normed BPP [JK04]. Mayr’s co-NP-hardness re­
sult means that it is extremely unlikely that a polynomial time decision procedure 

exists for full BPP (as it would imply that P =  N P)2.

5 .1 .3  B is im ila r ity  b e tw een  B P A  an d  B P P  p ro cesses

BPA and BPP generate identical classes of commutative languages, but incomparable 

classes of non-commutative languages; likewise, modulo bisimilarity their classes of 

transition system are incomparable (see [BCMS01], from which the following theorem 

and proof is drawn).

T h eorem  5 .1 .1  (B P P  and  B P A  are in com parab le) There exists a BPP pro­
cess which is not bisimilar to any BPA process, and vice versa.

Proof: Consider M  of Example 5.1, and imagine that (3 is a BPA process with
M  ~  /?. Let n be very large, and X(3 be the BPA process which corresponds to M C n, 
with norm(X) +  norm((3) =  n -1-1, and norm(X) =  k. The result of performing k 
norm-reducing transitions from X a  must be a , yet from M C n we can reach the two 
non-bisimilar states, M C n~k and C n~̂ k~l\

Conversely, imagine that a  is a BPP process bisimilar to M  of Figure 5.2.
norm(o:) =  1, hence a  =  X ,  and L( X)  =  {anbcn |n  G N}. Again, let n be large,
then

Decidability between an arbitrary BPA and BPP is nontrivial -  the union of 
BPA and BPP is a broader class than the finite processes (see e.g. Figure 5.4). 
Both Blanco and Cerna, Kretfnsky and Kucera found positive decidability results 

for normed BPA and normed BPP, [Bla95, CKK96] (the former based on [CM90]), 
but it took until 2003 for decidability between full BPA and BPP to be proven 

(by Jancar, Kucera and Moller, [JKM03]). Their technique involved converting 

the BPP process (if possible) into a one-counter automata, and then using the (non- 
elementary, [Sen98]; EXPTlME-hard, [KM02a]) decision procedure for PDA. (A result

2While it can be decided in polynomial time whether a place is unbounded, Mayr shows that the 
problem of whether this place matters -  that changing he number of tokens on the place actually 
changes its behaviour -  is NP-hard. For example, add a variable A â cA  to the BPP of Figure 5.1, 
then if a process has A  enabled it does not matter, for the purposes of bisimilarity, what or how 
many other variables are enabled: A  ~  A M nC rn (for all n ,m ). A (in Mayr’s terminology) masks 
the other variables.

(5.6)

6 c cnwhere Y —>(3. 7  /  e (norm(T7 ) =  n +  1 >  norm(K)), so 7 — and (3 —> e (k >  0 ).
C Cn  ^But then, X —̂ 7 — ►/? —»• e, in which case the two processes are not even trace

equivalent (see Example 4.2). □



5.1 GNF grammars as processes 63

subsequently refined by Jancar, Kot and Sawa, converting the BPP into a normal 
form -  with a potential exponential increase in size -  then directly into a BPA, 
[JKS05]). A key part of the proof is an innovative expression of bisimilarity on 

BPP processes using Jancar’s distances-to-disablings functions, which we will cover 

in more depth later, §5.3.4, extend in Chapter 6 , and apply in Chapter 7.

5 .1 .4  U n a r y  la n g u a g es

A language over a single-letter alphabet is termed unary. Observe that if |£ | =  1 , 
the language and commutative language (Example 2.7) of a process coincide, and 

moreover it makes no difference to the language whether the process is treated as a 
BPP or a BPA. By extending the proof of Theorem 2.4.4 (using the BPP pumping 

Lemma 5.1.1) we can find:

T heorem  5.1.2 (unary context-free process languages)

1. All languages generated by context-free processes over a unary alphabet are 
regular;

2. Any BPP or BPA over a unary alphabet can be effectively translated into a 
finite process which generates the same language; and

3. Language equivalence on unary context-free processes is decidable.

Proof: 1. This is essentially a special case of Parikh’s Theorem, [Par66 , Gin66].
(Esparza gives an alternative proof of which in [Esp97]). 2. It is easy to make 
this procedure constructive; rather than consider all strings generated by o, explore 
the string-space, keeping track of which pure pumping sequences we come across 
and ensuring never to repeat one. 3. Language equivalence is decidable on finite 

processes. □

5 .1 .5  P D A  c o n tr o l-s ta te  b is im ila r ity  h ierarch y

Modulo language equivalence, increasing the number of control-states a pushdown 

automaton is allowed improves succinctness of expression but does not increase the 

class of what can be expressed: the single-control state PDAs (i.e. BPAs) already 

generate all of the context-free languages ([Gre65]). In contrast, with reference to 
bisimilarity, additional control states enable the expression of strictly richer labelled 

transition systems.

Lem m a 5.1.2 (P D A  control-state hierarchy)
There exists a k control-state PDA with a position which is not bisimilar to any 

position of a PDA with fewer than k control states.
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P  =  {p i,P 2, . . . ,Pfc} S  =  T =  {A}

Vz (p*, A ) - ^ ( p * ,  A A )  

Vz ( P i , A ) - ^ ( p i , e )  

V i <  A; ( p i , A ) A ( p i + 1 , i 4 )

(Pi> ^  ( P i ,  ^ 2)   ( P i ,  - 4 3 )   ( P i ,  ^ 4 )

(P2, A)

ai ai ai

02
(P2, A 2) '  ^ (p2, -A3) I (P2 , -44)

02 02

ai

02

(Pfc, 4 )  ^ (pfc, 4̂2) „ (Pfc, 4̂3)  ̂ (Pife, -44)
Ofc flfc Ofc

Figure 5.3: A k-control state PDA

P roof: Sketch, consider the fc-state PDA of Figure 5.3. It builds a counter of
arbitrary size, and needs to keep track of whether this counter decrements on an 
ai, a2, etc.; behaviour which can be switched by a single action. That is, the stack 
symbols encoding the counter require k different interpretations, meaning k control 
states. □

5.2 Extensions of context-free processes

BPA,* adds a special deadlock symbol, <5, where Va.5a  ~  e; [MS98] shows that this 
generates a strictly richer class of transition systems (but not of languages) than 
BPA, but ~  remains decidable ([Bos96]); the latter because 5 can be simulated by 
a fresh variable/action D-^*D, the former because d enables a BPA process of any 

norm to reach a void process in a single step.
BPPr allows CCS-style communication within processes. For each symbol a of 

the alphabet there is a corresponding anti-a, a. r  here represents the internal (and 

thereby silent) synchronisation of a and anti-a,

X - ^ a  and Y-^(3 XYj^otfl'y (5.7)

Bisimilarity is decidable on B P Pr , but becomes undecidable if we add a unary 
restriction operator { a / L  behaves exactly as a , but cannot perform any action from
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L, or a, if a 6  L), as this algebra can mimic a two-counter Minsky machine ([Min67]), 

and hence is Turing complete (the proof is in [Chr93], based on [Tau89]).
Lossiness and other forms of unreliability are an active research interest (not 

least because a wholly loss-free communication system is a practical impossibility), 
e.g. Lossy Channel Systems ([SchOl]) and Lossy Vector Addition Systems ([BM99]). 
Lossy BPP was introduced in [May03b], and bisimilarity proved decidable in [Srb02a] 
(see §5.3.3). Here, lossiness is modelled using a special action, drop ^ E, which allows 

processes to drop any number of variables,

X ?  . . . X l ^ X f  . . . X f  Vyi < x i , . . .  , yk < < Xi (5.8)

E xam p le  5 .3  (a lo ssy  B P P )
The lossy BPP defined by X - ^ X B ,  B ^ e  is not bisimilar to any BP P process a. 

(If a  is a BPP process, and n is greater than the number of transitions offered to a, 
then a  /  X B n.)

One could alternatively define lossiness as a special usage of silent actions: for 
each variable X , add a transition X^+e (and allow no other r  transitions); every 
action a=>oc' may potentially involve the loss of variables. Call these the silently 
lossy B P P ; it is easily seen that weak bisimilarity is decidable on these (unbounded, 
but finitely-branching) processes: ~  is semidecidable by Lemma 5.5.2, and 76 by 
Lemma 4.3.4.

5.3 Deciding bisimilarity on context-free processes

The problem of bisimilarity on context-free processes has fuelled the development of 
a number of powerful techniques -  an arsenal which has, as yet, had little impact on 

the related question of weak bisimilarity. We gloss the most important of them here.

5 .3 .1  C au ca l b ases

A method for semideciding strong bisimilarity on classes of processes for which bisim­
ilarity is a congruence (§2.3.1) is to show that they admit a finite Caucal base -  a 

notion introduced by Caucal (and called a self-bisimulation) in [Cau90] to prove 
decidability on normed BPA (§5.1.1).

D efin ition  5 .3 .1  (C au cal b ase) A binary relation R on a class of processes is a 

Caucal base iff uRv implies,

1. If u-^u' then 3v'.v-^v' s.t. uf =  v'; and
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2. If v —*v' then 3u'.u-^u' s.t. u' =  v r 

(See Definition 2.3.4-) ®

R
Lem m a 5.3.1 (Caucal base) On BPP or BPA processes, =  C  ~ .

R
Proof: We wish to prove that =  is a bisimulation. First, the distance or inference

depth of a, (3 from R  is zero when aR(3, one when a  =  aict2 , (3 =  P1P2 and a\R(3i A
R

oi2-R/32i and so forth. Clearly, a, (3 are a finite distance from R  iff a  =  /?; the proof 
is a simple induction on this distance. □

Corollary 5.3.1 (Caucal base) a  ~  (3 iff aR P  for some Caucal base R.

Lem m a 5.3.2 (finite Caucal bases) If R  is a finite relation on BPA or BPP
processes, it is semidecidable whether R  is a Caucal base.

Proof: Let Ro be the pairs of processes of distance 0 from R  (i.e. Ro =  R),

Rn + l  = d e f  { ( a i a 2 ,  P 1P 2 ) | <*1 R iP l  A a 2 R j P 2 . i 1 j  <  Tl} ( 5 - 9 )

If R  is finite, each Rn can be constructed; R  is a bisimulation base when for each 
a R P , any move has a counterpart P ^ P '  with Bn.a'RP' (and the dual, P—>P').
If they exist, we can find them. □

The existence of a finite Caucal base for normed BPA was shown in [Cau90] (and 
though decidability was already known, his proof is significantly easier to understand 
than that of [BBK87, BBK93]); a finite base for full BPA was found by Christensen, 
Hiittle and Stirling in [CHS92, CHS95]. Hirshfeld proved in [Hir94a] that a finite 

base exists for BPP (a result related to Theorem 2.3.1). See [BCMS01] for details.

5 .3 .2  H irsh fe ld  tree s

Otherwise known as expansion trees, and first proposed in [Hir94c]; see e.g. [JM99].

D efinition  5.3.2 (expansion) A finite binary relation A on BPP processes is ex­
panded by A' when,

1. ocAP and a-^a' implies that P ^ P ’ with a'A'P';

2. aA P  and P-^P’ implies that with a'A'P'; and

3. Minimality: no proper subset of A' satisfies conditions 1 and 2
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D efin itio n  5 .3 .3  (H irsh feld  tree ) An  expansion tree for  (a, (3) is constructed:

1. Its root is labelled { ( a , /?)};

2. The children of a node A are all expansions A' of A, with the provisos that:

(a) Every pair (a, a) is omitted; and

(b) Every pair (a, (3) which has already occurred in A or its ancestors is omit­
ted.

The 0-labelled leaves are termed successful; a non-empty leaf (i.e. one with no ex­
pansions) is unsuccessful. A branch is successful if and only if it does not terminate 

with an unsuccessful node. ■

L em m a 5 .3 .3  (exp an sion  trees) a  ~  (3 iff the expansion tree grown from  (a, (3) 
has a successful branch.

Using a notion -  domination, §3.1 -  which we will employ in §5.7.1, one can elim­
inate the possibility of infinite branches. A finite Hirshfeld tree may be constructed, 
and a successful branch sought.

5 .3 .3  T ab leau  p roofs

Tableau proofs are prominent in modal logic and proof theory ([Fit96, DGHP99]); 
when written they resemble natural deductions ([BE99, Gir89]), finite tree-like struc­
tures which decompose a statement to-be-proved until its truth or falsehood becomes 
trivial. A tableau is a finite collection of rules describing how a sentence (in our case, 
an expression of a process) may be broken down into atomic propositions. It is sound 
when it cannot prove anything that is false, and complete when everything true has 

a successful tableau.

Goal . . .  . .
 ------ ----------— :------— side conditions (5.ID)
Subgoall5. . . ,  Subgoaln

Tableau techniques were first applied to infinite labelled transition systems in [BS90] 
(extending the work of [CES86]) in order to verify temporal properties of processes 

(safety: nothing bad will happen; liveness: something good will eventually happen, 
etc), and have since furnished a number of decidability proofs for equivalence rela­
tions on context-free processes (e.g. strong bisimilarity on BPP [R95], BPA [Hiit91a], 
normed pushdown processes [Sti98a]; branching bisimilarity on BPA [Hiit91b]). In 

[Srb02a], Srba presents a class of transition systems called the Effective Commuta­
tive Transition Systems together with a sound and complete tableau, enabling him
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to prove at a stroke the decidability of bisimulation equivalence on BPP, lossy BPP, 
BPP with interrupt and timed-arc BPP (§5.2).

D efin itio n  5 .3 .4  (very  sim p le  B P P )  A BPP algebra is very simple iff for all

t , s £ —7  l(t) =  l(s) = >  t =  s. ■

As a toy example, we can demonstrate the decidability of bisimulation equivalence 

on the very simple BPP  (in which each transition is uniquely identified by its action 

name) with a sound and complete two rule tableau3.
First, a variable X  is non-removable, N R (A ), when

NR(X) :iff I A q ==> a (X)  >  0 (5.11)

our two rules are,

a  =  fj ot =  jj

For any pair of a,  (3 of very simple BPP, the exhaustive application of the above two 
variable-cancelling rules will create a necessarily finite tree, whose leaves are of the 
form 7  =  6 (where neither rule applies). It is not difficult to see that a  ~  (3 if and 
only if the tree (or tableau) rooted at a  =  (3 has leaves labelled by e =  e.

5 .3 .4  J a n ca r ’s d is ta n c e s -to -d isa b lin g s

In [Jan03], Jancar presents a novel method for capturing bisimilarity on BPP pro­
cesses (further developed in [JKM03]). We will return in depth to the general tech­
nique in Chapter 7, using rather different notation and a very different approach. 
For now, with distance defined as per Equation 6.1 (page 78),

dist(ii, v ) =def min{|ic| | u—+v} (5.13)

the distances-to-disablings functions are constructed: for any action a £  E,

dda(ot) = def m in{dist(a, (3) \ (3-/*} (5-14)

is a disabling function; and, if T  — ( d \ , . . .  ,di) is a sequence of already constructed
distances-to-disablings functions (d{ : V* —> N U { —l,o;}),  and 5 =  (5 \ , . . . , 5 i )  £

3The very simple grammars originated with [But72]; see also [KH66].
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(N U { —1, u } ) 1 then

dd(a^ ^ ( a )  =def m in{dist(a, (3) \ \Ji.di{(3) <  u  and (5.15)

V (3'.(3^(3',F {(3 ')-F (f3)^5}  (5-16)

where,
( d i , . . . , d i ) ( a )  =  ( d i ( a ) , . . . , d i ( a ) )  (5.17)

and the subtraction in Line 5.16 is pointwise. Either f3 cannot make an a move, or 

if it can there is at least one di function whose change, upon making the move, is 
not 5i. (By convention, m in0 =  cu.) We will reintroduce (generalisations of) these 

functions in Chapter 6 (with what I hope is more intuitive notation). As noted in 
[JKM03], on finitely branching processes, u,v,

u ~  v iff d(u) =  d{y)  for all distances-to-disablings functions d (5.18)

(see Lemma 6.2.1 for a generalisation). Our immediate interest is the tight and sur­
prising correspondence between distances-to-disablings and the NORM(Q) functions. 
If Q C  V  is a set of variables, the norm relative to Q of a process is the minimal 
number of transitions require to remove every instance of a variable from Q :

NORM(Q) =def min{|u>| | a ^ W  A \ /X  6 Q . a ( X )  — 0} (5.19)

In particular, NORM(0)(a) =  0 for all a , and NORM(F) =  norm. (Recalling NR 

of Equation 5.11, page 68, n r (X )  iff NO RM ({X})(X ) =  a;.) Two processes a ,/?  are 

NORM-equivalence when VQ.NORM(Q)(o;) =  norm (Q )(/?); in fact, NORM-equivalence 

coincides with distances-to-disablings equivalence -  i.e., w ith bisimilarity. In [Jan03], 

Jancar goes further, providing a P S p a c e  decision procedure:

Lem m a 5.3.4 (N O R M ) For any B P P system A  =  (V, £ , —»), we can effectively 
find, in space that is polynomial in the size of A, a finite number of sets of places, 

Q l, • • •, Qm Q V  such that,

\ / a , / 3 e V *, a  ~  j3 iff VO <  i <  ra.NORM(Qi)(a) =  NORM(Qj)(/3) (5.20)

In the four years since, no (published) progress has been made in applying the 

theory to weak bisimilarity. This will become clearer in Chapter 7.
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5.4 Weak bisimilarity

Weak bisimilarity is ExPTlME-hard on BPA [May02]4, and is at least PSPACE-hard 

on BPP. Context-free processes perm itted a silent action may branch infinitely, Fig­

ure 5.4; the straightforward exploration means of semideciding inequivalence of §4.3.4 

no longer applies, and creates problems that have remained open, even for normed 

processes.

^  P ^ A ,  P ^ Q
I t  r t q 1+q q  Q-%e

A ± A

Figure 5.4: Context-free processes P, Q where P  Q

Mayr shows in [May02] that weak bisimilarity is undecidable for BPA with a 
control unit of size 2. In [KRS06], Kretmsky, Rehak and Strejcek broaden this 
result to BPP: they define a special (monotonic) case of finite control unit extended 
BPP and BPA, /cBPA and /cB PP, and prove that weak bisimilarity is undecidable 
even for normed /cBPA and normed /cBPP.

Strfbrna and Cerna have attempted without much success to apply weak variants 
of Hirshfeld trees (§5.3.2) and Caucal bases (§5.3.1) to weak bisimilarity on BPA, 
[SC02].

The first tractable algorithms involving weak bisimilarity on infinite state systems 
have been found by Kucera and Mayr, who show that weak bisimilarity between BPA 
and finite processes, and between normed BPP and finite processes, is decidable in 

polynomial time, [KM02b].

L em m a 5 .4 .1  (con gru en ce) Weak bisimilarity «  and the weak bisimulation ap- 
proximants are congruences on BPP processes (with reference to process concate­
nation).

Proof: R  =  {(a5, (35) \ a  «  (3} is a weak bisimulation. Let ayP/^y, and wlog I:
cry^a/y'. Either a=^a' and 7 ^ 7 ' or a=^a' and 7 =^7 '; in the former case, 3(3.(3^(3' 
with a' ss (3' by assumption, but then a'^'R(3'^' (the other cases are similar). For 

the weak approximants, a  « K (3 = >  NAy.cry ^7 , by induction on k . Let a (3

4At the end of [Hir96], Hirshfeld writes,

We [...] conjecture that eventually it will be shown that weak (and branching) bisimu­
lation is decidable. The work that was needed to prove the result for the very restricted 
case of totally normed BPA [...] is discouraging.
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and I  : where wlog a ^ a '  and 7 =^7 . By assumption V/i <  k 3(3' .(3^(3'
with a' (31, and by hypothesis a ' j '  (3,ry'. □

5 .4 .1  T o ta lly  n orm ed  B P P

The first non-trivial subclass of BPP for which «  was proven decidable is the totally 
normed BPP  [Hir96]5, which strengthens the normed condition to, for every X  (E V,

0 <  normT(X ) < 00 (5.21)

While these processes may branch infinitely, they remain finitely approximate, in 

that the approximant hierarchy collapses at u r.

a  76 (3 =>• 3n.a (3 (5.22)

(Let a  7& (3, and a ^ o t be F s move. I I  can have only finitely many responses fi^(3' 
with normT(c/) =  normr (/3').) See Theorem 5.6.1.

5 .4 .2  P u r e ly -g e n e r a te d  B P P

The first non-finitely approximable subset of BPP for which we have a decidability 
proof is the normed, purely generated B P P , as given by Stirling in [StiOlc].

A variable X  € V  is a generator when it can be used to build, in a single weak 
transition, an arbitrary number of variables. Define,

G{ X)  = def { A  | X ^ X A  A normr (A) =  0} (5.23)

It is a pure generator when,

X ^ a  A normT(X ) =  normr (o;) = >  a  =  X a  (5-24)

(I.e. every normT-neutral silent transition is either generating or leaves the process 

unchanged). The tableau proof is difficult, and while the paper states that this work 

could be extended to the normed BPP, “the combinatorics become awesome.”

5.5 Weak bisim ilarity is semidecidable on B P P

Since (N ^ l)2 is a congruence on BPP (Lemma 5.4.1), and is finitely gener­
ated (Example 2.9), Theorem 2.4.1 applies, and we find that «  is itself a semilinear 

relation (Corollary 2.4.1). There are countably many such relations, so given an

5The definition of totally normed owes to Hiittel, [Hiit91b].
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effective means to test whether a candidate relation is, in fact, a weak bisimulation, 
would give us its semidecidability. For, if a ta (3, then there exists a weak bisimu­
lation R  Css with aR(3. Semilinear set membership is decidable (Lemma 2.4.1); it 

remains to show that we can test whether a relation is a weak bisimulation. For this, 
we define a semilinear encoding of the relation (from [Esp97], which is in turn 

based on [Jan95b]):
Recall the relation Reach of §2.5.3. Projecting away the r transitions gives the 

effective semilinear relation,

Reachr =def {(<5, o, (3) | (5.25)

and, applying Theorem 2.4.3,

Lem m a 5.5.1 (4>a) We can, for any BPP, effectively construct a formula of Pres- 

burger Arithmetic (§2.4-1) 4>a such that, for all of its processes a, (3,

a ^ /3  <pa[ a j \  (5.26)

Proof: Let ^[a, a, (3\ iff Reachr (o, <r, (3), then

4>a(a,(3) =  3<j.'0(q, <t, (3) and E ff{ i)  =  1 A a(i) = 1 =>• Xi=$>

(where of course whether an atom can perform a =$■ transition can be Presburger
encoded). □

Finally, if p is the Presburger equivalent of a candidate weak bisimulation, define 
the Presburger formula,

XP =def Va, f fp(a,  0)  = >  (5.27)

Va, of . (a,a' )  = >  3 P ' P ' )  .p(a', P') A (5.28)

M a , 0 4 a0,(3 ')  = >  3a 4 a { a ,a ' ) .p {d '0 ' )  (5.29)

and find:

Lem m a 5.5.2 ( «  on B P P ) «  is semidecidable on BPP.

Proof: If a  ~  (3, enumerate all Presburger equivalents p of semilinear relations on
N2'!^, testing for each:

1 . p[a, /?]; and 

2- X p

eventually we must find a relation which satisfies both, and may conclude that, 
indeed, a  sa (3. □
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5.6 The finite weak approximants

Stffbrna gives in [Str99] a neat encoding of the finite weak approximants into for­
mulas of Presburger Arithmetic,

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

which gives us their decidability (Theorem 2.4.2), and moreover the decidability of 
«  on the finitely-approximable subclass of BPP (the totally normed BPP §5.4.1, for 
example). However, no complexity bounds are given, and it is difficult to see how 
this method could be extended to £3^.

T h eorem  5 .6 .1  (th e  fin ite ly  ap p rox im ab le  B P P )  On any finitely-approximable 
class of BPP, is decidable.

Proof: Semidecidability is given by Lemma 5.5.2; to semidecide non-equivalence,
decide each finite approximant in turn. □

Lemma 4.3.5 puts a bound on the number of equivalence classes there are modulo 
zen: the players of G^(a, (3) have infinitely many choices, but each comes from finitely 

many equivalence classes. On BPP we find a stronger result, and a second way to 
decide the finite weak approximants.

Define the capping of (natural numbers) x by n to be,

(5.37)
n i  i f x < n
— = d e f  \
x n otherwise

where,

a ~ n  (3 <=> 0n[a,/3]

4>o {oii (3) =  True  

(j)n+i (a,/5) =  V a',a .^a( a ,a /) = >  

3 /3 ^ a(/3,/5')A

and

V/3',a.V;0( /3 j ')  = >

3 a ' . ip a ( a ,  S ' )  A <pn ( a ,  0 )

and extend this to monomials by, Xl n xk =def . . .  X f k . It’s easy to see that,
A-, . . .A »



5.6 The finite weak approximants 74

i.e. to decide a  « i  (3 on processes of any size, it suffices to test the question on a 

pair of processes composed of at most k variables a piece.

Lem m a 5.6.1 (B P P  finite approxim ant branching) For BP P processes over 

V  =  { X 1 , . . . , X k } ,
hn lcn

( 5 . 3 9 )

Proof: Sketch, we wish to show that,

a
kn
a

(5.40)

An induction on n; let (3 =  , and consider the game G^+1(a, (3). If I  : a=>ot ,
where a  =  X \ . . .  X \  X 2 . . .  X 2 ■ ■. X k .. • X k, first decompose its transition sequence:

XI

a  =

a

X i

7 i i

X2

X 1

71:

Xk

X^

7 l Xl

*2

72] l k x

next, consider each Xi  in turn. There are Xi instances of Xi  in a ; in a' they become 

7 q, 7 i2, • • •, l i Xi (where of course it could be that 7 ij — X i ) .  If Xi <  kn+1, or

\ { l i s I l i j  7̂  e, 1 < j  <  x;}| < fc” +1 (5.41)

there is nothing to be done, as the transition sequence can be replicated by (3. 
Otherwise, we have at least kn+l components, each of which involves at least one 
variable; by hypothesis it makes no difference to whether a f has kn instances of 
a variable or more than kn instances: subsequent X ^ - j ^  transitions are redundant. 
The pigeon-hole principle implies that this transition sequence, minus the redundant 
parts, can also be met by a f. (The cases a ^ a '  and f3=>f3' are similar.) □

(Note, this seems a very conservative bound -  finding an example a  for which 

a  7̂ 2 say, is difficult.) Given any ot, (3, we can use Lemma 5.6.1 to effectively 
construct two finite processes u , v with the property that, a  (3 iff u ~  v.

Corollary 5.6.1 (~ n as ~  betw een  finite processes) On B P P processes, can
be effectively reduced to ~  on finite processes.
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5.7 Approximant collapse

Given two parallel processes P, Q with P  ps  ̂ Q (Figure 5.4), we can for any n G N 

find processes X, Y  where X n Yn, by adding 2n fresh variables,

X 0 =  P  Y0 =  Q
v  v  v  Q' v*Z + 1 *-*Z

Can one go further, do there exist BPP processes whose inequivalence cannot be 

seen by ~u;x2? In the sequential case (as first noted by Stribrna in [Str99]) the level 
of approximant collapse must be at least uP. For any « <  uP we wish to construct 
a pair of BPA processes a,/? with a  rfc f3 but a  &K (3. Let V  =  {X o ,. . . ,  A"n_ i} , 
£  =  {a , r} , and

X 0A e X ^ e  X i+1^ X i+1 Xi  (5.42)

For each ac <  u n, with Cantor Normal Form (Theorem 2.1.1)

ac =  ujn~l an-1  +  . . .  +  u;ai +  ao (5.43)

let a K =  X q° . . .  X'^Xi • It can be proven that k, <  p  < ujn implies a K a^ (the 
following comes from [HMS06]). In the following, a , /? ,7  are interpreted sequentially 
as BPA processes.

• If a  ps (3 then

1. 7 0  ps 7 (3-, and

2 . a j  ps /?7

(of course, for BPA processes a 7  does not in general equal 7 a ), with the caveat 
that for 2 to hold, a  ps e = >  a ^ e .

•  If i >  j  then X i X j  ps Xi.

•  As a consequence, for every (3 G P* there exists an c*K such that ~  (3.

•  Next, for every k, <  cuk, X k ^ a K.

•  For every p  <  ac, a K̂ a ^ .

•  If olk=>(3 then 3p <  ac.om ps /?, and

• If olk^(3  then 3/i <  ac.q  ̂ ps (3.
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Then, for any ordinal ujk we can find a pair of processes from a k +  1-variable BPA 

which are ^ k  equivalent, but are not weakly bisimilar. Namely a uk and a u)k+1. 
It is a simple transfinite induction to verify that the game GJjk (aU)k ,a 0Jk+1) is won 

by IF, a winning strategy for I  on G ^ ^ ^ a ^ k , a UJk+1) begins with For
sequential context-free processes, the conjecture is:

C onjecture 5.7.1 (Strfbrna) On BPA processes, ~

Returning to parallel context-free processes, a long-standing conjecture holds 

otherwise:

C onjecture 5.7.2 (H irshfeld, Jancar) On BPP processes, «  =  ~cjx2- 

BPP processes branch finitely, hence Lemma 4.4.4 gives us,

*  =  (5.44)

We can do a little better: in [Str99] there is an argument owing to Julian Bradfield 
to show that the BPP approximant hierarchy collapses by level uj\CK , the first non­
recursive ordinal. Yet this is number of a completely different order to eo, let alone 
to uj • 2 ; we will progress to a more modest bound, one which relies on the analysis 
of Dickson’s Lemma given in Chapter 3.

5 .7 .1  A n  uju b o u n d  for B P P

(Presented at CSL 2006, and published in LICS 2006, [HMS06].) First, a result 
based on a lemma of Hirshfeld’s [Hir96],

Lem m a 5.7.1 (dom ination) If  a  (3 and 0 7  (36 for some p <  k, then

a l  a n d  P i  P $

Furthermore, ( a j , a 6 )  < iex (Pl ,P$)  or ((3j,P6) <iex (0 7 , aS), where <iex is the 
usual lexicographic ordering.

Proof: The weak approximants on BPP are congruences (Lemma 5.4.1): a6  

PS 0 7 ; however, if 0 7  ^ + 1  then 0 7  £^ +1  && P& (the other case is similar). 
Note that a  ^  (3, so either a  <iex (3 or (3 < iex a.  □

Lem m a 5.7.2 For BP P processes ot,(3, h(omt(a,  (3)) — k implies the existence of a 

N -labelled non-dominating tree of height k.



Proof: The level of a node is its distance from the root. Apply the following
substitution method to each successive level i of t  =  omt(a,(3):  for all level i nodes 

u , if u dominates an ancestor v ,

Z(v) =  (0,VO Ku) =  ( f h i W )  (5.45)

replace u in t by u' =  omt(<f)7 , (f>6) if (07 , 4>5) < iex (VhS V^) and by u' =  omt(ipi ,  ipd) 
if <iex (cf*!, (f>8). Lemma 5.7.1 means this is a height-preserving operation.
If v! also dominates an ancestor, repeat the process. That < iex is well-founded 
guarantees that it can be repeated at most a finite number of times (for each branch); 
and that t is well-founded means that there are a finite number of levels to cover. □

T heorem  5.7.1 (B P P  approxim ant collapse)
On BP P processes, «  =

Proof: Assume a  76 /3 but a  (3. By Lemma 5.7.2 there exists a non-dominating 

vector-labelled tree of height k >  but Theorem 3.3.1 implies k <  . □



Chapter 6

Distances-to-disablings

The distances-to-disablings functions were developed in [Jan03] to address the prob­
lem of strong bisimilarity on Basic Parallel Processes (for which there exists a pleas­
ing correspondence with their relativised norms, §5.3.4). At the end of his paper 
Jancar conjectures his method to be a promising approach to the (still open) prob­
lem of weak bisimilarity, but work on this appears to have stalled, with no papers 
published on the subject in the years since. We begin by defining a generalised 
version of distances-to-disablings (with simplified notation) applicable to all general 
processes, with details as to the connection with approximant collapse and the fi­
nite approximants. Finding that their natural weak analogue immediately fails, we 
develop a form which is applicable to weak bisimilarity; and that, with promising if 
partial results, is the subject of Chapter 7.

6.1 Strong distances, and norm revisited

The strong distance from u to v is defined to be the minimal number of transitions 
required to reach v from u:1,

dist(u, v ) = d e f  min{|u?| | u ^ v }  (6 .1)

For a set V  of processes, we write dist(u, V)  =def min{dist(u, v) | v  6  V}-, for P  a 
predicate on processes,

dist(u, P)  —def dist(u, { v  | P (v)}) (6 .2 )

aThis distance is not intended to be a metric -  though one of the first approaches to process 
equivalence was metric-space oriented, [dBZ82a, dBZ82b]. We might (in passing) look at the class of 
processes on which dist is reflexive, transitive and obeys the triangle inequality. A simple condition 
is both necessary and sufficient: for all processes u, u-^v = >  3b .v^ u .

78
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(And, dist(P) =def Au.dist(u, P ).) Recalling norm of §4.1.1, we find

a
norm('u) =  distfy, void) =  distfy, {v  | Va.v/»}) (6-3)

Rather than ask the distance until all actions are disabled, we might ask it of a
particular action.

a
da(u) =def dist(u, /►) (6.4)

A useful notation, trailed at the end of §4.1, is to define the change (modulo a 
given function) produced by a transition (see the £s of §5.3.4). For /  a function on 

a set of processes P , /  : P  —► Z ^ , 6 6  Z ^ , and u ,v  €  P:

u~-*f,6v ;iff u-^v  (6-5)

and f ( u ) <  oo (6 -6 )

and f{u)  +  8 =  f (v )  (6.7)

Where by convention, oo +  <5 =  5-|-oc =  oo for any 82. Again, u-^f$  abbreviates
~\ / ® / du .u—>fjU .

E xam ple 6.1

1. In Figure 4-1 (page 41), u has two transitions, u-^+u andu-^u'  (with void{u')). 
da(u') =  0 , so da(u) =  1 and u-^da:0u, u-^da- i u'-

2. In Figure 4-4 (Pa9e 44), s and t only have da-reducing actions: s-^da,6 = >  
8 =  - 1 .

3. In Figure 4-6 (page 47), u-^da,n and v-^da,n for every n >  — 1, while

u - ^ d a , oo d a ,O Q (6 -8 )

a
and s-f+da 5 f or every d (since da(s) =  oo).

(Note, this can be viewed as a generalisation of the norm-stratifying notation of 
[StiOlc], i.e. af>n(3 iff a=^norm T o  conclude, if P  is a set of pairs ( / ,  8),

u-^jrv :iff y ( f , 8 ) E F . u - ^ j }sv (6-9)

We are now able to elegantly ask convoluted questions like: “What is the min­
imum distance until we can, with an a-labelled transition, go from a situation in

2To avoid confusion, oo is used where u  might appear (in for example [Jan03]).
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which the a action can (eventually) be disabled to one in which it cannot.”

Au.dist(u,/>da]00) (6.10)

The use of such questions is the subject of this Chapter.

6.2 D D C functions

D efinition  6.2.1 (D D C) The distances to disablings functions are constructed: if 
a E E, and D  is a (potentially empty) set of pairs (d ,5 ), where d is an already 

constructed D D C function and S E N _ ij00, then

a
dd(a , D ) =  Xu. min{dist(u, v ) | v-f+D} 

is a D D C function.3 No restriction is put on the size of the D  sets. ■

Where for convenience, N _ i)00 abbreviates N U {—1, oo}. Specifically, da =  dd{a , 0),
a

and Au.dist(/»da ^  =  dd(a, { (dd(a , 0), oo)}) (Equation 6.10). When D  is a singleton 
set, {d', J}, we abbreviate dd(a, {cf, £}) to dd(a , d', d). The height of a D D C function 
is defined to be the depth of nesting in its construction:

h(dd(a ,D )) — sup{h(d)  +  1 1 (d, S) E D }  (6-11)

So, h(da) =  h(dd(a,0)) =  1, and by construction, h(d) E O. In the manner of 
Definition 4.1.5 we restrict the branching of these DD trees: d is a DD^ function 
when the cardinalities of the D  sets used in its construction are bounded strictly
above by N. We call DD^° the finite and DD**1 the countable D D C functions, and
abbreviate the former to D D .

u = DDc v :iff Vd E D D c .d(u) =  d(v) (6.12)

Lem m a 6.2.1 (D D C)

1. For any N there exist processes u ,v  with u v but u /  v ;

2. On general processes, ~  =  = DDc ; and

3. On the sub-tt-branching processes, ~  =  = d d n.

3Recall that C represents the class of cardinal numbers, §2.2 (page 22).



6.2 DDC functions 81

d(u) 7  ̂ d(v ) 
n =  min{d(u), d(v)}

u' d(u') =  0 <(=> d{y') ±  0 v'

d! G D(d)
d!{u") ±  d'(v")
n' =  min {d'{u").d'(vn)}

u
d"' =  dd{a', 0 ) 
d'”{u'") >  d'"{v"') =  0

Figure 6.1: An illustration of u v  ==> u /  v

P roof: 1. Let W be a regular cardinal with N' >  K (Lemma 2.2.1). We will
construct a pair of processes with uK vK but uK = ddn' vk (implying
uK v k ) .  Specifically, define uo to be a void process,

void(uo) (6.13)

and define, for each k  G O , u k to be the process with the transitions,

V /i  <  k .u k - ^ u ^  ( 6 - 1 4 )
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and finally, let vK be the process with transitions:

V/x < k,.vk—*Uh and vK-^vK (6.15)

It is easy to see that, for all ac, uk vk. To begin with, we will prove that for any 

d e  D D N',
ac' >  ac > h(d) ==> d{uK) =  d(ufK) (6.16)

by an induction on h(d). For ac >  ac' > 0, da(uK) =  da(uK>) =  1. For the inductive
step, let d =  dd(a,D).  We may assume by the induction hypothesis that,

ac' >  ac > h(d) = >  D (u k) =  D (uk>) (6-17)

Since d(uo) — 0 for all d G D D C, we find that d(uK), d(uK>) E {0 ,1}.

1. If d(uK) =  1 then there exists a // <  ac such that uk—>dUh, but then 
so d(u'K) >  0 ;

2. If d(uK/) =  1 and d{uK) =  0 then there exists a ac' > // >  ac with 
Since (by induction hypothesis)

D ( uk>) =  D{uM) =  D ( uk) =  D {uh{d)) (6.18)

it must be that ^ ( D )  =  {0 }, so we have contradicting d(uK) =  0 .

It can be shown by induction on h(d) that,

ac > h(d) =£> d{uK) =  d{vK) (6.19)

This is easily shown by cases, as above. Observe that the sole transition from vK
which cannot be exactly replicated from uK is vK-^vK: the only subtle case d  =  
dd(a , D ) is when,

7T2{D) =  {0 } and d(uK) =  0 <  d(vK) (6 .20 )

(i.e. vk-^dvk). However, we know that D (uK) =  D and which
implies d(uK) >  0. To finish the proof, recall that W is a regular cardinal: Theorem 

2 .2.1 implies that for all d E DD^ , h(d) <  N', i.e.

uw r/J vw and u /̂ vw (6 -21 )

2. Let d(u) 7̂  d(v), we wish to prove that u v, and will do so by transfinite
induction on h{d). First, if d =  da =  dd(a, 0) (for some a G £ ) , and wlog c =
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da(u) <  da(v), then there exists a u )G S c s.t. u^u' -A, but if v ^ v '  then r/A ; hence, 
u / c Next, let d =  dd(a , D) (D 7  ̂ 0) and wlog c =  d(u) <  d(v). If u ^  v we are 
already done, so assume that u ~  v  (this assumption will lead us to a contradiction).

a
Again, either u 7̂  u, or we can force play to u \  v' s.t. u'-/+D and v'—>d  (and by 

assumption, u' ~  v'). If 7  ̂ 'K\(D){v') then by induction hypothesis we are
done; otherwise, move v'-^dv". For any response u'-^u" there must be a {d!, 5) E D  

s.t. d'{v") =  d'{v') +  5 7  ̂ d'('u') +  <5 =  d'{u") (see Figure 6.1). Again, since play has 
been forced by I  to this situation, and h(d!) <  h(d), we can invoke the induction 

hypothesis to conclude that u 7̂  v.
Conversely, if u v we wish to construct a D D C function d to distinguish u from

a av. This proceeds by transfinite induction on k . If u v then 3a.u—> -<=>• fyA,
i.e. da(u) =  0 da(v) 7  ̂ 0, so simply d =  da. Otherwise, if u v , and
wlog F s optimal move is u-^u', for each v-^v'  we have, by induction hypothesis, 
a function dv> which distinguishes u' from v1. Create a set of pairs D  such that 
tti(D) =  {dv> | v-^+v'} (i.e. the first components of our set of pairs D  are the dv> 
functions given to us by the induction hypothesis), and ^ ( D )  be such that u -̂ +d u ' 
(i.e. the second components -  the 6 values -  are such that u-^du '] it is worth noting 
that there will always exist numbers drawn from N _ i;00 to satisfy this). Then by

a
construction, v-f*Dv' , and if d =  dd(a, D ), d(v) =  0 <  d(u).

3. Observe that in the construction above, if u and v  are sub-N-branching, 
d e  DD*. □

On the finitely-branching processes, ~  =  = d d - Immediately we find that = dd is 
undecidable on the Petri Nets, but decidable on Pushdown Automata and the Basic 
Parallel Processes. By Lemma 4.5.1, and the semidecidability of «  on BPP (Lemma
5.5.2), we find too that = ddc is semidecidable on BPP with silent moves.

6 .2 .1  A p p ro x im a n t co lla p se

The connection with approximant collapse (§4.4) is a simple extension of the proof 
of Lemma 6 .2.1.2. If d G D D  (a finite D D  function), and d{u) 7  ̂ d{y) Lemma 6.2.1 

gives us u v, but we can say something stronger: u 7^2  v. Wlog let d =  dd(a , D ), 
and ci =  d(u) <  d(v).  Player I  can force play in ci steps to a pair of states u',v'  
for which 3 (d',5) G D  with d(u!) 7  ̂ d(vf) and C2 =  minjc?^'), d(v')}.  This trick can 

be repeated at most h(d) — 1 many times before we arrive at d' =  da. Of course, 
da(u') /  da{v') = >  u' rfjm v ': where m  =  min{da(ti'), da(v')} +  1 .

The reason we cannot conclude u / Cl+C2+...+Cri v (for h(d) =  n; i.e. u v ) is 

that the size of each Ci can (potentially) be chosen by Player I I , and each decision 

is (again, potentially) deferred until C 1 +  I +  C 2  +  I +  . . .  +  1 +  1 steps through the
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game. That is, I I  has at most h(d) — 1 opportunities to arbitrarily postpone the loss 

of G(u, v): this equates to u ^^xhid) v• This result extends to the regular cardinals:

L em m a 6 .2 .2  (DD** and ap p roxim an t co llap se) If  ~  =  = ddn on a class of  

processes, for  a regular cardinal N, then ~  =  ~ n Xco on that class.

Proof: If two processes u , v  are not bisimilar, and bisimilarity is captured by ’ 
then there exists a d € DD** where d(u) ^  d(v).  If N is regular, then h(d) =  k <  N, 

and from this we wish to conclude that u '/'Xxu v - Either d =  dd(a, 0) (u v), 
or we can find a d' G D(d)  where h{d') <  k such that I  is able to force play to 

u',v'  and d'{u') ^  d'{v'). We find then a (not necessarily countable) sequence of 

DD** functions d , d' , d", . . .  with k =  h(d) >  h(df) >  h{d!') >  . . .  At each step in the 

sequence I I  has an opportunity to arbitrarily postpone loss of the game; its length 

is bounded strictly above by N, and so u '/'tt.xu v • D

6 .2 .2  T h e  fin ite  a p p ro x im a n ts

On general processes with finite alphabets the full power of D D C is required to 
capture bisimilarity. We will find here that the distinguishing strength of trace 
equivalence is met already by the finite DD functions, and do so through a more 
general result, a sequel to §4.3.5.

L em m a 6 .2 .3  (D D  and ~ n) For any processes u, v over a finite alphabet and any 
n € N we can find a finite sequence of D D  functions D n, each of height bounded by 
n, such that,

D n{u) =  D n(v) = >  u ~ n v  (6.22)

P roof: We will build two finite trees, U, V , essentially the unfolding of u and v
modulo ~ n. The trees are rooted at u and v  respectively; call this level n. At level 1, 
we finish. For a node u' at level m + 1, partition the transitions of u! into equivalence 

classes modulo ~ m+i. By Lemma 4.3.5 there are finitely many classes; choose one 

representative u-^u" of each to be the children of u'.
D\  =  (da)a6£. For D m+i, we turn to the m th levels of our two trees. For each 

u'-^d u", where tti(D) — D m, add dd (a ,D ) to D m. That is,

D m+i =  D m U (6.23)

(dd(a,D )|7ri(D ) = D m, (6.24)

u an m  +  1th level node of U or F  (6.25)

u an mth level node and u -̂ +d u ) (6.26)
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Finally, let D n+i(u) =  D n+i(u), and wlog I  : u-^u' . There is by its construction a 

move recorded in U with u' ~ n u let D  be such that u -^du " and tti(D) —
D n. Since dd(a, D)(v)  =  dd(a, D)(u)  >  0 (by assumption), 3v'.v—>dv 'i D n(u) =  

D n{v) so D n(u") =  D n(v') -  i.e. u" ~ n v' □

C orollary 6.2.1 (D D  and For processes u ,v  over a finite alphabet,

u = d d  v  = >  u v (6.27)

To return to the opening of this section, recall that C = L (Example 4.4). We 

find, = l D D =dd-
We can express «  with the D D C functions by using the T  operator (Definition 

4.5.3). The difficulty with this approach is that while u,v  might branch finitely, 
and be expressed by the finite D D  functions, T(u) ,T (v )  could branch infinitely, 
and require the infinite DD^1 functions to capture bisimilarity on. The problem 
of capturing bisimilarity on infinitely branching systems using finitary disablings 
functions is central to this thesis.

6.3 Weak distances

The weak analogues of bisimilarity and bisimulation approximants (§4.5) are straight­
forward: swap strong arrows —> for weak, =>. This natural approach to distance4 

yields,
d ist^ (it, v) = d ef  min{|u;| | u ^ v }

The natural weak distance to disabling functions, D D ^n, become, in turn,

a
ddnw(a, D)  = d e f  Ait. m in{distnu,(it, u )  | v/^>D} (6.28)

for a E S U  {e}, and D  a (possibly empty) set of pairs (d,5), for d an already 

constructed natural weak distance to disabling function, and 5 E N _ i)00.

Lem m a 6.3.1 For d E DD^,n, u ^ v  = >  d(v) >  d(u).

In the absence of r  actions these equal the D D C functions; with them, we meet 
an insuperable problem: even the trivial processes it, v  of Figure 6.2 are beyond its 

power to differentiate.
(An induction on h(d). If d =  ddnw(b, 0), d(u) =  d(v) =  0. For d =  ddnw(b, D)  

and b ^  e, d(v) =  0 =  d(u) (Lemma 6.3.1). Finally, let d — ddnw(e, D)  and d(v) =  oo.

4First put into print by Hiittel in [Hiit9lb].
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Figure 6.2: u = nr)c v

tti(D) (u) =  iri(D)(v)  by hypothesis, and 7T2{D)(v) =  {0} (since v^ d v ). But then, 
u^£)V,  hence d(u) =  oo.)

6 .3 .1  R efin in g  w eak  d is ta n ce

No distinction is made by distnu, between (u, u ) and (u, v ) when u ^ v ,  which suggests 
we refine our notion of weak distance. A simple if ugly solution follows.

D efin itio n  6 .3 .1  (d istT)

, . . . 1 0  <— u =  v
aistryu, v) =  <

I distr(u,v)  +  1 *— otherwise

D efin itio n  6 .3 .2  (D D ^) The weak distances to disablings functions are constructed: 
if a E E U {e}, and D  is a (potentially empty) set of pairs (d, d), where d is an already 

constructed DD^ function and 5 E N _2, - i )0o> then

a
ddT(a , D ) =  Xu. min{ dzsi^u, v) | v ^ D} 

is a DD^ function. ■

Again, dar =def ddT(a, 0), and ddT(a,d,S)  abbreviates ddT(a, {(d, d)}). 
Considering Figure 6.2 (page 86), dar(u) =  1 >  daT(v). However, transitions of 

the form u^>d,-2V are now possible (for example, if the r  arrow is removed from the 

above, u=>daT, - 2v )- A small lemma helps to deal with this:

Lem m a 6.3.2 (ugly lem m a) 7 /0  <  distr{u,un) <  d is ^ u , u") then there exists an 
a E E U {e} s.t. u ^ u '  and for all v ^ v ' , 0 <  dzstr(u/, u") <  d i s t r^ ' , v") .

Proof: Say 1 =  distr (u, u") <  distr (u, i/') =  2: u-^u", but v-^v" =$■ a / e .  □
The results for D D C, Lemma 6.2.1, follow through without too much complication 

to DD^:

Lem m a 6.3.3 (D D ^) On processes with a silent r  action,
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1. For any M there exist processes u, v with u = d Dn v but u 76 v;

2. On general processes, «  =  = DDc; and

3. On the sub-^o-branching processes, ~  =  ^ d d 1*1 ‘ su^~^-branching pro­
cesses, for  M a regular cardinal greater than Mo, ~  — = d d n*

Proof:

1. The processes uK, v K constructed in the proof of 6 .2.1.1 serves here too.

2. Let d(u) 7  ̂ d(v), with d G DD^. Prove by induction on h(d) that u 76 v. For 

d =  dd(a,$),  d{u) 7  ̂ d(v)  gives I  a winning strategy on Gfj(u,v)  (Definition
4.5.2). Wlog let c =  d(u) <  d{v)] by Lemma 6.3.2 I  can force play (in c — 1 
steps if c >  1, c steps otherwise) to processes u',v'  with 0 =  d{u') <  d{v')\

a
then, but u ^ ,  hence u f tc+i v -

Let d =  d d ( a ,D ), and assume that 3d1 G iri(D).d'(u) 7  ̂ d'(v) =>■ u 76 v.
A winning strategy for I: wlog iri(D)(u) = 7Ti ( D) ( v ), and c =  d(u) < d{v).  
Apply Lemma 6.3.2 to force play to u', v' with 0 =  d{u') <  d(v'). If 7Ti (D) ( i/)  7  ̂
7Ti ( D) ( v '), we are done. Otherwise, make v ' ^ d v " , and by definition for any 
response u'^u"  there exists a {d', 6) G D  with d'{u') +  5 ^  d'{u"), i.e. d'{v") 7  ̂
d"(u"), and by hypothesis u" 76 v".

Conversely, if u 76* v  we wish to construct a DD^ function which distinguishes 
u from v. This proceeds in an identical manner to the proof of Lemma 6 .2.1.2.

3. The construction above requires a (d , <5) pair for each process reachable in a 
single ^ . For finitely branching processes, this reachability set is countable.
If the processes u , v  are sub-^-branching for a regular cardinal M >  Mo, then: 
from u (respectively, v ) we can reach k,\ <  M processes in a single r  step,

x K2 <  M in the next step, and so on; the regularity of M ensures that the 
resultant set cannot have M or more elements, hence in the construction above 

the DD^ functions suffice.

□
We abbreviate DD^° to D D r .

E xam ple 6 .2  (D D r and processes w ith  finite alphabets) It should be clear that 
Lemma 4-3.5 o /§^ .5 .5  applies equally to the finite weak approximants:



6.4 Extending  DDr 88

and moreover that the construction of §6.2.2 (suitably modified) enables us to con­
clude that on general processes with finite alphabets,

u = d d t v = >  U^uj v  (6.30)

6.4 Extending D D r

o
u

T

S 0 a,r a, t.
r

V

Figure 6.3: u ^  v, but u = d d t v

Processes u , v of Figure 6.3 are strong finitely branching but weak infinitely 
branching, and while not weakly bisimilar, they are D D r equivalent. We will go 
through the proof of this with some care (in particular point 2(c)ii), since it will 
reappear, with complications, for Figure 7.3.

1. u v : I I  has a winning strategy for G^(u,v),  for any n; I  has a winning
strategy on G[j{u,v)  (repeatedly move u^>u).

2. Vd € D D r , d(u) =  d(v), by induction on h(d). Clearly, dd(a, 0)(u) =  dd(a,0)(v);  
if d =  dd(a,D),  with 7Ti (D) (u) =  7Ti (D)( v), then:

(a) d{u),d(v)  e  {0 ,1 , oo};

(b) if d =  dd(e, 0), and
e e

i. d{u) =  0, so u ^ D, implying that ^ ( D )  ^  {0} and so v ^ Dv' for 

v' 6 {u, so, s i , . . . } ,  which is to say: d{v) =  0.

ii. d{u) =  1, so u=k>Sj=f>D. Either u=^du ( s o  tt2 (D) =  {0} and v ^ d v ) ,
e e e  €or u ^ p S j ,  but then v=>DSj, and v=>Si^D: d(y) =  1.

iii. d(u) =  oo, but then d(so) =  oo, so so4>l>so, meaning ̂ ( D )  =  {0}
and v^ d v : d(v) =  oo.

(c) if d — dd(a , 0), and
a a

i. d{u) =  0, so \ f i .u ^ DSi, in which case \ f i . v ^ DSi and d(v) =  0.
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u dii. d{u) — 1, so d(u)=>D. Since so7^, d(v) <  0. If d(u)^DSjj  then 
v=>DSj and we are done. Otherwise, u ^ f u ,  so tt2 {D) =  {0}. We 

wish to now show that, for all d' G D D r we can find an n such that,

for every i >  n d'(v) — d'{si) (6.31)

in which case, there would exist an n s.t. u ^ ^ s n, and we would have 

d(v) =  1. A second induction on D D r height. If d' =  dd(a, D f), let 
n(d!) — m ax{n(d//) \ d" G D'}  +  1; it is straightforward (in light of 

what has gone) to verify that V« >  n(d').d'(v) =  d'(si).
a a

iii. if d(u) =  00 then so=^r>, but sot^.

Lemma 6 .3.3.3 implies the existence of a countable disabling function d G D D ^1 

to distinguish u from v. We would rather keep things finite -  must, if computability 

is to be maintained -  and find that a small extension to the D D r functions suffices:

aw
d%T(u) =  m in{distr (u, v) \ (6.32)

where, for ordinals k G O,

a« | u=^fu'=>f <r- k =  a +  1 _ ____
u ^ F riff { a.  *  (6-33)

[ V/i <  k .u=>f  +— otherwise

q U  an I q U) ■

I.e. iff Vn.u=> (moreover, with reference to our notation, u=> iff u=> and 

$u' .u=^u'=>). Then, u=^d%,oui but v=>d%,5v ' = >  6 =  0 0 .

D efin itio n  6 .4 .1  (DD^.) The -extended weak distances to disablings functions
are constructed: if a G £  U {e}? and D  is a finite (potentially empty) set of pairs 

(d,S), where d is d%T or an already constructed DD^. function, and 6 G N _2,-i,ooj 
then

a
ddT(a, D ) =  Xu. min{distr(u, v ) | v j^ D} 

is a DD^. function. H

L em m a 6 .4 .1  (DD^.)

1. u «  v  =4> u = Dd't v; and

2. if «  =  = DD/̂ on a class of processes, «  =  on that class.

nu aw
P roof: 1. If daT(u) 7  ̂ d^r (v) I  can force play to u',v'  with u'=> <£=> v '7^, i.e.
3n.u' 96n v'. The proof proceeds as per that of Lemma 6 .3.3.2.
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2. Let wlog ci =  d(u) <  d(v). If d =  d%T then I  has a winning strategy on 

G^+ci iu i v ) : force play (in ci moves) to u', v' s.t. d(u') =  0 <  d(v'), then there exists
n  a n

an n s.t. v'=> but u . Otherwise, proceed as to the proof of Lemma 6.2.2. □

C orollary  6 .4 .1  (DD^ and B P A ) On BPA processes, DD^ (see Equation 

5.42).

6.5 T>T>ct °

Reaching further, we ask how many times a process is capable of performing a =>d 
transition:

a *
dd*{a, D){u ) =def min{distr (u, v) | v ^ D} (6.34)

E xam p le  6 .3  (ddf)

1. I fd  =  dd(f(a,  D ), then d(u) >  0 implies that, for every n, there exists a sequence 

U ^ d U \ ^ d U2^D  • • • =^D^n-

S. d " = d d ? (a ,0 )

D efin itio n  6 .5 .1  (D D ^,C>) The O-extended weak distances to disablings functions 
are constructed: if a G E U {e}; and D  is a (potentially empty) set of pairs (d ,5 ), 
where d is an already constructed DD^,C> function, £ £  N _2,-i,oo> and 0 >  k £ O,  
then

dd*(a, D)

is a DD® function.5 H

The DD^,K functions put an upper limit of k on the ordinal in the functions’ con­
struction; the DD^,K functions restrict both that and the size of the D-sets. In that, 
D D r =  DD^0,1. Again, DD£ abbreviates DD^oA

E xam p le  6 .4  The processes uK, v K given in the proof of Lemma 6.2.1.1 (page 80) 

are distinguished by a DDI^ function of height 2, ddT(a, ddf{a,  0), 0). That is,

v K= ĥdd l̂ (a,<l>),0v K (6.35)

whereas, 5 — 2.

5We require k >  0 to allow D D T =  DD*. Trivially, if d =  dd^.(a, D ) then d(u) =  oo.



It should be clear that the DD^,C> functions respect bisimilarity,

u «  v  ==>■ u = DDc,o v (6.36)

( -  non-DD^,c>-equivalence presents I  with a winning strategy). We make one further 
extension:

dd™(a, D) (u ) =def min{dist(u, u') \ u '^™}  (6.37)

i.e. dd^°(u) >  0 when, after every move, it is always possible to make another 

one. Easily, ddT{a, D){u) — oo =>■ dd ^ { a ,D )  =  oo (and the contraimplication 
does not hold). On general processes, dd^(u)  >  0 iff Vk £ 0.dd*(a,  D)(u) >  0, and 

on sub-N-branching processes (for a regular N), dd^P(a, D)(u) =  dd^(a, D){u)  (see 
the proof of Lemma 6.3.3.3, page 86). In that case, we say that the DD^,C> hierarchy 

has collapsed by level N.

E xam ple 6 .5  (D D ^,C> on w eakly-finitely branching processes) On processes 
u whose branching modulo =!► is finite (the silently lossy BPP of §5.2, say),

ddt){a, D) =  d d f { a ,  D ) (6.38)

Adding dd*{a,D) functions as tests, for  any k >  uj, cannot increase our ability to 
distinguish non-weakly bisimilar processes.

These functions’ connection to approximant collapse is subtle; that «  =  = ddn,o 
(for any N) on a class of processes enables us to conclude nothing about its level of 
collapse. If «  =  = ddn,« (for a regular N) Player I I  has fewer than N opportunities 
to postpone loss of the game for k, +  u  moves; we conclude,

'(k+u)^ (6.39)



Chapter 7

D D r on B P P

Weak bisimilarity is known to be decidable on the totally normed and purely-generated 
normed subclasses of BPP. We know of no non-trivial decidability results for un- 
normed BPP processes; no general method which could, for example, be applied to 

the processes P, Q  of Figure 7.1.

^  P ^ A , P ^ Q
j r  t- r Ql+QQQJL>e

e ^~a Q < a QQ  < a QQ Q  ^  ' ‘ ‘ A-^A

Figure 7.1: P  Q

But consider, P  can move to an unnormed state A, while any move from Q must
reach a state Qn of finite norm. In terms of the basic D D r function dar =  ddr (a, 0),

P=^daT,OC>A and Q^da T ,00 (7-1)

{ Q ^ d ar,sQn+1 = >  5 =  n +  2, Q4>daTi_ 2£ );  the D D r function d =  dd(e,dar, oo) 
distinguishes them:

d(P) =  1 >  d(Q) =  0 (7.2)

7.1 Difficulties

The D D  functions behave particularly well on BPP processes, in stark contrast to 
D D r . For example, for any d £ D D ,

Va, @.d(a/3) =  d(a)  +  d{0)  (7.3)

(By Lemma 5.3.4, for each d £  DD  we can find a set of places Q s.t. d =

92
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n o r m (Q). Of course, n o r m (Q)(a(3) =  NORM(Q)(a) +  n o r m (Q) (/?).) This is easily 
seen to fail for D D r , Figure 7.2.

X X  — X A  A A  d =  ddT(e,da,2)

Figure 7.2: d ( X X )  =  1 >  d(X)  +  d(X)  =  0

then, d =  ddT(e, {(c?a, 2)}), and d ( X X )  =  1 >  d(X)  +  d(X) =  0. The problem of 
finding nice algebraic properties for D D r functions has proven very challenging.

E x a m p le  7.1 (p rop erties  o f  daT) For all processes a, dtT{a) =  oo.

( dar (a) +  dar {(3) if dQr (a) =  0 and dar (/3) =  0 
daT{oi(S) =  < or daT(ot) >  1 and daT((3) >  1 (7.4)

 ̂ dar(ct) 4- daT({3) — 1 otherwise

7.2 Com putability of the D D r functions

In §5.5 we defined the Reachr relation, Equation 5.25 (page 72), used to prove the 
semilinearity of ^  (and from that §5.6, the decidability of the finite approximants, 
~ n) • We will proceed to use it to define Presburger formula for distT, and develop 
from that formulas for the (finite) D D r functions, in order to prove decidability.

Denote the Presburger equivalent of Reachr by ■0. That is, for all BPP processes 
q , /3,

ip[a,(f,/3\ Reachr (a, a, (3) (7.5)

Define,
a  / — 3  n  =  0 A a  =  P  o r
A (a ,n ,/3 )=  . _ (7.6)

da.  2_, cr =  n — 1 A ip [a, a , a)

A !(cf, n, j3) =  A (a , n, /5)A <  n.A(a ,  ri, (3) (7-7)

(Where n — m =  0 i f n  — m < 0 ,  and n — m  otherwise.) It is straightforward to 
verify that:

L em m a 7 .2 .1  (A !)

1. distT(a, (3) — n iff A ![o ,n , (3\; and
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2. distr (oi,f3) =  oo iff jBn.A'[a,n, j3\

If 0 is a Presburger Formula which expresses a set of processes, we define the 

distance until it is reached,

For V  =  { X , , . . . ,  X k], let { X ni , . . . , X nt} =  { X  S V  | X 4 -} , and define <j>a{g) =

and we find,

L em m a 7 .2 .2  (D a)

1. dd(a, 0)(a) =  n iff D a[a,n\; and

2. dd{a,$)(ot) — oo iff jBn.Da[a,n]

Consider some finite D D  function dd(a ,D)  (that is, dd(a,D)  G DD^°), and 
imagine that for each (di, Si) G D  we have a Presburger formula Di  with, di(a) =  n 
iff Di[a,n]  and di (a ) =  oo iff jBn.Di[a,n]. Define,

A ^ (a ,n ) =  30.<f>0) A A (a , n, j3)

A^(a, n) =  A^(a, n) A jBn' <  n. A^(o, n')

(7.8)

(7.9)

a
VL0 <  i < l.xni =  0 (i.e. (f>a(oi) oe£>), then

D a(x ,n)  =def A^a(f ,n ) (7.10)

D°° =  {d  | (d, 00) S D }

D n =  D - D ° °

(7.11)

(7.12)

a
We wish to construct a Presburger formula (f> s.t. <p[a, n] iff oc^>D\

(7.13)
(di,Si)€D 
"iy.tjiix, a, y) (7.14)

(7.15)V 3 n . D i ( y , n )  V
diED00

f l n . D i ( x , n )  A  D i ( y , n  + S i )
(.di,Si)EDn

(7.16)

a
Where a ^ D if and only if:

1. There exists a (d, S) G D  s.t. d(a)  =  00 (Line 7.13); or

2. For all /3.a=^j3 (Line 7.14)
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(a) (d, oo) £ D  yet d(/3) =  n <  oo (Line 7.15); or

(b) (d, S) £ D  yet d(a)  +  5 ^  d(/3) (Line 7.16)

Specifically, 4>a$ { x ) =  V .̂-it/>(:r, a, y). We have,

(7.17)

Lem m a 7.2.3 ( D D aj ) )

1. dd(a,D)(ot)  =  n iff D D ajE)[d,n]; and

2. dd(a, D ) ( a )  =  oo iff f l n . D D a ^ [ 6 i , n \

And as a corollary,

T heorem  7.2.1 (D D r functions on B P P ) The D D r functions are computable 
on BP P processes.

Proof: Theorem 2.4.2. To compute, say, d =  dd(a, D ) on a , construct its Pres-
burger equivalent D D a,D, then if j3n.DDa>£)[d,n\ is false, proceed with

7 .2 .1  F in ite  a p p ro x im a b ility

If a  7̂  /3, Lemma 6.2.3 (Example 6.2) and Theorem 7.2.1 imply that we can find 

a function d £  D D r such that d(a)  ^  d(/3). In this way we add a third method for 
semideciding on BPP processes -  and deciding «  on the finitely approximable 

BPP -  to the approximants of Theorem 5.6.1, and the strong bisimulation games of 

Corollary 5.6.1.

E xam ple 7.2 (trace and failures equivalence)
Weak trace and weak failures non-equivalences (Equation f .16)  are semidecidable

on BP P processes through the D D r functions. That is, if a  (3 or a  (3 then 
3d £ D D T • d ( a ) ^ d ( P ) .

D D a}D[a, 0] , D D a^ [a ,  1] , . . .

until we find a formula that is satisfied.
To compute =d, for some d =  dd(a , D ) £  wDD,

□

a = d ( 3  iff \ /n.DDajD[ot,n\ -<=> D D a,D[j3,n] (7.18)
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7 .2 .2  U nary , n o n -n o rm -zero  B P P

In [Str99], Strfbrna proves that on BPPs with a single action name and no variables 

of zero norm, «  =  ~ w.2. We find:

Lem m a 7 .2 .4  (unary, non-zero-norm ) On BPP processes with a single action 

name and no transitions of the form X ^ e ,  ss =  = d d t (and so & is decidable).

Proof: Let a  (3, an induction on k. If a  961 (3 then daT(a ) =  0 dar((3) ^  0.
For the inductive step, let I  : and observe first that:

normT(o;) =  00 =  normT(/?) = >  a  «  (3 (7-19)

If either normT(a) =  00 or normr (a) — 00 then dar distinguishes them. If not, 
observe second that if daT(a') < 00,

B  =  {/3'\ and daT{(3') =  dar(a')}  (7.20)

is a finite set (false for the full unary BPP). By hypothesis for each (3' £ B  there 
exists a d p  £  D D r with dp  {(3') ^  d p  {a'). Our D D r function is then:

d =  ddT{a,D) ni (D) =  {dar) U ( d p ) p €B a ^ Da' (7.21)

That is, D  is a set of D D r x N _ 2, - i )00 pairs, whose D D r parts equal {daT} U { d p  | (3' £  
B } : and whose S parts are such that is true. □

Whether having a single-letter alphabet is sufficient in itself to give «  =  =dDt 
is listed as Open Problem 1.3 in Chapter 8 . I have been unable to find a counter­
example.

7.3 Insufficiency

Figure 6.3 (§6.4, page 88 ) gives a pair of processes u, v  which are related by D D r but 
are not weakly bisimilar. It should be clear that while we can find a BPP process 

which is equivalent to u,

X ^ X A ,  e A ^ e  X  «  u (7.22)

no [3 weakly bisimilar to v exists, as the ability to perform an arbitrary sequence of 

a actions implies that a process is able to make infinitely many (Lemma 7.5.1). And 

yet, an analogue does exist, Figure 7.3.
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X ^ X A  X-^X X ^ C
i 0..TA ^ e  

Y ^ Y A  Y ^ C  

C ^ C  C-^e

P \  r r < y \  r
X  < a ,T  X  A < aT X A A  f y

c ^ r 7 i ' ^ cA A ^ Fc , e

Y ~ y r Y A ~ y r Y A A T y r

C * y r C A * y r C A A X F

AA a,r ■‘x a,r AA

Figure 7.3: X  = d d t Y  but X  Y

The proof that X  = d d t Y  proceeds in a similar (though more tedious) manner 
to that of §6.4 (page 88), so we will not cover it in depth here. The only subtle 
point to check is the move which guarantees non-weak bisimilarity: X  can make an 
^-neutral transition on a c action, X ^ X ,  while if Y ^ j3 ,  Y  ft (3. But again, for 
any d € D D T we can find an n such that for all i >  n, d ( Y ) =  d(CAl), so on any 
candidate d =  dd(c,D),  with X ^ d X ,  3 i . Y ^ i ) C A l .

L em m a 7 .3 .1  (D D r and  norm ed  p rocesses) On normed BPP,  «  C = d d x -

It is worth noting that X  and Y  are normed but are not purely generated (§5.4.2). 

G (X )  =  {A} =  G{Y),  yet X , F -^ norm,oC  (i.e. both can make non-generating, norm- 
neutral moves). Open Problem 1 asks whether there exists a normed and purely 

generated pair of processes whose inequivalence cannot be told by D D r .
Casting ones mind back to the van Glabbeek hierarchy Figure 1.2, every equiv­

alence coarser than bisimilarity is undecidable. Analogously, = d d t is coarser than 
weak bisimilarity, and finer than weak trace equivalence (which is certainly unde­
cidable); it would be extraordinary if the finite weak distances-to-disablings were 

decidable on general BPP.

C on jectu re  7 .3 .1  (D D r on  B P P ) =D D r is undecidable on BPP processes.
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7.4 d d ;

The DD^. functions (Definition 6.5.1, page 90) extend D D r with d%T functions. They 

are strong enough to distinguish X, Y  of Figure 7.3,

d =  dd(c , , 0) d(X)  =  1 >  d(Y) =  0 (7.23)

and is easily seen to preserve computability. For this, it suffices to prove that we can 

effectively construct a formula Sla of Presburger Arithmetic such that,

f2a[a] <=> a=> (7.24)

Let our variables be V  =  { X \ , . . . ,  X&}. Define,

A ( X )  =  { Y \ X ^ a Y }  (7.25)

A n+l(X)  =  { Y \ Z  e  An( X ) , Z ^ a Y }  (7.26)

Then, A k( X)  =  A k+1(X),  X  G A k{X)  = >  X ^ ,  and

X ^  iff a y  G A k( X ) . Y  G A k(Y)  (7.27)

Let A“ =  { X \ 3 Y  G A k( X ) .Y  G A k( Y) }  =  { X Xl, X X2, . . . ,  X Xl}. iff 3X  G 
A UJ.a (X)  >  0, hence define

l
^ (a ) — def V  a(xi )  >  0 (7.28)

t=l

L em m a 7 .4 .1  (DD^ on B P P )  The DD^ functions are computable on B P P pro­
cesses.

The DD^ functions are able to express weak bisimilarity on every example BPP  
process-pair I have managed to find1 yet a proof that that they capture the problem 
on full BPP has remained elusive, and is probably illusive:

C on jectu re  7 .4 .1  ( «  C e d d / ) There exist BPP processes a, (3 with a  ft (3 yet 

a  =dd't ft-

7.5 DDJ:, and its collapse
n u ) n o o

L em m a 7 .5 .1  (d£°) On B P P  processes, <=> a=>.

1 Conversely, it is obvious that ~  C = d d > on BPA processes -  Lemma 6.2.2 would imply that 
~  =  ~u,2 , but this is contradicted by the BPA processes of Equation 5.42.



Proof: A corollary of the construction used in Equation 7.24. □
That is, we cannot strengthen =dd^. by adding any function dd*(a, 0) (§6.5). 

Whether the same holds for the dd*(a, D ) £ D D ^ functions depends on the truth of 
Conjecture 7.4.1. The final chapter constitutes a research programme to answer the 

question of how complex our distances-to-disablings functions need be to pin weak 
bisimilarity; this chapter closes with a conjecture.

C onjecture 7.5.1 (D D “ on B P P )

1 . Each D D “ function is computable;

2 . and ~  =  = d d “ •

The result, were part one of this conjecture proven, would be to take the known 
level of approximant collapse from u>u to a;2; if in addition the second part is true, 
then «  is decidable on the Basic Parallel Processes.



Chapter 8

Conclusions, and a research 
programme

Bisimilarity -  behavioural equivalence -  is a well-understood problem on the Ba­
sic Parallel Processes, with a number of decidability proofs using several different 
techniques. Weak bisimilarity, in contrast, remains an open problem. While semide­
cidability was shown over a decade ago, the problem of semideciding inequivalence 
has resisted every attempt made at it, and is known to be true only for heavily 
restricted subclasses. The central difficulty is in moving from a finitely branching 
system (in which each step yields only a finite number of possibilities) to one that 
branches infinitely; semideciding inequivalence switches from being a trivial problem 
to a formidable one. Nevertheless, it is generally believed that weak bisimilarity is 
decidable, and it is its closeness to the edge of undecidability which makes it an 
interesting question to tackle.

This thesis makes two contributions to the theory of Basic Parallel Processes, 
both with a view to the semidecidability of inequivalence. The first concerns weak 

bisimulation approximant collapse, and the second is a development of Jancar’s 

distances-to-disablings functions.
If two processes are not weakly bisimilar we can attach an ordinal number to 

the number of moves it takes to manifest this inequivalence. If our processes branch 

finitely this will always be a finite number; Basic Parallel Processes (with silent 
moves) branch infinitely, and it is not difficult (given any natural number n ) to find 

processes whose inequivalence is not manifested until u  +  n. A long-standing conjec­
ture holds that it is impossible to find Basic Parallel Processes whose inequivalence 

is not seen until w x 2 steps, but before this thesis the only work on the problem has 

achieved the (rather trivial) result that no such processes exist which cannot be told 
by . Our work takes this number down to uju -  the first “sensible” bound on the

100
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problem. We achieve this using a novel constructive version of Dickson’s Lemma.
The major work of this thesis is a development of the distances-to-disablings 

functions, invented by Petr Jancar in order to express strong bisimilarity on the 

Basic Parallel Processes, into a tool applicable to weak bisimilarity. In this we 

have met with partial but encouraging success. The basic distances-to-disablings 

functions are computable on Basic Parallel Processes, and are able to distinguish 

inequivalent processes which the current methods cannot; but unfortunately they 
do not fully express weak bisimilarity -  if two processes are not weakly bisimilar, 
we cannot guarantee that a distance-to-disablings function exists which will tell the 

difference. From there, we created a natural extension of the distances-to-disablings, 
one that retains computability, enabling them to handle any example I have yet been 

able to find. However, I have been unable to prove that this is enough to capture 
weak bisimilarity, and indeed now believe that a stronger (potentially uncomputable) 
extension is required.

We close the thesis with a research programme: four open problems to complete 
the theory of weak distances-to-disablings on the Basic Parallel Processes, and, we 
hope, finally settle weak bisimilarity there.

8.1 A programme

The D D r -  and DD^. -  functions are computable, and will distinguish processes for 
which the currently developed methods are inapplicable (Figure 7.1, page 92); but 
they do not express weak bisimilarity on full BPP (Figure 7.3, page 97), and we have 
not found a non-trivial restriction on BPP processes which yields ~  =  = d d t -

O pen problem  1 (D D r)

1. Find a necessary and sufficient restriction on B PP processes to give «  =  = d d t ■

2. Every example found thus far of non-weakly bisimilar, D D T-equivalent pro­
cesses happens to not be purely generated. Is normed, purely generated a 

sufficient condition?

3. Being unary and having no variables of zero norm is sufficient, but is having 

a single observable action also sufficient?

4- Is = d d t undecidable on full BPP?

The extended functions, DD^, retain computability, and we have not found an ex­
ample of non-weakly bisimilar BPP processes which are nevertheless DD^-equivalent;



a proof that no such example exists is sufficient to give the decidability of «  on BPP. 
However, we think that a counterexample does exist:

O p en  p rob lem  2 (DD^.) Find B P P processes a , (3 for which a  ft (3 but a  =dd't P-

Moving to the extended DD!^ functions, it is easily seen that d“T =  but 
rather harder to prove that the hierarchy collapses at uj for more complex DD!^ 

functions:

O pen  p rob lem  3 (D D “ x2) Can we find a ddT(a ,D )  G D D ^ and a B PP a  such 

that dd“ (a ,D )(a ) ft dd%+1 (a, D )(a )?

Chapter 7 ends by conjecturing (7.5.1) that the DD^ functions are strong enough 
to express «  on full BPP processes. A corollary is to take the upper bound on 
approximant collapse from (§5.7) to oo2. If, like DD^, each DD^ function is 
computable, then ft becomes semidecidable, and (in conjunction with Lemma 5.5.2) 
the long-open problem of the decidability of «  on Basic Parallel Processes will be 
closed, positively.

O p en  p rob lem  4 (D D ^ )

1. Does equal «  on B PP processes; and

2. Are the DD^ functions computable?
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Glossary

N ranges over the cardinal numbers.

a, /?, 7 , 5 are some BPP or BPA processes.

~  is the largest strong bisimulation relation: our chosen notion of behavioural 
equivalence between processes (page 45).

ss is the largest weak bisimulation relation. Weak bisimilarity ignores silent or 
internal action (page 52).

is the Kth weak approximant, it approximates «  in the sense that it considers 
k steps where «  takes account of all steps (page 52).

means exactly k equivalent: u k,k v  and u ?£k+i v.

BPA Basic Process Algebra, the non-commutative context-free processes; equivalent 
to e-free, single control-state PDA (pages 29, 59).

BPP The Basic Parallel Processes, the commutative context-free processes; equiva­
lent to the communication-free Petri Nets (pages 15, 32, 60).

C is the class of cardinal numbers (page 22 ).

da{u) is the minimum number of transitions from u to a process v which cannot
a

perform an a action, v-f*. Note that da =  dd(a, 0). 

daT(u) is the minimum number of weak transitions (=^) from u to a process v  which
an

cannot perform an arbitrary number of a transitions, 3n.v^> (page 89). 

dd(a , D ) is a distance-to-disablings function. dd{a , D ){u ) is the minimum distance from
a

u to a process v  for which v-/+D, where D  is itself composed of distances-to- 
disablings-^ pairs (page 80).
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(a ,D )  is an extended weak distance-to-disablings function. dd*(a, D )(u) is the mini­
mum weak distance (plus one, if u ^  v) to a process v  which cannot perform

a a*a sequence k long of =>& transitions, v ^ D (page 90).

DD^ is the set of distances-to-disablings whose constituent sets are bound strictly 

above by N (page 80).

DD  abbreviates DD^° (the finite distances-to-disablings functions).

D D C is the full class of distances-to-disablings functions, with no restriction as to 

the size of sets used in their construction (page 80).

D D r is the set of finite weak distances-to-disablings functions (page 86).

DD(. is D D r augmented with d%T (page 90).

D D “ are the finite extended weak distances-to-disablings functions dd*(a,D ) for 

which the k part is either 1 or w (page 90). The conjecture of this thesis is 
that these functions express weak bisimilarity on BPP processes (page 102).

= DDc means u = DDc v iff d(u) =  d(v)  for all d £ D D C (page 80).

f.i, k range over the ordinal numbers.

N-i,oo =  N U { - 1 ,  oo}

O  is the class of ordinal numbers (page 19).

u-^v  means a process u performs an a action and becomes a process v\ equivalently, 
in a labelled transition system there is an a-labelled arrow from a node u to a 

node v  (page 9).

u—*d,8v  means u-^v  and d(u) +  5 =  d(v) (page 79).

a a a
u ^ d v  Where D  is a set of (d, 5) pairs, means u ^ d ,8v f°r all (d, d) £ D; u-/+Dv if

a
either u-f*v or 3 (d, 5) £ D  s.t. d{u) +  S ^  d{v) (page 79).

u=>v means a process u performs some number of silent transitions, then a strong 

a action, then some number of silent transitions, to become the process v; 
(page 11).
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