Swansea University E-Theses

Existence of point processes through families of commuting Hermitian operators.

Mei, Lin

How to cite:

Mei, Lin (2007) Existence of point processes through families of commuting Hermitian operators.. thesis, Swansea University.
http://cronfa.swan.ac.uk/Record/cronfa42505

Use policy:
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference above.)
http://www.swansea.ac.uk/library/researchsupport/ris-support/

Existence of point processes through families of commuting Hermitian operators

Lin Mei

Submitted to Swansea University in

fulfillment of the requirements for the
 Degree of Doctor of Philsophy

Swansea University

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

ProQuest 10801735
Published by ProQuest LLC (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

Acknowledgements

I would like to express my grateful thank to my supervisor Dr. E. Lytvynov for his advice, tutoring, help and guidance throughout the course of this dissertation. I shall never forget his patience to me. I would also like to thank all my fellow postgraduate researchers at Swansea University for helpful and friendly conversations. Finally, I would also like to thank my family for their endless support and encouragement.

Abstract

This dissertation is devoted to problems of existence and physical interpretation of some point processes. In the first part of the dissertation, we introduce the notion of the correlation measure of a family of commuting Hermitian operators. Let X be a locally compact, second countable Hausdorff topological space. We consider a family of commuting Hermitian operators $a(\Delta)$ indexed by all measurable, relatively compact sets Δ in X. For such a family, we introduce the notion of a correlation measure and prove that, if this correlation measure exists and satisfies some condition of growth, then there exists a point process over X having the same correlation measure (in the sense of the classical theory of point processes). Furthermore, the operators $a(\Delta)$ can be realised as multiplication operators in the L^{2}-space with respect to this point process. In particular, our result extends the criterion of existence of a point process from $[6,15]$, to the case of the topological space X, which is a standard underlying space in the theory of point processes. In the second part of the dissertation, we consider some important applications of our general results. We discuss particle densities of the quasi-free representation of the CAR and CCR, which lead to fermion (determinantal), and boson (permanental) point processes. We also discuss convolutions of these particle densities, which lead to point processes whose correlation functions are given through the Vere-Jones α-determinants.

DECLARATION

This work has not previously been accepted in substance for any degree and is not concurrently submitted in candidature for any degree.

Signed.
.... Date. of / / Col 2007

STATEMENT 1

This dissertation is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed.
Date. $01 / 10 / 207$

STATEMENT 2

I hereby give my consent for my dissertation, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations.

Signed...................................... Date...1/1>12007

Contents

1 Introduction 6
2 Some preliminaries from functional analysis 15
2.1 Bounded operators 15
2.2 Bochner integration 17
2.3 Unbounded operators 18
3 Configuration spaces 23
3.1 The space of finite configurations 23
3.2 The space of infinite configurations 26
3.3 \mathcal{K}-transform and correlation measure 27
$3.4 \star$-convolution and existence of point processes 30
4 Correlation measure of a family of commuting Hermitian op- erators 33
5 Particle densities in quasi-free representations of the CAR and CCR 60
5.1 Fermion and boson point processes 60
5.2 Fermion-like and boson-like particle densities 79

Chapter 1

Introduction

This dissertation is devoted to problems of existence and physical interpretation of some point processes.

First we choose an underlying space. Let X be a locally compact, second countable Hausdorff topological space. (Although in most applications one can choose X to be the Euclidean space \mathbb{R}^{d}, it is important to treat the general case of a topological space.) We denote by Γ_{X} the space of all locally finite sets (configurations) in X. One usually identifies a configuration with a Radon measure which has atoms at the points of the configuration. Using this identification, one defines the vague topology on Γ_{X}, and thus gets the Borel σ-algebra $\mathcal{B}\left(\Gamma_{X}\right)$. A point process in X is a probability measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$. From the point of view of classical statistical mechanics, point processes describe infinite (generally speaking, interacting) particle systems in continuum.

In the study of point processes, their correlation measures (respectively correlation functions) play a crucial role. Denote by $\Gamma_{X, 0}$ the subset of Γ_{X} consisting of all finite configurations in X. Following Lenard [17] and Kondratiev and Kuna [15], we introduce the so-called \mathcal{K}-transform as follows:

Let $G: \Gamma_{X, 0} \rightarrow \mathbb{R}, \quad G \geqslant 0$, then we set

$$
(\mathcal{K} G)(\gamma):=\sum_{\eta \Subset \gamma} G(\eta)
$$

where $\eta \Subset \gamma$ denotes that η is a finite subset of γ. Furthermore, for an arbitrary function $G: \Gamma_{X, 0} \rightarrow \mathbb{R}$ we set

$$
(\mathcal{K} G)(\gamma):=\left(\mathcal{K} G^{+}\right)(\gamma)-\left(\mathcal{K} G^{-}\right)(\gamma)
$$

where $G^{+}:=\max \{G, 0\}, G^{-}:=\max \{-G, 0\}$, and at least one of the values $\left(\mathcal{K} G^{+}\right)(\gamma)$ and $\left(\mathcal{K} G^{-}\right)(\gamma)$ is finite. Thus, the \mathcal{K}-transform maps functions on the space of finite configurations, $\Gamma_{X, 0}$, into functions on the space of (infinite) configurations, Γ_{X}. This map has many nice propertities, in particular, it maps measurable functions on $\Gamma_{X, 0}$ into measurable functions on Γ_{X}. One says that a measure ρ on $\Gamma_{X, 0}$ is the correlation measure of a point process μ if, for each $G: \Gamma_{X, 0} \rightarrow \mathbb{R}, \quad G \geqslant 0$, measurable, we have

$$
\begin{equation*}
\int_{\Gamma_{X},} \int_{\Gamma_{X}, 0}^{G(\eta) \rho(d \eta)=\int(\eta) \rho(d \eta)=\int_{\Gamma_{X}}^{(\mathcal{K} G)(\gamma) \mu(d \gamma)}(\mathcal{K} G)(\gamma) \mu(d \gamma) .} \tag{1.1}
\end{equation*}
$$

Equation (1.1) may be nuteipreveu as

$$
\rho=\mathcal{K}^{*} \mu .
$$

Note that the space $\Gamma_{X, 0}$ has a much simpler structure than Γ_{X}, since $\Gamma_{X, 0}$ is, in fact, an (infinite) union of finite-dimensional spaces:

$$
\Gamma_{X, 0}=\bigsqcup_{n=0}^{\infty} \Gamma_{X}^{(n)}
$$

where $\Gamma_{X}^{(n)}$ is the space of all n-point configurations in X. Therefore, a measure on $\Gamma_{X, 0}$ is a much simpler object than a measure on Γ_{X}.

Let σ be a Radon, non-atomic measure on X. One can naturally define the measure $\sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right)$ on $\Gamma_{X}^{(n)}$, and then one defines the LebesguePoisson measure λ on $\Gamma_{X, 0}$ (with intensity σ) as follows:

$$
\lambda=\varepsilon_{\varnothing}+\sum_{n=1}^{\infty} \frac{1}{n!} \chi_{\Gamma_{X}^{(n)}} \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right)
$$

Assume that a correlation measure ρ on $\Gamma_{X, 0}$ has density κ with respect to the Lebesgue-Poisson measure λ. Then, $\kappa(\varnothing)=1$ and the restriction of κ to $\bigsqcup_{n=1}^{\infty} \Gamma_{X}^{(n)}$ may be identified with a sequence of functions $\left(\kappa^{(n)}\right)_{n=1}^{\infty}$, where each $\kappa^{(n)}$ is a symmetric function on X^{n} (defined a.e.). The functions $\left(\kappa^{(n)}\right)_{n=1}^{\infty}$ are called the correlation functions of the point process. (Let us remark that, although we will initially deal with correlation measures, in any reasonable application, the point process has correlation functions, i.e., the correlation measure is absolutely continuous with respect to the LebesguePoisson measure.)

It was shown by Lenard [17] that, under a very mild assumption on the correlation measure, it uniquely characterises a point process. Furthermore, Lenard [17] and Macchi [21] proposed conditions which are sufficient for a given measure ρ on $\Gamma_{X, 0}$ to be the correlation measure of a point process, i.e., they gave a solution to the problem of existence of point processes through a correlation measure.

Kondratiev and Kuna [15] treated the \mathcal{K}-transform as an analogue of the Fourier transform over the configuration space. They defined a \star-convolution of functions on $\Gamma_{X, 0}$ so that

$$
\mathcal{K}\left(G_{1} \star G_{2}\right)=\mathcal{K} G_{1} \cdot \mathcal{K} G_{2}
$$

If ρ is the correlation measure of a point processes μ, then

$$
\int_{\Gamma_{X}, 0}(G \star G)(\eta) \rho(d \eta)=\int_{\Gamma_{X}} \mathcal{K}(G \star G)(\gamma) \mu(d \gamma)
$$

$$
=\int_{\Gamma_{X}}(\mathcal{K} G)^{2}(\gamma) \mu(d \gamma) \geqslant 0
$$

and therefore the measure ρ is \star-positive definite:

$$
\begin{equation*}
\int_{\Gamma_{X, 0}}(G \star G)(\eta) \rho(d \eta) \geqslant 0 \tag{1.2}
\end{equation*}
$$

By using the condition of \star-positive definiteness (which is weaker than Lenard's and Macchi's conditions), an analogue of the Bochner theorem for point processes was proved by Kondratiev and Kuna [15], in the case where X is a smooth Riemannian manifold. A spectral approach to this construction, together with an important refinement of the local bound satisfied by a measure ρ, was proved by Berezansky et al. [6].

We should stress that, in both papers [15] and [6], the assumption that X be a smooth Riemannian manifold was crucial, due to the use of the Minlos theorem in [15], and the projection spectral theorem in [6].

The main difficulty about the existence of a point process through the results of $[15,6]$ is that, given a measure ρ on $\Gamma_{X, 0}$ which is to be shown to be a correlation measure, it is very hard to check that ρ indeed satisfies the condition of \star-positive definiteness (1.2).

So, the main idea of the present work is to start with a special family of commuting Hermitian operators, rather than with a measure ρ.

In the first part of this dissertation we introduce the notion of the correlation measure of a family of commuting Hermitian operators. It should be stressed that not every family of commuting Hermitian operators possesses the correlation measure. However, if a family of such operator does possess a correlation measure ρ, then under a weak additional assumption, this measure ρ is the correlation measure of a point process. It appears in our approach that ρ automatically satisfies the condition of \star-positive definiteness.

It may appear that we have formally replaced the hard problem of checking the condition of \star-positivity by the hard problem of proving that a given family of commuting Hermitian operators possesses a correlation measure. But we show in the second part of this dissertation that this is not always so, and that there are families of commuting Hermitian operators for which the existence of correlation measure is physically motivated. So, what one really needs to do in this case is to show that the heuristic physical arguing may be given a rigorous mathematical meaning.

The dissertation is organised as follows. In Chapter 2 we present some preliminaries from functional analysis which are used in the work. In Chapter 3 , we discuss in detail the spaces of infinite and finite configurations, the \mathcal{K} transform, correlation measures, and \star-convolution. We also recall Lenard's results on the uniqueness and existence of point processes.

In Chapter 4, we discuss a general theorem on the existence of a point process through a family of commuting Hermitian operators. More precisely, we consider a family of commuting Hermitian operators $\mathcal{A}=(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ indexed by all measurable, relatively compact sets Δ in X. We define a class \mathcal{S} of "simple" functions on $\Gamma_{X, 0}$ and introduce (corresponding to \mathcal{A}) Hermitian operators $(\mathcal{Q}(G))_{G \in \mathcal{S}}$ so that

$$
\left(\mathcal{Q}\left(G_{1} \star G_{2}\right)=\mathcal{Q}\left(G_{1}\right) \mathcal{Q}\left(G_{2}\right) .\right.
$$

We fix a vector Ω, and assume that there exists a measure ρ on $\Gamma_{X, 0}$ such that

$$
(\mathcal{Q}(G) \Omega, \Omega)=\int_{\Gamma_{X, 0}} G(\eta) \rho(d \eta)
$$

We then call ρ the correlation measure of the family \mathcal{A}. We have

$$
\int_{\Gamma_{X, 0}}(G \star G) \rho(d \eta)=(\mathcal{Q}(G \star G) \Omega, \Omega)
$$

$$
\begin{aligned}
& =(\mathcal{Q}(G) \mathcal{Q}(G) \Omega, \Omega) \\
& =(\mathcal{Q}(G) \Omega, \mathcal{Q}(G) \Omega) \geqslant 0
\end{aligned}
$$

so that the measure ρ is \star-positive definite. We prove that, if the family \mathcal{A} possesses a correlation measure that satisfies some condition of growth, then there exists a point process μ, whose correlation measure is ρ. Furthermore, the operators $a(\Delta)$ can be realised as multiplication operators in $L^{2}\left(\Gamma_{X}, \mu\right)$. Thus, μ can be thought of as the spectral measure of the family \mathcal{A} [5]. As a corollary, we extend the criterion of existence of a point process proved in $[15,6]$ to the case of a general topological space X, which is a standard underlying space in the theory of point processes (see e.g. [14]).

In Chapter 5, we consider an important application of the result from Chapter 4. This application has its origin in mathematical physics.

Recall that the nonrelativistic quantum mechanics of many identical particles may be described by means of a field $\Psi(x), x \in \mathbb{R}^{d}$, satisfying either canonical commutation relations (CCR) and describing bosons:

$$
\begin{align*}
{[\Psi(x), \Psi(y)]_{-} } & =\left[\Psi^{*}(x), \Psi^{*}(y)\right]_{-}=0 \\
{\left[\Psi^{*}(x), \Psi(y)\right]_{-} } & =\delta(x-y) \mathbf{1} \tag{1.3}
\end{align*}
$$

or satisfying canonical anticommutation relations (CAR) and describing fermions:

$$
\begin{align*}
{[\Psi(x), \Psi(y)]_{+} } & =\left[\Psi^{*}(x), \Psi^{*}(y)\right]_{+}=0, \\
{\left[\Psi^{*}(x), \Psi(y)\right]_{+} } & =\delta(x-y) \mathbf{1} \tag{1.4}
\end{align*}
$$

Here, $[A, B]_{\mp}=A B \mp B A$ is the commutator (anticommmutator respectively). The statictics of the system is thus determined by the algebra which is to be represented.

In the formulation of nonrelativistic quantum mechanics in terms of par-
ticle densities and currents, one defines

$$
\begin{align*}
& a(x):=\Psi^{*}(x) \Psi(x), \\
& J(x):=(2 i)^{-1}\left(\Psi^{*}(x) \nabla \Psi(x)-\left(\nabla \Psi^{*}(x)\right) \Psi(x)\right) . \tag{1.5}
\end{align*}
$$

Using CCR or CAR, one can formally compute the commutation relations satisfied by the smeared operators $a(f):=\int_{\mathbb{R}^{d}} d x f(x) a(x)$ and $J(v):=$ $\int_{\mathbb{R}^{d}} d x v(x) \cdot J(x)$. These turn out to be

$$
\begin{align*}
{\left[a\left(f_{1}\right), a\left(f_{2}\right)\right]_{-} } & =0 \\
{[a(f), J(v)]_{-} } & =i a(v \cdot \nabla f) \\
{\left[J\left(v_{1}\right), J\left(v_{2}\right)\right]_{-} } & =-i J\left(v_{1} \cdot \nabla v_{2}-v_{2} \cdot \nabla v_{1}\right) \tag{1.6}
\end{align*}
$$

independently of whether one starts with CCR or CAR.
Thus, in a nonrelativistic current theory, the statistics of particles is not determined by a choice of algebra, but instead may be determined by a choice of a representation of the algebra, see e.g. $[8,12,13]$ and the references therein.

It follows from (1.6) that the operators $a(f)$ form a family of commuting Hermitian operators. Note also that one can consider a more general case of field operators $\Psi(x)$, where $x \in X$ with X being a topological space as above. Then the CCR, respectively CAR, may be easily generalised, and again the particle densities $a(x):=\Psi^{*}(x) \Psi(x)$ lead to a family of commuting Hermitian operators

$$
a(\Delta):=\int_{\Delta} a(x) \sigma(d x), \quad \Delta \in \mathcal{B}_{0}(X)
$$

Let $G^{(n)}$ be a function from \mathcal{S} such that $G^{(n)}(\eta)=0$ if the number of points in the configuration η is not n. Then one can heuristically prove that

$$
\mathcal{Q}\left(G^{(n)}\right)=\frac{1}{n!} \int_{X^{n}} \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right) G^{(n)}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)
$$

$$
\begin{equation*}
\times \Psi^{*}\left(x_{n}\right) \cdots \Psi^{*}\left(x_{1}\right) \Psi\left(x_{1}\right) \cdots \Psi\left(x_{n}\right) \tag{1.7}
\end{equation*}
$$

The product

$$
\Psi^{*}\left(x_{n}\right) \cdots \Psi^{*}\left(x_{1}\right) \Psi\left(x_{1}\right) \cdots \Psi\left(x_{n}\right)
$$

is usually called a normal product. Thus, by (1.7), the family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ has a correlation measure and the corresponding correlation functions are given by

$$
\begin{aligned}
\kappa^{(n)}\left(x_{1}, \ldots, x_{n}\right) & =\left(\Psi^{*}\left(x_{n}\right) \cdots \Psi^{*}\left(x_{1}\right) \Psi\left(x_{1}\right) \cdots \Psi\left(x_{n}\right) \Omega, \Omega\right) \\
& =\left\|\Psi\left(x_{1}\right) \cdots \Psi\left(x_{n}\right) \Omega\right\|^{2}
\end{aligned}
$$

To the best of our knowledge, heuristic arguments of such kind were first given by Menikoff in [22], see also [23].

So, in Section 5.1, we mathematically realise this idea in the case of fermion (determinantal), and boson (permanental) point processes. These processes were introduced by Girard [11], Menikoff [23], and Macchi [21], and have been actively studied during the past years, see e.g. [10, 27, 25, 28] and the references therein.

So, we start with a quasi-free representation of the CAR (CCR respectively), see e.g. [1, 2, 9]. Such a representation is completely characterised by a linear, bounded, Hermitian operator K in $L^{2}(X, \sigma)$ which satisfies $0 \leq K \leq 1$ in the fermion case, and $K \geq 0$ in the boson case. In the case where $X=\mathbb{R}^{d}$ and K is a convolution operator, it has been already shown by Lytvynov in [19] that the corresponding particle density has a fermion (boson, respectively) point process as its spectral measure.

We treat the most general case of the space X and the operator K. The latter operator is only assumed to be locally of trace class, which is a necessary assumption for finite correlations. The main mathematical (as
well as physical) challenge here is to show that all heuristic arguments coming from physics indeed have a precise mathematical meaning. We observe that K automatically appears to be an integral operator, and furthermore, with our approach, we do not even have to additionally discuss the problem of the choice of a version of the kernel $k(x, y)$ of the operator K, compare with [27, Lemma 1] and [10, Lemma A4]. Thus, we, in particular, show that any fermion process corresponding to a Hermitian operator K can be thought of as the spectral measure of the family of operators which represent the particle density of a quasi-free representation of the CAR. Though all our results hold in the case where the operator K acts in the complex Hilbert space $L^{2}(X \rightarrow \mathbb{C}, \sigma)$, for simplicity of presentation we only deal with the case where K acts in the real space $L^{2}(X, \sigma)$.

Finally in Section 5.2 , we consider an l-fold convolution $(l \geqslant 2)$ of particle densities $\Psi^{*}(x) \Psi(x)$ from Section 5.1. The corresponding smeared operators $\left(a^{(l)}(\Delta)\right)_{\Delta \in \mathcal{B}_{0}(X)}$ form a family of commuting Hermitian operators. The corresponding correlation functions are represented through the Vere-Jones α-determinants, which generalise usual determinants and permanents. Thus, the family $\left(a^{(l)}(\Delta)\right)_{\Delta \in \mathcal{B}_{0}(X)}$ is shown to satisfy the assumptions of our main theorem of Chapter 4 and leads to a corresponding point process. These processes appear to be from the class of point processes discussed by Shirai and Takahashi in [25]. Recall also that it was shown by Tamura and Ito in $[28,29]$ that, in the case $X=\mathbb{R}^{d}$, the point processes derived in Section 5.2 describe para-fermions (para-bosons respectively), where the number of convolution, l, corresponds to the order of these particles.

The main results of this dissertation are published in [20].

Chapter 2

Some preliminaries from

functional analysis

In this chapter, we will briefly recall some definitions and results of Functional Analysis which we will need in our work. For details, we refer e.g. to $[5,7]$.

2.1 Bounded operators

For any Hilbert spaces H_{1} and H_{2}, we denote by $\mathcal{B}\left(H_{1}, H_{2}\right)$ the set of all bounded linear operators from H_{1} into H_{2}. As usual we denote $\mathcal{B}(H)$:= $\mathcal{B}(H, H)$.

We will always assume that all the Hilbert spaces we consider are separable, i.e., they possess a countable dense subset. Also, if it is not explicitly stated, we will deal with complex Hilbert spaces.

Integral operators: Let (X, \mathcal{A}, σ) be a measure space with σ-finite measure σ. An operator $K \in \mathcal{B}\left(L^{2}(X \rightarrow \mathbb{C}, \sigma)\right)$ is called an integral operator if there exists a measurable function $k: X^{2} \rightarrow \mathbb{C}$ such that

$$
(K F)(x)=\int_{X} k(x, y) f(y) \sigma(d y), \quad f \in L^{2}(X \rightarrow \mathbb{C}, \sigma)
$$

The function $k(x, y)$ is called the kernel of the operator K.
Hilbert-Schmidt operators: An operator $T \in \mathcal{B}(H)$ is a Hilbert-Schmidt operator if there exists an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of H such that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left\|T e_{n}\right\|^{2}<\infty \tag{2.1}
\end{equation*}
$$

In the latter case, the inequality (2.1) holds for any orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ in H and furthermore, the value $\sum_{n=1}^{\infty}\left\|T e_{n}\right\|^{2}$ is independent of the choice of an orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$.

For $T \in \mathcal{B}(H)$, let T^{*} denote the adjoint operator of T. Then, T is a Hilbert-Schmidt operator if and only if T^{*} is a Hilbert-Schmidt operator and

$$
\sum_{n=1}^{\infty}\left\|T e_{n}\right\|^{2}=\sum_{n=1}^{\infty}\left\|T^{*} f_{n}\right\|^{2}
$$

for any orthonormal bases $\left\{e_{n}\right\}_{n=1}^{\infty}$ and $\left\{f_{n}\right\}_{n=1}^{\infty}$ of H.
In the case where $H=L^{2}(X \rightarrow \mathbb{C}, \sigma)$, an operator K is Hilbert-Schmidt if and only if K is an integral operator and $k \in L^{2}\left(X^{2} \rightarrow \mathbb{C}, \sigma^{\otimes 2}\right)$, where k is the kernel of K. In fact, one has

$$
\sum_{n=1}^{\infty}\left\|T e_{n}\right\|_{L^{2}(X, \sigma)}^{2}=\int_{X} \int_{X}|k(x, y)|^{2} \sigma(d x) \sigma(d y)
$$

for any orthonormal basis $\left\{e_{n}\right\}_{n=1}^{\infty}$ of $L^{2}(X \rightarrow \mathbb{C}, \sigma)$.
An operator $T \in \mathcal{B}(H)$ is called a trace class operator if it can be represented as $T=\sum_{k=1}^{n} A_{k} B_{k}$, where $n \in \mathbb{N}$ and $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ are Hilbert-Schmidt operators. If T is a trace class operator and $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis in H, then the series $\sum_{n=1}^{\infty}\left(T e_{n}, e_{n}\right)_{H}$ converges absolutely and its value, called the trace of the operator T, is independent of the choice of orthonormal basis.

2.2 Bochner integration

Let (X, \mathcal{A}, σ) be a measure space with a σ-finite measure. We want to define an integral $\int_{X} f(x) \sigma(d x)$, where $f: X \rightarrow E$ and E is a Banach space.

Bochner's idea of construction of such an integral was to generalise the construction of the Lebesgue integral, i.e., the case where E is either \mathbb{R} or \mathbb{C}.

A function $f: X \rightarrow E$ is called simple if

$$
\begin{equation*}
f(x)=\sum_{k=1}^{n} c_{k} \chi_{\Delta_{k}}(x) \tag{2.2}
\end{equation*}
$$

where $c_{k} \in E, \Delta_{1}, \ldots, \Delta_{n} \in \mathcal{A}$ mutually disjoint, and

$$
\max \left\{\sigma\left(\Delta_{1}\right), \ldots, \sigma\left(\Delta_{n}\right)\right\}<\infty
$$

Then

$$
\|f(x)\|=\sum_{k=1}^{n}\left\|c_{k}\right\| \chi_{\Delta_{k}}(x)
$$

is a simple, real-valued function on X.
A function $f: X \rightarrow E$ is called strongly measurable if there exists a sequence of simple functions, $\left(f_{n}\right)_{n=1}^{\infty}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|f_{n}(x)-f(x)\right\|=0 \quad \sigma \text {-a.e. } \tag{2.3}
\end{equation*}
$$

For a simple function $f: X \rightarrow E$ of the form (2.2), the Bochner integral is defined by

$$
\int_{X} f(x) \sigma(d x)=\sum_{k=1}^{n} c_{k} \sigma\left(\Delta_{k}\right)
$$

Next, let f be an arbitrary strongly measurable function and let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence of simple functions satisfying (2.3). Then $\left\|f_{n}-f\right\|$ is a nonnegative measurable function on X, and so the integral

$$
\int_{X}\left\|f_{n}(x)-f(x)\right\| \sigma(d x)
$$

is well-defined. Assume that

$$
\int_{X}\left\|f_{n}(x)-f(x)\right\| \sigma(d x) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Then, one can show that the sequence $\left(\int_{X} f_{n}(x) \sigma(d x)\right)_{n=1}^{\infty}$ is a Cauchy sequence in E. Therefore, it has a limiting element in E.

We then say that f is Bochner-integrable and $\int_{X} f(x) \sigma(d x)$ is the Bochner integral of f.

One can show that $\int_{X} f(x) \sigma(d x)$ does not depend on the choice of approximating sequence. In fact, the following theorem holds, see e.g. [7].

Theorem 2.1 A strongly measurable function $f: X \rightarrow E$ is Bochnerintegrable if and only if $\int_{X}\|f(x)\| \sigma(d x)<\infty$.

2.3 Unbounded operators

The aim of this section is to recall the reader some notions connected with unbounded operators. Let us note that we do not aim to recall all the definitions and constructions we are using, but we rather refer to textbooks on functional analysis, like e.g. [7]. So let H be a Hilbert space. A linear operator A with domain $D(A)$, usually denoted by $(A, D(A))$, is called symmetric if, for any $f, g \in D(A)$

$$
(A f, g)_{H}=(f, A g)_{H}
$$

If additionally, the domain $D(A)$ is dense in H, the operator A is called Hermitian.

If $(A, D(A))$ is a linear operator with dense domain $D(A)$ in H, then we define $D\left(A^{*}\right)$ as the set of those $g \in H$ for which there exists $g^{*} \in H$ such that

$$
(A f, g)_{H}=\left(f, g^{*}\right)_{H}, \quad \text { for all } f \in D(A)
$$

In this case we call $D\left(A^{*}\right)$ the domain of the adjoint operator A^{*} and we set $A^{*} g=g^{*}$.

An operator $(A, D(A))$ is called self-adjoint if $(A, D(A))=\left(A^{*}, D\left(A^{*}\right)\right)$, i.e., the operator A coincides with its adjoint.

For an operator $(A, D(A))$, the set

$$
\Gamma_{A}:=\{(f, A f) \mid f \in D(A)\} \subset H \times H
$$

is called the graph of the operator A.
If Γ_{A} is a closed subset of $H \times H$, then the operator A is called closed. If this is not the case, then one may take the closure $\bar{\Gamma}_{A}$ of Γ_{A} in $H \times H$. However, $\bar{\Gamma}_{A}$ may happen not to be a graph of a linear operator, i.e., there may exist vectors $\left(f, g_{1}\right)$ and $\left(f, g_{2}\right)$ in $\bar{\Gamma}_{A}$ such that $g_{1} \neq g_{2}$. If this is not the case, i.e., if $\bar{\Gamma}_{A}$ is a graph of a linear operator, then we call $(A, D(A))$ a closable operator and the corresponding operator defined by $\bar{\Gamma}_{A}$ is called the closure of $(A, D(A))$, denoted by $(\tilde{A}, D(\tilde{A}))$.

One may show that any Hermitian operator is closable. However, the closure of such an operator is not necessarily a self-adjoint operator.

If this closure is self-adjoint, then we say that $(A, D(A))$ is an essentially self-adjoint operator.

In applications we are mostly given not self-adjoint operators, but Hermitian operators. Then, if one is able to prove that such an operator is essentially self-adjoint, then, by closing the operator $(A, D(A))$, one derives a self-adjoint operator.

Theorem 2.2 (Nelson's analytic vector criterion) Let $(A, D(A))$ be a Hermitian operator in H. A vector $f \in D(A)$ is called analytic (for A) if, for each $n \in \mathbb{N}, f \in D\left(A^{n}\right)$, and

$$
\sum_{n=1}^{\infty} \frac{t^{n}}{n!}\left\|A^{n} f\right\|_{H}<\infty
$$

for some $t>0$. If there is a subset $\mathfrak{D} \subset D(A)$ such that \mathfrak{D} is dense in H and each $f \in \mathfrak{D}$ is analytic for A, then the operator $(A, D(A))$ is essentially self-adjoint.

Let (X, \mathcal{A}) be a measurable space. A mapping

$$
\mathcal{A} \ni \alpha \mapsto E(\alpha) \in \mathcal{B}(H)
$$

is called a resolution of the identity if the following conditions are satisfied:

- For each $\alpha \in \mathcal{A}, E(\alpha)$ is an orthogonal projection in H.
- $E(\varnothing)=0, E(X)=1$.
- If $\left\{\alpha_{n}\right\}_{n=1}^{\infty}, \alpha_{n} \in \mathcal{A}, n \in \mathbb{N}, \alpha_{n}$ are mutually disjoint, then for each $f \in H$

$$
E\left(\bigcup_{n=1}^{\infty} \alpha_{n}\right) f=\sum_{n=1}^{\infty} E\left(\alpha_{n}\right) f
$$

where the series converges in H.
It follows from the definition of resolution of the identity that for any vectors $f, g \in H$, the mapping

$$
\mathcal{A} \ni \alpha \mapsto(E(\alpha) f, g)_{H}
$$

is a signed measure on (X, \mathcal{A}).
To any self-adjoint operator $(A, D(A))$, there corresponds a unique resolution of the identity over $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ such that

$$
\begin{equation*}
A=\int_{\mathbb{R}} \lambda d E(\lambda) \tag{2.4}
\end{equation*}
$$

The equality (2.4) should be understood as follows:

$$
\begin{equation*}
D(A):=\left\{f \in H \mid \int_{\mathbb{R}} \lambda^{2} d(E(\lambda) f, f)_{H}<\infty\right\} \tag{2.5}
\end{equation*}
$$

and for any $f \in D(A)$ and $g \in H$

$$
\begin{equation*}
(A f, g)_{H}=\int_{\mathbb{R}} \lambda d(E(\lambda) f, g)_{H} \tag{2.6}
\end{equation*}
$$

Furthermore, the inverse statement holds. If E is a resolution of the identity over $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$, then E determines a self-adjoint operator in H through the formulas (2.5) and (2.6).

Formulas (2.4)-(2.6) are called the spectral decomposition of a self-adjoint operator (in fact, the resolution of the identity is concentrated on the spectrum of A). Using the spectral decomposition (2.5) and (2.6), one easily defines a function of the operator $A, f(A)$, through the formula

$$
f(A):=\int_{\mathbb{R}} f(\lambda) d E(\lambda)
$$

(which has a natural meaning through smearing).
Let us now briefly discuss the commutation of linear operators. In the case where A_{1} and A_{2} are bounded linear operators, their commutation is defined straightforward:

$$
A_{1} A_{2} f=A_{2} A_{1} f \quad \text { for each } f \in H
$$

However, in the case where A_{1} and A_{2} are unbounded operators, the operators $A_{1} A_{2}$ or $A_{2} A_{1}$ may only be well-defined at zero. So, in the case where A_{1} and A_{2} are additionally self-adjoint operators, one defines their commutation through the commutation of their resolutions of the identity. So we say that self-adjoint operators ($A_{1}, D\left(A_{1}\right)$) and ($A_{2}, D\left(A_{2}\right)$) commute in the sense of their resolutions of the identity if, for any $\alpha_{1}, \alpha_{2} \in \mathcal{B}(\mathbb{R})$, the operators $E_{1}\left(\alpha_{1}\right)$ and $E_{2}\left(\alpha_{2}\right)$ commute, where E_{1}, and E_{2}, denote the resolution of the identity of A_{1}, and A_{2}, respectively.

The following theorem (see [5]) allows one to check that two given selfadjoint operators indeed commute in the sense of their resolutions of the identity.

Theorem 2.3 Let $\left(A_{1}, D\left(A_{1}\right)\right)$, $\left(A_{2}, D\left(A_{2}\right)\right)$ be two Hermitian operators in H. Let \mathfrak{D} be a dense linear subset of H such that $\mathfrak{D} \subset D\left(A_{1}\right) \cap D\left(A_{2}\right)$, $A_{1} \mathfrak{D} \subset \mathfrak{D}, A_{2} \mathfrak{D} \subset \mathfrak{D}$ and A_{1}, A_{2} commute on \mathfrak{D} in the usual sense:

$$
A_{1} A_{2} f=A_{2} A_{1} f \quad \text { for all } f \in \mathfrak{D}
$$

Assume that each vector in \mathfrak{D} is analytic for both operators A_{1} and A_{2}. Then the operators $\left(A_{1}, D\left(A_{1}\right)\right)$ and $\left(A_{2}, D\left(A_{2}\right)\right)$ are essentially self-adjoint and their closures $\left(\tilde{A}_{1}, D\left(\tilde{A}_{1}\right)\right)$ and $\left(\tilde{A}_{2}, D\left(\tilde{A}_{2}\right)\right)$ commute in the sense of their resolutions of the identity.

Let us now consider n self-adjoint operators $\left(A_{1}, D\left(A_{1}\right)\right), \ldots,\left(A_{n}, D\left(A_{n}\right)\right)$ in H and let us assume that these operators commute in the sense of their resolutions of the identity. Denote by E_{i} the resolution of identity of the operator $\left(A_{i}, D\left(A_{i}\right)\right)$. One can construct the joint resolution of the identity of these operators as a resolution of the identity on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. This resolution of the identity denoted by E, is defined as

$$
E\left(\alpha_{1} \times \alpha_{2} \times \cdots \times \alpha_{n}\right)=E_{1}\left(\alpha_{1}\right) E_{2}\left(\alpha_{2}\right) \cdots E_{n}\left(\alpha_{n}\right), \quad \alpha_{1}, \ldots, \alpha_{n} \in \mathcal{B}(\mathbb{R})
$$

and then one uniquely extends this to a resolution of the identity on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$ (just as in the case of product-measures).

Then we have, for each $i \in\{1, \ldots, n\}$,

$$
D\left(A_{i}\right)=\left\{f \in H: \int_{\mathbb{R}^{n}} \lambda_{i}^{2} d(E(\lambda) f, f)_{H}<\infty\right\}
$$

and

$$
A_{i}=\int_{\mathbb{R}^{n}} \lambda_{i} d E(\lambda)
$$

i.e., for any $f \in D\left(A_{i}\right)$ and $g \in H$

$$
\left(A_{i} f, g\right)_{H}=\int_{\mathbb{R}^{n}} \lambda_{i} d(E(\lambda) f, g)_{H}
$$

Chapter 3

Configuration spaces

3.1 The space of finite configurations

Let X be a locally compact, second countable Hausdorff topological space. This means that every point in X has a compact neighbourhood, that X has a countable base and that distinct points may be separated by disjoint neighbourhoods. It is known that X is then a Polish space, i.e., there exists a metrization ρ of X such that, in this metric, X becomes a complete separable metric space (see e.g. [26]).

A set $B \subset X$ is said to be topologically bounded, or relatively compact if its closure \bar{B} is compact. Note that, if we fix a metric ρ in X which generates its topology, an open ball $B(x, r)$ with centre at $x \in X$ and radius $r>0$ need not be bounded. However, for each fixed $x \in X$, one can always find $\varepsilon>0$ small enough such that the open ball $B(x, \varepsilon)$ is bounded.

We denote by $\mathcal{B}(X)$ the Borel σ-algebra in X, and by $\mathcal{B}_{0}(X)$ the collection of all bounded sets from $\mathcal{B}(X)$.

We define the space of finite multiple configurations in X as follows:

$$
\ddot{\Gamma}_{X, 0}:=\bigsqcup_{n \in \mathbb{N}_{0}} \ddot{\Gamma}_{X}^{(n)}
$$

Here, $\mathbb{N}_{0}=0,1,2, \ldots, \ddot{\Gamma}_{X}^{(0)}:=\{\varnothing\}, \ddot{\Gamma}_{X}^{(n)}$ is the factor space X^{n} / S_{n}, where S_{n} is the group of all permutations of $\{1,2, \ldots, n\}$, which naturally acts on X^{n} :

$$
\begin{equation*}
\xi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{\xi(1)}, \ldots, x_{\xi(n)}\right), \quad \xi \in S_{n} . \tag{3.1}
\end{equation*}
$$

We denote by $\left[x_{1}, \ldots, x_{n}\right]$ the equivalence class in $\ddot{\Gamma}_{X}^{(n)}$ corresponding to $\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$.

Let $\mathcal{B}\left(\ddot{\Gamma}_{X}^{(n)}\right)$ denote the image of the Borel σ-algebra $\mathcal{B}\left(X^{n}\right)$ under the mapping

$$
X^{n} \ni\left(x_{1}, \ldots, x_{n}\right) \mapsto\left[x_{1}, \ldots, x_{n}\right] \in \ddot{\Gamma}_{X}^{(n)}
$$

Then, the real-valued measurable functions on $\ddot{\Gamma}_{X}^{(n)}$ may be identified with the real-valued $\mathcal{B}_{\text {sym }}\left(X^{n}\right)$-measurable functions on X^{n}. Here, $\mathcal{B}_{\text {sym }}\left(X^{n}\right)$ denotes the σ-algebra of all sets in $\mathcal{B}\left(X^{n}\right)$ which are symmetric, i.e., which remain invariant under the action (3.1).

We define a σ-algebra $\mathcal{B}\left(\ddot{\Gamma}_{X, 0}\right)$ on $\ddot{\Gamma}_{X, 0}$, so that the trace σ-algebra of $\mathcal{B}\left(\ddot{\Gamma}_{X, 0}\right)$ on each $\ddot{\Gamma}_{X}^{(n)}$ coincides with $\mathcal{B}\left(\ddot{\Gamma}_{X}^{(n)}\right)$ for $n \in \mathbb{N}$, and $\{\varnothing\} \in \mathcal{B}\left(\ddot{\Gamma}_{X, 0}\right)$.

Next, we introduce the space of finite configurations in X, denoted by $\Gamma_{X, 0}$. By definition, $\Gamma_{X, 0}$ is the subset of $\ddot{\Gamma}_{X, 0}$, given by

$$
\Gamma_{X, 0}:=\bigsqcup_{n \in \mathbb{N}_{0}} \Gamma_{X}^{(n)},
$$

where $\Gamma_{X}^{(0)}:=\ddot{\Gamma}_{X}^{(0)}$ and for $n \in \mathbb{N}, \Gamma_{X}^{(n)}$ consists of all $\left[x_{1}, \ldots, x_{n}\right] \in \ddot{\Gamma}_{X}^{(n)}$ such that x_{1}, \ldots, x_{n} are different points in X. Thus, each element $\left[x_{1}, \ldots, x_{n}\right] \in$ $\Gamma_{X}^{(n)}$ can be identified with the set $\left\{x_{1}, \ldots, x_{n}\right\}$. We denote by $\mathcal{B}\left(\Gamma_{X}^{(n)}\right)$ the trace σ-algebra of $\mathcal{B}\left(\ddot{\Gamma}_{X}^{(n)}\right)$ on $\Gamma_{X}^{(n)}$. Let also $\mathcal{B}\left(\Gamma_{X, 0}\right)$ be the trace σ-algebra of $\mathcal{B}\left(\ddot{\Gamma}_{X, 0}\right)$ on $\Gamma_{X, 0}$.

Completely analogously, for any $\Delta \in \mathcal{B}_{0}(X)$, we define $\ddot{\Gamma}_{\Delta}:=\ddot{\Gamma}_{\Delta, 0}$ and $\Gamma_{\Delta}:=\Gamma_{\Delta, 0}$ as well as the corresponding σ-algebras $\mathcal{B}\left(\ddot{\Gamma}_{\Delta}\right), \mathcal{B}\left(\Gamma_{\Delta}\right), \mathcal{B}\left(\stackrel{\Gamma}{\Gamma}_{\Delta}^{(n)}\right)$, $\mathcal{B}\left(\Gamma_{\Delta}^{(n)}\right), n \in \mathbb{N}$.

Let σ be a Radon non-atomic measure on $(X, \mathcal{B}(X)$). Recall that a Radon measure is characterised by the property that $\sigma(\Delta)<\infty$ for each $\Delta \in \mathcal{B}_{0}(X)$, and "non-atomic" means that $\sigma(\{x\})=0$ for each $x \in X$.

Then we can construct the measure $\sigma^{\otimes n}$ on ($X^{n}, \mathcal{B}\left(X^{n}\right)$). Since σ is non-atomic, we have

$$
\sigma^{\otimes n}\left(D_{n}\right)=0,
$$

where

$$
D_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right) \in X^{n}: x_{i}=x_{j} \text { for some } i \neq j\right\} .
$$

So, we consider $\sigma^{\otimes n}$ as a measure on ($\tilde{X}^{n}, \mathcal{B}\left(\tilde{X}^{n}\right)$), where $\tilde{X}^{n}:=X^{n} \backslash D_{n}$.
Next, we restrict this measure to the σ-algebra $\mathcal{B}_{\text {sym }}\left(\tilde{X}^{n}\right)$, consisting of all symmetric set in $\mathcal{B}\left(\tilde{X}^{n}\right)$. Therefore, we can identify $\sigma^{\otimes n}$ with a measure on ($\Gamma_{X}^{(n)}, \mathcal{B}\left(\Gamma_{X}^{(n)}\right)$).

We now define the Lebesgue-Poisson measure λ_{σ} on $\left(\Gamma_{X, 0}, \mathcal{B}\left(\Gamma_{X, 0}\right)\right.$) as follows:

$$
\lambda_{\sigma}(\{\varnothing\})=1,
$$

and

$$
\lambda_{\sigma} \upharpoonright \Gamma_{X}^{(n)}=\frac{1}{n!} \sigma^{\otimes n} .
$$

Informally, we may write

$$
\lambda_{\sigma}=\sum_{n=0}^{\infty} \frac{1}{n!} \sigma^{\otimes n} .
$$

3.2 The space of infinite configurations

The configuration space Γ_{X} over X is defined as

$$
\Gamma_{X}:=\left\{\gamma \subset X:|\gamma \cap \Delta|<\infty \text { for each } \Delta \in \mathcal{B}_{0}(X)\right\}
$$

Here, $|A|$ denotes the cardinality of a set A. We identify each $\gamma \in \Gamma_{X}$ with the Radon measure

$$
\gamma=\sum_{x \in \gamma} \varepsilon_{x}
$$

where ε_{x} is the Dirac measure with mass at x. Thus, Γ_{X} becomes a subset of \mathcal{M}_{X}-the space of all (non-negative) Radon measures on $(X, \mathcal{B}(X))$.

The space \mathcal{M}_{X} is usually endowed with the vague topology, i.e., the weakest topology with respect to which all mappings of the form

$$
\mathcal{M}_{X} \ni \sigma \mapsto\langle\sigma, f\rangle:=\int f d \sigma \in \mathbb{R}, \quad f \in C_{0}(X)
$$

become continuous. Here, $C_{0}(X)$ denotes the set of all continuous functions on X with compact support.

So, we endow Γ_{X} with relative topology as a subset of \mathcal{M}_{X}. Hence, the vague topology on Γ_{X} is the weakest topology with respect to which all mapping of the form

$$
\Gamma_{X} \ni \gamma \mapsto\langle\gamma, f\rangle:=\int_{X} f(x) \gamma(d x)=\sum_{x \in \gamma} f(x) \in \mathbb{R}, \quad f \in C_{0}(X)
$$

become continuous. We denote by $\mathcal{B}\left(\Gamma_{X}\right)$ the Borel σ-algebra on Γ_{X}.
There is another way of introducing a σ-algebra on Γ_{X}. Denote by \mathcal{A} the smallest σ-algebra on Γ_{X} with respect to which all mappings of the form

$$
\Gamma_{X} \ni \gamma \mapsto \gamma(\Delta)=|\gamma \cap \Delta|, \quad \Delta \in \mathcal{B}_{0}(X)
$$

are measurable. It can be proved (see e.g. [14]) that \mathcal{A} coincides with $\mathcal{B}\left(\Gamma_{X}\right)$. A probability measure μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ is called a point process (in X).

Let $\Delta \in \mathcal{B}_{0}(X)$. We call a set $A \subset \Gamma_{X}$ local with respect to Δ if there exisss a set $\tilde{A} \subset \Gamma_{\Delta}$ (the space of finite configurations in Δ) such that

$$
\begin{equation*}
A=\left\{\gamma \in \Gamma_{X}: \gamma \cap \Delta \in \tilde{A}\right\} \tag{3.2}
\end{equation*}
$$

We denote by $\mathcal{B}_{\Delta}\left(\Gamma_{X}\right)$ the σ-algebra of sets from $\mathcal{B}\left(\Gamma_{X}\right)$ which are local with respect to Δ. By identifying a local set A as in (3.2) with the set \tilde{A}, we may identify the σ-algebra $\mathcal{B}_{\Delta}\left(\Gamma_{X}\right)$ with a σ-algebra in Γ_{Δ}. It is not hard to see (cf. [14]) that the latter σ-algebra in Γ_{Δ} is, in fact, $\mathcal{B}\left(\Gamma_{\Delta}\right)$. Thus, we have identified the σ-algebras $\mathcal{B}_{\Delta}\left(\Gamma_{X}\right)$ and $\mathcal{B}\left(\Gamma_{\Delta}\right)$.

3.3 \mathcal{K}-transform and correlation measure

Following $[15,16,17]$, we now introduce the following mapping between functions on $\Gamma_{X, 0}$ and functions on Γ_{X}.

Let $G: \Gamma_{X, 0} \rightarrow[0,+\infty]$, we define a function $\mathcal{K} G: \Gamma_{X} \rightarrow[0,+\infty]$ by

$$
\begin{equation*}
(\mathcal{K} G)(\gamma)=\sum_{\eta \Subset \gamma} G(\eta), \quad \gamma \in \Gamma_{X} \tag{3.3}
\end{equation*}
$$

where $\eta \Subset \gamma$ denotes that η is a finite subset of γ.
By [15], if G is a $\mathcal{B}\left(\Gamma_{X, 0}\right)$-measurable function, then $\mathcal{K} G$ is Γ_{X}-measurable. We call $\mathcal{K} G$ the \mathcal{K}-transform of G.

In what follows, we will also need the \mathcal{K}-transform of functions of an arbitrary sign. So, if $G: \Gamma_{X, 0} \mapsto \mathbb{R}$ and if $\left(\mathcal{K} G^{+}\right)(\gamma)<\infty$ and $\left(\mathcal{K} G^{-}\right)(\gamma)<$ ∞, then we set

$$
(\mathcal{K} G)(\gamma):=\left(\mathcal{K} G^{+}\right)(\gamma)-\left(\mathcal{K} G^{-}\right)(\gamma)
$$

Here, as usual we denoted

$$
G^{+}=\max \{0, G\}, \quad G^{-}=\max \{0,-G\} .
$$

Using the \mathcal{K}-transform, we will now introduce the notion of a correlation measure of a point process.

Let μ be a probability measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$. We define a measure ρ_{μ} on $\left(\Gamma_{X, 0}, \mathcal{B}\left(\Gamma_{X, 0}\right)\right)$ as follows: for each $A \in \mathcal{B}\left(\Gamma_{X, 0}\right)$, we set

$$
\rho_{\mu}(A):=\int_{\Gamma_{X}}\left(\mathcal{K} 1_{A}\right)(\gamma) \mu(d \gamma)
$$

where 1_{A} denotes the indicator of the set A. One easily checks that ρ_{μ} is, indeed, a measure, and therefore, for any $\mathcal{B}\left(\Gamma_{X, 0}\right)$-measurable function $G: \Gamma_{X, 0} \rightarrow[0,+\infty]$, we have

$$
\begin{equation*}
\int_{\Gamma_{X, 0}} G(\eta) \rho_{\mu}(d \eta)=\int_{\Gamma_{X}}(\mathcal{K} G)(\gamma) \mu(d \gamma) \tag{3.4}
\end{equation*}
$$

We call ρ_{μ} the correlation measure of μ. As we have just seen any point process has a correlation measure.

It follows from the definition of the correlation measure that, if $G \in$ $L^{1}\left(\Gamma_{X, 0}, d \rho_{\mu}\right)$, then $\mathcal{K} G$ is μ-a.s. well-defined, $\mathcal{K} G \in L^{1}\left(\Gamma_{X}, \mu\right)$, and

$$
\int_{\Gamma_{X, 0}} G(\eta) \rho_{\mu}(d \eta)=\int_{\Gamma_{X}}(\mathcal{K} G)(\gamma) \mu(d \gamma)
$$

Next, recall the definition of the Lebesgue-Poisson measure λ_{σ}. Assume that ρ_{μ} is absolutely continuous with respect to λ_{σ}. We denote by

$$
\kappa_{\mu}(\eta):=\frac{d \rho_{\mu}(\eta)}{d \lambda_{\sigma}(\eta)}, \quad \eta \in \Gamma_{X, 0}
$$

Denote

$$
\kappa_{\mu}^{(n)}:=\kappa_{\mu} \upharpoonright \Gamma_{X}^{n}, \quad n \in \mathbb{N}
$$

We can identify $\kappa_{\mu}^{(n)}$ with a function on \tilde{X}^{n} which is $\mathcal{B}_{\text {sym }}\left(\tilde{X}^{n}\right)$-measurable. Usually, $\kappa_{\mu}^{(n)}$ is considered as a symmetric function on X^{n}. The functions $\kappa_{\mu}^{(n)}, n \in \mathbb{N}$, are called the correlation functions of μ.

Note that, unlike the correlation measure, the correlation functions may, generally speaking, not exist.

Since a point process is a probability measure on an "infinite- dimensional space" and the correlation measure is defined on a union of finite-dimensional spaces, it is clear that one has tried to study point processes through their correlation measures.

So a natural problem appears: given a measure ρ on $\Gamma_{X, 0}$, whether there exists a point process having ρ as its correlation measure (existence problem) and if such a point process exists, whether it is unique (uniqueness problem).

A very satisfactory solution of the uniqueness problem was given by Lenard in [18].

Theorem 3.1 Let ρ_{μ} be the correlation measure of a probability measure μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$. For each $\Delta \in \mathcal{B}_{0}(X)$, denote

$$
m_{k}^{\Delta}:=\frac{1}{k!} \rho_{\mu}\left(\Gamma_{\Delta}^{(k)}\right), \quad k \in \mathbb{N}
$$

Then, if the series

$$
\sum_{k=0}^{\infty}\left(m_{k+j}^{\Delta}\right)^{-1 / k}
$$

diverges for each $\Delta \in \mathcal{B}_{0}(X)$ and each $j \in \mathbb{N}_{0}$, then the measure μ is a unique point process which has ρ_{μ} as its correlation measure.

Remark 3.1 We note the condition of Theorem 3.1 is satisfied if, for each $\Delta \in \mathcal{B}_{0}(X)$,

$$
\rho\left(\Gamma_{\Delta}^{(n)}\right) \leqslant c^{n} n!\quad \text { for all } n \in \mathbb{N}
$$

where $c=c_{\Delta}>0$.
A solution of the existence problem was also given by Lenard in [17].
Theorem 3.2 Let ρ is a measure on $\left(\Gamma_{X, 0}, \mathcal{B}\left(\Gamma_{X, 0}\right)\right)$. We suppose that for each $\Delta \in \mathcal{B}_{0}(X)$ and $n \in \mathbb{N}$

$$
\rho\left(\bigcup_{i=1}^{n} \Gamma_{\Delta}^{(i)}\right)<\infty
$$

We also assume that

$$
\rho(\{\varnothing\})=1,
$$

and the following positivity condition holds:
For each measurable $G: \Gamma_{X, 0} \rightarrow \mathbb{R}$ which is bounded and vanishes outside a set $\bigcup_{i=1}^{N} \Gamma_{\Delta}^{(i)}$ for some $N \in \mathbb{N}$ and $\Delta \in \mathcal{B}_{0}(X)$, and such that

$$
(\mathcal{K} G)(\gamma) \geqslant 0, \quad \text { for all } \gamma \in \Gamma_{X},
$$

we have

$$
\int_{\Gamma_{X, 0}} G(\eta) d \rho(\eta) \geqslant 0
$$

Then there exist a probability measure μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ which has ρ as its correlation measure.

Another solution of the existence problem, which is, in fact, quite analogous to Theorem 3.2, was given by Macchi in [21].

A third way of finding sufficient conditions for existence was proposed by Kondratiev and Kuna in [15] and extended by Berezansky et al. [6].

This approach uses the so-called \star-convolution, which we will now discuss.

$3.4 \star$-convolution and existence of point processes

A \star-convolution is a convolution of two functions on the space of finite configurations whose \mathcal{K}-transform becomes the product of the \mathcal{K}-transforms of the given functions, i.e.,

$$
\begin{equation*}
\mathcal{K}\left(G_{1} \star G_{2}\right)=\mathcal{K} G_{1} \cdot \mathcal{K} G_{2} \tag{3.5}
\end{equation*}
$$

So, let us find an explicit form of \star-convolution. We have:

$$
\begin{aligned}
\left(\mathcal{K} G_{1}\right)(\gamma)\left(\mathcal{K} G_{2}\right)(\gamma)= & \left(\sum_{\eta_{1} \subseteq \gamma} G_{1}\left(\eta_{1}\right)\right)\left(\sum_{\eta_{2} \Subset \gamma} G_{2}\left(\eta_{2}\right)\right) \\
& =\sum_{\eta \Subset \gamma} \sum_{\eta_{1} \subset \gamma, \eta_{2} \subset \gamma: \eta_{1} \cup \eta_{2}=\eta} G_{1}\left(\eta_{1}\right) G_{2}\left(\eta_{2}\right) \\
& =\sum_{\eta \Subset \gamma}\left(\sum_{\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in P_{3}(\eta)} G_{1}\left(\eta_{1} \cup \eta_{2}\right) G_{2}\left(\eta_{2} \cup \eta_{3}\right)\right)
\end{aligned}
$$

where $P_{3}(\eta)$ denotes the set of all ordered partitions of η into three parts.
Thus, we define

$$
\begin{equation*}
\left(G_{1} \star G_{2}\right)(\eta)=\sum_{\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in P_{3}(\eta)} G_{1}\left(\eta_{1} \cup \eta_{2}\right) G_{2}\left(\eta_{2} \cup \eta_{3}\right) \tag{3.6}
\end{equation*}
$$

and we indeed have (3.5).
If ρ is the correlation measure of a point process μ, then by (3.3) and

$$
\begin{equation*}
\int_{\Gamma_{X, 0}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta)=\int_{\Gamma_{X}}(\mathcal{K} G)^{2}(\gamma) \mu(d \gamma) \tag{3.5}
\end{equation*}
$$

and therefore ρ is \star-positive definite:

$$
\int_{\Gamma_{X, 0}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta) \geq 0
$$

Theorem 3.3 ([6]) Let X be a connected, oriented C^{∞} Riemannian manifold. Let ρ be a measure on $\left(\Gamma_{X, 0}, \mathcal{B}\left(\Gamma_{X, 0}\right)\right)$ which satisfy the following assumptions

1. $\rho\left(\Gamma_{X}^{(0)}\right)=1$
2. For each $\Delta \in \mathcal{B}_{0}(X)$, there exists a constant $C_{\Delta}>0$ such that

$$
\rho\left(\Gamma_{\Delta}^{(n)}\right) \leqslant C_{\Delta}^{n}, \quad \text { for all } n \in \mathbb{N}
$$

3. Every compact $\Delta \subset X$ can be covered by a finite union of open sets $\Delta_{1}, \ldots, \Delta_{k}, k \in \mathbb{N}$, which have compact closures and satisfy the estimate

$$
\rho\left(\Gamma_{\Delta}^{(n)}\right) \leq(2+\varepsilon)^{-n}, \quad \text { for all } i=1,2, \ldots, k \text { and } n \in \mathbb{N}
$$

where $\varepsilon=\varepsilon(\Delta)>0$
4. *-Positive definiteness: For each G which is bounded and vanishes outside a set $\bigcup_{i=1}^{N} \Gamma_{\Delta}^{(i)}$ for some $N \in \mathbb{N}$ and $\Delta \in \mathcal{B}_{0}(X)$, we have

$$
\int_{\Gamma_{X, 0}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta) \geq 0
$$

Then, there exists a point process μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ which has ρ as its correlation measure.

Chapter 4

Correlation measure of a family of commuting Hermitian

operators

The aim of this chapter is to introduce the notion of a correlation measure of a family of commuting Hermitian operators and to show that this measure is concentrated on the space of finite configurations.

For measurable functions $f_{1}, \ldots, f_{n}: X \rightarrow \mathbb{R}$, we denote by $f_{1} \widehat{\otimes} \cdots \widehat{\otimes} f_{n}$ the symmetric tensor product of f_{1}, \ldots, f_{n}. Since $f_{1} \widehat{\otimes} \cdots \widehat{\otimes} f_{n}$ is $\mathcal{B}_{\text {sym }}\left(X^{n}\right)$ measurable, we may consider $f_{1} \widehat{\otimes} \cdots \widehat{\otimes} f_{n}$ as a measurable function on $\ddot{\Gamma}_{X}^{(n)}$.

For a function $G: \ddot{\Gamma}_{X, 0} \rightarrow \mathbb{R}$, we denote by $G^{(n)}$ the restriction of G to $\ddot{\Gamma}_{X}^{(n)}$. Let \mathcal{S} denote the set of all real-valued functions on $\ddot{\Gamma}_{X, 0}$ which satisfy the following condition: for each $G \in \mathcal{S}$, there is an $N \in \mathbb{N}$ such that $G^{(n)}=0$ for all $n>N$ and for each $n \in\{1, \ldots, N\}, G^{(n)}$ is a finite linear combination of the functions of the form $\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}$, where $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$ and χ_{A} denotes the indicator of a set A. Note that, by the polarisation identity, in the above definition it suffices to take functions of the form $\chi_{\Delta}^{\otimes n}$, where
$\Delta \in \mathcal{B}_{0}(X)$. It is clear that the set \mathcal{S} is sufficiently large, in the sense that \mathcal{S} is an algebra under multiplication, and functions from \mathcal{S} separate any two configurations in $\ddot{\Gamma}_{X, 0}$.

Let F be either a real, or complex Hilbert space and let D be a linear subset of F. Let $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ be a family of Hermitian operators in F such that:

- for each $\Delta \in \mathcal{B}_{0}(X), \operatorname{Dom}(a(\Delta))=D$ and $a(\Delta)$ maps D into itself;
- for any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X), a\left(\Delta_{1}\right) a\left(\Delta_{2}\right)=a\left(\Delta_{2}\right) a\left(\Delta_{1}\right) ;$
- for any mutually disjoint $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, we have: $a\left(\Delta_{1} \cup \Delta_{2}\right)=$ $a\left(\Delta_{1}\right)+a\left(\Delta_{2}\right)$.

It follows from the definition of the \mathcal{K}-transform (see Section 2.3) that, for each $\gamma \in \Gamma_{X}$ and $\Delta \in \mathcal{B}_{0}(X), \mathcal{K}\left(\chi_{\Delta}\right)(\gamma)=\gamma(\Delta)$, and that

$$
\begin{align*}
& \mathcal{K}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)(\gamma)=\frac{1}{(n+1)^{2}}\left[\sum _ { i = 1 } ^ { n + 1 } \gamma (\Delta _ { i }) \mathcal { K } \left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \check{\chi}_{\Delta_{i}} \widehat{\otimes}\right.\right. \\
& \left.\cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)(\gamma)-\sum_{i=1}^{n+1} \sum_{j=1, \ldots, n+1, j \neq i} \mathcal{K}\left(\left(\chi_{\Delta_{i} \cap \Delta_{j}}\right) \widehat{\otimes} \chi_{\Delta_{1}} \widehat{\otimes}\right) \cdots \widehat{\otimes} \check{\chi}_{\Delta_{i}} \widehat{\otimes} \\
& \left.\left.\cdots \widehat{\otimes}{\check{\chi} \Delta_{j}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)(\gamma)\right] \tag{4.1}
\end{align*}
$$

where $\Delta_{1}, \ldots, \Delta_{n+1} \in \mathcal{B}_{0}(X), n \in \mathbb{N}$ and $\check{\chi}_{\Delta}$ denotes the absense of χ_{Δ}.
Indeed, let us fix a function $\varphi: X \rightarrow \mathbb{R}$ which is bounded and has compact support. Then, we have:

$$
\begin{aligned}
& \langle\varphi, \gamma\rangle \mathcal{K}\left(\varphi^{\otimes n}\right)(\gamma)=\left(\sum_{x \in \gamma} \varphi(x)\right) \sum_{\left\{x_{1}, \ldots, x_{n}\right\} \subset \gamma} \varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right) \\
& =(n+1) \sum_{\left\{x_{1}, \ldots, x_{n+1}\right\} \subset \gamma} \varphi\left(x_{1}\right) \cdots \varphi\left(x_{n+1}\right) \\
& \quad+\sum_{\left\{x_{1}, \ldots, x_{n}\right\} \subset \gamma}\left(\varphi^{2}\left(x_{1}\right) \varphi\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)+\varphi\left(x_{1}\right) \varphi^{2}\left(x_{2}\right) \cdots \varphi\left(x_{n}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\cdots+\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n-1}\right) \varphi^{2}\left(x_{n}\right)\right) \\
= & (n+1) \mathcal{K}\left(\varphi^{\otimes(n+1)}\right)(\gamma)+n \mathcal{K}\left(\left(\varphi^{2}\right) \otimes \varphi^{\otimes(n-1)}\right)(\gamma)
\end{aligned}
$$

Therefore, using the polarisation identity, we conclude that, for any functions $\varphi_{1}, \ldots, \varphi_{n+1}: X \rightarrow \mathbb{R}$ which are bounded and have compact support

$$
\begin{aligned}
& \frac{1}{n+1} \sum_{i=1}^{n+1}\left\langle\varphi_{i}, \gamma\right\rangle \mathcal{K}\left(\varphi_{1} \widehat{\otimes} \cdots \widehat{\otimes} \varphi_{i-1} \widehat{\otimes} \check{\varphi}_{i} \widehat{\otimes} \varphi_{i+1} \widehat{\otimes} \cdots \widehat{\otimes} \varphi_{n+1}\right)(\gamma) \\
& =(n+1) \mathcal{K}\left(\varphi_{1} \widehat{\otimes} \cdots \widehat{\otimes} \varphi_{n+1}\right)(\gamma) \\
& \quad+\frac{n}{(n+1) n} \sum_{i=1}^{n+1} \sum_{j=1, \ldots, n+1, j \neq i} \mathcal{K}\left(\left(\varphi_{i} \varphi_{j}\right) \widehat{\otimes} \varphi_{1} \widehat{\otimes} \cdots \widehat{\otimes} \dot{\varphi}_{i} \widehat{\otimes}\right. \\
& \left.\quad \cdots \widehat{\otimes} \check{\varphi}_{j} \widehat{\otimes} \cdots \widehat{\otimes} \varphi_{n+1}\right)(\gamma),
\end{aligned}
$$

where $\check{\varphi}_{i}$ denotes the absense of φ_{i}. From here (4.1) follows.
Our aim will be to realise the operators $a(\Delta)$ as operators of multiplication by $\gamma(\Delta)$ in some L^{2}-space $L^{2}(\Gamma, \mu)$. Therefore, if we want to have operators $\mathcal{Q}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right)$ in our initial Hilbert space F, which will be later on realised as operators of multiplication by $\mathcal{K}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right)(\gamma)$, then these operators must satisfy the following recurrence relation:

$$
\begin{align*}
& \mathcal{Q}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)=\frac{1}{(n+1)^{2}}\left[\sum_{i=1}^{n+1} a\left(\Delta_{i}\right) \mathcal{Q}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \check{\chi}_{\Delta_{i}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)\right. \\
& \left.\quad-\sum_{i=1}^{n+1} \sum_{j=1, \ldots, n+1, j \neq i} \mathcal{Q}\left(\left(\chi_{\Delta_{i} \cap \Delta_{j}}\right) \widehat{\otimes} \chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes}{\check{\chi} \Delta_{i}} \widehat{\otimes} \cdots \widehat{\otimes} \check{\chi}_{\Delta_{j}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n+1}}\right)\right] \\
& \quad \Delta_{1}, \ldots, \Delta_{n+1} \in \mathcal{B}_{0}(X), n \in \mathbb{N} \\
& \quad \mathcal{Q}\left(\chi_{\Delta}\right)=a(\Delta), \quad \Delta \in \mathcal{B}_{0}(X) \tag{4.2}
\end{align*}
$$

Denote by Ξ the function on $\ddot{\Gamma}_{X, 0}$ given by $\Xi^{(0)}:=1, \Xi^{(n)}:=0, n \in \mathbb{N}$.
Let

$$
\begin{equation*}
\mathcal{Q}(\Xi):=1 \tag{4.3}
\end{equation*}
$$

We then uniquely define $\mathcal{Q}(G)$ for each $G \in \mathcal{S}$, so that

$$
\mathcal{Q}\left(a_{1} G_{1}+a_{1} G_{2}\right)=a_{1} \mathcal{Q}\left(G_{1}\right)+a_{2} \mathcal{Q}\left(G_{2}\right), \quad a_{1}, a_{2} \in \mathbb{R}, \quad G_{1}, G_{2} \in \mathcal{S}
$$

Lemma 4.1 For any $G_{1}, G_{2} \in \mathcal{S}$, we have

$$
\begin{equation*}
\mathcal{Q}\left(G_{1}\right) \mathcal{Q}\left(G_{2}\right)=\mathcal{Q}\left(G_{1} \star G_{2}\right) . \tag{4.4}
\end{equation*}
$$

Proof. By linearity, it suffices to prove (4.4) in the case where $G_{1}=\chi_{\Delta_{1}}^{\otimes m}$, $G_{2}=\chi_{\Delta_{2}}^{\otimes n}, \Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X), m, n \in \mathbb{N}$.

Setting $\Delta_{1}=\cdots=\Delta_{n}=\Delta$ in (4.2), we have:

$$
\begin{aligned}
\mathcal{Q}\left(\chi_{\Delta}^{\otimes(n+1)}\right) & =\frac{1}{n+1}\left(a(\Delta) \mathcal{Q}\left(\chi_{\Delta}^{\otimes n}\right)-n \mathcal{Q}\left(\chi_{\Delta}^{\otimes n}\right)\right), \quad n \in \mathbb{N} \\
\mathcal{Q}\left(\chi_{\Delta}\right) & =a(\Delta)
\end{aligned}
$$

Therefore, for each $k \in \mathbb{N}$, there exists a polynomial $p_{k}(x)$ on \mathbb{R}, of order k, such that, for each $\Delta \in \mathcal{B}_{0}(X)$, we have

$$
\mathcal{Q}\left(\chi_{\Delta}^{\otimes k}\right)=p_{k}(a(\Delta))
$$

Therefore, for fixed $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, we get

$$
\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m}\right) \mathcal{Q}\left(\chi_{\Delta_{2}}^{\otimes n}\right)=p_{m}\left(a\left(\Delta_{1}\right)\right) p_{n}\left(a\left(\Delta_{2}\right)\right) .
$$

Denote

$$
A:=\Delta_{1} \backslash \Delta_{2}, \quad B:=\Delta_{1} \cap \Delta_{2}, \quad C:=\Delta_{2} \backslash \Delta_{1}
$$

so that the sets A, B and C are mutually disjoint and $\Delta_{1}=A \cup B, \Delta_{2}=$ $B \cup C$. Hence

$$
\begin{aligned}
& a\left(\Delta_{1}\right)=a(A)+a(B) \\
& a\left(\Delta_{2}\right)=a(B)+a(C)
\end{aligned}
$$

Hence,

$$
\begin{align*}
\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m}\right) \mathcal{Q}\left(\chi_{\Delta_{2}}^{\otimes n}\right) & =p_{m}(a(A)+a(B)) p_{n}(a(B)+a(C)) \\
& =q_{m+n}(a(A), a(B), a(C)) \tag{4.5}
\end{align*}
$$

Here $q_{m+n}(\cdot, \cdot, \cdot)$ is a polynomial on \mathbb{R}^{3} of order $m+n$, given by

$$
q_{m+n}(x, y, z)=p_{m}(x+y) p_{n}(y+z)
$$

Next, by (4.1), we get

$$
\mathcal{K}\left(\chi_{\Delta}^{\otimes(n+1)}\right)(\gamma)=\frac{1}{n+1}\left(\gamma(\Delta) \mathcal{K}\left(\chi_{\Delta}^{\otimes n}\right)(\gamma)-n \mathcal{K}\left(\chi_{\Delta}^{\otimes n}\right)(\gamma)\right)
$$

and so

$$
\mathcal{K}\left(\chi_{\Delta}^{\otimes k}\right)(\gamma)=p_{k}\left(\gamma_{\Delta}\right)
$$

Therefore, analogously to the above,

$$
\mathcal{K}\left(\chi_{\Delta_{1}}^{\otimes m}\right)(\gamma) \mathcal{K}\left(\chi_{\Delta_{2}}^{\otimes n}\right)(\gamma)=q_{m+n}(\gamma(A), \gamma(B), \gamma(C))
$$

Using the definition (3.6) of the \star-convolution and formula (4.1) we conclude that there exists a polynomial $\tilde{q}_{m+n}(\cdot, \cdot, \cdot)$ on \mathbb{R}^{3}, of degree $m+n$, such that

$$
\mathcal{K}\left(\chi_{\Delta_{1}}^{\otimes m} \star \chi_{\Delta_{2}}^{\otimes n}\right)(\gamma)=\tilde{q}_{m+n}(\gamma(A), \gamma(B), \gamma(C)) .
$$

Since

$$
\mathcal{K}\left(\chi_{\Delta_{1}}^{\otimes m}\right)(\gamma) \mathcal{K}\left(\chi_{\Delta_{2}}^{\otimes n}\right)(\gamma)=\mathcal{K}\left(\chi_{\Delta_{1}}^{\otimes m} \star \chi_{\Delta_{2}}^{\otimes n}\right)(\gamma)
$$

we have that, for all $\gamma \in \Gamma$,

$$
q_{m+n}(\gamma(A), \gamma(B), \gamma(C))=\tilde{q}_{m+n}(\gamma(A), \gamma(B), \gamma(C))
$$

Since both polynomials q_{m+n} and \tilde{q}_{m+n} are characterized by a finite number of coefficient and since $\gamma(A), \gamma(B)$ and $\gamma(C)$ may take an arbitrary value from $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, the polynomials q_{m+n} and \tilde{q}_{m+n} coincide.

On the other hand, we evidently have that

$$
\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m} \star \chi_{\Delta_{2}}^{\otimes n}\right)=\tilde{q}_{m+n}(a(A), a(B), a(C))
$$

Hence

$$
\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m} \star \chi_{\Delta_{2}}^{\otimes n}\right)=q_{m+n}(a(A), a(B), a(C))
$$

and by (4.5)

$$
\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m}\right) \mathcal{Q}\left(\chi_{\Delta_{2}}^{\otimes n}\right)=\mathcal{Q}\left(\chi_{\Delta_{1}}^{\otimes m} \star \chi_{\Delta_{2}}^{\otimes n}\right)
$$

We fix any $\Omega \in D$ with $\|\Omega\|_{F}=1$. We assume that there exists a (nonnegative) measure ρ on $\left(\Gamma_{X, 0}, \mathcal{B}_{0}\left(\Gamma_{X, 0}\right)\right)$ such that, for all $G \in \mathcal{S}$,

$$
\begin{equation*}
\int_{\Gamma_{X, 0}} G(\eta) \rho(d \eta)=(\mathcal{Q}(G) \Omega, \Omega)_{F} \tag{4.6}
\end{equation*}
$$

Then, by analogy with (3.4), we call ρ the correlation measure of the family of commuting Hermitian operators $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ (with respect to the vector Ω).

Now, we additionally assume that ρ satisfies:
(LB) Local bound: for each $\Delta \in \mathcal{B}_{0}(X)$, there exists $C_{\Delta}>0$ such that

$$
\rho\left(\Gamma_{\Delta}^{(n)}\right) \leqslant C_{\Delta}^{n}, \quad n \in \mathbb{N}
$$

where $\Gamma_{\Delta}^{(n)}:=\left\{\eta \in \Gamma_{X}^{(n)} \mid \eta \subset \Delta\right\}$. Furthermore, for any sequence $\left\{\Delta_{n}\right\}_{n \in \mathbb{N}} \in \mathcal{B}_{0}(X)$ such that $\Delta_{n} \downarrow \varnothing$ (i.e. $\Delta_{1} \supset \Delta_{2} \supset \Delta_{3} \supset \cdots$ and $\bigcap_{n=1}^{\infty} \Delta_{n}=\varnothing$), we have $C_{\Delta_{n}} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 4.1 Assume that a family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ of commuting Hermitian operators possesses a correlation measure which satisfies (LB). For each $G \in$ \mathcal{S} denote $Q(G):=\mathcal{Q}(G) \Omega$, and let \mathfrak{F} denote the Hilbert space obtained as the closure of the set $\mathfrak{S}:=\{Q(G) \mid G \in \mathcal{S}\}$ in F. For each $\Delta \in \mathcal{B}_{0}(X)$, consider $a(\Delta)$ as an operator in \mathfrak{F} with domain \mathfrak{S}. Then, the operators
$a(\Delta)$ are essentially self-adjoint and their closures, $\tilde{a}(\Delta)$, commute in the sense of their resolutions of the identity. Furthermore, there exists a unique probability measure μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ whose correlation measure is ρ, the mapping

$$
\mathfrak{S} \ni Q(G) \mapsto(\mathcal{I} Q(G))(\gamma):=\sum_{\eta \Subset \gamma} G(\eta) \in L^{2}(\Gamma, \mu)
$$

is well-defined and extends to a unitary operator $\mathcal{I}: \mathfrak{F} \rightarrow L^{2}(\Gamma, \mu)$ such that, under $\mathcal{I}, \tilde{a}(\Delta)$ goes over into the operator of multiplication by $\gamma(\Delta)$, i.e.,

$$
\operatorname{Dom}\left(\mathcal{I} \tilde{a}(\Delta) \mathcal{I}^{-1}\right)=\left\{f \in L^{2}(\Gamma, \mu): \gamma(\Delta) f(\gamma) \in L^{2}(\Gamma, \mu)\right\}
$$

and

$$
\left(\mathcal{I} \tilde{a}(\Delta) \mathcal{I}^{-1} f\right)(\gamma)=\gamma(\Delta) f(\gamma), \quad f \in \operatorname{Dom}\left(\mathcal{I} \tilde{a}(\Delta) \mathcal{I}^{-1}\right)
$$

Remark 4.1 Note that any probability measure μ on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ has a correlation measure. On the other hand, not every family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ of commuting Hermitian operators possesses a correlation measure. Theorem 4.1 essentially shows that, if a family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ possesses a correlation measure, then the joint spectrum of this family is concentrated on the configuration space Γ_{X}.

Proof of Theorem 4.1. Consider the bilinear form

$$
\begin{equation*}
\mathcal{S} \times \mathcal{S} \ni\left(G_{1}, G_{2}\right) \mapsto b_{\rho}\left(G_{1}, G_{2}\right):=\int_{\Gamma_{X}, 0}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta) \tag{4.7}
\end{equation*}
$$

By (4.4) and (4.6), for each $G \in \mathcal{S}$,

$$
\begin{aligned}
b_{\rho}(G, G) & =(\mathcal{Q}(G \star G) \Omega, \Omega)_{F} \\
& =(\mathcal{Q}(G) \mathcal{Q}(G) \Omega, \Omega)_{F} \\
& =(\mathcal{Q}(G) \Omega, \mathcal{Q}(G) \Omega)_{F} \geq 0
\end{aligned}
$$

Denote by $\widehat{\mathcal{S}}$ the factorization of \mathcal{S} consisting of factor-classes

$$
\widehat{G}=\left\{G^{\prime} \in \mathcal{S}: b_{\rho}\left(G-G^{\prime}, G-G^{\prime}\right)=0\right\}, \quad G \in \mathcal{S}
$$

Define a Hilbert space \mathcal{H}_{ρ} as the closure of $\widehat{\mathcal{S}}$ in the norm generated by the scalar product

$$
\begin{equation*}
\left(\widehat{G}_{1}, \widehat{G}_{2}\right)_{\mathcal{H}_{\rho}}:=b_{\rho}\left(G_{1}, G_{2}\right) \tag{4.8}
\end{equation*}
$$

Using (4.4) and (4.6), we see that

$$
\begin{equation*}
\left(\widehat{G}_{1}, \widehat{G}_{2}\right)_{\mathcal{H}_{\rho}}=\left(Q\left(G_{1}\right), Q\left(G_{2}\right)\right)_{F}, \tag{4.9}
\end{equation*}
$$

so that we have the unitary isomorphism $U: \mathfrak{F} \rightarrow \mathcal{H}_{\rho}$ defined through $U Q(G):=\widehat{G}$ for $G \in \mathcal{S}$.

For each $\Delta \in \mathcal{B}_{0}(X)$, we define an operator A_{Δ} in \mathcal{H}_{ρ} as the image of the operator $a(\Delta)$ under U. Hence, $\operatorname{Dom}\left(A_{\Delta}\right)=\widehat{\mathcal{S}}$ and since

$$
a(\Delta) Q(G)=\mathcal{Q}\left(\chi_{\Delta}\right) \mathcal{Q}(G) \Omega=\mathcal{Q}\left(\chi_{\Delta} \star G\right) \Omega=Q\left(\chi_{\Delta} \star G\right), \quad G \in \mathcal{S}
$$

we get:

$$
\begin{equation*}
A_{\Delta} \widehat{G}:=\widehat{\chi_{\Delta} \star G}, \quad G \in \mathcal{S} \tag{4.10}
\end{equation*}
$$

We will now show that the operators $\left(A_{\Delta}\right)_{\Delta \in \mathcal{B}_{0}(X)}$ (hence also the operators $\left.(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}\right)$ are essentially self-adjoint, and their closures commute in the sense of their resolutions of the identity.

Lemma 4.2 Each $\widehat{G} \in \widehat{\mathcal{S}}$ is an analytic vector for any $A_{\Delta}, \Delta \in \mathcal{B}_{0}(X)$.
Proof. For any $G_{1}, G_{2} \in \mathcal{S}$, we have by (4.9), Lemma 4.1, and (4.5),

$$
\begin{aligned}
\left(\widehat{G}_{1}, \widehat{G}_{2}\right)_{\mathcal{H}_{\rho}} & =\left(Q\left(G_{1}\right), Q\left(G_{2}\right)\right)_{F} \\
& =\left(\mathcal{Q}\left(G_{1}\right) \Omega, \mathcal{Q}\left(G_{2}\right) \Omega\right)_{F} \\
& =\left(\mathcal{Q}\left(G_{1}\right) \mathcal{Q}\left(G_{2}\right) \Omega, \Omega\right)_{F}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\mathcal{Q}\left(G_{1} \star G_{2}\right) \Omega, \Omega\right)_{F} \\
& =\int_{\Gamma_{X, 0}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta)
\end{aligned}
$$

Hence, by (4.10), we get, for each $G \in \mathcal{S}, k \in \mathbb{N}, \Delta \in \mathcal{B}_{0}(X)$,

$$
\begin{align*}
\left\|A_{\Delta}^{k} \widehat{G}\right\|_{\mathcal{H}_{\rho}}^{2} & =\left\|\widehat{\chi_{\Delta}^{\star k} \star G}\right\|_{\mathcal{H}_{\rho}}^{2} \\
& =\int_{\Gamma_{X, 0}}\left(\chi_{\Delta}^{\star k} \star G\right) \star\left(\chi_{\Delta}^{\star k} \star G\right)(\eta) \rho(d \eta) \\
& =\int_{\Gamma_{X, 0}}\left(G^{\star 2} \star \chi_{\Delta}^{\star 2 k}\right)(\eta) \rho(d \eta) . \tag{4.11}
\end{align*}
$$

Since any finite linear combination of analytic vectors of a given operator is again an analytic vector of this operator, it suffices to prove that, for any $\Delta, \Delta^{\prime} \in \mathcal{B}_{0}(X)$ and any $n \in \mathbb{N}_{0}, \chi_{\Delta^{\prime}}^{\otimes n}$ is an analytic vector for A_{Δ}, i.e.,

$$
\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}}<\infty, \quad \text { for some } \quad t>0
$$

Denote $\Lambda=\Delta \cup \Delta^{\prime}$. Then, by (4.11)

$$
\begin{align*}
\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}} & =\left(\int_{\Gamma_{X, 0}}\left(\chi_{\Delta^{\prime}}^{\otimes n} \star^{\star 2} \star \chi_{\Delta}^{\star 2 k}(\eta) \rho(d \eta)\right)^{1 / 2}\right. \\
& \leq\left(\int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star 2 k}(\eta) \rho(d \eta)\right)^{1 / 2} \tag{4.12}
\end{align*}
$$

Using the definition of \star-convolution, we see that the function $\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star 2 k}$ is a finite linear combination (with non-negative coefficients) of the indicator functions $\chi_{\Lambda}^{\otimes i}, i=0,1, \ldots, 2 n+2 k$. Since, by the (LB)

$$
\int_{\Gamma_{X, 0}} \chi_{\Lambda}^{\otimes i}(\eta) \rho(d \eta)=\rho\left(\ddot{\Gamma}_{\Lambda}^{(i)}\right) \leqslant C_{\Lambda}^{i}
$$

we have from (4.12)

$$
\begin{equation*}
\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}} \leqslant\left(\int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star 2 k}(\eta) \tilde{\rho}(d \eta)\right)^{1 / 2} \tag{4.13}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
\tilde{\rho}\left(\ddot{\Gamma}_{\Lambda}^{(i)}\right)=C_{\Lambda}^{i} \tag{4.14}
\end{equation*}
$$

Note that we understand the expression on the right hand side of (4.13) as if we integrate with respect to some measure $\tilde{\rho}$ satisfying (4.14). In what follows, we will assume that $C_{\Lambda} \geqslant 1$ (otherwise set $C_{\Lambda}=1$).

Next, using the definition of \star-convolution we have:

$$
\chi_{\Lambda}^{\otimes i} \star \chi_{\Lambda}=(i+1) \chi_{\Lambda}^{\otimes(i+1)}+i \chi_{\Lambda}^{\otimes i}
$$

Therefore,

$$
\begin{align*}
\int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes i} \star \chi_{\Lambda}\right)(\eta) \tilde{\rho}(d \eta) & \leqslant\left((i+1) C_{\Lambda}+i\right) \int_{\Gamma_{X, 0}} \chi_{\Lambda}^{\otimes i}(\eta) \tilde{\rho}(d \eta) \\
& \leqslant C_{\Lambda}(2 i+1) \int_{\Gamma_{X, 0}} \chi_{\Lambda}^{\otimes i}(\eta) \tilde{\rho}(d \eta) \\
& \leqslant 2 C_{\Lambda}(i+1) \int_{\Gamma_{X, 0}} \chi_{\Lambda}^{\otimes i}(\eta) \tilde{\rho}(d \eta) \tag{4.15}
\end{align*}
$$

Hence, by (4.15), we get

$$
\begin{aligned}
\int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} & \star \chi_{\Lambda}^{\star 2 k}(\eta) \tilde{\rho}(d \eta)=\int_{\Gamma_{X, 0}}\left(\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star(2 k-1)}\right) \star \chi_{\Lambda}(\eta) \tilde{\rho}(d \eta) \\
\leqslant & 2 C_{\Lambda}(2 n+2 k) \int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star(2 k-1)}(\eta) \tilde{\rho}(d \eta) \\
& =2 C_{\Lambda}(2 n+2 k) \int_{\Gamma_{X, 0}}\left(\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star(2 k-2)}\right) \star \chi_{\Lambda}(\eta) \tilde{\rho}(d \eta) \\
\leqslant & 2 C_{\Lambda}(2 n+2 k) 2 C_{\Lambda}(2 n+2 k-1) \int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \star \chi_{\Lambda}^{\star(2 k-2)} \tilde{\rho}(d \eta) \\
\leqslant & \cdots \leqslant\left(2 C_{\Lambda}\right)^{2 k}(2 n+2 k)(2 n+2 k-1) \cdots(2 n+1) \times \\
& \int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \tilde{\rho}(d \eta) \\
= & \left(2 C_{\Lambda}\right)^{2 k} \frac{(2 n+2 k)!}{(2 n)!} \alpha
\end{aligned}
$$

where

$$
\alpha=\int_{\Gamma_{X, 0}}\left(\chi_{\Lambda}^{\otimes n}\right)^{\star 2} \tilde{\rho}(d \eta)
$$

Hence,

$$
\begin{equation*}
\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}} \leqslant\left(2 C_{\Lambda}\right)^{k}\left(\frac{(2 n+2 k)!}{(2 n)!}\right)^{1 / 2} \sqrt{\alpha} \tag{4.16}
\end{equation*}
$$

For each $n \in \mathbb{N}$, we have:

$$
\begin{align*}
(2 n)! & =1 \cdot 2 \cdot 3 \cdot 4 \cdots(2 n-1) \cdot 2 n \\
& \leqslant 2 \cdot 2 \cdot 4 \cdot 4 \cdots 2 n \cdot 2 n \\
& =(2 \cdot 4 \cdots 2 n)^{2} \\
& =\left(2^{n} n!\right)^{2}, \tag{4.17}
\end{align*}
$$

which implies by (4.16)

$$
\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}} \leqslant\left(2 C_{\Lambda}\right)^{k}((2 n)!)^{-1 / 2} 2^{n+k}(n+k)!\sqrt{\alpha}
$$

and so

$$
\begin{align*}
\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left\|A_{\Delta}^{k} \chi_{\Delta^{\prime}}^{\otimes n}\right\|_{\mathcal{H}_{\rho}} & \leqslant((2 n)!)^{-1 / 2} 2^{n} \sqrt{\alpha} \sum_{k=0}^{\infty} \frac{\left(4 C_{\Lambda} t\right)^{k}}{k!}(k+n)! \\
& =((2 n)!)^{-1 / 2} 2^{n} \sqrt{\alpha} \sum_{k=0}^{\infty}\left(4 C_{\lambda} t\right)^{k}(k+1)(k+2) \cdots(k+n) \tag{4.18}
\end{align*}
$$

For each $t \in\left(0,\left(4 C_{\Lambda}\right)^{-1}\right)$, we have

$$
\begin{aligned}
& \left(\left(4 C_{\Lambda} t\right)^{k}(k+1)(k+2) \cdots(k+n)\right)^{1 / k} \\
& \quad=4 C_{\Lambda} t(k+1)^{1 / k}(k+2)^{1 / k} \cdots(k+n)^{1 / k} \rightarrow 4 C_{\Lambda} t<1 \quad \text { as } \quad k \rightarrow \infty
\end{aligned}
$$

since $(k+i)^{1 / k} \rightarrow 1$ as $k \rightarrow \infty$ for each fixed i. Therefore, for $0<t<\left(4 C_{\Lambda}\right)^{-1}$, the series (4.18) converges.

By Theorem 3.2 and Lemma 4.2, for each $\Delta \in \mathcal{B}_{0}(X)$, the closure of A_{Δ}, denote by \tilde{A}_{Δ} is a self-adjoint operator in \mathcal{H}_{ρ} and for any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, the operators $\tilde{A}_{\Delta_{1}}$ and $\tilde{A}_{\Delta_{2}}$ commute in the sense of their resolutions of the identity.

We will now construct a consistent family of probability measure. For each $\Delta \in \mathcal{B}_{0}(X)$, denote by E_{Δ} the resolution of the identity of \tilde{A}_{Δ}. By the proved above, for any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, the resolutions of the identity $E_{\Delta_{1}}$ and $E_{\Delta_{2}}$ commute.

So, according to Chapter 2 , for any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$ we can construct the joint resolution of the identity

$$
\begin{equation*}
E_{\Delta_{1}, \ldots, \Delta_{n}}:=E_{\Delta_{1}} \times \cdots \times E_{\Delta_{n}} . \tag{4.19}
\end{equation*}
$$

Recall the definition of the function Ξ on $\ddot{\Gamma}_{X, 0}$. Then

$$
\begin{equation*}
\nu_{\Delta_{1}, \ldots, \Delta_{n}}(\cdot):=\left(E_{\Delta_{1}, \ldots, \Delta_{n}}(\cdot) \widehat{\Xi}, \widehat{\Xi}\right)_{\mathcal{H}_{\rho}} \tag{4.20}
\end{equation*}
$$

is a probability measure on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$. Furthermore, it is clear that

$$
\begin{equation*}
\left\{\nu_{\Delta_{1}, \ldots, \Delta_{n}} \mid \Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), n \in \mathbb{N}\right\} \tag{4.21}
\end{equation*}
$$

is a consistent family of probability measures.
Next, let us show that there exists a point process on X whose "finitedimensional distributions" are given through (4.21). First, we will prove this result locally.

For any $\Delta \in \mathcal{B}_{0}(X)$, denote

$$
\Gamma_{\Delta}:=\left\{\eta \in \Gamma_{X, 0} \mid \eta \subset \Delta\right\}
$$

and let $\mathcal{B}\left(\Gamma_{\Delta}\right)$ be the trace σ-algebra of $\mathcal{B}\left(\Gamma_{X, 0}\right)$ on Γ_{Δ}.
Let us introduce an analogue of the operator \mathcal{K} (see Section 2.3) on Γ_{Δ}. So, we define a mapping \mathcal{K}_{Δ}, which transforms the set of all (complex-valued) functions on Γ_{Δ} into itself, as follows:

$$
\begin{equation*}
\left(\mathcal{K}_{\Delta} G\right)(\eta):=\sum_{\xi \subset \eta} G(\xi), \quad \eta \in \Gamma_{\Delta} \tag{4.22}
\end{equation*}
$$

We evidently have:

$$
\begin{equation*}
\left(\mathcal{K}_{\Delta}\left(G_{1} \star G_{2}\right)\right)(\eta)=\left(\mathcal{K}_{\Delta} G_{1}\right)(\eta)\left(\mathcal{K}_{\Delta} G_{2}\right)(\eta) \tag{4.23}
\end{equation*}
$$

($G_{1} \star G_{2}$ being given by (3.6)). The inverse of \mathcal{K}_{Δ} is then given by

$$
\begin{equation*}
\left(\mathcal{K}_{\Delta}^{-1} G\right)(\eta)=\sum_{\xi \subset \eta}(-1)^{|\eta \backslash \xi|} G(\xi), \quad \eta \in \Gamma_{\Delta} \tag{4.24}
\end{equation*}
$$

(the latter being a well-known result, see e.g. [15], which can be checked by direct calculations).

To find the pre-image, under \mathcal{K}_{Δ}, of an exponential function, we define, for any $f: \Delta \rightarrow \mathbb{C}$, a function $\operatorname{Exp}_{\Delta}(f, \cdot): \Gamma_{\Delta} \rightarrow \mathbb{C}$ by

$$
\begin{aligned}
\operatorname{Exp}_{\Delta}(f, \varnothing) & :=1 \\
\operatorname{Exp}_{\Delta}\left(f,\left\{x_{1}, \ldots, x_{n}\right\}\right) & :=f\left(x_{1}\right) \cdots f\left(x_{n}\right), \quad\left\{x_{1}, \ldots, x_{n}\right\} \in \Gamma_{\Delta}, n \in \mathbb{N} .
\end{aligned}
$$

By (4.24), for any $\varphi: \Delta \rightarrow \mathbb{C}$, we have:

$$
\begin{equation*}
\left(\mathcal{K}_{\Delta}^{-1} \exp [\langle\varphi, \cdot\rangle]\right)(\eta)=\operatorname{Exp}_{\Delta}\left(e^{\varphi}-1, \eta\right), \quad \eta \in \Gamma_{\Delta}, \tag{4.25}
\end{equation*}
$$

where $\langle\varphi, \eta\rangle:=\sum_{x \in \eta} \varphi(x)$.
Let $\Delta \in \mathcal{B}_{0}(X)$ be so small that

$$
\begin{equation*}
C_{\Delta} \leqslant \frac{1}{16+\delta}, \quad \delta>0 \tag{4.26}
\end{equation*}
$$

(see (LB)). We define a set function on $\mathcal{B}\left(\Gamma_{\Delta}\right)$ by

$$
\begin{equation*}
\mu^{\Delta}(A):=\int_{\Gamma_{\Delta}}\left(\mathcal{K}_{\Delta}^{-1} \chi_{A}\right)(\eta) \rho(d \eta), \quad A \in \mathcal{B}\left(\Gamma_{\Delta}\right) \tag{4.27}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{\xi \subset \eta} 1=2^{n} \quad \text { if }|\eta|=n \tag{4.28}
\end{equation*}
$$

(LB) and (4.26) imply that μ^{Δ} is a signed measure of finite variation. Indeed the full variation of μ^{Δ} on Γ_{Δ} may be estimate as follows

$$
\left|\mu^{\Delta}\left(\Gamma_{\Delta}\right)\right| \leqslant \sum_{n=0}^{\infty} \frac{2^{n}}{(16+\delta)^{n}}<\infty
$$

Next, we will show that μ^{Δ} is, in fact, a probability measure on $\left(\Gamma_{\Delta}, \mathcal{B}\left(\Gamma_{\Delta}\right)\right)$.
Let $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$ be subsets of $\Delta, n \in \mathbb{N}$, and for simplicity of notations we assume that these sets are mutually disjoint. Then, by (4.25) and (4.27), for any $\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}$,

$$
\begin{align*}
L\left(y_{1}, \ldots, y_{n}\right) & :=\int_{\Gamma_{\Delta}} \exp \left[\left\langle i\left(y_{1} \chi_{\Delta_{1}}+\cdots+y_{n} \chi_{\Delta_{n}}\right), \eta\right\rangle\right] \mu^{\Delta}(d \eta) \\
& =\int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(\left(e^{i y_{1}}-1\right) \chi_{\Delta_{1}}+\cdots+\left(e^{i y_{n}}-1\right) \chi_{\Delta_{n}}, \eta\right) \rho(d \eta) \tag{4.29}
\end{align*}
$$

where we used the evident formula

$$
e^{i y_{1} \chi_{\Delta_{1}}+\cdots+i y_{n} \chi_{\Delta_{n}}}-1=\sum_{i=1}^{n}\left(e^{i y_{i}}-1\right) \chi_{\Delta_{i}}
$$

(recall that the sets Δ_{i} are mutually disjoint). Note also that

$$
\left|e^{i y_{1} \chi_{\Delta_{1}}+\cdots+i y_{n} \chi_{\Delta_{n}}}-1\right| \leqslant 2
$$

and so by (4.26)

$$
\int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(\left|e^{i y_{1} \chi_{\Delta_{1}}+\cdots+i y_{n} \chi_{\Delta_{n}}}-1\right|, \eta\right) \rho(d \eta) \leqslant \sum_{n=0}^{\infty}\left(\frac{2}{16+\delta}\right)^{n}<\infty
$$

Lemma 4.3 The function $L: \mathbb{R}^{n} \rightarrow \mathbb{C}$ is positive definite in the sense of the Fourier analysis on \mathbb{R}^{n}.

Proof. Fix any $y_{1}, \ldots, y_{m} \in \mathbb{R}^{n}, y_{k}=\left(y_{k}^{(1)}, \ldots, y_{k}^{(n)}\right), k=1, \ldots, m$, and fix any $c_{1}, \ldots, c_{m} \in \mathbb{C}$. We have to prove that

$$
\sum_{k, l=1}^{m} c_{k} \bar{c}_{l} L\left(y_{k}-y_{l}\right) \geqslant 0
$$

For each $k \in\{1, \ldots, m\}$, denote

$$
\varphi_{k}=y_{k}^{(1)} \chi_{\Delta_{1}}+\cdots+y_{k}^{(n)} \chi_{\Delta_{n}}
$$

Then, by (4.29),

$$
\begin{align*}
\sum_{k, l=1}^{m} c_{k} \bar{c}_{l} L\left(y_{k}-y_{l}\right)= & \sum_{k, l=1}^{m} c_{k} \overline{c_{l}} \int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(\operatorname { e x p } \left[i \left(\left(y_{k}^{(1)}-y_{l}^{(1)}\right) \chi_{\Delta_{1}}+\right.\right.\right. \\
& \left.\left.\left.\left.\cdots+\left(y_{k}^{(n)}-y_{l}^{(n)}\right) \chi_{\Delta_{n}}\right)\right)-1\right], \eta\right) \rho(d \eta) \\
= & \sum_{k, l=1}^{m} c_{k} \overline{c_{l}} \int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(\exp \left[i\left(\varphi_{k}-\varphi_{l}\right)\right]-1, \eta\right) \rho(d \eta) \\
= & \sum_{k, l=1}^{m} c_{k} \overline{c_{l}} \int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(\left(e^{i \varphi_{k}}-1\right)\right. \\
& \left.+\left(e^{-i \varphi_{l}}-1\right)+\left(e^{i \varphi_{k}}-1\right)\left(e^{-i \varphi_{l}}-1\right), \eta\right) \rho(d \eta) \tag{4.30}
\end{align*}
$$

By [15, Lemma 5.3], we have:

$$
\begin{aligned}
\operatorname{Exp}_{\Delta} & \left(\left(e^{i \varphi_{k}}-1\right)+\left(e^{-i \varphi_{l}}-1\right)+\left(e^{i \varphi_{k}}-1\right)\left(e^{-i \varphi_{l}}-1\right), \eta\right) \\
& =\operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right) \star \operatorname{Exp}_{\Delta}\left(e^{-i \varphi_{l}}-1, \eta\right)
\end{aligned}
$$

Hence, we continue (4.30) as follows:

$$
\begin{align*}
& =\sum_{k, l=1}^{m} c_{k} \overline{c_{l}} \int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right) \star \operatorname{Exp}_{\Delta}\left(e^{-i \varphi_{l}}-1, \eta\right) \rho(d \eta) \\
& =\sum_{k, l=1}^{m} c_{k} \overline{c_{l}} \int_{\Gamma_{\Delta}} \operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right) \star \overline{\operatorname{Exp}_{\Delta}\left(e^{i \varphi_{l}}-1, \eta\right)} \rho(d \eta) \\
& =\int_{\Gamma_{\Delta}}\left(\sum_{k=1}^{m} c_{k} \operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right)\right) \star \overline{\left(\sum_{l=1}^{m} c_{l} \operatorname{Exp}_{\Delta}\left(e^{i \varphi_{l}}-1, \eta\right)\right)} \rho(d \eta) \tag{4.31}
\end{align*}
$$

We know that, for each $G \in \mathcal{S}$, we have:

$$
\int_{\Gamma_{X, 0}}(G \star G)(\eta) \rho(d \eta) \geqslant 0
$$

Denote by $\mathcal{S}_{\mathbb{C}}$ the complexification of \mathcal{S}, i.e., all functions of the form $G_{1}+i G_{2}$, where $G_{1}, G_{2} \in \mathcal{S}$. Then, for each $G=G_{1}+i G_{2} \in \mathcal{S}_{\mathbb{C}}$, we have

$$
\begin{aligned}
\int_{\Gamma_{X, 0}}(G \star \bar{G})(\eta) \rho(d \rho)= & \int_{\Gamma_{X, 0}}\left(\left(G_{1}+i G_{2}\right) \star\left(G_{1}-i G_{2}\right)\right)(\eta) \rho(d \eta) \\
= & \int_{\Gamma_{X, 0}}\left(\left(G_{1} \star G_{1}\right)(\eta)+\left(G_{2} \star G_{2}\right)(\eta)\right. \\
& \left.-i\left(G_{1} \star G_{2}\right)(\eta)+i\left(G_{2} \star G_{1}\right)\right) \rho(d \eta) \\
= & \int_{\Gamma_{X, 0}}\left(\left(G_{1} \star G_{1}\right)(\eta)+\left(G_{2} \star G_{2}\right)(\eta)\right. \\
& \left.-i\left(G_{1} \star G_{2}\right)(\eta)+i\left(G_{1} \star G_{2}\right)(\eta)\right) \rho(d \eta) \\
= & \int_{\Gamma_{X, 0}}\left(\left(G_{1} \star G_{1}\right)(\eta)+\left(G_{2} \star G_{2}\right)(\eta)\right) \rho(d \eta) \geqslant 0
\end{aligned}
$$

In particular, for each $G \in \mathcal{S}_{\mathbb{C}}$ with support in Γ_{Δ}, we have:

$$
\int_{\Gamma_{\Delta}}(G \star \bar{G})(\eta) \rho(d \eta) \geqslant 0
$$

Let

$$
G:=\sum_{k=1}^{m} c_{k} \operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right)
$$

This function, of course, does not belong to $\mathcal{S}_{\mathbb{C}}$, however, its restriction to each $\Gamma_{\Delta}^{(n)}$, denoted by $G^{(n)}$, does. Therefore, for each $N \in \mathbb{N}$,

$$
\int_{\Gamma_{\Delta}}\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta) \rho(d \eta) \geqslant 0 .
$$

Thus, to prove the lemma, it suffices to show that

$$
\begin{equation*}
\int_{\Gamma_{\Delta}}\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta) \rho(d \eta) \rightarrow \int_{\Gamma_{\Delta}}(G \star \bar{G})(\eta) \rho(d \eta) \tag{4.32}
\end{equation*}
$$

It is clear that for each fixed $\eta \in \Gamma_{\Delta}$, we have:

$$
\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta)=(G \star \bar{G})(\eta)
$$

if $N \geqslant|\eta|$. So, we only need to find an integrable function which dominates all $\left|\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta)\right|$. To this end, we note that

$$
\left|e^{i \varphi_{k}}-1\right| \leqslant 2
$$

and so

$$
\begin{equation*}
\left|\operatorname{Exp}_{\Delta}\left(e^{i \varphi_{k}}-1, \eta\right)\right| \leqslant 2^{|\eta|} \tag{4.33}
\end{equation*}
$$

Since

$$
\sum_{\left(\eta_{1}, \eta_{2}, \eta_{3}\right) \in P_{3}(\eta)} 1=\left(\sum_{\eta_{1} \subset \eta} 1\right)^{2}=\left(2^{|\eta|}\right)^{2}=4^{|\eta|}
$$

by (4.33), we have

$$
\begin{aligned}
\left|\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta)\right| & \leqslant\left(\sum_{k=1}^{m}\left|c_{k}\right|\right)^{2}\left(2^{|\eta|}\right)^{2} 4^{|\eta|} \\
& =\left(\sum_{k=1}^{m}\left|c_{k}\right|\right)^{2} 16^{|\eta|}
\end{aligned}
$$

Setting

$$
F(\eta)=\left(\sum_{k=1}^{m}\left|c_{k}\right|\right)^{2} 16^{|\eta|}, \quad \eta \in \Gamma_{\Delta}
$$

we get

$$
\left|\left(\left(\sum_{n=1}^{N} G^{(n)}\right) \star \overline{\left(\sum_{n=1}^{N} G^{(n)}\right)}\right)(\eta)\right| \leqslant F(\eta)
$$

Finally, by (4.26), we get:

$$
\int_{\Gamma_{\Delta}} F(\eta) \rho(d \eta)<\infty
$$

Hence, by the dominated convergence theorem, we get (4.32).
By Lemma 4.3, L is the Fourier transform of a probability measure on \mathbb{R}^{n}. Therefore, under the mapping

$$
\Gamma_{\Delta} \ni \eta \mapsto\left(\eta\left(\Delta_{1}\right), \ldots, \eta\left(\Delta_{n}\right)\right) \in \mathbb{R}^{n}
$$

the image of the signed measure μ^{Δ} is a probability measure on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$, which we denote by $\mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta_{n}}$. We also observe that the sets

$$
\begin{align*}
& \left\{\eta \in \Gamma_{X, 0} \mid\left(\eta\left(\Delta_{1}\right), \ldots, \eta\left(\Delta_{n}\right)\right) \in B_{n}\right\} \\
& \quad B_{n} \in \mathcal{B}\left(\mathbb{R}^{n}\right), \Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), \Delta_{1} \cup \cdots \cup \Delta_{n} \subset \Delta, n \in \mathbb{N} \tag{4.34}
\end{align*}
$$

generate the σ-algebra $\mathcal{B}\left(\Gamma_{\Delta}\right)$. Hence, μ^{Δ} is a probability measure on $\left(\Gamma_{\Delta}, \mathcal{B}\left(\Gamma_{\Delta}\right)\right)$.

Next, we will prove that for any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$ such that

$$
\Delta_{1} \cup \cdots \cup \Delta_{n} \subset \Delta, \quad n \in \mathbb{N}
$$

we have

$$
\begin{equation*}
\nu_{\Delta_{1}, \ldots, \Delta_{n}}=\mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta} . \tag{4.35}
\end{equation*}
$$

Using (4.7), (4.8), (4.10), (4.19), (4.20), (4.23), (4.24) and Section 3.2, for any $y^{(1)}, \ldots, y^{(k)} \in \mathbb{R}^{n}, k \in \mathbb{N}$, we have:

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} & \prod_{i=1}^{k}\left(x, y^{(i)}\right)_{\mathbb{R}^{n}} d \nu_{\Delta_{1}, \ldots, \Delta_{n}}(x) \\
& =\int_{\mathbb{R}^{n}} \prod_{i=1}^{k}\left(x, y^{(i)}\right)_{\mathbb{R}^{n}} d\left(E_{\Delta_{1}, \cdots, \Delta_{n}}(x) \hat{\Xi}, \hat{\Xi}\right)_{\mathcal{H}_{\rho}} \\
& =\int_{\mathbb{R}^{n}} \prod_{i=1}^{k}\left(\sum_{j=1}^{n} x_{j} y_{j}^{(i)}\right) d\left(E_{\Delta_{1}} \times \cdots \times E_{\Delta_{n}}\left(x_{1}, \ldots, x_{n}\right) \hat{\Xi}, \hat{\Xi}\right)_{\mathcal{H}_{\rho}} \\
& =\left(\prod_{i=1}^{k}\left(\sum_{j=1}^{n} y_{j}^{(i)} A_{\Delta_{j}}\right) \hat{\Xi}, \hat{\Xi}\right)_{\mathcal{H}_{\rho}} \\
& =\left(\left(\left(\sum_{j=1}^{n} y_{j}^{(1)} \chi_{\Delta_{j}}\right) \star \cdots \star\left(\sum_{j=1}^{n} y_{j}^{(k)} \chi_{\Delta_{j}}\right) \star \Xi\right)^{\wedge}, \hat{\Xi}\right)_{\mathcal{H}_{\rho}} \\
& =\int_{\Gamma_{\Delta}}\left(\sum_{j=1}^{n} y_{j}^{(1)} \chi_{\Delta_{j}}\right) \star \cdots \star\left(\sum_{j=1}^{n} y_{j}^{(k)} \chi_{\Delta_{j}}\right) \star \Xi \star \Xi(\eta) \rho(d \eta)
\end{aligned}
$$

$$
\begin{align*}
& =\int_{\Gamma_{\Delta}}\left(\sum_{j=1}^{n} y_{j}^{(1)} \chi_{\Delta_{j}}\right) \star \cdots \star\left(\sum_{j=1}^{n} y_{j}^{(k)} \chi_{\Delta_{j}}\right)(\eta) \rho(d \eta) \\
& =\int_{\Delta} \mathcal{K}_{\Delta}^{-1}\left(\sum_{j=1}^{n} y_{j}^{(1)} \chi_{\Delta_{j}}\right)(\eta) \cdots \mathcal{K}_{\Delta}^{-1}\left(\sum_{j=1}^{n} y_{j}^{(k)} \chi_{\Delta_{j}}\right)(\eta) \mu_{\Delta}(d \eta) \\
& =\int_{\Gamma_{\Delta}}\left(\sum_{j=1}^{n} y_{j}^{(1)} \eta\left(\Delta_{j}\right)\right) \cdots\left(\sum_{j=1}^{n} y_{j}^{(k)} \eta\left(\Delta_{j}\right)\right) \mu_{\Delta}(d \eta) \\
& =\int_{\mathbb{R}^{n}}\left(\sum_{j=1}^{n} y_{j}^{(1)} x_{j}\right) \cdots\left(\sum_{j=1}^{n} y_{j}^{(k)} x_{j}\right) d \mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta}\left(x_{1}, \ldots, x_{n}\right) \\
& =\int_{\mathbb{R}^{n}}\left(y^{(1)}, x\right) \cdots\left(y^{(n)}, x\right) d \mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta}(x) . \tag{4.36}
\end{align*}
$$

By (4.15) and (4.17)

$$
\begin{aligned}
\mid \int_{\Gamma_{X, 0}} & \left(\sum_{j=1}^{n} y_{j}^{(1)} \chi_{\Delta_{j}}\right) \star \cdots \star\left(\sum_{j=1}^{n} y_{j}^{(2 k)} \chi_{\Delta_{j}}\right)(\eta) \rho(d \eta) \mid \\
& \leqslant \int_{\Gamma_{X, 0}}\left(\sum_{j=1}^{n}\left|y_{j}^{(1)}\right| \chi_{\Delta_{j}}\right) \star \cdots \star\left(\sum_{j=1}^{n}\left|y_{j}^{(2 k)}\right| \chi_{\Delta_{j}}\right)(\eta) \rho(d \eta) \\
& \leqslant\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right) \times \int_{\Gamma_{X, 0}}\left(\sum_{j=1}^{n} \chi_{\Delta_{j}}\right)^{\star(2 k)}(\eta) \rho(d \eta) \\
& \leqslant\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right) \int_{\Gamma_{X, 0}}\left(n \chi_{\Delta}\right)^{\star(2 k)}(\eta) d(\eta) \\
& =n^{2 k}\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right) \int_{\Gamma_{X, 0}} \chi_{\Delta}^{\star(2 k)}(\eta) \rho(d \eta) \\
& \leqslant n^{2 k}\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right)\left(2 C_{\Delta}\right)^{2 k}(2 k)! \\
& =\left(2 C_{\Delta} n\right)^{2 k}(2 k)!\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right) \\
& \leqslant\left(4 C_{\Delta} n\right)^{2 k}(k!)^{2}\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right)
\end{aligned}
$$

where $\|\cdot\|_{\max }$ denotes the maximum norm on \mathbb{R}^{n}. Therefore, we have

$$
\left|\int_{\mathbb{R}^{n}} \prod_{i=1}^{k}\left(x, y^{(i)}\right)_{\mathbb{R}^{n}} d \nu_{\Delta_{1}, \ldots, \Delta_{n}}(x)\right|
$$

$$
\begin{align*}
& =\left|\int_{\mathbb{R}^{n}} \prod_{i=1}^{k}\left(x, y^{(i)}\right)_{\mathbb{R}^{n}} d \mu_{\Delta_{1}, \ldots, \Delta_{n}}(x)\right| \\
& \leqslant\left(4 C_{\Delta} n\right)^{2 k}(k!)^{2}\left(\prod_{i=1}^{2 k}\left\|y_{i}\right\|_{\max }\right) \tag{4.37}
\end{align*}
$$

Since $\nu_{\Delta_{1}, \ldots, \Delta_{n}}$ and $\mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta_{n}}$ are probability measures on $\left(\mathbb{R}^{n}, \mathcal{B}\left(\mathbb{R}^{n}\right)\right)$, since these measures have the same moments (see (4.36)), and since these moments satisfy estimate (4.37), we conclude from the theorem on uniqueness of the solution of a moment problem (e.g. [5, Chapter 5, Theorem 2.1 and Remark 3]), that the measures $\nu_{\Delta_{1}, \ldots, \Delta_{n}}$ and $\mu_{\Delta_{1}, \ldots, \Delta_{n}}^{\Delta_{n}}$ coincide, i.e., (4.35) holds.

Next, let $\Delta^{\prime} \in \mathcal{B}_{0}(X)$ be such that $\Delta^{\prime} \subset \Delta$. It is clear that $\Gamma_{\Delta^{\prime}} \in \mathcal{B}\left(\Gamma_{\Delta}\right)$ and $\mathcal{B}\left(\Gamma_{\Delta^{\prime}}\right)$ coincides with the trace σ-algebra of $\mathcal{B}\left(\Gamma_{\Delta}\right)$ on $\Gamma_{\Delta^{\prime}}$. Then it follows from the above that $\mu^{\Delta^{\prime}}$ is the restriction of μ^{Δ} to $\mathcal{B}\left(\Gamma_{\Delta^{\prime}}\right)$.

Now, we will show that there exists a random measure M on X such that, for any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), n \in \mathbb{N}$, the distribution of $\left(M\left(\Delta_{1}\right), \ldots, M\left(\Delta_{n}\right)\right)$ is $\nu_{\Delta_{1}, \ldots, \Delta_{n}}$ (see e.g. [14] for details on random measures).

Lemma 4.4 i) For any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), n \in \mathbb{N}$,

$$
\nu_{\Delta_{1}, \ldots, \Delta_{n}}\left([0,+\infty)^{n}\right)=1
$$

ii) For any disjoint $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$,

$$
\nu_{\Delta_{1}, \Delta_{2}, \Delta_{1} \cup \Delta_{2}}\left(\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y=z\right\}\right)=1
$$

iii) Let $\Delta_{n} \in \mathcal{B}_{0}(X), n \in \mathbb{N}$, be such that $\Delta_{n} \downarrow \varnothing$. Then $\nu_{\Delta_{n}}$ weakly converges to ε_{0}.

Proof. i) By (LB), for any $x \in X$, there exists an open neighbourhood of x, denoted by $\Delta(x)$, such that $\Delta(x) \in \mathcal{B}_{0}(X)$ and $C_{\Delta(x)} \leqslant 1 /(16+\delta)$. Therefore,
for any $\Delta \in \mathcal{B}_{0}(X)$, there exist mutually disjoint sets $\Delta_{1}, \ldots, \Delta_{m} \in \mathcal{B}_{0}(X)$, $m \in \mathbb{N}$, such that $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{m}, C_{\Delta_{i}} \leqslant 1 /(16+\delta), i=1, \ldots, m$. (We have used the definition of a compact set: from any open covering of the set one can choose a finite covering of the set).

For each $i=1, \ldots, m$, denote

$$
C_{i}=\left\{x=\left(x_{1} \ldots, x_{m}\right) \in \mathbb{R}^{m}: x_{i} \geqslant 0\right\} .
$$

Then, using the definition of $\nu_{\Delta_{1}, \ldots, \Delta_{m}}$, we have

$$
\nu_{\Delta_{1}, \ldots, \Delta_{m}}\left(C_{i}\right)=\nu_{\Delta_{i}}([0,+\infty))=1, \quad i=1, \ldots, m
$$

Since

$$
\bigcap_{i=1}^{m} C_{i}=[0,+\infty)^{m}
$$

we therefore get

$$
\nu_{\Delta_{1}, \ldots, \Delta_{m}}\left([0,+\infty)^{m}\right)=1
$$

Since $\Delta=\Delta_{1} \cup \cdots \cup \Delta_{m}$ and $\Delta_{1}, \ldots, \Delta_{m}$ are mutually disjoint, we have

$$
A_{\Delta}=A_{\Delta_{1}}+\cdots+A_{\Delta_{m}}
$$

Hence, by Lemma 4.2, for each $B \in \mathcal{B}(\mathbb{R})$, we have

$$
E_{\Delta}(B)=\int_{\mathbb{R}^{m}} \chi_{B}\left(x_{1}+\cdots+x_{m}\right) d E_{\Delta_{1}, \ldots, \Delta_{m}}\left(x_{1}, \ldots, x_{m}\right)
$$

Therefore,

$$
\nu_{\Delta}(B)=\int_{\mathbb{R}^{m}} \chi_{B}\left(x_{1}+\cdots+x_{m}\right) d \nu_{\Delta_{1}, \ldots, \Delta_{m}}\left(x_{1}, \ldots, x_{m}\right)
$$

In particular,

$$
\begin{aligned}
\nu_{\Delta}([0,+\infty)) & =\int_{\mathbb{R}^{m}} \chi_{[0,+\infty)}\left(x_{1}+\cdots+x_{m}\right) d \nu_{\Delta_{1}, \ldots, \Delta_{m}}\left(x_{1}, \ldots, x_{m}\right) \\
& =\int_{[0,+\infty)^{m}} \chi_{[0,+\infty)}\left(x_{1}+\cdots+x_{m}\right) d \nu_{\Delta_{1}, \ldots, \Delta_{m}}\left(x_{1}, \ldots, x_{m}\right)
\end{aligned}
$$

$$
=\int_{[0,+\infty)^{m}} d \nu_{\Delta_{1}, \ldots, \Delta_{m}}\left(x_{1}, \ldots, x_{m}\right)=1 .
$$

ii) Since Δ_{1} and Δ_{2} are disjoint,

$$
A_{\Delta_{1} \cup \Delta_{2}}=A_{\Delta_{1}}+A_{\Delta_{2}} .
$$

Therefore, by Lemma 4.2, we have, for any $B \in \mathcal{B}(\mathbb{R})$,

$$
E_{\Delta_{1} \cup \Delta_{2}}(B)=\int_{\mathbb{R}^{2}} \chi_{B}\left(x_{1}+x_{2}\right) d E_{\Delta_{1}, \Delta_{2}}\left(x_{1}, x_{2}\right) .
$$

Therefore, for any $C \in \mathcal{B}\left(\mathbb{R}^{3}\right)$,

$$
E_{\Delta_{1}, \Delta_{2}, \Delta_{1} \cup \Delta_{2}}(C)=\int_{\mathbb{R}^{3}} \chi_{C}\left(x_{1}, x_{2}, x_{1}+x_{2}\right) d E_{\Delta_{1}, \Delta_{2}}\left(x_{1}, x_{2}\right)
$$

and so

$$
\nu_{\Delta_{1}, \Delta_{2}, \Delta_{1} \cup \Delta_{2}}(C)=\int_{\mathbb{R}^{2}} \chi_{C}\left(x_{1}, x_{2}, x_{1}+x_{2}\right) d \nu_{\Delta_{1}, \Delta_{2}}\left(x_{1}, x_{2}\right) .
$$

Setting

$$
C=\left\{(x, y, z) \in \mathbb{R}^{3}: x+y=z\right\}
$$

we get

$$
\nu_{\Delta_{1}, \Delta_{2}, \Delta_{1} \cup \Delta_{2}}(C)=\int_{\mathbb{R}^{2}} d \nu_{\Delta_{1}, \Delta_{2}}\left(x_{1}, x_{2}\right)=1
$$

iii) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and bounded. We need to prove that

$$
\int_{\mathbb{R}} f(x) d \nu_{\Delta_{n}}(x) \rightarrow \int_{\mathbb{R}} f(x) d \varepsilon_{0}(x)=f(0)
$$

By (LB), without loss, we may assume that $C_{\Delta_{1}} \leqslant 1 /(16+\delta)$. Then, each $\nu_{\Delta_{n}}$ is concentrated on the set \mathbb{N}_{0}. Assume that

$$
\begin{equation*}
\nu_{\Delta_{n}}(\mathbb{N}) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty \tag{4.38}
\end{equation*}
$$

Then since $\nu_{\Delta_{n}}(\mathbb{N})+\nu_{\Delta_{n}}(\{0\})=1$, we also conclude that $\nu_{\Delta_{n}}(\{0\}) \rightarrow 1$ as $n \rightarrow \infty$. Therefore, since f is bounded

$$
\int_{\mathbb{R}} f(x) d \nu_{\Delta_{n}}(x)=\nu_{\Delta_{n}}(\{0\}) f(0)+\int_{\mathbb{N}} f(x) d \nu_{\Delta_{n}}(x) \rightarrow f(0)
$$

So, it suffices to prove (4.38). But $\nu_{\Delta_{n}}$ is the distribution of the random variable

$$
\Gamma_{\Delta_{1}} \ni \eta \rightarrow \eta\left(\Delta_{n}\right)
$$

under $\mu^{\Delta_{1}}$. Hence

$$
\nu_{\Delta_{n}}(\mathbb{N})=\int_{\Gamma_{\Delta_{1}}} \chi_{\mathbb{N}}\left(\eta\left(\Delta_{n}\right)\right) \mu^{\Delta_{1}}(d \eta)
$$

For each fixed $\eta \in \Gamma_{\Delta_{1}}$

$$
\eta\left(\Delta_{n}\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty,
$$

and so

$$
\chi_{\mathbb{N}}\left(\eta\left(\Delta_{n}\right)\right) \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Hence, by the dominated convergence theorem,

$$
\int_{\Gamma_{\Delta_{1}}} \chi_{\mathbb{N}}\left(\eta\left(\Delta_{n}\right)\right) \mu^{\Delta_{1}}(d \eta) \rightarrow 0
$$

which proves (4.38).
Now, by Lemma 4.4 and [14, Theorem 5.4], there exists a random measure M on X such that, for any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), n \in \mathbb{N}$, the distribution of $\left(M\left(\Delta_{1}\right), \ldots, M\left(\Delta_{n}\right)\right)$ is $\nu_{\Delta_{1}, \ldots, \Delta_{n}}$. In fact, the random measure M is concentrated on Γ_{X}. Indeed, we already know that, for any $x \in X$, there exists an open neighbourhood of x, denoted by $\Delta(x)$, such that $\Delta(x) \in \mathcal{B}_{0}(X)$ and the restriction of M to $\Delta(x)$ is concentrated on $\Gamma_{\Delta(x)}$. Since X is Polish, there exist a countable sequence of compact sets Δ_{n} in X such that $X=\bigcup_{n=1}^{\infty} \Delta_{n}$. Now, using the definition of a compact set, we easily see that the restriction of M to each Δ_{n} is concentrated on $\Gamma_{\Delta_{n}}$, and so M is concentrated on Γ.

Letting μ denote the distribution of M on Γ_{X}, we obtain a unique probability measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ whose "finite-dimensional distributions" are given through the measures (4.21).

Lemma 4.5 For any $G_{1}, G_{2} \in \mathcal{S}$,

$$
\begin{equation*}
\int_{\Gamma_{X, 0}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta)=\int_{\Gamma_{X}}\left(\sum_{\eta \Subset \gamma} G_{1}(\eta)\right)\left(\sum_{\eta \Subset \gamma} G_{2}(\eta)\right) \mu(d \gamma) \tag{4.39}
\end{equation*}
$$

Proof. Let $\Delta \in \mathcal{B}_{0}(X)$ be such that (4.26) is satisfied. As usual, we identify $\mathcal{B}\left(\Gamma_{\Delta}\right)$ as a sub- σ-algebra of $\mathcal{B}\left(\Gamma_{X, 0}\right)$. Then, for any $G_{1}, G_{2} \in \mathcal{S}$ which, restricted to $\Gamma_{X, 0}$, are $\mathcal{B}\left(\Gamma_{\Delta}\right)$-measurable, we have:

$$
\begin{align*}
\int_{\Gamma_{X, 0}} & \left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta) \\
& =\int_{\Gamma_{\Delta}}\left(G_{1} \star G_{2}\right)(\eta) \rho(d \eta) \\
& =\int_{\Gamma_{\Delta}}\left(\mathcal{K}_{\Delta} G_{1}\right)(\eta)\left(\mathcal{K}_{\Delta} G_{2}\right)(\eta) \mu^{\Delta}(d \eta) \\
& =\int_{\Gamma_{X}}\left(\sum_{\eta \Subset \gamma} G_{1}(\eta)\right)\left(\sum_{\eta \Subset \gamma} G_{2}(\eta)\right) \mu(d \gamma) . \tag{4.40}
\end{align*}
$$

We will now need the following lemma.
Lemma 4.6 Fix any $\varepsilon>0$. Then, any $G \in \mathcal{S}$ can be represented as

$$
G=\sum_{j=1}^{k} G_{j}
$$

where $k \in \mathbb{N}$, each G_{j} belongs to \mathcal{S}, and restricted to $\Gamma_{X, 0}$ is $\mathcal{B}\left(\Gamma_{\Delta_{j}}\right)$-measurable with $\Delta_{j} \in \mathcal{B}_{0}(X), C_{\Delta_{j}} \leqslant \varepsilon$.

Proof. It suffices to prove the result of the lemma in the case where $G=\chi_{\Delta}^{\otimes n}, \Delta \in \mathcal{B}_{0}(X)$. Using the definition of a compact set and (LB), we see that there exist mutually disjoint open sets $\Delta_{1}, \ldots, \Delta_{m} \in \mathcal{B}_{0}(X)$ such that $\Delta_{1} \cup \cdots \cup \Delta_{m}=\Delta$ and $C_{\Delta_{j}} \leqslant \frac{\varepsilon}{n}, \quad i=1, \ldots, m$. Then

$$
\chi_{\Delta}^{\otimes n}=\left(\chi_{\Delta_{1}}+\cdots+\chi_{\Delta_{m}}\right)^{\otimes n} .
$$

Therefore, $\chi_{\Delta}^{\otimes n}$ is a finite linear combination of functions of the form

$$
\chi_{\Delta_{1}}^{\otimes i_{1}} \hat{\otimes} \chi_{\Delta_{2}}^{\otimes i_{2}} \hat{\otimes} \cdots \hat{\otimes} \chi_{\Delta_{m}}^{\otimes i_{m}}
$$

where $i_{1}, i_{2}, \ldots, i_{m} \in\{0, \ldots, n\}, i_{1}+\cdots+i_{m}=n$.
Evidently, this function is $\mathcal{B}\left(\Gamma_{\alpha}\right)$-measurable, where α is the union of those sets Δ_{j} from $\Delta_{1}, \ldots, \Delta_{m}$ for which the correspondents coefficient $i_{j} \neq 0$. So, α is a union of maximum n sets from the collection $\Delta_{1}, \ldots, \Delta_{m}$. Therefore,

$$
C_{\alpha} \leqslant n \frac{\varepsilon}{n}=\varepsilon .
$$

Indeed, to prove this estimate, and so to complete the proof of the lemma, we only need to show that, for disjoint $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$,

$$
C_{\Delta_{1} \cup \Delta_{2}} \leqslant C_{\Delta_{1}}+C_{\Delta_{2}} .
$$

But

$$
\Gamma_{\Delta_{1} \cup \Delta_{2}}^{(n)}=\bigcup_{m=0}^{n}\left(\Gamma_{\Delta_{1}}^{(m)} \cap \Gamma_{\Delta_{2}}^{(n-m)}\right)
$$

so that

$$
\begin{aligned}
\rho\left(\Gamma_{\Delta_{1} \cup \Delta_{2}}^{(n)}\right) & \leqslant \sum_{m=0}^{n} \rho\left(\Gamma_{\Delta_{1}}^{(m)} \cap \Gamma_{\Delta_{2}}^{(n-m)}\right) \\
& \leqslant \sum_{m=0}^{n}\left(\rho\left(\Gamma_{\Delta_{1}}^{(m)}\right)+\rho\left(\Gamma_{\Delta_{2}}^{(n-m)}\right)\right) \\
& \leqslant \sum_{m=0}^{n}\left(C_{\Delta_{1}}^{m}+C_{\Delta_{2}}^{n-m}\right) \\
& \leqslant \sum_{m=0}^{n}\binom{n}{m}\left(C_{\Delta_{1}}^{m}+C_{\Delta_{2}}^{n-m}\right) \\
& =\left(C_{\Delta_{1}}+C_{\Delta_{2}}\right)^{n} .
\end{aligned}
$$

For each $G \in \mathcal{S}$, choosing $G_{1}=G$ and $G_{2}=\Xi$ in (4.39), we get

$$
\int_{\Gamma_{X}, 0} G(\eta) \rho(d \eta)=\int_{\Gamma_{X}} \sum_{\eta \Subset \gamma} G(\eta) \mu(d \gamma)
$$

Hence ρ is the correlation measure of μ. By Theorem 2.1 and Remark 2.1, we have that μ is the unique measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ whose correlation
measure is ρ. (In fact, the uniqueness can also be derived directly from the above arguments.)

Finally, we prove the statement of the theorem concerning the operator \mathcal{I}. Define the mapping

$$
\begin{equation*}
\widehat{\mathcal{S}} \ni \widehat{G} \mapsto(\mathcal{K} \widehat{G})(\gamma):=\sum_{\eta \Subset \gamma} G(\eta) \tag{4.41}
\end{equation*}
$$

Then, by (4.39), \mathcal{K} extends to an isometry of \mathcal{H}_{ρ} into $L^{2}(\Gamma, \mu)$. Furthermore, it is clear that the image of \mathcal{K} is dense in $L^{2}(\Gamma, \mu)$, and so \mathcal{K} is a unitary operator.

For each $\Delta \in \mathcal{B}_{0}(X)$,

$$
\mathcal{K}\left(\widehat{\chi_{\Delta} \star G}\right)(\gamma)=\gamma(\Delta)(\mathcal{K} \widehat{G})(\gamma), \quad G \in \mathcal{S}, \gamma \in \Gamma_{X}
$$

Therefore, \tilde{A}_{Δ} goes over, under \mathcal{K}, into the operator of multiplication by $\gamma(\Delta)$. Recalling the unitary isomorphism $U: \mathfrak{F} \rightarrow \mathcal{H}_{\rho}$, under which each operator $\tilde{a}(\Delta)$ goes over into the operator \tilde{A}_{Δ}, we finish the proof.

It is clear that any correlation measure ρ satisfies the following condition:
(N) Normalization: $\rho\left(\Gamma_{X}^{(0)}\right)=1$.

As we discussed in Introduction, any correlation measure ρ also satisfies:
(PD) \star-positive definiteness: For each $G \in \mathcal{S}$:

$$
\int_{\Gamma_{X, 0}}(G \star G)(\eta) \rho(d \eta) \geqslant 0
$$

We now conclude the following criterion of existence of a point process, which generalises [15, Theorem 6.5] and [6, Theorem 2].

Corollary 4.1 Let ρ be a measure on $\left(\Gamma_{X, 0}, \mathcal{B}\left(\Gamma_{X, 0}\right)\right)$ satisfying (N), (PD), and (LB). Then, there exists a unique probability measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ which has ρ as correlation measure.

Proof. Consider the bilinear form (4.7). Then, by (PD), we have for each $G \in \mathcal{S}$,

$$
b_{\rho}(G, G) \geqslant 0
$$

Denote by $\widehat{\mathcal{S}}$ the factorization of \mathcal{S} consisting of factor-classes

$$
\widehat{G}=\left\{G^{\prime} \in \mathcal{S}: b_{\rho}\left(G-G^{\prime}, G-G^{\prime}\right)=0\right\}, \quad G \in \mathcal{S}
$$

Define a Hilbert space \mathcal{H}_{ρ} as the closure of $\widehat{\mathcal{S}}$ in the norm generated by the scalar product,

$$
\left(\widehat{G}_{1}, \widehat{G}_{2}\right)_{\mathcal{H}_{\rho}}:=b_{\rho}\left(G_{1}, G_{2}\right)
$$

For each $\Delta \in \mathcal{B}_{0}(X)$, define an operator A_{Δ} in \mathcal{H}_{ρ} by

$$
\begin{equation*}
A_{\Delta} \widehat{G}_{i}=\widehat{\chi_{\Delta} \star G}, \quad G \in \mathcal{S} \tag{4.42}
\end{equation*}
$$

For any $G_{1}, G_{2} \in \mathcal{S}$, we have

$$
\begin{aligned}
b_{\rho}\left(\chi_{\Delta} \star G_{1}, G_{2}\right) & =\int_{\Gamma_{0}}\left(\chi_{\Delta} \star G_{1}\right) \star G_{2}(\eta) \rho(d \eta) \\
& =\int_{\Gamma_{0}} G_{1} \star\left(\chi_{\Delta} \star G_{2}\right) \rho(d \eta) \\
& =b_{\rho}\left(G_{1}, \chi_{\Delta} \star G_{2}\right)
\end{aligned}
$$

Therefore, by [5, Chapter 5, Section 5, subsection 2], we see that the definition (4.42) makes sense, i.e., the factor class $\widehat{\chi_{\Delta} \star G}$ is independent of the choice of a representative of the factor-class of \widehat{G}.

Now, in order to prove the corollary, one just need to follow the lines if the proof of the Theorem 4.1.

Chapter 5

Particle densities in quasi-free representations of the CAR and CCR

5.1 Fermion and boson point processes

Let X be a topological space as in Chapter 3. Let σ be a non-atomic Radon measure on $(X, \mathcal{B}(X))$. We denote by H the real space $L^{2}(X, \sigma)$. Let K be a linear, bounded, symmetric operator in H which satisfies $0 \leqslant K \leqslant 1$.

Let us recall the construction of the quasi-free representation of the CAR corresponding to the operator K [3].

Denote $K_{1}:=\sqrt{K}$ and $K_{2}:=\sqrt{1-K}$. For a real separable Hilbert space \mathcal{H}, we denote by $\mathcal{A} \mathcal{F}(\mathcal{H})$ the antisymmetric Fock space over \mathcal{H} :

$$
\mathcal{A} \mathcal{F}(\mathcal{H}):=\bigoplus_{n=0}^{\infty} \mathcal{A} \mathcal{F}^{(n)}(\mathcal{H})
$$

Here, $\mathcal{A} \mathcal{F}^{(0)}(\mathcal{H}):=\mathbb{R}$ and for $n \in \mathbb{N} \mathcal{A} \mathcal{F}^{(n)}(\mathcal{H}):=\mathcal{H}^{\wedge n} n$!, where \wedge stands for antisymmetric tensor product and n ! is a normalizing factor, so that, for
any $f^{(n)} \in \mathcal{A} \mathcal{F}^{(n)}(\mathcal{H})$,

$$
\left\|f^{(n)}\right\|_{\mathcal{A}^{(n)}(\mathcal{H})}^{2}=\left\|f^{(n)}\right\|_{\mathcal{H}^{\wedge n}}^{2} n!
$$

We denote by $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ the subset of $\mathcal{A F}(\mathcal{H})$ consisting of all elements $f=$ $\left(f^{(n)}\right)_{n=0}^{\infty} \in \mathcal{A} \mathcal{F}(\mathcal{H})$ for which $f^{(n)}=0, n \geqslant N$, for some $N \in \mathbb{N}$. We endow $\mathcal{A F}_{\text {fin }}(\mathcal{H})$ with the topology of the topological direct sum of the spaces $\mathcal{A} \mathcal{F}^{(n)}(\mathcal{H})$. Thus, the convergence in $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ means uniform boundedness and coordinate-wise convergence.

For $g \in \mathcal{H}$, we denote by $\Phi(g)$ and $\Phi^{*}(g)$ the annihilation and creation operators in $\mathcal{A} \mathcal{F}(\mathcal{H})$, respectively. These are linear continuous operators in $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ defined through the formulas

$$
\Phi(g) h_{1} \wedge \cdots \wedge h_{n}:=\sum_{i=1}^{n}(-1)^{i+1}\left(g, h_{i}\right)_{\mathcal{H}} h_{1} \wedge \cdots \wedge h_{i-1} \wedge \check{h}_{i} \wedge h_{i+1} \wedge \cdots \wedge h_{n}
$$ $\Phi^{*}(g) h_{1} \wedge \cdots \wedge h_{n}:=g \wedge h_{1} \wedge \cdots \wedge h_{n}$,

where $h_{1}, \ldots, h_{n} \in \mathcal{H}$.
We now set $\mathcal{H}:=H_{1} \oplus H_{2}$, where H_{1} and H_{2} are two copies of H. For $f \in H$, we denote

$$
\Phi_{1}(f):=\Phi(f, 0), \quad \Phi_{2}(f):=\Phi(0, f),
$$

and analogously $\Phi_{i}^{*}(f), i=1,2$. We set, for each $f \in H$,

$$
\begin{align*}
\Psi(f) & :=\Phi_{2}\left(K_{2} f\right)+\Phi_{1}^{*}\left(K_{1} f\right), \\
\Psi^{*}(f) & :=\Phi_{2}^{*}\left(K_{2} f\right)+\Phi_{1}\left(K_{1} f\right) \tag{5.1}
\end{align*}
$$

The operators $\left\{\Psi(f), \Psi^{*}(f) \mid f \in \mathcal{H}\right\}$ satisfy the CAR:

$$
\begin{align*}
{[\Psi(f), \Psi(g)]_{+} } & =\left[\Psi^{*}(f), \Psi^{*}(g)\right]_{+}=\mathbf{0}, \\
{\left[\Psi^{*}(f), \Psi(g)\right]_{+} } & =(f, g)_{H} \mathbf{1}, \quad f, g \in H \tag{5.2}
\end{align*}
$$

where $[A, B]_{+}:=A B+B A$. This representation of the CAR is called quasifree. The so-called n-point functions of this representation have the structure

$$
\begin{equation*}
\left(\Psi^{*}\left(f_{n}\right) \cdots \Psi^{*}\left(f_{1}\right) \Psi\left(g_{1}\right) \cdots \Psi\left(g_{m}\right) \Omega, \Omega\right)_{\mathcal{A} \mathcal{F}(\mathcal{H})}=\delta_{n, m} \operatorname{det}\left[\left(K f_{i}, g_{j}\right)_{H}\right]_{i, j=1}^{n} . \tag{5.3}
\end{equation*}
$$

Here, $\Omega:=(1,0,0, \ldots)$ is the vacuum vector in $\mathcal{A} \mathcal{F}(\mathcal{H})$.
In what follows, we will assume that, for each $\Delta \in \mathcal{B}_{0}(X)$, the operator $P_{\Delta} K P_{\Delta}$ is of trace class. Here, P_{Δ} denotes the operator of multiplication by χ_{Δ}.

For an integral operator I in H, we will denote by $\mathcal{N}(I)$ the kernel of I. For each $\Delta \in \mathcal{B}_{0}(X)$,

$$
P_{\Delta} K_{1}\left(P_{\Delta} K_{1}\right)^{*}=P_{\Delta} K P_{\Delta}
$$

Therefore, the operator $P_{\Delta} K_{1}$ is of Hilbert-Schmidt class. Hence, $P_{\Delta} K_{1}$ is an integral operator, whose kernel $\mathcal{N}\left(P_{\Delta} K_{1}\right)$ belongs to $L^{2}\left(X^{2}, \sigma^{2}\right)$. This implies that K_{1} is an integral operator, whose kernel satisfies

$$
\begin{equation*}
\int_{\Delta} \int_{X} \mathcal{N}\left(K_{1}\right)(x, y)^{2} \sigma(d x) \sigma(d y)<\infty, \quad \Delta \in \mathcal{B}_{0}(X) \tag{5.4}
\end{equation*}
$$

Note also that the kernel $\mathcal{N}\left(K_{1}\right)$ is symmetric.
Thus, K is an integral operator, whose kernel is given by

$$
k(x, y):=\mathcal{N}(K)(x, y)=\int_{X} \mathcal{N}\left(K_{1}\right)(x, z) \mathcal{N}\left(K_{1}\right)(z, y) \sigma(d z)
$$

By (5.4), for any $\Delta \in \mathcal{B}_{0}(X)$, we get:

$$
\begin{aligned}
\int_{\Delta} k(x, x) \sigma(d x) & =\int_{\Delta} \int_{X} \mathcal{N}\left(K_{1}\right)(x, y) \mathcal{N}\left(K_{1}\right)(y, x) \sigma(d y) \sigma(d x) \\
& =\int_{\Delta} \int_{X} \mathcal{N}\left(K_{1}\right)(x, y)^{2} \sigma(d x) \sigma(d y)<\infty
\end{aligned}
$$

Note that the kernel $\mathcal{N}\left(K_{1}\right)(x, y)$ is defined up to a set of $\sigma^{\otimes 2}$-measure 0 in X^{2}, but the value $\int_{X} k(x, x) \sigma(d x)$ is independent of the choice of a version of $\mathcal{N}\left(K_{1}\right)$.

Let us now derive the particle density corresponding to the quasi-free representation of the CAR. For a fixed $x \in X$, we define the function $\varkappa_{1, x}$: $X \rightarrow \mathbb{R}$ by

$$
\varkappa_{1, x}(y):=\mathcal{N}\left(K_{1}\right)(x, y), \quad y \in X
$$

By (5.4),

$$
\begin{equation*}
\varkappa_{1, x} \in L^{2}(X, \sigma) \text { for } \sigma \text {-a.a. } x \in X . \tag{5.5}
\end{equation*}
$$

Then, for each $f \in H$, we have:

$$
\begin{equation*}
\Phi_{1}\left(K_{1} f\right)=\int_{X} \sigma(d x) f(x) \Phi_{1}\left(\varkappa_{1, x}\right), \quad \Phi_{1}^{*}\left(K_{1} f\right)=\int_{X} \sigma(d x) f(x) \Phi_{1}^{*}\left(\varkappa_{1, x}\right) . \tag{5.6}
\end{equation*}
$$

These equalities are to be understood through the corresponding bilinear forms. For example, the first equality means that, for any $g_{1}, \ldots, g_{n+1}, h_{1}, \ldots$, $h_{n} \in \mathcal{H}$,

$$
\begin{aligned}
\left(\Phi_{1}\left(K_{1} f\right) g_{1}\right. & \left.\wedge \cdots \wedge g_{n+1}, h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{A F}(\mathcal{H})} \\
& =\int_{X} \sigma(d x) f(x)\left(\Phi_{1}\left(\varkappa_{1, x}\right) g_{1} \wedge \cdots \wedge g_{n+1}, h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{A F}(\mathcal{H})}
\end{aligned}
$$

Next, for each $x \in X$ and any $h_{1}, \ldots, h_{n} \in \mathcal{H}$, we set

$$
\Phi_{2}\left(\varkappa_{2, x}\right) h_{1} \wedge \cdots \wedge h_{n}=\sum_{i=1}^{n}(-1)^{i+1}\left(K_{2} h_{i}^{(2)}\right)(x) h_{1} \wedge \cdots \wedge \check{h}_{i} \wedge \cdots \wedge h_{n}
$$

(Here and below, we use the notation $h_{i}=\left(h_{i}^{(1)}, h_{i}^{(2)}\right)$.)

Remark 5.1 Heuristically, $\varkappa_{2, x}(y)=\mathcal{N}\left(K_{2}\right)(x, y)$ and $\Phi_{2}\left(\varkappa_{2, x}\right)$ is the corresponding annihilation operator.

Then, analogously to (5.6), we get:

$$
\begin{equation*}
\Phi_{2}\left(K_{2} f\right)=\int_{X} \sigma(d x) f(x) \Phi_{2}\left(\varkappa_{2, x}\right), \quad \Phi_{2}^{*}\left(K_{2} f\right)=\int_{X} \sigma(d x) f(x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \tag{5.7}
\end{equation*}
$$

Note that the second equality in (5.7) means that, for any

$$
g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n+1} \in \mathcal{H}
$$

$$
\begin{aligned}
\left(\Phi_{2}^{*}\left(K_{2} f\right) g_{1}\right. & \wedge \\
& \left.\cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge h_{n+1}\right)_{\mathcal{A F}(\mathcal{H})} \\
& =\int_{X} \sigma(d x) f(x)\left(g_{1} \wedge \cdots g_{n}, \Phi_{2}\left(\varkappa_{2, x}\right) h_{1} \wedge \cdots \wedge h_{n+1}\right)_{\mathcal{A F}(\mathcal{H})}
\end{aligned}
$$

(compare with e.g. [24, Section X.7]).
By (5.1), (5.6), and (5.7), we get the following heuristic operators, for each $x \in X$:

$$
\begin{align*}
\Psi(x) & =\Phi_{2}\left(\varkappa_{2, x}\right)+\Phi_{1}^{*}\left(\varkappa_{1, x}\right), \\
\Psi^{*}(x) & =\Phi_{2}^{*}\left(\varkappa_{2, x}\right)+\Phi_{1}\left(\varkappa_{1, x}\right) . \tag{5.8}
\end{align*}
$$

Therefore, the particle density at point $x \in X$ is heuristically given by

$$
a(x)=\Psi^{*}(x) \Psi(x)=\left(\Phi_{2}^{*}\left(\varkappa_{2, x}\right)+\Phi_{1}\left(\varkappa_{1, x}\right)\right)\left(\Phi_{2}\left(\varkappa_{2, x}\right)+\Phi_{1}^{*}\left(\varkappa_{1, x}\right)\right) .
$$

Thus, for each $\Delta \in \mathcal{B}_{0}(X)$, we need to rigorously define an operator

$$
\begin{align*}
a(\Delta)= & \int_{\Delta} \sigma(d x) a(x) \\
= & \int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right)+\int_{\Delta} \sigma(d x) \Phi_{1}\left(\varkappa_{1, x}\right) \Phi_{2}\left(\varkappa_{2, x}\right) \\
& +\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi_{2}\left(\varkappa_{2, x}\right)+\int_{\Delta} \sigma(d x) \Phi_{1}\left(\varkappa_{1, x}\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right) . \tag{5.9}
\end{align*}
$$

In fact, it is not hard to see that each of the four integrals in (5.9) determines a linear continuous operator in $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ through the corresponding bilinear form. Indeed, for any $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n+2} \in \mathcal{H}$,

$$
\begin{aligned}
& \left(\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi^{*}\left(\varkappa_{1, x}\right) g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge h_{n+2}\right)_{\mathcal{A F}(\mathcal{H})} \\
& \quad=\int_{\Delta} \sigma(d x)\left(\Phi^{*}\left(\varkappa_{1, x}\right) g_{1} \wedge \cdots \wedge g_{n}, \Phi_{2}\left(\varkappa_{2, x}\right) h_{1} \wedge \cdots \wedge h_{n+2}\right)_{\mathcal{A F}(\mathcal{H})}
\end{aligned}
$$

$$
\begin{align*}
= & \int_{\Delta} \sigma(d x)(n+1)!\sum_{i=1}^{n+2}(-1)^{i+1}\left(K_{2} h_{i}^{(2)}\right)(x) \\
& \times\left(\varkappa_{1, x} \wedge g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge \check{h}_{i} \wedge \cdots \wedge h_{n+2}\right)_{\mathcal{H}^{\wedge(n+1)}} \\
= & n!\sum_{i, j \in\{1, \ldots, n+2\}, i \neq j}(-1)^{i+j+\chi_{\{j>i\}}(i, j)}\left(K_{2} h_{i}^{(2)}, P_{\Delta} K_{1} h_{j}^{(1)}\right)_{H} \\
& \times\left(g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge \check{h}_{i} \wedge \cdots \wedge \check{h}_{j} \wedge \cdots \wedge h_{n+2}\right)_{\mathcal{H}^{\wedge n}} \tag{5.10}
\end{align*}
$$

Since $P_{\Delta} K_{1}$ is of Hilbert-Schmidt class, so is $K_{2} P_{\Delta} K_{1}$. Therefore,

$$
\left(K_{2} h_{i}^{(2)}, P_{\Delta} K_{1} h_{j}^{(1)}\right)_{H}=\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}, h_{i} \otimes h_{j}\right)_{\mathcal{H}^{\otimes 2}}
$$

Here, $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}$ is the element of the space $\mathcal{H}^{\otimes 2}$ which belongs to its subspace $H_{2} \otimes H_{1}$ and coincides in it with $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)$. Let also $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}$ denote the orthogonal projection of $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}$ onto $\mathcal{H}^{\wedge 2}$. Hence, we continue (5.10) as follows:

$$
\begin{equation*}
=\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge} \wedge g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge h_{n+2}\right)_{\mathcal{A} \mathcal{F}(\mathcal{H})} \tag{5.11}
\end{equation*}
$$

Thus, $\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right)$ identifies the operator of creation by $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}$, which we denote by $a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right)$:

$$
a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right) g_{1} \wedge \cdots \wedge g_{n}=\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge} \wedge g_{1} \wedge \cdots \wedge g_{n}
$$

Clearly, $\int_{\Delta} \sigma(d x) \Phi_{1}\left(\varkappa_{1, x}\right) \Phi_{2}\left(\varkappa_{2, x}\right)$ identifies (the restriction to $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ of) the adjoint operator of $a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}\right)$, i.e., the annihilation operator by $\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}$:
$a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right) h_{1} \wedge \cdots \wedge h_{n}=n(n-1)\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}, h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{H}^{\otimes 2}}$,
where the scalar product is taken in the first two "variables". Therefore,

$$
a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right) h_{1} \wedge \cdots \wedge h_{n}
$$

$$
\begin{aligned}
& =\sum_{i, j=1, \ldots, n, i \neq j}(-1)^{i+j+\chi_{\{i<j\}}(i, j)}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right), h_{i}^{(2)} \otimes h_{j}^{(1)}\right)_{H^{\otimes 2}} \\
& \quad \times h_{1} \wedge \cdots \wedge \check{h}_{i} \wedge \cdots \wedge \check{h}_{j} \wedge \cdots \wedge h_{n} .
\end{aligned}
$$

Next, for any $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n} \in \mathcal{H}$,

$$
\begin{align*}
& \left(\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi_{2}\left(\varkappa_{2, x}\right) g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{A F}(\mathcal{H})} \\
& \quad=\int_{\Delta} \sigma(d x)\left(\Phi_{2}\left(\varkappa_{2, x}\right) g_{1} \wedge \cdots \wedge g_{n}, \Phi_{2}\left(\varkappa_{2, x}\right) h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{A F}(\mathcal{H})} \\
& =\sum_{i, j=1, \ldots, n}(-1)^{i+j}\left(K_{2} P_{\Delta} K_{2} g_{i}^{(2)}, h_{j}^{(2)}\right)_{H}(n-1)! \\
& \quad \times\left(g_{1} \wedge \cdots \wedge \check{g}_{i} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge \check{h}_{j} \wedge \cdots \wedge h_{n}\right)_{\mathcal{H}^{\wedge(n-1)}} \tag{5.13}
\end{align*}
$$

For any linear continuous operator A on \mathcal{H}, we define the second quantization of A, denoted by $d \Gamma(A)$, as the linear continuous operator on $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$ given by

$$
\begin{aligned}
d \Gamma(A) \upharpoonright \mathcal{A} \mathcal{F}^{(0)}(\mathcal{H})= & \mathbf{0} \\
d \Gamma(A) \upharpoonright \mathcal{A} \mathcal{F}^{(n)}(\mathcal{H})= & A \otimes 1 \otimes \cdots \otimes 1+1 \otimes A \otimes 1 \otimes \cdots \otimes 1 \\
& +\cdots+1 \otimes \cdots \otimes 1 \otimes A, \quad n \in \mathbb{N}
\end{aligned}
$$

Then, we continue (5.13) as follows;

$$
=\left(d \Gamma\left(\mathbf{0} \oplus\left(K_{2} P_{\Delta} K_{2}\right)\right) g_{1} \wedge \cdots \wedge g_{n}, h_{1} \wedge \cdots \wedge h_{n}\right)_{\mathcal{A F}(\mathcal{H})}
$$

Therefore, $\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) \Phi_{2}\left(\varkappa_{2, x}\right)$ identifies the operator $d \Gamma\left(0 \oplus\left(K_{2} P_{\Delta} K_{2}\right)\right)$. Analogously, $\int_{\Delta} \sigma(d x) \Phi_{1}\left(\varkappa_{1, x}\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right)$ identifies the operator

$$
\int_{\Delta}\left\|\varkappa_{1, x}\right\|_{H}^{2} \sigma(d x) 1-d \Gamma\left(K_{1} P_{\Delta} K_{1} \oplus 0\right)
$$

Summing up, we see that, for each $\Delta \in \mathcal{B}_{0}(X)$, the operator $a(\Delta)$ is given by

$$
a(\Delta)=a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right)+a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1}^{\wedge}\right)
$$

$$
\begin{equation*}
+d \Gamma\left(\left(-K_{1} P_{\Delta} K_{1}\right) \oplus\left(K_{2} P_{\Delta} K_{2}\right)\right)+\int_{\Delta}\left\|\varkappa_{1, x}\right\|_{H}^{2} \sigma(d x) 1 \tag{5.14}
\end{equation*}
$$

Lemma 5.1 The operators $a(\Delta), \Delta \in \mathcal{B}_{0}(X)$, commute on $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$.
Remark 5.2 Let us first give a heuristic proof of Lemma 5.1. The operators $\Psi^{*}(x), \Psi(x), x \in X$, satisfy the CAR:

$$
\begin{align*}
& {[\Psi(x), \Psi(y)]_{+}=\left[\Psi^{*}(x), \Psi^{*}(y)\right]_{+}=\mathbf{0}} \\
& {\left[\Psi^{*}(x), \Psi(y)\right]_{+}=\delta(x, y) \mathbf{1}, \quad x, y \in X} \tag{5.15}
\end{align*}
$$

where

$$
\int_{X^{2}} \delta(x, y) f(x) g(y) \sigma(d x) \sigma(d y):=\int_{X} f(x) g(x) \sigma(d x)
$$

Therefore, for any $x, y \in X$,

$$
\begin{align*}
a(x) a(y) & =\Psi^{*}(x) \Psi(x) \Psi^{*}(y) \Psi(y) \\
& =-\Psi^{*}(x) \Psi^{*}(y) \Psi(x) \Psi(y)+\delta(x, y) \Psi^{*}(x) \Psi(x) \\
& =-\Psi^{*}(y) \Psi^{*}(x) \Psi(y) \Psi(x)+\delta(x, y) \Psi^{*}(x) \Psi(x) \\
& =\Psi^{*}(y) \Psi(y) \Psi^{*}(x) \Psi(x) \\
& =a(y) a(x) \tag{5.16}
\end{align*}
$$

Proof of Lemma 5.1. For any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, we trivially have:

$$
\begin{align*}
& a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) \\
& \quad=a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) \tag{5.17}
\end{align*}
$$

Next, we evaluate

$$
\begin{equation*}
d \Gamma\left(\left(K_{1} P_{\Delta_{1}} K_{1}\right) \oplus \mathbf{0}\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}=\left(\left(\mathbf{1} \otimes K_{1} P_{\Delta_{1}} K_{1}\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}\right)^{\wedge} \tag{5.18}
\end{equation*}
$$

where \wedge denotes antisymmetrization. For any $u_{1} \in H_{1}$ and $u_{2} \in H_{2}$, we get:

$$
\left(\left(\mathbf{1} \otimes K_{1} P_{\Delta_{1}} K_{1}\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}, u_{2} \otimes u_{1}\right)_{\mathcal{H}^{\otimes 2}}
$$

$$
\begin{aligned}
& =\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}, u_{2} \otimes K_{1} P_{\Delta_{1}} K_{1} u_{1}\right)_{\mathcal{H} \otimes 2} \\
& =\left(u_{2}, K_{2} P_{\Delta_{2}} K_{1} K_{1} P_{\Delta_{1}} K_{1} u_{1}\right)_{H} \\
& =\left(u_{2}, K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{1} u_{1}\right)_{H} .
\end{aligned}
$$

Therefore, $\left(1 \otimes K_{1} P_{\Delta_{1}} K_{1}\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}$ is the kernel of the operator $K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{1}$ realized as the element of $H_{2} \otimes H_{1}$. We denote it by $\mathcal{N}\left(K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{1}\right)_{2,1}$. Therefore, by (5.18),

$$
\begin{equation*}
d \Gamma\left(K_{1} P_{\Delta_{1}} K_{1}\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}=\mathcal{N}\left(K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge} \tag{5.19}
\end{equation*}
$$

Analogously, we get, for any $u_{1} \in H_{1}, u_{2} \in H_{2}$,

$$
\begin{aligned}
&\left(\left(K_{2} P_{\Delta_{1}} K_{2} \otimes 1\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}, u_{2} \otimes u_{1}\right)_{\mathcal{H}^{\otimes 2}} \\
&=\left(u_{2}, K_{2} P_{\Delta_{1}}(1-K) P_{\Delta_{2}} K_{1} u_{1}\right)_{H}
\end{aligned}
$$

and hence,

$$
\begin{equation*}
d \Gamma\left(\mathbf{0} \oplus\left(K_{2} P_{\Delta_{1}} K_{2}\right)\right) \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}=\mathcal{N}\left(K_{2} P_{\Delta_{1}}(1-K) P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge} \tag{5.20}
\end{equation*}
$$

By (5.19) and (5.20), a straightforward calculation shows that

$$
\begin{align*}
d \Gamma & \left(\left(-K_{1} P_{\Delta_{1}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{1}} K_{2}\right)\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) \\
& +a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) d \Gamma\left(\left(-K_{1} P_{\Delta_{2}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{2}} K_{2}\right)\right) \\
= & d \Gamma\left(\left(-K_{1} P_{\Delta_{2}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{2}} K_{2}\right)\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) \\
& +a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) \Gamma\left(\left(-K_{1} P_{\Delta_{1}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{1}} K_{2}\right)\right) \tag{5.21}
\end{align*}
$$

Next, by (5.12), we have:

$$
\begin{aligned}
& a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) h_{1} \wedge \cdots \wedge h_{n} \\
& \quad= \\
& \quad\left(\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right), \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)\right)_{H \otimes 2} 1+a^{+}\left(\Delta_{2}\right) a^{-}\left(\Delta_{1}\right)\right) h_{1} \wedge \cdots \wedge h_{n} \\
& \quad-\sum_{i=1}^{n} h_{1} \wedge \cdots \wedge h_{i-1}
\end{aligned}
$$

$$
\begin{aligned}
& \wedge\left(\int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(x, \cdot) h_{i}^{(1)}(y) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \sigma(d x) \sigma(d y)\right. \\
& \left.\quad+\int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(\cdot, y) h_{i}^{(2)}(x) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \sigma(d x) \sigma(d y)\right)
\end{aligned}
$$

$$
\begin{equation*}
\wedge h_{i+1} \wedge \cdots \wedge h_{n} \tag{5.22}
\end{equation*}
$$

For any $u \in H$,

$$
\begin{aligned}
&\left(\int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(x, \cdot) h_{i}^{(1)}(y) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \sigma(d x) \sigma(d y), u\right)_{H} \\
&= \int_{X} \int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(x, z) h_{i}^{(1)}(y) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) u(z) \\
& \sigma(d x) \sigma(d y) \sigma(d z) \\
&= \int_{X} \sigma(d y) \int_{X} \sigma(d z) h_{i}^{(1)}(y) u(z) \int_{X} \sigma(d x) \mathcal{N}\left(K_{1} P_{\Delta_{2}} K_{2}\right)(z, x) \\
& \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \\
&= \int_{X} \sigma(d y) \int_{X} \sigma(d z) h_{i}^{(1)}(y) u(z) \mathcal{N}\left(K_{1} P_{\Delta_{2}}(1-K) P_{\Delta_{1}} K_{1}\right)(z, y) \\
&=\left(K_{1} P_{\Delta_{2}}(1-K) P_{\Delta_{1}} K_{1} h_{i}^{(1)}, u\right)_{H}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(x, \cdot) h_{i}^{(1)}(y) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \sigma(d x) \sigma(d y) \\
& \quad=K_{1} P_{\Delta_{2}}(\mathbf{1}-K) P_{\Delta_{1}} K_{1} h_{i}^{(1)} \tag{5.23}
\end{align*}
$$

Analogously

$$
\begin{align*}
& \int_{X} \int_{X} \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)(\cdot, y) h_{i}^{(2)}(x) \mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)(x, y) \sigma(d x) \sigma(d y) \\
& \quad=K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{2} h_{i}^{(2)} \tag{5.24}
\end{align*}
$$

By (5.22)-(5.24),

$$
a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) h_{1} \wedge \cdots \wedge h_{n}
$$

$$
\begin{align*}
= & \left(\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right), \mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)\right)_{H^{\otimes 2}} 1+a^{+}\left(\Delta_{2}\right) a^{-}\left(\Delta_{1}\right)\right) h_{1} \wedge \cdots \wedge h_{n} \\
& -d \Gamma\left(\left(K_{1} P_{\Delta_{2}}(1-K) P_{\Delta_{1}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{2}} K P_{\Delta_{1}} K_{2}\right)\right) . \tag{5.25}
\end{align*}
$$

Using (5.25), we conclude that

$$
\begin{align*}
& a^{+}(\mathcal{N}\left.\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) \\
&+a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right) \hat{2}_{2,1}\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) \\
&+d \Gamma\left(\left(-K_{1} P_{\Delta_{1}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{1}} K_{2}\right)\right) d \Gamma\left(\left(-K_{1} P_{\Delta_{2}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{2}} K_{2}\right)\right) \\
&=a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right)_{2,1}^{\wedge}\right) a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) \\
&+a^{-}\left(\mathcal{N}\left(K_{2} P_{\Delta_{2}} K_{1}\right) \wedge, 1\right) a^{+}\left(\mathcal{N}\left(K_{2} P_{\Delta_{1}} K_{1}\right)_{2,1}^{\wedge}\right) \\
&+d \Gamma\left(\left(-K_{1} P_{\Delta_{2}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{2}} K_{2}\right)\right) d \Gamma\left(\left(-K_{1} P_{\Delta_{1}} K_{1}\right) \oplus\left(K_{2} P_{\Delta_{1}} K_{2}\right)\right) \tag{5.26}
\end{align*}
$$

By (5.17), (5.21), (5.26) and the equalities obtained by taking the adjoint operators in (5.17), (5.21), we conclude the statement of the lemma.

We will now show that the family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ has a correlation measure ρ with respect to the vacuum vector Ω.

Remark 5.3 We will first make heuristic calculations. We will write, for any $\Delta_{1} \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$,

$$
\mathcal{Q}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right)=\frac{1}{n!} \int_{\Delta_{1}} \sigma\left(d x_{1}\right) \cdots \int_{\Delta_{n}} \sigma\left(d x_{n}\right): a\left(x_{1}\right) \cdots a\left(x_{n}\right):
$$

Then, the recursion relation (4.2) takes the form:

$$
\begin{gather*}
: a\left(x_{1}\right) \cdots a\left(x_{n+1}\right):=\frac{1}{n+1}\left[\sum_{i=1}^{n+1} a\left(x_{i}\right): a\left(x_{1}\right) \cdots \check{a}\left(x_{i}\right) \cdots a\left(x_{n+1}\right):\right. \\
\left.-\sum_{i=1}^{n+1} \sum_{j=1, \ldots, n+1, j \neq i} \delta\left(x_{i}, x_{j}\right): a\left(x_{1}\right) \cdots \check{a}\left(x_{i}\right) \cdots a\left(x_{n+1}\right):\right], \quad n \in \mathbb{N} \\
: a(x):=a(x) \tag{5.27}
\end{gather*}
$$

Using (5.27) and the CAR (5.15), it is easy to show by induction that

$$
: a\left(x_{1}\right) \cdots a\left(x_{n}\right):=\Psi^{*}\left(x_{n}\right) \cdots \Psi^{*}\left(x_{1}\right) \Psi\left(x_{1}\right) \cdots \Psi\left(x_{n}\right)
$$

Hence, by (5.8),

$$
\begin{equation*}
: a\left(x_{1}\right) \cdots a\left(x_{n}\right): \Omega=\Psi^{*}\left(x_{n}\right) \cdots \Psi^{*}\left(x_{1}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{1}}\right) \cdots \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right) \Omega \tag{5.28}
\end{equation*}
$$

Thus, : $a\left(x_{1}\right) \cdots a\left(x_{n}\right):$ is the Wick product of the operators $a\left(x_{1}\right), \ldots, a\left(x_{n}\right)$, i.e., one first takes the formal product

$$
a\left(x_{1}\right) \cdots a\left(x_{n}\right)=\Psi^{*}\left(x_{1}\right) \Psi\left(x_{1}\right) \cdots \Psi^{*}\left(x_{n}\right) \Psi\left(x_{n}\right)
$$

and then one rearranges the right hand side, so that one first has all the operators $\Psi^{*}\left(x_{1}\right), \ldots, \Psi^{*}\left(x_{n}\right)$ and then all the operators $\Psi\left(x_{1}\right), \ldots, \Psi\left(x_{n}\right)$. From here

$$
\begin{aligned}
& \left(: a\left(x_{1}\right) \cdots a\left(x_{n}\right): \Omega, \Omega\right)_{\mathcal{A} \mathcal{F}(\mathcal{H})} \\
& \quad=\left(\Phi_{1}\left(\varkappa_{1, x_{n}}\right) \cdots \Phi_{1}\left(\varkappa_{1, x_{1}}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{1}}\right) \cdots \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right) \Omega, \Omega\right)_{\mathcal{A} \mathcal{F}(\mathcal{H})} \\
& \quad=\left\|\varkappa_{1, x_{1}} \wedge \cdots \wedge \varkappa_{1, x_{n}}\right\|_{H^{\wedge n}}^{2} \\
& \quad=\operatorname{det}\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}
\end{aligned}
$$

which is the n-th correlation function.

We will now show that the calculations in Remark 5.3 can be given a rigorous meaning. Taking into account (5.28), let us make sense out of the following operators:

$$
\begin{aligned}
& \mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n}\right) \\
&= \int_{\Delta_{n}} \sigma\left(d x_{n}\right) \Psi^{*}\left(x_{n}\right)\left(\int_{\Delta_{n-1}} \sigma\left(d x_{n-1}\right) \Psi^{*}\left(x_{n-1}\right)(\cdots\right. \\
&\left.\cdots\left(\int_{\Delta_{1}} \sigma\left(d x_{1}\right) \Psi^{*}\left(x_{1}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{1}}\right)\right) \cdots \Phi_{1}^{*}\left(\varkappa_{1, x_{n-1}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right)
\end{aligned}
$$

$$
\begin{equation*}
\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X), n \geq 2 \tag{5.29}
\end{equation*}
$$

For Hilbert spaces \mathfrak{H}_{1} and \mathfrak{H}_{2}, we denote by $\mathcal{L}\left(\mathfrak{H}_{1}, \mathfrak{H}_{2}\right)$ the space of linear continuous operators from \mathfrak{H}_{1} into \mathfrak{H}_{2}. We also denote by $\mathcal{L}\left(\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})\right)$ the space of all linear continuous operators acting in $\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})$.

Let $\Delta \in \mathcal{B}_{0}(X)$ and let $R_{k, n} \in \mathcal{L}\left(\mathcal{H}^{\wedge k}, \mathcal{H}^{\wedge n}\right)$. Analogously to (5.10), (5.11), we conclude that the integral

$$
\begin{equation*}
\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) R_{k, n} \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \tag{5.30}
\end{equation*}
$$

identifies, though the corresponding bilinear form, the operator in $\mathcal{L}\left(\mathcal{H}^{\wedge(k-1)}, \mathcal{H}^{\wedge(n+1)}\right)$ which is given by

$$
\begin{aligned}
\int_{\Delta} \sigma(d x) \Phi_{2}^{*}\left(\varkappa_{2, x}\right) R_{k, n} \Phi_{1}^{*}\left(\varkappa_{1, x}\right) f^{(k-1)}:=\mathcal{P}_{n+1}\left(\mathbf{1} \otimes\left(R_{k, n} \mathcal{P}_{k}\right)\right) \\
\left(\mathcal{N}\left(K_{2} P_{\Delta} K_{1}\right)_{2,1} \otimes f^{(k-1)}\right), f^{(k-1)} \in \mathcal{H}^{\wedge(k-1)}
\end{aligned}
$$

Here, \mathcal{P}_{i} denotes the orthogonal projection of $\mathcal{H}^{\otimes i}$ onto $\mathcal{H}^{\wedge i}$.
Next, using (5.4) and Theorem 2.1, we easily conclude that the integral

$$
\begin{equation*}
\int_{\Delta} \sigma(d x) \Phi_{1}\left(\varkappa_{1, x}\right) R_{k, n} \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \tag{5.31}
\end{equation*}
$$

identifies an operator in $\mathcal{L}\left(\mathcal{H}^{\wedge(k-1)}, \mathcal{H}^{\wedge(n-1)}\right)$ even in the sense of Bochner integration.

Hence, for each $R \in \mathcal{L}\left(\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})\right)$, the integrals (5.30) and (5.31), in which $R_{k, n}$ is replaced by R, identify operators in $\mathcal{L}\left(\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})\right)$. So, by induction, the operator (5.29) is well defined.

Lemma 5.2 For each $n \in \mathbb{N}$ and any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$, we have:

$$
Q\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right)=\frac{1}{n!} \mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n}\right) \Omega
$$

Proof. We first state that, for any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$ and any $R \in \mathcal{L}\left(\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})\right)$, we have

$$
\begin{align*}
a\left(\Delta_{1}\right) \int_{\Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right)= & \int_{\Delta_{2}} \sigma(d x) \Psi^{*}(x) a\left(\Delta_{1}\right) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
& +\int_{\Delta_{1} \cap \Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) . \tag{5.32}
\end{align*}
$$

Intuitively, equality (5.32) follows from the CAR (5.15). Indeed,

$$
\begin{aligned}
& a\left(\Delta_{1}\right) \int_{\Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
&= \int_{\Delta_{1}} \sigma(d x) \Psi^{*}(x) \Psi(x) \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right) \\
&= \int_{\Delta_{1}} \sigma(d x) \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(x) \Psi(x) \Psi^{*}(y) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right) \\
&=-\int_{\Delta_{1}} \sigma(d x) \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(x) \Psi^{*}(y) \Psi(x) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right) \\
&+\int_{\Delta_{1} \cap \Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
&= \int_{\Delta_{1}} \sigma(d x) \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y) \Psi^{*}(x) \Psi(x) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right) \\
&+\int_{\Delta_{1} \cap \Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
&= \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y)\left(\int_{\Delta_{1}} \sigma(d x) \Psi^{*}(x) \Psi(x)\right) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right) \\
&+\int_{\Delta_{1} \cap \Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
&= \int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y) a\left(\Delta_{1}\right) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right)+\int_{\Delta_{1} \cap \Delta_{2}} \sigma(d x) \Psi^{*}(x) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) .
\end{aligned}
$$

In fact, a rigorous proof of (5.32) can be carried out analogously to the proof of Lemma 5.1. Indeed, let us fix an arbitrary orthonormal basis $\left(e_{n}\right)_{n=1}^{\infty}$ of $L^{2}(X, \sigma)$. Then, by continuity, it is easy to see that it suffices to prove (5.32) in the case where $R \in \mathcal{L}\left(\mathcal{H}^{\wedge k}, \mathcal{H}^{\wedge n}\right)$ and

$$
R e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}=e_{l_{1}} \wedge e_{l_{2}} \wedge \cdots \wedge e_{l_{n}}
$$

for some $1 \leqslant i_{1}<i_{2}<\cdots<i_{k}<\infty$ and some $1 \leqslant l_{1}<l_{2}<\cdots<l_{n}<\infty$, and

$$
R e_{j_{1}} \wedge e_{j_{2}} \wedge \cdots \wedge e_{j_{k}}=0
$$

for any $1 \leqslant j_{1}<j_{2}<\cdots<j_{k}<\infty$ such that $\left(j_{1}, j_{2}, \ldots, j_{k}\right) \neq\left(i_{1}, i_{2}, \ldots, i_{k}\right)$. Then, for any $h_{1}, h_{2}, \ldots, h_{k-1} \in \mathcal{H}$,

$$
\begin{aligned}
& R \Phi_{1}^{*}\left(\varkappa_{1, x}\right) h_{1} \wedge \cdots \wedge h_{k-1} \\
& \quad=R \varkappa_{1, x} \wedge h_{1} \wedge \cdots \wedge h_{k-1} \\
& \quad=\left(\varkappa_{1, x} \wedge h_{1} \wedge \cdots \wedge h_{k-1}, e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}\right) R e_{i_{2}} \wedge \cdots \wedge e_{i_{k}} \\
& \quad=\left(\varkappa_{1, x} \wedge h_{1} \wedge \cdots \wedge h_{k-1}, e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}\right) e_{l_{1}} \wedge e_{l_{2}} \wedge \cdots \wedge e_{l_{n}}
\end{aligned}
$$

Now, the rest of calculations follows on complete analogy with the proof of Lemma 5.1. Thus, (5.32) is proven.

Next, analogously to the above, we see that, for any $\Delta_{1} . \Delta_{2} \in \mathcal{B}_{0}(X)$ and any $R \in \mathcal{L}\left(\mathcal{A} \mathcal{F}_{\text {fin }}(\mathcal{H})\right)$, we have:

$$
\begin{aligned}
& \int_{\Delta_{1}} \sigma(d x) \Psi^{*}(x)\left(\int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y) R \Phi_{1}^{*}\left(\varkappa_{1, y}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \\
& \left.\quad=\int_{\Delta_{2}} \sigma(d y) \Psi^{*}(y)\left(\int_{\Delta_{1}} \sigma(d x) \Psi^{*}(x)\right) R \Phi_{1}^{*}\left(\varkappa_{1, x}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, y}\right)
\end{aligned}
$$

(The above equality is heuristically clear and follows from the CAR). Therefore, for any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$ and each $i \in\{1,2, \ldots, n-1\}$,

$$
\mathcal{T}\left(\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}\right)=\mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{i-1}, \Delta_{i+1}, \Delta_{i}, \Delta_{i+2}, \ldots, \Delta_{n}\right)
$$

From here it follows that the operator $\mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n}\right)$ does not depend on the order of the sets $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$.

Next, for each $\Delta \in \mathcal{B}_{0}(X)$, we have by (5.8),

$$
\begin{aligned}
\mathcal{Q}\left(\chi_{\Delta}\right) \Omega & =a(\Delta) \Omega \\
& =\int_{\Delta} \sigma(d x) \Psi^{*}(x) \Psi(x) \Omega
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\Delta} \sigma(d x) \Psi^{*}(x)\left(\Phi_{2}\left(\varkappa_{2, x}\right)+\Phi_{1}^{*}\left(\varkappa_{1, x}\right)\right) \Omega \\
& =\int_{\Delta} \sigma(d x) \Psi^{*}(x) \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \Omega \\
& =\mathcal{T}(\Delta) \Omega
\end{aligned}
$$

Thus, by (4.2), to prove the lemma, it suffices to show that, for each $n \in \mathbb{N}$, and any $\Delta_{1}, \ldots, \Delta_{n+1} \in \mathcal{B}_{0}(X)$, we have:

$$
\begin{aligned}
& \sum_{i=1}^{n+1}\left(a\left(\Delta_{i}\right) \mathcal{T}\left(\Delta_{1}, \ldots, \check{\Delta}_{i}, \ldots, \Delta_{n+1}\right)\right. \\
& \left.\quad-\sum_{j=1, \ldots, n+1, j \neq i} \mathcal{T}\left(\Delta_{i} \cap \Delta_{j}, \Delta_{1}, \ldots, \check{\Delta}_{i}, \ldots, \check{\Delta}_{j}, \ldots, \Delta_{n+1}\right)\right) \\
& \quad=(n+1) \mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n+1}\right)
\end{aligned}
$$

So, it suffices to prove that, for each $i \in\{1, \ldots, n\}$

$$
\begin{align*}
& a\left(\Delta_{i}\right) \mathcal{T}\left(\Delta_{1}, \ldots, \check{\Delta}_{i}, \ldots, \Delta_{n+1}\right) \\
& \quad-\sum_{j=1, \ldots, n+1, j \neq i} \mathcal{T}\left(\Delta_{i} \cap \Delta_{j}, \Delta_{1}, \ldots, \check{\Delta}_{i}, \ldots, \check{\Delta}_{j}, \ldots, \Delta_{n+1}\right) \\
& \quad=\mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n+1}\right) \tag{5.33}
\end{align*}
$$

Since the operators $\mathcal{T}(\cdot)$ do not depend on the order of the sets which index them, (5.33) is equivalent to

$$
\begin{aligned}
& a\left(\Delta_{1}\right) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n+1}\right) \Omega-\sum_{j=2}^{n+1} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}\right. \\
& \left.\quad \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n+1}\right) \Omega \\
& \quad=\mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n+1}\right) \Omega
\end{aligned}
$$

Now, by (5.32), we have:

$$
a\left(\Delta_{1}\right) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n+1}\right) \Omega-\sum_{j=2}^{n+1} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}\right.
$$

$$
\begin{aligned}
& \left.\Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n+1}\right) \Omega \\
& =a\left(\Delta_{1}\right) \int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& -\sum_{j=2}^{n+1} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}, \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n+1}\right) \Omega \\
& =\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(a\left(\Delta_{1}\right) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& +\int_{\Delta_{1} \cap \Delta_{n+1}} \sigma(d x) \Psi^{*}(x) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n}\right) \Phi_{1}^{*}\left(\varkappa_{1, x}\right) \Omega \\
& -\sum_{j=2}^{n+1} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}, \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n+1}\right) \Omega \\
& =\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(a\left(\Delta_{1}\right) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& -\sum_{j=2}^{n} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}, \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n}\right) \Omega \\
& =\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(\int_{\Delta_{n}} \sigma\left(d x_{n}\right) \Psi^{*}\left(x_{n}\right) a\left(\Delta_{1}\right)\right. \\
& \left.\mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n-1}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& +\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(\int_{\Delta_{1} \cap \Delta_{n}} \sigma(d x) \Psi^{*}(x) \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n-1}\right)\right. \\
& \left.\Phi_{1}^{*}\left(\varkappa_{1, x}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& -\sum_{j=2}^{n} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}, \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n}\right) \Omega \\
& =\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(\int_{\Delta_{n}} \sigma\left(d x_{n}\right) \Psi^{*}\left(x_{n}\right) a\left(\Delta_{1}\right)\right. \\
& \left.\mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{n-1}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& -\sum_{j=2}^{n-1} \mathcal{T}\left(\Delta_{2}, \ldots, \Delta_{j-1}, \Delta_{j} \cap \Delta_{1}, \Delta_{j+1}, \ldots, \Delta_{n}\right) \Omega \\
& =\cdots=\int_{\Delta_{n+1}} \sigma\left(d x_{n+1}\right) \Psi^{*}\left(x_{n+1}\right)\left(\int_{\Delta_{n}} \sigma\left(d x_{n}\right) \Psi^{*}\left(x_{n}\right)(\cdots\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\quad\left(\int_{\Delta_{1}} \sigma\left(d x_{1}\right) \Psi^{*}\left(x_{1}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{1}}\right)\right) \cdots\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n+1}}\right) \Omega \\
& =\mathcal{T}\left(\Delta_{1}, \ldots, \Delta_{n+1}\right) \Omega .
\end{aligned}
$$

Lemma 5.3 The family of operators $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ has a correlation measure ρ with respect to Ω, and the restriction of ρ to $\left(\Gamma_{X}^{(n)}, \mathcal{B}\left(\Gamma_{X}^{(n)}\right)\right)$ is given by

$$
\begin{equation*}
\rho^{(n)}\left(d x_{1}, \ldots, d x_{n}\right)=\frac{1}{n!} \operatorname{det}\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right) \tag{5.34}
\end{equation*}
$$

(recall that we have identified $\mathcal{B}\left(\ddot{\Gamma}_{X}^{(n)}\right)$ with $\mathcal{B}_{\text {sym }}\left(X^{n}\right)$, and $\mathcal{B}\left(\Gamma_{X}^{(n)}\right) \subset \mathcal{B}\left(\ddot{\Gamma}_{X}^{(n)}\right)$).
Proof. By (5.29) and Lemma 5.2, for each $n \in \mathbb{N}$ and any $\Delta_{1}, \ldots, \Delta_{n} \in$ $\mathcal{B}_{0}(X)$, we have

$$
\begin{aligned}
& \left(Q\left(\chi_{\Delta_{1}} \hat{\otimes} \cdots \hat{\otimes}_{\Delta_{\Delta_{n}}}\right), \Omega\right)_{\mathcal{A F}(\mathcal{H})} \\
& \quad=\frac{1}{n!}\left(\int _ { \Delta _ { n } } \sigma (d x _ { n }) \Phi _ { 1 } (\varkappa _ { 1 , x _ { n } }) \left(\int_{\Delta_{n-1}} \sigma\left(d x_{n-1}\right) \Phi_{1}\left(\varkappa_{1, x_{n-1}}\right)(\cdots\right.\right. \\
& \left.\left.\quad \cdots\left(\int_{\Delta_{1}} \sigma\left(d x_{1}\right) \Phi_{1}\left(\varkappa_{1, x_{1}}\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{1}}\right)\right) \cdots \Phi_{1}^{*}\left(\varkappa_{1, x_{n-1}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, x_{n}}\right) \Omega, \Omega\right)_{\mathcal{A F}(\mathcal{H})}
\end{aligned}
$$

(note that all the integrals involving $\Phi_{2}^{*}\left(\varkappa_{2, x_{i}}\right)$ vanish). Therefore,

$$
\begin{align*}
& \left(Q\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \hat{\otimes} \chi_{\Delta_{n}}\right), \Omega\right)_{\mathcal{A F}(\mathcal{H})} \\
& \quad=\int_{\Delta_{n}} \sigma\left(d x_{n}\right) \cdots \int_{\Delta_{1}} \sigma\left(d x_{1}\right)\left\|\varkappa_{1, x_{1}} \wedge \cdots \wedge \varkappa_{1, x_{n}}\right\|_{H^{\wedge n}}^{2} \tag{5.35}\\
& \quad=\frac{1}{n!} \int_{\Delta_{n}} \sigma\left(d x_{n}\right) \cdots \int_{\Delta_{1}} \sigma\left(d x_{1}\right) \operatorname{det}\left[k\left(x_{i}, x_{j}\right)\right)_{i, j=1}^{n} . \tag{5.36}
\end{align*}
$$

Note that, by (5.35), the right hand side of (5.34) indeed defines a measure. Hence, the statement of the lemma follows from (5.36)

Lemma 5.4 The correlation measure given in (5.34) satisfies (LB).

Proof. For each $\Delta \in \mathcal{B}_{0}(X)$ and $n \in \mathbb{N}$, we evidently have

$$
\begin{aligned}
\rho\left(\Gamma_{\Delta}^{(n)}\right) & \leq\left(\int_{\Delta}\left\|\varkappa_{1, x}\right\|_{H}^{2} \sigma(d x)\right)^{n} \\
& =\left(\int_{\Delta} \int_{X} \mathcal{N}\left(K_{1}\right)(x, y)^{2} \sigma(d x) \sigma(d y)\right)^{n}
\end{aligned}
$$

from where the statement follows.
By Lemmas 5.1, 5.3, 5.4 and Theorem 4.1, we get

Theorem 5.1 For the family $(a(\Delta))_{\Delta \in \mathcal{B}_{0}(X)}$ defined by (5.14), the statement of Theorem 4.1 holds with the correlation measure given by (5.34).

Let us now briefly mention the boson case. About the operator K we make the same assumptions as in the fermion case, apart from the assumption that $K \leq 1$. We set $K_{1}:=\sqrt{K}$ (just as above) and $K_{2}:=(1+K)^{1 / 2}$. We then essentially repeat the fermion case, using however the symmetric Fock space $\mathcal{S} \mathcal{F}(\mathcal{H})$ instead of the antysymmetric Fock space $\mathcal{A} \mathcal{F}(\mathcal{H})$. The operators $\Psi(f), \Psi^{*}(f)$ (see (5.1)) now satisfy the CCR (use the commutator $[A, B]_{-}:=A B-B A$ instead of the anticommutator in (5.2)). The counterpart of formulas (5.35), (5.36) reads as folllows:

$$
\begin{aligned}
& \left(Q\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right), \Omega\right)_{\mathcal{A} \mathcal{F}(\mathcal{H})} \\
& \quad=\int_{\Delta_{n}} \sigma\left(d x_{n}\right) \cdots \int_{\Delta_{1}} \sigma\left(d x_{1}\right)\left\|\varkappa_{1, x_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \varkappa_{1, x_{n}}\right\|_{\mathcal{H}^{\widehat{\otimes} n}}^{2} \\
& \quad=\frac{1}{n!} \int_{\Delta_{n}} \sigma\left(d x_{n}\right) \cdots \int_{\Delta_{1}} \sigma\left(d x_{1}\right) \operatorname{per}\left[k\left(x_{i}, x_{j}\right)\right]_{i, j=1, \ldots, n} \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right) .
\end{aligned}
$$

Thus the corresponding correlation measure is given by (5.34) in which the determinant is replaced by the permanent:

$$
\operatorname{per}\left[k\left(x_{i, x_{j}}\right)\right]_{i, j=1, \ldots, n}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} k\left(x_{i}, x_{\sigma(i)}\right)
$$

5.2 Fermion-like and boson-like particle densities

Let the operators K, K_{1}, K_{2} be as in the fermion part of Section 5. Let $l \in \mathbb{N}, l \geq 2$, and we now take $2 l$ copies of the Hilbert space $H=L^{2}(X, \sigma)$: $H_{1, i}$ and $H_{2, i}, i=1, \ldots, l$. We denote $\mathcal{H}^{(l)}:=\bigoplus_{i=1}^{l}\left(H_{1, i} \oplus H_{2, i}\right)$.

For each $i \in\{1,2, \ldots, l\}$, let us consider the following heuristic operators, for each $x \in X$,

$$
\begin{aligned}
& \Psi_{i}(x)=\Phi_{2}\left(\varkappa_{2, i, x}\right)+\Phi_{1}^{*}\left(\varkappa_{1, i, x}\right) \\
& \Psi_{i}^{*}(x)=\Phi_{2}^{*}\left(\varkappa_{2, i, x}\right)+\Phi_{1}\left(\varkappa_{1, i, x}\right)
\end{aligned}
$$

where $\varkappa_{1, i, x}, \varkappa_{2, i, x}$ are the corresponding elements of $H_{1, i} \oplus H_{2, i}$.
Define, for each $x \in X$,

$$
a^{(l)}(x)=\sum_{i=1}^{l} \Psi_{i}^{*}(x) \Psi_{i}(x)
$$

Thus, we consider the l-fold convolution of particle densities $\Psi^{*}(x) \Psi(x)$.
Then, for each $\Delta \in \mathcal{B}_{0}(X)$, we set

$$
a^{(l)}(\Delta)=\int_{\Delta} a^{(l)}(x) \sigma(d x)
$$

If we denote

$$
a_{i}^{(l)}(\Delta):=\int_{\Delta} \Psi_{i}^{*}(x) \Psi_{i}(x) \sigma(d x)
$$

then

$$
a^{(l)}(\Delta)=\sum_{i=1}^{l} a_{i}^{(l)}(\Delta)
$$

Each of the operators $a_{i}^{(l)}(\Delta)$ is clearly well defined and Hermitian in $\mathcal{A} \mathcal{F}\left(\mathcal{H}^{(l)}\right)$, and hence so is the operator $a^{(l)}(\Delta)$.

Next, for each $i \in\{1,2, \ldots, l\}$ and for any $\Delta_{1}, \Delta_{2} \in \mathcal{B}_{0}(X)$, the operators $a_{i}^{(l)}\left(\Delta_{1}\right)$ and $a_{i}^{(l)}\left(\Delta_{2}\right)$ commute, and hence so do the operators $a^{(l)}\left(\Delta_{1}\right)$
and $a^{(l)}\left(\Delta_{2}\right)$. Hence, $\left(a^{(l)}(\Delta)\right)_{\Delta \in \mathcal{B}_{0}(X)}$ is a family of commuting Hermitian operators in $\mathcal{A} \mathcal{F}\left(\mathcal{H}^{(l)}\right)$.

Completely analogously to the proof of Lemma 5.2, we get, for each $n \in \mathbb{N}$ and any $\Delta_{1}, \ldots, \Delta_{n} \in \mathcal{B}_{0}(X)$,

$$
\begin{aligned}
& \mathcal{Q}\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right) \Omega:=Q\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right)=\frac{1}{n!} \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \\
& \int_{\Delta_{n}} \sigma\left(d x_{n}\right) \Psi_{i_{n}}^{*}\left(x_{n}\right)\left(\int_{\Delta_{n-1}} \sigma\left(d x_{n-1}\right) \Psi_{i_{n-1}}^{*}\left(x_{n-1}\right)(\cdots\right. \\
& \left.\left.\quad \cdots\left(\int_{\Delta_{1}} \sigma\left(d x_{1}\right) \Psi_{i_{1}}^{*}\left(x_{1}\right) \Phi_{1}^{*}\left(\varkappa_{1, i_{1}, x_{1}}\right)\right) \cdots\right) \Phi_{1}^{*}\left(\varkappa_{1, i_{n-1}, x_{n-1}}\right)\right) \Phi_{1}^{*}\left(\varkappa_{1, i_{n}, x_{n}}\right) \Omega
\end{aligned}
$$

Hence, analogously to the proof of Lemma 5.3, we have

$$
\begin{aligned}
& \left(Q\left(\chi_{\Delta_{1}} \widehat{\otimes} \cdots \widehat{\otimes} \chi_{\Delta_{n}}\right), \Omega\right)_{\mathcal{A F}\left(\mathcal{H}^{(l)}\right)} \\
& \quad=\frac{1}{n!} \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left(\int _ { \Delta _ { n } } \sigma (d x _ { n }) \Phi _ { 1 } (\varkappa _ { 1 , i _ { n } , x _ { n } }) \left(\int_{\Delta_{n-1}} \sigma\left(d x_{n-1}\right) \Phi_{1}\left(\varkappa_{1, i_{n-1}, x_{n-1}}\right)\right.\right. \\
& \left.\quad\left(\cdots\left(\int_{\Delta_{1}}\left(d x_{1}\right) \Phi_{1}\left(\varkappa_{1, i_{1}, x_{1}}\right) \Phi_{1}^{*}\left(\varkappa_{1, i_{1}, x_{1}}\right)\right) \ldots\right) \Phi_{1}^{*}\left(\varkappa_{1, i_{n-1}, x_{n-1}}\right)\right) \\
& \left.\quad \times \Phi_{1}^{*}\left(\varkappa_{1, i_{n}}, x_{n}\right) \Omega, \Omega\right) \\
& \quad=\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \int_{\Delta_{n}} \sigma\left(d x_{n}\right) \cdots \int_{\Delta_{1}} \sigma\left(d x_{1}\right)\left\|\varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right\|_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}}^{2}
\end{aligned}
$$

Hence, the correlation measure ρ is given through

$$
\begin{align*}
& \rho^{(n)}\left(d x_{1}, \ldots, d x_{n}\right) \\
& \quad=\left(\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left\|\varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right\|_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}}^{2}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right) . \tag{5.37}
\end{align*}
$$

Analogously to Lemma 5.4, we conclude that the correlation measure given in (5.37) satisfies (LB).

Following [30] and [25], we introduce the notion of α-determinant. So
let $\alpha \in \mathbb{R}$ be fixed. For a square matrix $A=\left(a_{i j}\right)_{i, j=1}^{n}$, we define its α determinant as follows:

$$
\begin{equation*}
\operatorname{det}_{\alpha} A=\sum_{\xi \in S_{n}} \alpha^{n-\nu(\xi)} \prod_{i=1}^{n} a_{i \xi(i)} \tag{5.38}
\end{equation*}
$$

Here $\nu(\xi)$ denotes the number of cycles in ξ. Since for each $\xi \in S_{n}$

$$
\begin{equation*}
(-1)^{n-\nu(\xi)}=\operatorname{sign}(\xi), \tag{5.39}
\end{equation*}
$$

$\operatorname{det}_{-1} \mathrm{~A}$ is the usual determinant $\operatorname{det} A$, whereas $\operatorname{det}_{1} \mathrm{~A}$ is clearly the usual permanent per A.

Lemma 5.5 For any $x_{1}, \ldots, x_{n} \in X$, we have

$$
\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left\|\varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right\|_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}}^{2}=\frac{1}{n!} \operatorname{det}_{-1 / l}\left[l k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}
$$

Proof. By (5.38) and (5.39), we have

$$
\begin{align*}
\frac{1}{n!} & \mathrm{d} e t_{-1 / l}\left[l k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} \\
& =\frac{1}{n!} \sum_{\xi \in S_{n}}\left(-\frac{1}{l}\right)^{n-\nu(\xi)} l^{n} k\left(x_{1}, x_{\xi(1)}\right) \cdots k\left(x_{n}, x_{\xi(n)}\right) \\
& =\frac{1}{n!} \sum_{\xi \in S_{n}}(-1)^{n-\nu(\xi)} l^{\nu(\xi)} k\left(x_{1}, x_{\xi(1)}\right) \cdots k\left(x_{n}, x_{\xi(n)}\right) \\
& =\frac{1}{n!} \sum_{\xi \in S_{n}} \operatorname{sign}(\xi) l^{\nu(\xi)} k\left(x_{1}, x_{\xi(1)}\right) \cdots k\left(x_{n}, x_{\xi(n)}\right) . \tag{5.40}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
\sum_{i_{1}=1}^{l} & \cdots \sum_{i_{n}=1}^{l}\left\|\varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right\|_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}}^{2} \\
& =\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left(\varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}, \varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right)_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}} \\
& =\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left(\varkappa_{1, i_{1}, x_{1}} \otimes \cdots \otimes \varkappa_{1, i_{n}, x_{n}}, \varkappa_{1, i_{1}, x_{1}} \wedge \cdots \wedge \varkappa_{1, i_{n}, x_{n}}\right)_{\left(\mathcal{H}^{(l)}\right)^{\wedge n}}
\end{aligned}
$$

$$
\begin{align*}
= & \frac{1}{n!} \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \sum_{\xi \in S_{n}} \operatorname{sign}(\xi)\left(\varkappa_{1, i_{1}, x_{1}} \otimes \cdots \otimes \varkappa_{1, i_{n}, x_{n}}, \varkappa_{1, i_{\xi(1)}, x_{\xi_{1}}} \otimes\right. \\
& \left.\cdots \otimes \varkappa_{1, i_{\xi(n)}, x_{\xi(n)}}\right) \\
= & \frac{1}{n!} \sum_{\xi \in S_{n}} \operatorname{sign}(\xi) \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l}\left(\varkappa_{1, i_{1}, x_{1}}, \varkappa_{1, i_{\xi(1)}, x_{\xi(1)}}\right)_{\mathcal{H}^{(l)}} \\
& \cdots\left(\varkappa_{1, i_{n}, x_{n}}, \varkappa_{1, i_{\xi(n), x_{\xi(n)}}}\right)_{\mathcal{H}^{(l)}} \\
= & \frac{1}{n!} \sum_{\xi \in S_{n}} \operatorname{sign}(\xi) \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \delta_{i_{1}, i_{\xi(1)}} k\left(x_{1}, x_{\xi(1)}\right) \cdots \delta_{i_{n}, i_{\xi(n)}} k\left(x_{n}, x_{\xi(n)}\right) \\
= & \frac{1}{n!} \sum_{\xi \in S_{n}} \operatorname{sign}(\xi)\left(\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \delta_{i_{1}, i_{\xi(1)}} \cdots \delta_{i_{n}, i_{\xi(n)}}\right) \\
& \times k\left(x_{1}, x_{\xi(1)}\right) \cdots k\left(x_{n}, x_{\xi(n)}\right) \tag{5.41}
\end{align*}
$$

Comparing (5.40) and (5.41), we see that, in order to prove the lemma, we need to prove that, for any fixed $\xi \in S_{n}$,

$$
\begin{equation*}
\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \delta_{i_{1}, i_{\xi(1)}} \cdots \delta_{i_{n}, i_{\xi(n)}}=l^{\nu(\xi)} \tag{5.42}
\end{equation*}
$$

So, let us prove (5.42). Let $\xi \in S_{n}$ be fixed and denote $m:=\nu(\xi)$. The cycles of ξ divide the set $\{1,2, \ldots, n\}$ into m disjoint subsets, which we denote by

$$
\begin{aligned}
& \left\{u_{1}, \ldots, u_{j_{1}}\right\},\left\{u_{j_{1}+1}, \ldots, u_{j_{1}+j_{2}}\right\},\left\{u_{j_{1}+j_{2}+1}, \ldots, u_{j_{1}+j_{2}+j_{3}}\right\} \\
& \ldots,\left\{u_{j_{1}+\cdots+j_{m-1}+1}, \ldots, u_{n}\right\}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \delta_{i_{1}, i_{\xi(1)}} \cdots \delta_{i_{n}, i_{\xi(n)}} \\
& =\delta\left(i_{u_{1}}=i_{u_{2}}=\cdots=i_{u_{j_{1}}}\right) \delta\left(i_{u_{j_{1}+1}}=i_{u_{j_{1}+2}}=\cdots=i_{u_{j_{1}+j_{2}}}\right) \\
& \quad \cdots \delta\left(i_{u_{j_{1}+\cdots+j_{m-1}}}=i_{u_{j_{1}+\cdots+j_{m-1}+1}}=\cdots=i_{u_{n}}\right),
\end{aligned}
$$

where, for some condition $A, \delta(A)$ is equal to 1 if condition A is satisfied and 0 otherwise. Therefore

$$
\begin{aligned}
& \sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \delta_{i_{1}, i_{\xi(1)}} \cdots \delta_{i_{n}, i_{\xi(n)}} \\
& =\sum_{i_{1}=1}^{l} \cdots \sum_{i_{n}=1}^{l} \delta\left(i_{u_{1}}=i_{u_{2}}=\cdots=i_{u_{j_{1}}}\right) \delta\left(i_{u_{j_{1}+1}}=i_{u_{j_{1}+2}}=\cdots=i_{u_{j_{1}+j_{2}}}\right) \\
& \quad \cdots \delta\left(i_{u_{j_{1}+\cdots+j_{m-1}}}=i_{u_{j_{1}+\cdots+j_{m-1}+1}}=\cdots=i_{u_{n}}\right) \\
& =\sum_{i_{u_{1}}=1}^{l} \sum_{i_{u_{j_{1}+1}}=1}^{l} \cdots \sum_{i_{u_{j_{1}}+\cdots+j_{m-1}+1}=1}^{l} 1 \\
& =l^{m}
\end{aligned}
$$

Thus, we have proved the following theorem (compare with [25]).
Theorem 5.2 For the family $\left(a^{(l)}(\Delta)\right)_{\Delta \in \mathcal{B}_{0}(X)}$, the statement of Theorem 4.1 holds with the correlation measure given by

$$
\rho^{(n)}\left(d x_{1}, \ldots, d x_{n}\right)=\frac{1}{n!} \operatorname{det}_{-1 / l}\left[l k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n}
$$

Let us show that the measure derived in Theorem 5.2, which we denote by $\mu^{(l)}$, is indeed an l-fold convolution of fermion measure μ with kernel $k(x, y)$. We will give a direct proof of this result using correlation functions and without appealing to the formula of the Laplace transform of this measure given in [25].

Let us first consider a probability measure μ on $(\Gamma, \mathcal{B}(\Gamma))$ whose correlation measure ρ satisfies (LB) and such that

$$
\rho^{(n)}\left(d x_{1}, \ldots, d x_{n}\right)=\frac{1}{n!} \kappa^{(n)}\left(x_{1}, \ldots, x_{n}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right)
$$

(recall that $\kappa^{(n)}$ are called correlation functions of μ). The l-fold convolution of μ is defined by

$$
\mu^{* l}(A)=\int_{\Gamma^{l}} \chi_{A}\left(\gamma_{1} \cup \gamma_{2} \cdots \cup \gamma_{l}\right) \mu\left(d \gamma_{1}\right) \cdots \mu\left(d \gamma_{l}\right)
$$

where $A \in \mathcal{B}(\Gamma)$. (It is easy to see that $\mu^{* l}$ is well-defined). Let us find the correlation functions of $\mu^{* l}$. Let $\varphi \in C_{0}(X)$. Then

$$
=\frac{1}{n!} \int_{X^{n}} \varphi^{\otimes n}\left(x_{1}, \ldots, x_{n}\right)\left(\sum_{\substack{k_{1}, \ldots, k_{l}=0, \ldots, n \\ k_{1}+\cdots+k_{l}=n}} \frac{n!}{k_{1}!k_{2}!\cdots k_{l}!} \kappa^{\left(k_{1}\right)}\left(x_{1}, \ldots, x_{k_{1}}\right)\right.
$$

$$
\left.\kappa^{\left(k_{2}\right)}\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right) \cdots \kappa^{\left(k_{l}\right)}\left(x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right)\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{n}\right)
$$

Therefore, the correlation functions of the measure $\mu^{* l}$, which we denote

$$
\begin{aligned}
& \int_{\Gamma} \sum_{\left\{x_{1}, \ldots, x_{n}\right\} \subset \gamma} \varphi^{\otimes n}\left(x_{1}, \ldots, x_{n}\right) \mu^{* l}(d \gamma) \\
& =\int_{\Gamma^{l}} \sum_{\left\{x_{1}, \ldots, x_{n}\right\} \subset \gamma_{1} \cup \ldots \cup \gamma_{l}} \varphi^{\otimes n}\left(x_{1}, \ldots, x_{n}\right) \mu\left(d \gamma_{1}\right) \cdots \mu\left(d \gamma_{l}\right) \\
& =\int_{\Gamma^{l}} \sum_{\substack{k_{1}, \ldots, k_{l}=0, \ldots, n \\
k_{1}+\cdots+k_{l}=n}} \sum_{\left\{x_{1}, \ldots, x_{k_{1}}\right\} \subset \gamma_{1}} \sum_{\left\{x_{k_{1}+1}, \ldots, x_{k_{1}}+k_{2}\right\} \subset \gamma_{2}} \\
& \cdots \sum_{\left\{x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right\} \subset \gamma_{l}} \varphi^{\otimes n}\left(x_{1}, \ldots, x_{n}\right) \mu\left(d \gamma_{1}\right) \cdots \mu\left(d \gamma_{l}\right) \\
& =\sum_{\substack{k_{1}, \ldots, k_{1}=0, \ldots, n \\
k_{1}+\cdots+k_{l}=n}} \int_{\Gamma_{\substack{ \\
\left\{x_{1}, \ldots, x_{k_{1}}\right\} \subset \gamma_{1}}} \varphi^{\otimes k_{1}}\left(x_{1}, \ldots, x_{k_{1}}\right) \mu\left(d \gamma_{1}\right), ~} \\
& \times \int_{\Gamma} \sum_{\left\{x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right\} \subset \gamma_{2}} \varphi^{\otimes k_{2}}\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right) \mu\left(d \gamma_{2}\right) \ldots \\
& \ldots \int_{\Gamma} \sum_{\left\{x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right\} \subset \gamma_{l}} \varphi^{\otimes k_{l}}\left(x_{k_{1}+\cdots+k_{n-1}+1}, \ldots, x_{n}\right) \mu\left(d \gamma_{l}\right) \\
& =\sum_{\substack{k_{1}, \ldots, k_{l}=0, \ldots, n \\
k_{1}+\cdots+k_{l}=n}} \frac{1}{k_{1}!} \int_{X^{k_{1}}} \varphi^{\otimes k_{1}}\left(x_{1}, \ldots, x_{k_{1}}\right) \kappa^{\left(k_{1}\right)}\left(x_{1}, \ldots, x_{k_{1}}\right) \sigma\left(d x_{1}\right) \cdots \sigma\left(d x_{k_{1}}\right) \\
& \times \frac{1}{k_{2}!} \int_{X^{k_{2}}} \varphi^{\otimes k_{2}}\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right) \kappa^{\left(k_{2}\right)}\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right) \\
& \sigma\left(d x_{k_{1}+1}\right) \cdots \sigma\left(d x_{k_{1}+k_{2}}\right) \\
& \cdots \times \frac{1}{k_{l}!} \int_{X^{k_{l}}} \varphi^{\otimes k_{l}}\left(x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right) \kappa^{\left(k_{l}\right)}\left(x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right) \\
& \sigma\left(d x_{k_{1}+\cdots+k_{l-1}+1}\right) \cdots \sigma\left(d x_{n}\right)
\end{aligned}
$$

by $\kappa_{\mu^{* l}}^{(n)}$, are given by

$$
\begin{align*}
\kappa_{\mu^{* l}}^{(n)} & \left(x_{1}, \ldots, x_{n}\right) \\
= & \sum_{\substack{k_{1}, \ldots, k_{l}=0, \ldots, n \\
k_{1}+\cdots+k_{l}=n}} \frac{n!}{k_{1}!k_{2}!\cdots k_{l}!}\left(\kappa^{\left(k_{1}\right)}\left(x_{1}, \ldots, x_{k_{1}}\right)\right. \\
& \left.\quad \times \kappa^{\left(k_{2}\right)}\left(x_{k_{1}+1}, \ldots, x_{k_{1}+k_{2}}\right) \cdots \kappa^{\left(k_{l}\right)}\left(x_{k_{1}+\cdots+k_{l-1}+1}, \ldots, x_{n}\right)\right)^{\sim} \tag{5.43}
\end{align*}
$$

where $(\cdot)^{\sim}$, as above, denotes the symmetrization of a function.
Since the correlation functions $\kappa^{(n)}$ are symmetric functions, we may treat the sequence of correlation functions $\left(\kappa^{(n)}\right)_{n=0}^{\infty}$ (where $\kappa^{(0)}=1$) as a function κ on $\Gamma_{X, 0}$ (compare with Chapter 3). Then, formula (5.43) takes the following form

$$
\begin{equation*}
\kappa_{\mu^{* l}}(\eta)=\sum_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{l}\right) \in P_{l}(\eta)} \kappa\left(\eta_{1}\right) \kappa\left(\eta_{2}\right) \cdots \kappa\left(\eta_{l}\right) \tag{5.44}
\end{equation*}
$$

where $P_{l}(\eta)$ denotes the set of all ordered partition of η into l parts (again compare with Chapter 3).

Proposition 5.1 Let $\mu^{(l)}$ be the probability measure on $\left(\Gamma_{X}, \mathcal{B}\left(\Gamma_{X}\right)\right)$ which has correlation function given by

$$
\kappa_{\mu^{l l}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}_{-1 / l}\left[l k\left(x_{i}, x_{j}\right)\right]_{i, j=1}^{n} .
$$

Then $\mu^{(l)}$ is the l-fold convolution of fermion point processes μ corresponding to the kernel $k(x, y)$ as in Section 5.1.

Proof. By (5.40), we have

$$
\begin{equation*}
\kappa_{\mu^{(l)}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi \in S_{n}} \operatorname{sign}(\xi) l^{\nu(\xi)} \kappa\left(x_{1}, x_{\xi(1)}\right) \ldots \kappa\left(x_{n}, x_{\xi(n)}\right) . \tag{5.45}
\end{equation*}
$$

On the other hand, by (5.44),

$$
\kappa_{\mu^{*}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{l}\right) \in P_{l}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)} \kappa_{\mu}\left(\eta_{1}\right) \kappa_{\mu}\left(\eta_{2}\right) \cdots \kappa_{\mu}\left(\eta_{l}\right),
$$

where

$$
\kappa_{\mu}\left(\left\{y_{1}, \ldots, y_{m}\right\}\right)=\sum_{\xi \in S_{m}}(-1)^{m-\nu(\xi)} \kappa\left(y_{1}, y_{\xi(1)}\right) \ldots \kappa\left(y_{m}, y_{\xi(m)}\right)
$$

Therefore,

$$
\begin{equation*}
\kappa_{\mu(l)}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi \in S_{m}}(-1)^{m-\nu(\xi)} N_{l}(\nu(\xi)) \kappa\left(x_{1}, x_{\xi(1)}\right) \ldots \kappa\left(x_{n}, x_{\xi(n)}\right) \tag{5.46}
\end{equation*}
$$

where, for $m \in\{0,1,2, \ldots\}, N_{l}(m)$ denotes the number of all possible ordered partitions of a set consisting of m elements into l parts. Thus,

$$
\begin{aligned}
N_{l}(m) & =\sum_{\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right) \in P_{l}\left(\left\{x_{1}, \ldots, x_{m}\right\}\right)} 1 \\
& =\sum_{\substack{k_{1}, \ldots, k_{l}=0, \ldots, n \\
k_{1}+\cdots+k_{l}=m}}\binom{n}{k_{1} k_{2} \ldots k_{l}} \\
& =l^{m} .
\end{aligned}
$$

Hence, by (5.46)

$$
\begin{equation*}
\kappa_{\mu^{* l}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{\xi \in S_{n}} \operatorname{sign}(\xi) l^{\nu(\xi)} \kappa\left(x_{1}, x_{\xi(1)}\right) \cdots \kappa\left(x_{n}, x_{\xi(n)}\right) . \tag{5.47}
\end{equation*}
$$

Comparing (5.47) with (5.45), we conclude from Theorem 3.1 (see also Remark 3.1) that the proposition is proven.

Bibliography

[1] H. Araki, On quasifree states of CAR and Bogoliubov automorphisms, Publ. RIMS Kyoto Univ. 6 (1970/71), 385-442.
[2] H. Araki and E. Woods, Representations of the C.C.R. for a nonrelativistic infinite free Bose gas, J. Math. Phys. 4 (1963), 637-662.
[3] H. Araki and W. Wyss, Representations of canonical anticommutation relation, Helv. Phys. Acta. 37 (1964), 136-159.
[4] C. Barnett, R. F. Streater, and I. F. Wilde, Quasi-free quantum stochastic integrals for the CAR and CCR, J. Funct. Anal. 52 (1983), 19-47.
[5] Y. M. Berezansky and Y. G. Kondratiev, "Spectral Methods in Infinite Dimensional Analysis," Kluwer Acad. Publ., Dordrecht/Boston/London, 1994.
[6] Y. M. Berezansky, Y. G. Kondratiev, T. Kuna, and E. Lytvynov, On a spectral representation for correlation measures in configuration space analysis, Methods Funct. Anal. Topology 5 (1999), no. 4, 87-100.
[7] Y. M. Berezansky, Z. G. Sheftel, and G. F. Us, "Functional Analysis, Vol. 1", Birkhäuser Verlag, Basel, 1996.
[8] R. Dashen and D. H. Sharp, Currents as coordinates for hadrons, Phys. Rev. 165 (1968), 1857-1867.
[9] G. F. Dell'Antonio, Structure of the algebra of some free systems, Comm. Math. Phys. 9 (1968), 81-117.
[10] H.-O. Georgii and H. J. Yoo, Conditional intensity and Gibbsianness of determinantal point processes, J. Stat. Phys. 118 (2005), 55-84.
[11] A. Girard, Current algebras of free systems at finite temperature, J. Math. Phys. 14 (1973), 353-365.
[12] G. A. Goldin, Nonrelativistic current algebras as unitary representations of groups, J. Math. Phys. 12 (1971), 462-487.
[13] G. A. Goldin, R. Menikoff and D. H. Sharp, Particle statistics from induced representation of a local current froup, J. Math. Phys. 21 (1980), 650-664.
[14] O. Kallenberg, "Random Measures", Akademie-Verlag, Berlin; Academic Press, London/New York, 1976.
[15] Y. G. Kondratiev and T. Kuna, Harmonic analysis on the configuration space I. General theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002), 201-233.
[16] A. Lenard, States of classical statistical mechanical systems of infinitely many particles. I, Arch. Rational Mech. Anal. 59 (1975), 219-239.
[17] A. Lenard, States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures, Arch. Rational Mech. Anal. 59 (1975), 241-256.
[18] A. Lenard, Correlation functions and the uniqueness of the state in classical statistical mechanics, Commun. Math. Phys. 30 (1972), 35-44.
[19] E. Lytvynov, Fermion and boson random point processes as partcle distributions of infinite free fermi and bose gases of finite density, Rev. Math. Phys. 14 (2002), 1073-1098.
[20] E. Lytvynov and L. Mei, On the correlation measure of a family of commuting Hermitian operators with applications to particle densities of the quasi-free representations of the CAR and CCR, J. Funct. Anal. 245 (2007), 62-88.
[21] O. Macchi, The coincidence approach to stochastic point processes, $A d v$. Appl. Prob. 7 (1975), 83-122.
[22] R. Menikoff, The Hamiltonian and generating functional for a nonrelativistic local current algebra, J. Math. Phys. 15 (1974), 1138-1152.
[23] R. Menikoff, Generating functionals determining representations of a nonrelativistic local current algebra in the N / V limit, J. Math. Phys. 15 (1974), 1394-1408.
[24] M. Reed and B. Simon, "Methods of Modern Mathematical Physics. Vol. II, Fourier Analysis, Self-Adjointness", Academic Press, New York, 1975.
[25] T. Shirai and Y. Takahashi, Random point fields associated with certain Fredholm determinants I: fermion, Poisson and boson point processes, J. Funct. Anal. 205 (2003), 414-463.
[26] G. F. Simmons, "Introduction to Topology and Modern Analysis", McGraw-Hill, New York, 1963.
[27] A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55 (2000), 923-975.
[28] H. Tamura and K. R. Ito, A canonical ensemble approach to the fermion/boson random point processes and its applications, Comm. Math. Phys. 263 (2006), 353-380.
[29] H. Tamura and K. R. Ito, Random point fields for para-particles of any order, J. Math. Phys. 48 (2007), no. 2, 023301, 14 pp.
[30] D. Vere-Jones, A generalization of permanents and determinants, Linear Algebra Appl. 111 (1988), 119-124.

