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Abstract

This dissertation is devoted to problems of existence and physical interpreta

tion of some point processes. In the first part of the dissertation, we introduce 

the notion of the correlation measure of a family of commuting Hermitian 

operators. Let X  be a locally compact, second countable Hausdorff topo

logical space. We consider a family of commuting Hermitian operators a{A) 

indexed by all measurable, relatively compact sets A in X .  For such a fam

ily, we introduce the notion of a correlation measure and prove that, if this 

correlation measure exists and satisfies some condition of growth, then there 

exists a point process over X  having the same correlation measure (in the 

sense of the classical theory of point processes). Furthermore, the operators 

a(A) can be realised as multiplication operators in the L2-space with respect 

to this point process. In particular, our result extends the criterion of ex

istence of a point process from [6 , 15], to the case of the topological space 

X , which is a standard underlying space in the theory of point processes. In 

the second part of the dissertation, we consider some important applications 

of our general results. We discuss particle densities of the quasi-free repre

sentation of the CAR and CCR, which lead to fermion (determinantal), and 

boson (permanental) point processes. We also discuss convolutions of these 

particle densities, which lead to point processes whose correlation functions 

are given through the Vere-Jones ^-determinants.
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Chapter 1

Introduction

This dissertation is devoted to problems of existence and physical interpre

tation of some point processes.

First we choose an underlying space. Let X  be a locally compact, second 

countable Hausdorff topological space. (Although in most applications one 

can choose X  to be the Euclidean space Rd, it is important to treat the 

general case of a topological space.) We denote by T* the space of all locally 

finite sets (configurations) in X.  One usually identifies a configuration with 

a Radon measure which has atoms at the points of the configuration. Using 

this identification, one defines the vague topology on and thus gets the 

Borel <T-algebra B(Tx)- A point process in A  is a probability measure on 

( rx ,# ( rx ) ) -  From the point of view of classical statistical mechanics, point 

processes describe infinite (generally speaking, interacting) particle systems 

in continuum.

In the study of point processes, their correlation measures (respectively 

correlation functions) play a crucial role. Denote by Tx.o the subset of Tx  

consisting of all finite configurations in X .  Following Lenard [17] and Kon

dratiev and Kuna [15], we introduce the so-called /C-transform as follows:
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Let G : Tx.o —> K, G ^  0, then we set

(KG)(7) : = E GW ’

where 77 <e 7  denotes that 77 is a finite subset of 7 . Furthermore, for an 

arbitrary function G : T^o -> K  we set

where G+ := max{G, 0 }, G~ := max{—G, 0 }, and at least one of the values 

(/CG+)(7 ) and (/CG_)(7 ) is finite. Thus, the /C-transform maps functions on 

the space of finite configurations, rx.o, into functions on the space of (infinite) 

configurations, T x . This map has many nice propertities, in particular, it 

maps measurable functions on Tx.o into measurable functions on Tx- One 

says that a measure p on Tx.o is the correlation measure of a point process 

p  if, for each G : Tx.o ~ G  ^  0, measurable, we have

Note that the space T x ,0 has a much simpler structure than Tx, since 

rx.o is, in fact, an (infinite) union of finite-dimensional spaces:

(KG)(7) := (ICG+)(7 ) -  (/CG-)(7)

f  G{ri)p{drj) =f  (KG)('f)p(d'y) 
Jrx,o J tx

( 1 .1)

Equation (1.1) may be interpreted as

p =  /C > .

00

71 —  0

where is the space of all 72-point configurations in X .  Therefore, a 

measure on Tx.o is a much simpler object than a measure on Tx-
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Let a be a Radon, non-atomic measure on X .  One can naturally define 

the measure a(dx\) • • • cr(dxn) on and then one defines the Lebesgue— 

Poisson measure A on (with intensity a) as follows:
oo ^

A =  e0 +  V '  — x r(n)a{dxi) • • • a(dxn).
n\  x

n—1

Assume that a correlation measure p on has density k, with respect 

to the Lebesgue-Poisson measure A. Then, «(0 ) =  1 and the restriction 

of k to U “=i may be identified with a sequence of functions ( « ^ ) 5JLi, 

where each is a symmetric function on X n (defined a.e.). The functions 

(K{n))n= 1 are called the correlation functions of the point process. (Let us 

remark that, although we will initially deal with correlation measures, in any 

reasonable application, the point process has correlation functions, i.e., the 

correlation measure is absolutely continuous with respect to the Lebesgue- 

Poisson measure.)

It was shown by Lenard [17] that, under a very mild assumption on the 

correlation measure, it uniquely characterises a point process. Furthermore, 

Lenard [17] and Macchi [21] proposed conditions which are sufficient for a 

given measure p on r^ o  to be the correlation measure of a point process, i.e., 

they gave a solution to the problem of existence of point processes through 

a correlation measure.

Kondratiev and Kuna [15] treated the /C-transform as an analogue of the 

Fourier transform over the configuration space. They defined a ★-convolution 

of functions on Fx,o so that

K{G\  * G2) =  K,G\ • /CG2.

If p is the correlation measure of a point processes /i, then

/  (G* G)( V)p(dri)= [  K (G *G )(7)M *r)
drx,0 drx



=  [  ( £ £ ) 2 ( 7 ) / ^ 7 )  ^  0 ,

J t x

and therefore the measure p is ★-positive definite:

f  ( G * G){rt)p{dri) Js 0 . (1 .2 )

By using the condition of ★-positive definiteness (which is weaker than 

Lenard’s and Macchi’s conditions), an analogue of the Bochner theorem for 

point processes was proved by Kondratiev and Kuna [15], in the case where 

X  is a smooth Riemannian manifold. A spectral approach to this construc

tion, together with an important refinement of the local bound satisfied by 

a measure p, was proved by Berezansky et al [6 ].

We should stress that, in both papers [15] and [6], the assumption that X  

be a smooth Riemannian manifold was crucial, due to the use of the Minlos 

theorem in [15], and the projection spectral theorem in [6 ].

The main difficulty about the existence of a point process through the 

results of [15, 6 ] is that, given a measure p on IV,o which is to be shown to 

be a correlation measure, it is very hard to check that p indeed satisfies the 

condition of ★-positive definiteness (1 .2 ).

So, the main idea of the present work is to start with a special family of 

commuting Hermitian operators, rather than with a measure p.

In the first part of this dissertation we introduce the notion of the cor

relation measure of a family of commuting Hermitian operators. It should 

be stressed that not every family of commuting Hermitian operators pos

sesses the correlation measure. However, if a family of such operator does 

possess a correlation measure p, then under a weak additional assumption, 

this measure p is the correlation measure of a point process. It appears in 

our approach that p automatically satisfies the condition of ★-positive defi

niteness.
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It may appear that we have formally replaced the hard problem of check

ing the condition of *-positivity by the hard problem of proving that a given 

family of commuting Hermitian operators possesses a correlation measure. 

But we show in the second part of this dissertation that this is not always 

so, and that there are families of commuting Hermitian operators for which 

the existence of correlation measure is physically motivated. So, what one 

really needs to do in this case is to show that the heuristic physical arguing 

may be given a rigorous mathematical meaning.

The dissertation is organised as follows. In Chapter 2 we present some 

preliminaries from functional analysis which are used in the work. In Chapter 

3, we discuss in detail the spaces of infinite and finite configurations, the /C- 

transform, correlation measures, and ^-convolution. We also recall Lenard’s 

results on the uniqueness and existence of point processes.

In Chapter 4, we discuss a general theorem on the existence of a point 

process through a family of commuting Hermitian operators. More precisely, 

we consider a family of commuting Hermitian operators A  — {a(A))AeBQ(x) 

indexed by all measurable, relatively compact sets A in X .  We define a 

class S  of “simple” functions on Tx,o and introduce (corresponding to A)  

Hermitian operators (Q(G))ces so  that

(Q(G1* G 2) = Q{G1)Q(G2).

We fix a vector Q, and assume that there exists a measure p on such 

that

(Q(G)Cl, Cl) = [  G(r,)p(dri).

We then call p the c.orrelation measure of the family *4. We have

[  (G* G)p(dri) = (Q(G*  G)n, fi)

10



=  (Q(G)Q(G)Qi Q) 

= (Q(G)n, Q(G)Q)>  0 ,

so that the measure p is ★-positive definite. We prove that, if the family A  

possesses a correlation measure that satisfies some condition of growth, then 

there exists a point process /x, whose correlation measure is p. Furthermore, 

the operators a(A) can be realised as multiplication operators in L2(Rv,/x). 

Thus, p  can be thought of as the spectral measure of the family A  [5]. As 

a corollary, we extend the criterion of existence of a point process proved 

in [15, 6] to the case of a general topological space X , which is a standard 

underlying space in the theory of point processes (see e.g. [14]).

In Chapter 5, we consider an important application of the result from 

Chapter 4. This application has its origin in mathematical physics.

Recall that the nonrelativistic quantum mechanics of many identical par

ticles may be described by means of a field 4/(;c), x  E Rd, satisfying either 

canonical commutation relations (CCR) and describing bosons:

[tf*(x), ^ ( 2/)]- =  6{x -  y) 1, (1.3)

or satisfying canonical anticommutation relations (CAR) and describing fermions:

[*(*). tf(j/)]+ =  [**(*). tf*(l/)]+ =  0 ,

^ ( 1/)]+ =  S(x -  y)X, (1.4)

Here, [A, B]T = A B  B A  is the commutator (anticommmutator respec

tively). The statictics of the system is thus determined by the algebra which

is to be represented.

In the formulation of nonrelativistic quantum mechanics in terms of par-
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tide densities and currents, one defines 

a(x) : =

J(x)  : =  (2?)-1(^*(a;)V ^(2;) -  (V 'T  (x))tf(x)). (1 .5 )

Using CCR or CAR, one can formally compute the commutation relations 

satisfied by the smeared operators a(f)  := f Rd dx f(x)a(x)  and J(v) := 

f Rd dxv(x)  • J(x).  These turn out to be

[a ( /i) ,a ( /2)]_ =  0 ,

[a(/), J(u)]_ = ia(v-  V /) ,

[J(vi), J(v2)\- = - i J ( v i • V v 2 -  v2 • Vui), (1 .6 )

independently of whether one starts with CCR or CAR.

Thus, in a nonrelativistic current theory, the statistics of particles is not 

determined by a choice of algebra, but instead may be determined by a choice 

of a representation of the algebra, see e.g. [8 , 12, 13] and the references 

therein.

It follows from (1.6) that the operators a(f)  form a family of commuting 

Hermitian operators. Note also that one can consider a more general case 

of field operators ^ (x ), where x  G X  with X  being a topological space 

as above. Then the CCR, respectively CAR, may be easily generalised, and 

again the particle densities a(x) := ^*(x )^ (x )  lead to a family of commuting 

Hermitian operators

a(A) := f  a(x)a(dx), A £ Bo(X).
J  A

Let G ^  be a function from S  such that G^n\r]) =  0 if the number of 

points in the configuration 77 is not n.  Then one can heuristically prove that

Q ( G ? W )  = _ L  f  a ( d x i )  ■ • • a ( d x n) G ( n ) ( { x i , . . . ,  x n })
n\  J X n

12



x 'r (x n )  • • • ’P*(ii)^(a;1) • • • 9{xn). (1.7)

The product

is usually called a normal product. Thus, by (1.7), the family (a(A))AeBo{x) 

has a correlation measure and the corresponding correlation functions are 

given by

k^ \ x u =  (#*(*„) • ■ ■ fi),

To the best of our knowledge, heuristic arguments of such kind were first 

given by Menikoff in [22], see also [23].

So, in Section 5.1, we mathematically realise this idea in the case of 

fermion (determinantal), and boson (permanental) point processes. These 

processes were introduced by Girard [11], Menikoff [23], and Macchi [21], 

and have been actively studied during the past years, see e.g. [10, 27, 25, 28] 

and the references therein.

So, we start with a quasi-free representation of the CAR (CCR respec

tively), see e.g. [1 , 2 , 9]. Such a representation is completely characterised 

by a linear, bounded, Hermitian operator K  in L2(X, a) which satisfies 

0 < K  < 1 in the fermion case, and K  > 0 in the boson case. In the 

case where X  — R d and A  is a convolution operator, it has been already 

shown by Lytvynov in [19] that the corresponding particle density has a 

fermion (boson, respectively) point process as its spectral measure.

We treat the most general case of the space X  and the operator K.  

The latter operator is only assumed to be locally of trace class, which is 

a necessary assumption for finite correlations. The main mathematical (as

13



well as physical) challenge here is to show that all heuristic arguments coming 

from physics indeed have a precise mathematical meaning. We observe that 

K  automatically appears to be an integral operator, and furthermore, with 

our approach, we do not even have to additionally discuss the problem of 

the choice of a version of the kernel k (xJy) of the operator K,  compare with 

[27, Lemma 1] and [10, Lemma A4]. Thus, we, in particular, show that any 

fermion process corresponding to a Hermitian operator K  can be thought 

of as the spectral measure of the family of operators which represent the 

particle density of a quasi-free representation of the CAR. Though all our 

results hold in the case where the operator K  acts in the complex Hilbert 

space L2(X  —> C,<j), for simplicity of presentation we only deal with the 

case where K  acts in the real space L2(X, a).

Finally in Section 5.2, we consider an Lfold convolution (I ^  2 ) of particle 

densities ^f*(x)^(x)  from Section 5.1. The corresponding smeared opera

tors (a^(A))AeEoW f°rm a family of commuting Hermitian operators. The 

corresponding correlation functions are represented through the Vere-Jones 

a-determinants, which generalise usual determinants and permanents. Thus, 

the family (a®(A))AeB0(x) is shown to satisfy the assumptions of our main 

theorem of Chapter 4 and leads to a corresponding point process. These 

processes appear to be from the class of point processes discussed by Shirai 

and Takahashi in [25]. Recall also that it was shown by Tamura and Ito 

in [28, 29] that, in the case X  = Rd, the point processes derived in Section

5.2 describe para-fermions (para-bosons respectively), where the number of 

convolution, I, corresponds to the order of these particles.

The main results of this dissertation are published in [20].
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Chapter 2

Some preliminaries from  

functional analysis

In this chapter, we will briefly recall some definitions and results of Functional 

Analysis which we will need in our work. For details, we refer e.g. to [5, 7].

2.1 Bounded operators

For any Hilbert spaces H\ and H2, we denote by 13(Hi,H2) the set of all 

bounded linear operators from Hi into H2. As usual we denote 13(H) := 

B(H,H).

We will always assume that all the Hilbert spaces we consider are sepa

rable, i.e., they possess a countable dense subset. Also, if it is not explicitly 

stated, we will deal with complex Hilbert spaces.

Integral operators: Let (X, A,  cr) be a measure space with cr-finite measure 

<r. An operator K  G B(L2(X  —> C, cr)) is called an integral operator if there 

exists a measurable function k : X 2 —> C such that

(KF)(x)  — [  k(x ,y)f (y)a(dy) ,  /  G L2( X C ,  cr).
J x

15



The function k (x , y) is called the kernel of the operator K.

Hilbert-Schmidt operators: An operator T  € 13(H) is a Hilbert-Schmidt 

operator if there exists an orthonormal basis { c n } ^  of H  such that

oo

E  l l T e " l | 2  <  ° o -  t 2 - 1 )
7 1 = 1

In the latter case, the inequality (2.1) holds for any orthonormal basis { e n } ^  

in H  and furthermore, the value ll^en | |2 ls independent of the choice

of an orthonormal basis {enJ-JJLp

For T  E 13(H), let T* denote the adjoint operator of T. Then, T  is a 

Hilbert-Schmidt operator if and only if T* is a Hilbert-Schmidt operator 

and oo oo
E ||Te»||2 = E l™l2
7 1 = 1  7 1 = 1

for any orthonormal bases {en}™=1 and { /n}^Li of H.

In the case where H  = L2(X  —» C, <r), an operator K  is Hilbert-Schmidt 

if and only if K  is an integral operator and k E L 2( X 2 —► C,cr®2), where k 

is the kernel of A". In fact, one has

OO « /»

E l l Te"Hi2(x,<r) =  /  /  \k(x,y)\2a(dx)<j{dy)
7 1 = 1  ' * X

for any orthonormal basis {cn}^=1 of L 2(X  —> C, cr).

An operator T  E 13(H) is called a trace class operator if it can be rep

resented as T  — 5^2=i AkBk, where n  E N and . . . ,  An, B i , . . . ,  B n are 

Hilbert-Schmidt operators. If T  is a trace class operator and { e n } ^  is an 

orthonormal basis in iJ, then the series Y^™=i(Ten, en)n  converges absolutely 

and its value, called the trace of the operator T, is independent of the choice 

of orthonormal basis.

16



2.2 Bochner integration

Let (X , A, cr) be a measure space with a cr-finite measure. We want to define 

an integral Jx  f (x )a (d x ), where f  : X  —> E  and E  is a Banach space.

Bochner’s idea of construction of such an integral was to generalise the 

construction of the Lebesgue integral, i.e., the case where E  is either R or C. 

A function /  : X  —> E  is called simple if

n

f(x) =  E c*Xa„(z), (2.2)
k= 1

where ck E E, A i , . . . ,  An E A  mutually disjoint, and

m ax{a(A i),. . . ,  <r(An)} < oo.

Then

II/(*)II =  £ | W I W * )
fc=l

is a simple, real-valued function on X.

A function /  : X  —> E  is called strongly measurable if there exists a 

sequence of simple functions, ( /n)5JLi, such that

lim ||/„0r) -  / ( s )  || =  0 a-a.e. (2.3)
n—► oo

For a simple function /  : X  —> E  of the form (2.2), the Bochner integral 

is defined by

cka( A*).

Next, let /  be an arbitrary strongly measurable function and let ( /n)£Li

be a sequence of simple functions satisfying (2.3). Then ||/n — / | |  is a non

negative measurable function on X , and so the integral

[  \ \ fn(x)  -  f(x)\\a(dx)
J x

17
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is well-defined. Assume that

/  \ \ fn{x)  -  f{x)\\a(dx) 0  as n  —► oo.
J x

Then, one can show that the sequence ^ Jx  f n(x)a(dx)Sj  is a Cauchy se

quence in E. Therefore, it has a limiting element in E.

We then say that /  is Bochner-integrable and f x  f (x )a(dx)  is the Bochner 

integral of / .

One can show that f x  f(x)cr(dx) does not depend on the choice of ap

proximating sequence. In fact, the following theorem holds, see e.g. [7].

Theorem  2.1 A strongly measurable function f  : X  —> E  is Bochner- 

integrable if and only if f x  \\f(x)\\a(dx) < oo.

2.3 Unbounded operators

The aim of this section is to recall the reader some notions connected with 

unbounded operators. Let us note that we do not aim to recall all the defi

nitions and constructions we are using, but we rather refer to textbooks on 

functional analysis, like e.g. [7]. So let H  be a Hilbert space. A linear opera

tor A  with domain D(A),  usually denoted by (A, D(A)), is called symmetric 

if, for any f , g  e  D{A)

(A f ,g )H = ( /, Ag)H.

If additionally, the domain D(A)  is dense in 17, the operator A  is called 

Hermitian.

If (A, D(A)) is a linear operator with dense domain D(A)  in 17, then we 

define D(A*) as the set of those g E 17 for which there exists g* E 77 such 

that

( A / , 9 ) h  =  ( / , 9 * ) h , for all /  G D(A).

18



In this case we call D(A*) the domain of the adjoint operator A* and we set 

A*g =  g*.

An operator (.A ,D (A )) is called self-adjoint if (A,D(A)) = (A*,£>(A*)), 

i.e., the operator A  coincides with its adjoint.

For an operator (A,D(A)),  the set

is called the graph of the operator A.

If r ,4 is a closed subset of H  x H, then the operator A  is called closed.

the case, i.e., if f  a is a graph of a linear operator, then we call (A, D(A)) a 

closable operator and the corresponding operator defined by f  a is called the 

closure of (A, D(A)),  denoted by (A, D(A)).

One may show that any Hermitian operator is closable. However, the 

closure of such an operator is not necessarily a self-adjoint operator.

If this closure is self-adjoint, then we say that (A, D (A )) is an essentially 

self-adjoint operator.

In applications we are mostly given not self-adjoint operators, but Her

mitian operators. Then, if one is able to prove that such an operator is 

essentially self-adjoint, then, by closing the operator (A, D(A)),  one derives 

a self-adjoint operator.

T h eo rem  2 .2  (N elson’s an a ly tic  vec to r c rite rio n ) Let (A, D(A)) be a 

Hermitian operator in H. A vector f  G D(A) is called analytic (for A)  if, 

for each n G N, /  G D(An), and

TA : = { ( f , A f ) \ f e D ( A ) } c H x H

If this is not the case, then one may take the closure Fa of Fa in H  x H. 

However, Fa may happen not to be a graph of a linear operator, i.e., there 

may exist vectors ( /, <?i) and (/, #2) m Fa such that g\ 7  ̂ #2- If this is not

n = 1
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for some t > 0. I f  there is a subset ID C D(A) such that D is dense in H

and each f  G D is analytic for A, then the operator (A , D(A)) is essentially

self-adjoint.

Let (X, A)  be a measurable space. A mapping

A  3  a  E{a)  G B(H)  

is called a resolution of the identity if the following conditions are satisfied:

• For each a  e  A, E(a)  is an orthogonal projection in H.

• E ( 0 )  =  0, E (X )  = 1.

• If olu G A, n  G N , an are mutually disjoint, then for each

f e H
oo oo

^(U
n—1 n =  1

where the series converges in H.

It follows from the definition of resolution of the identity that for any 

vectors f , g e H , the mapping

A  3 a  i-> (E ( a ) f ,g ) H

is a signed measure on (A, A).

To any self-adjoint operator (A,D(A)),  there corresponds a unique reso

lution of the identity over (R ,#(R )) such that

A = [  XdE(X).  (2.4)
Jr

The equality (2.4) should be understood as follows:

D ( A )  - { f e H \  f  A2 d(E(X)f,  f ) „  < oo} (2.5)
JR
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and for any /  £ D(A)  and g £ H

(A f tg)H = [  A d (E ( \ ) f ,  g)H. (2.6)
J R

Furthermore, the inverse statement holds. If E  is a resolution of the identity 

over (R, #(R)), then E  determines a self-adjoint operator in H  through the 

formulas (2.5) and (2.6).

Formulas (2.4)-(2.6) are called the spectral decomposition of a self-adjoint 

operator (in fact, the resolution of the identity is concentrated on the spec

trum  of A). Using the spectral decomposition (2.5) and (2.6), one easily 

defines a function of the operator A , f (A ) ,  through the formula

f (A )  := /  /(A) dE(X)
JR

(which has a natural meaning through smearing).

Let us now briefly discuss the commutation of linear operators. In the 

case where A\  and A 2 are bounded linear operators, their commutation is 

defined straightforward:

A \ A 2f  = A 2A i f  for each /  £ H.

However, in the case where A\  and A 2 are unbounded operators, the operators 

A iA 2 or A 2A i may only be well-defined at zero. So, in the case where Ai  

and A 2 are additionally self-adjoint operators, one defines their commutation 

through the commutation of their resolutions of the identity. So we say that 

self-adjoint operators D(Ai))  and (A2,D (A 2)) commute in the sense 

of their resolutions of the identity if, for any <21 , 0:2 £ the operators

Ei{a\)  and E 2(a2) commute, where E\,  and E 2, denote the resolution of the 

identity of j4i, and A 2j respectively.

The following theorem (see [5]) allows one to check that two given self- 

adjoint operators indeed commute in the sense of their resolutions of the 

identity.
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T h eo rem  2.3 Let (Ai, D (A\) )} (A2lD (A2)) be two Hermitian operators in 

H. Let X) be a dense linear subset of H  such that X> C  D(A\)  f l D (A2), 

AiD  C X), A 2Q C X) and A\,  A 2 commute on X) in the usual sense:

Assume that each vector in X) is analytic for both operators A\ and A 2. Then 

the operators (Ai ,D(Ai))  and (A 2,D (A 2)) are essentially self-adjoint and

resolutions of the identity.

Let us now consider n  self-adjoint operators (Ai, D(A{)), . . . ,  (An, D(An)) 

in H  and let us assume that these operators commute in the sense of their 

resolutions of the identity. Denote by E{ the resolution of identity of the 

operator (>4*, D(Ai)). One can construct the joint resolution of the identity of 

these operators as a resolution of the identity on (Mn, H(Rn)). This resolution 

of the identity denoted by E , is defined as

E(a i x a 2 x • • • x an) = Ei(ai )E2(a2) • • • En(an), a u . . . ,  an G #(R),

and then one uniquely extends this to a resolution of the identity on (Mn, B(Rn)) 

(just as in the case of product-measures).

Then we have, for each i G {1, . . . ,  n},

A i A 2f  = A 2A \ f  for all /  G X).

their closures (Ai ,D(Ai))  and (A2, D{A2)) commute in the sense of their

D(Ai) = { /  £ H : [  A? d (E ( \ ) f ,  } )„  < 0 0 }
jRn

an d

i.e ., for a n y  /  G D(Af)  an d  g G H

Aj d(E(X)f,  g)
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Chapter 3 

Configuration spaces

3.1 The space of finite configurations

Let X  be a locally compact, second countable Hausdorff topological space. 

This means that every point in X  has a compact neighbourhood, that X  

has a countable base and that distinct points may be separated by disjoint 

neighbourhoods. It is known that X  is then a Polish space, i.e., there exists a 

metrization p of X  such that, in this metric, X  becomes a complete separable 

metric space (see e.g. [26]).

A set B  C X  is said to be topologically bounded, or relatively compact if 

its closure B  is compact. Note that, if we fix a metric p in X  which generates 

its topology, an open ball B(x ,r )  with centre at x  G X  and radius r > 0 

need not be bounded. However, for each fixed x  E X, one can always find 

e > 0 small enough such that the open ball B(x,e)  is bounded.

We denote by B(X)  the Borel <r-algebra in X , and by Bo(X)  the collection 

of all bounded sets from B(X).

23



We define the space of finite multiple configurations in X  as follows:

i'.v.u := U
neNo

Here, N0 =  0 ,1 , 2 , . . : =  {0 }, f ^  is the factor space X n/ S n, where Sn 

is the group of all permutations of {1 , 2 , ,  n}, which naturally acts on X n:

^(^1, . . . , Xn) = . . . , X£(n)), £ E Sn• (3-1)

We denote by [x\ , . . . ,  xn] the equivalence class in corresponding to 

( x i , . . . , x n) G X n.

Let B (T ^ ) denote the image of the Borel cr-algebra B ( X n) under the 

mapping

X n 3 (xu . . , , x n) i-> [xu . . . , x n\ G f ^ .

Then, the real-valued measurable functions on f  ̂  may be identified with the 

real-valued £ sym(Xn)-measurable functions on X n. Here, J3sym( X n) denotes 

the cr-algebra of all sets in B ( X n) which are symmetric, i.e., which remain 

invariant under the action (3.1).

We define a cr-algebra B(IV,o) on fV,o> so that the trace cr-algebra of 

#(fV,o) on each coincides with B ( f ^ )  for n G N, and {0 } G B(Tx,o)- 

Next, we introduce the space of finite configurations in X , denoted by 

IV,o- By definition, IV,o is the subset of fV,o> given by

r*,o := U r* -
neN0

where := and for n G N, consists of all [aq,. . .  , x n] G such 

that x i , . . . , x n are different points in X.  Thus, each element [aq,. . . , x n\ G 

can be identified with the set {x i , . . .  , x n}. We denote by B ( T ^ )  the 

trace cr-algebra of B ( T on Let also B(IV,o) be the trace cr-algebra of 

B(fx,o) on IV,o-

24



Completely analogously, for any A E Bq(X),  we define Ta := Ta.o and 

Fa := Ta,o as well as the corresponding cr-algebras B(TA), B(T^),  B (P ^ ),

Let a be a Radon non-atomic measure on (X , B(X)).  Recall that a Radon 

measure is characterised by the property that cr(A) < oo for each A E Bo(X),  

and “non-atomic” means that cr({rr}) =  0 for each x  E X .

Then we can construct the measure <r0n on (X n, B ( X n)). Since cr is 

non-atomic, we have

where

Dn := { (z i , .. •, xn) E X n : X{ =  Xj for some i ^  j}.

So, we consider <r0n as a measure on ( X n, B ( X n)), where X n := X n\ D n.

all symmetric set in B ( X n). Therefore, we can identify cr0n with a measure

We now define the Lebesgue-Poisson measure Aa on ( r x ,o, B{Fx,o)) as 

follows:

=  0,

Next, we restrict this measure to the cr-algebra Bsym( X n)} consisting of

and

Informally, we may write

71=0
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3.2 The space of infinite configurations

The configuration space Tx  over X  is defined as

Fx '■= { 7  C X  : I7  D A| < 00  for each A G B0{X)}.

Hers, \A\ denotes the cardinality of a set A. We identify each 7  G Tx  with 

the Radon measure

7  =
XG7

where ex is the Dirac measure with mass at x. Thus, Tx  becomes a subset 

of M x —the space of all (non-negative) Radon measures on (X ,B(X)) .

The space M.x  is usually endowed with the vague topology, i.e., the 

weakest topology with respect to which all mappings of the form

A4X 3 <J 1—> (a, f )  := J  f d a  G R, /  G Co(X),

become continuous. Here, Co(X) denotes the set of all continuous functions 

on X  with compact support.

So, we endow Tx  with relative topology as a subset of JAX - Hence, 

the vague topology on Fx  is the weakest topology with respect to which all 

mapping of the form

<7,/> := f  f ( x )l(dx)  = f ( x)  € R, f €  C0(X),
^  XG7

become continuous. We denote by B(TX ) the Borel cr-algebra on T^.

There is another way of introducing a cr-algebra on T^. Denote by A  the 

smallest a-algebra on T j  with respect to which all mappings of the form

r x  3  7  ^  7 (A) =  |7  n  A|, A G H0( X ) ,

are measurable. It can be proved (see e.g. [14]) that A  coincides with B(TX ). 

A  probability measure fi on (Tx , B ( r x )) is called a point process (in X).
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Let A G Bq(X).  We call a set A  C T x  local with respect to A if there 

exis:s a set A  C Ta (the space of finite configurations in A) such that

A = { 7  G Tx  : 7 f) A G A}.  (3.2)

We denote by Ba (^x ) the cr-algebra of sets from B(Tx)  which are local with

respect to A. By identifying a local set A  as in (3.2) with the set A, we may 

identify the cr-algebra # a (F x ) with a cr-algebra in Ta- It is not hard to see 

(cf. [14]) that the latter cr-algebra in Ta is, in fact, B(Fa). Thus, we have 

identified the cr-algebras Ba (Fx ) and B(Ta )-

3.3 /C-transform and correlation measure

Following [15, 16, 17], we now introduce the following mapping between func

tions on r Xi0 and functions on Tx-

Let G : Tx,o [0, + 0 0 ], we define a function ICG : Tx —> [0, + 0 0 ] by

(/CG)(7 ) =  £ G f a ) ,  7 £T x , (3.3)
77 <17

where 77 (g 7  denotes that 77 is a finite subset of 7 .

By [15], if G is a B(Fx,o)-nieasurable function, then JCG is Tx-measurable. 

We call KG  the /C-transform of G.

In what follows, we will also need the /C-transform of functions of an 

arbitrary sign. So, if G : Tx.o l_> K and if (KG+){7 ) < 00  and (KG~)(7 ) < 

0 0 , then we set

(KG)(7 ) := (KG+)(7) -  (KG-)(7 ).

Here, as usual we denoted

G+ =  max{0 , G}, G~ =  max{0, — G}.
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Using the /C-transform, we will now introduce the notion of a correlation 

measure of a point process.

Let p  be a probability measure on (Tx ,B ( r x )). We define a measure pM 

on (rx ,0 ,£ (rx ,o )) as follows: for each A  G #(Fx,o)? we set

Pm(j4) := [JTvTx

where 1^ denotes the indicator of the set A. One easily checks that p^ 

is, indeed, a measure, and therefore, for any #(Fx,o)-nieasurable function 

G : Tx.o ~^ [0, +oo], we have

[  G(ri)p^dp) = [  (KG)(/y)p(d/y). (3.4)
dTx,Q dTx

We call the correlation measure of p. As we have just seen any point 

process has a correlation measure.

It follows from the definition of the correlation measure that, if G G

L1( r Xfo,dpAi), t îen is p-a.s. well-defined, KG  G L^Tx,^)* and

[  G(r))pp(dri) = [  (KG)(-y)ft(dy).
Jrx,0 dTx

Next, recall the definition of the Lebesgue-Poisson measure \ a. Assume 

that Pn is absolutely continuous with respect to Xa. We denote by

v e T x '°■

Denote

4 n )  : =  r  F J, n G N.

We can identify with a function on X n which is ^ sym(An)-measurable. 

Usually, is considered as a symmetric function on X n. The functions 

n G N, are called the correlation functions of p.

Note that, unlike the correlation measure, the correlation functions may, 

generally speaking, not exist.
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Since a point process is a probability measure on an “infinite- dimensional 

space” and the correlation measure is defined on a union of finite-dimensional 

spaces, it is clear that one has tried to study point processes through their 

correlation measures.

So a natural problem appears: given a measure p on Tx.o, whether there 

exists a point process having p as its correlation measure (existence problem) 

and if such a point process exists, whether it is unique (uniqueness problem).

A very satisfactory solution of the uniqueness problem was given by 

Lenard in [18].

T h eo rem  3.1 Let pM be the correlation measure of a probability measure p 

on ( r * ,# ( r x ) ) .  For each A E B0(X), denote

Then, if the series oo 

k= 0

diverges for each A E B0(X) and each j  E N0, then the measure p is a unique 

point process which has as its correlation measure.

R em ark  3.1 We note the condition of Theorem 3.1 is satisfied if, for each 

A E B o ( X ) ,

p ( r ^ )  < cnn\ for all n  E N,

where c =  ca > 0 .

A solution of the existence problem was also given by Lenard in [17].

T heorem  3.2 Let p is a measure on (Tx,o? ^(r^.o))- We suppose that for 

each A E Bq(X) and n E N

p ( U r A )  < OO- 
1 '
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We also assume that

p({®}) = i.

and the following positivity condition holds:

For each measurable G : Ibqo ~ > ^  which is bounded and vanishes outside 

a set (J ili for some N  e N  and A £ B0(X), and such that

(JCG)(7 ) ^ 0 , for all 7  G T x ,

we have

[  G(rj)dp{rj) > 0 . 
dTx ,o

Then there exist a probability measure p on ( rx ,H (rx ) )  which has p as 

its correlation measure.

Another solution of the existence problem, which is, in fact, quite analo

gous to Theorem 3.2, was given by Macchi in [21].

A third way of finding sufficient conditions for existence was proposed by 

Kondratiev and Kuna in [15] and extended by Berezansky et al. [6].

This approach uses the so-called ^-convolution, which we will now discuss.

3.4 ^-convolution and existence of point pro

cesses

A ★-convolution is a convolution of two functions on the space of finite con

figurations whose /C-transform becomes the product of the /C-transforms of 

the given functions, i.e.,

K(G l * G 2) = K G l -1CG2. (3.5)
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So, let us find an explicit form of ★-convolution. We have:

(x:g1)(7)(x:g2)(7) = (  X  g 1(>?1))  (  ] T  g 2(V2)
771 (=7 ' '  772 d7 '

=  Y .  T ,  <^1 (771)̂ 2(772)
77^7 T7iC7,T72C7:r71U772=77

=  X I (  X  u J?2)G2(r/2 U % ) )
n̂ 'V ' //v«- /v-w_ \ /— D_/ /77<E7 (vi,m,V3)^p3(il)

where ^ 3 (77) denotes the set of all ordered partitions of 77 into three parts. 

Thus, we define

( G i * G 2)(r})= y  Gi (771U 772) ^ 2(772 U 773), (3.6)
(t?1,t72 ,773 )€P3(t?)

and we indeed have (3.5).

If p is the correlation measure of a point process p, then by (3.3) and 

(3.5)

f  (Gi * G 2){ri)p{drj) = f  (KG)2('r)n(d'y),
>frx,o dvx

and therefore p is ★-positive definite:

(Gi ★ G2){p)p{dp) > 0 .
Tx,o

Theorem  3.3 ([6]) Let X  be a connected, oriented C°° Riemannian man

ifold. Let p be a measure on (ib^o, ^(Tx,o)) which satisfy the following as

sumptions

1 . P( i f )  =  1

2. For each A E Bq(X),  there exists a constant C& > 0 such that

p(r£°) < C l ,  for all n  € N
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3. Every compact A C  X  can be covered by a finite union of open sets 

A i , . . . ,  Afc; k G N, which have compact closures and satisfy the esti

mate

p ( r ^ )  < (2 +  e)_n, for all i = 1, 2 , . . . ,  k and n G N, 

where e =  e(A) > 0

4. *-Positive definiteness: For each G which is bounded and vanishes out

side a set ( J ^  for some N  G N and A G Bq{X), we have

[  ( G i * G 2){r})p{dr}) > 0.
drx ,o

Then, there exists a point process p on ( r x ,# ( r x ) )  which has p as its cor

relation measure.
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Chapter 4 

Correlation measure of a family 

of com m uting Herm itian  

operators

The aim of this chapter is to introduce the notion of a correlation measure of 

a family of commuting Hermitian operators and to show that this measure 

is concentrated on the space of finite configurations.

For measurable functions / i , . . . ,  f n : X  —> R, we denote by /i®  • • • ® /n 

the symmetric tensor product of / i , . . . ,  / n- Since /i®  • • • ® /n is Bsym( X n)- 

measurable, we may consider fi<g> • • • ® /n as a measurable function on f ^ .  

For a function G : r^.o ~* K, we denote by the restriction of G to
" (n)r y .  Let S  denote the set of all real-valued functions on which satisfy 

the following condition: for each G G <S, there is an N  E N such that G ^  = 0 

for all n > N  and for each n G is a finite linear combination

of the functions of the form XAi® * • • ®XAn> where A i , . . . ,  An G Bq{X)  and 

X a  denotes the indicator of a set A. Note that, by the polarisation identity, 

in the above definition it suffices to take functions of the form where
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A E J3o(X). It is clear that the set S  is sufficiently large, in the sense that 

S  is an algebra under multiplication, and functions from S  separate any two 

configurations in Tx ,o-

Let F  be either a real, or complex Hilbert space and let D be a linear 

subset of F. Let (a(A)) AeBo^  be a family of Hermitian operators in F  such 

that:

•  for each A E B q{ X ) ,  Dom (a(A)) =  D  and a(A) maps D into itself;

• for any Ai, A2 € B 0( X ) ,  a(A i)a(A 2) =  a(A 2)a(Ai);

•  for any mutually disjoint Ai, A 2 G B o ( X ) ,  we have: a(Ai U A2) =

a(Ai) +  a(A 2).

It follows from the definition of the /C-transform (see Section 2.3) that, 

for each 7  E IV and A E B o ( X ) ,  /C(x a ) ( t ) — 7 (A), and that

7 1 + 1

y ^7 (A i)£ (x A ,®  • • •
i= 1

(n +  l )2

7 1 + 1

® X a „ +1) ( 7 )  -  E E £((XAinAj-)®XAi®)'' * ® X ai
i = 1 j= l , . . . ,7 i+ l,  j y i

§ X A J § - - - § X A n + 1 ) ( 7 ) (4 .1 )

where A i , . . . ,  An+i E S0 (X), n E N and x a  denotes the absense of xa- 

Indeed, let us fix a function ip : X  —► R which is bounded and has compact 

support. Then, we have:

X  <p(x l)  • -  <p(x n) 
x e j  {xi,...,xn} c j

=  (n +  1) ^  </?(xi) • • - ip (x n+1)
{xi,...,xn+i } C j

+  ^ 2  ' ' • ^ (^n ) +  (p(xi )ip2( x 2) • • • <p(z„)
{xi,...,Xn}C7
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+ -----1- <p(xi) • • • ip(xn. i ) ip2{xn) \

= {n + 1)/C(v>®(t,+1))(7) +  n/C{(<p2) ® ¥>®<"-1)) (7 ).

Therefore, using the polarisation identity, we conclude that, for any func

tions <p\,. . . ,  ipn+i : X  —> R which are bounded and have compact support 

1
— —r 7 > ^ ( ^ i §  ' • • § < p * - i§ & § < P i+ i®  • • • §><Pn+1) (7 )n ■+1

1 = 1

=  ( n  +  1 ) /C (y ? i§  • • • §>y?n+ i)  (7 )

n + ln
+  7 ^ T i k E  E  /C ■ ■ • ® <& 0

i = l  _7=l,...,n+lj7^i

• • • § ^ - 0 - - - S ^ n + l ) ( 7 ) ,

where ^  denotes the absense of ipi. Prom here (4.1) follows.

Our aim will be to realise the operators a(A) as operators of multiplica

tion by 7 (A) in some L2-space L2(T, /i). Therefore, if we want to have oper

ators Q (xai®  ' • • ®XAn) in our initial Hilbert space F , which will be later on 

realised as operators of multiplication by /C(xai® • • • ®XAn)(7 )> then these 

operators must satisfy the following recurrence relation:

 ̂ r n+l

^ 2  a(A i ) Q(xa, §  • • • §XAi§ • • • §XAn+1)
L t = l

Q{x a 1®---®Xa„+1) =  / „ + 1 )2

n + l

- E  E  Q((XAinAj)®XA1® ’ ' * ®Xai® • •' ®XAj® • • * ®XAn+i)
i = l  j=l , . . . ,n+l , j^i

A i , .. •, An+i E Bo(X), n E N,

Q(Xa ) =  a(A), A E iBo(X). (4.2)

Denote by E the function on Tx.o given by := 1, E ^  := 0, n E N.

Let

Q(H) := 1. (4.3)
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We then uniquely define Q(G) for each G G so that

Q i & i G i  +  a iC r 2 ) =  & i Q ( G u )  +  <̂ 2 2 ( ^ 2)) ^ i )  &2 £  R ,  G i ,  G 2 £

L em m a 4.1 For any Gu,G2 £ <S, roe have

Q(G1)Q(G2) = Q ( G ^ G 2). (4.4)

P roof. By linearity, it suffices to prove (4.4) in the case where G\ =  X a^’ 

G2 = x T*> A 1,A 2 gBo(X),  m , n G N .

Setting Ai =  • • • =  An =  A in (4.2), we have:

2(Xa®("+1)) =  ^ L ( a ( A ) C ( x r )  -  n fi(xS ")). n  € N,

Q(X a ) =  a(A).

Therefore, for each k  G N, there exists a polynomial Pk(%)  on R ,  of order fc,

such that, for each A G Bo(X), we have

Q i x t ) =  pM  A)).

Therefore, for fixed A 1} A2 G #o(X), we get

Q(X iT )G (x g )  =  pm(a(A 1))p„(a(A 2)).

Denote

A := Ai \  A2, B  := Ai n  A2, C := A2 \  Ai,

so that the sets A, B  and C  are mutually disjoint and Ai =  A U B,  A2 =

5 U C .  Hence

a(Ai) =  a(A) +  n(F), 

a(A 2) =  a(B)  +  a(C).
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Hence,

f i(x !T ) f i(x £ )  =  Pm{a{A) +  a(B)) pn (a(B) + a(C))

= qm+n(a(A),a(B),a(C)).  (4.5)

Here gm+n(-, •, •) is a polynomial on R3 of order m  +  n, given by

gm+nO, y , z) =  pm(x +  2/) pn(j/ +  z).

Next, by (4.1), we get

IC(xT+1))h) = ^ T(7(A)/C(X®”)(7) -  ^ (x D W ).

and so

^ i x t k) h )  = P f c (  7 a ) .

Therefore, analogously to the above,

K(xr)(7)K(xI:)(7) = 9m+n (7(A), 7(B), 7(C)).

Using the definition (3.6) of the ★-convolution and formula (4.1) we con

clude that there exists a polynomial qm+n{m, •, •) on R3, of degree m +  n, such 

that

IC{xT*xt:)(  7) = fe+u(7(A),7(B),7(C)).

Since

AC(xT ) ( 7 ) « ( xS ) ( 7) =  AC(xST*xS)(7),

we have that, for all 7  G T,

gm+n (7 (A), 7 (F), 7 (C)) =  Q'm+n (7 (A), 7 (F), 7 (C )).

Since both polynomials qm+n and qm+n are characterized by a finite number 

of coefficient and since 7 (A), 7 (B) and 7 (C) may take an arbitrary value 

from No =  N U {0}, the polynomials qm+n and qm+n coincide.
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On the other hand, we evidently have that

Q ( x t T  * x t )  = Q m + n ( a ( A ) ,  a ( B ) ,  a ( C ) ) .

Hence

Q ( x t ? * x T 2 )  = q m + n { a ( A ) , a ( B ) , a ( C ) ) ,

and by (4.5)

Q(xT ) Q ( xT2) = Q(xT * xT2)- □

We fix any Q G D  with \ \ £ 1 \ \ f  — 1- We assume that there exists a (non

negative) measure p on (ibqo, #o(rx,o)) such that, for all G G <S,

[  G(r}) p(drj) = (Q(G)Q,Q)f . (4.6)
drx,o

Then, by analogy with (3.4), we call p the correlation measure of the family 

of commuting Hermitian operators (a (A ))Aefio^  (with respect to the vector

fi).

Now, we additionally assume that p satisfies:

( L B )  Local bound: for each A G Bq{X ), there exists C a  >  0 such that

p(rin))^ C 2 , n eN ,

where := {rj € r j  | r; c  A}. Furthermore, for any sequence 

{An}n€N G Bo{X) su ch  th a t  An J, 0  (i.e . Aj D A 2 D  A3 D  a n d  

rr=i A n  =  0 ) ,  w e h a v e  C a u —> 0 as n  - >  o o .

T h eo rem  4.1 Assume that a family (a(A )) a <=bq(x) ° f  commu^ n9 Hermitian 

operators possesses a correlation measure which satisfies (LB). For each G G 

S  denote Q{G) \= Q(G)Ft, and let $  denote the Hilbert space obtained as 

the closure of the set 6  := {Q(G) \ G € S }  in F. For each A G Bq(X),  

consider a(A) as an operator in $  with domain 6 . Then, the operators
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a(A) are essentially self-adjoint and their closures, n(A); commute in the 

sense of their resolutions of the identity. Furthermore, there exists a unique 

probability measure p on ( r x , # ( F x ) )  whose correlation measure is p, the 

mapping

6  9 Q(G) ~  (XQ(G))(7 ) := 6  X2( r »
77 (I7

is well-defined and extends to a unitary operator X  : $  —► L 2(T, p) such that, 

under X, a(A) goes over into the operator of multiplication by 7 (A), i.e.,

Dom (Za(A)J-1) =  { /  £ L2(r, / /)  : 7 (A )/( t)  e  T2(r, / /)}

and

(Z a(A )J_1/ ) ( 7 ) =  7 (A) / ( t ) ,  /  € Dom(Xa(A)X_1).

R em ark  4.1 Note that any probability measure ^  on (F x ,# (F x )) has a 

correlation measure. On the other hand, not every family (fl(A))AeB0{x) 

of commuting Hermitian operators possesses a correlation measure. Theo

rem 4.1 essentially shows that, if a family (a(A))AGg0(*) possesses a correla

tion measure, then the joint spectrum of this family is concentrated on the 

configuration space Tx-

Proof of Theorem 4.1. Consider the bilinear form

5 x S 3 ( G 1 ,G2) « 6 (,(G1, G 2) : =  /  (G, * Gt)(V) p ( d V). (4.7)
drx,o

By (4.4) and (4.6), for each G 6  S,

bp( G , G )  =  { Q ( G * G ) Q , Q ) F 

= (Q(G)Q(G)Q,Q)f  

=  (Q(G)O, Q(G)Q)f  > 0.
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Denote by S  the factorization of S  consisting of factor-classes

G =  {G'  € S  : bp(G -  G\  G -  G') =  0 }, G £ S.

Define a Hilbert space 7ip as the closure of S  in the norm generated by the

scalar product

{G\, G2)hp bp(Git G2 ). (4.8)

Using (4.4) and (4.6), we see that

(Gb, G2)hp — (Q(Gi), Q(G2))f , (4.9)

so that we have the unitary isomorphism U : $  —> H p defined through

UQ(G) := G for G £ S.

For each A £ Bq(X), we define an operator A a  in hip as the image of the

operator a(A) under U. Hence, Dom(v4A) =  S  and since

a(A)Q(G) = Q(Xa)Q(G)Q = Q(Xa  *  G)Q = Q(x a  *  G), G e  S,

we get:

A a G := x a  * G, G £ S. (4.10)

We will now show that the operators (^4a)ag£0(x) (hence also the oper

ators (a(A))AeBo(x)) are essentially self-adjoint, and their closures commute 

in the sense of their resolutions of the identity.

L em m a 4.2 Each G £ S  is an analytic vector for any A a , A £ Bq{X).

P roof. For any G\,G2 £ <S, we have by (4.9), Lemma 4.1, and (4.5),

(G u G 2)Hp =  (Q(Gi ) ,Q(G2)) F

= (Q{G1)Q1Q(G2)n)F 

= {Q(G1)Q(G2)n ,n )F
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=  (q (g 1* g 2)q , q ) f

= [  (G\ * G?){ri)p(drj).
JT'x,0

Hence, by (4.10), we get, for each G £ S, k £ N, A £ Bq(X),

W ^ gw^  = \\x Z  * g \\Ip

(X a *  G )  *  ( x a  *  G){r j )p{dr j )
Tx.o

=  /  (G*2 * Xa * ){v)p(drj). (4.11)
Jrx,o

Since any finite linear combination of analytic vectors of a given operator 

is again an analytic vector of this operator, it suffices to prove that, for any 

A, A' £ B0(X)  and any n £ N0, X®? is an analytic vector for i.e.,

00 fk
5 3  ^M aX |?I|w „  < 0 0 . for some * > 0
fc=0

Denote A =  A U A'. Then, by (4.11)

( x T r * x r f o ) p ( * 7 ) ) 1/arr Xlo
p A X ® ? l k =  /  ( x T Y 2* x T

- ( /  ( x D * 2 * x r (> 7 )p ( ^ ) ) 12- (4-12)

Using the definition of ★-convolution, we see that the function (x?n)*2 *XA2/c 

is a finite linear combination (with non-negative coefficients) of the indicator 

functions x ? \  i =  0 , 1 , . . . ,  2n +  2fc. Since, by the (LB)

/  X a  (v)p(drt) =  p{ F a )  C\,
Jrx ,o

we have from (4.12)

MaX®!*II « , < ( j T  { x t Y 2 * x t { r , ) p { d n ) ) 1 / 2 , (4.13)
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where we have set

p( T f )  = C \  (4.14)

Note that we understand the expression on the right hand side of (4.13) as 

if we integrate with respect to some measure p satisfying (4.14). In what 

follows, we will assume that Ca ^  1 (otherwise set Ca = 1)- 

Next, using the definition of ★-convolution we have:

X T  *XA = (i + 1)Xa('+1) +  ixT-

Therefore,

/ (x®‘ * Xa)(t?)p(<*?) <  ((« +  1)Ca +  0 /  x f { v ) p { dv )
r x ,0 ^ rXi0

s£ CA(2i +  1) f  xT(v)p(dv)
Jrx,o

< 2CA(i +  1) /  x fW p id r , ) .  (4.15)
-'Tx.o

Hence, by (4.15), we get 

f  ( x t nY 2* x T (v )p (d v )  =  [  ( ( x T Y 2 * x T k~1)]*XA(v)p(dri)
’' r x,0 ^ x ,0

< 2CA(2n +  2k) f  (x®")*2 * x T ^ W l P i d r j )
Jrx ,o

=  2CA(2n +  2k) f  ( { x T Y 2 *  x T ^ )  *  X A ( v ) p { d r i )
JrXt0

< 2CA(2n +  2k)2CA(2n +  2k -  1) /  (xf*)*2 * x f k~2)P(dri)
JrXt0

< < (2CA)2k(2n +  2k)(2n +  2k -  1) • • ■ (2n +  l)x

( x T Y 2p(dv)

-  (2C,) (S)! «■
where

a  = ( x T Y 2p(dr))'
Tx.o
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Hence,

\ \ A l x T \ U  «  (2CA)k VS. (4.16)

For each n £ N, we have:

(2n)! =  1 • 2 • 3 • 4 • • • (2n — 1) • 2n

^  2 • 2 • 4 • 4 • • • 2n • 2n

=  (2 • 4 • • • 2n) 2

=  (2"n!)2, (4.17)

which implies by (4.16)

I K * ® ! * ,  <  (2CA)k{(2n)))-1/22”+k(n + k ) \ ^ ,

and so
00 j.k 0 0  (A s~i 4\k

< ((2 rl) ! ) -1/22" V S 5 3 ^ 1 (fc +  n)!
/ c = 0  ' k=0

00

=  ((2ny.)~1/22nV ^ '£ 2 (4 C xt)k(k +  1)(* +  2 ) ■ • ■ (fe +  n).
k=0

(4.18)

For each t £ (0, (4Ca)-1), we have

^(4CfAt)fc(/c +  1)(& +  2 ) • • • (/c +

=  4Ca^(/c +  l ) 1/* ^  +  2 ) ly/fc •••(& +  n )1̂  —> 4Ca^ < 1  as k —> oo

since (fc+z)1/* —> 1 as /c —> oo for each fixed z. Therefore, for 0 < t < (4Ca)-1 , 

the series (4.18) converges. □

By Theorem 3.2 and Lemma 4.2, for each A £ Bo(X),  the closure of A&, 

denote by A& is a self-adjoint operator in Tip and for any Ai, A2 £ Bo(X), 

the operators A&x and A a 2 commute in the sense of their resolutions of the 

identity.
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We will now construct a consistent family of probability measure. For 

each A E Bo(X ), denote by E& the resolution of the identity of A&. By the 

proved above, for any Ai, A2 E Bo(X), the resolutions of the identity E  

and E &2 commute.

So, according to Chapter 2, for any A 1?. . . ,  An E B0(X)  we can construct 

the joint resolution of the identity

EAl A n := EAl x • • ■ x EAn. (4.19)

Recall the definition of the function E on Ix,o- Then

:= ( ^ A i , . . . ^ ^ ) ^ - ) ^  (4.20)

is a probability measure on (Rn,B(Rn)). Furthermore, it is clear that

| A , , . . . ,  An € B0(X),  » e N )  (4.21)

is a consistent family of probability measures.

Next, let us show that there exists a point process on X  whose “finite

dimensional distributions” are given through (4.21). First, we will prove this

result locally.

For any A E Bo(X), denote

r A := {?7 € Tx ,o | V C A},

and let B(T&) be the trace cr-algebra of B(Tx,o) on Ta-

Let us introduce an analogue of the operator K  (see Section 2.3) on Ta- 

So, we define a mapping / C a , which transforms the set of all (complex-valued) 

functions on Ta into itself, as follows:

(KAG)(ri)-.= J 2 G ^ ’ V C T a - (4.22)
£07
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We evidently have:

(Ka (G1 * G 2))(t7) =  (KaGO^XKaGsXt?) (4.23)

(Gi * G2 being given by (3.6)). The inverse of /Ca is then given by

( I C ^ G M  = ^ ( - l ) ^ l G ( f ) ,  V e  r A (4.24)

(the latter being a well-known result, see e.g. [15], which can be checked by 

direct calculations).

To find the pre-image, under /Ca , of an exponential function, we define, 

for any /  : A —> C, a function ExpA(/, •) : Ta —> C by

ExpA( / , 0 ) :=1,

ExpA(/, { z i , . . . ,  xn}) :=f(x  1) • • • f ( x n), { x i , . . . ,  x n} G TA, n £  N.

By (4.24), for any p  : A —► C, we have:

exp[(<p, -)])(r7) =  ExpA(e*> — 1,?/), T) € TA, (4.25)

where {tp,r)} := E * e ,v (z ) .

Let A E Bo(X) be so small that

G A < — i - ; ,  <5 > 0  ( 4 .2 6 )
lb +  d

(see (LB)). We define a set function on B(TA) by

pA(A):= f  (JCfxAMpidr i) ,  A e B(Ta ). (4.27)
JrA

Since

J 2  1 =  2 " i f  N = n ,  ( 4 .2 8 )
£Cr)
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(LB) and (4.26) imply that p,A is a signed measure of finite variation. Indeed 

the full variation of / x A  on T a  may be estimate as follows

00 on

Next, we will show that p A is, in fact, a probability measure on (Fa,

Let A 1}. . . ,  An E B0(X)  be subsets of A , n E N, and for simplicity of 

notations we assume that these sets are mutually disjoint. Then, by (4.25) 

and (4.27), for any (ylt . . . , y n) €  Kn,

L{yu • ■ • , 2/n) := /  exp [ ( % i X A l  +  • • • +  2/nXAJ , y}] VA(drj)
J  rA

=  [  E x P a  { (em  ~  l ) X A i  +  • • • +  ( elVn -  1 ) x a n,r})p{drj),  
JrA

(4.29)

where we used the evident formula
n

e m X A 1 + - - - + i y n X A n _  I  —

i = l

(recall that the sets A* are mutually disjoint). Note also that

jg iy iX A iH  H y n X A n   l |  ^  2 ,

and so by (4.26)

f  E x p A (\em x ^1+'"+tynXAn — 1 | ,r))p(dr])  ^  (
JTa n=0 '

n
<  00.

16 +  (5,

L em m a 4.3 The function L : Rn —» C is positive definite in the sense of 

the Fourier analysis on Mn.

P roof. Fix any 2/1, . . . ,  i/m 6  Rn, yk = (yk \  . . . ,  y ^ ) ,  k = 1 , . . . ,  m, and 

fix any c i , . . . ,  cm E  C. We have to prove that
771

ckciL(yk -  y{) ^  0.
k , l= 1
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For each k E {1, . . . ,  m}, denote

(1) . (n)
(Pk =  yk x a 1 +  ' • • +  yk x a t

Then, by (4.29),

m m „ /

Y 2  ckciL{yk - Vl) = ^ 2  CkCi /  ExpA ( exp i ( (y{2  -  ^ (1))xAl +
k,l= 1 k,l= 1 '

■■■ + (yln) -  j/i(n))xA„)) - 1 , v jp{dv)
m „

= ^ 2  ckci ExpA (exp[z(<y?fc -  (pi)] -  1 ,7]
k,l=l ^Ta

m p

= Y ] c kci ExpA ({elipk -  1)
k , i = l  J r A  V

+  (e~i<Pl -  1) +  (ei(pk -  l)(e“<w -  1), p)p(dr)). (4.30)

By [15, Lemma 5.3], we have:

ExpA ((eiv‘ -  1) +  (e-im -  1) +  (ei n  -  l){e- iv‘ -  l ) , v )

= ExpA(e,!M -  1 , 7/) * ExpA(e~'v‘ -  1 ,»/)•

Hence, we continue (4.30) as follows:

m p

= Y2  CkCi /  ExpA(e^fc -  1,77) * ExpA(e- ^  -  1, rj)p(drj) 
k,i= 1 J t a

m p

=  Y 2  CkCi /  ExpA(e^fc -  1,77) * ExpA(e ^  -  1, rf)p{dn)
J T ak , l = 1 j t a  

m*  H i  a t

/  ( ^ I cfcExpA(e^ fc _  1’7̂ )) * ( X l c/ExpA(e^  -  i >r/))p (rf7?)- (4-31)
«/ r a 1. 1 11Ta k=1 i= l

W e k n o w  th a t ,  for ea ch  G  E 5 ,  w e have:

[  { G * G ) { r j ) p ( d r j )  ^  0.
Tx,o
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Denote by Sc  the complexification of <S, i.e., all functions of the form G\+iG2, 

where G \ ,G 2 € S.  Then, for each G = G\ +  iG2 £ «Sc, we ^ave

[  (G * G )(v)p(dp) = [  ((<?! +  iG2) * (Gi -  zG
•zrx ,0 *zrx,o

=  f  ({Gi * Gi)(r/) +  (G2 * G2)(r]) 

— z(Gi ★ G2)(tj) +  z(G2 ★ Gi

=  [  ( ( g 1* g 1)(v ) + (g 2* g 2m
j r  v  nr X,0

— z(Gi * G2)(tj) +  z(Gi * G2

— [  (^{Gi * Gi)(r]) +  (G2 * G2){rf)^p{drj) ^  0.
»/ r  v  nr x,o

In particular, for each G G 5c with support in Ta, we have:

(G * G)(rj)p(dr}) ^  0 .
r A 

Let m
G := ^ c fcExpA(e^fe -  1,7/). 

fc=i
This function, of course, does not belong to 5c, however, its restriction to 

each TA\  denoted by G^n\  does. Therefore, for each N  G N,

N  N

f  ( ( G<">) * ( £  GM) ) (v)p(dv) > 0.
^ r A  n = l  7 1 = 1

Thus, to prove the lemma, it suffices to show that

N  N

{ ( ^ G (B)) * ( ^ G (")))(r;)p(rf»?)-  /  (G*G)(rj)p(dri). (4.32)
r A  n = l  7 1 = 1

It is clear that for each fixed 77 E Ta, we have:

N  N

( ( £  G<">) * ( X  GW) )  fa) =  (G * G)fa)
7 1 = 1  7 1 = 1
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if TV ^  |t7|. So, we only need to find an integrable function which dominates

all :<>>))(>?) To this end, we note that

and so

Since

\eitpk -  II ^  2 ,

5 3  i  =  ( XT i ) 2 =  (2 WI)2 =4^! ,
(»7i>»72,*73) ^ 3 6 ?) ViCr]

by (4.33), we have

n—1 n = l
( ( E G ( B > ) * ( E G ( B ) ) ) f a )  <  ( E ^ i ) 2 ( 2 N ) 2 4 W

fc=l 
m

=  ( 5 > t |)216l”l
fc=l

Setting

we get
k—1

N N

E G(,,)) * ( E G(n)
n= 1 n =  1

<  f f a ) .

Finally, by (4.26), we get:

t a
F(r])p(dr}) < oo.

(4.33)

Hence, by the dominated convergence theorem, we get (4.32). □

By Lemma 4.3, L  is the Fourier transform of a probability measure on 

Rn. Therefore, under the mapping

r A 3 r) (*?(Ai),.. •, r/(An)) G
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the image of the signed measure /iA is a probability measure on (Rn, B(Rn)), 

which we denote by £4Al A . We also observe that the sets

{n e  r x ,o | . . . ,  ?7(An)) G Bn},

B n G # (R n), A i , . . . ,  An G B0(X), Ai U • • • U An C A, n G N,

(4.34)

generate the <j-algebra # ( r A ). Hence, /iA is a probability measure on

( r A , B ( r A ) ) .

Next, we will prove that for any A i , . . . ,  An G Bq{X)  such that 

Ai U • • • U An C A, n G N,

we have

=  #<£, An' (4 -35)

Using (4.7), (4.8), (4.10), (4.19),(4.20), (4.23), (4.24) and Section 3.2, for any 

y ^ \  . . .  , y ^  G Rn, k E N, we have:

n Ai

y* K

jRn fLi V
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/  (X^^1>j?(aj)) '•' C f 2 y j k}v ( ^ j ) ) ^ A { d v )
JrA j = 1 j = 1

/ ( E ̂ 1)X0 ' ' ' ( E y ? )xi ) dV - t 4 ,  (*1> ' • • , *n)
S =1 J=1

/  (2/(1), z )  • • ■ ( y {n\ x ) d f i i u...An(x).
JR”-

By (4.15) and (4.17)

/  (i> }V )*---* (i>?V-'^.o j = l J = 1

Jrx< o j~ i j —i
2  As /I Tl A ̂(IT llyillmax) X / ( y ^ X A j )  (v)p(drj)

i= i  ^ r x ,o j = i

2k

^  ( n  l l ^ i l l m a x )  I  (nXA.)*i2k)(ri)d(v)  
v  4 = 1  '  “' r x . o

2k p

=  n * ( n i N U )  /  X&k)(ji)p{dri) 
v i=i '  • 'rXf0

2k
< n - ( n i M U ) ( 2 C A m ) !

t = l
2k

=  ( 2 C A n ) 2f c ( 2 f c ) ! ( f [ | | ? / i | | ,.1 max
t = l  
2k

£ (4 C An)“ (fc!)2 ( f p W | n , „ ) ,
i = l

where || • ||max denotes the maximum norm on Rn. Therefore, we have



2 k

< ( 4 C An)2fc(fc!)2 ( n i y | max) .  (4.37)
i= 1

Since n and An are probability measures on (Kn, # (R n)),

since these measures have the same moments (see (4.36)), and since these 

moments satisfy estimate (4.37), we conclude from the theorem on unique

ness of the solution of a moment problem (e.g. [5, Chapter 5, Theorem 2.1  

and Remark 3]), that the measures ^Ai,...,An and MAi,...,An coincide, i.e., (4.35) 

holds.

Next, let A' E Bq(X)  be such that A' c  A. It is clear that I^y E # (1 ^) 

and B(Ta ') coincides with the trace a-algebra of B(TA) on Ta'. Then it 

follows from the above that fiA' is the restriction of y,A to B(TA>).

Now, we will show that there exists a random measure M  on X  such that, 

for any A x, . . . ,  An E B0(X), n  E N, the distribution of ( M ( A i ) , . . . ,  M ( An)) 

is ^Ai,...,An (see e.g. [14] for details on random measures).

L em m a 4.4 i) For any A i , . . . ,  An E Bq{X), n E N,

*'A1, . . . ,A „ ( [ 0 ,+ O o ) n ) =  1.

ii) For any disjoint Ai, A 2 G Bo(X),

^Ai,a2,Aiua2 ({ (z ,y , z ) e R 3 \ x  + y = z}) = l.

iii) Let A n E Bq(X),  n E N, be such that An j  0 . Then vAn weakly 

converges to £q.

Proof, i) By (LB), for any x  E X ,  there exists an open neighbourhood of x : 

denoted by A(x), such that A(x) E Bq(X)  and Ca (x) ^  1/(16+J). Therefore,
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for any A E Bo(X),  there exist mutually disjoint sets A i , . . . ,  A m E Bo(X),  

m  E N, such th a t A =  Ai U • • • U A m, Ca* ^  1/(16 +  5), i = 1 , . . . ,  ra. (We 

have used the definition of a compact set: from any open covering of the set 

one can choose a finite covering of the set).

For each i = 1 , . . . ,  r a ,  denote

Ci = {x  = ( x i—  , x m) E R m : Xi ^  0}.

Then, using the definition of we have

VAu...Am(Ci) = ^Ai([0,+Oo)) =  1, i =  1, . . .  ,771.

Since m
PI Ct = [o ,  +oo)m,
i=l

we therefore get

vAi Am([0,+OO)m) =  1.

Since A =  Ai U • • • U A m and A i , . . . ,  A m are mutually disjoint, we have

A a  = A Al H b A Am.

Hence, by Lemma 4.2, for each B  E B(R),  we have

B a (B^) =  I x b (^i T  • • • ~b x m)dEAli'"iA.Tn( ^ i >' • • > *̂ m)-
j R m

Therefore,

Va {B) = /  Xb {%\ +  • • • +  ^m)^Ai,...,Am(^ l5 • • • j Xm).
Jrm

In particular,

^A ([0j Too)) =  /  X[0,-hoo) (^1 +  • • • +  ^ m l^ A i Am(^li • • • > x m)
j R rn

— /  X[0,+oo)(* l̂ +  ’ * * +  %rn)dVA\ ,...,Am (^11 • • • i%m)
J[0,+oo)m
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I duAl t Am (x\, . . . , Xm) 1.
J  [0,+oo)m

ii) Since Ai and A2 are disjoint,

^AiUA2 =  -^Ai +  ^-A2'

Therefore, by Lemma 4.2, we have, for any B  E B(R),

E Ai u a 2( B )  -  / X b { x i  +  x 2) d E A l A 2( x i , x 2).
JR2

Therefore, for any C  E B(R3),

E a 1,A2A i ^ a 2( C )  =  /  X c ( x i , x 2, x 1 + x 2) d E A l A 2 ( x i , x 2),
J r 3

and so

^Ai,A2,AiUA2(C ) I  X c (z i>  ^2, +  X 2 ) d v Al jA2(Xi ,  x f ) .
J r 2

Setting

C =  { ( x , y, z) E R3 : x  +  y =  z},

we get

l^Ai,A2,AiUA2 (C ) I dl^Ai,A2 (^1? x f )  1<
J r 2

iii) Let /  : R —> R be continuous and bounded. We need to prove that

[  f { x ) d i / A n (x)  —> [  f { x ) d e 0( x)  =  / ( 0 ).
'J K 1R.

By (LB), without loss, we may assume that CAl ^  1 /(16 -F 5). Then, 

each vAn is concentrated on the set No- Assume that

i/ab(N) —> 0 as n —> 0 0 . (4.38)

Then since ^An(N) +  ^An({0}) =  1, we also conclude that ^An({0}) —> 1 as 

n —> 0 0 . Therefore, since /  is bounded

[  } { x ) d v A n W  =  ^ A „ ( { 0 } ) / ( 0 )  +  [  } { x ) d v An ( x )  f ( 0 ).
J r  J  n
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So, it suffices to prove (4.38). But i/An is the distribution of the random 

variable

r Al 3 rj -»• r](An)

under //Al. Hence

^a„(N) =  f  Xn()?(A n))n*'(drj).
JrAl

For each fixed 77 G r Al

7y(An) —> 0 as n —> 0 0 ,

and so

XN(7?(An)) -> 0 as n —> 0 0 .

Hence, by the dominated convergence theorem,

[  XN{r}{An))nAl(dri) -»• 0 ,
^ rAl

which proves (4.38). □

Now, by Lemma 4.4 and [14, Theorem 5.4], there exists a random measure 

M  on X  such that, for any A i , . . . ,  An G Bq(X), n  G N, the distribution of 

( M( Ai ) , . . . ,  M (A n)) is i/Aj ,...)An. In fact, the random measure M  is concen

trated on Tx. Indeed, we already know that, for any x  G X, there exists an 

open neighbourhood of x, denoted by A (a;), such that A (a;) G Bq{X) and the 

restriction of M  to A(x) is concentrated on r A(x). Since X  is Polish, there 

exist a countable sequence of compact sets An in X  such that X  = U”  1 A„. 

Now, using the definition of a compact set, we easily see that the restriction 

of M  to each An is concentrated on TAn, and so M  is concentrated on T.

Letting /i denote the distribution of M  on we obtain a unique prob

ability measure on (Fx,#(Fx))  whose “finite-dimensional distributions” are 

given through the measures (4.21).
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L em m a 4.5 For any G \ ,G 2 £ S,

I  (G1* G 2)(n)p(dr,)= f  ( £ G , ( i r t V ] £ G a(.7) V ( d 7 ). (4.39)
T x .o  T x  \  f j ^ y  '  '  r;(s7 '

Proof. Let A 6  Bo(AT) be such that (4.26) is satisfied. As usual, we 

identify B(Ta)  as a sub-cr-algebra of B(Tx ,o)- Then, for any G \,G 2 £ S  

which, restricted to IV,o, are B(rA)-measurable, we have:

[  ( G i * G 2)(v)p{dri)
J T x ,o

=  [  (Gi * G2)(r])p{dri)
J rA

=  f  (ICAG 1)(r!)(KAG2)(r,)pA(dV)
JrA

= [  ( 5 2 G^ r>)) ( 5 2 G*(r>)) (4-40)
F x  '  77(97 '  '  77(^7 '

We will now need the following lemma.

L em m a 4.6 Fix any e > 0. Then, any G £ S  can be represented as

G = t G>’
3 =1

where k £ N, each Gj belongs to S, and restricted to Tx,o is B(T a5)-measurable 

with A j £ Bq(X),  Caj ^  s.

Proof. It suffices to prove the result of the lemma in the case where 

G = Xa” ) A £ Bo(X). Using the definition of a compact set and (LB), we 

see that there exist mutually disjoint open sets A i , . . . ,  Am £ Bq{X) such 

that Ai U • • • U Am =  A and Caj ^  « =  1 , . . . ,  m. Then

Xa™ ~  (XAi +  H XAm)0n-

Therefore, x 0n a finite linear combination of functions of the form



where i \ , i 2, • • • ? im £ 0  5 - • • ? } j  ̂1 “I- * * ■ ~I- im — n.

Evidently, this function is B (ra )-measurable, where a  is the union of those 

sets A j from A 1}. . . ,  Am for which the correspondents coefficient ij ^  0. So, 

a  is a union of maximum n  sets from the collection A i , . . . ,  Am. Therefore,

£
Ca ^  n — = e. 

n

Indeed, to prove this estimate, and so to complete the proof of the lemma, 

we only need to show that, for disjoint Ai, A2 £ Bo(X),

C A 1UA2 ^  ^ A i +  C a 2-

But
n

p (n) _  I I ( p (m) n  p (n_m A  
1 A1UA2 "  U  \  Ai M I A2 J1

m= 0

so that

x > ( r i > r t m ) )
m= 0

<E(p(It!)) + p(^r“)))
7 7 1 = 0

n

*  E (csr,+c i t )
7 7 1 = 0

= (cAl+cA2r. □

For each G £ S,  choosing G\ =  G and G2 = H in (4.39), we get 

[  G(r)) p(drj) =  f  '^2G(rj)p(d'y).

Hence p is the correlation measure of p. By Theorem 2.1 and Remark 2.1, 

we have that p  is the unique measure on (IV,B(IV))  whose correlation
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measure is p. (In fact, the uniqueness can also be derived directly from the 

above arguments.)

Finally, we prove the statement of the theorem concerning the operator 

T. Define the mapping

5  9 G M (/CG)(7 ) : = E G!(’7)- (4-41)

Then, by (4.39), JC extends to an isometry of TLP into L2(F,p). Furthermore, 

it is clear that the image of K is dense in L 2 ( r ,  p), and so /C is a unitary 

operator.

For each A £ Bq(X),

W x Z*G){7)  = 7(A)(/CG)(7), G e S ^ e T x .

Therefore, A a goes over, under /C, into the operator of multiplication by 

7 (A). Recalling the unitary isomorphism U : $  —> Ttp, under which each 

operator a (A) goes over into the operator A a , we finish the proof. □

It is clear that any correlation measure p satisfies the following condition:

(N) Normalization', p ( r ^ )  =  1.

As we discussed in Introduction, any correlation measure p also satisfies:

(P D ) *-positive definiteness: For each G £ S:

[  (G * G)(rj) p(drj) ^  0 . 
drx,o

We now conclude the following criterion of existence of a point process, 

which generalises [15, Theorem 6.5] and [6 , Theorem 2].

C oro llary  4.1 Let p be a measure on (Tx.o, #(rx,o)) satisfying (N), (PD), 

and (LB). Then, there exists a unique probability measure on (Tx, B(Tx))  

which has p as correlation measure.
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P roof. Consider the bilinear form (4.7). Then, by (PD), we have for 

each G G <S,

bp(G, G) ^  0.

Denote by S  the factorization of S  consisting of factor-classes

G = { G '  e S :  bp(G — G \ G  — G') =  0 }, G G S.

Define a Hilbert space 7ip as the closure of S  in the norm generated by the 

scalar product,

(Gi,G2)np ■= bp(G\,G2).

For each A G Ho(X), define an operator A& in Tip by

A/±Gi = x a  * G, G G S.  (4.42)

For any G2 G S,  we have

bp ( x A * G u G 2) =  [  (X A * G i ) * G 2{r})p{drl])
J t0

=  G i  *  ( x a  *  G 2)p{dr))
J r 0

— bp(Gu X A * G2)-

Therefore, by [5, Chapter 5, Section 5, subsection 2], we see that the definition 

(4.42) makes sense, i.e., the factor class x a  * G is independent of the choice 

of a representative of the factor-class of G.

Now, in order to prove the corollary, one just need to follow the lines if 

the proof of the Theorem 4.1. □
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Chapter 5

Particle densities in quasi-free 

representations of the CAR  

and CCR

5.1 Fermion and boson point processes

Let A  be a topological space as in Chapter 3. Let a be a non-atomic Radon 

measure on (X ,B(X)) .  We denote by H  the real space L 2(X,a).  Let K  be 

a linear, bounded, symmetric operator in H  which satisfies 0 ^ K  ^ 1.

Let us recall the construction of the quasi-free representation of the CAR 

corresponding to the operator K  [3].

Denote K\  := y/K  and K 2 := y/1 — K.  For a real separable Hilbert space 

T~L, we denote by AFi^H) the antisymmetric Fock space over H\
oo

AF{H )  := 0.4**•>(«).
n—0

Here, := M and for n E N AT ^n\l i ,)  := 7YAnn ! , where A stands

for antisymmetric tensor product and n\ is a normalizing factor, so that, for
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any /<"> e  AF^n\ H ) ,

We denote by AFfin(7Y) the subset of A T  ((H) consisting of all elements /  =  

( / (n))~ o  ^ AF(W) for which =  0, n  > A/", for some TV e N. We 

endow ATf\n(H) with the topology of the topological direct sum of the spaces 

A T ^n\ H ) .  Thus, the convergence in A T ^ n{H) means uniform boundedness 

and coordinate-wise convergence.

For g E H,  we denote by $(#) and the annihilation and creation

operators in A T  [(H), respectively. These are linear continuous operators in 

AFfin(H) defined through the formulas

$ (p ) hi A • • • A hn := ^ ( - l ) * +1(p, hi)n hi A • • • A hi-i  A  hi A hi+ 1 A • • • A hn,

$*(# ) hi A A  hn :=g A hi A  • • • A hn,

where h i , . . .  ,hn E H.

We now set H  := # 1  © H2, where Hi and H2 are two copies of H.  For 

f  E H, we denote

n

i—1

and analogously $ * (/), i =  1,2. We set, for each f  € H,

V ( f ) : = $ 2(K2f ) + $•,(!<, f ) ,  

* * ( /) := * ;(X -a/ )  +  # 1(Jf1/) . (5.1)

The operators {’! '( /) ,  '!'*(/) I /  G W} satisfy the CAR:

[* (/) ,* (» )]+  =  [#*(/). * * (5 )]+ = 0 , 

[* • ( /) ,* (» ) ]+ =  ( /.$ )»  1. (5.2)
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where [A, B\+ := AB  +  BA. This representation of the CAR is caked quasi- 

free. The so-called n-point functions of this representation have the structure

(*  *(/n) • • • (0 l) • • • fi)W  =  6n,n  det [(Kfi, gj)H]ij=v

(5.3)

Here, Q := (1 ,0 ,0 , . . . )  is the vacuum vector in A J r(TC).

In what follows, we will assume that, for each A G Bq(X),  the operator 

P&KP& is of trace class. Here, P a  denotes the operator of multiplication by 

X a -

For an integral operator I  in H , we will denote by Af{I) the kernel of /. 

For each A G Bq(X)>

Pa K ^ P a ^ Y  =  Pa K P a .

Therefore, the operator Pa K \  is of Hilbert-Schmidt class. Hence, P a K i is 

an integral operator, whose kernel N ( P a K i )  belongs to L2( X 2,a2). This 

implies that K\  is an integral operator, whose kernel satisfies

[  [  M {Ki){x ,y )2 a{dx)a{dy) < 0 0 , A e  B0{X). (5.4)
J a  Jx

Note also that the kernel N ( K \ )  is symmetric.

Thus, K  is an integral operator, whose kernel is given by

k(x,y) := J\f(K)(x,y) = [  N { K x){x, z)Af(Ki)(z,  y) a(dz).
Jx

By (5.4), for any A G Bq(X),  we get:

[  k(x ,x )a(dx)  = [  (  N {K i ) (x ,y )N {K i ) ( y ,x )a {d y )a (d x )
J A J A Jx

=  [  [  J\f(K1)(x ,y)2a(dx)a{dy) <  00 .
J A Jx

Note that the kernel N ( K i ) ( x ,y )  is defined up to a set of cr02-measure 0 in 

X 2, but the value f x  k(x ,x)  a(dx) is independent of the choice of a version 

of A f i K j .
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Let us now derive the particle density corresponding to the quasi-free 

representation of the CAR. For a fixed x  E X ,  we define the function x \ tX : 

X  —► M by

x i A v ) := N{Ki){x ,  y ), y e x .

By (5.4),

x hx G L2(X,<t) for cr-a.a. x  E X.  (5.5)

Then, for each f  E H, w e  have:

* i ( t f i / )  =  /  a { d x ) f ( x ) ^ { x hx), m K J ) =  [  a ( d x ) f ( x ) ^ ( x Ux).
J x  Jx

(5.6)

These equalities are to be understood through the corresponding bilinear 

forms. For example, the first equality means that, for any p i , . . . ,  gn+1, h i , . . . ,  

h n E 7"f,

( j f> i (K i f ) g i  A • • • A pn+i> hi A • • • A hn)

=  /  a(dx)f(x)  ($ i(x i ,x)gi A • • • A pn+i,  hi A • • • A hn) 
J x

Next, for each x E X  and any h i , . . . ,  hn E H, we set

A F (W )

A n  . - h - A . . . A h \
a f {hy

$ 2(^ 2,x)hi A • • • A hn = ^ 2 ( - l ) l+l(K2hl2)){x)hi A • • • A h* A • • • A hn.
i=l

(Here and below, we use the notation hi = ( h ^ ,  h[2̂ ).)

R em ark  5.1 Heuristically, X2>x(p) =  N { K 2)(x,y)  and 4>2(x 2)a;) is the cor

responding annihilation operator.

Then, analogously to (5.6), we get:

$ 2(X2/ )  =  [  cr(dx)f(x)$2{x2,x), $ 2(K2f )  = [  a(dx)f(x)$*2(>c2yX).
J x  Jx

(5.7)
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Note that the second equality in (5.7) means that, for any 

9h • • • 5 9n, h i , . . . ,  hn+1 G 77,

( $ 2 ( K 2f ) g i  A • • • A g ni h x A • • • A /in+ i ) ^ (K)

=  J  a(dx) f(x )(g1 A - - g n, ^ 2( ^ 2 , x ) h i A - ’ A h n+i)A:F{n)

(compare with e.g. [24, Section X.7]).

By (5.1), (5.6), and (5.7), we get the following heuristic operators, for 

each x G X:

ty(x) = $ 2(x 2yX) +  &i(xi tX)}

+  (5 .8 )

Therefore, the particle density at point x  G X  is heuristically given by

a ( x )  =  ^ * ( x ) ^ { x )  =  ($*2( x2 , x )  +  $ l ( X l , x ) )  ( ®2( K2 , x )  + $ l ( * l , x ) ) -

Thus, for each A G Bo(X)i we need to rigorously define an operator

a(A) =  / a(dx)a(x)
J  A

=  /  a ( d x ) $ Z ( j t 2 , x ) ® * { K i , x )  +  /  < y ( d x ) $ i ( x i )X) ^ 2(^2,x)
J a  j  a

+  f  <j(dx)<b*2{>C2,x)$2(>C2,x)  +  [  0(dx)$l(x i ,X)$ l (x i ,X)- (5.9)
J a 7 a

In fact, it is not hard to see that each of the four integrals in (5.9) deter

mines a linear continuous operator in A T ^ H )  through the corresponding 

bilinear form. Indeed, for any p i , . . . ,  g n , h i , . . . ,  hn+2 G 77,

 ̂J  a ( d x ) $ Z ( x 2tX) $ * ( x i tX)gi  A • • • A pn, / i i  A • • • A hn+^J 

=  J  a ( d x )  (&*(>ci , x ) g i  A  - - - A  g n , & 2( x 2,x ) h i  A • • • A h n+2)
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» n+2

=  /  a(dx)(n + 1 ) ! ^ ( —l) i+1(A'2/i[2))(x)

X (* i,x  a  01 A • • • A gn, hi A • • • A hi A • • • A hn+2) „ A(n+1>

=  n! £  ( - l ) i+j+’£(i>‘>W)(/s:2/1(2))PAA:1/l(1))K

^  (pi A • • • A gnj h i  A • • • A Aj A • • • A hj  A • • • A h n^.2^j^An. (5.10)

Since Pa-Ku is of Hilbert-Schmidt class, so is K 2P A K \ .  Therefore,

{K2h f \ P a K ^ h = { N ( K 2P ^K {) itUh, ®

Here, N  { K 2P a K i ) 2,i is the element of the space hi®2 which belongs to its sub

space H 2 ® H i and coincides in it w ith J \ f ( K 2P A K i ) .  Let also A f ( K 2P A K i ) ^ i  

denote the orthogonal projection of N  { K 2P a K i )2 î onto 77A2. Hence, we con

tinue (5.10) as follows:

=  (A/'(isr2f ,A ^ i ) 2,i A Si A • • • A 5„ ,  / i i  A • • • A (5-11)

Thus, / A G(dx)$\(x2,x)$ \(x i ,x) identifies the operator of creation by

N ( K 2P & K  1 ) 2 ^ ,  which we denote by a + [ N { K 2P ^ K i ) 2^)'.

a + ( N ( K 2P & K  1 ) ^ 1 )g\  A • • • A gn = N ( K 2P a K i )% i  A gx A • • • A gn.

Clearly, f A cr(dx)<&i(xi,x) $ 2(j<2tX) identifies (the restriction to A P nn(hi) 

of) the adjoint operator of a+ (A f  (A ^P a^O ^ i), i.e., the annihilation operator 

b y  A f ( K 2P A K i ) $ y .

a ~ ( J \ f ( K 2P A K i ) 2 A ) h i A - - A h n =  n { n -  1 ) { M { K 2P a K i ) 2^  h x A - • • A h n) ^ 2,

(5.12)

where the scalar product is taken in the first two “variables” . Therefore,

a - { N ( K 2PAK i ) ^ ) h i  A--- Ah n
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£  ( - i h®  ® h f ) H02

x hi A • • • A hi A • • • A hj A • • • A hn.

Next, for any gu . . . ,  gn, hx, . . . ,  hn G H,

( / cr(dx)$l(>C2tx)$2{x2,x)9iK---Agn, h i A - - - A h n )
/  AFiH)

AF(H)

x (pi A • • • A pi A • • • A gn, hi A • • • A hj A • • • A hn)n ^n-u. (5.13)

For any linear continuous operator A  on H, we define the second quanti

zation of A, denoted by dT(A), as the linear continuous operator on A T ^ H )  

given by

d r(4 )  r A F <0)(W) = 0 ,

dr(A) f =  . 4 ®1 ®- - - ®1  + I ® i 4 ® l ® " - ® 1

H +  1 ® • • • ® 1 ® A, nG  N.

Then, we continue (5.13) as follows;

=  (d r(0  © { ^ P ^ K ^ g i  A • • • A gn, hi A • • • A hn)

Therefore, f A o-(dx)$Z(x2tx )$ 2 ( x 2 ,x) identifies the operator dr(0©(if2-PA^2))- 

Analogously, f A a (d x )$ i ( x i lX) $ l ( x i tX) identifies the operator

Summing up, we see that, for each A G B q ( X ), the operator a(A) is given

by

a( A) =  a+ (AA(AT2PA^ 1)^1) +
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L em m a 5.1 The operators a(A), A G Bq(X), commute on

R em ark  5.2 Let us first give a heuristic proof of Lemma 5.1. The operators 

\I/*(:r), x  G X ,  satisfy the CAR:

[l'(x), >%)]+ = [<r(z), <T (i/)]+ = o,

<£(?/)]+ =  5{x,y)\ ,  x , y e X ,  (5.15)

where

[  6(x,y)f(x)g(y)a{dx)a(dy)  := [  f(x)g{x)a(dx).
J x 2 Jx

Therefore, for any x, y G X,

a(x)a(y) = V* (x)#  (x)W* (y)V (y)

=  — (x)ty* (y )^  fa)1#  (y) +  6(x,y)'Jf*(x)Sfr(x)

= —^/*(y)^*(x)^(y)^(x)  +  6(x,y)'&*(x)'Jf(x)

= * ' { y ) * (y )* ' ( x ) V  (x)

= a(y)a(x). (5.16)

Proof of Lemma 5.1. For any Ai, A2 G B0(X),  we trivially have:

a+ ( ^ ( X 2PAlX 1)^1)a+( ^ ( X 2PA2A 1)^1)

=  a+(Ar(X2PA2X 1)^1)a+ ( ^ ( X 2PAlA-1)J)1). (5.17)

Next, we evaluate

d r ^ K ^ K ! )  e o j v ^ P A ^ i ) ^ !  =  {('i-®K1P ^ K l ) N { K 2PA2K-L)2tl)h,

(5.18)

where A denotes antisymmetrization. For any u \  G P i and u2 G P 2, we get:

((1 ® K 1PAiK 1)N(K2Pa2K i)2,uu2 ® ui) ■}i®2



=  ( N ( K 2P&2K i )2,i ,U2® K xP ^ K yUx) ^

— (u2,K2Pa 2K i K\P/\1K iU\) H 

=  {u2i K 2Pa 2X P a 1K iUi ) h .

Therefore, (1 ® K i P ^ K ^ M  {K2P^2K \ ) 2̂  is the kernel of the operator 

K 2P^2K  P ^ K \  realized as the element of P 2 ® P i. We denote it by 

A7(P2PA2PPA aP i ) 2,i- Therefore, by (5.18),

d T ^ P ^ K ^ N i K i P ^ K ^ ^ N i K ^ K P ^ K y ) ^ .  (5.19)

Analogously, we get, for any U\ E P i ,  u2 G P 2,

( (P 2T>a 1 P 2 © 1)A7(P2P a2P i ) 2,i^2 © ^ i)h ®2

=  (u2, P 2Pax(1 -  P j ^ P i ^ i ) ^ ,

and hence,

cff(o©  (K 2Pm K 2) ^ ( . K 2Pa 2K 1)^ 1 = M ( K 2PAi ( 1 - K ) P A2K 1)£v  (5.20)

By (5.19) and (5.20), a straightforward calculation shows that

d T d - K . P ^ K , )  © (K2PAiK 2))a+(N { K 2PAlK x) ^ )  

+  a + i A f i ^ P ^ K ^ d T d - K i P ^ K , )  ©  (K 2P A2K 2))

=  ^ ( ( - ^ P a^ i ) © ( ^ P a^ ^ + W ^ P a^ i ) ^ )

+  a+ (V (Jc2PA2ii:i)J,1) r ( ( - A '1PA1̂ i )  © (K 2pA lK 2)). (5 .21)

Next, by (5.12), we have:

a -(V (/ir2PA1/Ci)$'il)a+ (V(fi:2PA2^ i)2 ,i)^ i A • • • A hn

= { ( N ( K 2PAlKi) ,  A ^ P a ^ i ) ) / / ® ^  +  a + (A 2)a “ (A 1))h 1 A ■ ■ • A hn
n

— hi A • • • A hi- 1
i = l
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A (L L N { K ^ K l ) ^  y ) a (d x ) a (dy}

+  J ^ N { K 2PA2Ki)(- ,y)h\2\ x ) N ' ( K 2PAlKi)(x,  y) o{dx) a(dy

A hi+1 A • • ■ A h„. (5.22)

For any u E P ,

/ / / ( W 0 ( ,  O ^ ^ W ^ P a ^ i X z . J / )  «T(dx) ^ d y ) , ^  

=  [  f  [  m K 2P ^ K l]{x ,z)h f)(y)N{K2PAlK 1){x,y)u{z)
J x  J x  Jx

a ( d x )  ( j { d y )  c r ( d z )

=  j  a ( d y )  f  a ( d z ) h \ 1\ y ) u ( z ) f  a ( d x )  J \ f { K i P A 2K 2) ( z , x )
v X  w X  «/ X

N ( K 2PAiKi)(x,y)  

=  f  a ( d y ) f  a ( d z ) h \ 1)( y ) u ( z ) A r ( K 1P A 2 ( , l - K ) P A l K l ) ( z , y )
J x  J x

= ( K i P ^ i  1 -  K ) P AlKyh\

Therefore,

f  [  J \ f ( K 2P & 2K \ ) ( x ,  ■ ) h ii ) { y ) M { K 2P ^ l K i ) { x , y )  a { d x )  a ( d y )
J x  Jx

= ATiPa2(1 -  K)PAlK ^ \  (5.23)

Analogously

/ / N { K 2P ^ K ^ , y ) h f \ x ) N { K 2p A, K l ) (x , y ) c{ dx ) c { dy )
J x  J x

= K 2PAlKPAlK 2hf>. (5.24)

By (5.22)-(5.24),

a - ( V ( P '2P A l/ r 1)Jil) a + (V (/! :2PA2^ i ) J ll)h i A • • ■ A /i„
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=  {{N'{K2PAlK i ) ,N { K 2PA2K 1))Hml  +  a+(A2)a ( A i ))hi A • • ■ A hn

-  d r { (K 2p A,( 1 -  k )p ^ K i ) e  (k 2p A2k p a , k 2)). (5 .2 5 )

Using (5.25), we conclude that

a+ ( ^ ( K 2PAlX 1)Jil)a-(AT(K2PA2ii:1)2A1i)

+  a _ (A/r(Ar2PAlPT1)2 i)a+(A/,(P ’2PA2P ’i)2)1)

+  d r ( ( - ^ 1p Al^ 1) © ( ^ p ^ K ^ d r a - K ^ K , )  © (k 2p A2k 2))

=  a+( ^ ( P 2PA2P 1)5)1)a-(AT(^2PAlX 1)J)1)

+  a - ( ^ 2PA2̂ 1)^1)u+(AA(/i:2PAl^ 1)J)1)

+  d T d - K . P ^ K , )  © ( P 2PA2̂ 2 ) ) d r ( ( - ^ i P AlK 1) © (K 2PAlK 2)).

(5.26)

By (5.17), (5.21), (5.26) and the equalities obtained by taking the adjoint 

operators in (5.17), (5.21), we conclude the statement of the lemma. □

We will now show that the family (a(A))Ae#0(x) has a correlation measure 

p with respect to the vacuum vector Q,.

R em ark  5.3 We will first make heuristic calculations. We will write, for 

any A i . . . ,  An G BQ(X),

Q(XAi§>- • - S x a J  =  [  ( i (dx i ) - -  [  a(dxn) :a(xi) ■ • • a(xn) \ .
nl J Ai JAn

Then, the recursion relation (4.2) takes the form:

n + l

Y  a M  '-a(x  1) '  *' K x i) * • '  a (x n +1):

, n G N,

:a(x 1) • • -a{xn+i): =
n + l

L i = l
n + l

-  Y  Y  6(xi,x j ) :a(x i) - - -a(x i) - - -a (xn+i):
i=  1 j - l , . . . ,n +l , j^ i

:a(x): = a(x), (5.27)
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Using (5.27) and the CAR (5.15), it is easy to show by induction that 

:a(xi) • • • a(xn)\ = #*(£„) • • • tf*(a;i)tf(zi) • • • # (z n).

Hence, by (5.8),

:a(xi) • • • a(xn): Q = 'P*{xn) • • • $!* ( x i )$ l { x hxi) • • • ,Xn)to. (5.28)

Thus, \a(x\) ’ - - a(xn): is the Wick product of the operators a(x i ) , . . . ,  a(xn), 

i.e., one first takes the formal product

a(xi) • • • a(xn) =  ^*{xi)^f(xi)  • • • r ( o : J ^ ( x n),

and then one rearranges the right hand side, so that one first has all the 

operators \P*{x\ ) , . . . ,  4>*(£n) and then all the operators ^f(xi ) , . . . ,  ^ (x n). 

Prom here

(ifl(Xi) • • • CL̂ Xfi)’. fl, ^ )w4̂ r('H)

=  ($ 1(^ 1,xn) ' ' • ^ l ( ^ l ,x i ) ^ ( Xl,xi) ' • • $l(*l,x„)fy ^)AF(W)

=  11̂ 1,X\ A • • * A ^l.Xnll/fAn 

=  det [k(xu Xj)]^d=l1

which is the n-th correlation function.

We will now show that the calculations in Remark 5.3 can be given a 

rigorous meaning. Taking into account (5.28), let us make sense out of the 

following operators:



Ai>. . . ,  A n G Bo(X), n > 2. (5.29)

For Hilbert spaces fh  and f i2, we denote by £ ( # 1, # 2) the space of linear 

continuous operators from S)i into f i2. We also denote by C(ARnn(H)) the 

space of all linear continuous operators acting in

Let A G Bq(X)  and let Rkjn £ C('HAlc, H An). Analogously to (5.10), 

(5.11), we conclude that the integral

Here, Vi denotes the orthogonal projection of Tt®1 onto H Al.

Next, using (5.4) and Theorem 2.1, we easily conclude that the integral

identifies an operator in C(HÂ k l\TLA(n ^) even in the sense of Bochner 

integration.

Hence, for each R  G C (AJrfin(W)), the integrals (5.30) and (5.31), in which 

Rk,n is replaced by R , identify operators in £(A Ffin(Ft)). So, by induction, 

the operator (5.29) is well defined.

Lem m a 5.2 For each n G N and any A i , . . . ,  An G Bq(X),  we have:

identifies, though the corresponding bilinear form, the operator in 
£(^A(fc-i), ^A(n+i)) which js given by

(5.30)

f  a(dx) % ( x 2,x)Rk := Vn+1(l  ® (Rk,„Pk))

(5.31)
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Proof. We first state that, for any A 1} A2 € B0(X)  and any R  e  

we have

a(Ai) f  a(dx) 'f f* (x)R$l(x i,x) =  [  o{dx) ^f*(x)a(A1) R ^ l ( x i yX)
J A2 J A2

+  j  a (d x ) ' ! /* (x )m \(x i 'X). (5.32) 
J A i HA2

Intuitively, equality (5.32) follows from the CAR (5.15). Indeed,

a(Ai) [  a(dx) 'Jf*(x)R$l(xitX)
J a 2

a{dx)^f*{x)^(x) j  a{dy)ty*(y)R$I(^i,y)
1 J A2

=  [  u{dx) f  a ( d y ) ^ ( x M x ) ^ ( y ) m U x 1>y)
J Aj J A2

=  -  f  a(dx) [  <T(dy)V(x)*t (y)V(x)R*'i(xi,v)
J Ai J A2

+ [  a (d x )^ * (x )R ^ l (x i fX)
J Ai(~lA2

=  [  <y(dx) f  a ( d y ) ^ ( y ) < a ' ( x ) 'H ( x ) m \ ( ^ y)
J A] J A2

+  f  a{dx)^(x)R^\{>ci^)
J AiRA2

(<*l/)«*(v)( <r(<fa)*, (*)*(®))

f  a(dx)W*(x)R$l(xitX)
J AiflA2

( d y ) ^ ( y ) a ( A 1)ml(>chy) + [  a ( d x ) * ' ( x ) m i ( x ljc).
J Ai(~lA2

J  A2 

+

=  / a  
J a 2

In fact, a rigorous proof of (5.32) can be carried out analogously to the 

proof of Lemma 5.1. Indeed, let us fix an arbitrary orthonormal basis (en)JJLj 

of L2(X,a).  Then, by continuity, it is easy to see tha t it suffices to prove

(5.32) in the case where R  G £(?7Afc, TtAn) and

R eh A ei2 A • • • A eik = eh A eh A • • • A ein
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for some 1 ^  i\ < i2 < • • • < ik < oo and some 1 ^  l\ < l2 < • • • < ln < oo, 

and

R  ejx A 6j2 A • • • A 6jk = 0

for any 1 ^  j x < j 2 < • • • < j k < oo such that ( ju j 2, .. . , j k) ±  (zi,z2, .. • ,zfc). 

Then, for any hi, h2, . . . ,  hk~i G 7Y,

i? A • • • A

=  i? A hi A • • • A hk- i

=  (^i,x A /ii A ■ • • A eij A ei2 A • • • A eifc) / i  eh A • • • A eik 

= (xi,x A Ai A • • • A ejj A ei2 A • • • A eifc) efl A e/2 A • • • A e/n.

Now, the rest of calculations follows on complete analogy with the proof of 

Lemma 5.1. Thus, (5.32) is proven.

Next, analogously to the above, we see that, for any A i.A 2 G Bo(X) and 

any R  G C(AFbn(H)) , we have:

(The above equality is heuristically clear and follows from the CAR). There

fore, for any A i , . . . ,  An G Bq{X)  and each i G {1, 2 , . . . ,  n — 1},

T ( A 1, A 2, . . . , A n) =  T(A i) • • • > Aj_i, Aj+i, A<, Ai_)_2) • • • > An).

From here it follows that the operator T ( A i , . . . ,  An) does not depend on 

the order of the sets A i , . . . ,  An G Bq{X).

Next, for each A G Bq(X),  we have by (5.8),

Q(Xa)^ =  a( A)Q 

= f  a(dx)^*(x)^f(x)Q 
J  A
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=  /  a(dx)^f*(x){^2(* 2lx) +  $ I (* i lx))fi 
J  A

=  [  a{dx)^!*(x)^*l {K^x)Vt 
J  A

=  r(A )fi.

Thus, by (4.2), to prove the lemma, it suffices to show that, for each n G N, 

and any A i , . . . ,  An+i G &o(X), we have:

n + l

^ ( a ( A i) T( A1>. . . , A i, . . . , A n+1)
1 = 1

— ^   ̂ T(Ai n  Aj, A i , . . . ,  A j , . . . ,  A j , . . . ,  An+ij
j= l , . . . ,n+l , j ' # i

=  (n +  l ) T ( A i , . . . ,  An+i).

So, it suffices to prove that, for each i G {1, . . . ,  n}

a (Ai)T(Ai> •. •, A i , . . . ,  An+i)

T ( A i n A j , A i , . . . , A i , . . . , A j , . . . , A n + 1 )
j= l , . . . ,n+l ,  j^ i

=  T ( A 1, . . . , A n+1). (5.33)

Since the operators T(-) do not depend on the order of the sets which index 

them, (5.33) is equivalent to

n + l

a(A i)T (A 2, . . . ,  An+i)f7 £ r ( a 2, . . . , a , - 1,
3= 2

Aj fi Ai, Aj+i , . . . ,  An+i)0

=  T ( A i , . . . ,  An+1)fh 

Now, by (5.32), we have:

n + l

a(A1) T( A2, . . . ,  ^ n + l)^  Z T (&*........V i .
3= 2
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A j n A1; A;-+i , . . . ,  An+i)S7

a(^i) I  &{dxn+1)4/ (xn+i)‘7'(A2,. . . ,  An) $ 1(xi)Xn+1)r2
J  A n + i

n + l

— T(A2, . . . ,  Aj_i, Aj  n Ai, Aj+i , . . . ,  An+i)fi
3=2

J  a(dxn+1)y*(xn+i) ^a(Ai)T(A2, . . . ,  An) )$ ; (x i>Xn+1)fi

+ f  a(dx)y*{x)T( A2, . . . , A n)$I(xitX)fi
J  A j f l A n + i

n + l

— ^  T(A2, . . . ,  Aj_i, Aj D Ai, Aj+i , . . . ,  An+i)fi
3=2

A n+i 
n

3=2

f
' A n+i

a(dxn+i)^*(xn+i )^a(Ai )T(A2, . . . ,  An) ) $ I ( x i>Xn+1)ft

— ^  ̂T (A2 , • • •, Aj_i, Aj n Ai, Aj+i,. . . ,  An)Q

cr(da;n+i)^*(a;n+i)^  J  a(dxn)^/*(xn)a(Ai)

T ( A 2, . . . ,  A n - O ^ K x ^ j J ^ K x i ^ j n

+  [  a(dxn+i)^f*(xn+i ) (  f  a (dx )^* (x )T (A 2, . . . ,  An_i) 
J A n+i J  Aif~iAu

*1 (*-i^)) * 1  (^ 1^ 1)«
n

— ^  ̂T  (A2 , .. •, Aj_i, A j n Ai, Aj+i,. . . ,  An)Q 

a(dxn+i)^*(xn+1 ) ( /  a(cten)'F*(:z:n)a(Ai)
“An

T ( A 2, . . . .  A ^ O K I K a J ^ K * ^ ^
n —1

— ^  ̂T (A2 , • • •, Aj_i, Aj n Ai, Aj+i,. . . ,  An)Q 

a(dzn+i)tf *(a;n+i) ( J  a(dxn)V*{xn) (• • •

3 = 2

A n  +  l

3=2

• =  /An+i
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(  v i d x i W i x i W i i x i ' x S )  ■ ■

=  T ( A i , . . . ,  An+i)f2. □

L em m a 5.3 The family of operators (a(A))Ae£0PO has a correlation mea

sure p with respect to ft, and the restriction of p to ( r j \ / 3 ( r ^ ) )  is given 

by

p ^ { d x u . . . ,  dxn) =  i  det[*(x4, Xj)\li=l a(dxi) ■ ■ ■ a(dxn) (5.34)

(recall that we have identified B ( T ^ )  with Bsym( X n), a n d B ( F ^ )  C B ( f ^ ) ) .

Proof By (5.29) and Lemma 5.2, for each n E N and any A i , . . . ,  An E

Ba(X),  we have

(<2(XAi 0  • • • § X a J ,  ^ ) a f (w)

=  a(dxn) $ i ( x i tXn)(^J^  a(dxn- l ) ^ ^ •

- ” (  [  tf(d x i)$ i(x lfxa)<&I(x1>a1)>) • •
V J A ]  /  /  /  A T ( W )

(note that all the integrals involving vanish). Therefore,

(Q(XA j 0  ■ •' ®Xa J ,  ^ ) a f (w)

= a(dxn) • • ■/  cr(dxi)||xi)Xl A--* A x Mn| |^An (5.35)
J An J Ai

=  A- /* cr(dxn) - -  [  (r(dxi)det[k(xi,Xj)]^j=1. (5.36)
n‘ J An J Ai

Note that, by (5.35), the right hand side of (5.34) indeed defines a measure.

Hence, the statement of the lemma follows from (5.36) □

L em m a 5.4 77ie correlation measure given in (5.34) satisfies (LB).
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Proof. For each A E Bq(X) and n E N, we evidently have

n

( ^ J ^ J ^ A f ( K 1)(x ,y)2a(dx)a(dy)Sj  ,

from where the statement follows. □

By Lemmas 5.1, 5.3, 5.4 and Theorem 4.1, we get

T h eo rem  5.1 For the family (a(A ))ags0(x) defined by (5.14), the statement 

of Theorem 4.1 holds with the correlation measure given by (5.34).

Let us now briefly mention the boson case. About the operator K  we 

make the same assumptions as in the fermion case, apart from the assump

tion that K  < 1. We set K\ V~K  (just as above) and K 2 := (1 +  K )1//2. 

We then essentially repeat the fermion case, using however the symmetric 

Fock space S!F(Tt) instead of the antysymmetric Fock space ATFifK). The 

operators ^ ( / ) ,  \k*(/) (see (5.1)) now satisfy the CCR (use the commutator 

[A, B ]_ := A B  — B A  instead of the anticommutator in (5.2)). The counter

part of formulas (5.35), (5.36) reads as folllows:

Thus the corresponding correlation measure is given by (5.34) in which the 

determinant is replaced by the permanent:

( Q ( X A i §  * * • §>Xa J ,  Q)a f (h )

cr(dxn) ’ -- j  a(dx i ) | |^ i |Zl® • •
2

a(dxn) - ’ - / a(dxi)peT[k(xi,Xj)\ij=h""n (j(dxi) • • -cr(dxn).

n
per [k(xi,Xj)] ^   ̂ h{xi^ x a(i)).

creSn i = l
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5.2 Fermion-like and boson-like particle den

sities

Let the operators K, Ki,  K 2 be as in the fermion part of Section 5. Let 

I E N, I > 2, and we now take 21 copies of the Hilbert space H  =  L2( X , a): 

Hij  and 772>t, i = 1 , . . . ,  I  We denote 7 : =  ® |=1(#i,» © H2,i).

For each i E {1,2, . . . , /} ,  let us consider the following heuristic operators, 

for each i E l ,

^ ( z )  =  $ 2 (^ 2  ,»,*) +

f a )  =  ^ 2( ^ 2,t,x)  +

where X2,i,x are the corresponding elements of H \j  © # 2,1- 

Define, for each x e  X ,
1

aV\x)  = ^ 2 ^ * ( x ) ^ i ( x ) .
i=i

Thus, we consider the /-fold convolution of particle densities ^*(x)^(x). 

Then, for each A E Bq(X),  we set

a©(A) =  f  a l̂\x )a(dx) .
J A

If we denote

a f}(A) := [  ^*{x)^i(x)a(dx),
J A

then

aW(A) =  ^ a < ,)(A).
i = l

Each of the operators a f \  A) is clearly well defined and Hermitian in 

and hence so is the operator a®(A).

Next, for each i E {1 ,2 , . . . , / }  and for any Ai,  A 2 £ Bo(X), the opera

tors a^(Ax) and af^(A2) commute, and hence so do the operators a®(Ai)
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and a ^ ( A 2). Hence, (a^(A))  A€Bq^  is a family of commuting Hermitian 

operators in

Completely analogously to the proof of Lemma 5.2, we get, for each n E N 

and any A i , . . . ,  An 6 &o(X),

^  1 1

Q ( x A ! ®  • • • ® X A „ ) n  : =  Q ( x a , ®  ■ ■ ■ ® X a „ )  =  - j  ^ 2  "  •

z j = 1 = 1

/  (7 ( d x n ) ^ * n ( x n ) (  /  G { d x n — \ )  ^ ^ n _ 1 ( ^ n —0  (  ’ ’ ’
•'An \ J An_i V

Hence, analogously to the proof of Lemma 5.3, we have

(Q(xA1§ - - - § X A j , n L (H(0)

=  "7 X  "  ' X  ( I <T(<ia:n)$ l(*lA..*») ( In ' - f a  V ^ - ,

x , xn)r2, r2

i 1

=  Y ]  ’ • • 5 2  /  c r ( ^ n )  • • • /  c r ( c h i ) | | x M l ) T l  A  • • • A  ^ i , i n>x n | | L ( 0 ) a « .  

i l  =  l Ja ,

Hence, the correlation measure p is given through

p(n)(ch 1, . . .  ,dz„)

=  ( X  "  ' X  A ' ' ' A *!.<».*» ll(H(0)An J ^ ( ^ l )  ' ' ' o(dXn). (5.37)
V i 1= 1 tn = l '

Analogously to Lemma 5.4, we conclude that the correlation measure 

given in (5.37) satisfies (LB).

Following [30] and [25], we introduce the notion of a-determinant. So
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let a E R be fixed. For a square matrix A = (aij)?j=1, we define its a- 

determinant as follows:

detaA = X  a"-"®  ai((i). (5.38)
ZeSn i = 1

Here z/(f) denotes the number of cycles in f. Since for each £ E Sn

(_l)n-KO = sign(f), (5.39)

det_iA is the usual determinant det A, whereas detiA is clearly the usual 

permanent per A.

Lemma 5.5 For a n y  aq,. . . ,  x n E X , we  have

i i
'y  ̂ ' ' * y   ̂ A • * * A X l , i n)Xn | | (7^(i))An —  ^ d € f c - l / l \ l k { % i ) Xj ) \ ij  = y
*1 =  1 *n =  1

P roof. By (5.38) and (5.39), we have 

^ d e t _ 1/,[ifc(®i>Zj)]y=1 

= “i X ( - j) ink{x 1, Zfjo) • • • k(xn, x ((n))
n ‘ ZeSn

= (—1 )"“*'(€) Z"(0 A: (x i, z€(i)) • • - fc(zn, aq(n))
n - €65n

=  sign ( 0 ^ (0^ (^ l5 ^(1)) * • • k (Xn> ^(n))-n!

On the other hand, 

z z

(5.40)

}   ̂■ ' ’ y  J | | x l , i i , x i  A  • • • A  X i,jnjXn | | ( ^ ( 0 ) A n  

*1 =  1 in =  l
z z

=  ^   ̂ ^  ^ (^ l,* i,s i A • • • A >q,in,®n, ^l,ii,X I A • • • A ■̂ ’l,in,xn)('H(/))An
i 1 — 1 in —— 1

I I
=  y   ̂ ' ' ' y   ̂(^l,zi,®i 0  ' • ' 0  ^ l, in,xnj ^l,ii,® i A • • • A ^ l , in,®n)(7^(0)An

*1 = 1 *n = l
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= i £ - £ £
il =1 in = l ĜSVi

I I

n \ si&n (£) X /  ’ ‘ S  ( x Mi,zi> ^-^(D ’̂ d ))^ /)
£GSn i i = l  in= l

^ l , l n,In) Xl,*̂ (n)'x€(n))7̂ (l)
 ̂ I I

= ^ Y l S[gn^ Y ^ '  ' ' J 2 5i^HWk ^ X^  ' ' ' 3inMn)k (X^ Xan))
£(=Sn i i = l  in =  1

 ̂ i I

= ̂  E sisn(?) (E ■ • • E • • • 5i-*£(»>)
££*SVi i 1—1 in— 1

x k(x  1, ^ ( 1)) • • • k(xn, x ^ n)) (5.41)

Comparing (5.40) and (5.41), we see that, in order to prove the lemma, 

we need to prove that, for any fixed £ G 5n,

=  <5-42)
11 — 1 in — 1

So, let us prove (5.42). Let £ E Sn be fixed and denote m  := i/(f). 

The cycles of f  divide the set {1, 2 , . . . ,  n} into m  disjoint subsets, which we 

denote by

{'lil, . . . j U j j } ,  {Uj i- 1- 1 , • • • > b̂'l+J2 } > ;2 + l » • • • ’ 1+J2 +J3 } »

. . . , { U j  f-jm-1 +  1, • • • ) wn } -

Then

^l.^(l) ' ' ' ^W£(n)

— ^(^ui — iu2 = ' ' '  = iuj1 )fi(iujl+i =  iuj:+2 = • ■ • = iUjl+j2
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where, for some condition A, J(-A) is equal to 1 if condition A  is satisfied and 

0 otherwise. Therefore
i i

E ’ ' ’ E
*1 = 1 *n = l

I I
— E ’ *' E ̂ Ul — — iujl )S(iujl+l =  ûh+2 = • • • = iujl+j2)

i j —— 1 %fi=1

=  ®u J l + - + j m - l + l  =  ’ ' * =  h i n )

Z I I

=  . E . E - .  E i
l u j - l  *ui l  + i - l  ,uJ l + - + i m - l + l = l

= r .  □

Thus, we have proved the following theorem (compare with [25]). 

T h eo rem  5.2 For the family ( a ^ (  A ) ) , the statement of Theorem 4-1
\  /  A e B o ( X )

holds with the correlation measure given by

p{n\ d x l , . . . , d x n) = ^ d e t - i / i  [lk(xiy Xj)]"j=1.

Let us show that the measure derived in Theorem 5.2, which we denote by 

pSl\  is indeed an Z-fold convolution of fermion measure p  with kernel k(x , y). 

We will give a direct proof of this result using correlation functions and 

without appealing to the formula of the Laplace transform of this measure 

given in [25].

Let us first consider a probability measure p  on (T,B(T))  whose correla

tion measure p satisfies (LB) and such that

p{n)(dxi , . . .  ,dxn) =  ^ r «(n)(x i , .. . , x n)a(dx i) • • -cr(dxn), 
n\

(recall that are called correlation functions of p). The I-fold convolution 

of p  is defined by

p*l(A) = /  Xa ^ i U 72 • • • U 71) p{dji)  • • • p{dji),
Jrl

83



where A  G # ( r ) .  (It is easy to see that p*1 is well-defined). Let us find the 

correlation functions of p*1. Let p  G Cq(X).  Then

J  Y
r  { x i , . . . , i n }C 7

=  /  Y  <P®n(x h • • •. Xn)v{dll) ' • • p(dji)
r< {x i , . . . ,x n } C 7 iU - U 7 i

■ i s  E E
k i , . . . , k i = 0 , . . . ,n { x i , . . . , Xk1 }C 7 i  {xfc1+i,...,Xfc1+fc2 }C 72 

fciH hfci=n

y?®n( z i , . . . ,  x n)p(d71 ) • • • //(cfy)
{XfcjH +1 ,.")Xn}Cl7 /

X I  J  X  V>l&kl{x u - - - ,X k i)ii{d'ii)
k i , . . . , k i = 0 , . . . ,n r  {xi,. .. ,xjt1}C 7i  
fciH hfc(=n

x J  Y  (p®k2(xkl+u. . . , x kl+k2)ix(d'y2)---
r  {xfc1+i,...,Xfc1 + fc2}C72

L  E  . . .  <p®*' (rcfcl+. ••+fcn_i+i> • • • j %n)tJ'{d'yi)
r  {*fc1+... + fci_ 1+l, . . . ,*n}C7l

S  T1 [  p®kl( x u - - - , x kl)Kikl)(xu . . . , x kl)a{dxi)->-a{dxkl)
7 « ./Xfcik \ , . . . , k i = 0 , . . . ,n A 

fci H f-fc*=n

X j 1 j  P  (*£fci+l) • • • ) ^ k y + k i ) ^  (̂* f̂ci +  l> • • • 5 ^ fc l+fo)
J x k2

■ ■ * c r _)_/C2)

X 7 r I  P  (^fciH hfcj_i+l 1 • • • 1 X n ) t \ ^   ̂( X k l -\ l-A:/—1 + 1 » • • • > x n )
W  J X ki

(j{dxkl-1— i-fc| i+i) * ’ ' ^{dXy^)

n \  j  V m ( X ^ " - ’ X n ) (  X
\  ki , . . . , k i—0 , . . . ,n 

fciH \-ki—n

K{k2)(xkl+u . . . ,  x kl+k2) • • • «(fej)(zfcl+...+fcj_1+i , . . . ,  zn) 1 a(dxi) • • • a(dxn).

Therefore, the correlation functions of the measure //**, which we denote
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by Kyi), are given by 

K{™}l(xu . . . , x n)

= X
ki-\ h ki=n

X tẐ  (Xfc j+ i , . . . , Xkl+k2) ’ ' ' l^{%ki-] hfcj-i+l? ■ • ’ i > (5.43)

where (*)~, as above, denotes the symmetrization of a function.

Since the correlation functions are symmetric functions, we may treat 

the sequence of correlation functions (/^n))£L0 (where = 1) as a function 

k on Tx.o (compare with Chapter 3). Then, formula (5.43) takes the following 

form

V'(’l)= X  kM kM • • • (5-44)
)€Pl(v)

where Pi{rj) denotes the set of all ordered partition of 77 into I parts (again 

compare with Chapter 3).

P ro p o sitio n  5.1 Let pfl) be the probability measure on ( r V , # ( r x ) )  which 

has correlation function given by

^ ( 0 (* î■> • • • 1 Xn) — det_i// ^lh{xi,Xj)

Then pf® is the l-fold convolution of fermion point processes p corresponding 

to the kernel k{x,y) as in Section 5.1.

P roof. By (5.40), we have

(xl t . . . , x n) =  Y  sign(£)^(0 tt(zi, ^ ( 1)) • • • k(xu, x ^ n)). (5.45)
£esn

On the other hand, by (5.44),

K {f i ( x i  , . . . , X n ) =  Y  - K>n(rii),
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where

ZeSm

Therefore,

«yo(Zl, . . . , £ „ ) =  ^  ( - l ) m_l/(0^ i(^ (f))« (® l» ^ (l)) • • • «(^n,^(n)),
5m

(5.46)

where, form G {0 ,1 ,2 , . . .  }, Ni(m) denotes the number of all possible ordered 

partitions of a set consisting of m  elements into I parts. Thus,

M W  =  1

= y ( n
fciH hfc(=m

Hence, by (5.46)

k£"1(xi, . . . , x n) = s ig n (O r(̂ K (a;i,^(i)) • • • K(xn,x ((n)). (5.47)
Zesn

Comparing (5.47) with (5.45), we conclude from Theorem 3.1 (see also Re

mark 3.1) that the proposition is proven. □
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