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Summary

Introducing an appropriate symbolic calculus for non-classical real-valued sym­
bols, so-called negative definite symbols, W. Hoh succeeded to prove that such 
operators generate often Feller semigroups. In a first part of this thesis we extend 
this result to complex-valued symbols. Further, using ideas due to H. Kumano-go 
in case of classical pseudo-differential operators, we construct a parametrix for the 
fundamental solution of the associated evolution equation, and thus arrive at an 
approximation for the generated Feller semigroup.

Finally, we use this theory to extend models in financial mathematics based on 
Levy processes. This is done by using the above mentioned results in situations 
where parameters in characteristic exponents of Levy processes are made state- 
space dependent. Especially Meixner-type processes are discussed in detail.
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Introduction

In [5] 0 . Barndorff-Nielsen and S. Levendorskii suggested to use the characteris­
tic exponent of a Levy process to construct a pseudo-differential operator which 
generates a Feller process by making the parameters of the Levy exponent state 
space dependent. This was especially advertised for the Normal Inverse Gaussian 
process. The resulting Feller process was then proposed as a ’better’ model for 
calculating option prices in finance. We are going to follow these ideas within a 
more general framework.

The first chapter starts with some basic definitions and properties of stochastic 
processes and Levy processes. Also a rough overview of examples of Levy processes 
is given. Even though we extend Levy processes later on, most of the examples 
and corresponding theory of this chapter is not necessary in order to follow the 
next chapters. It should be seen as possible starting point for further work in the 
direction of this thesis.

In chapter 2 we recall some parts of the general theory for pseudo-differential 
operators generating Feller semigroups, as presented in [22] by N. Jacob. We will 
work with Hoh’s class of symbols (see [18]) which generalises the classical 
class S™0. Starting with complex valued symbols from we show that under 
additional, but natural conditions the corresponding pseudo-differential operator 
can be extended to a generator of a Feller semigroup. We will follow closely the 
book [22] of N. Jacob, but note that the theory given therein is only proved for 
real valued symbols of S™'^.

In chapter 3 we show that a result by H. Kumano-go [24] can be used to get 
approximations for the semigroup generated by pseudo-differential operators with 
symbols of Hoh’s class. In other words, we are going to construct a parametrix for 
the heat equation corresponding to a pseudo-differential operator with symbol in
cm, xp 
P '

In chapter 4 we show that the theory, which we stated and developed in the 
previous chapters, can be used to extend models based on Levy processes. The gen­
eral framework is that we start with the characteristic exponent of a Levy process, 
say This exponent depends (in modelling) on some parameters a, b, c , . . . ,  i.e. 
we have '0a,6,c,...(O- Now we make the parameters state space dependent, that is we
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define a symbol by
• 'lPa(x),b(x),c(x),... (0

where a, b, c , . . .  are functions. Then the final step is to show that this symbol is 
in Hoh’s class and satisfies some necessary conditions. Hence this implies that the 
corresponding pseudo-differential operator can be extended to the generator of a 
Feller semigroup. We show this in particular for the Meixner process, which was 
recently introduced as a model in Finance by W. Schoutens [29]. Analogously we 
give the proof for the Normal Inverse Gaussian process, but note that the result 
(without published proof) was already used in [5].
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Chapter 1 

Prelim inaries

In this chapter we very briefly recall how a stochastic process is constructed starting 
from a Feller semigroup. We also give the definition of a Levy process and mention 
its basic properties. Afterwards we state some examples of Levy processes.

1.1 Notations
N, R, C denote the positive integers, the real numbers and the complex numbers, 
n  G N will always denote the dimension of the spaces we are working in, as in Rn . 
No denotes the positive integers including zero.
For a complex number x  G C the real part and imaginary part are denoted by Re x 
and Im x , and x denotes the complex conjugate of x. For a, b G R the minimum of 
a and b is denoted by a A b and their maximum by a V b.

0+ means that we approach 0 in R as a limit from the right.

Function spaces are denoted by A(X;  T), i.e. /  G A (X \ Y )  means f  : X  —t Y  and 
/  has certain properties. Often we abbreviate this notation to A (X )  or just A  if 
the spaces are obvious by the context. For example C 00(Rn ; C) denotes all arbitray 
often differentiable functions from Rn to C. C m, m  G N U {oo} are m -times con­
tinuously differentiable functions, Cq continuous functions with compact support, 
Coo continuous functions vanishing at infinity. We also combine these notations 
for Cq°, the infinitely often differentiable functions with compact support. S  is the 
Schwartz space and S' its topological dual, the space of tempered distributions. B  
is the space of Borel measurable functions.

The first derivative of a function /  of one variable will be denoted by / ' ,  in gen­
eral /(*), k G N denotes the kth derivative of / .  For functions of several inde­



pendent variables we use the multiindex notation. That is for a  G we have 
\a\ = a\ +  . . .  +  a n, a\ =  au! • . . .  • a n\ and as notation for partial derivatives of a 
function /  we use daf =  . S^ uan.

We say f  is similar to g and write /  ~  g as x —> x0 if £ —> 1 as x —> x 0.

The domain of an operator A  will be denoted by V(A).  The identity operator will 
be denoted by id .

(.,.)o and ||.||0 denotes the L2-scalar product and norm, and H-Hoo denotes the 
supremum norm. The Euclidean scalar product is denoted by (x , y) or just as xy.

B  is the Borel cr-algebra on R. For a stochastic process with initial distribution 5X, 
x  G Rn , we denote the corresponding probability measure and expectation by Px 
and Ex. Here 5X denotes the Dirac measure at x G R” .

The Fourier transform of a function (or distribution) u is denoted by 

fi(£) =  F(u)(£) =  Fx^ ( u ( x ) )  =  (27r )" t  f  e~lx<u(x)dx,
jRn

and the Laplace transform is denoted by
poo

C(u)(t) = Cx^ t{u{x)) = /  e~xtu(x)dx.
Jo

1.2 Stochastic processes - Levy processes
We start with the definition of a stochastic process.

D efin ition  1.2.1 (S to ch astic  p rocess). A stochastic process with state space 
(Rn,B n) and parameter (time) set [0, oo) is a quadrupel (f2, A,  P, (^)t> o) where 
(Q, A, P) is a probability space and for each t > 0 the mapping X t : ^  —> Rn is a 
random variable.

For fixed u  G the mapping X 9{uf) : [0, oo) —> Rn , 1 1->> X t(u), is called a path 
of the process. In the following we often write (X*)t>o for a stochastic process and 
omit the probability space. In most cases we need to consider families of stochastic 
processes parameterised by the state space, i.e. (f2,*4, Px, (Xf)f>0)xeRnj where for 
each x G Rn fixed (Q,*4, Px, (Xt)f>0) is a stochastic process.

For every process we have a family of transition probabilities

Pt(x ,B ) = F(Xt G B \X 0 = x) = Fx{Xt G B ) ,x  G Rn,t  G [0, oo), B  G Bn.
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In words: Pt(x, B ) denotes the probability that the process is at time t in B  if it 
started at time 0 in x. Using the family of transition probabilities we may associate 
a family of operators with {Xt)t>o- For this note that for B  G Bn the mapping 
x i-» Pt(x ,B )  is measurable and for i G f  fixed the mapping B  i->- Pt (x ,B )  is a 
probability measure, i.e. Pt( ., .) is a Markovian kernel. Hence we may consider on 
the bounded Borel functions u the family of operators

Ttu(x) ■- I  u{y)Pt{x,dy) = V { u { X t)).

We will describe shortly that this procedure can be reversed, i.e. starting with 
certain families of operators we can construct families of stochastic processes.

An important class of stochastic processes we are interested in are Feller pro­
cesses, i.e. stochastic processes associated with a Feller semigroup.

D efin ition  1.2.2 (Sem igroup, s tro n g ly  con tinuous, co n trac tio n , p o s itiv ity  
p reserv ing ). Let X  with norm || • \\x be a Banach space.

A) A family (Tt)t>0 of bounded linear operators Tt : X  —> X  is called semigroup 
of operators if

To = id and Ts+t = TS o T t hold for all s, t > 0.

B) The semigroup (Tt)t>o is called strongly continuous if

lim \\Ttu — u\\x — 0 for all u € X.

C) The semigroup (Tt)t>o is called contraction semigroup if

ll^tll ^  1 f or 0>

where || • || is the operator norm.

D) A linear bounded operator T  : X  —»• X  is called positivity preserving if

0 < u implies 0 < Tu.

D efin ition  1.2.3 (Feller sem igroup). Let (Tt)t>o be a strongly continuous con­
traction semigroup on (Coo(Mn;M), ||.||oo) which is positivity preserving. Then 
(Tt)t>o Is called Feller semigroup.
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If (Tt)t>o is a Feller semigroup then there exists a unique family of sub-Markovian 
kernels {Pt)t>o such that

T t f ( x ) =  [  f(y)P t(x,dy)
JRn

for all t > 0 and all /  € Cb(Rn) compare [21] (p. 425 and Theorem 4.8.1). 
Especially if (Tt)t>o is conservative, i.e. Ttu(x) =  1 holds for u(x) = 1 for all 
x  G Rn , then the kernels are Markovian and therefore {Pt)t>o gives rise to a 
family of transition probabilities. With these we may construct for each probability 
measure pi on (Rn,# n) a projective family of probability measures by defining

PH(B) := s s  Xb (x u . . . 1 1 (Xm-udxm) • • • Ptl (x0, dxi)fj,(dx0)

where J  = { t \ , . . . ,  tm} is a finite subset of [0, oo) with t\ < . . .  < t m and B e Bm. 
Now an application of the Kolmogorov theorem yields the existence of a canonical 
process (fi, A, PM, (Xt)t>o) associated with the family P j4, hence with the Feller 
semigroup {Tt)t>0.

The process constructed in this way is called Feller process. Formally we have:

D efin ition  1.2.4 (Feller p rocess). A family of stochastic processes
(£7, *4, P1, (X4)t>0)xeKn is called Feller process if a Feller semigroup is given by

Ttf { x ) = W { f { X t))

for f  e  Coo(Rn ;R).

Another important class of stochastic processes are Levy processes, [6] and [28] 
are extensive monographs about this subject.

D efin ition  1.2.5 (Levy p rocess). A stochastic process (X t)t>o on Rn with 
X q = 0 a.s. is called Levy process if it has the following properties:

i) it has independent increments,
i.e. for m e  N, 0 < t0 < ti < . . .  < tm the random variables

X-to i Xti Xt 0, ,  X fm X fm_1

are independent.

ii) it has stationary increments,
i.e. the distribution of X s+t — X s does not depend on s.

11



iii) it is stochastically continuous, 
i.e. for all s > 0 and e > 0

lim P(|X t+s -  X a\ > e) =  0.
t—ys

Using these properties we see that for a Levy process (X t)t>o the decomposition 

X 1 = X ±  + ( X jl -  Xj_) +  . . .  +  ( I -  -
m m m  m m

implies the exsistence of a function ip : Rn —> C such that

E ( e ^ )  =  e~m )

and ip is called the characteristic exponent of X t. In fact there is a 1-1 corre­
sponded between characteristic exponents and Levy processes. Furthermore the 
characteristic exponent of a Levy process is also known as a continuous negative 
definite function, see Definition 1.2.8 below.

If the transition probability of a Levy process admits a density pt with respect 
to the Lebesgue measure then we can compute

I df.(27r)n JRn

where again ip is the characteristic exponent of the process.
Some of the properties of a characteristic exponent of a Levy process are stated 

in the following proposition.

P ro p o sitio n  1.2.6. Let ip : Rn —» C be a characteristic exponent of a Levy process. 
Then ip has the following properties:

i) Re(ip(£)) > ip(0) =  0 for all ( e l ” ,

ii) ip(€) = ip(-€) for all

iii) ip is continuous.

For reference see [21] (page 123).

L em m a 1.2.7. Let ip : R —>• R be a Levy exponent which satisfies ip(0) =  0, 
lim^oo =  oo and ip'(£) > 0 for f  > 0 (ie. ip is invertible on the positive real 
axis). Then the density of the transition probability of the Levy process is given by

pt(x) =  —£y-*t [ ------- ~------- J

i r°° _°°_ rp̂ n
= -  Y l - i r - r - Z — ^ ( i ’~1(y))2n+1e~ty dy.

W o ( + 1)!

where ip~x denotes the inverse of ip on (0,oo) and we use the convention 0° =  1.
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P ro o f. Let x  /  0. By the symmetry (Proposition 1.2.6 ii)) of ip we get

1 r°°
Pt(*) =  2^ /  e - ix(e~t m dt;

i r°°
= —  (cos(x£) + ism (—x£)) d£

J — OO 
1 /*°°

=  —  J  cos{x^)e~t m  d£

1 Z100
= — cos(x^)e~t^  d£.

ft Jo
Now we use the substitution rule. But note that since ip may not be invertible at 
0 we first consider the integral starting from e and let e tend to 0 afterwards. This 
is here omitted.
Afterwards we use the Laplace transform with the formula C ( / ')  (t ) = tC ( /)  (t ) —
/ ( o +). 

i r°°
Pt(x ) = ~  I  C0SW  1(2/))W> 1{y )Y e ty dy

=  1  r  j . Z s i n ( ^ - 1(y ))\
it J0 dy V x J

= l c  ( sin(3;^~1(y))\
7T ^  \  X J

=  I T  dy
ft Jo x  
+ r°° °° .̂2n

For x =  0we get

1 r°°
pt (x) = -  cos(0 • ip~l (y)){ip 1(y))1 e ty dy

ft Jo 
i r°°

= -  (iP~1{y)Y e~ty dvft Jo 
t r°°

= ~ ip 1{y) e ty dy
ft Jo

and by using the convention 0° — 1 we see that this case is included in the formula 
for x ^  0. ■

13



In the next chapters the notion of continuous negative definite functions plays 
a key role.

D efin ition  1.2.8 (con tinuous negative  defin ite  fu n c tio n ). We call ip contin­
uous negative definite function if ip : Rn —> C is continuous and for any choice of 
k 6 N and vectors £*, . . . ,  £k G l n the matrix

U>(Zj ) +  W )  -  - ? ) ) . _

is positive Hermitian.

The name arises from the positive definite functions, which are the Fourier 
transforms of measures by Bochner’s theorem. For more details and equivalent 
definitions see [21] (section 3.5-3.6). These functions are connected to Levy pro­
cesses in a very simple way.

L em m a 1.2.9. The characteristic exponent of a Levy process is a continuous neg­
ative definite function and vice versa, i.e. to every continuous negative definite 
function ip satisfying ip(0) = 0 exists a Levy process X t such that

E{e^Xt) = e~m ) .

It is just a different name of the same object.

An important characterisation of continuous negative definite functions, i.e. 
characteristic exponents of Levy processes is the Levy-Khintchine formula.

T heorem  1.2.10 (L evy-K hin tch ine fo rm ula). The characteristic exponent of 
a Levy process on Rn has always the following form

V>(0 =  0  +  7 ^ (0  +  f  1 -  el{i,x) +  > z)X{M<i} H dx)
Z jRn\{0}

where m  E Rn is called the drift, q is a positive semi-definite quadratic form and 
is called the diffusion component. The measure v is defined on Rn \  {0} such that 
f (  1 A \x\2) v(dx) < oo. It is called the Levy measure.

For a proof see [6] or [28].

14



1.3 Some examples of Levy processes

1.3.1 a-stable processes
A special class of Levy processes are those with characteristic exponent

^ (0  = lfl“. 0 < a < 2.

They are called a-stable processes. For 1 < a  < 2 the density of the transition 
probability is given by the following formula.

C oro llary  1.3.1. For the characteristic exponents 0(£) =  |£|Q, 1 < a  < 2 we get

:2n _ , 2n +  l

n = 0

Pt(x) =  i  f > i r _ ^ r ( ? = ± l  +  i ) r ^ .  (1.3.1)
7r '  (In  +  1)! arn n ' '

P roof. We want to use (1.2.1) and evaluate it by first interchanging integration 
and summation and then evaluating the integral (Laplace transform) for every 
element of the series. Obviously we have ,0 -1 (£) =  |f  |« and 0  satisfies the condition 
of lemma 1.2.7. Let

S t ( y )  -  ^ ( - ! )
71 = 0 V '

and note that Sk{y) —> sin(a;|2/ | i ) as k —>■ oo. Addtionally we have

\sk(y)\ < ^ eWM°
71 =  0 '  '

For 1 < a  < 2 and i G R w e  find that for all e > 0 there exists a M  > 0 such that

eN v |i <  M e£W for all y € R

i.e. the sequence Sk is dominated by a function for which the Laplace trans­
form exists. Now we apply the dominated convergence theorem and interchange 
the integration and the limit. We are left with the Laplace transform of a finite 
sum, which is simply the sum of the Laplace transforms and using the formula 
C (ya) (t) = T(a +  l ) t - (a+1) for a > 0, the result follows. ■
This result was known before see for example [32]. But it was not proved in such 
a way.

Especially it should be no surprise that we get for a  = 2 the Gaussian semi­
group.
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a = 2: B row nian  M otion

Brownian Motion is the only continuous Levy process (except constant drift), i.e 
for almost all fixed lu the function X t{uj) is continuous in t.

Obviously this is the density of the well known normal distribution with mean 0 
and variance 21.

If we interpret as the symbol of a pseudo-differential operator then the cor­
responding operator is nothing but the Laplace operator (—A). For more details 
about pseudo-differential operators see chapter 2.

For a simulation of Brownian Motion see Appendix A.I.

a = 1: C auchy P rocess

The Cauchy process has the characteristic exponent =  |f  | and its transition 
density is given by

It has the characteristic exponent =  |f |2 and with the corollary above we get 
its transition density as

2y/wt “  n\ V 41V 71=0 x

1 tx
7TX t2 +  X2
1 t
7r (t2 +  x2)

For a simulation of the Cauchy process see Appendix A.2.
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1.3.2 Relativistic Hamiltonian
The symbol corresponding to the relativistic Hamiltonian is given by

^mK) =  (|£|2 +  m 2) 1 -  m, m > 0.

This is a negative definite function, i.e. can be seen as the characteristic exponent 
of a Levy process.
From example 3.9.18 in [21] (see also [20]) we know that in Rn its transition 
densities are given by

ht ,m{x)  =  2 ( 2 n ) ~ Î 1 m Î 1 e Tntt  (|:r|2 + t 2) 4 Kn±± ( j n ( \ x \ 2 +  t 2) ^  ,

where K v is a modified Bessel function of third kind of order v.
Obviously —> 'ip Cauchy for 772 —» 0. Now we want to show that also

ht,m(x) ► 9t{x) as 772 —> 0, for all x  E R71

holds, where
/ \ _s±i ^ ( n  + 1\ tgt(x) =  7T 2 r ( — ) —  rrsr.

2 /  ( |x |2 +  t2) 2

L em m a 1.3.2. The density htfTn of the relativistic Hamiltonian converges for fixed 
t pointwise to the density of the Cauchy process as m  tends to 0.

P roof.
We have for v fixed (Re v > 0) and z —> 0 the approximation

1 _ ,  , / 1 x -l/

compare with 9.6.9. in [1].
Therefore for 772 -» 0 we have

n+l n+l _4. /, ,0 i1\~ ̂ 4̂ht,m{x) ~  2(27r) 2 m  2 emit (\x\2 + t2)

n+l
r (^r^) di*i2+<a) ~ ^ e

Taking now the limit 772 —>> 0 gives the result.
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Actually, due to the series expression of the Bessel function we could get a nicer 
proof for even dimension. Let n  be even. Using [31] (page 80 equation (12)) we 
find  ̂ n

R n+*(*) =  (L 3 -2)
A:= 0

for some an^, especially an^  =  2V/H "(^±i).
Using this we get the same result.

18



1.4 Levy processes used in Finance
This section is a compact survey of Levy processes which are used in finance. 
Typically the corresponding characteristic exponents will depend on some para­
meters, some of which we are going to make state space dependent in later chapters. 
Hence we collect some properties and some details of the parameters used in these 
processes.

Model Characteristic exponent

GH (Barndorff-Nielsen) 

(generalized hyperbolic)

H (Eberlein)

(hyperbolic)
(A =  1 in GH)

NIG (Barndorff-Nielsen) 
(normal inverse gaussian)

VG (Madan)
(variance gamma)

CGMY
(Carr-Geman-Madan-Yor)

TLF (Matacz)
(truncated Levy flights)

TLP (*)
(truncated Levy processes)

Meixner Process 
(Schoutens)

*?(/* + 13 ')  K e’(x 1 <x)g(x) dx 

s(x ) -  \x\ (Jo dy + Ae X a > o )

4>(0 -  *£(/* +  / ( e'£x 1 1& )9 (X) dx 

9(x ) ~  |x| (Jo dy + e 1)

VJf) =  + ^ W a2 ~ ( P  + Y Y  -  v 7" 2 “  P 2\

tf({) =  ±ln(l  - i 6 v i + ^ e )

=  - C  T ( - Y ) { ( M  -  i£)r  - M Y + (G + i t ) Y -  GY}

=  c»8(W 2) ( ( ^  +  2 costa  arctan( f )1 A“)

YiO  = ~i(i£ -  c+r(-i/)[(A + +  i^Y  -  A^] 
- c _ r ( - IA)[(-A_ +  i Ol' - ( - A - )1

-0 (£) =  — im£ +  2d ( ln c o sh (^ 1̂ ) — ln co s(|)) .

(*) Boyarchenko and Levendorskii

Table 1.1: Characteristic exponents of Levy model
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1.4.1 Generalized hyperbolic distributions
The class of generalized hyperbolic distributions was used by Barndorff-Nielsen [2] 
in 1977 for modelling the grain size of wind blown sand. A couple of subclasses 
are used in financial mathematics, which we will describe in some of the next 
subsections. Most of the following is taken from [12] and [11].
The density of X \  of a generalized hyperbolic process is given by:

doH{x\ A, a , /?, 5, fi) = a(A, a, /?, S)(S2 + ( x - n ) 2) ^  K x_ i{a y j5 2 +  (x -  /z)2)e^(l_/x) 

where the normalising constant is

(a 2 — (32) i
y/2nax 2 5xK \(6 y /a 2 — rj2) ’

and K v denotes the modified Bessel function of third kind. 1 
The five parameters have the following restrictions and meanings: a  > 0 deter­
mines the shape and steepness, [5 : 0 < \/3\ < a  the skewness and asymmetry, 
H G R the location, 5 > 0 the scaling and A G R the heaviness of the tails.
In [27] Raible calculated the characteristic function of X t as

,* /e\ =  K x j S y / c t - v + i t ) * ) *
,<A,a’M,‘) K x { 5 s / a 2 -  P Y  ( & \J a 2 -  (,S + if)2)A‘ '

He also gives the expectation of X \

ip/Y \ | x P -^A+l(C)
E { X l ) - f l + s 7 r ^ i < y o

and its variance
2 ( K X+l( Q  , p 2 \ K W (C) , ^ + 1 ( 0 x 2

var(Xi)= n c i i +
i —p1 L K x{C) 1 K x ( 0  J

where £ — 5 ^ /a 2 — (32 and P =  f  ■
The characteristic exponent is given by

4>(t)= _  r  (e^  _  i _  %X)g (X) K x (5J a 2 -  B2) J -oo^ ( S y ^ P 2)
where the Levy density is

ePx rOO e ~ y /  2y+a*\x\

9{x)  =  M  Vo d y + Ae~“ |x|^ o)

and J ,Y  are Bessel functions, see [11].

1K„{ z )  = \  J ™ y v 1 e x p ( - | z ( y  + y l )) dy
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1.4.2 Hyperbolic distributions
The class of hyperbolic distributions was introduced as a model in financial math­
ematics by Eberlein and Keller in 1995 [10].
If we set A =  1 in the generalized hyperbolic model then we get the hyperbolic 
model, X \  has the density:

y /a 2 -  (3*
dH(x) = ------ ——  ex p (-a \/(5 2 + (x -  p)2 + P(x + //)).

2a8Kl {Sy/a2 -  /32)

Where we used the identity: K i(z )  =  K _ i(z)  —
Again by setting A =  1 in the generalized liyperbolic model we obtain the charac­
teristic function of X t

_ K l (6 y /o ? -{ i3  + ityy
e K l (S^ ot2 _ j32y ( S y / a t - i P  + i t f Y  

The expectation of X \  is given by

W ( y  \   /; I A ^  - ^ 1+1 (C)

and its variance

VarfY I p2 \ K3{0
V arpfi) ■ 5 I c ^ c o + w  r a  “  J )

where f  — 5y /a 2 — (32 and p =  ^ .
The characteristic exponent is

</>(£) = -*?(/* + PS2Ki(SV°;2_£D_) _ f°° (e*(* _  1 _  i£x )g{x) dxK ^ S ^ / a 2 -  p 2) J - o o

with Levy density

e /3x poo e ~ y / 2 y + a 2\x\

9{x) =  W 7 o  ^ w F ( V 2W + W w W ) dy + e a 'xl)'

Its moment generating function for \f3 +  u\ < a  is given by

Mt„) =  K ^ S ^ o P - j p  + u)2)
K ^ S y / c P - f i 2) y ja 2 ~ ( p  + u)2 ’

see [15] for a proof.
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To get a feeling for realistic parameters we state that in [12] Eberlein, Keller 
and Prause calculated the parameters in a stock market application as:

a P 5 T
107.6
225.0

2.10
-5.80

0.006
0.0015

0.0003
0.0006

1.4.3 Normal Inverse Gaussian distributions
The Normal Inverse Gaussian distribution was first introduced as a Levy model 
in finance by Barndorff-Nielsen in 1995 [3]. We get this class of distributions by 
setting A = — |  in the generalized hyperbolic distribution.
For the Normal Inverse Gaussian process pG )t>0 the density of X t is given by

„ ,__________  i G M G / r + 7 ^ ) 2)
j  — ?Lp StV a 2- b 2+ b ( x - m i ) ___________________V_____
LLa,b,m,o \ ^ )  —  c ----------------------------------------------------------------------------------- j------------------------------------------

V1 +

Where 0 < |5| < a,5 > 0 ,m  € R  and K v denotes a modified Bessel function of 
third kind.
The characteristic function of X t is given by

<̂(£) = e t imt - t5W  a2- {b+ i£ )2+ \ / a 2- b 2}

Therefore the following definition is justified.

Definition 1.4.1 (Norm al Inverse Gaussian exponent). The Normal Inverse 
Gaussian exponent is given by

'ipNioiO = + &[\/a2 - {b + i£)2 ~ Va2 -  b2]

where 0 < |6| < a, 5 > 0, m G R.

In [4] Barndorff-Nielsen gives its Levy density as

VNia(x)  =
7r \x\

where K \  is again a modified Bessel function of third kind of order 1. The diffusion 
component is 0 and the drift is given by

t i g  =  m  +  f  sinh(6x)Xi(a|a:|) d x .
7T '0
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The parameters for models calculated by Raible [27] (page 104) are in the fol­
lowing range ______________________________________

a P S
min
max

133
1030

-26.4
-2.15

0.000384
0.00378

0.000017
0.000214

1.4.4 Variance gamma process
The variance gamma process was introduced by Madan. The following is taken 
from the survey of Geman [15].
This process can be considered as a time changed Brownian motion W

X(t; a, v, 6) =  6G(t; v) +  aW (G(t, v))

where 0 is the drift, a the volatility and G is an increasing gamma process with 
variance v. Recall that the probability density of a gamma process with mean t 
and variance vt is given by

d{x) = —
^ r ( i )

The characteristic function of the variance gamma process is given by

<t>t,VG{€) =
1 -  z0i/£ +  

therefore the characteristic exponent is

^ ( 0  =  ^  ln(l -  iQv£ +  

The Levy density can be calculated as

g s iz l x  > o
kva{x) = { Cef0|,| x < Q

where C = ±; G = + <%■ +  f ; M  = +  ^  -  f .

1.4.5 The Carr-Geman-Madan-Yor process
The CGMY process is a generalization of the variance gamma model. Introduced 
in [9]. The Levy density gets the following form:



where C > 0, M  > 0, G > 0, Y < 2, Y ^ Z are the parameter.
The characteristic function is given by

<t>t,CGMY(0 =  exp[tc T ( - Y ) { ( M  -  i t f  - M Y +  ( G  +  i£)Y -  G Y }\

and therefore the characteristic exponent is given by:

V>(?) = - C  r ( - Y ) { ( M  -  i t ) Y - M Y +  ( G  +  i O ¥  ~  G Y }.

1.4.6 Truncated Levy process
Boyarchenko and Levendorskii suggested to use Truncated Levy Processes for op­
tion pricing in [7]. This process is directly constructed via the characteristic expo­
nent. They set: c > 0, A > 0

zc[ln[A±|HnXl  ̂ i f  1/ =  0

V ,  A, c ) ( 0  =  I  - j s f c j f A 1' -  (A ±  i m  , if  1/ 6  (0 ,1 )  U (1 ,2 )

[ — ̂ [(A =L zf) ln(A ±  i£) — A In A] , if u =  1

Then for c± > 0, A_ < 0 < A+, v± G [0, 2) we get the characteristic exponent by

^ ( £ )  =  'lP (v+ ,\+ ,c+)  ( 0  T  '0 ( i v_ , -A_ , c_) (—0 - 

In [8] the characteristic exponent for v G (0,1) U (1, 2) is given by

m  = - i t f  -  c+r(-i/)[(A+ +  -  x u+] -  c_r ( — a_ +  i t y  -  ( - a _ h .

This is the same as the CGMY exponent with drift and the constant C  is 
splited into c+, c_.

1.4.7 Truncated Levy Flights
In [25] Truncated Levy Flights are ” advertised” for financial models. See also [26]. 
The distribution of a TLF has the following form.

!0 x > I
cPl (x ) —1 < x < 1 .

0 x < —I

Where Pl is a a-stable distribution of index 0 < a  < 2 and scale factor 7 :



This distribution is cut off outside 1. The following is the characteristic function 
of a TLF with smooth (exponential) cutoff ([23]).

Equivalently Matacz derived ([26] page 156) the following characteristic function.

1.4.8 M eixner process
The Meixner process is a Levy process which was introduced as a model in finance 
by Schoutens in [29].

A stochastic process X  = { X t: t > 0} is called Meixner process if for a l l t  > 0 
and (G M  we have

where a > 0, — tt < b < it, s > 0, m  GE R.
Equivalently we can characterise the process by its exponent.

D efin ition 1.4.2 (M eixner ex p o n en t). The charactereistic exponent correspond­
ing to the Meixner process is defined as

cos[aarctan(Z|£|)] }

where C\ is a scaling parameter and Cq =  cô   ̂•

M O  = exP{ f(£ 2 +  A2) '  cos[oarctan(|)] -  \ A } , a  ^  1.COS(7TO/2) \  A J

Therefore we get the characteristic exponent

He also calculated (page 149/50) in an example the parameters
a =  1.2, c =  1.1, A =  jfj.

It can be shown that the density of X t is given by
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for a proof and more details about the Meixner process see [16], [29] and [30]. 
Therein some moments of the Meixner Process are calculated:

mean m  + as ta n ( |)
variance a2s

2cos2(|)
third moment g _|_ 3—2cos2(|)

The Levy measure is
, X exp(—)

v (dx)  =  «  ■ , dx,

the drift is

x s in h (^ )

b f°° s inh(^)
rr iM eix n er  = - a s ta n ( - )  +  2 s  —  ■- 0■ dy2 sinh(-f)

— m

and there is no diffusion component.
In modelling by Schoutens 29] used parameter values are

a b s m
0.02982825

0.1277
0.0279

0.12716244 
- 1.8742 
-0.1708

0.57295483
2.2603

22.0914

-0.00112426

For a simulation of the meixner process see Appendix A.3.

1.4.9 Real M eixner Processes
In this section we look at the real part of the Meixner exponent and the properties 
of the corresponding distribution. The real part of the Meixner exponent is given 
by

ipReM(() '■= Re =  - 2s In cos +  s in  ^cosh2 y  -  sin2 ^  .

We get the characteristic function

<^(£) :=  e~^ReM(0 - 7 cos2s<( |)
(cosh2(^ )  -  sin2( |) ) s*

The moments of the corresponding distribution can be easily calculated by the 
formula

/*  =  (-«)" W *)l«= o .
where fin is the ntk moment. In our case we get:

(in =  0 for n odd,
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All even moments do exist but the higher ones are more involved.

Theorem  1.4.3. The density of the transition probability of the real Meixner pro­
cess is given by

Proof. If its transition density exists then we have for a stochastic process X t the 
equation

Therefore we get the density (if existent) as

In the case b = 0, m  =  0 the characteristic exponent ipm is already real and 
obviously ipM — 'ipReM- We get the density by equation (1.4.1).
For b ^  0 we do not find such a neat expression and we need some auxiliary results.

We know that

for b = 0 and otherwise (b /  0) by

where pt is the density function.
With our definition of the Fourier transform we have

/oo
| r ( 7 +  ix)\2elx* dx = 27rr(27)

•CO
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holds for 7 > 0, f  G C, —7r < Im f  < tt, see [16] and the references given therein. 
Therefore we can derive

Ff_>x(cosh 7 — ) =-27 af
2 v27rr(27)a a

Now we can calculate the density, where * denotes the convolution.

f{ -*  ( * ( 0 )
Z' cos2%

=  xVf—»£
(cosh2( f ) -  sin2( |) ) st

cos2s(( |)
- r t

1
1 cosh2*4 4  1 * F(^*

\

t st

1

V1 cosh2 ¥ ) J
2 6 

2

1CO S2 s t ( § )

£_>I \ cosh2*4 ^

p s t ( s t  +  1) ■. . .  ■ ( s t  +  k -  1) sin2* § ^

* ^  \ h  ** ^ f )
( § ) /  4 7C O S2 *4 ( |  W  _ 4 _  ^

27r \T ( 27)a a

s t(st +  1) • • • • • (st +  k -  1) sin2 y ^ x.

.k=0 k\
. _  -|r(jfc +  i - )h

2 \ / 2^ r (2/c)a a

cos2s*(|)45* ^  st(st +  1) • . . .  • (st +  k -  1) 
( 2 7 r ) f r ( 2 s t ) a 2 k = 0

x sin2fc(^)
2 r ( 2/c)y_c

/c!

|r(st +  i
(x — v). ,9 .U. ,9 ,

— -)l ' lr (^ +  H I  dv

, 2  6

We used that 0 < c < 1 since |6| < 7r, which implies the convergence of 
the series.
In addition we used the formula

>k=o A;=0

r ( r  +  1) • • • (r +  fc — 1) t
k\ P

which holds for |p| < 1, r  G
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1.5 Orthogonal polynomials and Levy processes
In this section we state the relations of Levy processes and polynomials as presented 
by Schoutens and Teugels [30]. This also shows how the Meixner process was first 
developed.

D efinition 1.5.1 (Levy-Sheffer system ). A set {Qm(x ,t ) ,m  > 0, m G N, t >
0,f G M} of polynomials is called a Levy-Scheffer system if its generating function 
is of the form

defined as the inverse function of u, i.e. t ( u ( z ) )  = z.

If the above system of polynomials is orthogonal it is called Levy-Meixner 
system. This name is due to the fact that Meixner determined all families of 
orthogonal polynomials defined by (1.5.1) with t — 1. The characteristic exponents 
of all Levy processes corresponding to Levy-Meixner systems are given by

where afd > 0.
By the different choices of a  and we get the following correspondence of 

certain Levy processes and families of orthogonal polynomials.

(1.5.1)

where

i) f ( z )  and u(z) are analytic in a neighborhood of z = 0, 

ii) u(0) =  0, /(0 ) =  1 and ii'(0) ^  0,

Hi) </>(£) := is the characteristic function of a Levy process. Here r  is

£  +  a/3 l 0 S  ( a e x p ( t a O - e x p ( * 0 o )a exp(ia£)—exp(i/3£)
=  log 0(f) =  < a2Ar log(l +  zaf) if a  =  (3 ^  0

(1 -  exp(—za:£)) if a  ±  f) = 0
if a  =  j3 =  02
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Levy-Meixner parameter Polynomial Levy Process
a = (3 = 0 

a  ^  (3 = 0 

a = (3 ^  0

a,(3 E Re , a(3 > 0 

0 /  a , (3 — a

Hermite

Charlier

Laguerre

Meixner

Meixner-Pollaczek

Brownian motion

Poisson process

Gamma process

Negative-binomial process 
(Pascal process)

Meixner process

Table 1.2: Polynomials and Processes
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Chapter 2

From a pseudo-differential 
operator to a Feller semigroup

A pseudo-differential operator has the form

q(x,D)u = (27r)~t f  etxSq(x,£)u{£) d£
JRn

where u denotes the Fourier transform of u. The function q{x,ff) is called the 
symbol of the operator. In the following we restrict ourselves to symbols which are 
in the second component continuous negative definite functions.

Definition 2.0.2 (continuous negative definite sym bol). We call q : Rn x 
Rn —> C a continuous negative definite symbol, if  q(x,£) is for any fixed x a 
continuous negative definite function in its second component.

In order to extend a given pseudo-differential operator to a generator of a Feller 
semigroup we want to use the Hille-Yosida-Ray Theorem. But first recall the 
definition of a generator of a semigroup.

D efinition 2.0.3 (Generator of a Sem igroup). Let (Tt)t>o be a strongly con­
tinuous semigroup of operators on a Banach space (X, ||-||x)- The generator A of 
(Tt)t>o is defined by

A u : = l i m l ^
t—>o t

in the sense of a strong limit with domain

V(A)  := j u  € X | l i m ^ -  — exists as strong limit j- .

Theorem  2.0.4 (Hille-Yosida-Ray). A linear operator (A ,V(A)),
X>(A) C  Coo(Mn;R), on C00(Rri;R) is closable and its closure is the generator of a 
Feller semigroup if and only if the three following conditions hold:
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i) T>(A) C  CoofR^R) is dense,

%%) (A ,V(A)) satisfies the positive maximum principle, 

in) the range of (A — A) is dense in Coo(Rn ; R) for some A > 0.

A proof of this fundamental result can be found in [21].
Note that T>(A) denotes the domain of the operator A. Our final aim of this 
chapter is to apply this theorem to the operator —q(x,D). Part i) of this the­
orem is just the question of finding a suitable domain. Part ii) is satisfied for 
every pseudo-differential operator with continuous negative definite symbol, as we 
will see shortly. The last part is the hardest problem, which we will solve using 
Hoh’s calculus for pseudo-differential operators with continuous negative definite 
symbols.

2.1 Positive maximum principle
The positive maximum principle has strong relations to pseudo-differential oper­
ators due to a representation result of Courrege, compare Theorem 4.5.21 in [21]. 
We will state the results we need without proofs.

D efinition 2.1.1 (positive m axim um  principle). Let A  : V(A) —> B (Rn ; R) be
a linear operator, D(A) C  B (Rn;R). We say that (A,D(A)) satisfies the positive 
maximum principle if for any u G D(A) and some Xo G Rn the fact u(xo) = 
suPieMn u ix ) ^  0 implies that Au(x0) < 0.

The space B(Rn; R) is the space of the Borel measurable functions from Rn to
R.
We have for a pseudo-differential operator with a continuous negative definite 
symbol on Cq° the following theorem.

Theorem  2.1.2. Let q : Rn x Rn —> C be a locally bounded function such that 
for any x G Rn the function q(x,.) : Rn —»• C is a continuous negative definite 
function. Define on CJ°(Rn;R) the operator

~q(x, D)u(x) := -(27r)_n/2 f  etx*q(x, £)u(£) df.
JRn

Then the operator (—q(x, D ), CJ°(Rn; R)) satisfies the positive maximum principle.

A proof can be found in [21] Theorem 4.5.6.
The domain Co°(Rn) turns out to be too small to prove part in) of the Hille- 
Yosida-Ray Theorem for the corresponding operator, but we are able to extend 
the domain of the operator.
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T h eo rem  2.1.3. LetV(A)  c  Coo(Rn;R) and suppose that A  : V(A) —> Coo(En;E) 
is a linear operator. In addition assume that CfJ°(Mn;R) C T>(A) is an operator 
core of A, i.e. to every u E V(A) there exists a sequence ((fik)k€N, Tk € CJ°(Rn ; R), 
such that

lim ||(fik - w||oo =  lim ||Aipk -  A u \ \ = 0.k—̂oo k—>00

/ M l  c°° satisfies the positive maximum principle on Cg0 (R?; R), then it satisfies 
the positive maximum principle also on T>(A).

The proof of this result can be found in [22] Theorem 2.6.1.
Therefore we have that a pseudo-differential operator with continuous negative 
definite symbol, for which Co°(Rn;R) is an operator core, satisfies the positive 
maximum principle on its domain.

2.2 H oh’s calculus
To satisfy the condition in) of the Hille-Yosida-Ray Theorem, we need to show that 
the range of A +  q(x, D) is dense in C00(Rri; R) for some A > 0. This is equivalent 
to solving the equation

(A + q(x,D))u = f  (2.2.1)

for sufficiently many /  i.e. all functions /  from a dense subset of Coo(Rn; R). Since 
this is too hard to be solved directly, we are going to solve the equation in a L2- 
sense and then use some regularity results. We follow closely Hoh’s calculus and 
the estimates based on it as presented in section 2.4 and 2.5 of [22], see also [18] 
and [17].

First we are going to define some function spaces and classes of operators. The 
spaces are going to be certain anisotropic Sobolev spaces defined with the help of 
a continuous negative definite function. These spaces will be used as a scale for 
the domain and range of the operators.

D efin ition  2.2.1 (space H ^,s). Let s E R and : Rn —»■ R be a continuous 
negative definite function. The space is defined by

:= {u e  S'{Rny, IMI*. < 00}

where the norm is

IM ks :=  ll(i +  V'(-C,))s/2«(-)llo < 00, 

and ||.||o denotes the L2 norm.

Here S(Rn) denotes the Schwartz space and its topological dual space is S'{Rn).
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Rem ark 2.2.2. A) The spaces H ^ ,s are Hilbert spaces. In addition, if ip satisfies

m > c  o K r  (2.2.2)

for some Co > 0, ro > 0 and all f, |£| > R , and if s > ^  then

H ^ s(Rn) Coo(Mn), 

in the sense of a continuous embedding.
For a more general result and its proof see Theorem 3.10.12 in [21], note that 
the space H ^'s equals the space B ^ 2 in [21].

B) For any continuous negative definite function and any s G l  we know that the 
space Cff>(Rn) is dense in H ^ ,s.
For a proof see Theorem 3.10.3 in [21].

D efinition 2.2.3 (class A). We say that a continuous negative definite function 
ip : Rn —>• R belongs to the class A if for all a  € NJ there exists a constant c\a\ > 0 
such that

|3 { ( l  +  ^ (f)) l  <  C|a|(l
where p : No —>• No, k ^  p(k) := k A 2.

D efinition 2.2.4 (sym bol class S and Let m  G R and ip G A. We
call a C°°-function q : Rn x Rn -> C a symbol in the class S™^(Rn) if for all
a, (3 G NJ there are constants ca^  < 0 such that

< Ca,J9(l +  V’K))"‘" ’<N) (2-2.3)

holds for all x  € Rn and ( G l n . We call m  E R the order of the symbol.
I f  we replace p(|o;|) in (2.2.3) by 0 then we say that the symbol is in the class
S™^(Rn).

D efinition 2.2.5 (pseudo-differential operator class 4/™’̂ (Rn) and \I/™’̂ (Rn)) 
For q G S o r  q G resp., we define on S(Rn) the pseudo-differential oper­
ator q(x, D ) by

q(x,D)u(x)  := (27r)_n/2 [  elxSq(x,Z)u(£) df.
jRn

The class of these operators is denoted by 4/™’̂ (Rn) and ^ ^ ( R n) respectively.
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The operator is well defined since the symbol is polynomial bounded in its 
second component. Furthermore we can show that any operator of these classes 
maps 5(Mn) continuously into itself. For a proof of this see Theorem 2.4.11 in [22]. 

For convenience we will use the following notation

B(u,v) := (q(x ,D )u ,v )0,

q\(x, D)u := q(x, D)u  +  Xu

and
B x(u,v) := (qx(x ,D )u ,v )0,

where (., .)0 denotes the L 2 scalar product.
In order to solve (2.2.1) we will use the Lax-Milgram Theorem, which is stated 

here to help the reader understand the purpose of the following estimates. But it 
won’t be used before Theorem 2.2.17.

Theorem  2.2.6 (Lax-M ilgram). Let B  be a sesquilinear form on a complex 
Hilbert space (H , (., .)#). Suppose that

\B(u,v)\ < (2.2.4)

and
\ B { u , u ) \  >  7 ||u||f,

hold for all u, v G H  with some 7 > 0 . I n  addition, let I 
linear functional. Then there exist unique elements v, w

l(u) = B(u ,v)  — B (w :u)

holds for all u G H.

A proof can be found in [13].
Now we want to show (2.2.4) and (2.2.5) for B(u,v) = (q(x, D )u ,v )0. Therefor we 
need the following estimate.

Theorem  2.2.7. Let q € Rn) and let q(x, D) be the corresponding pseudo­
differential operator. For all s E i  the operator q(x, D) maps the space H ^ ,m+s(Wl) 
continuously into the space H ^ ,s(Rn) and for all u € H ^ ,m+s(Mn) we have the 
estimate

||#(;£, D)u\\^jS < cHuH r̂a-j-s.

For a proof see Theorem 2.5.4 in [22].
This theorem is already sufficient to show (2.2.4) for the sesquilinear form B  as 
we will see in Theorem 2.2.14. But first we concentrate on the lower estimate.

(2.2.5)

: H  —¥ C be a continuous 
G H  such that
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We start with proving a sharp Garding inequality for symbols in S™’̂ . Then we 
show a Garding inequality which will imply (2.2.5). In [22] (respectively [18]) 
this is only proved for real valued symbols, but with a slight variation we can 
extend the proofs to a class of complex valued symbols. In order to give proofs we 
have to quote some more definitions and theorems of Hoh’s Calculus. The main 
elements of this calculus are expressions for the symbols of composed and adjoint 
operators (see Theorem 2.2.18), as well as a variant of Friedrichs symmetrisation. 
The expressions for the symbols are derived with the help of double symbols and 
the corresponding operators.

D efinition 2.2.8 (double sym bol). Let ip £ A and m, m' G R. The class 
5™’m,^(Rn) of double symbols of order m  and m' consists of all C°°-functions 
q : Rn x Rn x Rn x Rn —> C satisfying

\d£djld$d%q(x,Z\x',Z')\ < ca,n,a',D'(l +  /̂>(f))!?(l +  ^ (f'))^  

for all a, /?, a', /3' G NJJ •
For q G 5™’m ’̂ (Rn) we define on 5(Rn) the operator 

q(x,Dx]x' ,D x>)u(x)

=  ( 2 * ) = ?  [  [  [  e m ' )  d t ' d x ' d H .
J R n J R n J R n

This operator can also be expressed by a so called simplified operator <?l(:e, D)u 
with a corresponding simplified symbol ^l(^j^)-

For more details about the simplified symbol see [22] Theorem 2.4.17 pp.

D efinition 2.2.9 (Friedrichs sym m etrisation). Let q G . Its Friedrichs 
symmetrization is the double symbol

Qf (Z\  * , ? ) ' • =  f  F f o Q q f r Q F t f i Q d C
j R n

where
f k ,  o  := ( i + m r n/sr ((c -  o ( i + m r 1/4)

and ip G A, r G C'o°(Rra) is a fixed non-negative function which is even, supported 
in the unit ball and satisfies f Rn r 2(f) de =  1.

Theorem  2.2.10. For the Friedrichs symmetrization of q G S'Jri’̂ (Rn), ip £ A, we 
have the estimate

|d£d£'df,V(f;z',?')l < + +  (2-2.6)
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In particular qF belongs S™’°^(R n) and the simplified symbol qp,L belongs to Rn). 
Moreover, if q G S'™’̂ (Rn), then

q -  qF,L G S ^ ( R n)

holds.

A proof can be found in [22] Theorem 2.4.25, but is originally due to W. Hoh 
[18].

R em ark  2.2.11. The p in (2.2.6) originates from the definition of A.

T h eo rem  2.2.12. Let q G S™’̂ (Rn) with Re q(x, £) > 0 for all x, £ G Rn . Then 
Re (qF(Dx; x D x>)u, u)0 > 0 /o r all u G 5(Rn).

P roof. This proof is an extension to complex symbols of the proof of Theorem 
2.4.28 in [22].
We have

(qF{Dx;x ' ,D x')u,v)o

e %x ^+lx * qF(£] x1, dff d x j  (x)v(x) dx

= c [  [  f  e - ix' ^  [  F(£,rl)q(x',rl)
J R n J R n J R n J R n

—ix'£-\-ix'£'

x F(Z',7]) dpuifif) d£f dx’v(£) df

[  [  q(x',v) (  [  elx'^F{^,r})u(^)
j R n J R n \ J R n /

Therefore

Re (qF(Dx-,x',Dx’)u,u)o

= c f  f  (Re q(rf,rj)) (  f  e“ '?'F (£ ', »))u(£') d f ')
J R n J R n \ J R n J

proves the Theorem.

Now we can prove a sharp Garding inequality.
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T h eo rem  2.2.13. Let q £ S™^(Rn) with Re q(x, f) > 0 for all x,£ £ Rn . Then 
there exists a constant K  > 0 such that

Re (q(x ,D )u,u)0 > - K \ \u \ \ ^ m-i

holds for all u £ 5(Rn).

P roof. This proof is an extension of the proof given by W. Hoh [18]. We follow 
the presentation in [22], Theorem 2.5.5.
From Theorem 2.2.10 we know that q — qp,L € hence by Theorem
2.2.7 the operator q(x,D) — qF{Dx\x ' ,D xi) maps continuously into
H ^ s{Rn), s £  R.
Moreover, by Theorem 2.2.12 Re (qp(Dx\x', Dxi)u, u)0 > 0 holds. This implies

Re (q(x, D)u, u)0 =  Re (qF(Dx; x \  Dx>)u, u)0
+  Re {(q(x, D ) -  qF(Dx\x ' , Dx>))u, u)0

> Re ((1 +  0 (D ( q ( x ,  D )

-  qF(Dx\x ', Dx>))u, (1 +  ^p(D))n̂ 1u )0
> - \ \ { q ( x ,D ) - q F(Dx]X,i Dx>))u\\il,_rn=l \\u\\^n^l 

> - ^ 1 1 ^ .

Where we used again Theorem 2.2.7 for the last inequality. ■

Now we come back to the sesquilinear form B (u ,v)  = (q(x, D )u ,v )o.

T h eo rem  2.2.14. Let q £ 5™’̂ (Rn) and m > 0.

A) For all u ,v  £ S(Rn)
\B{u,v)\ <

holds. Hence the sesquilinear form B  has a continuous extension onto (JR").

B) I f  in addition there exists 70 > 0 and R  > 0 such that

Re q(x, £) > 70(1 +  m r /2 for  |£| >  R  (2.2.7)

holds for all x £ Rn and
lim -0 (f) — oo (2.2.8)|f|->oo

holds, then we have for all u £ i7^,:?(R n) the Garding inequality

Re B(u, u) > y  ||« |||,?  -  A0||u||§. (2.2.9)
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P roof. The proof follows the proof of Theorem 2.5.6 in [22] and is originally due 
to W. Hoh [18]. Part A) is identical, but for part B) we need a modification:
For A sufficiently large we have

Re q(x, 0  +  A > 70(1 +  0(£))m/2-

Hence the symbol

r(x, 0  =  q(x, 0  +  A -  7o(l +  0 ({))m/2 

satisfies the conditions for Theorem 2.2.13 and we get

Re B(u ,u) -  7o||u ||Jim +  A||u||jj =  Re (r (x ,D )u ,u )0 > - R 'l lu l l^ - i

or
Re B{u,u) > 7o||u||^ m -  A||« ||0 -  A'|Mlt/,,af i 

For m — 1 < 0 we have ||u||^ m î < |M|o which yields

R e B ( u , u )  > 7 o l M | ^ s  - ( R T  +  A)||w||g.

Otherwise for m  — 1 > 0 it follows from (2.2.8) that for any e > 0 we have

( l+ V ’t o ) 2̂  < £ 2u + m ) f  + c2e

which leads to
IMU.ffifl <  e lM k f  +Ce||«||o- 

Taking e =  ^  we arrive at

Re B(u,u) > -  (K c$, + \)\\u\\Z.

Remark 2.2.15. The proof above also yields the estimate

Re B(u,u) > | | | n | | ^  -  Ax

since for m  — 1 >  0 we have ||u||o <  ||u |L  2>=i and for — 1 < m  — 1 < 0 we get with 
(2 .2 .8 )

i < * 2( i+ i K 0 ) *  +  ^ i ( i

(This estimate is needed in Theorem 2.2.20.)
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Now we define what we mean by a solution to (2.2.1) and prove the existence 
and uniqueness of such a solution.

Definition 2.2.16 (variational solution). Let q G 5™’̂ (Rn) and assume that
(2.2.7) and (2.2.8) are satisfied. Then we call u G iL^’̂ (R n) a variational solution 
to the equation

qx(x, D)u  =  q(x, D)u +  Xu = f  (2.2.10)

for A G R and f  G L2(Rn) if

B x(u,cp) = (ip, / ) o =  (f,<p)Q

holds for all ip G C'o°(Rn).

Theorem  2.2.17. Suppose ip G A satisfies (2.2.8) and q G 5™’̂ (Rn) satisfies
(2.2.7). Then for all A > Ao, Ao taken from (2.2.9), there exists for all f  G L2(Rn) 
a unique variational solution u G H ^ ^ ( Rn) to (2.2.10).

P roof. This proof is analogously to the proof of Theorem 2.5.12 in [22].
For /  G L2(Rn) a continuous linear functional on i f ^ ,T(Rn) is given by ip i—> 
(ip, f ) o, since we have

| ( ^ / ) o | < l k l l o | | / | | o < | | / | | o | b l k f .

By part A of Theorem 2.2.14 we know that we can extend B(u, v) = (q(x, D )u , u)o 
onto H't),r%(R71) and it satisfies inequality (2.2.4). Part B of Theorem 2.2.14 gives 
a the Garding inequality

Re B\(u, u) > y | |u | |^  a  -  A0||n||J.

Which implies
Re B(u, u) > ^ \ \u \ \ l  f

for A > A0. This implies (2.2.5) since \B(u,u)\ > Re B(u,u).  Hence the conditions 
of the Lax-Milgram Theorem 2.2.6 are satisfied and it gives us the existence of a 
unique solution. ■

The final step is to ’increase regularity’ which means that we want to show that 
a variational solution u G H ^ ,r̂  already belongs to H ^ ,m+S if /  G H ^,s. Then we 
can conclude that qx(x, D)u(x) = f (x )  for all i G l " ,  since the solution is unique 
and our operator maps H ^ ,m+S to by Theorem 2.2.7.
To proceed, we need the following main result of Hoh’s symbolic calculus as well 
as the Friedrichs modifier, which is a smoothing technique.
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Theorem  2.2.18. Let ip G A.

A) Ifq i e S ^ { R n) and q2 G S0m2)V,(Rn); 
then qi(x, D) o

£,) Forgi G S^1 1 (Rn) andq2 G S™2’̂ (Rn) thesymbolq of the operator q(x, D) := 
qi(x , D) o q2(x, D) is given by

n

= qi{x,€) • q2 (x ,t)  + '52dzj qi{x,Z)DXjq2(x,€) + qri(x,Z)
j=1

witfi qri e  50mi+m2_2’l/'(Rn).

C) For any q G S™’̂ (Rn) £/iere exists q* G 5™’̂ (Rn), such that

(q(x, D )u , u)0 =  (u, g*(a;, £>)u)0 

/io/ds for all u ,v  £ S (Rn).

D) For q G 5™’̂ (Rn) the symbol of q*(x,D) is given by

n

0*(z,O =  fffeO  + '52dtj DXjq{x,£) + qr2(xi£)
j =1

with qr2 G 5™-2’̂ (Rn).

A proof can be found in [18] Corollary 3.5, 3.6 and 3.11.

Remark 2.2.19. i) In Corollary 3.11 in [18] it is stated that (for our case B)) 
q2 has to come from class S™^ but for the proof given therein it is sufficient 
that q2 G 5™’̂ .

ii) The number of terms in the expansion and their orders depend on the choice 
of p(|of|) =  |a | A 2. For p(|of|) =  |o;| A j  (j G N ,j > 2) we get expansions up to 
order j .  This statement corresponds to Remark 3.12 in [18]

Hi) For pseudo-differential operators ipj(D), j  =  1,2 with continuous negative 
definite symbols of the form ipj(£) (i.e. not x dependent) we have that

- ip\(D) o ip2(D) has the symbol ipi{£)ip2 (Q',
- ip*(D) has the symbol ip(t;).

In chapter 3 we will see the importance of this remark.
Now we prove a lower bound for the operators.
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Theorem  2.2.20. Let q G and assume (2.2.7) and (2.2.8). Then for
s > —m we have

y IM I l,m+. < M x ,D ) u \ \ l iS + c\\u\\lm+3_±

for all u  6

Proof. This is a modification of the proof of Theorem 2.5.8 in [22], see also W. 
Hoh [18], to suit complex valued symbols.
We set

rs(x , f) := q(x, £)q{x, f  )(1 +  ip (0Y

and observe that

Re r s(z,£) > 7o(l +  m ) m+s for |£| > R.

From Theorem 2.2.18 part D) we know that the leading term in the expansion of 
the symbol q*(x,£) is given by q(x,£). Thus we get

|\q{x, D)u\\ltS = ((1 +  ip(D))%q(x, D )u , (1 +  ip(D))^q{x, D )u)Q 

=  (q*(x,D)(l + 'ip(D))sq{x,D )u ,u)0 
= Re (rs(x, D )u , u)0 +  Re (f (x, D )u , n )0

with r(x ,D )  E ^ ^ s+m _̂1’̂ (Rn). By the same method we used in the proof of 
Theorem 2.2.14 A) we get that

I Re (r(x ,D )u ,u )0\ < c |M |^s+m_i

Applying Theorem 2.2.14 in the form of Remark 2.2.15 we get

h ( x , D ) u \ \ l tS >  Y l l « | | J , m + s - c | | « | | J t m + , _ .  - c ' | | u | | ^ m + J _ i -

The following is quoted for completeness from [22] and [18]. The proofs do not 
need explicit modifications to suit complex valued symbols.

D efin ition  2.2.21 (F riedrichs m odifier). Let j  : Rn —» R be defined by

. j ’ c0e(|x|2_1)"1 , | i |  <  1
3 x̂ > := 1 n i i - ^ i0 , \x > 1
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where c0 1 =  ^ 1 dx. Now we set fo r  e > 0

Je(x) : = ^ ( j ) -  

Then the Friedrichs mollifier is given by

Je(u)(x) =  (je * u)(x) = (27r)? f  e”*5'(ef)«(0 df.
J R n

P ro p o sitio n  2.2.22. Let Je be defined as above. For any s > 0 and u G H ^ ,s(W1) 
we have

Je(u) e  P |  n  C°°(R")
t >  0

and
|| «̂ E ||^,S ^  IM U ,S ’

In addition, if for e G (0, D), D > 0, we have for some u G L2(Rn)

I I^ E ^ )  Ilv,is — Û,S

with a constant independent of e, it follows that u G H ^ ,s(Rn).

For a proof see Proposition 2.3.15 in [22].
In the following [.,.] denotes the commutator, i.e. [A, B\ =  A B  — BA.

T h eo rem  2.2.23. For s G 5™’̂ (Mn) and s G l  there is a constant c independent 
of e, 0 < e < 1, such that

II [^(*^5 ^ ) , t/e-juHip,s 5: ^ll^'IIV’ ,m+s—1

holds for all u G H ^ ,rn~1+s(Wn).

For a proof see Theorem 2.5.11 in [22].

T h eo rem  2.2.24. Let ip G A satisfying (2.2.8) and q G S™,̂ (Wl) satisfying
(2.2.7), m  > 1. Then for f  G i / ^ ,s(Mn), s > 0, any variational solution u G 

to (2.2.10) belongs to H ^ m+s{Rn).

P roof. This proof is the same as the proof of Theorem 2.5.13 in [22] only the 
references have to point to the modified theorems above. ■

Therefore we get the regularity and conclude all of the above in the following 
theorem.
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T h eo rem  2.2.25. Let G A and suppose

<K0 > c o \ tr

holds for some c0 > 0 and r 0 > 0 . I fq (x , f) Z5 a continuous negative definite symbol 
belonging to 5 ^ (M n) and satisfies

Re > 5(1 +  ^ ( 0 )

/o r some 5 > 0 and all (  G l n , |f| sufficiently large, then —q(x,D) defined on 
CJ°(Rn;E) is closable in Coo(Rn;M) and its closure is a generator of a Feller 
semigroup.

P roof. The proof is the same as the proof of Theorem 2.6.9 in [22] only the ref­
erences have to point to the modified Theorems above. ■
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Chapter 3 

Approxim ation of the semigroup

In order to get an approximation for the Feller semigroup generated by q £ 
we use a result by Kumano-go Chapter 7 §4 in [24]. Therein the result is given for 
pseudo-differential operators in the class S™s. We show that it is also applicable 
to Hoh’s class of operators.
To increase the readability we use in this chapter the notation instead of 

(Rn) .

We approximate the symbol of the semigroup Tt = e~tq̂ x,D^, using the fact that 
this operator gives a solution to the equation

du _
—  + q(x,D)u = 0.

Formally we have the following initial-value problem:

Qu
Lu(t) := - £  + q(x, D)u = f  in (0,T) (T > 0), (3.0.1)

lim u(.,t) =  Uq in L2(Mn),
4 0

for which we are going to construct a fundamental solution.

D efin ition  3.0.26 (fu n d am en ta l so lu tion ). We call an operator U (t ,s ]x ,D x) 
defined on L2(Rn) x C([0,T]) a fundamental solution to

du
—  (x,t) + q(x,D )u(x ,t)  = 0 (3.0.2)
C/ L

if for fixed s ( 0 < s < t < T )  and g £ L2(Rn) x C([0, T])

i) u(x,t) = U ( t ,s ;x ,D x)g(x,t) solves (3.0.2),

ii) \imU(t,Q;x,Dx)g(x,i) = g(x, 0).
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We need a little modification to Hoh’s Calculus, which is possible as mentioned 
in Remark 2.2.19. We use instead of p(\a\) = \a\ A 2 the functions

as ’order cutoff’ for the symbol classes.
For the construction we need that our symbol is elliptic.

D efin ition  3.0.27 (e llip tic  sym bol). We call a symbol q E elliptic if there 
exists c > 0 such that

Note that for q E and q elliptic it follows that for all a,f3 there exist 
constants cQ|/g such that

that q +  A is elliptic. And we can apply the following results to q + \  instead of 
q. Especially for the symbols corresponding to the Meixner-type process and the 
Normal Inverse Gaussian-type process we have to use q + 1.

To construct the solution to (3.0.1) we need some estimates. But first note that 
S is a Frechet space with the semi-norms

and we write u(t) E B™(V) if u is m-times continuously differentiable in the 
topology of V  with bounded derivatives.
Furthermore we say that qk converges weakly to q in (k —» oo) if {qj} is
bounded in and q  ̂ —> q on every compact subset of R2n.

L em m a 3.0.29. Let q E and let (3.0.3) be satisfied. Set

Pj(\ot\) = M  A j  , for j  =  1,2

Re q(x, £) > c(l +  ^ ( 0 ) 2 f 0T aM ^ (3.0.3)

(3.0.4)

R em ark  3.0.28. I f  (3.0.3) is only satisfied for large |f| then there exists a A such

( \ ^ “ 77l_rp7\
M := max sup { |d ^ g ( x ,O K 1 +  </>(£)) 2 }\a+(3\<l R 2n

with q E and / E N0.
We call B  C S™:  ̂ bounded in ifPj Pj

sup(|^|{m̂ } < oo for all Z =  0 ,1 ,. . .

e0(£, s;£ ,£) := e ^ (0 < s < t  < T),
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Q i : =  X !  ^ ( ^ 0 5 x e o ( ^ s ; ^ 0

m —i
and define e\ by

J t  + q { x , Z , ) ^ j  e i ( s , t ; a ; , 0  =  — ( t ,  s ; z , f )  

w/iere ei(s, £; x, £)|*=s =  0.
(Note that this is just an inhomogeneous linear differential equation with continuous 
coefficients depending on some parameters, therefore e\ is well defined.)
Then for all a, ft there are constants ca^ , d p  > 0 such that for j  — 0,1 we have

Iff'cPe tt s-x  f ) l  <  / c“. ^ 1 +  ^ ( f ) )  ' f ° T i  ^  °-V U  S )  I —  \  ^  r n - p 2 - j { \ a \ ) - j

l cI*>/ j ( * - s)(1 +V,(0 )  2 for j +  \a + P \> 1 .

P roof. There exist Ak € R such that

ske~s < Ak for all s G M+ . (3.0.5)

We have for a sufficiently smooth function w the following formula

i
a-7

da(ew) = ew Y ,  c{«*} I T 5 w
Q 1+ . . . + a , = a  3 — 1

!=l,...,|a|

see [21] 14pp. Using the above and (3.0.4) we get

{ / , t j-\\ ~P2(M)
cQ)/31 +  ^ 0  2

datp ( t - s ) ( l  +  i l > ( t ) )   ̂ f o r |a  +  0 | > l

i.e. e0(t,s) e  S p f  and {^:}o<s<t<T is bounded in 5™’̂ . In the following we often 
write eo or e0(t, s) when we mean eo(t, s; x, £), the same applies for e\ and q\. 
Note that e\ is given by

e1(t,s - ,x ,0  = - ( l  qA ^ A d r y o(t,s)
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and that

=  \d(9x ( 5 3  d( l ( x <0{t ~  s)92q(x , 0
.M=i

-X15313 (2 )d(+a'g('x’̂ t ~ s)d( a'd2g(x’0
|7|=1 a'<a

7Re q(x, £){t -  s)Re q(x, £)(1 +  ^ ( 0 )
H  =  l a ' < o

-P2(l7+a/|)-P2(la-a/|)
2

|7|=1 a'<c

< ca>/3Re g (z ,£ ) ( t -  s)Re g(z, 0 (1  +

holds. Now we can either estimate (t — s)(Re q(x,£))2eo only with (3.0.5) or with
(3.0.5) and the fact that Re q G S™'^. This gives us the estimates. ■

Remark 3.0.30. The construction and result above yield that ej(t, s) G B^(S~ff^). 
We also observe that qi G B ^ ( S ^ )  and it follows that ej(t,s)  G B]{S™’̂ ).

Lemma 3.0.31. Suppose the conditions and definitions of Lemma 3.0.29 hold. 
Let

U2(t, s; x , D)  := e0(t, s; x, D ) +  ei(£, s; x, .D)

and
R 2{t, s; x, D) := ^  4- g(x, D)^j U2(t, s; x, D).

Then
R 2(t,s->x , O e $ ( S Z >~2’'1') (3-0.6)

and
’ — — }o< s< t< T  Is a bounded set in Sqrn“2’̂ . (3.0.7)

t s

Proof. Using Theorem 2.2.18 we get

a(q(xi D)e0(ti s ;x 1D))(x1()
= q{x,£)e o{t,s;x,£)

+  ^ 2  djq(x, Qdfeo(t, s ; x, f ) +  r2>0(t, s; x, f)
(3.0.8)

It I=i
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and

a(q{x,D)ei(t ,s-,x,D))  (z ,f)  =  g(z, 0 e i( t,  s; +  r 2>i(*, s; z, 0> (3.0.9)

where r2,o(t, s ), r2,i(t, s) G S™~2'^, since q G S and ej G 

It follows that

a ( R 2(x,D)) = a  ^ (-^  +  q{x, D))(e0(x, D) +  ei(x, D))

1 B 1
=  +  q(x > 0 ) e* +  ^ ( z ,  & dl eo +  £  ^dtz=0 |7|=1 i=0

d 1
(3.0.10)

=  0 )ei +  9i +  X I  r2.*
i=0

1
=  X ] r 2.i.

z=0

which implies (3.0.6). Analogously follows (3.0.7) by using the second estimate of 
Lemma 3.0.29. ■

The following lemma and its proof are almost identical with Kumano-go [24], 
Lemma 4.5.

L em m a 3.0.32. Let m  < 2. We use R 2(t,s) of Lemma 3.0.31 to define the se­
quence {Wv( t , s ;x1D)}%Ll inductively by

Wi(t, s; x , D) := - R 2(t, s; x, D),

Wv(t, s; a;, D) := Wi(t, Si,x,  D)Wv-i(s i ,  s; x, D) dsi.

Then
i ri i-1

^ 2  Wv(t, s) =  - f l 2(*, 5) “  /  ^ 2^ , r) W^(r, s) dr (3.0.11)
v = l  J s v = l

holds and for any a, (3 there exist constants A a>p,A'a p such that

IW w  (t s - x  £ ) \  <  + .|9{ < \ w ^ { t _ s){1 + m ? m -> ■ (3-0.12)
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P roof. Equation (3.0.11) follows from the Definition. Now note that for v > 2 we 
have

n si rsu-2
' ■ Wi(t, Si)Wi(si, s2) • • -Wi(su- U s) dsv- i  • " d s 2dsu

J  s

with Wi(t,s)  G S™~2̂  C  Sq^  and { }  is  bounded in Sq™-2’̂ . Therefore 
we get with Theorem 2.2.18 that Wi(t, Si)VUi(si, 52) • • • W\(su- \ ,  s) G S™~2̂  and

is bounded in S 2̂ 2̂ ,  i.e.
\d^d^a{Wi{t,Si)Wi{su s2) • • • W i(s„_i,s))(a;,f)|

(A[,a,0n t - s ) ( i + m ) 2m- 2 ’
< J ( W ( i + ^ r 2 (3-0-13)

(3.0.12) follows.

T h eo rem  3.0.33. Let q G S™'^ (0 < m < 2) satisfy (3.0.3). Then there exists a 
fundamental solution U(t, s;x, D) to (3.0.1). In addition we have:

i) U(t ,s - x , 0  € %{£%*) n B H S p * )

ii) The symbol U(t,s-,x,£) satisfies U(t,s;x,£) —> 1 in Sq weakly ( t l s ) .  

in) Writing U as
U{t,s;x,£) = e~{t~sHx^  +  r0(t, s; x : £), 

the symbol ro(t, s; x, £) satisfies

ro(t, s; x,£) —> 0 in weakly (t 4- s)

and
r T o  (t, 5, X ,  £) .. . . q TTI— l , ip
{ ------------------------ } o < s < t< T  2S a bounded set m  b0 .t — s ~

P roof. By Lemma 3.0.32 we see that W(t, s) = Yw=i Wv(t,s) converges in the
topology of Bt(S™~2’̂ ). Using U2(t, s) of Lemma 3.0.31 we set

U(t,s) = U2(t,s) + J  U2(t,r)W(T,s)  dr. (3.0.14)

Now we get

LU(t, s) — LU2(t, s) +  W(s, t) +  f  LU2(t:r ) W ( r : s) dr
I* (3-0.15)

=  R 2(t, s) +  W(t, s) +  /  R 2(t,r)W(r, s) dr.
J s
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For I oo in (3.0.11) we get

W(t, s) =  - R 2(t, s) -  (  R 2(t, r ) W (r, 5) dr.
J s

Putting the two equations above together we get LU(t , s) = 0.
If we write (3.0.14) as

U(t, s) = e0(t, s) +  ei(t, s) +  f  U2(t ,T)W(r,s)  dr
J s

and note that

ei 6 
e0 =

also recall Remark 3.0.30 and the fact that

| e i ^ s )  |  ig bounded in
( t — s J 0<s<t<r

then i), ii) and follow. ■

Finally we get a solution to the initial value problem.

C oro lla ry  3.0.34. For Uq G L2 and f  G L2(Rn) x C([0,T]) the solution to (3.0.1) 
is given by

u(t) = U(t,0)u0 + [  U{t,T) f(r) dr .
Jo
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Chapter 4

Extending some Levy processes to  
Levy-type processes

In this chapter we show how the previous results can be used to extend a Levy 
process to a new process which is still a Feller process but not anymore a Levy 
process. We call the new process a Levy-type process.

Recall that a Levy process (X t)t>o is completely characterised by the equation

E(e^Xt) = e~t m

where is the characteristic exponent of X t.
In practical modeling, compare with section 1.4, the characteristic exponent 

often depends on parameters, i.e.

m  =  r Ac' - (0 -

Following the ideas of Barndorff-Nielsen and Levendorskii [5] we can define

q(x,€) •■•(£)

for some functions a, 6, c , ... .  We say, the parameters become state space dependent. 
For a sufficient choice of the functions a, 6, c , . . .  we may have that q E S 2p^ . In this 
case we can apply the theory from the second chapter to get a Feller semigroup. 
The corresponding process is called Levy-type process. The results of chapter 3 
can be used to get an approximation of the transition probability of the Feller 
process.
If (Tt)t>o is a Feller semigroup then we have

Ttu(x) =  u(x) =  r (u ( X ,) ) .

This equation is essentially the link between semigroups, pseudo-differential oper­
ators and the corresponding process, i.e. between analysis and probability theory.
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In particular we get the transition probability for starting at 0 in £ and being at 
t in A  by

{1 x  £ A  
o 1 x i  A  '

We will apply this framework to two examples: The Meixner process and the 
Normal Inverse Gaussian process.

4.1 M eixner-type Processes
In the following we are going to show that the characteristic exponent of the 
Meixner process with state space dependent parameters can be used as a symbol 
for a generator of a Feller semigroup. This means we want to show that we can 
construct an operator corresponding to the Meixner process, which satisfies the 
conditions of Theorem 2.2.25.

Recall that the Meixner process has the characteristic exponent

^ m (0  =  - im £  +  2s ^ ln c o s h (^ -y ^ )  -  l n c o s ( ^  ,

where a > 0, — n < b < 7r, s > 0, m  £ R  We will call this the Meixner exponent 
and it will be denoted by î m -

We are going to show that this exponent is in the classical symbol class S l . 
Recall that S'1 is defined as the class of all symbols q £ C°°(Rn x Rn) such that 
for all a, £ N71 there exists ca$ > 0 satisfying

I3f a®g(s.OI < c«^(i +  |f |)1-|a|

for all x  £ Rn and f  £ Mn. For more details see for example section 18 in [19].
In the following we restrict ourselves to one dimension, i.e. n = 1.

L em m a 4.1.1. We have

Re ^ m (0  — —25lncos(-) +  5ln(cosh2 ^  — sin2
2 2 2

and
b CL£

Im iPm (£) — —m i  +  25tan_1(— tan -  tanh — ).
Lu &
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P roof. Using

cosh(x +  iy) =  cos(y) cosh(a;) +  i sin(y) sinh(x),

| cosh(x +  iy) | =  y jcosh2 x — sin2 y 

and the main branch of the complex logarithm, i.e.

yln(x +  iy) =  In la; H- iy I +  i tan_1(—),
x

the result follows. ■

T h eo rem  4.1.2. Let R  = — . Thena

Re M C ,  > y | f |

holds for all f  £ R, |f | > R.

P roof. Since —7r < b < 7r we have cos(|) £ (0,1] which leads to —2slncos(|) > 0 
and sin2 |  < 1. In addition we know that coshx > Hence we get

Re > s ln ( ie KI -  1) > y | f |

for |f | > M
■

P ro p o sitio n  4.1.3. There exists a constant c > 0 such that

|Im ^ m (0 I  < c(l +  Re

for all f  £ R.

P roo f. We have tanhx  £ (—1,1). Therefore

b ai  , b bN
— tan -  tanh — £ (— tan - ,  tan

Li Li Li

equivalently we have

- i /  b . o f .  , b b. 
ta n  ( - t a n - t a n h  y )  €
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This leads to
|Im < M O I  < M l £ l  +  s b  

and with the previous Theorem we get

H  ln & I s b i f  11| <  ln8

| I m < M f ) l <  | r ; v,m K ) M 2 +  s6 i f | f | > ! a l ’

i.e. with c =  max{ lm l̂n§. +  sb, we get

|Im ^m (0I < c( 1 +  Re ipM(t))-

Now we can show that ^ m (0  £ S 1. We are going to split the proof into several 
steps.

P ro p o sitio n  4.1.4. There exists a constant c > 0 such that

hM Ol <c(i + |f|) (4 .1.1)

holds for all 

P roof. We have

Re ipM{Q =  —2slncos(^) +  sln(cosh2 ^  — sin2

b cl£
< —2slncos(-) +  sln(cosh2 — ) 

z  z
a£  a£ 2

, b .  . / / e 2 + e 2
=  — 2slncos(-) +  sln( ( ----------    ] )

b b
< —2slncos(-) +  sln(ea^ )  =  —2slncos(-) +  sa |f|.

The result follows with the help of Proposition 4.1.3. 

L em m a 4.1.5. For y G (—f , | )

y/2
| tanh(a; + iy) | <

1 -  sin2(y) 

holds for all
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P roof. We have the formula

. , . sinh £ cosh a; sin?/cosy
ta n h fz  +  i y )  =  __ +  1— 7 0 — - 7 3

cosh x — sin y cosh x — sin y 

Additionally we know | sinh a; | < cosh a: and cosh j; > 1 by which we get

|Re tanhbr + iy )I < -------- 9/
1 -  sin (y)

and
|Im tanh(a; -f- iy)\ <  ----- ^ 7-7,

1 -  sin (y)
giving the result. ■
It follows immediately that

I (01 = \ ~ i m  + satanh(a^ 2-^ )[ < c (4.1.2)

holds.

Lemma 4.1.6. For y G (—f , f ) , r  > 0 there exists c > 0 such that

| sech2(x +  iy)\ < c(l +  |^ |)_r

for all x G R.

P roof. Note that

cosh (2; +  iy) =  cos y sinh x  +  i sin y sinh x.

We fix y G (—f , | ) .  For f  G M it follows that

| cosh(x + iy) | =  \ Jcosh2 x  — sin2 y

=  >/cosha; — | sin y | \/cosh x +  | siny|

> | siny|\/cosh x

a/ 1  -  | sin y | n
> —------ —------e 2

y/2
> c(l + |z|)r ,

for a suitable c, > 0, since the exponential function growths faster than any power. 
Therefore

| sech2(x +  iy)\ < c( 1 +  |£|)_r
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holds where c = 4 2 and r = 2r. ■
C

Now it follows for any fixed k G N that

Wm(Z)\ = | / s s e c h 2 / 2 tb ĵ | < c ( l  +  Ifl)- * (4.1.3)

holds and we can show that 'ipM is in S 1.

Theorem  4.1.7. The Meixner exponent ipM is in the symbol class S 1, i.e. for all 
a  G No there exists ca > 0 such that

holds for all ( G l

P roo f. By (4.1.1), (4.1.2) and (4.1.3) it is clear that the result holds for a = 0,1, 2.

For ft =  3w e find

V’m K ) =  - ^ a 3s sech2 ( y  -  s in 2 ^  tanh  ( y  -  s in 2 ^  .

But this is nothing but

where ipM,o denotes with zero drift (m =  0). By this recursion we get that 
the a th derivative is a linear combination of the product of powers of 0(£) and 

Therefore with repeated use of (4.1.2) and (4.1.3) its absolute value is 
bounded by ca (l +  |£|)1-0! for a suitable ca. ■

We have just shown that ?/>m £ S 1. Next we look at symbols with state space
dependent parameter.

D efinition 4.1.8 (M eixner sym bol). The Meixner symbol is defined by

= - im (x )£  +  2s(x) ^lncosh(Q̂ 2 ?

with a, 6, s, m  G C°° such that for all x £ R and all k G No

0 <a^k\ x )  < < oo
and 0 < Oq <a(x)

— 7T <  b < b ^ k\ x )  <  b~l <  7T

0 <s^k\ x )  < s£ < oo 
and 0 < Sq < s (x )

|m ^ ( x ) \  < r a /c
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where , a0 , 6^, , s0 and are real constants. This symbol is denoted by
Qm (x , 0 -

We are going to show that qM is in S 1. The proof splits into several steps. We 
already know that for all a £ No there exists a ca > 0 such that

\d^qM{x ,0 \  < ca(! +  lfl)1-a
holds for all x £ R, £ £ R.

P ro p o sitio n  4.1.9. For ft £ No there exists Cq̂  > 0 such that

^  coA 1 + 1?!)1
holds for all x £ R and £ £ R.

P roof. The case ft = 0 is proved by Theorem 4.1.7.

0 =  1:

dlqM(x, £) =  — im!(x)£ +  2s'(x) An c o s h -  fo l?)) — inC0s (^ ^ - )
\ Li

. . ,b(x).b'(x)+ s(x) t a n ( - ^ ) - L i

+  2s{x) tanh(g W g / 6 ( l) ) ( a' (^ ~ i6' ( l ) )

The first part of the right hand side is a Meixner exponent ipM (just with different 
parameters) and therefore it is estimated by c(l +  |£|) with the help of (4.1.1), the 
second part is bounded by a constant by the choice of our parameter (and taking 
the maximum) and the third part is by Lemma 4.1.5 (and taking the maximum) 
also bounded by a constant times 1 +  |£|.

+  2s'(a;) tan ( - 7-^)b'(x)
£

n ,, x . ,a(x)£ — ib(x) . ,a'(x)£ — ib'(x).+ 2s'(x) t a n h C - ^ i - —^  L i)

„ , N ,b(x)^V’(x) , , o,b(x),b'2(x)+ 2s(x) t a n ( ^ ) - ^  +  s(x) sec2( - ^ ) ^ 2

, v . ,a(x)£ — ib(x). ,a"(x)£ — ib"(x).
+  2s(x) tanh( v — h-^)( v ----- ^ )



The terms in the first three lines can be estimated by c(l +  |£|) using the case 
P =  1, the term in the next line is less than a constant by taking the maximum 
and the following term is again smaller than a constant times 1 +  |£| by Lemma 4.1.5 
(and taking the maximum). For the last term we use Lemma 4.1.6 to get the result.

For 0 > 3 we can apply a recursion argument:
We have

(sech2 z)' =  — sech2 z tanh z.

It follows that d%qM(x, f) is the sum of terms as in the case ft =  2 plus derivatives 
of the form ”sech2(z)2:n” but these can be estimated, with the help of Lemma 4.1.6 
(and taking the maximum) by a constant. Therefore the result follows. ■

Proposition 4.1.10. For all 0 G No there exists c\tp > 0 such that

\dldPqM(x,t)\  < cijs

holds for all x  G R and ( g R .

Proof. Recall

oi / \ / n / \ i ,a(x)£ — ib(x).=  — im(x)  +  s(x)a(x) tanh( --------- ).

For (3 =  0 the result follows by Theorem 4.1.7.

0  =  1 :

d \d lxqM(x, 0  =  — im'(x) +  s'{x)a(x) tanh (a ^ ^  - ib(x)^
z

/ \ r / \ , , q>(x )£ -  ib(x)s+  s(x)a (x) tanh(  --------)

+  g(j)o(x)sech (-------------------) ( - ^ ^ --- — )

The right hand side is less than a constant if we use Lemma 4.1.5 and 4.1.6 (and 
take the maximum).

The higher derivatives contain again terms of the same type and those of the 
form ”sech2(;z)2:n” which are less than a constant by Lemma 4.1.6. ■

We finally get
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Theorem  4.1.11. The Meixner symbol qM is in the symbol class S 1, i.e. for all 
a , 0 e N  there exists ca^  > 0 such that

\dfd0qM(x,Z)\ < ca,(,{ 1 +  |£|)1_“

holds for all x £ R and ( g R .

Proof. For a = 0,1 this holds by Proposition 4.1.9 and 4.1.10.
For a  = 2 we have

= 2a2(:r)s(:r) sech2(Q̂ 2 ẑ ).

Hence by Lemma 4.1.6 and the same argument as in the previous Propositions we 
have that for any r G R there exists a constant C2 ,p such that

<  C2 , p (  1  +  | £ | ) r

holds for all 0 G No by .

For a > 3 we use the same recursion argument as in Theorem 4.1.7 and get 
the desired result. ■

Now it follows that —qm{x ,D)  can be extended to a generator of a Feller
semigroup.

Theorem  4.1.12. The pseudo-differential operator corresponding to the symbol

f n \ , ,a(x)£ — ib(x). . ,b(x).
Qm {x , 0  = —irn(x)£ +  2s(x) I lncosh(  --------) — lncos(—— )

\ £ z

with the restrictions (4.1.4) defined on Cg°(R;]R) is closable in Coo(K;M) and its 
closure is the generator of a Feller semigroup.

Proof. So far all our estimates have been with respect to powers of |.| but this is
not in class A. Therefore we use := \A  +  f 2 — 1 which is in A. We have that

4|(i + KI)<i + iM0<(i + I£I)
holds for all £ and therefore all the estimates above hold also with respect to ,| 
(with respectively modified constants).
Obviously for r0 =  1 there exists a Co > 0

V’i.k o  >  coi?r°
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holds for all ( G l .
Further Qm (x , •) : R —> C is a continuous negative definite function by Theorem 
1.2.9. We have by Theorem 4.1.11 that

Qm (x ,£) e S 2P’̂ \

By Theorem 4.1.2 and the parameter restrictions it follows that for some 7 > 0 we 
have

Re qM( x , 0  > 7(1 +  ^ |.|(0 ) 

for all x E R and ( G l ,  |£| sufficiently large.
Hence every condition of Theorem 2.2.25 is satisfied and the result is proved. ■

4.2 Real M eixner-type Processes
The pseudo-differential operator corresponding to the real Meixner process is also 
the generator of a Feller semigroup.

T h eo rem  4.2.1. 'ipReM(0  is in S 1 and the corresponding pseudo-differential oper­
ator defined on CJ°(R;M) is closable in (^ (R jR )  and its closure is the generator 
of a Feller semigroup.

P roof. This is immediately clear by Theorem 4.1.7 and Theorem 4.1.12. We just 
have to note that

d&ReMiO = Re (c£< M 0) for all k e  N

and
|Re z\ < \z\ for all z G C.

4.3 Normal Inverse Gaussian-type processes
Similar to the Meixner process we can also apply the theory to the Normal In­
verse Gaussian process. Especially we show that the corresponding symbol is in 
5 1. This has already been implicitly used in [5] by Barndorff-Nielsen and Leven- 
dorskii. But we will give some explicit argument for it. Additionally we will show 
that the pseudo-differential operator corresponding to the symbol of the Normal 
Inverse Gaussian process with state space dependent parameters can be extended
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to a generator of a Feller semigroup.

Recall that the Normal Inverse Gaussian exponent is given by 

iPn ig (€) =  - i m £  +  S[y/a2 -  (b +  iff)2 -  V a2 -  b2] 

where 0 < |6| < a, S > 0, m  G R
Now we are going to show that 'iPnig £ S 1. We have the following representations 
of the real and imaginary part of ^ n ig '-

Re 'ipNidO

=  -  62 +  £2)2 +  ( -£ 2 b)2 +  (a2 -  62 +  £2) -  Vo2 -  ft2]

=  ±<S[\/(a2 ~ b 2 + £2)2 +  (-£ 2 6 )2 cos[^ ta n -1 f  2 _  y + ^ 2 ) ]  "  “  ft2]

and

Im ^ w/ g(0

=  ra£ ±  s g n ( ( - £ f c ) ) J ^ ^ / ~  & +  £2)2 +  (~€b)2 ~  (fl2 -  &2 +  £2)

=  ±  6 ^ / (a2 -  b2 +  £2)2 +  (-£6)2 sin[i tan "1 ^ q2 _

T h eo rem  4.3.1. For all £ G M with |£| > 2a

Re > ^ 1

holds.

P roof. Since 0 < |6| < a we find

Re ipNioiO 
V 2

=  i [ - y  V \ / ( a 2 -  b2 + £2)2 +  ( - ? 2b)2 + (a2 -  62 +  ?2) -  Va2 -  62]

>  +  f 2 -

> fl^l.
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where the last inequality holds for |f | > 2a.

P ro p o sitio n  4.3.2. There exists a constant c > 0 such that

|Im ipNiG(0\  < c(! +  Re ^jvjg(O)

holds for all ( E R .

P roo f. We find

|Im iPn i g {QI

< |ra£| +  |<S-t=Iv  v ~ ^  ^2 2̂ ^ ) 2 “  (fl2 — ^2 +  f 2)-v2
The previous proposition together with the obvious fact that

[a2 -  b2 +  £2)2 +  (-<£6)2 -  (a2 -  b2 +  £2) < Re ^ /G(0  

for f  large enough implies the result. ■

T h eo rem  4.3.3. The Normal Inverse Gaussian exponent iPn i g  is in the symbol 
class S 1.

P roof. Recall that

^ n i g ( ( )  = - im £  +  S[y/a2 -  (b +  i f )2 ~ V a2 -  b2}.

We have for h G No the following formula

,______  { H k t i  ch,k z2h-i+(2k-D h odd,
dhz ^ ~ ^ 2 =  \  M  (a2"z2)^ /

I /t—i+(2fc—~2)~ h even.
\  (a2—z 2) 2

Now for h odd with z = b + i£ we find

{b +  if )2*"1
( 2 /l j ——(a2 — (o +  2

< c ( i  +  iei) l-h

for some constant c, since
i6+i?i  =  ^ + e

and
|a2 -  (b + if)2| =  v V  -  b2 +  ?2)2 +  462£2 > |6 ||f |2.

For h even it follows analogous. Therefore the series representation yields the re­
sult. ■
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D efinition 4.3.4 (Norm al Inverse Gaussian sym bol). The Normal Inverse 
Gaussian symbol is given by

Qn i g {x , 0  =  - im (x )£  + S(x)[y/a(x)2 -  (b(x) +  i£)2 -  y/a(x)2 -  b(x)2]

with a, b,S,m e  C 00^ )  satisfying the following restrictions: 
for all x  e l  and I G No

0 < |6^(a;)| < oP‘\ x )  < ai 

0 < 8 ^ { x )  < 5 q 

0 <6 ®( x )  < S t 
m f  < m^l\ x )  < mz+

(4.3.1)

where a ^ S ^ m f  are real constants.
We denote the symbol by qNiG-

Now we can show the following Theorem.

Theorem  4.3.5. The Normal Inverse Gaussian symbol as defined in 4-3.4 is an 
element of the symbol class S 1.

Proof. Using the same idea as in Theorem 4.3.3, we have to show that for all 
I G No the inequality

gl (  (b{x) +

(a(x)2 — (b(x) +  i£)2) +2 '

holds. Again we just look at the case where h is odd. For I = 0 the inequality is 
shown in Theorem 4.3.3. For I > 0 we need some more work.

By the Leibniz rule we get

#  , (&(*) +  if )” " 1
( a ( x ) 2 -  (b(x)  +  *£)2) *

=  W ^  d U b ( x )  +  i 0 2h- '
(4.3.3)

V<1 J ' J  -  (b(x) +
And now we apply the following formula for derivatives of the composition of 

real and smooth functions u, v, (see [21] 14pp.)

d / / w I- dmu(y) |— u(v(x)) — }  —— —--------- ——   , .

v ' { x ) \ n ( v " ( x ) \ 32 (v^h{ x ) ^ 3h  ̂ ^
1! 7 V 2! 7 V hi
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where

j o + 2 j  1 +  • • • +  hj h —  I 
3 o + j i  +  - - - +  3h =  m.

For the numerator in (4.3.3) we get

3 1! • J 2 ]- • • • • • Jh'-
2k — 1— m• (2k — 1) • (2k — 2) • . . .  • {2k — 1 — m)(b(x) +  i£)

y w y  y w y  y h(x)y

for 2k — 1 > m  otherwise it is 0. Therefore we have

if \b(x) +  i£\ > 1, i.e. for large £. But we can take a suitable constant such that 
the inequality holds for for all £.
For the denominator we use again (4.3.4) to get

-  (Hx ) +  if)2)* ’+^  ”
Y '  ( / - / ' ) !  d m  t - i+(2t -i )  .

j l ]- ’ J 2 ]- '  • • • '  jh}- d y m  'a(x)2 - ( b ( x ) + i 0 2

f dl(a(x)2 -  (b{x) +  i£)2) V 1 / d2(a(x)2 -  (bjx) +  ^ ) 2) ~j

/ ^'■(a(x)2 -  (b{x) +  i 0 2) V /‘

Now note for j  > 1 we get

di(a(x)2 -  (b(x) +  if )2) =  di(a(x )2 ~ b2(x)) “  2^ (j)(z)£- 

Therefore with 4.3.1 and the calculation for the numerator we get

\dx~l'(a(x )2 -  (b(x ) +  i£)2) h 1+2 k 1}| >

This finally leads us to (4.3.2) and the result follows.

Analog to Theorem 4.1.12 we have
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T h eo rem  4.3.6. The pseudo-differential  operator corresponding to the symbol

Qn i g (x ,€)  =  - i m ( x ) £  - f  S ( x ) [ y /a (x )2 -  (b(x)  +  z £ ) 2 -  y / a ( x ) 2 -  b(x)2}

with the restrict ions  (4.3.1) defined on  CJ°(R;R) is closable in  Coo(R;R) and its 
closure is the generator  of  a Feller semigroup.

P roof. We have that := \A  +  £2 — 1 is in A and obviously for ro =  1 there
exists a c0 > 0

^ |.|(0  > c0|$|ro

holds for all f  G R.
Qn i g {%> •) : R —>• C is a continuous negative definite function by Theorem 1.2.9. 
We have by Theorem 4.3.5 that

Qn i g (x ,£)  €  S p ^ 11.

By Theorem 4.3.1 and the parameter restrictions it follows that for some 7 > 0 we 
have

Re qNiG(x,t)  > 7(1 +  ^ |.|(0 ) 

for all x  E R and ( g R ,  |£| sufficiently large.
Hence every condition of Theorem 2.2.25 is satisfied and the result follows. ■

4.4 Further Levy-type processes
The fundamental properties a continuous negative definite function has to satisfy, 
in order to be considered as a defining function for a symbol class, are:

a) V>(0) =  0,

b) Re > C2|£|r° for large |f| and C2, r 0 > 0,

c) |Im ^(01 ^  c i(1 +  Re ip(£)) for some c\ > 0.

Property a) is generally trivial. All exponents listed in the table on page 19 
satisfy a). We have shown in Theorem 4.3.1 and Proposition 4.3.2 resp. Theorem 
4.1.2 and Proposition 4.1.3 that b) and c) hold for the Normal Inverse Gaussian 
exponent resp. the Meixner exponent. For the CGMY and therefore also for the 
exponent of the Truncated Levy processes it certainly possible to show b) and c) for 
a restricted parameter range. The same seems likely for the General Hyperbolic 
model and therefore also the Hyperbolic model. The problem in this case is to 
estimate the Bessel function.
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For the variance gamma model we have

Vv<2(0 = ^  ln(l -  iOv£ + °~Yi2)

= i  ln (|l -  ifc* +  Z Z e \) +  i i  ta n -1

Therefore for large |£| we get Re ~  cI nf  and this is not greater than c |f |r° 
for any c and tq constant, i.e. the exponent of the variance gamma model does not 
satisfy the second condition.
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A ppendix A  

Path sim ulation

This section is just to give a further feeling for the behavior of a stochastic process. 
The Simulations are done with Mathematica. And the random variables involved 
are generated with the help of the Acceptance-Rejection Technique as described 
in chapter 3 of [14].
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A . l  B r o w n i a n  M o t i o n

The transition density is given by

For t = 1 it looks like:

0.05

- 2-4

Here are two paths of Brownian motion, which we obtained by simulating Brownian 
motion on [0,10] as the sum of independent increments with density pt{x) and step 
size t =  0.01.

- l
ms

- 2

- 3

-1

- 2
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A .2 C auchy process
The transition density is given by

For t  = 1 it looks like:

Pt{x)  =  -
7T t 2 T X2

0.05

-4 - 2

Here are two paths of the Cauchy process, which we obtained by simulating the 
Cauchy process on [0,10] as the sum of independent increments with density p«(x) 
and step size t, = 0.01.

- 5

- 1 0

- 1 5
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A .3 M eixner process
The transition density is given by (a =  1, b = f , 5 =  1, m  = —as tan | )

i  ̂ (2 c o s ( |) )2i
Pt(z) =  - r- .s e 2

2 ? r r ( 2 t )

. 7T
r ( t  +  i (x +  ta n ( - ) t ) )

For t = 1 it looks like:

-4 - 2

Here are two paths of the Meixner process, which we obtained by simulating the 
Meixner process on [0,10] as the sum of independent increments with density pt{x) 
and step size t = 0.01.

x

2

1

0

0
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