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ABSTRACT
The supply and bulk handling o f raw materials is o f fundamental importance in many facets 

o f the manufacturing community, the scope o f which ranges from mining to 

pharmaceuticals and critical aspects o f steel production. This thesis is based on the 

development o f a 3D spherical “Discrete Element Method” (DEM) modelling code to assist 

in the computer simulation o f  granular flow through a steelworks industrial environment. 

Presented in this work is a thorough evaluation and review o f  DEM techniques, 

highlighting the variety o f discrete elements, contact special searches and contact 

interaction forces. Also addressed here is a validation o f the current DEM Fortran code, 

using the effects o f  frictional forces on particulate flowing behaviour, in terms o f “Angles 

o f  Repose”.

The introduction o f these forces followed a “Linear Spring Dash-pot” (LSD) method and 

“Soft Sphere” approach where contact penetration is small in comparison with element 

diameter. Both surface and boundary deformations were neglected during contact 

interaction and boundary conditions were implemented using a “Solid Works” 3D design 

package.

The results o f  the validation and frictional inputs in this modelling case were used as a 

calibration to set initial parameters o f the discrete elements when simulating different 

material size distributions, and inter-particulate bonding scenarios due to the influence o f  

moisture. To introduce attractive force due to moisture a “Toriodal Approximation” was 

used in conjunction with the “Soft Sphere” method that showed novelty in contact 

interactions between elements o f differing radii.

The model was ultimately applied to practical material flow situations that exhibit system 

deterioration and inter-particulate degradation leading to atmospheric dust suspension. To 

express quantitive information kinetic energy transfer was recorded at boundary impact 

scenarios to isolate regions o f severe momentum change and high intensity flow rates.

The resulting energy trend examinations relating to extensive theoretical application o f  

the current model correlated strongly with actual equipment damage and material flow  

patterns. The acquisition o f data in this format delivers a 3D insight into the internal 

dynamics o f  material flow through a domain and could be essential in developmental 

optimisation.
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1. AIMS OF THE PROJECT
The key objectives o f this project were:

1. To make an investigation into the bulk material handling systems used to supply 

mineral particulates as raw material into the Corns (Tata Group) iron making infrastructure.

2. To develop a Discrete Element Method (DEM) modelling technique into a usable 

non-invasive diagnostic tool to assess on-plant efficiency in terms o f  industrial granular 

flow.

3. To validate the DEM program against scientific publications and to relate simulated 

energy transfer predictions to observable systematic deterioration o f on-plant equipment.

1.1 Introduction

The development and growth o f any industrial concern is usually reflected in an increased 

productivity while maintaining both product quality and cost. Steel production is no 

exception to the rule and reduction in overheads to generate larger profit margins are a 

constant challenge. A major contributing factor in realising productions targets without 

large capital expenditure has been the minimisation o f plant “down-time” and effective 

maintenance to offset plant failure.

This project was implemented to reinforce the drive for systems optimisation by 

introducing computer simulation techniques into the engineering framework. The main 

features o f the project investigation focussed on the physical phenomenon behind the 

movement and distribution o f mineral particulates as a raw material for the production o f  

steel. The interests in this case were on the areas prior to mechanical or chemical 

processing, where the majority o f  the raw materials were in their basic mineral form. In 

essence, the research criteria took an objective view on the existing material transport 

operations with the intention o f highlighting areas that required improvement.

18



1.2 Project Overview

The initial concepts behind this project were drawn from “Continuous Improvement” (Cl) 

meetings that were keen to address basic on-plant issues. The business units involved in 

these forums are collectively described as the “Burdening Department” . This area 

comprises an import facility and stock yards, a sintering plant, a coal granulation plant and 

a coke making department. These all feed into a pair o f blast furnaces that are used as 

reactors to release iron compounds from mineral iron oxide. In 2006 when the primary 

research commenced on this project, the raw material requirements needed to supply the 

demand for steel was in the region o f 15 million tonnes per annum. Approximately 87% of 

this tonnage came in through the deep water harbour facility and was distributed via a 

conveyor belt and transfer station network.

Deep W ater Harbour

Figure 1: Aerial view o f Port Talbot integrated steel works showing raw material conveyor

belt distribution links
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Figure 2: Conveyor belt transfer stations used to redirect raw material flow

If one considers the movement o f material along a conveyor belt it can be viewed as low 

complexity, and an overall efficient method o f bulk handling. However, to accommodate 

plant logistics the conveyor belt systems are required to change direction, and this is 

achieved by a transfer station infrastructure at key locations on the conveyor route.

These positions are critical for interlinking systems but are prone to internal structural 

damage and raw material spillage. The underlying reasons for this type o f deterioration and 

material escape are mainly found in the volume o f material handled, the composition and 

condition (moisture content), and the extremes in particulate size distribution.

The following figures indicate the variations in material size distribution but must be 

viewed as a basic guideline:

• Iron Ore (rubble): 5mm -  70mm

• Iron Ore (Fines): 0.1 mm ~ 3mm

• Iron Ore (concentrates): O(pim)

• Coal: O(jum) ~ 80mm

• Coke: 50mm ~ 100mm

To produce 3.6 million tonnes o f hot metal in 2006 the blast furnaces received ~ 15.5 

million tonnes o f burden (raw material and fluxes) and the composition is displayed in 

Table 1.

20



No4 Blast Furnace !Xo5 Blast Furnace Total Raw Mat

Hot M etal (HM) 1574AT Per Year Hot Metal (HM) 2046KT Per Year
Hot Metal (HM) 3620AT 
Per Year

Material kg/THM kg/THM kg/THM kT

Pellets 448 441 889 3218.18

Sinter/fines 1046 1042 2088 7558.56

Ore 103 116.5 219.5 794.59

Others 9.4 8.9 18.3 66.246

Coal 133 131 264 955.68

Coke 388 390 778 2816.36

Oil 0.01 0.55 0.56 2.0272

Total Raw M aterial Input 15411.6432

Table 1: Raw material supplied to N o 's 4&5 blast furnaces in 2006

From the data displayed in Table 1 the major contributor in the raw material makeup is that 

o f *kSinter/Fines". This product has good iron content and is cost effective but its size 

distribution renders it useless for direct furnace application. As a result, this product is 

processed in the sintering plant by a particulate fusion method.

a.

0.045m

Figure 3: Examples o f raw material iron ore in the form o f (a)"Sishen" Lump and (b) fines
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1.3 The Sinter Plant
In terms o f the continuous improvement ethos set down by the Sinter Plant management 

team, one o f the key issues highlighted over a rigorous systems investigation was internal 

material distribution. In particular, how the movement o f  material influenced the end 

product yield.

Sinter in Port Talbot makes up approximately 65-70% o f the blast furnace burden and is 

highly beneficial in recycling process waste and controlling burden chemistry. However, 

the high production demands and throughput o f  fines ore has an effect on the plant and its 

equipment.

The main features o f  the project were created within this environment and are discussed at 

length in this section after a brief introduction to the sintering process.

1.4: Sinter Plant Background
The general function o f a sinter plant is to process fines ore into agglomerate that becomes 

a usable blast furnace addition in the iron making process. Sintering is a heating procedure 

that stays below the constituent’s melting point but encourages boundary fusion to take 

place. The mechanism employed at Port Talbot is a Dwight Lloyd sinter machine and 

comprises one sintering line known as a “Strand”.

(^ M ix in g  Trommel \  
/igniter \

FeederX /  ^
k Sinter Machine ,— I

Fan Oust Hot Screen Sinter ■ 'co ld  
Cooler | screen

Sinter
Breaker

Oversize to Blast Fumance

>

Extraction 
 *

UNDERSIZE SINTER (RETURN FINES)

Figure 4: A schematic representation o f a Dwight Lloyd travelling sinter strand
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As shown in Figure 4 the system consists o f a raw material or sinter mix feeder on to a 

travelling sinter strand. The strand is a series o f 135 mutually linked pallets (extending to 

84m in length) that are circulated in a chain by a drive motor arrangement. Each section has 

vertical sides to contain the raw material, this is commonly described as the bed and each 

pallet has a porous grate base.

Figure 5: The ignition hood used to ignite the fuel blended within the raw mix

As the material is continuously fed onto the strand it travels under a gas fired ignition hood 

as shown in Figure 5. The fuel in the form o f coke breeze (fine coke particles) is 

incorporated into the sinter mix and is ignited starting an agglomeration process. Two large 

suction fans draw air through the top o f the mix which drives a narrow firing zone down 

through the bed. The fuel in the mix generates temperatures o f 1200°C to 1500°C and this 

has the effect o f preheating the air travelling through the bed, driving off moisture before 

the fam e  front.
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Sinter

Flame front maintained by coke breeze content

Dry Raw Mix pre heated by gases through the flame front

Wet Raw Mix

Atmospheric Pressure

Air flow through bed

Less than
Atmospheric Pressure 
due to fans in wind 
boxes.

Waste gases driven off.

Temp measured by 
Thermocouples

Figure 6: A cross-sectional image o f a sinter pallet with raw mix

The key in this process is to ensure that the wedge shaped flame front reaches the pallet 

grating vertically before the end o f the strand is reached. This is achieved by predicting the 

position o f the flame front using temperature levels o f the exhaust gases in the wind main. 

From this information, the strand speed can be varied accordingly by an operator in the 

control room.

Finally as the pallets return under the strand the fresh sinter is deposited onto a crash plate 

and is broken in a “sinter breaker’.
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Figure 7: An example o f sinter in comparison to the original fines ore shown in Fig 3b

If the flame front position is incorrectly estimated, the final sinter product at the end o f the 

strand could either be over sintered and difficult to break or under sintered and returned 

through the process as raw mix blend.

In Port Talbot the apparatus used to distribute sinter mix onto the strand is a “Roll Feeder 

and Segregation Plate" type assembly and although simple in design it has been proven to 

be highly effective in its application. However, due to the raw material volume and abrasive 

nature, it is subjected to continuous surface wear issues that generate material hang ups 

resulting in destructive avalanche. The catalyst for this whole project was created here.

1.5: The “Roll Feeder and Segregation Plate” project investigation
The “Roll feeder and segregation plate” method of applying the raw mix onto the sinter 

strand has a number o f world wide variations but in Port Talbot the system is relatively 

straight forward. However the importance o f this piece o f apparatus is without question and 

the search for improvement is an ongoing challenge.

This part o f the plant has gradually evolved to accommodate the increase in sinter demand 

and to satisfy operational efficiency.
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Figure 8: Shows a design drawing o f the roll feeder and segregation plate

R ed arrow s are 
d irection  o f  raw  

m aterial f lo w

R aw  M ix  

H opper
S u p p ly  G ates

T an gen tia l V e lo c ity

S eg reg a tio n
plate
A sse m b ly

R oll

Feed er

Area of Concern
Point w h ere  M aterial 
ten d s to stick

M ax bed  

depth

S in ter Strand

Figure 9: Shows a 2D schematic o f the roll feeder and segregation plate (not to scale)
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As shown in Figure 9 the raw material flows from the material hopper through the supply 

gates onto the roller. The material is accelerated to the tangential velocity o f the roller and 

is imparted onto the segregation plate. The material then flows down the segregation plate 

and falls o ff the end onto the strand.

The specific point o f concern is highlighted by the green arrow and this is where sticking 

problems have a tendency to occur. This point is clearly the impact zone where the raw 

material first comes in contact with the segregation plate. The abrasive nature o f  the raw 

material eventually wears into the hard ceramic tiling causing a ridge which hinders the 

movement o f the material down the inclined plate. This type o f  obstruction, although small, 

creates an area where the material compacts and therefore tends to stick.

The negative result o f  the material holding in this fashion is a build up o f new material on 

old and an eventual avalanche that collapses onto the sinter strand. This undesirable action 

destroys the particulate micro structure by material compression and deforms the bed 

profile, in turn, affecting the ignition flame front. Both o f these changes in the sinter bed 

have a direct bearing on the sinter productivity and sinter yield.

1.6: The “Roll Feeder and Segregation Plate” investigation results
The type o f raw material running through this apparatus is highly abrasive and has a density 

o f (3000-4000kgm'3). Volumes o f  100,000 tonnes / week are expected to travel though this 

system on a regular basis and this subjects the equipment to a punishing routine. Studying 

the dynamics o f the material discharge from the hopper to the strand it was evident that the 

material transition impacted in one specific region causing a high intensity energy transfer.
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Figure 10: Shows the roll feeder with supply gates releasing raw mix

The roll feeder is 4m long cylinder with a diameter o f 1.2m. It is driven by an electric 

motor and has a maximum o ften  revolutions per minute. The basic function o f the roller is 

to smoothly transfer an even distribution o f raw material from the hopper onto the 

segregation plate.

Figure 11: Shows the segregation plate with raw material flow and corresponding damage
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The segregation plate is also 4m long and the surface is covered with a hard ceramic 

Alumina tile. The plate at Port Talbot is inclined at 48° to the horizontal. The basic 

functions o f the segregation plate are:

1. To produce an even distribution o f  raw material on to the sinter strand

2. To improve/maintain inter-particulate bonding by:

• Material segregation by encouraging large particle in the raw material to 

roll and gather at the bottom o f the sinter bed with the smaller particle moving 

to the top. This action also promotes a green-balling effect although the time

span on the plate is relatively short.

• Prevention o f material compression by reducing the impact velocity from

the roll feeder to strand.

After detailed observation and data analysis, the conclusion was drawn that the basic shape 

o f the inclined plate needed consideration. Reduction o f  energy transfer at the material 

impact point could be achieved by increasing the plate angle but this increased flow 

velocity over the surface and affected segregation, potentially increasing strand 

compression. Conversely reducing the plate angle increased the impact velocity o f the 

material resulting in higher energy transfer. However, greater segregation was predicted 

with reduction in flow velocity along the plate which encouraged low material 

compression. Ideally, a combination o f both results was a desirable outcome and the 

suggested solution to achieve this was the movement from a flat surface to one that had 

curvature.
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Sinter Strand

Figure 12: Schematic diagram depicting a curved segregation plate.

In Figure 12 the key points have been highlighted and they are as follows:

A. The raw mix hopper is where the raw mix is stored prior to feeding on to the roll 

feeder. To promote a good feed and prevent large particles falling though the gates, the 

hopper is usually maintained at 70% full.

B. Due to the shape o f the curve the segregation plate is brought in closer to the roller 

reducing the impact velocity.

C. The area o f concern now has a higher gradient giving low energy into the plate. This 

reduces wear and material build up.

D. The shortest distance between any two points is a straight line. The curved segregation 

plate naturally increases the travelling distance between the impact point and the end o f the 

plate while maintaining the same displacement. This produces a larger surface area for 

material segregation to occur.

E. The acceleration vector into the plate grows, forcing the material onto the surface. 

Particles with a greater mass should experience the effect o f  this force more than particle 

with a smaller mass, therefore drawing them through the material as it Hows. This should 

result in the desired type o f segregation with larger particle gathering at the bottom o f the 

strand and the smaller at the top.
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F. The end o f the segregation plate now has a low angle high reaction force. This slows 

down the material as it flows by forcing it into the plate and transferring the kinetic energy. 

The result o f this is a decrease in velocity onto the strand reducing impact compression.

For the Sinter Plant to consider such a radical approach and a movement away from what 

was already a relatively successful arrangement there would have to be sizeable proof that a 

curved segregation plate would be effective. The challenge here was to show that issues 

concerning wear and material sticking could be eradicated from the impact zone while 

maintaining/improving segregation along the plate. To be successful in achieving these 

goals would undoubtedly result in a considerable improvement.

As a result “Discrete Element Method” computer simulation was introduced to initiate an 

investigation due to its suitability in modelling industrial granular flow.

The project originally started with a 2D Fortran program that was subsequently converted 

into to 3D version for extra dimensional data analysis and visual superiority. To facilitate 

program development, the technique was then applied to a number o f industrial 

environments were bulk material movements are essential and the progression o f the 

simulation results are discussed at length throughout this thesis.
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2. DISCRETE ELEMENT METHOD SIMULATION
The desire to replicate the natural world or to investigate critical conditions in terms of 

engineering has been greatly assisted by the rapid advancement in computer technology. 

Keeping in touch with this relentless development has been the growth and sophistication 

o f  the mainstream computer simulation techniques. An example o f this symbiotic 

relationship has been the successful introduction of “Finite Element Method” (FEM) as a 

diagnostic tool in solving complex elasticity and structural analysis problems, particularly 

in the fields o f civil and aeronautical engineering.

However, the fundamental algorithms used in FEM are based on a continuum method and 

this was found to have limitations in describing phenomenon that related to conditions 

expressing a discontinuum nature. Examples o f  these types o f situations are regions that 

exhibit general fracture propagation and fragmentation in structural deterioration. To 

overcome this, work originally proposed by Goodman in 1968[1] was subsequently 

developed in 1971 by Cundall into the foundations for modelling discontinuum media[2]. 

Essentially the original algorithm was developed around the interaction o f jointed ridged 

rocks and their behaviour when introduced to external parameters. This technique was 

termed as “Distinct Element M ethod” and the evolutionary processes eventually 

incorporated fully deformable blocks into the algorithm giving birth to the “Discrete 

Element M ethod“ terminology.

2.1 Introduction and Background

In 1979 work by Cundall and Strackt3] described the mechanical behaviour o f assemblies o f  

discs and spheres. The method was based on the use o f  a numerical scheme in which the 

interactions o f the particles were monitored contact by contact and the motion o f the 

particles modelled particle by particle.

These simulation techniques are called “Granular Dynamics” (GD)[4] as opposed to 

“Molecular Dynamics” (MD)[5] in fluids. The subtle differences between GD and MD are 

the involvement o f gravitational and drag forces as well as frictional forces that dissipate 

energy.

The (GD) modelling technique can be classified into two specific categories:

1. The soft sphere approach[6][7J

2. The hard sphere approach[8]
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2.1.1: The Soft Sphere Approach to DEM

The “Soft-Sphere” models are capable o f handling multiple particle contacts and resolving 

the resultant equilibrium condition. This is important for handling simulations o f  dense and 

quasi static systems and is therefore ideally suited for simulating dense granular flows with 

large range deformations.

The particle-particle, particle-boundary interactions can be seen as a dynamic process that 

is driven by the states o f equilibrium that are resolved between the internal forces o f two 

contacting systems. Consequently, the simulated motion o f discrete elements under these 

conditions derives from a propagation o f  disturbances throughout an assembly. The 

mechanical behaviour o f the system is described by the movement o f each particle and the 

force and moment acting at each contact.

The relationship between the force acting on each particle and the resulting motion is 

determined by “Newton’s Laws o f Motion”.

2.1.2: The Hard Sphere Approach to DEM

The hard sphere (quasi rigid) model is an event driven method, where interaction forces are 

considered to be impulsive, and the particle collisions are assumed to be binary and 

instantaneous. The collisions are the only means o f  exchanging momentum. The spheres 

are assumed to move undisturbed until a collision or an event occurs. The post collision 

velocities o f the spheres are based on impact/momentum transfer. Energy dissipation is 

introduced with the coefficient o f  restitution.

For the hard sphere model computation time (CPU load) is less o f  a problem than is the 

memory usage. Motion calculations o f  very dense granular material remain a challenge that 

limits the application o f this modelling for engineering problems[8]. However some recent 

literature suggests that the hard sphere approach could be made more memory efficient by 

averaging the results o f multiple binary collisions occurring within one time step[9].

For this project the simulation technique employed uses the “Soft Sphere” method as a 

collision reaction process to study the dynamics o f industrial granular flow. Particle
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generation is also dealt with to invoke continuity to demonstrate flow, and boundary walls 

are mathematically applied to generate flow domains in static or moving form.

2.2: Applications o f  “Discrete Element Method”
To date the influence o f “Discrete Element Method” (DEM) has migrated into many facets 

o f  scientific and industrial application. The most predominant are in terms of:

• Geomechanics

>  Jointed rocks[2][10]

>  Falling rocks[11]

>  Sand Simulations1̂

•  Impact Analysis

>  Reinforced concrete slabstl3]

>  Composites[14]

>  Splash Functions (Material ejection processes)[15]

>  Rotational Mill Operation (Mixing Drums and Grinding)[16][17]

•  Granular Material

>  Pharmaceutical and food industry[18][19]

>  Granular Segregation and sieves [20] [21][22]

>  Material Hopper Discharge^1][23][24][25][26][27][28][29]

>  Bulk material handling[30]

>  Particulate flow (chutes and Conveyors)[31][32][33]

• Combinations with Particle Flow Codes (PFC), Computer Fluid Dynamics 

CFD and Finite Element (FE)

>  Ship Design (Green water effect PFC)f34]

>  Cyclone Gas cleaning Processes[35J

>  Chute Design (CFD)[36]

>  Plate Foundation Deformable bodies[37]
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The foundation code used at the start o f this project was a 2D National Algorithm Group 

(NAG) Fortran 95 particle impact DEM process. The original code was written and 

modified by Graham Mustoe (Graham Mustoe, Colorado School O f Mines, USA) in 2003 

and incorporated a:

• 2D finite difference code for a system o f impacting particle with a linear 

contact spring model

• Search radius neighbouring scheme

• A global damping force and work/energy calculation

• Contact damping calculations

2.2.1: The Fundamental Sections o f  a DEM Code
In terms o f an effective industrial application the above program was subsequently tailored 

into a 3D version and the developmental process was ongoing throughout the duration o f  

the project. There are many similarities regarding the construction o f a 2D and 3D code but 

key areas are markedly different. However, almost every DEM code has four fundamental 

sections to it.

1. The Discrete Element: Geometric Shape

2. Contact Detection: Examines the region for particle interaction and 

determine if  contact has been made.

3. Constitutive Forces: Calculate the forces acting on each particle during 

inter-particle contact and particle boundary contact.

4. Application of Newton’s 2nd Law: Summation o f  the resultant forces 

associated to the discrete element to determine motion.

The methods involved in the 3D conversion considered in this project are highlighted in 

this section along with alternative methods in literature.

2.3 DEM Constituents and Corresponding Review o f  Techniques

In this sub-section a review is conducted o f  the fundamental building blocks o f a DEM 

simulation code. The structure o f  the review follows the four main features o f a DEM 

program code as shown in 2.2.1 and discusses the variation in each topic.
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2.3.1: Introduction
Clearly, when attempting to apply computer simulation to subjects such as granular 

material one encompasses a large, diverse and complex set o f parameters that in many cases 

are incalculable. However, by applying strong physical assumptions and robust equations to 

determine the DEM motion and interaction, close proximity to real microscopic and 

macroscopic situations are very achievable[38]. The simulated motion o f particulates has to 

incorporate, and consider, particle-particle interaction and particle-boundary interaction. 

These are the building blocks o f a DEM algorithm and are discussed in great detail 

throughout this section.

2.3.2: The Discrete Element
The shape o f the discrete elements can have a significant bearing on the simulation 

requirements. The types o f element fall into two main categories, Rigid Bodies and 

Deformable Finite Element which are essentially meshed polygons.

Figure 13: 2D Simplistic rigid discrete elements

Figure 14: 2D deformable discrete elements showing finite element mesh
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The elements shown in Figures 13 & 14 are predominantly used for 2D simulation but their 

properties are insufficient when applied to simulating real physical conditions. One o f the 

main drawbacks o f using 2D analysis is data loss pertaining to the third dimension. As a 

result o f this limiting factor, a great deal o f emphasis has been focused on the development 

o f 3D simulations using spherical elements and 3D meshed polygons.

2.3.3: The Spherical Discrete Element
Disk/spherical elements in DEM simulation have been the most commonly used element 

for modelling granular flow systems. The simple geometries in these shapes have been 

mathematically exploited in making particulate motion calculations.

Figure 15: Spherical Discrete Elements in contact interaction 

Spherical elements generated using the general equation o f a sphere:

(v - xh )+U ~ y»o J+(zij-z«J=rl b- 0

The key components in the spherical element are the centre point and the magnitude o f  the 

radius, and these can be easily applied to the equations o f rigid body dynamics with 

computational efficiency.
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However, growth in this department has produced many new generations o f element. 

Progress has been driven by the desire to create discrete elements that function in a more 

representative manner when applied to natural phenomena, such as density distribution and 

packing. The types o f shapes generated to form solutions are ellipsoid131][39], 

superquadric14(,] tetrahedral141] and others not considered here.

2.3.4: The Ellipsoid Discrete Element
Although there have been many DEM codes utilising disks and spheres to study granular 

regimes, questions have been directed at the effectiveness o f the models when dealing with 

non-spherical material. Particle shapes have a significant effect on the mechanical 

behaviour o f particulates and generate greater resistance to movement than spheres. In 

general disks and spheres tend to roll and rotate easily. A popular choice o f shape in recent 

times to address this problem has been formed around elliptical equations as shown in 

Figure 16.

Figure 16: An example o f an ellipsoid shape

This configuration has the advantage o f having unique and continuous outward normal and 

no singularities along its surface. However, although this type o f element has huge benefits 

in some applied DEM simulations 3D ellipsoids have only recently been adopted due to
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their difficult contact detection procedure. Significant work in improving the simulation 

performance has been carried out in the field o f Soya bean flow and elliptical shape 

representation has been formed by the combination o f spheres. For this case tangential 

force displacement models presented in previous w ork[42][?' lf4?] have brought reliability in 

DEM simulation results

The basic function used to produce an ellipsoid shape:

2 2 2

^  + £  + ^  = 1 (2-2)
a b c

2.3.5: Superquadric elements
Superquadrics are 3D shapes derived from quadric surface functions and are generated by

raising the exponent value o f the variable terms in a quadric equation to values other than 2.

A quadric equation o f the form:

A x' + By2 + Cz 2 + Dxv + Exz + F yz+  G x+ H y + Iz  + J  = 0 (2.3)

Considering the families o f superquadric elements the most popular are the super ellipsoids

Figure 17: An assembly o f Superquadric ellipsoid elements
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The basic expression for a super ellipsoid can be shown as:

f ( x , y , z )  =

Where:

(a 1,0 2 x 13)  are the dimensions o f the superquadric semi-major axes extents and are real 

numbers and determine the shape[44].

e and n are the roundness/squareness parameters o f the function in two perpendicular 

directions respectively.

W hen an object is formed using (2.4) one can determine surface normal, surface curvature 

and relevant moments. The function f(x,y,z) provides a measure o f the distance o f the point 

x,y,z from the surface o f the superquadric. This property provides an extremely useful 

check, sometimes called an inside-outside check on whether a point lies inside or outside 

the surface. This check provides information as to whether an element is in contact with 

another element in a contact detection algorithm.

V  ̂
| I

+

(  \  
y

e

+

/  \  
2

K Cl\ y 3 T K a y j

(2.4)

2.3.6: Tetrahedral elements
Tetrahedral polygons and polyhedrons14 1 represent a very sophisticated discrete element 

but have highly complex geometries and are particularly suited to developments in rock, 

soil and concrete mechanics.

Figure 18: An example o f a 3D tetrahedral element
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Application o f these shapes can be problematic due to contact detection, force and torque 

calculation were edge-edge, edge-corner, comer-com er contacts are apparent. This is 

compounded when extending from 2D to 3D and particle bonding is required; this can be 

complicated and computationally expensive. Similarly the same types o f limitations are 

apparent when applying these shapes to the simulation o f flow dynamics when considering 

particulate motion. However, previous works have presented a number o f algorithms for 

DEM modelling o f polyhedral particles for dealing with the complex nature o f the motion 

calculation1461.

2.3.7: The spherical cluster Discrete Element
Alternatives to the complex structures o f the ellipsoids and tetrahedra can be found by 

using clusters o f spheres[471[4s][491 formed into representative shapes.

Figure 19: Example o f a discrete element produced from a cluster o f four spheres

The main advantages in using spherical clusters as an alternative solution to spherical 

elements are the resistance to rolling that is present and the maintenance o f a simplistic 

contact prediction. In comparisons with the more exotic ellipsoid, superquadric and 

tetrahedral configurations the cluster compares well and the calculation times to simulate 

motion are reasonable. Except that, large numbers o f individual elements are required in 

these processes and when mathematically joined together surface friction becomes difficult
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to evaluate. It has also been recorded that methods o f multi-sphere generation can have 

limitations when used to replicate spherical bodies and will therefore face difficulty when 

applied to other arbitrary shapes[50]. However, previous work introducing cubic[51] elements 

have shown good representation o f  hopper flow issues, particularly in terms o f discharge 

velocity. Three-dimensional particle shape descriptors for computer simulation o f  non- 

spherical particulate assemblies can also generate cubic clusters, using eight spherical 

elements in the construction and although computer expensive could draw closer to 

simulation reality^521.

For the aims o f this project the decision was made to use the geometric benefits o f spherical 

discrete elements in the required simulations. As stated, the simulation objective was to 

study the dynamic nature o f compact particulate flow through an industrial environment 

and to assess the effects o f energy transferred from the material to the system. As 

published[53] the effect o f particle shape on flowing behaviour is very small providing there 

is high flow density. With the correct parameters introduced a spherical element can be 

used for the simulation o f non-spherical particle flow. As a result o f  this the sphere-sphere 

and sphere boundary interaction are the primary concern and variations along this theme are 

critically evaluated.
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2.4: Contact Spatial Search
Contact detection in terms o f a DEM simulation is a mathematical process used to 

determine the probability o f an impact/interaction between individual discrete elements 

within a region. The fundamental process is known as a ‘Geometric Intersection Search' 

and in multi-body analysis the procedure becomes a significant computational task. The 

simplest form o f contact search that one can implement over a region would be a search 

that checked for contact with every other individual element within the system as shown in 

Figure 2(P4\

Figure 20: Individual element check with all others in the system

The table in Figure 20 displays the simplistic search procedure that requires a link between 

each target body and the remaining contactor bodies. Although this method is legitimate, 

when considering a region with N  (number o f  particles), the process becomes grossly 

inefficient as N  become large. This is due to the fact that the number o f operations required 

to detect all contacts between A bodies becomes proportional to:

N
N  -1

(2.5)

This process becomes computationally expensive for large N.
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More efficient methods o f contact detection have reduced this proportionality down to 

factors of:

A 'log ,(,¥ ) (2.6)

The equations (2.5) & (2.6) represent extremes in search techniques however there are a 

number o f alternative methods that have been introduced in recent years to address this 

critical area o f research.

The mathematical principles implemented in contact detection methods strongly influence 

the computer processing unit (CPU) time for a given simulation and function effectively 

regarding element type. To minimise CPU demand for a fast efficient contact search and 

yet maintain data quality a balance has to be struck. The key components to a good 

‘General Global Search Algorithm' are ones that are efficient in dealing with large N  (for 

both rigid and deformable bodies) and are applicable to close packed elements as well as 

those in rapid motion. However, due to the subtle changes in requirements, one single 

algorithm may fall short in achieving all targets and different approaches may be adopted 

for different applications1 4]. Therefore, as a brief discussion, the variations in differing 

search algorithms are examined in this section.

2.4.1: Direct Checking Method
As highlighted above this method incorporates the simplest o f techniques to search for 

potential contactors.

Figure 21: A 2D array o f contactors in a domain
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The basis o f this technique links each body with every other body in the system and 

considering N -l potential contacts for assessment the number o f operations becomes 

proportional to:

N - \
N- (2.5)

2.4.2: Direct Evidence Search
In this technique the contact search area is reduced by only involving elements in close 

proximity to the target element. This produces a short list o f contactors and is periodically 

updated as the incremental time step moves on.

Q t .  J  i '  i .  -  '

Figure 22: 2D contactors in a domain with 'Buffer Zone'

As shown in Figure 22 a simple Buffer Z o n e’ has been created to select neighbouring 

particle for a short list o f  possible impactors. The buffer zone in this case is a radial 

distance and associated with each individual particle. For the calculation procedure the 

buffer zone can be applied and a short list o f elements inside the zone recognised. By 

interpolating the velocities o f the elements at each time step, a prediction can be made of 

expected contact time. If no contact is imminent the interaction can be ignored.

The creations o f such short lists as shown in Figure 23 are generic in most o f the developed 

search algorithms but methods can differ depending on the simulation requirements.
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N

Figure 23: Short list o f  contactors1541

2.4.3: Binary Tree Structure
A binary tree structure is a data sorting method that enables a program to easily add or 

delete information. Binary trees are one o f the most important non-sequential types o f data 

structures and they provide the basis for several searching algorithms1"51. The basic concept 

behind this technique is data storage in non-sequential locations o f the computer memory.

d fc e

Figure 24: Simple binary tree structure



Each data item is extended by the addition o f two integer values known as the left and right 

links and stored as a node in the tree formation. The construction o f the data tree allows two 

nodes to be accessed from one higher in the hierarchy and for every node to be reached in 

this hierarchy it has only one link going to it. This is with the exception o f the first node 

known as the root. A node without any branch (pointer) to another node is called a terminal 

node. Figure 24 depicts how data can be stored when defining a simple binary tree. In 

addition each individual node o f the tree can be designated with a binary number. Such as, 

each left branch recognised by 0 and each right branch by a 1 digit.

Level 0

Level

Level 2

Data

D ata GD a ta D

D ata A

D a ta F

D ata C

Figure 25: A binary tree structure with memory location

M,

Left Right N ode Data
m 2 m 3 A Xa y 1
m 4 m 6 B Xb Vb

m 5 C x c Vc
D Xd Vd

E X'e yE
F X F .!>

Figure 26: Data storage in a simple binary tree
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To create a binary tree a root node is selected and adding new data points to the tree 

structure depends upon the program method o f determining between left or right branch for 

insertion. Each new insertion then starts by checking the same method at the root node and 

traverses the tree until an empty place is found. The order o f the new insertions determines 

the structure o f the binary tree and the resulting shape has a major influence on 

computational cost o f the global contact search procedure. To maximise the performance o f 

this search method the tree structure is preferably well balanced and poor performance is 

produced when the tree is degenerated as shown in Figure 21.

2.4.4: Coordinate Based Space Decomposition
This method uses the coordinate axis to divide a region into finite intervals that are number 

associated. Each cell is defined as a set o f points that have coordinates that belong to the 

same interval as shown in Figure 28

(a) Degenerate tree (b) Well balanced tree

Figure 27: Degenerate and well balanced binary trees
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X

Figure 28: Coordinate based space decomposition in 2D

The numbering o f the cells can have two coordinates for 2D and three coordinates for 3D, 

this number association can also be represented in binary terms. The 2D example in Figure 

28 represents a square o f dimensions 2a sub divided by N divisions on each edge to provide 

N' cells. The computer procedure generally requires two passes, the first is to associate 

each body or object with a single or several cells using coordinates and the second is to 

assemble a list o f potential contactors for each target object from the list o f  objects 

associated with the cells containing the target1"^.

The performance o f the method is a function o f the cell size relative to the size o f the 

object/particle i.e. if the cell size is too large an excessively large number o f potential 

contactors may be produced, however if the application allows an appropriate cell size an 

efficient algorithm may be developed. An example o f a spatial search algorithm that is 

based on this concept is ‘No Binary Search' (NBS).

2.4.5: Space Bisection Algorithm

This method can be used as an insertion criterion for the base node in constructing a digital 

tree. The region in question is systematically divided into two sections at each level.
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Considering the situation depicted in Figure 29 the space bisection algorithm approaches 

the body search as follows.

O h iO D h io1111
"O d O ao d O 111111

eO

£  e
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• $  12

eO
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111

h0
11

C(J)1111
Figure 29: Bodies in a domain applied to space bisection algorithm

2.4.6: Body Based Cells
A derivative o f the 'Buffer Zone type method can be seen in the body based cells algorithm. 

In this case each element has a cell surrounding it that acts as a boundary detector.

Body Based 
Cells

Figure 30: Space decomposition by body based cell approach
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The element within the region will only be aware o f  elements within the scope o f  the 

bounding cell radius. Again any potential contactors are then recorded into a list o f  

neighbours.

2.4.7: Neighbour Search
The ‘Neighbour Search’ is similar in design to the body based search procedure in that a 

bounding cell arrangement locates potential contactors and lists them. However, in this 

method the list o f potential contactors is extended out to the nearest neighbours located 

within their bounding cell. The result o f this is that the target body list is continually 

updated without a need for a further special search[57].

As stated the search grid is used to periodically build a particle near neighbour interaction 

list. Using only particle pairs in the near neighbour list reduces the force calculation to an 

0(N ) operation, where N  is the total number o f  particles. Industrial simulations with 10 

million particles are possible in reasonable time frames[30]

2.4.8: Alternating Digital Tree (ADT)
An alternating digital tree algorithm is used to determine which members o f a set o f  n 

points in an N  dimensional space lay inside a prescribed space subregion. This type o f  

algorithm can be used for point searches but extends to handle finite sized objects such as 

soft-rigid elements.

In general terms an alternating digital tree search algorithm can be viewed as a binary tree 

where by a set o f n points are stored following geometrical criteria. The criteria are based 

on conditions implemented in hierarchical node structure that flow through a parental 

branch configuration o f a binary tree and a recursive bisection process. This method was 

introduced by Bonet & Peraire (1991)[58] and subsequently developed by Petrinic (1996)[58] 

and Yu (1999)[59].
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An ADT algorithm is one o f the most efficient available search algorithms and comprises 

o f three key stages that provides a potential list o f contacting objects in the spatial search:

• Body location mapping -  representation o f objects by bounding boxes

• Space bisection -  construction o f a binary tree containing all objects

• Bounding box intersection search -  to compute the list o f potential 

contacting objects

2.4.8.1: Body Location M apping
In this type o f global search algorithm a general shaped body is represented by a standard 

simple bounding box. The box circumscribes the body and its edges are parallel with the 

global coordinate system.

Bounding Box i

B o d y  /

X,u nun

Figure 31: Bounding box around a 3D elliptical element1 N]

In compliance with the point based space bisection algorithm, a body /' from the R" space

can be represented by a point in the R2" space via an invertible mapping L : R'1----- ► R~"

that combines the coordinate limits o f the body’s bounding box according to:
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r  = \xl x" v1 r" ?  (2 7 )i L' /,m in  / .n u n  ’ /.m ax **••» i,m ax J  V /

Xj is a unique location o f an object in the R~n space.

Xi.t

0 ximin X  j

Figure 32: Mapping a 1D segment to a point in R~ space[wi]

2.4.8.2: A D T with Space Bisection and Binary Tree
The creation o f an alternating digital tree utilises the body location mapping method in 

conjunction with the space bisection method and a binary tree structure as shown in Figure 

33.
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Figure 33: ADT with space bisection, binary tree structure

and memory storage[57]
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2.5: Contact Interaction and Constitutive Forces
In a situation when contacting elements are selected through a spatial search algorithm, the 

contact interaction processes are initiated. The resulting collisional interactions 

predominantly occur between particles-particle, or particles encountering a boundary 

condition. Mathematically modelling these types o f interactions require the manipulation of 

suitable contact force laws, and the implementation o f the rules expressed in the equations 

o f motion. There are many variations in DEM programming161], however the fundamental 

concepts in the majority o f programs are, by and large, generic and follow a similar 

structure. In this review a standard code is discussed as described by Cleary (1998)[62] 

where interactions are driven by the soft sphere method with no apparent element 

deformation.

Particle j

Particle i

2.5.1: Particle-Particie Point o f  Contact

Overlap distance S

Figure 34: 2D particle-particle contact interaction

As shown in the 2D image in Figure 34, the contact force interaction laws are a function o f 

the overlapping distance between the impacting particles. The depth o f the overlap, 

signified by the value " S ”, is dependent on the relative normal and tangential velocities and 

an associated time step.
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The distribution o f the forces generated during the interaction period can be viewed as a 

linear spring-dashpot diagram as shown in Figure 35. Surfaces are breached when a simple 

geometric relationship occurs, i.e.

D<(R,  + Rj)  (2.8)

Where: Rh R, are element radii and D  is the centre-centre distance

Fric

Slider

Spring

Dash-pot

Figure 35: Forces during contact exchange expressed as a linear spring-dashpot (LSD)

diagram

As shown in Figure 35 the spring system in the schematic diagram stores the impact energy 

as a compressive repulsive force. The dashpot acts as a damping mechanism that dissipates 

the energy at contact and the magnitude o f the dissipation is directly related to the applied 

coefficient o f restitution. Along with the simulated energy transfer a velocity based
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damping mechanism is used to reduce a number o f  particle impacts (as in a granular flow) 

into a steady state[63].

2.5.1.1: Linear Spring Dash-pot (LSD) and Hertzian Spring Dash-pot (HSD) 
Systems
The schematic image shown in Figure 35 highlights the simplified element contact 

interaction using a spring dash-pot arrangement to store and dissipate energy respectively. 

For the LSD model the viscoelastic contact interaction neglects element deformation at 

impact and 60% o f DEM models use this method in contact interaction[64]. Where as, the 

HSD model functions by utilising material characteristics and represents a non-linear

For the HSD model the inter element/element boundary contact considers the plastic 

deformation at surface contact and is a function o f the mechanical nature o f the simulation 

material.

The equation to calculate kn here is as follows:

Inter element:

relationship1[65][66]

As shown in Figure 34 the magnitude o f S is the contact overlap distance and is a function 

o f the spring constant kn_. The stiffness o f kn limits the overlap distance and affect the time 

step calculation, for the LSD model values in the order o f 103-107 Nm'1 for 3D can be used.

(2.9)

Element Boundary

(2 .10)

57



Where:

Ej Ej are the Young’s modulus o f  the elements (N m 2)

Vi rj the element radii (m) 

kn is the spring constant N m 1 

v is Poisson ’s ratio o f  the element or boundary (-)

The non linearity o f the HSD method is a more representative simulation technique but the 

kn values produced using (2.9) and (2.10) can be large (O(109) f 61̂ 6̂  due to material 

properties. This forces high kn values producing very low time steps, and this is a major 

drawback as calculation time increased.[69][70].

In the case o f the LSD model the linearity o f  the force calculation is preserved and follows 

Hooke’s law if the contact overlap is small compared to the element radius. As a result o f  

this F„ reduces to;

K=~KA, (2.11)

For the current program the LSD was the adopted model (due to its simplicity and 

effectiveness)^1] and applied to the interaction forces at contact. Further discussions on this 

topic are highlighted m 2.5.1.2 and 2.5.1.3.

2.5.1.2: Normal Contact Force and Damping
In Figure 35 the normal contact force has a vectorial element that links the centres o f the 

contacting disk shaped objects. The spring represents a mechanism that generates a 

repulsive force and the dash-pot represents the dissipation o f energy in terms o f a damping 

coefficient. The maximum overlap between the disks (S) is governed by the spring stiffness 

"k”. In the soft sphere model the overlap is designed to be small compared to the radial 

values o f the discrete element in contact (values in the region o f  0.1 and 1.0% o f the radii 

are acceptable) and this can requires spring stiffness values o f  between 106—107 Nm'1 in 2D 

and 104—106 Nm'1 in 3D[72]. When this factor is realised the contact interaction behaves 

linearly (LSD) and follows Hooke’s law. However, in some cases realistic particle motion 

is achievable while reducing computer time by limiting kn to stiffness values in the region 

o f  800-1000Nm'1[67]. At this level the advantage o f  a larger time step is allowed to simulate 

acollision.[73][74]t75]
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The magnitude o f  the normal force is calculated using:

(2.12)

Where:

k is the spring penalty stiffness (Nrri1 ), (kg s'2)  

Sn is the overlap distance (m)

C„ is the tangential damping coefficient (kg s'1)  

vn is the relative tangential velocity (m s'1)

In terms o f particle -particle interaction v„ is derived using:

(2.13)

Where

Vf is the fin a l velocity vector 

v, is the initial velocity vector 

n is a unit vector

As highlighted the spring system depicted in Figure 35 stores the impact energy in an 

incremental time frame before returning the energy to simulate an impact. The normal 

damping coefficient C„ is used in the same algorithm to limit the reaction force during the 

impact and acts as a dissipation o f energy within the contact system.

(2.14)

Where:

ln(e)
(2.15)

+ ln 2(s-)

And

e is an input variable o f  between 0 and 1 related to the coefficient o f  restitution
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The application o f Equation (2.14) during a collision event simulates the influence o f  the 

coefficient o f restitution and its value is determined by input parameters used in Equation 

(2.15).

2.5.1.3: Tangential Contact Force and Friction
The tangential contact force is a force element generated perpendicular to the normal vector 

between the particle centres. The magnitude o f the force is a function o f the normal reaction

force, the tangential velocity at contact and the damping coefficients apparent during the

contact period.

F ,= - k 8 , - C ,v ,  (2.16)

Where:

k is the spring penalty stiffness (Nm'1), (kg s'2)

S, is the overlap distance (m)

C, is the tangential damping coefficient (kg s'1)

Vt is the relative tangential velocity (m s'1)

And:

C , = 2 2 ^  (2.17)

V, = ((v , - v , )■')'' (2.18)

Where:

s  is the tangential shear unit vector

In this type o f contact interaction the same values are used for both normal and tangential 

directions [74J.

60



Frictional forces are introduced using “Sliders” to represent the shear between contactors in 

the linear spring-dashpot diagrams as shown in Figure 35. The fundamental principles 

behind the shear force contact components are governed by the “Coulomb Friction Model”. 

This method incorporates a frictional coefficient, and a shear spring, to limit motion and 

store energy respectively in the tangential direction o f contact. As in the normal reaction 

force energy is dissipated using a viscoelastic damping mechanism in the form o f  a 

tangential dashpot (as shown in Figure 35b). Energy dissipation o f  this nature could be 

associated to particle deformation due to shear, sound generation or impact wear. For this 

project these condition are briefly discussed but not embellished upon.

From this, the relative shear displacement St in (2.14) is calculated by:

S ,= v ,d t  (2.19)

During a contact interaction the “Coulomb Friction Model” introduces a slip criterion due 

to the magnitude o f tangential velocity determining the tangential shear force. The slip 

frictional force is applied in the form of:

F,.nc = ~/j\F„

Where:

H is the frictional coefficient o f  the impacting material types and is non-dimensional.

To enforce the slip criterion a comparison o f  the magnitude o f the shear force from (2.16) is 

made with the frictional force in (2.20). If this value is greater, then the shear force is 

limited to the frictional force component. In this situation, the particles slip relative to one 

and other1761™ .
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2.5.2: Particle-Boundary/Wall Contact
In the case o f a particle-boundary interaction the contact force calculations that determine a 

reaction are dealt with in a very similar method to the particle-particle situation. However, 

the particle-particle interaction can be viewed as a “Binary” process and the boundary 

interaction seen as single particle with momentum encountering a static system.

The boundary wall implementation has a significant influence in the simulation process as a 

means o f mathematically constructing a flow regime or a constraint to study packing 

conditions. In essence boundary conditions present themselves as limiting parameters that 

function to manoeuvre the passage o f an element through a global domain.

/
/

Particle i

n
4

1 v '
I ✓

1 /
I ✓
HL---------------- *

P  s Boundary Wall

Figure 36: Normal and tangential forces between boundary and impacting particle 

Where:

k„ & k, are the normal and tangential stiffness penalty value respectively (N m ]),(kg  s ' )  

Fn & F, are the normal and tangential reaction forces respectively (N)

Ff,iC is the frictional force between the boundary and the particle (N) 

v, is the velocity vector o f  the impacting particle (m s ' )  

n^s are the normal and tangential unit vectors respectively 

P is the impact point o f  the incoming particle.
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2.5.2.1: Basic 2D Boundary Wall Search
For the 2D case the boundary wall search mechanism utilises a geometric principle that 

uses the particle position in space and the boundary wall limits as a coordinate system.

Particle i
4
I v,

i V
1 -  "  A  D

- A  ,  ^ ------------------------ ►!-*• '
U< *  ▼

s Boundary' Wall
i* - ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- ►!

DwaU
W c . a r l  W e n d

Figure 37: Particle with velocity approaching a boundary wall.

Where:

D„ is the perpendicular distance for the boundary surface to the centre o f the particle 

Ds is the tangential distance from the start o f the w all to the Dn coordinate line 

D wau is the length o f the boundary wall

Wstar &, Wen(j are the start and end point o f the wall respectively 

R is the radius o f the particle

As shown in Figure 37 the particle is positioned over the surface o f the boundary wall and 

is likely to make contact. From the schematic diagram the value o f Dn is larger than the 

radial distance o f the particle; therefore at this point the wall is not recognised. However,

the key factors o f the position o f Dn over the boundary surface and distance Ds from the

boundary coordinate Wstart are critical in contact detection.
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Figure 38: Here the distance Ds < 0 hence boundary is not recognised
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B o u n d a r y  W a l l
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Figure 39: Here the distance Ds > D wau and again the wall is not recognised

In Figures 38 & 39  the wall search conditions are not satisfied therefore the wall contact 

interaction process cannot take place. To initiate the contact algorithm:

D„<R„ (2.21)

And:

0 < D , < D „ , „  (2.22)
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e n dsta r t

Figure 40: Particle in contact with the boundary surface and relevant conditions satisfied 

Where:

vr & v„ are the normal and tangential component velocities (ms'1)

Fn is the resultant normal reaction force (N)

F, is the resultant tangential reaction fo rce  (N)

6 is the particle-boundary penetration depth (m)

S  = R -D . (2.23) 

2.5.2.1: Basic 2D  Dam ping at Boundary Wall Contact
The details related to damping have been covered in the start o f this section in terms o f the 

particle-particle case. The damping mechanisms applied to boundary contact interaction are 

very similar and only differ in equation structure to determine force direction. The simple 

case o f a particle impacting with a flat boundary is shown in Figure 4F.
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Figure 41: Simple case o f particle falling under gravity and impacting with boundary

condition

• In Figure 41a a particle with mass and velocity v is falling towards a Hat boundary

wall. As it makes contact with the wall the gain in kinetic energy is transferred into a spring 

potential energy.

• In Figure 41b the particle has breached the boundary surface and the theoretical

spring becomes compressed. The amount o f compression is a function o f the particle mass, 

velocity and the penetration distance below the surface.

• Finally in Figure 41c the restoration energy stored in the compressed spring returns

the particle back through the wall surface. A constant value for the coefficient o f restitution 

is used generate a damping value and the particle returns physically to its expected height
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2.5.2.2: Basic 3D Boundary Wall Search
In terms o f a 3D boundary wall search the calculations to determine contact are similar to 

the 2D arrangements but the added dimension draws on vectorial mathematics o f 

magnitudes and directions. For a particle encountering a boundary condition a distance to a 

plane in a given time step can be calculated by as follows[57]:

R

: d 
▼

Figure 42: 3D sphere in contact with a boundary wall condition

(Z24)

0 < d  < R (2.25)

A(x  -  xl ) + B(v — v ,) + C(z -  z ,) = 0

A(x2 - x ]) + B ( y 2 - y , )  + C (z2 - z , )  = 0 (2.26)

A(x3 -  .r,) + B(y? -  v ,) + C(z3 - z , )  = 0

A 2 + B 2 + C 2 = 1 (2.27)
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x - x ,  y - y } z — z.

x2 ~ x\ y * - y \  z i ~ z \ 

* 3 - * i  y * - y \  Z3 z \

= o (2.28)

( x - x , )
dy2\ dz2] ( \dx i\ dz2]

+ (z -  z . )
dx 2 i dy2\

dy3, dz3\ dz3X V 1 / dx3] dy3\
=  0 (2.29)

a — d y i \ ' dz 3i ~  dy^x '  ^ z 2i

b = dx3] ■ dz2] — dx2] • dz3] (2.30)

c = dx2} • dy3] - dx3] • dy2]

2 S 2 S
C = —  

2 S
D  -  —Ax] + By] + C zx (2.31)

2S  = 4 a 2 + b 2 + c : (2.32)

d  = Axc + Byc + Czc + D (2.33)

Contact with the boundary takes place i f  and only if  d  in (2.25) is satisfied.
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2.5.3: Application o f  Newton’s 2nd Laws

As introduced previously in this section the constitutive forces at particle-particle / particle- 

boundary interactions are brought together in a summation to simulate motion. The 

calculations that are performed, alternate between Newton’s second laws o f motion to the 

element and the force displacement law at the contact area.[3]

• Newton’s second law gives the motion o f an element resulting from the forces 

acting on it.

•  The force displacement law is used to find contact force from displacements

To determine the subsequent position o f  each element, Newton’s Second Law of motion is 

twice integrating with respect to time. Along with that, individual elements move 

independently o f one another with both translation and rotational motion considered.

Newton’s 2nd Law o f  Translational Motion

d 2x
m

dt j

Newton’s 2nd Law o f  Rotational Motion

L = Z / /  + m :g  (2 -34)

h ^ ff  = Tt (2-35)
at

Where:

mi is mass (kg) 

x is the location (m)

g  is the gravitational constant o f  acceleration (ms'2)

I  is the Inertia (kgm2)

S is the angle o f  rotation due to the turning moment “T ” (Radians) 

t is the time (s)
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2.5.3.1: Translational and Rotational Motion

V

/

(a)

\

/

\

/

\

P an ic le i+A l

P an ic le  i

Figure 43: Elements in (a) & (b) in translational and rotational motion respectively

For the 2D case the translational motion o f an element can be seen as the movement from 

an initial coordinate position to a final coordinate position in the x,y  plane. In the 3D case 

the principles are same except that unit vectors are introduced to incorporate the third 

dimension. In rotation, inter-particle forces act over a contact region between the particles 

rather than the centre o f mass of the particles and this generates a torque. The total torque 

includes two parts, one causing rotation from the tangential component and the other in a 

contribution from the normal component in terms o f rolling frictionI?s].

If one considers the components o f y and z to be constant, the one dimensional cases for 

translational and rotational motion are applied as follows:

constant over the period At and (2.36)&( 2.37) become velocity expressions as shown in

(2.38) & (2.39).

"O:

^  =ZM.

(2.36)

(2.37)

In the soft sphere discrete element method the simulation is time stepped where the velocity 

and acceleration are assumed to be constant during each time step. Therefore x  and <9 are
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(2.38)

(2.39)

The formula in (2.38) & (2.39) are applied to each element and the corresponding velocity 

calculations are carried forward to the “Force Displacement Law” and this repeated over 

the number o f  elements (N) in the simulation and on every incremental time step.

The discrete element calculations in the discontinuum process shown in the above 

equations are achieved by the solution o f partial differential equations using the explicit

2.4.3.2: Time Step Evaluation
In the soft sphere model for DEM simulation particle deformation is replicated by surface- 

surface overlap, although the overlaps are assumed to be small in relation to the particle 

size. This indicates that the collisions in this case are not instantaneous and develop over a 

finite time period. To maintain stability in the particle motion the integration time step 

between calculations must be correctly selected as an input and becomes a function o f  the 

force displacement law. To determine this value the DEM algorithm uses the relationship 

between the penalty stiffness value and the characteristic natural frequency o f a spring- 

mass oscillating system with mass

(xX +i = (*/)* + (* ,X +I A' (2.40)

2

fin ite d i f f e r e n c e method for continuum analysis.

(2.42)

Where:

T c is the critical time step(s) 

mjj is the effective mass meff (kg) 

k is the spring stiffness N m 1
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m eff =

m ^ j

m; + m .j
(2.43)

As guidance, values that produce stable simulation time steps are in the region o f 0.1% o f  

the values generated in (2.42).

From (2.42) the critical time step for a calculation is dependent upon two main factors, 

spring stiffness and the particle mass. This implies that small hard particles with a low 

coefficient o f  restitution can prove to be computationally expensive.

Ultimately the above equations are introduced in sequence with a specific set o f  input 

parameters related to the simulation environment and material characteristics. The resulting 

output calculations produce an array o f  particle positions and velocities along with the 

forces at inter-particle contact, and contact with mathematical boundary conditions.

In general terms, the frictional forces are added to the normal forces and moments acting on 

the particles during contact. The particles velocity and position are then updated at each 

critical time step. This process continues at every positional increment until a pre-defined 

number o f  time steps have been reached.
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3. DEM PROGRAM DEVELOPMENT
As discussed in Section 1, the original program applied to this granular flow investigation, 

was written as a 2D code. To stimulate growth and development within the program a 

conscious decision was made to apply it to real on-plant equipment, particularly those that 

had been identified as having material flow issues. Initially, the ideal candidate for 

application was the Sinter Plants “Roll feeder and segregation plate assembly”. However, in 

terms o f 2D, the resulting simulations returned limited information for data analysis and 

were visually uninspiring.

As a result o f  this, attention was drawn to more complex plant arrangements and 1004 to 

1005 material transfer station and head chute was used as an alternative. This type o f  

apparatus changes the direction o f  interconnecting conveyor belt systems through 90° and 

proved to be a demanding environment to control at the early stages. Primitive models were 

prone to simulation breakdown and the basic coding structure was mathematically 

developed at each failure to return a solution.

Throughout this section emphasis is drawn to the basic 2D mechanisms behind the motion 

and interaction o f  theoretical discs, with disc-disc and disc-boundary being considered. 

Failures to generate suitable results for a 2D particulate simulation are highlighted and 

mathematical solutions to the inherent problems are offered.

Program application using plant designs are discussed to encourage and drive model 

improvement. The results o f the coding development are presented as 2D working 

simulation renders.
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3.1 Introduction

A primary concern with the original model was the failure o f particle movement behind a 

boundary condition. To overcome this problem, a simplistic parametric equation was 

introduced into the code structure and a solution was obtained.

This developmental procedure ultimately produced a robust 2D modelling technique, but 

significant drawbacks were realised when 2D simulations were related to the actual How 

regimes. The obvious disadvantages in these situations were critical data lose from the third 

dimension. As a result o f  this the program was systematically converted from 2D into 3D 

and progression to this stage is discussed at length throughout this section.

3.2: First Introduction to DEM
From the image in Figure 44 one can clearly see the type o f particulate interaction that 

occurs in a DEM simulation with an element size distribution

Particles falling under “g

Particle in equilibrium

Figure 44: Discrete Elements packed into a global domain falling under gravity
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. The image presented here is a snap shot o f a global domain packed with discrete elements 

that are allowed to fall under gravity with varying degrees o f global damping. As the 

elements settle and interact, contact forces are initiated at the surface overlap until 

equilibrium is achieved.

3.2.1: Particle-Particle Position Relation
The relative positions o f potential contacting elements are calculated by a geometric 2D 

coordinate method.

Starch.

Figure 45: Relative positions calculate using 2D coordinate geometry

Where:

(xi, vi), (Xj, Vj) are the particle centres and /?,, R) are the particle radii

And:

dx = x  l —x ,

dx = y, -y,

D = yj(dx: + d y 2)

^  dx Cost = —  
D

S  mt = —  
D

D rad = D - ( R ,

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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As shown in Figure 45 the relative particle positions are determined by the centre 

coordinates and magnitude o f the vector linking them. The “Search ra d ” (Figure 45a) is 

an input variable that produces a search region to implement a “Nearest Neighbour ” 

contact algorithm to predict potential contactor.

When Drac] < Search rad  the particle concerned is added to a contactor list array

The “N orm al” forces components are directed between the particle centres using Cosine 

Functions. These are used to generate a “Tangential” force vector as shown in Figure 45.

\
\

F,(y) Cost

Cost

vi

Sint

dv

dx

Fn(y) Sint

Fn(x) Cost \

-F, (x)Sint
*  r ,

Figure 46: Normal and Tangential force directions produced in 2D using geometric and
trigonometric functions
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3.2.2: Particle-Boundary Position Relation and Wall Search
In addition to the global domain where particles fill the whole region, sub-regions o f 

particle generation are introduced by limiting particle production to a specific coordinate 

system. As shown in Figure 47:

Figure 47: 2D simulation slides showing a region o f particle generation falling onto a

boundary condition

The snap shot diagram in Figure 47 shows a number o f discrete elements falling under 

gravity into a simple boundary wall arrangement. In the original 2D program code the 

boundary interaction procedure was calculated in a similar manner to the method discussed 

in Section 2 where distances are functions o f positions in a coordinate system.
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3.2.2.1: Particle-Boundary Contact Interaction

The schematic diagram in Figure 48 shows a particle moving adjacent to a boundary wall. 

The perpendicular distance dun is the key factor and determines the point o f contact with 

the boundary surface.

Y

Boundary Wall

xBj.yBi

dx

+  X

Figure 48: Particle motion over a boundary surface and corresponding calculations

Here the equations are formed as:

dx = x B / —xA/ (3-7)

dy = y B j - y A j  (3.8)

= W + F )  (3-9)

S X  = (3.10)
A. 'all
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dn = sy- (xAj — xi) -  sx  • (yAj — y .) 

ds = —sx • (xAj - x j —sy-  (yAj — y i)

SWaii = Ri - dn

Where:

xAj, xBj, yAj, yBj are end coordinates o f  the boundary wall 

Xi, yt, are the centre coordinates o f  the particle  

dn is the normal distance from  the particle centre to the boundary wall 

ds is the distance from  the boundary start point along the boundary perpendicular to the 

boundary normal

The equation used to calculate dn can be viewed as an equation with two separate parts:

Part 1 Part 2

dn = sy (xAj - x j  - sx (yAj -yx j

Equation (3.11) can be seen as the key equation in 2D boundary detection and brings all the 

relevant formulae together. Part 1 remains dominant until the impacting particle encounters 

the boundary surface and Part 2 becomes larger. At this point dn < 0 contact interaction 

process takes place.

(3.10tf)

(3.11)

(3.12)

(3.13)
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a.

b.
Y

Figure 49: Slides a and b show a particle falling under gravity towards a boundary

condition
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In Figure 49a , at the highlighted position “A ”, y, hasn't reached the y/l, co-ordinate and the 

particle has no relation to the wall.

At position “Z?” however, y, and yAj are the same and a “Wall Search” algorithm is 

switched on. Part 1 o f Equation (3.11) at this stage is dominant and sets the dn value, if  the 

particle is considered to be falling vertically (for simplicity) then this value remains 

constant.

In Figure 49b the particle draws closer to the wall and the perpendicular distance changes.

The calculation from the wall search still exists but the Part 2 o f Equation (3.13) comes into

play to produce the actual distance.
Y

/  dn2 Sx(yAr yi)

Figure 50: Particle comes in contact with the boundary with Part 2 o f (3.13) dominant

In Figure 50 , Part 2 o f Equation (3.11) now becomes dominant and dn approaches zero. At 

this point the particle and the wall are now in contact. A force calculation takes place to 

determine the reaction force and the particle bounces physically, possibly leaving the 

confines o f the wall.
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3.3: Initial Program Application 1004 Material Transfer Head Chute
As discussed in the introduction to this section, applying the program to on-plant equipment 

was used as a method of indicating program weakness. In the case o f 1004 the plans were 

obtained and a simulation domain was constructed to mathematical scale.

Figure 51: Design drawing front elevation o f 1004 head chute showing a basic 2D domain.
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Generated particles

1004 conveyor belt

1005 conveyor belt

Figure 52: Full 2D 1004 simulation domain in mirror image as scaled per drawing in metres

The initial attempts at running simulation through the domain shown in Figure 52 were 

unsuccessful and lead to repeated simulation breakdown. The simple requirement for this 

simulation was the transition o f the generated particle along the 1004 moving 

wall/conveyor and through onto the 1005 conveyor.
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3.3.1: Simulation Breakdown Explanation and Solution

\ .

Normal to 1004 
conveyor wall

Direction o f  return 
flow

Particle change in 
direction

Figure 53: Simulated particle How through 1004 head chute showing return flow along

normal

In the case o f the simulation slide shown in Figure 53a the particle motion follow an 

expected path along the moving conveyor wall and is distributed o ff the end into the main 

body of the domain.

As shown in Figure 53b the particles fall under gravity after a boundary impact and are 

returned at high velocity back along the normal to the wall in the positive Y direction.

Clearly the problem in this situation could be attributed to particles inability to pass under a 

boundary wall condition. Further data analysis revealed that this situation only arose with 

particles that had been related to a specific wall via the “Wall Search Algorithm” and then 

were unable to pass behind it. This lead to the conclusion that particles impacting with a 

boundary wall remain switched on to that wall and the rapid return was related to the 

reaction force calculation having a considerably high penetration depth.
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d s< 0

/  D  = 0

N orm al to Boundary Wall

Length D

B o u n d a r y  w a l l ds>()

Dom ain > cbc

D om ain > dv

Particle enters region 
behind boundary wall

s /

Figure 54: Particle entering restricted mathematical region

The key to addressing this problem was to ensure that as the particle departed from the wall 

domain, it stepped out o f the wall search calculation. From there it would then be 

disassociated from the wall and be allowed to move through any point in the co-ordinate 

system.
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3.3.2: Solution using the combination o f  two parametric equations of 
a line.
From the original wali search a s ’ determines the point at which any panicle is released 

from the end o f the wall domain. However the program prefers not to allow particles behind 

a boundary wall when they are still related to it. The key to the solution was to ensure that 

as any particle passes the end co-ordinate o f any wall that it automatically switches itself 

off. Furthermore, if  any particle were to be deflected behind any wall domain it would 

recognise its position as being acceptable and cany on through the simulation.

3.3.2.1.: Solution in Parametric form
In this section a mathematical solution to the failure o f particle motion behind a boundary 

wall is offered and the subsequent equations are related to the schematic image in Figure 

55.

m e 2 (L2)

B e h i n d  W a l l

I n  F r o n t  o f  W a l l

Figure 55: Shows a combination o f two parametric equations o f a line
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From Figure 55 the solution was produced as follows:

Parametric equation o f line L i:

r +  ^ Y  ̂ 0 ' ) ' )
I M 7 ' ) J L l ^ o o J { y A(j )J

Parametric equation o f line L2 :

2 . L  = "4 0 ' +  t2 { - y B ( j ) \ ( - M y ) ]
I  ^ ( 7 )  J I  ^ > 0 )  J

Combine 1&2 (i.e. Lj = L2 )

3.
yAU).

+ 1,
{ y B U ) J

^ 0 ' ) ] M +'
"/

\ y A U ) ) U ( o J _v

- y B ( j ) )  

xB{j)  )
- y A U )
xA(j)

r  ^ ( 7)^
f  * ( / ) ] — t - y B U ) ) f  - M ; ) l 1̂Y  ^ o -) ] f  ^4(7) "j

V M 7 ')J U o J l2 I  ^ ( 7 )  J I  ^ ( 7) J L U a ) J VyAU))_

Split 4 into two equations:

5 . ( xA( j ) -  x(i))  = t2 (y B ( j ) -  yA( j ) )  -  (xB( j )  ~ xA( j )) 

6 . ( yA{ j )  ~  y(*)) =  t2(xB( j ) -  xA(j))  -  t j(y B ( j ) -  yA( j ) )
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Find t) from 5

h { y A j )  -  y B( j j )  -  (xBU ) -  x{i))7 . tt =
( x B ( j ) - x A ( j )

Use 7 in 6

8.

{ y A j )  -  y( j ) )  = t2(xB( j )  -  xA( j )) -
h ( y A j )  -  y B( j ) )  -  (x B ( j ) -  x(ij)  

( x B ( j ) - x A ( j )
( y B ( j ) - y A ( j ) )

From 8 rearrange in terms o f  t2

9.

( y A j )  ~ v(0) = t2(xB( j ) - xA( j) ) -
t2(yA( j ) - yB( j ) ) (yB( j ) -  vA( j) ) - (x B( j ) - x( i )) (vB( j) - yA(j))  

( x B ( j ) -x A ( j )

10.

( y A  j )  -  y( i ))  = tAxB{ j )  -  xA(j))  -
t , ( 2yA( j )yB{ j )  -  y A 2( j )  ~ y B 2( j )) -  (xA( j )yB( j )  -  xA( j )yA( j )  -  x( i )yB( j )  + yA(j)x(i ) )

( x B ( j ) - x A ( j )

From 10 Let:

a  = ( 2y A( j ) y B( j )  -  yA \ j )  -  y B 2( j ))

P  = ( xA( j ) yB( j )  -  xA( j ) yA( j )  -  x ( i ) yB( j )  + yA( j )x( i ) )
11 & 12.
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Then:

13. ( y A ( j ) - y ( i ) ) ( x B { j ) - x A ( j )  = t2( x B ( j ) - x A { j ) ) { x B ( j ) - x A ( j ) - t 2a  + p

And

14.

( y A ( j ) x B ( j )  -  y A ( j ) x A ( j )  -  y ( i ) x B ( j )  + y{i)xA) = t2 [ (x S 2(y) -  2x A ( j ) xB { j )  + xA2{ j ) )  - a ]  + J3 

From 14 Let:

15 & 16 z  = (yA^ xB^ ~ yA^ xA^ ~ y ^ xB^  + y ^ xA)
6  = (xB2( j )  -  2xA( j )xB(j )  + xA2( j ) )

Therefore:

Hence:

18.

t _ (yA( j)xB(j) -  yA(j)xA(j)  -  y(i)xB(j)  + y(i)xA) -  (xA(j)yB(j)  -  xA(j)yA(j) -  x(i)yB(j) + yA(j)x(i)) 

(xfl2(y) -  2xA(j)xB(j) + x A \ j ) )  -  (2yA{j)yB(j)  ~ yA2{ j)  -  yB2( j ))
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Finally deriving to:

The above equations applied to addressing the failure o f particle motion behind a boundary 

wall were offered it terms o f a parametric solution. The subsequent introduction into the 

model code resulted in a satisfactory outcome where particle motion behind a boundary 

wall was mathematically acceptable. The results o f the coding additions are discussed in the 

next section.
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3.3.2.2.: Results o f  program additions
In this section the application o f the 2D parametric equations shown in 3.3.2.1 are 

discussed and the resulting simulation improvements are presented.

\

\

Particle flow  
behind normal to 
the conveyor wall

Figure 56: 2D Simulation o f particulate How through 1004 head chute

In applying the parametric equation into the code structure removed many o f the 

breakdown anomalies and the 2D model o f the particulate How within 1004 head chute 

followed a predictable path. Further analysis o f the simulation highlighted key areas o f 

impact and flow restriction.

Points o f  high impact or 
flo w  restriction
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The type o f raw material running through 1004 head chute is typical o f the environment 

and as discussed for the segregation plate case is highly abrasive due to its silicate mineral 

form. Volumes in the region o f 100k Tonnes/week are expected to travel though this 

system on a regular basis and this subjects the equipment to a punishing routine.

Figure 57: Localised wear in the alumina tiles at the back o f 1004 head chute

As shown in Figure 57, wear o f this nature results in raw material “hold-up " due to impact 

compression, particularly in the cases were moisture is involved. Build up o f compacted 

material eventually collapses in an avalanche and can result in damage o f running plant 

such as the conveyor belt systems. Ultimately an occurrence o f this nature leads to plant 

repair and expensive loss o f production during plant down time.

The main focus o f the 2D modelling centred on key areas in the sinter plant material 

supply chain. However, the "Burdening Department” as a whole distributes raw material to 

a number o f other business units within the works environment. The “Granulated Coal 

Injection Plant” (GCI) processes coal and as an alternative model a project was set up to 

study the material supply systems involved.
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3.4: The Granulated Coal Injection Plant Investigation

The ‘Granulated Coal Injection Plant’ (GCI) is an important production unit within the 

integrated steelworks structure. Its sole function is to process imported coal products into a 

fine granule for blast furnace application. Applying coal in this fashion introduces a cheap 

hydrocarbon fuel, reducing the dependence on more expensive products.

Consistency o f supply from the GCI plant to the blast furnaces is essential in maximising 

cost efficiency. One o f the prominent concerns is directly related to material flow issues 

into, and around the plant. For this investigation the stating point o f the supply line was 

considered and this was situated between the stock yards and the raw material silos.

With the fundamentals o f  the 2D DEM program working at a basic level, it was applied to a 

rudimentary simulation on a material flow problem that occurs as a matter o f course in the 

‘Granulated Coal Injection Plant’ (GCI Plant). The nature o f the problem was associated 

with raw material falling onto a conveyor belt and escaping over the sides. Preliminary 

investigation into this problem seemed to highlighted strong links between material free- 

fall and the resulting overspill. As stated, the raw material used in the GCI plant is coal 

with a broad size distribution. This has a tendency to promote water retention, which 

generates a compact, abrasive and a highly compressive commodity. Material presented in 

this way and falling from height may block hoppers leading to material avalanche and also 

cause excessive wear in running plant.

The simulations that were produced in this investigation were only a general representation 

o f material impact but were sufficient to draw conclusions about the problem at hand. As a 

result o f this a solution to the problem was offered and it was derived by the following 

method:

3.4.1 Background
Coal imported through the deep-water harbour is laid down on the GCI stockyard floor. 

The coal is then lifted from the ground using machines and deposited into a series o f mobile 

conveyor belt systems. The material is then raised to the end o f the mobile conveyor belt 

and allowed to fall onto a static conveyor through a feed hopper. The static belt then draws 

the material away to a set o f intermediated storage silos before being processed for blast 

furnace use.
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3.4.2: 1401 Raw Material Feed Hopper:

The image shown in Figure 58 is the conveyor-hopper-conveyor arrangement used in the 
GCI stockyard. Here one can see a mobile conveyor feeding a square hopper onto 1401 
conveyor belt

Mobile conveyor 
System

Raw m aterial H opper

1401 static conveyor

Figure 58: Side on view of a raw material feed hopper with 1401 conveyor running

underneath.

3.4.3: Simulations o f  Particle Freefall and Impact:
To show the reaction o f particle impact on a Hat moving surface the DEM program was 

used to generate particles that fell onto one horizontally moving wall. The global damping 

constants used to create drag forces around the particles were removed and the particles 

were allowed to bounce vigorously. The idea behind this representation was to exaggerate 

the point o f contact between the particle and the domain and to observe the impact results.
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Falling particles w ith point 
o f  impact

a.

Belt velocity (it)

Particles moving in the opposite direction to the w all/belt 
direction and also show ing some chaotic motion.

Figure 59 - a.b & c show a simulation o f particles falling from height onto a wall.

The slides in Figure 59 demonstrate a scenario where the particles make contact with the 

domain and react. The reactions in this case appeared to be forced back into the line o f the 

falling material and spread in both directions away from the impact point. The 

perpendicular impact could be seen as a direct transfer o f kinetic energy to the conveyor 

belt and could be attributed to the chaotic nature o f the particle along the belt.

3.4.4: Smoothing the Material Flow:
Considering the basic observations in Figure 59, the material at impact with the boundary 

reacts in an uncontrolled manner. The chaotic nature o f the particle motion could be 

directly related to the incident angle o f  the material at the contact point. To smooth the
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material transition the angle o f incident had to be changed at the contact point. To achieve 

this, a curved wall was introduced between the conveyor wall and the particle flow:

b.

Belt velocity (u)

Reduction in the impact forces  
smoothes down the material flow.

m u n ii  'irirr

Figure 60 - Slides a,b & c show a curved plate to control the material

i

Figure 61 - : Angle o f  incidence A = 0
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Figure 62 - Angle o f incidence A increased

In Figure 61 the angle o f incidence “A ” is at zero degrees, this encourages the material to 

bounce into the How o f the falling material and results in zero horizontal velocity at impact. 

In Figure 62 the angle o f incidence has been increased, this has two direct effects on the 

material impact:

1. Reduces the component o f the vertical impact velocity

2. Increases the component o f the horizontal impact velocity

These two factors have the effect o f smoothing the material flow through the domain by 

controlling the directions o f the impact velocities. Potentially the material could be 

transferred through the system more efficiently with higher velocity. This could 

significantly reduce belt wear, particularly if the horizontal velocity o f the material matches 

that o f the conveyor belt.
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3.4.5: Chute Design for 1401 Feed Hopper
Using the simulation information the theoretical data was applied to a practical design for 

on plant implementation. The idea was to produce a prototype curved chute insert that 

would fit inside one o f the existing 1401 feed hoppers to study/improve material transition. 

The approach adopted in designing the chute insert started with a geometrical study that 

involved first principles. This eventually moved on, and resulted in a Computer Aided 

Design (CAD) that verified the initial calculations.

Figure 63 - 3D CAD image o f 1401 feed hopper and conveyor
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To utilise the 2D DEM program it was essential to use the dimensions generated in Figure 

63 and extract an accurate longitudinal cross-section.

-$   s------------ e— —

Figure 64 - Side elevation o f 1401 hopper and conveyor.

Using the dimensions in Figure 64 as a guide a theoretical curved chute insert was 

considered with a radius o f curvature being set at 1.5m.

ft 0  $

Figure 65 - Side elevation o f 1401 hopper and conveyor with curved insert
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In Figure 65 the concept behind the curved insert is shown in the side elevation in 2D. To 

look at the design in real terms the hopper dimensions were again applied to a CAD 

program and the exact shape o f the curved insert was generated.

Curved section

Straight extension at entry 
and exit point o f  the 
hopper

Figure 66 - 3D image o f the curved plate.

The sides o f the curved chute were shaped specifically to fit snugly against the 45° internal 

walls o f the hopper and the bottom end o f the curve was designed to slot through the 

discharge gap allowing a 0.61m exit hole.

The chute design was then introduced into the original hopper design (as shown in Figure 

65) and the result was as follows:
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3.4.6: Final Chute design drawing for production

In CAD the hopper was generated first and a curved plate was cut using the sides o f the 

hopper. The resulting shape was then formulated into a final design drawing (As shown in 

Figure 68).

Figure 68 - Final design drawing
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3.4.7: Project Experiment and Analysis
The chute insert was fabricated following the design drawing shown in Figure 68 and the 

resulting product is shown in Figure 69. The chute insert was then fitted into the running 

plant system for experimental evaluation. The experimental procedure, results and basic 

observation with conclusions are presented in this sub-section.

Figure 69: The curved chute suspended from the gantry crane.

3.4.7.1: Experim ental Procedure
To study the performance o f the chute design prior to fitting was a difficult process. Scaling 

the design down was considered to be an option but the underlying issues would always 

manifest in mobile conveyor operation and replication o f the continuous large mass 

material flow.

To address this, a full scale hopper was assigned for experimental development and 

subsequently the chute insert was fitted at a stockyard coal deposit.
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Figure 70 - The 8mm curved chute Fitted inside 1401 hopper

a. b.

Figure 71 - The curved chute introduced into 1401 hopper.
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A mobile conveyor was then put into position and material was introduced at a rate o f 

approximately 500 Tonnes/hr.

3.4.7.2: Experim ental results
The mobile conveyor was positioned over the central line o f the static conveyor and as 

close as possible to the top part o f the chute. As the material started to llow into the hopper 

and interacted with the chute there was almost an immediate congestion at the exit point. 

This rapidly built up due to the feed rate o f the material and the experiment was terminated.

3.4.7.3: Observations

The concept behind the introduction o f curvature was to smooth the material transition and 

encourage movement in the direction o f the conveyor belt, particularly under steady state 

conditions.

Figure 72 - Predicted steady state How through the hopper

Steady state however, was never reached. This was essentially due to the orientation o f the 

feed system, naivety in the chute design and a poor understanding o f the dynamic nature o f 

the material product.
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E nd o f  m ob ile  co n veyo r cannot g e t in 
c lo se  enough to the top o f  the chute to 
m axim ise p o ten tia l energy'

F reefa lling  m a teria l im pacts before the  
m a teria l has tra ve led  a long  the chute  
cau sin g  an obstruction

............

Figure 73 - Shows the impacts leading to blockage.

In Figure 73 the points o f impact are highlighted in terms o f 2D but the experiment also 

indicated issues outside this regime. From the original source o f  the obstruction material 

quickly accumulated and interfered with the intersection line o f the hopper sides and the 

chute. The 45° angle o f the sides rapidly became congested and the curvature in the chute 

was rendered useless.

the

Figure 74 - Material impacts and points o f rapid build up.

P oin ts o f  ra p id  m a teria l bu ild  up that 
quickly co n g ested  the exit hole

Im pact o f  m a teria l w ith  
en d  o f  the chute
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3.4.8: Conclusions to the project application

This was an excellent opportunity to apply computer simulation to real on plant situations. 

Materials in movement through this type o f  plant exhibit multi variable conditions and are 

essential in calibrating a computer program. For this hopper investigation the outcomes o f  

the experiment were not as expected and flow was diminished rather that improved. 

However, the results obtained were extremely enlightening and focus was drawn to the 

inadequate performance o f  the 2D simulation model for this case. Essentially 2D 

calculations had failed to highlight the spread o f  material and the impact with the internal 

hopper walls. This perspective would only have been available with the involvement o f the 

z coordinate direction, which required 3D analysis.
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4: 3D DISCRETE ELEMENT METHOD SIMULATION
In considering the conclusions offered in 3.4.9 regarding the inadequacy o f 2D simulation 

for this project application, this section deals with the development o f the Fortran code into 

a full 3D working model. Discussed in this section are factors relating to:

Sphere-sphere interaction

• Vector link between spheres

• Contact detection and prediction

• Damping and frictional force calculation

Sphere-Boundary interaction

• Sphere - plane distance calculations

• Particle boundary wall contact

• Damping and frictional at contact

• Parameterisation o f  a plane surface using Barycentric equations

Implementation o f  stereolithography CAD fd es  (STL) to aid boundary generation

Introduction o f  capillary interaction forces using the Laplace Equation

Energy transfer in a simulation domain and direct comparisons with practical situations

4.1: Introduction
The content o f this section focuses on the conversion o f the 2D DEM program into a usable 

3D alternative. Essentially the particle- particle / particle-boundary interactions in 2D are 

calculated by summation o f forces directed by trigonometric and geometric rules. The same 

movement in 3D had to be considered in terms o f  basic vector analysis, which presents 

little problem when particle-particle contacts are calculated. However things become subtle 

when having to consider particles encountering a constraint such as a static boundary wall 

or one that is in motion. In 2D these conditions are realised linearly and parameterised to 

determine start and end points. In 3D the boundary condition are produced using a 

combination o f three sets o f jc, y  and z  coordinates to generate an infinite plane that
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becomes a mathematical barrier. In essence the normal forces in 3D are an extension o f the 

2D contact force model and integration equations o f Walton and Braun[79].

To localise the plane the same coordinates were used to form individual triangles with the 

normal to each triangular face indicating the internal / external contact area. To limit the 

contact area to the contact surface, ‘Barycentric Equations' were used as a mathematical 

tool, along with plane intersection calculations to determine the direction o f  frictional 

forces between particle-particle and particle-boundary collisions.

4.2: 3D Inter-Particle Contact Simulation with Sphere -  Sphere 
Interaction
One o f  the key issues arising from the conversion from 2D into a 3D coordinate system was 

the obvious change in the particulate shape. In 2D, calculations relay on infinitely thin 

circular discs to study interactions where as 3D case has the advantage o f  using spheres that 

are far more representative o f real conditions.

The movement o f  spheres under gravity in a 3D space can be interpreted as a force vector 

field and collisions between the spheres determine additional direction changes following 

Newton’s Laws o f Motion. In a 2D/3D DEM simulation program the sphere-sphere 

interactions are monitored using mathematical search algorithms that indicate potential 

collision candidates, and mechanisms that switch on when contact has been made. In the 

3D case particle tracking is achieved by a vector link between spherical centres whose 

length is set by an input variable called the search radius. If a sphere falls inside the search 

radius o f another sphere then contact is deemed possible.
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4.2.1: Vector Link between Spheres
Here contact interaction and detection is considered. The vectorial magnitudes between 

components are shown to be calculated using the spherical geometry o f  the element and the 

corresponding directional cosines.

D l

Search Radius

Figure 75: 3D particle-particle search algorithm process.

In the schematic shown in Figure 75 the kFind N eighbour’ search algorithm functions o ff 

sphere S I  to determine likely contact candidates. Spheres S2 and S3 are moving a distance 

D l  and D away respectively. The search radii o f sphere S I  and sphere S2 have combined 

and at this point, 53 takes no part in the impact calculations and can be ignored by 57. 

However 57 now monitors the direction o f 52 at each time step until contact conditions are 

enforced.
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Search Radii

Figure 76 - Particle-particle search radius combination.

Figure 76 shows the point at which the find neighbour search links to an incoming sphere. 

The program identifies this point by using the sphere radii and the distance between the 

sphere centres ' D F .

In the 3D DEM program:

Vector magnitude between sphere centres

From Equations (4.1) and (4.2): If “Drad” is less than the input search radius then the 

search radii are in contact. If the impact path is followed the boundaries o f SI  and S2 will 

interact and a reaction force calculation is then activated. In the DEM program this is 

termed as the ‘Neighbour Search*.

(4.1)

(4.2)
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vxj,vyj,vzj vxi,vyi,vzj

D l

Figure 77 - Particle-particle radii boundary interaction.

In Figure 77 the schematic diagram shows an overlap in the radial boundaries o f the 

impacting spheres. Prior to the overlap the boundaries came into contact and imposed the 

following sets o f conditions:

S  = ri + r / - D \  (4.3)

In the DEM program, if  S is greater then zero the spheres are in contact and the sums o f the 

contact forces are calculated to produce a reaction between the spheres and a prediction o f 

the motion after the spheres release. During this exchange the orientation o f the combined 

spheres is determined by the vector linking their relative centres. This is achieved by using 

the length between the centres (Dl)  as a magnitude and ‘Direction C osines’ as a 

mechanism to find the vector direction.
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4.2.2: Direction Cosines
To implement damping/frictional forces at contact interactions, direction cosines were used 

to associate appropriate vectors. The magnitude o f the individual direction cosines in the x, 

y and z directions are summed to 1 and can be viewed as unit vectors ( h  ).

Unit vector: A vector o f unit length.

In Figure 78 the base vectors for a rectangular coordinate system are shown giving a set o f 

three mutually orthogonal unit vectors

This is a Right handed system where coordinates represented by the base vectors follow the 

right-hand rule.

The Rectangular component o f a Vector A projected along the x, y, and z directions are Ax, 

A y, and/T , respectively.

z

j

Figure 78 - unit vectors in i , j  and k directions
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4

Figure 79 - Unit vectors in the /', j  and k  directions projected onto the x. y, z axis

A = AJ + A J  + A:k (4.4)

Magnitude o f a Vector:

\A\ = p >  + A>+A> (4.5)

Direction Cosines: C os(a),C os(ft),C os(y)
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/
Figure 80 - ‘Direction Cosine’ angles a. (3, y

C 'os(a) = - p r  ,C os{fl) = y±T,Cos(y) = - r z f r
U  \a \ \a \

(4.6)

C os2 {a)  + C os2{j3) + Cos2(y) = 1 (4.7)

The Application o f “Direction Cosines” in this case was a fundamental mechanism for 

determining force summation and position relation o f translating elements.
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4.3: Summation of Forces between Spheres:

The mechanism that drives the simulation program is based on the summation o f forces 

during contact. The principal forces involved in this program are damping and friction, and 

these are implemented in the following way:

vv/.yyyvz, vx/fyy/>vzl-

Unit normal vector to 
the Plane

Infinitely long Plane

Frictional Forces orthogonal to 
the unit normal vectorDamping forces bet ween 

spheres following the direction 
cosines

Figure 81 - Direction o f the damping/frictional forces at contact.

4.3.1: Damping Forces between Spheres:
In Figure 82 the direction o f the damping force values are shown to be moving away from 

the contact point and along the direction cosine to the centre o f the sphere. The force values 

are written in the program as\ fx i , fy i , f z i  and fxc, fyc, fzc, and are calculated as follows.

VXj, VVj, VZj v r  I' v y h  v z  i

fxc,fyc fzc D l

fx jy jzt 
fxc fy c  fzc

Damping forces between 
spheres following the direction

Figure 82 - Shows the direction o f the damping force at contact.
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f k  = k S  (4.8)

Where:

k is the spring constant (N ni1), (kg s'2)

S is the surface overlap distance (m) 

fk  is the product o f  the above value s (N)

The structure in (4.8) follows that o f ‘Hooke’s Law’ where k is the spring constant between 

the spheres and <5 is the distance o f  spherical overlap following the direction cosines Cos(x), 

Cos(y), Cos(z) where:

Cos(x) =
r Xj - x A

Dl
Cos(y)  =

Dl
Cos(z) =

D\
(4.9)

Therefore:

fxi — —fkCos(x)

fyi =  —fkCos(y)  (4 -10)

fz i = — fkCos(z)

The functions o f the components in (4.9) were to generate a harmonic oscillation between 

the spheres along the vector linking their centers. To do this the components were required 

to be negative, producing a returning force away from the spherical centers. To achieve a 

damping effect between the spheres, the harmonic oscillation has to be acted upon to reduce 

to initial contact amplitude. The method utilized in this program is as follows:

Shows an extrapolated velocity component in the next time frame: 

vnxr = 1.5(vx, — vXj)— 0.5(vxo; - vxoj )

vnyr = 1.5(yy, — yy  .) -  0.5(yyo, -  vyoj ) (4.11)

vnzr = 1.5(vz; — v z .) — 0.5 (vzq — vzof)

And:
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8  = vmcrCos(x) + vnyrCos(y) + vnzrCos(z) (4.12)

Where: 8  is the derivative o f the spherical overlap with respect to time.

Considering spheres o f  different sizes, the combined masses are dealt with by introducing 

an ‘Effective M ass’ (meff) value, which is critical when dealing with sphere-sphere 

interaction.

m eff
mimJ

(mj + rrij)
4.13

Critical damping:

cdamp = 2 4km  x cedamp (4.14)

Where cedamp is a function o f  the coefficient o f  restitution (ecoeff) and is calculated by 

using an input variable o f  between 0 and 1 to give a physical interpretation o f a rebound.

In
1

cedamp
\ecoeff

7T2 + In
\ ecoeff j

(4.15)

Shows the component damping force:

ficc = - c d a m p x 8 x  Cos(x)

fyc  = - c d a m p x 8 x  Cos(y)  

fyc  = - c d a m p x 8 x  Cos(z)

(4.16)
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4.3.2: Frictional Forces between spheres in contact:
In 2D the frictional force direction between discs was calculated using trigonometry and 

sign changes. However the conversion into 3D simulation required a totally different 

approach that relied on the application o f planes and vectors. To associate a frictional force 

direction through any sphere-sphere orientation in 3D space the following method was 

used.

Infinitely long Plane Equation o f plane generated 
through three known coordinates

1=  t+ d tt=  t+ d t

Figure 83 - Three known coordinates used to find a plane.

In Figure 83 the schematic shows three sets o f known coordinates required to generate an 

infinitely long plane in 3D space. The coordinates from the sphere centres (xhyi,Zj) and 

(Xj,yj,Zj) were used along with one o f the coordinates from the previous time step 

(xOj,yOi,zOj). These were then used to find a unit normal to the plane.

r * h  — a * h  (4.17)

Vector Equation o f a plane (4.17)

Where:

• r — Cartesian coordinates x,y,z

• ft = Unit normal vector to the plane

• a = Is the first set o f  3D coordinates
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To find h  use data from Figure 83:

Therefore:

So:

x o i - v
/

xo,
\

- X ,
y°i - y , X y°i ~y.t

k z ° . K z ° , - Z / >

f i j
xo, -  x, yo, -  y, 2 0 , -  2,

x o , - x / y o ,—y , 2 0 , - 2
1 J

«, = (G», -  y,X2°, - 2,))- «2°, - 2, Xw, - ))
", = -((.vo, -  v, \ zo ,  -  z J ) -  ((zo, -  z, X-vo, -  V ,  ) )

"r = ((*", -  \  X1'", -  .V, ))- ((.'«, -  V, X-VO, -  X, ))

(4.18)

(4.19)

(4.20)

Unit nomial component vectors (4.17):

V(wx + + K  ) , V(n; + "I + n : ) , ' j ( n 2x + n2v + n\ )
(4 .21)

Infinitely long Plane
Unit normal vector to 
the Plane

Figure 84 - Unit normal vector ( hx,iiv,n. ) to the plane.
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The schematic diagram shown in Figure 84 shows the normal vector to the plane emanating 

from the vector line between the sphere centres. Taking the cross product o f these two 

vectors produces an orthogonal unit vector which travels along the surface o f the plane 

opposing the direction o f the particle motion.

Cross product o f sphere centres vector and normal to the plane (4.22):

i j  k

" , *y " ,
Cos.x Cosv Cosz

\

(4.22)

f ,  = (f«v xCosz)-(h.X  Coxy))

f  = —((« v x Cosz) -  (/?_ x Cosx)) 

f .  = {[h, x Cosy) — (fiy x C

(4.23)

/  = fsxc,fsyc,fszc

f  = fsxe jsy e js ze

Infinitely long Plane

Unit normal vector to 
the Plane

Frictional Forces orthogonal to 
the unit normal vector

Figure 85 - Direction o f the frictional force
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The schematic diagram in Figure 85 shows the direction o f the frictional force at contact. 

The concept behind this method allows the friction to be calculated at any sphere-sphere

orientation. The frictional force f  travels in both directions due to the reactions o f each 

sphere on the other which generates a resultant value.

fsxc = J k x / u x f x

fszc = J k x j u x f :

Where: jj. is a frictional input variable.

4.2.3: Addition o f  forces to simulate motion:
Using the calculated forces at each time step, Newton’s third law o f motion was applied to 

produce a resultant component force.

4.2.3.1: Translational motion:

A , = A  + fei  + fee + fsxc
f e ,  =  f e i  +  fei + fec + feye (4.25)
f e =  fe, +  fei + fee + fszc

fe ,  =  fe ,  ~ fei - f e e -  fe^c

f e ,  = f e ,  ~ fei - f e e -  feyc  (4.26)

fe j -  fe j -  fei -  fee -  fszc

The combined forces fxh fyu f e j  and fxJi f e j ,  f e j  were brought together to represent the 

summation o f  component forces:

Summation o f  Forces (4.27)

fsyc  = Jk x f ix  f y (4.24)

(4.27)
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N ew ton’s second law:

X ^ , =
Av

111;
At

(4 .28)

Rearranging (4.28) in terms o f Av gives a small change in the velocity o f  the spheres in a 

time step:

F
Av, = a / £ —

ni.

Av„ = A
t71 V

F.
Av. = A / £

m.

Therefore using “J v ”:in a basic, speed = (dist/time) relationship:

As,,. = Av,,. • At

(4.29)

(4.30)

(4.31)

(4.32)

Where:

dsij, ch'jj, cJt are sm all changes in distance, velocity and time respectively.

4.2.3.1: Rotational motion:
Rotational motion is apparent at the point o f particle-particle/particle-boundary contact and 

is depending upon the tangential frictional force and the relative impact velocity. For 

explanation the particle-boundary contact is presented here:

Axis o f  rotation into or 
out o f the page

Turning moment created by 
shear force at point P o f 
impact

Figure 86: Particle boundary contact showing rotation due to relative motion and friction at
contact
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M  = \FFrk\ l \  

M  =  7  x  F ] r

(4 .3 3 )

( 4 .3 4 )

Where M  is the moment induced by force FFrk, and 7 is a vector between the force's point o f 

effect and centre o f mass.

The total torque can be acquired from
M

Acox = — - A t
I*

A co = — -  At
’ /  ,

/ ,

(4.35)

(4.36)

(4.37)

Where A cox, Acoy and Acoz are changes in rotation speed about each respective axis, /  is the 

moment o f inertia for the particle, and At is the length o f the time step in the simulation for 

a spherical particle. can be computed from (4.38).

7" = y "
(4.38)

Hence, applying ds to the resulting calculation output as the incremental small change in 

position at each time step dt.

* » . v .

Figure 87 - Simulation o f particles falling into a global 3D domain
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In the simulation slides shown in Figure 87, the particle were generated from a localised 

zone within the global domain bounded by xmax,xmin ymax,ymin and zmax,zmin. The 

interactions o f the particles in contact resuit in the simulation o f movement and the 

conservations o f both energy and momentum.

For the current program consideration was given to typical particulate flow for simulation 

puiposes. The dense media How allows the application o f spherical elements and with 

correct particle restraints limits the influence o f rotational motion on the calculation. For a 

high mass flow rate with minimal voidage previous work has shown that in practical 

situations approximately 10% o f the particles are able to rotate[s0].

4.3: 3D Sphere -  Boundary Interaction
The particle movement shown in Figure 87 had no controlling factor and no local limiting

conditions. This allowed the particles to spread randomly throughout the global domain

driven by the particle-particle interactions. Although this was a step forwards in converting

a 2D program intro a 3D program, it was recognised that to achieve realistic simulations the

implementation o f a boundary condition to limit/control velocity and direction was a

critical success factor. In 2D (as in the sphere-sphere case) the interactions between a disc

and a boundary were calculated using trigonometry and geometry with the predicted impact

distance deriving from the subtractions o f the opposite wall o f two right angle triangle.
Y

Figure 88 - Shows the trigonometry used to calculate distances d n l and dn2
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In the schematic diagram shown in Figure 88 the dn values determine the distance to the 

boundary wall and they follow a direction that was perpendicular to the boundary itself. 

This method was loosely transferred to the 3D boundary search however; the perpendicular 

direction was replaced by a ‘Norm al’ to a boundary surface and the distance was found by 

calculating the vector magnitude from a point in space to a plane.

I n f i n i t e l y  l o n g  v e c t o r  th r o u g h  
s p h e r e  a n d  p l a n e

L e n g t h  o f  v e c t o r  t o  th e  
p l a n e  w i t h  v a l u e  d n

N o r m a l  t o  th e  p l a n e

( x C , . y C j . z C j )

P o i n t  o f  i m p a c t  
P 1 . P 2 , P 3

Figure 89 - Vector magnitude used to calculate distances dn

The diagram in Figure 89 shows a particle in a 3D coordinate system at a position x„ y„ z, 

at a distance dn above a plane generated using three coordinates (xA/,yAl,zAl) (xB,,yBj,zBj) 

and (xCj,yCj,zCj). To calculate the perpendicular distance from the particle to the plane, the 

first step is to find the normal to the plane followed by a calculation to assess the predicted 

impact point (PI, P2, P3).
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4.3.1: Sphere -  Plane distance calculation

Using:

Vector Equation o f a plane:

r  •  h =  a •  h (4.39)

Where:

> r = Cartesian coordinates x,y,z

> h = Unit normal vector to the plane

>  a = Is the first set o f 3D coordinates

To find h normal to the Plane (xAj,yAj,zAj), (xBj,yBj,zBj), (xCj,yCj,zCj) Figure 89:

r xAj - x B ^  

yAj —yBj

yA j - y R j

xA/ - x C t '

yA ., ~ y c >
v zAj -  zC j j

(4.40)

Therefore:

i j  k

xA f -  xB / yA -  yB f zA} -  zB; 

xA, -  x C , v A . - y C , zA i - z C iv J J * J y  J J J

(4.41)

So:

",=by - yB, lzA, - zC,))- by - zB, hy - yCj))
".»=-b*i -  xBj by - zCj ))- by - zy by - *c ,)) (4-42) 

", = ((H -xBihy -yCj)}-by - yy X*4, - xC, ))
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Unit normal component vectors:

n. =
n_

n. —
+ n U n--)> ' V U  +»■)> 7 V k 2 + + »?)

(4.43)

Using the calculated normal values and the position o f the sphere within the coordinate 

system a vector equation o f a line through the sphere into the plane could be found.

Vector equation o f a line through sphere and plane:

r, = y

\ Z i J

+ t (4.44)

\ n =J

Where:

> t acts as the parameterisation o f the infinitely long vector line that intersects

with the plane and is a length at each time step not the length to the plane.

L e n g t h  o f  v e c t o r  to  
t h e  p l a n e  w i t h  v a l u e  
d n l

I n f i n i t e l y  l o n g  v e c t o r  
t h r o u g h  t h e  s p h e r e  
a n d  p l a n e dn\

P o i n t  o f  i m p a c t  
P 1 , P 2 , P 3

T h e  d i s t a n c e  t  i s  t h e  
p a r a m e t e r i s a t i o n  o f  t h e  v e c t o r  l i n e

Figure 90 -  Parameterisation o f vector through sphere and plane
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To determine the length t one needs to find the scalar product: a •  n 

Where:

' xAt ' ( h \
X

a = yA , , and _ h - h>

, zA>,

Therefore:

a * h  = (xAlhx)+  [yAfny )+ {zA^h, )

(4.45)

(4.46)

So:

Length o f  parametric factor t:’

, _  U ' A  ~ v . 4 j \  • )-(.v.H, • yj),  i ) .
i 2̂ r ji V )+ 77;  + 77J

Using the value found for t the distance from the sphere to the plane can be calculated. 

From Figure 90 the distance to the plane is denoted as dnl, and this section o f  the vector 

provides the impact point with the plane at Px, P v, Pz.

Distance o f sphere to the plane:

dnl = + ( / - n j )  (4.48)

And the impact point P  o f  the vector with the plane is found by:

Px = x i +(t-hx)

P y = y i +(>-*y) (4-49)

Pz = Z, + (f ' ' 0
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Due to the fact that the perpendicular distance dnl and corresponding impact coordinates 

on the plane were known, the change in the dnl value at each time step was used to assess 

whether a sphere was approaching the plane or moving away from it. Essentially if a sphere 

moves towards a plane the dnl value decreases, and at the point when dnl was less than 

zero the plane surface was in contact. When this condition was realised it was then used to 

bring in a ‘Wall Search’ algorithm.

4.4: P article-B oundary W all C ontact

In both 2D and 3D simulations the boundary walls can simply be seen as a set o f 

mathematical conditions that govern the motion o f  a mathematical sphere in a global 

domain. In a 2D version the constraints are implemented linearly whereas in 3D the 

constraints take a planar form. However, as discussed in the last section there are strong 

similarities in both methods, particularly in the calculation o f the d n l  value that determines 

the point o f  sphere-boundary contact and the subsequent force interactions.

4.4.1: Sphere-Boundary Wall Interaction

In Figure 91 the particle contacts the surface o f  the plane boundary and the interaction 

forces are highlighted.

nx,n v,n.

|  fy d fii)  + {fic, fic , fie )

I I 
I I

dn\ = 0

P P Pfixe , fsyc, fizc  x’ >’ z

(xAj.yAj.zAj) (xBi.yBj.zBi)

Figure 91 - Sphere in contact with a boundary wall with dn l= 0  and t>0
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(jxi, fyi, fzi)  + { fxc , f y c \  fzc) = the perpendicular reaction forces

>  fsxc , fs y c , fs z c  = the frictional forces opposing the motion o f  the sphere

> 8 -  the penetration depth o f  the sphere during contact

At this point o f contact the wall search algorithm activates and the perpendicular reaction 

forces are calculated to return the sphere through the boundary in a physical manner.

♦♦ 

I I' TO. VO; 7.0; v

Figure 92 - Sphere breaching a boundary wall with dnl>0  and t<0

In Figure 92 the sphere breaches the surface with a penetration depth S being proportional 

to the impact momentum. The reaction force reduces the velocity o f the sphere during the 

penetration time span by absorbing the energy in a compressive strain until this is returned 

to propel the sphere back out through the boundary surface. This mechanism follows the 

same method applied to the sphere-sphere interaction but only considers the mass o f the 

impacting sphere as apposed to the effective mass generated by two moving objects.

Note that in this situation the damping forces here f id , j y i , f z i  and fx c ,fy c ,J z c  follow the 

normal vector to the plane surface, this is an important factor and drives the calculation to 

change the direction o f the impacting mass.
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The other key observation to be made here is that the value o f dn l always stays positive. 

This is due to the fact that d n l  is a calculated distance from the centre o f a moving sphere 

to a plane and does not take account o f whether the point is below a boundary or above it. 

However this is not the case for the value calculated for t. As the sphere breaches the 

boundary surface a negative term is produced and combining these two factors into the 

conditions during contact, a switching system is provided to determine position.

>  i.e. t > 0 Not in wall

> t < 0 In contact with the wall

nx,Piv,h2
♦
I
I

dn 11> 0 t > 0
\ m m
/

/
. y  pxS \>pz

---------------------------------------- ¥■------------ A ----------
(xAj.yAj.zA) /  /  \  (xB,vB,zB.)

I 7 ;
\  xoi.yoj.zoj

Figure 93 - sphere through a boundary wall with dnl>0  and t>0

4.4.2: Plane-Sphere Frictional Forces

To solve the problem o f simulating the friction force that occurs at the interface between 

material under motion and an engineered structure (i.e. head chute) a similar method to the 

sphere-sphere interaction was adopted. By utilising a combination o f key coordinates it was 

possible to create an arrangement o f intersecting planes that could be used to find a force 

vector in the required direction o f the friction.
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UX yCJJX zC2 (J)
fi plane 1

Plane 2

* C x(j\yC x( j \ z C x{j)

xB2{j),yB 2(f) ,zB 2{j)

r la n e  1

B 'frk  ~  ^  fx ’ ^  fy  ’ ̂  fz  * *
xB\ (j), yB] (j). zBx ( j)

fi plane2

x .i{ j) ,y A x(j),zA {( j)

Intersection line of Plane 1 and Plane 2

xA 2 ( / ) ,  vA 2 ( j ) ,  zA 2 ( j )

Figure 94 - plane intersection giving a frictional force vector

The schematic diagram in Figure 94 shows 2 over lapping infinite planes and the line 

generated by their points o f intersection.

Plane 1:

Produced using coordinates:

'xAUf 'xbut fxC o f
yA(j) , yB(j) and yC(j) Giving the normal

KZA(j); KZBU); ^ a . / ) J

i ll , - ill = ill, =
n .
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Plane 2:

Produced using coordinates:

' xo(i)' r  X

yo(i) T(0 and Py

^ o ( 0 , U J

Giving the normal

- h2. .  =

Therefore, the vector orthogonal to these two normal follows the path apposing the 

direction o f the sphere motion at contact and was representative o f frictional vector Ffrjc.

i j  k 
h\ v 771 h\ z

h2„ h 2 i i 2 .
(4.50)

e ,  = ((«! , x«2;)-(j?L x n 2 } )) 

e v = - ((̂ Vv x ”2 . ) - (n\ _ x ri2x)) 

e, =((«!., x «2 ) - (n l  x n 2 j )

(4.51)

e„ =
J(e2 + e 2 + e 2) ,  ” J (e2 + e 2 + e 2) ,  ‘ J ( e ; + e 2y + e 2)

(4.52)

FM = e x,e , , e ; (4.53)
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Applying these vector components into the 3D DEM program they formulate in the 

following manner:

fsxc  = fk x fj  x ex

fsyc  = fk x / / x ey (4.54)

fszc = fk x f i x e .

Where:

>  fk = the penetration depth S o f the sphere times the spring constant k

>  // = is the coefficient o f  friction between the surfaces o f different media.

4.4.3 Parameterisation o f  Plane Surface
The disadvantage o f generating infinitely large planes limits the practicality o f using the 

program to replicate any simple system where How occurs. The answer to the problem was 

to localise the planes into triangles by using the original plane coordinates. This was 

achieved by the application o f a Barycentric E quation , which is a method o f 

mathematically predicting an impact and is predominantly used in ‘Ray Tracing' 

simulation.

4.4.3.1: Barycentric Equation
Using the calculated impact point {Px, P v, Pz) as a position on a plane surface, its relation to 

a set o f triangular coordinates can seen as follows.
C

I'll

Figure 95 - Three sets o f coordinates used to produce a plane

The schematic diagram in Figure 95 shows a triangle ABC  that has been split into three 

other separate triangles using the impact point (PX,PV,P:) as the centre. The principle behind 

the ‘Barycentric Equation’ is that the sum of the areas covered by the three internal
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triangles equals the total area o f  triangle ABC. If the areas o f triangle a, p and y are 

normalised then:

Normalisation o f  internal triangles:

a  p
+  — - —  +  ■

r
AABC AABC AABC

= 1 (4.56)

4.4.3.2: Calculation Triangular Area
To derive a value for the required triangular area the standard ‘Area o f a Triangle’ equation 

was used.

Area o f  a triangle:

1
& Area = — Base x Perpendicular height (4.57)

Taking A a , the shortest distance from P  to line Lj was the perpendicular distance from Li to 

P  denoted as P H . So to find the area o f  A or the length o f vector P H  was calculated and 

applied to (4.47) along with a vector calculation for the base length.

Method

Using the information displayed in Figure 95

A =

\ zAu

4“ t

xBj —xAj ' 

yBj  - y A j

y z B i ~ z A j j

(4.58)

Because H  lies on the line Li and t has yet to be determined then: 

Ll = H

f  p  \  (  p  \
v x

P  +H  =

\P=J

+ P H ^ > P H  = -
' xAj '

zA,v j

At

{xB , - x A }

yB, -yA ,

\ zB i - zAi j

(4.59)

(4.60)
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Note:

To find t: PH  perpfo  Z,

P H •

r xB j —xAj ^

y B j - y A j  

zB j — zAj j

= 0

' p , ' '  x A j  ^ '  x B j — x A j 1 ' x B j - x A j '

- P y + y A j +  t y B j ~ y A j •
y B j - y A i

U J , z A i , ZB j ~  z A j , ZB j - z A j J

=  0

(4.61)

(4.62)

- P x +xAj  

-P y + y A ,  
- P .  + z A t

V xBj -  xAj

yB , - y A j  

zBj - zAj ,
+ t

(.xB j - xAj y 
( y B j - y A j ) 2

yiyB j - y A , ) 1 j

=  0 (4.63)

1 = -  i H  -  h B , -  xA j )]- h Aj -  p,  h B, -  yA) )J- m  -  F-- h Bj -
(xB, - xA, ) 1 + ( y B , - y A ) 1 + (zfi, - z 4 , ) 2

Therefore:

P H =  $ M r P* + k Br xAJ) }  +  i>’Ar Pr +  { y B - y A ) }  + { z A - ? a ( z B - z A ) )  ] 

And the ‘Base length’ o f A a  is:

Bha = >/[((*#,- -  xAj ))2 + b Bj -  yAj ))2 + i zBj ~ zAj ))2 ]

Area o f  A a :

(4.64)

(4.65)

(4.66)

A a A = —BL  xArea ^ PH (4.67)
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The same method was also applied to calculating the areas o f A[3 and A /  to satisfy (4.56). 

If (4.56) holds then the sphere trajectory is on a collision course with triangle ABC.

If the sum o f the internal triangles is greater than 1 then the sphere will miss triangle ABC.

Figure 96: Point P formed outside the triangular section

The schematic diagram shown in Figure 96 depicts a situation were an element has no 

relation to the triangular surface bounded by the three coordinates. This result was a 

foundation for generating 3D localised boundary conditions within a global domain. This 

enabled the preliminary production o f a simulation environment to study dynamic flow 

situations within a practical arrangement.

4.5: Preliminary 3D Simulation Results
The content o f this subsection is a compilation o f early 3D localised simulation 

environments that were all generated by hand built input files. The task o f producing these 

local domains was largely time consuming and impractical in real terms. However, the 

importance o f this step in the modelling was without question and the knowledge gained in 

coordinate orientations was a critical factor in moving to the next level in program 

development.

The subject matter attended to here were chosen for their simple design and the relevance to 

project.
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As an addition to the program development, element colour coding was introduced to 

highlight particles o f different radii. Using the minimum and maximum radii and the actual 

randomly generated radius o f a particle, the colour coding was presented as:

• 20% of the min max range: Yellow

• 40% of the min max range: Red

• 60% o f the min max range: Green

• 80% of the min max range: Cyan

• 100% of the min max range: Blue

4.5.1: 1004 Head Chute
This part o f the plant was discussed in terms o f program development for the 2D case in 

3.3. The movement into 3D (as shown in Figure 97) provides the simulation with 

significantly more data but has considerably more visual impact.

Figure 97: Hand constructed wall configuration to represent 1004 head chute with colour

coded element/particles
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4.5.2: 1401 Hopper
The simulation slide presented here is the result o f  the Granulated Coal Injection Plant 

(GCI) project application addressed in 3.4. The simulation render shows a particulate 

generation falling into an open hopper and onto a moving set o f walls representing a 

conveyor belt.

Figure 98: Hand constructed wall configuration to represent 1401 feed hopper
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4.5.3: Sinter Plant Segregation Plate
The introduction to this piece o f on-plant apparatus was introduced in 1.5 and was a major 

contributing factor in the DEM investigation technique. Again, terms o f data analysis the 

3D simulation render offers more information than the 2D counterpail.

Figure 99: Hand constructed wall configuration to represent the sinter plant segregation

plate

To create the above boundary arrangements triangular sections were used to generate 

planes. Each plane comprised four sets o f x, y, z coordinates and the orientation o f the 

coordinates produced the Unit Normal vectors associated to each plane. These vectors 

initiate the contact forces and physical representations are produced. Although the domains
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discussed here are basic, the simulation media were seen as reasonable representations o f  

the practical situations under investigation. At this stage further development for inter­

particle contact was required in terms o f the effects o f moisture addition. The collections o f  

models studied in this subsection are highly influenced by environmental conditions. 

Moisture retention is a particular concern and greatly effects particle motion and boundary 

interaction. To simulate this form o f  situation capillary forces were introduced and covered 

in the next subsection.

4.6: Capillary Force
To draw closer to an accurate representation o f a granular flow one has to consider as many 

o f the fundamental forces that are present between particulates as practicably possible. For 

the cases discussed the application o f  moisture into raw material is both controlled and 

uncontrolled and previous simulation work on this subject indicates that the adhesion force 

due to liquid bridges largely affects particulate flow[8l]. As an example one o f the key 

factors in efficient Sinter Plant operation is to set a raw material moisture levels to 

approximately 5% material mass o f equivalent water. This is a controlled process but is 

usually based on trial and error and moisture levels range due to many external variables. 

The raw material storage facilities for bulk handling o f this type are usually exposed to the 

elements and material moisture levels are highly dependent on weather conditions, drainage 

and material absorbency. In the case o f fine ores and coals, moisture levels strongly 

determine the handle-ability o f  the product and its visual appearance, when dry they present 

themselves as powdery and when saturated they can appear as slurry. The limits o f  

mathematical moisture content for this project were set at 5% material mass o f equivalent 

water to obtain satisfactory results.

• In this subsection, schematic diagrams o f the geometric representation o f capillary 

type force are shown.

•  A mathematical approach in terms o f  simple geometry is offered for the production 

o f internal radius o f a curved meniscus. This value relates to the capillary force.

• The toroidal approximation to capillary force calculation is used and explained

• A calculation by integration o f  the void created between two contacting spheres and 

a virtual toroid is also presented.
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4.6.1: Capillary Force Simulation
For this investigation the controlled application o f moisture is studied and dealt with by a 

“Capillary type force'’ interaction between particles. In this case particles carry a mass 

percentage o f water with them to represent an applied moisture level and when surfaces are 

close a meniscus is formed by moisture harvest^21. The normal capillary action is then 

calculated using the Laplace Equation for capillary force and if the menisci are sufficiently 

small one can neglect gravitational distortion and buoyancy forces1831.

P e r c e n t a g e  e q u i v a l e n t  P a r t i c l e  
m a s s  o f  m o i s t u r e  o n  s u r f a c e D1 M oisture surface  

contact

D1

P e r c e n t a g e  e q u i v a l e n t  P a r t i c l e  m a s s  o f  
m o i s t u r e  h a r v e s t e d  b e t w e e n  p a r t i c l e s

Rcom
Rcom

C u r v e d  m e n i s c u s  g i v i n g  c a p i l l a r y  s u c t i o n  
f o r c e  u s i n g  t o r i o d a l  a p p r o x i m a t i o n

Figure 100: Particles with approach velocity impacting and harvesting surface moisture
between surfaces

As shown in Figure 100 the moisture content between the particles forms a liquid bridge. 

Surface tension actions provoke the liquid-gas interface to behave like a stretched 

membrane, which as a consequence, maintains solid particles together.
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The capillary force between two or more spherical particles is a complex relationship and is 

dependent upon the volume o f the water addition. There are four main physical descriptions 

for the quantity o f solution between the particles and they are as follows[84][85].

• Pendular: Liquid bridges are formed at the contact points o f the particles. Cohesive 

force act through liquid bridges.

• Funicular: Liquid bridges around contact points and liquid filled pores coexist. Both 

give rise to cohesion between particles.

• Capillary: Almost all the pores are filled with liquid, but the liquid surface forms 

menisci and the liquid pressure is lower than the air pressure. This suction results in a 

cohesive interaction.

• Slurry: The liquid pressure is equal to, or higher than the air pressure. No cohesive 

interaction appears between particles.

Qualitative arguments agree that cohesion increases with higher water contents to its 

saturation to a maximum value in the pendular regimef86][87][88].

The image shown in Figure 100 depicts the meniscus bridge between two spherical 

particles. The curvature o f the meniscus is generated by the difference in the atmospheric 

pressure with the internal pressure o f the liquid and this result’s in an attractive interaction 

force at the particle surface.

Laplace-Young Capillary force equation

F caP  =  2 7 rc ry 0 +  T iy ^ A P

Where:

a is the surface tension o f water at 20°C -0 .0 7 3  

yo s the distance from the centre line between the particles to the lowest point o f the 

meniscus.

AP is the pressure difference between the both media (i.e. water and air)

( 4 .6 8 )
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(4.69)

The Laplace-Young equation cannot be solved analytically. An alternative approach is to

For representation o f industrial particulates, size distribution was a simulation requirement 

and the capillary force values in this situation were calculated by the internal coordinate 

system o f three interacting spheres and the following assumptions:

4.6.1.1: Basic G eom etry  o f  a circular toroid
The image in Figure 100 is shown in 2D coordinates, and the calculations in 3D follow a 

similar method due to the geometry o f  the spherical elements. However, if one considers 

the curved meniscus to be a circular radius the calculations become less complex and in 3D 

the volume o f the meniscus can be seen a the internal structure o f a Toroid.

assume the shape o f the liquid bridge to be that o f a toroid[S9]t90]

z Internal surface element

Major radius Minor rad ius

y

Figure 101: Circular toroid showing major and minor radii

145



Toriodal Assumptions:

•  The internal surface element o f  the toroid was used as a curved meniscus

•  The minor radius produced a toriodal volumes equal to the mass percentage volume 

o f  water carried with particle when the major radius = minor radius.

•  The minor radius Rk was used as the value R / in the Laplace Equation for capillary 

force. In this case when Rj is determined it remained constant throughout the 

contact interaction calculation.

•  The Major radius grows as the particle centres encroach and the value R2 in the 

Laplace Equation is generated by the Major radius -  Minor radius.

The advantage o f  the toroidal approximation is that the total liquid bridge force may be 

expressed in terms o f  a simple closed form expression[9l]. A simplistic approach to capillary 

force due to a liquid bridges can be useful when particles size get small 0(1  O'9)  as many 

approximations become invalid at this level[92].

The calculated values are formulated as shown in the following section.

4.6.2: Capillary Force between particles o f  different size
In this subsection the relationship between interacting spherical elements, the moisture 

carried with each element and the toroidal approximation for the meniscus are brought 

together. The schematic diagrams represent a cross-sectional visual image o f spherical 

elements at contact and the corresponding geometric relationships are used to generate a 

Normal attractive force.

The combination o f  the soft sphere method and the toroidal approximation between 

different sized particles has an element o f novelty associated to it, and its clear success in 

producing reasonable capillary force prediction can be attributed to the geometric 

relationship between the contacting particles and the expansion o f the toroid during particle 

interaction.

146



D istances  R / a n d  R: u sed  in 
th e  L a p la ce  E q u a tio n

C ross section  th rough  
im p a c tin g  p a rtic les  a n d  to ro id

Particle j Particle i

M oistu re  co n ten t  
rep resen ted  as a 
su r fa ce  halo

Figure 102: Particles in moisture-moisture contact switching on the contact algorithm.
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Cross section o f  torus 
between spheres

Spherical cap

Particle i Particle j

---------------

Figure 103: Impacting particles o f similar radii showing a symmetric relationship and torus
between surfaces
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Cross section o f  torus 
between spheres

Spherical cap

Particle j

Particle i

" 2 f
-►i

Figure 104: Impacting particles with different radii showing non-symmetric relationship
and torus between surfaces
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Dimension in Figures 103 & 104 were determined as follows with R1 remaining constant:

C entre po in t o f  arbitrary  
sphere w ith  radius Rk.

C on tac t po in t fro m  pa rtic les  
cen tre line to  the low est 
po in t o f  a rb itrary  sphere.

l i l

lR2

Figure 105: Elements o f differing radii with ang les/, 0, y/ exposed 

Moisture value = Mois ~ values bhv 0 and 5% o f  the particle mass

dx — x t — x t

dy  = y  j — y i (4.70)

dz  =  Z j -  z,

Vcom = 1 ^  + r" ) (4 '72)

R k = \\0/oVcT w h e r e  : R k = Rx (4.74)
V 2n~

D  = yjdx2 +dv~ + d z '

V'Vcom =M ois' X V ,

(4.71)

(4.73)

150



Note:

Particle i mass (kg) Mi

Particle j  mass (kg) Mj

Particle i Volume (m3) Vi

Particle j  Volume (m3) Vj

Particle Density (kgm 3) Pp

Moisture Density (kgm’3) Pw

Moisture i mass (kg) Mwi

Moisture j  mass (kg) Mwj

4.6.2.1: Depth o f moisture on particle surface:
When moisture values are introduced into the calculation each spherical element can be 

seen as carrying a surface quantity o f  water. The resulting depth o f  the water is directly 

related to the mass o f  the element and the percentage o f  moisture assigned by the user.

The depth o f  the surface water is calculated as follows:

M , = p p -V, (4.75)

M , = P r -V, (4.76)

M w, = p w -V; (4.77) M „, = a „ .F ,  (4.78)

Mass o f additional moisture:

mwi= M o i s ' - M j (4.79) mwj= M o i s ' - M J (4.80)

New moisture mass with additional moisture

M wi„ew = M wi +m»i (4 -81) + m WJ (4.82)

(4-83) V w j „ „ = ^ E .  (4.84)
P W P.
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New radius for virtual sphere o f  volumes Vwjnew and Vwinew

3 • Vwi_____ j
4 n

(4.85) new (4.86)

Depth o f moisture on particle surface:

Combined depth o f  moisture on particle surfaces for contact algorithm:

(4.89)

4.62.2: Geometric relationships related to Figure 103:
For simplicity the schematic image in Figure 103 shows element o f the same size at 

contact. This situation is unlikely when a size distribution is applied to the simulation; 

however, the fundamental geometric rules displayed are legitimate in the case o f different 

sized elements.

To produce numerical values for angles % 6 and if/ a simple rearrangement o f the cosine 

rule was used. The principles to the angular value are as follows:

(4.90) R I j = R J + Rt (4.91)

e  = cos~x (4.92)
2 Rl.RL

v /

V 7
(4.93)

(4.94)
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a , = R, ■ S(4 .% )

Pi = R \ ' Cos(y(4.98) 

/ ? , = « ,  C o s(x )  (4.99)

X l =[Rlr Cos(V ')M  (4-10°)

X l =[RlJ -C o s { x ) \- l} ) (4.101) 

8i =Ri- p i(4.102)

(4.95)

a, = Rr Sm(x) (4.97)

Sr . =RJ - f i J (4.103)

0 .25
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O  01

0 .05
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a
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O
-0 .0 5

- 0.1

Capillan force between particles due to 
*1 moisture content vs Time

0 *. 0.52 0 .53 0.54

Time (s)

Graph 1: Force deterioration as particles impact

0.55 0.56

The deterioration o f  the capillary force shown in Graph 1 was used as a preventative 

mechanism to inter-particulate vibration due to the contradiction o f  the attractive capillary 

force and the repulsive contact interaction forces. To formulate this damping effect the 

depth o f surface moisture shown in (4.89) was used as constant denominator value and a 

decreasing ratio was produced before surface/surface contact. The key point here is that the 

repulsive and attractive forces settle to a state o f equilibrium until they are broken apart by 

an external force greater than the meniscus bond.
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Note: In this arrangement R2 will be at its maximum at initial moisture surface contact and 

this reproduces the spring effect o f a capillary force interaction

4.6.2.3: Liquid core volume at the centre o f  the toroid using integration
The voided space created between the spherical elements and the virtual toroid can be seen

as the ideal 3D shape for the moisture to adopt during the contact interaction. The volume

calculation o f the voided space should match the calculated moisture content o f  the

combined element at interaction. This relationship can be used as a trigger to avoid over

saturation where forces become repulsive and the method o f obtaining the voided volume

can be seen as follows.

Volume o f  core

Particle i Particle j

Figure 106: Liquid core developed between impacting spheres and toms

154



V

V v\\\\\\S \\'\ \\C \\\\\\v

Integration Region 
Around x  axis for 
toroidal section

Internal section 
taken through 2na 
to find core volume

z
Figure 107: Integration region under sphere o f minor radius to calculate the volume o f a

torus

S p h e r i c a l  c a p

Particle j

Particle i

Figure 108: Sections S 1 and S2 taken through 27ia to Find the volume o f the disc shaped
centre.
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modal
Disk shaped section: S i + S2

Cross section

Figure 109: Side and end on view o f blue shaded integration region shown in Fig 107

The simple shape shown in Figure 109a was derived from Figure 108 and combines Si and 

S2 for same size particles. The area o f the shape was calculated by using the “area o f a 

trapezium" rule with the addition o f the area o f a spherical cap included.

This area calculation was then taken through 360 degrees (in this case Ina) and a basic 

volume calculation w as produced. The construction o f the equation can be seen in (4.104) 

where Vsec is the volume o f the total section.

Volume o f Sections Si & S2 through 2nu

Kcc - 1 -  [((«, +  K ) + (a j +  Aj %x,  +  X j )]+ ' - ( S - S i n S ) R; >2na (4.104)

To determine the voided space between the particles at impact the virtual toriodal shape (as 

shown in Figure 101) had to be removed. Figure 109b depicts the cross-sectional view of 

the key area and the cross-sectional association o f the toroid. By using an integral with the 

limits set at the points o f spherical contact a toriodal section can be removed. The following 

solution shows the volume o f a torus Vtorus by integration and the resulting calculation o f 

the toroidal section.
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Volume o f  toroidal section using integration:

Kc„,s= £ d p + ^ R 2 - y 2)  -  d p  -  V^i2 - y 2 )  <ty 

K„us = £  d p  + -<lRf - y 2J  -  £  d p  -  ̂ R 2 - y 2 J dy

Let:

v = R] Sin 3

^ -  = R .C os9  
d $  '
dy = R\Cos3  • d 9

K,„„ = T  d p  + - \r \  - R ? S i n 28 j  -  P  d p  -  J r ? - R f S i n 2# !  R.CosS ■ d SJan ' ’ Jan ' >

v , o n , s  = [ '  A a  + Ri ^ ~  Sin2# }  -  7r(a - r J \ -  Sin2 3 ) R}C os9  • d 3

Vutms = £  7r(a + R, J C o s 2$ J  -  7r(a -  R, J C o s 2$ J  RxC os9  ■ d 9

v , o n ,  = f  k « 2 • R\Cos3 + 2a ■ R2Cos23 + Rf C o s^)-n (a 2 • R fo s3  + 2 a • R2Cos23 + R; Cos'3)
Ja 0

V,„nl, = K f ( 4 a R ? C o s 9 ) - d 9  

K„n, = * £  (2«  • *,2 (1 +  Cos29))- dS

■d3

V = 71to ru s 2 a  • R: 9  +
Sin29  

2 )

V,„„,s = 4 2 a  ■ R< (& + S in 9 C o s 3 ) \
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Note:

Sin 3  -
R,

3  = Sin
(  \  

V

\ R i /

C o s 2 3  = I -  Sin2 3  -> Cos 3  = -Jl -  Sin ’3  -»  J r ? v 2
r S  ■

Therefore:

V =  7Ttorus
f f  \ ( \ >

2a • R,2 Sin~x y + _y_ ■slRi - y 2R R,2
V 1 *•'

_ \ V  l / V  I / _

V = 7Ttorus 2a ■ R;
( _ \

Sin
V J

r \
- n 2 a  • R; Sin 1

/ \

v* .y
• \ R: -  ori ( 4 . 1 0 5 )

Where:

" o  =  X,  « i  =  Xj

By using the result obtained in (4.105) the core volume can be produced by subtracting the 

toriodal calculation away from the basic volume calculation (as shown in (4.106)). The 

resulting shape resembles the internal structure o f a tyre as depicted in Figure 110c

Volume o f liquid core between impacting particle carrying moisture:

V - V  - Vcore sec to m s (4.106)

C. Basic Toroidal Centre
d.

Basic Toroidal Centre w ithout 
spherical caps

Core Volume

Figure 110: In Figure 109 a, h, and here in c & d the degeneration to liquid core volume is 
shown.
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To complete the idealised shape the “spherical cap'5 volumes (shown in Figure 109) are 

removed and a representation o f the core volume is presented.

This geometry and integral used for this representation is applicable to particles o f different 

sizes at contact and the core representation can be seen in Figure 111.

Core Volume fo r  
different size particles

Basic Toroidal centres without Spherical caps

Figure 111: Here the liquid core volume is depicted between different size elements

As indicated in this section the introduction o f a capillary type force was o f critical 

importance due to the nature o f the simulation requirements. The above method o f deriving 

an attractive force value was based on the geometric relationship between three 

interconnecting spheres and an integral o f a virtual toroidal shape. The integral was used in 

this case to produce a numerical value for the central core volume o f the harvested moisture 

content between the interacting elements. The geometric relationship o f the spheres was 

ultimately used to determine the internal radial distance from the vector between element 

centres to the bottom o f the meniscus. This value relates to R2 in the Laplace Equation.
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4.6.2.4: Application o f  capillary force at 1 & 5 wt% moisture and its effects on 
particle clumping.
To visualise the effects o f applying varying degrees o f moisture content the following 

simulation slides were taken from a “Roll Feeder Segregation Plate" flow simulation with 

initially lw t%  moisture addition and finally 5wt% moisture addition.

Figure 112: Particulate flow over Roll Feeder with lwt%  moisture
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Figure 113: Particulate How over Roll Feeder with 5wt% moisture

The images shown in Figures 112 & 113 are highly representative o f material Hows with 

differing moisture content through the Roll Feeder devise. However, mathematically 

deriving a stable simulation result required a great deal o f trial and error. Extremes in 

finding the correct method of capillary interaction ranged from inter-element rejection and 

total bonding that maintained its initial shape.

The following images were produced in a simulation designed to generate an angle o f 

repose from a rectangular box o f discrete elements falling under gravity.

As discussed in 4.5 the colouring coding o f the elements shows a particulate size 

distribution in this simulation. The range here was set at a minimum radius o f 0.005m and a 

maximum radius o f 0.015 generating 50 thousand elements within the particle generation 

region.

Note: The particle generation method was completely randomised and the program 

functioned by placing a particle in an x,y and z coordinate. Particle packing arrangements 

were not addressed here but could be considered post capillary bonding.
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Figure 114: Rectangular box shape used to generate an angle o f repose when falling under 
gravity

Figure 115: Inter element rejection resulting from high capillary force at contact overlap
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Figure 116: High element bonding due to exaggerated capillary force reducing to zero at
surface contact.

In Figure 115 a high integer multiple was introduced into the Laplace equation to simulate 

a high bonding condition. However, the contact overlap used in the soft sphere method 

produced a high negative attractive force at surface penetration (particularly between larger 

and small elements) and this resulted in an explosive reaction.

In Figure 116 the same high integer multiple was applied to the capillary equation but on 

this occasion the force calculation was reduced to zero at surface contact by introducing a 

ratio o f initial moisture surface contact (as shown in Figure 100), and the incrementally 

decreasing distance as the elements approach each other. This resulted in an extremely high 

attractive force between the elements that remained predominantly positive and produced a 

rigid cuboid, resembling the primary box shape.

Ultimately, setting the correct input parameters and the method discussed in Figure 116 the 

simulation accuracy progressed.
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4.7: Implementation o f  stereolithography (STL) CAD files to 
generate boundary walls.
For the successful application o f a simulation technique o f this type into a diagnostic 

engineering tool, manual boundary wall construction to create a domain was a highly 

inefficient process. To address this problem stereolithography (STL) files were used as a 

method o f generating multi wall domains with complex nature if  required. The basic 

function o f  this type o f  file is explained as follows:

4.7.1: The Function o f Stereolithography (STL) CAD files
A Stereolithography (STL) file is formed as an output file for a standard 3D computer 

design program, for this case 3D Solid Works was used. The basic format o f the file is a set 

o f 3D triangular Cartesian coordinates and the corresponding surface unit normal ordered 

by the right-hand vector rule.

facet normal 4.922138e-001 8.525393e-001 -1.757906e-001 
outer loop

vertex 3.500000e+003 4.400000e+003 4.000000e+003 
vertex 3.500000e+003 4.544338e+003 4.700000e+003 
vertex 3.750000e+003 4.400000e+003 4.700000e+003 

endloop 
endfacet
facet normal 5.000000e-001 8.660254e-001 1.041605e-016 

outer loop
vertex 3.500000e+003 4.544338e+003 1.000000e+004 
vertex 3.750000e+003 4.400000e+003 1.000000e+004 
vertex 3.500000e+003 4.544338e+003 4.700000e+003 

endloop 
endfacet

Figure 117: A section o f an STL file showing the surface (facet) normal and the nine 
coordinate required for a triangular section

As explained in earlier text the basics behind the 3D current DEM code for boundary 

interaction is based on the interconnecting triangular sections in x, y  and z  directions. 

Boundary configurations are read by the Fortran code and are categorised into a results file. 

The similarities to the format o f  an STL file makes the two boundary wall input files 

compatible and interchangeable. As a result o f this, an extracted STL can be used to 

produce a boundary wall arrangement in the current DEM code from a 3D design drawing 

with any level o f  complexity.

164



4.7.2: Implementation o f  and STL file for the Roll Feeder and 
Segregation plate
The importance in this type o f development can clearly found in the sophistication o f the 

simulation structure that is achievable. This allows a far more representative simulation 

with high detail and accurate data analysis in key points o f interest. Crucially, this method 

o f domain construction can be carried out easily by an expert in the field o f 3D design and 

manipulated with the instruction o f an engineer to assess equipment

The results o f this development in terms o f the segregation plate are as follow s:

a.



Figure 118: The images shown in a, b and c are the developmental levels in the boundary

generation
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One o f  the only drawbacks in using this method o f domain generation was that high detail 

design drawing use large amounts o f triangular sections to produce a shape. This had a 

detrimental effect on the CPU time due to the unnecessary calculation time being devoted 

to insignificant boundary walls. Limiting the number o f sections was achievable by 

selecting coarse representations and in the main this type o f detail was extremely adequate. 

However, when situations required cylindrical simulation the coarse type representation 

failed to serve its puipose due to the high detail needed to form a smooth circular surface.

To counteract this problem the following cylindrical generation method was adopted:

4.8: Cylinder Generation
Cylinder generation for this project was an important concept due to the simulation subject 

matter. The Roll Feeder in the Sinter Plant (as shown in Figure 118c) comprises a 4m long 

cylindrical unit and each conveyor belt assembly runs over a series o f  cylindrical drum 

ends. All o f these systems rotate and affect the motion o f the particulate flow, to replicate 

this form o f  transition an independent mechanism was mathematically introduced for 

rotating cylinders.

S m all surface p lane associated  
to  each particle

P H

Figure 119: Particle cylinder search mechanism
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The schematic diagram in Figure 119 shows a basic cylindrical geometry and the key

values for the cylinder simulation are the positions o f the end centres and the cylinder

radius.

Where:

Li is the distance between cylinder ends

h is the distance from  the cylinder start point to the perpendicular contactor on Lj 

xDyk are the coordinates o f  the cylinder start point 

xEjjk are the coordinates o f  the cylinder end point 

drj is the cylinder radius

P  is the positional coordinates o f  an impacting element.

PH  is the distance from  the centre line to the centre o f  the element

Using the information displayed in Figure 119 a 3D region can be generated that creates a 

cylindrical shape. For this program the shape was produced by associating an individual 

small plane to an impacting element at a circular radial distance from the centre line. Using 

this basis and the orientation o f the vector linking the centre line to the centre o f  the 

element, a cross product calculation returns the gradient o f the plane. At cylinder-element 

contact the reaction force follows the surface Normal and the motion becomes physical.

The cylinder generation is presented as follows:

' x Dj ' xEj — xDj '

y ° j + t yEj  - y D j

z Di ) zEj - zD j y

Because H  lies on the line Li and t has yet to be determined then:

V 'xD^ xE} -  xDj

y t + P H  — PH  -  - y, + yDj +t yE j -y D  t

kz' j W zE. -zD.\  i j J
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Note:

To find t: PH  perp to Z,

P H  •

(  xE j —xDj   ̂

yE j - y D j

z E . - z D .
j j J

= 0 (4.109)

V ' x D , ' ' xE J — xD j ' ' xEj — x D , '
- y t + y»j + 1 yEj - y D , • yEj - yDj

ytij zEj - z D ,  J \ zE, - z D ,  J

=  0 (4.110)

-  x, + x D .

- y
-  z

+ yDj  
+ zD.

\

f xEj - x D j '  

y E . - y D .

A zE j - zD j

+ t

(xEt - x D tP

( y E j - y D j f
(yE, -  yD ,  f

=  0 (4.111)

J'  y

. - I K - * , h E, -x D , ) \ -b D j  - y , h Ei - y Di W zD, ~zl zE, ~zD,)\

(xE, ~xD) 2 +(yE, - y ° y  +(zE, - z° y

Therefore:

PH  = | .v 0 ,  -  X, + (xEi - x D , ) h  0®, -  y, + -  y D , ) }  + (zD, -  z, + (z£, -  zD,) )  ] (4.113)

For particle cylinder contact:

rt + P H - d r <  0 (4.114)

169



e} = [xE; —x D ^ t

ei =(yEj -yDj)-i 
e ,  =  ( z Ej  -  z D j )  • t

(4 .115)

e4 = ( ~xi + x D J) + e ]

e5 = ( - y ,  + y D j ) + e 2 (4.115a)

e6 = ( - z t + z D j ) + e 3

' n = i e 2 + e 2 + e 26 

eA

(4.1156)

Cos, = ^ Cosv = —

From here the cylinder surface interaction follows the same principles as a plane contact 

interaction with the corresponding forces associated to it. However, to generate a rotational 

motion o f the cylinder surface the orthogonal vector to L / was calculated using a cross 

product.

| Lx | = ■yj{xE/ —x D fY +{ xEj — x D f)2 + {xE / — xD / ) (4.116)

x E . - x D .  y E j - y D j z E . . - z D ;
•, vC2 =v c  =  - j , vG,  = - — —r— v c 3 = _ y  J (4.117)

i j  k

vC, vC2 vC3

Cos. Cos. Cos,

(4.118)

eCl = ( v C 2 -C o s .)-(v C 3 •Cosv)

eC2 = -[(vCj • C os.) -  (vC3 • C os,)] (4.119)

eC3 = (vC, -Cosv) - (v C 2 - C os,)
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The simulated surface velocity o f the rotating cylinder can then by applied by introducing it 

as component o f force in the direction indicated by (4.120) i.e.

Ik ,/ -eC j-vxJ-m , [ ( y  ■eC2) - v y l[ m,  [ ( y  •eC3)-vz,]-/» , (4 120)

dt  ’ dt dt

The cylinder surface direction is determined by the selection o f the starting coordinates o f  

the cylinder (xDj, yDj, zDj)  and the selection o f  the vector orientation with the “Right Hand 

Rule”.

4.9: Energy Transfer from Particle-Boundary Contact Interaction
The dynamic motion o f particulates through bulk handling equipment will be responsible 

for large amounts o f  energy transfer to the system if  allowed to impact.

Impacting particulates in this case are macroscopic, have mass and varying velocities. 

Energy transfer under these conditions can be presented in a number o f  ways:

• Noise generation

• Atmospheric dust production

• Localised wear points at high impact ratios

• Material compaction and avalanche

Energy dissipation o f  the type discussed above has been approached in earlier sections, 

however, noise generation and localised wear points are discussed further in terms o f  

kinetic energy transfer:

Where Kinetic Energy Ek is:

Et = ^ m \ v f \  (4.121)
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4.9.1: Energy Transfer from a Particle to Flat Inclined Plane
In the situation depicted in Figure 120 the particle falls under gravity and impacts with the 

plane surface. Due to the reaction forces and low angle o f incidence the particle recovers its 

potential energy and moves onto the next contact.

Low angle of 
incidence

Wall start

Wall end

Figure 120: A Particle falling under gravity onto an inclined plane

Loss in Kinetic Energy on an Inclined Plane
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Impact Points showing loss in kinetic energyST- 0.50
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Jr. 0.40

LU
.y  o.3o

^  0.20
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Graph 2: Energy loss on an inclined plane
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4.9.2: Energy Transfer from a Particle to Curved Plane
The particle again falls under gravity from the same coordinates as shown in Figure 121. 

However, the initial contact with the curved plane has a large angle o f incidence resulting 

in a low reaction force at the normal to the plane in this position. This results in a glancing 

contact and the particle is guided to the wall end.

Q
Wall start

H igh  a n g le  o f  
in c id en ce

Wall end

Figure 121: Particle falling under gravity onto a curved plane

The graphical representations o f these simple scenarios show a differing interpretation o f 

energy transfer at each impact point. For the inclined plane case the large peaks in the trend 

line show a high impact due to the low incident angle and in the curved boundary the large 

incident angle around the normal minimises the particle penetration and guides the particle 

along.

Loss in Kinetic Energy on a Curved Plate
7 .00

6.00

5.00

4 .00

2.00

1.00

0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20

T i m e  ( s )

Graph 3: Particle impacting with a curved plane
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The curvature in the latter case encourages a smoother transition between the wall ends and 

maintains the kinetic energy carried with the particle. As the kinetic energy is proportional 

to the velocity squared the particle in effect retains its velocity and moves more efficiently 

from point to point.

To look at this phenomenon through a real material handling design a simulation was 

carried out using 1004 head chute with and without curved inserts. Data was extracted 

relating to energy transfer and the resulting graph was produced.

Kinetic Energy Versus Time Through 1004 Head Chute

Curved Chute
2

Belt Velocity = 3.8m/s

—  Ek Standard Head Chute1.8

1.6 —  Ek Head Chute with Curve
1.4

1.2

0.8

0.6

0.4

Energy transfer comparison0.2

0
2.5 3.0 3.50.0 0.5 1.0 1.5 2.0

Time (s)
Graph 4: Particle transition through 1004 head chute and corresponding kinetic energy

trend

The data threads produced in the 1004 head chute simulation were used in a comparison o f 

controlled and uncontrolled flow. From Graph 4 the blue trend line is related to the 

standard head chute as per construction. The pink trend line was produced with data from 

the controlled flow using a curved chute insert.
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Using the energy transfer comparison section and the inset images, one can clearly see that 

the uncontrolled flow data exhibits large peaks in the blue trend line. This is due to the 

resultant velocity increase from the end o f the conveyor to the back o f  the head chute wall.

The rapid decrease in the kinetic energy could be attributed to the high impact at the point 

o f boundary contact and the resulting change in momentum.

In comparison the pink trend line takes an immediate drop in kinetic energy as the conveyor 

is left. This is also an energy transfer but is related to the frictional forces restricting motion 

over the surface o f the curved chute insert. Minimising the drop or maintaining the level o f  

kinetic energy at this point could be a mechanism for determining the efficiency o f the 

insert.

Ultimately, the graphs show that the translational motion o f the particulate flow through the 

simulation domain is controlled better by the influence o f the curved insert. The main factor 

is velocity retention in the particles motion; this reduces impact and allows a smoother 

transition.

To further quantify the energy transfer at a boundary interface, the global simulation 

domain was sub divided into cubic sections. The kinetic energy values associated to an 

impact were recorded at each cubic cell and tabulated for summation.

4.10: Summation o f  Energy Transfer from an Impacting Particle in 
boundary contact.
The motion o f elements through a simulation domain can be visualised in term o f  flow 

patterns and areas that restrict movement by high impact. To numerically quantify the 

passage o f elements though a given 3D region information was drawn from element - 

boundary contact interaction and the subsequent transfers o f kinetic energy. To obtain the 

data following method was adopted:
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Particles prior to impact

Cubic sub-regions

Flat 3D plane boundary

Figure 122: Particle prior to contact interaction with a flat plane

In Figure 122 the particles are in motion and have varying masses, therefore they carry 

kinetic energy prior to impact with the flat boundary wall. The boundary plane itself cuts 

though the global domain and is bounded by a series o f  interconnecting cubic sub regions.

Energy transfer recorded 
in cubic cell

Particle after contact

Figure 123: Particles recording a Kinetic Energy transfer at a coordinate grid reference

The schematic shown in Figure 123 is the post collisional result o f the particle impact with 

the boundary plane. At each contact interaction the particle penetration is converted into a
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real number quantity relating to the amount o f  kinetic energy {using (4.121)). The kinetic 

energy value is then recorded within the cubic sub region coordinate and entered into an 

array. Any subsequent impacts in the same cell are summed together to produce a 

distribution o f energy transfer in any simulation domain to determine the efficiency o f  

particulate transition.
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5. PROGRAM VALIDATION AND CALIBRATION
In this section a “simulation model” validation is offered using the influence o f frictional 

forces on how theoretical DEM elements react when formed into heaps. To validate against 

previous work the angles o f  repose from the horizontal plane are measured and 

comparisons were made.

The angles o f repose in granular material are a well documented physical anomaly and are 

apparent in studies involving avalanche, segregation, packing[93] and arching effects in 

hopper discharge[94]. The major contributing factors to the value o f  the repose angle can be 

found in capillary forces generated by small amounts o f liquid[94] and the frictional forces 

between a particle and neighbour and a particle and boundary[95].

The frictional forces addressed in this DEM model have focused mainly on resistance to 

translational motion and limited attention has been drawn to rotational frictional forces. 

However, the variations in surface frictional force play a pivotal role in particulate motion 

and are shown here to affect the angles o f repose. In addition variations in particulate 

diameter also determine the development o f a repose angle and this situation was 

investigated in terms o f a set o f numerical experiments.

Therefore, for model validation using repose angle:

1. Contact interaction frictional forces were varied numerically.

2. Spherical discrete elements size was altered by using different spherical 

diameters.

Using the findings from 1 & 2 the results were tabulated for comparisons against published 

data.
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5.1 Experimental Procedure
Practical experimental work was carried out by Zhou et a P 5] (1999)[%] using a rectangular 

container with a Perspex viewing window to initiate a particle cascade.

L20m

0.15m

Figure 124: Schematic image o f rectangular container with particle packing[95]t%]

From the initial conditions shown in Figure 124 the particles were released and allowed to 

cascade over a central shelf and this formed a stagnant zone with a corresponding angle o f  

repose.
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Figure 125: Schematic image o f particle cascade over the central shelf producing a stagnant

5.1.2 Practical results and simulations

The practical experiments used glass beads with diameters o f 6mm and 10mm with 

densities o f 2500 kgnv and a container width o f 40mm.

Figure 126: Experimental results showing stagnant zones with (a) 10mm beads and (b)
6mm beads[t,s]
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In Figure 126 the bead size in (a) and (b) are clearly shown to affect the angle o f repose 

produced at the stagnant zone. The 1 Omm cascade used 1154 beads and the 6mm cascade 

used 4000 beads.

(a) (b)

Figure 127: Simulation results produced by Zhou et a P ^  using 10mm and 6mm particle
respectively

The simulation comparisons in Figure 127 with the practical experimental results are 

remarkably similar with the angles o f repose developed at the stagnant zone showing a 

realistic angular formation.

Physical parameters used in the simulations where:

Variables Values

Particle density- P 2500 k g m 3

Young's Modulus o f  particle or wall- E 106 Nm 2

Poisson ratio o f  particle or wall- V 0.3

Particle-particle frictional coefficient- P sp p 0.4

Particie-wa 11 fric tiona l coefficient- P  spw 0.7

Particle-particle damping coefficient- c spp 0.4 kgs'1

Particle-wall damping coefficient- Cspw 0.7 kgs'1

Table 2: Variables used in the simulations shown in Figure 124

Where:

c  = c  = c  = cs p p  v- ' s p w  '-7/
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5.2 3D DEM Model Comparison
To compare simulation results a rectangular boundary section with 40mm width was 

produced using an STL file. For this simulation the number o f particles (AO was N  =2000 

and two methods o f filling the box section were used and compared:

Method 1: Particles were generated over the top o f the central shelf to fill the voided space. 

Method 2: Particles were continuously produced at the top centre o f the box section until 

particles spilled over the sides o f the shelf and into the bottom o f the box.

5.2.1 Angle o f  repose using particle cascade (Method 1)

Particles filling voided 
region

Figure 128: Rectangular box simulation domain with particle generation over central shelf

Note: The variation in particle colour relates to "‘Particle Size Distribution’' (PSD). For this 

simulation the range was 0.01m ± 0.001m diameter. The object o f this was to improve 

visual interpretation.
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At the stall o f  the simulation the particles were allowed to fall under gravity in a cascade 

generating a stagnant zone on the central shelf.

c.
on the internal shelf

Figure 129: Particle cascade develops a stagnant zone

The above simulation was carried out using the values displayed in Table 2 with particle 

diameter o f 0.01m (10mm) and number o f particle N  = 2076.

a. b.

Figure 130: Simulation comparison using Method
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In Figure 130 the current DEM simulation model using Method 1 failed to produce a 

measurable angle o f repose (as shown in “b ”) for comparison with the simulation results 

produced by Zhou et a f t ^ ( a s  show >n in “a ”)

5.2.2 Angle o f  repose using particle generation (Method 2)
For Method 2 a particle generation region (as discussed in 3.2.3) was opened at the top 

centre o f the simulation domain. Particles were allowed to build-up on the central shelf 

producing a stagnant zone. Residual particles reaching the end o f the shelf fall over the 

edge and gather in the bottom o f the domain. The simulation images in Figure 131-132 

show a particle generation method taking place as opposed to the particle cascade 

simulation. The particle properties here are the same as expressed in Table 2 and for this 

simulation the particle generation is terminated at TV -  2000.

a. b.

Figure 131: Simulation domain with particle generation collecting on the central shelf and 
over flowing into the bottom of the domain
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a. b.

Figure 132: Simulation comparison using Method 2

The simulation slide in Figure 131a showed an angle o f repose being created on the central 

shelf almost immediately. As the particles built-up the end o f the shelf was reached and the 

excess particles can be seen to fall into the bottom o f the domain. At the point where 

N=2000 the particle generation was stopped.

An individual result from the simulations is shown in Figure 132b from a front elevation 

perspective with clear walls. The image shows an angle o f repose produced by the falling 

particles, similar to the theoretic interpretation generated by Zhou et c//[95] depicted in 

Figure 132a.

To quantify the result the dimensions o f the triangular outline superimposed onto the 

particle heaps were recorded and showed that in:

• Figure 132a 6 - 2 1 .6  degrees

• Figure 132b 6 -  22.0 degrees

This indicates that the current DEM program closely matches the results produced by Zhou 

et g/[95] in the simulation model.
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5.2.3 Frictional forces and angle o f  repose
In this section frictional forces between particle-particle interactions and particle-boundary 

interactions are varied with resulting effects on particle build up. Comparisons were made 

with further work undertaken by Zhou et a P 5] in 2002 using a predictive equation for 

angular repose in differing conditions.

9  =  / / ° 27 x  / , 022 x / / ° 06 x  p ° 12 x  d~°2 (5. l)rep r*s,pp r*s.p\v *r.pp r*r,pw \ /
Using Equation (5.1) the following table and resulting graph was produced showing the 

influence o f particle-particle and particle-boundary frictional forces on the angle o f  repose.

A ngle o f  Repose values produced using equation (5.1 )
Sliding Friction Ang Rep p(spp)= Ang Rep p(spp)= Ang Rep Ang Rep

PW  (n(spw) 0.2 0.3 p(spp)= 0.4 g(spp) =0.5
0 0 . 0 0 . 0 0 . 0 0 . 0

0.1 1 5 . 9 1 7 . 8 1 9 . 2 2 0 . 4
0.2 1 8 . 5 2 0 . 7 2 2 . 4 2 3 . 7
0.3 2 0 . 3 2 2 . 6 2 4 . 4 2 6 . 0
0.4 2 1 . 6 2 4 . 1 2 6 . 0 2 7 . 7
0.5 2 2 . 7 2 5 . 3 2 7 . 3 2 9 . 0

0.6 2 3 . 6 2 6 . 3 2 8 . 5 3 0 . 2

Table 3: Angles o f  repose using variations in particle-particle / particle wall forces 

Where:

jUs'PP = coefficient o f  particle-particle sliding friction 

Hs.pw = coefficient o f particle-wall sliding friction 

Pr.pp- coefficient o f particle-particle rolling friction 

Pr.pw = coefficient o f particle-wall rolling friction

Note: the rolling frictional forces in this graphical analysis are kept constant at 0.05mm.

As used in:
• Graphs 4-5
• Tables 3-5
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A n gle  of  R e p o s e  v s  Coeffic ient o f  Sliding Friction B etw een  Particle  
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Graph 5: Graph o f predicted angle o f repose with varying sliding frictional forces (Zhou et
aP5])

The data displayed in Graph 5 was the theoretical repose angles values produced using 

Equation (5.1) and these can also be seen in Table 3. The table and graph presented here 

were constructed to replicate the graphical data presented by Zhou et a P ^  for the effect o f 

particle-particle, particle boundary frictional forces on DEM simulated particle heaps.

To compare the current DEM program s’ performances against the values produced in

Graph 5 the following parameters were used (shown in Table 4) and were applied to a 

model with varying frictional forces.

187



Table 4: Parameters used for angu ar comparisons
Name of variable Symbol Base Value Variable

Range
Angle of
Repose
(Deg)

Number of 
Particles

N ~2000 -

Time Step At ~5 x  10~5s -

Particle Diameter d 10mm 2-1 Omm [38,28]
Rolling Friction Prpp 0.05mm 0-0.1mm [0,34]
Coefficients Prpw 2  Prpp 0-0.2 mm [0,30]
Sliding Friction Mspp 0.4 0-0.6 [0,33]
Coefficients Pspw 1.5 Pspp 0-0.6 [0,28]

5.2.3.1 Program application with varying frictional forces
To relate values from the DEM model to the graphical representation, the parameters 

shown in Table (4) were applied to the current program and the resulting simulations were 

analysed. The values for the angles o f repose produced in this method were tabulated 

{Table 5) and were introduced into Graph 5 for comparison with the Zhou et a f 95̂ trend­

lines. This was a simulation experiment and the conclusions were displayed in Graph 5

The simulation experiment was carried out as follows:

The program was calibrated for the simulation by setting spin and capillary interactions 

with the maximum sliding frictions such that the simulation angle o f repose represented the 

maximum parameters in Table (3). Frictional forces were then reduced to zero and variable 

increments were introduced generating angular changes.
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Figure 133: Extremes in the simulation angular results.

In (a) the frictional forces were set at zero while in (b) the Particle-particle frictional force 

was set at 0.4 and the particle-wall friction was set at 0.6

The angle o f repose in (a) is nonexistent 

The angle o f repose in (b):

f i S Tanj 2 3 5  
4.05

i9  =  3 0 °

The same process was conducted over a range o f frictional increments and the 

corresponding table and graph were produced.

Table 5: Simulation results o f angle o f repose

Angle o f  Repose Simulation Results

Sliding Friction PH
Ang Rep p  (spp) 

0.2
Ang Rep p  (spp) 

0.3
Ang Rep p  (spp) 

0.4
Ang Rep p  (spp) 

0.5
0 0 0 0 0

0.1 1 6 1 7 . 8 2 0 . 4 2 1
0.2 1 8 . 2 1 9 . 8 2 2 2 3 . 5
0.3 1 9 . 7 2 2 . 4 2 4 2 6
0.4 2 1 . 3 2 4 . 6 2 6 . 3 2 7 . 2
0.5 2 2 . 4 2 5 2 6 . 8 2 8 . 7

Applying the data in Table 5 to Graph 6 for comparison with Graph 5
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35.0
Simulation Angle of Repose Results in Comparison with Predicted

Angle of Repose Values

L
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Graph 6: Simulation results displayed against predicted trend lines

Using the current DEM program the same frictional force variations used by Zhou et a 

were applied and the resulting repose angles were recorded and displayed in Table (5). The 

simulation values were then introduced into the graphical data for Graph 5 and were 

displayed in Graph 6 as dashed lines.

In comparison:

X is related to line 1

A is related to Line 2

<\ y > is related to Line 3 

is related to Line 4

From Graph 6 the simulated data closely followed the respective trend lines showing a 

good correlation with the Zhou et afi95̂ predicted data. This clearly showed that the 

frictional force changes in the current DEM program functioned in an acceptable manner 

for validation.

Error bars in Graph 6 were related to visual interpretation o f  repose angles: ± 1.0 degrees
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5.2.4 Particle size and angle o f  repose
Using Equation (5.1) the angle o f repose can be shown to decrease with panicle size. This 

is suggested to be due to sliding frictional forces reducing at surface contact as the 

particulates become larger.

To produce this effect the frictional values in Equation (5.1) were kept constant and “d ” 

(particle diameter) was varied from 1mm through to 10mm.

The simulation using the model program functioned in the same manner and held the 

coefficients o f  sliding friction at:

Particle-particle: 0.4 

Particle-wall: 0.6

Table 6: Simulation results and predicted angular calculation with varying particle size

Particle Size 
mm

Ang Rep (Predicted 
(Deg))

Ang Rep from Simulation Results 
(Deg)

0 0 0
1 33.8 32.6
2 29.4 28.6
3 27.1 26.8
4 25.6 25.2
5 24.5 24.6
6 23.6 24
7 22.9 23.2
8 22.3 22.3
9 21.8 22.4

10 21.3 21
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Graph 7: Simulated angles o f repose using increasing particle diameter against predicted
values.

With respect to particle size affecting repose angle. Equation (5.1) was again used with the 

contact frictional forces held constant. As discussed the value for ud "  was incremented 

from 1mm through to 10mm and the predicted values were recorded. Simulations were then 

preformed using the current DEM model with same incremental changes and the resulting 

angles o f repose were recorded for comparison.

Error bars in Graph 6 were related to visual interpretation o f repose angles: ±1 . 0  degrees

Graph 7 shows the predicted data trend and the simulated data is transposed over the top. 

The negative trends in both o f the data streams correlated well showing that the angle o f 

repose reduced as the particle diameter “d " increased.

The Effect of Particle Size on the Angle of Repose

Calculated Predictions Zhou et al

A Simulation Results current DEM Model
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(a) 2mm Particle diameter

(b) 5mm Particle diameter

Figure 134: Experimental and simulation results by Zhou et al [̂ ] and the corresponding
current DEM simulation results

Figures 134 (a) and (h) are drawn from the experiments and simulations carried out by 

Zhou et al[q' ] and the corresponding simulations are generated using the current DEM 

model.

5.3 DEM Model Calibration using “Angle o f  Repose”
In terms o f  calibrating a simulation against particulate material properties the angle of 

repose can be view as a useful value. As shown, material properties vary with particulate 

size and contact forces. Creating an initial set o f parameters prior to running a simulation 

could significantly improve accuracy and simulation results.

To consider this, bulk material deposits develop an angle o f repose when laid on the 

ground. The angle o f repose and general geometry o f the deposit can be used to estimate the 

quantity and how it interacts with the local environment. The information extracted at this 

stage could be used as a mechanism to determine the correct conditions o f a simulation 

process.

The following images show particulate “Angle o f Repose” and the corresponding DEM 

Initial conditions:

To generate the sim ulated angles o f  repose depicted here, it M as essential to introduce a 

capillary force. Angles o f  repose in simulation terms do not form  unless treated in this 

manner.
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Figure 135: Iron Ore Pellets 0 = 21 degrees and DEM simulation 0=  26 degrees

Figure 136: Lime 0 = 32 degrees and DEM simulation 6 = 31 degrees

Figure 137: Coal 0 = 41 degrees and DEM simulation 0 = 43 degrees
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5.3.1: Benefits o f  using particulate “Angle o f  Repose”
The real images shown in Figures 135-137 are material deposits forming natural angles o f  

repose relating to their particulate size and general condition. If the material is moved 

without any specific preparation the same angles o f repose will be created at another 

storage point. This knowledge could be used to set the properties o f  a material to better 

replicate the translational motion o f a flow through a given domain.

The simulation images presented in Figures 135-137 were produced on a plane surface 

with no other boundary constraints and a variation o f inter-particle/particle-boundary 

forces.

To generate the differing repose angles considered are 3 main factors:

• Frictional forces between particle surfaces

• Friction at particle and boundary contact

• Capillary forces due to moisture content

Considering the three examples with constant particle diameter o f 10mm:

Pellets:

• Frictional coefficient particle-particle 0.25

• Frictional coefficient particle-boundary 0.4

• 1% moisture addition fo r  capillary force

Lime:

• Frictional coefficient particle-particle 0.3

• Frictional coefficient particle-boundary 0.5

• 5% moisture addition fo r  capillary force

Coal:

• Frictional coefficient particle-particle 0.4

• Frictional coefficient particle-boundary 0.6

• 10% moisture addition fo r  capillary force

This concept fits into the simulation process by setting the basic material data in the model 

and was used when calibrating the simulation conditions for lime in the 633-634 head chute 

project investigations
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6. PROJECT APPLICATIONS USING THE 3D DEM

PROGRAM
Over the period o f this project there have been a number o f opportunities to test and apply 

the fundamentals o f  the developed program against real on plant situations and problems. 

As discussed previously, this type of involvement tended to set different targets and 

challenges for the DEM models to overcome. This ultimately focused the program structure 

into a relatively flexible multi-functional version and one that was capable o f visually 

interpreting a solution.

In this section a ‘‘Deep Water Harbour” spillage investigation is used as an example of 

applied modelling.

6.1 Deep Water Harbour Spillage Investigation Introduction and 
Background
The deep water harbour facility is used to import the raw material products using vessels 

with displacements in excess o f 190,000 tonnes and capable o f carrying cargoes o f 150,000 

tonnes plus into Port Talbot. The grab discharging system is a proven technique, however 

on some occasions (driver error or grab damage) raw material falls from a traversing grab 

and gathers on the quay side or fall into the deepwater pocket.

Figure 138: Three harbour ship unloaders working on the Berge Atlantic

The majority o f  the cargos handled in this way are reclaimed but the loss o f cargos over the 

side o f the jetty  is pure cargo loss and is very difficult to calculate.
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Figure 139: Grab moves along a gantry boom carrying material over to the unloader hopper

Figure 140: The above images show material deposits on the nearside o f the jetty with

spillage angles into the harbour

The photographic images shown in Figure 140 indicate how raw material falling from a 

travelling grab has a tendency to build to a high level and spill into the harbour following 

the repose angle. As the unloader travels along the jetty tracks to the next discharge hold 

the material is reclaimed by contractors. The amount o f spillage is small in proportion to 

the cargo on a vessel but due to the cleaning pattern spillage volumes are particularly hard 

to quantify. This is an ongoing inefficient process and required investigation.
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6.1.1: Suggested spillage solution
The design drawing in Figure 141 is a CAD representation o f the No5 unloaders 

superstructure, discharge hopper and static conveyor belt system. The suggestion put 

forward was to utilise the large box section beam on the seaward side o f the unloader to 

filter freefalling material through the gap and back onto the conveyor.

Figure 141: CAD image o f No5 unloader showing hopper and conveyor belt system

The idea was to feed an inclined chute over the beam at a given angle that lead onto the 

conveyor and yet overlapped the nearside o f the jetty.

Chute Position over beam

Figure 142: CAD images showing No5 unloader with prototype chute insert
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6.1.2: Basic 3D DEM unloader simulations
To complete the harbour spillage investigation a series o f simulations were carried out to 

formulate a visual interpretation o f the problem at hand. The simulation domain comprised 

the basic hopper shell and the key structural box section beams. A particle generation 

region was opened in a lateral bisecting centre line above the hopper and particles were 

produced.

The simulation slide in Figure 143a shows the particles falling from the generation region 

and partly falling into the hopper and partly onto the seaward side o f the simulation 

domain. This highlights the impact zone when material is lost in the unloading process and 

closely resembles the situations o f spillage discussed in 6.1.

Particle generation region

M aterial build-up

Box Section cross member

Figure 143: Simulation slides a & h show the material freefall without inclined chute
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Inclined chute over main box section 
beam

Figure 144: Basic unloader/hopper superstructure with inclined chute

In Figure 144a & b an inclined plate suggested as a new feature, sits on top o f the main box 

section beam and extends onto the conveyor belt system. In “a ” the maximum height o f the 

chute falls in line with the top support o f the hopper and this allows an overhang that 

protects the seaward side o f the jetty. With this arrangement and the plate at angles greater 

than 65 Deg, material spillage from the grab unloaders should be directed away from the 

jetty impact zone and back onto the conveyor.

To confirm the possibility o f making the suggested design change a more refined Solid 

Works 3D drawing was made with greater detail o f  small gauge superstructure that could 

hinder the chute implementation.
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The results o f which are shown here in Figures 145 a & b :

Figure 145:3 D solid works drawing o f chute design on No5 unloader

The results o f the 3D solid works drawings o f the chute design on No5 unloader showed 

that a chute angled at -50° passed over the main box section beam (with clearance o f the 

“I” section above it) through a maintenance walkway and on to the belt line. The overhang 

created by the chute on the seaward side had a span o f 9m and this would protect the impact 

zone on the jetty floor from material build-up. The advantages in this application are the 

possible reduction in valuable raw material loss, minimisation o f expensive cleaning 

operations and prevention o f injury due to falling material.

6.1.3: Harbour spillage investigation conclusions
To consider fitting a chute design o f this nature, one would have to calculate the additional 

weights and stresses applied to the unloader. The position and stowage o f the chute in 

adverse weather condition would have to be accounted for due to the rapid environmental 

changes that occur on a daily basis. The chute over hang is a main feature o f the design but 

limitations would have to be introduced to prevent vessels with high free board connecting 

with it over the large tidal range.

If the chute functioned as predicted and prevented material loss, valuable cargoes would all 

be discharged into the relative storage depots.
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6.2: Basic Oxygen Steelmaking (BOS) Project Investigation
Basic Oxygen Steelmaking (BOS) essentially strips carbon from a carbon rich hot metal by 

blowing oxygen though it in an exothermal reaction to produce steel. This process is carried 

out in a 330 tonne ladle (Converter) and with an oxygen supply lance. Fluxes in the form of 

lime are also added to ensure the correct steel chemistry.

The application o f key raw materials at the stage o f the steel making process is a critical 

one and is responsible for ladle cooling (endothermic reactions) and ladle heating 

(exothermal reactions). Along with these control methods expensive ores are introduced for 

secondary steel making processes and metal alloying puiposes. The main mechanisms used 

for transferring the raw materials to the converters are by a conveyor belt and head chute 

configuration and the transportation o f lime is discussed in this section.

6.2.1: Basic Oxygen Steelmaking (BOS) Plant Head Chute 
Investigation
This BOS plant investigation focussed on 633 to 634 conveyor belt and head chute 

arrangement and its supply o f lime to the converter. The lime product was seen as an ideal 

candidate for simulation due to its largely homogeneous size distribution and lack o f  water 

in suspension due to its chemical reactivity.

Figure 146: Typical lime sample showing size distribution
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For the movement o f  lime through this system there are two major detrimental factors, they 

are found in the material degradation at impact {work required to break contact bonds in 

inter-particle and particle-boundary breakage is proportional to the kinetic energy at 

im p a c t^ )  and the corresponding structural damage at specific high contact areas. The 

micro particle dust generation from the material impact is not only a health hazard but is 

lost during converter application via the fume extraction system.

6.2.2: Impact Damage on 633-634 Head Chute
At this particular part o f the plant the lime flow rate is approximately 500 T/hour with a 

material density o f between 2000-2400 kgm '1. The nature o f the material is highly abrasive 

and at points o f  high contact intensity causes significant wear damage due to direct 

correlation with impact angle as addressed in previous work in this field1 gs]. The primary 

areas o f  concern relating to the damage, are on internal structures and therefore difficult to 

observe or monitor.

Impact wear pattern

Figure 147: Impact damage on the 633 wear deflector plate
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Figure 149: Internal and external flow damage on removed lower 633 head chute 

The images in Figures 147-149 show wear damage due to material flow patterns. The 

primary impact regions shown in Figures 147 and 149a are mainly inaccessible until plant 

shutdown due to the heavy use of the apparatus. The sustained material impact causes 

internal structural damage as in Figure 149a and eventually wears through the outer skin 

releasing particulates. The damage shown in Figures 148 and Figures 149a & 6, indicate a 

clearly inefficient process with poor utilisation o f equipment.

M aterial break-i 
regions due to ii 
damage

Figure 148: Damage repair due the material break on the lower section o f 633

material flow damage 
i r  inefficient use o f  
\ite
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6.2.3: 633 to 634 conveyor 3D DEM simulations
The conveyor belt and head chute design drawing configuration was converted into a solid 

works 3D model and the corresponding STL file was applied to the DEM program.

Figure 150: The solid works mesh image and corresponding DEM render

The image in Figure 147 shows the critical impact point on the first defec to r plate, this 

area was accessible by touch and its minimum and maximum extremities were measured 

and recorded. The measurements were then transposed onto the solid works image as a 

“Part" addition, and then used in the simulation as a trajectory guide. The advantages in 

doing this set the primary contact in 3D space and negated belt velocity calculations that 

were unreliable.
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Figure 151: Simulation slides showing impact zone and simple particulate trajectory

6.2.3.1: Head Chute simulations and flow analysis
Using the initial parameters the simulation results were approximately 12 second movies 

with 42k particles flowing through a system with on average 40 boundary facets controlling 

the flow. The simulation slides in Figures 152 to Figures 154 show the simulated predicted 

flow pattern and the related physical observations.

The time period for the simulation discussed here was approximately 72 hrs on a standard 

Dell Latitude D810 laptop with Intel Pentium M Processor 2.00GHz, 1.00GB o f  RAM. 

The time step used in a simulation o f this type was set at 10'4 seconds and the program 

method used Visual Fortran 90.

To run a simulation o f the type depicted here (or similar) from first principles, there would 

be a standard process to implement. For example:

• Identification o f problem: Time not applicable

• Solid works 3D drawing and extraction o f STL file: Time dependant on complexity 

but usually 48hrs

• Application into the DEM program and to set up input parameters: Time for this 

process would be in the order o f a few hours.

• Run program and render results in 72hrs

A complete simulation and assessment o f the required domain highlighting key feature for 

practical comparisons could be delivered in one working week with limited cost on a 

standard desktop system. I terms o f an on-site practical comparison one would have to
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develop/change the domain and invest an unknown time span to study system deterioration 

for practical analysis and observation. This method o f trial and error in many cases is not 

only extremely expensive in plant down time but generally highly impractical.

Figure 152: 633 head chute with 12.4 second simulation and original deflector plate
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Figure 153: Elliptical impact zone in correlation with wear on impact plate. (Simulation

impact plate not shown)
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Flow trajectory 
impacting on one side of 
the lower chute

Figure 154: Simulation slide showing flow trajectory forced to one side o f the bottom
section o f the chute
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Figure 155: Briquette flow through a head chute and corresponding simulation model

In Figure 155 the briquette tlow shows particulate segregation were the larger elements 

move to the top. The corresponding DEM simulation predicts a similar reaction although 

the particle size distribution is not as wide as in reality. Previous work has shown particle 

size segregation o f sintered ore particulates during flow through laboratory scaled chutes 

using DEM|gg].

6.2.3.2: Head Chute simulations and Flow Control
Consolidating the suggestion o f smoothing the flow through a given domain a curved chute 

assembly was designed for implementation into the centre o f the 633-634 head chute 

arrangement. The basics o f the design were to control the dynamic flow o f the material by 

reducing high impact, and the limits were built around the original particulate trajectory.

Figure 156: 633-634 Plain head chute with proposed curved inserts
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Figure 157: 633-634 Head Chute with curved inserts
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6.2.3.3 Key features o f  curved inserts
As depicted in Figure 158a the main function o f the curved inseil is to manoeuvre material 

prior to high impact.

a. b. c-

Figure 158: a, b and c show the principle shape o f the curved insert

In a. the natural parabolic path o f the material How at the end o f the conveyor was mapped 

and the curve shaped around it

In b. the manoeuvred material is further guided by a high angled Hat plate that draws it 

across the curve to the top o f the bottom section.

In c. the material follows a smooth curved plate that introduces it onto the existing head 

chute surface without severe impact.
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7: SIMULATION RESULTS
To assess the effectiveness o f a proposed design alteration a quantitative argument must be 

offered in terms o f  advantages and disadvantages. In this section a mechanism for visually 

interpreting system change is discussed and the results o f project work simulation are 

offered.

The main aim o f  this section is to agglomerate the 3D DEM programming method into 

practical application and simplistic visual analysis for the design engineer. Addressed here 

are selections o f results from extensive simulations o f project work and the outcomes are 

discussed.

The section comprises:

• A theoretical simulation investigation into the BOS plant 633 head chute design and 

make comparisons with the existing hopper design and suggested improvement.

• An assessment o f  the Sinter Plants blended ore supply link. In particular issues o f  

material build up in 886 head chute.

•  Basic impact energy transfer on the sinter plant roll feeder and segregation plate.

7.1: Simulation Input Parameters
The simulation input parameters are introduced here to replicate the condition o f the 

particulate material as it moves through a simulation domain. The areas studied in this 

theoretic investigation (663 head chute, 886 head chute and the Roll Feeder/Segregation 

Plate) have different material properties and these have to be considered prior to modelling.

As shown in 5.3 the method o f material calibration adopted in this project uses the repose 

angle produced by an individual material type to set the input parameters. The following 

values were attributed to simulating Lime (as shown in Figure 146) and Fines ore (as 

shown in Figure 3b)
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Table 7: Input Parameters for simulation results
Inputs/Materials Lime Fines Ore 886 HC Fines Ore RF/SP

Angle o f  Repose (Deg) 32 38 36
Moisture (wt%) 5 6 4
Density (kgm ) 2400 4000 4000

p  Particle-Particle 0.3 0.25 0.35
p  Particle-W all 0.5 0.4 0.4

Particle size D ist (m) 0.05±0.0J 0.008±0.002 0.008±0.002
Coefficient o f  Restitution (-) 0.3 0.1 0.1

Note: In Table 7 the frictional forces p  vary to generate different repose angles between the 

Lime and Fines ore. This can be viewed as the interaction o f surface asperities o f roughness 

that is generally present at point o f material contact.

7.2: Simulation Comparison Results
Simulation comparisons were modelled on the theoretical kinetic energy transfer inside a 

selection o f  on-plant equipment. For this project the main focus o f research was dedicated 

to the supply o f  limestone into the BOS plant and its transition through 633 head chute. 

Simulations were carried out on the original head chute design and then on a design with a 

curved chute arrangement in place to control flow. Two chute designs were studied and the 

corresponding simulation results were used for comparisons.

7.2.1: Original Chute Design of Existing 633 Head Chute
Using the original design drawings a “Solid Works” 3D version o f  633 head chute was 

created. The corresponding STL file was imported into the current 3D DEM program and a 

simulation o f the flow was conducted as shown:
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Figure 159: Energy transfer inside existing transfer chute with inclined plate
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The image in Figure 159a is a simulation slide o f  particle transition through 633 head 

chute. In the simulation 42k particles were used in a simulation time o f  12.4 seconds. Again 

from Figure 159a one can see that the particulate flow follows a predictable path and has a 

material concentration in two key positions.

The corresponding energy transfer representation shown in Figure 159c clearly highlights 

the intensity o f particulate interaction and displays it as an energy distribution map. The 

findings from the simulation are a direct correlation with deterioration experienced by the 

existing running plant. This can be seen in the images presented in Figures 147 & 149.

Using this model as a simulation basis, design alteration can be introduced and the 

simulation results studied as a performance comparison.

For this case a combination o f curved chute inserts were suggested and the design can be 

seen as follows.

7.2.1.1: Curved inserts Design Option i
The principle behind the application o f  a curved chute assembly was that it would have to 

be easy to fit into the head chute and easy to remove due to the strategic importance o f the 

running plant. For the initial plans in the design consideration was given to the removal of 

the primary impact point as shown in Figures 149 & 155c. As explained in 6.2 .33  and 

Figure 158a, the parabolic trajectory o f the particle motion after leaving the conveyor belt 

could be matched with the impact point on the inclined plate and used as a template

Particle flow trajectory

Impact point on the inclined 
deflector plate

Figure 160: Simulation slides showing impact point on 633 inclined deflector plate and
particulate trajectory
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In the design proposal, the main emphasis was on the removal o f  the initial high energy 

impact point on the inclined deflector plate. To do this, a curved top section unit was 

created in solid works by superimposing the flow trajectory into the original head chute 

void and bending a theoretic 3D plate shape from a contact point through the flow.

The idealised function o f the curved top section was to collect the particulate flow at early 

stages when leaving the conveyor, and to smoothly manipulate the flow without dramatic 

impact. As shown in Figure 158b having contained the flow the principle was to direct it to 

the back o f the head chute and onto the bottom curved section.

The design o f the bottom section merely linked the flow through the top section onto the 

gradient o f the original bottom chute section.

The curvature o f this particular design was specifically designed around the flow and the 

basic shape can be seen in Figure 161. The simulation results for this design are viewed in 

terms o f energy transfer and are displayed in Figure 162.

Figure 161: Chute insert design using design “Option 1
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The images in Figure 162a, b and c show the 633 simulation slide, the chute system with 

the curved sections and the corresponding kinetic energy transfer plot respectively. In 

comparison with energy plot shown in Figure 158c the energy plot presented here indicates 

a significant reduction in impact energy transfer at the key impact areas. This suggests a 

smoother transition o f the particulate flow through chute system.

7.2.1.2: Curved inserts Design Option 2
The principle behind option 1 was to match the How trajectory as closely as possible and in 

attempting this; the top section o f the chute design had a unique curvature. The bottom 

section o f the option 1 design was arranged to maintain a consistent flow through the chute 

and was independent o f the internal structure o f the lower section.

In terms o f construction and implementation the option 1 design had a number of 

impracticalities. i.e.:

• Unique top section curvature, therefore difficult/expensive to reproduce

• Large bottom section being difficult to fit and gain access for maintenance.

To address these limiting factors a revision o f the problems were considered and Option 2 

chute inserts were designed as an alternative.

Figure 163: Option 2 revised curved chute insert design
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The fundamental changes to the first chute design were to remove complexities in the shape 

to make construction easier and more cost effective.

Main alteration features:

Design Option Design Option 2

Unique Curvature

Smaller lower 
cwwed section

Circular radial 
cwwature

Inclined hack 
section sloping awav 
from chute wall

Flat hack section 
follow ing chute 
side wall

Figure 164: Design comparisons between option 1 and option 2

The images in Figure 164 show the simplification o f the chute design for easier 

implementation and manufacture. Using the revised chute design a simulation was 

conducted using the same input parameters. The results are shown in Figure 165a, h and c.
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The resulting simulation renders o f the “Option 2” chute design show regions o f low and 

medium energy transfer in relation to the maximum energy values found in Figure 159c. 

However, in comparison with Option 1 chute design (Figure 162c) higher impact energies 

are recorded in the key areas highlighted in Figure 165c.

7.2.2: Physical Chute Deterioration and energy plot
The photographic image in Figure 150 showed material breakthrough damage caused by 

sustained impact and flow intensity. In Figure 154 the internal simulation flow pattern 

predicted a movement to one side o f the bottom section o f the chute and this was verified 

by energy transfer plots shown in Figure 159c. To make a definitive link between the 

simulation predictions and system deterioration Figure 156 makes a comparison between 

the visible damage direction and the trend line produced by the underside energy plot

Figure 166: W ear damage on the lower underside section o f the 633 head chute and the
corresponding simulated prediction
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If one compares the trend line o f the physical system deterioration with the trend line 

applied to the simulation prediction the correlation o f the two is remarkable. Data o f this 

type could be used to manipulate flow by small initial changes to the flow pattern as 

material enters a chute.

7.2.3: 633-634 Simulation Concluding Remarks
The images shown in Figures 159-165 are the DEM simulation renders o f  a head chute 

with and without the curved chute inserts and the corresponding energy transfer contour 

plots. The colours coded slides with legends depict a series contact zones that indicate an 

energy transfer o f  varying degrees o f  impact velocity or sustained boundary interaction.

In Figure 159 the simulation slides were produced using the original chute design and 

impact deflector plate arrangement. The slide in Figure 159c shows the high energy red 

colour coded regions depicting high intensity flow at specific points, and a range o f  

energies limited to a small periphery around this region.

In Figure 162 the original chute design can be seen with the Option 1 curved chute 

assembly fitted into the internal structure. The slide in Figure 162c shows a significant 

reduction in impact energy transfer but fails to centralise the flow through the bottom 

curved section. However, this still shows advancement in the dynamic nature o f the flow 

through the head chute but suggests improvements could be made.

In Figure 165 the Option 1 curved inserts are replaced with the simpler Option 2 

arrangement. The corresponding energy transfer plot in Figure 165c shows an increase in 

impact intensity in the highlighted regions in comparison with the Option 1 design. But still 

shows a marked improvement on the original chute design with the deflector plate. The 

noticeable improvement over the Option 1 design was the correction in the centre-lining o f  

the flow through the bottom chute section. This progression in performance could increase 

equipment longevity and reduce maintenance down time.

Using the above information, the Option 2 chute assembly performs well against the two 

opposing designs and, if  implemented, could dramatically reduce material and system 

degradation.
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7.3: Simulation Results on the Roll Feeder and Segregation Plate 
Impact Wear Investigation
As discussed in Section 1 the Sinter Plant Roll Feeder and Segregation Plate assembly was 

the primary concern for DEM modelling project. However, due to developmental 

consideration in the DEM code structure, many o f the modelling opportunities were 

presented in other material flow regions.

High Impact contact interaction 
leading to wear

Figure 167: Sinter Plant Roll feeder material distribution showing impact
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Figure 168: Energy transfer on the sinter plant segregation plate and corresponding wear

The concerns with this piece o f apparatus are discussed in Section l and attention is drawn 

to obtaining a satisfactory solution to the wear issues. The photographic images in Figures 

167a & 168b show' material flow o ff the roll feeder onto the segregation plate and the 

corresponding contact wear region produced by the sustained impact. The simulation slides
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taken from a completed “Roll Feeder Segregation Plate” assembly simulation analysis 

clearly depict a high energy transfer at one specific point o f  contact. As highlighted in 7.2.1 

the initial simulation result could be used as an impact template as a basis prior to studying 

engineering alternatives. Ultimately, by using the current DEM model reduction o f the 

energy transfer on this plate section could be assessed and strategic design additions 

implemented to reduce the contact intensity.
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8. DISCUSSION
The overriding challenge o f this project was to develop a computer modelling technique 

and to introduce it into the Tata-Corus engineering and design infrastructure. The chosen 

environment was the “Burdening Department” and the independent business units that are 

involved in its make-up. Following a detailed research plan, an investigation was started 

into the processes involved in supplying raw materials, into and around the department and 

the corresponding effects o f supply disruption. The general scope o f the research involved a 

large area, due to plant logistics, but the fundamental conclusions o f  the study were all 

directed to basic issues involved in handling bulk materials.

Inevitably, for a project o f  this type to have credibility one has to consider cost benefits 

when attempting to implement change. However, the nature o f the processes involved 

rarely offer an opportunity to associate change to an immediate performance related 

improvement. In the case o f a conveyor belt and surface wear situations, the deterioration 

can be slow, but ultimately belt failures can be catastrophic leading to system shut down. 

The belt condition are affected by a number o f factors such as tension stresses and pinches 

but wear plays a pivotal role and can take three forms:

• Abrasive wear: When material is removed by contact with hard particles. The 

particles either may be present at the surface o f a second material or may exist as 

loose particles between two surfaces i.e. material spillage traveling back under the 

conveyor and around the drum ends.

• Erosive wear: Is caused by particles that impinge on a component surface or edge 

and remove material from that surface due to momentum effects. This is typical o f  

an abrasive material falling under gravity onto the conveyor belt surface.

• Rolling wear: Conveyor belts in general move through a series o f rollers that are in 

contact with the underneath o f the belt, this is where this type o f wear occurs.

Limiting or eradicating the effects o f  these processes could significantly extend the life 

cycle o f a conveyor belt but this could only be realistically viewed on a long term basis.
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One would have to extract data relating to time o f belt replacement to time o f  belt removal, 

repairs carried out over this time period against belt running times and volume/type o f  

material transported. The necessity o f this data would have to be questioned considering the 

general performance o f this type o f plant.

A large percentage o f  this project has devoted time to computer program development on 

domains that handle flowing material. The main activities have been dedicated to energy 

transfer and how to minimise the transfer in order to amplify efficiency. For a static head 

chute, the task is merely to change the direction o f the flow and the dynamics o f  the internal 

interactions are ignored until material punctures the chute wall or spillage occurs. This 

again has a direct correlation between impact and the wear conditions expressed above. 

Repairs at this stage are usually temporary until the repair punctures through again and the 

cycle repeats. Ultimately, the damage becomes severe and the system is rendered useless 

until an overhaul is carried out. If one accepts the fact that this is an inescapable cycle then 

improvements would have to be measured by the time span between the sequences o f  

events. This again indicates a long term analysis which is difficult to evaluate over a time 

limited modelling project. However, to show the observable disruption caused by these 

material flow issues and the costs that can incur the following examples are discussed.

8.1 Discussion: Raw material import mechanisms and internal 
supply issues.

Discussed here are:

• Raw material movements through the harbour import facility, with focus on the 

bulk handing mechanisms and the financial issues related to spillage and system 

failure.

• The distribution o f material into and through the Sinter and GCI Plants.

• The lime supply in the Basic Oxygen Steel (BOS) making department and basic 

financial implications o f material/system degradation.
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8.1.1: Raw Material Import Facility

This department is responsible for the unloading o f cargo carrying vessels in as short a time 

as possible with minimum vessel damage. The unloader system o f three cranes and a large 

static conveyor is capable o f discharging vessels at a rate o f 6000 tonnes per hour 

depending cargo type. The single conveyor leading o ff the berthing facility is split by a 

transfer station into two separate feeds that leads into the stock yards on one line and into 

the coke plant on the other.

The grab operation system used in the unloading operation is effective but wear and 

damage issues can relate to material spillage onto the quay side. This type o f spillage is 

small in comparison to the cargo volume but can have a detrimental affect on the unloader 

mechanics and result in material loss due to build-up. Along with that, one can associate 

concerns relating to environmental issues and spillage contact with personnel.

Figure 169: Material spillage encroaching onto crane bogies and rails

Drawing attention to the harbour spillage investigation in terms o f costs only estimates can 

be offered due to the lack o f quantifying information, but as quoted for spillage loss alone;

In 2006-7 Corns imported £95 million o f cargo. If one considers an extreme of a 0.1% to 

1% loss o f cargo, the cost o f the losses could ranges between £95000 and £950000 per 

annum.

The spillage extent varies with the types and condition o f the cargoes being imported. In 

some cases the material condition will dramatically differ during the total discharge o f  one 

vessel and this can impinge on conveyor belt transition from the unloaders. As an example
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o f this type o f problem, high moisture content introduced into the cargo at the loading port 

settles to the bottom o f the hold on the seaward passage. In Figure 3b the texture o f the fine 

ore is as one would expect to find, however the same material saturated with moisture 

becomes completely different and resembles slurry. The fluctuation in the material motion 

from a solid to an almost liquid causes a return flow on inclines and fine particulate How 

under the returning conveyor.

Figure 170: Fines ore saturated with moisture on harbour conveyor

The results o f moving material in this condition creates large scale spillage problems and 

back splashing along the conveyor causing end roller burial forcing a shutdown. On the 

opposite end o f the scale, cargoes o f coke run through the same system but offer a different 

set o f complications. Coke is a low density robust commodity designed to maintain its 

integrity under intense conditions. These attributes make it a formidable product when 

impacting at velocity on the internal structures o f a head chute. Damage or disruption to the 

system to some degree is almost inevitable and the knock on effects o f the process are very 

difficult to predict but can be financially unfavourable.

Examples o f recurring situations are when discharging vessels are due to complete cargo in 

a tidal window o f  opportunity. If a breakdown occurs the completion times get forced back 

until deadlines are breached and the vessels stays in berth. The limits on tidal deadlines for 

large vessels are stringent and may be compromised by only a few minutes. However, the 

result o f  this is then transferred to the vessel “changing o v e r ' on the berth and this vessel is
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delayed until the next available tide. The incoming vessel returns to anchor and enforces 

“demurrage” which is a cost on the vessel charter (Corus) in line with the “Bulk Dry Index” 

BDI. This cost varies for the vessel size but as an indication the BDI in 2006 for “Cape 

Size” vessel was between $70000 & $100000 per day. These figures are compiled if  the 

vessel at anchor is constrained by her draft and is unable to berth for an extended period.

In the main, plant breakdowns and failures can be caused by a number o f factors, such as 

electrical, mechanical or human error. Material flow issues are usually low priority 

compared to continuity o f  discharge, therefore very little attention is given to material flow  

problem solving. This project work has confronted and addressed this issue and the current 

DEM modelling program is highly applicable in this situation for preventing unnecessary 

spillage and chute optimisation.

8.1.2: Discussion: Sinter Plant and GCI
The stock yards are continuously replenished from the deep water harbour and from there a 

blended raw mix is processed into sinter in the sinter plant. Coals from the stock yard are 

also processed in the GCI for blast furnace application. The issues with material 

distribution in both o f  these facilities have been discussed, but the importance o f supply 

continuity has to be stressed. Sinter for Port Talbot is a chemically specific, highly 

reducible component and the alternatives during sinter shortage are the more expensive 

pellets or rubble.

When these ores are increased per tonne o f hot metal the cost o f the iron commodity rises. 

In parallel the GCI supply continuity is vital in satisfying the cheap fuel demand required to 

maintain a competitive product. Supplementary fuel additions such as oil can be expensive 

and have a direct bearing on extraction costs.

8.1.3: The lime supply in the Basic Oxygen Steel (BOS) making 
department
The BOS process is a conversion method for turning iron into steel. The technique involves 

injecting oxygen into carbon rich molten iron through a lance in an exothermal reaction. 

This operation strips out the carbon producing a basic steel product. During this routine, 

chemical alloying agents are introduced along with fluxes in the form o f  limestone.
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The concerns involved in transporting limestone in the BOS environment are discussed in 

Section 7 and relate to particulate impact causing material and system degradation. The 

dust generated during this material movement is considerable and is ultimately lost in fume 

extraction. To quantify this value, an estimate sets this loss in the region o f  £6000 per day 

which equates to approximately £2 million per annum.

The purpose o f highlighting specific situations and the costs implications within this 

discussion are to demonstrate the importance o f researching the basic systems to enhance 

efficiency.

8.2: Discussion: Discrete Element Method Modelling Development
To study the dynamics o f  the bulk handling infrastructure the preferred modelling 

technique was “Discrete Element Method” simulation due to its previous successes in 

representing granular flow.

The fundamental breakdown o f  a DEM model can be viewed in four sections.

1. The Discrete Element: Geometric Shape

2. Contact Detection: Examines the region for particle interaction and determine if  

contact has been made.

3. Constitutive Forces: Calculate the forces acting on each particle during inter-particle 

contact and particle boundary contact.

4. Application o f Newton’s 2nd Law: Summation o f the resultant forces associated to 

the discrete element to determine motion.

Throughout this project spherical elements were used to generate simulations. The decision 

to follow this course o f  action was supported by the fact that

Paper Publications verifies that particle shape has little effect on flow and spheres can be 

used in the simulation process providing the flow is sufficiently dense and the correct 

parameters are implemented^531.

Spheres are mathematically simple in terms o f geometry and this minimises CPU time 

when using search algorithms.
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Element deformation was not considered^621 allowing Linear Spring Dashpot contact 

interaction to be implemented^641.

However, in terms o f  improvement the elements could have been a more representative o f  

reality by utilising more sophisticated geometries. Spheres have a tendency to roll or rotate 

freely and frictional forces can be exaggerated to reduce motion to a state o f equilibrium. 

The most attractive proposition in the field o f  alternatives was the 3D ellipsoid[321[4211-431. 

This element shape has been proven to be superior in simulating hopper flow and general 

particle dynamics in comparison with spheres.

The methods addressed to effectively predict element contact and positions in relation to 

the searching element were carried out to identify algorithms that would reduce computer 

processing time. The geometric searching algorithms discussed in Section 2 range from a 

basic direct search involving all elements to a complex “Alternating Digital Tree”[581[591 

mechanism that significantly reduced point detection within a domain. However, the 

complexities o f  the more advances searches were further in tune with detecting more 

elaborate shapes such as ellipsoids and tetrahedra[41][451.

Therefore, the decision to use the spherical element in this case removed the requirement o f  

the more convoluted algorithms and allowed a “Neighbour Search’’̂ 571 method to be 

implemented that satisfied CPU demand.

At the point o f  inter-element or element boundary contact one has to consider the physical 

mechanisms o f  the interaction and introduce them to generate simulation accuracy. The 

fundamental parameters associated to these types o f  events can be expressed in terms of  

frictional and damping forces. Applying these parameters effectively will determine the 

accuracy o f  the simulation output results and influence the conditions in the simulation 

domain. As discussed in Section 2 a “Soft Sphere”[61[71 approach was used in the modelling 

technique with small contact overlap being allowed that followed Hooke’s law during 

reaction. Ultimately, damping forces were applied as theoretical dashpot assemblies to 

represent energy transfer and the physical properties associated to the coefficients o f 

restitution. The vectors used to obtain values for the parameters in the 3D modelling 

method were generated by using a combination o f  finite difference^31 equations (to find 

magnitude) and planar intersection (to determine direction).
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To depict the effects o f the parameters highlighted here the following graphs were 

produced.
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In Graph 8 the frictional forces exhibited between particle-particle and particle-boundary 

are shown to be proportional to the contact overlap and are therefore linear. In Graph 9 the 

linear damping effect o f  the dashpot enforced using Equation (2.14) shows a reduction in 

spring return velocity. This clearly shows how the physical parameters can be manipulated 

to represent a range o f  particulate or boundary conditions to simulate the required granular 

flow.

In order to obtain accurate simulation results the ratio between the element/particulate size 

distributions and the simulated plant equipment was considered. In latter simulation results 

the domain/boundary sizes representing the plant equipment were set in the order o f metres 

and all elements/particulates were introduced in size distributions o f fractional values o f the 

metre scale. As an example o f this the “Roll Feeder Segregation Plate” simulation 

equipment had an extreme o f 4m for the roller and the element size distribution was set 

between 0.006 ~0.008m. This was viewed as a reasonable ratio between the two key 

constituents o f  the simulation and ultimately provided an authentic representation.

An additional inter-particulate force considered during the development o f  the DEM code 

was directly related to the involvement o f moisture. The effect o f capillary action between 

particles has a profound influence on the dynamics o f a practical flowing media and, to a 

reasonable degree, had to be implemented into the theoretical modelling reproduction.

As explained in Section 4 the effects o f moisture between particles was introduced using a 

capillary type force generated by the Laplace Equation. The function o f the equation uses 

the surface tension o f the denser media producing a curved meniscus and the radial values 

o f internal and external curvature. The direction o f  the force follows the normal inter­

element vector which is attractive and apparent between element centres. In terms o f  

magnitude, the force values calculated are small in comparison to contact interaction values 

and are mainly prevalent when relative particle velocities are small or in quasi-static 

situation.

The force in this work was simulated by utilising a toriodal approximation to form a 

suitable meniscus shape between the 3D spherical surfaces o f contacting elements. For 

calculation simplicity the external radius o f curvature was produced by using the minor 

radius o f the toroid that was predetermined by the required percentage moisture content.
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This value then remained constant over the contact interaction time span until the 

parameters where breached. This straight forward approach to the external curvature 

allowed a basic geometric and trigonometric relationship between the elements to be 

exploited. This resulted in capillary force values calculations between differing size 

elements with large size distributions.

However the method described in Section 4 was always considered as an approximation in 

terms o f  moisture involvement between particulates. To initiate the Laplace Equation a 

liquid depth was generated at the element surface related to a mass percentage. At liquid- 

liquid contact, a moisture harvest between the elements occurs and a virtual meniscus can 

be formed. This method has limitations particularly in the case o f  multiple element contact 

interaction, for the case o f  one particle encountering four contacts at its surface the harvest 

at liquid overlap would exaggerate the moisture content and elevate the net force between 

the five interacting elements.

To combat this obvious flaw in the calculation procedure, a mechanism for calibrating a 

combined mass o f  elements was sort and the solution was found in the phenomenon o f  

repose angles that are generated on material storage. The basic concept was to simulate the 

known repose angles o f  a variety o f materials with varying moisture contents and then to 

introduce them as set o f  initial parameters. This method o f reducing the theoretical 

computer simulation to practical known values was considered as an ideal vehicle for 

program validation.

8.3 Discussion: Validation
To acquire suitable program validation comparisons with related paper publications were 

made in terms o f  repose angles and how they were affected by varying frictional forces. As 

explained in Section 5 Zhou et a f 95J used Equation (5.1) to theoretically predict repose 

angle and compared the results against actual experimental finding using a constructed 

apparatus (As shown in Figure 124).

Using the dimensions expressed in the publicised paper, an exact simulation domain was 

created using the project program. Simulations were then carried out within the computer 

generated domain to compare model accuracy and corroboration between graphical data 

streams.
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As shown two methods were used to produce a repose angle in the simulation domain:

• Method 1 used a cascade technique

• Method 2 used a particle generation technique

The simulation results produced in Method 2 showed correlation with the simulations 

produced by Zhou et « /[95] and this was the preferred method o f validation and in keeping 

with the granular flow coding structure presented in this work.

Equation (5.1) was then used with suggested parameters to reproduce the graphical analysis 

displayed by Zhou et a f 95] and they were expressed in Graph 5. Using the project program 

the same constant values were set in Equation (5.1) and the corresponding frictional 

variables were incrementally introduced. The resulting angular fluctuations were then 

recorded and compared against the graphical trend-lines. The results o f  this exercise were 

again graphical demonstrated in Graph 6 and the relationship with the predicted data was 

clearly comparable.

Finally Equation (5.1) incorporates an element diameter in its construction and this was 

used to emphasis the influence o f  particulate size on repose angle. By setting the frictional 

coefficients as constant (in this case Part-Part 0.4 and Part-Boundary 0.6) the diameter was 

varied from 1mm to 10mm. The predicted data trend-line showed that as the elements 

increased in diameter the repose angle decreased, this trend was evident in the project 

model and the products o f  the simulations were shown in Graph 7. The results clearly show 

strong comparisons with the published example in terms o f experimental association and 

theoretical observations. Therefore, the project model was deemed sufficient in producing a 

reasonable interpretation o f  theoretical granular flow against flow on a practical scale.

8.4 Discussion: Results using energy transfer
The results shown in Section 7 were generated by the translation o f spherical discrete 

elements through a variety o f flow domains and mapping the corresponding contact 

interaction. The main feature o f  the extrapolated data was related to particle-boundary 

events that transferred kinetic energy at impact. The energy transfer at a coordinate system 

was then summed forming an impact distribution and colour coding was introduced to 

depict areas o f  high intensity. The advantage in presenting the simulation results in this
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manner was that direct correlation with equipment deterioration could be visualised and 

acted upon if  required.

For this project a critical selection process was implemented to highlight key material flow 

areas that exhibited clear observable system failure or design issues. One o f the primary 

areas o f  interest was on a limestone supply network into the BOS plant. The initial benefit 

in using this environment was the material type and condition. Limestone on delivery 

generally has a good size distribution and has low moisture content. Along with these 

factors the material is abrasive and when allowed to impact will release energy onto the 

equipment and eventually puncture a hole though. The areas o f  damage sustained in this 

process were used as a footprint o f  the flow patterns through the region and were ultimately 

viewed as guide to the reliability o f  the model performance.

As shown in the results images, setting the flow position at an initial contact wear point 

causes theoretic flow pattern that proved to be remarkably similar to the practical situation.

8.4.1: Discussion: 633-634 Head Chute Simulation Results
For this project a key objective was the blend o f  computer simulation with actual conditions 

experienced in the working environment. As discussed in the 8.4 material flows leave 

distinct wear patterns that can be used as a damage footprint and these regions are ideal for 

replication. In the computer modelling o f the 633 head chute assembly these factors were 

considered and physical measurements were taken o ff the initial deflector plate o f the 

primary impact wear region (Figure 145).

The central position o f  the wear region was recorded and applied to a simulation domain 

using an STL file input as an impact strip (.Figure 151). This region was then used to set 

the flow trajectory by varying conveyor velocity until direct contact was made. This was a 

useful method o f  obtaining the correct flow trajectory, as many o f the drive motors running 

conveyors were rated inaccurately compared to the equipment design, and therefore run at 

different angular velocities.

With the initial conditions in place and the input parameters set for lime products (As given 

in 7.1) a simulation was run over 12.4s and using 42k particles. The simulation was 

rendered with clear and transparent boundary walls and the first visual results showed an
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elliptical shaped impact region on a theoretical deflector plate which closely replicated the 

wear damage on the actual design (Figurel53).

From this position the particle flow was allowed to follow its own path through the 

simulation domain and observations were made using different rendering projections. In 

this case the flow o f  particles leaving the deflector plate was forced to one side o f the 

bottom section o f  the chute (As shown in Figure 154). This simulation action clearly 

replicates the situation experienced within the internal structure o f  the actual chute. The 

images shown in Figure 149 are testament to preferential flow through one specific route 

along the bottom chute section. In terms o f quantification the flow trajectory throughout the 

simulation domain was ultimately mapped using kinetic energy transfer to highlight the key 

regions o f high/sustained impact ratio. The corresponding energy distributions were colour 

coded with intensity variations ranging from “Red” High and “Blue” Low. The simulation 

results using this method (As shown in Section 7) produced remarkably accurate plots o f  

predicted wear and damage points.

As a basis a simulation model was run using the STL file from the original 3D “Solid 

Works” drawing and an energy template was produced with a range o f energy distributions 

(As shown in Figure 159). The comparisons between the energy transfer wear predictions 

and the actual wear were again exceptionally accurate As an example o f the simulation 

success in this format, the trend-lines superimposed onto the images in Figure 166 shows 

the definitive simulation wear pattern against the actual path o f puncture deterioration 

expressed as maintenance repair work.

In an attempt to improve the internal flow dynamics o f  the head chute the intention was to 

remove material impact opportunity and to manoeuvre the flow. To achieve this two 

specific “curved chute inserts” were drawn in 3D and fitted into the original chute design 

for simulation. Using the same input parameters simulations were conducted and 

comparisons were made between the three alternatives. The results o f  the simulation are 

discussed in 7.2.3 which shows that the curved chute inserts have the potential to smooth 

the material flow, drastically reduce impact wear and encourage better conveyor belt centre 

lining.
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8.4.3: Discussion: Modelling Different Head Chute Designs
Due to design some individual head chutes on material feed lines have a tendency to retain 

material and ultimately block. DEM assessment to determine the flow dynamics in different 

arrangements could lead to significant improvements in chute design and efficiency. An 

example o f  such a head chute design can be found on the sinter plants blended ore supply 

line. The head chute design at the end o f  conveyor uses a "Rock Box” shelf to minimise 

internal wear. Previous work in conveyor dynamics have shown that curved chute systems 

replacing rock box design show less wear damage on receiving conveyors1'11"1

Rock box shelf designed to 
hold material

Figure 171: 886 head chute design with rock box shelf

For the sinter plant this type of  design presents a problem when large scale material build­

up occurs. The moisture in the finer material products allows the growth o f  the retained 

material to reach unacceptable proportions. Cleaning or removal of the build-up becomes a 

difficult process with safety risks attached.
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Particle clumping, and 
disintegration on boundary 
contact

Figure 172: 886 simulation showing material build-up and clumping due to moisture
content
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The energy plot associated with this simulation offers very little information in boundary 

interaction due to the protective nature o f  the material build-up. In this case only the initial 

boundary contacting particulates leave a kinetic energy footprint and the rest o f  the energy 

is dissipated between inter-particle contacts.

Figure 173: Energy plot between boundary shelf and initial particle impact

To access the data for energy loss due to inter particle contact has not been dealt with in 

this project but to indicate the principles behind rock box design the contact overlap 

between the particulate (Soft sphere model 2.1.1) can be used as a mechanism for listing 

high energy impacts
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•

Compressive forces as 
the particle move to the 
sides o f  the domain

Coordinate position o f  particle 
overlap due to contact

Figure 174: 3D coordinate positions due to high energy contact interaction

The data shown in Figure 174 is merely a point marker in a 3D coordinate position listed at 

every high energy contact overlap. The interesting facts produced from this format are the 

compressive forces within the spreading material and the high energy region developing 

away from the self surface. Both of the particulate actions indicated in Figure 174 suggest 

that the moist material will bond together and coagulate.

To prevent this, a 3D DEM model could be created using the initial simulation shown in 

Figure 172 and an alternative internal chute structure offered. This could be the basis of 

future investigation.
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8.4.2: Discussion: Roll Feeder Segregation Plate Simulation Results

Considering the objectives o f this project the opening work revolved around the 

interpretation o f flow through the Roll Feeder and Segregation Plate assembly. The 

application o f DEM was a direct result o f the nature o f material flowing off the rotating 

feeder and onto the inclined segregation plate. The function o f  the plate is to primarily 

segregate material into large and small particulates and to distribute material as smoothly as 

possible without inter-particle compression. However, due to the nature o f the material, 

surface wear occurs and this presents a number o f issues (As discussed in 1.5, 1.6).

The modelling o f this piece o f apparatus has been a fundamental mechanism for simulation 

development, particularly in the use o f STL files and the introduction o f rotating cylinders. 

However, the latter 3D simulations were eclipsed by other simulation work and 

optimisation o f this system has yet to be finalised in terms o f simulated predictions.

As shown in 7.3 simulations had produced energy transfer plots that matched actual surface 

wear conditions. The situation discussed in 7.3 was directly related to intensity o f  material 

flow rather than high impact velocities. The simulation in Figure 175 depicts the point o f  

contact with the material and boundary.
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Intensity o f  material 
flow in one contact 
region

Figure 175: Material flow over the roll feeder concentrated at one contact region

In terms o f  a solution to the flow concentration at one point, two deflector plates were 

introduced for simulation to manipulate the flow. This simple design alteration can be seen 

in Figure 176.
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Deflector plate situated in 
the material flow

Figure 176: Flow onto the segregation plate broken by two deflector plates

To make comparisons with the situations depicted in Figures 175-176 the corresponding 

energy plots were extracted from the data and the following slides in Figure 173a and 173h 

are the results.
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High intensity energy transfer 
highlighted hy predominantly 
red cell in one contact region
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Figure 177: Energy transfer plot showing the segregation plate with and without deflector
plates
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To formulate an opinion, the comparisons in the energy plots in Figure 177a & b  show that 

the simple defector plate arrangement may significantly reduce the high intensity contact 

interaction and spread the impact energy over a larger surface area. Further work on this 

equipment would be a necessity; however the application o f  the current DEM program for 

this investigation produced an expected solution.

8.4.4: Discussion: Collaboration with Basic Sound Analysis to 
Determine Performance Optimisation
In the case o f performance assessment o f  an improved chute system one would have to wait 

for plant/material deterioration to occur for visual comparisons to be made. Due to the 

possible time spans involved and the dependence on material volume/type an accurate 

interpretation o f system optimisation may never be reached. In an attempt to address this 

issue, basic sound intensity investigations were carried out to finger print the noise 

generated from head chutes when handling different materials. In theory, if  the flow though 

the system were improved the resulting energy transfer would be reduced and the sound 

intensity levels would drop.

To study this type o f change in situation a system design alteration would have to be carried 

out. However, the same systems and improvements can be assessed using computer 

simulation with virtual microphones inserted into the simulation domain to predict sound 

intensity values. In this sub-section the practical data collection is discussed and the method 

o f DEM simulation sound assessment presented.

8.4.4.1: DEM sound intensity simulation used to determine plant optimisation 
Considering energy transfer in terms o f kinetic energy, one o f the transfer mechanisms at

impact can be related to sound. During on-plant equipment analysis sound intensity

recordings were taken on head chutes that handled a large particulate size distribution in

different batches. Using a standard environmental sound recording machine, a range o f

particulate contact interactions were recorded o f different material types. In this example

the materials studied were:

• Olivine Sand (0.125mm-0.5mm)

• Lime (5.0mm-60mm)

• Briquettes (Manufactured to approximately 90mm as seen in Figure 159)
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The sound intensity trends that were obtained for the above materials ean be viewed in 

Graph 10.

Briquettes

11 Ol J 11 05 09 I 51105mossl 0Cl\i'4

Graph 10: Actual sound intensity readings obtained on equipment analysis

The features shown in Graph 10 highlight actual periods o f  varying sound intensity, 

ranging from low background noise to high energy impact noise. Considering the impact 

noise regions, the olivine sand recorded an average o f  -82dB and the briquettes at the other 

end of the scale recorded an average o f  ~93dB. Lime falls between these markers at an 

average o f  ~-90dB. The energy transfer has a direct correlation with the mass/density o f  the 

impacting particle and can be used as a generic pattern for a specific material flow. For this 

analysis Lime through 633 head chute was the chosen subject and was used for a DEM 

computer simulation o f  sound intensity generation.

To produce a predicted sound intensity level a virtual microphone was placed into the 

simulation domain at a 3D coordinate position. (As shown in Figure 178)

249



Figure 178: 633 head chute with virtual microphone position

In the above situation when an impacting element makes contact with a boundary condition 

a kinetic energy value is produced. A vector is then calculated from the point o f  impact to 

the position o f  the microphone and its magnitude recorded. The sound energy simulation is 

then generated by simply dividing the impact energy by the square o f  the vector magnitude.

To observe the model results a simulation was conducted using a multiple element How 

with initial parameters set for that o f  Lime. The data produced was applied to Graph 10 and 

the results are as follows:
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1000,0
Predicted Sound Intensity at Virtual Microphone vs Time
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Graph l l : Predicted sound intensity at virtual microphone position

Connecting the data representation in Graph 10 with the actual date streams produced in 

Graph 9 the trends are very similar and the intensity levels are comparable. This suggests 

that the virtual microphone performs well in predicting sound intensity levels.

Using this simulation technique an examination was made o f  the standard head chute 

design (as shown in Graph 10) with a design implementing a set o f  curved inserts. The 

simulations were carried out over 3.5s for Lime and the graphical results are as follows:
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Sound Intensity Level Comparison Between Standard 633
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Head Chute and a Head Chute with Curved Inserts
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Graph 12: Sound Intensity comparisons between the standard 633 head chute and the head
chute with curved inserts

In Graph 12 the sound intensity levels are clearly different. The standard head chute 

intensity remains at ~-90dB but the intensity level produced by the curved chute inserts has 

reduced in comparison. This suggests an improvement in the dynamic nature o f  the 

theoretical flow through the simulation domain

In terms o f  system efficiency the graphical trends shown in Graphs 10-12 have striking 

similarities and could be used pre and post design alteration to ascertain the degree o f  

impact energy to determine the level of  performance.

The approach o f  this piece o f  work was extremely basic and further work in this field 

would require an in depth knowledge of such energy transmissions and consideration of  

equipment resonance. However, the concept o f  studying the performance o f  a system using 

sound could clearly be used as a tool to remove excessive contact interaction both in 

practice and in theory.

Standard 633 Head Chute
633 Head Chute with Curved Inserts
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9. CONCLUSIONS
> A comprehensive study was made into the mechanisms o f supplying bulk mineral 

particulates as raw material for the iron making process. Included in the investigation 

were:

• Importation o f raw material products via the harbour import facility

• Raw material distribution and supply within the plant infrastructure

• The importance o f supply continuity in terms o f fuel application

>  The conclusion o f this investigation was the significance in maintaining a consistent 

delivery o f the required product to replenish departmental stock.

>  A 3D Discrete Element Method (DEM) modelling technique was developed to study 

the dynamic nature o f  the industrial granular flow. The outcomes o f  this work were:

• Assessment o f  the efficiency o f the bulk handling system in terms o f  

computer analysis.

• Production o f a usable 3D non-invasive diagnostic tool to determine 

wear within a domain by interpreting kinetic energy transfer regions.

• Reassessment o f theoretical engineering developments within a domain 

by re-mapping energy transfer to measure performance

>  The 3D DEM model was successfully validated for simulation accuracy against 

published papers and theses and its performance in replicating real observable 

system deterioration on material handling equipment.

>  To conduct a modelling exercise on plant equipment material calibration was 

essential. This was achieved by using the angle o f repose created by the material 

relating to its specific condition.

>  The influences o f inter-particle and boundary-particle frictional forces play a major 

role in simulation accuracy by restricting flow and the dynamic transition o f  

particles.

>  The introduction o f moisture simulation by capillary force action had a profound 

consequence on the inter-particle bonding relationships, and calculated flow 

characteristics.
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> The application o f the attractive capillary force used a “Toroidal Approximation” 

method that exhibited novelty in contact interaction between elements o f differing 

radii. This approach showed the effects o f varying wt% moisture contents in an 

accurate representation o f particle clumping/bonding and dispersion at boundary 

impact.
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