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ABSTRACT

RATIONALE: The use of dynamic body acceleration {DBA) has previously been
used as a proxy for energy expenditure {EE) in humans with promising results. Two 
forms of dynamic body acceleration have been used; overall dynamic body acceleration 
(<ODBA) which comprises of the sum of acceleration data from three orthogonal axes 
and vectorial dynamic body acceleration (VeDBA) which constitutes of the vector of the 
acceleration data from three orthogonal axes. VeDBA is the mathematically correct 
calculation of body acceleration however there is strong biological rationale for the use 
of OBDA. This study sought to ascertain which DBA metric is the most accurate 
predictor of EE and in addition, how accelerometer orientation and placement, body 
anthropometries, body composition and aerobic capacity might influence these 
relationships.

METHODS: Twenty-one voluntary participants [seventeen males, four
females; age = 22.44 ± 3.28 years, height = 1.75 ± 0.07 m; weight = 70.66 ± 9.78 kg] 
performed an incremental maximal exercise test on a motor driven treadmill [0% 
grade]. Volume of oxygen utilised per minute {VO2) was measured using an online gas 
analyser and body acceleration (g) measured simultaneously, via three tri-axial 
accelerometers; two attached to the upper back (one in a straight orientation and the 
other skewed 30° in each axis) and one attached to the right hip (in a straight 
orientation). Body composition data was collected using the skinfold method.

RESULTS: Both ODBA and VeDBA were good proxies for VO2 with r 2
values exceeding 0.78, although ODBA accounted for slightly but significantly more of 
the variation in VO2 than did VeDBA {p = 0.002). There were no significant differences 
between ODBA and VeDBA in terms of the change in VO2 estimated by the acceleration 
data in a simulated situation of the accelerometer being mounted straight but becoming 
skewed. In terms of placement, ODBA and VeDBA values were significantly greater at 
the waist than the upper back (straight orientated device only) {p = 0 .000) however 
when plotted against VO2 the differences between the hip and upper back became 
insignificant for both metrics. Fat-free mass, fat mass and age added significantly to the 
VO2 versus ODBA and VO2 versus VeDBA relationship in terms of r2.

CONCLUSIONS:
ODBA was found to be a marginally better proxy for VO2 than VeDBA although should 
only be used where researchers can guarantee a reasonably consistent device 
orientation. The upper back and hip are equally appropriate placements and should be 
chosen depending on the practicality. The ability of DBA to predict VO2 can be 
improved by adding additional variables to the regression equation. In this case fat-free 
mass was the most significant covariate in terms of the improvement in r2.
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Chapter 1 

Introduction



1.1 Introductory paragraph

Measurement of human energy expenditure (EE) is essential for informing decisions 

regarding weight management programmes. The gold standard technique for 

measuring EE, direct calorimetry, is not possible in free living environment. Thus, a 

plethora of methods designed to predict EE exist.

Previous studies suggest dynamic body acceleration {DBA) is an excellent proxy for 

EE. There currently two forms of dynamic body acceleration; overall dynamic body 

acceleration {ODBA) which comprises of the sum of acceleration data from three 

orthogonal axes and vectorial dynamic body acceleration {VeDBA) which constitutes 

of the vector of the acceleration data from three orthogonal axes. VeDBA is the 

mathematically correct calculation of body acceleration however there is strong 

biological rationale for the use of OBDA.

For this study, volume o f oxygen uptake {VO2), which represents EE, and body 

acceleration, which was converted to DBA, was measured simultaneously on human 

participants walking and running on a treadmill. This study sought to ascertain which 

DBA metric is the most accurate predictor of EE and how device orientation, device 

placement, body anthropometries, body composition and aerobic capacity might 

influence the relationship between DBA and EE.

The thesis is separated into five distinct chapters. Chapter 1 provides an overview of 

the links between EE, obesity and accelerometery; describing the relationship 

between EE and survival, defining obesity and its current prevalance, summarising 

the components of EE and providing a brief overview of the methods of assessing of 

EE including the use of DBA.

Chapter 2 provides a comprehensive literature review with regard to obesity (causes, 

associated health risks, prevalence and treatment), the components of EE, current 

methods of measuring EE, use of body motion to predict EE, a description of all 

published acceleration metrics (including DBA) and finally a thorough appraisal of 

the use of acceleration metrics (including DBA) to predict EE.
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Chapter 3 entails a detailed description of the study methodology including 

participant details, equipment specifications, the protocol, data processing techniques 

and statistical analysis techniques.

Chapter 4 presents the results of the study in both graphical, tabular and text forms.

Chapter 5 provides the major conclusions of the study including the limitations and 

recommendations for future research.

1.2 The role of energy expenditure in survival

EE plays a critical role in survival of all animals including man, Homo Sapiens, and 

has therefore been the subject of intensive research (Schmidt-Nielson, 1972; Ainslie, 

et al., 2003; Levine, 2005).

When considering animals in the wild, the central concept is that animals should 

behave in such a way as to maximise their lifetime reproductive success by 

maximising their net rate of energy intake (El) (Pyke, 1984; Murray, 1991). This 

includes both optimising harvesting solutions and minimising locomotion costs. 

Thus, ultimately, the efficiency of movement affects the survival of wild animals 

(Alexander, 2003).

On the contrary, for Homo sapiens living in the developed world, the state of affairs
ti*

is almost reversed. The industrial revolution of the 19 century brought pivotal 

modernisation of agriculture and transport, leaving food in plentiful and easily 

accessible supply. The introduction of foods high in fat and sugar greatly increased 

calorific value of meals, and both the reduction in food prices and rise in disposable 

income encouraged a greater food intake (Grigg, 1995). In addition, a large increase 

in industry and service sector jobs, introduction of labour-saving technology and a 

shift in work patterns that involved reliance on transport (as opposed to 

walking/cycling) all increased the likelihood of leading a sedentary lifestyle. So 

today, it is not the efficiency of movement but lack of movement that decreases 

chances of survival (Fox and Hillsdon, 1997). With high probability of excess calorie
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consumption and no use for this excess energy, the body stores this fuel in the form 

of fat which eventually leads to obesity (Musingarimi, 2009).

1.3 Definition and prevalence of obesity

Obesity is a disease state where excess fat has accumulated to a point where it 

becomes a health risk (World Health Organisation, 2011c). It is most accurately 

assessed using percentage body fat however, in order to evaluate large scale 

populations a simplified metric Body Mass Index [BMI = weight (kg)/ height (m)] is 

used. In general, a BMI over 30 kg.m'2 is classified as obese and over 25 kg.m'2 as 

overweight (World Health Organisation, 2011a). Recent reports state that obesity 

doubles ‘the risk of all-cause mortality, coronary heart disease, strokes, type 2 

diabetes’ (Department of Health, Physical Activity, Health Improvement and 

Prevention, 2004, p.45), as well as increasing the risk of some cancers (particularly 

hormone related, gallbladder and large-bowel cancers), loss of function and 

musculoskeletal problems, and all life threatening diseases (Department of Health, 

Physical Activity, Health Improvement and Prevention, 2004; World Health 

Organisation, 2011a). In addition, early symptoms such as osteoarthritis, infertility, 

respiratory difficulties and skin problems are common (World Health Organisation, 

2011a).

Obesity has now hit epidemic proportions in most of the developed world. Data 

collected in 2007, classified 61% of the UK population as being overweight or obese 

i.e. a BMI above 25 kg.m' (The NHS Information Centre, Lifestyles Statistics, 

2010). Statistics from the Welsh Health Survey (2010) report that 57% of adults 

living in Wales are overweight and 22% are obese. Wales also has the lowest health 

expectancy in both men and women compared to other UK countries (Welsh 

Assembly Government, 2011).

Moreover, and perhaps most alarmingly, this problem is not isolated to the adult 

population alone. In 2006, 29.7% of children in England aged between 2 and 15 

years were catalogued as either overweight or obese (The NHS Information Centre, 

Lifestyle Statistics, 2008). Similarly, 33% and 28.2% of children between the ages 

of 2 and 15 years were classified as overweight or obese (over 85th percentile based



on 1990 UK reference population curves for all of the above child obesity statistics) 

in Wales in 2008 and Scotland in 2009 respectively (Welsh Assembly Government, 

2008; Scottish Centre for Social Research, 2010).

In order to understand obesity, it is logical that two approaches are needed; an 

assessment of (i) E l and (ii) EE. This thesis will focus on the latter.

1.4 Components of energy expenditure

All bodily functions require energy, which is initially gained from food sources and 

released via metabolic processes. Energy metabolism can be defined as ‘the 

conversion of chemical energy into heat’ (Randall, 2002, p.668) and is often 

quantified in terms of total daily EE (TDEE) i.e. EE over 24 hours. TDEE can be 

split into four main bodily functions; basal metabolic rate (BMR), temperature 

dependent EE, specific dynamic action and physical activity {PA) (Welk, 2002; 

Wilson, et al., 2006).

1.4.1 Basal metabolic rate

The BMR represents the energy needed to maintain only the basic processes of life

i.e. circulation, breathing, ion pumping etc. when the body is in a post-absorptive 

resting state, in a neutrally temperate environment (Eston and Reilly, 2001b; Mann 

and Truswell, 2007). It accounts for approximately 40-75% of TDEE (Welk, 2002) 

and varies considerably between individuals due to genetics, body composition, body 

mass, gender, age and training status to name a few. An approximate BMR for a 

70kg, 18-30 year old male is 1746 kcal/day and for an age and weight-matched 

female, 1524 kcal/day (Food and Agriculture Organization of the United Nations 

(FAO) / World Health Organization (WHO) / United Nations University (UNU), 

2001).
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1.4.2 Temperature dependent energy expenditure

Temperature dependent EE refers to the effect of environmental temperature on 

internal temperature and therefore metabolism. This has a negligible effect in terms 

of TDEE so is not usually considered.

1.4.3 Thermic effect of food

The thermic effect of food denotes the rise in EE due to digestion and absorption. It 

contributes to approximately 10% of TDEE but can vary between individuals by 

around 24.1% (Houde-Nadeau, de Jonge and Garrel, 1993; Welk, 2002).

1.4.4 Physical activity

PA is a broad term for any movement or physical work (e.g. isometric muscle 

contraction) that requires EE (Mann and Truswell, 2007). It includes many forms of 

activity such as working, playing, active transportation and exercise; where exercise 

can be defined as structured and purposeful PA with the objective of improvement or 

maintenance of physical fitness (World Health Organisation, 2011b). TDEE due to 

PA varies between 10-50% (Welk, 2002) mainly due to lifestyle choice and health 

status but also due to body composition, aerobic capacity, exercise intensity and 

range of muscular contraction.

PA, and more specifically exercise, is a key component of weight management 

strategies. The effect of exercise on TDEE can be significant, with average TDEE in 

long-term non-exercising women (aged 57.5 ± 3.9 years) reported to be 

approximately 2221 kcal and in long-term exercising women (aged 55.1 ± 7.1 years) 

3103 kcal (Withers, et al., 1998). Furthermore, as an example of the extremes of PA, 

Saris, et al. (1989) reported the average TDEE of cyclist during the Tour de France at 

6067 kcal.

Moreover, not only does PA have large potential to substantially increase TDEE but 

it brings about a multitude of positive effects on both physical and psychological 

wellbeing including decreasing the risk of stroke, diabetes, hypertension, coronary



heart disease, colon and breast cancer, risk of falls and depression, and increasing 

bone density and functional health (World Health Organisation 2011b). ±PA, in 

particular combined endurance and resistance exercise, has additional benefits over 

dieting as it increases the ratio of lean to fat mass, which in general subsequently 

increases BMR (Stunkard and Wadden, 1993). In contrast, dieting alone depletes 

both fat and lean tissue.

Physical activity can be complex to define as it can be subcategorised into type, 

frequency, intensity, duration and domain; all of which are desired information when 

assessing health and EE (Assah, et al., 2011).

1.5 Assessment of total daily energy expenditure

Numerous subjective and objective techniques are available for the monitoring of 

EE. Most focus on measurement of physical activity and/or BMR. Temperature 

dependent EE and the thermic effect of food are usually either controlled for or 

incorporated into the TDEE measurement.

The most commonly used subjective assessment of TDEE includes direct observation 

and self-reports, although the validity of these methods is usually poor. Objective 

assessment is largely preferred as it leaves much less room for error and explores a 

greater range of subcomponents of physical activity (Assah, et al., 2011). Objective 

techniques include direct calorimetry, indirect calorimetry, heart rate monitoring, 

doubly labelled water (DLW), electromyography (EMG), thermography, actometry 

and pedometry (Welk, 2002). The first four systems are the most commonly used in 

research but all have disadvantages (reviewed by Butler, et al., 2004; Levine, 2005) 

which distil out into being confined to a laboratory situation (direct and indirect 

calorimetry), needing extremely expensive equipment (doubly labelled water), giving 

poor temporal resolution (doubly labelled water) and being influenced by largely 

variable every day factors such as psychological stress, type and intensity of exercise 

and temperature (heart rate monitoring).
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1.6 Motion sensors

Beyond these methods, investigators have examined the use of mechanical motion 

sensors (Mathie, et al., 2004). In fact, these devices have been used for centuries and 

the concept that body motion is related to EE was proposed as early as 1963 

(Cavagna, et al., 1963). This theory was based on the observation that ‘in order to 

elicit movement, energy must be expended, with more pronounced and vigorous 

movement presumed to arise as a result of more energy expended’ (Qasem, et al.,

2012, pp. 1-2).

Initial studies made use of simple fixed-body motion sensors such as actometers and 

pedometers, however the last few decades have given rise to significant 

developments in miniature technologies, which have facilitated the production of 

small, light-weight accelerometers (Mathie, et al., 2004). Subsequently, a wide array 

of research on accelerometer-based proxy’s for EE has developed. Inappropriately, 

the majority of human research in accelerometry uses a rather primitive and 

dimensionless metric, ‘activity counts’ which doesn’t make use of the caliber of the 

technology (Torino, et al., 2006). Conversely, animal based research, particularly in 

the last decade, has improved markedly in scope and quality due to the use of more 

complex acceleration metrics, developed because of the necessity to obtain highly 

detailed movement patterns to assess behavior in the wild.

1.6.1 Overall dynamic body acceleration

In 2006, a new acceleration metric was proposed which focused on using DBA 

gained from a tri-axial accelerometer set to record at high frequencies (>10 Hz) and 

placed near the individual’s centre of gravity. The device contained three 

orthogonally placed accelerometers and was aligned with the main axes of the body; 

surge, heave and sway (Fig. 1.1). The specific proxy was ODBA and was calculated 

by summing the DBA of all three axes.

Strong linear correlations between ODBA and EE, explicitly volume o f oxygen 

uptake ( VO2), have been confirmed in birds (Wilson, et al., 2006; Green, et al.,

8



2009), fish (Gleiss, et al., 2010), amphibians (Halsey, et al., 2010) and mammals 

(Halsey, et al., 2009) including man (Halsey, et al., 2008).

Heave

Surge

S \
Sway

Figure 1.1. A diagrammatic representation o f the axis upon which the 

accelerometers were aligned against.

1.6.2 Vectorial dynamic body acceleration

In spite of the indicative potential of the ODBA metric as a proxy for VO2 , recent 

authors (e.g. Gleiss, et al., 2011) have highlighted the ambiguity in its formulation. In 

physics terms, acceleration is described as vectorial quantity, yet ODBA treats each 

axis independently, effectively overestimating the work done for any specific 

movement. Furthermore, due to the nature of formulation, ODBA is susceptible to 

variation in acceleration values according to the orientation of the device with 

respect to the participant. Conversely, this should not influence a vectorial solution 

(Gleiss, et al., 2011). In this respect, it is theorised that the ‘correctly’ formulated
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VeDBA may prove a more accurate and appropriate predictor of VO2 than ODBA. No 

studies to date have tested this theory.

Additionally, there is still controversy regarding the effect of device placement in 

accelerometer based research and the effect of placement on ODBA and VeDBA 

metrics has received little attention.

Finally, a recent study indicates that addition of other variables such as body weight 

may improve the ability of acceleration metrics to predict EE (Halsey, et al., 2009) 

but again this has scarcely been considered.

1.7 Aims and objectives

The aim of this thesis is to investigate dynamic body acceleration as a proxy for 

human EE.

The specific objectives are to investigate:

i) ODBA versus VeDBA as a proxy for VO2

ii) ODBA versus VeDBA as a proxy for VO2 in relation to device orientation 

(straight versus skew logger).

iii) ODBA versus VeDBA as a proxy for VO2 in relation to device placement 

(straight versus waist logger).

iv) The influence of body anthropometries, body composition and aerobic 

capacity on the relationship between DBA and VO2.

1.8 Null hypotheses

i. There is no difference between ODBA and VeDBA in terms of their ability 

to predict VO2 .

ii. Differences in accelerometer orientation will not influence the ability of 

ODBA to predict VO2 .

iii. Differences in accelerometer orientation will not influence the ability of 

VeDBA to predict VO2 .
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iv. Differences in accelerometer placement on the body will not influence the 

ability of ODBA to predict VO2 .

v. Differences in accelerometer placement on the body will not influence the 

ability of VeDBA to predict VO2 .

vi. Body composition does not influence the relationship between VO2 and 

ODBA

vii. Body composition does not influence the relationship between VO2 and 

VeDBA

viii. Body anthropometries do not influence the relationship between VO2 and 

ODBA

ix. Body anthropometries do not influence the relationship between VO2 and 

VeDBA

x. Aerobic capacity does not influence the relationship between VO2 and 

ODBA

xi. Aerobic capacity does not influence the relationship between VO2 and 

VeDBA relationship
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Chapter 2 

Literature Review

12



Literature Search Keywords: Accelerometer, Obesity, Energy Expenditure

Sources: Pub Med, Web o f Knowledge, The UK Department o f  Health, The World 

Health Organisation, The UK Office o f  National Statistics, The Welsh Assembly 

Government, The NHS Information Centre, The UK House o f Commons Health 

Committee, The UK Department o f  Health, Physical Activity, Health Improvement 

and Prevention, The UK Department fo r Environment, Food and Rural Affairs.

2.1 Obesity

Obesity can be defined as ‘abnormal or excess fat accumulation that presents a risk 

to health’ (World Health Organisation, 2011c). For simplicity, it is often assessed 

using Body Mass Index (BMI); BMI = weight (kg)/ height2 (m). In general, a BMI 

over 30 kg.m' is classified as obese and over 25 kg.m'" as overweight (World Health 

Organisation, 201 la; The NHS Information Centre, Lifestyles Statistics, 2010).

2.2 Causes of obesity

A widely held view is that obesity occurs due to a mismatch in the energy intake (El) 

-  energy expenditure (EE) relationship; either due to an excess E f  a reduced EE, or 

an amalgamation of both (Foresight, 2009).

However, this rather simplistic view hides the intricate details that build the complete 

picture of obesity as a complex and multidimensional disease. Thus, health 

professionals now accept a more compound explanation where the cause of obesity 

can be attributed to an individual’s ‘latent biological susceptibility interacting with a 

changing environment that includes more sedentary lifestyles and increased dietary 

abundance’ (Foresight, 2009, p. 43).

The Foresight report (2009) identifies five major causes of obesity; biology, early life 

and growth patterns, behaviour, the living environment and economic drivers of food 

and drink consumption. These are summarised in Table 2.1.
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Table 2.1. Causes o f  obesity.

Causes of obesity Evidence base

Biology • 250+ genes have been linked to obesity (Scuteri, et al., 2007).

• The fat mass and obesity associated gene (FTO) and the 

melanocortin-4 receptor gene (MC4R) have the greatest 

evidence base (Farooqi, et al., 2003; Hinney, et al., 2007; 

Scuteri, et al., 2007).

• These genes are thought to impair body weight regulation via 

changes in the central nervous system, particularly the 

hypothalamus, although exact mechanisms are unclear 

(Wilier, et al., 2009).

• Adipose tissue plays a central role in obesity as it releases 

leptin which acts as a controller of satiety. When fat stores 

increase, leptin levels rise and subsequently reduce 

stimulation of hunger and the drive to eat (Foresight, 2009).

• It is theorised that obese individuals have poorly controlled 

leptin release which predisposes them to obesity (Foresight, 

2009).

Early life and • There is some evidence linking pattern of growth in early life

growth patterns to obesity, although exact mechanisms are unclear (Foresight,

2009).

• Risk of obesity is thought to be related to the mothers diet 

during development in the womb and the baby’s diet 

(including how and what the baby is feed) (Foresight, 2009).

• Risk of obesity has also been linked to adiposity rebound in 

early childhood. This can be defined as ‘the period of time in 

early childhood when the amount of fat in the body falls and 

then rises again’ (Foresight, p.47). The earlier the rebound 

occurs, the higher the risk of obesity later on in life 

(Foresight, 2009).
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Behaviour • There are two critical behavioural influences on energy 

balance; eating behaviour and physical activity behaviour 

(Foresight, 2009).

• These behaviours are formed by a combination of social, 

cultural and psychological influences (Foresight, 2009).

• Eating behaviour is determined by the motivation to eat 

as well as the availability of food and time to eat. Dietary 

risk factors for obesity include high fat, low fibre, sugar- 

rich diets combined with large portion sizes (Foresight, 

2009).

• Physical activity {PA) can be defined as ‘as any bodily 

movement produced by skeletal muscles that requires 

energy expenditure’ (World Health Organisation, 

2011b.). Exercise is a form of physical activity and is 

defined as structured and purposeful physical activity 

with the objective of improvement or maintenance of 

physical fitness (World Health Organisation, 201 lb).

• Social and cultural factors influencing physical activity 

and eating behaviour include (Foresight, 2009):

-fewer manual jobs

-longer working hours

-increased car ownership

-increased use of labour-saving devices at work and home

-family dynamics

-school policies

-urban design

-media impact

• Psychological factors influencing physical activity and 

eating behaviour include (Foresight, 2009):

-habits (repeated behaviours, often difficult to change) 

-beliefs (perceived importance)
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Obesogenic

environment

Economic drivers 

of food and drink 

consumption

-translating intention to action (the risk of failing to start 

or failing to continue)

-attitudes (whether an individual true attitude is in line 

with the attitude they portray)

-moral climate (the shared belief of the 

population/community etc.).

The obesogenic environment can be defined as ‘sum of the 

influences that the surroundings, opportunities or conditions 

of life have on promoting obesity in individuals and 

populations’ (Foresight, 2009, p. 52).

Technology and opportunities for PA are particularly 

influences on an obesogenic environment although further 

research is needed to ascertain the strength of the 

relationships (Foresight, 2009).

Technology - Technological developments have engineered 

physical effort out of the environment (Foresight, 2009).

Opportunities for PA - PA was higher in areas where there 

are good access to leisure centres, a high land-use mix and in 

suburban environments. Lack of PA was linked with 

deprivation, poverty and perceptions of social nuisances in 

the neighbourhood (Foresight, 2009).

Key economic drivers of food and drink consumption include 

the price, marketing and purchasing capacity (Foresight, 

2009).

Price - Since the 1960’s, food and drink prices in the UK and 

the amount of household income allocated to food and drink 

has steadily declined. In part this could be due to large 

increases in cheap high-calorie, nutrient-poor foods. The 

price -  consumption relationship is also effected by income 

level, age and number of individuals in a household 

(Foresight, 2009).

16



• Promotional marketing - Marketing such as special offers,

discounts, checkout displays, product presentation,

advertising, sponsorships and market segmentation, elicits

considerable influence (Foresight, 2009).

• Purchasing capacity - An increased the number of

individuals eating out (which is linked with an increased risk 

of obesity) is rising due to higher average incomes 

(Foresight, 2009).

2.3 Health risks associated with obesity

The unequivocal links of obesity with numerous diseases has led to its identification 

as a leading cause of premature morbidity (Peeters, et al., 2003). From the point of 

view of clinicians and researchers, the major concern of obesity, is its effect in 

causing or aggravating secondary medical conditions (see section 2.3.1) which 

severely affect health-related quality of life (see section 2.3.2) and overall life 

expectancy (see section 2.3.3).

2.3.1 Secondary medical conditions associated with obesity

Secondary medical conditions associated with obesity (measured via BMI) include 

metabolic syndrome, type 2 diabetes, hypertension, dyslipidaemia, coronary artery 

disease and stroke, respiratory effects, cancers, reproductive function, osteoarthritis, 

liver and gall bladder disease to name a few. It should be noted that abdominal 

obesity is a particular risk factor for these diseases which suggests future studies 

should assess the link between weight distribution and disease, rather than BMI. 

However, currently BMI is the most commonly recorded measure of obesity. Thus, 

this section will consider the health risks associated with increasing BM I These have 

been reviewed by Kopelman (2007) and are summarised in Table 2.2.
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Table 2.2. Medical conditions associated with obesity and overweight (measured 

via BMI) (Kopelman, 2007, p. 14).

Disease Health risks associated with an increasing BMI

Metabolic Syndrome

Type 2 diabetes

Hypertension

30% of middle-aged people in developed countries have 

features of metabolic syndrome

-290% of type 2 diabetics have a BMI of >23 kg.m 

5 x risk in obesity

66% of hypertension is linked to excess weight 

85% of hypertension is associated with a BMI >25 kg.m-2

Coronary artery disease 3.6x risk of CAD for each unit change in BMI 
(CAD) and stroke

Dyslipidaemia progressively develops as BMI increases 

from 21 kg.m-2 with rise in small particle low-density 

lipoprotein 70% of obese women with hypertension have 

left ventricular hypertrophy

Obesity is a contributing factor to cardiac failure in >10% 

of patients

Overweight/obesity plus hypertension is associated with 

increased risk of ischaemic stroke

Respiratory effects

Cancers

Neck circumference of >43 cm in men and >40.5 cm in 

women is associated with obstructive sleep apnoea, 

daytime

somnolence and development of pulmonary hypertension

10% of all cancer deaths among non-smokers are related to 

obesity (30% of endometrial cancers)

Reproductive function 6% of primary infertility in women is attributable to

obesity
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Impotency and infertility are frequently associated with 

obesity in men

Frequent association in the elderly with increasing body 

weight -  risk of disability attributable to osteoarthritis 

equal to heart disease

and greater to any other medical disorder of the elderly

Overweight and obesity associated with non-alcoholic fatty 

liver disease and non-alcoholic steatohepatitis (NASH)

40% of NASH patients are obese

20% have dyslipidaemia

3 x risk of gall bladder disease in women with a BMI of 

>32 kg.m-2

7x risk if BMI o i >45 kg.m-2

In general, the review highlights that relative risk of developing these diseases 

increases with increasing BMI.

Furthermore, in some cases, weight loss has been shown to elicit a reversible effect 

on these diseases. For instance, Neter, et al. (2003), assessed 25 randomised 

controlled trials with exercise interventions and reported decreased systolic blood 

pressure of 1.05 mmHg and diastolic blood pressure by 0.92 mmHg per kg of weight 

loss.

2.3.2 The effect of obesity on health-related quality of life

A growing number of studies consider the effects of obesity on health-related quality 

of life (HRQL). HRQL is ‘a multidimensional construct, encompassing emotional, 

physical, social and subjective feelings of well-being which reflect an individual’s 

subjective evaluation and reaction to health or illness’ (Fontaine and Barofsky, 2001, 

p. 174). It is measured most commonly via questionnaire such as the SF-36
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questionnaire which assesses eight distinct domains: general health perception; 

mental health; role limitations i.e. work, school etc; physical functioning; physical 

problems; bodily pain; vitality and social functioning (Fontaine and Barofsky, 2001).

Fontaine and Barofsky (2001) highlighted multiple studies that report negative 

associations between obesity and several domains of HRQL including; anxiety, 

depression, bodily pain, perceived health, and physical functioning, social 

functioning and functional status i.e. the capacity to perform activities relating to 

self-care, physical activity and role activities i.e. work, school etc. Moreover, in a 

study which included more than 40,000 female participants (the largest body weight- 

health-related quality of life study to date) a weight gain of 2.25kg or more was 

accompanied with increased body pain and decreased physical function, irrespective 

of baseline body weight (as assessed with the SF-36 questionnaire) (Fine, et al., 

1999).

2.3.3 The effect of obesity on life expectancy

Few studies have assessed the effect of being overweight or obese on life expectancy 

due to the complex interactions of both variables with smoking, age and obesity- 

related diseases. In general, those that have, report large reductions in life expectancy 

in individuals that are overweight and obese (Peeters, et al., 2003). Peeters, et al. 

(2003) demonstrated that individuals who are overweight or obese at the age of 40 

years (assessed via BMI) all display reductions of life expectancy regardless of 

smoking status or gender; ranging from a loss of 3.1 years in overweight male non- 

smokers to 13.7 years in obese male smokers.

2.4 Prevalence and trends of obesity in England and Wales

Ominously, the past 20 years has presented substantial global increases in obesity 

prevalence (Musingarimi, 2009).

In England, obesity prevalence has more than tripled since the 1980’s (Canoy and 

Buchan, 2007). Currently, obesity levels have reached a new high with results of the 

Health Survey for England Adult Trend Tables (2010) reporting 62.8% of adults
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(aged 16+) as overweight or obese (BM1> 25 kg.m'2) and 26.1% as obese {BMI >30 

kg .m ') (Health and Social Care Information Centre, 2011). This represents a steady 

increase from 2003 when prevalence was 60.5% and 22.6% respectively.

Similarly, the Welsh Assembly Government (2010) totalled 57% of adults (aged 

16+) as overweight or obese {BMI > 25 kg.m'2) including 22% obese {BMI > 30 

kg .m ') again representing a steady rise from 2003/2004 (54%, 18% respectively; 

Welsh Assembly Government, 2003/2004). Moreover, it should be noted that the 

Welsh Heath Survey uses self-report questionnaires rather than direct measurement 

therefore results are likely to be underestimated (Robert, 1995). Robert (1995) 

reported that in a sample of participants from the Welsh Heart Health Survey 1985, 

both men and women had a propensity to overestimate their height and 

underestimate weight (Robert, 1995).

The limitations of using self-reports to obtain accurate data on obesity further distils 

into measurements of its relating factors such as E l and EE (see section 2.5 for more 

detail). The main issues being that information on El is often estimated or ignored 

and accurate measurement of EE is not available to the general public. Interestingly, 

although this information may not reduce the occurrence of the disease, it is essential 

to developing our understanding of the effectiveness of current methods of 

prevention and treatment as well as the dose-response relationship between physical 

activity and health. Furthermore, it is possible that the development of accurate 

measurement tools may be just a small price to pay in comparison to the growing 

economic burden of obesity.

2.5 Economic cost of obesity

The rapid rise in the prevalence o f obesity and its comorbidities is cause for concern 

not only with regard to morbidity and mortality but also in terms of the concurrent 

economic implications. Obesity is a typically longstanding condition and in cases 

where concurrent diseases occur, can be highly medical-care intensive. 

Subsequently, recent years have given rise to numerous studies aimed at quantifying 

obesity in financial terms. For example, Withrow and Alter (2011) reviewed eight 

studies from six different countries (Brazil, Canada, China, New Zealand,
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Switzerland and United States of America) that used similar BMI categories and 

reported that obese individuals (BMI>  30 kg.m' ) accrue medical costs 30% higher
'y

than normal weight individuals (BMI < 25 kg.m’ ). Furthermore, with relation to the 

UK although a recent review by Allender and Rayner (2007) estimate the direct cost 

of overweight and obesity in the UK at ~£3.23 billion per year (approximately 5% of 

total NHS costs), this figure does not include indirect costs such as home care, 

private healthcare, days lost to sickness and premature mortality. An earlier report 

from the House of Commons Health Committee (2004) conservatively estimates 

both direct and indirect costs of the overweight and obese population in the UK at 

£6.6-7.4 billion per year.

2.6 Interventions to treat and prevent obesity

Current methods of preventing obesity focus upon reducing E l by promoting healthy 

eating and reduced calorie consumption and/or increasing EE through exercise.

Both, calorie restriction and exercise have been shown to significantly reduce body 

weight and percentage body fat (Bauman, 2004; Redman, et al., 2007). If 

assessments occur a few days after the last exercise session, both exercise-induced 

weight loss and caloric restriction are just as effective as one another in causing both 

a reduction in fat mass and secondary changes in adipose tissue function (Thompson, 

et al., 2012).

However, exercise (in particular combined endurance and resistance exercise) has 

additional benefits over dieting as it increases the ratio of lean to fat mass. In 

contrast, dieting alone depletes both fat and lean tissue. Furthermore, exercise elicits 

numerous physiological benefits in addition to weight loss including increased 

cardiovascular fitness, decreased blood pressure, increased coronary blood flow, 

increased cardiac function, reduced body fat, increased insulin sensitivity, improved 

lipid lipoprotein profiles i.e. reduced cholesterol and increased high density 

lipoproteins and improved autonomic tone to name a few. These distil into reduced 

risk of secondary diseases such as cardiovascular disease, type 2 diabetes etc. 

(Warburton, Nicol and Bredin, 2006).
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Current evidence (Wu, et al., 2009; Larson-Meyer, et al., 2010) suggest that 

combining both calorie restriction and exercise creates the most effective weight loss 

program. This is represented in the current UK National Institute for Health and 

Clinical Excellence (NICE) guidelines for treatment of obesity.

Nevertheless, NICE also stresses the need for further randomised trials to further 

refine the effects of diet and exercise as interventions for obesity (NICE, 2006). 

Thus, in order to evaluate these interventions both E l and EE must be accurately 

measured during long-term free-living scenarios.

Measurement of E l is particularly difficult as the most commonly used and practical 

technique is the self-report method (including a diet diary and weighing equipment). 

This technique is limited due to underreporting of calorie intake which has been 

described in many populations including non-obese adolescents (Livingstone, et al., 

1992) and more importantly in obese individuals (Litchman, et al., 1992). For 

example, Litchman, et al. (1992) found obese individuals underreport by ~ 47%.

Consequently, recent attention has focused upon providing accurate predictions of 

EE, usually expressed in terms of total daily EE (TDEE), to validate against reported 

E l and changes in body weight.

2.7 Components of total daily energy expenditure

TDEE can be split into four components; basal metabolic rate, temperature 

dependant EE, the thermic effect of food and physical activity. Current methods of 

predicting TDEE measure all or differing combinations of these components 

therefore before these methods can be discussed, the constituents of TDEE must be 

understood.

2.7.1 Basal metabolic rate

Basal Metabolism (BM) can be defined as the energy needed to maintain only the 

basic processes of life such as cell function and repair; synthesis, secretion, 

transportation and metabolism of hormones, enzymes, proteins and other substances;
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uninterrupted cardiac and respiratory rhythm; circulation, brain function and 

maintenance of homeothermy (Food and Agriculture Organization of the United 

Nations (FAO) / World Health Organization (WHO) / United Nations University 

(UNU), 2001). When quantified against time, BM  is termed Basal Metabolic Rate 

(BMR) (FAO/WHO/UNU, 2001). The units are typically quoted as kilocalories 

(kcal) although should technically be described in Watts (joules/second,) according 

to the Systeme International. The conversion is shown in equation 2.1.

1 kilocalorie = 4.2 kilojoules (2.1)

(Eston and Reilly, 2001b)

Basel metabolic rate (BMR) is measured using indirect calorimetry under strictly 

standardised conditions. The individual should be (i) adult (eradicating the energy 

cost of growth), (ii) healthy, (iii) awake, (iv) not pregnant (eliminating energy cost of 

pregnancy) (v) inactive, in a resting supine position, (vi) mentally relaxed e.g. 

familiar with the equipment to avoid undue stress, (vii) in a post-absorptive state not 

having eaten for 12 hours prior, (viii) in a physically relaxed state, not having 

undertaken any undue muscular exertion 12 hours prior, (ix) in a thermonetural 

environment (usually 22-26°C) i.e. an environment where no thermoregulatory 

processes in the body are needed (McNab, 1997; Eston and Reilly, 2001b; Mann and 

Trusswell, 2001; Henry, 2005).

In practice it is often impossible to obtain all the above stipulations, therefore, in 

cases where most but not all of the above conditions are met, the measurement is 

referred to as Resting Metabolic Rate (RMR) (Mann and Trusswell, 2001). However, 

even RMR is equipment and time dependent, which, especially during large group 

assessment, is very limited. Consequently, numerous BMR prediction equations have 

been developed.

The relative percentage of BMR to TDEE ranges between 40-75% primarily due to 

variation in physical activity, with RMR in truly sedentary individuals reaching 80% 

(FAO/WHO/UNU, 2001; Landsberg, et al., 2009).
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2.7.2 Temperature dependent energy expenditure

Temperature dependent EE refers to the inevitable effect that a change in 

environmental temperature will cause a corresponding change in core temperature 

albeit on a much smaller scale. Increased core temperature increases the rate of 

metabolic reactions and therefore greater oxygen (O2) consumption i.e. EE. For 

example, an increased core temperature of 1°C is coupled to an increased metabolic 

rate of 10-13% (Landsberg, 2009). Nevertheless, in general, as long as the 

environmental conditions are known, temperature dependent EE can be ascribed.

2.7.3 Thermic effect of food

The thermic effect o f  food  (also termed the heat of nutrient metabolism, heat 

increment of feeding, specific dynamic action, specific dynamic effect or diet- 

induced thermogenesis) is the process of digestion, absorption, transport and storage 

of the constituents of food and comprises approximately 10% of TDEE (Rosen and 

Trites, 1997; Mann and Truswell, 2007).

The thermic effect of food can be measured using calorimetry (direct or indirect) 

after consuming a controlled meal representing the typical diet of the UK population. 

This usually comprises of a meal constituting of; 50% carbohydrate, 35% Fat and 

15% protein and with the amount representing 10 kcal.kg'1 of body weight or l/3rd 

daily energy requirements (Welk, 2002).

2.7.4 Physical activity

PA is a complex phenomenon to quantify. Firstly, it can be characterised as 

obligatory or discretionary. Obligatory activity is imposed on an individual by the 

nature of their social, economic and cultural environment i.e. going to work. 

Discretionary activity is that which occurs by choice, often for reasons of personal 

enjoyment, social interaction or purely with the aim of gaining health benefits 

(FAO/WHO/UNU, 2001) e.g. exercise.
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Assessment of the social, psychological and cultural influence on an individual’s 

TDEE are particularly important and can be used as a starting point to build in PA to 

daily life to help achieve weight loss. However, it is the frequency (number of times), 

intensity (rate), duration (time period), type (activity) and domain (location of the 

exercise) of PA that define the exact amount of energy expended and health benefits 

gained (Assah, et al., 2011). Hence, it is essential that these factors are measured.

Physical activity is the most variable component of energy metabolism, between 10- 

50% of TDEE. It is the easiest and most effective to manipulate (usually via exercise) 

hence its prominence in weight loss interventions in comparison to the other 

components of EE (Welk, 2002; FAO/WHO/UNU, 2001). Consequently, 

measurement of physical activity energy expenditure (PA EE) is vital in development 

and assessment of weight loss programs. Furthermore, this measurement needs to be 

accurate and repeatable for any individual across the population, hence, it must 

incorporate any factors that affect intra and inter individual variation.

2.8 Intra and inter-individual variation in total daily energy expenditure

Variation in TDEE is dependent on the variation associated with its components. 

These will be discussed separately. Temperature dependent EE is not usually 

included in models of human EE since the temperature of the human body usually 

remains close to 37°C and the environmental temperature is normally controlled 

within certain comfortable limits. The heat loss from the body then remains relatively 

stable due to complex homeostatic mechanisms and so does not act as a major 

component of TDEE.

2.8.1 Variation in basal metabolic rate

Intra-individual variation in BMR or RMR measurements have been reported at 

approximately 5-8% and are usually attributed to discrepancies in the conditions of 

the test e.g. amount of physical activity prior to the test, stage of the menstrual cycle 

in women or the accuracy of the equipment used to take the measurement (Donahoo, 

Levine, and Melanson, 2004).
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Inter-individual variation in BMR or RMR have been linked to numerous factors 

including; i) body composition: fat-free mass and fat mass, ii) body mass, iii) gender,

iv) age and v) training status, many of which are included in prediction equations in 

an attempt to control for these effects.

i) Body composition

In the simplest of terms, body composition can be described using the two- 

compartment model; i) fa t mass and ii) fat-free mass. Fat mass consists of all 

extractable lipids from all tissues (Heyward and Stolarczyk, 1996) and fat-free mass 

can be defined as the non-lipid mass (Lohman, 1992). Additionally, the term lean 

body mass is commonly defined as all components offat-free mass with the inclusion 

of essential lipids (Cunningham, 1991; Heyward and Stolarczyk, 1996).

In this section, fat-free mass and lean body mass represent the same concept and, 

although they are used interchangeably depending on the study in question, they are 

considered as one. The same is true of BMR and RMR and resting EE (REE).

Fat mass

There are highly mixed results regarding the relationship of fa t mass to absolute 

BMR, RMR or REE. Many early studies reported an insignificant relationship, 

explained by the fact that fa t mass is on the whole metabolically inactive. For 

example, a review by Cunningham (1991) suggests fa t mass makes no independent 

contribution to the prediction of REE in the general population. This is further 

supported by Heshka, et al. (1990) who found that after fat-free mass had been taken 

into account, fat mass was not a significant predictor of RMR.

More recently, some studies have supported the role of fa t mass in influencing 

individual variation in BMR, RMR or REE, albeit on a much smaller scale than fat- 

free mass and lean body mass (Nielson, et al., 2000; Johnstone, et al., 2005). In 

general, an increase in fa t mass has been found to relate to an increase in absolute 

BMR, RMR or REE. For example, Johnstone, et al. (2005) established that fa t mass 

explained 6.7% of between-subject variations in BMR in a sample of both males and
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females, with varying BMI (lean to obese). Nielson, et al. (2000) also studied a 

similar population and found fa t mass to be a significant predictor of REE.

Fat-free mass

Ample studies have reported strong and significant associations of fat-free mass 

and/or lean body mass on absolute BMR, RMR or REE (Cunnigham, 1980; Berstein, 

et al., 1983; Ravussin and Bogardus, 1989; Nielson, et al., 2000; Johnstone, et al., 

2005; Lazzer, et al., 2010; Taguchi, et al., 2011).

Early studies identified lean body mass or fat-free mass as the most important 

predictor of resting metabolic rate. Cunningham (1980) reported that lean body mass 

explained 70% of the variability in BMR in 223 adults (mean BMI =21.2 m.kg"2 

based upon sample mean for mass and height) and Bernstein, et al. (1983) stated 71- 

81% of the variability in RMR could be ascribed to fat-free mass (depending on 

method of measurement) in 202 adults (9.1 -230.6% above the median desirable 

weight for height).

Recent studies show similar results with fat-free mass alone explaining 62.3%, 60% 

and 82% of the variability of BMR in white adults (underweight to obese based upon 

BMI), obese white children & adolescents and Japanese female athletes respectively 

(Johnstone, et al., 2005; Lazzer, et al., 2010).

Finally, the extent of variation about the regression line between BMR and lean body 

mass has been approximated at 600 kcal per day which equates to a total calorific 

expenditure of between 1600 - 2200 kcal per day for an individual of 70kg lean mass 

(Silva, 2006). This signifies that although lean body mass should be a main factor in 

predictive equations for BMR other variables must also be taken into account to 

achieve an accurate estimation.
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ii) Body mass

The majority of the literature reports that sub-variables of body mass such as fat-free 

mass supersedes the use of body weight as an independent predictor of RMR (Javed, 

et al., 2010).

On the other hand, Taguchi, et al. (2011) found very similar coefficients of 

determination between REE and body weight and REE and fa t free mass (r = 0.66, p  

= 0.001 and r2 = 0.67, p  = 0.001 respectively). This could be explained as all 

participants where athletes and were likely to have a high fat-free mass to body mass 

ratio.

iii) Sex

Sex differences in REE can on the whole be explained by body size and body 

composition differences, especially fat-free mass/lean body mass (Cunningham, 

1980; Johnstone, et al., 2005; Lazzer, et al., 2011). Cunningham (1980) demonstrated 

that gender has little contribution in the estimation of BMR above lean body mass 

when data is kept gender specific or combined prior to analysis. Later studies also 

produced similar results. Johnstone, et al. (2005) also found no influence of sex on 

BMR and Lazzer, et al. (2011) agreed that sex had little influence on BMR in adults 

and children once fat-free mass, fa t mass and body weight were used as predictors.

iv) Age

An age-related reduction in BMR is commonly described (Cunningham, 1980; 

Rauvussin and Bogardus, 1989; Piers, et al., 1998). Many studies indicate that this is 

nearly entirely due to simultaneous changes in body composition, namely fat-free 

mass (Cunningham, et al., 1980; Rauvussin, et al., 1989).

In contrast, other authors found a small but significant effect of age alone. Piers, et 

al. (1998) found the BMR of older individuals (mean age = 62 years) was 644 KJ/day 

lower than younger individuals (mean age = 23 years) after adjustment of fat-free
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mass, and Johnstone (2005) established that age explained 1.7% of between 

participant variation in BMR.

v) Training status

It is commonly thought that trained individuals have a higher BMR. A specific 

difficultly in testing this hypothesis is that certain types of exercise produce acute 

increases in BMR. For example, many studies report that VO2 can remain elevated up 

to 24-48 hours after high intensity aerobic exercise training (greater than 70% 

Fornax). Therefore, in some cases it has been difficult to deduce whether an 

increase in BMR is due to an improvement in fitness, an increase in fat-free mass or 

produced by the exercise period itself (Treuth, Hunter and Williams, 1996).

In terms of chronic changes in BMR, it is widely accepted that continual resistance 

training will induce increases in lean tissue mass which, in turn, results in increased 

BMR (Campbell, et al., 1994). However, it is unclear whether increases in BMR or 

RMR above that which can be attributable to fat-free mass occur with increased 

fitness. Many studies report no association between BMR or RMR (expressed with 

respect to fat-free mass) and increased fitness after a period of 10 weeks resistance 

training or combined resistance and endurance training (Dolezal and Potteiger, 

1998), nine weeks of aerobic training (Bingham, et al., 1989) and twelve weeks of 

aerobic training (Lee, et al., 2009). Another study indicates a significant increase in 

RMR (corrected for fat-free mass) in men but not women as a result of 24 weeks of 

strength training (Lemmer, et al., 2001). Although, these authors also note that the 

current literature regarding gender differences in the influence of fitness on RMR is 

inconclusive.

2.8.2 Variation in the thermic effect of food

Intra-individual and inter-individual variation in the thermic effect of food has been 

previously demonstrated to be around 10.7% and 24.1% respectively (Houde- 

Nadeau, de Jonge and Garrel, 1993).
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Explanations for the intra-individual variation include the timing of the 

measurements i.e. length of time and continuous or intermittent nature, energy 

content of food (number of calories), composition of meal (carbohydrate, fats, 

proteins), diet and exercise in the previous days prior to measurement (de Jonge and 

Bray, 1997; Donahoo, Levine and Melanson, 2004).

The main influencing factors on inter-individual variation are the fat-free mass or 

lean body mass. In general, lean body mass is strongly related to the thermic effect of 

food, with a greater lean mass producing a larger dietary induced EE (Donahoo, 

Levine and Melanson, 2004). Furthermore, a reduced dietary-induced thermogenesis 

has also been reported in obesity although this remains controversial (Donahoo, 

Levine and Melanson, 2004). Segal, et al. (1985) reported significantly lower thermic 

effect of food for obese individuals in comparison to lean individuals at rest, during 

exercise and post-exercise. Further studies by the same authors also support the 

blunted thermic effect of food with obesity during rest and during exercise (Segal, et 

al., 1992).

2.8.3 Variation in physical activity energy expenditure (PAEE)

Assuming physical activity per se between individuals is equal, a small amount of 

intra-individual and inter-individual variation still occurs. Few studies have assessed 

the variation in PAEE alone. Still, it is possible to make some general observations 

based upon the available evidence.

With regard to intra-individual variability in PAEE, a review by Donahoo, Levine 

and Melanson (2004) suggests that variation is small and very reproducible in highly 

trained and moderately trained individuals, estimated at 1.5-2%.

Nevertheless, a small amount of intra-individual variation in PAEE may occur in any 

individual due to the possibility of a circadian rhythm in volume o f oxygen uptake 

(VO2). A circadian rhythm can be described as a natural rhythmic fluctuation over 

time, most commonly 24 hours (Massin, et al., 2000). A review by Noordhof, et al., 

(2010) report that numerous studies show a circadian rhythm in VO2 , with higher 

maximal oxygen uptake ( LL^max) values in post meridiem compared to ante
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meridiem. FG^max can be defined as ‘the maximal rate at which an individual can 

take up and utilise oxygen while breathing air at sea level’ (Eston and Reilly, 2001b, 

p. 161). Conversely, other authors report no evidence of daily variation (Besnott, et 

al., 2011).

Inter-individual variation in PAEE and has been shown to occur with; i) fat-free 

mass, ii) fa t mass, iii) aerobic capacity, iv) exercise intensity and to a smaller extent

v) range of motion of muscular contraction.

i) Fat-free mass

Fat-free mass is significantly related to non-resting (i.e. activity) EE, with greater 

fat-free mass producing a larger absolute PAEE (Liebel, Rosenbaum and Hirsch, 

1995; Johnson, Russ and Goran, 1998). Conversely, the relationship seems to be 

much less prevalent in comparison to REE. For example, by Johnson, Russ and 

Goran (1998) found that fat-free mass explained only 10% of the variation in PAEE.

Nevertheless, as few studies consider the effects of fat-free mass on PAEE alone and 

strong positive associations have been found between fat-free mass and both REE 

and TDEE it will be included as a variable in the present study.

ii) Fat mass

In general, it would seem logical for obese adults to have a greater absolute PAEE 

than their lean counterparts (if matched for fat-free mass) due to the additive energy

needed to overcome the inertial resistance both for whole body movement and for

cardiorespiratory work created by the excess weight of the fa t mass.

Conversely, Liebel, Rosenbaum and Hirsch (1995) report thatch/ mass is related to 

TDEE and REE but not non-resting EE and Goran, et al., (1997) also found no 

significant relationship. However, little research has been conducted on the 

relationship between fa t mass and PAEE specifically. Thus, as many studies suggest 

fa t mass has an additional influence on RMR over and above that of fat-free mass, it 

should be considered in the present study.
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Furthermore, loss of fa t mass seems to have important metabolic implications in 

addition to the reduced EE that might occur with reduced body fat. For example, 

numerous studies report PAEE to be lower in formerly obese individuals in 

comparison to those matched for ag e, fat-free mass and fa t mass that have never been 

obese (Astrup, et al., 1999, Doucet, et al., 2003). This has also been confirmed for 

RMR. For instance, Doucet, et al. (2003) used 83 participants with BMI > 27 kg.m*2 

and BMI < 45 kg.m"2 as controls to create a regression equation for net exercise EE 

based upon age,fat-free mass and fa t mass. This was used to predict net exercise EE 

in obese individuals who underwent a 15 week drug based and calorie restricted
9 9weight loss programme (average BMI before 33.7 kg.m" and after 30 kg.m"). This 

phenomenon is particularly important as it may predispose subsequent weight gain, 

although it is possible that the greater than expected decrease in exercise EE  could be 

short-lived (Doucet, et al., 2003).

Hi) Aerobic capacity

Aerobic capacity can be represented by VO2max. With endurance training, FC^max 

will increase producing a subsequent increase in exercise economy. Exercise 

economy can be defined as ‘the oxygen uptake required at a given absolute exercise 

intensity’ (Jones and Carter, 2000, p. 375). Hence, an increase in aerobic capacity 

brings about a decrease in O2 uptake and, therefore, PAEE for a given exercise 

intensity (Jones and Carter, 2000).

Conversely, this is not always the case, as even individuals with the same aerobic 

fitness display substantial inter-individual variability in O2 utilisation at submaximal 

intensities (Jones and Carter, 2000). For instance, McGregor, et al. (2009) reported 

that trained individuals exhibited a higher O2  cost than untrained individuals for the 

same walking speed. This was attributed to differences in substrate utilisation. For 

example, it is theorised that endurance training causes the body to prioritise fat 

utilisation over carbohydrates (Saunders, et al., 2004). Fat utilisation requires a 

greater amount of O2 per g than carbohydrate.
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iv) Exercise intensity

Mechanical efficiency can be defined as ‘the percentage of total chemical energy 

expended that contributes to external work, with the remainder lost as heat’ 

(McArdle, Katch and Katch, 2007, p.211). This is further supported by Noordhof, et 

al. (2010) who reported no significant differences in gross efficiency (mechanical 

power output/metabolic power input) within or between days during maximal and 

submaximal cycling tests in 18 active males. However, these studies were based 

upon active or trained individuals and as a high number of obese individuals are 

unlikely to meet the national recommendations for physical activity (as discussed 

previously), the obese population may not follow the same trend). Considerable 

decreases in muscular efficiency have been shown to occur with increases in exercise 

intensity. For example, 12 times more energy is needed to perform a bench press at 

80% of 1 repetition-max compared to 20% of 1 repetition-max even though it is only 

four times the work (Hunter, et al., 1988). Importantly, this negative relationship 

between exercise intensity and efficiency is not typical in running, probably due to 

use of elastic recoil of the tendons (Hunter, et al., 1998).

This could cause confusion if studies were not based upon relative fitness. In the 

present study, individual gas exchange thresholds are identified and used as means of 

controlling for relative fitness (see section 2.15.2).

v) Range o f motion o f muscular contraction

Muscular efficiency may differ depending on muscle length. For example, it is 

theorised that less energy is need for contraction when a muscle is stretched as it is 

better able to store elastic energy as opposed to when it is flexed (Hunter, et al., 

1998). This could cause differences between the EE of each individual due to 

differences in running style and subsequently range of motion of muscular 

contraction but the differences are likely to be negligible, therefore this will not be 

considered during this thesis.
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2.9 Methods of measuring energy expenditure

Numerous methods are available for measuring EE including direct and indirect 

calorimetry (section 2.9), doubly labelled water (section 2.10), heart rate monitoring 

(section 2.11), electromyography (section 2.12), infrared thermography (section 

2.13) and via motion sensors (section 2.14). Each have strengths and weaknesses 

relating to and in no specific order; i) accuracy and reliability of measurement, ii) 

ability to predict VO2 , iii) invasive or non-invasive nature of the equipment, iii) cost,

iv) mobility and practicality of equipment and v) the number of components of EE 

that can be measured separately.

2.10 Whole body metabolic calorimetry

2.10.1 Principle

The basic principle of whole body metabolic calorimetry involves the direct 

measurement of heat loss of an organism {direct calorimetry) or the indirect 

measurement of heat produced via calculation from measurements of metabolic by­

products {indirect calorimetry).

Heat is a direct by-product of all metabolic reactions and thus represents EE. Heat 

can be defined as ‘the thermal energy that is exchanged between two masses because 

of a temperature difference between them’ (Battley, 1995, p. 338). In order to 

maintain homeostasis i.e. prevent hyperthermia, heat is continually released from the 

body via convection, conduction, radiation and evaporation creating a constant heat 

flux (although there is a small lag time due to temporary storage) (Mann and 

Truswell, 2007).

2.10.2 History

The first studies to establish the basic concept of EE by measuring heat loss was 

conducted by Antonie Lavoisier in the 1700’s. It involved keeping a guinea pig in a 

small chamber containing ice and computing energy metabolism in relation to the 

amount of ice that had melted (Mann and Truswell, 2007). Lavoiser was also the first
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to note the increased heat loss due to thermogenesis. Although, it wasn’t until the 

1800’s that Max Rubner defined this as specific dynamic action, now referred to as 

the thermic effect of food (Kopelman, et al., 2010).

Today measurement of whole body metabolic calorimetry takes places in two forms; 

direct calorimetry and indirect calorimetry.

2.10.3 Direct calorimetry

Although the basic principle remains the same, the construction and instrumentation 

of a direct calorimeter is highly complex involving use of intricate thermocouple 

sensors and heat exchangers. A direct calorimeter measures heat loss as a product of 

evaporative and non-evaporative heat. Evaporative heat is the heat energy used to 

convert water into vapour denoted by an increase in humidity in the surrounding air. 

Non-evaporative heat is the heat given off as conduction, convection and radiation 

(McLean and Tobin, 1987).

Airflow
out

Temperature
measurement

Airflow in

Circulating 
water jacket

Figure 2.1. A simple diagrammatic representation o f a calorimeter used to 

measure production o f body heat.
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An example of a direct calorimeter includes a ‘human sized’, airtight thermally 

sealed chamber, constructed with coiled water tubes running through the top (Fig.

2.1). A known volume of water flows through the coiled tubes and the temperature of 

the water entering and leaving the chamber is measured. The difference in water 

temperature reflects the subject’s heat production and therefore EE. EE is calculated 

based on the theory that for 1 g of water to rise in temperature by 1 °C, 1 calorie of 

energy is required. A constant flow of air is re-circulated in and out of the chamber 

and during each cycle the air is cooled, oxygen (O2) added and carbon dioxide (CO2) 

and water vapour filtered to ensure no net loss or gain of water vapour or heat. The 

chamber is thermally sealed so that change in water temperature directly corresponds 

to the individual’s EE (Powers and Howley, 2001).

Direct calorimetry is the criterion or gold standard method of measuring EE in Homo 

sapiens due to the one-step procedure in measuring heat loss (Kopelman, et al., 2010; 

Battley, 1995). It is non-invasive and extremely precise, displaying an accuracy of up 

to 2-3% using a variety of dry and wet heat sources (Daly, et al., 1985). This tiny 

error is mainly due to the unavoidable fact that a small percentage of heat produced 

is absorbed into further metabolic reactions rather than liberated from the body 

(Battley, 1995). Finally, direct calorimetry has an additional benefit of measuring the 

rate of heat loss as well as the total heat loss (Battley, 1995).

Nevertheless, due to the technical complexity, the extremely high cost of both the 

calorimeter and instrumentation as well as the lack of relevance to free-living 

situations, this method is rarely used and there are now only a handful of direct 

calorimeters in commission worldwide (Mann and Truswell, 2007). Instead indirect 

alternatives are employed.

2.10.4 Indirect calorimetry

By 1949, the first indirect calorimeter (measuring respiratory gases) had been 

produced, later to become the preferred method of calorimetry (McLean and Tobin, 

1987).
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Indirect calorimetry has been widely validated against direct calorimetry and is often 

used as the criterion for validating new techniques. It is a non-invasive technique that 

involves calculation of heat production based on the measurement of pulmonary gas 

exchange. It uses the quantity of substrate use and chemical by-products of 

metabolism, namely O2 utilisation (assuming that O2 utilised is related to heat 

produced) and CO2 production in order to calculate EE (Haugen, Chan and Li, 2007). 

There are two types of indirect calorimeter systems available; i) closed circuit and ii) 

open circuit.

2.10.5 Closed circuit calorimetry

Closed circuit calorimeters are relatively inexpensive and constructed of simple 

instrumentation. The basic conformation includes a sealed gas circuit either in the 

form of a chamber or mask/mouthpiece. This circuit is filled with 100% O2 and 

contains a device that absorbs all CO2 (Eston and Reilly, 2001b; Arch, et al., 2006). 

As the participant utilises the O2 and produces CO2 (which is immediately absorbed) 

a drop in pressure occurs. This triggers the opening of a value, allowing entry of O2 

into the chamber or mask/mouthpiece until the pressure is restored. The change in 

volume represents the combined O2 usage and CO2 production (Arch, et al., 2006). In 

combination with the amount of CO2 absorbed, EE can be accurately computed.

The system has the additional benefit of providing a measured inspired minute 

ventilation (V;) value (in comparison to open circuit systems in which Vj is calculated 

via the Haldane equation). Nonetheless, closed circuit systems require consistent 

adjustments to be made to the ventilator in order to overcome the increased breathing 

resistance and increased inspiratory time which raise the work of breathing 

(Matalese, 1997). In addition, they are greatly affected by changes in lung volume 

and leaks in the chamber (Matalese, 1997). Finally, due to the build-up of ammonia, 

studies are typically limited to 1 hour (Arch, et al., 2006).

2.10.6 Open circuit calorimetry

Several pieces of equipment are available as an open circuit calorimeter including; i) 

Douglas bags, ii) a metabolic cart and iii) portable calorimeters.
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i) Douglas Bags - The participant breathes into a mask or mouth piece 

attached to a tube with a one-way value which feeds into a large airtight 

bag. Expired gas is collected in a different bag for each stage of exercise. 

A sample from each bag is analysed to give the relative concentrations of 

CO2 and O2 via electronic gas analysers (Haugen, et al., 2007).

ii) Metabolic Cart -  The mask/mouth piece is similar to the Douglas Bag 

device but the tube is connected to a metabolic cart. Gas and airflow 

samples are continuously collected and analysed through breath-by- 

breath, mixing chamber or dilution systems (Matarese, 1997; Haugen, et 

al., 2007). An example system includes the Oxycon Pro which has been 

shown to be both valid and reliable with coefficients of variation for VO2 

and VCO2 between 4.7-7.0% for breath-by breath measurements (Carter 

and Jeukendrup, 2002).

iii) Portable Indirect Calorimeters -  This is a similar process to the 

metabolic cart with some integrated sensors to measure barometric 

pressure, ambient temperature and relative humidity (these values are 

manually entered into the metabolic cart) (Haugen, et al., 2007).

2.10.7 Calculation of energy expenditure

Although there are numerous formulae for calculation of REE the Weir equation (Eq.

2.2) or the modified Weir equation (Eq. 2.3) are the most commonly used. These 

formulae are based on the assumption that production of 1 L of CO2 equates to an 

energy production of 1.11 kcal and utilisation of 1 L of O2 equates to 3.941 kcal 

(Haugen, et al., 2007).

Weir Equation

REE(kcaljday~') = [(3.941 x V 0 2) + (1.11 x V C 02) + (2.17 x uN2) x 1440 (2.2)
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Modified Weir Equation

REE(kcal.day~' ) = [(3.941 x V 0 2) + (1.11 x V C 02) x 1440 (2.3)

REE = Resting energy expenditure (kcal.day) 

uN = Urinary nitrogen (g.day)

VO2 — Volume of oxygen uptake (ml.min'1)

VCO2 = Volume of carbon dioxide production (ml.min'1)

(Haugen, et al., 2007, p.378)

The modified Weir equation is currently most popular as it alleviates the need for 24 

hour urine collection which is often very difficult and in addition presents its own 

intrinsic errors (Matarese, 1991). In addition, the error produced from the modified 

equation is only 1-2% (Weir, 1949).

2.10.8 Limitations

A major limitation of indirect calorimetry is due to the prediction of Vj. Ideally, VO2 

and VCO2 would be computed from the difference between Vj and mass of inspired 

O2  and Ve and mass of expired O2 (Eq. 2.4 and 2.5).

Vj = volume of inspired air 

Ve = volume of expired air 

Fj0 2 = fraction of inspired oxygen 

Fe0 2 = fraction of expired oxygen

(Haugen, et al., 2007, p.379)

VO2 = Vj (Fj0 2) -  VE CFeC 02.) (2.4)

VC02 = VE (FeC0 2) -  Vj (.FjC 02) (2.5)
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However, Vj is equal to VE only when RQ is equal to 1 ( i.e. VCO2 =  VO2). Therefore, 

the technical difficulty in measuring the small differences between Vj and VE, as well 

as the relative difficultly in measuring Vjt has led to the sole measurement of VE and 

the prediction of Vj using the Haldane equation (Haugen, et al., 2007).

The Haldane transformation calculates Vj based on the concept that nitrogen (N2) is 

essentially inert, hence will have exactly the same number of molecules (mass) in 

inspired and expired air (Eq. 2.1). Assuming a constant mass, concentration of N2 

will vary directly with volume. Thus, if the concentration or fraction of inspired N2 

(F1N2) and expired N2 (FEN2) is known, Vj can be computed (Eq. 2.6 to 2.11) (Eston 

and Reilly, 2001b).

Mass o f inspired N2 = Mass o f expired N2 (2-6)

„  . Mass
Concentration = ---------  (2.7)

Volume

Mass o fN 2= Vj x  FjN2 (2.8)

Mass o f N2 =  VE x FEN2

(2.9)

Vj x FjN 2 — VE x FeN2

(2 .10)

T/ Ve * F eN 2
V, = F ,  ,f  (2.11)

I  2

(Eston and Reilly 2001b, p. 147)

The problem occurs as Fj0 2 increases, for example in the case of ventilated patients. 

Here the denominator ‘1- FjO f gets smaller, greatly increasing the error in the 

calculation of V0 2 consumption (Haugen, et al., 2007).
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Other limitations include lack of steady state with changing nutritional intakes or 

medication and technical issues such as system leaks.

2.11 Doubly labelled water technique

2.11.1 Principle

The doubly labelled water (DLW) technique involves estimation of CO2 production 

and subsequently EE through measurement of the body’s rate of elimination of O2 

and hydrogen (H) (Welk, 2002).

The fundamental basis of the technique stems from the notion that O2 removal from 

the body is a function of both body water turnover and CO2 production. However, H  

removal is solely a function of body water turnover (Fig. 2.3). The surveillance by 

Lifson in the 1940’s that O2 in respiratory CO2 is in equilibrium with the O2 in body 

water means that the amount of O2 lost through CO2 can be represented as the 

difference between the O2 and //w ater turnover curves (Welk, 2002; Butler, 2004).

The elements are traced via non-radioactive, harmless, stable isotopes, most 

commonly oxygen-18 (750) and deuterium (2H). Each isotope possesses the same 

chemical identity but a different atomic mass as its parent element, permitting 

identical function while allowing differentiation (Welk, 2002).

Prior to testing a pre-dose sample of body water is needed to ascertain baseline
18 2valves of O and H  in the body, as trace amounts of these isotopes are naturally 

occurring (Welk, 2002).

• 2 //?Dosing typically involves 0.25g of H  and 0.12g of O oral consumption or

injection. A series of body water samples, most commonly in the form of saliva or

urine, then track the decline of isotope enrichment over a certain time period or back

to baseline levels (Fig. 2.3; Butler, 2004; Mann and Truswell, 2007). The samples

are then analysed by gas isotope ratio mass spectrometry and CO2 usage delimitated

(Welk, 2002).

42



100 - I

Q

«+-io
ODOhJ

co2

Days 10

Figure 2.2. The basic principle o f  the doubly labelled water technique where the 

difference between the decline in oxygen-18 (180) and deuterium (2H) represents 

CO2 production. In this example the sample period is 10 days.

The total duration of the measurement period lasts approximately 2 to 3 half-lives of 

the isotopes which can vary between 8-18 days as the rate of isotope flush out is 

dependent on both the size of the body water pool (larger water pools take longer) 

and the activity level (Welk, 2002; Butler, 2004).

Two different protocols are available; the ‘two-sample curve fitting approach’ and 

the ‘multiple-sample curve fitting approach’. The former, involves two samples, one 

immediately post dose and the other at the end of the measurement period. The latter 

is only realistic to perform in human participants because it involves repeated 

sampling throughout (Butler, 2004).

The first post dose sample must only be taken once complete isotopic distribution has 

occurred; now reasonably well enumerated as approximately 6 hours for a participant 

with a body mass of 70-100kg, with route of administration proving largely 

irrelevant (Speakman 1998; Butler, 2004).
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Time of dosing and all samples are strictly documented and participants must ensure 

they drink from the same water source throughout the test period, as different sources 

can contain varying levels of 2/ /a n  lsO (Welk, 2002).

2.11.2 History

The D LW technique was first used in humans by Schoeller and van Santen (1982), 

although invented by Lifson (1955) nearly three centuries earlier. During the early
7 0

years even the cheapest of O2 tracers, O, was too costly to warrant its use in 

research. Yet, large improvements in the mass spectrometry technique justified a 

significant reduction in the amount of isotope needed per unit of body mass largely 

broadening its application (Speakman, 1998). Subsequently, the DLW  technique was 

subject to extensive validation which eventually led to refinement in calculations.

The DLW  technique has been widely cross-validated with direct calorimetry and 

presents a direct estimate of CO2 with reasonably high precision (Welk, 2002; Butler,

2004). On average it differs from calorimtery by only 2-3% (for a group of 9 or 10 

individuals); the variation depending on the assumptions made (Speakman, 1998, 

Butler, 2004). It is completely harmless and gives no restrictions to the participant’s 

activities therefore capturing an exact replica of ‘typical’ daily activity. In addition, 

as the dose is contained in water it is easy to implement double blind trials, 

increasing credibility of the study (Welk, 2002).

2.11.3 Limitations

A major disadvantage of the DLW  technique is that it can only provide estimates for 

group data. When considering individual differences rather than using group means, 

many studies have shown much larger discrepancies between DLW  and indirect 

calorimetry. Speakman (1998) reviewed 29 studies comparing DLW  with indirect 

calorimetry and found standard deviations of individual estimates to be 

approximately 10%, with some above 20%. It was also noted that the results of 

multiple laboratory comparison have shown large disagreement when different 

groups analysed the same sample, indicating that the discrepancies in relation to 

indirect calorimetry may be due to analytical errors. This is supported by a review of
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16 studies which valued the repeatability of the DLW method at only 7.8% 

(Schoeller, 1996).

In addition, disregarding analytical errors, the technique is still bound in large 

assumptions. Details of these are described in Butler, et al. (2004) and a brief 

summary can be found below:

i) It is assumed that the flow of water and size of the water pool is constant 

throughout testing. This is obviously untrue of any living organism.

ii) It is assumed that the fluid leaving the body contains the same isotope 

enrichment as the body water. This is untrue due to physical isotopic 

fractionation events i.e. when a molecule changes its state it carries a 

slightly different make up of elements. For example, when water 

evaporates it carries slightly less //th an  O2 .

iii) It is postulated that the isotopes are only involved in reactions that 

generate water and CO2 . However, there are two common occurrences 

that make this untrue. The isotopes may combine with other substances 

leaving the body thus increasing elimination rate or can exchange with 

other substances, effectively increasing the size of the body water pool 

when based on isotope sample dilution (Butler, 2004).

iv) It is presumed that ‘isotopes do not re-enter the body’ and ‘unlabelled 

CO2 does not enter the body’ (Butler, 2004, p.171). The former is highly 

unlikely so often ignored. The latter will occur in places of restricted 

space where excess CO2 build up leads to elevated CO2 inhalation 

(Butler, 2004). This is obviously unusual in humans and mainly a concern 

for animal research i.e. animals living in burrows.

v) The final assumption is that the baseline isotope values are stable 

throughout the measurement period. This is of particular relevance to 

human or large animal studies as the size of the original isotope dose is 

limited due to cost therefore fluctuations in baseline levels will have a 

more significant effect on the accuracy of the results (Horvitz and 

Schoeller, 2001).

4 5



Attempts have been made to ‘correct’ for the first three assumptions by inclusion into 

the CO2 and EE calculations however the fourth and final assumptions offer a 

possible explanation for discrepancies.

Further error could be produced if energy expenditure was estimated using an 

unsuitable respiratory quotient (VCO2/VO2 at cellular level). For example, the 

respiratory quotient is often assumed to be 0.8 (Schmidt-Neilson, 1997) or 0.85 

(Welk, 2002) but this value is highly dependent on the food consumed and activity 

level. Metabolism of pure carbohydrate gives a respiratory quotient of 1 and pure fat 

a respiratory quotient of 0.7 hence large errors of up to 2.5 to -5 % and 9 to -18 % 

have been reported when using VO2 and VCO2 respectively to predict EE (Butler,

2004). In an attempt to reduce this error, the food quotient can be used (Ainslie, 

Reilly and Westerterp, 2003). The food quotient involves a time consuming process 

of keeping a food record and calculating respiratory quotient assuming complete 

oxidation of all food (Butler, 2004).

Finally, the cost of analysis even for small animals is still significant and 

development of the technique in order to reduce cost is unlikely to improve much 

further (Butler, 2004). In addition, even today, there are a limited number of 

specialist centres that have the capacity to perform the technically complex and 

extremely precise measurements required (Mann and Truswell, 2007).

Besides this, unlike other methods, DLW  provides no detail on intensity, duration, 

frequency and type of activity and most importantly cannot distinguish between any 

of the four components of EE during a free living situation.

2.12 Heart rate monitoring

2.12.1 Principle

Heart rate (HR) monitoring (measured in terms of beats per minute), is based on the 

observation that a linear relationship exists between heart rate and VO2 for increasing 

activity levels above rest (Mann and Trusswell, 2007). This was first demonstrated in 

humans during exercise by Boothby in 1915 (Welk, 2002). Increasing activity levels 

require increased metabolic activity and subsequently a greater O2 supply. This is
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achieved through the combined effect of increased tidal volume and respiratory rate, 

increased cardiac output and increased venous return (Seifiter, Ratner and Sloane,

2005).

The HR method relies on the principle that change in HR is a major constituent in the 

body’s response to a change in O2 requirements (Butler, 2004). Hence, it provides an 

estimate of VO2 utilisation using Fick’s law (Eq. 2.12).

V02 = HR x Versus (Ca0 2 -  Cv0 2) (2.12)

VO2 Volume of oxygen per minute

HR Heart rate

Versus Stroke volume

Ca02 Oxygen content of arterial blood

Cv02 Oxygen content of mixed venous blood

Versus (Ca02 -  CvOi) Oxygen pulse {OP) = quantity of oxygen consumed per

heartbeat

A linear relationship between Cv02 and HR will only exist if the OP is constant or 

changes systematically. In exercise this is unlikely as OP will increase with increased 

exercise intensity; a curvilinear relationship. Furthermore, this relationship is likely 

to change throughout the life cycle due to several physiological and environmental 

factors, all leading to limitations in the original VO2 versus HR model (Butler, 2004).

2.12.2 Limitations

i) Exercise intensity

During very heavy or very light exercise, the HR versus VO2 relationship becomes 

non-linear (Achten and Jenkendrup, 2003). In the case of heavy exercise, O2 uptake 

may increase disproportionately to HR due to greater utilisation of O2 . This is 

represented by an increased value for Ca 0 2  -  Cv 0 2  and is due primarily to 

redistribution of blood flow to skeletal muscles and a shift in the oxyhemoglobin 

disassociation curve to the right. The latter is termed the ‘Bohr effect’ and allows a
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greater oxyhemoglobin disassociation for a set O2 pressure (Astrand and Rodahl, 

1970).

ii) Lag time

A lag in HR response exists when a quick transition in exercise intensity occurs. This 

creates inaccuracies in predicting EE from HR (Achten and Jenkendrup, 2003).

iii) Cardiorespiratory fitness

Improved cardiac contractility and in particular left ventricular function and ejection 

time occurs with an increase in cardiorespiratory fitness. This provides a greater SV  

per heart beat which results in a lower HR for any given VO2 requirement. Previous 

studies have found that increases in cardiovascular fitness showed significant 

systematic changes in the relationship between HR and VO2 (Butler, 2004). These 

changes can either be adjusted for in the prediction equations or acknowledged as a 

limitation. Strath et al., 2000 attempted the latter by using predicted HR reserve and 

VO2 reserve to adjust HR and VO2 values, changing the HR to EE relationship from r 

= 0.68 to r = 0.87.

iv) Psychological stress

Psychological stress has proven to result in an elevated HR without an according 

increase in VO2 during a rested state. This is caused by an increase in sympathetic 

nervous system activity and was demonstrated by Carroll, Phillips and Balanos 

(2009) who assessed 24 healthy males during a paced auditory serial addition test 

(i.e. a stress tested based upon solving mathematical questions) and 4 minute bouts of 

cycling at a variety of submaximal speeds whilst seated on a semi reclined couch. 

These authors found that substantial increases in cardiac parameters arise during the 

stress test with only a moderate rise in O2 consumption. This cardiac response was 

significantly greater than that predicted by the exercise response.
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v) Muscle groups and types o f muscular contraction

Differences in cardiovascular responses to extension and flexion have been shown 

between upper and lower limb movements during static muscular contractions. For 

example, in upper limb joints (wrist and elbow) extension evoked a greater HR 

response than flexion and in lower limb joints (ankle and knee) the opposite was true 

(Tokizawa, et al., 2006).

Furthermore, static (isometric) exercise also exhibits higher HR in contrast to 

dynamic exercise (Arimoto, Kijima and Muramatsu, 2005). The mechanism for this 

response is not well understood but theories are based around the relationship 

between HR and SV  (Astrand and Rodahl, 1970).

vi) Cardiovascular drift, hydration and heat stress

After 2-3 minutes of exercise at a light to moderate intensity a ‘steady-state’ occurs; 

O2 uptake is equal to O2 utilisation. At this point cardiac output, HR and pulmonary 

ventilation should reach a constant level (Astrand and Rodahl, 1970). However, even 

in steady state conditions, HR will gradually increase over time in parallel with a 

decrease in SFbut a steady VO2 . This phenomenon is named ‘cardiac drift’ (Achten 

and Jeukendrup, 2003).

Cardiac drift has been shown in numerous studies (see review by Achten and 

Jenkendrup, 2003). For example, Kimura, et al. (2010) reported increases of eleven 

beats per minute between 3 and 30 minutes of arm-cranking exercise at a steady 

intensity and ten beats per minute for leg-pedalling exercise).

There have been several theories to explain this. Firstly, cardiac drift has been 

strongly related to hydration status. This can be explained as a decrease in blood 

volume which will reduce central venous filling pressure and end diastolic volume. 

This subsequently decreases SV  so HR increases to compensate (Wilmore and 

Costill, 1999). Hamilton, et al. (1991) reported the % HR increase halved when the 

participants consumed fluid.

49



Heat stress is also speculated to explain cardiac drift (Wilmore and Costill, 1999). In 

a hot environment, thermal stress leads to increased peripheral blood flow to enhance 

heat loss. This is likely to result in an increased HR without a subsequent increase in 

VO2 (Butler, 2004). In an attempt to cool the body a greater percent of cardiac output 

is directed at the peripheral blood vessels of the skin. This leads to slower venous 

return and reduced end diastolic volume and SV  by the mechanisms explained above 

(Wilmore and Costill, 1999). There is current debate as to whether the HR versus 

VO2 relationship is similar during heat stress and exercise in humans (Butler, 2004).

vii) Temperature -  cold

In cold environments, two main physiological adjustments occur. Firstly, shivering 

starts in order to increase metabolic rate and secondly, vasoconstriction of the 

peripheral blood vessels occur in order to reduce heat loss, augment central blood 

volume and, therefore, venous return (Achten and Jeukendrup, 2003).

These events commonly cause an increase in VO2 without a subsequent increase in 

HR. McArdle, et al. (1976) tested individuals exercising at differing intensities at 

18°C and 25°C in water and 26°C in air. A significant increase in VO2 was found 

during the water exercise, the difference becoming more pronounced at lower 

intensities whilst HR remained the same. It was speculated that this was due to 

increased cardiac output due to augmented SV.

viii) Hypoxic conditions

At an altitude of only 4000m, partial pressure of O2 may be only 30% of that at sea 

level (Achten and Jenkendrup, 2003). Varying physiological responses take place to 

compensate for this. A review by Achten and Jenkendrup (2003) reports that during 

submaximal exercise at altitude, HR increases in comparison to the same work rate at 

sea level, in order to compensate for the reduced partial pressure of O2 . However, 

during maximal exercise, individuals are only able to reach approximately 70% of 

their FC^max at sea level i.e. VO2  is reduced for a similar maximal HR.
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2.13 Electromyography

Electromyography involves measurement of muscular activity via electrical signals. 

There are two types of electromyography; intramuscular (involving insertion of a 

thin needle) and interferential (using electrodes placed on the skin) (Latash, 1998). 

The latter is much more commonly used particularly in Homo Sapiens due to the 

difficultly of obtaining ethical approval for invasive procedures. Interferential 

electromyography involves placement of two surface electrodes over the muscle 

belly on suitably prepared skin. The difference in the electrical potential between 

them is measured, amplified, filtered and then the absolute values taken (Latsh, 1998; 

Eston and Reilly, 2001a). In addition, the body is grounded with a large indifferent 

electrode in order to reduce noise (Latash, 1998). In the case of measuring EE, use of 

very large electrodes placed as far apart is recommended in order to pick up 

electrical activity from as many motor units as possible (Latash, 1998).

Very few studies have assessed the use of electromyography as a proxy for EE due to 

the large difficulty in measuring all muscle groups and as well as the impossibility of 

collecting free living data. Tsurumi, et al. (2002) assessed the relationship between 

EE relative to body weight and the electromyography signal from the medial deltoid 

and anterior deltoid muscle. Average coefficients of determination were small but
9 9significant; r = 0.46 (p = 0.0)1 and r = 0.31, (p = 0.01) respectively.

2.14 Infrared thermography

Infrared thermography is a non-invasive technique used to measure surface 

temperature in humans or animals in order to quantify heat loss (Shuran and Nelson, 

1991). It is particularly useful in animal studies as it does not require physical contact 

(Speakman and Ward, 1998).

Infrared radiation is emitted from every living being. This is detected by an infrared 

imaging radiometer which converts the radiation to an electrical signal and produces 

an infrared thermogram (a television compatible image of thermal patterns) (Shuran 

and Nelson, 1991).

51



A study by Shuran and Nelson (1991) found highly definitive results when 

comparing infrared thermography with indirect calorimetry in healthy individuals 

(fasting and non-fasting) and post-surgical patients (fed continuously via total 

parenteral nutrition). No significant differences were found between infrared 

thermography and indirect calorimetry in healthy fasting individuals or post-surgical 

patients indicating high validity in measuring heat loss. However differing results 

occurred after feeding, the main features including higher indirect calorimetry values 

throughout and a lag in infrared thermography compared to indirect calorimetry 

(Shuran and Nelson, 1991).

Unfortunately, there are very few human and animal studies in which to compare this 

to perhaps due to the following limitations. Truly accurate results require knowledge 

of complex air flow characteristics around the body as well as emissivity (ability of 

the surface to emit radiation) which are particularly difficult to obtain in animals. In 

addition, the device requires the use of liquid nitrogen and needs to be frequently 

topped up (approximately every hour), largely restricting the time available for use 

(Speakman and Ward, 1998). Finally, the device is not suited to a free living scenario 

so has limited application.

2.15 Motion sensors

2.15.1 History

A variety of commercially available fixed-body motion sensors are available to 

measure human movement in free-living conditions including mechanical devices 

such as goniometers (to measure joint angles), gyroscopes (to measure orientation), 

and actometers (to measure tilt) to electronic devices such as pedometers (measures 

vertical oscillations i.e. number of steps), accelerometers (to measure whole body 

motion or segment motion in terms of magnitude of acceleration) and 

electromechanical switches (placed under the heel to measure heel strike frequency) 

(Mathie, et al., 2004). Early, most commonly used activity monitors included 

actometers and mechanical and electronic pedometers.
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2.15.2 Actometer

An actometer is a ‘self-winding wrist watch modified to record movement rather 

than time’ (Eaton, 1983, p.720). Similar to a watch, an internal pivot weight acts as a 

pendulum and swivels clockwise or anticlockwise in response to movement of the 

watch. The movement of the pivot weight is then reflected in movement of the hands 

and the results read off dial, comparable to time (Johnson, 1971).

Despite good reproducibility for standard movements and for re-test, actomoters 

have shown large inter-instrument variability which necessitates the need for 

individual calibration (Meijer, et ah, 1991). For large scale population measurements 

this is completely impractical and even on a small scale makes other methods more 

appealing.

2.15.3 Pedometer

A pedometer is a small device used to measure vertical oscillations of the body i.e. 

steps (Mathie, et al., 2004). There are three main mechanisms that can be used. The 

first and most simplified involves a ‘horizontal, spring-suspended lever arm that 

moves up and down with each step’ i.e. vertical movement (Welk, 2002, p. 164). This 

continually completes and breaks an electrical circuit. Each time the circuit is 

completed a count is registered and it is added to the cumulative count display on the 

screen. The second incorporates a magnet into the spring-suspected level arm and a 

step is registered as the magnetic field activates a proximity switch. The third, is the 

most sophisticated as it includes piezoelectric material and unlike the other 

mechanisms allows for measurement of intensity however as this mechanism is 

similar to an accelerometer it will be excluded from this current discussion.

In relation to the first two mechanisms, numerous studies have shown pedometers are 

reasonably accurate in predicting the number of steps. Schneider et al., (2003) 

reported 6 out of 8 pedometers produced similar values to the actual number of steps 

during walking at self-selected speeds (excluding those with an accelerometer based 

mechanism) in 20 participants and Bassett et al., (1996) found 3 out of 5 pedometers
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produced similar ‘step’ readings to actual steps in 22 participants over a 3.03 miles. 

Nevertheless, the devices have several other major limitations.

A pedometer is only able to detect movement in one axis and so is largely limited to 

tracking ambulatory activity (i.e. walking or that of a similar movement pattern such 

as running) where most of the body acceleration is displayed in one direction (the 

vertical axis). It is therefore attached to the waist or another position near the body’s 

centre of gravity (Welk, 2002). Furthermore, the devices are largely insensitive due 

to the primitive mechanism used to detect movement. With each device (depending 

on the subtly of mechanism) a ‘threshold’ of body acceleration is needed in order to 

trigger and register a count. This may limit the accuracy of assessing ‘steps’ in slow 

walking. For example, Bassett, et al. (1996) found that the Eddie Bauer pedometer 

only recorded 40% of steps taken when walking at a speed of 2.0 mph. Additionally, 

distance can only be calculated if stride length is known. However, a definite figure 

is somewhat difficult to attain as stride length has been shown to increase at fast 

walking speeds (Bassett, et al., 1996). Finally, pedometers do not provide 

information regarding frequency (i.e. patterns of movement within a day) and 

intensity (Bassett, et al., 1996) and the reliability and validity is relatively poor 

(Meijer, et al., 1991; Schneider, et al., 2003).

2.15.4 Accelerometer

In the early 1970’s, came the development of electronic telemetric devices that 

allowed continuous recording, although this was largely limited as the device needed 

to remain in close proximity to the receiver. The mid-1970’s early 1980’s gave rise 

to significant advances in technology refining the devices to be completely self- 

contained with integrated circuitry, transducers, timing and memory thus producing a 

basic accelerometer (Redmond and Hegge, 1985).

Today, accelerometers are small devices used to measure acceleration. Acceleration 

can be defined as ‘change in velocity with respect to time’ (Eq. 2.13 and Eq. 2.14).

acceleration (m.s-2) = A velocity (m.s'1) / A time (s) (2.13)
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a -  dv/dt (2.14)

In general, the devices are fabricated out of a plastic casing, a transducer and a small 

seismic or inertial mass suspended by both a dampener and a spring and capacitor 

although many now contain piezoelectric material.

The principle is based on the fact that when the device experiences acceleration, 

acceleration of the internal mass will lag behind due to the restraining effect of the 

spring and the relative displacement of the mass is proportionate to the acceleration 

of the device. An electric current is generated that is proportional to the amount of 

acceleration experienced by the internal mass and this is outputted as acceleration 

units (Fig. 2.4). Only during steady state i.e. stationary or moving at a constant 

velocity, will the acceleration of the mass be the same as the casing (Morris, 2006).

Accelerometers can have one (uni-axial), two (bi-axial) or three (tri-axial) sensing 

axes depending on the number of displacement measuring instruments used (Mathie, 

et al., 2004). Each sensing axis is positioned orthogonally to one another, aligned 

along the geometric axes x, y and z or anatomically termed cranial-caudal, anterior- 

posterior and medio-lateral axes (Grundy, 2008).

The devices can vary largely in terms of the displacement measuring instruments 

including the type of spring and transducer and form of dampening (Morris, 2006). 

Human movement studies most commonly use piezoresistive or variable capacitance 

accelerometers (see Mathie, et al., 2004).
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Figure 2.3. A simplified diagrammatic representation o f a single axis (uni-axial) 

accelerometer.

2.16 Predicting energy expenditure using an accelerometer

2.16.1 Principle

Use of accelerometry as a proxy for EE is based on the following principle. Physical 

activity involves the conversion of chemical energy within the muscles to mechanical 

work via muscular contraction. Muscular contraction produces acceleration of the 

limbs and subsequent proportional movement of the connecting trunk. The centre of 

gravity, which is located in the lower trunk during standing, moves in the opposite 

direction to the limbs in order to maintain balance (Shepard, et al., 2008a). In theory, 

the amount of body acceleration should be related to the amount of energy expended 

(Wilson, et al., 2006; Gleiss, Wilson and Shepard, 2011).

A variety of accelerometers are commercially available. Each has its own unique 

predictive equation for EE that have been developed through a series of studies 

involving the comparison of VO2 with an acceleration metric, usually during a 

variety of different types and intensities of physical activity.
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In terms of the components of EE, an accelerometer measures the physical activity 

component only (Fig. 2.5). The device cannot be used to predict BMR as this 

component is measured during lying i.e. a stationary position. Subsequently, BMR is 

predicted using one of many published equations. Additionally, accelerometers do 

not account for the thermic effect of food and temperature-dependent EE. Instead, 

when developing predictive equations these components of EE are usually controlled 

although this is obviously unrepresentative of free living situations.

During development of predictive equations it is important to be aware that the VO2 

versus acceleration relationship will differ depending on the relative contribution of 

aerobic and anaerobic respiration for EE. This is related to intensity of physical 

activity. Although both aerobic and anaerobic respiration occurs at all intensities of 

physical activity, the point at which respiration changes from mainly aerobic to 

mainly anaerobic is termed the gas exchange threshold (GET) (McArdle, Katch and 

Katch, 2007). GET can be defined as an ‘over proportional increase in carbon 

dioxide output as related to oxygen uptake’ (Meyer, et al., 2005, p.S40). The GET 

will vary between individuals depending on training status and disease (Beaver, 

Wasserman and Whip, 1986). In general, most activities of daily living are aerobic so 

the regression equations are based upon aerobic conditions alone. Additionally, VO2  

is not as closely related to EE during anaerobic metabolism which gives further 

reason to use only aerobic conditions.

To produce a realistic reflection of the VO2 versus acceleration relationship as many 

data points as possible should be gathered. This is commonly embarked upon by a 

maximal exercise test in which the exercise intensity is gradually increased until 

volitional exhaustion, incorporating both aerobic and anaerobic metabolic phases. 

Volitional exhaustion is indicated by a plateau in VO2, which is thought to indicate 

VO2 max. The GET is then located and any data above the GET is discarded.
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Figure 2.4. A simplified diagrammatic representation o f the components o f EE 

measured via an accelerometer. The shaded box represents that which can be 

measured. GET represents the point at which there is a significant anaerobic 

contribution.

2.16.2 Locating the gas exchange threshold

i) Definitions and general concepts

The gas exchange threshold is a respiratory parameter thought to be closely related to 

the lactate threshold. The concept of lactate and gas exchange thresholds provide a 

complex, largely unresolved debate. The terms were originally generalised under the 

expression, ‘anaerobic threshold’, defined as ‘an intensity of exercise, involving a 

large muscle mass, above which measurement of O2 uptake cannot account for all of 

the required energy’ i.e. the onset of predominantly anaerobic metabolism (Svedahl 

and Macintosh, 2003, pp.300-301).
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The ‘anaerobic threshold’ was initially represented by an inflection point on either a 

blood lactate concentration model (indicating an increase in lactate) or a model of 

respiratory parameters (indicating increased CO2 and VE) during incremental 

exercise. However, it has recently been acknowledged that there are two inflection 

points in a blood lactate and respiratory model and a clear distinction must be made 

between them (Jones and Poole, 2005). This thesis will focus upon respiratory 

parameters as they are often preferred over blood lactate parameters due to their non- 

invasive nature.

On a respiratory model, the term ‘gas exchange threshold’, refers to the first 

inflection point (Jones and Poole, 2005) and ‘respiratory compensation point’, to the 

second inflection point (Beaver, Wasserman and Whipp, 1986).

The GET occurs at approximately 45 -  60 % of VOjrodx in those free from disease, 

although the exact percentage will depend on training status (Jones and Poole, 2005). 

The term is important in accelerometer based research as it defines the cut-off point 

between aerobic and anaerobic metabolism. This phenomenon signifies a 

significantly elevated degree of bicarbonate buffering via lactic acidosis and 

therefore production of non-respiratory CO2 which will subsequently increase total 

expired CO2 (Jones and Poole, 2005).

This point has numerous terms in the literature including aerobic gas exchange 

threshold (Meyer, et al., 2005), aerobic-anaerobic threshold (Kindermann, Simon and 

Keul, 1979), ventilatory threshold (McArdle, Katch and Katch, 2007), ventilatory 

threshold 1 (Hug, et al., 2003), and most commonly in earlier studies, the anaerobic 

threshold (Wasserman, et al., 1973: Beaver, Wasserman and Whipp, 1986; Caiozzo, 

et al., 1982). Furthermore, it is a respiratory representation of the first inflection point 

on a blood lactate model, often termed the lactate threshold (McArdle, Katch and 

Katch, 2007), ‘the first increase in blood lactate concentrations above resting values 

during incremental exercise’ (Meyer, et al., 2005, p.S39). This blood lactate value is 

often approximated to be around 2.5 mM (McArdle, Katch and Katch, 2007).
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ii) Techniques used to locate the gas exchange threshold

There are several means of detecting the aerobic gas exchange threshold. The most 

common comprising of a respiratory exchange ratio (.RER) of over 1, the first 

systematic rise in Ve)V0 2  without a corresponding rise in Ve/VC0 2  (ventillatory 

equivalent method) and an over proportional increase in VCO2 in comparison with 

VO2  (F-slope method) (Caiozzo, et al., 1982; Myers and Ashley, 1997; Meyer, et al.,

2005).

Early reports suggest RER is a useful measure of GET although later evidence found 

it to be largely insensitive to lactic acid (Ciaozzo, et al., 1982). Other authors suggest 

the use of the ventilatory equivalent method. A study by Ciaozzo, et al. (1982) 

compared four respiratory measures of calculating gas exchange threshold (Time 

versus V e, Time versus VCO2 , Time versus RER, Time versus V e /VO2) with lactate 

threshold in 16 male and 2 female subjects (age range = 20-31 years). The results 

showed the point at which VE/VC>2 displayed a systematic rise without an associated 

rise in Ve IVCO2 was the method with the highest correlation with lactate threshold 

0r2 = 0.93, p  > 0.001). In addition, this method also had the highest test-retest results. 

But, this method was deemed inappropriate as individual variation in chemoreceptor 

sensitivity to CO2 will affect the ventilator response. For example, in obesity it is 

common for individuals to have insensitive chemoreceptors and mechanical 

weaknesses so ventilation might not match increased CO2 making GET difficult to 

detect (Beaver, Wasserman and Whipp, 1986).

Wasserman, et al. (1986) recommends the F-slope method as the criterion. The 

original F-slope method involved use of VO2 versus VCO2 (to find the GET) and 

VCO2 versus Ve (to find the respiratory inflection point to confirm that the GET is 

correct i.e. below this point). Meyer, et al. (2005) also supports use of this method 

but endorses that metabolic measurements (VCO2 and VO2) should be used alone and 

ventilatory data only in a supportive manner where results from the VCO2 versus VO2  

graph are indeterminate. This caution is again due to individual variability in terms 

of chemoreceptor sensitivity to CO2 (Meyer, et al., 2005).
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Conversely, other authors endorse combining methods. For example, Gaskill, et al., 

2001 compared three different methods of comparing the GET with lactate threshold 

in 132 athletes, 31 active individuals and 22 sedentary individuals. Methods 

considered included i) ventilatory equivalents (Ve/02 and V^COi), ii) excess CO2  

production (VCO2 /VO2) - VCO2 iii) a modified F-slope method (20 second gas 

collection averages). The study concluded that the GET and lactate threshold were 

not significantly different for all methods used and for all groups (p > 0 .20 ) but that 

a combination of the methods of detection of the GET gave the strongest relationship 

with lactate threshold (r = 0.98 for all group data combined).

Conversely, combining methods is not always practical so in study the F-slope 

method seemed most appropriate.

2.16.3 History

Over the last decade use of accelerometers to predict EE has expanded exponentially 

in animal and human research (Troiano, 2005). The first attraction includes the 

availability to record both frequency and intensity data, giving superiority over both 

pedometers and actometers and allowing the technique to compete with the well- 

established indirect calorimetry, HR method and DLW  (Mathie, et al., 2004). 

Furthermore, substantial developments in microelectromechanical systems have 

facilitated development of very small, lightweight and relatively cost effective 

devices with both increased memory and recording frequencies (Mathie, et al., 2004). 

The device is easily attachable to the waist (on the belt) or any other part of the body 

(Hendelman, et al., 2000).

Unfortunately, although a vast number of studies have assessed the use of body 

acceleration as a proxy for EE, the data processing methods and the metrics used are 

widely varied making comparisons between studies more difficult.
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2.17 Metrics of acceleration

2.17.1 Acceleration ‘counts’

Traditionally, body acceleration data was expressed in the dimensionless units 

‘activity counts’ (Troiano, 2006). These are largely ill-defined throughout the 

literature but in general represent the total number of pulses/peaks above a set 

threshold obtained over a set time interval (epoch). These features are counted one 

by one irrespective of size (wavelength and amplitude) which greatly simplify the 

originally highly detailed signal. In addition, this makes it somewhat similar to 

pedometry even though the accelerometers are capable of yielding more-detailed 

acceleration data based on amplitude and frequency-content. After each epoch, the 

data is summarised (usually totalled) and stored to the memory card and the 

integrator reset to zero (Trost, 1998). This effectively maximises the memory 

capacity and explains why in the early stages of accelerometer development the 

continuous signal could not be considered. Later, the count data is often separated 

into classifications based on cut-off levels that resemble low, moderate and high 

intensity exercise in order to relate to health benefits and exercise recommendations. 

Still, the energy expended from one ‘step’ or ‘count’, will vary considerably between 

individuals (depending on weight, limb length, cardiovascular capacity) and the 

substrate and gradient of the surface over which the activity is taking place. All 

these factors would be much more closely represented firstly if three-dimensional 

body acceleration was considered and secondly if standardised units, meters per
'y

second {m.s' ) or gravity (g) were used. McGregor, et al. (2009) noted that this would 

allow better scientific transparency to facilitate more detailed cross-study 

comparisons. Nevertheless, even this primitive measure of body acceleration gives 

surprisingly high correlations with measured EE and fuelled the quest for advanced 

technology and signal processing.

2.17.2 The integral of acceleration

Bouten, et al. (1994) used a more sophisticated method of data processing, similar to 

methods suggested in this thesis. These authors used the integral of the absolute 

value of the accelerometer output for each axis and calculated the sum of the
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integrals. This type of integral represents the area under the acceleration-time curve 

(Eq. 2.15).

integral = J | a | d i f  (2.15)
o

over a time interval from 0 to T.

Other authors have modifications of the data processing using by Bouten, et al. 

(1994). For example, Parkka, et al. (2007) sums of the absolute acceleration for each 

axis to give one single signal and then integrates of a given period. Conversely, Kim 

et al. (2009), integrates each individual axis first but totals the positive and negative 

area i.e. uses absolute acceleration for each axis.

2.17.3 Dynamic body acceleration

Dynamic Body Acceleration {DBA) involves the use of a tri-axial accelerometer 

aligned with the major axes of movements and usually placed nearest the centre of 

gravity i.e. trunk (Wilson, et al., 2006). The device is set to record at infra-second 

rates of greater than 10 Hz (Qasem,et al., 2012) although Shepard, et al. (2008b) 

pointed out that the exact frequency of recording should be a function of the speed of 

movement. Currently, there are two distinct metrics based on DBA. These will be 

discussed in detail below.

Dynamic body acceleration can be defined as the acceleration caused by body 

movement. Accelerometers that measure proper acceleration (acceleration relative to 

free fall) will register a constant acceleration value representing the earth’s 

gravitational field (9.8 m. s~2 or +1 g) if aligned with their sensitive axis vertical, in 

addition to any dynamic acceleration.

Only the dynamic acceleration relates to EE therefore constant acceleration (often 

referred to as static acceleration as it will be termed throughout this thesis) needs to 

be extracted (Grundy, 2008). This is a relatively simple procedure if the device is
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aligned directly with the x, y and z axes as static acceleration will act solely on the

vertical axes so will always read + lg  (9.8 m .s~ 2 ). However, most dynamic 

movements involve some degree of tilting through change in posture. This deviation 

from the x, y, z alignment results in the static acceleration component manifesting 

itself in 2 or 3 axes and therefore needs independent calculation and extraction 

(Grundy, 2008). Deriving ‘true’ readings for static acceleration components along x, 

y and z accelerometer axes involves the additional requirement of estimates of 

heading usually via a sensor that tracks the earth’s magnetic field, a gyroscope or 

high speed video recording (Shepard, et al., 2008b).

However, Wilson, et al. (2006) describe a very simple method of approximating 

static acceleration from acceleration values alone, based on the observation that 

animal gait in all 3 dimensions oscillates equally around a set point. This allowed the 

assumption that a running mean of the whole or part of the signal for each axis is 

indicative of static acceleration of that axis. This component could then be subtracted 

from the total acceleration leaving the remaining dynamic acceleration (Eq. 2.16) to 

be converted to absolute positive values and summed. The use of absolute positive 

values avoids negative acceleration in one axis cancelling out positive acceleration in 

another as the negative sign only represents a directional component and even during 

negative acceleration energy is expended.

Total body acceleration =

Dynamic body acceleration (DBA) + Static body acceleration (2.16)

i) Vectorial dynamic body acceleration

Vectorial Dynamic Body Acceleration (VeDBA) is the vectorial sum of the DBA of 

each axis, also termed vector magnitude (Eq. 2.17).

(2.17)
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Mathematically, this is the correct way in which to represent three-dimensional 

acceleration, as acceleration is a vectorial quantity i.e. is determined by both 

magnitude and direction. Yet, movement in biological organisms is never produced 

by a single muscle (magnitude) contracting in the same plane as the movement 

(direction). Instead muscles work in groups, with each movement incorporating a 

combination of contracting and extending muscles with varied forces in order to 

elicit both the intended body movement whilst maintaining stability of joints (i.e. 

restricting range of movement in order to prevent injury) and whole body balance. 

This highly complex process, although obviously essential, effectively ‘wastes’ 

energy as muscles are always working against each other to a certain extent. This led 

to the proposal of overall dynamic body acceleration (ODBA) for estimation of EE.

ii) Overall dynamic body acceleration

Overall Dynamic Body Acceleration {ODBA) is defined as the summed DBA of all 

three axes (Eq.2.12; Wilson et al., 2006).

ODBA = \Ax \ + \AY\+\Az \ (2.18)

ODBA is theorised to be superior to VeDBA for the purposes of estimating EE on the 

basis that ODBA accounts for the ‘wasted’ EE during movement as the energy 

required for movement in each axis is considered. In other words, all stabilising 

motion as well as tracking motion is reflected in this metric.

Conversely, Gleiss, Wilson and Shepard (2011) suggest that the error in ODBA may 

be high during movements other than locomotion where orientation of the 

accelerometer may not be in line with the major planes of movements. In this case 

VeDBA may be more appropriate. No studies to date have compared these metrics 

and neither ODBA nor VeDBA have received much attention in human research.
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2.18 Validating body acceleration against indirect calorimetry

The following sections will consider previous research on the use of accelerometry 

as a proxy for EE in humans. Inclusion criteria for this part of the review include 

studies that use indirect calorimetry as the gold standard method of assessing EE and 

accelerometry as the new method. Due to a lack of human studies using DBA, all 

metrics were included.

In addition, the following table gives the basic specifications of the accelerometers 

included in the literature to avoid repetition of technical information throughout this 

review. The exact specifications vary slightly with the model number however, due 

to the already large variability in number of axes, placement and epoch this detail has 

been excluded from the analysis.
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Device Number of Axis Location

CSA

(later called MTI Actigraph)
Uni-axial Anywhere

Caltrac Uni-axial Anywhere

Bio-Trainer Pro
Uni-axial

(tilted at 45° angle)
Anywhere

SenseWear Armband Bi-axial Arm

TriTrac-R3D Tri-axial Anywhere

RT3

(next generation of the R3D)
Tri-axial Anywhere

Table 2.3. Basic information regarding accelerometers assessed in this review; 

number o f axis and possible location on the human body.

(Balogun, Martin and Clendenin, 1989; King et al., 2004)

2.18.1 Locomotive activity

A multitude of studies have found strong linear relationships between body 

acceleration measured in ‘counts’ and EE calculated from indirect calorimetry during 

level locomotive activity both in adults (Balogun, Martin and Clendenin, 1989; 

Hendelman, et al., 2000; Freedson, Melanson and Sirard, 1998; Welk, et al., 2000; 

Howe, Staudenmayer and Freedson, 2009) and children (Eston, Rowlands and 

Ingledew, 1998; Trost, et al., 1998), with accelerometer metrics explaining 58 -  92% 

and 48 - 77% of the variance in EE, respectively.
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i) Consistency

Despite these seemingly large disparities in explained variance, much of the 

literature shows that reasonable consistency exists between similar studies for both 

uni and tri-axial devices (Table 2.4).

Table 2.4. Examples o f  the consistency between studies in terms o f the ability o f  

acceleration metrics to explain the variance in EE metrics.

Authors Population Accelerometer Metrics Protocol Explained

variance

Eston,

Rowlands

and

Ingledew

(1998)

Children TriTrac

(right hip 

mounted)

sV02

(expressed as a 

ratio of body 

mass to the 

power of 0.75) 

and vector 

magnitude

Locomotion 

on a

treadmill at 

4 6 , 8 and 

10 km/h

^  = 0.78

Trost, et al. 

(1998)

Children CSA (right 

hip mounted)

EE and 

acceleration 

counts and

Locomotion 

on a

treadmill at 

3, 4 and 6 

mph

r1 = 0.74

Hendelman 

et al., 

(2000)

Adults CSA 

(left hip 

mounted)

Metabolic 

equivalent of 

task (METS)* 

and

acceleration

counts

Level over 

ground 

walking at 

self-selected 

speeds

rl = 0.79

*Metabolic equivalent of task (METS) can be defined as ‘V02 activity (ml.O2.kg' 

^min-1)/3.5 ml.0 2 -kg"1.min' 1 i.e. multiples of the resting metabolic rate’ (McArdle, 

Katch and Katch, 2007, p.203).
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ii) Repeatability

In addition, particularly high repeatability of the coefficient of determination (r2) for 

the relationship between acceleration counts and EE has been shown for studies 

using both uni-axial and tri-axial devices (Table 2.5).

Table 2.5. Examples o f the repeatability within studies in terms o f the ability o f

acceleration metrics to explain the variance in EE metrics.

Authors Population
Accelerom

eter
Metrics Protocol

Explained 

Variance (r2)
2nd

1st Trial
Trial

Hendelman, 

et al., (2000)

Adults CSA

(left hip 

mounted)

METS

and

accelero

meter

counts

Level over 

ground 

walking at 

self­

selected 

speeds

0.61 0.61

TriTrac 

(right hip 

mounted)

0.77 0.77

Welk, et al. 

(2000)

Adults TriTrac 

(right hip 

mounted)

VO2 and 

accelero 

meter 

counts

Treadmill 

locomotio 

n at 3, 4 

and 6 mph

0.86 0.85

BioTrainer 0.77 0.72

(right hip

mounted)
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ill) DBA metrics

In terms of DBA metrics, several studies have shown strong relationships between 

ODBA and VO2 . The majority of research has been in animals, with coefficients of 

determination values ranging from 0.74 to 0.91 (Wilson, et al., 2006; Halsey, et al., 

2008; Halsey, et al., 2009; Halsey, et al., 2010). To date, only one study has assessed 

humans (Halsey, et al., 2008) and reported of extremely high r values of 0.91-0.93 

depending on logger placement.

Although, VeDBA has been deemed the ‘proper’ way to calculate acceleration few 

studies have assessed the use of VeDBA as a proxy EE. Instead, human studies have 

tended to use the vectorial product of the more primitive ‘count’ data (as above) 

(Eston, Rowlands and Ingledew, 1998; Howe, Staudenmayer and Freedson, 2009). 

McGregor, et al., (2009) and Manohar, et al., (2011) are the only studies to date that 

have used VeDBA specifically, although Manohar does not term it as such. Both 

report extremely high coefficients of determination, 0.982 and > 0.9, respectively. 

McGregor, et al., (2009) assessed VO2 (ml.kg.min'1) versus VeDBA during a 

maximal treadmill test and Manohar, et al., (2011), EE (kcal.hr.kg) versus VeDBA 

treadmill walking.

2.18.2 Activities of daily living

Due to the relatively high success of accelerometers in the predicting EE in 

locomotive activity, assessment of activities of daily living was the next crucial 

phase in developing a device that can predict TDEE. Regrettably, in general, studies 

on adults have elicited relatively weak relationships with activities of daily living 

(Hendelman, et al., 2000; Welk, et al., 2000; Howe, Staudenmayer and Freedson, 

2009).

Howe, Staudenmayer and Freedson, 2009 reported a coefficient of determination of 

only 0.13 between measured PAEE (total EE -  individually measured RMR) and hip 

mounted vector magnitude counts for activities of daily living compared to that of r2 

= 0.64 for treadmill activity alone, with a combination of the two at r2 = 0.35. Welk, 

et al. (2000) also found that the combined data for two hip mounted uni-axial devices
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and one hip mounted tri-axial device showed relationships between acceleration
9 9counts and VO2 of only r = 0.30 for lifestyle activities in comparison to r = 0.74 to 

treadmill activity. Furthermore, Hendelman, et al. (2000) reported mean coefficients 

of determination of 0.38 and 0.35 during combined lifestyle and walking activities 

for tri-axial and uni-axial data respectively, significantly lower than walking trials 

only (r2= 0.79 and r2 = 0.59).

Conversely, the results for children are much less conclusive and in some cases 

largely opposing research in adults. For example, Eston, Rowlands and Ingledew 

(1998), found higher relationships in unregulated play activities between tri-axial 

vector magnitude counts and SVO2 (r2 = 0 .86) & uni-axial counts and SVO2 ( r 2 =
7 90.73) compared to treadmill activities (r = 0.78, r = 0.48 respectively).

Few other studies have compared locomotive and activities of daily living in children 

however many studies still report much higher r values for activities of daily living 

or locomotive and activities of daily living combined, in comparison to adults. Ott, et 

al. (2000) also found a significant relationship between TriTrac counts per minute 

and METS in ‘free-play’ activities, where 2 out of 8 activities were locomotive 

( r 2=0.48). Puyau, et al. (2002) also reported coefficients of determination of r2 = 

0.44 and r = 0.61 between EE and activity counts in two right hip mounted, uni­

axial accelerometers; CSA and Mini-Mitter Actiwatch during combined activities 

(activities of daily living and locomotive).

In opposition, other authors report significant but relatively low coefficients of 

determination for activities of daily living. For example, Mattocks, et al. (2007) 

found a relationship of only r2 = 0.13 (p < 0.001) between EE and right hip mounted 

actigraph accelerometer counts per minute for hopscotch activities. Ott, et al. (2000) 

also reported similar results for the relationship between uniaxial accleration counts 

and METS in ‘free-play’ activities where r2 = 0.18 {p < 0.001).

The trend for children to produce higher relationships between EE and accelerometer 

count relationships during activities other than locomotion in comparison to adults 

indicates that separate regression equations may need to be considered for this 

population.
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2.18.3 Linear versus quadratic relationship

A small number of authors have suggested quadratic equations (to the power of 2) 

are more appropriate in describing the relationship between acceleration and EE on 

the basis that the law of kinetic energy \m v 2 is quadratic and that this directly

relates to both movement and EE (Bouten, et al., 1994). Kumahara, et al. (2004) 

reports an extremely high coefficient of determination of 0.93 (p < 0.001) using a 

quadratic equation representing METS (measured in a respiration chamber) against 

accelerometer counts and states that this relationship is more appropriate than linear 

relationships when a large range of activity levels are undertaken. Conversely, 

Bouten, et al. (1994) found no additional benefit of a quadratic equation.

Due to the large body of research that reports reasonably strong linear relationships 

between acceleration and EE, this study used linear relationships only.

2.18.4 Uni-axial versus tri-axial accelerometers

Multiple studies have compared the use of uni-axial and tri-axial accelerometers in 

predicting EE during both locomotive and lifestyle activities. In general, there is 

strong evidence to support the use of tri-axial accelerometers over uni-axial devices 

due to higher coefficients of determination for the relationship between tri-axial data 

and metabolic rate (Eston, Rowlands and Ingledew, 1998; Hendelman, et al., 2000; 

Welk, et al., 2000; Rothney, et al., 2008). For example, Hendelman, et al. (2000) 

found that for both adult walking trials only and combined activities, r for the 

relationship between tri-axial counts and METS (0.79 and 0.38, respectively) 

superseded that of the relationship between uni-axial counts and METS (0.59 and 

0.35, respectively). Eston, Rowlands and Ingledew (1998) also reported similar 

results in children where for both walking/running on a treadmill and for combined 

activities, stronger relationships existed between s VO2 and the tri-axial vector 

magnitude counts (r2 = 0.77, r2 = 0.81) than uni-axial counts (r2 = 0.48, r2 = 0.61). 

These results are expected as the use of three axes allows much greater sensitivity in 

detecting movement in all dimensions. This was shown by Rothney, et al. (2008) 

who reported a higher sensitivity of the tri-axial (RT3) compared to uni-axial devices
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(Actical and Actigraph) denoted by a lower proportion of measured zero’s (r = 0.25, 

r2 = 0.35 and r1 = 0.37 respectively).

The expanding use of tri-axial acceleormetry in human research as well as its use in 

development of new metrics such as ODBA and VeDBA has determined its use in this 

study.

2.18.5 The effect of epoch length and averaging

In studies using acceleration counts, an epoch of 60s is most commonly used, giving 

units of ‘counts per minute’. This effectively summarises all counts recorded over a 

minute as the device stores the average count.

The nature of this data processing technique means that short periods of vigorous 

activity are blunted. For example, Nilsson, et al. (2002) provided evidence that short 

periods of very high intensity coupled with low intensity activity does no always 

reach the count threshold to be included into the ‘high intensity’ classification . The 

time period classified as ‘high intensity’ activity (11.7, 7.9, and 3.8 minutes) 

decreased with increasing epoch (5, 10, and 20 s, respectively).

In the case of the DBA metric, the time period of the running mean depicts the exact 

attribution of dynamic and static components, with a longer time period causes 

greater smoothing and so a higher ascription to the dynamic component (Shepard, et 

al., 2008a). Effectively, this influences whether the acceleration attributed to a 

stationary position or to ‘very low intensity’ activity.

In order to accurately define the static component the oscillations in dynamic 

acceleration caused by each gait cycle must be eliminated. Ideally, this would be 

achieved by averaging total acceleration over a certain number of complete gait 

cycles (Bouten, et al, 1997). However, the gait cycle varies depending on numerous 

factors including limb length and speed of locomotion. It would be inappropriate to 

measure this for each individual therefore averaging must be based upon a time 

period that includes at least one full gait cycle (Shepard, et al., 2008a).
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As of yet, no specific recommendations have been made for the time period of DBA 

smoothing in humans. Still, until further investigation, generalisations can be made 

based upon the findings of animal research.

The first use of DBA was in research was conducted on imperial cormorants (P 

atricep) where a running mean of Is was chosen (Wilson, et al., 2006). Furthermore, 

the first study using DBA in Homo Sapiens, also followed Wilson, et al. (2006) using 

running mean of Is (Halsey, et al., 2008). Shepard, et al. (2008b) later reported that 

the period of smoothing should be related to body size on the assumption that the 

greater the body size the larger the stroke/gait cycle. In general, ODBA has been 

shown to vary with the time period of smoothing up to a point where it stabilises i.e. 

static acceleration is represented as a straight line through the total acceleration. The 

length of the running mean should therefore be based upon the point of stabilisation 

of the static component (or any point afterwards) however the smallest possible time 

period is preferred in order to reduce the changes of error which is particularly 

prevalent during short bursts of differing activity and postures (Shepard, et al., 

2008b).

Although, Shepard, et al. (2008a) recommends a minimum running mean of 3s for 

species with a stroke or gait cycle of up to this value the data used was based upon 

walking, swimming and flying. When considering walking behaviour alone a stable 

running mean appears slightly earlier. For example, for walking behaviour in 

imperial shags static acceleration became stable for running means of > 2s. This is 

well within published human gait cycle time of 0.51s for an average walking speed 

of 5.8kph (Saris and Binkhorst, 1977). Furthermore, no significant differences were 

found between the imperial shags for ODBA values calculated using a running means 

that varied by 1 s. If the same were assumed for human data, using a running mean of 

2s would allow for comparison to previously published data by Halsey, et al. (2008). 

Consequently, a running mean of 2s was chosen for this study (Fig. 2.6).
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ODBA

ODBA

T=2s

Figure 2.5 Illustrating the idea o f a running mean, i.e. averaging over a specific 

time period T to find  the static component o f  ODBA.

2.18.6 The effect of inclined/declined terrain

In general, in comparison to locomotion on level ground, positive gradients elicit a 

greater energy cost due to the additional mechanical work needed to produce greater 

propulsion in order to overcome gravity. Small to moderate negative gradients 

require reduced energy cost as less mechanical work is required due to greater 

mechanical energy exchange i.e. gravitational potential energy is salvaged and used 

for propulsion. However, as downward gradient increases a metabolic minimum 

occurs. Any steeper negative gradients then require an increase energy cost due to 

the work that is done to counterattack gravity via the use of active braking (Gottshall 

and Kram, 2006; Bidders, et al., 2012).

It is therefore appropriate to conclude that acceleration versus EE regression 

equations for level locomotion will produce inaccurate estimates of EE when used 

for graded locomotion. This was demonstrated by Terrier, et al. (2001), who found 

large error when comparing VO2 estimated from level walking (using the vectorial 

sum of acceleration counts from the hip) with VO2 measured during locomotion on 

inclined (-53% error at +15% incline) and declined (+55% error at -15% incline) 

terrain.
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Moreover, development of regression equations for inclined locomotion has proven 

difficult as many studies report acceleration metrics fail to show any substantial 

changes in overall acceleration during inclined locomotion. For example, Levine, et 

al. (2001) concluded that the sum of the integrated acceleration curves from a tri- 

axial accelerometer placed on the lower back were unable to mirror the significant 

increase in EE that occurred during different speeds at inclination of 17.5° and 22.1°.

Conversely, Campbell, et al. (2002) reports high agreement between the TriTrac 

prediction equations for measured EE during inclined and declined locomotion. 

However, the authors also suggest that this may false positive and in actual fact the 

TriTrac underestimates on inclines and overestimates on declines.

In relation to DBA, Halsey, et al. (2008) developed separate regression equations for 

locomotion on the flat and on an incline and reported lower coefficients of 

determination during inclined walking from 1.1° to 8.3° (lower back: r = 0.60, upper 

back: r2 = 0.77) than on the flat (lower back: r2 = 0.92, upper back: r2 = 0.91). 

Although, it should be noted that these r2 values are still reasonably high and show 

that ODBA certainly shows some change with VO2 during inclined walking. Unlike 

acceleration counts it is possible that ODBA can pick up finer changes in gait during 

inclined locomotion.

2.18.7 The effect of accelerometer placement

The majority of studies have used locations on the body that are either most 

convenient to the user during activities of daily living, such at the waist/hip attached 

to a belt (Freedson, Melanson, Sirard, 1998; Eston, Rowlands and Ingledew, 1998; 

Trost, et al., 1998; Hendelman, et al., 2000; Ott, et al., 2000; Howe, Staudenmayer 

and Freedson, 2009) or the limbs i.e. wrist, ankle etc. (Swartz, et al., 2000; Parkka, et 

al., 2007; Kim, et al., 2009), or most convenient to the scientist, such as the lower 

back (Ekelund, et al., 2002, Manohar, et al., 2011) as this most closely represents the 

centre of gravity and thus whole body movement. Yet, despite its potential 

significance in influencing the quality and application of the research, reviews on this 

topic are sparse and a single best placement is still yet to be obtained.
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In general, in attempt to most closely represent the centre of gravity placements on 

the trunk or hips are preferred. Furthermore, differences between trunk locations 

including the upper and lower back and various hip placements are negligible. This is 

true when using the same type of accelerometer (Nilsson, et al., 2002; King, et al., 

2004; Halsey, et al., 2008) and in some cases when using different devices (Welk, et 

al., 2000). For example, Nilsson, et al. (2002) considered the CSA at two different 

locations, the right hip and the lower back and reported no significant differences 

between total numbers of accelerometer counts when assessing activity levels of 16 

children during all waking hours for 4 consecutive days. Furthermore, King, et al. 

(2004) mounted one of each of the CSA, BioTrainer-Pro, TriTrac-R3D and RT3 on 

the left hip and one on the right hip of 21 adults and found no significant differences 

between the two in terms of the EE readings for any of the devices during treadmill 

walking and jogging at 2, 3, 4, 5, 6 , 7, and 8 mph. In support, Halsey, et al. (2008) 

also found no significant difference between three custom-made identical tri-axial 

accelerometers one on the neck, one on the upper back and one on the lower back in 

the ability to predict VO2 from ODBA in 10 adults.

Conversely, Yngve, et al. (2003) found small significant differences between CSA 

counts measured at the right hip and lower back on during self-paced walking and 

jogging on a treadmill and track (28 adults) although, this difference was not evident 

in a later field study (34 adults) where acceleration data was recorded for 7 

consecutive days for the entire awake day.

When considering different devices, Welk, et al. (2000) assessed three placements 

around the hip (anterior axillary line, mid-axillary line, and an equal distance further 

posterior) with three accelerometers (TriTrac, BioTrainer, CSA) for locomotion of 

3mph and reported no significant difference between acceleration values in the 

TriTrac and the BioTrainer however, small significant differences were present for 

the CSA. This is expected as the CSA is uni-axial device aligned in relation to the 

vertical plane and would therefore miss any medio-lateral or anterior-posterior 

movement associated with locomotion. It should be noted that although the 

BioTrainer is also uni-axial, it is tilted at a 45° angle and thus effectively acts as a bi­

axial device.
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More recently, limb placements are becoming more common and in particular more 

unusual placements such as trouser pockets and backpacks are being considered due 

to ease of long term use, such that it does not interfere with daily activities. However, 

where a larger variety of placements are considered the differences become more 

evident. For example, in a recent study, Manohar, et al. (2011) expressed concern 

regarding the lack of placement consideration in accelerometer based research as 

they found large variations in the coefficient of determination as well as slope and 

intercept of the regression equation between i-phone accelerometer readings at 7 

different locations (Arm, Hand, Trouser Pocket, Backpack, Jack Side Pocket, Jacket 

Front Pocket, Handbag) and acceleration readings from a Physical Activity 

Monitoring System (PAMS) on the lower back during walking (r2 = 0.65 -  0.91). 

Although, it is unclear whether placement also affects the ability of the device to 

predict EE. Although, this might be expected it is not always the case. For example, 

Bouten, et al. (1997) found that regardless of the substantial differences between 

acceleration data at 6 different locations on the body (head, trunk, lower back/foot, 

lower leg, lower arm/hand, upper arm, upper leg,) during walking at speeds of 3 -  7 

kph, there was negligible influence on the correlations with EE. Conversely, it should 

be noted that the importance of these results are questionable due to the very small 

participant count (2 people).

Still, if trunk/hip placements are to be replaced with limb placements, then direct 

comparison of the ability to predict EE in these locations must be made. Several 

studies have investigated this but the results remain highly divergent with support 

both for (Parkka, et al., 2007) and against (Swartz, et al., 2000; King, et al., 2004) the 

use of limb placements over trunk/waist/hip placements and results showing limb 

and trunk/waist/hip placements are indifferent (Kim, et al., 2009). For example, 

Swartz, et al. (2000) assessed the relationship between accelerometer counts and
•y

METS in 70 adults and found poor coefficient of determination for wrist (r =0.181) 

compared to hip-mounted accelerometers (r2= 0.563) although both were statistically 

significant. Furthermore, King, et al. (2004) also indicated that limb mounted devices 

might be less reliable that hip mounted devices as the SenseWear Armband produced 

a gender and side (right and left side of body) interaction for individual axes counts, 

in comparison to four other hip mounted devices (Tri-Trac-R3D, RT3, BioTrainer-
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Pro, CSA) where results where consistent. However, this difference became 

irrelevant when the EE readings where considered.

In opposition, Parkka, et al. (2007) reported that an ankle mounted in house tri-axial 

accelerometer gave the strongest relationship between predicted EE and measured
9 9  9EE (r = 0.74) in comparison to wrist (r = 0.67) and hip (r = 0.64) mounted 

accelerometers. They suggest that this result could be due to the fact that most tasks 

involve majority foot work compared to hand movements. In addition, they also 

reported that wrist and hip accelerometers cannot accurately distinguish between 

activities other than running in terms of the predicted METS.

Additionally, Kim, et al. (2009) found no differences at all between Pearson 

correlations between acceleration data (expressed as the integral of each absolute 

signal) and EE at ankle, knee, wrist and upper back placements during submaximal 

treadmill exercise.

In conclusion, due to the largely variegated results when comparing limb and 

trunk/hip device locations, trunk/hip placements should be prioritised in studies not 

looking at placement effects. Furthermore, as the variances between trunk 

placements are on the whole indifferent, placement should be chosen due to 

practicality. For example, for humans during free living activity, attachment at the 

hip might be more sensible as the lower back device could get in the way/knocked 

during sitting activities. Conversely, during treadmill activity the lower back might 

be more sensible as the hip device could get knocked during arm swinging.

In conclusion, it is essential that detailed assessment of accelerometer placement 

using controlled variables i.e. the same acceleration and EE metrics is undertaken in 

future studies in order for the development of an accurate EE prediction equations.
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2.18.8 The accuracy of device specific prediction equations for energy 

expenditure

The imperative aim of all accelerometer based research is to produce a valid 

prediction equations for EE that are can be applied across all activities and for 

specific populations. Currently, many studies find consistently high correlations 

between accelerometer metrics and EE measured via indirect calorimetry, 

particularly in locomotive activity. Subsequently, these data are used to produce 

prediction equations that are incorporated into accelerometers which allow the device 

to output EE values. Unfortunately, due to the large disparity between treadmill 

exercise and activities of daily living as well as additional complications of surface 

terrain, surface incline, upper body movement, isometric muscular contraction, lack 

of detail in the acceleration count metric and the possible effects of body 

anthropometries and physiology (of which little research is available) the validity of 

most device prediction equations of EE are highly questionable. The large variety of 

commercially available accelerometers and corresponding EE prediction equations 

has caused an increasingly dispersed literature base with no clear conclusion. In 

addition, Lyden, et al. (2011) has reported considerable bias in the way in which new 

prediction equations are validated where models are tested using similar populations 

and activities under which they have been developed. Furthermore, many studies 

only assess a single device making comparison between devices very difficult.

It should be noted that for all studies discussed below the accelerometer devices were 

placed in similar locations i.e. waist/ hip. Hence, it is assumed that there is no effect 

of placement. The exception is the SenseWear Armband, however, as the results for 

this were similar to other devices placed at the waist, it has been included in the 

discussion.

In general, the literature indicates that the majority of devices overestimate 

locomotive activity (Welk, et al., 2000; King, et al., 2004; Crouter, et al., 2006a; 

Howe, Staudenmayer and Freedson, 2009) and underestimate other lifestyle/sporting 

activities (Welk, et al., 2000; Crouter et al., 2006a; Howe, Staudenmayer and 

Freedson, 2009).
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Welk, et al. (2000) compared device based predicted METS (using manufacturer- 

based algorithms) to measured METS (via indirect calorimetry). The Tritrac and 

BioTrainer largely overestimated EE during treadmill exercise by an average of 

112% and 128% respectively, although the CSA predicted the METS values within 

3.3%. In addition, all three devices underestimated EE during combined lifestyle 

activities; CSA (53%), BioTrainer (52%) and Tritrac (57%). Similarly, King, et al. 

(2004) compared monitor predicted activity EE (total EE -  RMR EE based on 

manufacturer’s equations) with measured activity EE (via indirect calorimetry) for 

four waist mounted accelerometers (CSA, TriTrac- R3D, RT, BioTrainer-Pro) and 

one upper arm mounted accelerometer (SenseWear Armband) during treadmill 

walking and jogging (2, 3, 4, 5, 6 , 7 and 8 mph). On the whole, all accelerometers 

over estimated activity EE (p < 0.001) at all speeds except the CSA which 

underestimated during very slow walking and jogging. Howe, Staudenmayer and 

Freedson, (2009) also reported a similar overestimation of activity EE for activities 

involving predominantly lower body movement i.e. including mainly locomotive 

activities (26.6-55%) and an underestimation of activity EE for activities with greater 

upper body movement (24.4-64.5%) using manufacturer based equations from a 

waist mounted RT3.

Further evidence of inconsistency can be found in a review by Crouter, et al. (2006a). 

These authors examined multiple previously published regression equations for three 

devices; CSA (later termed Actigraph) (15 equations), Actical (2 equations) and 

AMP-331 (manufacturer’s equation). In general, the equations were denoted only 

valid for the activities they were established with. For example, the Actigraph 

equations developed via walking and jogging (e.g. Freedson, Melanson and Sirard, 

1998 and Hendelman, et al., 2000) underestimated the most mixed activities. In 

addition, equations based on lifestyle activities (such as Swartz, et al., 2000) 

overestimated walking and light activity and underestimated mixed activities. The 

AMP-331 accurately predicted the EE for fast and slow walking but as with most of 

the above studies, it underestimated mixed activity. Unusually, the Actical was able 

to accurately predict sedentary activities but followed the general trend of 

underestimating mixed activities and overestimated walking.
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In conclusion, no device has been found to accurately predict EE, with the highest 

intensities tending to give the least accurate results (Lyden, et al., 2011). For 

example, Welk, et al. (2000) reported that in general, the three waist mounted 

accelerometers (Tritrac, CSA, BioTrainer) were reasonably accurate in predicting 

METS at walking speeds of 3mph and 4mph, but produced greater error at the 

jogging speed of 6mph. Additionally, it has commonly been reported that the RT3, 

ActiGraph, and Actical are not accurate in predicting EE over a wide range of 

activities (Crouter, et al., 2006a; Lyden, et al., 2011) with difference even between 

different generations of the same device (Rothney, et al., 2008).

2.18.9 Conclusions regarding the validation of body acceleration against 

indirect calorimetry

The present seeks to assess the relationship between DBA and EE and specifically, to 

decipher whether ODBA or VeDBA is the best predictor of EE.

There were several options that were considered when designing the protocol 

including; population, activity type, type of relationship, type of accelerometer, 

epoch or averaging length, use of a gradient, accelerometer placement and use of 

prediction equations. These were based upon the literature review and are discussed 

in more detail below.

i) Population

In the present study, adults where the accessible population therefore subsequent 

decisions were based upon literature relating to adult populations.

ii) Locomotive activity or activities o f daily living

The current literature reports a strong linear relationship between acceleration 

metrics and EE during locomotive activity in adults. This relationship is greatest 

when DBA is used as the acceleration metric.
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DBA has not previously been used to predict EE  during activities of daily living. 

Furthermore, other acceleration metrics such as acceleration counts have shown poor 

relationships with EE during activities of daily living in adults.

Thus, since the main aim was to access the differences between ODBA and VeDBA, a 

protocol involving locomotive activity only was chosen. This gives the opportunity 

to use previous research in which to draw comparisons and build conclusions. In 

addition, body position during locomotive activity is on the whole, upright. This 

simplifies the results when assessing the effect of device orientation.

iii) Linear versus quadratic relationship

There are mixed results regarding the appropriateness of using quadratic equations to 

describe the relationship between acceleration and EE. In addition, a large body of 

research shows reasonably strong linear relationships. Thus, the present study will 

assess the linear relationship between DBA and EE.

iv) Uni-axial versus tri-axial accelerometers

DBA is based upon tri-axial data therefore a tri-axial accelerometer must be used. 

Furthermore, on the whole, the literature reports stronger relationships between 

acceleration and EE with tri-axial devices.

v) Epoch or averaging length

A running mean of between Is and 3 s is common in DBA research. For this study, an 

averaging period of 2s was chosen based upon both the timing of the human gait 

cycle and the ability to compare between previous research.

vi) Inclined and declined terrain

The literature in relation to the effect of inclined and declined terrain on the ability of 

acceleration metrics to predict EE is scarce. However, from the studies that are 

available the following conclusions can be made. The use of regression equations
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produced during level locomotion give largely inaccurate estimates of EE on graded 

terrain. Furthermore, development of regression equations on graded terrain has 

proven difficult using accelerometer count data due to the inability of acceleration 

counts to show substantial change on a gradient. DBA has proven much better at 

recognising gradients although poorer relationships between DBA and EE exist on an 

incline than on the flat. Due to the lack of research into graded terrain, the present 

study is based upon a flat gradient only.

viij Accelerometer placement

In general, trunk placements (neck, back, hip) have elicited the greatest relationships 

between acceleration metrics and EE and show little difference between them. Only 

one study to date has assessed the effect of trunk placements using ODBA and again 

shown no difference. However, the effect of placement on VeDBA has never been 

tested. Furthermore, DBA has already been shown to be a much more sensitive 

measure than any previous accelerometer metric therefore this study will seek to 

further evaluate the effect of different trunk placements. Placements near to the 

centre of gravity were chosen. The upper back was chosen due to ease of attachment 

and the hip due to potential for future use during activities of daily living.

viii) Device specific prediction equations

The current plethora of prediction equations are specific to the population and 

protocol under which there were developed therefore the present study will use raw 

DBA and EE data to produce its own prediction equation.
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Chapter 3

Methods
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3.1 Human participants

The study consisted of twenty-one voluntary participants (seventeen males, four 

females) recruited via convenience sampling (mean age = 22.44 ± 3.28 years; height 

= 1.75 ± 0.07 m; weight = 70.66 ± 9.78 kg; BMI = 21.95 ± 2.41 kg.m'2). Seventeen 

participants had a body mass index (BMI) equating to a normal body weight (BMI = 

18.5-24.99 kg.m' ) and four participants were considered overweight (BMI = 25.0- 

29.99 k g .m '). All participants were non-smokers.

The selection criteria included; i) aged between 18 and 50 years, ii) apparently 

healthy (i.e. free from chronic respiratory or cardiovascular problems, muscular 

disorders, metabolic disorders, central or peripheral nervous disorders, diabetes) and

iii) not pregnant.

3.2 Experimental protocol

The experimental protocol involved two sessions of non-invasive physiological 

measurement; a body composition assessment (specifically fat mass and fat-free 

mass) and a maximal exercise test (VO2 max test) on a treadmill. Three body 

composition assessment techniques were used one after the other for comparison; air 

displacement plethysmography, bioelectrical impedance analysis and skinfolds. 

Ethical approval was granted by Swansea University Sports Science Ethics 

Committee. Prior to each session, written informed consent, a American Heart 

Association (AHA) /American College of Sports Medicine (ACSM) Health/Fitness 

Facility Pre-participation Screening Questionnaire and a 24 hour diet diary 

(including smoking status) were obtained.

3.3 Anthropometric measurements

3.3.1 Height and weight

Commencing each session, height was measured to the nearest 0.1 cm using a 

Holtain Stadiometer (Holtain Ltd, Crymych, Wales) and weight was measured to the 

nearest 0.1 kg using Seca 770 Digital Scales (Seca Ltd, Birmingham, UK) (Heyward
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and Stolarczyk, 1996). Measurements were taken according to the International 

Standards for Anthropometric Assessment (2001), defined by the International 

Society for the Advancement in Kinathropometry as described in Heyward and 

Stolarczyk (1996) and Eston and Reilly (2001a).

3.3.2 Girths

Hip and waist girths (see Appendix 7.10 for descriptions) were measured using a 

Lufkin Executive Diameter Steel Tape Measure (Lufkin, Mexico) following the 

International Standards for Anthropometric Assessment (2001). The tape was 

positioned until there was no slack but it did not compress the skin. The zero end of 

the tape was held in the left hand and once wrapped around the girth, the overlapping 

tape was placed underneath the zero point (Heyward and Stolarczyk, 1996).

3.3.3 Lengths

Leg length was measured to the nearest 0.5 cm using a meter rule placed 

orthogonally to the floor. The trochanterion was considered the top of the leg (see 

Appendix 7.10 landmark description).

3.4 Body composition assessment

3.4.1 Pre-test requirements

It was requested that all participants adhere to the following stipulations prior to the 

body composition assessment; i) no eating 12 hours prior, ii) no exercise 12 hours 

prior, iii) no alcohol or caffeine 48 hours prior, iv) no diuretics 7 days prior, v) 

urinate and empty bowels within 30 minutes of testing, vi) consumption of at least 

500ml water prior to testing and vii) remove all jewellery (Heyward and Stolarczyk, 

1996; Hayward and Wagner, 2004; Bodystat Ltd, 2000).
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3.5 Air displacement plethysmography

Air displacement plethysmography was performed using the BODPOD (Bod Pod 

2000, A Body Composition System, Life Measurements Inc., California, USA). This 

system measures whole body density based on non-invasive measurement of body 

mass and body volume

3.5.1 Principle

The BODPOD is comprised of two chambers (a front test chamber and a rear 

reference chamber) parted with a computer controlled diaphragm system (Fig. 3.1). 

The diaphragm is oscillated during the test to create small changes in volume in each 

chamber. The changes in pressure are measured and subsequently used to determine 

volume. Initially, this procedure is used to establish volume of the empty test 

chamber and subsequently the volume when the subject is sat inside (Life 

Measurement Inc., 2000).

Measurement Chamber
Reference Chamber

Window

Diaphragm System

Figure 3.1. Schematic diagram o f the BODPOD.
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The volume of the chambers is calculated via the principle of Poisson’s Law (Eq. 

3.5), a variation of Boyles Law. Subsequently body volume, body density and 

percentage body fat can be calculated (Hayward and Wagner, 2004).

PVl = k (3.1)

P = pressure 

V =volume 

k = constant

X = the ratio of the specific heat of the gas at a constant pressure to the specific heat 

of the gas at a constant volume

Poisson’s Law describes the pressure-volume relationship in adiabatic conditions; 

conditions of no net heat flow i.e. where temperature varies throughout both 

chambers. Adiabatic conditions are created due to heat transfer from the body 

however, body hair, residual air in the lungs, clothing and skin surface area can 

create potential for isothermal conditions (constant air temperature). Air is much 

more compressible in isothermic conditions (40% more compressible compared to an 

adiabatic environment) and thus produces lower pressure signals for a given volume. 

Under these conditions, Boyle’s law applies (Eq. 3.6).

P = pressure 

V = volume 

k = constant

(Higgins, et al., 2001)

The BODPOD has several circulation mechanisms to limit the presence of isothermal 

air including an air circulation mechanism and the oscillating diaphragm (Higgins, et 

al., 2001). In addition, the software adjusts for the effect of isothermal air around the 

skin surface area and in the lungs. The former adjustment (skin surface artefact), 

assumes minimal clothing and body hair, therefore all participants were asked to

PV = k (3.2)
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enter the BODPOD in swimwear or underwear and a swim cap. With regard to the 

latter variable (the lungs), a nose clip is worn to reduce residual air in the respiratory 

tract (Hayward and Wagner, 2004). In addition, the BODPOD uses a predicted lung 

volume in its calculation of body volume.

Once body volume has been established the BODPOD calculates body density, fat 

mass and fat-free mass. First, body density is calculated using measured body 

volume and body weight.

_3 Mass(kg)
Density(kg.m~ ) = — ----- — j -  (3.3)

Volumeym )

Percentage fat mass is then determined using a selection of pre-programmed 

equations. In this case the Siri (1956) equations were used (Eq. 3.2).

FatMass(%) =
f  4 95

-4 .5
Densityikg.m 3)

x 100 (3.4)

Finally, percentage fat mass is converted to kilograms (Eq. 3.3) and fat-free mass

(kg) calculated based upon the two compartment model of body mass i.e. fat-free

mass and fat mass (Eq. 3.4).

FatMass{kg) = BodyMass(kg) x (3'5)

Fat Free Mass (kg) = Body Weight (kg) -  Fat Mass (kg) (3.6)

3.5.2 Calibration

The BODPOD was calibrated according to the manufacturer’s instructions (Life 

Measurement Inc, 2000). The device was left to warm up for 30 minutes prior to 

testing. Next, a two-point calibration was performed; the empty chamber was 

measured to establish a zero baseline and then a metal cylinder of a known volume
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(50.011L) was used as a second calibration value. Scales were calibrated using a 

20kg weight and the reading was accepted within ± 0.01kg. The participant was 

weighed using the BODPOD scales and name, age and height details were entered 

into the system (Life Measurement Inc., 2000).

3.5.3 Protocol

The protocol was run according to the manufacturer’s instructions (Life 

Measurement Inc., 2000). Upon entering the BODPOD the participant was instructed 

to sit upright, leaving a small gap between their back and the back surface of the 

chamber. It was requested that they keep still, quiet and breathe normally (relaxed 

tidal breathing). Two tests were performed, each lasting 50 s. The door was kept 

closed throughout each test but opened in between to allow mixing of air. Testing 

continued until two tests gave consistent values (usually within 2 tests) for body 

volume. The calculations for body density, fat mass and fat-free mass are then 

performed automatically.

3.6 Skinfolds analysis

3.6.1 Skinfolds

Biceps, triceps, subscapular and suprailliac skinfolds were taken using Harpenden 

skinfold callipers (British Indicators, West Sussex, UK) according to the 

International Standards for Anthropometric Assessment (2001).

All measurements took place in a warm room with the participant standing with 

shoulders and arms relaxed (Eston and Reilly, 2001a). Measurements were taken on 

the right hand side of the body and recorded to the nearest 0.1 mm (Heyward and 

Stolarczyk, 1996).

Landmarks and subsequent measurement sites (see Appendix 7.10 for descriptions) 

were marked by a small cross with a washable pen. For each measurement site the 

left thumb and forefinger was used to raise a fold of skin using a slight pulling and 

rolling action. The right hand was used to place the calliper pressure plates
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perpendicular to the skinfold and 1cm below/right of the landmark. The callipers 

were held in position for approximately 2s before the measurement was taken. The 

fold was kept elevated throughout the measurement (Eston and Reilly, 2001a).

All measurements were taken once and then repeated in rotational order. If the two 

values were within ± 10% of each other an average value was used (Heyward and 

Stolarczyk, 1996). If not, a third measurement was taken and the median value used.

Body density was calculated using the regression equations developed by Dumin and 

Wormersley (1974) based upon the sum of four skinfolds, gender and age (Eq. 3.7 

and Table 3.1).

BodyDensity{kg.m~3) = (c — m)x log ̂  biceps + triceps + subscapular + sup railliac

(3.7)

c=  see Table 3.1 

m -  see Table 3.1

Table 3.1. Values for c and m in the body density equations developed by Durnin 

and Wormersley (1974).

Age (years)

17-19 20-29 30-39

c 1.1620 1.1631 1.1422
Male

m 0.0630 0.0632 0.0544

c 1.1549 1.1599 NA
Female

m 0.0678 0.0717 NA

Fat mass (%) was then calculated using the Siri equation (Eq. 3.2), converted to 

kilograms (Eq. 3) and the latter used to calculate fat-free mass (Eq. 3.4).
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3.7 Bioelectrical impedance analysis

3.7.1 Principle

Bioelectrical impedance analysis (BIA) was performed using the BodyStat Quadscan 

4000 (Stat Plus Electrical Impedance Dual Channel Analyser, UK). This sends a low 

level current through the body at a frequency of 50 kHz. The current passes through 

the body due to the presence of water and electrolytes and will follow the path that 

provides least resistance. Different body tissues contain varying of amounts of fluid 

and hence vary in there electrical conductivity. Fat is primarily anhydrous and so a 

poor electrical conductor (Heyward and Stolarczyk, 1996).

The Quadscan detects the voltage drop due to impedance which is caused by 

anhydrous body tissues. The electrical impedance value is used to calculate total 

body water and fat-free mass is subsequently calculated using an assumed hydration 

factor of lean tissue.

Estimates of total body water using bioelectrical impedance analysis are usually 

based upon the equation:

V = ^ — (3.8)
R

V= conductive volume (represents total body water) 

p= resistivity of the conductor

S  = stature (assumed to be the length of the conductor)

R = whole body resistance

(Houtkooper, et al., 1996)

This equation assumes that the conductor cross sectional area and length are fixed, 

the conductor has a uniform composition and there is an equal current distribution. 

These do not hold true in the case of Homo Sapiens; the length of the conductive 

area does not equate to stature (see 3.7.3 for electrode placements) and p  varies with
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the composition and distribution of tissues (Heyward and Stolarczyk, 1996; 

Houtkooper, et al., 1996). However, clear statistical associations have been 

recognised between Sf/R and total body water in numerous study samples 

(Houtkooper, et al., 1996) thus manufacturer’s regression equations have been 

developed to predict total body water and subsequently fat-free mass (using an 

assumed hydration factor of lean tissue) in relation to weight, height, gender and age.

3.7.2 Calibration

The BIA self-calibrates each time a measurement is taken, however to maximise the 

accuracy of measurement the device was turned one minute prior to testing as 

advised by the manufacturers (Bodystat Ltd, 2000).

3.7.3 Protocol

The protocol was implemented according to the manufacturer’s instructions 

(Bodystat Ltd, 2000). Participants lay still and quiet in a supine position on a non- 

conductive bed in a room at ambient temperature (approximately 25 °C) (Heyward 

and Wagner, 2004). No parts of their body were touching i.e. a gap was left between 

the thighs and between the arms and trunk (Heyward and Stolarczyk, 1996). This 

state was assumed for 5 minutes prior to the test and throughout the measurement 

(Bodystat Ltd, 2000).

Four measurement sites were located along the right side of the body; the dorsal 

surface of the ankle and wrist, where the upper border of the electrode bisects the 

ulna/medial and lateral malleoli respectively, and the base of the second/third 

metacarpal/metatarsal-phalangeal joint on the hand and foot respectively. The sites 

were cleaned thoroughly with 70% alcohol wipes and electrodes placed onto the 

skin. A gap of at least 5 cm was left between the two electrodes on the hand and the 

two on the foot (Heyward and Stolarczyk, 1996). Leads were attached to the 

appropriate electrodes and participants details entered into the machine. The 

measurement period took 19-20 seconds. Percentage body fat values were recorded 

from the display.
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3.8 Measurement of maximal oxygen uptake (VO2 max test)

3.8.1 Maximal oxygen uptake ( VO2 max) pre-test requirements

Prior to the maximal oxygen uptake test (VO2 max test) it was requested that all 

participants adhere to the following stipulations; i) no eating 2/3 hours prior, ii) no 

exercise 12 hours prior, iii) no alcohol or caffeine 48 hours prior, iv) consumption of 

at least 500ml water prior to testing (Eston and Reilly, 2001b).

3.9 Heart rate monitoring

Participants were fitted with a Polar S610/S810 Heart Rate Monitor (Polar Electro, 

Kempele, Finland) (Fig. 3.2) in order to allow continual heart rate monitoring for 

both health and safety purposes and as part of the criteria for assessing VO2 max.

3.10 Respiratory analysis

A Jaeger Oxycon Pro Online Gas Analyser (Erich Jaeger GmbH, Hoechberg, 

Germany) was used for breath-by-breath measurement of oxygen (O2) and (CO2) 

concentration as well as volume of expired air throughout the VO2 max test.

The Jaeger Oxycon Pro consists of a silicon mask, digital Triple-V volume sensor 

(Fig. 3.2), twin gas tubes, a pressure transducer, an amplifier, O2 and CO2 gas 

analysers and a PC. The silicon mask was placed over the participant’s mouth and 

nose and attached to adjustable strapping wrapped comfortably around the head (Fig. 

3.3). The fit was modified until the mask created an air tight seal, allowing air flow 

solely through the volume sensor.
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Twin gas tubes [

Figure 3.2. A schematic diagram o f the Triple- V volume sensor.

Figure 3.3. An example o f the fitting o f the silicon mask
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3.10.1 Calibration

The Oxycon Pro was calibrated prior to each test using a three stage process; i) entry 

of ambient conditions, ii) manual volume calibration and iii) gas calibration 

according to the manufacturer’s instructions (Erich Jaeger GmbH, 2002).

i) Ambient conditions

Values for laboratory temperature, pressure, humidity and altitude were 

entered into the system to allow VE (volume of expired air) to be 

converted from ATPS (ambient temperature and saturated vapour 

pressure) to STPD (standard temperature and dry vapour pressure) values 

(Eq. 11). This refers to dry gas i.e. containing no water vapour, at a 

temperature of 0°C and pressure of 760 mmHg. STPD values are 

necessary for inter-study comparisons.

j- nrrnr  ̂ - (B P-SW VP ) 273
VE STPD = V E ATPS x ^ x   (3 .11)

760 273 A t

(Eston and Reilly, 2001b)

ii) Manual volume calibration

A 3L calibration pump was attached to the Triple-V volume sensor. Air 

was pumped at a constant speed until 5 accurate recordings were made. 

Values were excepted if the correction factors were within the 

manufactures guidelines, if not, the process was repeated (Erich Jaeger 

GmbH, 2002).

iii) Gas analyser calibration

Verified concentrations of O2 and CO2 were used to calibrate the gas 

analyser. The calibration was accepted only if the correction factors were 

within the manufacturer’s specifications (Erich Jaeger GmbH, 2002).
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3.10.2 Check phase

This included a 3 minute period prior to the start of the V 02 max test in which the 

recording of the respiratory variables were visually checked to ensure the equipment 

is recording consistently and reliably.

3.10.3 Output

V02 data was selected from the PC and exported as a csv file and subsequently 

converted into an Excel file.

3.10.4 Measurements and calculations

VO2 was calculated using the following formulae:

V 0 2 = (V, X  F ,0 2)~ (V e X FE0 2) (3.12)

V] = Volume of inspired air 

Ve -  Volume of expired air 

F j02 = Concentration of inspired 0 2 

Fe0 2 = Concentration of expired CO2

(Eston and Reilly, 2001b)

Ve ATPS is measured via the Triple-V volume sensor and converted to Ve STPD (Eq.

3.11). Concentration of inspired O2 (F/02) and C 02 (FjC02) are known i.e. 0.2093 

and 0.003 respectively (Eston and Reilly, 2001b). Concentration of expired O2  

(Fe0 2) is measured via the 0 2 and CO2 gas analysers.

Volume of inspired air (V/) is calculated using the Haldane transformation. The 

Haldane transformation calculates V; based on the concept that nitrogen (N2) is 

essentially inert and so will have exactly the same number of molecules (mass) in 

inspired and expired air (Eq. 3.13). Assuming a constant mass, concentration of N2
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will vary directly with volume, therefore if the concentration/fraction of inspired N2 

(.F1N2) and expired N2 (FEN2) is known, Vj can be computed (Eq. 3.13-18) (Eston and 

Reilly, 2001b).

Mass of inspired N2 = Mass of expired N2 (3.13)

Mass
Concentration = ---------  (3.14)

Volume

Mass o fN2= Vj  x  FjN2 (3.15)

Mass of N2 = Ve x  FeN2 (3.16)

Vj x FjN2 = Ve x  FeN2 (3.17)

v  = g i .XFite  (3.18)

(Eston and Reilly, 2001b, p. 147)

3.10.5 Hygiene

To avoid risk of infection, contaminated equipment i.e. the silicon mask and triple V 

sensor were disinfected via the disinfectants manufacturer’s instructions and rinsed 

with distilled water after every participant.

3.11 Tri-axial accelerometers

Three tri-axial accelerometers were used (X6-1A USB; Gulf Coast Data Concepts, 

LLC, Waveland, USA; 16 bit resolution, recording range ± 6 g), each set to record at 

80 Hz on each of the three orthogonal axes.

Each accelerometer weighs approximately 55g and is constructed of a printed circuit 

board, memory card, a USB connector, an on/off button, a removable microSD flash 

memory card enclosed in a semi-transparent blue plastic casing (Fig. 3.4 and 3.5). It 

is powered by a single 1.5V alkaline AA battery. The on/off button can be easily
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accessed through a small hole in the casing and two LED’s indicate system status. 

Accelerometer and ‘logger’ are used as equal terms from here on in.

Figure 3.5. A schematic diagram o f a dismounted X6-J A accelerometer.

3.11.1 Placement

Two of the accelerometers were securely fastened in holding moulds cut into a 

polystyrene saddle (Fig. 3.6). One was held vertically in line with the main body axes 

(heave, surge and sway) and one displaced from by rotating the device by 30° about 

the yaw, roll and pitch (Fig. 3.7 and Fig. 3.8). The saddle was mounted on the mid­

upper back between the scapulas and held tight to the skin using a specially made 

adjustable SilasticH harness (SilasticH PI Base and Curing Agent, Thomson Bros 

Newcastle Ltd) which wrapped around the shoulders (Fig. 3.9). This kept the saddle 

in a stable locus even during vigorous movement. The structure and attachment of 

the saddle was optimised by trial and error during pilot studies so that it moved in

Figure 3.4. An X6-1A accelerometer.
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accordance with the participant’s body. The third accelerometer was attached 

vertically (in agreement with the body’s heave, surge and sway axes) to the mid­

coronal plane of the right hip via an adjustable elasticated strap (Fig. 3.10).

120 mm

Figure 3.6. Polystyrene saddle showing the orientations o f  the holding moulds for 

the straight and skew mounted accelerometers.

Yaw

Heave

Roll

Sway
Pitch

Figure 3.7. A diagrammatic representation o f  the axis upon which the 

accelerometers were orientated against.
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i)

Heave

Surge

ii)
Straight

Skew
‘ i t

"V/
v* Sway

Figure 3.8. Diagram o f i) the major axes o f  the body and (ii) the orientations o f  

the ‘straight ’ and ‘skew ’ accelerometers.

Figure 3.9. Positioning o f the saddle with SilasticH harness. The straps are in a 

figure o f  eight configuration.
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Figure 3.10. Hip mounted logger attachment and positioning.

3.11.2 Calibration

After switching on the device, it was left stationary on a flat surface (heave axis 

parallel to the surface) for 10 seconds. From this position, three large consecutive 

back and forth movements were made firstly in the sway axis and secondly in the 

heave axis. The device was subsequently left to stand stationary on the table for a 

further 10 seconds. This calibration procedure left a clear trace in the output data and 

acted as the start point. Time was noted from the stop clock at the start of the 

calibration and again at the start of the VO2 max test.

3.11.3 Output

The logger archives data to comma delimited text files, which were subsequently 

opened in Microsoft Excel for data analysis as recommended by the manufacturers 

(Gulf Coast Data Concepts, 2010).
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3.12 Rating of perceived exertion scale

Rating of perceived exertion was assessed using the Borg 15-point psychophysical 

ratio scale (Borg, 1982) recorded by holding a paper copy of the scale in front of the 

participant so that they could point to the perceived exertion rating (Appendix 7.2). 

This allowed continual psychophysical monitoring of the participant for health and 

safety purposes. Additionally, rating of perceived exertion was used as part of the 

criteria for assessing FC^max.

3.13 Protocol for maximal oxygen uptake test (KO^max test)

A progressive, incremental maximal exercise test (VO2 max test) was performed on a 

motor driven treadmill (Woodway Ergo ELG 55 Treadmill, Woodway GmbH, Weil 

am Rhein, Germany). Treadmill speed started at 3 km.h' 1 and increased by 1 km.h' 1 

increments every 3 minutes until volitional exhaustion. Treadmill gradient remained 

at 0% throughout the test due the effect that gradient might have on the relationship 

between acceleration and energy expenditure (EE) (see section 2.18.6).

It was requested that participants did not talk during the protocol unless necessary i.e. 

to ask questions regarding the protocol or to indicate exhaustion.

Breath-by-breath respiratory data, tri-axial body acceleration and heart rate from the 

Holter ECG were set to continuous recording throughout the test. Heart rate from the 

polar monitor and rating of perceived exertion were recorded manually in the last 10 

seconds of each stage. Time was measured precisely using a stop clock.

The criteria used to confirm that participants had reached VO2 max included; i) a 

peak heart rate of ±10  beats of estimated age-related maximum, ii) rating of 

perceived exertion of 19 or 20 on the Borg exertion scale and iii) volitional 

exhaustion (Eston and Reilly, 2001b).
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3.14 Methods of data processing

Respiratory data and acceleration data from the straight-mounted logger were 

obtained for all participants (N  =21). Data from the skew-mounted logger and hip- 

mounted logger were obtained for 18 and 17 of the participants respectively.

3.14.1 Tri-acceleration data

The raw acceleration data was written in comma delimited text format with data lines 

containing readings from the x, y, z axes and of time. These files were converted to 

Excel files for analysis.

Raw data was registered as deadband counts. These units can be defined as an integer 

between 0 and 2048. At each sample point a new count will register if the value from 

any of the sensor axes exceeds that of the previous value by a deadband count. The 

deadband counts were converted into g  using the manufacturer’s calculations, which 

were based upon AD resolution (i.e. 16-bit) and gain (i.e. ± 6 g) (Eq.3.19).

DeadbandCounts
g = ----------------------  (3.19)

5440

Data from each axes were treated separately. Each channel was filtered using a 

running mean over 2 seconds. This reflects the static acceleration. Dynamic body 

acceleration (DBA) was calculated by subtracting the static acceleration from the 

total body acceleration (g) (Eq. 3.20).

DBA (g) = Total Body Acceleration (g) -  Static Body Acceleration (g) (3.20)

DBA for each axis was then converted into positive values and these values were 

either summed to provide overall dynamic body acceleration (ODBA) (Eq.3.21);

ODBA = \Ax\ + \Ay\ + \Az\ (3.21)
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where Ax, Ay and Az are the derived dynamic accelerations at any point in time 

corresponding to the three orthogonal axes of the accelerometer, or used to produce 

the vector o f dynamic body acceleration (VeDBA) (Eq. 3.22);

Excel files and interpolated into 1 second intervals using MATLAB (R201 la  version 

712), a numerical computation, visualization and programming software.

3.15 Methods of averaging 

3.15.1 Anthropometric data

Average weight (with equipment) and height over the two sessions were used in 

analysis. Weight (without equipment) was only measured for the VO2 max test.

3.15.2 Dynamic body acceleration and VO2 data

All data was visually scanned and plotted against time, prior to taking means. Means 

for ODBA, VeDBA and VO2 were derived for each running speed for each individual. 

Means for ODBA and VeDBA were commuted using data from the mid 2 minutes 30 

seconds of each 3 minute speed in order to allow for settling of gait in the first 15 

seconds, and eliminate the possible anticipated change in gait in the latter 15 

seconds. Means for VO2 were derived from the 15 second period between 2.30-2.45 

minutes during each stage.

Due to these techniques only complete 3 minute stages could be included in analysis. 

Reasons for an incomplete stage included either volatational exhaustion i.e. the end 

of the test or the accelerometer failing (in the case of DBA data only).

(3.22)

3.14.2 VO2 data

Breath-by-breath VO2 data was extracted from the Jaeger Oxycon Pro in the form of
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3.16 Calculation of the gas exchange threshold

Measurements of VO2 are most indicative of EE when metabolism is mainly aerobic. 

Thus, it was necessary to eliminate all data above the aerobic gas exchange threshold 

in order to acquire an accurate regression equation.

In order to determine aerobic gas exchange threshold, VO2 was plotted against VCO2 ; 

the F-slope method (Fig. 3.11). This plot typically shows two slopes corresponding 

to the way that VO2 changes with respect to VCO2 . The point at which these two 

slopes intersect is considered to be the gas exchange threshold.

The slopes were initially visually divided into two straight lines. The points along 

each line were put into a Linest function in Excel. Some points where included in 

both lines where appropriate. If there was an obvious outlier, decided upon by visual 

inspection of the graph, the point was excluded from equations. The exact 

intersection (gas exchange threshold) is calculated using simultaneous equations and 

the lines on the graph were subsequently adjusted to represent the exact slopes (Fig.

3.12). The VO2 value is recorded at the point of intersection.

A speed versus VO2 graph was plotted and a trendline added that gave the highest r 

value (polynomial order 6 for all participants; Fig.3.13). The speed below the speed 

that corresponded with the aerobic gas exchange threshold was used as the highest 

speed in which ODBA, VeDBA and VO2 data was used in regression analysis. This 

ensured that all data was representative of primarily aerobic metabolism, even in the 

event of small errors in aerobic gas exchange threshold calculations.
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Figure 3.11. An example o f a plot o f  VO2 against VCO2 fo r one participant with 

two visually drawn straight lines to indicate suspected gas exchange threshold.
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Figure 3.12. An example o f  a plot ofVC>2 against VCO2 fo r one participant with 

visually drawn straight lines adjusted for calculated intersection representing gas 

exchange threshold.
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Figure 3.13. An example o f a speed against VO2 graph with trend line for one 

participant. VO2  value at aerobic gas exchange threshold is marked along with 

corresponding speed.
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3.17 Calculation of missing values

Missing values were present in some acceleration data due to occasions where a 

logger failed; the skew-mounted logger failed on 3 occasions and the hip-mounted 

logger failed on 4 occasions.

The strength of the relationship between VO2 and acceleration metrics can be more 

accurately defined with greater data points therefore simulation of these missing 

values was considered.

A number of techniques were used to calculate missing values including regression 

analysis, selected averaging and by automatic formulation using JMP.

3.17.1 Individual regression method (IK)

This method uses data from individual participants only and where possible, via 

logger mounting. Single linear regression graphs for speed against DBA were plotted 

via individual and logger mounting. The regression equations were used to calculate 

the missing values using speed as the known value. In cases where the number of 

existing data points for a particular participant and logger mounting was only two or 

less, then the entire existing data set for that individual (i.e. all logger-mountings) 

was used for regression.

3.17.2 Selected averaging method (&4)

This method uses the data from all participants and logger orientations/placements 

combined. The ‘AVERAGEIFS’ function in Excel is used to select all the DBA and 

related VO2 data pairs where the VO2  value is within 90-110% of the VO2 value 

associated with the missing DBA data point. An average of the DBA values 

associated with this VO2 range is then used to replace the missing DBA data point.
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3.17.3 JMP method (JMP)

This method uses the data from all participants and logger orientations/placements 

combined. The JMP ‘place missing values’ function which inserts missing values 

based on sequential formulation using all existing data.

3.18 Statistical programmes used

Statistical analysis was performed using SPSS (IBM, Version 19) and JMP (Version 

10). In all cases significance was set to p < .05. All results are shown as mean ± 

standard deviation.

3.19 Description of statistical techniques

3.19.1 Tests for normality

A normal (or Gaussian) distribution is represented by a ‘bell-shaped’ curve i.e. data 

is distribution symmetrically around the mean.

A non-normal distributions is often described by the ‘skewness’ or ‘kurtosis’, where 

skewness describes a distribution that slants sideways to the mean and kurtosis 

describes the ‘peakedness’ i.e. the width of the peak and length of the tails.

Normality was assessed using a combination of z-scores for kurtosis and skewness 

co-efficients, the Shapiro-Wilk test (denoted as W) and Q-Q plots (Appendix 7.4) as 

recommended by Razali and Wah, 2011.

Skewness and kurtosis values and their respective standard errors where gained from 

SPSS and converted to Z-scores using the following formula:

SkewnessValue
Z skew ness-  ~  “ TZ (3.23)

S  tmdardError
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Kurtosis Value 
kurtosis g XmdardError (3.24)

Z-scores below 1.96 are non-significant and so represent a normal distribution.

The Shapiro-Wilk statistic was produced by SPSS where a non-significant result was 

indicative of a normal distribution.

Two types of Q-Q plots were also produced in SPSS; a normal Q-Q plot and a 

detrended normal Q-Q plot. The normal Q-Q plot displays the actual values of the 

sample against the expected values of the sample given a normal distribution i.e. the 

‘expected normal’. Normality is represented by a reasonably straight line. If the 

points are flatter or steeper than the straight line then kutosis is present and if the 

points form an arc or ‘S’ shape around the line, skewness is present. The detrended 

normal Q-Q plot displays the deviation of scores from the straight line. Normality is 

represented when most points are close to zero. The plots were visually inspected 

and used in parallel with the two other techniques to define the shape of the 

distribution.

Where distributions are non-normal nonparametric statistics should be used. 

However, as parametric tests have greater power and robustness both parametric and 

non-parametric equivalents were performed. If the results were the same, the 

parametric test was reported, if they differed the non-parametric test was described.

3.19.2 Simple linear regressions

For simple linear regressions two variables were plotted against one another and the 

straight line that gave the smallest sum of the squared residuals was fit through the 

data points. The residuals are the vertical distance between the measured value and 

the fitted line. The slope and the intercept of the line were then used to produce the 

coefficient of determination (r ). This is a value ranging from 0 to 1 that describes 

how well the independent variable can predict the variability of the dependent 

variable; where the independent variable is the one that is the ‘input’ or ‘possible 

cause’(i.e. DBA) and the dependent variable is the ‘output’ or ‘effect’ (i.e. VO2). The
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2
closer the r is to 1, the better the independent variable is as a predictor (Fields, 

2009).

The coefficient of determination is calculated from the product-moment correlation 

coefficient. A product-moment correlation coefficient (r) measures the strength of 

the relationship (ranging from -1 to + 1) between two measurement methods and will 

give a perfect correlation (-1 or +1) if any straight line is produced (Fields, 2009).

3.19.3 Wilcoxon’s signed rank tests and paired samples f-tests

Both the Wilcoxon’s signed rank tests and paired samples t-tests were used to 

determine whether there is a significant difference between two groups means. They 

compare related data sets i.e. ‘repeated measures’; where in this case the same 

participants contribute to each data set. A significant result (i.e. p< 0.05) indicates a 

significant difference between the two groups (Fields, 2009).

For the Wilcoxon’s signed rank tests both the z-score and the test statistic (7) is also 

reported. The z-score allows a significance value based on a normal distribution to be 

calculated and the test statistic T  represents the sum of the negative ranks (Fields, 

2009).

For the paired sample t-test the degrees of freedom (df), t statistic and the confidence 

intervals are also reported. The d f  represent the sample size minus 1, the t statistic 

represents the mean differences between the two data sets divided by the standard 

error of the differences (and is compared against known values based on d f  to assess 

significance) and the confidence intervals (Cl) represents the limits within which the 

true mean is expected to lie (Fields, 2009).

3.19.4 Bland-Altman plots

To create a Bland-Altman plot the average of the two data sets were plotted against 

the difference between the two data sets. The mean difference between the two data 

sets ± 2 SD were then added to the graph. The mean difference represents the bias or 

level of ‘agreement’ (i.e. degree to which the two techniques are measuring the same
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value) where a mean difference closer to 0 indicates a greater amount of agreement. 

The SD indicates the clinical practicality by highlighting minimum and maximum 

differences i.e. ‘limits of agreement’ (Bland and Altman, 1986).

For Bland-Altman plots, perfect agreement between method A and method B (two 

methods are measuring exactly the same values i.e. a mean difference of 0) will only 

occur if, when method A is plotted against method B, all points lie along the line of 

equality. For r a perfect correlation can occur along any straight line i.e. even when 

method A produces values twice as big as method B. In addition, r is affected by the 

range in the sample, with larger ranges giving higher correlations. This does not 

necessarily reflect the agreement (Bland and Altman, 1986).

3.19.5 One-way repeated measures analysis of variance (ANOVA)

An ANOVA tests for significant differences between group means when there are 

more than two groups. A significant result (i.e. p<0.05) indicates an overall 

experimental effect however it does not specify which groups where affected. Thus, 

a bonferroni post hoc test is used to find the groups affected (Fields, 2009).

There are several forms of ANOVA and ‘post hoc’ tests. A ‘one-way’ ANOVA was 

used in the present study as this analyses the effect of only one independent variable 

(e.g. measurement technique) on the dependent variable (e.g. body fat). A ‘repeated 

measures’ ANOVA was ascribed as the data in the three groups originate from the 

same participants (Fields, 2009).

A bonferroni post hoc test was allocated as this is very conservative i.e. reduces the 

type 1 error rate, in other words the chance of finding a significant difference when 

there is no difference (Fields, 2009).
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3.19.6 Standard (Forced Entry) multiple regression with backward stepwise 

elimination

Multiple regression analysis allows construct of a model with several predictor 

variables. Hence, the r value represents how well several independent variables (e.g. 

DBA and body fat) can explain the variability of the dependent variable (i.e. VO2).

Standard (Forced Entry) involves inclusion of all possible independent variables into 

the model. Firstly, variables are screened for collinearity and excluded if they met the 

removal criteria. The removal criteria are based upon test statistics such as Pearson’s 

correlation coefficients and collinearity statistics. Next, variables that are not making 

a statistically significant contribution are removed one by one i.e. ‘backward 

stepwise elimination’. After one variable has been removed the contribution of the 

remaining predictors are re-evaluated. Variables are eliminated until all make a 

significant contribution to the model (Fields, 2009).

3.20 Description of short hand terms used in statistical analysis

In Table 3.2 ODBA is used as an example however the same principles are applied to 

shorthand terms for VeDBA.

Table 3.2. Shorthand terms used in statistical analysis.

Shorthand term Description

V02

DBA

ODBAa\\

ODBAs traight 

ODBAskeV/

Mean VO2 for each speed 

Refers to both ODBA and VeDBA

Mean ODBA for each speed from all accelerometer data 

combined (straight, skew and hip)

Mean ODBA for each speed from the straight accelerometer 

Mean ODBA for each speed from the skew accelerometer
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ODBAhip 

CV ODBAa\\

r (VO2  versus 

ODBAa\\)

IR ODBAa\\

SA ODBAa]]

JMP ODBAm

FM

FFM

BODPOD

SKF

BIA

ODBAsu\,SkCV/

V020DBAsu\)S\iev/

Mean ODBA for each speed from the hip accelerometer 

Coefficient of variation of ODBAa\\

Coefficient of determination for the regression of VO2 against 

ODBAa]}

ODBAa\\ -  including values that have been allocated for 

missing data by the individual regression method

ODBAa\\ -  including values that have been allocated for 

missing data by the selected averaging method

ODBAaw -  including values that have been allocated for 

missing data by JMP

Fat mass

Fat-free mass

FM  values gained from the BODPOD

FM  values gained from skinfold assessment

FM  values gained from bioelectrical impedance analysis

Difference in ODBA /  VeDBA when logger is subsequently 

skewed (Figure 3.14: C-D)

Difference in VO2 when logger is subsequently skewed 

(Figure 3.14: A-B)

% VO2 ODBAsubskew Percentage difference in VO2 when logger is subsequently

skewed

(Figure 3.14: absolute value ofV02 0D B A SUbSkew/A *100)
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3.21 Applications of statistical analysis

Statistical analysis was undertaken in order to assess which metric or combination of 

metrics best predicted VO2 .

Specifically, analysis was assessed:

i) ODBA versus VeDBA as a proxy for VO2.

ii) ODBA versus VeDBA as a proxy for VO^n relation to device orientation 

(straight versus skew logger).

Hi) ODBA versus VeDBA as a proxy for FC^in relation to device placement

(straight versus waist logger). 

iv) The influence of body anthropometries, body composition and aerobic

capacity on the relationship between DBA and VO2

In addition, statistical analysis was performed to help inform decisions regarding;

i) Assessment of the methods of imputing missing values

ii) Assessment of the most appropriate body composition measurement 

technique

3.21.1 ODBA versus VeDBA a proxy for VO2

Simple linear regressions were used to assess the relationship between ODBA and 

VeDBA, VO2 and ODBA as well as VO2 and VeDBA in order to assess the ability of 

both metrics to predict VO2 .

A combination of /-tests and Wilcoxon’s matched paired tests were used to highlight 

significant differences between ODBA versus VeDBA metrics, the coefficient of 

variation (CV) of ODBA versus CV VeDBA as well as between r (VO2 versus 

ODBA) versus r2 (VO2 versus VeDBA) in an attempt to ascertain which is the best 

predictor of VO2 .
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3.21.2 ODBA versus VeDBA as a proxy for V02 in relation to device 

orientation (straight versus skew logger)

Simple linear regressions were used to assess the relationship between data produced 

by the straight-mounted logger versus data produced by the skew-mounted logger for 

ODBA and VeDBA as an indication of the amount of similarity in the data produced 

by the straight and skew devices.

A combination of Mests and Wilcoxon’s matched paired tests were used to highlight 

significant differences between the straight versus skew-mounted logger data for 

ODBA, VeDBA, CV ODBA, CV VeDBA, V02 versus ODBA and V02 versus VeDBA. 

This analysis was undertaken in an attempt to test the theory that the skewed device 

would be a poorer predictor of V02 than the straight device for the ODBA but not 

VeDBA.

In research on humans in free living situations, it is possible that even when the 

device is placed in a straight position it may get knocked and therefore skewed 

during in daily activities. To test for differences between ODBA and VeDBA in the 

effect on estimates of V02 in the case of an initially straight-mounted logger 

subsequently becoming skewed, V02 measured during speed 5 on the treadmill was 

compared to V02 estimated from ODBA and VeDBA values recorded by the skew- 

mounted logger using the straight-mounted logger V02 versus ODBA and V02 versus 

VeDBA regression equations.
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VO2 (l.min) Participant 23 -  Skew data
(V02 = 1.0262*ODBAskew + 0.5751, r2 =  
0.9573)

Participant 23 -  Straight data
(V02= \.\\35*ODBA,, 
r 2 = 0.9573)

■straight+ 0.5324;

A"'

’ODBA s u bskew

ODBA (g)
D C

ODBAsubsiiCW

Figure 3.14. A diagrammatic representation o f the error in ODBA and VO2 i f  a 

straight mounted logger subsequently skews. Participant 23 is used as an example. 

Similarly, ODBA is used as an example but exactly the same principle applies to 

VeDBA.

A = Estimated VO2  using straight logger

Estimated VO2 using participant 23 ODBAstraight versus VO2 linear regression equation 

and average ODBA straight at speed 5 for all participant data combined

B = Estimated VO2  if logger subsequently skews

Estimated VO2 using ODBA5kew estimate and participant 23 ODBAstraight versus VO2 

linear regression equation.

C = Average O D B A straight

Average ODBAsXrajght at speed 5 using all participant data combined 

D = Estimated ODBAskew

Estimated ODBAskew at speed 5 using estimated VO2 for ODBAs^ew and participant 1 

ODBAstraight versus VO2 linear regression equation.
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3.21.3 ODBA versus VeDBA as a proxy for VO2 in relation to device placement 

(straight versus waist logger)

Simple linear regressions were used to assess the relationship between data produced 

by the straight-mounted logger versus data produced by the hip-mounted logger for 

ODBA and VeDBA as an indication of the amount of similarity in the data produced 

by the straight and hip devices.

A combination of /-tests and Wilcoxon’s matched paired tests were used to highlight 

significant differences between the straight versus hip-mounted logger data for 

ODBA, VeDBA, CV ODBA, CV VeDBA, V02 versus ODBA and V02 versus VeDBA. 

This analysis was undertaken in an attempt to ascertain the effect that device 

placement would have on the ability of ODBA and VeDBA to predict V02 and 

whether this deem one of them superior to the other.

2.21.4 Assessment of the methods of imputing missing values

Simple regressions were used to assess the relationship between all paired 

combinations of the three methods of imputed missing values (IR, SA and JMP) for 

both ODBA and VeDBA and Bland-Altman plots measured the level of agreement 

between the paired comparisons.

A one-way repeated measure ANOVA  was used to assess differences between the IR 

ODBAaii, SA ODBAzw and JMP ODBAa\\ data sets in order to ascertain if there were 

any differences between the ODBA  values produced by the three methods. The same 

procedure was repeated for VeDBA.

A  one-way repeated measure ANOVA was also used to assess differences between r2 

(VO2 plotted against IR ODBAa\\), r2 (V02 plotted against SA ODBAa\\), r2 (V02 

plotted against JMP ODBAa\\) and r2 (V02plotted against ODBAa\\) to ascertain if 

adding missing values improving the ability of ODBA to predict V02 and if so which 

elicited the greatest improvement. The same procedure was repeated for VeDBA.
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3.21.5 Assessment of the most appropriate body composition measurement 

technique

Three methods of body composition analysis were available to the study. Each 

technique has limitations so analysis was undertaken to ascertain which technique is 

most accurate for the present population.

Simple regressions were used to assess the relationship between all paired 

combinations of the three body composition techniques {BODPOD plotted against 

BIA ; BODPOD plotted against SKF and SKFplotted against BIA) and Bland-Altman 

plots measured the level of agreement between the paired comparisons. A one-way 

repeated measure ANOVA  with Bonferroni posts hoc analysis was used to assess 

differences between techniques.

The analysis was used to find the two techniques that most closely agreed with one 

another. The most appropriate technique between these two was then left to the 

literature.

3.21.6 The influence of body anthropometries, body composition and aerobic 

capacity on the relationship between DBA and VO2

Standard (Forced Entry) multiple regressions with backward stepwise elimination 

were used to assess the effect of multiple independent variables on the ability to 

predict VO2.

Anthropometric, body composition and aerobic capacity variables including; age 

(years), leg length (m), height (m), weight (kg), waist to hip ratio, fat-free mass (kg), 

fa t mass and VO2 max (ml.min1) were considered for the multiple regression model. 

Selected variables were entered into the model along with ODBA^p, ODBAstraight? 

VeDBAhip and VeDBAstTaight separately, in order to produce models to predict VO2.

ODBAh\p and VeDBA^p were used as they produced the highest coefficient of 

determination with VO2 in comparison to the other logger mountings respectively.
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Furthermore, the hip mounting represents the most convenient placement for use in 

activities of daily living.

(97)5,4straight and VeDBAstmight were used as they represent the ideal situation where the 

logger is kept secure and in line with the main axes of the body.

Only data for speeds 3-7 were used for this analysis to eliminate the bias created by 

the fact that some participants had a greater cardiovascular capacity than others and 

had therefore completed more stages of the V02 max test i.e. more speeds.

Anthropometric and body composition data were available for 18 participants. 

(97)5,4straight data (speeds 3-7) was complete for all of these participants however 

ODBAfop data was only complete for 14 participants.

For each model, all variables were entered into a standard (Forced Entry) multiple 

regression equation. First, the variables were screened for collinearity and excluded 

if they met one or more of the following removal criteria:

i) Pearson’s correlation coefficients > 0.7

ii) collinearity statistic, VIF >10

iii) collinearity statistic, tolerance <0.2

(Tabachnick and Fidell, 1996; Field, 2009)

Next, backward stepwise elimination was used to remove one variable at a time until 

all variables in the model added significantly to the prediction of V02,
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Chapter 4

Results
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4.1 Normality

All variables, except leg length (m), height (m), weight (kg), waist to hip ratio, fat- 

free mass (kg) and maximal oxygen uptake [VO2 max (ml.min"1)] were non-normally 

distributed.

4.2 Raw data

The tri-acceleration data showed a very precise profile of gait for all participants 

during both walking and running (Fig. 4.1). Peaks in surge and heave were clear with 

each stride and smaller peaks in sway were also apparent (see Fig. 3.7 and Fig. 3.8 

for heave, sway and surge diagram).
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Figure 4.1. Tri-acceleration data over one stride from each leg during; i) walking 

and ii) running: heave (continuous line), sway (dotted line) and surge (dashed line).
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4.3 ODBA versus VeDBA as a proxy for VO2

The following set of results define the statistical relationship and differences between 

overall dynamic body acceleration (ODBA) and vectorial dynamic body acceleration 

(VeDBA) in an attempt to ascertain which is the best predictor of volume o f oxygen 

uptake (VO2).

4.3.1 The relationship between ODBA and VeDBA metrics

ODBA and VeDBA were highly correlated with each other when data from all logger 

mountings was combined and for each logger mounting separately. For all 

scenario’s,/? = 0.000 (Table 4.1 and Fig. 4.2).

4.3.2 The difference between ODBA and VeDBA metrics

ODBA was significantly greater than VeDBA when data from all logger mountings 

was combined and for each logger mounting separately. In all cases,/? = 0.000 (t-test, 

Table 4.2).

CV ODBA was significantly greater than CV VeDBA when data from all logger 

mountings were combined, for the straight-mounted logger alone (p = 0 .000 ; 

Wilcoxon’s test, Table 4.3) and for the skew-mounted logger (p = 0.000; f-test, Table 

4.2)

CV VeDBA was significantly greater than CV ODBA for the hip-mounted logger (p = 

0.000; Wilcoxon’s test, Table 4.3).

4.3.3 The relationship between VO2  and ODBA & VO2 and VeDBA

Both ODBA and VeDBA were highly correlated with VO2 in all scenarios (data from 

all logger mounting combined and for each logger mounting separately). In all cases, 

p  =0.000 (Table 4.4 and Fig 4.3).
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4.3.4 The difference between the coefficients of determination (r2) for the 

relationships between V02 and ODBA & V02 and VeDBA

The coefficients of determination (r2) for the relationship between V02 and ODBA
7 • *was significantly greater than r for the relationship between V02 and VeDBA for 

data from all logger mountings combined and for the skew-mounted logger (p = 

0.002 andp  = 0.020, respectively; /-test, Table 4.5).

The differences between r2 for the relationship between V02 and ODBA and r2 for 

the relationship between V02 and VeDBA were non significant for both the straight 

and the hip-mounted devices (p = 0.052 andp  = 0.143, respectively; Wilcoxon’s test, 

Table 4.6).

4.3.5 Analysis of confidence intervals

'y
These results relate to the 95% confidence intervals for the difference between r for 

the relationship between V02 and ODBA, and r for the relationship between V02 

and VeDBA.

For both the straight and skew-mounted loggers the 95% confidence intervals 

represent less than 1% of mean r2 values for the relationships between: V02 and 

ODBA straight, V02 and VeDBA^ight, V02 and ODBAs kew as well as V02 and 

VeDBASkew, respectively (Table 4.5 - 4.7). The 95% confidence interval for the hip- 

mounted logger represent less than 1.5% of mean r values for the relationship both 

V02 versus OZ)fTlhjp and V02 versus VeDBA^ (Table 4.6 and Table 4.7).
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Table 4.1. Coefficients o f  determination (r2) and significance levels fo r the 

relationship between ODBA and VeDBA (all: n =21, straight: n = 21, skew: n = 20, 

hip: n = 20).

?  P

ODBA&\\ plotted against VeDBAa\\ 0.989 0.000

ODBA straight plotted against F&DA4 straight 0.998 0.000

O D B A p l o t t e d  against V e D B A 0.997 0.000

ODBAh\p plotted against VeDBAhip 0.997 0.000

♦ ^♦♦

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

ODBAm (g)

Figure 4.2. ODBAauplotted against VeDBAau (n = 21)

(ODBA = VeDBA* 1.426 + 0.025, r = 0.989, p  < 0.001).
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Table 4.3. Results o f Wilcoxon’s matched pairs tests between CV ODBA and CV 

VeDBA metrics (all: n =21, straight: n = 21, skew: n = 20, hip: n = 20).

T = lowest score from negative and positive ranks, z = z-score for the Wilcoxon 

statistic, p  = significance level fo r t-test statistic (significant at p >  0.05)

T z P

CV ODBAa\\ versus CV VeDBAa\\ 162 -3.914 0.000

CV ODBASfraight versus CV VeDBAstxaight 42 -5.070 0.000

CVODBAhipversus CV VeDBAhip 44 -3.914 0.000

Table 4.4. Coefficients o f determination (r2) and significance levels fo r the

relationship between VO2 and ODBA & VO2 and VeDBA (all: n =21, straight: n =

21, skew: n == 20, hip: n = 20).

All logger Straight Skewed Hip

mountings

✓ p r1 p r1 p r1 p

VO2 plotted 0.789 0.000 0.790 0.000 0.777 0.000 0.822 0.000

against

ODBA

VO2 plotted 0.780 0.000 0.797 0.000 0.782 0.000 0.825 0.000

against

VeDBA
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Figure 4.3. VO2 plotted against ODBAau (black circles) and VeDBAau (grey 

triangles) (n = 21).

(V 0 2 =  1063.778*ODBA  +  607.82, r2 = 0.789, p  =0.000)

(V02 = 1516.476*VeDBA + 633.680, r2 = ft 780, p  = 0.000)
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Table 4.6. Results o f  Wilcoxon’s matched pairs tests between the coefficient o f  

determination (r ) for the relationship between VO2 and ODBA & VO2 and VeDBA 

(all: n =21, straight: n = 21, skew: n = 18, hip: n = 18).

T = lowest score from negative and positive ranks, z = z-score for the Wilcoxon 

statistic, p  = significance level for t-test statistic (significant a t p >  0.05)

T z P

2.r (VO2 plotted against ODBAstTaight) versus 

r (VO2 plotted against VeDBAstIaight)
2 -1.941 0.052

r (VO2 plotted against ODBA^) versus 
2 'r (VO2 plotted against VeDBAhjP)

1 1.466 0.143

2
Table 4.7. Means o f the coefficient o f  determination (r ) for the relationship 

between VO2  and ODBA & VO2 and VeDBA regressions (all: n =21, straight: n = 

21, skew: n = 18, hip: n = 18).

Mean r2

VO2 plotted against OZ)J5^straight 0.9467

VO2 plotted against VeDBAstrajght 0.9433

VO2 plotted against ODBAskew 0.9422

VO2  plotted against VeDBASkeW 0.9394

VO2 plotted against ODBA^p 0.9559

VO2 plotted against VeDBAhip 0.9518
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4.4 ODBA versus VeDBA as a proxy for VO2  in relation to device orientation 

(straight versus skew logger)

The following set of results define the statistical relationship and differences between 

the straight and skew-mounted logger data for ODBA and VeDBA in attempt to 

ascertain if device orientation affects which DBA metric is the best predictor of VO2 .

4.4.1 The relationship between the straight-mounted and skew-mounted 

logger data

ODBA values from the straight-mounted devices were highly correlated with the 

ODBA values from the skew-mounted devices, as were VeDBA values from the 

straight- and skew-mounted devices. In both casesp  = 0.000 (Figure 4.7).

4.4.2 The difference between the straight-mounted and skew-mounted logger

The skew-mounted logger produced significantly greater values than the straight- 

mounted logger for both ODBA and VeDBA (p = 0.000 andp  = 0.002, respectively; t- 

test, Table 4.8).

There was no significant difference between the CV of the straight data compared to 

the skewed data for either ODBA or VeDBA metrics (p = 0.666 and p  = 0.306, 

respectively; r-tests, Table 4.8).

4.4.3 The difference between the coefficients of determination (r ) for the 

relationship between VO2  and data from the straight-mounted logger & 

VO2 and data from the skew-mounted logger

9 * 9There were no significant differences between r {VO2  versus ODBAstraight) and r 

(VO2 versus ODBA±^) as well as for r1 (VO2 versus VeDBAstraight) and r2 (VO2 versus 

VeDBA&eO- p  = 0.707 and p  = 0.508, respectively (Mest, Table 4.9).
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4.4.4 The effect of the straight logger subsequently skewing

The differences between ODBA^kew and VeDBAsubskew, VO2 O D B A ^ ^  and VO2 

VeDBAsubskew as well as % VO2 ODBASUbskew and % VO2 VeDBAsubskew were not 

significant (Table 4.10). This indicates that there is no difference between ODBA and 

VeDBA in terms of the error created if the straight-mounted logger subsequently 

skewed (i.e. DBA data from the skew-mounted logger was used to predict VO2 using 

the straight-mounted logger regression equation).

The percentage change in predicted VO2 created if the straight-mounted logger 

subsequently skewed was 1.4% for ODBA and 1.3% for VeDBA(% VO2 ODBAsubSkew 

and% VO2 VeDBAsbSkew, respectively).
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0.0
2.01.0 1.50.0 0.5

ODBAstr!llghp VeDBAstrdight (g)

Figure 4.4. ODBAstraight plotted against ODBAskeW (black circles) and VeDBAstraight 

plotted against VeDBASkew (grey triangles) (n = 20).

(ODBAstrdght = 0.752*ODBAsicew + 0.093, r2 = 0.787, p  =0.000)

VeDBAstraight = 0.791 *VeDBAskew + 0.049, r2 = 0.783, p  =0.000)
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4.5 ODBA versus VeDBA as a proxy for VO2 in relation to device placement 

(straight versus waist logger)

The following set of results define the statistical relationship and differences between 

the straight and hip-mounted logger data for ODBA and VeDBA in attempt to 

ascertain if device orientation affects which DBA metric is the best predictor of VO2 .

4.5.1 The relationship between the straight-mounted and hip-mounted logger

ODBA values from the straight-mounted devices were highly correlated with the 

ODBA values from the hip-mounted devices, as were VeDBA values from the straight 

and hip-mounted devices. In both cases,/? = 0.000 (Figure 4.5).

4.5.2 The difference between the straight-mounted and hip-mounted logger

The hip-mounted loggers produced significantly larger values than the straight- 

mounted loggers for both ODBA and VeDBA. For both metrics, p  = 0.000 (7-test, 

Table 4.11).

The hip-mounted logger also produced significantly greater CV  than the straight- 

mounted logger for both ODBA and VeDBA. For both metrics, p  = 0.000 (7-test, 

Table 4.11).

4.5.3 The difference between the coefficients of determination (r2) for the 

relationship between VO2  and data from the straight-mounted logger & 

VO2 and data from the hip-mounted logger

There were no significant difference between r2(V02 versus ODBAsXr&\ĝ  and r1 (VO2

2 2 versus ODBA^v) as well as r (VO2 versus VeDBAstraight) and r (VO2 versus

VeDBAfop). p  = 0.273 andp  = 0.328, respectively ( 7-test, Table 4.12).
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2.5 i

• •

v j*  •

0.0
0.0 0.5 1.0 2.01.5

ODBAstraight VeDBAstraight (g)

Figure 4.5. ODBAstraight plotted against ODBAhip (black circles) and VeDBAstraight 

plotted against VeDBAhip (grey triangles)(n = 20).

(ODBAstraight = 0.682*ODBAhip + 0.044, r2 = 0.744, p  =0.000)

VeDBAstraight = 0.612*VeDBAhip + 0.037, r2 = 0.739, p  = 0.000)
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4.6 Assessment of the methods of imputing missing values

The following set of results define the statistical relationship and differences between 

the data sets produced using the three methods of computing missing values. In 

addition, the differences between the three methods of computing missing values and 

raw data in terms of the r2 values obtained when plotting VO2 against ODBAan and VO2  

against VeDBAa\\ is shown. The aim is to ascertain whether using data sets with 

computed missing values improves the ability of ODBA and/or VeDBA to predict VO2 

and, if this does occur, which method of commuting missing values elicits the greatest 

improvement.

Average values for each method of imputing missing values can be seen in Fig. 4.6. and 

4.7.

4.6.1 The relationship between all paired combinations of the methods of 

imputing missing values

Regressions for all paired combinations of the methods of imputing missing values 

for both ODBAa\\ and VeDBAz\\ produced extremely high and significant coefficients of 

determination. For all combinations, p  = 0.000 (Table 4.13 and Figures 4.8 -  4.13).

Bland and Altman plots showed that mean differences for all paired combinations for 

both ODBAa 11 and VeDBAz\\ were extremely close to zero (Table 4.14). However, on all 

six plots, 15 or more data points where outside of the 95% confident intervals (Figures 

4 .14-4.19).

For both ODBAd\\ and VeDBA zn IR -  SA produced the smallest mean difference and IR 

-JM P  produced the smallest confidence intervals (Table 4.14 and Figures 4.14 -  4.19).
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4.6.2 The differences between IR DBAa\\, SA DBAa\\ and JMP DBAa\\

The results of the one-way repeated measure AN  OVA show that there is no significant 

main effect of the methods of imputing missing values on the computed ODBAan and 

VeBDAau values for all participants (Table 4.15).

4.6.3 Differences in the coefficients of determination (r ) between the relationship 

for VO2  and DBA an, VO2 and IR DBA an, VO2  and SA DBA an & JMP VO2 and 

DBAaW

The results of the one-way repeated measure AN  OVA show that there is no significant
'j

main effect of the methods of obtaining DBA (i.e. IR, SA, JMP and raw data) on the r 

values for VO2 versus ODBA^w and VO2 versus VeDBA&\\ (Table 4.16).

However, both the SA and JMP method elicited a higher r values than the raw data for 

VO2 versus ODBAa\\ and VO2 versus VeDBAa\\ (Table 4.17).

146



§

0.0
SAIR JMP

Methods of calculating missing values

Figure 4.6. Average values ± standard deviation for each method o f  imputing 

missing values using ODBA&\\ datafn = 18).

0.8

0.0
SAIR JMP

Methods of calculating missing values

Figure 4.7. Average values ± standard deviation for each method o f imputing 

missing values using VeDBAa\\ datafn  = 18).
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Table 4.13. Coefficients o f  determination and significance levels fo r all paired 

combinations o f  the methods o f  imputing missing values for ODBAa\\ and VeDBAa\\-

r 2 = coefficient o f  determination, p  = significance level for regression equation 

(significant at p  > 0.05)

All Data r2 P

ODBAa\\ IR plotted against ODBA&\\ SA 0.960 0.000

ODBAa\\ SA plotted against ODBAa\\ JMP 0.984 0.000

ODBAa\\ JMP plotted against ODBAa\\ IR 0.985 0.000

VeDBAa\\ IR plotted against VeDBAaw SA 0.965 0.000

VeDBAa|] SA plotted against VeDBA ̂  JMP 0.985 0.000

VeDBAaw JMP plotted against VeDBAan IR 0.986 0.000

Table 4.14. Bland and Altman variables; mean difference and limits o f  agreement 

(mean difference + 2sd and mean difference — 2sd) for all paired combinations o f  the 

three methods o f  imputing missing values.

Mean Difference Mean Difference Mean Difference

ig) + 2sd (g) -  2sd (g)

ODBAan SA - ODBAa\\ JMP -0.00431 0.14981 -0.15843

ODBAa\\ IR - ODBAa\\ SA 0.00068 0.24305 -0.24168

ODBAa]] IR - ODBAa\\ JMP -0.00363 0.14612 -0.15338

VeDBAaw SA - VeDBAau JMP -0.00292 0.09845 -0.10429

VeDBAaw IR - VeDBAai\ SA -0.00005 0.15690 -0.15701

VeDBAaw IR - VeDBAan JMP -0.00297 0.09461 -0.10056

148



2.5 n

2 -

w
X 1.5 - 

OQ
§ 1 4

0.5

0 t
0.0

♦

♦ ♦

0.5 1.0 1.5 2.0
ODBA IR (g)

2.5 3.0 3.5

Figure 4.8. ODBA SA plotted against ODBA JMP (n = 18). The data points that 

follow the straight line represent the original values and data points that are scattered 

about the straight line represent predicted values.

(ODBA SA = 0.978*ODBA JMP + 0.015, r2 = 0.984, p  =0.000)

%

3

2.5

1
♦♦

0.5 1 1.5
ODBA SA (g)

2.5

Figure 4.9. ODBA IR plotted against ODBA SA (n = 18). The data points that follow  

the straight line represent the original values and data points, that are scattered about 

the straight line represent predicted values.

(ODBA IR = 0.999*ODBA SA + 0.001, r2 = 0.960, p  =0.000)
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2.5 3.0 3.5

Figure 4.10. ODBA IR plotted against ODBA JMP (n = 18). The data points that 

follow the straight line represent the original values and data points that are scattered 

about the straight line represent predicted values.

(ODBA JMP = 0.986*ODBA IR + 0.016, r2 = 0.985, p  =0.000)

0.0 —I— 
1.0

I
0.5

{
1.50.0 2.0

VeDBA SA

Figure 4.11. VeDBA SA versus VeDBA JMP (n = 18). The data points that follow the 

straight line represent the original values and data points that are scattered about the 

straight line represent predicted values.

(VeDBA SA = 0.981*VeDBA JMP + 0.009, r2 = 0.985, p  =0.000).
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Figure 4.12. VeDBA IR versus VeDBA SA (n = 18). The data points that follow the 

straight line represent the original values and data points that are scattered about the 

straight line represent predicted values.

(VeDBA IR = 0.996*VeDBA SA + 0.003, r2 = 0.965, p  =0.000)
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Figure 4.13. VeDBA IR versus VeDBA JMP (n = 18). The data points that follow the 

straight line represent the original values and data points that are scattered about the 

straight line represent predicted values.

(VeDBA JMP = 0.991 * VeDBA IR + 0.008, r = 0.986, p  =0.000)
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Figure 4.14. Bland and Altman Plot for ODBA IR and ODBA SA (n = 18).
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Figure 4.15. Bland and Altman Plot for ODBA IR and ODBA JMP (n = 18).
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Figure 4.16. Bland and Altman Plot for ODBA SA and ODBA JMP (n = 18).
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Figure 4.17. Bland and Altman Plot for VeDBA SA and VeDBA JMP (n = 18).
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Figure 4.18. Bland and Altman Plot for VeDBA SA and VeDBA JMP (n = 18).

1.0 i

0.8
3
§ 0.6
O
£7  0.4

§ 0.2 O
£
r  °-°uc<u
fc -0 .2  -I 
a:

0

-0.4 -

0.5

-ft

1.0 , ♦ 1.5 2.0

m ea n  +  2 s d  

m ea n  

2  5 m ea n  - 2 s d

-0.6 J

Average (VeDBA IR:VeDBA SA)

Figure 4.19. Bland and Altman Plot for VeDBA IR and VeDBA SA (n = 18).
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Table 4.1.5 Results o f a one way repeated measures ANOVA comparing DBAa\\ IR, 

DBAa\\ SA and DBAa\\ JMP data sets (n = 21).

d f=  degrees o f  freedom, F  = statistic, p  = significance level (significant a tp >  0.05)

Tests of Within-Subjects Effects 

Sphericity Assumed

ODBAa ii 

VeDBAa\\

Table 4.16. Results o f  a one way repeated measures ANOVA to compare the 

relationship between VO2 and DBAa\\IR, VO2 and DBAa\\ SA & VO2 and DBAa\\ JMP.

W = Mauchly’s W, d f  = degrees o f  freedom, F  = statistic, p  = significance level 

(significant at p >  0.05)

Tests of Within-Subjects Effects 

Sphericity Assumed 

d f  F  p

V02 versus ODBAa\\ 3 1.632 0.191

V02 v e r s u s  VeDBAa]] 3 0.833 0.481

d f F  p

2 0.555 0.574

2 0.706 0.494
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4.7 Assessment of the most appropriate body composition measurement 

technique

The following set of results define the statistical relationship and differences between 

the data produced using the three techniques used to measure body composition in order 

to ascertain which two methods most closely agreed with one another. The choice 

between these will then be left to the literature.

Average values for each body composition technique can be seen in Figure 2.20.

4.7.1 The relationship between all paired combinations of body composition 

techniques

All combinations of paired regressions were significantly correlated (Table 4.18). The 

BIA and SKF produced an especially high r value of 0.92).

The Bland and Altman plot graphed for SKF versus BIA gave the smallest 95% limits of 

agreement and mean difference (Table 4.19).

For BODPOD versus BIA and BODPOD versus SKF one data point lay outside the 95% 

limits of agreement. For SKF versus BIA all data points where within the limits of 

agreement (Figures 4.21-4.26).

4.7.2 The differences between body composition techniques

The results of the one-way repeated measures ANOVA show that percentage body fat is 

significantly affected by body composition assessment technique (p = 0.014, Table

4.20).

Bonferroni Post hoc analysis highlighted significant differences between the BODPOD 

and BIA (p = 0.041) but not between the BODPOD and SKF or SKF and BIA (Table

4.21). The BODPOD produced significantly larger values for percentage body fat than 

the BIA.
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25.0 -

20.0  -

15.0 -

-o 10.0

0.0
BODPOD SKF BIA

Methods of measuring body fat

Figure 4.20. Average values ± standard deviation for each method o f assessing 

percentage body fa t (n = 18).

Table 4.18. Coefficients o f  determination and significance levels for all paired 

combinations o f body composition assessment techniques.

All Data r1 P

BODPOD plotted against SKF 0.590 0.000

BODPOD plotted against BIA 0.736 0.000

SKF plotted against BIA 0.920 0.000
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Table 4.19. Bland and Altman variables; mean difference and limits o f agreement 

(mean difference + 2sd and mean difference — 2sd) fo r  all paired combinations o f  body 

composition assessment techniques.

Mean Difference 

(%)

Mean Difference 

+ 2sd (%)

Mean Difference 

-  2 sd (%)

BODPOD versus 3.51 14.77 -7.76

SKF

BODPOD versus 3.00 12.24 -6.24

BIA

SKF versus BIA 0.51 4.31 -3.29

40 

35 

30

25 - 

20 -©-Q
^  15
w

5
10 -1 

5 

0
0 5 10 15 20 25

SKF {% body fat)
30

Figure 4.21. SKF versus BIA (n = 18).

(SKF = 0.014 +  BIA*0.968, r2 = 0.92, p  = 0.000)
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Figure 4.22. BODPOD versus BIA (n = 18). 

(BODPOD = 0.655 + 1.146*BIA, r2 = 0.736, p  = 0.000)
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Figure 4.23. BODPOD versus SKF (n = 18). 

(BODPOD = 3.242 + SKF* 1.017, r2 = 0.590, p  = 0.000)
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Figure 4.25. Bland and Altman Plot fo r BODPOD and BIA (n = 18).
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Figure 4.26. Bland and Altman Plot for BODPOD and SKF (n = 18).

Table 4.20. Results o f  a one way repeated measures ANOVA to comparing 

BODPOD, BIA and SKF.

W = Mauchly's W, d f = degrees o f  freedom, F  = statistic, p  = significance level 

(significant at p  > 0.05)

Mauchly’s test of sphericity
Tests of Within-Subjects Effects

Greenhouse-Geisser

W d f p d f  F P

0.243 2 0.000 1.138 6.842 0.014
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Table 4.21. Results o f the Bonferroni Post hoc analysis for the one way repeated 

measures ANOVA comparing BODPOD, BIA and SKF.

Factor 1 Factor2 Mean Difference P

BODPOD SKF 3.506 0.052

SKF BIA -0.506 0.819

BIA BODPOD -3.000 0.041
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4.8 The influence of body anthropometries, body composition and aerobic 

capacity on the relationship between DBA and VO2

Note: In this section, ODBA has been used as an example however the conclusions were 

the same for VeDBA (see Appendix 7.11).

The influence of anthropometric, body composition and aerobic capacity variables on 

the linear regression equations for VO2 versus (TD5.T straight and VO2 versus ODBAhjP 

were assessed in order to ascertain whether the addition of any of these variables would 

strengthen the ability of ODBA to predict VO2 .

Fat mass was determined via the skinfold method. The skinfold method was chosen 

over the BODPOD and BIA using the following reasoning. The BODPOD was 

immediately eliminated as it had the highest standard deviation. Furthermore, when 

used in combination with the BIA and SKF lower r values and higher mean differences 

were produced in comparison to SKF against BIA (see section 4.7).

The BIA was later eliminated due to the over reliance on anthropometric variables 

(Oates et al., 2006). Furthermore, there is a greater amount of pre-test requirements than 

SKF, making SKF a more practical method to implement for the present population.

Age (years), leg length (m), height (m), weight (kg), waist to hip ratio, fat-free mass 

(kg),fa t mass and VO2 max (ml.min'1) were considered in the models.

4.8.1 VO2 versus ODBAstr&ight

Weight was not included in the model as it is directly related to FM  and FFM. Height 

was eliminated due to collinearity. All other variables were entered into the model and 

any variables that were not contributing significantly to the model were removed. This 

process occurred so that one variable was removed at a time and the model re-run each 

time a variable was eliminated. The variables were removed in order of the least 

significant contributor first; i) Leg Length, ii) VO2 max and iii) Waist to Hip Ratio.
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ODBA straight (p = 0.000), Age (p = 0.000), FFM (p = 0.000) and FM {p  = 0.008) were all 

significant predictors of VO2  (Table 4.22 and 4.23).

4.8.2 VO2 versus ODBAh\p

Weight was not included in the model as it is directly related to FM  and FFM. Height 

and Waist to Hip Ratio were eliminated due to collinearity. All other variables were 

entered into the model and any variables that were not contributing significantly to the 

model were removed. This process occurred so that one variable was removed at a time 

and the model re-run each time a variable was eliminated. The variables were removed 

in order of the least significant contributor first; i) VO2 max, ii) Leg Length.

ODBA straight ip = 0.000), Age (p = 0.001), FFM ip = 0.000) and FM (p = 0.004) were all 

significant predictors of VO2 (Table 4.24 and 4.25).

Table 4.22. A model o f  all significant predictors ofV02 including ODBA straight data (n 

= 18).

Model

(Constant)

ODBA straight 

Age 

FFM  

FM

Unstandardised

Coefficients

B

255.116 

1273.352 

-36.696 

16.531

11.726

Standardised

Coefficients

Beta

0.775

-0.277

0.357

0.148

0.225

0.000

0.000

0.000

0.008
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Table 4.23. Regression equations for the relationship between VO2 and all

significant predictors including ODBAstraight (n = 18).

VO2 versus all significant predictors VO2 versus ODBAstIajght

VO2 = 255.116 + VO2 =

(<9D&4straight* 1273.352) - {Age*36.696) + 1262.452* ODiM straight + 523.639

{FFM* 16.531) + {FM* 11.726)

r2 = 0.590, p  = 0.000

r2= 0.758,/? = 0.000

Table 4.24. Model o f  all significant predictors o f VO2 including ODBAhip data (n =

14).

Model Unstandardised Standardised P
Coefficients Coefficients

B Beta

(Constant) -178.403 -0.807

ODBAmp 1194.570 0.825 0.000

Age -25.338 -0.200 0.001

FFM  17.402 0.358 0.000

FM  11.986 0.168 0.004
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Table 4.25. Regression equations for VO2 using all significant predictors including 

ODBA hip (n=18).

VO2 versus all significant predictors VO2 versus ODBAstraight

V02 = -178.403 +

(ODBAyfif 1194.570) - (Age*25.338) + V02 = ODBAh ip* 117.086 + 374.377

(FFM* 17.402) + (FM* 11.986)

r2 = 0.662,/? = 0.000

r2 = 0.799, p  = 0.000
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Chapter 5

Discussion
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5.1 Dynamic body acceleration as a proxy for VO2

The use of overall dynamic body acceleration (ODBA) and vectorial dynamic body 

acceleration (VeDBA) in human research is relatively new, and subsequently there are 

very few studies in which direct comparisons can be drawn. Instead the main focus of 

this study was to attempt to quantify the value in using ODBA and/or VeDBA over 

traditional acceleration metrics such as accelerometer ‘counts’ and to postulate the 

exact difference between ODBA and VeDBA in terms of their ability to act as a proxy 

for energy expenditure (EE). Furthermore, the study sought to explore the influence of 

body anthropometries, body composition and aerobic capacity on the relationship 

between dynamic body acceleration (DBA) and EE. The influence of anthropometric 

and physiological factors has rarely been considered alongside DBA.

Firstly, this study demonstrates that regardless of the metric used (ODBA or VeBDA), 

DBA has proven to be an excellent proxy for volume o f oxygen uptake (VO2). For 

example, the coefficient of determination (r ) for the relationship between mean VO2  

and mean ODBA for all logger mountings (straight, skew and hip) was 0.79, for the 

upper back (straight only) was 0.79 and for the hip was 0.82. The coefficients of 

determination for the relationship between mean VO2 and mean VeDBA were also 

similar at 0.78, 0.80 and 0.83, respectively.

5.2 ODBA as a proxy for VO2

In the present study, although r for the association between VO2 and ODBA for 

combined logger mountings were high (e.g. r = 0.79), it is still considerably lower than
9 9a comparable study by Halsey, et al. (2008) where r -  0.90 for the upper back, r = 0.92 

for the lower back and r2 = 0.91 for the neck (single regressions, n =10). This is despite 

exactly the same metrics, respiratory equipment, exercise protocol and very similar 

population characteristics between the two studies.

Moreover, regression equation for VO2 plotted against ODBA from a later paper by 

Halsey, et al. (2009) that re-used the acceleration data from the neck for 6 of the 

participants from Halsey, et al. (2008), was plotted in comparison to the present study. 

Clear differences in both the slope and intercept of the relationship between VO2 and
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ODBA were visible (Fig.5.1). It is possible that this could be linked to aerobic fitness. 

McGregor, et al. (2009) found that trained individuals gave greater r2 values between 

VO2 and VeDBA than untrained (r2 = 0.96 to r2 = 0.92). However, Halsey, et al. (2008) 

did not report VO2 max values therefore a conclusion can not be made. Additionally, it 

is possible that small differences in data processing techniques, such that the present 

study only used VO2 data under the gas exchange threshold (see section 2.15.2 for 

definition) and Halsey, et al. (2009) used the entire data set may further explain 

differences in slope and intercept between the studies, however, without more studies 

for comparison, norms cannot be established.

4000.0 -

3500.0 -

3000.0 -

2500.0 -
s
a 2000.0 -

1 1500.0 -

1000.0 -

500.0 -

0.0

r2 = 0.93

♦ r2 = 0.79

♦ ODBAall

* Halsey et al., 2009
♦  *

0.5 1 1.5
ODBA (g)

Figure 5.1 VO 2 (mintin'1) plotted against O D B A  (g) using the regression equation 

from the present study (based on straight, skew and hip- mounted logger data combined 

i.e. O D B A au from 21 subjects) and the regression equation stated in Halsey, et al. 

(2009) (based on neck mounted logger data from 6 subjects). The V O 2 and O D B A  

ranges are guidelines only and do not reflect the exact values in either study.

O D B A au: V 0 2 =  1 0 6 3 .7 7 8 * O D B A au +  6 0 7 .0 8 2 , r2 = 0 .79 , p  = 0 .0 0 0 ;

Halsey, et al. (2 0 0 9 ):  V 0 2 =  1 5 6 9 * O D B A  +  355 , r2= 0 .9 3
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In addition, subsequent to the present research, a newly published study by Weippert, et 

al. (2012) has considered the relationship between VO2 and ODBA in humans. This 

study reports an r2 value of 0.82 for the association between VO2 (ml.kg'1.min'1) and 

ODBA (mG) from an accelerometer placed on the chest during seven activities (supine, 

seated, seated mental arithmetic, seated writing, seated sorting books and walking at 

4kph, walking at 6 kph and running at 8 kph on a treadmill). Direct comparison to the 

present study is not possible due to the differing metrics and activities. However the 

results do suggest that it might be possible to use only one single regression for VO2  

plotted against DBA for activities of daily living (including those that require mainly 

upper body movement) and locomotive activity. This is unusual of studies using counts 

where combined activities have presented coefficients of determination of only 0.35 

(Howe, Staudenmayer and Freedson, 2009) and 0.38 (Hendelman, et al., 2000).

In evaluation alongside other species, due to little evidence in humans, the coefficient of 

determination in the present study was not unusual but did fall in the lower range. For 

example, the coefficient of determination for VO2 plotted against ODBA for great 

cormorants was reported at 0.81 (Halsey, et al., 2009), bantam chickens at 0.82 (Halsey, 

et al., 2009), coypus at 0.91 (Halsey, et al., 2009) and cane toads at 0.74 (Halsey, et al., 

2010).

When drawing a comparison to other metrics the association between VO2 and ODBA at
•y

the hip will be used (r = 0.82) as the majority of studies use this placement.

Unexpectedly, the present study shows that the r2 for the VO2 and ODBA relationship 

for the hip mounted logger during locomotive activity is only slightly better than many 

comparable studies using accelerometer counts. This includes those using count data 

from an individual axis (Hendelman, et al., 2000, r2 = 0.61; Welk, et al., 2000, r2 = 0.77
•y

and 0.72) or vector magnitude counts (Hendelman, et al., 2000, r = 0.79; Howe, 

Staudenmayer and Freedson, 2009, r = 0.64).

On the other hand, some studies still show acceleration counts are superior. For 

example, Welk, et al.(2000) reported an average r2 of 0.86 between VO2  (ml.kg^.min1) 

and acceleration counts (counts.min'1) for the TriTrac accelerometer over two treadmill 

walking/running trials with a highest speed similar to that of the present study.
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Furthermore, Freedson, Melanson and Sirard, (1998) presented an r1 of 0.88 between 

METS and acceleration counts; similar walking and jogging speeds to the present study.

5.3 VeDBA as a proxy for VO2

Similarly to ODBA, VeDBA has received little attention in terms of its use as a proxy for 

VO2  so few studies are available for comparison. McGregor, et al. (2009) used a 

microelectromechanical tri-axial accelerometer in order to assess running mechanics in 

relation to VO2 , aerobic fitness and running speed and reported an r value of 0.982 for 

VO2 plotted against VeDBA, considerably higher than the r value of 0.79 in the present 

study.

Likewise to Halsey, et al. (2008), McGregor, et al. (2009) used the entire data set, up 

until VO2 max, which, as mentioned above, may cause small differences. Additionally, 

aerobic capacity was considerably higher in McGregor, et al. (2009) as 9 out of 18 

participants were distance runners with an average VO2 max of 70.1± 6.2 ml.kg'I.min'1. 

In the present study, the average VO2  max of the fittest 9 participants was 57.0 ± 4.8 

ml.kg"1.min'1.

Weippert, et al. (2012) reported a much closer r value to the present study i.e. 0.81 for 

VO2 (ml.kg"1.min"1) plotted against VeDBA (mG) although as mentioned above this 

study includes both activities of daily living and treadmill activity so is not directly 

comparable.

When considering VeDBA in comparison to vector magnitude counts, the results are
-j

inconclusive. Reports show largely better (Mahohar, et al., 2011: r > 0.9), similar 

(Hendelman, et al., 2000: r2 = 0.80) and slightly weaker (Howe, et al., 2009: r2 = 0.64) 

relationships between EE and vector magnitude counts.

But, large disparities are present between the studies in terms of the population 

characteristics, the range of locomotive speeds used and the analysis techniques 

including EE metrics in these studies. For example, locomotive speeds used in 

Mahohar, et al. (2011) are of slow walking pace only (maximum of 5.6 kph) which are 

more likely to elicit a strong association between EE and acceleration as locomotion is
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highly aerobic. Furthermore, Howe, et al. (2009) also included both level and inclined 

walking, the latter which is known to produce weaker relationships between VO2 and 

EE.

5.4 ODBA versus VeDBA as a proxy for VO2

From a purely physical perspective, ODBA and VeDBA are derived using the same 

terms, yet the divergent formulation means that although larger VeDBA values will 

generally accompany larger ODBA values, VeDBA values will usually be lower than 

ODBA; in fact, ODBA can never be smaller than VeDBA (Qasem, et al., 2012).

With regard to the spread of data associated with each metric, ODBA, on the whole, 

tends to produce a higher coefficient of variation due to the greater range of values in 

which ODBA uses to represent acceleration in contrast to VeDBA. Also, due to the fact 

that even a small change in device orientation for a given acceleration will affect the 

values of ODBA while leaving VeDBA unchanged (see section 5.5).

This study found that for the hip device alone, VeDBA produces greater CV, which is 

particularly perplexing. A possible explanation is that hip logger was attached to an 

elasticated strap which could have shifted slightly particularly during the running stages 

of the protocol. This would effectively change the placement of the logger which could 

explain an increase in CV  (see section 5.6) however this increase would be expected for 

both ODBA and VeDBA.

Exactly how much difference there is between ODBA and VeDBA is depicted by the 

type of motion, orientation and placement of the devices in relation to the main axes of 

the body and centre of mass, discussed in detail later in this chapter.

An important finding of this study is the extremely close relationship between ODBA 

and VeDBA metrics, with an r2 of 0.989 for all participants and logger mountings 

(straight, skew and hip).

In terms of the coefficient of determination (r2) value, the association between VO2 and 

DBA for the straight, skew and hip data separately, indicate VeDBA is a marginally
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better predictor of VO2 (refer to Table 4.7). However, the combined data determines the 

opposite finding (refer to Table 4.7). In support, Weippert, et al. (2012) also shows 

ODBA is a marginally better predictor of VO2 than VeDBA {r2 = 0.823 and r2 = 0.813, 

respectively).

Statistical analysis revealed that based upon all logger mountings and for the skew data 

only, ODBA is a superior predictor of VO2 than VeDBA. Yet, that fact that no significant 

differences were found for the straight and hip mountings (the two placements likely to 

be used in future studies) makes a conclusion rather ominous.

Nevertheless, the general indication that ODBA is a stronger predictor has a largely 

plausible explanation in terms of the structure and function of muscles during 

movement. VeDBA describes movement arc of a single muscle contracting in the same 

plane as the movement. The theory behind VeDBA is based on a pure physics 

perspective and can be described using a simplified scenario of limb flexion i.e. 

‘movement of the bones towards each other at a joint by decreasing the angle’ (Floyd, et 

al., 2012, p.387) in a two dimensional plane. For most levers in the body, the upper and 

lower limb bones are able to articulate with one another and muscles originating from 

the upper limb are inserted at various angles on the lower limb. In order for flexion to 

occur, the agonist muscles, the main contracting muscles that are involved in 

movement, pull the lower limb up toward the upper limb. Each muscle exerts a force 

which can be broken down into component vectors, force along the y-axis and force 

along the x-axis. The overall force along each axis can then be computed (Fytot and Fxtot; 

Fig. 5.2).
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F

< -------1— *

Fxtot = FcosO

Fytot = FsinO

0  = angle o f insertion 

F  = total muscular force

Figure 5.2. Resolution o f force F into perpendicular force components Fxtot and 

Fytot-

The following solution is used to describe Fytot\

angles of insertion relative to the y-axis of the lower limb’ (Qasem, et al., 2012, p.5). 

The total force along the x-axis can be defined as;

(5.1)

‘where the subscripts denote each of the specific muscles with their defined forces and

(5.2)
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F

Figure 5.3 Diagrammatic representation o f the components o f  torque; d = distance 

between fulcrum and muscle insertion, F  = force applied along that axis by each 

muscle, 6 = angle o f  rotation.

The relationship between the force applied by the muscles and the angular acceleration 

of the lower limb i.e. acceleration through the movement arc is directly related to the 

torque (t) along the along the y-axis, defined as the tendency of the lower limb to rotate 

about the elbow joint toward the upper limb. The torque depends on the force applied 

along the y-axis by each muscle (Eq. 5.3) and the length of the lever (d), defined as ‘the 

perpendicular distance between the line of action of the muscle force and the pivot point 

of the articulation’ (Fig. 5.3; Qasem, et al., 2012);

z  = F x d  (5.3)

so that for Fxto, represents the stabilising factor as the line of action is pointing toward 

the pivot point so;
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d = 0 (5.4)

and therefore;

F xO  = 0 (5.5)

and Fytot is represented by;

(5.6)

Angular acceleration (oc) and torque is associated via;

Ta -  — (5.7)
I

where I  is the moment of inertia, ‘the resistance of an object to attempt to change its 

angular motion’ (Watkins et al., 2007, p. 142).

However, the linear acceleration perceived by an accelerometer placed on the lower 

limb is related to the distance between the fulcrum i.e. joint and the device (r), 

therefore;

Thus, ‘linear acceleration observed from an accelerometer mounted in the y-axis and 

measuring in the plane of movement can be resolved by substituting equation’ (Qasem, 

et al., 2012, p.5) 5.4 into equation 5.6. to produce;

Still, the matter of concern to biologists with regard to energetics is not the total 

acceleration but how the DBA signal relates to rate of EE, and specifically the EE
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utilised by the muscles involved. This is reflected by the work done (W) during 

muscular contraction to produce the forces needed for movement and can be denoted as;

W = F.AD  (5.10)

where AZ) is the distance the muscle has contracted. The total amount of work done for 

all the muscles is;

w ,ol = ' E l o F>-AD' (5-n >

a non-vectorial derivation, where the energy used equates directly with the O2 utilised 

(Qasem, et al., 2012).

In the simplest of representations, VeDBA can be compared to a single muscle 

producing a movement arc of one limb by exerting an appropriate force and ODBA to 

that of two of more muscles with different insertion angles producing exactly the same 

force and thus vectorial solution as the single muscle. In both scenarios the amount of 

movement and physical work done is equal but in the latter scenario the forces are 

developed that are not equally manifest in the movement therefore O2 consumed by the 

multiple muscles will surpass that of the single muscle (Qasem, et al., 2012).

Although, VeDBA is correct in terms of physical derivation of the acceleration vector it 

represents a muscular set up where each muscle force reflects proportionately in the 

overall force vector. This is obviously fallacious of biological organisms. Instead, each 

movement incorporates a combination of agonists (contracting muscles that flex the 

limbs) and antagonists (extensor muscles that extend until the limb is in its natural 

state), as well as synergists (muscles that assist in refining the movement of the agonists 

by stabilising joints) and neutralizers (muscles that counteract undesirable movement) 

(Floyd, et al., 2012). The ‘inefficiencies’ in terms of oxygen utilisation that result from 

this complex intealia of muscular embedment that contain partially opposing 

contracting muscles are, in fact, necessary both for limb stability and whole body 

balance (Qasem, et al., 2012).
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The indication that ODBA may in fact be a better predictor of VO2 than VeDBA can be 

explained as ODBA accounts for the energy used for stability and balance.

5.5 ODBA versus VeDBA in relation to device orientation 

(straight versus skew logger)

Prior to any deduction as to which DBA metric holds the most truth in predicting EE, a 

specific concern over device orientation must be addressed; what happens when device 

orientation is not standardised?

By the very nature of the metric formulae, device alignment has the potential to lead to 

the greatest discrepancy between ODBA and VeDBA because for the same body 

acceleration, ODBA values will vary with device orientation yet VeDBA values will 

remain constant.

This study reports significant differences between straight and skew devices for both 

ODBA (0.026g) and VeDBA (mean 0.007g) metrics. However, only a small difference 

was found between the ‘recorded VO2 at a speed of 5 km.h' 1 compared to VO2 

estimated for the same speed from the data recorded by the skew-mounted logger using 

the calibrations obtained from the straight-mounted logger’ (Qasem, et al., 2012, p.6). 

For example the difference with ODBA was 1.4% and with VeBDA 1.3%. Furthermore, 

no difference was established between ODBA and VeDBA, concluding that if a logger is 

deployed in the straight position but then subsequently skews (perhaps due to the 

intensity of the exercise), both ODBA and VeDBA are similarly powerful proxies for 

VO2. Contrary to what might be expected, VeDBA did not outperform ODBA (Qasem, et 

al., 2012).

The study determines that skewing the accelerometer by 30° in each of the major axes 

of the body (roll, pitch and yaw), is insufficient to elicit a marked difference in the way 

ODBA reacts to changes in orientation which gives rise to a further question; exactly 

how much ‘skew’ can occur before significant differences between the metrics arise?
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The acceleration values recorded by a straight- mounted with respect to skew-mounted 

logger can be derived for any scenario using the relative rotations for each axis. This 

can be represented by an acceleration vector transformation matrix;

M  =
 ̂ coscrcos/? cos«sin/?sin^ + sincircos7  -coscisinytfcos^ + sincisin;^
-s in  a  cos ft -  sin a  sin /? sin /  + cos a  cos y sinarsin/?cos/ + cosasin/ 

sin p  -  cos p  s in /  cos/fcos y j

(5.10)

where a, /? and y  signify the angles of roll, pitch and yaw (rotations carried out in this 

order) for the skew-mounted relative to the straight-mounted accelerometer. Hence, if 

the acceleration vector measured by the straight-mounted device is denoted as;

A, = ( A l „ A l y , A l , )  (5.11)

and the same acceleration vector in the skew-mounted position, is denoted;

A 2 = ( A 2 x, A 2 y , A 2 =)  (5.12)

then;

A 2 =( MAl ) (5.13)

where the derived values for x, y and z vector components can be used to calculate 

ODBA and VeDBA (Qasem, et al., 2012).

The matrix formulations confirm that deviation in one or two axis in comparison to 

equal deviation in all three axis tends to produce larger a percentage change in ODBA 

between straight and skew devices (as shown in Fig. 5.4). This advocates that although 

this study found the difference between ODBA and VeDBA to be insignificant when 

device is skewed by 30° in all axes it may not be the case, if the skew was present in 

only one or two axes (Qasem, et al., 2012).
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Figure 5.4. ‘Predicted difference between straight and skew-mounted ODBA 

derived from recordings on a tri-axial accelerometer subjected to equal acceleration in 

the heave, surge and sway axes as a function o f pitch, roll and yaw differences between 

straight and skew. Contour lines show 2.5% intervals.
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The matrix indicates that deviations of up to 10° in any one or two axis produce only up 

to a -1%  change in ODBA, with three axes producing a ~ 0.03% change. Indeed, in 

order to reach a 5% difference in ODBA between the straight and skewed devices a 20° 

skew must occur in one or more axis. However, in any case, deviations much greater 

than 10° would tend to be visually obvious for most human studies therefore researchers 

can use ODBA without overly worrying about orientation. In the rare case that the 

devices are round and unmarked where the transducer alignment is unknown then it is 

advisable to use VeDBA (Qasem, et al., 2012).

Furthermore, it should be noted that when using this technology further afield, such as 

on other mammals in animal tracking studies, there are a number of obvious cases 

where it is imperative that VeDBA is used such as when tracking whales. Here devices 

are often attached via suction cups are consequently free to rotate (Hooker and Baird, 

1999). In addition, in cases where devices are attached to animals and left for extended 

periods of time without monitoring, VeDBA should be considered if there is a risk of 

substantial skewing (Qasem, et al., 2012).

5.6 ODBA versus VeDBA in relation to device placement 

(straight versus waist logger)

The effect of placement has been aforementioned in many previous studies (Bouten, et 

al., 1994; Manohar, et al., 2011; Gleiss, et al., 2012). Gleiss, et al. (2012), speculated 

that substantial errors in any DBA metric would result from non-standardized 

positioning of an accelerometer relative to the body’s centre of gravity, the theoretically 

‘correct’ placement.

In the present study, unsurprisingly, clear differences were present between the straight 

and hip mounted devices for both DBA metrics, with the hip logger recording the 

highest acceleration. Larger acceleration values at the hip could imply either; i) the hip 

placement provides greater sensitively to whole body motion or ii) the hip logger 

produced greater error due to improper fixing of the device. The former can be 

explained as the proximity of the hip to the body’s centre of gravity suggests that most 

of the acceleration of the limbs would manifest its self in acceleration at the hip. 

Equally, the latter stands to reason as the hip-mounted device produced a considerably
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higher coefficient of variation (CV) than the straight-mounted device which could be 

explained as it was not secured and harnessed in the same way as the straight and skew 

loggers were.

Importantly, the difference between straight and hip devices become negligible when 

used as a proxy for EE (VO2), effectively deeming logger placement unimportant. Many 

studies report a similar occurrence in which differences are present between raw 

acceleration metrics but not when related to VO2 (Bouten, et al., 1997; Ynyge, et al., 

2003). Furthermore, others support the final conclusion that placement is unimportant 

(Nilsson, et al., 2002; Ynyge, et al., 2003; Halsey, et al., 2008).

Nevertheless, this study highlights the effect of placement on the raw data can be 

demonstrated for even the smallest of placement alterations. For example, despite 

placing the straight and skew device as closely together as possible (in which they 

should effectively experience the same acceleration), VeDBA was marginally but 

significantly different (0.007g) in the two positions. Again, when the coefficients of 

determination were used for the relationship between VO2 and VeDBA, this difference 

became insignificant. However, the significant placement differences in the raw 

acceleration metrics for both straight versus skew and straight versus hip indicate that 

placement has the potential to influence VO2 (Qasem, et al, 2012).

5.7 The influence of body anthropometries, body composition and aerobic 

capacity on the relationship between DBA and VO2

To date no studies have sought to determine whether body anthropometries, body 

composition or aerobic capacity affects the relationship between VO2 and DBA, yet all 

are inter-related. The present study reports results only for ODBA as the overriding 

outcomes in terms of significance were the same for VeDBA.

The present study reports that ODBA accounts for -79% of the variation in VO2 alone 

but that the addition of fat-free mass, fa t mass and age, act as minor but significant 

additional variables to the model.
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With the addition of these three variables 16.8% and 13.7% more of the variation in 

VO2 can be explained than when using ODBAstraight or ODBAhjP (respectively) as a single 

predictor.

5.7.1 Fat-free mass

The present results are in agreement with previous studies that report a significant effect 

offat-free mass on activity EE, where an increase in fat-free mass produces an increase 

in EE (Liebel, Rosenbaum and Hirsch, 1995; Johnson, Russ and Goran, 1998). This is 

explained as in general, fat-free mass represents the metabolically active component of 

body mass so should directly relate to EE.

In the present study, fat-free mass was significantly related to VO2 when used as a 

single variable as well as in combination with ODBA, age and fa t mass. Fat-free mass 

as a single variable explains ~9% of the variation in VO2. This is similar to that that 

reported by Johnson, Russ and Goran (1998) (i.e. 10%).

Furthermore, fat-free mass explained an additional -12% of the variation in VO2 after 

inclusion of ODBA, fa t mass and age.

5.7.2 Age

Age explained approximately 5% of the variation in VO2 after inclusion of ODBA, fat- 

free mass and fa t mass.

The influence of age on VO2 where increasing age produces a decreasing VO2 is 

unexpected, as the age range in the present study is reasonably small i.e. 14 years, with 

15 out of 18 participants aged between 19 and 24 years. Also, age was not significantly 

related to VO2 when used as a single variable. It is therefore unclear why age has a 

significant influence on VO2 in combination with ODBA, fat-free mass and fa t mass.

It is well established that VO2 max (l.min'1) declines with age. For example, a meta­

analysis by Fitzgerald, et al. (1997) estimated that regardless of training status FC^max 

falls at a rate of around 10.0 to 10.9% per decade in women from the age of 25 years.
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The link between age and submaximal VO2 is less clear and could be linked to 

numerous factors including VO2ITIax and exercise economy (Jones and Carter, 2000).

5.7.3 Fat mass

Fat mass explained a small but significant additional amount of the variation in VO2 i.e. 

-2%  after inclusion of ODBA, fat-free mass and age.

There is only a small body of research that has previously considered the influence of 

fa t mass on activity EE in adults, with most results showing no significant relationship 

between the two (Liebel, Rosenbaum and Hirsch, 1995; Goran, et al., 1997). However, 

there is also some evidence that fat mass is related to resting and basal metabolic rate 

(Nielson, et al., 2000; Johnstone, et al., 2005). Furthermore, fa t mass has previously 

been reported to account for approximately 4% of 24-hour EE (Hallgren, et al., 1989 

cited in Weinsier, Schutz and Bracco, 1992).

Unusually, the present study reported a significant influence of fa t mass when the 

sample population displayed only a small range of fat mass values. For instance, all 

participants were within recommended levels of % body fat (low-high) based upon 

gender and age (Heyward and Wagner, 2004, p.6) with 14 out of 18 participants within 

9-19% fa t mass. In contrast, the sample population of Nielson, et al., (2000) ranged 

from a BMI o f  ‘normal’ to obese with fa t mass values from 15-44%.

5.8 Conclusions

This study shows that VeDBA does not outperform ODBA as a proxy for VO2 and if 

anything ODBA is better (though the difference is minimal) as long as devices can be 

attached close to the major axes of the body. The choice between them should be based 

on (a) the value placed on representing the biology of muscle metabolism (b) the 

likelihood that device orientation could vary markedly (c) whether comparison with 

values in the literature is required. Critically, both ODBA and VeDBA are susceptible to 

variation in device positioning.
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It is clear that the association between VO2 and DBA can be improved using additional 

variables. However, this study can only act as an indication as to which variables should 

be considered in future. The small sample size and lack of variety in anthropometric, 

body composition and aerobic capacity values limits the relevance of the conclusions 

considerably. Based upon the present results only fat-free mass has a large enough 

influence to recommend its use in future research. Fat mass and age require further 

assessment.

5.9 Limitations

5.9.1 Missing data values

Occasional faults in the accelerometers were a particular limitation of the study in the 

fact that it left missing results for some of the straight, skew and hip data sets. This 

study sought to ascertain the most appropriate way of deducing missing values using 

combined data from all logger mountings but found no significant differences between 

the predicted values construed by the three methods used (IR, SA and JMP) both in 

terms of DBAa\\ values and r (VO2 plotted against DBA^\) values were used for both 

ODBAau and VeDBAm metrics (see Table 4.15 and 4.16).

Nonetheless, when the regression equations for VO2 against DBAan were used, the SA
•  * 9 • »and the JMP method showed improvements in r values in comparison to the raw data 

for both ODBAa\\ and VeDBAan, with the SA method producing slightly higher r values 

than the JMP (see Table 4.17).

This advocates that the SA method of imputing missing values might be appropriate 

future studies using incremental locomotive activity in order to strengthen the 

conclusions of the investigation. However, it is important that this method is only 

implemented for group data and not on an individual basis.

Still, caution should be taken when applying these results to future studies as the 

influence of the methods of imputing missing values may change depending on the 

number of missing results. Furthermore, with larger data sets and fewer missing values
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the accuracy of the imputed values is likely to increase with a small subsequent 

improvement in r2.

Additionally, it should be noted that imputing missing values may not be appropriate for 

all protocols. The nature of the protocol in the present study particularly lends itself to 

calculating reasonably accurate values due to the following reasons; i) the incremental 

nature of the exercise creates a clear pattern in which to base subsequent predicted data 

and ii) there is no significant difference between the raw data set and data sets with 

imputed values.

5.9.2 Body composition data

The use of body composition data in the present study was highly limited in terms of the 

range of fa t mass and fat-free mass in the sample population, although surprisingly both 

variables added significantly to the prediction of VO2 . Still, due to the controversy that 

surrounds fa t mass in particular, in terms of its influence on EE, it is imperative that this 

study is cross-validated with a sample with a larger fa t mass range.

An additional drawback of the body composition data was use of the 2-compartment 

model of body density. This model is highly over simplified when related to EE as the 

fat-free mass component which is often considered as metabolically active includes both 

bone (non-metabolically active) and bone-free lean tissue (metabolically active). In the 

present study this model was necessary due to allow comparison between techniques. 

However, in order to be certain that fat-free mass and fat-mass are additional significant 

variables in the model of VO2 plotted against DBA, future studies should consider more 

detailed body composition data. For instance, the 3-compartment tissue-level model 

(body mass = fat + bone mineral + bone-free lean tissue) offers a more compound 

analysis and can be measured via dual-energy X-ray absorptiometry (Heyward and 

Wagner, 2004).

Additionally, as accelerometers measure activity EE specifically, researchers may wish 

to measure skeletal muscle mass alone which is approximated at 39% of fat-free mass 

(Weinsier, Schutz, and Bracco, 1992). This can be estimated using techniques such as 

the BIA.
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5.9.3 Limited ability of accelerometers to predict activities of daily living

This study has established a strong relationship between VO2 and DBA during treadmill 

locomotive activity therefore the most imperative question leading on from this is can 

DBA accurately predict EE in free-living daily activities?

To decipher this, the regression equations developed in the present study must be 

validated using a large variety of daily activities and population characteristics (Lyden, 

et al., 2011).

Nevertheless, accelerometers as a whole have several possible limitations in terms of 

their application to daily activity which relate to the lack of ability to recognise; 

isometric muscular contraction, inclined/declined terrain (discussed in 2.18.6) and 

ground substrate. Isometric muscular contraction and ground substrate are discussed 

below along with suggestions on how these problems may be addressed in future studies 

(solutions).

i) Isometric muscular contraction

Isometric muscular contraction ‘occurs when a muscle generates force and attempts to 

shorten but cannot overcome the external resistance’ (McKardle, Katch and Katch, 

p.520) therefore energy is being utilised for muscular contraction but no movement 

occurs. This causes large problems in terms of the ability of an accelerometer to 

measure EE in situations particularly in situations where isometric muscular 

contractions are prolonged for example when carrying bags. In this case the 

accelerometer would almost certainly underestimate VO2 (Halsey, et al., 2011).

ii) Ground substrate

The effect of ground surface substrate is scarcely considered in research on use of 

acceleration signals as a proxy for EE in humans. Yet, clear differentiations in the 

energy cost of locomotion over a multitude of surfaces have been made. Lejeune, et al. 

(1998), reported 1.6-2.5 times more mechanical work and 2.1-2.7 times more EE is 

needed to walk on sand (speeds 0.5 -  2.5 m.s*1) compared to walking at the same speed
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on a hard surface. Similar, results were presented for running, with running on sand 

producing approximately 1.15 times more mechanical work and 1.6 times more EE than 

running on a hard surface (Lejeune, et al., 1998,). Likewise, Sassi, et al. (2011) found 

that running on natural grass or artificial turf elicits significantly higher energy costs 

than running on a hard surface (asphalted track) at the same speeds (2.22, 2.78, 3.33 

m.s'1).

The differences in energy cost between ground surface substrates are primarily due to 

reduced locomotive economy on softer surfaces. More specifically, augmented muscle- 

tendon work during walking and reduced muscle-tendon efficiency as well as a small 

increase in step frequency during running. Moreover, hard surfaces allow greater energy 

rebound where positive work done by the muscles to propel the body upwards is 

subsequently absorbed by the muscles when the centre of mass falls and in turn, part of 

this energy is then used again for the next step. Soft surfaces such as grass act as a 

dampener due to greater compression in comparison to a hard surface. Furthermore, on 

soft surfaces such as sand, the foot will move slightly during each step which further 

dissipates energy hence a much greater amount of work is done on the ground per step 

in comparison to a hard surface (Lejeune, et al., 1998).

Additionally, it should be noted that the effect of motorised exercise equipment such as 

the treadmill has been shown to produce substantial biomechanical differences in 

locomotion in comparison to over ground locomotion (Riley, et al., 2008). 

Correspondingly, Yngve et al., 2003, found significantly greater accelerometer counts 

were produced on a treadmill than on a running track for the same walking and jogging 

speeds although biomechanical factors were not assessed.

iii) Solutions

There are two main solutions that are currently appearing in the literature and need to be 

further investigated with the use of ODBA and VeDBA metrics; i) use of complex 

algorithms to decipher specific movements from acceleration patterns and allow 

subsequent adjustment of the acceleration versus EE regression equations, ii) use of 

acceleration values in combination within another device.
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For instance, several studies have pursued techniques to decipher acceleration patterns 

such as artificial neural network analysis and time-frequency analysis to classify activity 

type (Staudenmayer, et al., 2009) and locomotion on graded terrain (Wang, et al., 2007) 

with relative success. For example, activity type has been correctly classified 88.8% of 

the time during locomotive, vigorous, household and low-level activities 

(Staudenmayer, et al., 2009).

Additionally, use of global positioning systems and barometers alongside 

accelerometers would allow changes in gradient and terrain to be registered. Yet both 

have major drawbacks including dependence on satellite signals and disturbance in 

readings due to metrological conditions.

Finally, measurement of heart rate (Brage, et al., 2005; Couder, et al., 2007; Halsey, et 

al., 2008) has shown promising results in increasing the accuracy of predicting VO2 and 

can help account for situations of isometric muscular contraction and graded walking. 

For example, ODBA and heart rate combined has been shown to be superior in 

predicting VO2 (r2 = 0.95) than either heart rate (r2 = 0.86) or ODBA (r2 = 0.60) alone 

during inclined locomotion (Halsey et al., 2008). Furthermore, recent studies are 

considering the use of HR variability in the prediction of EE. HR variability gives much 

greater insight into the physiological response to exercise than HR alone as it measures 

beat-to-beat variation and therefore has the potential to improve the prediction of EE 

even further (Smolander, et al., in press).

5.10 Future recommendations

Based upon the results of the present study it is recommended that both ODBA and 

VeDBA are examined a proxies for VO2 in further detail in human studies including 

comparison in paediatric, adolescent, adult and elderly populations that widely vary in 

terms of fa t mass, fat-free mass and anthropometric variables. Furthermore, due to the 

trend towards choosing accelerometer placements based upon the convenience of the 

user i.e. wrist, ankle etc. (Parkka, et al., 2007, Kim, et al., 2009) or use of i-phones to 

measure acceleration which are commonly placed in the trouser pocket or bag 

(Manohar, et al., 2011) the ability of DBA to predict EE at these placements must be 

tested to ensure long term application of the DBA metrics. Finally, it should be noted
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that with any studies based upon ODBA the device should be kept within 10° of the 

major axis of the body at all times .
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