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Summary

Profiling patterns of interhelical associations in polytopic 

membrane proteins 

Summary

A novel set o f methods has been developed to characterize polytopic membrane 

proteins at the topological, organellar and functional level, in order to reduce the existing 

functional gap in the membrane proteome.

Firstly, a novel clustering tool was implemented, named PROCLASS, to facilitate 

the manual curation o f large sets o f proteins, in readiness for feature extraction.

TMLOOP and TMLOOP writer were implemented to refine current topological 

models by predicting membrane dipping loops. TMLOOP applies weighted predictive rules 

in a collective m otif method, to overcome the inherent limitations of single m otif methods. 

The approach achieved 92.4% accuracy in sensitivity and 100% reliability in specificity 

and 1,392 topological models described in the Swiss-Prot database were refined.

The subcellular location (TMLOCATE) and molecular function (TMFUN) 

prediction methods rely on the TMDEPTH feature extraction method along data mining 

techniques. TMDEPTH uses refined topological models and amino acid sequences to 

calculate pairs o f residues located at a similar depth in the membrane. Evaluation of 

TMLOCATE showed a normalized accuracy o f 75% in discriminating between proteins 

belonging to the main organelles.

At a sequence similarity threshold o f 40%, TMFUN predicted main functional 

classes with a sensitivity o f 64.1-71.4% and 70% of the olfactory GPCRs were correctly



Summary

predicted. At a sequence similarity threshold of 90%, main functional classes were 

predicted with a sensitivity o f 75.6-92.8% and class A GPCRs were sub-classified with a 

sensitivity o f 84.5%-92.9%. These results reflect a direct association between the spatial 

arrangement o f residues in the transmembrane regions and the capacity for polytopic 

membrane proteins to carry out their functions.

The developed methods have for the first time categorically shown that the 

transmembrane regions hold essential information associated with a wide range of 

functional properties such as filtering and gating processes, subcellular location and 

molecular function.
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CHAPTER 1 

General Introduction 

1.1 Membrane proteins

1.1.1 The abundance and importance of membrane proteins

The extensive number o f  different genome sequencing projects has provided the 

scientific community with a massive amount of genomic information. Although DNA 

contains all the required information for any cell, all cellular processes are mediated by 

proteins. Therefore, the post-genomic era has focused on the identification and 

characterization o f all proteins encoded by entire genomes in the lifetime o f a cell. Among 

cellular proteins, membrane proteins have been shown to be an abundant and important 

group o f proteins. Previous studies have shown that membrane proteins account for 20-30% 

of the entire cellular proteome (Boyd et al., 1998, Wallin and von Heijne, 1998). Such 

abundance is reflected by the diverse cellular functions carried out by membrane proteins, 

where most o f these functions are crucial for cellular development and maintenance. 

Membrane proteins are essential mediators o f transfer of material and information between 

compartments within cells, between cells and their environment, and between tissues of 

different organ systems. These proteins are responsible for creating and maintaining the 

particular and finely regulated composition o f the cell interior relative to the outside. 

Likewise, membrane proteins sense signals from the environment and mediate 

neurotransmission and other communication processes. Furthermore, membrane proteins 

intervene in energy transformation processes such as photosynthesis, respiration and ATP 

production.
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The importance o f membrane proteins is also reflected at the pharmacological level, 

where aberrant function o f these types o f  molecules leads to many disease states such as 

Alzheimer’s disease, cancer, heart disease, cystic diseases, Duchenne Muscular Dystrophy 

(DMD) and neurological disorders. Membrane proteins are the target o f many 

pharmacologically and toxicologically active substances and are responsible, in part, for the 

uptake, metabolism and clearance o f these substances. Moreover, these proteins have a 

great importance in drug discovery as they account for approximately 60-70% o f all known 

pharmaceutical drugs targets (Wu and Yates, 2003).

1.1.2 The lipid bilayer

All membrane proteins are either non-covalently bound or embedded in the lipid 

bilayer, which defines the boundaries o f the cellular organelles and the entire cell. Cell 

membranes play a critical role in cellular structure and maintain the essential differences 

between the cytosol and the extracellular environment. Although the basic structure and 

function o f the cellular membrane is provided by the lipid bilayer, membrane proteins 

confer unique compartment-specific functions and communication between separated 

environments (Wu and Yates, 2003).

Lipid molecules in the membrane are amphipathic, that is, they have a polar or 

hydrophilic end and a non-polar or hydrophobic end. The most abundant lipids in the 

membrane are phospholipids. Phospholipids have a polar head group and two hydrophobic 

hydrocarbon tails. The polar head group is composed by a phosphatidylcholine moiety and 

the tails are usually fatty acids. Fatty acids consist of a carboxylic group attached to a single 

14-24 CH2 chain. These fatty acids may have one or more cis-double bonds creating a kink 

in the tail. The differences in length and saturation o f fatty acids influence the packing of 

contiguous phospholipids, which consequently affects the fluidity o f the membrane. 

However, phospholipids are not the only lipid components o f the membrane. Cholesterol 

and glycolipids are also components o f the eukaryotic cell membrane. Likewise, other 

molecules such as sphingomyelin or phosphatidylserine, are components o f biological 

membranes. The lipid and protein composition is not the same for different biological
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membranes, and confers different physicochemical and functional properties upon the 

corresponding membranes. The lipid bilayer o f bacteria is often composed o f phospholipids 

and does not contain cholesterol whereas in eukaryotes the lipid composition is more 

diverse containing different types o f phospholipids and large amounts o f cholesterol 

(Alberts et al., 1994).

The accepted model used to describe the lipid membrane, is the fluid mosaic model 

proposed by Singer and Nicholson (Singer and Nicolson, 1972). This model describes the 

biological membrane as a two-dimensional fluid environment composed o f  two lipid layers. 

According to this model, the outer layer is composed mainly o f head groups o f lipids, 

where the highly polar nature o f these groups allows the lipid bilayer to interact with the 

aqueous solution. On the other hand, the inner area o f the membrane is composed of 

hydrophobic hydrocarbon chains of fatty acids. The hydrocarbon chains are aligned parallel 

to each other and their non-polar ends contact with each other in the middle o f the cell 

membrane. These contacts create a non-polar barrier, which is impermeable to most polar 

molecules and ions but allows small, non-polar molecules to pass through. This 

hydrophobic region also provides the most distinctive region o f  solvation for membrane 

proteins due to the absence o f the hydrophobic effect and the strength o f ionic interactions 

over long distances in the low dielectric field (Popot and Engelman, 2000).

1.1.3 Structural types of membrane proteins

Membrane proteins possess a wide variety o f shapes and sizes. Interestingly, the 

basic architectural principles o f these proteins are quite different to the structural basis of 

soluble proteins. Different regions o f membrane proteins are located within environments 

o f different composition. These environments correspond to the lipid environment, the 

membrane-water interface and the aqueous medium. On the contrary, soluble proteins are 

only located in aqueous environments. These different environments impose different 

physicochemical constraints, which lead to different principles governing the assembly of 

their secondary structures.
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Membrane proteins are either bound to one side of the membrane or completely 

span through the cell membrane. Peripheral anchored membrane proteins are non- 

covalently bound to the membrane either by lipids (lipid chain-anchored membrane 

proteins) or by a glycosylphosphatidylinositol molecule (GPI-anchored membrane 

proteins). Peripheral anchored membrane proteins can be considered as tethered soluble 

proteins that do not seem to be influenced by the cell membrane (von Heijne, 1996). On the 

other hand, integral membrane proteins completely span the lipid bilayer at least once.

1.1.3.1 Integral membrane proteins

Integral membrane proteins can be further sub-classified into two categories 

according to the secondary structures that compose these proteins: P-barrel membrane 

proteins and a-helical membrane proteins.

1.1.3.1.1 p-barrel membrane proteins

The transmembrane domain o f  this protein type is composed by antiparallel 13- 

strands that form a P-barrel structure (figure 1.1). An array o f P-strands (in p-barrel 

conformation) constitutes the backbone o f the structure and the loop region connecting the 

P-polypeptides contains the helices, which surround the P-barrel structure, p-sheet structure 

is formed when at least two almost fully extended polypeptide chains are brought together 

side by side so that regular hydrogen bonds can be formed between the peptide backbone 

amide NH and carbonyl oxygen of adjacent chains (Zubay et al., 1998). Due to the trans 

orientation o f the NH and carbonyl groups, multi-stranded structures are obtained when 

successive chains are added to the sheet. According to the alignment o f the different 

polypeptide chains, P-sheets can be classified as parallel P-sheets ( all the chains arranged 

with the same N-to-C polypeptide sense) or antiparallel P-sheets ( chains arranged in 

opposite N-to-C polypeptide sense). In the case o f P-barrel membrane proteins, all 

crystallized membrane proteins display a P-barrel structure composed by antiparallel p- 

sheets. The P-sheet that forms the barrel has an hourglass-shaped surface with cylindrical
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curvature. Twisted p-strands with a staggered hydrogen-bond pattern produce a cylindrical 

curvature (Zubay et al., 1998). This structure is formed as a consequence o f  a competition 

between the natural tendency o f  chains to be twisted in a right-handed sense and the inter 

hydrogen bonds (between adjacent p-strands).

Porins are by far the best studied protein family belonging to this structural type. 

Porins are found in the outer membrane o f  many bacteria. These proteins allow the passive 

diffusion o f  small molecules across the membrane through the water filled pore formed by 

the antiparallel p-strands (Schulz, 1996). A polypeptide loop lining the inner wall o f  the 

pore determines the functional properties o f  the pore (Garavito, 1998).

Figure 1.1. Structure o f  the the anion-selective porin Omp32 (PDB code 1E54) (Zeth et al., 2000). Image 
generated with Yasara (Yasara biosciences, www.yasara.orgV

1.1.3.1.2 a-helical membrane proteins

The transmembrane domain o f  this protein type is composed o f  a-helices that 

completely traverse the lipid bilayer. These proteins can be further sub-classified into single
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a-helix transmembrane proteins, which only span the membrane once, and polytopic 

membrane proteins, which contain two or more a-helices that completely span the 

membrane. The classical concept o f  the topology o f  polytopic membrane proteins was that 

o f  a bundle o f  hydrophobic a-helices, each composed by 15-25 residues, orientated 

approximately perpendicularly to the membrane plane (figure 1.2). However, the different 

crystallized structures have shown that it is not that simple (figure 1.3). The 

transmembrane regions o f  polytopic membrane proteins can include not only ordered 

secondary structures, but also unfolded secondary structures, and a-helices can vary in 

length and composition. Furthermore, the angle formed by the helical axis and the 

membrane plane can vary significantly from helix to helix, membrane dipping loops (re

entrant loops) dip to a certain depth in the membrane and then turn back, and many helices 

located at the water-lipid interface are orientated parallel to the membrane plane.

Figure 1.2 Structure o f  bacteriorhodopsin (PDB code: 1QHJ) (Belrhali et al., 1999). Image generated with 
Yasara (Yasara biosciences, www.vasara.orgV
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Figure 1.3. Structure o f  the C1C Chloride channel (PDB code: 1KPK.) (Dutzler et al., 2002). Image generated 
with Yasara (Yasara biosciences, www.yasara.oru).

In an a-helix, the polypeptide backbone follows the path o f  a right-handed helical 

spring to form an arrangement in which each residue’s carbonyl group forms a hydrogen 

bond with the amide NH group o f  the residue four amino acids further along the 

polypeptide chain (Zubay et al., 1998). All residues have identical conformation, keeping 

the N -C a (O) and Ca-C (T) rotation angles similar along the polypeptide main chain ( 0 =  - 

60°, XV= -45° to -50°). This leads to a 100° rotation along the helical axis from one residue 

to the following residue and the approximate distance along the helical axis between 

contiguous residues is 1.5A (figure 1.4). Therefore, within a regular structure each 360° of 

helical turn incorporates approximately 3.6 amino acids. The stability o f  this conformation 

is a consequence o f  the formation o f  stable hydrogen bonds between all the backbone NH 

groups and carbonyl groups and the tight packing achieved. The a-helix bundle domain is 

based on the helix-loop-helix motif creating clusters o f  interacting a-helices. The segments 

o f  a-helix are held together in one polypeptide chain by interconnecting loops o f  extended 

polypeptide chain (Zubay et al., 1998).
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Figure 1.4. Spatial conformation o f  the a-helix. a) helical structure with the corresponding a-carbon for each 
amino acid, b) The helical backbone , the figure illustrates the rotated characteristic o f  helical structure, c) 
The rotation angles along the helical backbone, d) The helical backbone, the figure illustrates the distance 
along the helical axis between two contiguous residues. Image generated with Yasara (Yasara biosciences, 
www.yasara.org).

A study carried out by Ulmschenider and Sansom (Ulmschneider and Sansom, 

2001) reflects the amino acid distributions in integral membrane proteins. The hydrophobic 

residues Alanine, Isoleucine, Leucine and Valine make up to 34% o f  all residues in a- 

helical proteins. Leucine has the highest propensity for being in the transmembrane region 

and might contribute strongly to the formation o f  helices. Due to the highly hydrophobic 

nature o f  this residue, it was expected that Leucine would prefer the lipid exposed area o f  

the transmembrane regions. However, strongly hydrophobic residues (Phenylalanine, 

Leucine, Isoleucine and Valine) do not show any preference for location within the buried 

lipid bilayer. By contrast, small hydrophobic residues (Glycine and Alanine) prefer to be 

located within the lipid bilayer rather than on the surface o f  the transmembrane domain. 

Glycine has a high frequency in transmembrane regions. This residue has been considered a

1.5A

aa

X
3rd a a
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helix breaker for globular proteins, however, in membrane proteins it promotes, with 

alanine, the interhelical associations facilitating the closer packing o f helices due to its short 

side chain. Aromatic residues show a high propensity to face the lipid head-groups at either 

or both transmembrane termini forming the “aromatic belt” (Adamian and Liang, 2001, 

Pilpel et al., 1999). These residues play an important role in membrane protein structure 

determination. They are believed to anchor the proteins into the membrane through an 

interaction o f their aromatic rings with the lipid head groups. Likewise, histidine is 

frequently found in active sites and often plays an important functional role (Adamian and 

Liang, 2001). Proline is abundant in the loop regions outside the membrane, but it is also 

detected towards the centre o f the bilayer. This residue may increase the stability o f the 

transmembrane regions by ‘interlocking’ the helices, or by providing molecular hinges that 

enable conformational transitions in more complex membrane proteins (Ulmschneider and 

Sansom, 2001). Polar residues are poorly represented in transmembrane regions. In fact, 

with the exception o f threonine and serine, which account for -7%  o f the residues, the 

remaining polar residues constitute only 1-3% (Curran and Engelman, 2003). Serine and 

threonine side chains in a helix can form H-bonds to the carbonyl oxygen o f the preceding 

turn o f the helix (Ulmschneider and Sansom, 2001), minimising the energetic penalty. 

These percentages can be rationalized in view o f the energetic penalty of locating polar 

amino acids in the low dielectric medium o f the lipid bilayer (White and Wimley, 1999). 

However, polar and charged amino acid residues are structurally and functionally important 

as they appear to be less mutable when they occur in transmembrane regions. The 

positively charged residues, arginine, histidine and lysine show a preference to face the 

lipid only when located at the cytoplasmic end. These residues might facilitate the 

anchoring o f the transmembrane helices to the membrane by means o f polar interactions 

with the negatively charged head groups o f the lipids (Pilpel et al., 1999) (for a m ore 

detailed review describing the folding process of polytopic m em brane proteins please 

see chapter 6 ).

In terms o f functional diversity, polytopic membrane proteins are by far the most 

significant membrane protein type, yet the most challenging in terms o f protein structure 

prediction. Therefore, the majority o f recent experimental and computational approaches
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have been focused on the elucidation o f  the folding processes (C hap ter 6 ), structures and 

functional properties (C hap ter 7 and C hap ter 8 ) pertaining to polytopic membrane 

proteins.

1.1.4 Structural and functional gap in the membrane proteome

Despite the natural abundance and medical significance o f membrane proteins, 

many membrane proteins remain structurally unknown. By January 2007, only 277 

membrane protein structures were found in the Protein Data Bank (PDB) (Berman et al.,

2000), corresponding to 93 or 121 unique proteins found in the Hartmut M ichel’s database 

o f crystallized membrane proteins, fhttp://www.mpibp-

frankfurt.mpg.de/michel/public/memprotstruct.html') and the Stephen White laboratory, at 

University o f California, Irvine,

(httpi/Zblanco.biomol.uci.edu/Membrane Proteins xtal.html) respectively. This accounts 

for less than 1% of all protein structures contained in the PDB. Experimental studies to 

elucidate the structure o f proteins are mainly based on X-ray crystallography, Nuclear 

Magnetic Resonance (NMR) and electron microscopy. Although these methods have 

proven to be very successful for structure determination in soluble proteins, these 

techniques are severely hampered by the lipid environment. Lipid molecules complicate the 

preparation o f quality X-ray crystals and samples for multidimensional solution NMR 

studies. Likewise, when membrane proteins are extracted from the membrane, proteins lose 

their natural folding pattern unless they are maintained in a non-polar environment similar 

to that found in the membrane. Therefore, it might be possible that artefactual results are 

obtained by experimental analysis. The extreme hydrophobic nature o f most membrane 

proteins have made them difficult targets for X-ray crystallography and NMR techniques 

(Deber et al., 2001). Furthermore, quite often it is difficult to obtain sufficient amounts, and 

of sufficient quality to apply X-ray crystallography or other experimental approaches 

(Saidijam et al., 2003). Experimental analyses to elucidate functional properties o f newly 

identified membrane proteins are also difficult due to the nature o f the lipid membrane. 

This situation contrasts with exponential growth in the number of sequences deposited in 

biomolecular databases due to the substantial number o f different sequencing projects being
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carried out. Therefore, the structural and functional gap observed in the membrane 

proteome is constantly widening.

In order to alleviate this situation, computational methods are being developed to 

predict the structure and function of newly identified proteins. Structural prediction of 

membrane proteins is mostly focussed on the prediction o f topology o f membrane proteins 

(please see chapter 6 for a more detailed review on topology prediction methods). 

However, efforts are also being made to predict the three-dimensional structure of 

polytopic membrane proteins. Structural prediction methods can broadly be divided into 

two main groups, comparative methods and ab initio methods. Comparative methods rely 

on detectable similarity spanning most o f the modelled sequence and at least one known 

structure. The sequence to be modelled is aligned with the known structure, the modelled 

protein including either sequential or simultaneous modelling o f the core o f the protein, 

loops and side chains. Ab initio methods attempt to predict the structure o f the protein 

directly from the sequence. These methods are based on the assumption that the native state 

o f a protein is at the global free energy minimum, and carry out a large scale search of 

conformational space for protein tertiary structures that are particularly low in free energy 

for the given amino acid sequence (Baker and Sali, 2001).

Several methods have been implemented for the functional prediction o f newly 

identified proteins, such as sequence similarity-based methods, genomic context methods 

and data mining methods. These predictions not only consider the molecular process 

involved but also functional features such as the subcellular location, identification of 

functionally important residues, post-translational modifications and protein-protein 

interactions (please see chapter 7 and chapter 8 for a more detailed review). However, 

these methods are mostly applied to soluble proteins and only a few methods have been 

implemented to predict functional properties o f  membrane proteins.
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1.2 Bioinformatics and data mining

Over the last decade, bioinformatics has established itself as a discipline within the 

biological and biomedical research field. This discipline certainly stands out for its 

multidisciplinary character, where experts from a wide range o f backgrounds (e.g. biology, 

chemistry, physics, medicine, mathematics, computer science and statistics) meet to 

achieve a common goal. Therefore, techniques first developed for completely unrelated 

tasks have been successfully applied in computational biology. For instance, Hidden 

Markov Models (Baum and Petrie, 1966) were first applied to speech recognition (Jelinek, 

1969) and were first applied in computational biology in 1989 (Churchill, 1989). Further 

applications and improvements have led into the implementation o f popular tools such as 

PSI-BLAST (Altschul et al., 1997) for remote homologue detection and TMHMM (Krogh 

et al., 2001) for the topology prediction o f membrane proteins. Bioinformatics tools have 

been applied to diverse tasks such as gene detection, splice variant prediction, sequence 

comparison, phylogenesis, protein structure prediction, functional prediction, post- 

translational modification predictions and microarray data analysis. Although there are still 

many problems that have not been unravelled (e.g. sequence-to-structure-to-function 

paradigm), bioinformatics is advancing into areas for which little experimental data is 

currently available. Systems biology, for example, aims to predict the behaviour of 

biological systems under particular conditions, which involve not only interactions between 

different pathways (e.g. gene relation networks and enzymatic pathways) in a cell but also 

interactions between the different biological units within a system. Whereas this discipline 

is still contentious for some scientists, who argue that there is not yet enough data to 

support those predictions, others believe that the computational infrastructure should be 

developed in preparation for the more enriched data o f the future. Examples o f such 

developments are the EcoCyc database (Karp et al., 2000), which contains a literature- 

based curation o f the entire genome, transcriptional regulation, transporters and metabolic 

pathways in E. coli, and the BRENDA database (Schomburg et al., 2002), which contains 

enzyme and metabolic information.
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Many o f the questions involved in bioinformatics research can also be regarded as a 

machine learning task (Frank et ah, 2004): i) Prediction o f an output given a particular 

feature vector, ii) clustering instances sharing similar features and iii) selection o f features 

to predict a particular outcome. Data mining techniques such as support vector machines or 

Bayesian methods, have already been used for tasks such as functional characterization 

(Karchin et ah, 2002), probe selection for gene-expression arrays (Tobler et ah, 2002), 

subcellular location prediction (Nair and Rost, 2005) and classifying gene expression 

profiles (Li et ah, 2003). Weka (Witten and Frank, 2005) is a data mining platform, which 

provides a wide suite o f algorithms for the different machine learning tasks. The different 

data mining methods implemented within the Weka platform vary in complexity from 

simple and straightforward methods such as the k-nearest neighbour or decision trees, to 

more sophisticated methods such as support vector machines and neural networks. 

Increased complexity does not necessarily mean better performance and it is often observed 

that the simpler classifiers perform better than sophisticated ones. The reason for this is that 

the nature o f real data sets varies, so specific data mining methods perform better 

depending on the nature o f particular data sets. This platform allows rapid comparison o f 

different data mining techniques in order to identify the data mining method that best fits a 

given dataset. Below, different data mining techniques used in the project are briefly 

described.

1.2.1 Bayesian methods

Bayesian methods are statistical based methods, where predictions are made 

considering different probabilities and costs associated with such predictions (Duda et al., 

2001). The basic theory underlying these methods assumes that all attributes used to make 

such decisions are equally important and independent from each other. Likewise, it is 

assumed that numeric attributes follow a normal distribution. Although these assumptions 

do not reflect the empirical properties o f the data sets, these methods have proven very 

useful for the data classification problem (Witten and Frank, 2005).

The basic principle o f these methods is based on the Bayes formula:
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P (a> ,\ x )  = -------   — (1-1)
PZ

where P(o)j| %) is the posterior probability o f the state o f nature belonging to class coj given 

the observed values for the set o f features p(x | coj) is the likelihood o f the class coj with 

respect to the set o f observed values for the set o f features features %, P(cQj) is the prior 

probability o f the class coj and p(x) is the evidence factor, which guarantees that all possible 

posterior probabilities (as many as the different classes involved in the classification 

process) sum to 1. In a hypothetical case, where the set o f features is composed by three 

different features, and assuming that each feature is independent from each other, equation

1.1  can be extended to

D, , , PiZx I (Oj)piXi I V j M Z i  I 0)j)P{co )
PiPj I Z) = ----------- -------------- -------------- ---------- — 0 -2)

PZ

where the likelihood of the class coj with respect to each observed feature is 

computed individually. Therefore, equation 1.1 and 1.2 can be paraphrased into:

. , . . .  likelihood • prior probabilityposterior probability = ---------------------------------------  (1.3)
evidence

The Bayesian method using equation 1.1 (or 1.2) is called the naive Bayesian 

method as it assumes independency between attributes (Witten and Frank, 2005). The main 

limitation o f this method is that if the probability o f the class coj with respect to a particular 

feature is found to be zero then the posterior probability will also be zero. This limitation 

can easily be overcome if particular features that occur zero times receive a likelihood 

value higher than zero. One strategy is to add 1 to each count while computing the 

likelihood o f class coj with respect to each feature, and this is also known as the Laplace 

estimator. Another possibility is to include a prior constant value and probabilities to each 

extracted feature where the prior probabilities for all extracted features sum to 1 .
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A more sophisticated Bayesian method is the Bayesian network. This method is 

represented by a directed acyclic graph, where each node corresponds to a particular feature 

and the edges represent conditional dependencies (figure 1.5). Bayesian networks can be 

used to represent causal dependencies where particular features can influence others. Nodes 

immediately before a particular node are considered the parents o f  that node and the nodes 

immediately after are considered the children o f  the node. Through a direct application of 

Bayes rule, it is possible to determine the probability o f  any configuration o f  features in the 

joint distribution. In order to calculate this value, it is necessary beforehand to compute the 

conditional probability tables, which give the probability o f  any feature at a node for each 

conditioning event (that is, for the values o f  the variables in the parent nodes) (Duda et al., 

2001). In order to compute the likelihood at a particular node, only the information 

contained in the current node and the corresponding parental nodes is considered. The 

assumption made in Bayesian networks is that ancestor nodes do not provide additional 

information about the likelihood value o f  a particular node in light o f  the information 

provided by the parental nodes. In statistics, this property is called conditional 

independence (Witten and Frank, 2005).
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Figure 1.5. Example o f  a Bayesian network diagram. The nodes correspond to different features and the edges 
reflect the relationships between the nodes. The tables describe the combined probability for each feature.
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Employing the Bayesian network architecture involves two different tasks: i) 

searching through the space o f different networks (different arrangements o f nodes) and ii) 

calculation o f the log-likelihood o f the given network, in order to measure the quality o f the 

network (Witten and Frank, 2005).

1.2.2 Linear regression and logistic regression

Regression analysis is a statistical method used to develop a mathematical equation 

that shows how variables are related. The variable predicted by the equation is known as 

the dependent variable (which corresponds to the different classes used in a training set) 

whereas the variables used to predict the value o f the dependent variable are known as 

independent variables (Anderson et al., 1994). Linear regression models assume a direct 

and linear dependency o f the dependent variable (class) with respect to the independent 

variables (features). Further, the class can be expressed as a linear combination o f the 

features, with predetermined weights (Witten and Frank, 2005):

*> =  *o + z i Z i  + * 2 * 2  +• • •  +  * * * *  (I*4 )

where go is the class; % i,  ..., Xk are the different features; and zo, Zj, ..., Zk are the different 

weights.

The weights are computed based on the training data. Therefore, for a particular 

instance, which belongs to class a>(1) and contains the features Xo(1)» •••> Xk(1), the expected 

value corresponds to the sum of the product o f the observed values (features) and the 

corresponding weights:

za f  + ziX,m + zt X i ) + - - + zi X k ) = Y jwj x ' j O-5)
J - 0

Linear regression methods compute weighted values in order to minimize the sum 

o f the squares o f the differences between the observed value co(1) and the expected value
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(1.5) for each instance. This optimization is performed considering all instances within a

training set, composed o f n instances, in order to minimize overall sum of the squares o f the 

differences for the given training set:

In the multiclass problem, a regression analysis for each class is performed for each 

class and the output is set to 1 for training instances that belong to the class considered and 

vice versa (Witten and Frank, 2005). In order to classify an unknown instance, it is 

necessary to calculate the value o f each linear expression based on the observed features of 

the unknown instance and select the class whose corresponding linear expression reports 

the largest value. This approach in also known as the multi-response linear regression 

(Witten and Frank, 2005).

The main limitation o f linear regression methods is that the computed scores do not 

relate to probability scores. Furthermore, by minimizing the differences between the 

observed and the expected values using the square difference formula (1.6), it is assumed 

that errors are statistically independent and normally distributed with the same standard 

deviation. In order to overcome these limitations, the logistic regression method constructs 

a linear model based on a transformed vector o f observed features. According to this 

method, the original target independent variables (features) for a specific instance are 

transformed to

Following the feature transformation, the obtained values are then approximated 

using a linear function. The obtained model is:

i=i V j=o
( 1.6)

(1.7)

PrD I >• • • >2 T ] = 1 /(l + ex p (-z 0 - zxX \ - - ^ z kXk)) ( 1.8)
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This data transformation process and linear approximation is known as the logit 

transformation, which can be also written as:

z0+zlx]+...+zkXk
p  —  _ ___________________________________________

l  +  e zo+za\  +---+ZkXk O-9)

where P = Pr[l| %i, . . . , 3Ck].

Unlike linear regression, logistic regression uses the log-likelihood to evaluate the 

differences between the observed values and the expected values. The chosen weights need 

to maximize the log-likelihood:

-  o) {0 )log(l -  Pr[l | z ™, • • •»Zk0) ])+ ^ (° log(Pr[l | X\C° > • • •> Zk* ]) ( 1 •1 °)
;'=0

When considering more than two classes, a similar approach to that defined for 

linear regression can be performed. However, the sum of the probabilities estimated will 

not be 1 (several efficient solutions have been implemented to optimize this problem). An 

alternative approach is the pairwise classification, where a two-class classifier is 

implemented for every possible combination of classes. The final prediction for an 

unknown instance corresponds to the most supported class.

1.2.3 K-star

The K-star method (Cleary and Leonard, 1995) is an instance-based classifier. This 

type o f method predicts the class for an unknown instance based upon the class o f those 

training instances similar to it, according to a similarity function. The underlying 

assumption is that similar instances will have similar classifications. The challenge of 

instance-based classifiers is to define “similar instance” and “similar classification”. The 

majority o f these methods use the Euclidean distance as the similarity function:

V U 0) -  ri2) )2 + f o "  -  x? )2 + ■ • • + f a "  -  x? )2 ( 1. 11)
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The K-star method, influenced by information theory, differs from the majority of 

these methods as it uses an entropic distance measure based on transformations. According 

to this distance measure, the unknown instance is transformed into a different instance by 

means o f predefined operations. Such a distance is proportional to the absolute difference 

between two instances. Then the probability o f the transformed instance occurring is 

computed, assuming that such operations took place randomly. The probability is defined 

as the probability o f all paths from instance i to instance a . When the attributes o f the 

instances are real values, this probability is determined by the product o f the probability o f 

the individual transformations. The probability o f an instance / belonging to a certain class 

Zj is computed by summing the probabilities from i to each instance in the training set 

belonging to the class Zj. The class with the highest probability is then chosen as the 

appropriate class for the unknown instance i. The robustness o f the method relies upon 

consideration o f all possible transformation paths being considered, weighted probabilities 

and the generalized distance between a given set and the unknown sequence by considering 

transformations to all instances in the set.

1.2.4 Decision trees and random forest

Decision trees follow the “divide-and-conquer” approach to classify a given data set 

considering several features. According to this approach, the data set used for training is 

iteratively divided at nodes where a particular feature is tested. This process continues until 

a node is reached that cannot be further sub-classified (also known as a leaf). The observed 

architecture o f a basic classifier is reminiscent o f  that o f an inverted tree (figure 1.6). Once 

a decision tree has been built, unknown instances are routed down the tree evaluating the 

values o f the corresponding features tested at the appropriate nodes.
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Figure 1.6. A decision tree. According to this hypothetical tree, three features are used to discriminate 
between four different classes.

The challenge o f  building effective trees is essentially to decide which feature 

should be tested at each node. Small trees should be preferred over long trees in order to 

arrive at a leaf by the shortest path. Each additional node normally introduces an error rate 

unless it has been proven to correctly classify all test instances. Such error is accumulative 

unless the subsequent nodes can “rescue” a misclassified instance. One o f  the most widely 

used algorithms based on the decision tree theory is C4.5 (Quinlan, 1993), whose 

corresponding implementation within the Weka platform is known as J48.

One o f  the drawbacks o f  using decision trees is the instability o f  the data mining 

technique during the training process. If small changes are introduced in the training set, a 

different feature can be selected at a particular node leading to different ramifications after 

that node. This drawback can be minimized if different decision trees are implemented 

from a given training set and the final prediction corresponds to the most supported class in 

the voting process. This is the principle underlying the random forest method (Breiman,

2001). Given a particular training set with N instances and M features, the random forest 

technique randomly samples the original training set into different training sets o f  size n < 

N. Each training set is altered by replacement, where the training set is altered by deleting 

and replicating randomly chosen instances (this process is also known as bagging). Once 

the different training sets have been assembled (yet not independent as all o f  them were 

derived from the same original training set), a decision tree is built for each training set
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using a random subset o f  features m (where m < M) at each node. Combination o f  these 

trees decreases the generalized expected error as the variance component is reduced 

(theoretically, each training set used is finite and thus not fully representative and will 

therefore introduce an error factor while training). Therefore, by using an “out o f  the bag” 

error it is possible to estimate the generalized error o f  the method.

1.2.5 Support Vector Machines

Support vector machines (Cortes and Vapnik, 1995) have been implemented to 

apply linear solutions to non-linear problems. The principle underlying this method is to 

convert each instance vector (containing all extracted features) o f  the training set into a 

vector o f  computed components (h-dimensional space) by a non-linear function, also 

known as the kernel function. Each instance is then mapped onto the h-dimensional space 

o f  computed features and a maximum margin hyperplane is calculated to classify the 

training and unknown instances (figure 1.7).
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Figure 1.7. Support vector machine. Spatial representation o f  the feature space and the h-dimensional space 
created by the kernel function.
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The maximum margin hyperplane is the plane within the h-dimensional space that 

achieves the largest distance between classes. The instances closest to the maximum margin 

hyperplane are called support vectors. The maximum hyperplane vector is computed with 

the formula:

X = b + £  a i ys a(i) • a ( 1 . 1 2 )

where i is the support vector, y* is the class value o f the training instance a(i), b and a; are 

numeric values to be computed by the algorithm, a is the vector representing a test instance 

and a(i) corresponds to the vectors representing support vectors.

1.2.6 The radial basis function

The RBF network is a special type o f neural network composed o f an input layer, a 

hidden layer composed by units that apply the radial basis function and an output layer 

whose output describes the class for the test instance (figure 1.8). Each hidden unit 

corresponds to a particular point in the input space and its output relies on the distance 

between the unit and the test instance. A non-linear transformation is used to calculate such 

distances, mainly using the Gaussian activation function (Radial basis function). The output 

from the hidden units is then converted through a sigmoid function as with classical neural 

networks. The parameters to be learned by these networks are the centres and widths o f the 

radial basis function units and the weights used to form the linear combination o f the 

outputs obtained from the hidden units (Witten and Frank, 2005).
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Figure 1.8. Structure o f  a simple RBF network. The input is com posed by instances with three features, which 
are analyzed by two hidden units using different weights. The output from the hidden layer is used in the 
output layer to predict the class o f  the test instance.

1.2.7 MultiboostAB

The MultiboostAB (Webb, 2000) classifier belongs to the classifier committee 

learning method. This method generates multiple classifiers to create a committee by 

repeated application o f  a single base learning method. Each classifier within the committee 

votes for a particular class j  in order to reach a consensus prediction (either the most voted 

class or the class with the highest support if  assuming weighted classifiers). MultiboostAB 

combines two different committee learning methods, namely AdaBoost and Wagging 

(Webb, 2000). This combination is performed to achieve maximal reduction of: i) the bias 

o f  the base learning method and ii) the variance o f  the training set. The bias measures the 

intrinsic tendency or error rate o f  the classifier to predict an instance given a particular 

training set. On the other hand, the variance measures the expected error generated by the 

training set, which by nature is finite and not fully representative o f  the actual population of  

instances (Witten and Frank, 2005). The AdaBoost method is used to apply the base 

learning method to a set o f  training sets t derived from the training set T  by sampling. Each 

instance /' in the training set tj is given a weight which is a function o f  the performance 

achieved by previous classifiers upon that particular instance /. The Wagging method works 

in a similar fashion but rather than weight each instance i o f  the training set tj based on the 

performance o f  previous classifiers, it assigns random instance weights based on the
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continuous Poisson distribution (Webb, 2000). This method is implemented by applying 

the Wagging method to a set o f committees previously created using the AdaBoost method. 

By combining both AdaBoost and Wagging, MultiBoostAB inherits the ability o f the 

AdaBoost method to reduce both the bias and the variance while further reducing the 

variance by means o f the Wagging method.

1.2.8 Evaluation methods in data mining

Evaluating data mining methods is a key step in analyzing the classifying 

performance o f a particular data mining method and comparing different data mining 

methods in order to identify the best performing data mining technique for a given training 

set.

1.2.8.1 Ten fold cross-validation

Evaluation o f any data mining technique should be performed upon a test set rather 

than upon the training set. The error rate obtained using the training set is not a good 

indicator o f the performance o f the method as it tends to overestimate the classifying 

performance. Classifiers are “trained” using the training set so they are bound to perform 

better than if  using a test set. Therefore, a test set, where no instances are included in the 

training set, is required to evaluate each data mining method. If  a large set is to be used, the 

set can be split into two different data sets where one set can be used as the training set and 

the remaining set can be used as the test set. However, quite often it is not possible to 

assemble large sets o f instances. Alternatively, methods have been implemented to create a 

training set and test set out o f a single data set. Undoubtedly, the most common method is 

the k  fold cross-validation. This method divides a given set in k subsets where each class is 

represented by the k* part o f the instances belonging to the corresponding class 

(stratification). The training set is implemented using k-1 subsets and the remaining subset 

is used as the test set. This procedure is iteratively repeated k  times so all instances have 

been tested by the method. The obtained results for each fold o f the validation (true 

positives, true negatives, false positives and false negatives) are then summed up and the 

overall accuracy o f the data mining method is computed. The standard k fold cross
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validation method applied is the ten fold cross-validation as numerous analyses have shown 

that by using ten fold cross-validation the most accurate error estimates are obtained 

(Witten and Frank, 2005).

1.2.8.2 Evaluation parameters

The predictive accuracy o f each data mining method is estimated based on a 

confusion matrix Z, which reports the results obtained from the ten fold cross-validation, 

that is, the number o f data points belonging to the class i and predicted as members o f the 

class j .  The accuracy in predicting a particular class is defined by its sensitivity, specificity 

and geometric average (GAv). Sensitivity is defined as the percentage o f proteins, which 

belong to \th class and are correctly predicted, whereas the specificity is the percentage o f 

proteins predicted as members o f the \th class that are correctly predicted as such. To 

calculate these parameters, it is necessary first to compute the number o f proteins belonging 

to the \th class (x,), the number o f proteins predicted as members o f the ith class (y,-), and the 

total number o f proteins N contained in the matrix Z:

(1-13)

y . - 'L j* ,  (1-14)

= (1-15)

where zy and z# belongs to a particular cell within the confusion matrix Z given 2 

coordinates. Given the parameters Xj, y; and N, sensitivity and specificity are defined as:

Sensitivity(;) = 100z„ IN  (1-16)

Specificity(/) = 100zu IN  (1-17)

Both the sensitivity and specificity can be combined by calculating its geometric 

average (GAv), which is a useful indicator o f the accuracy o f the method to predict the \th 

class.

GAv(l) = ^Sensitivity(/) • Specificity(/) (1-18)
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The evaluation o f the performace o f the method is given by the accuracy (Q), the 

normalized accuracy (nQ) and the Matthews correlation coefficient (for data sets with two 

classes) or the generalized correlation (for data sets with three or more classes). The 

accuracy o f the method is defined as the percentage o f correctly predicted data points 

within the data set:

However, the accuracy Q is often not representative o f the accuracy o f the method

towards the performance o f the largest class. The normalized accuracy nQ, assuming the 

equiprobability for each class, has proven to be a more accurate value:

where K is the number o f classes contained in the data set. The Matthews correlation 

coefficient is also used to measure the accuracy of the predictive method. This parameter, 

also called the Pearson correlation, was first applied to the prediction o f protein secondary 

structure by Matthews (Matthews, 1975). This parameter measures linear relationships 

between two variables. Its values range from -1 to 1 where -1 indicates a perfect negative 

linear relationship and vice versa. A value o f 0 shows no linear relationship, that is, a 

complete random relationship between two independent variables:

(1.19)

when unbalanced sets containing classes with different sizes are to be mined as it is biased

( 1.20)

MCC = TP'TN  - F P ' FN
( 1.21)

V(77>+ F N jT P  + F P jT N  + FP^TN  + FN)

where TP, TN, FP and FN correspond to True Positive, True Negative, False Positive and 

False Negative. The Matthews correlation coefficient is only applicable to data sets
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containing two classes. The equivalent coefficient to measure the predictive accuracy over 

a data set with more than two classes is the Generalized Correlation (GC) (Baldi et al., 

2000):

Xh-'J
GC =

N ( k - l )
( 1.22)

where e„ = ^ -L  
lJ N

1.2.8.3 ROC curves

The Receiver Operating Characteristic curves are used in signal detection to analyze 

the trade-off between the sensitivity and the specificity of a given data mining method 

(Witten and Frank, 2005). ROC curves are defined by the true positive rate or sensitivity on 

the x  axis and the false positive rate or 1-specificity on the y  axis (figure 1.9). The graph 

uses a diagonal threshold, which represents the accuracy o f  the random classification, to 

distinguish between good and bad classifiers. Curves above the diagonal threshold 

correspond to good classifiers and vice versa. Following this principle, ROC curves closer 

to the left-hand border o f the plot correspond to better classifiers where the dependency 

between sensitivity and specificity is minimized (an increased sensitivity does not involve a 

reduction in specificity). Additionally, the area under the curve (AUC) can also be 

computed to evaluate the accuracy o f a given data mining method. An AUC of 0.5 

corresponds to a random classification. The greater the area, the more accurate the 

classifier.
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Figure. 1.9. Example o f  the ROC curve plot. The diagonal threshold (in red) represents 
the classification o f  instances achievable by random guessing. Classifiers above this 
threshold show  better performance accuracy than random guessing. The figure shows 
two different ROC curves above the diagonal threshold. The green ROC curve show s a 
greater area below  the curve, which represents an accurate classifier with a low trade
o ff  between specificity and sensitivity.
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Aims and Objectives

Considering the current functional gap observed in the membrane proteome and the 

important roles o f polytopic membrane proteins, this project has been focused on the 

development o f computational tools for the characterization o f polvtopic membrane 

proteins. Such characterization was to be performed at three different levels: i) at the 

topological level, ii) at the subcellular location level and iii) at the molecular function level.

Characterization at the topological level was aimed at refining existing topological 

models o f polytopic membrane proteins contained in the Swiss-Prot database. This 

refinement was based upon prediction o f membrane dipping loops (so called re-entrant 

loops), which current topology prediction methods often fail to predict.

Subcellular location signals are mostly believed to be located in the extra- 

membraneous domain o f polytopic membrane proteins. Similarly, the role o f the 

transmembrane domain has often been thought to be restricted to the less function-specific 

roles o f maintaining structure and facilitating conformational changes (with the exception, 

o f course, o f transport proteins and channels), while the extra-membranous loops of 

polytopic membrane proteins have been considered to play the major protein-specific 

functional roles such as ligand binding, chemical catalysis and signal transduction.

Our hypothesis was that the transmembrane domain must also play an important 

role in directing not only the subcellular location but also the molecular function of 

polytopic membrane proteins. Therefore, the primary aim o f this study was to investigate 

the notion that the transmembrane domain o f polvtopic membrane proteins do contain 

important topological, organellar and functional signatures, and that these can be exploited 

in the development o f reliable predictive bioinformatics tools, o f value to the wider 

scientific community, particularly for those engaged in the annotation and molecular 

characterisation o f membrane proteins.
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CHAPTER 3 

PROCLASS, a tool for the supervised assembly of sets of 
proteins: exploiting the user’s molecular expertise to cluster the 
annotation space of proteins 

3.1 Introduction

3.1.1 Data explosion

For the last two decades biological sequence databases have been growing 

exponentially. Since the first genome was sequenced in 1995 (Fleischmann et al., 1995) 

401 new genomes have been completed (21 eukaryotes and 380 prokaryotes), 351 genomes 

have been drafted and another 506 genome projects are in progress (the National Center for 

Biotechnology Information, http://www.ncbi.nlm.nih.gOv/k Although the gap between 

characterized protein and DNA sequence databases is constantly increasing (Janssen et al., 

2003) due to the inability o f high-throughput experimental techniques to cope with the 

information explosion obtained from current genome sequencing projects, protein databases 

are also growing exponentially (figure 3.1).

Computational methods have been developed as a preliminary resource to help 

laboratory scientists in designing appropriate experiments and therefore increase the rate o f 

functional characterization o f gene products (Chapters 7 and 8  review different approaches 

to predict the subcellular location and functional properties o f uncharacterized gene 

products respectively). The most popular computational approach used to annotate new 

gene products is the sequence similarity method, which is based on the detection of 

homologues and assumes that there is a strong correlation between sequence similarity and 

molecular function. Sequence similarity methods have proven to be useful but have 

limitations, which have led to the development o f complementary methods for the 

annotation o f genes and gene products based on a wide range of different techniques. The 

main methods can be classified into the following categories: phylogenomics, structural
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genomics, orthology detection, gene context methods (i. gene fusion, ii. genomic 

neighbourhood, iii. similar phylogenetic pattern and iv. conserved co-expression), data 

mining and pattern discovery.
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Figure 3.1. Exponential growth in number o f  sequences in the UniProtKB/Swiss-Prot database. The rapid 
increase o f  the database reflects the necessity o f  a tool to facilitate the developm ent o f  manual curation o f  data 
sets to be used by different data mining and pattern discovery techniques and extract relevant biological 
information.

3.1.2 Text mining applied to the annotation space of proteins

Data mining and pattern discovery methods have been shown to be very successful 

in extracting relevant biological information from large datasets and have been succesfully 

applied to predicting structure, function and subcellular localization (the corresponding 

methods are described in chapters 5, 6, 7 and 8). These techniques are being constantly 

improved to increase their sensitivity and specificity and also to handle larger training sets 

without exponentially increasing the processing time. As the size o f  protein databases
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increases, the chances o f constructing more representative training sets also increase, which 

in turn can improve the accuracy o f current methods (figure 3.2). However, the bottleneck 

in this iterative loop is the development o f manually curated training sets. As the size of 

protein databases increases, manual curation o f training sets becomes a more difficult and 

tedious task increasing the probability o f incorporating errors in a given training set.

Genome database

Experimental
characterization

Computational 
annotation tool

Protein
database

Data mining & 
pattern discovery

Manually curated 
training sets

Figure 3.2. Iterative annotation process in protein databases. The information contained in protein databases is 
retrieved to create manually curated training sets, which lead to the implementation o f  predictive tools. These 
tools can be used to annotate or guide experimental characterization o f new gene products. As the protein 
databases increase in size, more representative training sets can be built, which will improve the predictive 
accuracy o f  current predictive tools.

The text mining approach was primarily applied to the biomedical field in order to 

effectively manage and extract information from the increasing wealth o f the scientific 

literature. This approach is still at an early stage but it has already shown promising results. 

The majority o f these methods have been implemented to automatically extract protein- 

protein interaction from the rich formatted literature. A classical approach in text mining is 

based on the computation o f co-occurrence o f biological entities such as genes and proteins. 

Following this principle, pairs o f proteins found to be similarly distributed among the 

scientific literature are believed to functionally interact (which does not necessarily imply 

physical interaction). Text mining approaches have also been used for diverse tasks such as 

extracting functional properties o f genes and proteins, extracting gene-drugs or gene-
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disease relationships and building gene association networks. In order to assess different 

text mining approaches, the BioCreAtlvE evaluation was used (Hirschman et al., 2005, Yeh 

et al., 2005). This evaluation is composed o f two tasks: i) the first task is based on the 

extraction o f gene or protein names from text and identification o f their corresponding 

standardized gene identifiers for three model organisms (fly, mouse, yeast), ii) The second 

task is based on the extraction o f functional annotation by requiring identification o f short 

text passages that support Gene Ontology (Ashbumer et al., 2000) annotations for particular 

proteins (based on full text articles).

Protein databases can be defined as collections o f textual information, usually 

restricted by a controlled vocabulary, which can be exploited by natural language 

processing (Kunin and Ouzounis, 2005). Text mining approaches have already been applied 

to different protein databases to automatically classify proteins based on their annotation 

space and to detect false annotations contained in databases (Kaplan and Linial, 2005, 

Kunin and Ouzounis, 2005, Levy et al., 2005). The annotation space o f  proteins can be 

defined as the set o f words used to describe the functional properties o f proteins. A recent 

paper described a novel text-based method that uses concepts from statistical information 

retrieval (IR) and the annotation space o f proteins to collect relevant information o f a set of 

genes associated with a particular biological event (such as a specific cancer type) and 

provide information about properties common and unique to subsets o f the gene list 

(Semeiks et al., 2006). Despite improvements that have been made to extract biological 

information from the annotation space o f biological sequence databases, very little has been 

done to facilitate the development o f manually curated data sets. The closest approach is 

the CLAN approach (Kunin and Ouzounis, 2005), which clusters function and sequence 

specific protein families that can be used to characterize a new protein sequence. At the 

first clustering level, protein sequences are automatically clustered using the annotation 

space o f proteins (analyzing the description statement and the gene name statement 

contained in the Swiss-Prot database), and at the second clustering level these clusters are 

subsequently refined by clustering the sequence space o f proteins using BLASTp (Altschul 

et al., 1997) and GeneRage (Enright and Ouzounis, 2000). This approach can be used then 

to characterize new gene products by multiple sequence alignment methods (sequence-to-
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profile or HMM derived multiple sequence alignments). Automatic clustering methods are 

not suitable for the development o f training sets as the probability o f including 

misclassified proteins within the training set increases with the size o f the database to be 

analyzed. Training sets to be used by data mining techniques should be manually curated 

and should contain non-redundant sets o f proteins, which should be experimentally 

characterized when possible. Clustering sequences by similarity in order to construct sets of 

proteins to be mined is not a desirable option when predictive tools independent o f 

sequence similarity are to be implemented. Recent work has shown that pattern discovery 

and data mining techniques can be used for the implementation o f predictive tools to detect 

distantly related motifs (Lasso et al., 2006) and reliable prediction o f subcellular location 

under low sequence similarity (Nair and Rost, 2005).

PROCLASS has been implemented to facilitate the development o f large manually 

curated data sets by using the annotation space o f proteins, the molecular expertise of the 

user and an attribute profile clustering technique (exact binary pattern matching). A protein 

attribute profile is a binary vector where each element describes a molecular or biological 

property (Semeiks et al., 2006). PROCLASS can be used to cluster proteins based on a set 

o f terms selected by the user (elements o f the protein vector). These terms have previously 

been extracted from the functional statements o f the Swiss-Prot database. Subsequently, the 

obtained clusters can be individually analyzed and merged by the user through the interface 

if  found to describe a similar biological property but using a different annotation space. 

PROCLASS was used to develop two manually curated data sets, a data set composed o f 

polytopic membrane proteins located at different subcellular locations and a data set 

composed o f polytopic membrane proteins with different molecular functions. Protein 

attribute clustering by exact pattern/vector matching was found to be the most reliable 

clustering method to guarantee the manual curation o f large datasets reporting a minimum 

number o f  clusters with misclassified proteins. When the appropriate terms are to be 

selected this clustering method significantly reduces the protein space (all proteins with the 

same binary vectors are reduced into a single cluster), thus facilitating the manual curation.
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PROCLASS analysis during the development o f sets o f proteins located at different 

subcellular locations showed that the annotation o f this biological property in the Swiss- 

Prot database is not precise enough. Only 14.42% of all polytopic membrane proteins 

belonging to eukaryotes could be clustered. The remaining proteins were found not to be 

experimentally characterized, or vaguely described without specifying the corresponding 

organellar location. During the development o f the functional dataset, PROCLASS reduced 

the protein space from 15,279 proteins to 1,622 clusters (where all proteins within a cluster 

are identical in terms o f the binary vector) facilitating the manual curation o f the dataset. 

The majority o f the protein clusters obtained (97.9%) did not contain proteins belonging to 

different functional types (according to our definition o f molecular function, which 

combines the molecular activity o f the protein with the ligand binding specificity) 

validating the clustering method implemented in PROCLASS.

3.2 Methods

3.2.1 PROCLASS implementation

PROCLASS has been implemented in a Microsoft Windows environment. The 

programming language used for such implementation was Borland Delphi 7.0. This 

programming language belongs to the object oriented class o f programming languages. 

Borland Delphi has proven to be a very useful language for Rapid Application 

Development (RAD). The basic architecture o f PROCLASS was implemented following 

the model-view-controller (MVC) fashion where the interface and the functionality o f the 

program are to be considered as different layers that are indirectly linked by a cross-linking 

layer represented by the TController class. This allows the programmer to carry out 

important changes in the interface with minor corrections in the TController class, therefore 

preventing the need to adapt the functionality layer to the modified interface. Other 

computational tools described in following chapters, namely TMLOOP (Chapter 5), 

TMLOOP writer (Chapter 5), TMDEPTH (Chapter 6), TMLOCATE (Chapter 7) and 

TMFUN (Chapter 8), have been implemented in a similar fashion.
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Interface

MVC

Functionality

Figure 3.3. Basic architecture o f  a program that describes the m odel-view-controller (M VC). The algorithm  
implementation is composed o f  three layers. W hile the top layer contains the code corresponding to the 
interface o f  the program, the bottom layer contains code that refers to the functionality o f  the program. Both 
layers are linked through an intermediate layer, also known as the MVC. This layer avoids the necessity o f  
updating o f  the bottom layer if  the top layer is modified. All algorithms described in this thesis have been 
implemented using the m odel-view-controller.

The development o f  PROCLASS has been oriented towards exploiting the user’s 

biological knowledge to build sets o f  proteins contained in a local version o f  the Swiss-Prot 

database or in a user-defined database o f  Swiss-Prot text files.

Clustering the annotation space o f  proteins using PROCLASS is based on five different 

stages:

a. The training stage

b. The terminology search stage

c. The clustering stage

d. The curation stage

e. The data set construction stage

3.2.1.1 The training stage

The training stage is a crucial stage that relies on the user’s classification scheme. 

Therefore, in order to classify proteins contained in the same version o f  the Swiss-Prot 

database based on two different classifications schemes (i.e. subcellular location and 

molecular function), it is necessary to perform two separate analyses. During this stage both
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the user and PROCLASS “train” each other in order to select the most appropriate terms to 

be searched during the terminology search stage. The user trains PROCLASS to detect 

equivalent terms and ignore terms not important for the classification purposes. Conversely, 

PROCLASS shows the user a list o f terms, not previously identified by the user that could 

be relevant to the classification being undertaken.

The software manages two different sets o f terms: i) terms specified by the user and 

contained in the mined statement o f the database (so-called cross-linked terms) and ii) 

terms not specified by the user but also contained in the mined statement o f the database. 

First PROCLASS runs a preliminary terminology search and displays, in separate “list- 

view” objects, the list o f cross-linked and not cross-linked terms. PROCLASS is then 

trained to convert equivalent terms into a single term previously specified by the user (e.g. 

“Potassium” and “Potassium-inducible”) and to include terms that are not relevant in the 

non-significant term list (e.g. “post-translational” and “genomic”). Protein databases often 

use synonyms when describing a particular feature, one o f the challenges o f text mining is 

to detect these synonyms and treat them as a single term instead o f treating each synonym 

as a separate term. A user might find that synonyms o f a particular cross-linked term are 

described in the list-view object corresponding to not cross-linked terms (if the synonym 

word has not yet been described by the user) and can easily set up a new equivalency where 

all synonyms will appear under a single term in the cross-linked term list-view object (e.g. 

“Sodium” and “Na+”). The non-significant term list describes the terms that are not relevant 

for the purposes o f the classification and therefore should not be considered during the 

terminology search stage. This dramatically decreases the processing time during the 

following stage.

Finally, PROCLASS displays a list o f terms not considered by the user but that 

could be important for classification purposes. A clear example is the development o f a set 

o f functionally related protein clusters found in the membrane. No human expertise can list 

all terms related to all molecular functions found in the membrane and PROCLASS has 

proven to be an exceptional tool in facilitating the manual identification o f terms important 

for protein classification purposes.
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During the training stage, the user-defined information such as equivalencies or 

non-significant terms will be saved in the corresponding configuration files whose format is 

a conventional text format that makes it easier for the user to modify and back up files if 

necessary.

3.2.1.2 The terminology search stage

During this stage, PROCLASS analyzes the Swiss-Prot statements specified by the 

user and performs a terminology search, based on the equivalencies and non-significant 

terms identified during the training stage. PROCLASS can analyze the definition and/or 

keyword and/or subcellular location statement contained in the Swiss-Prot database 

according to the user’s requirements. As in the training stage during the preliminary 

terminology search, cross-linked terms (all terms manually described by the user prior to 

the training stage plus those terms identified during the training stage) and terms that are 

not cross-linked (terms that have neither been selected as non-significant nor are relevant 

for classification purposes) are listed in separate list-view objects. Each list-view object 

contains three columns, the first column lists the term string, the second column lists the 

total number o f times that the corresponding term is present in the database (M) and the 

third column lists the number o f proteins containing the corresponding term (N). The term 

list-views can also be sorted alphabetically or numerically when clicking on each column 

header in order to make the identification o f terms or groups o f terms and selection o f the 

terms to be used in the clustering stage easier. The user is required to delete those terms not 

to be used during the clustering stage, and the different clustering methods developed use 

all the terms listed in both the cross-linked and the non cross-linked term list-view. Terms 

to be deleted are normally those that will not improve the accuracy o f the clustering but 

decrease it (it is recommended to delete those terms only present in less than 2 0  proteins, as 

groups o f this size are not viable in terms o f the later pattern recognition methods, unless 

the obtained cluster is to be clustered with other clusters, and also to delete terms that are 

widely used in the annotation space o f proteins).
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3.2.1.3 The clustering stage

PROCLASS can be used to perform three different types o f clustering.

3.2.1.3.1 Manually defined protein list

By selecting the required terms (Ctrl + term to be included) and clicking on the “Make 

Protein List” the user creates a list o f proteins that contains all the terms selected. The 

protein list will then be described in the protein list/cluster list view by its user-defined 

name, the number o f proteins contained in the corresponding protein list and the list of 

terms used to construct the corresponding protein list.

3.2.1.3.2 Protein clustering by exact matching

Using the annotation space each protein is represented by a computed binary vector. 

Proteins are then clustered if represented by identical vectors. This clustering method 

reflects the importance o f previous stages and the selection of terms to be used for protein 

clustering based on annotation strings. If  only highly abundant terms are to be considered 

the obtained clusters might be too general. By contrast, if highly specific terms are 

considered the clustering method would lead to highly specific clusters and the risk o f the 

number o f proteins with unique binary vectors (and therefore not clustered) increases.

3.2.1.3.3 Protein clustering allowing mismatches

As in the previous clustering method, each protein is converted into a binary vector 

using its annotation space. First, this clustering method runs an all-against-all vector 

pairwise comparison and proteins are paired when the number o f mismatches between 

vectors is equal or lower than the user-specified maximum number o f mismatches (the list 

or pairs will be subsequently kept in memory for further processing). Once all pairs of 

proteins have been obtained, these pairs o f proteins are clustered together only if  both
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members of the first pair are paired with both members o f the second pair, or with all 

members o f a cluster o f pairs already made in a previous iteration. At this stage of the 

process, redundancy is minimized to ensure that each protein is only present in one cluster. 

When one particular protein is present in more than one cluster, only the cluster with the 

highest average term-match (total number o f term matches with the remaining members of 

the cluster / number o f proteins in the cluster) will keep the redundant term whereas the 

remaining clusters will no longer contain the redundant term. If  two clusters show the same 

average term-match, both clusters will be then merged into a single cluster.

After this iterative process it is possible that proteins, previously paired with other 

proteins, are not included in a particular cluster. Subsequently, non-clustered proteins are 

compared against the obtained clusters. If  the non-clustered protein has been found to be 

paired with all members o f a cluster (checked in the list o f protein pairs computed earlier) 

the non-clustered protein will be listed as a new member o f the given cluster. Finally, a 

cluster refinement is achieved where clusters are merged together if  each member o f the 

first cluster is paired with all members o f the second cluster (also checked in the list of 

protein pairs computed earlier). After the processes o f recovery o f non-clustered proteins 

and the cluster refinement, protein redundancy is minimized following the same principle 

explained earlier.

As with proteins lists, the obtained clusters (obtained either by exact matching or 

clustering allowing mismatches) will be described in the protein list/cluster list view by its 

user-defined name, the number o f proteins contained in the corresponding protein list and 

the list o f terms used to construct the corresponding protein list.

3.2.1.4 The curation stage

As explained earlier, the aim o f PROCLASS is not to provide an automatic 

clustering method for the development o f training sets but to facilitate the manual curation 

o f sets o f proteins. The curation stage relies entirely on the user’s expertise to merge
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biologically-related clusters and delete those proteins that despite being related in the 

annotation space do not belong to the given cluster for the purposes o f that classification. 

After selecting a particular protein list or cluster from the protein list/cluster list-view, the 

user can visualize all proteins belonging to the given list or cluster, the Swiss-Prot list-view 

will then show all proteins belonging to the selected protein list/cluster describing their 

Swiss-Prot accession codes and the numbers o f terms obtained during the terminology 

search stage. After selecting the desired proteins in the Swiss-Prot list-view, the user can 

read information contained in the Swiss-Prot database about each o f the selected proteins in 

a batch mode. If a clustered protein does not follow the principles governing the protein 

classification and needs to be removed from the cluster, this can be easily achieved by 

selecting the corresponding protein in the protein list/cluster list-view and deleting it 

through an interface command.

A common process o f the curation stage is to merge clusters that belong to the same 

class following the user’s classification criteria. As explained above, the terms to be 

selected will constrain the outcome o f the clustering stage. It is recommended to design the 

terminology search stage to obtain a higher number o f clusters where it is likely that more 

than one cluster belongs to the same protein class, instead o f obtaining a lower number of 

clusters where it is possible that one cluster overlaps with more than one protein class 

according to the user’s classification criteria. PROCLASS has been designed to construct 

protein classes following a “bottom-up” classification approach where protein clusters are 

merged together to construct bigger protein classes. Protein lists or clusters can be clustered 

by selecting the corresponding protein list/clusters from the protein list/cluster list-view 

(Ctrl + protein list/cluster) and clicking on the “Merge protein lists/clusters” button. If  a 

cluster is found to belong to more than one protein class, PROCLASS can be used to 

perform a “top-down” classification approach but this will result in a more time-consuming 

classification approach. In order to sub-classify a given cluster, the user will be required to 

build the cluster set (explained in the data set construction stage) and start a new 

classification analysis using PROCLASS.
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Additionally, the user is given the option o f writing a separate text file describing 

the name o f the class and the clusters to be included within the corresponding class (figure 

3.4). After loading the text file (Tools > Load manually curated clusters) written by the 

user, PROCLASS will automatically merge the corresponding clusters and name the new 

class after the name specified by the user.

GROUP---- > - EC-3.6 .1 .1 -  inorganic • dipho sphatas e J!
ProteinL ist; O-AutoCl-838
P ro te in L is t 0-A utoC l-908.
ProteinL ist- 0-AutoCl-508
P ro te in L ist 0-AutoCl-509
#31 
31
GROUP > - EC-3.6 .1 .2 7 - Undecapr enyl • diphosphatase'3
P ro te in L is t 0-AutoCl-40
P ro te in L is t O-AutoCl-39
#'31

Figure 3.4 Example o f  manual curation o f  clusters in a separate text file. The text file must specify the 
class name and the clusters contained in the class in a specific format to be processed by PROCLASS.

3.2.1.5 The data set construction stage

Once the protein clusters have been merged into the protein classes designed 

following the user’s classification criteria, PROCLASS can be used to construct a data set 

containing the different classes designed by the user. At this stage, a protein class is defined 

as a protein cluster that has been manually curated and modified if necessary (either by 

merging other clusters or removing undesired proteins). Firstly, the user is required to 

select the desired protein classes listed in the protein list/cluster list-view and then click on 

Tools > Build data set. PROCLASS will automatically retrieve the information contained in 

the database loaded in PROCLASS and save it in a text file for each protein. All proteins 

belonging to a particular class will be saved in a folder named after the name o f the 

corresponding class.

PROCLASS also gives the user the option o f saving the annotation analysis and 

clustering results in a text file format that can be re-loaded by PROCLASS in order to 

continue the analysis. It is recommended that the user performs several back-ups at 

different stages to facilitate the recovery o f  the analysis carried out in a previous stage.
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3.2.2 PROCLASS clustering performance evaluation

PROCLASS clustering performance was evaluated with a set o f 1,291 membrane 

proteins belonging to different functional types (table 3.1). The dataset contained proteins 

that had been both experimentally and non-experimentally characterized. In the training 

stage, only the terms contained in at least 2 0  proteins, regardless o f their relevance to 

describing molecular function, were selected to be searched during the terminology search 

stage where both the definition (‘D E’) and the keyword ( ‘KW’) statements were analyzed. 

Clustering was performed by exact pattern matching and by clustering allowing increasing 

numbers o f mismatches. Each cluster was individually analyzed and clusters containing 

different protein types resulted.

Protein type Number of proteins

Acetylcholine receptor 29

Amino acid transporter 59

Dopamine receptor 32

Glucose transporter 47

Opsin 85

Aquagl yceroporin 57

Olfactory receptor 12

Oxidoreductase 269

P-type ATPase 69

Serotonin receptor 59

Serotonin transporter 13

Binding protein dependent permease 229

C1C chloride channel 63

Sodium dicarboxylate symporter 60

Potassium channel 131

Protein channel 104

PsaF family 16

Table 3.1. Data sets o f  different functional types used to evaluate PROCLASS 
clustering methods. The data set was composed o f proteins whose function was 
experimentally tested and proteins whose function has been elucidated by sequence 
similarity and in-silico prediction methods.
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3.2.3 Development of sets of membrane proteins located at a particular 
subcellular compartment

The Swiss-Prot release 50.2 o f  27-06-2006 was used for the development o f  the 

manually curated set o f  membrane proteins located at various subcellular locations. Two 

different sets o f  proteins were assembled, one for prokaryotes (archaea and eubacteria) and 

one for eukaryotes, based on the two empire system scientific classifications.

The Swiss-Prot database contained 97,023 eukaryotic proteins where 18,622 were 

transmembrane proteins. The TMDEPTH approach (C hapter 6 ) works on polytopic 

membrane proteins in order to compute the percentage o f  pairs o f  residues located at a 

similar depth in the membrane. Therefore, only transmembrane proteins with two or more 

transmembrane regions were isolated from the database. Using an in-house software, the 

Membrane Protein Data Set Creator (figure 3.5), 10,896 membrane proteins containing two 

or more transmembrane regions were identified.

 —

Q Membrane Protein Data Set Creator

C ondition: N um ber of tran sm em b ran e  reg ions [ 7  to  /  th a n  ( T  “ 3 C rea te  D a ta  S e t

File: C A D ocum en ts  a n d  S e ttin g s \G o rk a \M y  D o c u m e n ts \P h D \u n ip ro t_ s p ro t.d a t\5 0 .2 \e u k a ry o ta .s e q \e u k a ry o ta .s e q  
T otal N um ber of Pro teins: 9 7 0 2 3  
T otal N um ber of M em brane  P ro teins: 1 8 6 2 2  
N um ber of M em brane  P ro te in s  p as s in g  th e  condition: 1 0 8 9 6

T otal N um ber of P ro teins: 9 7 0 2 3
Total N um ber of M em brane  P ro teins: 1 8 6 2 2
N um ber of M em brane P ro te in s  p ass in g  th e  condition: 1 0 8 9 6

Job finished

Figure 3.5. Screenshot o f  the Membrane Protein Data Set Creator, which filters a local 
copy o f  the Swiss-Prot database and creates a new file that contains only the proteins 
passing the condition defined by the user regarding the number o f  transmembrane 
regions.

During the PROCLASS training stage, the different terms were analyzed and 

equivalencies were set up by analyzing only the subcellular location statement o f  the Swiss- 

Prot database. The preliminary terms manually assigned were obtained from the literature
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(Alberts et al., 1994): “nucleus”, “mitochondria”, “endoplasmic”, “reticulum”,

“peroxisome”, “golgi”, “apparatus”, “lysosome”, “chloroplast”, “vacuole”, “vesicle”, 

“microsome” and “membrane”. After the analysis using PROCLASS, new terms were 

added to the cross-linked term list, namely “inner”, “outer”, “thylakoid” and “cell” . “Inner” 

and “outer” were used to discriminate between the outer and inner membranes o f the 

nucleus, mitochondria and chloroplast. By using the “thylakoid” term the thylakoidal 

membrane could be distinguished from the chloroplast membrane. The Swiss-Prot database 

only contained 72 eukaryotic proteins with the terms “plasma” and “membrane” (Please 

see appendix A table A.2 on CD), which did not reflect the abundance o f membrane 

proteins in the plasma membrane. Further examination showed that the terms “cell” and 

“membrane” were also used to define the plasma membrane. PROCLASS was trained and 

equivalencies were set up for the following:

• Nucleus = nuclear

• Inner = inner-membrane

• Mitochondria = mitochondrion, mitochondrial

• Peroxisome = peroxisomal

• Lysosome = lysosomal

• Cell = cellular

The terminology search stage was carried out by analyzing the subcellular location 

and the keyword statement for each eukaryotic membrane protein with two or more 

transmembrane regions contained in the Swiss-Prot database. PROCLASS discarded those 

proteins containing the term “preliminary” in the accession code statement (“AC”) and 

speculative terms (not confirmed by experimentation) in the subcellular location statement 

(“probable”, “potential”, “similarity”).
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3.2.4 Development of sets of membrane proteins with specific 
molecular functions

The Swiss-Prot release 49.7 o f 16-05-2006 was used for the development o f the 

manually curated set o f functional classes o f polytopic membrane proteins regardless o f 

their taxonomic classification. The database contained 219,361 proteins where 30,469 were 

transmembrane proteins. As with the subcellular location data set, only a-helical membrane 

proteins containing two or more transmembrane regions were to be considered, due to the 

approach being based upon potential interhelical associations. Using the Membrane Protein 

Data Set Creator, 20,149 membrane proteins containing two or more transmembrane 

regions were isolated.

Two main challenges arose during the development o f  the functional set. The first 

challenge was to define protein function and to identify terms that would allow distinction 

between different functional classes o f  membrane proteins according to the given 

definition. The term “function” is a vague term that can be applied at different levels - at 

the biochemical level, the chemical reaction and the substrate specificity can be used to 

define the biochemical function o f a protein, whereas at the cellular level the definition of 

protein function involves its interacting partners and the function carried out by the 

complex by virtue of its subcellular location (Skolnick and Fetrow, 2000). Further, at the 

physiological level, function involves the corresponding metabolic pathway or 

physiological role. Finally, at the phenotypic level the function o f the protein accounts for 

its role within the totality of the organism observed by deletion or mutation o f the gene 

encoding the protein.

For the purposes o f our classification and further analysis (Chapter 8), protein 

function was defined at the biochemical level. However, within the biochemical level there 

are also various sub-levels of protein function. At the broadest level, membrane proteins 

could be classified as enzymes, transporters or receptors while at the most specific level a 

membrane protein (e.g. a potassium channel) can be classified into several categories such 

as “voltage gated potassium channel”, “mechanosensitive potassium channel” or “calcium 

gated potassium channel”. In this work, molecular function was defined as the biochemical
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activity (including specific binding to ligands or structures) carried out by a protein without 

describing the location or the turnover o f the event (Ashbumer et al., 2000).

The second challenge was to identify functional terms covering most (if not all) of 

the known functions carried out by integral a-helical membrane proteins and that can also 

be used by PROCLASS to accurately cluster proteins into functional types based on the 

annotation space. These terms will include ligands (e.g. “calcium”, “ATP”), biochemical 

activites (e.g. “oxidoreductase”, “binding”, “hydrolase”, “transport”) and protein types (e.g. 

“ATPase”). During the PROCLASS training stage, the different functional terms were 

analyzed and equivalencies were set up by analyzing the definition (‘D E’) and keyword 

(‘KW’) statement o f the Swiss-Prot database. The preliminary terms manually assigned
tV»corresponded to ligands contained in the PDBsum database, version o f 7 o f April 2006, 

(Laskowski et al., 2005), which contains a list o f 7,595 ligands described in the Protein 

Data Bank (Berman et al., 2000). PROCLASS listed, in the cross-linked term list-view, the 

ligand terms mentioned in the filtered Swiss-Prot database while in the not cross-linked 

term list-view it showed other terms included in the definition and keyword statements of 

the filtered Swiss-Prot database. The ligand terms listed in at least 20 different membrane 

proteins were listed in the final cross-linked term list. Those not cross-linked terms, 

believed to be important to achieve an accurate clustering based on the functional 

annotation space, were also listed in the final version o f the cross-linked term list (to be 

used in the subsequent stages o f the PROCLASS analysis). As with the development o f the 

subcellular location data set, PROCLASS was trained to detect equivalent terms and ignore 

those not functionally relevant terms, decreasing the processing time during the 

terminology search stage. Finally, 344 terms were listed in the cross-linked term list during 

the training stage (including ligands, biochemical activities and protein types) (Please see 

appendix A table A.2 on CD).

The terminology search stage was carried out by analyzing the definition (‘DE’) and 

the keyword (‘KW ’) statement for each eukaryotic membrane protein with two or more 

transmembrane regions contained in the Swiss-Prot database. PROCLASS discarded those
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proteins containing the term “preliminary” in the accession code statement (“AC”) and non- 

experimental terms in the definition statement (“probable”, “potential”, and “similarity”).

3.3 Results and discussion

3.3.1 PROCLASS clustering performance evaluation

PROCLASS clustering performance was evaluated by analyzing a set o f membrane 

proteins o f various functional types (table 3.1). The given set contained 1,291 membrane 

proteins where proteins were both experimentally and computationally annotated. As 

explained in the method section, during the training stage, only those terms contained in at 

least 20 proteins were selected to be analyzed in the following stages. Terms not directly 

relevant to describing molecular function (e.g. “endoplasmic”, “reticulum” and 

“postsynaptic”) but contained in the description or keyword statement o f at least 2 0  

proteins were also selected.

PROCLASS analyzed 1,089 membrane proteins, which corresponded to the 

experimentally annotated proteins (table 3.2). Clustering using exact pattern matching 

reported 1 0 2  clusters where only one o f the clusters contained proteins belonging to 

different functional types. This cluster contained three proteins, one threonine/serine 

symporter, one proline/betaine symporter and one proton/glucose symporter, that were 

described by the terms “transport” and “symport”. The terms “proton/glucose”, 

“threonine”, “serine” and “proline” were not found to be common enough and subsequently 

were not analyzed during the terminology search stage. This clustering method reduced the 

protein space by 7 fold as the protein space was reduced from 1,089 data points to 161 data 

points (102 clusters and 58 non-clustered proteins). This systematic reduction provides 

virtually the same confidence as if  manually clusteing the original set composed by 1,089 

data points. The 102 clusters were manually merged if  the corresponding terms contained in 

each cluster were found to describe the same molecular function.

i
lI
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Number
of

proteins
Clusters

Clusters with 
different 

protein types

Clustered
proteins

Database 1291 - - -

PROCLASS terminology stage 1089 - - -

PROCLASS clustering by exact matching 1089 102 1 (0.98%) 1031
PROCLASS clustering allowing 1 mismatch 1089 57 9 (15.8%) 1087
PROCLASS clustering allowing 2 mismatches 1089 48 15 (31.25%) 1087
PROCLASS clustering allowing 3 mismatches 1089 33 10 (30.3%) 1087
PROCLASS clustering allowing 4 mismatches 1089 21 16 (76.19%) 1088

Table 3.2. Summary o f  the evaluation o f  the different clustering methods implemented in PROCLASS. 
Clustering by exact pattern/vector matching reported minimum error rates and proved to be the best method to 
facilitate the manual curation o f  data sets.

PROCLASS was also used to cluster proteins according to their functional 

annotation space allowing increasing number o f  mismatches between protein vectors. The 

number o f  mismatches allowed was increased gradually from one to four, but no further 

analyses were carried out at a higher number o f  mismatches as the processing time o f  the 

clustering was found to increase exponentially with the number o f  mismatches allowed 

(figure 3.6). As the number o f  allowed mismatches increased, the number o f  clusters 

decreased but the proportion o f  clusters containing proteins belonging to different 

functional types increased (table 3.2). In order to successfully cluster functionally related 

proteins according to the annotation space allowing mismatches, the user needs to lower the 

threshold o f  minimum number o f  proteins containing a given term. If the threshold is set to 

20 the terms more likely to be used are those related to general functional properties (e.g. 

ligand and the molecular activity) o f  the protein and therefore clustering allowing 

mismatches will lead to clusters o f  proteins that are not functionally related. However, due 

to the nature o f  clustering allowing mismatches, it cannot be expected that this clustering 

method will perform as well as clustering by exact pattern or vector matching. The latter 

will minimize the number o f  clusters containing unrelated proteins and is p er  se the best 

method available to facilitate the manual curation o f  data sets.
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Figure 3.6. Exponential dependence o f the processing time and the number o f  mismatches 
allowed in PROCLASS. An increasing number o f  mismatches allowed leads to an exponential 
increase in processing time.

3.3.2 Development of sets of membrane proteins located in a particular 
subcellular compartment

As explained in the method section, during the training stage, 19 different terms 

were identified (excluding equivalent terms) in the subcellular location statement o f the 

Swiss-Prot database. These terms were analyzed during the terminology search stage 

(Please see appendix A table A.1 on CD) and used to construct vectors to describe the 

subcellular location o f membrane proteins. As expected, the most common term was found 

to be the “membrane” term (contained in 5,374 membrane proteins) whereas the least 

abundant term was the term “lysosome”, with only 19 proteins containing the given term. 

During the clustering stage, 99.4% o f the proteins analyzed by PROCLASS were clustered 

by exact pattern or vector matching and none o f the 38 clusters obtained contained proteins 

belonging to different subcellular locations (Please see figure 3.7 and  appendix A table 

A.2). The clustering method using exact pattern/vector matching achieved a 76-fold
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reduction in the protein space showing its potential when appropriate terms are used to 

construct protein vectors. During the curation stage, the obtained clusters were merged if 

found to belong to the same subcellular location. Surprisingly, it was found that the 

majority o f the clustered proteins belonged to clusters with undefined subcellular location 

(Please see appendix A table A.3 on CD), 72 % o f the 5,619 membrane clustered proteins 

clustered (figure 3.8) did not contain a specific subcellular location. The proteins without 

defined subcellular location were clustered in three different clusters (Please see appendix 

A table A.3 on CD), which were described by the terms: i) “membrane” (4,044 proteins), 

ii) “inner” and “membrane” ( 2  proteins) and iii) “outer” and “membrane” ( 2  proteins). 

Further analysis o f the undefined clusters revealed that many o f these proteins belong to the 

plasma membrane as their corresponding protein functional types are known to be 

essentially in that membrane (e.g. serotonin receptor). However, the subcellular location 

statement often refers to these proteins as “polytopic membrane proteins” without 

specifying their corresponding subcellular location.

97,023 eukaryotic proteins
18,622 eukaryotic membrane proteins

5653 experimentally annotated5243 non-experimentally annotated

10,896 eukaryotic polytooic membrane proteins

5619 clustered in subcellular location classes
Figure 3.7. Summary o f  the subcellular location data collection process. The subcellular location o f  48.12% of  
the polytopic membrane proteins isolated was found to be annotated using non-experimental methods.
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B Unspecific organelar 
membrane

B Specific organelar 
membrane

Figure 3.8. Proportion o f  the proteins with an undefined subcellular location annotation (red), and proteins 
with a defined subcellular location (blue). 72% o f  the proteins analyzed by PROCLASS were clustered in the 
“undefined membrane” cluster.

Other problems lie behind the low number o f  plasma membrane proteins found with 

PROCLASS. The cellular membrane contains a wide variety o f  membrane proteins 

performing essential tasks such as transport o f  ions and molecules across the lipid bilayer, 

cell signaling and cell to cell communication, however the number o f  membrane proteins 

found to be in the plasma membrane accounts only for 18% o f  the data set (figure 3.9). 

This is a noted challenge for the generally well annotated Swiss-Prot database and it is 

believed that annotators working at Geneva are currently working on a new subcellular 

location nomenclature, which will be more precise than that o f  the current version (Personal 

communication, Swiss-Prot curators, Swiss-Prot).

Similarly, the number o f  polytopic nuclear membrane proteins found in the Swiss- 

Prot database (Please see appendix A table A.3 on CD) was not as high as expected 

considering the importance o f  the nuclear membrane. Nuclear membrane proteins were 

found to account for 1% of the membrane proteome in eukaryotes (figure 3.9). Unlike 

plasma membrane proteins, it was not possible to find nuclear membrane proteins in the
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undefined clusters obtained in the curation stage. Further research using the Sequence 

Retrieval System and the gene ontology database revealed that it was not possible to 

retrieve new sequences from the Swiss-Prot database unless proteins containing non- 

experimental terms (“probable”, “potential”, “putative”, “hypothetical” or “similarity”) 

were included.

The information contained in the Swiss-Prot database concerning subcellular 

organization was also quantified (figure 3.9). However, this quantification does not 

represent the organellar organization o f the membrane proteome in eukaryotes for various 

reasons: i) monotopic membrane proteins have not been considered in this study, ii) as 

explained above, organelle-specific membrane proteomes (e.g. the membrane proteome of 

the nucleus or plasma membrane) might be underrepresented in the database (either due to 

a lack o f experimental data or annotation irregularities), iii) particular species might be 

underrepresented (as academic and industrial efforts might be biased towards specific 

species). Despite these problems, such quantification is still useful to assess the current 

informative content in the Swiss-Prot database. An interesting relationship is that found 

between membrane proteins belonging to the chloroplast membrane (either outer or inner) 

and the membrane proteins located in the thylakoid. According to the analysis carried out 

with PROCLASS, the thylakoidal membrane contains 8.5 times more proteins than the 

chloroplast membrane. These results concur with the functionality o f the thylakoid as 

proteins involved in the electron-transport chain as well as in the photosynthetic light- 

absorbing system and ATP production are located in the thylakoid (Alberts et al., 1994).
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Figure 3.9. The different organelles considered in the data set. Proteins belonging to more than one subcellular 
location were not included in the data set. Plasma membrane proteins only accounted for 18% o f  the data set due to 
annotation irregularities in the Swiss-Prot database. The number o f  nuclear polytopic membrane proteins was 
expected to be higher but further research showed that no more proteins could be retrieved unless proteins whose  
subcellular location that has not been experimentally tested were included.
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The annotation quality o f subcellular location o f membrane proteins was not as 

good as expected. Considering the 10,896 eukaryotic polytopic membrane proteins (figure 

3.8), only 5,653 membrane proteins (51.88%) contained reliable annotations (not 

containing non-experimental terms). PROCLASS successfully clustered 5,619 membrane 

proteins (table 3.3) according to their subcellular location statement, and further analysis 

with PROCLASS showed that 72 % o f the 5,619 membrane proteins clustered together 

(figure 3.6) did not contain a specific subcellular location. This gap in the subcellular 

annotation o f membrane proteins resulted in only 1,571 membrane proteins out o f 10,896 

being included in the data set.

The terminology search stage
Number o f searched terms 19

Number o f selected terms 19

Number o f proteins analyzed 5,653

Maximum number o f  proteins with the same term 5,374

Minimum number o f  proteins with the same term 19

Average number o f  proteins per term 436

Standard deviation 1205

The clustering stage
Number o f clusters 38

Number o f proteins clustered 5,619

Maximum number o f  proteins within a cluster 4,044

Minimum number o f  proteins within a cluster 2

Average number o f  proteins per cluster 148

Standard deviation 655

The curation stage
Number o f manually curated clusters 29

Number o f manually curated clusters belonging to single organelles 14

Number o f proteins belonging to single organelles 1,532

Number o f manually curated clusters belonging to multiple organelles 7

Number o f  proteins belonging to multiple organelles 39

Number o f  clusters belonging to unspecific organelles 2

Number o f  proteins belonging to unspecific organelles 4,048

Table 3.3. Summary o f  the different stages o f  the clustering process using PROCLASS. 
Clustering was achieved by exact vector/pattern matching.

89



Chapter 3
__________________ Supervised assembly o f sets of proteins using the annotation space o f proteins

3.3.3 Development of sets of membrane proteins with specific 
molecular functions

Constructing a manually curated data set o f the main functions carried out in the 

membrane by polytopic membrane proteins can be a tedious task when no computational 

support is available. Querying databases for data set construction often requires prior 

knowledge o f the protein type being searched and it is not guaranteed that all related 

proteins will be reported by the search engine implemented in the database. If  general terms 

are to be queried, the number o f proteins reported that need manual curation will make the 

task o f creating large manually curated data sets very complicated.

During the training stage with PROCLASS, the definition (‘D E’) and keyword 

(‘KW ’) statements were analyzed and all terms contained in these statements were 

reported. Because it is difficult to manually name all functions carried out in the membrane 

(and with the appropriate nomenclature), this is an essential stage, where the user is 

required to select those terms related to molecular function definition. In the terminology 

search stage, out o f the 344 functionally related terms, 252 terms were found to be present 

in at least 20 or more proteins (Please see appendix A table A.4 on CD). The threshold 

imposed to select the terms to be used to construct the protein vectors (minimum support of 

2 0 ) was set up considering the clustering by exact pattern/vector matching to be used in the 

following PROCLASS stage. PROCLASS analyzed 15,279 proteins (table 3.4) out o f the 

20,149 listed in the data set built with the Membrane Protein Data Set Creator meaning that 

75.83% of the proteins were experimentally annotated. This result contrasts with that found 

during the development o f the subcellular location data set where only 51.88% o f the 

proteins were experimentally annotated. In the clustering stage, proteins were clustered by 

exact pattern/vector matching, and the clustering method produced 1,079 clusters (Please 

see appendix A table A.5 on CD) covering 96.45% of the proteins analyzed by 

PROCLASS. As in previous examples, clustering by exact pattern/vector matching proved 

to be a particularly useful approach for the development o f manually curated sets of 

proteins. Using this clustering method, the protein space was reduced from 15,279 to 1,622 

data points (including the 1,079 clusters and the 543 proteins with unique vectors and 

therefore not clustered) making the manual curation o f the protein space manageable.
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During the curation stage, 808 clusters (comprising 9,907 proteins) were used to build the 

manually curated data set (table 3.4). Out o f the 808 clusters, 17 needed to be individually 

refined. The remaining 271 clusters (comprising 4829 proteins) could not be used for the 

final data set as they contained uncommon protein types (less than 2 0  proteins) such as 

“fatty acid transporter” or proteins whose functional definition was not precise enough (e.g. 

“chloroplast envelope membrane protein” or “ASCI-like protein 1, Altemaria stem canker 

resistance-like protein 1”). During the clustering stage, 543 proteins were not clustered as 

they were found to have unique vectors that could not be clustered by the clustering method 

performed. These proteins were manually checked and 115 proteins were successfully 

retrieved and included in the final manually curated data set.

The terminology search stage
Number o f terms searched 344

Number o f selected terms 252

Number o f proteins analyzed 15,279

Maximum number o f  proteins with the same term 8,148

Minimum number o f  proteins with the same term 20

Average number o f  proteins per term 275

Standard deviation 787

The clustering stage
Number o f clusters 1,079

Number o f proteins clustered 14,736

Maximum number o f  proteins within a cluster 2,124

Minimum number o f  proteins within a cluster 2

Average number o f  proteins per cluster 14

Standard deviation 71

The curation stage
Number o f clusters included in the manually curated set 808

Number o f cluster required to be refined 17

Number o f clustered proteins included in the manually curated set 9,907

Number o f non-clustered proteins included in the manually curated set 115

Number o f  clusters not included in the manually curated set 271

Number o f  proteins not included in the manually curated set 5,257

Table 3.4. Protein clustering summary (clustering was achieved by exact pattern/vector 
matching) using PROCLASS during the development o f  a manually curated data set o f  
different functions carried out by polytopic membrane proteins.
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The 808 clusters selected during the curation stage were cross-linked against other 

curated databases when possible. The clusters containing enzymes were cross-linked 

against the Enzyme Database (International Union o f Biochemistry and Molecular Biology, 

http://www.chem.qmul.ac.uk/iubmb/enzvme/). which facilitates searching the IUBMB 

Enzyme Nomenclature List. Clusters containing enzymes were not found to contain non- 

enzymatic proteins or proteins with different EC numbers although it was common to find 

more than one cluster containing proteins with the same EC number (Please see appendix 

A table A .6  on CD). These clusters were subsequently merged following a bottom-up 

approach into the six main EC numbers describing the principal biochemical activities of 

proteins: oxidoreductase, transferase, hydrolase, lyase, isomerase and ligase. During the 

bottom-up clustering approach, clusters containing the same protein sub-types (accounting 

for 2 0  or more proteins) were merged before merging all clusters belonging to a particular 

group, for instance the EC 1.1 group (Please see appendix A table A.6 ) was composed of 

nine clusters obtained by PROCLASS and within the EC 1.1 the 3-hydroxy- 

3methylglutaryl-coenzyme reductase was distinct as the only protein type composed o f 20 

or more proteins.

Similarly, G protein coupled receptors were cross-linked against the GPCRDB 

database (Horn et al., 1998) (Please see appendix A table A.7 on CD). Out o f the 808 

clusters selected, 149 clusters contained GPCR proteins, 16 o f those clusters contained 

proteins corresponding to different types o f GPCR whose corresponding ligands were not 

common enough to be considered. These clusters were analyzed with PROCLASS with a 

new set o f terms developed considering their definition statement during the training stage 

and the corresponding proteins were successfully clustered. In the case of molecular 

transporters, ion channels and other receptors (non-GPCR), clusters were merged when 

they were found to contain proteins with the same or similar ligands (e.g. sugar transporters 

contained not only glucose transporters but other monosaccarides such as fructose or 

lactose). No cluster was found with proteins binding different ligands (Please see appendix 

A tables A.8-A.13 on CD) with the exception o f one cluster that contained five light driven 

proton pumps, one light driven chloride pump and two light driven anion pumps. The
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proteins belonging to this cluster were manually analyzed and included in the 

corresponding cluster.

These results showed that PROCLASS (using the exact vector/pattern matching 

clustering method) is a suitable method for constructing manually curated data sets, as the 

clustering method reduces the protein space to a reasonable size and the number o f proteins 

not correctly clustered is kept to a minimum.

The enzymatic function is the most common type o f function carried out in the 

membrane by polytopic membrane proteins, accounting for 43% o f all functions in the 

membrane (figure 3.10). As expected, the transport activity in the membrane is the second 

most important function accounting for 29% o f all functions in the membrane (15% for 

molecular transporters and 14% for ion channels). The third most common function in the 

membrane is the receptor function (23%) where 87% o f all receptors are G protein coupled 

receptors reflecting the importance o f these receptors in eukaryotic cells. Photosynthesis, 

including chlorophyll-binding proteins, is the fourth most common function (5%) followed 

by protein networking (0.45%) and adhesion (0.38%). These results do not reflect the 

distribution o f protein functions in the membrane for various reasons. Firstly, analysis with 

PROCLASS has not been designed to distinguish between subunits, therefore functional 

groups in the membrane might be overrepresented when a significant number o f proteins 

contained in the cluster are individual subunits o f protein complexes. A representative 

example is in enzymatic function, where complexes such as cytochrome c oxidase are 

composed o f four transmembrane polytopic subunits (Please see appendix A tab le A .6  on 

CD). Secondly, membrane proteins with one transmembrane region have not been 

considered in this study, as the TMFUN approach is only applicable to polytopic membrane 

proteins. Monotopic membrane proteins are known to act as linkers in the membrane and as 

adhesion and receptor proteins. Thirdly, this membrane proteome cannot be considered to 

be representative considering the functional gap described in the membrane proteome 

(C hapter 1).

Within the enzymatic functional group, hydrolase (EC 3) and transferase (EC 2) are 

the most common enzymatic functions accounting for 38% and 37% o f all enzymatic
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functions carried out in the membrane respectively (figure 3.11). The main functional 

hydrolase subtypes are ATPases (EC 3.6.3.1 to 3.6.3.16), ABC transporters (EC 3.6.3.17 to 

3.6.3.49) and peptidases (EC 3.4). In the transferase group, the most common functional 

subtype is the transferases transferring phosphorus-containing groups (EC 2.7) where 

kinases are the best representative example (Please see appendix A table A.1-A.5 on CD 

for detailed enzyme subclassification). Sugar transporters, amino acid transporters and 

protein transporters account for 20%, 19% and 17% of all molecular transporters in the 

membrane respectively (figure 3.12). Within the ion channels group, the most common ion 

channel type found in the membrane are the cation channels, which account for 69% of all 

ion channels in the membrane (figure 3.13). The potassium channel was found to be the 

most common ion channel found (21%) followed by sodium (9%), iron (9%), calcium (6 %) 

and chloride (6 %). These results are consistent with the most important ions for the cell. 

The class A o f GPCR proteins was found to be the most common class (84% of all GPCR 

proteins) in the Swiss-Prot database (figure 3.13) where olfactory and peptide GPCR 

proteins were the most common subtypes (25% each subtype) followed by the amine 

GPCR (14%) (Please see appendix A table A.6 on CD for detailed subclassification of 

class A GPCR). Within the photosynthesis function (figure 3.14), chlorophyll binding 

proteins were the most common protein type found (24%) followed by the photosystem I 

P700 (22%) and the photosystem II D1 proteins (15%).
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Figure 3.11. Proportions o f  the different enzyme polytopic membrane proteins found in the Swiss-Prot 
database. Sections in blue, yellow , red, grey and green correspond to oxidoreductases, transferases, 
hydrolases, lyases and ligases respectively.
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Figure 3.12. Proportions o f  the different transmembrane molecular transporters found in the Swiss-Prot 
database.
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Figure 3.13. Proportions o f  the different ion channels found in the Swiss-Prot database. Sections in blue, red 
and grey correspond to cation channels, anion channels and general ion channels respectively.
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Figure 3.14. Proportions o f  the different classes o f  G protein coupled receptors found in the Swiss-Prot 
database. Sections coloured in blue, yellow , red and green correspond to the GPCRa, GPCRb, GPCRc and 
Frizzled GPCR class respectively.
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Figure 3.15. Proportions o f  polytopic membrane proteins related to photosynthesis found in the Swiss-Prot 
database. Sections coloured in red and blue correspond to photosystern 1 and II respectively.

3.4 Conclusions

Current experimental technologies cannot cope with the rate at, which new genomes are 

being sequenced. Therefore, novel computational approaches based on pattern discovery 

and data mining are being designed to facilitate the experimental characterization o f  

unknown genes. However, the exponential rate at which gene and protein databases are 

growing also complicates the assembly o f  manually curated training sets to be used in 

computational biology. Automatic methods to assemble these training sets are usually error 

prone and manual curation is desired. Therefore, PROCLASS has been implemented to

100



Chapter 3
Supervised assembly o f sets of proteins using the annotation space of proteins

facilitate the manual curation o f large sets o f proteins. The developed method significantly 

reduces the number o f data points by clustering the annotation space o f proteins based on 

exact pattern matching, thus facilitating the manual curation o f the dataset. Using 

PROCLASS, two different data sets of polytopic membrane proteins have been assembled 

based on different classification schemes: i) subcellular location and ii) molecular function. 

Exploration o f the obtained clusters showed that specific annotations contained in the 

Swiss-Prot database needed further refinement. Likewise, the obtained results were used to 

identify and classify the main functions carried out by polytopic membrane proteins 

without the need for prior knowledge. PROCLASS has proven to be a novel tool that 

should be a significant aid to those involved in the manual assembly o f large sets of 

proteins.
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CHAPTER 4 

Pattern discovery applied to membrane dipping loop 

amino acid sequences

4.1 Introduction

4.1.1 Membrane dipping (re-entrant) loops

Polytopic membrane proteins are embedded membrane proteins composed o f a 

bundle o f a-helices that completely span the membrane. These transmembrane a-helices 

are generally connected by extramembraneous loops o f various lengths. However, 

crystallized structures o f membrane proteins such us those belonging to the 

aquaglyceroporin family (Gonen et al., 2004, Harries et al., 2004, M urata et al., 2000, 

Ren et al., 2000, Ren et al., 2001, Savage et al., 2003, Stroud et al., 2003a, Sui et al., 

2001) or potassium channels (Doyle et al., 1998, Jiang et al., 2002, Jiang et al., 2003, 

Kuo et al., 2003, Long et al., 2005, N ishida and MacKinnon, 2002, Zhou et al., 2001) 

have shown that membrane dipping loops can also interconnect a-helical 

transmembrane regions. These loops are characterised by their particular structure: the 

N-terminal section o f  the loop partially transverses the lipid bilayer but with the C- 

terminal section then returning to the same side o f the membrane as the N-terminal 

section o f the loop. These membrane dipping loops have been proposed to play key 

roles in the functionality o f membrane proteins and it has been suggested that they play 

mayor roles as selectivity filters in the aquaglyceroporin family (Gonen et al., 2004, 

Harries et al., 2004, Murata et al., 2000, Ren et al., 2000, Ren et al., 2001, Savage et al., 

2003, Stroud et al., 2003a, Sui et al., 2001), potassium channels (Doyle et al., 1998, 

Jiang et al., 2002, Jiang et al., 2003, Kuo et al., 2003, Long et al., 2005, N ishida and 

MacKinnon, 2002, Zhou et al., 2001) and chloride channels (Dutzler et al., 2002, 

Dutzler et al., 2003) and also act as gates o f  molecular pores in the glutamate homolog 

transporter (Locher et al., 2002) and in the protein conducting channel (M itra et al., 

2005, Van den Berg et al., 2004). Membrane dipping loops in crystallized membrane
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proteins have been shown to contain a a-helical structure located either in one half o f 

the loop or in both halves. Following these observations, membrane dipping loops can 

be classified in three structural categories: helix-in-tum-loop-out, loop-in-tum-helix-out, 

helix-in-tum-helix-out.

Detection o f  membrane dipping loops in the current crystallized membrane 

proteins has also proven to be a challenge due to the lack o f  information regarding the 

lipidic environment where the membrane proteins are embedded. Crystallographic, 

electron microscopy and nuclear magnetic resonance (NMR) analyses to elucidate the 

structure o f membrane proteins have proved to be a difficult task due to the difficulties 

o f membrane protein expression and purification (Byrne and Iwata, 2002). Membrane 

proteins are usually extracted from their lipidic environment and crystallized using 

detergent molecules that cover the hydrophobic surface o f  the membrane proteins 

(Ostermeier and Michel, 1997). Therefore, crystallized structures do not show the 

localization o f the lipid molecules surrounding the protein (except for a few highly 

ordered lipid molecules) and the boundaries o f  the membrane can not be located (Lee,

2003).

4.1.2 The PDB__TM database

TMDET (Tusnady et al., 2004) has been implemented to predict the membrane 

localization based on the coordinates o f crystallographic data obtained from membrane 

proteins. TMDET assesses first the chain type and length and builds the oligomer 

structure. Different membrane orientations are then calculated and the biomolecule is 

cut in lA  wide slices along the normal vector. An objective function is then applied to 

each o f  the lA  slices o f  the biomolecule to measure the fitness o f the membrane 

position. This function combines 2 factors, a hydrophobic factor, which measures the 

relative hydrophobic membrane-exposed surface area and a structural factor, which 

combines three factors: the straightness factor, the turn factor and the end-chain factor 

(Tusnady et al., 2004).

Using TM DET, the Protein Data Bank (Berman et al., 2000) was analysed and a 

new database called the Protein Data Bank o f  Transmembrane Proteins (PDB_TM) was
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created. Crystallized structures were classified into 3 categories: globular proteins, 

globular fragments o f transmembrane proteins, and transmembrane protein (the latter 

was sub-classified into alpha, beta and coil proteins); and the position o f  the membrane 

boundaries as well as the transmembrane regions was also specified (Tusnady et al.,

2004).

4.1.3 Sequence similarity detection methods and Pattern discovery 
methods

By evolution, conserved nucleotides and residues are often indicative o f a 

common structural or functional role either at the gene or protein level. Sequence 

similarity detection methods have been successfully applied in fields such as gene 

discovery, splicing prediction, phylogenesis, protein structure and functional prediction, 

or gene expression analysis. Multiple sequence alignment techniques have become the 

routine approach to measuring sequence similarity and identifying important residues 

(Altschul et al., 1990, Pearson and Lipman, 1988). These alignments can be used to 

develop different m otif representation techniques such as single (Falquet et al., 2002) or 

multiple m otif methods (Attwood et al., 1999, H enikoff et al., 1999, W u and Brutlag, 

1995), profiles (Bucher et al., 1996) and hidden Markov models (Baldi et al., 1994, 

Eddy, 1996, Krogh et al., 1994). However, multiple sequence alignment methods have 

proved to be computationally very expensive (Wang and Jiang, 1994), and the accuracy 

o f the alignment diminishes when distantly related sequences need to be aligned. An 

alternative approach is based on pattern discovery methods using an unaligned set o f 

sequences. The problem o f detecting all possible patterns in a set o f sequences has also 

proven to be computationally expensive but heuristics and restrictions in the 

architecture o f  patterns (e.g. maximum length, number o f non-wild elements) (Jonassen 

et al., 1995, Rigoutsos and Floratos, 1998, Sagot et al., 1995) have made it possible to 

analyse large set o f  biological sequences and discover structurally and functionally 

important patterns (Darzentas et al., 2005).

The TEIRESIAS algorithm (Rigoutsos and Floratos, 1998) has been 

implemented to discover patterns in an unaligned set o f nucleotide and/or amino acid 

sequences. This software performs an unsupervised pattern discovery and reports
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maximal patterns without enumerating the entire solution. The algorithm restricts the 

pattern discovery process by limiting the search to patterns with user-defined 

parameters: the minimum number o f literals in any pattern, the maximum extent o f an 

elementary pattern and the minimum support required for a pattern (L, W and K 

respectively).

This algorithm performs pattern discovery in two stages: a scanning stage and a 

convolution stage. During the scanning stage, TEIRESIAS identifies elementary 

patterns (<L,W> patterns containing exactly L residues) w ith sufficient support K. The 

convolution stage is an iteration stage where the stack o f the elementary patterns 

discovered are sorted according to their “prefix-wise less than” character; the current 

top pattern is then fused with a subsequent elementary pattern that is suffix-wise less 

than the top pattern (patterns are fused only if  the support for the fused pattern is > K), 

then the fused pattern becomes the current top pattern o f the stack and the process starts 

again. W hen the current top pattern can no longer be extended more to the right, the 

same process is applied trying to extend the current top pattern to the left (prefix-wise). 

W hen the extension in both directions o f the current top pattern has finished, it is 

removed from the stack and reported if  found to be maximal (the most informative 

pattern at a given support K ’ > K). The convolution process starts again with the new 

current top pattern until no more patterns remain in the stack.

4.1.4 Prediction of membrane dipping loops using sequence pattern 
discovery

Despite the acknowledged importance o f the membrane dipping loops in the 

different mechanisms o f  action o f  several crystallized membrane proteins, to our 

knowledge no extensive analyses have been carried out to determine conserved patterns 

in these motifs and identify potential functionally important residues. M embrane 

dipping loops contained in crystallized membrane proteins were identified using three 

different sources: the PDB_TM database, crystallographic literature and manual 

identification o f proteins listed in the database o f membrane proteins o f know n 3D 

structure (the Stephen White laboratory at University o f  California, Irvine, 

http://blanco.biomol.uci.edu/M embrane Proteins xtal.htm P. TEIRESIAS was applied
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to sets o f sequences (obtained from the Swiss-Prot database) assumed to contain similar 

membrane dipping loops to those previously identified and the discovered patterns were 

subsequently evaluated using PATTERNTEST. These patterns were then mapped onto 

the literature o f crystallographic studies and it was found that some o f the residues 

contained in these patterns were already reported by experimental analyses to be 

important residues for the functionality o f the corresponding membrane protein, thus 

validating our approach. Additional discovered patterns also described other residues 

whose functional roles have not yet been fully characterized leading to the potential for 

targeting further experimental research aimed at understanding the exact functional 

roles o f these residues and understanding o f  the mechanism o f  action o f membrane 

proteins with membrane dipping loops.

4.2 Methods

4.2.1 Selection of crystallized structures with dipping loops

Crystallized membrane proteins containing membrane dipping loops were 

primarily identified by use o f  the PDB_TM  database (Tusnady et al., 2004); update 

24/10/05. The given database version contained 34125 PDB structures, 539 out o f all 

the PDB structures contained in the PDB_TM database were classified as 

transmembrane proteins. The proteins to be used for the analysis o f dipping loops were 

required to be alpha helical membrane proteins and PDB_TM classified 436 out o f 539 

membrane proteins as alpha helical membrane proteins.

All protein chains in the PDB TM database have a record with 3 attributes: 

CHAINID (the chain identifier), NUM _TM  (number o f transmembrane regions) and 

TYPE (type o f transmembrane regions). There are 8  different types o f  transmembrane 

regions listed in the PDB_TM database: S idel, Side2, Beta-strand, alpha-helix, coil, 

membrane-inside, membrane-loop and unknown localizations; listed respectively as 1 , 

2, B, H, C, I, L and U.

Structures with dipping loops were detected by searching in the PDB_TM  

database for the keyword “type="L"/>”, which corresponds to membrane dipping loops.
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The structures referred to in the PDB_TM  database as having dipping loops motifs are 

listed in table 4.1.

PDB acc. code Protein definition
Loop location in 

sequence
begin end

1BL8 KcsA K+ Channel (Chain A, B, C, D) 63 78
1BGY Cytochrome BC1 (Chain C, 0 ) 270 286
1EZV Cytochrome BC1 (Chain C, L) 274 285
1F6G KcsA K+ Channel (Chain A, B, C, D) 65 78

1FQY
Aquaporin 1 (Chain A, B, C, D) Loop 1: 73 

Loop 2: 189
Loop 1: 85 

Loop 2: 201

1FX8
Glycerol facilitator glpF (Chain A, B, C, 
D)

Loop 1: 64 
Loop 2: 199

Loop 1: 78 
Loop 2: 213

1H6I
Aquaporin 1 (Chain A) Loop 1: 72 

Loop 2: 188
Loop 1: 86 

Loop 2: 202

1IH5
Aquaporin 1 (Chain A, B, C, D) Loop 1: 73 

Loop 2: 189
Loop 1: 86 

Loop 2: 201

1J4N Aquaporin 1 (Chain A, B, C, D) Loop 1: 73 
Loop 2: 191

Loop 1: 88 
Loop 2: 204

1J95 KcsA K+ Channel (Chain A, B, C) 66 79
1JBO Photosystern I (Chain F) 106 122
1JVM KcsA K+ Channel (Chain A, B, C) 66 79
1K4C KcsA K+ Channel (Chain C, F, I, L) 63 79
1K4D KcsA K+ Channel (Chain C, F, I, L) 63 79
1KB9 Cytochrome BC1 (Chain C) 272 288

1KPK

CLCa Chloride channel (Chain A, B) Loop 1: 135* 
Loop 2: 181 

Loop 3: 343* 
Loop 4: 392

Loop 1: 155* 
Loop 2: 200  

Loop 3: 365* 
Loop 4: 415

1KPL

CLCa Chloride channel (Chain A, B) Loop 1: 135* 
Loop 2: 181 

Loop 3: 343* 
Loop 4: 392

Loop 1: 155* 
Loop 2: 201 

Loop 3: 365* 
Loop 4: 416

1L7V Vitamin B12 transport system permease 
protein btuC (Chain A, B) 175 186

1LDA Glycerol facilitator glpF (Chain A, B, C, 
D)

Loop 1: 64 
Loop 2: 199

Loop 1: 77 
Loop 2: 213

1LDF Glycerol facilitator glpF (Chain A, B, C, 
D)

Loop 1: 64 
Loop 2: 200

Loop 1: 77 
Loop 2: 213

1LDI Glycerol facilitator glpF (Chain A, B, C, 
D)

Loop 1: 64 
Loop 2: 200

Loop 1: 78 
Loop 2: 217

1LNQ Calcium gated K+ channel MthK (Chain 
A, B, C, D) 47 62

10RQ
Voltage dependent K+ channel KvAP 
(Chain C, D, E, F) 183 200

10R S
Voltage dependent K+ channel KvAP 
(Chain C, D, E, F) 183 200

10T S CLCa Chloride channel (Chain A, B) Loop 1: 181 
Loop 2: 393

Loop 1: 203 
Loop 2: 415

10TT CLCa Chloride channel (Chain A, B) Loop 1: 181 
Loop 2: 393

Loop 1: 203 
Loop 2: 415

10T U
CLCa Chloride channel (Chain A, B) Loop 1: 181 

Loop 2: 393
Loop 1:203  
Loop 2: 415

1P7B Inward Rectifier K+ channel K irB acl.l 
(Chain A, B, C, D) 98 114
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1R3I KcsA K+ channel (Chain C, D, G, K) 63 79
1R3J KcsA K+ channel (Chain C, F, I, L) 63 79
1R3K KcsA K+ channel (Chain C, F, I, L) 63 78
1R3L KcsA K+ channel (Chain C, F, I, L) 63 79

1RC2
Aquaporin Z (Chain B) Loop 1: 60 

Loop 2: 183
Loop 1: 73 

Loop 2: 195
1RH5 Protein conducting channel (Chain A) 56 67
1RHZ Protein conducting channel (Chain A) 56 68
1S33 KcsA K+ channel (Chain A, B, C, D) 63 79
1S5H KcsA K+ channel (Chain C, F, I, L) 63 79

1S6E
Aquaporin 6 theoretical model (Chain A) Loop 1: 79 

Loop 2: 193
Loop 1:92  

Loop 2: 206

1SOR
Aquaporin 0 (Chain A, B, C, D) Loop 1: 65 

Loop 2: 182
Loop 1: 77 

Loop 2: 194

1UFD Aquaporin (Chain A, B, C, D) Loop 1: 95 
Loop 2: 205

Loop 1: 106 
Loop 2: 218

1XFH
Glutamate transporter homolog (Chain A, 
B, C)

Loop 1:262  
Loop 2: 338*

Loop 1: 289 
Loop 2: 369*

1XL4
NAD(P) Transhydrogenase (Chain A, B, 
C, D)

84 99

1XL6
Inward Rectifier K+ channel (Chain A, B, 
C, D)

84 100

1YMG
Aquaporin 0 (Chain A, B, C, D) Loop 1: 63 

Loop 2: 180
Loop 1:78  

Loop 2: 194

1Y 09
Photosystern I, theoretical model psaF 
(Chain F) 126 141

2A79
Voltage gated K+ channel K vl.2  (Chain 
B, F, J, N)

364 377

2ABM
Aquaporin Z (Chain A, B, C, D) Loop 1: 61 

Loop 2: 182
Loop 1: 70 

Loop 2: 195

2AFL KcsA K+ channel, theoretical model 
(Chain A, B, C, D)

38 50

2BOB KcsA K+ channel (Chain C, F, N) 63 79
2BOC KcsA K+ channel (Chain C, F, N) 63 78

Table 4.1. List o f  PDB structures (50 structures) predicted to have membrane dipping loops according to 
the P D B T M  database and the literature. The table also describes the function definition contained in the 
PDB database and the beginning and ending position for each membrane dipping loop predicted in the 
PDB TM database.Loops marked with an asterisk (*) were not detected in the PDB TM database but 
identified as membrane dipping loop in the corresponding literature and visually confirmed using RasMol 
(Sayle and Bissel, 1992).

The 50 structures that were predicted to have membrane dipping loops were 

classified into 1 2  different protein types according to the protein definition listed in the 

PDB database:

1. KcsA potassium channel

2. Voltage gated (KvAP) potassium channel

3. Calcium gated potassium channel

4. Inward rectifier potassium channel

5. Glutamate transporter

6 . Vitamin B 12 transport system permease protein
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7. Cytochrome BC1

8 . Photosystern I

9. Aquaporin

10. Glycerol facilitator

11. Transhydrogenase

12. Protein conducting channel

The predicted membrane dipping loops belonging to each o f  the membrane proteins 

listed in the PDB_TM database were cross-referenced to the literature corresponding to 

the crystallized structures. Although these papers accurately describe the three- 

dimensional structure o f membrane proteins, the boundaries o f the lipid bilayer can only 

be approximated, as membrane proteins need to be extracted from the membrane to 

elucidate their structure. Therefore, although most o f  the loops predicted in the 

PDB_TM  database as membrane dipping loops were found to be described in the 

literature some loops were not identified and were considered as potential membrane 

dipping loops. Crystallographic structures described in the literature can also contain 

additional membrane dipping loops that were not listed in the PDB TM database and 

these loops were also considered as potential loops. The latter was the case for the 

glutamate transporter homologue (PDB accession code 1XFH) and the C1C chloride 

channel (PDB accession code 1KPK, 1KPL). In addition, a manual identification o f 

membrane dipping loops o f PDB structures contained in the database “Membrane 

Proteins o f Known 3D Structure” (the Stephen White laboratory at University o f 

California, Irvine, http://blanco.biomol.uci.edu/M embrane Proteins xtal.htmD was 

carried out to ensure that all PDB structures containing a membrane dipping loop were 

considered. Ultimately all the crystallized structures with membrane dipping loops were 

visually confirmed using the RasMol visualization software (Sayle and Bissel, 1992). 

The 50 structures discovered in the PDB_TM  database contained 69 listed membrane 

dipping loops. In the literature, five additional membrane dipping loops belonging to 

three o f the determined structures were described. No additional membrane dipping 

loops or structures containing this m otif were manually identified. O f the 50 PDB 

structures considered, 46 were used in this study as membrane proteins containing 

membrane dipping loops. M embrane dipping loops found in the NAD(P) 

Transhydrogenase (PDB accession code 1XL4) and the cytochrome BC1 (PDB 

accession code 1BGY, 1EZV, 1KB9) could not be visually confirmed (see discussion).
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The remaining membrane dipping loops were classified according to their structural 

arrangement into 3 different structural categories: helix-in-tum-helix-out, helix-in-tum- 

loop-out and loop-in-tum-helix-out.

The following table summarizes the protein types confirmed as proteins with 

membrane dipping loops, clusters o f the different protein types with membrane dipping 

loops (according to the conservation o f residues in the dipping loop region, and 

conservation o f the three dimensional conformation o f the membrane dipping loops) 

and the structural classification o f the loops belonging to the different clusters.

Protein type Protein cluster D ipping loop structural type
Voltage gated KvAP K+ channel 
KcsA K+ channel 
Calcium gated K+ channel MthK 
Indward rectifier K+ channel

Potassium channel Helix-in-loop-out

Protein Conducting Channel secY secY / SEC61 alpha family Helix-in-tum-loop-out
Aquaporin
Glycerol facilitator glpF Major Intrinsic Protein family

LI: Loop-in-tum-helix-out 
L2: Loop-in-tum-helix-out

Vitamin B 12 transport system permease 
protein BtuC

Binding protein dependent 
transport system permease 
family

Helix-in-tum-helix-out

Clc Chloride Channel Clca Chloride channel family

LI: Helix-in-tum-helix-out 
L2: Helix-in-tum-helix-out 
L3: Helix-in-tum-helix-out 
L4: Helix-in-tum-helix-out

Photosystern I psaF psaF family Helix-in-tum-helix-out

Glutamate transporter homolog
Sodium : dicarboxylate (SDF) 
symporter family. FecCD  
subfamily.

LI: Helix-in-tum-helix-out 
L2: Helix-in-tum-loop-out

Table 4.2. List o f  protein types containing membrane dipping loops. According to the residue 
conservation in the loop region and the 3-D structural similarity o f  the membrane dipping loops different 
protein types were clustered: a) Voltage gated K+ KvAP channel, KcsA K+ channel, Calcium gated K+ 
channel MthK and Indward rectifier K+ channel were clustered together with the Potassium channel 
group; b) Aquaporins and Glycerol facilitator glpF proteins were classified as aquaglyceroporins. Each 
loop type contained in the different dipping loop protein groups were structurally classified into 3 
categories: helix-in-tum-helix-out, helix-in-tum-loop-out and loop-in-tum-helix-out.

4.2.2 Detection in the Swiss-Prot database of sequences belonging 
to different dipping loop protein groups and identification and 
isolation of sequence regions belonging to the corresponding 
dipping loop motif

Proteins belonging to the same families as those with membrane dipping loops 

were identified in the Swiss-Prot database (Boeckmann et al., 2003) regardless o f their 

taxonomic group using the Uniprot/Swiss-Prot family/domain classification database
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and by keyword search. Therefore, the 7 sets o f proteins containing membrane dipping 

loops were assembled using the Swiss-Prot database and composed o f  eukaryote 

proteins and/or bacterial proteins and/or archaea proteins. The different sets o f 

membrane proteins assembled were filtered at 2  different levels, the first level was 

based on the quality o f the functional annotation and the second level was based on 

sequence redundancy avoidance. In the first level the Swiss-Prot annotation o f  retrieved 

membrane proteins was manually analysed in order to remove fragments and proteins 

with inappropriate or insufficient functional annotation. Swiss-Prot annotation often 

includes keywords such us “hypothetical”, “probable”, “potential”, “by similarity” and 

“fragment”, which are indicative o f proteins whose function has been predicted by non- 

experimental approaches or whose sequence is not complete. Swiss-Prot files containing 

these keywords were not included in the set used to discover patterns.

At the second filtering level, sets o f sequences belonging to particular protein 

groups containing membrane dipping loops were filtered based on the sequence identity 

o f the members composing the set (Hobohm et al., 1992). A bioinformatics tool, Non- 

Red (Liakopoulos and colleagues, Dept, o f Cell Biology and Biophysics, University o f  

Athens, http://athina.biol.uoa.gr/bioinformatics/NON-REDT was used to avoid 

redundant sets o f sequences. Non-Red removes pairs o f  sequences with 

similarity/homology higher than a user-defined level. In order to remove highly 

identical protein sequences the minimum alignment length was set to 80 (default value) 

and the minimum identity level was set to 95%. Therefore, pairs o f sequences sharing a 

sequence identity o f 0.95 or higher were avoided by removing the protein sequence o f 

the given pair more similar to the remaining proteins in the set. The filtered set was 

defined as the gold standard set for the study (table 4.3). W here the protein containing a 

membrane dipping loop belonged to a particular subfamily, it was important to ascertain 

whether the structural m otif was conserved only in that particular subfamily or instead 

was a common feature present in other subfamilies or in the entire protein family. 

ClustalW (Chenna et al., 2003) was used to analyze the residue conservation in the 

sequence region pertaining to the dipping loop motifs across the entire protein family 

set. W hen no clear differences in residue conservation were observed between 

subfamilies it was taken that the membrane dipping loop was a structural m otif 

conserved across the entire protein family. By contrast, when there was little or no 

conservation across the different protein subfamilies, loops were included in the pattern
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discovery process as members o f  the particular subfamily only, as there was no 

evidence that the given membrane dipping loop was conserved throughout the entire 

protein family.

In order to detect and define the membrane dipping loop regions in sequences 

corresponding to proteins not yet crystallized, sequences belonging to crystallized 

membrane proteins and listed in the PDB_TM database were used as reference 

sequences. These reference sequences were found in the Swiss-Prot database by 

searching in the PDB files o f the corresponding structure for the “DBREF” tag, which 

cross-links the PDB and the Swiss-Prot database. The exact localization o f these motifs 

in sequences belonging to the same membrane dipping loop protein group as the 

reference proteins was ascertained by multiple sequence alignment using ClustalW  

(Chenna et al., 2003). Once all sequences belonging to the same dipping loop group 

were aligned, the dipping loop region was identified using the reference protein and the 

equivalent structural m otif located in the remaining sequences in the alignment. To 

isolate the regions o f sequence belonging to dipping loops, the limits o f the dipping 

loops were obtained from the information contained in the PDB_TM  database and 

manually verified by three dimensional visualisation using Rasmol (Sayle and Bissel, 

1992). In order to minimise the error in identifying the ends o f each membrane dipping 

loop, or possibly missing the appropriate section, 5 residues before the predicted starting 

position and 5 residues after the predicted ending position were also considered. W ithin 

each set, all sequences were then reduced to the region corresponding to the particular 

membrane dipping loop detected in the crystallized membrane protein.
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Protein  type Sw iss-P rot accession  codes

Binding-protein-dependent- 

permease family, FeCD subfamily

087656, P06609, P06972, PI5029, PI5030, P23876, P23877, P37737, P37738, 

P40410, P40411, P49936, P49937, Q6D656, Q6LQ76, Q7N3Q3, Q8D927, Q8X4L7, 

Q8ZDX4, Q8ZPS8, Q9KSL2, Q87Q39, Q47085, Q47086, Q56992

C1C Chloride channel

P35522, P35523, P37020, P51788, P51789, P51790, P51800, P51801, P51802, 

P51804, P92941, P92942, P92943, Q8D6J0, Q8FL15, Q8GX93, Q8RXR2, Q8X794, 

Q8ZBM0, Q8ZPK5, Q8ZRP8, Q9AGD5, Q9KM62, Q9MZT1, Q9R0A1, Q9R279, 

Q9TT16, Q9WU45, Q9WUB6, Q9WVD4, Q87GZ9, Q06393, Q61418, Q64347, 

Q96282

PsaF family family
Q9X7I4, 031127, 078457, P0A401, P0A402, P12355, P12356, P13192, P29256, 

P31083, P46486, P48115, P49483, P51193, P58564, Q7NH05, Q9TLW6

Sodium:dicarboxylate symporter 

family

000341, 019105, 035874,035921, 057321, 059010, P20672, P21345, P24944, 

P31597, P31601, P39817, P43005, P43006, P43007, P51907, P51912, P56564, 

P58734, P96603, Q8P5J5, Q8PGZ1, Q8X5M2, Q8XR66, Q8XUB6, Q8Y2K5, 

Q8Z287, Q8ZA28, Q9AAH2, Q9ANR2, Q9I4F5, Q9I713, Q9N1R2, Q9PEQ2, 

Q9RRG7, Q9X7K6, Q88NL9, Q95JC7, Q98AV2, Q848I3, Q885Z9, Q986R8, 

Q01857, Q15758, Q25605, Q95135

Potassium channels

AAA95997, AAC26099, gi2570854, 002670, 008962,018965, 027564,043525, 

043526, 054853, 070339, 070507, 070617, 073606, 073925,088758,088943, 

P0A334, P08510, P16388, P17658, P17970, PI 7971, P17972, P19024, P22001, 

P22459, P22460, P22462, P22739, P25122, P35560, P48048, P48544, P48547, 

P48548, P50638, P51787, P52186, P52187, P52192, P56696, P58126, P63251, 

P79197, P92960, P97414, Q4TZY1, Q5JUK3, Q5NVJ6, Q8AYS8, Q8GXE6, 

Q8JZN3, Q8K3F6, Q8QFV0, Q8TAE7, Q8TDN1, Q8TDN2, Q9ER47, Q9H252, 

Q9JKA8, Q9JM63, Q9M8S6, Q9MZS1, Q9NPI9, Q9NR82, Q9NS40, Q9NSA2, 

Q9NZV8, Q9P1Z3, Q9QWS8, Q9QYU3, Q9QZ65, Q9R1T9, Q9TSZ3, Q9TT17, 

Q9TV66, Q9UIX4, Q9UJ96, Q9UL51, Q9ULD8, Q9ULS6, Q9UNX9, Q9UQ05, 

Q9WVJ0, Q9Y3Q4, Q9YDF8, Q9Z0V1, Q9Z0V2, Q9Z258, Q9Z307, Q9Z351, 

Q90ZC7, Q91ZF1, Q94A76, Q95L11, Q95V25, Q96KK3, Q96L42, Q920E3, 

Q02280, Q03717, Q03719, Q03720, Q03721, Q05037, Q09470, Q12791, Q14003, 

Q14500, Q14721, Q15756, Q28293, Q38849, Q38898, Q38998, Q39128, Q57603, 

Q61423, Q61743, Q61762, Q61923, Q62897, Q62976, Q63099, Q63472, Q63664, 

Q63734, Q63959, Q64198, Q64273, Q90854, Q92806, Q92953

Aquaglyceroporin

014520, 043315, 054794, 062735,094778, P06624, PI 1244, P18156, P22094, 

P23900,P25818,P26587, P29972, P30301, P34080, P37451, P41181, P42767, 

P43286, P43287, P47862, P47863, P47864, P47865, P48838, P50501, P51180, 

P53386,P55064, P55087, P56401, P56403, P56404, P56405, P56627, P60844, 

P93004, Q8LFP7, Q8VZW1, Q9C4Z5, Q9LA79, Q9WTY0, Q96PS8, Q02013, 

Q06019, Q06611, Q08733, Q23808, Q51389

secY / SEC61 alpha family

051451, Q9ZJS9, 008387, Q99S39, Q8CNF3, Q05217, P16336, Q05207, P38375, 

P58118, P47416, Q59548, 052351, P10250, 033006, P0A5Z3, P38376, P43416, 

P49977, Q59912, Q59916, P33108, Q9PJN1, Q9Z7S5, P49976, P78283, P43804, 

P57571, Q8K969, Q89A85, Q9ZCS5, 066491, 063066, Q9XQU4, P93690, Q38885, 

P0A4H1, P77964, P28527, P38397, P51297, Q37143, P46249 P25014, P28540, 

P49461, Q60175, P28541, 059442. Q9V1V8, Q8U019, 026134, P28542, Q977V3, 

Q9HPB1, 028377, P32915, Q6FRY3, Q6CPY9, Q752H7, Q6BN08, Q9P8E3, 

Q96TW8, P78979, Q870W0, P79088, Q5R5L5, Q8AY33, Q9JLR1, Q25147, P38379, 

P49978, Q9UX84, Q9YDD0, P38353

Table 4.3. Gold standard set for each protein type with at least one protein member containing a 
membrane dipping loop in its crystallized structure.

114



Chapter 4
Pattern discovery applied to membrane dipping loop amino acid sequences

4.2.3 TEIRESIAS analysis

Using the different alignments, as described above, the membrane dipping loop 

regions in sequence were identified and isolated. Each set o f  sequences belonging to a 

membrane dipping loop protein group was composed o f partial sequences that 

corresponded to a particular structural motif. These sets o f sequences were used as the 

input for the analysis using TEIRESIAS (Rigoutsos and Floratos, 1998).

The TEIRESIAS algorithm uses 3 different parameters to detect patterns within 

sequences:

• L: This parameter controls the minimum number o f literals in any pattern. 

Following the recommendations by Rigoutsos and Floratos (1998), this 

parameter was set to 3 for all the analyses as it was found to be the smallest 

value for which the pattern recognition engine benefits by the convolution 

step.

•  W: This parameter controls the maximum extent o f  an elementary pattern. 

This pattern was set up to a maximum value for each membrane dipping 

loop analysis corresponding to the length o f the membrane dipping loop 

sequence (including the five additional residues included at both sides). 

Therefore the pattern discovery search was maximized to the length o f  the 

membrane dipping loop detecting conserved pairs o f residues located in 

different halves o f  the structural m otif but that may be spatially associated in 

the membrane.

•  K: This parameter describes the support for a pattern, that is, the minimum 

number o f sequences (if seq_version parameter enabled) / times (if 

seq_version parameter disabled) in which a pattern appears. It was believed 

that conserved patterns, eligible to be used as predictive rules o f  a given 

membrane dipping loop (Chapter 5) should have at least a support o f  70%. 

The seq_version parameter was enabled for all the different analyses carried 

out and the K parameter was set up to the number o f sequences 

corresponding to 70% o f  the sequences contained in the gold standard set 

used for the TEIRESIAS analysis. Therefore, all the patterns listed by 

TEIRESIAS were found to be present in at least 70% o f all the sequences 

used as an input for the TEIRESIAS analysis.
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The TEIRESIAS software can perform exact discovery o f pattern within a set o f 

sequences and/or discovery o f  patterns within a set o f sequences using equivalency sets. 

The Bioinformatics & Pattern Discovery group working at IBM W atson Research 

Centre twww.research.ibm.com/bioinformaticsA have implemented 2  different 

equivalency sets o f amino acids for the analysis using TEIRESIAS. One equivalency set 

was implemented based on the chemical nature o f  amino acids (table 4.4) and a second 

equivalency set was developed based on the structural nature o f  amino acids (table 4.5).

For each set containing a particular membrane dipping loop, 3 analyses were 

carried out using the TEIRESIAS algorithm: exact pattern discovery, pattern discovery 

using chemical equivalencies and pattern discovery using structural equivalencies (table

4.6).

_________________ Alanine Glycine__________________
____________ Aspartic acid <-» Glutamic acid_____________
______________ Phenylalanine <-» Tyrosine_______________
__________________Lysine «-» Arginine___________________

Isoleucine «-» Leucine <-» Methionine <->• Valine______
_______________ Glutamine <-» Asparagine________________
_________________ Serine Threonine__________________
Table 4.4. Equivalency set based on the chemical nature o f  amino acids 
(the Bioinformatics & Pattern Discovery group, 
http://cbcsrv.watson.ibm.com/Tspd.htmn.

 Cysteine <-> Serine___________________
________ Aspartic acid <-» Leucine Asparagine__________
_____________ Glutamic acid <-> Glutamine_______________

Phenylalanine <-> Histidine «-» Tryptophan «-» Tyrosine
___________Isoleucine <-> Threonine Valine____________
___________Lysine <-» Methionine «-» Arginine____________
Table 4.5. Equivalency set based on the structural nature o f  amino acids 
(the Bioinformatics & Pattern Discovery group, 
http://cbcsrv.watson.ibm.com/Tspd.htmlT
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Gold standard sets TEIREISIAS pattern discovery 
parameters

Protein group Loop type
Num ber o f  
sequences

L W K
(70% )

Pattern discovery  
method

Potassium channel Helix-in-tum-loop-out 134 3 25 94
Exact discovery 

Chemical equivalency 
Structural equivalency

secY / SEC61 alpha 
family Helix-in-tum-loop-out 75 3 30 52

Exact discovery 
Chemical equivalency 
Structural equivalency

Major Intrinsic 
Protein family

LI: Loop-in-tum-helix-out 
L2: Loop-in-tum-helix-out

49
49

3
3

20
20

34
34

Exact discovery 
Chemical equivalency 
Structural equivalency

Binding protein 
dependent transport 
system permease 
family

Helix-in-tum-helix-out 25 3 30 17
Exact discovery 

Chemical equivalency 
Structural equivalency

Chloride channel 
family

LI: Helix-in-tum-helix-out 
L2: Helix-in-tum-helix-out 
L3: Helix-in-tum-helix-out 
L4: Helix-in-tum-helix-out

35
35
35
35

3
3
3
3

30
30
30
30

24
24
24
24

Exact discovery 
Chemical equivalency 
Structural equivalency

psaF family Helix in helix out 16 3 25 11
Exact discovery 

Chemical equivalency 
Structural equivalency

Sodium :
dicarboxylate (SDF) 
symporter family

L I: Helix in helix out 
L2: Helix-in-tum-loop-out

46
46

3
3

30
30

37
37

Exact discovery 
Chemical equivalency 
Structural equivalency

Table 4.6. Summary o f  the different pattern discovery analyses carried out using TEIREASIAS. Columns 
one to three summarize the different gold standard sets used. Columns four to seven summarize the 
pattern discovery process carried out using TEIRESIAS.

4.2.4 V a lid atin g  P atterns obtained  by T E IR E SIA S  u sing  P A T T E R N T E S T

Patterns detected by TEIRESIAS were not guaranteed to be specific to the 

corresponding loop type belonging to a particular gold standard set as it was not 

possible to include negative control sets in the pattern discovery process. Therefore, it 

might be possible to discover patterns from one particular dipping loop set in other sets 

o f membrane proteins, whose structure does not actually contain a membrane dipping 

loop, leading to patterns with poor specificity and the incorrect prediction o f  false 

positives. To validate the patterns, an additional tool was implemented, named 

PATTERNTEST, whose function was to validate the patterns obtained using 

TEIRESIAS against positive and negative control sets assembled by the user. Two 

separate negative control sets were assembled, the first negative control set was 

composed o f protein sequences belonging to the remaining sets o f  membrane dipping
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loop motifs, whereas the second negative control set was composed o f  363 membrane 

proteins, the positive control set was composed o f protein sequences, which were used 

to discover the patterns in the first place. The patterns discovered by TEIRESIAS, but 

found to be present in any o f the negative control sets and/or present in the positive 

control set but located in a sequential region that did not correspond to the given 

membrane dipping loop were eliminated. Additionally, PATTERNTEST was also used 

to detect common patterns in sets o f dipping loops sharing a structural similarity or 

assembled from the same protein family to find common patterns in structurally related 

membrane dipping loop motifs (for the discovery o f residues important for the folding 

and stabilization o f  the structural motif) and common patterns in membrane dipping 

loops possibly caused by ancestral gene duplication events.

PATTERNTEST was implemented using Borland Delphi 7. The software loads 

text files with a specific format (figure 4.1) where the set o f sequences used and the 

patterns found by TEIRESIAS are described. PATTERNTEST (figure 4.2) can perform 

a series o f  different pattern (regular expression type) handling tasks: 1. Sum patterns 

saved in different files, 2. If  more than one file is loaded, it can display the patterns that 

specifically belong to a particular file or i f  required, display common patterns present in 

the required files but not present in the remaining files loaded, 3. It can sort patterns 

according to their “N ” parameter (see TEIRESIAS analysis), and 4. It can evaluate the 

selectivity o f the patterns against Swiss-Prot-like text files, text files that contain 

information (e.g. organism, function, subcellular location and structural features) for a 

given protein written according to the nomenclature use by the Swiss-Prot database 

annotators. M ost o f the operations cited above were implemented using the Systools 

library.
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tag used to describe the name of the set

tab

Name of the set analysed by TEIRESIAS

NM
35
34
34
34
33
33
33
33

helix-in-tum-helix-Qy&Jljjjgp 2 CLC CHLORIDE CHANNEL;
35 [AG ].[AG].G [ILM V]...[FY] [AG]..F..E
33 [ajg] .a . g [ il m v ] - . [ f y ]  [a g ] . .f . .e

3£ [AG ].[AG].G [ILM V]...[FY] G..F..E
3£ [I UVM • ■ [AG]. [AG ]. G[l I M / ] .. .[FY] [AG ].. F .. E
33 [ILM'v]..[AG].[AG].G[ILM'yy]...[FY]..P..[AG].[ILMV/]F..E
33 [AG].A.G[IUyyfvy]...[FY] G..F..E
33 [ILM V J..[A G ]A G [IU yfv]...[FY ] [AG]..F..E
33 [ iljvM - . [a g ].[a g ] . g [ il m v ] . . . [f y ]  g . .f . .e

pattern description

tab

the number of input sequences that contain these instances

the number of instances of the pattern

Figure 4.1. Example o f  the input format required by PATTERNTEST. The first row o f  each loaded file 
corresponds to the name o f  the set analysed by TEIRESIAS, this row is tagged with the “NM ” tag. The 
following rows correspond to the patterns discovered by TEIRESIAS where the first number , “N ”, 
corresponds to the number o f  the instances o f  the given pattern in the set, the second number, “M”, 
corresponds to the number o f  input sequences that contain those instances and the regular expression 
corresponds to the pattern discovered in the corresponding membrane dipping loop region.

The different evaluations carried out using PATTERNTEST were:

1. Detection o f patterns specific to the helix-in-tum -loop-out m otif in 

potassium channels.

2. Detection o f  patterns specific to the helix-in-tum -loop-out m otif in the 

SecY/SEC61 alpha family.

3. Detection o f patterns specific to the loop-in-tum-helix-out (L I) m otif in 

the major intrinsic protein family.

4. Detection o f patterns specific to the loop-in-tum-helix-out (L2) m otif in 

the major intrinsic protein family.

5. Detection o f patterns specific to the helix-in-tum -helix-out m otif in the 

binding protein dependent permease system family.

6 . Detection o f patterns specific to the helix-in-tum -helix-out (L I) m otif in 

the chloride channel family.

7. Detection o f patterns specific to the helix-in-tum -helix-out (L2) m otif in 

the chloride channel family.
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8 . Detection o f  patterns specific to the helix-in-tum -helix-out (L3) m otif in 

the chloride channel family.

9. Detection o f  patterns specific to the helix-in-tum -helix-out (L4) m otif in 

the chloride channel family.

10. Detection o f  patterns specific to the helix-in-tum -helix-out m otif in the 

psaF family.

11. Detection o f  patterns specific to the helix-in-tum -helix-out m otif (L I) in 

the sodium : dicarboxylate symporter family.

12. Detection o f  patterns specific to the helix-in-tum -loop-out (L2) in the 

sodium : dicarboxylate symporter family.

13. Detection o f  common and specific patterns in the LI and L2 loop in the 

major intrinsic protein family.

14. Detection o f  common and specific patterns in the LI and L3 loop in the 

chloride channel family.

15. Detection o f  common and specific patterns in the L2 and L4 loop in the 

chloride channel family.

16. Detection o f  common and specific patterns in the L I, L2, L3 and L4 loop 

in the chloride channel family.

17. Detection o f  common and specific patterns in the LI and L2 loop in the 

sodium : dicarboxylate symporter family.

18. Detection o f  common and specific patterns in all helix-in-tum -loop-out 

like dipping loops.

19. Detection o f  common and specific patterns in all loop-in-tum-helix-out 

like dipping loops.

20. Detection o f  common and specific patterns in all helix-in-tum -helix-out 

like dipping loops.

21. Detection o f  common patterns in all dipping loops (independently o f the 

dipping loop type).
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NM TER 1 HILO PSI;
16 16 100 00 [ILMV] A......G..WP..A
15 15 33.75 [ILMV].[ILMV1.A.....G ..W P.A ..E
14 14 87.50 [ILMV], [1LMVJA. ..G..W P..A
14 14 87.50 [ILMV]....A...[ILMV]..G..WP..A
14 14 87.50 [ILMV][DE]...A...... G..WP..A
14 14 87 50 1 A......G ..W P.A
13 13 81.25 [1LMV][D E][ll.MV] A...... G W P .A .E
13 13 81.25 1. [ILMV], A ......G.. W P .A .E
13 13 81.25 [1 LM V).[l LM VJ.. A ... [1LMV], G W P A. E
13 13 81 25 [ILMVJD. A ...... G W P  A
13 13 81 25 [ILMV] A...... 3  WP[ILMV;A
13 13 81.25 [1 LMV],[1 LMV],[1LMVJA...... G ..W P.A . E
13 13 81.25 [ILMV], [ILMV], A .....GJFYJ. W P .A .E
13 13 81.25 [ILMV].[ILMV)PA G W P .A .E
12 12 75.00 l[DE]...A...... G..W P..A
12 12 75.00 l...[ILMVJA......G..WP..A
12 12 75.00 [ILMV][DE]..[I LMVJA G..WP..A
12 12 75.00 I.. A  (iLMV] G W P  A
12 12 75.00 [1 LM V][D E ] .  A .. [1 LMV]. G .. W P. .A
12 12 75.00 [ILMV], [1 LMVJA JILMV) G W P A
12 12 75 00 I.JILMVJPA...... G. W P. A .E
12 12 75.00 [1 LMV], [1 LMV], [1 LMVJA G|FY].WP..A..E
12 12 75.00 [1 LMV]. [1 LMV). A .. [1 LMV] .G[FY].WP..A..E
12 12 75.00 (1 LMV], [1 LMV], [1 LMVJA G..WP.AA..E
12 12 75.00 [ILMVPIILMVJ.A.. ..G .W P .A .E
12 12 75.00 1 A...... G..WP[I LMVJA
12 12 75.00 [1 LM V].[l LM V], A .....G..WP[ILMV].A..E

-  !□! *1

FA15 residue rule\Mem

A Pie.enf in eq. H

27/27

Figure 4.2. Screenshot o f  the pattern evaluation task performed by PATTERNTEST. In order to perform 
the evaluation, the user needs to input the required parameter and select the output type. The first box is 
used to indicate the Sw iss-Prot-like files that would be used to evaluate the patterns described in a 
previously loaded file. In the parameters panel, the user is asked to enumerate the number o f  sequences 
used during the pattern discovery process and the minimum required support o f  the patterns to be 
evaluated. In the search options panel, the software could be set up to perform the evaluation only against 
transmembrane proteins (with 2 o f  more transmembrane regions) specifying if  the evaluation should be 
performed against the w hole protein sequence or just against the transmembrane regions (plus 5 residues 
upstream and downstream to m inim ise the error in predicting the limits o f  the transmembrane regions). In 
the display options panel, the user can set up the program to display only the non-m atching patterns or 
obtain a detailed report o f  the evaluation process where the accession code and the definition o f  matching 
Sw iss-Prot-like text files is displayed.

The three-dim ensional structure o f  the C1C Chloride channel show ed that the N- 

term inal ha lf o f  the protein was structurally related to the C-term inal h a lf  (D utzler et al., 

2002). Therefore, loop 1 and loop 3 together w ith loop 2 and loop 4 w ere evolutionarily 

related. A ccording to these finding the evaluation using PA TTER N TEST was designed 

to discover com m on and specific patterns betw een evolutionarily related loops 

(evaluation 14-15) and betw een all the loops belonging to the chloride channel fam ily 

(evaluation 16).

121



Chapter 4
__________________ Pattern discovery applied to membrane dipping loop amino acid sequences

To detect patterns specific to a particular loop in a dipping loop protein group 

(evaluations 1 to 12) a filtering protocol was designed. The filtering protocol was 

composed o f 4 steps:

1. Filtering the patterns obtained from TEIRESIAS against patterns, also detected 

by TEIRESIAS, belonging to other dipping loops. Patterns common to 2 or 

more dipping loops (therefore independent o f the dipping loop protein group) 

were removed at this point (e.g. common patterns in loop 1 and loop 2  o f  the 

major intrinsic protein family were removed). A fter this filtering, the remaining 

patterns were guaranteed not to be common (not present in at least 70% o f the 

dipping loop sequences) in other dipping loops. Likewise, processing time was 

saved during step 2  as common patterns were removed and subsequently not 

analysed in the following step, which required more processing time for each 

pattern.

2. Filtering the patterns obtained from step 1 against sequences belonging to other 

dipping loop protein groups. In this step, patterns that were present in sequences 

belonging to different dipping loop protein groups were removed. A t this stage, 

patterns that survived this filter were considered to be specific for the dipping 

loop being analysed, in terms o f the different dipping loops identified using the 

PDB_TM database.

3. Filtering the patterns obtained from step 2 against membrane protein sequences 

known not to have dipping loops in their structures. A dataset composed o f 363 

membrane proteins known not to have dipping loops in their structure was 

assembled (the development o f this database is explained later). In this step, 

patterns that were present in other membrane proteins w ithout dipping loops 

were removed. It was likely that some o f the patterns detected by TEIRESIAS 

were not specific to a particular dipping loop but to the general structure o f 

polytopic membrane proteins. Therefore, these patterns were not indicative o f a 

dipping loop and needed to be removed.

4. Filtering the patterns obtained from step 3 against the same sequences used to 

detect the patterns being analysed. By applying this filter it was guaranteed that 

patterns were only present in the dipping loop region and not outside this motif. 

These patterns could be specific to a particular membrane dipping loop, but the 

same sequence pattern might also be found in a non-membrane dipping loop
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region o f the given membrane protein, leading to the prediction o f false 

positives.

Patterns that passed the 4 filtering steps were guaranteed to be thoroughly 

specific for the dipping loop analysed, that is, not present either in other dipping loops 

or in membrane proteins without dipping loops. Likewise, the remaining loop patterns 

were guaranteed to be present specifically in the region o f the sequence corresponding 

to the dipping loop.

As mentioned above, PATTERNTEST was also implemented to detect common 

patterns in different membrane dipping loops belonging to: the same gold standard set, 

the same structural type (table 4.2) or all the different gold standard sets assembled 

(evaluation 13 to 21). Discovery o f patterns belonging to different membrane dipping 

loops (either sharing a structural similarity or involving all membrane dipping loops 

identified) might be indicative o f important residues during the folding stage. To find 

these patterns a protocol composed o f 5 steps was designed:

1. Using the patterns detected by TEIRESIAS, this step was designed to detect 

common patterns in different loops belonging to: the same dipping loop protein 

group (evaluation 11 to 13) or the same structural type o f  dipping loop 

(evaluation 14 to 16) or all the dipping loop groups detected in the PDB_TM 

database (evaluation 17). After this step, the following steps included here were 

similar to those applied in the filtering protocol described above (evaluation 1 to 

10).

2. Filtering the patterns obtained from step 1 against patterns, also detected by 

TEIRESIAS, belonging to: other dipping loop protein groups (evaluation 11 to 

13) and other structural types o f  dipping loops (evaluation 14 to 16).

3. Filtering the patterns obtained from step 2 against sequences belonging to: other 

dipping loop protein groups (evaluation 11  to 13) and other structural types o f 

dipping loops (evaluation 14 to 16). Step 2 and step 3 worked together to detect 

common and specific patterns in: different loops belonging to the same dipping 

loop protein group or in different loops belonging to the same structural type o f 

dipping loop.
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4. Filtering the patterns obtained from step 3 against membrane protein sequences 

known not to have dipping loops in their structures.

5. Filtering the patterns obtained from step 4 against the same sequences used to 

detect the patterns being analysed. By applying this filter, it was guaranteed that 

patterns were only present in the dipping loop regions and not outside the m otif 

region.

The patterns validated by PATTERNTEST were ensured to be specific to: dipping 

loops belonging to: a particular membrane dipping loop, a structural type o f  membrane 

dipping loop or the general structure o f  membrane dipping loops.

The patterns obtained using PATTERNTEST were not validated against a set o f 

globular proteins sequences. The spectrum o f 3D motifs in globular proteins is known 

to be larger than the spectrum o f 3D motifs in membrane proteins. The reason for this is 

that the lipid bilayer constrains the variety o f  3D motifs in the membrane due to its 

molecular and physicochemical properties whereas the aqueous environment allows 

globular proteins to have a wider range o f 3D motifs. Therefore, it was likely that 

specific sequence patterns o f  dipping loops, detected by TEIRESIAS and evaluated by 

PATTERNTEST, would be present in globular protein sequences as well, but these 

could not be considered as false positives as membrane proteins and globular proteins 

are regarded as two different sets o f proteins whose structure is stabilized under very 

different conditions.

The patterns that passed all different filtering stages applied using PATTERNTEST 

(evaluation 1 to 17) were eligible to be selected as rules and used in a predictive 

algorithm, nam ed TMLOOP, capable o f  predicting the dipping loops that were 

characterised using TEIRESIAS and PATTERNTEST in a query amino acid sequence 

(Chapter 5).
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4.2.5 Development of a dataset of membrane proteins known not to 
have dipping loops

The development o f a dataset o f membrane proteins w ithout dipping loops was 

necessary to validate the patterns obtained from TEIRESIAS as it was possible that 

some o f  the patterns detected were not specific to a particular membrane dipping loop 

but to the general structure o f  polytopic membrane proteins.

A set composed by 363 different membrane proteins without dipping loops was 

developed. Proteins were identified using 2 different sources. The first source was the 

Stephen’s W hite database o f  “Membrane Proteins o f Known Structure” (the Stephen 

White laboratory at University o f  California, Irvine, 

http://blanco.biomo.uci.edu/M embrane Proteins xtal.htmO. which is a manually 

curated database, which contains a selection o f crystallized membrane proteins listed in 

the PDB database. This database contains a functional classification o f  integral 

membrane proteins whose structure has been determined (by crystallography, or 

sometimes NM R) to a resolution sufficient to identify transmembrane regions. It also 

maintains a low level o f redundancy listing representative crystallographic analyses. 

These structures were visualised using RasMol visualisation software (Sayle and Bissel, 

1992) in order to corroborate the prediction described in the PDB TM  database and 

therefore identify crystallized structures without dipping loops in their structure (table 

4.7). The second source was the Swiss-Prot database, through which sequences 

belonging to protein families known not to have membrane dipping loops in their 

structures were obtained (table 4.8).
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PDB code Definition
C orresponding Sw iss-Prot files with 

transm em brane regions
1AP9 Bacteriorhodopsin P02945

1AR1 Cytochrome c oxidase
Chain A P08305 
Chain B P98002

1AT9 Bacteriorhodopsin P02945

1BCC Ubiquinol cytochrome c 
oxidoreductase

Chain C P I 8946 
Chain D POO 125 
Chain E P 13272  
Chain G P I3271 
Chain F P 00130

1BGY Cytochrome BC1 complex

Chain C & O POO 157 
Chain E, I, Q & V  P I3272  
Chain F & R POO 129 
Chain G & S P13271 
Chain H & T POO 126 
Chain J & V  POO 130 
Chain K & W P07552 
Chain N P 23004  
Chain R POO 129

1BRR Bacteriorhodopsin P02945
1BRX Bacteriorhodopsin P02945
1C3W Bacteriorhodopsin P02945
1C8R Bacteriorhodopsin P02945
1C8S Bacteriorhodopsin P02945
1E12 Halorhodopsin P16102

1EHK B A 3-type cytochrome c oxidase
Chain A Q56408 
Chain B P98052  
Chain C P82543

1EUL Hydrolase PI 1719
1EYS Photosynthetic reaction centre Chain h Q93RD8
1F88 Rhodopsin P02699
1FE1 Photosystem II P35876

1FFT Ubiquinol reductase
Chain A & F P 1 8 4 0 1  
Chain B & G P I8400 
Chain C & H P I8402

1GMZ Rhodopsin P02699

1H2S Sensory rhodopsin II transducer 
complex

Chain A P25896 
Chain B P42196

1H68 Sensory rhodopsin II P42196

1IWG
Bacterial multidrug efflux 
transporter P31224

11 WO
Sarcoplasmic reticulum calcium  
ATPase P04191

1JBO (psaF 
excluded)

Photosystem I

Chain A P25896 
Chain B P25897  
Chain IP 25900  
Chain JP25901  
Chain K P20453 
Chain L P25902  
Chain M P25903

1JGJ Sensory rhodopsin II P42196

1KQF Formate dehydrogenase
Chain B P 2 4 184 
Chain C P24185

1KQG Formate dehydrogenase
Chain B P24184 
Chain C P 2 4 185

1KZU Formate dehydrogenase
Chain A, D & G P26789 
Chain B, E, & H P26790

1L0V Fumarate reductase Chain C & 0  P03 805
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Chain D & P P03806
1L9H Rhodopsin P02699

1LGH Light harvesting complex II Chain A, D, J & G P97253 
Chain B, E, K & H P95673

1MSL Mechanosensitive ion channel 053898

1NEK Succinate dehydrogenase II
Chain A P I0444  
Chain C P10446  
Chain D P 10445

1NEN Succinate dehydrogenase II
Chain A P 10444 
Chain C P I0446  
Chain D P 10445

1NKZ Formate dehydrogenase
Chain A, D & G P26789  
Chain B, E, & H P26790

10CC Cytochrome c oxidase

Chain A & N  P00396  
Chain B & 0  P00404  
Chain C & P P00415 
Chain D & Q P00423 
Chain G & T P07471 
Chain I & V P04038  
Chain J & W P07470  
Chain K & X  P13183 
Chain L & Y P00430  
Chain M & Z P10175

10ED Nicotinic acetylcholine receptor

Chain A P02710  
Chain B P02712  
Chain C P 0 2 7 18 
Chain E P 0 2 7 14

10G V Photosynthetic reaction centre
Chain H PI 1846 
Chain L P02954 
Chain M P02953

10KC ADP/ATP translocase I P02722

10Y 6 Bacterial multidrug efflux 
transporter P31224

1PF4 MsbA lipid transporter (“flippase”) Q9KQW9

1PRC Photosynthetic reaction centre
Chain H P06008 
Chain L P06009 
Chain M P 0 6 0 10

1PSS Photosynthetic reaction centre
Chain H PI 1846 
Chain L P02954 
Chain M P02953

IPV6 Lactose permease P02920
1PV7 Lactose permease P02920
1Q16 NarGHI nitrate reductase A Chain C P I 1350

1Q90 Cytochrome b 6f

Chain A P23577 
Chain B Q00471 
Chain D P23230 
Chain R P49728 
Chain G Q08362 
Chain L P50369  
Chain M Q42496  
Chain N  Q9SBM8

1QCR Mitochondrial Cytochrome BC1

Chain C POO 157 
Chain D POO 125 
Chain E PI 3272 
Chain G PI 3271 
Chain J POO 130 
Chain K P07552

1QHJ Bacteriorhodopsin P02945
1QKO Bacteriorhodopsin P02945
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1QKP Bacteriorhodopsin P02945

1QLA
Respiratory complex II-like 
fumarate reductase

Chain C & F P 1 7 4 1 3

1QLB
Respiratory complex II-like 
fumarate reductase

Chain C & F P17413

1RWT Major light harvesting complex P12333

1S5L Photosystem II

Chain A P35876  
Chain BQ 8DIQ 1  
Chain C Q8DIF8 
Chain D Q8CM25 
Chain E Q8DIP0 
Chain F Q9DIN9 
Chain H Q8DJ43 
Chain I Q8DJZ6 
Chain J P59087 
Chain M Q8DHA7 
Chain T Q8DIQ0 
Chain X  Q8DHE6 
Chain Z Q8DHJ2

1S7B
Multidrug resistance efflux 
transporter P23895

1SU4
Sarcoplasmic reticulum calcium  
ATPase

P04191

1T5S
Sarcoplasmic reticulum calcium  
ATPase

P04191

1T5T
Sarcoplasmic reticulum calcium  
ATPase

P04191

1U19 Rhodopsin P02699
1U77 AmtB ammonia channel P37905
1U7C AmtB ammonia channel P37905
1U7G AmtB ammonia channel P37905
1VF5 Cytochrome b 6f complex Not listed in Swiss-Prot database

1VFP
Sarcoplasmic reticulum calcium  
ATPase

P04191

1 WPG Sarcoplasmic reticulum calcium  
ATPase P04191

1XIO Sensory rhodopsin II Not listed in Swiss-Prot database

1XP5
Sarcoplasmic reticulum calcium  
ATPase

P04191

1XQF AmtB ammonia channel P37905
1YCE Rotor o f  F-type Sodium ATPase Not listed in Swiss-Prot database
1Z2R MsbA lipid transporter (“flippase”) P63359
2BRD Bacteriorhodopsin P02945
2BLZ Rotor o f  V-type Sodium ATPase Not listed in Swiss-Prot database
2BG9 Nicotinic acetylcholine receptor Not listed in Swiss-Prot database

2PPS (psaF 
excluded)

Photosystem I

Chain A P25896  
Chain B P25897 
Chain I P25900 
Chain J P25901 
Chain K P20453 
Chain L P25902  
Chain M P25903

2RCR Photosynthetic reaction centre
Chain H PI 1846 
Chain L P02954 
Chain MP02953

Table 4.7. Dataset o f  PDB structures known not to have membrane dipping loops in their structure. Each 
PDB structure is described using the functional annotation listed in the PDB database and the 
corresponding Swiss-Prot links.
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Protein family Corresponding Swiss-Prot accession codes
Acetylcholine
receptor

P08911, P16395, P17200, P30372, P30544, P32211, P41984, P49578, 
P56489, P56490, Q9ERZ3, Q9ERZ4, Q9N2A4, Q9U7D5

Dopamine receptor 073810 , P21728, P21917, P24628, P30728, P30729, P35406, P41596, 
P42288, P42289, P42290, P42291, P47800, P50130, P51436, P52703, 
P53452, P53453, P53454, P61168, Q24563, Q61616, P 25115, P21918

Glucose transporter 043826 , 074713 , 074969 , P10870, PI 1168, PI 1170, P13866, P15686, 
P I5729, P18631, P21906, P23585, P28568, P31636, P31639, P31675, 
P32465, P32466, P32467, P33026, P39003, P46896, P49374, P53791, 
P78831, Q06222, Q12300, Q27115, Q27994, 007881 , P12336, P14246, 
P23586, P27674, P32037, P47842, P53790, P53792, P58352, Q07647, 
Q90592, Q9P3U6

Opsins 013227 , 015973 , 015974 , 062796 , 093441 , P23820, P28681, P28683, 
P28684, P32312, P35357, P35403, P51474, P79898, P87366, P87369, 
Q17053, Q90214, Q90215, Q9YGZ1, 016005 , 018766 , 0 42604 , 062793, 
062798 , 093459 , P02699, P09241, P22328, P22671, P24603, P28682, 
P29403, P31355, P31356, P32311, P35356, P35359, P35362, P41590, 
P41591, P49912, P51471, P51488, P51489, P52202, P56514, P79812, 
P79848, P79863, Q17292, Q17296, Q8HY69, Q90245, Q98980, Q9DGG4, 
Q9YGZ0, Q9YGZ2, Q9YGZ3, Q9YGZ4, Q9YGZ5, Q9YGZ9, Q9YH01, 
Q9YH05

P-type ATPase P07038, P22036, P28876, P35670, P36640, P37617, P39168, P54210, 
P98204, Q00804, Q03194, Q43128, Q59385, Q59998, Q9M A0, Q9X5X3, 
Q9ZL53, 022218 , 023087 , 043108 , 081108 , P04191, P09627, PI 1506, 
P13585, P13586, P19657, P22700, P23220, P23634, P24545, P28877, 
P35316, P38929, P54211, P98194, Q00779, Q01896, Q 03669, Q04656, 
Q07421, Q08436, Q08853, Q16720, Q64518, Q64542, Q 92105, Q93084, 
Q9LF79, Q9LV11, Q9S7J8, Q9SY55, Q9X5V3, Q9XES1, Q9YGL9, 
P25169, P28774, P50992, Q64436, P 51165, Q92030

Serotonin receptor 008890 , 042385 , P18599, P20905, P28285, P28335, P28566, P30966, 
P31387, P32304, P34969, P35364, P41595, P47898, P49145, P50406, 
P60020, P97288, Q16951, Q25414, Q91559, Q9R1C8, 00 8 8 9 2 , 042384 , 
070528 , PI 1614, P19327, P28221, P28286, P28565, P30939, P30994, 
P34968, P35363, P35404, P46636, P49144, P50128, P56496, P79748, 
Q02152, Q02284, Q 16950, Q60484, Q64264, Q9N298

Archaeal fungal- 
bacterial opsin

074631 , P02945, P16102, P33743, P42196, P42197, P71411, Q48334, 
Q9AF7, Q9F7P4

Olfactory receptor Q78PE1, Q78PE2, Q78PE3, Q7TMF7, Q7TMF8, Q7TMF9, Q920Y6, 
Q920Y7, Q920Y8, Q920Z0, Q9R0Z2

Table 4.8. Dataset o f  protein accession codes listed in the Swiss-Prot database known to belong to 
proteins families whose structures do not posses membrane dipping loops.
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4.3 Results and discussion

4.3.1 Clustering of proteins with dipping loops found in the PDB_TM 
database

In the case o f  potassium channels and aquaglyceroporins, membrane dipping 

loops are known to be conserved through evolution and to work as selective filters to 

transport specific substrates and avoid transport through the membrane o f other ions or 

molecules (Agre and Kozono, 2003, Doyle et al., 1998, Fujiyoshi et al., 2002, Gonen et 

al., 2004, Harries et ah, 2004, Jiang et ah, 2002, Jiang et ah, 2003, Kuo et ah, 2003, 

Long et ah, 2005, MacKinnon, 2003, M urata et al., 2000, Pao et ah, 1991, Ren et ah, 

2000, Savage et ah, 2003, Stroud et ah, 2003a, Stroud et ah, 2003b, Sui et ah, 2001, 

Zhou et ah, 2001). The different crystallized potassium channels showed a similar 

spatial arrangement o f the membrane dipping loop motif. Likewise the multiple 

sequence alignment o f sequences o f  the different potassium channels (Please see 

supplementary information S4.Alignment potassium channel MDL on CD) showed 

that most o f the sequences contained conserved residues in the equivalent region 

(including residues belonging to the GYGD motif) to the dipping loop m otif mapped 

onto the reference sequence. Therefore, all different potassium channel sequences, those 

o f voltage gated KvAP potassium channels, KcsA potassium channels, calcium gated 

potassium channels and inward rectifier potassium channels, were clustered together in 

a single set. Aquaporins and glyceroporins also showed a similar three dimensional 

arrangement o f  their motifs (both loops) and the multiple sequence alignment revealed 

conserved residues (as with potassium channels the NPA m otif was highly conserved, 

but containing small variations) in the region pertaining to membrane dipping loops one 

and two. Accordingly, aquaporins and glyceroporins were clustered together in the 

aquaglyceroporin set.

4.3.2 Visual confirmation of dipping loops in the structures listed in 
the PDB_TM database

In order to confirm the predictions listed in the PDB_TM  database, the dipping 

loops o f each PDB structure were manually confirmed by using RasMol (Sayle and 

Bissel, 1992). The NAD(P) transhydrogenase is predicted in the Swiss-Prot database

130



Chapter 4
___________________ Pattern discovery applied to membrane dipping loop amino acid sequences

(accession code: P07001) to have 4 a-helical transm em brane regions, the sequence 

positions o f  these transm em brane regions are: 402-422, 423-443, 453-473, 477-497. 

These segm ents could not be highlighted in figure 4.3 because the corresponding PDB 

file did not include the C-term inal sequence o f  the protein. Due to the fact that the 

transm em brane dom ain could not be visualised and that the structure o f  the predicted 

m em brane dipping loop in the P D B T M  database did not m atch any o f  the observed 

structural patterns in m em brane dipping loops (nam ely loop-in-tum -helix-out, helix-in- 

loop out and helix-in-tum -helix-out), the N A D (P) transhydrogenase predicted dipping 

loop was considered to be a false positive in the PD B_TM  database.

Figure 4.3 Structure o f  the N A D (P ) transhydrogenase (PD B code: 1XL4). The predicted membrane 
dipping loop listed in the PDB TM database is highlighted in red. The predicted loop show s a beta 
strand-in-helix-out structure, w hich has not been observed in other proteins containing membrane dipping  
loops. L ikew ise, it is not possible to locate the membrane as no transmembrane regions have been 
included in the structure.

The transm em brane dom ain o f  the Cytochrom e BC1 is com posed o f  4 different 

subunits. As can be seen in figure 4.4, Cytochrom e b (coloured in blue) has 8 

transm em brane regions and 4 horizontal helices on the interm em brane side (Iw ata et al., 

1998). The predicted dipping loop boundaries in the PDB TM  database related to one 

o f  the horizontal helices located on the interm em brane side. This predicted m em brane 

dipping loop was also considered a false positive as in the literature (Iw ata et al., 1998)
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the corresponding region is referred to as being horizontal and located on the 

interm em brane side o f  the m itochondrion.

Figure 4.4 . Structure o f  the C ytochrom e BC1 (PD B  accession codes: 1BGY, 1EZV, 1KB9). Subunit b has 
been highlighted in blue and the predicted dipping loop related to the subunit b in red.

The glutam ate transporter hom ologue (PDB accession code 1XFH) was 

predicted to have a single dipping loop m otif (residues 262-289) according to the 

PDB TM  database. However, the crystallised structure was described by its elucidators 

(Y em ool et al., 2004) as a polytopic m em brane protein containing 2 m em brane dipping 

loops, nam ed HP1 (residues 265-288) and HP2 (residues 338-369) (figure 4.5). Both 

dipping loops were described as key elem ents o f  the transport m achinery o f  the protein 

and the spatial arrangem ent o f  these m otifs were described as he lix -in -helix -ou t motifs.

Oul

r f~ J-

6 HPt HP21 2 3 a4 5 7
Figure 4.5. Schematic view  o f  the topology o f  the glutamate transporter hom ologue (PD B  accession code: 
1XFH) (Y em ool et al., 2004).

A fter visualising the structure o f  the glutam ate transporter hom ologue, both 

m em brane dipping loops were confirm ed (figure 4.6). HP1 (highlighted in red) was also
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described as a helix-in-tum -helix-out m otif, whereas HP2 (highlighted in green and 

cyan) was described as a helix-in-tum -loop-out dipping loop m otif. It w as believed that 

the beginning o f  the helix HP2b was not situated in the m em brane but close to the 

predicted outer boundary o f  the lipidic bilayer. In figure 4.5, residues believed to be in 

the m em brane were coloured in green (residues 338-360) and residues believed to be 

outside the m em brane were coloured in cyan (residues 361-369). H ow ever, as a 

precaution it was decided better to analyse the region betw een residues 338 and 369 

during the pattern discovery process.

Figure 4.6 . Structure o f  the glutamate transporter hom ologue (PD B  accession code: 1XFH). Only dipping 
loops belonging to chain A were highlighted. HP 1 was coloured in red and HP2 was coloured in green 
(believed  to be inside the membrane) and cyan (believed to be outside the membrane).

The dipping loops listed in the PDB TM  database (L2, L4) belonging to the C1C 

chloride channel (PDB accession code 1KPK, 1KPL) were v isually  confirm ed using 

RasM ol. How ever, according to the literature, two m ore dipping loops were found in the 

structure (LI ,  L3), that involved residues 135-155 and 345-365 (D utzler et al., 2002). 

These regions were analysed visually using RasM ol (Sayle and B issel, 1992) and 

although they were not detected in the PDB TM  database, both loops w ere confirm ed 

as helix-in-tum -helix-out loops (figure 4.7). Therefore the C1C chloride channel 

structure was assum ed to contain 4 different helix-in-tum -helix-out loops, w hich were 

eligible to be analysed by TEIRESIA S (table 4.1).
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Figure 4.7 . Structure o f  the CICa monom er chloride channel (PD B accession code: 1KPK). Dipping loops 
reported by Dutzler et al. (D utzler et al., 2002) were highlighted using Rasmol. R esidues belonging to the 
first loop (135-155) were highlighted in red whereas residues belonging to the third loop (345-365) were 
highlighted in green.

The rem aining protein types were visually confirm ed by using RasM ol (Sayle 

and Bissel, 1992) and their dipping loops were classified into 3 structural categories (see 

m ethods section).

4.3.3 Training set development and membrane dipping loop 
identification

The potassium  channel group was com posed o f  3 different fam ilies o f  Potassium  

channels listed in the Sw iss-Prot database: the potassium  channel fam ily, the potassium  

channel (TC l.A .1 .4) fam ily and the inward rectifier-type potassium  channel. 222 

potassium  channels were obtained from the Sw iss-Prot database (excluding non-reliable 

proteins, filtered out according to their functional annotation quality as described in the 

m ethods section), after filtering this dataset using N on-Red, a non-redundant set o f  

potassium  channels was obtained com posed o f  134 sequences. The m ultiple sequence 

alignm ent o f  these proteins showed a good alignm ent (Please see supplem entary  

inform ation  S4.A lignm ent potassium  channel M DL on CD) in the region belonging
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to the helix-in-tum-loop-out type membrane dipping loop, which supports the statement 

that the three potassium channel families share a common three dimensional m otif in 

this region (Jiang et al., 2003, MacKinnon, 2003).

The protein conducting channel family was composed o f 105 sequences from 

the Swiss-Prot database. The filter applied using Non-Red selected 77 out o f 105 

sequences as non-redundant sequences. The multiple sequence alignment o f the 

remaining 77 sequences using ClustalW  showed a generally good alignment in the 

transmembrane regions however, unconserved residues were observed in the region 

belonging to the helix-in-tum-loop-out type dipping loop (Please see supplementary 

information S4.Alignment protein channel MDL on CD). This multiple sequence 

alignment showed a seven residue gap in the region corresponding to the structural 

motif. Based on the alignment results, it was assumed that the membrane dipping loop 

m otif predicted in the PDB structures 1RH5 and 1RHZ might not be conserved 

throughout the evolution o f the secY/SEC61-alpha family. However, the analysis o f the 

region belonging to the dipping loop m otif using TEIRESIAS software was continued 

as patterns o f residues, using amino acid structural and/or chemical equivalencies, could 

still be found.

The aquaglyceroporin family was composed o f 69 different sequences obtained 

from the Swiss-Prot database. A  non-redundant set o f 49 sequences was obtained after 

applying Non-Red. The multiple sequence alignment obtained for both loops (Please 

see supplementary information S4.Alignment aquaglyceroporin MDL1 and 2 on 

CD) showed that most o f the sequences contained the NPA m otif in both dipping loops. 

The NPA m otif is known to be well conserved among this family and forms the basis o f 

the selectivity filter. The presence o f conserved residues in both membrane dipping loop 

regions during alignment and the conserved three dimensional motifs found in the 

different crystallised structures (Stroud et al., 2003a, Gonen et al., 2004, Harries et al., 

2004, Savage et al., 2003, M urata et al., 2000, Sui et al., 2001, Ren et al., 2001, Ren et 

al., 2000) belonging to this family confirmed that both membrane dipping loop motifs 

were universally conserved in the aquaglyceroporin family.
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According to the Swiss-Prot database, the binding-protein-dependent transport 

system permease family was composed by 252 proteins and 8 different subfamilies: the 

AraH/rbsC subfamily, the CysTW subfamily, the FbpB subfamily, the FecCD 

subfamily, the HisMQ subfamily, the LivHM subfamily, the M alFG subfamily and the 

OppBC subfamily. The Swiss-Prot accession code o f the protein corresponding to the 

PDB structure 1L7V was P06609. According to the annotation o f  P06609 in the Swiss- 

Prot database, the crystallized protein was found to be a member o f  the FecCD 

subfamily and it was the only available structure for this family. No evidence was found 

in the literature to infer a conserved membrane dipping loop among the different 

subfamilies. Likewise, a multiple sequence alignment o f all the protein sequences 

belonging to this family (Please see supplementary information S4.Alignment 

bindin protein dependent permease MDL on CD) revealed a  poor alignment in the 

dipping loop region. Therefore, it could not be inferred that a common dipping loop 

m otif is shared by different subfamilies o f the binding-protein-dependent transport 

system permease family. However, aligned protein sequences belonging to the FecCD 

subfamily showed conserved residues in the membrane dipping loop region. This 

alignment o f sequences o f the FecCD subfamily suggested that the dipping loop found 

to be in the PDB structure 1L7V could be a m otif that is conserved across the FecCD 

subfamily. O f the 31 proteins belonging to the FecCD subfamily, obtained from the 

Swiss-Prot database, a non-redundant set o f  25 proteins was obtained by applying Non- 

Red as described in the methods section.

The chloride channel family was composed o f 63 membrane proteins, which 

were subclassified according to the Swiss-Prot database in: the Chloride family (TC 

l .A .l l ) ,  the ClcA subfamily (TC l .A .l l )  and the ClcB subfamily (TC l .A .l l ) .  

According to the annotation o f the reference protein in the Swiss-Prot database 

(accession code: P37019), the protein corresponding to the PDB structure 10TS 

belonged to the ClcA subfamily, however as in the previous case there was no evidence 

suggesting that the four dipping loops found in the PDB structure were conserved 

among members o f  the family. The set o f  63 chloride channels were filtered using Non- 

Red (as described in the methods section). The non-redundant set obtained, composed 

o f 35 sequences, was aligned using ClustalW  to analyse the residue conservation in the 

regions belonging to the four dipping loops found using the PDB_TM  database and the
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literature (Dutzler et al., 2002). The multiple sequence alignment o f the 4 helix-in-tum- 

helix-out dipping loop sequences showed conserved residues among the chloride 

channel family (Please see alignments in enclosed CD). However, the corresponding 

alignment showed a better alignment within the ClcA subfamily (7 members) than 

within the chloride channel family (35 members) in all the dipping loops. This was 

expected as the sub-classification o f chloride channels was probably achieved based on 

the significant sequence identity between proteins belonging to the ClcA and ClcB 

subfamilies. The alignment for loop 4 was poor within the chloride channel family, 

however it was reported that loop 2 and loop 4 faced each other at the interface between 

monomers linking the two repeated halves within each monomer (Estevez and Jentsch, 

2002). The fact that the alignment for loop 2 showed conserved residues among the 

chloride channel family, suggesting a conserved membrane dipping loop motif, together 

with the fact that loop 2 and loop 4 have been suggested to be associated, encouraged us 

to continue with the discovery o f patterns in the loop 4 region.

The psaF family in the Swiss-Prot database was composed o f 18 proteins. 

Filtering using Non-Red revealed a non-redundant set o f 16 membrane proteins. The 

multiple sequence alignment (Please see supplementary information S4.Alignment 

psaF MDL on CD) carried out using ClustalW  showed conserved residues in the region 

corresponding to the membrane dipping loop. Therefore, the membrane dipping loop 

observed in the PDB structure 1JBO was proposed to be conserved among members o f 

the psaF family.

Based on the Swiss-Prot database, 67 proteins were found to belong to the 

sodium : dicarboxylate (SDF) symporter family. After filtering this protein set using 

Non-Red, a non-redundant set o f 53 proteins was obtained. The crystallized structure 

listed in the PDB database (1XFH) was defined as a glutamate transporter homologue, 

the same protein was defined as a hypothetical proton glutamate symport protein in the 

Swiss-Prot database (TrEMBL accession code: 059010). Despite this protein being 

defined as hypothetical and as a homologue, it was the only structure available for the 

sodium : dicarboxylate symporter family. Therefore it was considered as the reference 

sequence in order to identify and isolate the region corresponding to the dipping loop 

motif. The 53 proteins belonging to the non-redundant set and the reference sequence 

that belonged to the TrEMBL database were then aligned using ClustalW . The
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alignment (Please see supplementary information S4.Alignment 

Sodium:dicarboxylate symporter MDL 1 & 2 on CD) showed conserved residues in 

the regions corresponding to both dipping loops, these results supported the primary 

assumption o f using a hypothetical protein as a reference to identify and isolate the 

regions belonging to both dipping loops. Based on the amino acid conservation, both 

dipping loops were considered to be common 3D motifs among sequences belonging to 

the sodium : dicarboxylate symporter family.

4.3.4 Discovered patterns and their functional role

4.3.4.1 Patterns specific to particular loops (evaluation 1 to 12)

The following two tables (tables 4.9-4.10) summarize the results o f  the pattern 

discovery process. As mentioned in the methods section, the TEIRESIAS software does 

not guarantee that the patterns discovered were specific to the given input sequences. 

Therefore PATTERNTEST was used to detect: a) Patterns only present in a particular 

dipping loop m otif (table 4.8) b) Patterns specific to membrane dipping loop motifs 

belonging to a particular set, a structural type o f membrane dipping loop or to the 

general structure o f membrane dipping loops.
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Ev
Dipping loop type and 

protein group
TEIRESIAS

analysis

Patterns 
found by 

TEIRESIAS

Pattern validation using 
PATTERNTEST

step 1 step 2 step 3 step 4

1
Helix-in-tum-loop-out 
Potassium channel

Chemical equivalency 
Structural equivalency 
Exact discovery

382
103

5

352
99

5

43
14

0

37
10

0

35
10

0

2
Helix-in-tum-loop-out 
secY / SEC61 alpha family

Chemical equivalency 
Structural equivalency 
Exact discovery

12
0

0

3
0

0

0
0

0

0
0

0

0
0

0

3
LI: Loop-in-tum-helix-out 
Aquaglyceroporin family

Chemical equivalency 
Structural equivalency 
Exact discovery

863
73

22

700
70

21

186
21

10

182
21

7

167
21

6

4
L2: Loop-in-tum-helix-out 
Aquaglyceroporin family

Chemical equivalency 
Structural equivalency 
Exact discovery

249
32
19

212
31
18

54
4
4

29
1
1

24
1
1

5
Helix-in-tum-helix-out 
Binding protein dependent 
transport system permease

Chemical equivalency 

Structural equivalency 

Exact discovery

7506

479

31

6263

460

31

89

46

11

82

43

11

82

43

11

6
LI: Helix-in-tum-helix-out 
Chloride channel family

Chemical equivalency 
Structural equivalency 
Exact discovery

936
46

14

631
44

14

32
7

3

29
5

3

29
5

3

7
L2: Helix-in-tum-helix-out 
Chloride channel family

Chemical equivalency 
Structural equivalency 

Exact discovery

2419
97

63

1944
96

62

105
39

31

101
35

28

98
35

28

8
L3: Helix-in-tum-helix-out 
Chloride channel family

Chemical equivalency 
Structural equivalency 
Exact discovery

610
45

10

368
45

10

11
11

2

11
7

2

9
7

2

9
L4: Helix-in-tum-helix-out 
Chloride channel family

Chemical equivalency 
Structural equivalency 
Exact discovery

3751
137

26

3126
129

26

89
0

0

72
0

0

66
0

0

10
Helix-in-tum-helix-out 
psaF family

Chemical equivalency 
Structural equivalency 

Exact discovery

182
41

13

128
41

13

27
16

12

27
16

9

27
16

9

11
LI: Helix-in-tum-helix-out 
Sodium : dicarboxylate 
(SDF) symporter family

Chemical equivalency 

Structural equivalency 
Exact discovery

3613

347
63

3298

344
63

164

29
17

135

21
12

134

19
11

12

L2: Helix-in-tum-loop-out 
Sodium : dicarboxylate 
(SDF) symporter family

Chemical equivalency 

Structural equivalency 

Exact discovery

14887

1327

103

13504

1302

102

537

157

22

410

149

18

324

142

17
Table 4.9. Summary o f  the filtering process carried out using PATTERNTEST. The number o f  patterns 
specific to particular dipping loops and discovered by TEIRESIAS is specified at each filtering stage. The 
secY / SEC61 alpha family was found to be the only dipping loop protein group without conserved 
patterns in the dipping loop region.
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4.3.4.1.1 Potassium channels

Potassium channels have diverged throughout evolution by developing different 

gating domains that have been found to be attached in a modular fashion to a conserved 

pore unit (MacKinnon, 2003). The conserved pore unit has been found to be composed 

o f 2 a-helical transmembrane regions and a pore forming helix. This pore forming helix 

is part o f  a dipping loop motif, which is highly conserved among the different potassium 

channels and is well known to be the selectivity filter that allows transport o f  K+, Rb+ 

and Cs+ through the membrane but not Na+ or Li+ (Doyle et al., 1998, Jiang et al., 

2002, Jiang et al., 2003, Kuo et al., 2003, Long et al., 2005, N ishida and MacKinnon, 

2002, Zhou et al., 2001). As expected, patterns found by TEIRESIAS and evaluated by 

PATTERNTEST were composed o f  residues known to be involved in the selectivity 

filter. Only 5 patterns were discovered by TEIRESIAS using an exact discovery text 

mining approach, but these patterns were ruled out by PATTERNTEST during the 

evaluation process. The most widely conserved patterns within the potassium channels 

were found to be “ [ST]..[ST].G[FY]G” (support 0.89) and “ [ST][ILM V]G[FY]G” 

(support 0.87). These patterns include (elements in bold in the patterns) part o f  the 

sequence also known as the potassium channel signature (GYGD). The selectivity filter 

contained four K+ ion binding sites by means o f  layers o f carbonyl oxygen atoms and a 

single layer o f threonine (corresponding to the second element in the first pattern and 

the first element in the second pattern) hydroxyl oxygen atoms, which mimic the 

hydration shell o f K+ ions (MacKinnon, 2003). The tyrosine included in both patterns 

has also been proposed to participate in a sheet o f  aromatic residues located around the 

selectivity filter, which stabilizes the structure and avoids the carbonyl oxygen atoms 

from approaching close enough to allow the dehydration o f a N a+ ion (Doyle et al., 

1998). The last glycine found in both patterns has been proposed to assist in the 

hydration and dehydration o f  a K+ ion at the extracellular entry (Zhou et al., 2001). 

Potassium channels conduct ions with high conduction rates using the electrostatic 

repulsion between contiguous K+ ions in the filter and by coupling a conformational 

change in the selectivity filter, which reduces the strength o f the binding between ions 

and the filter (MacKinnon, 2003). This conformational change has been proposed to 

mainly involve two residues, a valine and a glycine (Zhou et al., 2001, Bem eche and 

Roux, 2000). Both residues have been identified in the second most supported pattern 

discovered by TEIRESIAS (corresponding to the second and third element in the
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pattern) whereas only the glycine was reported by the m ost supported pattern 

(corresponding to the sixth element in the pattern).

4.3.4.1.2 Aquaglyceroporins

The aquaglyceroporin family is a well-known protein family whose structure 

and function has been studied in depth by a variety o f  techniques such as mutagenesis, 

molecular dynamics or crystallographic analyses. Aquaglyceroporins are membrane 

proteins that transport water and glycerol molecules across the membrane. This protein 

family has been the focus o f  attention o f many scientists because o f  their capacity to 

selectively transport glycerol and water molecules but not other small molecules or ions, 

and still perform such transport at very high diffusion rates. The different crystallized 

proteins belonging to the aquaglyceroporin family (Gonen et al., 2004, Harries et al., 

2004, M urata et al., 2000, Ren et al., 2000, Ren et al., 2001, Savage et al., 2003, Stroud 

et al., 2003a, Sui et al., 2001) showed a conserved homotetramer structure, with each 

monomer being composed o f two tandem repeats (Preston and Agre, 1991), each 

containing three a-helical transmembrane regions forming a right-handed bundle and a 

membrane dipping loop between the second and third transmembrane region. Both 

dipping loops contain highly conserved residues and a signature known as the NPA 

m otif (asparagine-proline-alanine). The pattern with the highest support for the loop 1,

“SG...N..[ILMV][ST]”, and for the loop2, [ILM V]NP.R [ILMV], contained part o f

the NPA m otif as expected (elements in bold in the patterns). The multiple sequence 

alignment o f sequences belonging to Loop 1 and Loop 2 in aquaglyceroporins (Please 

see alignments in enclosed CD) revealed that the proline and the alanine contained in 

the NPA m otif were not universally conserved. The glycerol facilitator in S. cerevisiase 

(Swiss-Prot accession code: P23900) was found to have a A(354)S and a P(481)L 

substitution in the NPA m otif corresponding to loop 1 and loop 2 respectively. 

Likewise, all sequences belonging to the aquaporin 7 group (Swiss-Prot accession code: 

014520, 054794 and P56403) were found to have a P-A and a A-S substitution in the 

N PA m otif belonging to loop 1 and loop 2 respectively. Both motifs were known to be 

associated with each other, through head-to-tail sidechain interactions between the 

alanine and proline o f  one domain with the proline and alanine o f the other domain 

(Savage et al., 2003), bringing together the dipoles caused by the two short a-helices, 

which resulted in partial positive charges surrounding the highly conserved asparagines
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(Agre and Kozono, 2003). Therefore, as was shown for the glycerol facilitator o f S. 

cerevisiae and the aquaporin 7 proteins, amino acid changes within the NPA m otif in 

one loop should be compensated by changes in the other loop to maintain the 

constriction imposed within the protein channel and high specificity o f  the filter. The 

asparagines from both NPA motifs oriented their side-chains to the pore and were 

believed to bind a transient central water molecule, which undergoes a dipole 

reorientation. The pattern discovered for the loop 2 in aquaglyceroporin proteins also 

highlighted an arginine, this residue was believed to be critical as it provided a strong 

positive charge at the narrowest region o f the channel (Fujiyoshi et al., 2002) as a 

mechanism to repel protons and other cations. This selectivity against ions was also 

believed to be achieved by the polarization o f the central water (through the ND2 

groups o f  the asparagines and the positive dipoles o f the short helices), which prevents 

adjacent water molecules from conducting protons through the channel, breaking the 

“proton wire” produced by the linear network o f water molecules in the membrane (de 

Grotthuss, 1809).

4.3.4.1.3 CIC Chloride channels

C1C chloride channels are voltage gated ion channels that transport chloride ions 

across the membrane outside the cell. As explained in the methodology section, CIC 

chloride channels were composed o f 4 different helix-in-tum -helix-out loops. Loops 2 

and 4 were identified through the PDB_TM  database whereas Loops 1 and 3 were 

reported in the literature (Dutzler et al., 2003, Estevez and Jentsch, 2002). Loops 2 and 

4 were proposed to link the two repeated halves within each m onom er and make 

contacts with each other at the interface between monomers (Estevez and Jentsch, 

2002). On the other hand, loops 1 and 3 were reported to be part o f the selectivity filter 

in CIC chloride channels, the selectivity filter was suggested to be composed by highly 

conserved residues that were brought together near the membrane centre and belonged 

to N-terminal positive end charges o f  helices creating a constriction in  the pore (this 

spatial arrangement is reminiscent o f  that found in the aquaglyceroporin family 

discussed earlier). The most supported patterns found in loops involved in the 

selectivity filter were “ [ILM V]G[KR].GP.[ILM V]’\  “ [ILM VJG..GP.V” and 

“ [ILM V]G..GP.[ILM V] [AG]” (the support for all three was 0.86) for loop 1 and
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“P.G ...P....G ...G ” (support 0.91) and “P.G .F.P....G ...G” (support 0.89) for loop 3. 

Dutzler et al., (2002) previously discovered part o f these patterns (elements in bold in 

the patterns), the patterns G[KR]EGP and G.F.P were described as highly conserved 

regions in CIC chloride channels. The detection o f these enhanced patterns validate the 

approach taken. Both loops seemed to be associated in creating a constriction in the 

pore. A glutamate belonging to dipping loop 1 was proposed to act as a gating residue 

(Dutzler et al., 2002, Dutzler et al., 2003, Estevez and Jentsch, 2002). This amino acid 

oriented its side chain towards the constriction imposed by loop 1 and 3 obstructing the 

pore in the closed state. This glutamate was not included in the most supported pattern 

but it was detected in a subsequent patterns with lower support value (e.g.

“K  G...G .EG..[ITV]”, support 0.83). From the multiple sequence alignment

corresponding to the region belonging to loop 1 (Please see supplementary 

information S4.Alignment chloride channel MDL 1 on CD) it could be seen that a 

cluster o f  six chloride channels developed a mutation in this position and glutamate was 

replaced by either valine or leucine. Interestingly, these proteins also developed a 2 

amino acid insertion in the loop 1 region that was not found in other sequences used for 

the discovery o f  patterns. Further analysis, showed that these mutations were only 

present in CICKa and CICKb chloride channels. Two anion sites, namely Seen and Sint, 

have been suggested to be present in the selectivity filter, one (Sint) involved in the 

conduction selectivity (closer to the intracellular solution) and the remaining ion 

(located in Seen) involved in gating selectivity (closer to the extracellular solution) 

(Dutzler et al., 2002). An arginine included in the pattern with the highest support in 

loop 1 (corresponding to the 3rd element in “ [ILMV] G[KR].GP. [ILMV]”) has also been 

proposed to contribute to an electrostatic potential that probably attracts C1‘ ions into the 

pore extracellular entry (Dutzler et al., 2002). Residues belonging to loop 3, mainly an 

isoleucine residue and a phenylalanine residue (phenylalanine residue corresponds to
th

the 5 element in the pattern with the second highest support), were also known to 

possess nitrogen atoms that coordinate the chloride channel in the Seen binding site 

(Dutzler et al., 2003, Estevez and Jentsch, 2002). The patterns with the highest support 

found in loops involved in dimerization were

“ [AG]. [AG]. G [ILM V ]... [F Y ] [AG]..F..E” (support 1.0) for loop 2 and

“ [AG]........... [ILM V ]... [ILMV] [ILMV]. .E[ILM V] T”,

“ [AG].... [AG] [ILM V]... [ILMV] [ILMV]. .E [ILM V] [ST] ” and

[AG] [ILMV] [ST]..[ILMV] [ILMV]..E.[ST] (the support for all three was 0.91).
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The high support for the patterns corresponding to loop 2 and loop 4 suggests that these 

residues play an essential role in CIC Chloride channels and support the theory o f 

Estevez and colleagues (Estevez and Jentsch, 2002).

4.3.4.1.4 Sodium : dicarboxylate symporters

The sodium : dicarboxylate (SDF) symporter family is composed o f proteins that 

catalyze sodium and/or proton ions together with: 1) a Krebs cycle dicarboxylate 

(malate, succinate, or fumarate); 2 ) a dicarboxylic amino acid (glutamate or aspartate); 

3) a small, semipolar, neutral amino acid (alanine, serine, cysteine or threonine); 4) 

neutral and acidic amino acids; 5) most zwitterionic and dibasic amino acids (Barabote 

R. D. et al., 2006). The crystallized structure o f the glutamate transporter homologue 

showed a homotetramer with a central extracellular cavity located approximately 

halfway through the membrane that allowed the substrate access to the binding site in 

the protein (Yemool et al., 2004). Although the structure o f  this protein contained two 

membrane dipping loops motifs named HP1 and HP2, only HP1 was predicted by the 

PDB TM database. Both dipping loops were visually confirmed using RasMol (figure

4.6) and subsequently analysed. The pattern with the highest support found in the HP1

region was found to be “ [ILMV] T.S[ST]...[ILM V]P” (support 0.89) and the

pattern with the highest support found in the HP2 region was

“ [ILMV] [ILMV] S.G..[AG][ILM V] [ILMV].[ILMV] [ILMV]” (support

0.96). It has been suggested that the binding site is formed mainly by a m otif located in 

TM7 and conserved residues in TM 8 . The binding site is flanked by both membrane 

dipping loops, HP1 flanking the intracellular side and HP2 flanking the extracellular 

side, acting as gates in the membrane (Yemool et al., 2004). In the closed state, the HP1 

loop has been proposed to interact with HP2 loop through a serine-rich m otif that is 

located in HP1, interacting with a conserved proline, which belongs to the HP2 loop. 

The serine-rich m otif was composed o f 3 to 4 serine residues but only the last two 

serines were included in the pattern (elements in bold in the patterns) with the highest 

support found in the HP1 region (elements 16 and 17), the complete m otif was however

detected by subsequent patterns with lower support (e.g. “ [ILM V] SSS E”,

support 0.8). This suggested that Ser 277 (corresponding to element 16 in the pattern 

with the highest support) followed by Ser 278 was the most important residue o f  the
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serine-rich motif. The conserved proline located in the HP2 loop was not detected in 

any o f the patterns discovered using TEIRESIAS. The multiple sequence alignment 

obtained using sequences belonging to the sodium : dicarboxylate symporter family 

(Please see supplementary information S4.Alignment sodium dicarboxylate 

symporter MDL 1 on CD) showed that the corresponding proline was conserved in 23 

out o f 46 sequences used in the training set, whereas the remaining proteins contained a 

threonine instead. These results suggested that proline might not be as functionally 

important as proposed, instead other residues, which were listed in the pattern with the 

highest support corresponding to HP2, might act as an anchor together with the serine- 

rich m otif corresponding to HP1. These observations might lead to further experimental 

research in understanding the mechanism o f glutamate transporters and sodium : 

dicarboxylate symporters.

4.3.4.1.5 Binding-protein-dependent permease family. FeCD subfamily

The binding-protein-dependent permease family belongs to the ATP-binding 

cassette (ABC) superfamily. These transporters have been suggested to catalyze both 

the uptake and efflux o f a wide variety o f  substrates in all species (Davidson, 2002). 

The binding-protein-dependent permease system consists o f  a periplasmic binding 

protein, two membrane spanning domains forming a translocation pore and two ATP- 

binding cassettes located in the cytoplasm (Horlacher et al., 1998). The pattern with the 

highest support found in the dipping loop was found to be 

“ [AG]. [ILMV]. F [ILMV] [AG] L [ILMV] .P. [ILMV] ” (support 0.96). The region 

corresponding to the membrane dipping loop in the crystallized structure was suggested 

to be important for binding the periplasmic binding protein BtuF (Locher et al., 2002). 

Unfortunately, to our knowledge, no experimental approaches have been carried out to 

corroborate this suggestion. However, the highly conserved residues found in the 

dipping loop area emphasize the importance o f the dipping loop for the functionality o f 

the protein and supports the primary suggestion o f Locher and colleagues.
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4.3,4.1.6 SecY /  SEC61 alpha family

Members o f this family belong to a heterotrimer complex that is known to 

transport soluble proteins, such as secretory proteins, across the membrane and passage 

membrane proteins into the membrane. The a-subunit (SecY in archaea and eubacteria 

and Sec61a in mammals) forms the channel pore, the P-subunit (Seep in archaea, SecE 

in eubacteria and Sec6 ip  in mammals) contains a single transmembrane helix partially 

associated with the a-subunit (the P-subunit is the only subunit known to be non- 

essential for the function o f  the complex) and the y-subunit (SecE in eubacteria and 

archaea and Sec61y in mammals) clamps together the 2 halves o f  the a-subunit (TM 1-5 

and TM 6-10) (Van den Berg et al., 2004, M itra et al., 2005). The membrane dipping 

loop detected in the PDB_TM database has been reported as the TM2a, also known as 

the channel plug (Van den Berg et al., 2004). It has been suggested that in the closed 

state the plug is placed in the pore blocking the translocation o f  polypeptide chains and 

the channel opens by displacement o f the plug, which moves away from the pore 

probably to a new position close to the C-terminus o f the y-subunit known as the plug- 

pocket (Van den Berg et al., 2004, Collinson, 2005). In accordance with other multiple 

sequence alignment analyses (Collinson, 2005, Van den Berg et al., 2004), the multiple 

sequence alignment attained using 75 a-subunits o f the protein conducting channel 

showed high sequence conservation. However, the multiple sequence alignment (Please 

see supplementary information S4.Alignment protein channel MDL on CD) did not 

show conserved residues in the dipping loop region known as the plug. Likewise, the 

pattern discovery process using TEIRESIAS and PATTERNTEST did not detect any 

specific pattern in this region either. These results were also confirmed in recent work 

by Junne and colleages (Junne et al., 2006) that describes the structural domain as 

conserved despite its primary sequence not being well conserved. M utation or deletion 

o f  the channel plug did not affect viability or growth o f the yeast construct but reduced 

the corresponding translocation efficiency and the formation o f the polymer. Junne and 

colleagues proposed that the channel plug played an important role in stabilizing Sec61p 

during the formation o f  the translocon rather than acting as a sealing gate in yeast. 

These recent results do not reflect the importance o f the TM 2a helix suggested during 

the gating process o f the pore in bacteria and leads to further research on the gating 

process o f the protein conducting complex.
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4.3.4.L7 PsaF fam ily

Proteins belonging to the psaF family form part o f an oligomeric complex 

known as the Photosystem I (PSI), which is a light-driven plastocyanin:ferredoxin 

oxidoreductase mediating electron transfer from reduced plastocyanin in the thylakoid 

lumen to oxidized ferredoxin in the stroma (Haldrup et al., 2000). The PsaF subfamily 

has been suggested to mediate plastocyanin docking and fast electron transport kinetics 

in eukaryotic PSI (Hippier et al., 1999, Haldrup et al., 2000). By contrast, in 

cyanobacteria psaF proteins have been suggested not to bind plastocyanin but to 

contribute to structural features on the surface o f PSI and bind carotenoids, which serve 

as a light harvesting and photo-protecting molecule (Jordan et al., 2001). The proteins 

used for the pattern recognition belonged to both cyanobacteria and eukaryotes. Three

similar patterns with support o f 1.0 (“ [ILM V]....A G..W P..A”,

“A  G..W P..A..[EQ]”, “A  G..W P..A” were discovered using the chemical

equivalency set, the structural equivalency set and by exact discovery respectively) 

using a training set that comprised both cyanobacteria and eukaryotes. Therefore, these 

patterns might indicate residues with a common functional role in cyanobacteria and 

eukaryote cells.
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4.3.4.2 Common patterns in different loops belonging to the same 
protein group, the same structural type or all the protein 
groups used (evaluation 13 to 21)

Ev
D ipping loop type and 

protein group
TEIRESIAS analysis

Patterns found 
by TEIRESIAS

Pattern valic 
PATTER

lation using 
JVTEST

step 1 step 2 step 3 step 4

13
19

LI: Loop-in-tum-helix-out 
L2: Loop-in-tum-helix-out 
Aquaglyceroporin

Chemical equivalency 
Structural equivalency 
Exact discovery

428
28
14

312
6
5

42
0
0

27
0
0

27
0
0

LI: Helix-in-tum-helix-out Chemical equivalency 106 106 0 0 0
14 L3: Helix-in-tum-helix-out Structural equivalency 0 0 0 0 0

Chloride channel family Exact discovery 0 0 0 0 0
L2 Helix-in-tum-helix-out Chemical equivalency 244 15 0 0 0

15 L4: Helix-in-tum-helix-out Structural equivalency 0 0 0 0 0
Chloride channel family Exact discovery 0 0 0 0 0
LI: Helix-in-tum-helix-out
L2: Helix-in-tum-helix-out Chemical equivalency 0 0 0 0 0

16 L3: Helix-in-tum-helix-out Structural equivalency 0 0 0 0 0
L4: Helix-in-tum-helix-out Exact discovery 0 0 0 0 0
Chloride channel family

17

LI: Helix-in-tum-helix-out 
L2: Helix-in-tum-loop-out 
Sodium : dicarboxylate 
(SDF) symporter family

Chemical equivalency 
Structural equivalency 
Exact discovery

124
2
0

124
0
0

0
0
0

0
0
0

0
0
0

18 Helix-in-tum-loop-out loops
Chemical equivalency 
Structural equivalency 
Exact discovery

0
1
0

0
0
0

0
0
0

0
0
0

0
0
0

20 Helix-in-tum-helix-out
loops

Chemical equivalency 
Structural equivalency 
Exact discovery

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

21 All dipping loops
Chemical equivalency 
Structural equivalency 
Exact discovery

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Table 4.10. Summary o f  the pattern discovery process and filtering process carried out using 
PATTERNTEST. The number o f  patterns common to: a) membrane dipping loop belonging to the same 
dipping loop protein group; b) membrane dipping loop structural type; c) all the membrane dipping loops 
listed. Evaluations 13 and 19 were based on the same sequences, as there were no other loop-in-helix-out 
domains outside the aquaglycerol family. Only the loops belonging to the major intrinsic protein family 
were found to share common amino acid patterns.

Crystallization analyses o f the membrane proteins containing membrane dipping 

loops have shown that the general structure o f  the aquaglyceroporin family, the chloride 

channel family and the secY/SEC61 a  family is composed o f  an internal tandem 

repetition. According to these findings, it would be likely that common patterns were 

found in the corresponding loops belonging to both repetitions in the protein. However, 

this internal repetition could not be identified at the sequential level in the case o f 

chloride channels and protein conducting channels and only the corresponding solved 

structures revealed an early gene duplication event. The solved structure o f the chloride 

channels maintained the topological symmetry between both halves and loops were
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conserved in both internal repetitions. On the other hand, secY/SEC61 a-subunit 

proteins only conserved the dipping loop in the amino-terminal half o f the protein. The 

results obtained for the discovery o f common patterns in membrane dipping loops 

belonging to different proteins families (table 4.10) were in accordance with the degree 

o f  similarity between both halves o f  these protein families. Our approach discovered 27 

specific patterns in loop 1 and loop 2  in the aquaglyceroporin family (this analysis 

corresponds to evaluation 13 and 19 as there were no other loop-in-helix-out domains 

found outside the aquaglyceroporin family), and the patterns with the top 2  highest 

scores were “ [ST]G...NP[AG]” (support 0.86) and “ [ST]G...NPA” (support 0.85). 

These com mon patterns, not present in membrane dipping loops belonging to other 

protein families, emphasize the importance o f the NPA m otif as a functional m otif for 

aquaglyceroporin family. In the case o f  chloride channels, common non-specific 

patterns were found in loops 1-3 and 2-4 (evaluation 14 and 15), whereas no patterns 

were found in all 4 membrane dipping loops. The latter was expected as the reported 

functional roles o f  loops 1-3 and loops 2-4 are quite different. Comparing the results 

regarding common patterns in loops involved in selectivity belonging to the 

aquaglycerol protein family with the common patterns in loops belonging to the 

chloride channel family, it could be suggested that the dipping loops belonging to the 

repeated halves in both protein families emerged by a similar gene duplication event, 

but in evolution these proteins have been exposed to different pressures. These different 

pressures have lead to different selectivity mechanisms probably motivated by the 

nature o f  the different substrates transported across the membrane and the different 

needs o f  the cell for the transported molecules. Cells have a permanent need for water 

molecules that requires a quasi-continuous transport o f water across the membrane, 

however the known functional roles that involved transport o f chloride ions, e.g. 

transfer o f  electrical signals across the cells and stabilization o f the membrane potential, 

require a short and rapid transport o f these ions. These different needs have lead to a 

similar structural arrangement bringing together the polar ends o f short a-helices 

approximately ha lf way through the membrane but at the same time have developed a 

fast gating mechanism for the unidirectional transport o f chloride ions through the 

membrane that might explain the divergence in sequence o f both halves in the chloride 

channel family, whereas aquaglyceroporins have maintained a highly selective open 

pore, which would not have required divergent evolution o f  the protein halves. In the 

case o f  the secY/SEC61 a family, it was not possible to analyse the presence o f
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common patterns in the dipping loops belonging to both halves because one o f  the 

halves has not maintained the membrane dipping loop. In terms o f  evolution, this could 

be explained by the unidirectional transport o f polypeptide chains and the need for the 

protein to bind the ribosome on the intracellular side o f  the membrane. In order to bind 

the ribosome, these proteins might have been forced to suppress the dipping loop 

located in the intracellular side o f the membrane as it m ight have imposed a steric 

impedance for the transport o f the polypeptide, and therefore only the membrane 

dipping loop on the extracellular side o f the membrane was conserved to act as a gate.

No common patterns were found in loops belonging to: the sodiumidicarboxylate 

symporter family, helix-in-tum-loop-out motif, helix-in-tum-helix-out m otif or the 

general dipping loop m otif (table 4.10). This reflects that the residues contained in 

membrane dipping loops respond to a local functional need o f the protein rather than to 

a similar folding mechanism. However, the absence o f common patterns in different 

membrane dipping loops should not be used to infer different folding mechanisms 

events for different membrane dipping loops. Neighbouring residues located in different 

transmembrane regions may play an important role in stabilising the m otif and 

minimizing the energy penalty imposed when locating polar or charged residues in the 

lipid bilayer and therefore a hypothetical common folding event might also be dictated 

by neighbouring residues and the common surrounding environment.

4.4 Conclusions

M embrane dipping loops often play essential functional roles in the mechanism o f 

action o f polytopic a-helical membrane proteins. However, no extensive analyses have 

been carried out to determine conserved patterns in these motifs and identify potential 

functionally im portant residues. Therefore, a rigorous pattern discovery protocol has 

been applied in order to identify conserved residues in the structural domains o f  protein 

families (where at least one crystallized structure contained a membrane dipping loop). 

Additionally, the developed method was also applied to detect common patterns in 

membrane dipping loops belonging to different protein families, but with a  similar 

arrangement o f secondary structures (helix-in-tum-helix-out, helix-in-tum-loop-out, 

loop-in-tum-helix-out). Interestingly, some o f the residues contained in discovered
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patterns were already described as functionally important by experimental analysis, thus 

validating our approach. Furthermore, discovered patterns also contained residues 

whose functional roles have not yet been fully characterized, leading to the potential for 

targeting further experimental research aimed at understanding the exact functional 

roles o f these residues and understanding o f the mechanism o f action o f membrane 

proteins with membrane dipping loops. No patterns were discovered in membrane 

dipping loops belonging to different protein families but sharing a similar arrangement 

o f secondary structure. These results highlight the important functional role o f  the 

discovered sequence patterns rather than that o f  different folding events. The discovered 

patterns are a reliable resource to be used for the prediction o f membrane dipping loops 

and functional characterization o f proteins with unknown function.
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CHAPTER 5 

TMLOOP, a bioinformatics tool to predict membrane dipping 

loops

5.1 Introduction

M embrane dipping loops play essential functional roles within membrane 

proteins. As discussed in chapter 4, membrane dipping loops have been proposed to act 

as selectivity filters in potassium channels (Doyle et al., 1998, Jiang et al., 2002, Jiang 

et al., 2003, Kuo et al., 2003, Long et al., 2005, N ishida and MacKinnon, 2002, Zhou et 

al., 2001), aquaglyceroporins (Gonen et al., 2004, Harries et al., 2004, M urata et al., 

2000, Ren et al., 2000, Ren et al., 2001, Savage et al., 2003, Stroud et al., 2003, Sui et 

al., 2001), and chloride channels (Dutzler et al., 2002, Dutzler et al., 2003), as molecular 

gates o f  membrane pores, such as in the glutamate homolog transporter and the protein 

conducting channel (Van den Berg et al., 2004) and also as linking structural motifs 

between subunits in chloride channels (Estevez and Jentsch, 2002). Prediction o f 

membrane dipping loops from protein sequence has proved difficult as such regions are 

frequently amphiphilic, containing hydrophobic sections that are too intermittent to be 

identified as membrane regions. Membrane dipping loops require interactions with 

adjacent highly hydrophobic helices to become inserted in the membrane and minimise 

the energy penalty imposed by the location o f polar or charge residues in a low 

dielectric environment. In-silico topology prediction approaches often fail to predict 

membrane dipping loops in polytopic a-helical membrane proteins due to their residue 

composition differing with that membrane spanning segments. To date, the 

bioinformatics approaches o f our group, working on the membrane dipping loops o f 

glycerol channels, in collaboration with Stefan Hohmann and colleagues, have relied 

upon homology modelling (Bill et al., 2001) and comparison o f test sequences with 

those o f  known loops in terms o f secondary structure and the propensity scoring o f 

successive residues to reside in a  or (3 conformation (Hedfalk et al., 2004, Karlgren et
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aL, 2004, Tamas et al., 2003), underpinned by extensive laboratory work including

measuring channel efflux, mutagenesis and genetic screening.

In this chapter, we describe the development o f a novel and reliable approach to 

the difficult problem o f predicting membrane dipping loops directly from sequence that 

may be genetically applied to membrane proteins. The pattern discovery approach 

carried out using TEIRESIAS (Rigoutsos and Floratos, 1998) and PATTERNTEST 

(Chapter 4) led to the development o f  a bioinformatics tool, named TMLOOP, to 

predict membrane dipping loops using discovered patterns as weighted predictive rules. 

This software was used to explore the performance o f a single m otif method compared 

to a variation o f  this approach, called the collective m otif method. Single m otif 

methods, such as the PROSITE database (Falquet et al., 2002), describe a structural 

motif, catalytic site or protein family using a unique motif. Therefore, this method 

requires exact pattern matching to find structural or functional relatedness and can miss 

distant relatives, which contain small variations o f  the pattern (Scordis et al., 1999). By 

evolution, the constraints imposed in the outside world have been reflected in changes at 

the molecular level to ensure the adaptability o f an organism to a changing environment. 

In chapter 4, the functional importance o f many o f  the residues contained in the 

membrane dipping loops and their direct relevance to the molecular function o f the 

protein was described. Evolution o f membrane dipping loops might reflect evolutionary 

pressures for changes in the gating process o f  a membrane protein, the re-adjustment o f 

specificity for the corresponding ligand according to new needs o f the cell, or even 

binding o f a different ligand in a similar fashion. All these pressures, are ultimately 

translated into small variations o f  the residues associated with these motifs and 

rearrangements with the interacting helices. Divergent evolution would generate 2 

membrane dipping loops from a common ancestral structural m otif with small 

variations in sequence, which allowed the binding o f  the same ligand with different 

specificity or binding different ligands in a similar fashion. On the other hand, 

phylogenetically unrelated proteins might generate a similar three-dimensional 

membrane dipping loop to bind the same or a similar ligand, which would involve two 

different membrane dipping loops containing a similar but not identical selective filter 

or binding site. The collective method is based on the use o f different patterns 

discovered using TEIRESIAS and PATTERNTEST (Chapter 4), these patterns belong 

to the same structural m otif and contain small variations o f  the discovered pattern with
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the highest support. Following this principle, the collective m otif method appears to be

a more flexible approach than the single m otif method and distantly related membrane

dipping loops containing similar but not identical sequences in the corresponding

structural m otif can be co-detected.

TM LOOP had been shown to successfully predict membrane dipping loops but it 

had not been implemented to describe the starting and ending position o f the structural 

domain, instead it reports the average pattern starting position and the average length o f  

the pattern, which might not be related to the actual starting and ending position o f a 

particular membrane dipping loop. In order to approximate the boundaries o f the 

structural domain an extension, named TMLOOP writer, has been implemented. This 

extension o f  the TMLOOP algorithm represents the final stage o f  an iterative loop 

(figure 5.1). This iterative loop involves the pattern discovery approach applied to 

membrane dipping loops (Chapter 4), implementation o f a predictive tool (TMLOOP) 

for prediction o f  these particular structural domains, evaluation o f predicted loops, and 

description o f  such domains in the Swiss-Prot database (TMLOOP writer).

PDB_TM, literature, 
manual curation,

Swiss-Prot
database TMLOOP

writer

Training sets

Pattern
discovery

Improved topological 
models

TMLOOP
writer

Discovered
patterns

Validated membrane 
dipping loops

TMLOOPN
Predicted membrane 
dipping loops

Manual
evaluation

Figure 5.1. Iterative loop describing the prediction and annotation o f  membrane dipping loops. The 
training sets assembled from the Swiss-Prot database were analyzed by Teiresias (Rigoutsos and Floratos, 
1998) in order to discover patterns o f  residues present in these domains. Validated patterns (using 
PATTERNTEST, C hapter 4) were used as predictive rules by TMLOOP. TMLOOP was applied to the 
Swiss-Prot database in order to predict new membrane dipping loops. TMLOOPwriter annotated the 
manually validated membrane dipping loops in the corresponding transmembrane sections o f  the Swiss- 
Prot database.
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5.2 Methods

5.2.1 TMLOOP implementation

5.2.1.1 Description

TMLOOP was implemented to predict membrane dipping loops in polytopic 

membrane proteins. TMLOOP uses patterns, using a regular expression format, 

discovered by TEIRESIAS and validated by PATTERNTEST (Chapter 4) as weighted 

predictive rules where the weight was calculated by dividing the number o f sequences 

in the training set containing a particular pattern by the total number o f sequences in the 

training set. TMLOOP requires a set o f  user-defined parameters and allows the user to 

decide whether to perform a single m otif search or a collective m otif search. The single 

m otif method describes a structurally or functionally important site in sequence using a 

unique motif. Therefore this approach requires exact pattern matching to find structural 

or functional relatedness and can miss distant relatives, which contain small variations 

o f the pattern (Scordis et al., 1999). By contrast, the collective m otif method is based on 

the use o f  different partially overlapping patterns, which belong to the same structural or 

functional m otif and therefore distant relative proteins containing small variations o f the 

most common patterns can be co-detected.

There are three user-defined parameters required to run the prediction: i) I is the 

minimum inter-loop length required between two contiguous loops, where two pattern 

matches would point to the same loop only if  the distance o f  both matches in the 

sequence is lower than I; ii) S, the minimum pattern support, which restricts the patterns 

used for the prediction such that only the patterns whose support is equal or higher than 

S would be used as a predictive rule (only applicable in the collective m otif method); 

and iii) C, the minimum prediction confidence, which restricts the reporting o f  protein 

matches to those predictions with a score equal or higher than C (only applicable in the 

collective m otif method).
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5.2.1.2 The algorithm

Two versions o f TMLOOP have been implemented, a web version 

(http://membraneproteins.swan.ac.uk/TMLOOP) and an executable desktop version. 

Both versions perform load sequences in FASTA format, the basic output is a text- 

format-like output where the predicted membrane dipping loop is described by the 

following parameters: i) loop type, ii) loop score, iii) average pattern starting point and 

iv) average pattern length.

5.2.1.3 Software development

The algorithm was implemented using Borland Delphi, an object oriented 

programming language used for rapid application development (RAD). The web version 

o f  TMLOOP uses a Common Gateway Interface (CGI), with a M icrosoft IIS (Internet 

Information Server) web server. The code generated by Delphi is a console application, 

which is placed in the IIS web server and called by the input at theTMLOOP interface 

by HTML code.

The basic architecture o f TMLOOP was implemented following the model- 

view-controller (MVC) fashion where the interface and the functionality o f  the program 

are to be considered as different layers that are indirectly linked by a cross-linking layer 

represented by the class TController (figure 3.3). The functionality o f  TMLOOP is 

performed by five different classes: TTmLoop, TClassifier, TDippingGroup, TPattem 

and TPredLoop. TM LOOP first loads the query sequences input into memory and 

analyzes the format input by the user. If  the input is correct, the software loads into 

memory the different user-required parameters (prediction method, I, S, C and output 

format) and checks that no incorrect values have been input. I f  parameters were 

correctly input TM LOOP loads into memory the corresponding pattern files (either files 

belonging to the single m otif method or to the collective m otif method). TMLOOP then 

analyzes the query sequences by pattern matching using the Microsoft 

VBScript_RegExp_55_TLB library.
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The pattern files were previously assembled using the TEIRESIAS and

PATTERNTEST software and must follow a specific format (figure 5.2).

ta b

ta g  u s e d  to  d e s c r ib e  th e  n a m e  of t h e  s e t

N am e  of th e  s e t  a n a ly s e d  by T E IR E S IA S  a n d  P A T T E R N T E S T

helix -in -tum -helix -ou t; Loop 1 HP1 so d iu n rd ic a rb o x y la te  s y m p o r te r  p ro te in
[ILMV]..............T .S[ST]...[ILM V ]P
[ILMV]..............T .S [S T ]...L P
[ILMV]..............T .SS ...[IL M V ]P
[ILMV] T .S[ST]...[ILM V ]P  [ILMV]
[ILMV]..............T .S [ST]...[ILM V ]P  [ILMV]

NM helix in-turn-helix-
41 41 8 9 .1 3
4 0 4 0 8 6 .9 6
4 0 40 8 6 .9 6
4 0 4 0 8 6 .9 6
4 0 40 8 6 .9 6

ta b

ta b

P a tte rn  s u p p o r t

p a tte rn  d esc rip tio n

N u m b er o f in s ta n c e s  o f th e  p a tte rn

N um ber of inpu t s e q u e n c e s  th a t c o n ta in  th e s e  p a t te rn s

Figure 5.2. Example o f  a pattern file loaded by TMLOOP.
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help

Please input amino acid sequences in FASTA format 0

Prediction approach: (?)

®  Single Motif Prediction 
O  Collective Single Motif Prediction

TMLOOP parameters: 0

30 Minimum Interloop Length (I)

0.80 Pattern Support (S). Only applicable to the collective sinsle method

0.1 Minimum Prediction Confidence (O-  Only applicable to the collective sinde method

Ontpnt Format:

®  Summary of TM LOOP prediction 
O  Prediction showing matching patterns

[ Submit Query j [ Reset |

Figure 5.3. Input interface o f  the w eb version o f  TM LOOP

T M L O O P  P red iction  A nalysis

TM LOOP Prediction Parameters

Prediction m ethod : Collective Single Motif Method 
Mnumuin Inteiloop Length (I) = 30 
Muuimun Pattern Suppoit (S) = 0 .8  
hlmnnum Prediction Confidence (C) =  0 1

Results

Protein Matches: 1 / 1
*!* Loop(s) found:

>070617 "you can include any type of comment here"
Loop found

Loop type: helix-in-loop-out; K CHANNEL
Loop score: 0.437 (3 / 7)
Average Pattern starting point: 116 
Average Pattern length: 8

Process tim e = 181 m secs

Page generated by Delphi C G I software at 03:12:41 P M  on Wednesday 8 M arch 2006  

Software developed by G orka L asso^K  John A n to m w W  & Jonathan M u lh n / 1̂

Membrane Proteins Bioinformatics Group, Shool o f  Medicine. University o f  Swansea. Singleton Park, Swansea SA2 8PP, U K  

W  Wheat Pathogenesis Programm e, Plant Pathogen Interactions Division, Rolham sted Research, Harpenden, Hertfordshire A L 5  2JQ, U K  
This project was supported by the Basque_GpyernmenL Rotham sled Research receieves grant aided support fro m  the BBSRC o f  the U K

Figure 5.4. Output interface o f  the web version o f  TM LOOP
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5.2.2 Collection of patterns from membrane dipping loops

Patterns discovered by TEIRESIAS using an amino acid chemical equivalency 

set, structural equivalency set and exact discovery (identity) and validated by 

PATTERNTEST (Chapter 4) were brought together into a single text file for each 

membrane dipping loop analysed. Included patterns were listed following the format 

required by TMLOOP (figure 5.2). In order to prevent pattern redundancy, each 

assembled set o f patterns was manually checked and pairs o f identical patterns were 

removed. This was necessary as TEIRESIAS was found to report identical patterns 

(which do not contain any ambiguity) using different pattern discovery analyses 

(chemical equivalence, structural equivalence and exact discovery). The remaining set 

o f patterns for each o f the membrane dipping loops analysed was considered in the set 

to be used in the collective m otif method where partially overlapping patterns describe 

the same membrane dipping loop.

For the single m otif method, the pattern with the highest support listed in each o f 

the set o f  patterns assembled for the collective m otif method was selected. If  the highest 

support value found in any o f these sets was shared by more than one pattern an 

empirical selection o f the pattern was achieved by evaluating the predictive power o f 

each pattern against a test set composed o f proteins ruled out during the redundancy 

filtering process using the Non-Red software, when assembling gold standard sets for 

the pattern discovery process (Chapter 4).

5.2.3 TMLOOP evaluation

TMLOOP was evaluated by tenfold cross-validation. The sensitivity and 

specificity o f  TMLOOP was calculated at different parameters o f I, S and C and the 

advantages and disadvantages o f  both the single m otif method and the collective m otif 

method were assessed. The 2 pore domain potassium channel family was used as a test 

set to evaluate TMLOOP and the collective m otif method; this protein family has been 

predicted to contain two membrane dipping loops in its structure and it is believed to 

form homodimers (mimicking the homotetramer assembled in the structure o f  single 

pore potassium channels). This family showed itself to be a good candidate for the
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validation as none o f  its family members has been included in the potassium channel

gold standard set and the regions in sequence belonging to both membrane dipping

loops are not identical and therefore the second membrane dipping loop would be

missed by TM LOOP using the single m otif method. The evaluation was also used to set

up the default parameters o f TMLOOP in order to maximize the accuracy o f the

prediction.

5.2.4 Membrane dipping loop prediction in the Swiss-Prot database

TMLOOP was applied to the Swiss-Prot database (version 48.0). Only proteins 

containing two or more a-helical transmembrane regions (polytopic membrane proteins) 

were analysed. Both the single m otif method and the collective m otif method were 

applied and the parameters I, S and C were optimized to maximize the sensitivity and 

specificity o f  the method according to the evaluation o f TMLOOP using a test set o f 

172 a-helical membrane proteins. Predicted membrane dipping loops were classified as 

true positives, false positives or possible membrane dipping loops that have not yet been 

experimentally tested. In order to identify possible hitherto undesignated membrane 

dipping loops, it was necessary to identify structural or functional relatedness to the 

corresponding crystallized protein type known to have a similar membrane dipping 

loop. M embrane dipping loops have been shown to play essential roles in protein 

function, most o f  the membrane dipping loops characterized act either as selectivity 

filters or pore gates (Chapter 4). Therefore when no structural evidence is available it is 

desirable to look for functional relatedness. A pipeline o f  verification approaches was 

designed to identify possible membrane dipping loops that may merit experimental 

testing:

•  Database annotation: The Swiss-Prot database contains links to other family and 

domain databases, such as InterPro and the PRINTS database, that can be used 

to identify structural or functional relatedness. Additionally the International 

Union o f  Biochemistry and Molecular Biology (IUBMB, 

http://www.chem.qmul.ac.uk/iubmbA) and the Transport Classification Database 

(http://www.tcdb.org/) were also used to infer structural or functional 

relatedness.

• BLASTP analysis: This tool (http://www.expasv.org/tools/blas1/) was used to
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find remote homology to the corresponding protein type containing the predicted

membrane dipping loop. BLASTP was used in a similar fashion as Darzentas

and colleagues (Darzentas et al., 2005). Query sequences were checked against

the Swiss-Prot database o f  curated sequences with an E-value cutoff o f e-100.

•  Analysis o f local residue conservation: I f  no structural or functional evidence 

was discovered by using methods described above, the residue conservation in 

the predicted membrane dipping loop region was analyzed using ClustalW. The 

matching query sequence predicted to have a particular membrane dipping loop 

was aligned with the sequences belonging to the corresponding gold standard set 

containing the predicted membrane dipping loop. W hen significant residue 

conservation was observed, the predicted membrane dipping loop was 

considered as a possible loop to be experimentally tested.

•  Analysis o f  the predicted membrane dipping loop in sequence: Usually 

membrane dipping loops are not hydrophobic enough to insert in the membrane 

by themselves and often place polar or charge residues in the membrane. 

Therefore these loops require interactions with highly hydrophobic helices to 

become inserted in the membrane and minimise the energy penalty imposed 

when locating polar or charge residues in a low dielectric environment. 

Following this principle, crystallized membrane proteins with membrane 

dipping loops have been shown to contain these structural motifs between alpha 

transmembrane helices connected by short extramembraneous loops. Therefore 

the relative position o f the predicted membrane dipping loops with respect to the 

position o f transmembrane helices in the sequence was also analyzed. 

Membrane dipping loops located far away from transmembrane region were 

unlikely but possible. On the other hand membrane dipping loops located close 

to the amino- or carboxy-terminus were considered as false positives.

5.2.5 TMLOOP writer implementation

5.2.5.1 Calculation of the boundaries of predicted membrane dipping 
loops

TMLOOP successfully predicts membrane dipping loops but it does not report
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the boundaries o f  the structural dom ain, the only inform ation regarding the localization

o f  the m em brane dipping loop refers to the average pattern starting point and the

average pattern length. The principles o f  hom ology m odeling were follow ed in order to

approxim ate the boundaries o f  the predicted m em brane dipping loops. Both the

m em brane dipping loops found in the corresponding crystallized structure and the

average pattern starting point for each m ethod (single and collective m o tif m ethod) were

m apped onto the alignm ents used to isolate the sequences pertaining to m em brane

dipping loops. The distance betw een the m em brane dipping loop starting point (by

hom ology) and the average pattern starting point was then m easured for each o f  the

sequences contained in the training set used by TM LO O P and an average distance

betw een the structural dom ain starting point and the pattern starting point was then

com puted (figure 5.5). This average distance w as different for each loop depending on

the prediction m ethod used by TM LO O P, therefore for each loop the average distance

w as com puted for the i) single m otif m ethod ii) collective m otif m ethod and iii) single

and collective m o tif m ethod (average o f  the distances com puted for the single and

collective m o tif  m ethods) (table 5.1). The m em brane dipping loop length was

calculated by m easuring the length o f  the m em brane dipping loops found in the

corresponding crystallized structures. Using these two com puted param eters it was then

possible to approxim ate the lim its o f  the predicted structural dom ain considering only

the average pattern starting point and the prediction m ethod used by TM LO O P.

CLUSTAL W ( 1 . 8 3 )  m u l t ip le  s e q u e n c e  a lig n m e n t

P92942_C1C  
Q96282_C1C* 
P92943_C1C  
P51799 C1C

I I
-LYCIUGLFTFGIATPSGLFLPIILMGA&YGRM 32 
AVYC-DGIITYGIAIPSGLFIPVILAGA8YGRL 32 
-MFYTDAWTFGTAVPAGQFVPGIMIGS*TYGRL 32 
-VYFFliACUTYGLTVSAGVFIPSLLIGAAUGRL 32

.L .
7 *

NH3 C D - coo-

+5
+5
+9
+9

y +7

Figure 5.5. Calculation o f  the average distance betw een a hypothetical membrane dipping loop and the 
average starting points o f  a hypothetical set o f  patterns predicted by TM LOOP using the consensus motif. 
The multiple sequence alignm ent is used to infer the structural domain to the aligned sequences. For each 
sequence the distances between the structural domain and the average pattern starting position is 
computed. A s the consensus m otif uses diverse patterns, the average pattern starting position might not be 
the same for each sequence. In order to approximate the position o f  the membrane dipping loop these 
distances were averaged.
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Membrane dipping loop type Prediction
method

Membrane dipping loop
Starting point Length

HIHO-SDF1
S +3

24C -1
S&C +1

HILO-SDF2
s +5

21c -1
S&C +2

HIHO-CLC1
s -10

21c -6
S&C -8

HIHO-CLC2
s 0

21c 0
S&C 0

HIHO-CLC3
s -9

21c -9
S&C -9

HIHO-CLC4
s -3

24c 0
S&C -2

HIHO-PSAF
s 0

17c +4
S&C +2

HILO-K+
s -7

17c -8
S&C -8

HIHO-BPDPFECD
s -11

26c -5
S&C -8

LIHO-AQP1
s +1

15c +2
S&C +2

LIHO-AQP2
s -2

15c +1
S&C -1

LIHO-AQP1&2
s +1

15c +1
S&C +1

Table 5.1. Calculation o f  the localization parameters o f  the characterized membrane dipping loops. The 
second column specifies the prediction methods used by TMLOOP (“S” for single m otif method, “C” for 
collective m otif method and “S&C” for both). The third column refers to the average distance between 
the starting position o f  the structural domain and the average starting position o f  the pattern considering a 
particular prediction method. Positive numbers indicate downstream positions (e.g. +2 indicates that the 
structural domain starts two positions after the average pattern starting position) and vice versa.
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5.2.5.2 Inclusion of membrane dipping loops in the transmembrane 
statement

The main purpose o f the TMLOOP writer was to include the predicted 

membrane dipping loops in a SwissProt-like text file and rewrite the statement o f those 

predicted dipping loop regions found to overlap with transmembrane. There are five 

possible scenarios when including a predicted membrane dipping loop in the 

transmembrane statement o f Swiss-Prot like text files (figure 5.6): i) the beginning o f 

the membrane dipping loop overlaps with a transmembrane region, ii) the end o f  the 

membrane dipping loop overlaps with a transmembrane region, iii) the beginning o f the 

membrane dipping loop overlaps with a transmembrane region and the end o f the 

membrane dipping loop overlaps with the next transmembrane region, iv) the membrane 

dipping loop completely overlaps with a transmembrane region and v) the membrane 

dipping loop does not overlap with any transmembrane region. The latter case is the 

simplest case as no transmembrane statement is affected by the prediction and inclusion 

o f  the membrane dipping loop, however in the first four cases it is necessary to 

recalculate the limits o f the transmembrane regions affected by the inclusion o f the 

membrane dipping loop. In these cases the region o f the transmembrane region 

overlapping with the membrane dipping loops was deleted and it was necessary to 

determine whether the remaining transmembrane region belonged to a separate 

transmembrane region. Since it is theoretically possible that the interhelical loop could 

be composed o f as few as one residue, one extra residue was considered to allow for the 

interhelical loop between transmembrane regions when deleting the overlapping region 

o f the affected transmembrane region. Research carried out by M onne and coworkers 

(Monne et al., 1999) suggested that the minimal helical hairpin was composed o f two 14 

residues transmembrane helices. These results were in accordance with a comparative 

analysis o f  crystallized a-helical membrane proteins carried out where the minimum 

helical length o f a helix that completely transversed the membrane was found to be 15 

residues. Following these results it was agreed to consider as separate transmembrane 

regions those remaining regions whose length was found to be 14 or higher. The 

segments whose length after deletion o f the overlapping region (plus one residue as 

interhelical loop) was lower than 14 residues were deleted from the corresponding 

transmembrane statement.
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Transmembrane helix A

Transmembrane helix B

Transmembrane helix Bnsmembrane heli c A

Transmembrane helix A

Transmembrane helix B

Transmerr brane helix B

Transmembrane helix A

Transmembran^ helix A Transmenbrane helix B

Figure 5.6. The possible overlapping scenarios when including a predicted membrane dipping loop (in 
red) in a transmembrane statement describing transmembrane regions (in blue) predicted by different 
topology prediction softwares.

Follow ing the form at o f  the Sw iss-Prot statem ents, the m em brane dipping loop 

was included in the corresponding Sw iss-Prot like text fde follow ing the description o f  

the transm em brane region previous to the m em brane dipping loop. K eyw ords were also 

included in a sim ilar fashion to allow  further bioinform atics tools to exploit the 

inform ation generated by TM LO O P and TM LO O P w riter (figure 5.7). The m em brane 

dipping loop statem ent begins with the Sw iss-Prot keyw ord “FT”, w hich corresponds to 

the feature table (this statem ent usually describes posttranslational m odifications, 

binding sites, enzym e active sites and local secondary structures), the second term  in the 

statem ent corresponds to the term  “M EM B LO O P”, which refers to the m em brane 

dipping loop dom ain, the third and fourth elem ent in the statem ent corresponds to the 

beginning and ending o f  the structural dom ain, the fifth elem ent corresponds to the 

m em brane dipping loop type (table 5.2) according to the TM LO O P m em brane dipping 

loop nom enclature, the last elem ent o f  the statem ent refers to the tool used to predict 

the m em brane dipping loop. If  the boundaries o f  a transm em brane region are needed to 

be re-calculated due to overlap betw een the annotated transm em brane region and the 

m em brane dipping loop, a notification o f  the update will be included at the end o f  the 

corresponding transm em brane statem ent.
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FT TRANSMEM •••88- • 108- 1 (Potential).
FT TRANSMEM • 131- ■ • 151- 2 (Potential).
FT MEMBLOOP 188 ••208-•* HIHO-CLC1 Predicted by TMLOOP.
FT TRANSMEM • 210- • 226- ■ TMLimits r e f i n e d  by TMLOOP w r i t e r
FT ■ MEMBLOOP 247 267 HIHO-CLC2 Predicted by TMLOOP.
FT TRANSMEM • 278- • 298- • • •6 (Potential).

Figure 5.7. Example o f  the transmembrane statement section m odified by TM LOOP writer. The 
statements highlighted in red correspond to the membrane dipping loops predicted by TM LOOP whereas 
the statement in blue corresponds to the transmembrane region w hose limits were refined by the 
TM LOOP writer.

5.2.S.3 TM LOOP input file development

The input file (figure 5.8) contains a description o f  all true positives found by 

TM LO O P in the Sw iss-Prot database (Please see S5.T rue M DL inp u t file on CD). 

Each m em brane dipping loop is described by the corresponding Sw iss-Prot accession 

code o f  the protein containing the structural dom ain, the m em brane dipping loop type 

found, the prediction m ethod used to detect the corresponding loop (single m otif 

m ethod, collective m otif m ethod or both) and the average starting position o f  the 

m atching patterns. The TM LO O P prediction m ethod is specified by the characters “S” 

and “C ” (corresponding to the single and collective m otif m ethod respectively).

Sw iss-P ro t a c c e s s io n  co d e  TMLOOP prediction m ethod  

1 1
L I H O - A Q P 2 S & C 1 8 1
L I H O - A Q P 1 & 2 S & C 6 2
L I H O - A Q P 1 & 2 S & C 1 7  8
L I H O - A Q P 1 S & C 6 2

L I H O - A Q P 2 S & C 2 1 2
L I H O - A Q P 1 & 2 S & C 7 7
L I H O - A Q P 1 & 2 S & C 2 0 9
L I H O - A Q P 1 S & C 7 7

1 f
M em brane  dipping loop type A verage  pattern  starting position

Figure 5.8. Example o f  the input text file to be loaded by TMLOOP writer. TM LOOP writer searches for 
the corresponding Sw iss-Prot like text file and includes the corresponding membrane dipping loop  
information in the transmembrane statement. In order to include this information TM LOOP writer needs 
first to calculate the membrane dipping loop starting point, which is com puted by considering the 
prediction method used by TM LOOP, the average pattern starting position and the average distance 
betw een the average pattern starting position and the structural domain starting position.

The m em brane dipping loop nom enclature is com posed o f  two sections, the first 

section refers to the structural type o f  the m em brane dipping loop and the second 

section refers to the characterized m em brane dipping loop used to construct the 

m atching patterns (table 5.2).
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Characterized membrane dipping loop TMLOOP writer code

Loop 1 aquaglyceroporin LIHO-AQP1

Loop 2 aquaglyceroporin LIHO-AQP2

Loop 1 & 2 aquaglyceroporin LIHO-AQP1&2

Binding protein dependent permase FeCD subfamily HIHO-BPDPFECD

Loop 1 CIC chloride channel HIHO-CLC1

Loop 2 CIC chloride channel HIHO-CLC2

Loop 3 CIC chloride channel HIHO-CLC3

Loop 4 CIC chloride channel HIHO-CLC4

Potassium channel HILO-K+

Loop 1 Sodium/dicarboxylate symporter HIHO-SDF1

Loop 2 Sodium/dicarboxylate symporter HILO-SDF2

psaF family HIHO-PSAF
Table 5.2. Abbreviation for each o f  the membrane dipping loops characterized by TMLOOP. The first 
term refers to the membrane dipping loop structural type: Loop-in-tum-helix-out (LIHO), helix-in-tum- 
helix-out (HIHO) and helix-in-tum-loop-out (HILO). The second term refers to the protein type found to 
contain the corresponding loop and if  more than one membrane dipping loop is present, the corresponding 
membrane dipping loop number o f  the structural domain.

5.3 Results & Discussion

5.3.1 Single motif predictive rule selection

Table 5.3 lists the patterns with the highest support discovered using 

TEIRESIAS for each membrane dipping loop (C h ap te r 4). As described in the method 

section, if  for a particular membrane dipping loop more than one pattern is found with 

the highest support, an evaluation was carried out against a test set composed o f 

proteins ruled out during the redundancy filtering process using Non-Red software 

when assembling gold standard sets for the pattern discovery process (C h ap te r 4). This 

was the case for loop 1 in aquaglyceroporins, loop 1 and loop 4 in chloride channels and 

the loop found in psaF proteins.

I f  the predictive score against a test set was found to be identical for these 

patterns (as was the case o f the loop 4 in chloride channels and the loop belonging to the 

psaF family), the pattern with highest number o f  elements shared by all the patterns 

sharing the same support and performance score was selected .
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M em brane d ipping loop S upport Top p a tte rn Predictive score 
against a test set

SG ...N ..[ILM V ][ST ] 0.88

LI: Loop-in-tum -helix-out
0.96

SG .H .N ...|ST | 0.91
A quaglyceroporin family [ITVjSG .H .N 0.86

[ITVJSG...N .A 0.87

L2: Loop-in-tum -helix-out 
Aquaglyceroporin fam ily

0.94 [ILM VjNP.R [ILMV]

LI & L2: Loop-in-tum -helix-out 
Aquaglyceroporin fam ily

0.86 [ST]G ...N P[A G ]

H elix-in-tum -helix-out 
Binding protein dependent 
transport system  permease fam ily

0.96
[A G ].[ILM V].F[1LM V ][AG ]
L[ILM V].P.[ILM V] -

LI: H elix-in-tum -helix-out 
Sodium  : dicarboxylate (SD F) 
symporter fam ily

0.89
[ILM V ]..............T .S[ST]...[IL
M V]P

L2: H elix-in-tum -loop-out 
Sodium  : dicarboxylate (SD F) 
symporter fam ily

0.96
[ILM V ]........[ILM V ]........ S.G.
,[AG ][ILM V] [ILM V].[IL  
M V ]...... [ILMV]

|ILM V ]G [K R ].G P.|ILM V ] 0.82
LI: H elix-in-tum -helix-out 
Chloride channel family

0.86 [ILM V]G ..GP.V 0.64
[ILM V]G ..GP.[ILM V] [A 
G]

0.75

L2: H elix-in-tum -helix-out 
Chloride channel family

1.0
[A G ].[A G ].G [IL M V ]...[FY ],
....[A G ]..F ..E

L3: H elix-in-tum -helix-out 
Chloride channel family

0.91 P.G...P....G ...G

[AG] [ILM V]...[ILM  
V |[ILM V ]..E[ILM V ]T 0.82

L4: H elix-in-tum -helix-out 
Chloride channel family

0.96
[A G ],...[A G ] [ILM V]...[IL  
M V ][IL M V ]..E [IL M V ][ST ] 0.82

[AG] [ILM V][ST]..[IL  
M V ][IL M V ]..E .[ST ] 0.82

H elix-in-tum -loop-out 
Potassium channel

0.89 [ST ]..[ST].G [FY ]G -

[ILM V ],...A  G ..W P..A 1.0
Helix-in-turn-helix-out 
psaF fam ily

1.0 A ...... G ..W P..A ..[EQ ] 1.0

A...... G ..W P..A 1.0

Table 5.3 Selection o f  patterns for the single m otif method. Patterns with the highest support found for each gold  
standard set analysed with TEIRESIAS. When more than one pattern with the highest support was found for a given  
membrane dipping loop (as in the case o f  the loop 1 o f  aquaglyceroporins) an empirical selection o f  the pattern was 
carried out by evaluating each pattern against a test set. The pattern with the highest predictive score was selected (in 
bold). If the predictive score against a test set w as shown to be identical for these patterns (as in the case o f  the loop  
belonging to the psaF fam ily), the pattern with the most number o f  elem ents shared by all the patterns sharing the same 
support and performance score was selected (in bold).
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5.3.2 TMLOOP evaluation

The main problem o f single m otif methods, is that prediction o f  a structural 

m otif or functional category depends upon exact matching with a single pattern. 

Therefore distantly related proteins containing small variations o f  the pattern can not be 

detected. W ith TM LOOP, a single m otif method (using the single pattern with the 

highest support found for each membrane dipping loop) can be employed to predict a 

particular membrane dipping loop, or alternatively a set o f  partially overlapping 

patterns, can be used as weighted predictive rules (collective m otif method). The single 

m otif approach and the collective m otif approach were evaluated by tenfold cross- 

validation using various combinations o f C and S validation (tab le  5.4). The minimum 

interloop length was set to 30, which was observed to be the maximum length observed 

for a membrane dipping loop (table 4.6).
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S T op score

70 80 90 p a tte rn

Av 95.64 92.87 43.24 87.05
Sensitivity

Sd 2.58 2.98 5.57 3.2
0.01

Av 95.93 98.18 98.88 100
Specificity

Sd 6.93 4.42 0.46 0

Av 90.57 92.43 43.09 87.05
Sensitivity

Sd 3.05 2.48 5.56 3.2
0.1

Av 95.25 100 100 100
Specificity

Sd 2.36 0 0 0

Av 85.93 87.09 41.36 87.05
Sensitivity

Sd 3.85 3.73 5.69 3.2
<J 0 3

Av 100 100 100 100
Specificity

Sd 0 0 0 0

Av 77.35 84.76 41.07 87.05
Sensitivity

Sd 5.19 4.28 5.04 3.2
0.5

Av 100 100 100 100
Specificity

Sd 0 0 0 0

Av 63.55 76.78 38.45 87.05
Sensitivity

Sd 5.83 4.16 5,14 3.2
0.7

Av 100 100 100 100
Specificity

Sd 0 0 0 0
Table 5.4. Evaluation o f  TM LOOP by ten fold cross-validation. Tw o different approaches were carried out : 
i) using the pattern for each membrane dipping loop set with the highest score (top score approach, which is 
a single m otif approach, in orange) using an I value o f  30; and ii) using various values o f  S (minimum  
pattern support) and C (m inim um prediction confidence) with a fixed I value (m inim um  inter-loop length) o f  
30 (collective m otif approach, in blue). The results shown with the white background are the data relating to 
the optimal performance o f  TM LOOP.The top score approach, w hich proved to be a conservative approach, 
gave a confidence o f  1.0 for each prediction since here TM LOOP uses just one rule per membrane dipping  
loop considered and therefore the prediction is based upon exact single pattern matching (either yes or no). 
The sensitivity (overall percentage o f  true positives) and specificity  (overall percentage o f  true negatives) 
com puted for the ten evaluations have been averaged (A v), the corresponding standard deviation (Sd) has 
also computed.
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S T op score 

p a tte rn70 80 90

c

0.01
Sensitivity 90.32 82.26 37.01

Specificity 100 91.94 91.94 100

0.1
Sensitivity 82.26 82.26 . 37.01

Specificity 100 100 91.94 100

0.3
Sensitivity 45.16 40.32 37.01

Specificity 100 100 100 100

0.5
Sensitivity 8.06 40.32 . 37.01

Specificity 100 100 100 100

0.7
Sensitivity 3.26 33.87 . 37.01

Specificity 100 100 100 100
Table 5.5. Prediction o f  membrane dipping loops in the tw o pore domain potassium fam ily. T w o different 
approaches w ere carried out: i) using the pattern for each membrane dipping loop set with the highest score 
(top score approach, w hich is a single m otif approach, in orange) using an 1 value o f  30; and ii) using various 
values o f  S (m inim um  pattern support) and C (minimum prediction confidence) with a fixed I value 
(m inim um  inter-loop length) o f  30 (collective m otif approach, in blue). The results shown with the white 
background are the data relating to the optimal performance o f  TMLOOP.

T M L O O P  E v a l u a t i o n

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00
0.1 0.2 0.3 0.4 0.5

Minimum prediction con fid en ce (C)

0.6 0.7

■ Collective motif method 
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- Single motif method

Figure 5.9. Comparison o f  the performance o f  single and collective m otif methods tested by tenfold cross- 
validation. This kraph show s the prediction performance (considering both the sensitivity and specificity) 
o f  each TM LOOP analysis (i. the single m otif method in red, ii. the collective m ethod - S  (m inim um  
pattern support) =  70, I (minimum inter-loop length) =  30- in blue, iii. the co llective m otif method - S  =  
80, I = 30- in black and iv. the co llective m otif method - S  = 90, I =  30 in green) carried out at various 
levels o f  minimum prediction confidence (C). The collective method (S = 80, I =  30) showed the highest 
predictive score at a m inimum confidence value C o f  0 .1 . The C value o f  0.3 is considered to be the 
threshold, b elow  w hich the most accurate prediction method is the co llective m otif method and above 
w hich the single m otif method performs better.
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As expected, both approaches performed well against the training set, although 

the single m otif method approach was found to be more accurate as the confidence 

parameter (C) increased (table 5.4, figure 5.9). The single m otif method predicts 

membrane dipping loops with a confidence o f 1. This is because this method only uses 

one pattern to predict the structural m otif and therefore prediction depends upon exact 

matching with the pattern used for each gold standard set. By contrast, in the case o f  the 

collective single m otif method, to obtain a prediction with a confidence value o f 1 it is 

necessary that all patterns considered by TMLOOP match the sequence. The reason 

why the prediction accuracy o f TMLOOP dropped significantly when the minimum 

pattern support parameter (S) was set to 90 in the collective m otif approach (table 5.4, 

figure 5.9) was simply because some o f the sets o f patterns did not have a single pattern 

whose support was 0.90 or higher (table 5.3) and therefore no patterns were considered 

for the prediction o f the given membrane dipping loop. It was intended to use ROC 

curves to evaluate the prediction accuracy o f TMLOOP by measuring the area under the 

curve (AUC). However, the obtained results (Please see S5.Evaluation on CD) showed 

that the specificity in the majority o f  the different evaluation folds is 1 0 0 % which would 

generate a plot where the majority o f  the data points o f the curve are located on the x 

axis (1-specificity equal to 0 for most o f  the data points). Consequently, the obtained 

AUC value will be 0 for many o f the different set o f parameters (S and C), thus not 

reflecting the real predictive accuracy o f the method. Therefore, in this case, the ROC 

curve is not an informative evaluation method due to the nature o f  the evaluation 

results.

The evaluation showed that the collective approach (S = 80, C = 0 .1 ,1 = 30) was 

the most accurate method where TMLOOP achieved a sensitivity o f  91.4% and a 

specificity o f  100% (predictive score = 0.92, table 5.4 and figure 5.9). Although the 

single m otif method was found to be a better approach with higher values o f  C, it also 

proved to be a conservative prediction as expected. The flexibility o f  the collective 

m otif approach allowed TMLOOP to detect 90.32% o f the dipping loops contained in 

the two pore domain potassium channel family, in contrast to the 37.01% obtained by 

the single m otif approach (table 5.5). As discussed above, the two pore domain 

potassium channel family has been predicted to contain 2  membrane dipping loops, and 

unlike other potassium channels this family does not have identical membrane dipping
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loops in its structure and the second loop contains small variations in sequence

compared to the first membrane dipping loop. The 37.01% o f predicted loops by the

single m otif method corresponded to the 74.02% o f the first loops contained in the test

set using only 2 pore domain potassium channels. This fact reflects that the single m otif

method is not suitable for predicting novel membrane dipping loops not yet

experimentally discovered whereas the collective single m otif method has shown to be

capable o f detecting membrane dipping loops distantly related to membrane dipping

loops used in the gold standard sets. The comparison o f the single m otif method and the

collective m otif method (figure 5.9) showed that at confidence values higher than 0.3

the single m otif method is more accurate than the collective m otif method and vice

versa.

5.3.3 Membrane dipping loop prediction across the Swiss-Prot 
database

TMLOOP was applied to the Swiss-Prot database to predict membrane dipping 

loops in polytopic membrane proteins. Prediction was carried out by the single m otif 

method approach using only the pattern with the highest support for each membrane 

dipping loop analyzed (I = 30) and the collective m otif approach using TMLOOP with 

S, C and I set to 80, 0.1 and 30 respectively. Version 48 o f the Swiss-Prot database 

contained 194,317 sequence entries where 29,127 sequence entries corresponded to a- 

helical membrane proteins. Table 5.6 and table 5.7 summarize the prediction o f 

membrane dipping loops. TMLOOP identified 1637 membrane dipping loops in 850 

membrane proteins where 85.28% o f those loops corresponded to true positives, 10.08% 

corresponded to false positives and 4.64% corresponded to possible loops. As expected 

the single m otif method was shown to be a more conservative approach where 1209 

loops (89.03%) were identified as true positives, 117 loops (8.62%) were identified as 

false positives and 32 loops (2.36%) were identified as possible loops. The collective 

single m otif method detected 1595 membrane dipping loops, 1392 loops (87.27%) were 

identified as true positives, 128 loops (8.03%) were considered false positives and 75 

loops (4.7%) were considered as possible loops. Table 5.7 lists all possible loops 

identified by both methods not yet experimentally tested. These loops were validated as 

described in the methods section.
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T ru e

positives

False

positives

Potential

loops

Single m otif m ethod

Membrane dipping loops 1209 117 32

Proteins 581 115 32

Collective motif method
Membrane dipping loops 1392 128 75

Proteins 605 128 75

Consensus prediction
M embrane dipping loops 1204 78 31

Proteins 576 78 31

Table 5.6. Membrane dipping loop prediction in the Sw iss-Prot database. The table summarises the 
analysis o f  the Sw issProt database using TM LOOP (a) when only the pattern with the highest support is 
used (single m otif approach) and (b) when all patterns w hose support is >  80 are used and only  
predictions with score > 0.1 are reported (collective m otif approach). The I value (m inim um inter-loop 
length) was set to 30 for both methods. The last two rows (in red) show  the consensus prediction 
considering both approaches.
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Swiss-Prot accession code Definition Predicted membrane dipping loop

Q9H2Y9
Solute carrier organic anion transporter family, 
member 5A1

helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

Q8KWT2, Q8KWS7, P39642 Putative bacilysin exporter bacE
Loop-in-tum-helix-out Loop 1 & 2 
aquaporin like

Q9NRA2, Q8BN82 Sialin (Solute carrier family 17 member 5)
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

Q58902 Hypothetical protein MJ1507 helix-in-tum-loop-out K+ channel like

Q64SU9 Hypothetical transport protein BF2680
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

Q7UH36 Hypothetical transport protein RB4869 helix-in-tum-loop-out K+ channel like

Q8AAG5 Hypothetical transport protein BT0500
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

Q57943 Hypothetical protein MJ0523
helix-in-tum-helix-out C1C choride channel 
loop-4 like loop

Q8NSS8 Hypothetical transport protein Cgl0590/cg0683 helix-in-tum-loop-out K+ channel like

P74635 Hypothetical protein slr0753
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

P0AAC6, P0AAC7 Inner membrane protein yccA
helix-in-tum-helix-out Na+:dicarboxylate 
symporter loop-1 like loop

P38745
Hypothetical 61.2 kDa protein in APM2-DUR3 
intergenic region precursor helix-in-tum-loop-out K+ channel like

P37643 Inner membrane metabolite transport protein yhjE helix-in-tum-loop-out K+ channel like

P54181 Hypothetical protein ypnP helix-in-tum-loop-out K+ channel like

Q9V7S5 Putative inorganic phosphate cotransporter
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

P0A629, P0A628 Phosphate transport system permease protein pstC-1
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

P10603, P27182 ATP synthase C chain
helix-in-tum-helix-out C1C choride channel 
loop-1 like loop

P0A304, P0A305 ATP synthase C chain helix-in-tum-loop-out K+ channel like

Q8YGH4, Q8G1E6 Pyrophosphate-energized proton pump helix-in-tum-loop-out K+ channel like

P34299, Q8LGN0, Q9C5V5, 
081078, Q9ULK0, Q61627, Q62640

Glutamate receptor precursor (glutamate-gated ion 
channel) helix-in-tum-loop-out K+ channel like

Q58671 Probable Na(+)/H(+) antiporter 3 (MjNapA) helix-in-tum-loop-out K+ channel like
Q15629, Q01685, Q15629, Q91V04, 
Q9GKZ4 Translocation associated membrane protein 1 helix-in-tum-loop-out K+ channel like
Q8XED4, Q8FCT7, P33650, 
Q57IW8, Q5PLZ1, Q83ST5, P74884, 
Q57986, P73182 Ferrous iron transport protein B helix-in-tum-loop-out K+ channel like

Q97QP7, Q54875, Q59947, Q59986 Immunoglobulin A1 protease precursor helix-in-tum-loop-out K+ channel like

Q09917 Hypothetical protein C1F7.03 in chromosome I helix-in-tum-loop-out K+ channel like

Q8IZK6, 08K595 Mucolipin-2 helix-in-tum-loop-out K+ channel like
P91645, Q13936, Q01815, P15381, 
P22002, Q24270, Q01668, Q99244, 
P27732, 060840, Q02789, P07293, 
Q9JIS7, Q13698, 057483, Q02485, 
073700, Q25452, P22316 Voltage-dependent calcium channel alpha-1 subunit helix-in-tum-loop-out K+ channel like

028069 (top score pattern approach) Hypothetical protein AF2214
helix-in-tum-helix-out C1C choride channel 
loop-4 like loop

Table 5.7. List o f  proteins, including the corresponding Swiss-Prot accession codes, containing plausible 
membrane dipping loops according to TMLOOP. Proteins listed were predicted by using either the single 
m otif approach (I = 30) and/or the collective m otif approach (S = 80, C  = 0.1 and I = 30).
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The following section is a detailed discussion o f the loop types examined.

Solute carrier organic anion transporter 5A1

TMLOOP has predicted a helix-in-helix-out C1C chloride channel loop 1 like 

loop. This loop has been proposed to act as a selectivity filter for chloride ions 

(Chapter 4). The predicted loop overlaps with the predicted TM5 o f  the protein. 

Although no link has been found between this protein and chloride channels it might be 

possible that this protein uses a similar structural m otif to filter organic anions 

transported through the membrane.

Putative bacilvsin exporter bacE

This protein belongs to the major facilitator superfamily, which has a broad 

specificity o f ligands. The predicted loop is a loop-in-tum-loop-out loop 1 & 2 

aquaglyceroporin like loop, which overlaps w ith the predicted TM4. The major 

facilitator superfamily catalyzes solute : cation symport and/or solute : proton or solute : 

solute antiport. There is no clear ligand for this protein but the detected NPA m otif in 

the membrane might indicate a selectivity filter located in the membrane.

Sialin

This protein belongs to the major facilitator superfamily and the sodium/anion 

cotransporter family. The loop predicted in its structure is a helix-in-tum -helix-out C1C 

chloride channel loop 1 like loop. This protein has been proposed in the Swiss-Prot 

database (its function has not been experimentally tested) to transport anionic 

substances through the membrane and its function as a free sialic acid transporter in the 

lysosomes is highlighted. BLASTP analysis links this protein to other sodium/anion 

cotransporters but not chloride channels. The predicted structural m otif overlaps with 

the predicted TM9 o f  the protein. As in the case o f the solute carrier organic anion 

transporter 5A1 the Sialin protein might have developed a loop similar to the loop 

predicted by TMLOOP to be used as a selectivity filter for anionic substances.
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H ypothetical protein M J1507

TMLOOP predicted a helix-in-tum -helix-out potassium channel like loop at 

position 40, which coincides with the end o f the predicted TM1. BLASTP analysis 

showed distant relationships with an aquaporin and other transporters (e.g. macrilide- 

specific ABC-type efflux carrier, lipoprotein-releasing system transmembrane proteins 

and bacitracin export permease). Therefore, it might be possible for this protein to act as 

a transporter. The predicted loop then might act as a filter for cationic substances (ions 

or molecules) as it has been shown that the predicted loop acts as a potassium selective 

filter in these ion channels.

Hypothetical transport proteins BF2680. RB4869. BT0500. CgI0590/cgQ683.

According to the Swiss-Prot database these proteins belong to the 

aspartate:alanine exchanger family. This protein family catalyzes a negative charge 

movement through the membrane. The loop predicted by TMLOOP in BF2680 and 

BT0500 is a a helix-in-tum-helix-out C1C chloride channel loop 1 like loop, which 

overlaps with the predicted TM 8 . The loop predicted in RB4869 and CgI0590/cg0683 is 

a helix-in-tum-loop-out potassium channel like loop, which overlaps with TM5 and 

TM7 respectively. BLASTP analyses o f these proteins showed distant relationships with 

ion channels such as the potassium channel and the cyclic nucleotide-gated cation 

channel, and also proteinS such as the aspartate/alanine antiporter and the aerobic C4- 

dicarboxylate transport protein (which contains two membrane dipping loops in its 

strucure). All these distant relationships might indicate the possible charged substance 

(ions or molecules) transport capacity o f  these proteins. It is believed that these proteins 

might have 2  membrane dipping loops in their structure, the first loop would correspond 

to that predicted in RB4869 and CgI0590/cg0683 and the second loop would 

correspond to the loop predicted in BF2680 and BT0500. Both loops would be three- 

dimensionally associated in a similar fashion as the selectivity filters for C1C chloride 

channels, however it is not possible to elucidate what type o f ligands these proteins 

would transport.
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H ypothetical protein  M J0523

TMLOOP predicted a helix-in-tum-helix-out loop 4 C1C chloride channel like 

loop. This loop has been suggested to link the repeated halves o f  C1C chloride channel 

w ithin each monomer and make contacts with each other at the interface between 

monomers (Estevez and Jentsch, 2002). The predicted loop overlaps with the predicted 

TM3 and BLASTP analysis shows a distant relationship with C1C Chloride channels. 

As the predicted loop is not linked directly to the function o f C1C chloride channels but 

indirectly by stabilizing the protein, it is difficult to validate this membrane dipping 

loop. BLASTP analyses support the prediction made by TMLOOP. According to the 

InterPro database (M ulder et al., 2005), this protein belongs to the IPR011311, which 

contains small membrane proteins that are predicted to be transmembrane subunits o f 

multi-subunit membrane-bound [NiFe]-hydroenase Eha complexes, the predicted loop 

might then be important for the assembly o f the protein complex by linking different 

subunits in the membrane.

Hypothetical protein slr0753

This protein contains a predicted helix-in-tum-helix-out loop 1 C1C chloride 

channel like loop, which ovelaps with predicted TM11. According to the Swiss-Prot 

database, this protein belongs to the divalent anion: sodium symporter family. Members 

o f this family transport organic di- and tricarboxylates o f  the K reb’s cycle, 

dicarboxylate amino acid, inorganic sulphate and phosphate through the membrane 

(Saier and colleages, Division o f Biolgical Science at UC San Diego, 

http://www.tcdb.orgA). BLASTP analyses showed links to other divalent anion:sodium 

symporters, therefore this protein might use the predicted membrane dipping loop as a 

selective filter to transport negatively charged substances (ions or molecules) through 

the membrane.

Inner membrane protein vccA

TMLOOP has detected a helix-in-tum-helix-out loop 1 sodium:dicarboxylate 

symporter protein in this protein, which corresponds to TM1 according to the 

topological model o f  the protein in the Swiss-Prot database. No function has been
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determined yet for this protein but BLASTP analyses link this protein to transporters

such as metal transporters, lipoprotein transporters, permeases, amino acid transporters,

ion channels and the sodium:dicarboxylate symporter supporting the prediction made by

TMLOOP and the assumption made by Saier and colleagues (Saier and colleages,

Division o f  Biolgical Science at UC San Diego, http://www.tcdb.orgA) that postulate

that this protein could act either as a transporter or a receptor. The finding made by

TMLOOP also supports this functional prediction and emphasizes its transport

properties.

Hypothetical 61.2kDa protein in APM2-DUR3 intergenic region precursor

TMLOOP predicted a helix-in-loop-out potassium channel like membrane 

dipping loop in the region between predicted TM3 and TM4. BLASTP analysis showed 

distant relations with cationic transporters such as ammonium transporters, mucolipin 

and calcium channels. Therefore, it m ight be possible that this hypothetical protein 

contains a membrane dipping loop similar to the membrane dipping loop found in 

potassium channels whose function would be to act as a selectivity filter for cationic 

substances (ions or molecules).

Inner membrane metabolite transport protein vhiE

This protein belongs to the major facilitator superfamily and the sugar 

transporter family. TM LOOP predicted a helix-in-loop-out potassium channel like 

membrane dipping loop in the region corresponding to TM 8 . BLASTP analyses showed 

links to proton cotransporters and organic cation transporters. Therefore, it might be 

possible that the predicted membrane dipping loop acts as a selectivity filter for cationic 

substances (ion or molecule) using a similar mechanism as the potassium channel.

Hypothetical protein vpnP

TMLOOP predicted a helix-in-loop-out potassium channel like membrane 

dipping loop in the region corresponding to TM3. The Swiss-Prot database linked this 

protein to the InterPro domain IPR002528, which belongs to the multi antimicrobial 

extrusion family whose function is to mediate resistance (drug/sodium antiporters) to a
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wide range o f cationic dyes, fluroquinolones, aminoglycosides and other structurally

diverse antibodies and drugs. BLASTP analyses showed that the protein is distantly

related to cation cotransporters and potassium channels and therefore it could be

possible that this protein contains a membrane dipping loop similar to that found in

potassium channels.

Putative inorganic phosphate cotransporter

According to the Swiss-Prot database this protein belongs to the major facilitator 

superfamily and the sodium/anion cotransporter family. TMLOOP predicted a helix-in- 

tum -helix-out loop 1 C1C chloride channel like loop in the region corresponding to the 

extramembraneous loop between TM 6  and TM7. BLASTP analysis revealed distant 

relationships with other sodium:anion cotransporters such as sialin, which was 

previously predicted by TMLOOP as a protein containing a similar membrane dipping 

loop.

Phosphate transport system permease protein pstC-1

According to the Swiss-Prot database this protein is part o f  a complex and its 

function is probably related to the translocation o f the substrate across the membrane. 

TMLOOP predicted a helix-in-tum-helix-out loop 1 C1C chloride channel like loop in 

the region corresponding to the amino-terminus. Considering the transport activity o f 

the protein, the essential role o f  membrane dipping loops as selectivity filters in the C1C 

chloride channel, and the anionic character o f  the ions transporter, it is possible that this 

protein type contains a membrane dipping loop.

ATP synthase C chain

TMLOOP has predicted two different membrane dipping loops in the region 

corresponding to the first transmembrane region in different Swiss-Prot files. These 

loops are the helix-in-tum-helix-out loop 1 C1C chloride channel like loop and the helix- 

in-tum-loop-out potassium channel like loop. Although the predicted loops are 

contradictory in terms o f  the nature o f  the ligand transported through the membrane, this 

might indicate a novel membrane dipping loop. This protein catalyzes the transport o f
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protons across the membrane therefore this possible “novel” membrane dipping loop

might be involved in filtering the protons in a similar way as C1C chloride channels and

potassium channels.

Pyrophosphate-energized proton pump

This protein belongs to the proton translocating pyrophosphatase family. 

Phylogenetic studies led to a subclassification o f this protein family (Belogurov et al., 

2002). The first protein subfamily is composed o f potassium independent proton 

pyrophosphatases, which contain a conserved cysteine (Cys 222) whereas the members 

belonging to the second subfamily are potassium dependent and contain a conserved 

cysteine in position 573 instead o f  position 222. It is not known whether potassium is 

transported through the membrane (Saier and colleages, Division o f  Biolgical Science at 

UC San Diego, http://www.tcdb.orgA. According to the Swiss-Prot file this protein 

belongs to the second protein subfamily and therefore is potassium dependent. 

TM LOOP predicted a helix-in-tum-loop-out potassium channel like loop, this 

prediction is supported by the fact that the protein has been annotated as potassium 

dependent and the BLASTP analysis, which showed a distant relationship with a 

probable potassium channel. Further experimental analyses should focus on the 

validation o f the predicted loop and a possible interaction between the residue in 

position 222, Cys573 and the predicted structural m otif located in predicted TM5.

Glutamate receptor precursor

TMLOOP predicted a helix-in-tum-loop-out potassium channel like loop in the 

region between predicted transmembrane TM2 and TM3. This protein belongs to the 

glutamate-gated ion channel family o f neurotransmitters receptors. The transport 

classification database (Saier and colleages, Division o f Biolgical Science at UC San 

Diego, http://www.tcdb.orgA postulates a distant relationship between this family and 

the ligand-gated ion channel family (TC 1.A.10). These proteins are highly permeable 

to monovalent cations and show differential permeability for calcium ions. The Swiss- 

Prot database contains a InterPro link to the IRR001622, which points to the potassium 

channel pore validating the prediction made by TMLOOP.
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Probable sodium:proton antiporter 3

This protein belongs to the sodium : proton exchanger family and the Swiss-Prot 

database links this protein to the low-affinity sodium (potassium, lithium and caesium) : 

proton antiporter. TMLOOP predicted a helix-in-tum -loop-out potassium channel like 

loop in the region corresponding to the predicted TM9. Saier and colleagues (Saier and 

colleages, Division o f  Biolgical Science at UC San Diego, http://www.tcdb.orgA 

suggest that TM4 and TM9 contain essential residues for the binding o f  both drugs and 

cations. BLASTP analyses also supported the prediction made by TMLOOP as it was 

found that potassium : proton antiporters were distantly related to this protein.

Translocation associated membrane protein

This protein is required for the translocation o f secretory proteins across the 

membrane o f  the endoplasmic reticulum. TMLOOP predicted a helix-in-tum-loop-out 

potassium channel like loop in the region corresponding to predicted TM7. BLASTP 

analyses showed distant relationships with a sodium and chloride dependent 

neurotransmitter transporter and a probable potassium transporter, therefore it might be 

possible for this protein to contain a membrane dipping loop similar to that found in 

potassium channels.

Ferrous iron transport protein B

This protein catalyzes transport o f ferrous iron through the membrane using 

energy obtained from ATP hydrolysis. TMLOOP predicted a helix-in-tum-loop-out 

potassium channel like loop in the region corresponding to TM5. Although this protein 

type topology resembles that o f an a-helical membrane protein containing 13 predicted 

transmembrane regions, its closest crystallized membrane protein relative is the iron 

(III) dicitrate transport protein fecA, which belongs to the porin structural type (PDB 

accession code: 1K M 0) where a P-barrel structure crosses the lipidic bilayer acting as a 

pore. As a general mechanism for the selectivity o f porin proteins, a structural m otif 

(either composed o f  a-helices or P-sheet) is usually placed within the p-barrel pore. A 

multiple alignment was performed using the sequence belonging to the predicted 

membrane dipping loop and the whole sequence belonging to the iron(III) dicitrate
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transport protein fecA. The alignm ent showed that the predicted dipping loop m otif

aligned with a part o f  the m otif located w ithin the protein pore (figure 5.10). Therefore,

it could be possible that the region predicted by TM LO O P is involved in ligand binding

and considering that m em brane dipping loops act as selectivity filters it is also

em inently possible that the ferrous iron transport protein B contains a m em brane

dipping loop in the predicted location.

Figure 5 .10. Structure o f  the iron (111) dicitrate transport protein fecA . The region highlited in red 
corresponds to the region aligned to the predicted membrane dipping loop in the ferrous iron transport 
protein B.

Im m unoglobulin A1 protease precursor

A ccording to functional annotation in the Sw iss-Prot database, this protein is a 

zinc m etalloprotease that cleaves im m unoglobulin  A l. TM LO O P predicted a helix-in- 

tum -loop-out potassium  channel like loop in a region (average pattern starting point: 

1510) far from the predicted transm em brane regions according to the Sw iss-Prot 

database (106-154). However, the topology prediction softw are IREN E (Bologna 

B iocom puting Group, http://w w w .biocom p.unibo.it/) and TM PR ED  (H ofm ann and 

Stoffel, 1993) classified the region corresponding to the predicted m em brane dipping 

loop as a transm em brane region. BLA STP analyses showed distant relationships with a 

sodium /potassium /calcium  exchanger 1 therefore it m ight be possible that this protein 

type uses a m em brane dipping loop sim ilar to that found in potassium  channels to act as 

a selectivity filter for zinc or other cations.
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H ypothetical protein  C1F7.03 in chrom osom e I

According to the Swiss-Prot database this protein is a polycystic kidney disease- 

related ion channel 2. TMLOOP predicted a helix-in-tum -loop-out potassium channel 

like loop in the region corresponding to the transmembrane region 4. The GO (gene 

ontology) database (Ashbumer et al., 2000) contained three annotation matches to 

calcium channels (0005262, 0006816, 0019722), likewise BLASTP analyses showed 

distant relationships to other cation transporters. As in previous cases, it could be 

possible that this protein developed a structural m otif similar to the membrane dipping 

loop found in potassium channels.

Mucolipin-2

This proteins belongs to the polycystin subfamily and the voltage gated ion 

channel superfamily according to the Swiss-Prot database. TMLOOP predicted a helix- 

in-tum-loop-out potassium channel like loop, which could be possible as both the 

InterPro database (IPR002111 and IPR005821) and BLASTP analyses showed 

relationships w ith cation channels.

Voltage-dependent calcium channel alpha-1 subunit

According to TMLOOP, 19 members belonging to this protein type contain a 

helix-in-tum -loop-out potassium channel like loop in the region corresponding to a 

predicted transmembrane region in the Swiss-Prot database. BLASTP analyses showed 

distant relationships to other cationic channels (calcium and sodium). Likewise the 

skeletal muscle calcium channel alpha-1 subunit (Swiss-Prot accession code P22316) 

showed a link to the InterPro database potassium channel group (IPR003091). These 

facts indicate a plausible membrane dipping loop acting as a selectivity filter in the 

voltage-dependent calcium channel alpha- 1 subunit.

Hypothetical protein AF2214

This is the only protein not predicted by the collective m otif method, but the 

single m otif method. This protein was predicted by TMLOOP as a protein containing a
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helix-in-tum -helix-out loop 4 C1C chloride channel like loop, which has been proposed

to link the repeated halves o f C1C chloride channel within each monomer and make

contacts w ith each other at the interface between monomers (Estevez and Jentsch,

2002). BLASTP analysis showed a distant relationship with a proton : chloride

exchange transporter CICa. Therefore, it might be possible that this hypothetical

membrane protein contains a similar membrane dipping loop.

5.4 Conclusions

TM LOOP has proven to be a useful bioinformatics tool for the prediction o f 

membrane dipping loops. This software was used to explore the disadvantages o f  the 

single m otif method and a variation o f  this method, named the collective m otif method, 

was designed to avoid the inherent limitation o f the single m otif method to detect 

distantly related structural motifs. Evaluation o f the TMLOOP software using both the 

single m otif method and the collective m otif method showed that the collective m otif 

method was a more flexible approach where structural motifs containing small 

variations o f the discovered pattern with the highest support can be co-detected. Further 

evaluation showed that TMLOOP predicted membrane dipping loops with high 

sensitivity and specificity, and when applied to the Swiss-Prot database using a set o f 

default parameters the collective m otif method was found to maximize the sensitivity 

and specificity o f  the predictive tool. TM LOOP predicted 76 possible membrane 

dipping loops not detected previously by other methods leading to the potential for 

further experimental research on these possible membrane dipping loops.
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CHAPTER 6 

TMDEPTH, combining sequence and topological information to 

extract features of polytopic membrane proteins 

6.1 Introduction

6.1.1 The folding process of a-helical membrane proteins

The lipid environment surrounding integral membrane proteins is characterized by 

particular physicochemical properties, which constrain the spatial arrangement of 

membrane proteins and restrict their structural diversity. The basic structure of polytopic 

membrane proteins is characterized by a bundle o f hydrophobic a-helices that traverse the 

membrane, from one extramembraneous side to the opposite side. Polytopic membrane 

proteins are directly involved in the majority o f the functions carried out in the membrane 

yet these proteins remain broadly similar in terms of their basic structure. Therefore, 

extensive research has been carried out to elucidate the principles governing the folding 

process o f a-helical membrane proteins and how a constrained arrangement of hydrophobic 

a-helices support the wide range o f biochemical activities carried out by helical membrane 

proteins.

The folding process o f a-helical membrane proteins has been conceptualized as a 

two stage process (Popot and Engelman, 1990) where first hydrophobic polypeptide 

segments form independently stable transmembrane a-helices across the membrane and 

second, the helical segments assemble laterally to form the native structure of the protein. 

Different factors have been found to promote the association o f helices within the lipid 

bilayer: i) prosthetic groups located in the membrane (e.g. retinal, chlorophyll, heme groups 

and carotenoids) (Moriki et al., 2001, Schlessinger, 2002), ii) differential effects o f lipids, 

such us membrane lipid composition, lipid packing or interactions between specific lipid
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groups and the membrane protein (Popot and Engelman, 2000), iii) the length and folding 

o f extramembraneous loops, which might constrain the location o f  contiguous helices and 

their orientation (Allen et al., 2001, Kim et al., 2001), iv) helix packing residues and motifs, 

which promote interhelical contacts (Adamian and Liang, 2001, Choma et al., 2000, 

Dawson et al., 2003, Gratkowski et al., 2001, Langosch et al., 1996, Zhou et al., 2000, 

Zhou et al., 2001, Dawson et al., 2002, Russ and Engelman, 2000, Senes et a l , 2000, 

Adamian and Liang, 2002, Liu et al., 2002, Eilers et al., 2002, Adamian et al., 2003, 

Walters and DeGrado, 2006, Lemmon et al., 1992) and v) steric clashes at helix-helix 

interfaces and restrictions o f side-chain rotamers can constrain the space of interacting 

helices (Popot and Engelman, 2000).

Transmembrane helices have been exhaustively studied in order to characterize 

these segments and create bioinformatics tools that could accurately predict the 

transmembrane regions o f a polytopic membrane protein and interacting helices in the 

native state. Compositional analyses have shown that a-helices located in the membrane are 

mainly hydrophobic. The hydrophobic residues Ala, lie, Leu and Val constitute 34% to 

50% of all residues in a-helical membrane proteins (Ulmschneider and Sansom, 2001, 

Senes et al., 2000) whereas strong polar residues (Gin, Asn, His, Asp, Glu, Arg and Lys) 

are poorly represented (Eilers et al., 2000, Tourasse and Li, 2000). The polar residues Ser 

and Thr are the only exception as they have been found to account for approximately 7% of 

the residues (Curran and Engelman, 2003). Although Ser and Thr can not promote helix 

packing by themselves, motifs o f four to five Ser and Thr residues can drive strong helix 

interactions by side-chain hydrogen bonds that function cooperatively to create a strong 

helix-helix association (Dawson et al., 2002). Aromatic residues have been shown to have a 

high propensity to face the lipid head-groups near the boundary between the hydrophilic 

and hydrophobic regions o f the membrane forming the so-called “aromatic belt” (Pilpel et 

al., 1999, Monne et al., 1999). Gly is frequently found in the transmembrane regions, the 

interhelical associations o f this residue are probably the best characterized as glycine has 

been shown to be an essential residue in promoting helix-helix packing. Mutagenesis 

analyses o f the glycophorin A (GpA) and the ToxR proteins showed a right-handed motif 

composed o f seven residues, LIxxGVxxGVxxT, which appeared as a dimerization motif
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(Langosch et al., 1996, Lemmon et al., 1992). Further mutagenesis analyses in the major 

coat protein (MCP) from bacteriophage (Deber et al., 1993) featured a GxxxG dimerization 

motif, which was shown to mediate strong helix association for several different TM 

domains (Russ and Engelman, 2000) and was shown to be the most occurring helix motif 

found (Senes et al., 2000). Interestingly, this motif has also been associated with J3- 

branched residues located at i+1 positions relative to the Gly and it was proposed that the 

groove and the ridge created by the Gly and the p-branched residues might facilitate the 

extensive contacts between helices in a “ridge into grooves” fashion (Senes et al., 2000, 

MacKenzie et al., 1997). The Gly residues found in GxxxG motif, also called GG4, can 

also be replaced by small residues such as Ala and Ser ([small]xxx[small] motif). These 

small residues were proposed to reduce the steric hindrance o f helical backbones, which 

might facilitate the formation o f hydrogen bonds (Senes et al., 2001). Interhelical hydrogen 

bonds have been proposed to be a major factor during the assembly o f membrane proteins, 

the low dielectric constant o f the membrane causes an increase in the density o f the donor 

and acceptor atoms, which in turns increases coulombic interaction between the partial 

effective charges on the donor and the acceptor atoms (Shan and Herschlag, 1996). 

Therefore, hydrogen bonds in non-aqueous environments enhance the stability o f 

interactions between helices and minimize the energy penalty imposed when polar and 

ionizable atoms are located in the membrane. Further research showed that nearly every 

helix in the membrane is connected by at least one hydrogen bond to its closest neighboring 

helix and that these pair o f helices were packed tighter than those pairs of helices not 

connected by hydrogen bonds (Adamian and Liang, 2002).

Research (Agre and Kozono, 2003, Eilers et al., 2002, Adamian and Liang, 2001, 

Walters and DeGrado, 2006) has also been focused on the discovery o f spatial interhelical 

motifs by analyzing the spatial coordinates o f the crystallized membrane proteins deposited 

in the Protein Data Bank (Berman et al., 2000). Adamian and co-workers (Adamian and 

Liang, 2001) analyzed the propensity of residues for being located in voids and pockets, 

which might allocate ligands or prosthetic groups such as heme or water molecules or allow 

conformational changes under mechanical forces. Phe, Trp and His residues were found to 

have the highest propensity to be in such spatial domains whereas small residues (Ser, Gly,

194



Chapter 6
TMDEPTH. feature extraction combining sequence and topology in polytopic membrane proteins

Ala, and Thr) had the lowest propensity. The propensities of single residues and o f pairs of 

residues for interhelical contacts was also computed and it was found that soluble and 

membrane proteins contained different propensities, which might reflect the constraints of 

the different environments surrounding soluble and membrane proteins and the different 

folding mechanisms used. Disulphide bonds are important for maintaining the stability of 

soluble proteins but are not common in membrane proteins. There is a lack o f correlation 

between soluble and membrane proteins in the propensity scale o f residues involved in 

interhelical contacts. Helices belonging to membrane and soluble proteins do not share 

common pairs o f residues with a high degree o f helical interfacial pairwise propensity. The 

atomic polar interactions found in membrane proteins are more diverse in membrane 

proteins than in soluble proteins, which include pairs between charged residues (salt 

bridges), polar residues and between charged and polar residues whereas in soluble proteins 

the only interhelical atomic contacts o f polar atoms were found in pairs o f charged residues 

(salt bridges). Helical backbone-backbone interactions were also found to be more common 

in membrane proteins than in soluble proteins. This conclusion was also supported by more 

recent research (Eilers et al., 2002), which postulated that the higher divergence o f residues 

found in the helical interfaces might reflect the relationship between structure and function 

in membrane proteins where the functional sites are often found in the interior o f the 

molecule, whereas in soluble proteins the functional sites are mostly found on the protein 

surface, either in clefts or grooves. This research also highlighted the high propensity o f 

small residues for packing in helix interfaces and proposed that two general spatial motifs 

mediated the association between helices in the membrane. The first m otif described as 

“knobs-into-holes”, first described in soluble coiled coils (Langosch and Heringa, 1998), is 

a general m otif used by both soluble and membrane proteins, which mainly relies on four 

residues (Leu, Ala, lie and Val). This m otif is exemplified by the heptad m otif known as 

the leucine zipper LxxLxxxLxx. The second type o f motif includes small and polar 

residues, which allow the backbones o f interacting helices to closely approach each other, 

the GG4 m otif explained earlier exemplifies this type o f loop. However, further motifs have 

also been described: i) the “serine zipper”, typical o f cytochrome c oxidases, involves two 

hydrogen bonds between the side chain o f a serine in one helix and the carbonyl oxygen or 

an amide hydrogen o f the polypeptide backbone corresponding to another serine from a
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different helix and ii) the “polar clamp”, typical o f GPCRs, is composed o f three residues 

located in two interacting helices where the side chain o f a residue is “clamped” by two 

hydrogen bonds with either two side chains, a side chain and a main chain oxygen or 

nitrogen, or two main chain oxygen or nitrogen atoms o f residues located at positions i , i+4 

in the opposite helix (Adamian and Liang, 2002). Further work was focused on the analysis 

o f higher-order interhelical spatial interactions involving three residues and two 

transmembrane helices (Adamian et al., 2003), several triplets were found specifically in 

membrane proteins. Approximately one third o f these triplets could potentially involve 

hydrogen bonds, which supports the importance o f this type o f interaction in helix packing. 

The triplets showed a preference for Gly and Ala residues and unexpectedly Met was also 

frequently found in these spatial motifs. Likewise, some o f the motifs over-represented in 

membrane proteins such as the GG4 m otif showed strong correlation with triplets. Recent 

work (Walters and DeGrado, 2006) analyzed a library o f pairs o f interacting 

transmembrane helices and clustered the helical pairs according to their three-dimensional 

similarity. Interestingly, five different structural clusters accounted for three quarters o f the 

clustering space. The top four clusters were defined as “antiparallel GAS iefr, “antiparallel 

GAS right”, “parallel GAS iefr and “antiparallel GAS right” (where the first term refers to the 

orientation of one helix relative to the remaining helix, the second term refers to the 

residues involved and the third term refers to the crossing angle between helices). These 

motifs are in accordance with statements made in previous research, which highlighted the 

high propensity o f small residues for being in the helix-helix interfaces and the importance 

o f these residues to promote tight helix packing. As with Adamian and co-workers, motifs 

previously discovered were found to be part o f the motifs clustered (e.g the GG4 m otif was 

found to be part o f the “parallel GAS right” motif).

6.1.2 Topology prediction methods for a-helical membrane proteins

The different research carried out to understand the folding and packing mechanism 

o f membrane proteins has the final aim of accurately predicting the transmembrane regions 

in membrane proteins and elucidate the helical relationships within the membrane. While 

the three dimensional structural prediction o f membrane proteins still needs further
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developments, the accuracy o f predicting the transmembrane region is increasing with the 

development o f new and more sophisticated predictive tools. Since the 1980’s, the number 

o f computational methods used to predict transmembrane regions has been gradually 

increasing and more than 35 different methods have been reported. In general terms, these 

methods could be classified as methods based on i) propensities such as hydrophobicity 

scales, ii) multiple sequence alignments and iii) consensus methods, however classification 

o f particular methods into these three categories is not always straightforward. The first 

predictive tools were based on hydrophobic scales (Claros and von Heijne, 1994, Degli 

Esposti et al., 1990, Kyte and Doolittle, 1982, Ponnuswamy and Gromiha, 1993, von 

Heijne, 1992), simultaneously other methods were developed based on statistical analyses 

(Klein et al., 1985) and parameters and propensities such as positional propensities, 

physicochemical parameters (Efremov and Vergoten, 1996, Gromiha, 1999, Stoffel et al., 

1993, Cserzo et al., 1997) or a combination o f hydrophobicity and other propensities 

(Hirokawa et al., 1998, Lohmann et al., 1996). Other methods were based on multiple 

sequence alignments to predict transmembrane regions (Jones et al., 1994, Persson and 

Argos, 1994, Rost et al., 1996, Rost et al., 1995). Empirically designed rules (von Heijne 

and Gavel, 1988), compositional analyses (Fariselli and Casadio, 1996, Persson and Argos, 

1997, Persson and Argos, 1996) were used to refine the prediction o f transmembrane 

regions by predicting also the orientation o f integral membrane proteins. Data mining 

techniques such as neural networks (Aloy et al., 1997, Casadio et al., 1996, Lohmann et al., 

1996, Rost et al., 1995) and hidden Markov models (Kahsay et al., 2005, Kail et al., 2004, 

Krogh et al., 2001, Sonnhammer et al., 1998, Tusnady and Simon, 2001, Tusnady and 

Simon, 1998, Viklund and Elofsson, 2004, Xu et al., 2006, Zhou and Zhou, 2003, Martelli 

et al., 2003) have been successfully applied for the prediction o f transmembrane regions. 

Evaluations o f the predictive tools described above have shown that accuracy o f prediction 

o f the topology o f  helical membrane protein ranks between 60 to 70% (Chen et al., 2002, 

Ikeda et al., 2002, Kali and Sonnhammer, 2002, Moller et al., 2001) however no recent 

evaluations have been carried out to test the predictive performance o f the latest algorithms. 

All the evaluations performed have described the better performance o f predictive methods 

based on hidden markov models and TMHMM (Sonnhammer et al., 1998, Krogh et al., 

2001) has been described as the best performing algorithm in two out o f four evaluations
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(Moller et al., 2001, Kali and Sonnhammer, 2002). Ikeda and colleagues (Ikeda et al., 2002) 

compared each single method evaluated against a consensus prediction method and showed 

that by performing consensus prediction the accuracy o f the prediction could be increased 

by up to nine percentage points. Consensus prediction methods have become more popular 

in recent years and since the first consensus method was developed for the prediction of 

helical membrane proteins in 1994 (Parodi et al., 1994) and increasing number o f tools 

have been developed with the same purpose (Amico et al., 2006, Arai et al., 2004a, 

Nikiforovich, 1998, Nilsson et al., 2000, Nilsson et al., 2002, Promponas et al., 1999, 

Taylor et al., 2003, Xia et al., 2004, Ikeda et al., 2002).

6.1.3 The transmembrane domain-to-function approach

The recent developments in topology predictions have opened a new protein space 

to be analyzed. Topology and function have been proposed to be directly related, Liu and 

colleagues (Liu et al., 2002) found that among transporters and channels a 12 

transmembrane helix bundle is preferred and the 7TM receptor superfamily probably 

represents the best example o f the relationship between topology and function. Shimizu and 

coworkers have used the topological space o f membrane proteins to extract binary patterns 

and classify and identify function, reporting promising results (Inoue et al., 2004, Sugiyama 

et al., 2003). However, these results are based upon classification o f the training set and no 

evaluation of their method (i.e jack-knife test or x-fold cross-validation) has been reported 

yet. Further research carried out by Shimizu and coworkers showed that clustering the 

topological space o f membrane proteins could improve the annotation o f uncharacterized 

membrane proteins compared to conventional clustering based on sequence similarity (Arai 

et al., 2004b). However, the clustering method was not evaluated using experimentally 

characterized membrane proteins. Despite the direct relationship between topology and 

membrane protein function, prediction o f specific membrane protein functions by 

considering only topological information is a difficult task if the protein sequence is to be 

ignored. For instance, transporters are believed to require a minimum o f approximately 6 

transmembrane regions to form a pore through which molecules and ions can go through 

and as mentioned above the 12 transmembrane helix bundle is preferred by this
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superfamily. Based on topological information it might be possible to predict these 

transporters but describing the type o f transporter or the corresponding ligand is beyond the 

scope o f methods based solely on topological information. It is believed that by combining 

sequence and topological information the resulting predictive tools should be more reliable 

and informative.

Transmembrane regions in membrane proteins often contain functionally important 

sites such as ligand binding sites (e.g. potassium channels and aquaglyceroporins) and sites 

promoting conformational changes (e.g. proline kinks in GPCRs). These motifs are often 

composed o f various residues located in different transmembrane regions and the detection 

o f these motifs in sequence has proven to be extremely difficult. Previous work showed that 

functional clusters o f crystallized membrane proteins showed specific patterns o f 

interhelical associations o f residues located at a similar depth (Lasso, Honours Thesis, 

2001). Motifs such as those discovered in membrane dipping loops showed residues 

involved in ligand binding sites and molecular gates whose interactions with other residues 

at a similar depth that have been found experimentally to be critical for the correct 

functionality o f  the membrane proteins (Chapter 4). The crystallized structure o f the 

calcium pump o f the sarcoplasmic reticulum showed two calcium binding sites, the first 

calcium binding site (figure 6.1, cluster in red) was composed o f Asn768, Glu771, 

Thr799, Asp800 and Glu908 and the second binding site (figure 6.1, cluster in green) was 

composed o f Val304,Ala305, Ile307, Glu309, Asn796 and Asp800 (Toyoshima et al., 

2000). As shown in figure 6.1 residues forming both binding sites were clustered at a 

similar depth in the membrane and important associations were found between those 

residues involved in the binding site (e.g. Asn796-Ala305).
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Figure 6.1 Structure o f  the calcium pump o f  the sarcoplasmic reticulum. Amino acids 
involved in the calcium binding site were highlighted in red for the binding site I and in 
green for the binding set II.

Likewise, these motifs not only can guide the molecular function o f  a membrane 

protein but also determine its subcellular location. Subcellular location o f proteins can be 

directed by two different mechanisms: i) targeting signals, which are linear motifs that 

target a specific organelle and ii) signal patches, which are three-dimensional motifs 

composed o f residues located in different positions in the amino acid sequence but 

interacting spatially. W hile different targeting signals have been reported signal patches 

still remain to be described.

These motifs, if found to be in the transmem brane space o f  the membrane protein, 

must be composed o f residues located at a similar depth in the membrane. Following this 

principle, it is possible to approximate pairs o f residues potentially interacting (if such a 

pair is composed o f residues located at a similar depth) based on the outcom e o f topology 

predition methods and the amino acid sequence.
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6.1.4 The TMDEPTH approach

TMDistance (Togawa, PhD Thesis, 2006) was implemented to compute the number 

o f interhelical associations between residues located in different transmembrane regions in 

crystallized a-helical membrane proteins. This algorithm based its calculation upon the 

inter-atomic distances between residues and a certain threshold specified by the user. 

Comparison o f interhelical associations between functional clusters o f crystallized 

structures showed that these clusters contained specific patterns o f interhelical associations, 

which involved pairs o f residues located at a similar depth (Lasso, Honours Thesis, 2001). 

Based on these results, a new method was implemented to detect pairs o f residues located at 

a similar depth in the membrane based solely on the amino acid sequence and the topology 

o f the a-helical membrane protein. TMDEPTH extracts topological information contained 

in the SwissProt database and predicts the orientation o f the N-terminus based on a 

variation o f the positive-inside rule (von Heijne and Gavel, 1988). The membrane thickness 

is approximated based on the shortest helical structure, which transverses the membrane 

and each residue in the membrane is given a depth value based on the estimated membrane 

thickness, the length o f the corresponding transmembrane helix and its position in the given 

segment. According to this method, two residues are associated (which does not imply a 

physical interaction) when their corresponding depth values are within a certain range (1.5 

A). Following this assumption, the depth space is then searched and pairs o f residues with 

similar depth values and belonging to different transmembrane regions (and pair o f  residues 

belonging to a different half o f a given membrane dipping loop) are computed (figure 6.2). 

All computed interhelical associations are stored in a 20x20 matrix which describes all 

possible interhelical associations (210 associations) within the membrane.

The depth associations summarize the interhelical packing patterns within the 

transmembrane regions o f polytopic a  helical membrane proteins. These patterns describe 

conformational arrangements such as ridge-groove arrangements, spacer motifs, regions of 

high flexibility and salt bridges, and consequently describe a wide range o f biologically 

important features. Such features can range from structural domains to sites involved in
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triggering conformational changes, lipid binding, prosthetic group binding, ligand binding 

or active sites that catalyze a biochemical reaction.

Matrices obtained with TMDEPTH lead to novel research in the membrane protein 

field where sequence and topological information are combined. These matrices were 

mined using different data mining methods in order to develop predictive tools capable o f  

predicting the subcellular location (C hapter 7) and function of  membrane proteins 

(C hapter 8 ).

TM1 17 res TM2 18 res TM3 15res TM4 22 res
Figure 6.2. Schematic representation o f  the TMDEPTH algorithm. The figure show s a hypothetical protein 
com posed o f  four transmembrane regions. In order to estimate the membrane thickness the shortest helix with 
length > 14 residues is considered (in this example, TM3). This transmembrane region is considered to traverse 
the membrane perpendicular to the lipid face. The membrane thickness corresponds to the number o f  residues 
contained in the shortest helix (15 residues in TM3) multiplied by the intrahelical distance along the helical axis 
between contiguous residues (1 .5A). Longer transmembrane helices (TM1, TM2 and TM4) do not traverse the 
membrane perpendicular to the lipid faces but are tilted in order to place the longer hydrophobic region in the lipid 
bilayer. Therefore, the longer the helix the more acute the angle between the membrane normal axis and the 
helical axis o f  the transmembrane region. TM4 is the longest transmembrane region and needs to form a more 
acute angle with the membrane normal than TM1 and TM2 in order to accommodate the 22 residues contained. 
Based on the computed model each residue in the membrane is given a depth value which is estimated based on 
the membrane thickness, the length o f  the corresponding transmembrane region and the position o f  the 
corresponding residue in the helix. TMDEPTH computes the interhelical associations o f  pairs o f  residues located 
at a similar depth in the membrane. This figure illustrates the computed associations for the fifth residue located in 
TM3 (residue highlighted in red). This residue has a depth value o f  3.2 A, TMDEPTH sets an upper and a lower 
range (± 1.5A, in green) and all residues located in other transmembrane regions (TM 1, TM 2 and TM 4) whose  
depth values are within the depth range (1.7A -4.7A ) (residues highlighted in black) are assumed to form a 
potential association with the fifth residue o f  TM3 (residue highlighted in red). This process is iteratively repeated 
for all residues in the membrane and all associations are stored in a 20x20 matrix.
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6.2 Algorithm development

TMDEPTH was implemented to load local text files corresponding to proteins 

contained in the Swiss-Prot database and to report the percentage o f interhelical 

associations in a specific format allowing further data mining analyses with different 

programs.

The algorithm contains seven different steps:

•  Extraction of information from the Swiss-Prot like text file

• Orientation prediction

• Calculation o f membrane depth

• Calculation o f depth for each residue located in the membrane

• Calculation o f interhelical associations

• Data standardization and extraction o f other biological relevant information

• Report o f the extracted features in a specific format required by the user

6.2.1 Extraction of information from the Swiss-Prot like text file.

Once a Swiss-Prot like text file has been loaded into TMDEPTH, the software extracts 

specific information contained in the file. Some o f the extracted information is only used by 

TMDEPTH to report a general description o f the protein analyzed whereas other 

information is essential for the reporting o f potential interhelical associations of 

transmembrane regions. The protein descriptive information extracted by TMDEPTH is the 

protein ID, the protein accession number, the protein function description, the organism 

species and the classification o f the organism (contained in the statements under the tags 

“ID”, “AC”, “DE”, “OS” and “OC” respectively). The information required by TMDEPTH 

to calculate the interhelical associations are the amino acid sequence (contained in the 

statement with the tag “SQ”) and details describing transmembrane regions, which are 

found in the feature statements under the tags “FT TRANSMEM” and “FT 

MEMBLOOP”. The first tag corresponds to transmembrane regions consensually predicted
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by different transmembrane topology prediction programs used by curators working at the 

Swiss Institute o f Bioinformatics in Geneva, the second tag corresponds to membrane 

dipping loops (figure 6.4) predicted by TMLOOP and included in files by TMLOOP writer 

(Chapter 5).

Using the principles o f  object oriented programming and the extracted information the 

protein is divided into different objects (an object is an instance o f a class) based on four 

different classes (figure 6.3): i) the NH3'-terminus class, ii) the transmembrane class, iii) 

the loop class and iv) the COO'-terminus class. The NH3+-terminus and the COO'-terminus 

class can only have one object each but the transmembrane class must have as many objects 

as transmembrane regions (including predicted membrane dipping loops) described in the 

Swiss-Prot like text file and the loop class must have as many objects as loops connecting 

the transmembrane regions (that is one object less than the number o f transmembrane 

objects). The only transmembrane regions not considered by TMDEPTH as such are those 

with a length lower than 14 residues, which are instead included in the corresponding loop 

object. All annotated transmembrane regions (unless they are membrane dipping loops) are 

considered as helical structures that completely traverse the membrane (p-barrel membrane 

proteins needed to be filtered out at the protein annotation level when constructing the data 

set). Based on an experimental analysis (Monne et al., 1999) and a preliminary analysis 

carried out with crystallized membrane proteins (Chapter 5) the minimum length of a helix 

to completely tranverse the membrane was set to 14. Therefore short transmembrane 

regions were considered as false positives and included in the preceding loop object (figure 

6.3). The instances o f the classes described above contained their corresponding fragments 

o f the protein sequence, which is necessary to compute the orientation o f the protein and 

the potential interhelical associations in the lipid bilayer.
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NH3 coo-

transmembrane class

TM object 3TM object 2 TM object 4TM object 1

loop object 2 loop object 3loop object 1

loop c la s s

NH3+-terminus object 1

COO'-terminus object 1

COO'-terminus class

NH3+-terminus class

Figure 6.3. Schematic representation o f  the different structural domains o f  polytopic membrane proteins and 
how they are distributed into different classes. The transmembrane regions have been represented as 
rectangles whereas the loops connecting the transmembrane regions and the terminus regions have been 
represented as lines connected to the transmembrane regions. Each segment has been coloured based on the 
class type o f  the corresponding object. Segments colored in black, red, blue and green belong to the NH3 - 
terminus, transmembrane, loop or COO -terminus class respectively. One o f  the annotated transmembrane 
regions (blue rectangle) is not considered as such, since its corresponding length is lower than 14 and it is not 
believed to form a helical structure that completely traverses the membrane.

6.2.2 Orientation prediction

This step is based on the orientation prediction o f  each extramembraneous domain in 

respect o f  the NH3^-terminus (NH3'-terminus side and NH3+-terminus opposite side) and 

the orientation o f  the molecule based on the positive-inside rule, which postulates that the 

extramembraneous domains located in the cytosol o f  the cell are more positively charged 

than those on the external side (von Heijne and Gavel, 1988).

In order to orientate each extramembraneous domain with respect to the NH 3+-terminus 

it was necessary to examine the precedent transmembrane region. If the corresponding 

transmembrane region was annotated as “FT TRANSM EM ” and passed the minimum 

length condition the transmembrane region was assumed to completely traverse the
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membrane and the extramembraneous domain to be orientated would be located at the 

opposite side o f  the previous extramembraneous domain. If the transmembrane region was 

annotated as “FT M EM BLOOP” then the transmembrane region was considered as a 

membrane dipping loop whose C-terminal section returns to the same extramembraneous 

side as the N-terminal section o f  the loop (figure 6.4). In this case, the extramembraneous 

domain to be orientated would be located at the same side as the previous 

extramembraneous domain. Because the NHS'-terminus is the first extramembraneous 

domain it can not be orientated and it is used as a reference to orientate the remaining 

extramembraneous domains including the COO- terminus.

NH3+-terminus opposite side

NH.V^tenmnus side

Figure 6.4. Transmembrane regions annotated as “FT TRANSM EM ” (in blue) com pletely span the 
membrane whereas transmembrane regions annotated as “FT MEMBLOOP” (in red) partially traverse the 
membrane and return to the same extramembraneous side as the N-terminal half o f  the structural domain. 
Following this principle the orientation o f  each extramembraneous domain with respect to the NH3 -terminus 
was predicted.

The protein orientation was then computed using the positive-inside rule (von 

Heijne and Gavel, 1988), which showed that intracellular extramembraneous domains 

contained a higher ratio o f  positively charged residues to negatively charged residues than 

the extracellular extramembraneous domains.

For each extramembraneous side o f  the membrane proteins (NH3+-terminus side 

and N H 3+-terminus opposite side) the ratio o f  positively charged residues/negatively 

charged residues was calculated analyzing the corresponding sequences o f  each o f  the loop 

objects and the N H 3+-terminus and the COO’-terminus objects, built in the object oriented 

programming environment. The extramembraneous side found to have the highest ratio was

COOH
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considered to be in the cytosol. When the ratios o f both extramembraneous sides were 

identical a similar rule was applied to the number of positively charged residues. Therefore, 

the extramembraneous side with the highest number o f positively charged residues was 

considered to be located on the intracellular side. If  the number o f positively charged 

residues was still found to be the same for both extramembraneous sides by default, 

TMDEPTH assigned the NH3+-terminus side as the intracellular side.

Although the prediction o f the molecular orientation through the positive-inside rule 

is an interesting task to be executed by TMDEPTH, it is not essential for the calculation of 

interhelical associations o f residues located at a similar depth. Whether the 

extramembraneous sides are located outside or inside the cell is not relevant as it does not 

affect the associations of pairs o f residues located at a similar depth. On the other hand, a 

proper orientation o f the extramembraneous domains with respect o f the NH3+-terminus is 

important as a single mistake in the orientation o f one extramembraneous loops would 

affect the orientation o f all extramembraneous domains following the wrongly orientated 

loop (figure 6.5). Subsequently, for a pair o f residues predicted to be at a similar depth 

where one residue precedes the wrongly orientated loop and the other residue follows the 

wrongly orientated loop, the prediction would be a consequence o f the extramembraneous 

domain orientation error and would not reflect the real situation.
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NH3+

coo-

Figure 6.5. Example o f  an erroneous prediction o f  interhelical associations o f  residues located at a similar 
depth when a transmembrane region is wrongly annotated and subsequently all follow ing loops are wrongly 
orientated. 6.4a (left) Correct topological model o f  a hypothetical membrane protein, the white rhombus 
represents residues from different transmembrane regions located at a similar depth in the membrane. Figure 
6.5b (right) Incorrect topological model o f  a hypothetical membrane protein, due to an erroneous annotation 
o f  the second transmembrane region, the second loop is wrongly orientated. As a consequence tw o residues 
(red rhombus) were predicted to be at a similar depth whereas the appropriate residue at the corresponding 
depth belonging to the transmembrane region three was incorrectly located closer to the opposite side o f  the 
membrane.

6.2.3 Calculation of membrane thickness

The membrane thickness needs to be calculated in order to give depth values to all 

residues belonging to transmembrane regions. Transmembrane a-helices do not have 

similar length, instead the lengths o f  these helices can vary from approximately 15 to even 

40 residues. In order to accommodate these hydrophobic helices in the membrane the 

longer helices lie at a more acute angle through the membrane, increasing the length o f  

these helices that may be accommodated within the membrane. On the other hand shorter 

helices do not normally need to form acute angles with the membrane faces and they 

normally appear perpendicular to the membrane faces. TMDEPTH uses this fact to 

calculate the membrane thickness by using the shortest transmembrane region that 

completely spans the membrane (annotated as “FT TRANSM EM ”) and considering this 

segment running straight through the membrane. Therefore the membrane thickness can be 

calculated based on the number o f  residues found in the shortest transmembrane region 

spanning the membrane and the intrahelical distance between two contiguous residues (1.5 

A), i.e.

NH3+
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r=(«w -i)-i.5A (6.i)
where T is the thickness o f the membrane, n corresponds to the number o f residues and h 

corresponds to the shortest helix that completely traverse the membrane.

6.2.4 Calculation of depth for each residue located in the membrane

Once the membrane thickness has been estimated, TMDEPTH calculates the membrane 

depth o f each residue located in a transmembrane region by considering the length o f the 

corresponding a-helix, the estimated membrane thickness and the helical position o f the 

corresponding residue. Although the intrahelical distance between contiguous residues 

remains 1.5 A along the helical axis perpendicular to the faces o f the membrane, the 

intrahelical distance between contiguous residues, perpendicular to the faces o f the 

membrane, varies with the helical length. As the length o f the helix increases, the angle 

between the membrane axis perpendicular to the faces o f the membrane and the helical axis 

also increases (figure 6.6), which decreases the intrahelical distance, perpendicular to the 

faces o f the membrane, between two contiguous residues, i.e.

where d is the intrahelical distance, parallel to the membrane normal, between contiguous 

residues, T is the membrane thickness and n(H) is the number o f residues o f the 

corresponding helix. According to this formula and equation 6.1, the intrahelical distance d 

is equal to the intrahelical distance parallel to the helical axis (1.5 A) for the shortest 

transmembrane helix used to calculate the membrane thickness.

Residues located closer to the extracellular side receive positive depth values whereas 

residues located closer to the intracellular side receive negative depth values, the 

geometrical center to the membrane, equidistant to both extramembraneous sides, is given a 

depth value o f 0  A, i.e.
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=  + T j   a ■ p (0 (6.3)

where e(r) corresponds to the depth value o f  a residue r, T is the membrane thickness, d is 

the intrahelical distance parallel to the membrane axis between contiguous residues , p,r> is 

the position in the helix o f  the residue r (the first residue in the helix is given the position

0). Positive values are applicable to those helices whose N-terminus is located at the 

intracellular side o f  the membrane, and vice versa.

COO-

10.5 A -----

0  A

-10.5 A

2 1  A

Figure 6.6. Example o f  membrane thickness calculation and fixing o f  the a-helices in the membrane. 
Transmembrane region 3 is the shortest helix and its length is used to calculate the membrane thickness 
((15-1) x 1.5A), this helix is allocated parallel to the membrane normal whereas the remaining helices 
need to form an angle with the membrane normal to locate the hydrophobic helical structure in the 
membrane, the longer the helix the higher the degrees o f  the angle between the membrane normal and the 
axis o f  the helix. Longer helices require smaller values o f  intrahelical distance, parallel to the membrane 
normal, between contiguous residues (d). As shown in the figure, the 5th residue o f  TM3 and the 16th 
residue o f  TM5 both have the same depth value (residues highlighted in red, e =  4 .5 A). The intrahelical 
distance parallel to the membrane normal d for TM3 (d ’) is 1.5 A whereas for TM4 (D 4) is 1 A.

Equation 6.2 and equation 6.3 are only applicable to those residues belonging to 

transmembrane regions that completely traverse the membrane (annotated as “FT 

TRANSM EM ”). To calculate the membrane depth o f  residues belonging to membrane 

dipping loops (annotated as “ FT M EM BLO OP”), a different model was needed. 

Membrane dipping loops were found to be composed o f  two different secondary structure 

types: an a-helix and an unstructured loop. Each membrane dipping loop characterized was
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found to have a particular arrangement o f a-helices and unstructured loops, which were 

classified into 3 different structural types, namely helix-in-tum-helix-out, helix-in-tum- 

loop-out and loop-in-tum-helix-out (Chapter 4). The lengths o f the secondary structures 

were not identical across the different membrane dipping loops classified within each 

structural category and each membrane dipping loop type needed to have its own particular 

model to calculate the depth o f their corresponding residues. Using the principles of 

homology base modeling and making use o f the crystallized membrane proteins containing 

membrane dipping loops, a model was constructed for each membrane dipping loop 

predicted by TMLOOP (figure 6.7).

In order to calculate depth values for residues located in membrane dipping loops, it 

was necessary to place the corresponding model in a virtual lipidic environment whose 

thickness was dictated by the smallest helix spanning the membrane. It was necessary to set 

up some constraints to position membrane dipping loops in the membrane following 

empirical observations when visualizing membrane dipping loops in crystallized structures:

i) How deep the membrane dipping loop projects into the membrane is dictated by the 

length o f the a-helix; however the maximum depth a membrane dipping loop can achieve is 

the geometrical center o f the membrane ( 0  A); ii) if  the a-helix length is longer than the 

membrane thickness/ 2  then the helix would form an angle with the membrane normal (in a 

similar fashion as longer a-helices that completely transverse the membrane) in order to 

position the helical structure in the membrane; iii) in the case o f helix-in-tum-loop-out and 

loop-in-tum-helix-out the unstructured loops are o f the corresponding length to reach the 

same depth as the intramembraneous terminal o f the a-helix; iv) in helix-in-helix-out 

membrane dipping loops the maximum depth o f the domain is dictated by the shortest helix 

and as before it can not be deeper than the geometrical centre o f the membrane and v) the 

depth values o f residues located in the intramembraneous loop in the helix-in-tum-helix-out 

are the same as the depth o f the flanking residues located at the end o f the first helix and at 

beginning of the second helix. Figure 6.8 shows two examples o f the positioning o f 

membrane dipping loops based on the empirically observed constraints described above.
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Figure 6.7. Structural models for each o f  the membrane dipping loops characterized. TMDEPTH applies 
the corresponding template to the membrane dipping loop predicted by TMLOOP and annotated by 
TMLOOP writer in order to predict the depths values for each residue belonging to the structural motif.
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COO
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Figure 6.8. Positioning o f  membrane dipping loops in the membrane.

To calculate the depth o f  residues belonging to a-heiices in membrane dipping loops the 

equations 6 .1, 6.2 and 6.3 had to be adapted to the constrains explained above, i,e.

t = n ,h)-1.5A only if  (6.4.1)

t  = T / 2  only if772 < • l ,5A (6.4.2)

where t is the maximum depth achieved by the membrane dipping loop, n(h) is the number 

o f  residues h o f  the shortest helix in the given structural domain and T is the membrane 

thickness (6 .1).

d {H) = —— —  only if secondary structure belongs to a helix (6 .5 .1)
n ( ’ -1

d (i) = ———  only if secondary structure belongs to a loop (6.5.2)
n{ - 1

d (L) = 0 only if helix-in-turn-helix-out (6.5.3)

where d(H) is the intrahelical distance parallel to the membrane normal between contiguous 

residues, t is the maximum depth achieved by the membrane dipping loop, n(H) is the 

number o f  residues in the given helix, d(L) in the intraloop distance parallel to the
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membrane normal between two contiguous residues and n(L) is the number o f residues in 

the given loop.

where e(r) is the depth value o f a given residue, t is the maximum depth in the membrane 

achieved the membrane dipping loop, d(H) is the intrahelical distance parallel to the 

membrane normal between contiguous residues, p(r) is the position o f the given residue in

the membrane normal between two contiguous residues.

6.2.5 Calculation of interhelical associations

After each residue in the membrane is given a depth value, TMDEPTH searches for 

pairs o f residues located in different transmembrane regions whose depth values are within 

a range o f ±1.5 A. This depth range was believed to minimize potential errors by topology 

prediction method to accurately identify the first residue in the membrane for a given helix. 

The depth range was set to 1.5 A, which corresponds to the intrahelical distance, along the 

helix axis, between contiguous residues. By using this depth range, only one residue error is 

allowed by topology prediction methods. However, the residue error allowed by topology 

prediction methods increases with longer transmembrane helices (as the helix tilt increases 

the number o f residues located within the depth range increases).

Associations are stored in a 20 x 20 matrix where the x and y axis list the 20 known 

residues. TMDEPTH iteratively compares each transmembrane region with each o f the 

others (but not against itself) and within each transmembrane region comparison, each 

residue in the given transmembrane region is compared to the residues o f the other 

transmembrane regions (figure 6.9).

only if secondary structure belongs to a helix (6 .6 . 1)

only if secondary structure belongs to a loop (6 .6 .2 )

the corresponding helix (starting position is 0) and d(L) is the intraloop distance parallel to
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20x20 Matrix - calculated - by - depth - s i mi l ar i t y1'
..................ALA- ■ ARG • ■ ASN - A S P -  C YS- ■ G L N ■ • GLU • GLY- ■ - H I S -  I L E  ■ LEU ■ LYS ■ MET- ■ ■ PHE PRO- - SE R • THR ■ • T R P  TYR VAL ■ • TOTAL
ALA............ 12 1 0 0 0 0 0 3 0 .......... 3 3 • 0 0 ............ 2 0 ............3 2 ...........2 2 5 38
ARG.............. 1 ......... 0 ......... 0 ........... 0 ..........0 .......... 0 ......... 0 ..........0 ..........0 ..........0 ..........0 ......... 0 ..........0 ............0 .........0 ...........0 .........0 .......... 0 ..........0- 0  1 7
ASN.............. 0 ..........0 • • 0 0..........0 .......... 0 ......... 0 ..........0 .......... 0- • • • 0 .........0 ------  0........ 0 0 ■ 0 .......... 0 - 0 .......... 0 0 .............0 ..........0 ?
ASP............... 0 • 0 .........0 ...........0- • • • 0 .......... 0 ......... 0 ..........0- ■ -0 ..........0 ---- 0 0........ 0 ............0 .........0 ............0 -0  0 ...... o- 0  0 r
CYS..............0 ......... 0 ......... 0- 0 ..........0 .......... 0 ......... 0 ..........0 ..........0 .......... 0 - - 0 ■■■■0...........o- • 0 .........0 ...........0 ......... 0 .......... 0 ..........0 ..........0  0 •'
GLN..............0 ......... 0 ......... 0 ...........0 ..........0 .......... 0 ......... 1 ..........0 ..........0 ..........1 ......... 3 .........0 ..........1 ............1 .........0 ...........0 ......... 1 ...........1 0 ...........1 • 10 7
GLU..............0 ......... 0 ......... 0 ...........0 ..........0 .......... 1 ......... 0 ..........0 ..........0 ..........1 ..........0 ...........0 ........0 ........... 2 .........0 ...........1 ......... 0 .......... 0- - 0- 1 ..........6
GLY..............3 .........0- 0 ...........0 ..........0 ...... 0 ...........0 ..........0 ..........0 ..........2 ..........0 ...........0 ........ 1-■ ■ 1 .........0 ........... 0 ......... 0  2 - 1 ........... 2 12 '
HIS..............0 ......... 0 ......... 0 ...........0 ..........0 ........... 0 • 0 ..........0 ..........0 ..........0- • • 3 .........0 ..........0 ............0 .........0 ...........0 ......... 1 .......... 0- 0 - 0 .............4 :
ILE..............3 ......... 0 ......... 0 ........... 0 0........... 1 - 1 2 ■ 0...........0 • ■ 3 • 0 2 ............ 2 0 ............0  0 0 1 1 16
LEU..............3 ..........0 - -0 ...........0 ..........0 .......... 3 ......... 0 ..........0 .......... 3 ......3 ............0 -  ■ 0 ........ 1 .......... 6 .......0  5 - - 3  3 • 3- 4 45 -7
LYS.................0 ...........0- • • • 0 ...........0 ............0 ............ 0 ...........0 ............0 ............0 ............0 ............0 .............0 ..........0 ..............0 .......... 0 .............. 0 0 ............ 0 ............0 ............0  0 7
MET.............. 0 ......... 0 ......... 0 ...........0 ..........0 .......... 1 ......... 0 ..........1 ..........0 ..........2 ..........1 .......... 0 ........ 0 • 1 .........0 ........... 1 .........3 .......... 1 ..........0- -0 • 11 •'
PHE..............2 ......... 0 ......... 0 ...........0 ..........0 .......... 1 .........2 ..........1 ..........0 .......... 2 - - - 6 ........... 0 ........ 1-■ • - 0 .........0 ...........0 ......... 0 ....1-■ ■ ■ 1 ................2  19 7
PRO..............0- • •.0 ......... 0- 0 ......... 0 ..........0 ..........0 .......... 0 ......... 0 ...........0 - - 0 •..0 .........  0..........0 .......... 0 .......  0 .......... 0 0 0-........ 0 .......... 0 7
SER..............3 ......... 0 ......... 0 ...........0 .......... 0 .......... 0 ......... 1 ..........0 ..........0 ..........0  5 0 ........ 1 ............0 .........0 ............ 0 • 0 .......... 1- 0 ...........1 12 •'
THR..............2 ......... 0 ......... 0 .......... 0 .......... 0 .......... 1 ......... 0 ..........0 ..........1 ..........0 ..........3 .........0 ..........3 ........... 0 .........0 ..........0 ...........0 .......... 1 ..........0- -3 14 -
TRP..............2 ......... 0 ......... 0 ........... 0 ..........0 .......... 1 ......... 0 .......... 2 0 .......... 0 - - 3 ----0 ..........1 • • 1 .........0 ..........1 ...........1 .......... 0 ..........0 ..........0  12 7.
TYR..............2 ......... 0 ......... 0 .......... 0 .......... 0 .......... 0 ......... 0 .......... 1 0 .......... 1 - 3  - • 0 .............0 • 1 ......... 0 - • 0 ...........0 • 0 .........0 ..........1 9 7
VAL..............5 ..........0 • 0 .........0 .......... 0 .......... 1 ......... 1 ..........2 ..........0 ..........1 ..........4 .........0 ..........0 ............ 2 - - 0 .........1 .......... 3 .......... 0- 1 - 0  21 -

Figure 6.9. Example o f  a 20x20 matrix calculated by TMDEPTH. The x and y axis show the 20 different
amino acids and the last column shows the total number o f  associations for each residue.

6.2.6 Data standardization and extraction of other biological relevant 
information

In order to combine matrices corresponding to proteins belonging to the same cluster 

(to identify common patterns o f interhelical associations) and compare matrices 

corresponding to proteins belonging to different clusters (to identify specific patterns of 

interhelical associations) it was necessary to normalize these matrices. Standardization was 

achieved by obtaining the percentage o f each possible pair, i.e,

o (6.7)

Z  "<-./>
i , j = 0

where i and j refer to the x and y coordinates in the 2 0 x2 0  matrix respectively.

By standardization o f the 20x20 matrix a triangular 20x20 matrix was developed 

(figure 6.10). This matrix shows the percentage o f interhelical associations between 

residues located at a similar depth (±1.5A) in the membrane. A triangular matrix was used 

because the values reflected in this matrix are mutual (Xy = Xjj).
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XCDCM 20 - percentage t r i a n g l e  • matrixi"
■ ■ ALA- • ARG ASN ■ ■ ASP- CYS GLN GLU GLY HIS- -ILE- LEU- LYS ■ MET PHE ■ PRO • SER THR • TRP

ALA- 5. 22- tr
ARG • ■ ■ 0.87- ■ 0. 00 c
ASN ■ ■ ■ 0.00- 0. 00 • 0.00-
ASP- ■ ■ ■ 0.00- ■ 0. 00 • 0.00- 0. 00- 5:
CYS ■ • 0.00- ■ 0. 00 • 0.00- 0. 00- -0. 00- 5;
GLN • ■ 0.00 ■ 0. 00 • 0.00- 0. 00- • 0.00- ■ 0. 00 Cl
GLU ■ ■ ■ 0.00- 0. 00 ■ 0.00- 0. 00- -0. 00- ■ 0. 87 -0. 00- 51
GLY- • ■ 2 . 61 ■ 0. 00 ■ 0.00- 0. 00- ■ 0.00- ■ 0. 00 ■0.00 0. 00
HIS- ■ • ■ 0.00- ■ 0. 00 ■ 0.00- 0. 00- - 0.00- ■ 0. 00 ■o.oo- - 0. 00 ■ 0.00 5;
ILE - ■ ■ -2.61- 0. 00 • 0.00- 0. 00- ■ 0.00- ■ 0. 87 ■ 0.87- ■ 1 . 74 ■ 0.00 ■ 0 . 0 0 - T
LEU- - 2.  61 ■ 0. 00 ■ 0.00- 0. 00- ■ 0.00- 2. 61 -0. 00- 0. 00 ■ 2. 61 - 2 . 6 1 - - 3 . 4 8 <r
LYS ■ • • ■0.00- • 0. 00 • 0.00- 0. 00- ■ 0.00- - 0. 00 -0. 00- ■ 0. 00 ■0.00 ■ 0 . 00 - ■0 . 00 • 0.00- f
MET- • • ■0.00- ■ 0. 00 ■ 0.00- 0. 00- ■ 0.00- 0. 87 ■0.00 0. 87 ■ 0. 00 ■ 1.74-  •0.87 ■ 0.00- • 0. 00 5;
PHE- - 1 . 7 4 ■ 0.  00 •0.00 0. 00- ■ 0. 00 0. 87 -1. 74- • 0.  87 ■ 0. 00 - 1 . 7 4 - - 5 . 2 2 0.00- • 0. 87 ■ 0. 00 T
PRO- ■ •■0.00- • 0. 00 • 0.00- 0. 00- ■ 0.00- ■ 0. 00 -0. 00- ■ 0. 00 ■ 0. 00 ■ 0.00-  •0.00 -0.00- ■ 0. 00 0. 00 ■ 0.00- 51
SER- • ■ 2 . 61- ■ 0. 00 ■ 0.00- 0. 00- ■ 0. 00 ■ 0. 00 • 0.87- • 0.  00 • 0. 00 - 0.00-  •4 .35 - o . o o - • 0. 87 • 0. 00 • 0.00- 0. 00 -
THR- • •■1.74- ■ 0. 00 • 0.00- 0. 00- -0. 00- ■ 0. 87 -0 . 00- ■ 0. 00 • 0. 87 - 0 . 0 0 - - 2 . 6 1 • o . o o - ■2. 61 ■0.00 ■ 0.00- ■0.00 ■ 0.00- ‘3
TRP- ■ ■ ■1.74- ■ 0. 00 ■ 0.00- 0. 00- ■ 0.00- ■ 0. 87 • 0.00- • 1 . 74 ■ 0. 00 0 . 0 0 - - 2 . 6 1 ■ 0.00- ■ 0. 87 ■ 0. 87 - o . o o - 0. 87 ■ 0.87- • 0. 00
TYR- ■■■1.74- ■ 0. 00 • 0.00- 0. 00- 0.00- - 0. 00 • 0.00- ■ 0. 87 • 0.00 - 0 . 8 7 - - 2 . 6 1 • 0.00- ■ 0. 00 ■ 0. 87 •0.00 ■ 0. 00 ■ 0.00- ■ 0. 00
VAL ■■•4.35 ■ 0. 00 ■ 0 . 00- 0. 00- ■0.00- ■ 0. 87 ■ 0.87- - 1 . 74 ■ 0.00 O GO -J to GO ■o . o o - ■ 0. 00 ■ 1. 74 ■ 0.00- ■ 0. 87 ■2.61- 0. 00

■ 0. 00- 51
■ 0.87-  ■0.00

Figure 6.10. Standardized triangle 20x20 matrix. As with the 20x20 matrix o f  interhelical association the x 
and y axis list the 20 different amino acids and each coordinate within the matrix represent the percentage o f  
interhelical associations within the membrane o f  two given residues located at a similar depth.

Other possible relevant information was extracted from the standardized triangular 

20x20 matrix. The percentage o f the participation within the standardized matrix was 

obtained for each residue (figure 6.11a). The standardized associations contained in the 

2 0 x2 0  triangle matrix were also clustered according to the biochemical behaviour o f 2 0  

residues listed (Non-polar, polar and charged) into a 3x3 standardized triangular matrix 

(figure 6 .1 1 b).

P e r c e n t a g e ■o f  r e s i d u e ■p a r t i c i p a t i o n

ALA: 1 6 .  52 LEU: • 1 9 . 5 7
ARG: ■ 0 .  43 LYS: • 0 . 0 0
ASN: ■ 0 . 0 0 MET: ■ - 4 . 7 8
ASP: ■ 0 . 0 0 PHE: ■ • 8 . 2 6
CYS: ■0.00 PRO: • • 0.00
GLN: • 4 . 3 5 SER: • • 5 . 2 2
GLU: ■ 2 .  61 THR: ■ 6 . 0 9
GLY: • 5 . 2 2 TRP: • • 5 . 2 2
HIS: ■ 1 . 7 4 TYR: ■ - 3 . 9 1
ILE: ■ 6 .  96 VAL: • • 9 .  13

3 • x-  3 ■ p e r c e n t a g e  ■ t r i a n g l e  • m a t r i x -  b a s e d  ■ on'ii 
t h e • a m i n o ■a c i d ■b i o c h e m i c a l ■b e h a v i o u r ^

■ • N o n - P o l a r -  P o l a r .............. C h a r g e d
N o n - P o l a r  ■ ■ ■ • 4 5 . 2 2 •  • ■ - SI
P o l a r ..................... 4 3 .  4 8 ............  1 .  7 4 -  • • ■ 5
C h a r g e d ...................6 . 9 .6 ............ 2 . 6 1 ............. 0 . 0 0
Sum• o f • P e r c e n t a g e s : • 1 0 0 . 0 0 ^

Figure 6.11. Figure 6.11a (left) shows the percentage participation for each amino acid in the formation o f  
interhelical associations between residues located at a similar depth in the membrane. Figure 6.11b (right) 
shows the percentage o f  interhelical associations o f  clusters o f  residues o f similar physicochemical property 
located at a similar depth in the membrane.
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6.2.7 Report of the extracted features in a specific format required by 
the user

TMDEPTH has also been implemented to report the percentage o f  interhelical 

associations computed (the normalized triangular 2 0 x2 0  matrix, the percentage of 

participation for each amino acid and the percentage o f interhelical associations o f clusters 

residues o f similar physichochemical property) in a specific format required by the user. 

The user is given the option o f saving the corresponding information in the specific format 

for Microsoft Excel, a data mining tool based on decision trees (Rulequest Research, 

http://www.rulequest.com/index.htmn. a data mining tool based on support vector 

machines (Joachims, 2002) and a combinatorial pattern discovery tool (Rigoutsos and 

Floratos, 1998). These data analyses, data mining and pattern recognition programs along 

with the Weka platform (Witten and Frank, 2005), which can also load input files specific 

for C4.5 (Quinlan, 1993), have proven to be very successful in the analysis o f biological 

data (C hapter 7, chap ter 8 ).

6.2.8 Analysis of protein complexes with TMDEPTH

TMDEPTH can also apply the same principles to protein complexes. When a protein 

complex is loaded into TMDEPTH, the software first loads each subunit and then computes 

the corresponding parameters in a similar fashion as with monomers. In order to calculate 

the membrane thickness the shortest transmembrane region (whose length is 14 residues or 

higher) within the complex is used to calculate the membrane thickness. Depth values are 

given to each residue in the membrane based on the membrane thickness, the length and 

orientation o f the corresponding helix and its position in the transmembrane region. When 

loading complexes, two different levels o f interhelical associations are calculated: i) the 

first level is within each subunit using the same principles as with monomers, ii) the second 

level is between subunits where each helix in each subunit is paired with the helices o f the 

remaining subunits and pairs o f residues located at a similar depth are listed in the 2 0 x2 0  

matrix.
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CHAPTER 7 

TMLOCATE: Prediction of subcellular location of eukaryotic 

membrane proteins based on sequence and topological 

information 

7.1 Introduction

7.1.1 Subcellular location linked with function

The intracellular structures delimited by a lipid bilayer in eukaryotic cells are 

known to perform particular functions and be involved in biological pathways that are 

specific for a given organelle. The organelle-specific functions and biological pathways are 

carried out by proteins, located either in the surrounding membrane or inside the organelle, 

that in protein trafficking are targeted to that organelle in order to perform their specific 

biochemical activity. Therefore, identification o f the subcellular location of a protein is 

considered as the first step towards elucidation o f the function o f the protein. The problem 

of subcellular identification has been tackled at the experimental level, with the 

development o f high-throughput techniques, and at the computational level by attempting 

to predict the location o f a given protein based upon selected features obtained from the 

amino acid sequence. High-throughput methods are often hampered by the low 

concentration o f proteins and the dynamic environment o f the cell where it is a continuous 

traffic o f lipid and proteins between organelles is found (Aturaliya et al., 2006). On the 

other hand, prediction o f subcellular location based solely on sorting signals or amino acid 

sequence has proven to be a challenge due to the apparent lack o f a universal targeting 

mechanism.
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7.1.2 Current methods used to predict subcellular location

Since the first methods to predict the subcellular location o f proteins were published 

in the early 1990’s, a variety o f methods based on different features and using different data 

mining methods have been published. A common approach has been based on the detection 

o f sorting signals to predict the subcellular location o f proteins. Claros and colleagues 

discovered that 76-94% o f the analyzed mitochondrial proteins contained mitochondrial 

targeting motifs (Claros and Vincens, 1996). Further work carried out by Fujiwara 

developed a hidden Markov model that detected various known mitochondrial targeting 

motifs obtaining a 86.9% prediction accuracy (Fujiwara et al., 1997). Emanuelsson and 

colleagues developed a neural network based method to identify chloroplast transit peptides 

and their cleavage sites and reported 8 8 % prediction accuracy using a non-redundant set o f 

proteins (Emanuelsson et al., 1999). Bickmore stated that motifs and domains are often 

shared by proteins located within the same nuclear compartment (Bickmore and Sutherland, 

2002). Aiming to predict nuclear localization, Cokol and colleagues collected a set of 

experimentally checked nuclear localization signals (NLS) and extended the given set by 

“in silico” mutagenesis, the final set o f NLSs was found to match 43% o f  all known nuclear 

proteins (Cokol et al., 2000, Nair et al., 2003).

Information contained in the N-terminus was exploited in conjunction with neural 

networks to discriminate between proteins located in the mitochondrion, chloroplast, the 

secretory pathway and “other” locations. The method reported a prediction accuracy o f 85- 

90% (Emanuelsson et al., 2000). Petsalaki and co-authors extended this work by combining 

neural networks, profile hidden Markov models and scoring matrices (Petsalaki et al., 

2006). Although neural networks and other “black box” methods such as hidden Markov 

models or support vector machines report accurate predictive values, it is difficult to 

understand the basis upon which the predictions are made, Bannai and colleagues (Bannai 

et al., 2002) extracted simple and interpretable rules obtained from the N-terminus to detect 

targeting signal. The authors combined different amino acid indexes, obtained both 

theoretically and experimentally (Kawashima and Kanehisa, 2000) to compute different 

physicochemical properties o f the N-terminus. Likewise, the approximate patterns were 

combined with alphabet indexes (classification o f characters o f an alphabet -e.g. amino
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acids- into a smaller set o f characters -e.g . binary classification o f hydrophobicity-). The 

developed method showed Matthews Correlation Coefficients (MCC) between 0.64 and 

0.92 although it did not achieved higher predictive scores than the neural network based 

program TargetP (Emanuelsson et al., 2000). Boden and Hawkins (Boden and Hawkins, 

2005) introduced a new model, namely the recurrent network model, to detect targeting 

peptides, which increased the prediction accuracy by 5-6% compared to TargetP. In more 

recent work the authors (Hawkins and Boden, 2006) combined targeting signals detection 

methods with a multilayer classifier system composed by neural networks and support 

vector machines further improving the accuracy by 2 % compared to the previous approach.

Despite this approach providing promising results, prediction o f subcellular location 

based solely on the presence o f targeting signals has limitations: i) proteins targeted to the 

same organelle have been shown to contain different targeting signals or conversely some 

proteins lack a particular motif, which describes a given targeting mechanism in other 

proteins found in the same organelle, ii) high-throughput genome analyses can lead to the 

“calling” o f unreliable 5’ -  regions, which may result in targeting signals being missed or 

partially included (Reinhardt and Hubbard, 1998) and iii) targeting signals, namely silent 

motifs, can be found in unrelated protein sequences due to neutral mutations (these signals 

are called silent because they do not promote subcellular localization as they are not 

accessible to the appropriate receptor) (Neuberger et al., 2004).

Another classical approach is the prediction o f subcellular location based on the 

differential amino acid composition o f proteins belonging to different organelles. The early 

work o f Cedano and colleagues (Cedano et al., 1997), which discriminates between integral 

membrane proteins, anchored membrane proteins, extracellular proteins, intracellular 

proteins and nuclear proteins, solely based on the amino acid composition encouraged 

further research. Different data mining methods, such as neural networks (Cai et al., 2002a, 

Reinhardt and Hubbard, 1998), support vector machines (Cai et al., 2002b, Park and 

Kanehisa, 2003) and a covariant discriminant algorithm (Chou and Elrod, 1999b), were 

employed to exploit differential amino acid composition. Variations o f this approach were 

also introduced by different authors: i) Feng combined amino acid composition and
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hydrophobicity profiles to predict the subcellular location o f prokaryotic proteins (Feng and 

Zhang, 2001); and ii) Matsuda and co-authors introduced the use o f local (roughly N- 

terminal, middle and C-terminal) compositions o f amino acids, twin amino acids and local 

frequencies o f distance between successive amino acids, and reported prediction accuracy 

values o f 87-91% (Matsuda et al., 2005).

Other research has focused on the development o f predictive algorithms that 

combine sorting signals and amino acid compositions in order to account for different 

targeting mechanisms. The well established predictive algorithm, PSORT, successfully 

combined both sets o f features (Nakai and Horton, 1999, Nakai and Kanehisa, 1991, Nakai 

and Kanehisa, 1992). Fugiwara applied neural networks to mine the differential amino acid 

composition, and hidden Markov models to sorting signals reporting an accuracy o f 8 6 - 

91% (Fujiwara and Asogawa, 2001) whereas the work o f Reczko and colleagues was only 

based on neural networks and reported an accuracy o f 91% (Reczko and Hatzigerrorgiou, 

2004).

The use o f sequence order has been introduced in later research in order to include 

contextual information. Huang and colleagues (Huang and Li, 2004), and Park and 

colleagues (Park and Kanehisa, 2003) extracted dipeptide information from the amino acid 

sequence whereas Yu and colleagues (Yu et al., 2004) used n-peptide compositions. Chou 

implemented the quasi-sequence-order effect based on the physicochemical distance 

between residues (Chou, 2000) and the pseudo-amino acid composition (Chou, 2001, Chou 

and Cai, 2003) to introduce the sequence order effect in the prediction o f subcellular 

location o f proteins. Pan and colleagues used the digital signal processing approach to 

translate the amino acid sequence into a numerical sequence in order to detect numerical 

signals that encapsulate the sequence order effect and can be used to predict the subcellular 

location (Pan et al., 2005, Pan et al., 2003). Cui and colleagues introduced the sequence 

order effect by dividing each protein sequences into two symmetrical halves and computing 

the amino acid composition o f each half constructing a forty-dimensional vector (Cui et al., 

2004). Finally, Markov chains have also been applied to make better use o f the sequence 

order and contextual information (Bulashevska and Eils, 2006).
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Another common approach is the use o f homology-based methods to infer 

subcellular location under the assumption that highly identical protein sequences must be 

located in similar cellular compartments and it has been concluded that subcellular 

localization can indeed be inferred through homology search (Nair and Rost, 2002b). 

Marcotte and colleagues also studied the evolutionary relationships o f proteins belonging to 

the same organelle using a phylogenetic approach and showed that proteins with the same 

subcellular location often show similar phylogenetic profiles (Marcotte et al., 2000). Xie 

and colleagues used position-specific scoring matrices extracted from the profile created by 

PSI-BLAST to generate a 400-dimension input vector, which was mined using support 

vector machines, and obtained an overall prediction accuracy o f 90% (Xie et al., 2005).

Mott and colleagues used domains from the SMART database, the basic data of 

which are derived from hidden Markov models obtained from manually derived alignments 

o f protein families (Letunic et al., 2006), clustering proteins on the basis o f their domain 

co-occurrence to discriminate between the secretory, cytoplasmic and nuclear classes (Mott 

et al., 2002). Similarly, MITOPRED (Guda et al., 2004) was designed to discriminate 

between mitochondrial and non-mitochondrial proteins based on alignments and hidden 

Markov models contained in the Pfam database.

The five different categories mentioned above (based solely on sorting signals or 

amino acid composition, combining sorting signals with amino acid composition, 

introduction of sequence order and homology-based methods) describe the main 

approaches used to predict the subcellular location o f proteins, though other methods have 

been developed, which employ different approaches to predict the subcellular location of 

proteins. Sarda and colleagues implemented a method based on multiple physicochemical 

properties o f the residues composing the amino acid sequence and support vector machines 

reporting a prediction accuracy value o f 93% (Sarda et al., 2005). Nair and colleagues 

developed a novel method to predict the subcellular location o f proteins based on Swiss- 

Prot keywords and reported 82% accuracy showing that functional annotation can be used 

to infer subcellular location (Nair and Rost, 2002a), providing o f course that the function is
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known and the protein fully annotated in the database. Chou and colleagues developed a 

method to predict subcellular location based on the functional domain composition, where 

each protein is represented by a set o f functional domains, and also considers partial 

sequence order (Chou and Cai, 2002). A similar approach, carried out by Scott and 

colleagues, is based on the combinatorial presence o f InterPro and membrane domains 

(Scott et al., 2004). Further research was based on functional domains combined with the 

amino acid composition (Guda and Subramaniam, 2005) and with the pseudo-amino acid 

composition (Cai and Chou, 2003, Cai and Chou, 2004, Chou and Cai, 2004). Other 

research used the amino acid composition corresponding to the surface o f  crystallized 

proteins (Andrade et al., 1998) and combined this property with general amino acid 

composition, other structural features (e.g. predicted secondary structure) and sequence 

alignments (Nair and Rost, 2003a).

Other methods have integrated multiple features to predict subcellular location. 

Drawid and Gerstein combined a set o f 30 features, including sorting signals, physico

chemical properties, amino acid composition on the surface o f proteins and absolute mRNA 

expression levels, into a Bayesian system (Drawid and Gerstein, 2000). Nair and Rost 

combined nuclear localization signals (PredictNLS), keywords contained in the Swiss-Prot 

database (LOCkey), a homology-based method (LOChom) and an ab initio prediction 

method based on neural networks (LOC3Dini) to predict the subcellular location o f proteins 

o f known structure (Nair and Rost, 2003b). Although each method has been individually 

evaluated, the predictive accuracy o f the consensus method was not reported, instead the 

method with the highest support was chosen. The predictions were stored in a database 

named LOC3D.

A specific version o f PSORT for the subcellular prediction o f proteins from Gram- 

negative bacteria combined amino acid composition, sequence similarity, sorting signals 

and the presence o f signal peptides and transmembrane a-helices (Gardy et al., 2003). 

Bhasin and Raghava combined physicochemical properties, with amino acid composition, 

dipeptide composition and PSI-BLAST (Bhasin and Raghava, 2004). Pierleoni and 

colleagues designed a multilayer system based on different support vector machines that
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based their prediction on the amino acid composition, the local amino acid composition 

contained in the N-terminus and C-terminus and sequence profiles obtained with BLAST 

(Pierleoni et al., 2006). Scott and colleagues created a Bayesian network predictor that 

combines InterPro motifs, targeting signals and protein-protein interaction data. This 

method was also used to discriminate between proteins located in the lumen o f the 

organelle and proteins that are associated with these organelles on their cytosolic side 

(Scott et al., 2005).

7.1.3 Membrane proteins and prediction of subcellular location

To our knowledge, only a single previous attempt has been carried out to 

specifically predict the subcellular location o f membrane proteins (Chou and Elrod, 1999a), 

which probably reflects the difficulty o f this task. The research carried out by Chou and 

colleagues demonstrates that the subcellular location o f membrane proteins is closely 

correlated with their amino acid composition. However, the assembled data set was not 

filtered at the sequence redundancy level, which may well have caused the over-fitting of 

the training set with the corresponding model and a subsequent overestimation o f the 

performance. This was probably more obvious in the subsets o f lysosome, nucleus and 

peroxisome where the imposed constraints at the protein name level were relaxed in order 

to obtain a significant set size. Likewise, the accuracy levels reported based on a jackknife 

evaluation considered only the non-normalized accuracy and the predictive accuracy for 

particular classes was omitted. Therefore, it is likely that the 65.9% accuracy reported by 

the jackknife validation was biased by the larger subsets (80% of the data set was 

composed by proteins located in the plasma membrane).

Mutagenesis analysis o f human peroxin 2 protein (PEX2), a protein containing two 

transmembrane regions, showed that the minimum peroxisomal targeting signal involved 

the first transmembrane domain and that the second transmembrane region increased the 

targeting efficiency (Biermanns et al., 2003). Experimental analysis o f the peroxisomal 

protein PEX16p (Honsho et al., 2002, Jones et al., 2004) showed two different regions 

essential for targeting the given protein into the peroxisome, which involve both o f the
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transmembrane regions found in this protein suggesting a possible role for interhelical 

associations between transmembrane regions in organellar targeting. This experimental 

evidence demonstrates that the transmembrane domain o f at least some membrane proteins 

can play an important role in their organellar sorting.

Other experimental work has been focussed on the discovery o f retention signals in 

the membrane. Rather than targeting to a specific organelle, retention signals maintain the 

location o f a protein in a particular organelle. These types o f signals seem to be particularly 

important within the secretory pathway where there is constant traffic o f proteins between 

the different organelles involved. Previous work has concluded that the transmembrane 

regions o f particular membrane proteins are essential retention domains (Aoki et al., 1992, 

Cocquerel et al., 1999, Colley, 1997, Hobman et al., 1997, Hobman et al., 1995, Ma et al., 

2004, Op De Beeck et al., 2004). Several experimental analyses have shown that the 

presence of hydrophilic residues in the middle o f transmembrane regions might be 

important for retention in the ER (Bonifacino et al., 1991, Cocquerel et al., 2000, 

Letoumeur and Cosson, 1998, Yang et al., 1997). Furthermore, the length o f the 

transmembrane regions has also been pinpointed as a form o f retention signal. The plasma 

membrane has a higher content o f cholesterol than the membrane found in the Golgi 

apparatus and consequently the plasma membrane is thicker than the membrane o f the 

Golgi apparatus. Therefore, membrane proteins with longer transmembrane regions would 

not be retained in the Golgi apparatus whereas membrane proteins with shorter helices 

would be retained, as the protein would have attained its minimum potential energy 

(Munro, 1995). A similar retention property has been found in the ER (Pedrazzini et al., 

1996, Yang et al., 1997, Szczesna-Skorupa and Kemper, 2000).

7.1.4 Our approach

The TMDEPTH approach (Chapter 6) has been applied to a data set o f polytopic 

membrane proteins located in different cellular organelles assembled using PROCLASS 

(Chapter 3). TMDEPTH combines sequence and a refined topological model obtained 

from the Swiss-Prot database in combination with TMLOOP and TMLOOP writer
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(C hap ter 5). TMDEPTH creates matrices o f interhelical associations corresponding to 

residues located at a similar depth in the membrane. The created matrices were mined using 

different data mining methods (e.g. Bayesian methods and Support Vector Machines) 

within the Weka platform (Witten and Frank, 2005) in order to find the best classifier to 

predict the subcellular location o f a given membrane protein using the information 

generated by TMDEPTH. The different data mining analyses carried out showed that using 

a set o f classifiers arranged in a tree-based mode mimicking the processes and evolutionary 

relationship o f cellular sorting achieved maximal predictive accuracy. A similar 

relationship has been described by Nair and Rost (2005). The designed architecture was set 

up to first distinguish between 4 classes, namely chloroplast, mitochondria, plasma 

membrane and secretory classes. The secretory class is further divided into subclasses 

(peroxisome, lysosome, Golgi apparatus, endoplasmic reticulum and the nucleus), which 

are predicted in the subsequent nodes o f  the tree-based set o f classifiers. The method 

reported an approximate accuracy o f 75% in correctly classifying a membrane protein into 

the four different classes, which reflects the importance o f the transmembrane regions at 

this level. The performance o f subsequent classifiers designed to sub-classify the secretory 

class suggested that other protein features, located outside the membrane, must play more 

important roles in locating a given membrane protein within the appropriate organelle 

within the secretory pathway. The obtained results are also consistent with evolutionary 

relationships between the different organelles, which associate a strong relationship 

between the mitochondrion and the peroxisome. This relationship probably reflects the 

recruitment of proteins originally targeted to the mitochondrion, first proposed by Gabaldon 

and colleagues (Gabaldon et al., 2006).

Considering that current topology prediction methods approximately achieve a 75% 

accuracy in correctly predicting the topology o f a polytopic membrane protein and that 

some o f the classes in the set (nucleus, lysosome and peroxisome) were composed by only 

a few proteins, it is believed the accuracy o f the developed method can only increase with 

the improvement o f topology prediction methods and high-throughput identification of 

membrane proteins. However, the longer term aim o f the research carried out is not only to 

propose a method that can accurately predict the subcellular location o f membrane proteins
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based solely on transmembrane information but to formulate a method, that combines 

sequence and topology information, and can be used along with other protein features such 

as sorting signals and amino acid composition-based methods, to accurately predict the 

subcellular location o f polytopic membrane proteins.

7.2 Methods

7.2.1 Data set development

The data set was retrieved from the Swiss-Prot database (release 50.2 o f 27-06- 

2006) using PROCLASS (Chapter 5). The obtained data set contained 5,619 eukaryotic 

membrane proteins with more than one transmembrane region clustered into 24 different 

categories including undefined membrane locations and multi-organellar locations (Please 

see Appendix A, table A.1 on CD). The data set obtained using PROCLASS was filtered 

at the organellar and protein level in order to develop a data set suitable for TMDEPTH and 

the data mining process. At the organellar level, clusters o f proteins corresponding to 

undefined membrane locations or/and multi-organellar locations were not included in the 

data set. Likewise, clusters o f proteins belonging to the vacuole and the vesicle were not 

included in the data set as these organelles were considered as transient organelles whose 

main function is the storage and transport o f  proteins between organelles. At the protein 

level, both the structural annotation and sequence redundancy were analyzed. Membrane 

proteins whose structure was found to be composed o f p-sheets forming a (3-barrel structure 

were not included in the data set as TMDEPTH was implemented to detect associations of 

residues belonging to different a-helical structures located at a similar depth in the 

membrane. The estimation o f the membrane thickness and depth values for the different 

amino acids is not applicable to P-barrel membrane proteins due to their very different 

structural properties. In order to remove p-barrel membrane proteins, Swiss-Prot like text 

files containing the term “porin” (used to describe p-barrel membrane proteins) were 

excluded from the data set. Based on two different empirical observations (Chapter 6), 

TMDEPTH was implemented to consider transmembrane regions whose length is less than 

14 residues long as false positives, so discarding these segments while retrieving
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transmembrane information from the Swiss-Prot database. Although it is possible that those 

predicted segments are false positives, it is also possible that the topology prediction 

underestimated the length of the given segment or that the predicted segment corresponds 

not to a helical structure but to an unstructured loop or loop-helical structure that 

completely traverses the membrane. In order to minimize potential errors when calculating 

the matrices using TMDEPTH, those proteins containing at least one transmembrane region 

with less than 14 residues were excluded from the data set. Predicted membrane dipping 

loops (Chapter 5) were included in the transmembrane statement o f corresponding Swiss- 

Prot like text files using the TMLOOP writer (only those membrane dipping loops found to 

be true positives). Therefore, improving the quality of the topological model found in the 

Swiss-Prot database. Sequence similarity was also analyzed within each cluster using CD- 

HIT (Li et al., 2001). CD-HIT is a clustering tool, which uses a “greedy” incremental 

algorithm (Holm and Sander, 1998) to cluster proteins above a certain threshold. Protein 

sequences are first sorted in order o f decreasing length and the longest sequence is used as a 

representative sequence. The remaining sequences are then compared to the representative 

sequence based on a n-peptide comparison (from 2 to 5 residues peptides). If the number of 

identical n-peptides is higher than a user defined threshold an alignment is performed to 

confirm the sequence identity. If the sequence identity is above a given threshold sequences 

are clustered together. If  the sequence identity (either at the n-peptide level or at the 

pairwise alignment level) is below the given threshold, the sequence becomes the 

representative sequence o f a new cluster (if it is found not to cluster with other 

representative sequences belonging to other clusters created iteratively). CD-HIT also 

reports the representative sequences for each set and can therefore be used to develop 

representative sets. CD-HIT was set to report only the representative sequences o f clusters 

sharing more than 90% identity based on pentapeptide comparison (n = 5, c = 0.9). By 

filtering the data set at 90% identity, sequence redundancy was avoided and possible bias 

was minimized when mining the obtained data set.

After filtering at the organellar level and the protein level, the assembled data set 

contained 895 membrane proteins classified by PROCLASS into 11 different organellar 

clusters (table 7.1).
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Organelles N° o f seq.

Inner mitochondrial membrane 205

Thylakoidal membrane 100

Endoplasmic Reticulum membrane 201

Golgi apparatus membrane 42

Peroxisomal membrane 27

Chloroplast membrane 24

Plasma membrane 219

Nuclear membrane 21

Outer mitochondrial membrane 12

Lysosomal membrane 16

Mitochondrial membrane 28

Table 7.1 Filtered data set obtained with PROCLASS. The data set 
was filtered at the organellar level and at the protein level. After 
the filtering process the data set suffered a reduction o f  84%.

Data mining techniques tend to underestimate, or under-detect, small classes in 

unbalanced sets in order to increase the overall non-normalized accuracy o f the prediction. 

During the data mining (data mining using five classes: secretory - including endoplasmic 

reticulum, Golgi apparatus, lysosome and peroxisome; mitochondria - including inner 

mitochondria membrane, outer mitochondria membrane and undefined mitochondrial 

membrane; and chloroplast -  including chloroplast membrane and thylakoidal membrane; 

plasma membrane; nuclear membrane) process it was observed that the nuclear class size 

was significantly smaller than the remaining four classes. Following the statement made by 

Nair and colleagues (Nair and Rost, 2005): “More data with noise is better and less data 

with less noise”, it was decided to manually include in the data set proteins whose nuclear 

localization has not yet been experimentally demonstrated. The protein families 

corresponding to the 21 filtered nuclear proteins retrieved using PROCLASS were analyzed 

and it was found that some o f these families were specifically targeted to the nuclear 

membrane: the NDC1 family, the non-repetitive / WGA-negative nucleoporin family, the 

Sadi interacting factor, the SAD/UND proteins, Lamin B receptors, ULP1-interacting 

protein and the nucleolar complex protein. Additionally, the Swiss-Prot and the Trembl 

database were searched for nurim proteins, which belong to a recently identified protein
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family whose function has not been elucidated yet but it is known to specifically localize in 

the nuclear membrane (Rolls et al., 1999). No nurim protein was found in the Swiss-Prot 

database but eight proteins were obtained from the Trembl database. Because the Trembl 

database does not include topological information of the membrane proteins, TMHMM 

(Sonnhammer et al., 1998, Krogh et al., 2001) was used to predict the topology o f the 

nurim protein retrieved from the Trembl database. The retrieved proteins belonging to the 

protein families described above were filtered at the protein level (both the structure and the 

sequence redundancy) as performed with the data set obtained with PROCLASS. After 

filtering the new nuclear proteins the size o f the nuclear protein class could only be 

increased up to 40 non-redundant nuclear membrane proteins. The subcellular location 

clusters (table 7.1) belonging to different compartments o f the same organelle were merged 

together into eight different classes (table 7.2).

Organelles N° of seq.
Mitochondria 245
Chloroplast 124
Endoplasmic Reticulum 201
Golgi apparatus 42
Peroxisome 27
Plasma membrane 219
Nuclear membrane 40
Lysosome 16

Table 7.2 Filtered data set obtained with PROCLASS including manually retrieved nuclear 
membrane proteins whose location has not been experimentally checked.

A separate data set o f non plant eukaryotic membrane proteins was constructed 

using PROCLASS based on the same cross-linked term list used for the development o f the 

previous data set (Chapter 5). PROCLASS searched the annotation space o f proteins 

contained in a local version o f the Swiss-Prot database (release 50.6 o f 5-9-2006), which 

contained proteins belonging to the animalia and fungi kingdom but not to the plantae 

kingdom. As with the data set described in table 7.2, retrieved proteins were filtered at the 

organellar and protein level based on the same constraints. Table 7.3 describes the data set 

o f non-plant eukaryotic polytopic membrane proteins clustered according to their 

subcellular location.
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Organelles N° o f seq.

Mitochondria 202

Endoplasmic Reticulum 167

Golgi apparatus 37

Peroxisome 26

Plasma membrane 149

Nuclear membrane 40

Lysosome 16

Table 7.3. Filtered data set o f  non-Plant eukaryotic proteins obtained with PROCLASS.

TMDEPTH was used to calculate the corresponding matrices for each o f the 

proteins contained in the different classes using the sequence and the topological 

information described in the local Swiss-Prot like text files. TMDEPTH was required to 

save the computed interhelical associations o f residues located at a similar depth 

(percentage o f  amino acid participation in interhelical associations, the normalized 20x20 

triangular matrix o f interhelical associations and the normalized 3x3 triangular matrix of 

interhelical associations o f clusters o f biochemically equivalent residues) in the C4.5 format 

(Quinlan, 1993), which can be processed not only by C4.5 and its latest Windows version 

(See5) but also by the Weka platform (Witten and Frank, 2005). Therefore, the data set to 

be processed by Weka was composed o f eight different classes, 914 and 637 data points 

(corresponding to the data set o f eukaryotic membrane proteins and the data set o f non

plant eukaryotic membrane proteins) and 236 attributes per data point (20 attributes 

correspond to the percentage o f interhelical association participation for each residue, 210 

attributes correspond to the normalized 20x20 triangular matrix o f interhelical associations 

and 6 attributes correspond to the normalized 3x3 triangular matrix o f interhelical 

associations o f clusters o f biochemically equivalent residues).

The obtained data sets were filtered using the supervised attribute selection filtering 

methods built within the Weka platform. This method is used to select attributes based on 

an evaluator (determines how attribute subsets are evaluated) and a search method. The 

default settings within Weka platform (Witten and Frank, 2005) were applied to this task. 

The evaluator was the CfsSubsetEval method, which evaluates the significance o f a subset
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o f attributes by considering the individual predictive ability o f each feature along with the 

degree o f redundancy between them. This evaluator identifies locally predictive attributes 

and iteratively adds attributes with the highest correlation with the class (if there is not 

already an attribute in the subset with a higher correlation). On the other hand the BestFirst 

search method searches the space o f attribute subsets by greedy hillclimbing augmented 

with a backtracking facility. The level o f backtracking was controlled by the number of 

consecutive non-improving nodes, which by default was set to five. The different data 

mining methods and architectures (see below) were applied to both the non-filtered data 

sets and the filtered data sets to maximize the accuracy prediction o f a given data mining 

tool.

7.2.2 Development of the data mining workflow

The Weka platform (Witten and Frank, 2005) was used to design and evaluate the 

different data mining analyses carried out. Two different data mining architectures were 

designed: i) the single-step data mining workflow and ii) the multi-step (or tree-based) data 

mining workflow. In the single-step data mining workflow, a single data mining method is 

used to predict the different classes in a single step whereas in the multi-step data mining 

workflow a tree-based workflow is designed where each node represents a particular data 

mining method trained to classify particular classes depending on the position o f the 

corresponding node in the tree.
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Figure 7.1. Example o f  the main data mining workflow architectures using a data set with five 
different classes (A-E, circles in green). Single-step data mining workflow (left), the single 
circle in red represents the single classifier method used to classify the different classes. 
Multi-step data mining workflow (right), four classifiers are used to classify the five different 
classes.

The Weka platform has the advantage o f  using a wide range o f  data mining 

techniques such as Bayesian methods, support vector machines, the closest neighbour or 

tree-based algorithms. No single data mining technique stands out in performance 

compared to other data mining techniques. In contrast, depending on the data set to be 

mined, a particular data mining method will perform better than the others, regardless o f  the 

complexity o f  the method. Therefore, both the single-step method and the multi-step 

method were tested using different data mining methods and different parameters (table

7.3) in order to maximize the predictive accuracy o f  the method. When performing multi- 

step data mining, different combinations, which also include the combination o f  the single- 

step and the multi-step architecture, were tested in order to find the tree-based architecture 

that best fits the given data set. Likewise, at each node o f  the different tree architectures 

designed, the different methods listed in table 7.3 were compared to maximize the 

predictive accuracy o f  each tree. Selection o f  the most accurate data mining method at a 

given node within a tree-based set o f  classifiers was based upon comparison o f  the accuracy 

(Q), the normalized accuracy (nQ) and the Matthews correlation coefficient (MCC) or the 

Generalized coefficient (GC) o f  the different data mining methods. Highly selective data 

mining methods are required for the tree-base set o f  classifiers throughout the whole o f  the 

tree, as the percentage accuracy o f  the method is accumulative as the different nodes are 

reached along the tree. Therefore, if the very first node o f  the tree applies a data mining
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method with high sensitivity but poor specificity the performance o f the following nodes 

will be affected and subsequently the predictive accuracy o f the tree will be decreased more 

severely by earlier nodes. Therefore, methods with fairly good sensitivity and high 

specificity are preferred over methods with high sensitivity and lower specificity.

Data mining technique Parameters

Bayesian networks Default

Naive Bayesian Default

Naive Bayesian simple Default

Logistic regression Default

RBF Network Default

KStar Default

MultiBoostAB Classifier: Random forest; Iterations: 30

J48 Default

Random forest Default

Support vector machine (1) Default

Support vector machine (2) c =  30

Support vector machine (3) o II O

Support vector machine (4) c = 1; exp = 5

Support vector machine (5) c = 1 ;exp = 9

Support vector machine (6) c = 50; exp = 5; feature space normalization = true

Support vector machine (7) c = 50; exp = 9; feature space normalization = true

Support vector machine (8) c = 50; exp = 5; feature space normalization = true; y =  0.001

Support vector machine (9) c = 50;exp = 5

Support vector machine (10) c = 50; exp = 15; feature space normalization = true

Support vector machine (11) c = 1; exp = 15; feature space normalization = true; y = 0.0001

Table 7.4. List o f  the different data mining techniques applied during the data mining process 
using the Weka Knowledge Flow tool.
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7.2.3 Evaluation

Evaluation was achieved by ten fold cross-validation. When evaluating data mining 

methods applied in a single-step fashion, the ten fold cross-validation o f the single node 

corresponds to the evaluation o f the entire method to predict the different subcellular 

locations. However, evaluation o f a set o f classifiers arranged in a tree-based fashion 

cannot be achieved by summing up independent evaluations o f each node contained in a 

given tree. In order to evaluate a tree-based set o f classifiers it was necessary to train the 

corresponding classifier at each node with the subset o f the training set that had progressed 

to that point and then apply the trained tree-based set o f classifiers to each data point in the 

test set. This process continues along the tree until reaching a leaf from where no further 

classification can be achieved.

The accuracy in predicting a particular class is defined by its sensitivity (1.16), 

specificity (1.17) and geometric average (1.18). The evaluation o f the performance of the 

method is given by the accuracy (1.19), the normalized accuracy (1.20) and the Matthews 

correlation coefficient for data sets with two classes (1.21) or the Generalized correlation 

for data sets with three or more classes (1.22). These predictive values are compared 

between the different data mining techniques (table 7.4) in order to select the most accurate 

data mining technique for predicting a particular functional class.

7.3 Results and Discussion

7.3.1 Evolutionary relationships between organelles belonging to the 
secretory class and the nucleus

The assembled data set was classified using two different classification schemes. In 

the first classification scheme, eight classes were considered: endoplasmic reticulum, Golgi 

apparatus, lysosome, peroxisome, chloroplast, mitochondria, nucleus and plasma 

membrane; whereas in the second classification scheme, the subcellular organelles involved 

in the secretory pathway (endoplasmic reticulum, Golgi apparatus, lysosome and 

peroxisome) were clustered together following the classification scheme described in recent
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papers (Nair and Rost, 2005, Pierleoni et al., 2006). Ten fold cross-validation o f the single- 

step architecture showed that the predictive accuracy o f the different data mining methods 

was higher if  the given data set was classified into 5 categories (secretory, nucleus, plasma 

membrane, mitochondria and chloroplast) rather than 8 categories (table 7.5). Likewise, 

table 7.6 shows that members o f the Golgi apparatus, lysosome and peroxisome tend to be 

predicted as members o f the endoplasmic reticulum, possibly reflecting the evolutionary 

relationships between these organelles. Based on these results, and the fact that predictive 

architectures that mimic cellular sorting have been shown to improve the prediction of 

subcellular location (Nair and Rost, 2005), it was decided to cluster organelles involved in 

the secretory pathway and train specific data mining methods to further classify the 

members o f the secretory class into their respective subcellular organelles. The accuracy in 

predicting the nucleus class is very low compared to the remaining classes regardless o f the 

classification scheme applied (table 7.8 and table 7.9). The average confusion matrices 

corresponding to the single step architecture based on 8 and 5 class sets (table 7.6 and 

table 7.7 respectively) showed that nuclear membrane proteins tend to be classified as 

endoplasmic reticulum (37%) and secretory (51%). These results might also reflect an 

evolutionary relationship between the endoplasmic reticulum and the nucleus, however it is 

also possible that these results reflect the limitations o f data mining methods to accurately 

predict classes with small size in unbalanced sets. The correlation values between 

sensitivity and size and between specificity and size was found to be 0.87 and 0.62 for the 

data set classified into 8 categories and 0.75 and 0.73 for the data set classified into 5 

categories. These values indicate a dependency of the data mining methods upon class size.
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8 c la s s e s 5 c la sse s

D ata m in in g  m e th o d Q nQ G C Q nQ G C

Bayesian networks 4 6 3 0 .5 0 .3 4 8 .4 4 1 .6 0 .3 7
N aive Bayesian 4 8 3 8 .3 0 .3 7 53 4 5 .7 0 .4

N aive Bayesian simple - - - - - -

Logistic regression 4 0 2 9 .6 0 .2 7 4 6 .5 4 1 .8 0 .3 2

RBF Network 2 9 13 .4 - 34 2 3 .4 -

KStar 6 0 4 8 0 .4 9 6 1 .7 5 6 .6 0 .5

M ultiBoostAB 6 3 4 2 .3 0 .4 9 70 5 7 .6 0 .5 7

J48 50 3 5 .2 0 .3 4 58 4 8 .6 0 .4 2

Random forest 59 39.1 0 .4 6 6 6 .2 5 4 .4 0 .5 3

Support vector machine (1) 59 3 7 .6 0 .4 2 6 4 .7 5 3 .7 0.51
Support vector machine (2) 53 41 .1 0 .3 9 5 6 .8 4 8 .9 0 .4 3
Support vector machine (3) 53 4 1 .6 0 .3 9 5 6 .8 4 8 .9 0 .4 3

Support vector machine (4) 6 0 4 2 0 .4 3 6 4 .8 5 4 .9 0 .5
Support vector machine (5) 55 3 7 .2 0 .3 8 5 9 .3 5 0 .6 0 .4 5
Support vector machine (6) 6 8 44.1 0 .5 2 7 2 .6 5 9 .7 0 .6
Support vector machine (7) 70 49.3 0.56 74.1 60.8 0.61

Support vector machine (8) 70 49.3 0.56 74.1 60.8 0.61

Support vector machine (9) 60 42 0.43 64.8 54.9 0.5

Support vector machine (10) 62 39.6 0.48 68.6 55.7 0.57

Support vector machine (11) 59 32.3 - 66.6 52.9 -
Table 7.5. Comparison o f  tw o different models using the single-step architecture and ten fold cross-validation. 
The first model corresponds to colum ns 2-4 and is based on a data set com posed by 8 classes: i) Endoplasmic 
reticulum, ii) G olgi, iii) Lysososm e, iv) Peroxisom e, v) Chloroplast, vi) Mitochondria, vii) N ucleus and viii) 
Plasma membrane. The second model corresponds to colum s 5-7 and is based on a data set composed by 5 
classes where the endoplasmic reticulum, G olgi, lysosom e and peroxisom e are merged to form the secretory 
class. The 5 class model reports higher levels o f  accuracy (Q), normalized accuracy (nQ) and generalized  
correlation (G C) for each data mining method used.

ER Golgi Lysosom e Peroxisom e Chloroplast Mitochondrial N ucleus
Plasma

membrane
54 6 1 2 3 14 3 18 ER
38 12 1 0 4 15 2 28 Golgi
13 8 31 1 4 17 1 26 Lysosome
25 4 1 23 7 28 1 10 Peroxisome
6 2 1 1 67 14 1 9 Chloroplast
9 4 1 3 5 66 1 12 Mitochondrial

37 5 3 2 4 26 6 18 Nucleus

14 5 1 1 3 10 1 66 Plasma
membrane

Table 7.6 Average confusion matrix o f  the single-step architecture using the assembled data set classified into 
eight categories. The values listed in the matrix correspond to percentages. The highlighted cells indicate that 
38%, 13% and 25% o f  the proteins belonging to the Golgi, lysosom e, peroxisom e respectively are being 
predicted as proteins belonging to the endoplasmic reticulum possibly reflecting the evolutionary relationship 
between these organelles.
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Chloroplast Secretory Mitochondria N ucleus Plasma membrane
67 11 14 1 7 Chloroplast
5 61 13 2 19 Secretory
6 18 64 1 11 Mitochondria
5 51 26 4 15 Nucleus
3 27 9 1 60 Plasma membrane

Table 7.7. Average confusion matrix (%) o f  the single-step model based on 5 classes and 21 nuclear 
membrane proteins. The most significant misclassification (highlighted cell) corresponded to the nuclear 
membrane proteins being predicted as membrane proteins o f  the secretory pathway.

Class Sensitivity Specificity GAv
ER 53.99 55.07 54.08
Golgi 11.90 18.48 12.95
Lysosom e 30.51 51.15 37.61
Peroxisom e 23.09 52.55 31.70
Chloroplast 66.65 75.23 70.53
Mitochondria 65.64 67.22 65.35
N ucleus 5.60 15.92 8.66
Plasma membrane 65.67 60.63 62.86

Table 7.8. Average values o f  sensitivity, specificity and the geometric distance for each o f  the classes 
used in the 8-class model using the single-step architecture. The nucleus showed to be the class with 
the lowest predictive accuracy (highlighted cells).

Class Sensitivity Specificity GAv
Chloroplast 70.11 72.28 70.76
Secretory 58.93 61.74 60.03
Mitochondrial 65.74 68.75 66.65
Nucleus 4.20 11.86 5.40
Plasma membrane 64.28 60.22 61.84

Table 7.9. Average values o f  sensitivity, specificity and the geometric distance for each o f  the classes 
used in the 5-class model using the single-step architecture. The nucleus showed to be the class with the 
lowest predictive accuracy (highlighted cells).

In order to minimize the observed bias towards larger classes new nuclear membrane 

proteins were retrieved from the Swiss-Prot database (as described in the method section). 

Unfortunately, the size o f  the nuclear class could only be increased to up to 40 sequences, 

which was not considered sufficient to balance the data set. In order to further evaluate the 

possible evolutionary relationships between the endoplasmic reticulum and the nucleus, 

two different data mining analyses based on the single step architecture were performed. 

The first analysis (table 7.10), is similar to that shown in table 7.7, but using 40 nuclear
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sequences rather than 21. Although the nuclear class remains the smallest class in the 

unbalanced set, the size o f the class has increased by 2-fold and an improvement in 

predicting this class was expected. However, the percentage o f nuclear proteins predicted as 

secretory proteins (table 7.10) was found to be similar to that found (table 7.7) when using 

a nuclear set composed by 21 sequences (50% and 51% respectively). In the second data 

mining analysis, the data set was composed by five classes but each class was filtered using 

CD-HIT (at the sequence similarity level) with different strength in order to create a more 

balanced data set. Therefore, larger classes were filtered more stringently than smaller 

classes. The chloroplast, peroxisome, Golgi, lysosome, outer mitochondria membrane, 

unspecified mitochondria membrane and nucleus were filtered using a minimum sequence 

identity o f 90%, whereas the thylakoidal membrane was filtered at a minimum sequence 

identity o f 50% and the endoplasmic reticulum and inner mitochondrial membrane were 

filtered at a minimum sequence identity o f 40%. The newly filtered class sizes were 

reduced to 216, 113, 126, 49 and 40 for the secretory, mitochondrial, plasma membrane, 

chloroplast and nuclear classes respectively. The chloroplast and nuclear class are of 

roughly similar size (49 and 40 proteins respectively) and the percentage o f proteins 

predicted as secretory should be similar for these two classes if  no evolutionary 

relationships were involved. The average confusion matrix of this analysis is shown in 

table 7.11, which shows that the percentage o f nuclear proteins predicted as secretory 

proteins is as high as 60% whereas 38% o f the chloroplast membrane proteins are predicted 

as secretory. Comparison o f the results listed in tables 7.6, 7.7, 7.8 and 7.9 indicate an 

evolutionary relationship between the nucleus and the secretory pathway and more 

specifically between the nucleus and the endoplasmic reticulum (table 7.6). These results 

are in accordance with the arrangement o f organelles within the cell as it is well known that 

the outer nuclear membrane is contiguous with the endoplasmic reticulum. Based on the 

evolutionary relationships between lysosome, peroxisome, Golgi apparatus, endoplasmic 

reticulum and nucleus, a tree-based architecture was designed, which distinguishes first 

between four classes, namely chloroplast, mitochondria, plasma membrane and secretory, 

and further sub-classifies the secretory class into peroxisome, lysosome, golgi apparatus, 

endoplasmic reticulum and nucleus (figure 7.2).
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Chloroplast Secretory Mitochondria N ucleus Plasma membrane
66 8 15 1 9 Chloroplast
4 59 14 3 20 Secretory
6 14 67 2 11 Mitochondria
2 50 21 14 13 Nucleus
4 23 9 1 63 Plasma membrane

Table 7.10. Average confusion matrix (%) o f  the single-step model based on 5 classes and 40 nuclear 
membrane proteins. The matrix shows that 50% o f  the nuclear membrane proteins tend to be predicted as 
membrane proteins belonging to the secretory class (highlighted cell.

Chloroplast Secretory Mitochondria N ucleus Plasma membrane
25 38 19 2 16 Chloroplast
4 66 9 4 17 Secretory
7 33 44 3 13 Mitochondria
4 60 9 5 12 Nucleus
4 45 6 2 43 Plasma membrane

Table 7.11. Average confusion matrix (%) o f  the single-step model based on 5 classes and 70 nuclear 
membrane proteins. The different classes and subclasses o f  the given data set have been filtered at different 
stringency using CD-HIT in order to obtain a more balanced set and analyze the relationship between the 
nucleus and the secretory class. The highlighted cells correspond to the percentage o f  chloroplast and nuclear 
membrane proteins classified as membrane proteins belonging to the secretory class. Although both classes 
have similar size, the m isclassifications concerning the nucleus class is nearly twice the percentage o f  
chloroplast membrane proteins being classified as secretory membrane proteins.

7.3.2 Development of the predictive architecture

The results described above were used to design the general architecture o f  a 

predictive tool that combines multiple data mining methods to predict the subcellular 

location o f  membrane proteins. The evolutionary relationships between different organelles 

showed that the endoplasmic reticulum, Golgi apparatus, nucleus, peroxisome and 

lysosome were to be predicted together as secretory in the first level o f  the predictive 

architecture along with chloroplast, mitochondria and plasma membrane. These four classes 

were classified in a single-step mode using a wide range o f  data mining methods (table

7.4). The ten fold cross-validation results (table 7.12) showed that the support vector 

machine was the most accurate technique for the given data set. Among the different sets of 

parameters used in SVM, four sets (highlighted in table 7.12) were found to maximize the 

evaluation parameters Q, nQ and GC, where two o f  these SVM used the attribute selection 

filter prior to the mining stage. The predictive accuracy for each class (table 7.13) showed
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that the SVM(10)-attribute selection contained the highest predictive accuracy for the 

plasma membrane class and it was therefore selected as the data mining method to be used 

at the first level o f  the predictive tool.

Level 1 (1st and 2nd 
variant)

Attribute selection W ithout Attribute selection

Data mining method Q nQ GC Q nQ GC
Bayesian networks 59.1 59.5 0.49 49.6 52.8 0.42

N aive Bayesian 53.4 54.9 0.44 56.5 59.6 0.5

N aive Bayesian simple 52.6 54.7 0.44 - - -

Logistic regression 62.7 62 0.52 51.3 52.4 0.37

RBF Network 59.7 59.8 0.49 38.3 30.2 -

KStar 67.2 68.7 0.59 63.7 67.1 0.57

M ultiBoostAB 73.4 71.8 0.66 71.1 69.9 0.65

J48 60.1 60.2 0.47 57.7 57.7 0.45

Random forest 68.8 67.5 0.6 64.6 64.1 0.56

Support vector machine (1) 62.5 60.4 0.51 66.5 66.3 0.57

Support vector machine (2) 62 61.6 0.51 61.8 63.4 0.51

Support vector machine (3) 61.8 61.7 0.51 60.7 62.7 0.49

Support vector machine (4) 73 73 0.65 66.3 67 0.57

Support vector machine (5) 69.4 69.9 0.6 63.3 64 0.54

Support vector machine (6) 75.2 75.3 0.69 75.2 73.5 0.69

Support vector machine (7) 73.5 74 0.66 76.3 76 0.7
Support vector machine (8) 73.5 74 0.66 76.3 76 0.7

Support vector machine (9) 67.4 68.4 0.58 66.3 67 0.57

Support vector machine (10) 76.1 75.4 0.7 66.8 62.9 0.62

Support vector machine (11) 76 74.8 0.7 64.4 60 0.6
Table 7.12. Ten fold cross-validation results o f  the different data mining methods used to classify membrane 
proteins into secretory, mitochondria, chloroplast and plasma membrane in a single-step mode. The 
highlighted cells correspond to the methods that m axim ize the predictive accuracy.

247



C hapter 7
TMLOCATE, subcellular location prediction of membrane proteins using the TMDETH method

Sensitivity Specificity GAv

SVM(IO) 
Att sel

Chloroplast 73.4 91.0 81.7

Secretory 78.8 73.2 76.0

Mitochondria 79.2 72.4 75.7

Plasma membrane 70.3 79.0 74.5

S V M (ll)  
Att sel

Chloroplast 70.2 94.6 81.5

Secretory 79.8 72.4 76.0

Mitochondria 80.0 72.1 75.9

Plasma membrane 69.4 79.6 74.3

SV M (7)

Chloroplast 75.8 89.5 82.4

Secretory 76.4 75.9 76.1

Mitochondria 82.0 71.5 76.6

Plasma membrane 69.9 76.5 73.1

SV M (8)

Chloroplast 75.8 89.5 82.4

Secretory 76.4 75.9 76.1

Mitochondria 82.0 71.5 76.6

Plasma membrane 69.9 76.5 73.1
Table 7.13. Predictive accuracy for each class after evaluation by ten fold cross-validation. Only the methods 
that showed maximal values o f  overall accuracy in predicting the chloroplast, mitochondria, secretory and 
plasma membrane are included. Plasma membrane is the class with the lowest predictive accuracy 
(highlighted cells). Am ong the four data mining methods SVM(IO) with attribute selection showed the 
highest accuracy in predicting this class.

The following levels were designed to subclassify the proteins predicted as 

secretory into peroxisome, lysosome, Golgi apparatus, endoplasmic reticulum and nucleus. 

Table 7.14 shows the average confusion matrix obtained using different data mining 

methods (table 7.13) with and without prior attribute selection, and this matrix describes an 

overprediction o f  endoplamic reticulum membrane proteins. It is believed that two different 

factors play a major role in the overprediction o f  the endoplasmic reticulum, the first factor 

is the evolutionary relationships o f  these organelles and the fact that the majority o f  these 

proteins are first synthesized in the membrane o f  the endoplasmic reticulum and then 

transported to their appropriate location. The second factor is the tendency o f  different data 

mining methods to overpredict the largest class within an unbalanced data set. As the 

single-step mode did not show that it could accurately distinguish between the different 

classes involved in the secretory pathway, a multi-step architecture mimicking the process 

o f  subcellular sorting was designed to further classify the secretory class. At this stage, 

different tree structures and combinations were tested in order to maximize the predictive 

accuracy o f  the method at each level. Two tree variants were found to maximize the 

predictive accuracy o f  the method. In the first variant (figure 7.2), the second level was
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designed to distinguish between Peroxisome/Lysosome and Golgi/ER/Nucleus, the level 3a 

distinguishes between Peroxisome and Lysosome and the level 3b between Golgi and 

ER/Nucleus. Finally, in level 4 ER and Nucleus were distinguished. The second tree variant 

(figure 7.3) distinguishes between Peroxisome and Lysosome/Golgi/ER/Nucleus at level 2, 

in level 3 the Lysosome is predicted and then level 4 and 5 corresponds to level 3b and 4 o f  

the first tree variant.

Plasma membrane Secretory

Sequence

Leve l 1

N a ive Bayes 1

Mitochondrial Chloroplast

Leve l 2

Perox/Lys Other secretory

L eve  3a
N a ive  Bayes 2

Leve l 3b  L eve l 3

Peroxisome Lysosome Golgi ap Endo ret/NucI

ai've Bayes s 1

Endo ret Nucleus

Leve l 4

Figure 7.2 First variant o f  the predictive tree architecture
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Plasma membrane Secretory

Sequence

Level 1

Mitochondrial Chloroplast

Level 2

Level 3

Naive Bayes 1

Peroxisome Other secretory

Logistic reg 1

Other secretoryLysosome

Naive

Endo ret/NucIGolgi ap

Level 5
aive Bayes s 1

NucleusEndo ret

Level 4

Figure 7.3. Second variant o f  the predictive architecture

In the first variant, the ten fold cross-validation results at level two (table 7.15) 

showed that the naive Bayesian-Attribute selection and the SVM(10)-Attribute selection 

method reported maximum accuracy values. The prediction accuracy for both classes 

showed that the naive Bayesian-Attribute selection method (table 7.16) was more 

consistent than the SVM(10)-Attribute selection method as with the latter only 47.6% of 

the Peroxisome/Lysosome class could be correctly predicted. Therefore the Naive Bayesian 

method was chosen as the predictive method for level two of  the first variant. At level 3a, 

data mining methods (with prior attribute selection) reported maximal accuracy values in 

distinguishing between Peroxisome and Lysosome: the logistic regression, the RBF 

network, the SVM(7) and the SVM(8) (table 7.17). Further analysis showed that the
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logistic regression (table 7.18) predicted the Peroxisome class with the lowest sensitivity 

and was therefore discarded as a candidate predictive method to be used. The RBF network, 

SVM(7) and the SVM(8) reported identical values for both classes. SVM(8) was chosen as 

the predictive method to distinguish between the Peroxisome and Lysosome classes.

ER N ucleus Golgi app Peroxisome Lysosom e
162 12 17 5 5 ER

28 7 2 2 2 Nucleus
29 2 8 2 2 Golgi app
14 1 2 9 1 Peroxisome
8 0 1 0 6 Lysosom e

Table 7.14. Average confusion matrix o f  the single-step mode using different data mining techniques. Most o f  
the membrane proteins tend to be predicted as proteins belonging to the endoplasmic reticulum. Considering 
the size o f  each subset this is probably due to a overprediction o f  the largest class in an unbalanced data set.

Level 2 (1st varian t) Attribute selection W ithout Attribute selection

Data mining method Q nQ M CC Q nQ M CC

Bayesian networks 82.5 67.2 0.31 76.4 62.7 0.21

N aive Bayesian 70.2 69.1 0.27 79.1 67.3 0.29

N aive Bayesian simple - - - - - -

Logistic regression 88 64.5 0.38 79.8 62.7 0.23

RBF Network 86.8 53.9 0.17 86.2 49.6 -0.03

KStar 82.5 64.3 0.27 85.9 62.3 0.29

M ultiBoostAB 86.2 66.4 0.35 89.6 62.4 0.43

J48 86.2 64.4 0.33 79.1 53.5 0.07

Random forest 86.5 67.6 0.37 89.6 62.4 0.43

Support vector machine (1) 85.7 52.2 0.15 84.7 57.6 0.19

Support vector machine (2) 86.7 57.7 0.3 82.5 63.3 0.26

Support vector machine (3) 87.1 58.9 0.33 82.5 63.3 0.26

Support vector machine (4) 85.3 52 0.12 87.1 62 0.32

Support vector machine (5) 84.6 51.6 0.08 85.6 57.2 0.2

Support vector machine (6) 86 68.1 0.4 88.7 57 0.35

Support vector machine (7) 86 65.2 0.36 89.9 61.6 0.46

Support vector machine (8) 86 65.2 0.36 89.9 61.6 0.46

Support vector machine (9) 86.7 62.6 0.35 87.1 62 0.32

Support vector machine (10) 88.1 71.4 0.48 88.7 57 0.35

Support vector machine (11) 86.7 56.7 0.29 86.8 50 -
Table 7.15 Ten fold cross-validation results o f  different data mining methods used to distinguish between 
Peroxisom e/Lysosom e and G olgi/ER/Nucleus. The highlighted cells correspond to the data mining methods 
that maximized the prediction at this level.
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Sensitivity Specificity GAv
Nai've b 
Att sel

Perox/Lys 67.4 25.9 41.8
Other 70.7 93.5 81.3

SVM (IO) 
Att sel

Perox/Lys 47.6 62.5 54.6

Other 95.1 91.3 93.2
Table 7.16. Predictive accuracy for each class distinguished at level 2 (the first tree variant). The best two 
predictive methods at this level were compared. The Perox/Lys class showed the lowest predictive accuracy 
in both data mining analyses (highlighted cells). The SVM(10)-attribute selection method only predicted 
47.6%  o f  the Perox/Lys class and was therefore discarded as a predictive method to be used at this level.

Level 3a (1st varian t) Attribute selection W ithout Attribute selection

Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 83.7 83.2 0.66 76.7 72.6 0.49

N aive Bayesian 90.7 91.3 0.81 83.7 81.9 0.65

Nai've Bayesian simple - - - - - -

Logistic regression 93 94.4 0.87 79.1 83.3 0.65

RBF Network 93.0 93.2 0.85 58.1 47.6 -0.08

KStar 86.0 86.3 0.71 69.8 73.4 0.46

M ultiBoostAB 88.4 88.2 0.76 81.4 76.3 0.60

J48 81.4 80.1 0.60 60.5 58.3 0.16

Random forest 88.4 88.2 0.76 81.4 76.3 0.60

Support vector machine (1) 90.7 88.8 0.80 76.7 78.9 0.56

Support vector machine (2) 88.4 89.5 0.77 76.7 78.9 0.56

Support vector machine (3) 88.4 89.5 0.77 76.7 78.9 0.56

Support vector machine (4) 79.1 74.4 0.54 74.4 78.4 0.56

Support vector machine (5) 72.1 65.0 0.37 46.5 56.1 0.17

Support vector machine (6) 88.4 86.9 0.75 79.1 71.9 0.57

Support vector machine (7) 93.0 93.2 0.85 79.1 71.9 0.57

Support vector machine (8) 93.0 93.2 0.85 79.1 71.9 0.57

Support vector machine (9) 79.1 79.5 0.57 74.4 78.4 0.56

Support vector machine (10) 83.7 78.1 0.67 76.7 68.8 0.52

Support vector machine (11) 81.4 75.0 0.62 74.4 65.6 0.47
Table 7.17. Ten fold cross-validation results o f  the different data mining methods used to classify membrane 
proteins into Peroxisom e and Lysosom e (first tree variant). The highlighted cells correspond to the methods 
that maxim ize the predictive accuracy.
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Sensitivity Specificity GAv
Log Reg 
Att sel

Peroxisome 88.9 100.0 94.3
Lysosome 100.0 84.2 91.8

RBF net 
Att sel

Peroxisome 92.6 96.2 94.4
Lysosome 93.8 88.2 91.0

SVM(7) 
Att sel

Peroxisome 92.6 96.2 94.4
Lysosome 93.8 88.2 91.0

SVM(8) 
Att sel

Peroxisome 92.6 96.2 94.4
Lysosome 93.8 88.2 91.0

Table 7.18. Predictive accuracy for each class distinguished at the level 3a (first tree variant). The best four 
predictive methods at this level were compared. The logistic regression-attribute selection method predicted 
the peroxisome class with the lowest accuracy whereas the remaining three methods were more consistent. 
Because the RBF network, SVM(7) and SVM(8) were found to report identical predictive methods, SVM(8) 
was selected randomly as the predictive method to be used at this level.

In the second variant, the ten fold cross-validation results at level two (table 7.19) 

showed that the Naive Bayesian-Attribute selection method was the most accurate 

predictive method to distinguish between Peroxisome and other secretory organelles 

(lysosome, Golgi apparatus, endoplasmic reticulum and nucleus). These results show the 

limitations o f evaluating a predictive method based on the non-normalized accuracy Q. The 

unbalanced set classified at this level (27 peroxisome proteins and 299 proteins belonging 

to other secretory organelles) often causes the larger class to be over-predicted by different 

data mining methods. In the “worst case scenario” no proteins would be predicted as 

peroxisome proteins but as the negative class. Given the definition o f Q and nQ (1.19 and 

1.20 respectively), the Q value o f the method of this hypothetical case would be 91.7% 

whereas the nQ value would be 50%. Therefore, the Q value is not a good parameter to be 

considered while considering the most accurate method in light o f the unbalanced data set. 

The same limitation is observed during the ten fold cross-validation o f the different data 

mining methods used at level 3 o f the second tree variant (table 7.20). Data mining 

analyses using this unbalanced set (16 lysosome proteins and 283 proteins belonging to the 

Golgi apparatus, endoplasmic reticulum and nucleus) showed a tendency to overestimate 

the larger class. Interestingly, the method selected as the predictive tool at this level, the 

logistic regression method, was found to have the highest nQ score but not the highest 

MCC value. The method with the highest MCC score was the MultiboostAB method, 

which correctly predicted 50% o f the lysosome proteins and 99.6% of the negative class 

(golgi/ER/nucleus). On the other hand, the logistic regression method correctly predicted
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75% o f  the lysosome proteins and 92.9% o f  the negative class and was found to he a more 

consistent method. A similar situation was found with the different data mining methods 

possessing higher MCC values than the logistic regression method.

Level 2(2nd varian t) Attribute selection W ithout Attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 89.6 65.7 0.31 85 68.2 0.28

N aive Bayesian 91.7 78.6 0.52 85.3 71.8 0.33

Nai've Bayesian simple 91.4 76.8 0.49 - - -

Logistic regression 92.6 69 0.45 87.1 61 0.21

RBF Network 92.6 72.4 0.48 91.7 50 -

KStar 92.3 62.1 0.36 93.6 64.5 0.46

Multi BoostA B 92.9 70.9 0.48 94.2 66.5 0.53

J48 91.4 59.9 0.28 88 54.7 0.11

Random forest 92 67 0.4 93.9 64.6 0.49

Support vector machine (1) 91.4 49.8 -0.02 93.6 69.5 0.5

Support vector machine (2) 93.6 67.8 0.49 91.7 63.5 0.34

Support vector machine (3) 93.6 67.8 0.49 91.7 63.5 0.34

Support vector machine (4) 92.3 63.8 0.38 93.6 62.8 0.46

Support vector machine (5) 92.6 67.3 0.43 92 55.2 0.23

Support vector machine (6) 93.9 68 0.51 92.3 53.7 0.26
Support vector machine (7) 92.9 70.9 0.48 93.9 63 0.49

Support vector machine (8) 92.9 70.9 0.48 93.9 63 0.49

Support vector machine (9) 91.7 68.5 0.41 93.6 62.8 0.46

Support vector machine (10) 92 58.6 0.29 92.3 53.7 0.26
Support vector machine (11) 92.3 53.7 0.26 91.7 50 -

Table 7.19. Ten fold cross-validation results o f  the different data mining methods used to distinguish 
membrane proteins from Peroxisom e and Lysosom e/G olgi/ER/Nucleus (second tree variant). The highlighted 
cells correspond to the methods that m axim ize the predictive accuracy.
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Level 3(2nd varian t) Attribute selection Without Attribute selection

Data mining method Q nQ MCC Q nQ M CC
Bayesian networks 94.3 49.8 -0.01 94.3 49.8 -0.01

Nai've Bayesian 71.9 79.3 0.28 93.6 70.1 0.39

Nai've Bayesian simple - - - - - -

Logistic regression 95 59 0.32 92 84 0.49
RBF Network 95 53.1 0.24 94.6 50 -

KStar 96 68.4 0.51 93.6 76 0.46

Multi BoostA B 97 74.8 0.65 96.7 68.8 0.6

J48 93.3 49.3 -0.03 94.6 61.8 0.33

Random forest 96.3 68.6 0.55 95 53.1 0.24

Support vector machine (1) 94.6 50 - 93.6 58.3 0.22

Support vector machine (2) 94.3 49.8 -0.01 93.3 78.8 0.48

Support vector machine (3) 94.3 49.8 -0.01 93.3 78.8 0.48

Support vector machine (4) 95.3 56.3 0.35 93.3 67 0.34

Support vector machine (5) 95.3 56.3 0.35 93.6 67.2 0.35

Support vector machine (6) 95.7 59.4 0.42 96.7 68.8 0.6

Support vector machine (7) 95.7 59.4 0.42 96.7 68.8 0.6

Support vector machine (8) 95.7 59.4 0.42 96.7 68.8 0.6

Support vector machine (9) 95.3 56.3 0.35 93.3 67 0.34

Support vector machine (10) 95.7 59.4 0.42 96.3 65.6 0.55

Support vector machine (11) 95 53.1 0.24 94.6 50 -
Table 7.20. Ten fold cross-validation results o f  the different data mining methods used to distinguish 
membrane proteins from Lysosom e and G olgi/ER/Nucleus (second tree variant). The highlighted cells 
correspond to the method that m axim izes the predictive accuracy.

As explained above, both tree-variants converge once peroxisome and lysosome 

proteins have been distinguished. The next level (level 3b for variant one and level 4 for 

variant two) distinguishes between Golgi apparatus and ER/Nucleus class. As in previous 

levels, different combinations were evaluated and it was found that distinguishing between 

Golgi apparatus and ER/Nucleus class achieved the highest accuracy. The ten fold cross- 

validation results for the different data mining methods evaluated (table 7.21) showed that 

the Naive Bayesian-Attribute selection, Naive Bayesian simple-Attribute selection, Logistic 

regression-Attribute selection and Nai've Bayesian method reported the highest predictive 

scores o f  nQ and MCC. Further analysis o f  the evaluation o f  these four data mining 

methods (table 7.22) showed that the Naive Bayesian method (without prior attribute 

selection) was the most consistent method as the sensitivity value for the worst predicted 

class was still higher than in the other methods. The final level (corresponding to level 4 in 

variant one and level 5 in variant two) distinguishes between the endoplasmic reticulum
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and the nucleus. The ten fold cross-validation results (table 7.23) clearly show the Naive 

Bayesian simple-Attribute selection method as the most accurate method to distinguish 

between these two classes.

Level 3b (1st variant) 
Level 4 (2nd variant)

Attribute selection W ithout Attribute selection

Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 82.0 53.0 0.09 82.0 53.0 0.09

N aive Bayesian 62.9 72.3 0.32 67.8 66.4 0.24
Naive Bayesian simple 63.8 73.2 0.33 - - -

Logistic regression 84.8 62.6 0.30 64.3 50.5 0.01

RBF Network 85.5 52.2 0.15 85.2 50.0 -

KStar 78.1 61.6 0.21 80.2 63.8 0.26

Multi BoostAB 84.8 58.6 0.25 84.1 51.3 0.06

J48 83.4 60.8 0.25 78.1 57.6 0.15

Random forest 84.8 54.7 0.17 83.7 50.2 0.01

Support vector machine (1) 85.2 50.0 - 79.5 49.6 -0.01

Support vector machine (2) 85.2 50.0 - 70.7 53.3 0.06

Support vector machine (3) 84.8 49.8 -0.02 70.7 53.3 0.06

Support vector machine (4) 86.2 53.6 0.25 79.9 57.7 0.16

Support vector machine (5) 85.5 52.2 0.15 79.2 57.3 0.15

Support vector machine (6) 81.3 63.4 0.27 84.8 50.8 0.05

Support vector machine (7) 80.9 64.2 0.27 83.7 54.1 0.13
Support vector machine (8) 80.9 64.2 0.27 83.7 54.1 0.13

Support vector machine (9) 86.2 56.5 0.26 79.9 57.7 0.16

Support vector machine (10) 80.2 57.9 0.17 85.2 51.0 0.08

Support vector machine (11) 85.5 52.2 0.15 85.2 50.0 -
Table 7.21. Ten fold cross-validation results o f  the different data mining methods used to distinguish 
membrane proteins from Golgi and ER/Nucleus (first and second tree variant). The highlighted cells 
correspond to the methods that maximize the predictive accuracy.

Sensitivity Specificity GAv
N aive b 
Att sel

ER/Nucleus 58.9 95.9 75.2

Golgi 85.7 26.7 47.8

Naive b s 
Att sel

ER/Nucleus 59.9 96.3 76.0

Golgi 86.5 26.9 48.2

Log reg 
Att sel

ER/Nucleus 94.2 88.7 91.4

Golgi 31.0 48.1 38.6

N aive b
ER/Nucleus 68.5 91.7 79.2

Golgi 64.3 26.2 41.1
Table 7.22. Predictive accuracy for each class distinguished at level 3b (first tree variant) and level 4 (second  
tree variant). The best four predictive methods at this level were compared. The highlighted cells correspond 
to the class predicted with the lowest sensitivity, the naive Bayesian method reported the higher sensitivity 
among the highlighted classes and was therefore considered to be the more consistent method.
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Level 4 (1st varian t) 
Level 5 (2nd varian t)

Attribute selection W ithout Attribute selection

Data mining method Q nQ M CC Q nQ M CC
Bayesian networks 78.4 54.0 0.10 76.8 54.0 0.09

N aive Bayesian 78.4 79.1 0.47 79.3 61.5 0.24

N aive Bayesian simple 80.3 81.9 0.51 - - -

Logistic regression 85.5 67.3 0.41 69.7 54.8 0.08

RBF Network 84.2 65.5 0.36 83.4 50.0 -

KStar 79.7 70.8 0.37 82.6 65.5 0.33

Multi Boost AB 85.9 67.5 0.42 84.6 54.8 0.25

J48 82.2 71.3 0.40 72.6 54.5 0.08

Random forest 85.1 65.0 0.37 84.2 53.5 0.20

Support vector machine (1) 85.5 56.3 0.33 80.9 55.5 0.15

Support vector machine (2) 85.9 61.5 0.37 71.8 52.0 0.04

Support vector machine (3) 86.3 62.8 0.39 71.8 52.0 0.04

Support vector machine (4) 85.9 57.5 0.36 79.3 53.5 0.09

Support vector machine (5) 84.6 55.8 0.25 80.9 53.5 0.11

Support vector machine (6) 78.0 65.8 0.29 83.0 49.8 -0.03

Support vector machine (7) 79.3 67.5 0.32 83.8 53.3 0.17

Support vector machine (8) 79.3 67.5 0.32 83.8 53.3 0.17
Support vector machine (9) 85.9 61.5 0.37 79.3 53.5 0.09

Support vector machine (10) 73.4 64.1 0.24 83.4 50.0 -

Support vector machine (11) 85.1 57.0 0.29 83.4 50.0 -
Table 7.23. Ten fold cross-validation results o f  the different data mining methods used to distinguish 
membrane proteins from endoplasmic reticulum and nucleus (first and second tree variant). The highlighted 
cells correspond to the method that maxim izes the predictive accuracy.

7.3.3 Evaluation of the tree-based set of classifiers

During the development o f  the different variants o f  the tree-based set o f  classifiers, 

at each node the different data mining methods were evaluated by ten fold cross-validation 

independently o f  previous evaluations carried out at earlier nodes. Although bringing 

together the evaluations carried out at each node might give a rough estimation o f  the 

overall predictive accuracy o f  a given variant o f  the tree (based on probabilities), it was 

considered more accurate to evaluate the whole o f  the variant tree by ten fold cross- 

validation considering the set o f  classifiers as a single predictive algorithm. Following this 

principle, the sequences were tested by the tree until reaching a leaf. In this way, the 

variants o f  the two tree-based set o f  classifiers were evaluated by ten fold cross-validation 

(table 7.24 and table 7.25 respectively). Both variants showed similar accuracy values, 

however the second variant showed a slight improvement over the first variant as the Q
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value improved from 57.7 to 60 and the nQ value improved from 45 to 46.2. The first 

variant demonstrated a higher sensitivity in predicting the peroxisome and lysosome class 

but with a lower specificity for those two classes. On the other hand, the prediction 

sensitivity for the Golgi apparatus and the endoplasmic reticulum class improved in the 

second variant and only the endoplasmic reticulum class showed a lower specificity. The 

nucleus class prediction accuracy was similar for each tree variant with the exception of a 

slight improvement in specificity in the second variant. When both the sensitivity and 

specificity are brought together using the geometric average GAv, the second variant 

showed higher values than the first variant.

Sensitivity Specificity GAv Q nQ GC
Chloroplast 72.6 92.8 82.1

1 Mitochondria 79.2 71.9 75.4 75.5 74.8 0.7Plasma membrane 69.9 78.9 74.2
Secretory 77.6 71.7 74.6
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4

2 Plasma membrane 69.9 78.9 74.2 65.9 61.5 0.6
Perox-Lys 32.6 10.1 18.1
Other Secret 53.4 70.6 61.4
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4
Plasma membrane 69.9 78.9 74.2

3 Peroxisome 22.2 7.1 12.5 60.8 49.9 0.5
Lysosome 43.8 13.0 23.8
Golgi app 21.4 12.2 16.1
Other Secret 40.2 69.3 52.8
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4
Plasma membrane 69.9 78.9 74.2

A Peroxisome 22.2 7.1 12.5 57.5 45.0 0.5Lysosome 43.8 13.0 23.8
Golgi app 21.4 12.2 16.1
Endo ret 28.9 66.7 43.9
Nucleus 22.5 17.0 19.5

Table 7.24 Analysis o f  the first variant predictive tree by ten fold cross-validation.
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Sensitivity Specificity GAv Q nQ GC
Chloroplast 72.6 92.8 82.1

1 Mitochondria 79.2 71.9 75.4 75.5 74.8 0.7
Plasma membrane 69.9 78.9 74.2
Secretory 77.6 71.7 74.6
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4

2 Plasma membrane 69.9 78.9 74.2 71.8 62.34 0.6
Peroxisome 18.52 12 15
Other Secret 71.6 69 70.1
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4

3 Plasma membrane 69.9 78.9 74.2 69.4 56.1 0.6Peroxisome 18.52 12 15
Lysosome 30 23.1 26.3
Other Secret 66.7 65.7 66.2
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4
Plasma membrane 69.9 78.9 74.2

4 Peroxisome 18.52 12 15 62.6 50.7 0.5
Lysosome 30 23.1 26.3
Golgi 34.1 12.5 20.7
Other secretory 45.6 64.3 54.2
Chloroplast 72.6 92.8 82.1
Mitochondria 79.2 71.9 75.4
Plasma membrane 69.9 78.9 74.2

5 Peroxisome 18.52 12 15 60 46.2 0.5Lysosome 30 23.1 26.3
Golgi app 34.1 12.5 20.7
ER 36.3 61.3 47.2
Nucleus 22.5 17.31 19.7

Table 7.25. Analysis o f  the second variant predictive tree by ten fold cross-validation.

Both tree variants have been empirically designed and found to mimic cellular 

sorting. These architectures support the statement made by Nair and colleagues (Nair and 

Rost, 2005) who postulated that mimicking cellular sorting improves the prediction of 

subcellular location.

The method itself showed promising results at the higher levels, while the accuracy 

of the method decreases as the secretory class is further classified. The developed method
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distinguishes between chloroplast, mitochondria, plasma membrane and secretory with 

approximately 75% accuracy based solely on the information contained in the 

transmembrane region. These results demonstrate that polytopic a-helical membrane 

proteins contain important information located in their transmembrane regions and that 

particular residues located at a similar depth in the membrane may be important in the 

organellar localization o f  polytopic a-helical membrane proteins. Proteins belonging to 

organelles that correspond to the secretory pathway, if incorrectly predicted, tend to be 

predicted as other organelles involved in the secretory pathway, reflecting the evolutionary 

relationships between these organelles. Table 7.26 and table 7.27 show the percentage 

confusion matrices for the first and second variant o f  the tree respectively. All coloured 

cells correspond to cells where the percentage data points belonging to the class i and 

predicted as members o f  the class j  is > 15%. Apart from the cells corresponding to true 

positives (coloured in grey), the majority o f  these highlighted cells involved two organelles 

involved in the secretory pathway (including the plasma membrane). These prediction 

errors might indicate that within the secretory pathway other signaling features located 

outside the membrane, such as sorting signals and signal peptides, might be more important 

in the location o f  a protein to its appropriate organelle. An organellar distance d was 

calculated using the percentage values included in table 7.26 where

Chloroplast Mitochondria
Plasma

membrane
Peroxisome Lysosom e Golgi

Endopl
Ret

Nucleus

72.58 14.52 3.23 4.84 1.61 2.42 0.00 0.81 Chloroplast
1.22 79.18 2.86 7.76 2.04 1.22 2.86 2.86 Mitochondria
1.37 7.31 69.86 5.94 3.65 7.76 3.20 0.91 PlasmaMembrane
0.00 37.04 0.00 22.22 3.70 11.11 18.52 7.41 Peroxisome
0.00 6.25 12.50 0.00 43.75 18.75 0.00 18.75 Lysosome
0.00 14.29 16.67 16.67 9.52 21.43 16.67 4.76 Golgi
0.50 8.96 9.45 11.44 11.94 15.42 28.86 13.43 ER
0.00 17.50 5.00 27.50 7.50 12.50 7.50 22.50 Nucleus

Table 7.26. Percentage confusion matrix for the first variant o f  the tree based set o f  classifiers. Cells coloured  
in grey correspond to the percentage o f  true positives, cells coloured in yellow  correspond to 
m isclassifications where the percentage o f  erroneously predicted membrane proteins is > 15% but < 30%. 
C ells coloured in red correspond to misclassifications where the percentage o f  erroneously predicted 
membrane proteins is >  30%.

260



C hapter 7
TM LO CA TE, subcellular location prediction o f  membrane proteins using the TMDETH method

Chloroplast Mitochondria
Plasma

Membrane
Peroxisome Lysosom e Golgi

Endopl
Ret

Nucleus

72.58 14.52 3.23 0.00 2.42 4.03 0.00 3.23 Chloroplast
1.22 79.18 2.86 3.67 1.22 2.04 6.12 3.67 Mitochondria
1.37 7.31 69.86 2.28 0.46 13.24 3.65 1.83 PlasmaMembrane
0.00 37.04 0.00 18.52 0.00 11.11 22.22 11.11 Peroxisome
0.00 6.25 12.50 6.25 37.50 12.50 18.75 6.25 Lysosome
0.00 14.29 16.67 11.90 4.76 33.33 14.29 4.76 Golgi
0.50 8.96 9.45 8.46 3.48 22.89 36.32 9.95 ER
0.00 17.50 5.00 5.00 10.00 20.00 20.00 22.50 Nucleus

Table 7.27. Percentage confusion matrix for the second variant o f  the tree based set o f  classifiers. Cells 
coloured in grey correspond to the percentage o f  true positives, cells coloured in yellow  correspond to 
m isclassifications where the percentage o f  erroneously predicted membrane proteins is >  15% but < 30%. 
Cells coloured in red correspond to misclassifications where the percentage o f  erroneously predicted 
membrane proteins is >  30%.

The different organellar distances were plotted using biolayout visualization 

software (Enright and Ouzounis, 2001). Figure 7.4 and Figure 7.5 show the distance 

relationships between different organelles where Figure 7.4 shows all distance relationships 

and Figure 7.5 shows all distance relationships whose weight is > 15 percentage points. It is 

evident that these graphs can be used to imply evolutionary relationships between the 

different organelles. The organelles involved in the secretory pathway (including the 

plasma membrane) form a cluster that can be easily observed when only distance 

relationships with weight > 15 percentage points are visualized (Figure 7.5). An interesting 

link observed in these graphs is that between the mitochondria and the peroxisome. 

According to the percentage confusion matrices (table 7.26 and table 7.27), the most 

abundant error corresponds to proteins located in the peroxisome but predicted as 

mitochondrial proteins (37%). However, this relationship seems to be unidirectional as it 

was not observed that a significant proportion o f  mitochondrial proteins were predicted as 

peroxisomal proteins. Recent work carried out by Gabaldon and colleagues described the 

evolutionary relationship between these two organelles (Gabaldon et al., 2006). According 

to this work, throughout evolution o f  eukaryotic cells, proteins from different cellular 

compartments have been retargeted to the peroxisome, and three different retargeting 

origins were described where two o f  them include retargeting from the mitochondria to the 

peroxisome. Some o f  the peroxisomal proteins were found to be derived from the alpha- 

proteobacterial ancestor o f  the mitochondrion where retargeting involved the transfer o f  the
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corresponding genes to the nucleus. Other proteins, without an observable alpha- 

proteobacterial origin, have also been retargeted from the mitochondria whereas a further 

class o f  proteins has been retargeted from other cellular compartments (e.g the endoplasmic 

reticulum). Therefore, the results obtained from the confusion matrices can be used not 

only to evaluate the predictive performance o f  the method but also to imply evolutionary 

relationships between organelles.

mitochondria
iloro p last

peroxisome

plasmamembrane

Figure 7.4 Organelle distance relationships extracted from the percentage confusion matrix obtained from the 
first variant o f  the predictive tree. The nodes represent the different classes whereas the edges join  tw o related 
nodes. Edges interconnecting the nodes have been coloured in order to represent the weight o f  the relationship 
between two interconnected nodes. Image generated with biolayout (Enright and Ouzounis, 2001).
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mitochondria

peroxisome

m \

lysosome

nucleus

plasmamembrane

Figure 7.5. Organelle distance relationships extracted from the percentage confusion matrix obtained from the 
first variant o f  the predictive tree. The nodes represent the different classes whereas the edges join  two related 
nodes. Edges interconnecting the nodes have been coloured in order to represent the weight o f  the relationship 
between two interconnected nodes.. The edges have been filtered using a minimum weight o f  15% in order to 
remove background noise. Image generated with biolayout (Enright and Ouzounis, 2001).

A separate analysis was performed considering only non-plant polytopic membrane 

proteins as it is also possible that the subcellular signature contained in transmembrane 

regions may have diverged in different kingdoms. Comparison o f  the assembled data set 

(table 7.3) with the data set corresponding to eukaryotic cells (including animalia, fungi 

and plantae kingdoms) (table 7.2) showed that the majority o f  proteins contained in the 

data set corresponding to eukaryotic cells belongs to non-plant organisms and therefore the 

development o f  an algorithm to predict the subcellular location of  membrane proteins of 

plant cells it is not feasible. In the testing o f  the newly generated data set, prediction was
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only performed at the first level (discriminating between mitonchondria, plasma membrane 

and secretory) as further levels were unlikely to report different accuracy values to the 

values already obtained due to the taxonomic distribution of proteins within the secretory 

class. As with previous analyses, different architectures were tested but the single-step 

mode proved to be the more accurate architecture to distinguish between these three 

classes. The SVM(7) and SVM(8) reported the highest accuracy values for the given data 

set (table 7.28). These results did not show an improvement compared to the results 

obtained from the ten fold cross-validation o f level 1 using plant and non-plant polytopic 

membrane proteins, which possibly indicates that the subcellular signature located in 

transmembrane regions has not diverged significantly between different eukaryotic 

kingdoms. Further research on the evolution o f subcellular location signals in polytopic 

membrane proteins will involve the analysis of larger sets for the animalia, plantae and 

fungi kingdom that are not available yet.

Sensitivity Specificity GAv Q nQ GC
Secretory 76.57 72.28 74.39

74.2 72.5 0.61Mitochondria 82.59 77.93 80.23
Plasma membrane 58.39 72.50 65.06

Table 7.28. Ten fold cross-validation o f  the first level to distinguish between secretory, mitochondrial and 
plasma membrane proteins. The data set was composed by proteins belonging to non-plant organisms. The 
results showed relate to the SVM(7) and SVM(8) without prior attribute selection. The accuracy values do not 
show an improvement over level 1, which was based on plant and non-plant membrane proteins.

In order to appropriately estimate the obtained results, it is necessary to consider 

current topology prediction methods and organelle-specific membrane proteomes. Current 

topology prediction methods have an accuracy o f 70-80%, which might have a significant 

effect on the obtained results. The reason for this is that even if  a single transmembrane 

region is either missed or incorrectly predicted, the extracted features obtained by 

TMDEPTH (Chapter 6) might change dramatically (figure 6.4). Likewise, some o f the 

organelle-specific membrane proteins considered in this approach were found to be under

represented, which obviously has a negative effect during the data mining analysis. 

Considering these facts the results shown by the predictive method are quite promising.
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Future improvements in topology prediction and the identification o f new membrane 

proteins, the predictive accuracy o f the developed method will surely increase. However, 

there is some contention regarding how the data set has been treated in terms o f the 

minimization o f sequence redundancy. Similar studies based on globular proteins have 

reduced the sequence similarity to levels as low as 40%. Such levels of sequence similarity 

filtering could not be applied to the set o f polytopic membrane proteins because some of 

the organelles described in the developed data set (peroxisome, lysosome and nucleus) 

could not be feasibly considered as their size would have been too small to be statistically 

significant.

In closing, the scope o f this aspect o f  the project research was not to develop a 

“YAPA” (Yet Another Paper A bout...) prediction o f subcellular location from sequence, 

but to demonstrate for the first time that combining sequence and topology information can 

be used, along with the detection of other protein features, to predict the subcellular 

location o f polytopic membrane proteins. It is believed that proteins localize to their 

appropriate organelle using a variety o f mechanisms and this is probably the reason why 

methods based solely on sorting signals or amino acid compositions seem to have reached a 

plateau in their prediction accuracy. This method used only information contained in the 

transmembrane region and the predictive accuracy o f the method could be increased further 

by incorporating other features located outside the membrane (e.g N-terminus,C-terminus, 

extramembraneous loops and signal peptides) that can be used to guide cellular sorting. It is 

also possible that extramembraneous targeting motifs may be responsible for initial 

localization o f membrane proteins to the appropriate organelle, but that transmembrane 

regions provide the means by which a particular membrane protein may be retained in the 

appropriate organellar membrane. Further investigation o f these properties of 

transmembrane regions will also cast light on the relationships between the variations 

observed in membrane lipid composition and thickness between different organelles, and 

the specific compositional signatures o f transmembrane region associated with the 

subcellular location o f membrane proteins.
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7.4 Conclusion

Prediction o f subcellular location is an important step while functionally 

characterizing unknown proteins. Although extensive studies have been carried out to 

predict the subcellular location o f soluble proteins, little effort has been done to predict the 

subcellular location o f membrane proteins. The developed method combines different data 

mining techniques to predict the subcellular location o f polytopic a-helical membrane 

proteins based on the TMDEPTH feature extraction method (Chapter 6). This method 

computes a vector, based solely on the amino acid sequence and a refined topological 

model (Chapter 5), that represents all pairs o f residues located at a similar depth in the 

membrane. The developed method showed a normalized accuracy o f 75% to discriminate 

between proteins belonging to the chloroplast, mitochondria, plasma membrane and 

secretory organelles. Thus, reflecting the importance o f the transmembrane domain to 

assign the location o f polytopic membrane proteins. Additionally, the obtained results were 

used to infer evolutionary relationships between polytopic membrane proteins belonging to 

different organelles. The developed method is bound to increase its accuracy as more 

accurate topology prediction methods are implemented and more proteins belonging to 

under-represented subsets are found.
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CHAPTER 8

TMFUN: Prediction of molecular function of eukaryotic 

membrane proteins based on sequence and topological

information

8.1 Introduction

The exponential growth experienced over the last two decades in biological sequence 

databases (C hapter 3) is constantly increasing the gap between the rate at which new 

sequences are obtained and the rate at which these new sequences can be experimentally 

characterized. Functional characterization o f a single gene takes approximately one year 

using the current experimental approaches. Therefore, computational approaches are an 

essential complementary tool in predicting structural and functional properties o f newly 

sequenced genes including functionally important residues, active and binding sites, 

molecular function, subcellular localization, molecular pathways, interacting partners and 

post-translational modifications. Ultimately, these predictions should be experimentally 

confirmed.

The most popular methods used to annotate new gene products are based on the 

sequence similarity concept. These methods have proven to be a useful approach but they 

have limitations, which have led to the development o f complementary methods for the 

annotation o f genes and gene products based on a wide range o f different techniques. 

Below is a description o f the main methods for functional prediction:
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8.1.1 Sequence similarity based methods

The basis underlying these methods is derived from the concept o f molecular 

evolution where homologues derived from a common ancestor and sharing a significant 

sequence similarity are deemed to possess similar structure and function. Following this 

principle, two sequences obtained from different species but sharing significant sequence 

similarity are believed to possibly share structural and functional properties. Pair-wise 

sequence similarity methods, such us the Smith-Waterman algorithm (Smith and 

Waterman, 1981), FASTA (Pearson and Lipman, 1988) and BLAST (Altschul et al., 1990), 

are commonly used to detect homologues in large protein databases. The queried sequence 

is matched against all sequences in a given database and significant matches are reported in 

order to infer structural and functional properties. While homologues sharing at least 30% 

of their residues can be used to infer similar protein structure, it is necessary to find 

homologues with a sequence similarity o f at least 60% in order to infer similar function. 

Pair-wise sequence similarity methods often fail to detect distant homologues with 

sequence similarity lower than 30%. Likewise, identification of conserved residues with a 

structural or functional role based only on a pair-wise comparison is more difficult than 

identifying important residues using a larger set o f sequences. In order to overcome these 

limitations other methods have been implemented (Park et al., 1998). The intermediate 

sequence search method (ISS) (Park et al., 1997, Abascal and Valencia, 2002, Gerstein, 

1998) is used to detect distantly related sequences, which have diverged beyond the point 

where their evolutionary relationships can be recognized, by relating both sequences to a 

third intermediate sequence that is a homologue o f both sequences. This method is only 

applicable when the matching region between the 1st sequence and the intermediate 

sequence and the 2nd sequence and intermediate sequence corresponds to the same domain. 

Multi-domain proteins matching different domains o f the same intermediate sequence will 

lead to a false distant relationship. Other methods use shared properties o f sets o f related 

sequences extracted from multiple sequence alignments. Based on these alignments, 

different m otif and sequence representation techniques and searching algorithms have been 

developed such as single (Falquet et al., 2002) or multiple m otif methods (Attwood et al., 

1999, Henikoff et al., 1999a, Wu and Brutlag, 1995), templates (Bashford et al., 1987, 

Tatusov et al., 1994, Taylor, 1986, Yi and Lander, 1994), profiles (Bucher et al., 1996,
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Gribskov et ah, 1987, Luthy et ah, 1994), hidden Markov models (Baldi et ah, 1994, Eddy, 

1996, Krogh et ah, 1994) and the position-specific-iterated (PSI) BLAST (Altschul et ah, 

1997).

Although sequence similarity based methods are the most common computational 

approach used to characterize new sequences, these methods are problematic and should be 

used with caution. The “similar sequence-similar structure-similar function” paradigm does 

not always hold true as sequence similarity does not guarantee identical function. Through 

evolution proteins are subject to mutations. Function directly involves fewer residues than 

structure. Therefore, random mutations are more likely to have an effect on function rather 

than structure (Rost et ah, 2003). That is, homologues derived from a common ancestor can 

diverge, and lose, modify or acquire functional properties before they lose their folding. 

Similarly, proteins with different evolutionary backgrounds can converge into similar 

functions despite not having a common ancestor. Consequently, sequence similarity based 

methods might erroneously assign functions to homologues that have diverged and have 

different functional properties and non-homologues that have evolutionary converged to 

achieve similar biological processes. Sequence similarity based methods directly rely on the 

quality o f databases and automatic methods based on sequence similarity iteratively 

facilitate the error propagation in such databases (Gilks et ah, 2002). Prediction 

reproducibility is often poor resulting in different prediction (either using different methods 

or different databases), which can not be merged in a consensus prediction. Error 

estimation analyses concluded that 30% o f the functional annotations based on homology 

detection might contain significant errors (Devos and Valencia, 2001). Other studies 

estimated that in order to assign full enzymatic activity with less than 30% error, it is 

necessary to have levels o f pair-wise sequence similarity higher than 60%, whereas to 

obtain predictions with an accuracy higher than 90% it is required levels of pair-wise 

sequence similarity higher than 75% (Rost, 2002). Further research showed that only 35% 

o f the proteins could be predicted with an error rate lower than 5% whereas 70% o f the 

proteins can be predicted when the error rate is set up to 70% (Rost et al., 2003). Likewise, 

25-40% o f the newly sequenced proteins can not be predicted using sequence similarity 

based methods either because no homologues have been found yet or because their
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corresponding homologues have not been characterized (Rost et al., 2003, Iliopoulos et al., 

2001).

8.1.2 Gene orthology detection methods

Orthologues are homologue proteins from different species that evolved from a 

common ancestor via a speciation event (Fitch, 1970). By contrast, paralogues are 

homologue proteins that have evolved by a gene duplication event. When such gene 

duplication events occur within the same species (lineage-specific duplicates) after the 

speciation event, duplicated proteins are in-paralogues whereas if  the gene duplication 

event occurred before the speciation event (duplicated genes are present in the common 

ancestor o f two species) the duplicated proteins are out-paralogues. Orthology prediction 

has a relevant role in annotation o f newly sequenced genomes as orthologues are more 

likely to conserve their ancestral functional activity whereas the in-paralogues often evolve 

to develop new functions that can be line-specific. The classical approach to predicting and 

distinguishing between orthologues and paralogues are based on phylogenetic trees, which 

reconstruct the evolutionary relationships between proteins based on alignment methods 

(Storm and Sonnhammer, 2002, Eisen et al., 1995, Saier et al., 1999, Page, 1998). These 

methods usually require manual correction and are not suitable for the automated prediction 

o f orthologues, however recent methods have been implemented to perform automated 

phylogenetic based orthology prediction (Chiu et al., 2006, Goodstadt and Ponting, 2006). 

Alternatively, other methods have been implemented based on sequence similarity under 

the assumption that orthologues often have a higher level o f sequence conservation than 

paralogues. The genome-specific best hit (BeT) (Tatusov et al., 1997) identifies orthologues 

when a pair o f proteins from different species are found to mutually have the highest level 

o f sequence similarity if  genes from both genomes are compared, and both proteins also 

have the highest level o f sequence similarity with a third protein, which belongs to a 

different genome. Therefore, the identified Bet includes three orthologues from different 

species creating a triangular cluster. BeTs are clustered if  two triangular clusters (BeTs) 

have a common side, which has led to the development of the COG database (Tatusov et 

al., 1994, Tatusov et al., 2003). The sequence similarity idea underlying this method has
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been derived to implement further algorithms such as the best bidirectional method 

(Huynen and Bork, 1998) and the INPARANOID algorithm (Remm et al., 2001).

8.1.3 Genomic context methods

Genomic context methods are used to explore the relations between genes in 

multiple genomes (Gabaldon and Huynen, 2004). These methods have been used as a 

complimentary approach to sequence similarity based methods to predict higher order 

functions such as the interacting partners and the pathway or process in which the protein is 

involved (Huynen et al., 2000). The type o f protein-protein interactions predicted using 

these methods do not necessary imply a physical interaction but it could imply instead a 

functional interaction between two proteins, which are indirectly linked in the same process 

or pathway but do not physically interact.

8.1.3.1 Gene fusion

This method is the most direct method. It is based on the observation that two or 

more proteins encoded by different genes in a particular species are also encoded by the 

corresponding orthologues in a single gene inferring a gene fusion event (Marcotte et al., 

1999, Enright et al., 1999). Gene fusion events enhance the affinity between different 

proteins in order to facilitate a particular biological process where both proteins are needed. 

However, gene fusion is not the only mechanism developed throughout evolution to 

facilitate the interaction between proteins as pairs o f proteins that develop binding sites 

with higher affinity would not be detected using this method (Marcotte et al., 1999). 

Likewise, predicted gene fusion events involving promiscuous domains might erroneously 

indicate functional interaction between two unrelated proteins (Gabaldon and Huynen, 

2004).
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8.1.3.2 Gene order conservation or co-occurrence of genes in potential 
operons

The principle underlying this method is based on the fact that conserved gene 

clusters through evolution usually encode proteins that functionally interact within the same 

pathway (Dandekar et al., 1998, Overbeek et al., 1999). Co-occurrence o f genes have been 

detected by measuring the conservation o f neighbouring genes (Dandekar et al., 1998) and 

measuring the conservation o f genes located in the same DNA strand and with an intergenic 

distance fewer than 300 bases (Overbeek et al., 1999). This method is applicable to 

prokaryotic and eukaryotic genomes.

8.1.3.3 Phylogenetic profile

The concept o f phylogenetic profiling was first introduced by Huynen and 

colleagues (Huynen and Bork, 1998) and Pellegrini and colleagues (Pellegrini et al., 1999). 

This method extracts the functional interactions between genes by comparing the presence 

and absence o f a set o f genes in different genomes. This method was first applied to detect 

sub-sets o f genes with similar phylogenetic distribution inferring a functional interaction 

between those genes (Huynen and Bork, 1998, Pellegrini et al., 1999). This method was 

also used to detect non-orthologous gene displacements where a certain protein is found to 

be missing and a different protein has evolved to catalyze the missing reaction (Koonin et 

al., 1996). Such events were identified when different proteins showed complementary or 

anti-correlated profiles (Galperin and Koonin, 2000). A variant o f this method (Pazos and 

Valencia, 2001), is based on the fact that protein families known to interact have more 

similar phylogenetic trees than expected (Fryxell, 1996, Goh et al., 2000, Hughes and 

Yeager, 1999).
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8.1.3.4 Conservation of co-expression

This method is the only experimental method that is considered to be a genomic 

context method. Functional interactions are extracted from gene expression data, which can 

be obtained under different conditions thus relating proteins with a similar expression 

pattern. The classical experimental approach for this kind o f data is microarray analysis 

(Schena et al., 1995).

8.1.4 Methods to predict functionally important residues

These methods are essential to understanding the mechanism used by different 

proteins to carry out their molecular function and classify uncharacterized proteins. 

Moreover, prediction o f functionally important residues is often used to identify residues 

that can be used to distinguish between different sub-types o f proteins. Proteins belonging 

to particular families can also be sub-classified into sub-families that might have diverged 

and developed different ligand binding specificity and even very different functions while 

conserving a similar fold. Homology based functional prediction methods often fail to 

distinguish between different subfamilies as these tree determinant positions (conserved 

residues specific to a particular subfamily) might only involve few residues. The main 

computational approaches used to predict functionally important residues are based on the 

identification o f conserved residues from multiple sequence alignments, pattern discovery 

or identification o f functionally important residues from protein structures.

The method developed by Livingston and colleagues characterized the physico

chemical properties o f each position in the multiple sequence alignment in order to identify 

conserved residues sharing similar physicochemical properties (Livingstone and Barton, 

1993). The SequenceSpace method (Casari et al., 1995) was implemented to translate 

aligned sequences into protein vectors, the sequence space, which are projected by principal 

component analysis in order to sub-classify a given protein family into the corresponding 

sub-families and identify the corresponding TDP (tree determinant positions) and
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conserved residues across the family. The Evolutionary Trace Method (Lichtarge et al., 

1996) iteratively divides a given gene tree at different levels, based on sequence similarity, 

into an increasing number o f subgroups, which include different branches in the tree. At 

each level, the method identifies TDP conserved uniquely within a particular subgroup. The 

identified residues are then mapped onto a known structure and active sites and functional 

interfaces are predicted when spatial clusters o f residues specific to a particular subgroup 

are found. A variation o f this method, the weighted evolutionary trace method, weights 

each amino acid sequence according to its uniqueness and the variability in each position is 

assigned by an amino acid substitution matrix in order to decrease the influence o f highly 

homologous sequences (Landgraf et al., 1999). Similarly other methods, which included 

more accurate algorithms to build phylogenetic trees and calculate the residue conservation 

o f each position (Armon et al., 2001, Landau et al., 2005, Pupko et al., 2002), have been 

developed based on the same principle as the evolutionary trace method. The method 

developed by Johnson and Church (Johnson and Church, 2000) used a multiple structural 

alignment to integrate ligand binding information with multiple sequence alignments. 

Following this, a phylogenetic tree was generated to correlate the sub-branches o f the tree 

with ligand-binding specificity. The phylogenetic analysis performed along with sub

alignments o f binding site residues were used to identify sequences with similar binding 

pockets and predict uncharacterized protein sequences. The method developed by 

Hannenhalli and Russell (Hannenhalli and Russell, 2000) uses a multiple sequence 

alignment and a set o f proteins sub-classified according to a particular definition of 

function. Subsequently, TDP were predicted by comparison o f different hidden Markov 

model profiles. The authors argued that protein classification based on phylogenetic trees 

was not suitable for identifying protein families o f  highly diverged sequences or groups of 

proteins with similar function but different evolutionary background. The three- 

dimensional cluster analysis method (Landgraf et al., 2001) uses sequence and structural 

information to predict functional sites located at the protein surface. This method compares 

global and regional similarity matrices obtained from a global alignment and different 

regional alignments that reflect the local structural environment and evolutionary variation. 

Functional residue clusters could be identified using the regional conservation score, which 

defines the conservation o f each residue and its three-dimensional neighbours. Following a
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similar principle, del Sol Mesa and colleagues (del Sol Mesa et al., 2003) developed the 

mutational behaviour method under the assumption that the mutational behaviour o f tree 

determinant positions is similar to the mutational behaviour o f the whole family. Mirny and 

Gelfand (Mirny and Gelfand, 2002) developed a method to predict residues that determine 

the protein specificity based on the assumption that the functional specificity o f orthologues 

remains conserved whereas it evolves among paralogues. Oliveira and colleagues (Oliveira 

et al., 2003) introduced a new method, which computed the Shannon entropy and the 

residue variability at each position in a multiple sequence alignment (sequences were 

weighted to reduce the influence o f highly identical sequences). Clustering o f the residue 

positions according to the different residue conservation evaluation scores identified a 

group o f residue positions (with lower Shannon entropy and residue variability) correlated 

with the main functional sites o f a given protein.

Pattern discovery methods have also been applied to the problem o f detecting 

conserved residues within a set o f proteins. These methods aim to detect sequence domains 

responsible for specific structural roles or biochemical functions. Proteins might allocate 

more than one domain in its sequence and it is necessary to analyze the domain space of 

proteins (including possible interactions between these domains) to understand how a 

protein works. Protein evolution also involves gain, loss and re-shuffling o f existing 

domains in order to create new functions. These methods have proven to be successful and 

as a consequence o f this several databases containing different motifs have been created. 

The Prosite database (Hulo et al., 2006) is the most pre-eminent example o f the single motif 

representation where a protein family is represented by a single motif. The Blocks 

(Henikoff et al., 1999b) and Prints (Attwood et al., 1999) databases include multiple motifs 

in order to model the mutual context provided by m otif neighbours and improve the 

sensitivity and specificity o f the method (Orengo et al., 2003). The classical approach to 

detect these motifs is based on multiple sequence alignment. However, other approaches 

such as the TEIRESIAS algorithm (Rigoutsos and Floratos, 1998) have been developed to 

detect functionally important motifs (Lasso et al., 2006, Darzentas et al., 2005) without the 

need for prior multiple sequence alignment.
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Usually, protein binding and active sites involve residues located far apart from 

each other in the sequence but spatially clustered in the protein structure. Predicting these 

spatial clusters o f residues is still a challenge for methods based solely on sequence. 

Alternatively, analysis o f crystallized structures can be used to predict spatial clusters of 

functionally important residues. The classical approach is to compare different structures of 

functionally related proteins and identify those conserved residues and three-dimensional 

folds. Other methods explore other properties such as physico-chemical properties, side- 

chain patterns or surface-solvent accessibility o f active sites in the protein molecular 

surface. Some o f  these methods can only be applied to crystallized structures with unknown 

function as the spatial clusters identified depend on the three-dimensional coordinates of 

the atoms. Therefore, predicted structures obtained by homology modeling, threading or ab 

initio methods are not suitable as the predicted structure does not attain sufficient 

resolution. The fuzzy functional forms (FFF) method (Fetrow and Skolnick, 1998) 

overcome this limitation. Using information from multiple sequence alignments, scientific 

literature and the structure o f the protein, this method identified, spatial clusters in 

crystallized structures that were found in non-local residues in the sequences. Rather than 

making the descriptors of the spatial clusters highly specific by including the atomic 

coordinates, the descriptors were made “fuzzy” while still being able to be used to identify 

functional sites. By relaxing the constraints imposed on these descriptors, the developed 

method could be used to identify active sites in low-to-moderate resolution models obtained 

by threading or ab-initio methods.

8.1.5 Data mining prediction methods

During the last decade, the use o f different data mining techniques to predict protein 

functional classes has been continuously increasing. Generally, these methods use a set of 

extracted features to classify a given training set and classify uncharacterized proteins. The 

extracted features can be computed solely from sequence, structure or include a 

combination o f both. Sequential features such as the amino acid composition or the pseudo

amino acid composition o f the whole sequence, physicochemical features such the 

isoelectric point, molecular weight, hydrophobicity, and structural features such as the
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secondary structure or solvent accessibility have been successfully applied. Among the 

different data mining techniques used, the Support Vector Machines (SVM) are 

undoubtedly the most popular technique. However, other techniques such as Bayesian 

methods, neural networks, decision trees and K-nearest neighbour have been applied. Des 

Jardins and colleagues (des Jardins et al., 1997) applied data mining methods for the first 

time to classify enzymes (according to the EC classification) based on the isoelectric point, 

molecular weight and amino-acid composition. King and colleagues developed a method, 

which combined inductive logic programming clustering and rule learning to predict the 

function o f uncharacterized open reading frames (ORF) from M. tuberculosis (King et al., 

2000a) and E. coli (King et al., 2000b). The authors explored the feature space o f proteins 

in order to maximize the predictive power o f the method by individually using features 

extracted from sequence, phylogeny and predicted secondary structure (King et al., 2001). 

By combining different classes o f features, 40% of the unassigned ORFs were predicted at 

an estimated accuracy o f  60%. The pseudo-amino acid composition was introduced in 

chap ter 7 with regard to the prediction o f the subcellular location o f proteins (Chou, 2001, 

Chou and Cai, 2003). The first 20 attributes computed by the developed method reflect the 

effect o f the amino acid composition whereas the following attributes correspond to the 

physicochemical differences (hydrophobicity, hydrophilicity and side-chain mass) between 

sequential pairs o f residues (z, i+j where j  = 1,2,3...). Cai and Lin (Cai and Lin, 2003) 

combined this method with a SVM to predict rRNA-, RNA- and DNA-binding proteins 

obtaining an accuracy o f 76%-97%. SVM-Prot (Cai et al., 2003), a SVM based prediction 

tool, was implemented to classify functional families obtained from the Pfam database 

(Bateman et al., 2002). SecretomeP (Bendtsen et al., 2004) was implemented to predict 

mammalian secretory proteins targeted to the non-classical secretory pathway. This 

algorithm used a trained neural network with a single layer o f hidden neurons that were 

trained by features such as predicted post-translational modifications, predicted structure, 

degradation signals, composition, size and charge. This method achieved a sensitivity of 

40% with a false positive rate lower than 5% by five fold cross-validation. Chou and Cai 

(Cai and Chou, 2005, Chou and Cai, 2004) developed various algorithms to predict the 

enzyme family class and subclass under low sequence similarity (>40%). The GO-PseAA 

predictor (Chou and Cai, 2004) combined the gene ontology and pseudo amino acid
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composition to predict the different enzymatic classes. The Fund-PseAA predictor (Cai and 

Chou, 2005) combined the composition o f functional domains with the pseudo amino acid 

composition to predict different enzymatic subclasses. Similarly, the Fund-PseAA predictor 

was also applied to predict different types o f proteases with low sequence similarity 

(<25%), obtaining an overall accuracy over 90%. Lin and colleagues (Lin et al., 2006) 

trained a SVM to predict different classes o f lipid binding proteins. The extracted features 

included amino acid composition, hydrophobicity, normalized Van der Waals volume, 

polarity, polarizability, charge, surface tension, secondary structure and solvent 

accessibility. Additionally other features were also included: i) the composition of 

equivalent residues (e.g. hydrophobic residues), ii) the transition frequency by which a 

particular group o f equivalent residues is followed by a different group o f equivalent 

residues and iii) the sequence length at which the first 25, 50, 75 and 100% of the residues 

belonging to a equivalent group o f residues are found. The developed method showed 

sensitivity values from 76% to 91% and specificity values from 97% to 100%.

8.1.6 Functional prediction of membrane proteins

Membrane proteins are by nature different to globular membrane proteins. The 

environment in which membrane proteins are embedded imposes a compositional 

constraint in the transmembrane regions o f the protein. Following this principle, functional 

prediction methods based on features that can be extracted from sequence, such as the 

amino acid composition and different physicochemical properties, might also reflect the 

differences between globular and membrane proteins. Sugiyama and colleagues (Sugiyama 

et al., 2003) stated that sequence similarity based methods are less accurate in predicting 

the molecular function of membrane proteins probably due to the hydrophobic nature o f the 

transmembrane regions. This compositional bias o f membrane proteins might affect 

different methods o f predicting molecular function to varying extents. While methods based 

on features extracted from sequence can be severely affected, pattern discovery methods 

can be variably affected depending on the location o f the functional domain. If the 

functional domain is located in an extra-membranous loop, it is likely that it resembles a 

homologue domain located in a globular protein. However, if  the functional domain is
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located in the transmembrane domain, it is likely that this domain evolves in order to adapt 

itself to the new environment and the interacting hydrophobic secondary structures o f the 

protein. Therefore, functional prediction methods should be independently trained by two 

different sets o f proteins, one corresponding to globular proteins and a different set 

composed o f membrane proteins, in order to overcome the compositional differences 

between these two classes.

Despite the importance o f membrane proteins in many physiological processes, 

there are only a few methods to specifically predict the function o f membrane proteins. 

Shimizu and colleagues developed a method to predict the function o f transmembrane 

proteins based on a binary topology pattern (Polulyakh et al., 2000, Sugiyama et al., 2001, 

Sugiyama et al., 2003, Inoue et al., 2001). The authors combined different topological 

properties to generate binary vectors: the number o f transmembrane regions, loop length 

(either short or long) and the location o f the N-terminus. The developed method showed 

accurate self-consistency values but it was not appropriately evaluated. The authors also 

developed a single-linkage clustering method based on a binary topology pattern similarity 

(Arai et al., 2004). The developed binary topology pattern was simply based on the length 

o f the different loops compared with a particular threshold (“0” and “ 1” corresponded to 

short loops and long loops respectively). The clustering method was applied to 87 

prokaryotic transmembrane proteomes and was capable o f predicting 61% of the proteome 

whereas homology based methods could only annotate 24% of the proteome. Apart from 

the binary topology approach introduced by Shimizu and collaborators, remaining research 

has focussed on the functional prediction o f membrane proteins based on the classification 

and sub-classification o f G-protein coupled receptors (GPCR). The GPCR superfamily 

stands out from other functional types o f membrane proteins due to its great 

pharmacological importance. GPCRs have an essential role in cellular signalling o f diverse 

physiological processes such as neurotransmission, cellular metabolism, secretion, cellular 

differentiation, growth, inflammatory and immune responses, smell, taste and vision 

(Hebert and Bouvier, 1998). These receptors bind a wide range o f different ligands (e.g. 

protons, amines, peptides, ions and pheromones), which activates a conformational change 

o f the receptor that ultimately transduces the signal across the membrane. The signal is then
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coupled to the cytoplasm by association o f the inactive heterotrimeric G-protein (subunits 

a, p and y) with the receptor. Such association triggers the substitution o f the GDP bound to 

the a-subunit with GTP. Subsequently the a-subunit dissociates from the receptor and the 

py complex. The dissociated subunits can then act as activators or inhibitors o f a variety of 

effectors (e.g. adenylate cyclase or ion channels). The GTPase activity o f the a-subunit 

promotes the re-association o f the subunits and the inactivation o f the G-protein by 

hydrolysis o f the bound GTP to GDP. Despite the divergence in ligands bound and 

processes involved, the GPCR superfamily has a marked structural homology. These 

proteins show a conserved structural arrangement in the transmembrane domain composed 

by seven a-helices that completely traverse the membrane. The importance o f these 

proteins is evidenced by the fact that approximately 40-50% of the current drugs act 

through GPCRs. Karchin and collaborators (Karchin et al., 2002) first introduced SVM for 

the classification and sub-classification o f the GPCR superfamily. The authors compared 

the predictive accuracy o f  the SVM with that o f BLAST (Altschul et al., 1997) and profile 

HMM and concluded that the SVM was a more accurate predictive technique to sub- 

classify the GPCR superfamily. However, no sequence similarity threshold was applied and 

the negative class that was used to train GPCR superfamily classifier under-represented 

polytopic membrane proteins. PRED-GPCR was implemented based on a probabilistic 

approach that used profile HMM from multiple sequence alignments to derive family 

signatures but no sequence similarity threshold was applied. The program was tested 

against a positive and negative test set obtaining a sensitivity o f  96% and a specificity of 

99.6%, however the sequential relationship between the training and test set is not 

described. Inoue and collaborators (Inoue et al., 2004) applied the topology binary 

approach to the GPCR superfamily. The results achieved corresponded to the self

dependency o f the method but no appropriate evaluation was carried out. GPCRpred 

(Bhasin and Raghava, 2004) was implemented based on a SVM where the extracted 

features corresponded to the dipeptide composition o f the polypeptide sequences (sequence 

similarity threshold = 90%). The program achieved 99.5% accuracy for predicting GPCR 

proteins (5 fold cross-validation). However, the negative class o f the corresponding training 

set was found to under-represent polytopic membrane proteins. GPCRpred was also 

designed to sub-classify the predicted GPCRs into sub-classes at various levels showing
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accurate predictive scores. Guo and collaborators (Guo et al., 2005) designed a method 

based on a fast fourier transform-based SVM using hydrophobicity to discriminate between 

different GPCR subfamilies. The method achieved an overall accuracy o f 93% to sub- 

classify GPCR classes B, C, D and F using a jackknife test although no sequence similarity 

threshold was applied. GPCRsclass (Bhasin and Raghava, 2005) was implemented to 

predict amine type GPCRs (it belongs to the class A GPCR) using a SVM that examines 

the dipeptide composition. Interestingly, rather than using a negative class composed of 

non-Amine GPCRs, the authors used a set of globular proteins as the negative class used to 

train the Amine GPCR classifier. The method sub-classified the Amine GPCR sub-class 

with an overall accuracy o f 96%. However, no sequence similarity threshold was applied to 

the training set prior to the data mining process. The methods described above have been 

implemented to predict GPCR proteins according to the ligand-based GPCRDB 

classification scheme (Horn et al., 1998). However, other methods have been implemented 

to predict GPCR coupling specificity to G-proteins based on techniques such as HMM 

(Sgourakis et al., 2005, Sreekumar et al., 2004), Nai’ve Bayesian methods (Cao et al., 2003) 

and SVM (Guan et al., 2005).

To our understanding, few o f the data mining approaches described above included 

permissive conditions that might have resulted in overestimation o f the predictive accuracy 

o f the developed methods. The first permissive condition is the development o f negative 

training sets that do not include or under-represent polytopic membrane proteins. In order 

to predict the GPCR superfamily, SVMs need to be trained with a positive (GPCRs) and a 

negative class (non-GPCRs). The negative class should only include non-GPCR polytopic 

membrane proteins in order to avoid that classifiers base their prediction upon features 

describing environmental differences rather than structural or functional properties. If  the 

negative class only includes, or is mainly composed of, globular proteins the predictive 

algorithm will be based more upon properties that reflect the constraints imposed by the 

membrane in the transmembrane regions. On the other hand, if the negative class is 

composed o f other polytopic membrane proteins the features used to predict GPCRs will 

reflect structural or functional properties more specific to the GPCR superfamily. The 

second permissive condition is the absence o f a sequence similarity threshold. Data sets
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containing large subsets with highly identical sequences tend to bias the classifier towards 

these subsets in order to maximize accuracy o f the overall prediction. This would imply 

that sequences not belonging to any o f these subsets are underestimated by the trained 

classifier. Therefore, sequence similarity thresholds need to be applied in order to minimize 

such bias.

8.1.7 The TMFUN approach

This chapter describes the implementation of an algorithm to predict the molecular 

function o f polytopic a-helical membrane proteins by combining different data mining 

techniques. The data set was extracted from the Swiss-Prot database (release 50.2 o f 27-06- 

2006) using the PROCLASS software (C hap ter 3). Subsequently, the assembled data set 

was filtered at a sequence similarity threshold o f 40% and 90% using CD-HIT (Li et al., 

2001). Prior to the feature extraction stage, TMLOOP and TMLOOP writer (C hap ter 5) 

were applied to the filtered data sets (two data sets were created after the sequence 

redundancy stage) in order to refine the transmembrane statement by including the 

description o f membrane dipping loops. The feature extraction was performed by 

TMDEPTH (C hap ter 6), which combines sequence and topology and converts each 

sequence into a feature vector. The feature vector describes the associations o f pairs of 

residues located at a similar depth in the membrane. Using the Weka platform (Witten and 

Frank, 2005) different data mining techniques (e.g. Bayesian methods and support vector 

machines) and architectures were evaluated by ten fold cross-validation in order to 

maximize the predictive accuracy for each functional class. The different classifiers 

selected during the data mining stage were combined into a predictive algorithm named 

TMFUN. This program performs functional prediction o f membrane proteins at increasing 

levels o f molecular complexity. At the first level proteins can be classified as enzymes, 

GPCRs, ion channels and molecular transporters. Further levels o f prediction distinguished 

between ion channels specifically transporting cations or anions, class A GPCRs, non-class 

A GPCRs, amine GPCRs, peptide GPCRs, olfactory GPCRs and rhodopsin GPCRs. At the 

sequence similarity threshold o f 40%, TMFUN predicted enzymes, GPCRs, and 

transporters with a sensitivity o f 64.1%, 87.5% and 71.4% respectively (table 8.53). The
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ion channel class could not be accurately predicted as the algorithm tended to misclassify 

proteins with transport activities such as ion channels, molecular transporters and particular 

enzymes. At the most informative level, TMFUN predicted 70% o f the olfactory GPCRs 

under conditions o f low sequence similarity using a sequence similarity threshold o f 40%. 

At the 90% sequence similarity threshold, TMFUN achieved higher predictive accuracies. 

Enzymes, GPCRs, ion channels and molecular transporters were predicted with a 

sensitivity o f 87.8%, 92.8%, 58.3% and 75.6% respectively (table 8.57). At the most 

informative level the different subclasses o f class A GPCRs were predicted at sensitivity 

values o f 84.5%-92.9%. Unlike previously described methods, no globular proteins have 

been included in the training sets in order to avoid the effect o f inherent compositional 

differences between polytopic a-helical membrane proteins and soluble proteins. In order to 

fully evaluate the results described above it is necessary to consider the current context in 

which such predictions are carried out. The applied feature extraction method depends 

directly on the accuracy o f the topological models contained in the Swiss-Prot database. 

The incorrect prediction o f even a single transmembrane region can completely alter the 

protein vector used to classify a given membrane protein (figure 6.4). Currently, topology 

prediction methods achieve an accuracy o f  only 70%-80% in correctly predicting the 

topology o f polytopic a-helical membrane proteins. Additionally, the predictions carried 

out by TMFUN are solely based on the information contained in the transmembrane 

regions. Therefore, these results confirm the essential role that transmembrane regions play 

in the assignment o f molecular function for polytopic a-helical membrane proteins.

8.2 Methods

8.2.1 Data set development

The data set was retrieved from the Swiss-Prot database (release 50.2 o f 27-06- 

2006) using PROCLASS (Chapter 3) regardless o f their taxonomic classification. The data 

set assembled with PROCLASS contained 10,022 a-helical membrane proteins (9,907 

proteins were clustered in 808 clusters whereas 115 non-clustered proteins were manually 

retrieved) classified according to their corresponding functional annotation space (table
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3.4). The obtained data set was filtered at the protein and functional level, as described 

below, in order to develop a data set suitable for analysis with TMDEPTH and the data 

mining process. At the protein level, both structural and sequence redundancy were 

analyzed. Membrane proteins whose structure was found to be composed o f (3-sheet 

forming a (3-barrel structure were not to be included in the data set as TMDEPTH was 

implemented to detect associations o f residues belonging to different a-helical structures 

located at a similar depth in the membrane. The estimation o f the membrane thickness and 

depth values for the different amino acids is not applicable to (3-barrel membrane proteins 

due to their different structural properties. In order to remove P-barrel membrane proteins, 

Swiss-Prot like text files containing the term “porin” (used to describe a p-barrel membrane 

proteins) were excluded from the data set. Predicted membrane dipping loops (only those 

found to be true positives) (Chapter 5) were included in the transmembrane statement o f 

corresponding Swiss-Prot like text files using the TMLOOP writer (Chapter 5). As 

explained in Chapter 7, TMDEPTH was implemented to consider transmembrane regions 

whose length is lower than 14 residues long as false positives, ignoring such segments 

while retrieving transmembrane information from the Swiss-Prot database. Although it is 

possible that those predicted segments are false positive, it is also possible that the topology 

prediction underestimated the length o f the given segment or that the predicted segment 

corresponds not to a helical structure but to an unstructured loop or loop-helical structure 

that completely traverses the membrane. In order to minimize potential errors when 

calculating the matrices using TMDEPTH, those proteins containing at least one 

transmembrane region with less than 14 residues were excluded from the data set. Sequence 

similarity was also analyzed within each cluster using CD-HIT (Li et al., 2001). As the size 

of the assembled data set was large enough to apply a stringent filter using CD-HIT two 

different sets were designed, the first set was composed o f sequences not sharing more than 

40% of its residues with another sequence in the same cluster (CD-HIT parameters: n = 2, c 

= 0.4) whereas a more flexible filter was applied to the second set (CD-HIT parameters: n = 

5, c = 0.9) where no clusters contained 2 or more proteins sharing at least 90% of their 

residues.
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At the functional level, protein complexes and multifunctional proteins were not 

considered. TMDEPTH has also been implemented to calculate the percentage of 

interhelical associations between residues located at a similar depth between different 

subunits within protein complexes. However, protein complexes were discarded because 

there is not yet full description o f the different subunits forming such complexes (unless 

they have been experimentally analyzed). Theoretically, the designed data mining 

workflow and the TMFUN algorithm is compatible with the multifunctional behaviour of 

proteins but in order to capture the profile o f particular molecular activities (including 

molecular function and ligand-binding specificity) it is more appropriate to use membrane 

proteins with a single functional behaviour during the data mining process. From the data 

set assembled with PROCLASS, some functional clusters whose molecular activity needed 

further exploration were also analyzed, namely adhesion proteins, chloroplast envelope 

proteins, tetraspanin proteins and photosynthetic proteins. Proteins belonging to the 

chloroplast envelope cluster and photosynthetic cluster were not considered because no 

defined molecular activity has been defined yet or because a large fraction o f these proteins 

belong to protein complexes (e.g. photosystems I and II). Adhesion proteins were not 

considered due to the small size o f this cluster (38 sequences where more than 75% o f those 

share more than 90% of their residues). Tetraspanin proteins carry out a particular function 

acting as linkers in the membrane organizing other proteins into a network of 

multimolecular membrane microdomains (also known as tetraspanin web). Unfortunately, 

as with adhesion proteins, the size o f this unique protein cluster was not large enough for 

the analysis during the data mining process. After filtering at protein and functional level 

using a sequence redundancy threshold o f 40% the assembled data set contained 1,663 a- 

helical membrane proteins (table 8.1) whereas if  a sequence redundancy threshold o f 90% 

was applied using CD-HIT the assembled data set contained 4,470 a-helical membrane 

proteins (table 8.2).
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Level 1 Level 2 Level 3

EC 1: 70 EC 1.1: 16

EC 1.14: 24

Other: 30

EC 2: 396 EC 2.3: 107

EC 2.4: 92

Enzyme: 806
EC 2.7: 177

Other: 20

EC 3: 309 EC 3.1: 28

EC 3.4: 74

EC 3.6: 208

EC 4: 18 -

EC 6: 13 -

Frizzled GPCR: 8 -

GPCR class A: 192 Amine: 45

Olfactory: 37

GPCR: 241
Peptide: 61

Rhodopsin: 19

Other: 30

GPCR class B : 14 -

GPCR class C : 26 -

Receptor: 69
Acetylcholine receptor: 2 -

Serpentine: 67 -

Anionic channel: 49 -

Ion channel: 269 Cationic channel: 203 -

Other: 17 -

Amino acid transporter: 84 -

Transporters: 278 Sugar transporter: 80 -

Other: 114 -

Table 8.1. Assembled data set using PROCLASS and filtered at a sequence similarity threshold o f 40%. 
Molecular function is defined at various levels o f  molecular complexity. Level 1 corresponds to the less 
informative definition o f  molecular function whereas higher levels describe molecular function in more detail. 
The numbers within each cell are the number o f proteins with the corresponding function.
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Level 1 Level 2 Level 3 Level 4

Enzyme: 1904

EC 1: 165

EC 2: 932

EC 3: 757

EC 1.1: 34

EC 1.3: 27

EC 1.8: 22

EC 1.14: 62

Other: 20

EC 2.3: 205

EC 2.4: 264

EC 2.7: 413

Other: 50

EC 3.1: 63

EC 3.4: 168

EC 3.6: 526

Fatty acid desaturase: 23

Other: 39

Apolipoprotein N- 

acyltransferase: 60

Palmitoyl transferase: 95

Other: 50

Alpha-1,2-

glucosyltransferase: 20

Chitinsynthase: 32

Prolipoprotein 

diacylglyceryl 

transferase: 139

Other: 73

Phosphatidate 

cytidyltransferase: 25

Phospho-N-

acetylmuramoyl-

pentapeptide-transferase:

149

Cobalamin synthase: 50

Histidine kinase: 109

Cardiolipin synthetase: 

23

Other: 57

Pyrophosphate-energized 

proton pump: 27

Undecaprenyl- 

diphosphatase: 157
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Copper ATPase: 17

Proton ATPase: 21

Calcium ATPase: 29

Other ATPase: 20

Multidrug resistance 

ABC transporter 58

Lipid export ABC 

transporter: 30

Other ABC transporter: 

167

EC 4: 26 - -

EC 6: 24 - -

GPCR: 1156

Frizzled GPCR: 26 - -

GCPR class A: 1007

Amine: 144

Adrenergic receptor: 36

Dopamine: 22

Serotonin: 37

Trace amine: 20

Other: 29

Hormone; 32 -

Nucleotide like: 40 -

Olfactory: 432 -

Peptide: 221

CC Chemokine: 30

Melanocortin: 21

Other chemokine: 43

Other: 127

Rhodopsin: 95
Chromophore: 61

Opsin: 34

Other: 73 -

GPCR class B: 43 - -

GPCR class C: 82
Taste: 63 -

Other: 19 -

Receptor: 116
Acetylcoline: 5 - -

Serpentine: 111 - -

Ion channel: 576 Anionic channel: 134 Chloride: 31 -

Phosphate: 35 -

Sulfate: 20 -
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Other: 48 -

Cationic channel: 387

Iron: 94 -

Magnessium: 22 -

Potassium: 67 -

Sodium/Proton 

antiporter: 29
-

Zinc: 55 -

Other: 120 -

Other: 58
Cation/Anion 

antiporter: 33
-

Mechanosensitive

channel
25 -

Molecular transporter: 

718

AD P/A TP translocase: 

27
- -

Amino acid: 163 - -

Amonium: 24 - -

Aquaglyceroporin: 74 - -

DNA translocase: 61 - -

Multidrug: 43 - -

Oligopeptide: 31 - -

Sodium dicarboxylate: 

30
- -

Sugar transporter: 198 - -

Other: 67 - -

Table 8.2. Assembled data set using PROCLASS and filtered at a sequence similarity threshold o f  90%. Level 
1 corresponds to the less informative definition o f  molecular function whereas higher levels describe 
molecular function in more detail. The numbers within each cell are the number o f  proteins with the 
corresponding function.

Both sets (those with a sequence similarity threshold o f 40% and 90%) are 

composed o f 5 different large functional classes: Enzymes, GPCR, receptors, ion channels 

and transporters. GPCR proteins are a distinct type o f receptor, this large protein 

superfamily is composed by integral a-helical membrane proteins with seven 

transmembrane helices and was regarded as a functional class by itself due to the conserved 

topology o f the receptor among subfamilies and its pharmacological importance (more than 

50% o f current drugs target membrane proteins). Likewise, the fact that the smaller size of
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the wider receptor class compared with that o f the GPCR class can bias the profiling o f a 

combined group towards GPCR activity did not encourage the analysis o f a receptor class, 

which would encapsulate GPCR and non-GPCR proteins. However, it was found that the 

receptor family was composed mainly by serpentine receptors (97.1% and 95.7 for the set 

filtered at a threshold o f 40% and 90% respectively). Therefore, the receptor class was 

discarded because rather than detecting profiles for general receptor activity only the 

signature corresponding to serpentine receptors would have been detected.

As with the data set development for the prediction o f subcellular location of 

eukaryotic a-helical membrane proteins, TMDEPTH was used to calculate the 

corresponding matrices for each o f the proteins contained in the different classes using the 

sequence and topological information described in the local Swiss-Prot like text files. 

TMDEPTH was required to save the computed interhelical associations of residues located 

at a similar depth (percentage o f amino acid participation in interhelical associations, the 

normalized 20x20 triangular matrix o f interhelical associations and the normalized 3x3 

triangular matrix o f interhelical associations o f clusters o f biochemically equivalent 

residues) in C4.5 format, which can be processed not only by C4.5 and its latest Windows 

version (See5) but also by the Weka platform. The data sets filtered using a sequence 

similarity threshold o f 40% and 90% were both composed o f four different classes 

(Enzymes, GPCRs, ion channels and molecular transporters) but the set filtered with a 

sequence similarity threshold o f 40% was composed o f 1,594 data points whereas the more 

flexible set filtered at a sequence similarity threshold o f 90% was composed o f 4,354 data 

points. Each data point corresponds to a single protein and is composed o f 236 attributes 

where the first 2 0  attributes correspond to the percentage o f interhelical association 

participation for each residue, the following 2 1 0  attributes correspond to the normalized 

2 0 x2 0  triangular matrix o f interhelical associations and the last six attributes correspond to 

the normalized 3x3 triangular matrix o f interhelical associations o f clusters of 

biochemically equivalent residues.
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Both data sets were also filtered using the attribute selection filtering toll built 

within the Weka platform, as described in chapter 7. The different data mining methods 

and architectures (see below) were applied to both the non-filtered data sets and the filtered 

data sets to maximize the accuracy prediction o f a given data mining tool.

8.2.2 Development of the data mining workflow

The Weka platform (Witten and Frank, 2005) was used to design and evaluate 

different data mining analyses carried out in a similar fashion, as described in chapter 7. 

Both single-step architectures and multilayer architectures (also known as multi-step or 

tree-based architectures) (figure 7.1) were designed and evaluated using different data 

mining methods (table 7.4) in order to maximize the predictive accuracy for a given data 

set. The single-step architectures involved two different variations: the all-against-all 

method and one-against-all method. The all-against-all applies a particular data mining 

technique for the prediction o f various classes in a single-step (also known as multi-class 

classifier) fashion. Data mining techniques based on the one-against-all architecture can 

only be applied to predict a particular class, so if a given data set is composed o f 3 different 

classes it is necessary to design 3 different classifiers (e.g. for the classification o f enzymes, 

the sets filtered with a sequence similarity threshold o f 40% and 90% similarity were re

classified into two classes: the enzyme class and the non-enzyme class, which comprises 

GPCR proteins, ion channels and molecular transporters). This second variation is 

considered as a special type o f single-step architecture as it depends on the final 

arrangement o f the classifiers in a predictive software. If  the different classifiers are 

arranged in a single layer and the final prediction is based upon a consensus prediction the 

one-against-all variation remains a variation o f single-step architecture (figure 8.1a). 

However, if the classifiers are arranged sequentially giving preference to the earlier 

classifiers, the given variation no longer belongs to the single-step architecture but becomes 

a classical example o f multi-step architecture (figure 8.1b). Due to the functional 

relationship between ion channels and molecular transporters, both classes were also 

classified according to the multi-step architecture where first proteins with any kind of 

transport activity were predicted and in a subsequent node a-helical membrane proteins
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with transport activity were more specifically classified as ion channels or molecular 

transporters (figure 8.2).

Classifier A

Classifier A Classifier B Classifier C
Classifier B

S = 0.90S = 0; S = 0 85

Classifier C
Protein C

Protein C

Protein A

Protein A

Protein A

Protein C

N on-P rotein  B N o n -P ro te in  B

Figure 8.1. Example o f  different predictive architectures based on the re-arrangement o f  the classifiers: a) 
when the classifiers are arranged in a single layer a consensus prediction (either based on the corresponding 
support for each classifier or using equally weighted classifiers); b) if  the same classifiers are arranged 
follow ing a tree-based model, earlier classifiers are given preference over later classifiers.

Classifier A

Classifier B

Transport activityNo transport activity

Ion channelMolecular transporter

Figure 8.2. Multilayer predictive architecture for the prediction o f  molecular transporters and ion channels. 
The earlier classifier is designed to distinguish between proteins with and without any kind o f  transport 
activity. The later classifier sub-classifies membrane proteins with transport activity as molecular transporters 
or ion channels.
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The main objective o f the developed research in this chapter is to prove that the 

TMDEPTH method (C hap ter 6 ) can be used to demonstrate that signatures derived from 

the predicted topology o f membrane proteins can be associated with specific molecular 

functions o f membrane proteins. As described in tables 8.1 and 8.2 the molecular function 

o f a protein can be defined at differing levels o f complexity. Though the data mining 

workflow can be applied at the various levels described, the ending o f the data mining 

workflow was dictated by the predictive accuracy of a given class using the data set filtered 

at a sequence identity threshold o f 40%. When low accuracy was obtained for predicting a 

particular class at a particular level, no further data mining techniques were applied at 

higher levels o f complexity o f molecular activity. Although data mining analysis using the 

more flexible data set filtered at a sequence identity threshold o f 90% is likely to give equal 

or higher accuracy values for a given class at a particular level, no data mining o f further 

levels was applied, in order to focus on the comparison o f the predictive method based on a 

heterogeneous set (where the sequence similarity levels for each class are close to the 

twilight zone) and a more representative set filtered at a sequence identity threshold o f 40 

and 90% respectively.

8.2.3 Classifier evaluation

Each data mining technique was evaluated by ten fold cross-validation. When 

evaluating the different classifiers applied in a single-step fashion, the 1 0  fold cross- 

validation o f the single node is effectively an evaluation o f that particular method to predict 

the functional classes. However, evaluation of a set o f classifiers arranged in a tree-based 

fashion can not be achieved by summing up the independent evaluations o f each node 

contained in a given tree. In order to evaluate a tree-based set o f classifiers, it was 

necessary to train the corresponding classifier at each node with the subset o f the training 

set containing the corresponding classes and to apply the trained tree-based set o f classifiers 

to each data point in the test set until reaching a leaf where no further classification can be 

achieved.
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The predictive accuracy of each data mining technique and tree-based set o f 

classifiers is estimated based on the confusion matrix obtained from the ten fold cross- 

validation (Chapter 7). The accuracy in predicting a particular class is defined by its 

sensitivity (1.16), specificity (1.17) and geometric average (1.18). The evaluation o f the 

performance o f the method is given by the accuracy (1.19), the normalized accuracy (1.20) 

and the Matthews correlation coefficient for data sets with two classes (1 .2 1 ) or the 

Generalized correlation for data sets with three or more classes (1.22). These predictive 

values are compared between the different data mining techniques (table 7.4) in order to 

select the most accurate data mining technique for predicting a particular functional class.

8.2.4 TMFUN development

As with previous software implementation, TMFUN has been implemented using 

the Borland Delphi 7 programming environment and the model-view-controller architecture 

(figure 3.3). The current version (figure 8.3) has been implemented as a web application, 

which uses a Common Gateway Interface (CGI), with an Apache web server. The code 

generated by Delphi is a console application, which is placed in the Apache server and 

called by submission of input at the TMFUN interface by HTML code.

The predictive algorithm has been implemented to combine the different classifiers selected 

during the classifier evaluation process. The implemented algorithm combines different 

predictive architectures and performs consensus prediction at each level. Based on the 

consensus prediction achieved at a particular level o f molecular function complexity, the 

algorithm calls the corresponding classifier to be applied at the subsequent level and further 

sub-classifies the query sequence. TMFUN has also been designed not to assign a 

functional molecular class by default. However, the current version has not been 

implemented to predict multifunctional proteins.

The current web version of TMFUN has been designed to so that the required 

information (identifier, topology information and amino acid sequence) is input in Swiss- 

Prot like format. Once the input has been submitted, TMFUN calls TMDEPTH in order to 

perform the feature extraction (Chapter 6 ) and create a protein vector with 236 attributes,
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which summarizes the associations o f residues belonging to different transmembrane 

helices but located at a similar depth. Each o f the developed vectors is then tested using the 

Weka platform using the previously trained classifiers for the lower level o f molecular 

function complexity. TMFUN communicates with the Weka platform with a series o f bat 

files (*.bat) where a specific command is run in order to load the corresponding classifier, 

load the corresponding test vectors, apply the classifier to the loaded test vectors and save 

the prediction as a specific text file located in a particular location. Once all classifiers 

belonging to the 1st level have been run and the corresponding predictions have been 

analyzed by TMFUN, a consensus prediction is performed to predict the molecular function 

o f the query proteins at its lowest level o f complexity. TMFUN performs three different 

types o f consensus prediction. The first consensus prediction method assumes equally 

weighted classifiers, whereas the second and third consensus prediction methods assume 

un-equally weighted classifiers where the support for each classifier is obtained from the 

ten fold cross-validation performed during the evaluation o f the classifier, and corresponds 

to the geometric average (GAv) and the Matthews correlation coefficient respectively 

(MCC). The former consensus prediction method that assumes equally weighted classifiers 

has been designed to include up to two different hits (e.g. “the query sequence belongs to 

an enzyme or ion channel”) but when more than two different hits have been made by 

different classifiers TMFUN does not make any prediction (e.g. “the molecular function of 

the query sequence can not be assigned”). Similarly, in order to predict the transport 

activity o f the query protein three different classifiers are called (figure 8.5). The 1st and 2nd 

classifier have been design to predict ion channels and molecular transporters respectively, 

the 3rd classifier is a tree-based set o f 2 classifiers where the 1st classifier predicts whether 

the query protein has transport activity and the 2 nd classifier sub-classifies the query as ion 

channel or molecular transporter (figure 8.2). When these 3 classifiers give a hit for the 

query sequence, assuming equally weighted classifiers, the consensus prediction relies on 

the prediction with the higher number o f hits. By contrast, if  two contradictory hits are 

obtained (e.g. 1st classifier, 2nd classifier and 3rd predict the query sequence as non-ion 

channel, molecular transporter and ion channel respectively), TMFUN can only indicate the 

transport function o f the query protein without indicating whether it is an ion channel or 

molecular transporter. Consensus prediction assuming unequally weighted classifiers does
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not lead to the situations described above, as there are never two different classifiers (acting 

at the same level) with the same support.

Depending on the consensus prediction at the first level, TMFUN calls the 

corresponding classifier to further sub-classify the query sequence at the second level o f 

molecular function complexity, the classification process continues until no further sub- 

classification can be performed. Based on the results obtained from the classifier evaluation 

using the data set filtered at a sequence similarity threshold o f 40%, TMFUN has been 

implemented to predict the molecular activity o f the query sequence at three different levels 

o f molecular function complexity (figure 8.5). At the first level, TMFUN distinguishes 

between enzymes, GPCRs, ion channels, molecular transporters and proteins with transport 

activity. At the second level o f complexity, TMFUN sub-classifies GPCR proteins into 

class A GPCR proteins or other GPCR proteins, and ion channels are also sub-classified 

into cation channels or anion channels. The 3rd level o f  molecular function complexity has 

been designed to further subclassify class A GPCR proteins into amine, olfactory, peptide 

and rhodopsin GPCR proteins.
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Figure 8.3. Screenshot o f  TM FUN for prediction o f  the molecular function o f  
a-helical membrane proteins under low  sequence similarity.
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Figure 8.4. Output interface o f  the current web version o f  TMFUN.
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Figure 8.5. TM FUN algorithm. The current version o f  TM FUN requires an input with Swiss-Prot like format 
indicating the identifier, the transmembrane regions and the amino acid sequence. TMFUN calls TMDEPTH, 
which extracts the features corresponding to the percentage o f  pairs o f  residues located at a similar depth in 
the membrane and creates a protein vector to be analyzed by TMFUN and WEKA. TMFUN uses 12 different 
classifiers to perform the prediction o f  molecular function at three levels o f  complexity. Within each level, all 
classifiers are arranged in a single-step fashion with the exception o f  the transport classifier in the first level, 
which is com posed o f  two different classifiers arranged in a tree-based fashion.
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8.2.5 TMFUN evaluation

Although each classifier has been individually evaluated, TMFUN combines 12 

different classifiers in order to obtain a single prediction o f the molecular function. 

Therefore the program needs to be evaluated in order to estimate the overall accuracy 

prediction o f the algorithm. TMFUN was evaluated by ten fold cross-validation, where 

iteratively corresponding classifiers are trained with 90% o f the corresponding data set and 

the remaining 10% is used as a test set. The evaluation is repeated ten times so each protein 

has been included once in the test set.

8.3 Results and Discussion

8.3.1 Data set development

The data set assembled using PROCLASS was composed of 10,022 a-helical 

membrane proteins clustered into 808 different clusters according to the functional 

annotation details contained in the Swiss-Prot database. If sharing broad functional 

properties, the obtained clusters were merged at different levels o f complexity o f molecular 

function (table 8.1 and table 8.2). Following this principle, all clusters corresponding to 

ion channels transporting different anions were clustered into the anion channel class at a 

less informative level and also merged with other cation channels constructing the ion 

channel class at a broader level. Classification o f these clusters lead to an interesting 

question while classifying proteins whose overall molecular activity encapsulates two 

linked functions, where one function is related to the transmembrane section o f the protein 

and the remaining function is related to the extra-membranous section o f the protein. This 

scenario was particularly evident with hydrolases transporting ions through the membrane 

such as the calcium ATPases. These proteins catalyze the hydrolysis o f a molecule at the 

extra-membranous side after the transport o f a specific ion through the membrane triggers 

the corresponding conformational change.
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TMDEPTH has been designed to extract features that are present in the 

transmembrane section o f the protein. Therefore, it is possible to classify proteins based 

solely on the molecular activity carried out in the membrane. However, the transmembrane 

section o f the proteins with these properties might be indirectly linked to the function 

carried out at the extra-membranous side either by triggering conformational change, by 

transduction o f the signal that triggers the conformational change or by stabilization of 

required conformation. Based on this, proteins carrying out two linked functions related to 

the transmembrane and extra-membranous section were classified according to their overall 

molecular activity.

The data set was filtered, removing proteins with P-barrel structure or transmembrane 

regions whose length is lower than 14 residues, and multifunctional proteins and proteins 

that belong to protein complexes. The size o f the filtered data set was large enough to 

accommodate more stringent filters at the sequence level using CD-HIT. The so-called 

“twilight zone” ranges from approximately 20% to 30% sequence similarity. Assessment of 

functional prediction evaluation at sequence similarity levels close to the twilight zone is 

the ultimate test for any functional prediction method. The lowest possible sequence 

similarity threshold that may be applied by CD-HIT corresponds to 40% sequence 

similarity. Additionally a more flexible sequence similarity threshold was also applied (at 

90% sequence similarity) where only highly identical pairs o f sequences are avoided. The 

goals o f these two data sets is to prove the principle proposed by TMDEPTH (signatures 

derived from the predicted topology of membrane proteins can be associated with specific 

molecular functions o f membrane proteins) and to implement two versions o f  TMFUN, one 

version to be applied under low sequence similarity and a more flexible version o f TMFUN 

whose classifiers have been trained with a more representative set.

8.3.2 Development of predictive architecture

As with the development o f TMLOC ATE, a range o f data mining techniques (table

7.4) has been evaluated in order to select the best performing classifiers. As explained 

earlier, the end o f the data mining workflow was dictated by the predictive accuracy o f a
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given class using the data set filtered using a sequence identity threshold o f 40%. When low 

accuracy was obtained to predict a particular class at a particular level, no further data 

mining techniques were applied at increasing levels o f complexity o f molecular function. 

Although data mining analysis using the more flexible data set filtered at a sequence 

identity threshold o f 90% is certain to give equal or higher accuracy values for a given class 

at a particular level, no further data mining was applied in order to compare the predictive 

method based on a heterogeneous set (where the sequence similarity levels for each class 

are close to the twilight zone) and on a more representative set i.e. the two sets filtered at a 

sequence identity threshold o f 40 and 90% respectively.

8.3.2.1 Data set filtered at a sequence similarity threshold of 40%

Based on this data set, different classification schemes and multilayer classifiers 

with different combinations o f classes were tested. The first classification was based on 

three different functional classes, which included enzymes, GPCR proteins and proteins 

with transport activity (including molecular transporters and ion channels). The best 

performing classifier was found to be the Bayesian network (attribute selection = true) 

(table 8.3), which achieved a normalized accuracy (nQ) of 74.3. Proteins with transport 

activity were subsequently classified as ion channels or molecular transporters by a 

downstream classifier creating a tree-based or multilayer architecture composed o f two 

different classifiers (figure 8.2). The best performing classifier in the discrimination 

between ion channels and molecular transporters was the S V M (ll) (attribute selection = 

true), which achieved a nQ value o f 73.2 (table 4). The combination o f both classifiers 

(Please see appendix B figure 8.1 on CD) was found to correctly predict enzymes and 

GPCR proteins with a geometric average (GAv) o f 71 and 79.5 respectively, however the 

GAv values for ion channels and molecular transporters was found to be 35 and 54.8 

respectively (table 8.5). This first classification attempt showed impressive results for the 

GPCR class where 89.6% of the GPCR proteins were correctly predicted but it was 

necessary to further explore different combinations in order to maximize the predictive 

accuracy o f each class.
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A ttr ib u te  s e lec tio n No a ttr ib u te  se le c tio n

D ata  m in in g  m eth o d Q nQ G C Q nQ G C

Bayesian networks 70.2 74.3 0.61 67.7 73.3 0.58

N aive bayesian 54.7 64.1 0.44 50.8 59.8 0.37

N aive Bayesian simple 55.3 64.4 0.44 - - -

Logistic regression 63.9 61.9 0.46 - - -

RBF Network 59.1 61.2 0.45 50.8 33.3 -

Kstar 61.9 60.5 0.46 56.0 56.2 0.42

M ultiBoostAB 69.6 68.1 0.58 70.3 65.9 0.56

J48 59.5 58.9 0.42 57.8 56.9 0.38

Random forest 68.1 65.9 0.54 67.5 62.2 0.49

Support vector machine (1) 62 58.3 0.44 63.8 62.1 0.47

Support vector machine (2) 64.2 61.5 0.47 61.9 60.8 0.43

Support vector machine (3) 63.8 61.2 0.46 61.6 60.4 0.43

Support vector machine (4) 64.1 59.3 0.46 66.5 66.6 0.5

Support vector machine (5) 60.6 53.3 0.37 64.4 66 0.48

Support vector machine (6) 69.3 67.4 0.55 74.1 70.6 0.61

Support vector machine (7) 65.3 64.1 0.49 71.2 68.9 0.57

Support vector machine (8) 65.3 64.1 0.49 71.2 68.9 0.57

Support vector machine (9) 64.2 64.4 0.47 66.5 66.6 0.5

Support vector machine (10) 71.6 71.6 0.57 72.4 65.9 0.57

Support vector machine (11) 71.1 67.3 0.57 72.5 66.1 0.57
Table 8.3. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzymes, GPCR proteins and proteins with transport activity (including molecular 
transporters and ion channels). The highlighted cells correspond to the best performing data mining technique.
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A ttr ib u te  s e le c tio n No a ttr ib u te  se le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 68.4 68.2 0.37 63.1 62.8 0.27

N aive bayesian 64.2 63.8 0.3 58.5 58 0.18

N aive Bayesian simple 63.6 63.2 0.29 - - -

Logistic regression 65.4 65.3 0.31 61.6 61.6 0.23

RBF Network 66.5 66.2 0.35 51.7 51 0.03

KStar 62.9 62.7 0.26 61.6 61.3 0.24

M ultiBoostAB 67.8 67.9 0.36 66.5 66.6 0.33

J48 63.4 63.6 0.27 59.7 59.7 0.19

Random forest 66.4 66.5 0.33 63.6 63.7 0.27

Support vector machine (1) 67.3 67.1 0.35 61 60.9 0.22

Support vector machine (2) 66 65.8 0.32 63.2 63.2 0.26

Support vector machine (3) 65.8 65.7 0.32 62.1 62.1 0.24

Support vector machine (4) 69.1 68.9 0.39 66.7 66.6 0.33

Support vector machine (5) 66.7 66.4 0.35 64.9 64.8 0.3

Support vector machine (6) 61.4 61.2 0.23 64.3 64 0.3

Support vector machine (7) 63.4 63.3 0.27 63.4 63.2 0.27

Support vector machine (8) 63.4 63.3 0.27 63.4 63.2 0.27

Support vector machine (9) 63.4 63.3 0.27 66.7 66.6 0.33

Support vector machine (10) 63.1 62.8 0.27 61.8 61.4 0.25

Support vector machine (11) 73.2 73.2 0.46 68.9 69.1 0.39
Table 8.4. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between molecular transporters and ion channels. The highlighted cells correspond to the best 
performing data mining technique.

Class Sensitivity Specificity GAv
Enzyme 67.25 74.9 71
GPCR 89.6 70.7 79.5
Ion channel 36.7 34.3 35
Molecular transporter 60.1 48.3 54.8

Table 8.5. Predictive accuracy for each class after combining two different classifiers in a tree-based 
architecture. The first classifier is a N aive Bayesian method to distinguish between enzymes, GPCR proteins 
and transport proteins whereas the second classifier, a support vector machine (c =  1, exp = 15, feat, space 
normalization =  true, y  =  0 .0001), sub-classifies proteins with transport activities as ion channels and 
molecular transporters.

The next analysis was based on the evaluation o f  a multi-class classifier that could 

distinguish between the four functional classes in a single step (Please see appendix B 

figure 8.2 on CD). Cross-validation results showed that the best performing classifiers 

were the Bayesian network (attribute selection = true), the SVM(6), SVM(7) and SVM(8) 

(table 8 .6 ). Comparison o f  the GAv values for each class showed that the SVM(6) was a
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slightly better classifier than the remaining classifiers (table 8.7). Comparison o f  this 

classifier with the multilayer classifier previously designed (table 8.5 and table 8.7) 

showed that the multi-class SVM(6) was a better classifier. Despite the improvement 

obtained with this classifier, prediction o f  proteins with transport activity (ion channels and 

molecular transporters) could still be further improved and so more data mining analyses 

were carried out.

A ttr ib u te  se le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m etho d Q nQ G C Q nQ G C

Bayesian networks 62.4 60.2 0.51 59.2 59.2 0.49

N aive bayesian 43.2 51.7 0.39 46.3 51.6 0.4

N aive Bayesian simple 43.1 51.6 0.39 - - -

Logistic regression 58.2 47.6 0.39 - - -

RBF Network 57.8 46.1 - 50.8 25 -

KStar 54.9 51.3 0.41 49.7 48.5 0.38

M ultiBoostAB 65.3 53.8 0.48 63.5 49.9 0.45

J48 53.6 47.8 0.34 52 47.2 0.33

Random forest 62.1 50.7 0.44 60.1 47.3 0.4

Support vector machine (1) 56.5 37.7 - 57.9 46.2 0.38

Support vector machine (2) 56.9 39.2 - 54.7 47.7 0.36

Support vector machine (3) 57.1 39.3 - 54.2 47.8 0.36

Support vector machine (4) 62.3 50.7 0.44 61 57.9 0.45

Support vector machine (5) 59.4 48.4 0.39 59.1 57.8 0.44

Support vector machine (6) 63.8 56.3 0.47 69.3 59.2 0.53

Support vector machine (7) 60.7 54.7 0.44 66.5 59.3 0.51

Support vector machine (8) 60.7 54.7 0.44 66.5 59.3 0.51

Support vector machine (9) 59 53.6 0.41 61 57.9 0.45

Support vector machine (10) 66.2 56.2 0.49 67.2 54.4 0.49

Support vector machine (11) 66.7 55.6 0.5 66.9 53.8 0.49
Table 8.6. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzym es, GPCR proteins, molecular transporters and ion channels. The highlighted 
cells correspond to the best performing data mining technique.
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Bayesian Network 
(attribute selection)

SMV(6) SVM(7) & SVM(8)

Class Sensitivity Specificity GAv Sensitivity Specificity GAv Sensitivity Specificity GAv

Enzyme 68.1 74.7 71.3 89.1 70.7 79.3 81.3 71.0 75.9

GPCR 88.6 68.9 78.1 62.9 81 71.4 67.5 76.2 71.7

Ion channel 18 33.1 24.4 33.3 57.1 43.6 37.8 50.2 43.6

M olecular
transporter

66.1 45.5 54.9 51.6 61.9 56.5 50.5 55.3 52.9

Table 8.7. Predictive accuracy for each class using the two data mining techniques that maximize the 
accuracy o f  prediction o f  molecular activity at the lowest com plexity level.

The subsequent data mining analyses (tables 8 . 8  - 8.12) were based on the one- 

against-all principle where a single class is distinguished from the remaining classes one at 

a time (Please see appendix B figure 8.3 on CD).Therefore, in order to predict a set with 

four classes, four different classifiers need to be evaluated. Prediction o f  enzymes showed 

that the S V M (l l )  (attribute selection = true), SVM(IO) and S V M (l l )  were the best 

performing classifiers. Further comparison o f  these classifiers showed that the S V M (l l)  

with attribute selection was the best performing algorithm as it could discriminate the non

enzyme membrane proteins better than the remaining classifiers (Please see appendix B 

table 8.1 on CD). The evaluation o f  classifiers used to predict GPCR proteins showed that 

the Bayesian network was the best performing classifier achieving an nQ value o f  92.3 

(table 8.9). The best performing classifiers used to predict molecular transporters were the 

Bayesian network (attribute selection = true) and the SVM(6), SVM(7) and SVM(8) (table

8.10). Comparison o f  these classifiers (Please see appendix B table 8.2 on CD) showed 

that the Bayesian network was the best classifier as it predicted the molecular transporters 

with the highest sensitivity but with a lower specificity. At either sequence similarity 

threshold, prediction o f  ion channels was found to be the most challenging prediction for 

any o f  the data mining methods used. Evaluation o f  the classifiers showed that the highest 

level o f  Matthews correlation coefficient (MCC) found was no higher than 0.36 (table

8 . 11). With respect to the ion channels, the accuracy (Q), normalized accuracy (nQ) and 

Matthews correlation (MCC) were not representative o f  the best performing classifier, as 

classifiers with higher levels o f  nQ and MCC consistently underpredicted ion channels 

(Please see appendix B table 8.3 on CD). The predictive accuracy o f  the different data
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mining techniques evaluated was manually checked and the Naive Bayesian method was 

selected to predict membrane proteins transporting ions through the membrane. This 

method showed the highest value o f sensitivity although the specificity o f the method was 

found to be only 24%. Considering the predictive performance o f the different data mining 

techniques to predict ion channels is rather poor, it is obvious that this classifier will have 

the lowest support among the classifiers to be used at level lb  (figure 8.5). Therefore, if  the 

ion channel classifier and other classifier predict a particular data point as a hit, the ion 

channel classifier will never be used as the final predictor because only the classifier with 

the highest support is applied in the consensus prediction (assuming unequally weighted 

classifiers). Thus, the only chance o f predicting ion channels occurs when no other 

classifiers but the ion channel classifier detects a hit. Following this principle, in order to 

maximize the prediction o f ion channels the classifier should have the highest sensitivity 

(even if  it is achieved at the expense o f a lower specificity). Therefore, the Naive Bayesian 

method was chosen to predict the ion channel class. The transport activity class (including 

molecular transporters and ion channels) was also mined using different classifiers, and 

among the best data mining methods found were the Bayesian network (attribute selection 

= true), the MultiBoostAB based on Random forest and several support vector machines 

(table 8.12). Comparison o f these data mining methods (Please see appendix B table 8.4 

on CD) showed that the Bayesian network with attribute selection was found to be the best 

performing method.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 71.5 71.5 0.43 69.5 69.6 0.40

N aive bayesian 62.9 63.3 0.30 63.8 64.2 0.31

N aive Bayesian simple 62.7 63.1 0.30 - - -

Logistic regression 67.7 67.7 0.35 66.2 66.3 0.33

RBF Network 65.9 66.2 0.34 50.2 49.7 -0.01

KStar 61.6 61.7 0.23 60.5 60.6 0.22

M ultiBoostAB 71.1 71.1 0.42 73.7 73.6 0.48

J48 63.7 63.7 0.27 64.0 63.9 0.28

Random forest 69.2 69.1 0.39 71.2 71.1 0.43

Support vector machine (1) 68.3 68.4 0.37 67.4 67.5 0.35

Support vector machine (2) 68.8 68.9 0.38 67.0 67.1 0.34

Support vector machine (3) 68.7 68.8 0.38 66.5 66.6 0.33

Support vector machine (4) 73.1 73.2 0.46 69.6 69.6 0.39

Support vector machine (5) 69.9 69.9 0.40 69.1 69.2 0.39

Support vector machine (6) 68.9 68.9 0.38 75.0 74.9 0.50

Support vector machine (7) 71.3 71.3 0.43 73.0 73.0 0.46

Support vector machine (8) 71.3 71.3 0.43 73.0 73.0 0.46

Support vector machine (9) 65.3 65.3 0.31 69.6 69.6 0.39

Support vector machine (10) 70.0 69.9 0.40 75.7 75.5 0.53

Support vector machine (11) 75.2 75.1 0.50 75.4 75.3 0.51
Table 8.8. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzym es and non-enzymes. The highlighted cells correspond to the best performing 
data mining techniques.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 93.2 92.3 0.77 88.1 90.4 0.67
NaTve bayesian 83.9 85.1 0.56 63.0 75.0 0.36
N aive Bayesian simple 83.9 85.1 0.56 - - -

Logistic regression 89.2 75.4 0.55 84.8 75.7 0.47
RBF Network 90.3 76.0 0.58 85.1 50.0 -

KStar 90.5 74.9 0.58 90.7 75.0 0.59
M ultiBoostAB 92.7 82.7 0.70 91.6 76.5 0.63
J48 89.9 80.3 0.60 86.2 72.2 0.45
Random forest 91.7 80.9 0.66 91.2 75.7 0.61
Support vector machine (1) 89.4 71.3 0.52 89.7 74.4 0.55
Support vector machine (2) 89.4 74.8 0.55 87.1 77.3 0.52
Support vector machine (3) 89.2 74.7 0.54 86.9 77.7 0.52
Support vector machine (4) 90.9 76.8 0.61 87.7 79.2 0.55
Support vector machine (5) 88.6 74.0 0.52 86.0 79.3 0.52
Support vector machine (6) 91.9 80.5 0.66 92.8 79.9 0.69
Support vector machine (7) 90.3 79.9 0.61 92.4 80.7 0.68
Support vector machine (8) 90.3 79.9 0.61 92.4 80.7 0.68
Support vector machine (9) 87.7 78.2 0.54 87.7 79.2 0.55
Support vector machine (10) 92.1 78.3 0.66 91.0 73.8 0.60
Support vector machine (11) 92.4 78.0 0.67 91.1 72.7 0.60
Table 8.9. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between GPCR proteins and non-GPCR proteins. The highlighted cells correspond to the best 
performing data mining techniques.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 79.0 76.3 0.44 69.3 72.2 0.34
N aive bayesian 63.1 72.0 0.33 53.9 65.1 0.23
N aive Bayesian simple 62.9 72.0 0.33 - - -

Logistic regression 81.5 54.3 0.14 77.4 60.4 0.21
RBF Network 82.3 62.9 0.30 82.5 50.0 -

KStar 74.8 64.5 0.26 72.3 64.9 0.25
M ultiBoostAB 85.1 65.7 0.40 84.4 62.1 0.34

J48 79.7 63.8 0.28 79.5 62.8 0.27

Random forest 84.1 65.3 0.37 84.3 62.7 0.35

Support vector machine (1) 82.5 50.0 - 82.0 49.7 -0.03

Support vector machine (2) 82.5 50.0 - 78.6 58.7 0.19

Support vector machine (3) 82.5 50.0 - 78.4 59.3 0.20

Support vector machine (4) 82.7 60.8 0.28 78.6 68.2 0.33

Support vector machine (5) 80.3 64.9 0.30 76.9 70.2 0.35

Support vector machine (6) 82.2 68.0 0.37 86.9 71.4 0.50

Support vector machine (7) 81.4 68.5 0.36 84.4 71.5 0.44

Support vector machine (8) 81.4 68.5 0.36 84.4 71.5 0.44

Support vector machine (9) 77.6 64.9 0.28 78.6 68.2 0.33

Support vector machine (10) 84.8 69.2 0.43 86.5 67.6 0.45

Support vector machine (11) 86.1 65.4 0.43 86.1 64.2 0.42
Table 8.10. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between molecular transporters and non-molecular transporters. The highlighted cells correspond 
to the best performing data mining techniques.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 74.6 63.1 0.23 72.6 63.7 0.23

N aive bayesian 54.4 64.8 0.22 60.9 60.2 0.16
N aive Bayesian simple 56.2 65.5 0.23 - - -

Logistic regression 82.8 52.3 0.11 77.0 54.4 0.10

RBF Network 83.2 50.0 - 83.2 50.0 -

KStar 74.1 61.7 0.21 75.7 59.4 0.18

M ultiBoostAB 84.5 59.9 0.30 84.4 56.6 0.26

J48 78.6 56.7 0.15 75.3 56.9 0.14

Random forest 84.1 59.9 0.29 82.5 54.1 0.15

Support vector machine (1) 83.2 50.0 - 82.9 50.0 0.00

Support vector machine (2) 83.2 50.0 - 80.2 52.6 0.08

Support vector machine (3) 83.2 50.0 - 79.3 51.9 0.05

Support vector machine (4) 82.7 50.3 0.02 77.7 63.3 0.25

Support vector machine (5) 82.5 50.8 0.05 73.1 63.2 0.22

Support vector machine (6) 81.8 65.3 0.32 84.4 61.0 0.31

Support vector machine (7) 80.9 64.0 0.29 82.0 62.0 0.28

Support vector machine (8) 80.9 64.0 0.29 82.0 62.0 0.28

Support vector machine (9) 82.7 56.8 0.21 77.7 63.3 0.25
Support vector machine (10) 84.4 64.8 0.36 84.1 58.8 0.28

Support vector machine (11) 84.6 55.6 0.26 83.8 53.7 0.19
Table 8.11. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between ion channel and non-ion channel. The cells coloured in yellow  correspond to the best 
performing data mining techniques. The cells highlighted in red correspond to data mining techniques where 
the predictive scores are not representative o f  the predictive power o f  the method (not normalised). This is 
probably due to a large class being well predicted whereas the smaller class can not be accurately 
discriminated.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 75.0 74.6 0.48 71.5 70.6 0.40

N aive bayesian 60.9 66.9 0.33 55.8 61.6 0.23

N aive Bayesian simple 61.1 66.9 0.33 - - -

Logistic regression 72.6 67.3 0.37 68.9 65.2 0.31

RBF Network 72.0 71.3 0.41 65.7 50.0 -

KStar 65.5 65.1 0.29 59.8 60.3 0.20

M ultiBoostAB 75.9 72.4 0.46 78.1 73.6 0.50

J48 69.3 65.5 0.31 68.4 65.3 0.30

Random forest 74.3 70.9 0.42 76.1 72.3 0.46

Support vector machine (1) 72.1 66.3 0.35 71.3 66.4 0.34

Support vector machine (2) 72.2 67.5 0.36 69.8 66.1 0.32

Support vector machine (3) 72.3 67.5 0.36 69.8 66.1 0.32

Support vector machine (4) 74.2 66.6 0.39 73.1 71.7 0.42

Support vector machine (5) 71.0 60.8 0.29 72.9 72.1 0.43

Support vector machine (6) 74.1 70.8 0.42 79.6 74.7 0.53

Support vector machine (7) 73.0 70.6 0.41 76.2 72.5 0.46

Support vector machine (8) 73.0 70.6 0.41 76.2 72.5 0.46

Support vector machine (9) 74.8 71.5 0.43 73.2 71.8 0.42

Support vector machine (10) 75.6 71.2 0.44 79.9 73.5 0.54

Support vector machine (11) 78.8 74.6 0.51 79.5 73.3 0.53
Table 8.12. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between proteins with transport activity and proteins without transport activity. The highlighted 
cells correspond to the best performing data mining techniques.

The classifiers designed using the one-against-all principle to predict a particular 

functional class (table 8.13) and the multi-class SVM(6) based on a single-step architecture 

(table 8.7) showed similar values o f  GAv. The sensitivity scores were found to be larger 

for the classifiers using the one-against-all principle, but with the cost o f  lower levels of 

specificity. However, the results showed in table 8.13 are not representative o f  the overall 

predictive accuracy o f  the method, as the different classifiers need to be combined in order 

to apply all classifiers simultaneously and obtain a consensus prediction (level 1 in figure

8.5).
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Class Sensitivity Specificity GAv
Enzyme 88.5 70.9 79.2
GPCR 91.1 71.3 80.6
Ion channel 59.2 24 37.4
Molecular transporter 72.2 44 56.3
Transport activity 73.2 61 0.48

Table 8.13. Predictive accuracy for each class using the best classifiers to predict a particular functional class. 
Prediction o f  enzymes uses a support vector machine (attribute selection = true, c = 1, exp = 1 5 ,  feat, space 
normalization = true, y = 0.0001), prediction o f  GPCR proteins and ion channels uses the Naive Bayesian 
method (attribute selection = true and attribute selection = false respectively), prediction o f  molecular 
transporters and proteins with transport activity is based on a Bayesian Network method (attribute selection = 
true).

Another possible architecture would involve the discrimination o f the GPCR class 

at the first level and the prediction o f the remaining functional classes subsequently. GPCR 

proteins showed the highest predictive accuracy values using the one-against-all principle 

and so they were deemed to be the best group to be predicted first in the decision 

architecture. After the GPCR proteins have been predicted, new data mining analysis and 

architectures needed to be evaluated in order to maximize the prediction o f the method 

(tables 8.14 -  8.17). The best predictive method to distinguish between enzymes, ion 

channels and molecular transporters based on a single step architecture was found to be the 

SVM(6) (table 8.14). The results showed in table 8.15 summarize the prediction accuracy 

for each o f the functional classes predicted by the given classifier. This architecture showed 

improved levels o f accuracy for enzymes but the sensitivity levels for proteins with 

transport activity was not very high. These results were obtained by training the classifiers 

with all proteins belonging to the enzyme, ion channel and molecular transporter class and 

are only an approximation as the predictive architecture where both classifiers were 

combined (Please see appendix B figure 8.4 on CD) has not been evaluated.
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A ttr ib u te  s e le c tio n N o  a ttr ib u te  s e lec tio n

D ata  m in in g  m etho d Q nQ G C Q nQ G C

Bayesian networks 61.0 53.9 0.35 56.3 51.7 0.3

NaTve bayesian 51.0 50.4 0.3 43.9 45.5 0.24

NaYve Bayesian simple 50.6 50.3 0.29 - - -

Logistic regression 61.3 44.2 0.22 - - -

RBF Network 64.1 46.3 0.28 59.7 33.3 -

KStar 55.2 49.3 0.24 48.1 46.4 0.18

M ultiBoostAB 66.2 50.9 0.33 66.6 49.2 0.32

J48 60.4 50.0 0.29 56.4 47.0 0.23

Random forest 64.2 48.3 0.3 65.6 49.6 0.31

Support vector machine (1) 59.3 33.1 - 60.4 43.3 0.2

Support vector machine (2) 60.8 39.5 - 58.1 47.1 0.23

Support vector machine (3) 60.4 39.1 - 57.9 47.2 0.23

Support vector machine (4) 63.9 49.2 0.29 62.0 56.2 0.34

Support vector machine (5) 61.3 48.5 0.27 59.9 57.0 0.34

Support vector machine (6) 63.6 54.6 0.34 71.7 58.6 0.44

Support vector machine (7) 63.5 55.6 0.35 68.6 57.8 0.4

Support vector machine (8) 63.5 55.6 0.35 68.6 57.8 0.4

Support vector machine (9) 60.6 52.8 0.3 62.0 56.2 0.34

Support vector machine (10) 65.8 54.9 0.36 71.3 56.2 0.43

Support vector machine (11) 68.4 54.7 0.38 71.2 56.1 0.43
Table 8.14. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzymes, molecular transporters and ion channels. This analysis does not discriminate 
GPCR proteins because the given classifier was formulated for use after the GPCR proteins had been 
discriminated by a previous classifier. The highlighted cells correspond to the best performing data mining 
techniques.

C lass Sensitivity Specificity G A v
Enzyme 91.6 75.5 83.1

Ion channel 35.2 59.9 45.9

Molecular transporter 49.1 63.3 55.7
Table 8.15. Predictive accuracy to predict enzym es, ion channels and molecular transporters using a support 
vector machine (attribute selection = false, c =  50, exp = 9, feat, space normalization = true). GPCR proteins 
are not distinguished because this classifier was formulated for use subsequent to the classifier used to predict 
GPCR proteins.
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A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 72.2 72.4 0.44 67.9 68.4 0.36

N aive bayesian 62.7 66.1 0.33 59.3 63.0 0.27

N aive Bayesian simple 62.3 65.7 0.32 - - -

Logistic regression 68.8 66.7 0.34 67.0 65.8 0.32

RBF Network 67.3 68.5 0.36 59.7 50.0 -

KStar 64.9 65.3 0.30 56.7 57.9 0.16

M ultiBoostAB 74.7 72.1 0.46 73.7 70.3 0.44

J48 67.3 65.7 0.32 65.6 63.7 0.28

Random forest 73.2 70.2 0.43 72.4 68.8 0.41

Support vector machine (1) 69.1 67.1 0.35 68.4 67.3 0.35

Support vector machine (2) 69.3 67.8 0.36 67.0 66.5 0.33
Support vector machine (3) 69.0 67.6 0.35 66.7 66.2 0.32

Support vector machine (4) 71.9 69.6 0.40 71.3 71.5 0.42

Support vector machine (5) 69.1 65.4 0.34 68.9 70.1 0.39

Support vector machine (6) 72.1 70.7 0.42 77.8 75.3 0.53
Support vector machine (7) 71.4 70.8 0.41 75.2 73.5 0.48

Support vector machine (8) 71.4 70.8 0.41 75.2 73.5 0.48
Support vector machine (9) 71.9 71.2 0.42 71.3 71.5 0.42
Support vector machine (10) 74.0 72.0 0.45 77.1 73.6 0.52
Support vector machine (11) 75.6 73.2 0.48 77.6 74.5 0.53
Table 8.16. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzymes, and proteins with transport activity. This analysis does not discriminate GPCR 
proteins because the given classifier was designed to be applied after GPCR proteins had been discriminated 
by a previous classifier. The highlighted cells correspond to the best performing data mining techniques.

C lass Sensitivity Specificity GAv
Enzyme 71.3 80 75.5
Transport activity 73.5 63.4 68.3

Table 8.17. Predictive accuracy to predict enzym es and proteins with transport activity (including ion 
channels and molecular transporters) using a Bayesian Network method (attribute selection = true). GPCR 
proteins are not distinguished because this classifier was formulated for use subsequent to the classifier used 
to predict GPCR proteins.

Another possible variant would involve the distinction between enzymes and 

proteins with transport activity at the second level and then sub-classifying the later into the 

ion channel and molecular transporter classes (Please see appendix B figure 8.5 on CD). 

Data mining analysis to distinguish solely between enzymes and proteins with transport 

activity showed that the best performing classifiers were the Bayesian network, the 

SVM(IO) and SV M (11) (all three with prior attribute selection) (table 8.16). Comparison 

o f  these data mining techniques showed that the support vector machines tend to
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underestimate proteins with transport activity whereas the Bayesian network was a more 

consistent method for the prediction o f both classes. It was necessary to sub-classify the 

transport activity class into the ion channel and the molecular transporter class by a 

previously evaluated classifier (table 8.4), which predicts approximately 75% o f the ion 

channels and 71% of the molecular transporters.

All the different architectures analyzed thus far were designed to maximize the 

prediction o f functional classes at their lower complexity level. The accuracy o f the 

architectures combining more than one classifier (with the exception o f the first architecture 

corresponding to figure 8.1 in appendix B, on CD) was only estimated, as combining and 

evaluating such architectures is a tedious and time consuming task. However, the 

estimation o f the accuracy o f these architectures can be useful in indicating the best 

performing classifiers that ultimately need to be evaluated.

O f the five architectures designed (evaluation results corresponding to tables 8.5, 

8.7, 8.13, 8.15, 8.17), the predictive architecture based on the one-against-all principle 

showed the highest sensitivity values (true positives) although the specificity values (true 

negatives) were not as high as for other predictive architectures (especially for proteins 

with transport activity). However, by introducing an extra classifier that predicts proteins 

with transport activity and combining such a classifier with those designed to predict ion 

channels and molecular transporters, the predictive accuracy o f the method could be 

increased. Therefore the selected architecture used to predict the different functional classes 

at their lowest complexity level was the architecture based on the one-against-all principle 

(figure 8.5 level 1).

The subsequent analyses (tables 8.18 - 8.38) were carried out to sub-classify the 

enzyme, GPCR, ion channel and molecular transporter classes into more informative 

subclasses and identify the end point in the prediction for each functional class. Due to the 

size o f the different classes o f GPCR proteins (table 8.1), only the GPCR class A proteins 

could be distinguished. Evaluation o f the different classifiers showed that the best 

performing classifier was the Bayesian method (attribute selection = true) (table 8.18),
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which predicted class A GPCR proteins with a sensitivity o f  90.5% and a specificity o f  

98%. Sub-classification o f  class A GPCR proteins was also possible due to the accurate 

prediction values obtained for this protein class. A multi-class classifier was evaluated to 

distinguish between amine, olfactory, peptide, rhodopsin and other class A GPCR proteins 

(table 8.19). Comparison o f  the best performing classifiers (Please see appendix B table 

8 .6  on CD) showed that the different subclasses were predicted with sensitivity values 

higher than 75% with the exception o f  other class A GPCR proteins. In order to maximize 

the prediction o f  this functional subclass, the SVM(7) and SVM(8) (both with attribute 

selection = true) were adopted as the equal best performing classifiers. Table 8.20 shows 

the sensitivity and specificity scores for each o f  the class A GPCR subfamilies.

A ttr ib u te  s e le c tio n No a ttr ib u te  se le c tio n

D ata m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 90.7 91.1 0.75 88.2 85.6 0.67

N aive bayesian 93.2 89.6 0.79 88.2 81.7 0.63

N aive Bayesian simple 93.2 89.6 0.79 - - -

Logistic regression 86.1 79.6 0.58 78.9 72.8 0.42

RBF Network 91.1 85.1 0.72 79.7 50.0 -

KStar 90.7 82.5 0.70 88.2 73.9 0.60

M ultiBoostAB 90.3 81.5 0.68 89.0 74.5 0.63

J48 86.5 79.1 0.58 81.4 71.3 0.43

Random forest 90.7 83.3 0.70 89.0 73.7 0.63

Support vector machine (1) 90.7 84.1 0.70 87.3 75.7 0.58

Support vector machine (2) 87.8 80.7 0.62 87.3 75.7 0.58

Support vector machine (3) 86.9 80.1 0.60 87.3 75.7 0.58

Support vector machine (4) 90.3 86.9 0.71 91.1 82.0 0.71

Support vector machine (5) 86.5 80.7 0.60 86.9 71.6 0.55

Support vector machine (6) 90.3 79.9 0.68 85.7 65.4 0.49

Support vector machine (7) 92.0 84.9 0.74 90.7 80.2 0.69

Support vector machine (8) 92.0 84.9 0.74 90.7 80.2 0.69

Support vector machine (9) 90.3 86.9 0.71 91.1 82.0 0.71

Support vector machine (10) 84.0 62.7 0.41 80.2 51.0 0.13

Support vector machine (11) 83.5 59.4 0.39 79.7 50.0 -
Table 8.18. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between GPCR class A proteins and other GPCR proteins. This analysis is specific to GPCR 
proteins. The cells coloured in yellow  correspond to the best performing data mining techniques. The cells 
highlighted in red correspond to data mining techniques where the predictive scores are not representative o f  
the predictive power o f  the method (not normalised). This is normally due to a large class being well 
predicted whereas the smaller class can not be accurately discriminated.
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A ttr ib u te  s e lec tio n No a ttr ib u te  se le c tio n

D ata  m in in g  m etho d Q nQ G C Q nQ G C

Bayesian networks 77 .3 75 .8 0.75 73.5 72.5 0.72

N aive bayesian 76 .2 75 .3 0.73 64 62.8 0.6

Nai've Bayesian simple 44 .7 66 .5 0.5 - - -

Logistic regression 58 .2 56 0.1 66.1 65.8 0.64

RBF Network 66 .7 63 .9 0.62 32.3 21.6 -

KStar 65.1 61 .9 0.58 58.2 57.7 0.51

M ultiBoostAB 72 68.1 0.69 64 60 0.59

J48 65.6 65 0.63 58.7 57.7 0.54

Random forest 68.3 64.6 0.65 62.4 58 0.56

Support vector machine (1) 75.1 73.2 0.73 70.4 69.6 0.68

Support vector machine (2) 72 72.3 0.68 70.9 70.3 0.69

Support vector machine (3) 72.5 73 0.69 70.9 70.3 069

Support vector machine (4) 75.7 76.3 0.73 73 68.8 0.69

Support vector machine (5) 72 71.6 0.68 65.6 59.7 0.62

Support vector machine (6) 76.7 75.1 0.73 70.4 63.3 0.68

Support vector machine (7) 77.8 77.3 0.75 80.4 78 0.79

Support vector machine (8) 77.8 77.3 0.75 80.4 78 0.79

Support vector machine (9) 77.7 76.3 0.73 73 68.8 0.69

Support vector machine (10) 71.4 67.1 0.7 47.6 35.9 -

Support vector machine (11) 68.9 63.7 0.68 43 .9 31 .3 -
Table 8.19. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between various GPCR class A subfamilies: amine GPCR, olfactory GPCR, peptide GPCR, 
rhodopsin GPCR and other GPCR proteins. This analysis is specific to GPCR proteins. The highlighted cells 
correspond to the best performing data mining techniques.

C lass Sensitivity Specificity GA v
Amine 78.6 86.8 82.6
Olfactory 86.5 94.1 90.2

Peptide 73.8 71.4 72.6

Rhodopsin 73.7 87.5 80.3

Other 50.0 39.5 44.4
Table 8.20. Predictive accuracy for subfam ilies in the GPCR class A protein family (am ine, olfactory, 
peptide, rhodopsin and other class A GPCR proteins) using a support vector machine (attribute selection = 
true, c = 50, exp = 9, feat space normalization = true) based on a single step architecture.

Sub-classification o f  class A GPCR proteins was also evaluated using the one- 

against-all principle. Prediction o f  amine GPCR proteins showed that the best performing 

classifiers were the Bayesian network and the SV M (l) (both with attribute selection = true) 

(table 8.21). Comparison o f  these two classifiers (Please see appendix B table 8.7 on CD) 

showed that the SV M (l) classifier was a better classifier with higher values o f  sensitivity 

and specificity. Following the same procedure, the best classifiers were identified to predict 

olfactory and peptide GPCR proteins (table 8.22 and table 8.23). These analyses showed
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that the Bayesian network and the Naive Bayesian method (both with attribute selection = 

true) were the best performing classifiers to predict olfactory and peptide GPCR proteins 

respectively. Evaluation o f  classifiers to predict rhodopsin GPCR proteins (table 8.24) 

showed various classifiers that were consequently compared (Please see appendix B table 

8 .8  on CD) confirming that SVM(2) & SVM(3) predicted rhodopsin GPCR proteins with 

the highest values o f  sensitivity. Comparison o f  the single step classifier using the all- 

against-all principle (table 8 .2 0 ) with the classifiers designed based on the one-against-all 

principle (table 8.25) showed that using classifiers to predict a single class at a time 

achieved more accurate values. Therefore, the architecture based on the one-against-all 

principle was selected to be applied by the TMFUN algorithm (figure 8.5 level 3). 

However, it is important to remark that the results showed in table 8.20 were valid 

evaluation results whereas the results showed in table 8.25 are estimations as it would be 

necessary to combine the prediction from the four classifiers in one analysis in order to 

properly evaluate the architecture.

A ttr ib u te  s e le c tio n No a ttr ib u te  se le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 93.1 89.6 0.80 89.9 87.6 0.72

N aive bayesian 87.3 89.3 0.70 82.0 80.8 0.55

N aive Bayesian simple - - - - - -

Logistic regression 85.7 79.8 0.59 77.8 72.1 0.41

RBF Network 90.5 87.9 0.73 77.8 50.0 -

KStar 91.5 85.2 0.75 85.2 78.6 0.57

M ultiBoostAB 93.1 87.9 0.79 86.2 73.3 0.56

J48 87.8 85.4 0.67 84.7 80.8 0.58

Random forest 93.1 87.9 0.79 86.2 73.3 0.56

Support vector machine (1) 93.7 90.8 0.82 92.1 88.1 0.77

Support vector machine (2) 88.9 84.4 0.68 92.1 88.1 0.77

Support vector machine (3) 88.9 83.5 0.68 92.1 88.1 0.77

Support vector machine (4) 91.0 88.3 0.75 93.1 87.1 0.79

Support vector machine (5) 92.1 88.9 0.77 91.5 83.5 0.74

Support vector machine (6) 89.9 84.2 0.70 89.9 78.2 0.69

Support vector machine (7) 90.5 86.2 0.72 91.5 83.5 0.74

Support vector machine (8) 90.5 86.2 0.72 91.5 83.5 0.74

Support vector machine (9) 91.0 88.3 0.75 93.1 87.1 0.79

Support vector machine (10) 89.4 78.7 0.67 84.7 65.5 0.51

Support vector machine (11) 87.8 75.2 0.62 79.9 54.8 0.28
Table 8.21. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between amine GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  s e le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 98.9 99.3 0.97 97.4 96.3 0.92

N aive bayesian 95.8 96.3 0.88 92.6 89.3 0.77

N aive Bayesian simple 94.7 95.7 0.85 - - -

Logistic regression 89.9 86.6 0.70 85.7 73.7 0.52

RBF Network 95.8 94.3 0.87 79.4 51.4 0.06

KStar 88.9 71.6 0.62 88.4 70.3 0.60

M ultiBoostAB 94.2 88.2 0.81 92.1 81.8 0.73

J48 91.5 84.5 0.72 84.1 74.8 0.50

Random forest 94.2 88.2 0.81 92.1 81.8 0.73

Support vector machine (1) 96.8 93.9 0.90 95.2 89.9 0.84

Support vector machine (2) 94.7 90.6 0.83 95.2 89.9 0.84

Support vector machine (3) 94.7 90.6 0.83 95.2 89.9 0.84

Support vector machine (4) 94.2 88.2 0.81 93.7 83.8 0.79

Support vector machine (5) 92.1 83.8 0.73 88.9 72.6 0.61

Support vector machine (6) 96.3 92.6 0.88 87.3 67.6 0.55

Support vector machine (7) 96.3 94.6 0.88 97.4 93.2 0.92

Support vector machine (8) 96.3 94.6 0.88 97.4 93.2 0.92

Support vector machine (9) 94.2 88.2 0.81 93.7 83.8 0.79

Support vector machine (10) 84.1 59.5 0.40 80.4 50.0 -

Support vector machine (11) 83.6 58.1 0.37 80.4 50.0 -
Table 8.22. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between olfactory GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 70.9 67.4 0.34 71.4 67.8 0.35

N aive bayesian 83.1 83.2 0.64 72.5 71.1 0.41

N aive Bayesian simple 76.2 73.4 0.46 - - -

Logistic regression 83.1 81.9 0.62 63.5 58.9 0.18

RBF Network 68.8 70.9 0.39 67.7 50.0 -

KStar 77.8 74.6 0.49 69.8 67.4 0.34

M ultiBoostAB 69.8 65.3 0.31 74.1 68.8 0.39

J48 77.8 74.6 0.49 65.1 60.9 0.21

Random forest 82.5 79.0 0.59 74.1 68.8 0.39

Support vector machine (1) 82.5 79.0 0.59 75.1 72.2 0.44

Support vector machine (2) 79.9 76.1 0.53 72.5 69.0 0.38

Support vector machine (3) 79.9 75.7 0.53 72.5 69.0 0.38

Support vector machine (4) 77.2 74.2 0.48 75.1 72.2 0.44

Support vector machine (5) 70.9 68.2 0.35 72.0 70.7 0.40

Support vector machine (6) 79.9 74.9 0.52 78.3 67.7 0.48

Support vector machine (7) 79.4 75.8 0.52 79.9 74.4 0.52

Support vector machine (8) 79.4 75.8 0.52 79.9 74.4 0.52

Support vector machine (9) 77.2 74.2 0.48 75.1 72.2 0.44

Support vector machine (10) 78.3 69.8 0.47 69.3 52.9 0.17

Support vector machine (11) 77.8 69.9 0.46 67.7 50.0 -
Table 8.23. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between peptide GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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Attribute selection No attribute selection
Data mining method Q nQ MCC Q nQ MCC
Bayesian networks 98.4 94 .4 0.91 9 7 .9 89 .5 0 .88
N aive bayesian 97.4 89 .2 0 .85 88 .9 82.1 0 .53
N aive Bayesian simple 97.4 91 .5 0 .85 - - -

Logistic regression 97.9 94.1 0.88 91 .5 83 .6 0.60
RBF Network 97.9 91.8 0.88 89 .9 50 .0 -

KStar 95.2 85 .7 0 .73 93 .7 82 .4 0.65
Multi Boost A B 97.4 86 .8 0.85 94 .2 75 .7 0 .63
J48 94 .7 80 .7 0 .68 92.1 76 .9 0 .55
Random forest 97.4 86 .8 0 .85 94 .2 75 .7 0.63
Support vector machine (1) 98 .4 94 .4 0.91 96 .3 88 .6 0.79
Support vector machine (2) 97.4 96.2 0.87 96 .3 88 .6 0.79
Support vector machine (3) 97.4 96.2 0.87 96 .3 88 .6 0 .79
Support vector machine (4) 96.3 93 .3 0.81 95 .8 86 .0 0 .76
Support vector machine (5) 95.2 95 .0 0 .7 9J 95 .8 83 .6 0 .75
Support vector machine (6) 97.4 86 .8 0 .85 94 .7 73 .7 0 .67
Support vector machine (7) 97.4 89 .2 0 .85 97 .9 89 .5 0.88
Support vector machine (8) 96.3 93 .3 0.81 97 .9 89 .5 0.88
Support vector machine (9) 96.3 81 .6 0 .78 95 .8 86 .0 0 .76
Support vector machine (10) 96.3 81 .6 0.78 90 .5 52 .6 0.22
Support vector machine (11) 96.3 81 .6 0.78 89 .9 50 .0 -

Table 8.24. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between rhodopsin GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The cells coloured in yellow  correspond to the best performing data mining 
techniques. The cells highlighted in red correspond to data mining techniques where the predictive scores are 
not representative o f  the predictive power o f  the method (not normalised). This is normally due to a large 
class being well predicted whereas the smaller class can not be accurately discriminated.

C lass Sensitivity' Specificity GA v
Amine 83.3 85.4 84.3
Olfactory 100 97.4 97.4

Peptide 83.6 69.9 76.4

Rhodopsin 94.7 81.8 88
Table 8.25. Predictive accuracy for subfamilies in the GPCR class A protein family (am ine, olfactory, 
peptide, rhodopsin and other class A GPCR proteins) using the best classifier to predict a particular subfamily 
based on the “one-against-all” principle. Prediction o f  amine and olfactory GPCR proteins is achieved using a 
Bayesian Network (attribute selection = true), prediction o f  peptide GPCR proteins is based on a Naive 
Bayesian method (attribute selection = true) and prediction o f  rhodopsin GPCR proteins is achieved using a 
support vector machine (attribute selection = true, c =  30 or c =  50).

A similar approach was pursued to further sub-classify the enzyme, molecular 

transporter and ion channel classes. Evaluation o f  the single-step multi-class classifier and 

o f  the one-against-all principle showed that predictions were not accurate enough for 

enzymes and molecular transporters. The SVM(6) designed to sub-classify enzymes (table
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8.26) failed to accurately distinguish oxidoreductases and other enzymes (table 8.27). 

Using the one-against-all principle a Naive Bayesian classifier (table 8.28), a 

MultiBoostAB classifier (attribute selection = true) (table 8.29) and a Bayesian network 

(attribute selection = true) (table 8.30) were selected to predict oxidoreductases, 

transferases and hydrolases respectively. Although these classifiers showed fairly good 

prediction accuracies for transferases and hydrolases (table 8.31), the prediction o f  

oxidoreductases could not be refined. Considering that 88.5% of the enzymes (table 8.13) 

and 70.7% o f  the transferases (table 8.31) are correctly classified, the estimation o f  

correctly predicted transferases is at most 62.6%. The remaining sub-classes were estimated 

to be predicted at a lower accuracy as the corresponding classifiers reported lower values o f  

sensitivity and specificity (table 8.31). Based on these results it was decided not to further 

sub-classify the enzyme class, as due to the lower accuracy the obtained predictions would 

not be meaningful.

A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ G C Q nQ G C

Bayesian networks 59.4 38.2 0.27 47.9 32.6 -

Nai've bayesian 45.0 39.8 0.22 48.5 38.0 0.21

Nai've Bayesian simple 45.8 40.9 0.22 - - -

Logistic regression 58.6 36.8 0.23 46.4 39.9 0.2

RBF Network 58.4 34.6 0.22 49.1 25.0 -
KStar 51.0 40.7 0.21 49.0 42.1 0.24

M ultiBoostAB 61.8 37.8 0.26 62.7 38.7 0.29

J48 51.2 35.2 0.18 49.4 33.9 0.17

Random forest 60.5 37.4 0.25 61.0 37.0 0.25

Support vector machine (1) 59.6 33.4 - 57.1 34.6 0.19

Support vector machine (2) 61.4 36.5 0.25 48.8 39.5 0.23

Support vector machine (3) 61.3 36.5 0.24 48.4 38.7 0.23

Support vector machine (4) 58.4 37.0 0.24 55.8 42.4 0.27

Support vector machine (5) 56.6 37.1 0.22 55.3 43.8 0.26

Support vector machine (6) 54.6 41.1 0.28 61.2 39.7 0.31

Support vector machine (7) 53.5 41.5 0.26 56.7 43.1 0.31

Support vector machine (8) 53.5 41.5 0.26 56.7 43.1 0.31

Support vector machine (9) 51.9 38.9 0.21 55.8 42.4 0.27

Support vector machine (10) 59.2 38.5 0.28 61.8 37.9 0.33

Support vector machine (11) 61.9 38.0 - 60.8 36.3 -
Table 8.26. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between oxidoreductases (EC1), transferases (EC2), hydrolases (EC3) and other enzymes. This 
analysis is specific to enzym es. The highlighted cells correspond to the best performing data mining 
techniques.
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C lass Sensitivity Specificity G A v
Oxidoreductase 31.4 15.7 22.2

Transferase 60.6 64.5 62.5

Hydrolase 61.2 67 64

Other 19.4 50 31.1
Table 8.27. Predictive accuracy to distinguish between oxidoreductases, transferases, hydrolases and other 
enzym es. The given multi-class classifier is a support vector machine (attribute selection = false, c = 50, exp 
= 9, feat space normalization = true).

A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 90.4 49.5 -0.03 90.6 49.6 -0.03

N aive bayesian 89.2 57.2 0.18 75.7 56.3 0.09

N aive Bayesian simple 89.5 57.6 0.20 - - -

Logistic regression 91.2 51.9 0.11 77.7 56.7 0.10

RBF Network 91.8 53.5 0.23 91.3 50.0 -

KStar 90.8 50.4 0.02 80.8 56.5 0.10

M ultiBoostAB 90.8 58.1 0.24 91.2 50.6 0.05

J48 91.4 52.0 0.14 87.2 54.9 0.11

Random forest 89.7 57.5 0.20 90.9 51.1 0.07

Support vector machine (1) 91.3 50.0 - 90.2 50.7 0.03

Support vector machine (2) 91.3 50.0 - 84.0 56.3 0.11

Support vector machine (3) 91.3 50.0 - 83.0 55.8 0.10

Support vector machine (4) 91.3 50.0 - 87.7 55.1 0.12

Support vector machine (5) 91.3 50.0 - 88.3 53.5 0.09

Support vector machine (6) 90.3 52.0 0.08 91.4 50.7 0.11

Support vector machine (7) 90.8 53.6 0.15 89.5 52.2 0.07

Support vector machine (8) 90.8 53.6 0.15 89.5 52.2 0.07

Support vector machine (9) 91.6 51.4 0.16 87.7 55.1 0.12

Support vector machine (10) 90.8 53.6 0.15 91.3 50.0 -

Support vector machine (11) 91.3 50.6 0.07 91.3 50.0 -
Table 8.28. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between oxidoreductases and other enzymes. This analysis is specific to enzym es. The 
highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  se le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q n Q M C C

Bayesian networks 62.3 62.4 0.25 58.1 58.1 0.16

N aive bayesian 62.8 63.0 0.27 60.7 60.5 0.22

N aive Bayesian simple 61.9 62.1 0.25 - - -

Logistic regression 63.6 63.7 0.27 60.5 60.5 0.21

RBF Network 62.2 62.3 0.25 49.4 48.6 -0.05

KStar 58.6 58.5 0.17 58.3 58.0 0.17

M ultiBoostAB 67.7 67.8 0.36 62.8 62.9 0.26

J48 58.9 59.0 0.18 56.8 56.8 0.14

Random forest 65.8 65.8 0.32 61.8 62.0 0.24

Support vector machine (1) 65.5 65.5 0.31 63.0 63.0 0.26

Support vector machine (2) 64.3 64.3 0.29 61.2 61.1 0.22

Support vector machine (3) 64.3 64.3 0.29 61.5 61.5 0.23

Support vector machine (4) 55.5 54.8 0.15 63.4 63.3 0.27

Support vector machine (5) 54.2 53.5 0.13 62.0 61.9 0.24

Support vector machine (6) 63.3 63.1 0.27 62.3 61.9 0.27

Support vector machine (7) 65.5 65.4 0.31 63.0 62.7 0.27

Support vector machine (8) 65.5 65.4 0.31 63.0 62.7 0.27

Support vector machine (9) 61.3 60.9 0.25 63.4 63.3 0.27

Support vector machine (10) 62.4 62.0 0.27 60.7 60.1 0.27

Support vector machine (11) 65.3 65.1 0.31 66.4 66.6 0.35
Table 8.29. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between transferases and other enzymes. This analysis is specific to enzymes. The highlighted 
cells correspond to the best performing data mining techniques.
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A ttr ib u te  s e lec tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 70 .6 69 .9 0 .39 6 4 .3 6 5 .3 0 .3 0
Nai've bayesian 6 5 .9 6 9 .2 0 .3 8 5 9 .6 6 3 .7 0 .2 8
Nai've Bayesian simple 6 5 .6 69.1 0 .3 8 - - -

Logistic regression 7 0 .3 6 7 .6 0 .3 6 6 3 .0 6 1 .8 0 .2 3
RBF Network 6 8 .7 6 8 .2 0 .3 6 6 1 .7 5 0 .0 -

KStar 6 2 .2 6 1 .7 0 .2 3 6 4 .9 6 5 .8 0.31
M ultiBoostAB 74.6 72.3 0.45 7 4 .3 7 1 .9 0 .4 5
J48 6 6 .4 6 3 .8 0 .2 8 6 1 .8 5 9 .2 0 .1 9
Random forest 72.8 71.0 0.42 7 2 .2 7 0 .4 0.41
Support vector machine (1) 7 0 .0 6 5 .4 0 .3 4 6 7 .2 6 4 .9 0 .3 0
Support vector machine (2) 6 9 .7 6 6 .9 0 .3 5 6 4 .5 6 3 .2 0 .2 6
Support vector machine (3) 7 0 .2 6 7 .5 0 .3 6 6 4 .3 6 2 .9 0 .2 6
Support vector machine (4) 7 1 .8 6 8 .2 0 .3 9 6 7 .6 6 6 .8 0 .3 3
Support vector machine (5) 6 9 .2 6 4 .3 0 .32 6 8 .4 6 8 .0 0 .3 5
Support vector machine (6) 73.4 69.4 0.42 7 2 .3 6 7 .5 0 .3 9
Support vector machine (7) 72.5 70.1 0.41 7 1 .8 6 8 .7 0 .3 9
Support vector machine (8) 72.5 70.1 0.41 7 1 .8 6 8 .7 0 .3 9
Support vector machine (9) 6 9 .6 6 8 .4 0 .3 6 6 7 .6 6 6 .8 0 .3 3
Support vector machine (10) 7 0 .7 6 4 .5 0 .3 5 7 0 .0 6 2 .9 0 .3 4
Support vector machine (11) 72.7 67.1 0.40 7 0 .5 6 3 .4 0 .3 5
Table 8.30. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between hydrolases and other enzymes. This analysis is specific to enzymes. The cells coloured 
in yellow  correspond to the best performing data mining techniques. The cells highlighted in red correspond 
to data mining techniques where the predictive scores are not representative o f  the predictive power o f  the 
method (not normalised). This is normally due to a large class being well predicted whereas the smaller class 
can not be accurately discriminated.

C lass Sensitivity Specificity G A v
Oxidoreductase 32.9 13.4 21

Transferase 70.7 66 68.3

Hydrolase 67.0 60.5 63.7
Table 8.31. Predictive accuracy to distinguish between oxidoreductases, transferases and hydrolases using the 
best performing classifier to predict each functional class based on the one-against-all principle. The classifier 
for predicting oxidoreductases uses the Nai've Bayesian method (attribute selection = false), transferases are 
distinguished using the M ultiBoostAB method (attribute selection = true, classifier =  random forest, iterations 
= 30), the classifier for predicting hydrolases is based on the Nai've Bayesian method (attribute selection = 
true).

Likewise, sub-classification o f  molecular transporters into amino acid transporters, 

sugar transporters and other molecular transporters did not achieve sufficiently accurate 

predictions. The Bayesian network (attribute selection = true) designed to sub-classify 

molecular transporters in a single step (table 8.32) showed poor prediction accuracy scores 

for the three subclasses (table 8.33). Based on the one-against-all principle a Naive
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Bayesian classifier (attribute selection = true) (table 8.34) and a Naive Bayesian simple 

classifier (attribute selection = true) (table 8,35) were designed to predict amino acid 

transporters and sugar transporters respectively. Combination o f  the classifier to predict 

molecular transporters whose sensitivity is 72.2% (table 8.13) and the classifiers to predict 

amino acid transporters and sugar transporters (table 8.36), the estimation o f  correctly 

predicted amino acid transporters and sugar transporters is at most 45.6% and 46% 

respectively. As with enzymes, it was decided not to sub-classify the molecular transporter 

class as it was clear that the accuracy values were not going to be significant.

A ttr ib u te  se le c tio n No a ttr ib u te  s e le c tio n

D ata m in in g  m e th o d Q nQ G C Q nQ G C

Bayesian networks 54.5 55.4 0.33 4 8 .0 4 8 .9 0.24

Naive bayesian 49 .5 51 .8 0.28 4 1 .9 4 2 .4 0.21

Naive Bayesian simple 48 .7 51.2 0.27 - - -

Logistic regression 46 .6 46.1 0.21 34 .7 35 .3 0.08

RBF Network 46 .9 47 .3 0.23 37 .9 31 .0 -
KStar 42 .2 42 .0 0.15 4 3 .3 4 5 .4 0.21

M ultiBoostAB 53 .4 53.1 0.32 50 .5 4 9 .6 0.27

J48 43 .7 43 .3 0.17 41 .5 4 0 .9 0.13
Random forest 53.1 52.7 0.31 44 .0 4 3 .8 0.22

Support vector machine (1) 52.0 50 .6 0.29 37.2 38 .0 0.17

Support vector machine (2) 50.2 4 9 .3 0.26 39.7 4 0 .8 0.15
Support vector machine (3) 48 .7 47 .8 0.25 39.7 4 0 .8 0.15

Support vector machine (4) 49 .5 48 .8 0.25 44 .4 4 5 .6 0.21

Support vector machine (5) 49.1 49 .3 0.25 43 .3 4 4 .3 0.18

Support vector machine (6) 47 .3 47 .5 0.23 51.6 50.1 0.29

Support vector machine (7) 47 .7 47 .9 0.24 48 .7 48 .2 0.25

Support vector machine (8) 47 .7 4 7 .9 0.24 48 .7 4 8 .2 0.25

Support vector machine (9) 45 .5 46 .0 0.23 44 .4 4 5 .6 0.21

Support vector machine (10) 48 .7 4 8 .4 0.25 47 .7 44 .4 0.2

Support vector machine (11) 53 .8 52 .5 0.33 52.0 4 8 .3 0.29
Table 8.32. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between amino acid transporters, sugar transporters and other molecular transporters. This 
analysis is specific to molecular transporters. The highlighted cells correspond to the best performing data 
mining techniques.
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C lass Sensitivity Specificity G A v
Amino acid transporter 56.0 52.8 54.4

Sugar transporter 62.5 51.5 56.8

Other 47.8 59.3 53.3
Table 8.33. Predictive accuracy to distinguish between amino acid transporters, sugar transporters and other 
molecular transporters. The given multi-class classifier is based on a Nai've Bayesian method (attribute 
selection = true).

A ttr ib u te  se le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 70.8 66.2 0.32 68.2 63.4 0.26

N aive bayesian 70.8 68.6 0.35 60.6 53.9 0.08

Nai've Bayesian simple 71.1 68.5 0.35 - - -

Logistic regression 72.2 61.2 0.27 52.0 48.4 -0.03

RBF Network 66.4 54.1 0.10 70.4 51.5 0.12

KStar 67.5 62.9 0.25 56.7 56.5 0.12

M ultiBoostAB 70.4 66.3 0.32 63.9 52.9 0.07

J48 70.4 55.6 0.17 63.9 58.0 0.16

Random forest 69.3 64.9 0.29 62.1 51.3 0.03

Support vector machine (1) 69.0 49.8 -0.01 61.0 52.2 0.05

Support vector machine (2) 69.3 53.8 0.12 57.8 52.5 0.05

Support vector machine (3) 70.4 55.9 0.17 57.8 52.2 0.04

Support vector machine (4) 70.0 55.3 0.16 62.8 54.5 0.09

Support vector machine (5) 70.4 58.3 0.21 63.2 58.1 0.16
Support vector machine (6) 65.7 57.2 0.15 68.2 55.7 0.14

Support vector machine (7) 68.2 56.4 0.15 66.1 55.1 0.12

Support vector machine (8) 68.2 56.4 0.15 66.1 55.1 0.12

Support vector machine (9) 68.2 56.4 0.15 62.8 54.5 0.09

Support vector machine (10) 63.2 55.4 0.11 69.0 52.8 0.10

Support vector machine (11) 69.3 56.1 0.16 68.6 50.2 0.01
Table 8.34. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between amino acid transporters and other molecular transporters. This analysis is specific to 
enzymes. The cells coloured in yellow  correspond to the best performing data mining techniques. The cells 
highlighted in red correspond to data mining techniques where the predictive scores are not representative o f  
the predictive power o f  the method (not normalised). This is normally due to a large class being well 
predicted whereas the smaller class can not be accurately discriminated.
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A ttr ib u te  se le c tio n N o a ttr ib u te  s e le c tio n

D ata  m in in g  m e th o d Q nQ M C C Q nQ M C C

Bayesian networks 74.7 70.0 0.39 71.1 67.8 0.34

N aive bayesian 71.8 68.7 0.36 55.6 61.7 0.22

N aive Bayesian simple 72.6 69.9 0.38 - - -

Logistic regression 74.0 63.9 0.31 58.5 53.7 0.07

RBF Network 73.6 62.5 0.29 71.1 50.0 -

KStar 66.4 60.1 0.20 68.6 64.2 0.27

M ultiBoostAB 73.3 67.1 0.34 74.7 64.8 0.33

J48 69.0 60.0 0.21 64.6 55.1 0.11

Random forest 72.6 65.9 0.32 73.6 64.4 0.31

Support vector machine (1) 72.9 59.1 0.24 66.8 59.2 0.19

Support vector machine (2) 76.2 65.8 0.37 58.8 54.0 0.08

Support vector machine (3) 75.8 65.2 0.35 58.8 54.0 0.08

Support vector machine (4) 72.9 65.4 0.32 66.8 60.7 0.21

Support vector machine (5) 69.3 64.3 0.28 69.3 60.2 0.22

Support vector machine (6) 70.8 64.6 0.29 74.4 61.9 0.30

Support vector machine (7) 70.4 65.8 0.31 74.7 65.5 0.34

Support vector machine (8) 70.4 65.8 0.31 74.7 65.5 0.34

Support vector machine (9) 66.1 59.8 0.19 66.8 60.7 0.21

Support vector machine (10) 71.5 62.9 0.27 76.9 62.6 0.37

Support vector machine (11) 78.0 65.6 0.41 75.1 58.0 0.30
Table 8.35. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between sugar transporters and other molecular transporters. This analysis is specific to enzymes. 
The highlighted cells correspond to the best performing data mining techniques.

C lass Sensitivity Specificity G A v
Amino acid transporter 63.1 51.5 57

Sugar transporter 63.8 52 57.6
Table 8.36. Predictive accuracy o f  the distinction between amino acid transporters and sugar transporters 
using the best performing classifier to predict each functional class based on the one-against-all principle. 
Amino acid transporters are predicted using a N aive Bayesian classifier (attribute selection = true) and sugar 
transporters are predicted using a Naive Bayesian simple method (attribute selection = true).

In the case o f  ion channels, the first sub-classification was designed to distinguish 

between cation channels and anion channels. Although the predictive scores for the ion 

channel class were already discouraging, the combination of  the classifier to predict ion 

channels with the classifier to predict proteins with transport activity and it subsequent sub

classification into molecular transporters and ion channels was yet to be evaluated. 

Therefore, it was decided to further sub-classify the ion channels. Evaluation o f  the 

different classifiers showed various classifiers (table 8.37) that were subsequently 

compared (Please see appendix B table 8.9 on CD). The Naive Bayesian classifier was
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found to be the more consistent classifier and was selected as the predictive classifier to be 

used in the predictive algorithm. This classifier predicted cation and anion channels with 

sensitivity values o f  72.6% and 75.5% (table 8.38). However, these results do not take into 

account the previous percentage o f  correctly predicted ion channels. At most, prediction o f  

cation and anion channels would reach sensitivity values o f  approximately 50% after 

combining the different classifiers. Therefore, no further sub-classification was pursued as 

the predictive accuracies were not believed to be significant.

A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 75.2 71.5 0.37 70.4 66.9 0.28

Nai've bayesian 73.2 74.1 0.40 53.6 62.7 0.20

Nai've Bayesian simple 70.8 71.0 0.34

Logistic regression 78.8 59.8 0.23 61.2 51.2 0.02

RBF Network 82.8 60.8 0.33 80.4 50.0 -

KStar 83.2 72.6 0.46 66.8 60.8 0.18

M ultiBoostAB 80.8 62.6 0.30 82.8 59.2 0.32

J48 80.0 61.3 0.27 78.0 63.9 0.29

Random forest 82.0 63.3 0.34 80.0 54.4 0.16

Support vector machine (1) 80.0 51.3 0.07 76.0 57.3 0.16

Support vector machine (2) 82.0 60.3 0.30 66.8 57.0 0.12

Support vector machine (3) 82.4 61.3 0.32 66.4 56.7 0.12

Support vector machine (4) 82.0 54.9 0.25 72.0 57.9 0.15

Support vector machine (5) 81.2 54.4 0.20 71.6 61.5 0.21

Support vector machine (6) 81.2 70.6 0.41 83.2 60.2 0.34

Support vector machine (7) 79.6 67.3 0.35 81.2 62.1 0.30

Support vector machine (8) 79.6 67.3 0.35 81.2 62.1 0.30

Support vector machine (9) 80.0 59.8 0.25 72.0 57.9 0.15

Support vector machine (10) 81.6 69.3 0.40 82.0 54.9 0.25

Support vector machine (11) 84.4 61.0 0.41 80.8 51.0 0.13
Table 8.37. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between cation channels and anion channels. This analysis is specific to ion channels. The 
highlighted cells correspond to the best performing data mining techniques.

C lass Sensitivity Specificity G A v
Cation channels 72.6 92.4 81.9

Anion channels 75.5 40.2 55.1
Table 8.38. Predictive accuracy for distimction between cation channels and anion channels. The given multi
class classifier is based on a Nai've Bayesian method (attribute selection = true).

Combination o f  the different classifiers and architectures designed led to the 

development o f  a predictive algorithm that predicted the molecular function o f  a-helical 

membrane proteins at various levels o f  complexity (figure 8.5). Sub-classification of
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molecular transporters and enzymes was not performed as the corresponding predictive 

accuracy scores were not high enough. However, the algorithm included classifiers that 

were designed to further sub-classify class A GPCR proteins. To our knowledge, this is the 

first algorithm designed to predict the molecular function o f a-helical membrane proteins at 

such low levels of sequence similarity.

8.3.2.2 Data set filtered at a sequence similarity threshold of 90%

The data set used for this analysis is different to the previous set analyzed. This data 

set has been filtered at a sequence similarity threshold o f 90% and it could be considered as 

a more representative data set where only highly identical sequences have been removed. In 

order to design a predictive architecture to maximize the prediction o f the different 

functional classes contained in this data set, it is necessary to evaluate different data mining 

techniques and architectures as was done with the previous data set (tables 8.3 - 8.38). 

However, the different number o f possible combinations and architectures to be evaluated 

increases exponentially with the number o f different functional classes to be predicted. 

Instead, the data mining analysis performed was based on the architecture o f the algorithm 

designed to predict the molecular activity o f proteins under low sequence similarity (figure 

8.5). The main disadvantage o f using more flexible sequence similarity thresholds is that 

the trained classifiers can be biased towards large subsets o f proteins with a significant 

sequence similarity. This problem would lead to an under-prediction o f less common 

subsets o f proteins that belong the same functional class. However, the implementation of 

the previous algorithm, trained with highly heterogeneous sets, can be used instead to 

predict the functional class o f the corresponding proteins. On the other hand, the advantage 

o f applying higher sequence similarity thresholds is that for general use in predicting the 

molecular function o f membrane proteins, the resulting predictions would be likely to be 

more accurate as they are based on a larger training set.

Following the designed architecture, enzymes, GPCR proteins, ion channels, 

molecular transporters and proteins with transport activity (including ion channels and
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molecular transporters) were predicted using separate classifiers that were trained following 

the one-against-all principle.

Evaluation o f the different classifiers showed various classifiers that maximized the 

accuracy o f the prediction o f enzymes (table 8.39). Comparison o f these classifiers showed 

that the SVM(IO) (Please see appendix B table 8.10 on CD) predicted enzymes with the 

highest sensitivity (90.5%) and was selected to be used in the TMFUN algorithm. 

Evaluation o f the different classifiers to predict GPCR proteins showed various methods 

that reported Q, nQ and MCC values higher than 90 (table 8.40). Among the different 

classifiers SVM(6) showed the highest values o f sensitivity and (Please see appendix B 

table 8.11 on CD). Prediction o f molecular transporters using the one-against-all principle 

also showed that various methods could be successfully used for the prediction o f this 

functional class (table 8.41). Further comparison o f these methods (Please see appendix B 

table 8.12 on CD) showed that the Bayesian network (attribute selection = true) and the 

SVM(5) predicted this functional class with the highest values o f sensitivity. Although the 

SVM(5) reported a slightly lower sensitivity, the specificity score was more than ten 

percentage points higher than the sensitivity score for the Bayesian network. As a result, the 

SVM(5) was selected as the best performing classifier.
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A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 77.4 77.3 0.54 76.6 75.9 0.52

Naive bayesian 67.6 64.1 0.35 69.7 66.9 0.38

N aive Bayesian simple 68.4 65.2 0.36 - - -

Logistic regression 73.5 72.6 0.46 - - -

RBF Network 69.1 70.0 0.40 56.3 50.0 -

KStar 78.9 78.0 0.57 77.5 76.0 0.54

M ultiBoostAB 81.6 81.5 0.63 85.4 85.4 0.71

J48 74.0 73.5 0.47 73.1 72.4 0.45

Random forest 79.6 79.6 0.59 81.0 81.2 0.62

Support vector machine (1) 73.7 72.8 0.46 75.1 74.1 0.49

Support vector machine (2) 73.7 72.8 0.46 75.1 74.1 0.49

Support vector machine (3) 73.6 72.7 0.46 75.0 74.0 0.49

Support vector machine (4) 76.2 76.8 0.53 79.9 79.1 0.59

Support vector machine (5) 71.9 73.5 0.48 77.8 76.0 0.55

Support vector machine (6) 78.8 78.4 0.57 86.1 86.2 0.72

Support vector machine (7) 79.6 79.1 0.58 84.4 84.1 0.68

Support vector machine (8) 79.6 79.1 0.58 84.4 84.1 0.68

Support vector machine (9) 78.7 78.5 0.57 79.9 79.1 0.59

Support vector machine (10) 80.2 79.9 0.60 87.2 87.6 0.75

Support vector machine (11) 81.9 81.6 0.63 86.6 86.8 0.73
Table 8.39. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between enzym es and non-enzym es. The highlighted cells correspond to the best performing 
data mining techniques.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  se le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 96.0 95.9 0.90 94.3 94.7 0.86

Nai've bayesian 87.1 88.5 0.71 72.8 79.6 0.52

Nai've Bayesian simple 87.1 88.6 0.71 - - -

Logistic regression 88.3 84.6 0.70 90.5 88.3 0.76

RBF Network 88.5 88.5 0.73 77.9 65.2 0.37

KStar 94.4 93.2 0.86 96.0 94.9 0.90

M ultiBoostAB 95.5 94.6 0.88 97.0 95.8 0.92

J48 92.0 89.5 0.79 91.4 89.2 0.78

Random forest 94.7 93.7 0.87 94.5 93.2 0.86

Support vector machine (1) 88.5 85.0 0.70 90.3 87.4 0.75

Support vector machine (2) 88.4 85.0 0.70 90.0 87.7 0.75

Support vector machine (3) 88.4 85.1 0.70 90.0 87.6 0.75

Support vector machine (4) 90.0 84.0 0.73 93.2 92.9 0.83

Support vector machine (5) 84.1 71.8 0.56 93.7 93.5 0.84

Support vector machine (6) 92.9 91.5 0.82 97.3 96.0 0.93

Support vector machine (7) 92.7 91.3 0.81 96.5 95.2 0.91

Support vector machine (8) 92.7 91.3 0.81 96.5 95.2 0.91

Support vector machine (9) 91.3 87.6 0.77 93.2 92.9 0.83

Support vector machine (10) 93.9 92.4 0.85 96.9 95.1 0.92

Support vector machine (11) 93.5 91.0 0.83 96.5 94.5 0.91
Table 8.40. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between GPCR proteins and non-GPCR proteins. The highlighted cells correspond to the best 
performing data mining techniques.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  se le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 8 1 .5 7 8 .8 0 .4 8 7 7 .4 7 6 .5 0 .4 3
N aive bayesian 6 5 .8 7 3 .8 0 .3 5 56 .4 6 8 .2 0 .2 7
N aive Bayesian simple 6 5 .3 7 3 .4 0 .3 5 - - -

Logistic regression 84.1 5 8 .0 0 .2 5 - - -

RBF Network 8 3 .7 5 0 .5 0 .0 9 8 3 .6 50 .4 0 .0 7
KStar 8 6 .5 8 0 .0 0 .5 6 85.1 81 .2 0 .5 5
M ultiBoostAB 8 9 .9 7 4 .9 0 .5 9 90 .6 7 4 .5 0 .6 2
J48 8 5 .0 7 0 .5 0 .4 3 8 4 .3 7 1 .6 0 .4 3
Random forest 8 9 .0 7 4 .8 0 .5 6 8 8 .7 71 .4 0 .5 3
Support vector machine (1) 8 3 .5 5 0 .0 - 83 .6 5 1 .4 0.11
Support vector machine (2) 8 3 .5 5 0 .0 - 84 .3 6 0 .2 0 .2 9
Support vector machine (3) 8 3 .5 5 0 .0 - 84 .3 6 0 .6 0 .3 0
Support vector machine (4) 8 6 .3 6 1 .2 0 .3 8 87.1 7 8 .9 0 .5 5
Support vector machine (5) 8 5 .3 6 0 .4 0 .3 3 86 .8 81 .2 0 .57

Support vector machine (6) 8 8 .7 7 9 .4 0 .5 9 92.1 8 1 .6 0 .6 9
Support vector machine (7) 8 7 .5 7 7 .3 0 .5 5 9 0 .5 8 1 .6 0 .6 5
Support vector machine (8) 8 7 .5 7 7 .3 0 .5 5 9 0 .5 8 1 .6 0 .6 5
Support vector machine (9) 8 7 .0 7 1 .9 0 .4 9 87.1 7 8 .9 0 .5 5
Support vector machine (10) 89.6 79 .7 0.61 9 2 .4 8 0 .5 0 .7 0
Support vector machine (11) 8 9 .4 7 2 .3 0 .5 6 9 1 .5 7 7 .5 0 .6 6

Table 8.41. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between molecular transporters and non-molecular transporters. The cells coloured in yellow  
correspond to the best performing data mining techniques. The cells highlighted in red correspond to data 
mining techniques where the predictive scores are not representative o f  the predictive power o f  the method 
(not normalised). This is normally due to a large class being well predicted whereas the smaller class can not 
be accurately discriminated.

Evaluation o f  the different classifiers to predict ion channels (table 8.42) revealed 

several classifiers that needed further comparison (Please see appendix B table 8.13 on 

CD). As with the previous data mining analysis, ion channels were the most difficult 

functional class to predict. In order to maximize the sensitivity o f  the prediction, the KStar 

method was selected. Evaluation o f  classifiers to predict proteins with transport activity 

showed that the SVM(7) and SVM(8) were the best performing classifiers (table 8.43). 

Both classifiers performed equally well so any o f  these two classifiers could be used by the 

predictive architecture. This classifier was to be linked with another classifier to distinguish 

between molecular transporters and ion channels. The evaluation o f  the different data 

mining methods (table 8.44) showed that the SV M (11) (attribute selection = true) was the 

best performing classifier, which correctly predicted 84.2% and 80.5% o f  the ion channels 

and molecular transporters respectively. Evaluation o f  classifiers to distinguish between
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class A GPCR proteins and other GPCR proteins showed a wide range o f  techniques with 

accurate values o f  Q, nQ and MCC (table 8.45). Comparison o f  these methods showed that 

(Please see appendix B table 8.14 on CD) the Bayesian network classifier (attribute 

selection = true) predicted both class A GPCR and other GPCR proteins with sensitivity 

scores higher than 90% and was selected as the predictive classifier to be used in TMFUN.

A ttr ib u te  s e le c tio n N o a ttr ib u te  s e le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 75.0 69.3 0.29 68.1 66.3 0.23

N aive bayesian 81.1 53.9 0.09 79.0 54.4 0.09

N aive Bayesian simple 81.1 54.3 0.10 - - -

Logistic regression 86.5 52.1 0.11 85.6 56.8 0.20

RBF Network 86.7 50.0 -0.01 86.7 50.0 -0.01

KStar 87.8 75.0 0.48 87.4 75.1 0.48

M ultiBoostAB 89.8 63.5 0.45 90.4 64.4 0.49

J48 85.1 65.7 0.33 85.3 66.2 0.34

Random forest 89.2 64.7 0.43 89.2 62.0 0.40

Support vector machine (1) 86.8 50.0 - 86.8 50.2 0.05

Support vector machine (2) 86.8 50.0 - 86.9 51.6 0.12

Support vector machine (3) 86.8 50.0 - 86.9 51.6 0.12

Support vector machine (4) 87.4 54.4 0.22 88.1 74.5 0.49

Support vector machine (5) 87.2 55.1 0.22 88.2 75.3 0.50

Support vector machine (6) 89.8 74.4 0.53 91.7 74.8 0.59
Support vector machine (7) 88.4 73.0 0.48 90.6 75.0 0.56

Support vector machine (8) 88.4 73.0 0.48 90.6 75.0 0.56

Support vector machine (9) 87.8 65.9 0.38 88.1 74.5 0.49

Support vector machine (10) 90.9 72.7 0.55 92.1 72.9 0.61

Support vector machine (11) 89.7 63.8 0.44 90.7 66.2 0.51
Table 8.42. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between ion channels and non-ion channels. The highlighted cells correspond to the best 
performing data mining techniques.
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A ttr ib u te  se le c tio n No a ttr ib u te  se le c tio n

D ata  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 78.5 76.3 0.51 77.2 73.4 0.46

NaVve bayesian 68.1 72.0 0.40 61.9 68.0 0.33

N aive Bayesian simple 68.0 71.7 0.40 - - -

Logistic regression 74.7 65.5 0.35 - - -

RBF Network 74.4 66.5 0.35 70.3 50.0 -

KStar 81.6 79.8 0.58 79.1 78.6 0.54

M ultiBoostAB 84.8 80.5 0.63 86.7 81.4 0.67

J48 77.1 72.0 0.44 77.2 72.6 0.45

Random forest 82.9 78.6 0.58 83.0 77.5 0.58

Support vector machine (1) 76.0 66.1 0.38 77.4 68.9 0.42

Support vector machine (2) 76.1 67.1 0.38 77.0 69.8 0.42

Support vector machine (3) 76.1 67.1 0.38 77.1 70.0 0.42

Support vector machine (4) 77.1 64.3 0.39 83.9 81.5 0.62

Support vector machine (5) 77.1 64.3 0.39 80.9 79.8 0.57

Support vector machine (6) 85.1 81.2 0.64 87.4 82.9 0.69

Support vector machine (7) 83.9 81.0 0.62 86.7 83.3 0.68

Support vector machine (8) 83.9 81.0 0.62 86.7 83.3 0.68

Support vector machine (9) 81.5 75.3 0.54 83.9 81.5 0.62

Support vector machine (10) 81.5 75.3 0.54 88.0 82.3 0.70

Support vector machine (11) 85.7 79.7 0.64 87.1 81.0 0.68
Table 8.43. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between proteins with transport activity (including molecular transporters and ion channels) and 
proteins without transport activity. The highlighted cells correspond to the best performing data mining 
techniques.
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A ttr ib u te  s e le c tio n No a ttr ib u te  s e le c tio n

D ata  m in in g  m eth o d Q nQ M C C Q nQ M C C

Bayesian networks 70.9 70.0 0.41 66.9 65.3 0.32

N aive bayesian 65.1 62.3 0.29 63.8 60.8 0.26

N aive Bayesian simple 65.1 62.3 0.29 - - -

Logistic regression 68.3 67.3 0.35 69.3 68.6 0.38

RBF Network 65.8 63.7 0.30 56.4 51.2 0.08

KStar 80.4 79.7 0.60 80.2 79.1 0.60

M ultiBoostA B 78.7 78.6 0.57 82.1 82.1 0.64

J48 70.2 69.9 0.40 68.0 67.7 0.35

Random forest 76.3 76.5 0.53 76.4 76.6 0.53

Support vector machine (1) 67.6 66.1 0.34 70.9 69.7 0.41

Support vector machine (2) 67.4 66.2 0.33 70.5 69.7 0.40

Support vector machine (3) 67.6 66.4 0.34 70.5 69.7 0.40

Support vector machine (4) 78.0 76.9 0.55 79.4 78.7 0.58

Support vector machine (5) 76.8 76.2 0.53 79.8 79.1 0.59

Support vector machine (6) 76.0 74.9 0.51 78.2 76.4 0.57

Support vector machine (7) 78.9 78.4 0.57 78.7 77.4 0.57

Support vector machine (8) 78.9 78.4 0.57 78.7 77.4 0.57

Support vector machine (9) 75.3 74.7 0.50 79.4 78.7 0.58

Support vector machine (10) 75.8 74.3 0.51 76.9 74.5 0.56

Support vector machine (11) 80.6 80.2 0.61 82.1 82.4 0.64
Table 8.44. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between molecular transporters and ion channels. The highlighted cells correspond to the best 
performing data mining technique.
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A ttr ib u te  se le c tio n N o  a ttr ib u te  s e lec tio n

D ata  m in in g  m e th o d Q nQ M C C Q nQ M C C

Bayesian networks 94 .5 93 .7 0 .79 90 .3 89 .4 0.67
N aive bayesian 91 .5 91 .5 0.71 93 .5 92 .3 0 .76
N aive Bayesian simple 91 .6 91 .2 0.71
Logistic regression 94 .7 87 .4 0.76 91 .9 80.1 0 .63
RBF Network 93 .3 89 .6 0.73 86 .9 50 .0 -

KStar 97.1 89 .9 0.87 97 .7 91 .6 0 .89
M ultiBoostAB 95 .8 86 .6 0.81 97.1 90 .2 0 .87

J48 94 .4 88 .6 0.76 94 .0 86 .4 0 .74
Random forest 95 .9 87 .0 0.81 95 .8 85 .2 0 .80
Support vector machine (1) 96 .0 89 .6 0.82 96 .5 91 .5 0 .85
Support vector machine (2) 95 .3 88 .6 0 .79 96 .6 91 .9 0 .85
Support vector machine (3) 94 .8 88 .3 0.77 96 .6 91 .9 0 .85
Support vector machine (4) 96 .5 92 .3 0.84 98 .0 93 .8 0.91
Support vector machine (5) 94 .6 89 .5 0.77 97 .8 92 .5 0 .90
Support vector machine (6) 97.1 89 .9 0.87 96 .8 88 .0 0 .85
Support vector machine (7) 97 .4 92 .3 0.88 97 .8 92 .2 0 .90
Support vector machine (8) 97 .4 92 .3 0.88 97 .8 92 .2 0 .90
Support vector machine (9) 96 .5 92 .3 0.84 98 .0 93 .8 0.91
Support vector machine (10) 95 .8 84.1 0.80 94 .2 77 .8 0.72
Support vector machine (11) 96.1 85 .7 0.82 94 .3 78.1 0 .73

Table 8.45. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between GPCR class A proteins and other GPCR proteins. This analysis is specific to GPCR 
proteins. The highlighted cells correspond to the best performing data mining techniques.

Sub-classification o f  class A GPCR proteins was also pursued following the one- 

against-all principle. Evaluation o f  the classifiers to predict amine GPCR proteins and other 

class A GPCR proteins showed that the SVM(5) was the best performing classifier (table

8.46). Olfactory GPCR proteins were best predicted with SVM(7) and SVM(8) (table

8.47). Both methods performed equally well so either o f  these two classifiers can be used 

by TMFUN to predict olfactory GPCR proteins. Evaluation o f  classifiers to predict peptide 

GPCR proteins showed various techniques (table 8.48) that required further comparison 

(Please see appendix B table 8.15 on CD). The KStar method showed the highest 

sensitivity score for predicting peptide GPCR proteins and was considered the most 

consistent method. Prediction o f  rhodopsin GPCR proteins (table 8.49) showed several 

support vector machines that performed equally well, reporting impressive results. 

Consequently any o f  those support vector machines could be used in the TMFUN 

algorithm.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  s e le c tio n

D a ta  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 94.3 93.5 0.79 92.1 91.9 0.74

N aive bayesian 91.5 91.8 0.72 84.5 86.3 0.57

N aive Bayesian simple 91.6 91.6 0.72 - - -

Logistic regression 95.1 90.7 0.80 93.8 89.3 0.76

RBF Network 94.7 91.3 0.79 85.9 50.0 -

KStar 98.3 95.5 0.93 97.6 94.8 0.90

M ultiBoostAB 98.2 95.7 0.93 97.5 93.3 0.90

J48 96.6 92.4 0.86 96.4 91.7 0.85

Random forest 98.2 95.7 0.93 97.2 92.2 0.88

Support vector machine (1) 95.8 88.7 0.82 98.3 96.7 0.93

Support vector machine (2) 96.7 93.1 0.86 98.3 96.4 0.93

Support vector machine (3) 96.5 93.3 0.86 98.3 96.4 0.93

Support vector machine (4) 98.3 96.1 0.93 98.8 97.0 0.95

Support vector machine (5) 98.4 96.7 0.93 99.2 97.8 0.97

Support vector machine (6) 97.6 93.3 0.90 98.2 94.3 0.92

Support vector machine (7) 97.8 94.3 0.91 98.5 95.6 0.94

Support vector machine (8) 97.8 94.3 0.91 98.5 95.6 0.94

Support vector machine (9) 98.3 96.1 0.93 98.8 97.0 0.95

Support vector machine (10) 96.8 90.2 0.86 96.8 88.7 0.86

Support vector machine (11) 96.7 89.6 0.86 96.8 88.7 0.86
Table 8.46. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between amine GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  se lec tio n No a ttr ib u te  s e le c tio n

D a ta  m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 98.5 98.4 0.97 97.9 97.9 0.96
Nai've bayesian 96.6 96.5 0.93 96.5 96.5 0.93

Nai've Bayesian simple 96.5 96.4 0.93 - - -

L ogistic regression 97.4 97.3 0.95 98.4 98.3 0.97

RBF Network 96.8 96.8 0.94 65.1 62.2 0.27

KStar 97.1 97.0 0.94 96.9 96.7 0.94

M ultiBoostAB 97.8 97.8 0.96 97.7 97.7 0.95

J48 95.3 95.1 0.90 95.0 94.8 0.90

Random forest 97.4 97.4 0.95 97.5 97.5 0.95

Support vector machine (1) 97.8 97.6 0.96 98.8 98.7 0.98

Support vector machine (2) 97.4 97.2 0.95 98.8 98.7 0.98

Support vector machine (3) 97.5 97.4 0.95 98.8 98.7 0.98

Support vector machine (4) 97.6 97.4 0.95 98.8 98.7 0.98

Support vector machine (5) 97.1 96.9 0.94 98.5 98.3 0.97

Support vector machine (6) 98.3 98.3 0.97 98.7 98.8 0.97

Support vector machine (7) 98.4 98.3 0.97 99.3 99.3 0.99

Support vector machine (8) 98.4 98.3 0.97 99.3 99.3 0.99

Support vector machine (9) 97.6 97.4 0.95 98.8 98.7 0.98
Support vector machine (10) 98.2 98.1 0.96 98.7 98.7 0.97

Support vector machine (11) 97.9 97.6 0.96 97.9 97.6 0.96
Table 8.47. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between olfactory GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  s e le c tio n N o a ttr ib u te  s e lec tio n

D ata m in in g  m e th o d Q nQ M C C Q nQ M C C

Bayesian networks 86 .6 87 .8 0 .68 81 .7 83 .9 0 .59
N aive bayesian 85 .0 85 .7 0 .64 84 .5 86 .5 0 .64
N aive Bayesian simple 84 .4 85 .4 0.63 - - -

Logistic regression 88.0 80 .7 0.64 87.1 83.1 0 .64
RBF Network 89 .4 86 .7 0.70 78 .0 50 .3 0 .04
KStar 95.2 94 .0 0.86 96 .5 95 .8 0 .90

M ultiBoostAB 93.1 88 .5 0.79 93.1 87.2 0 .79
J48 88 .6 82 .3 0.66 88.1 82 .3 0 .65
Random forest 93.1 88 .5 0.79 92 .3 85 .8 0 .77
Support vector machine (1) 88 .9 80 .8 0.66 92 .0 87 .9 0 .77
Support vector machine (2) 89 .5 83 .5 0.69 89 .4 86 .8 0.71
Support vector machine (3) 89 .6 83 .7 0.69 89 .4 86 .8 0.71
Support vector machine (4) 94 .8 93 .8 0.85 96.1 95 .4 0 .89
Support vector machine (5) 93 .9 92 .9 0.83 95 .9 95 .3 0 .88
Support vector machine (6) 96 .9 94 .9 0.91 96 .8 93 .7 0.91
Support vector machine (7) 96.2 94 .5 0.89 96 .7 95.1 0 .90
Support vector machine (8) 96.2 94 .5 0.89 96 .7 95.1 0 .90
Support vector machine (9) 94 .8 93 .8 0 .85 96.1 95 .4 0 .89
Support vector machine (10) 96 .9 94 .4 0.91 95 .6 90.2 0 .87
Support vector machine (11) 95 .6 91 .5 0 .87 95 .5 89 .8 0 .87

Table 8.48. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between peptide GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.
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A ttr ib u te  se le c tio n No a ttr ib u te  se le c tio n

D ata m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 98.6 94.0 0.92 98.0 93.7 0.88

Naive bayesian 97.9 95.1 0.88 95.4 93.7 0.77

Naive Bayesian simple 98.0 94.7 0.88 - - -

Logistic regression 98.7 97.9 0.93 98.3 97.2 0.91

RBF Network 98.7 95.0 0.92 91.8 57.8 0.35

KStar 99.3 96.8 0.96 99.2 98.1 0.95

M ultiBoostAB 99.2 95.8 0.95 98.6 92.6 0.92

J48 97.4 91.0 0.85 97.1 91.8 0.83

Random forest 99.2 95.8 0.95 98.6 92.6 0.92

Support vector machine (1) 99.0 95.2 0.94 99.9 99.9 0.99

Support vector machine (2) 99.4 98.3 0.97 99.9 99.9 0.99

Support vector machine (3) 99.4 98.3 0.97 99.9 99.9 0.99

Support vector machine (4) 99.3 98.2 0.96 99.9 99.9 0.99

Support vector machine (5) 99.0 97.6 0.94 99.8 98.9 0.99

Support vector machine (6) 99.7 98.4 0.98 99.3 96.3 0.96

Support vector machine (7) 99.8 98.9 0.99 99.7 98.9 0.98

Support vector machine (8) 99.8 98.9 0.99 99.7 98.9 0.98

Support vector machine (9) 99.3 98.2 0.96 99.9 99.9 0.99

Support vector machine (10) 99.3 96.3 0.96 98.9 94.2 0.93

Support vector machine (11) 99.2 95.8 0.95 98.4 91.6 0.90
Table 8.49. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between rhodopsin GPCR proteins and other GPCR class A proteins. This analysis is specific to 
GPCR class A proteins. The highlighted cells correspond to the best performing data mining techniques.

Sub-classification o f  the ion channel class into cation and anion channels showed 

that the SVM(6) (attribute selection = true) and the KStar method were the best performing 

classifiers (table 8.50). Further comparison o f  these methods (Please see appendix B table 

8.17 on CD) showed that the KStar method was the best performing classifier predicting 

both classes with sensitivity scores higher than 80%.
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A ttr ib u te  s e le c tio n No a ttr ib u te  se le c tio n

D ata m in in g  m etho d Q nQ M C C Q nQ M C C

Bayesian networks 77.0 76.2 0.48 65.6 67.3 0.30

Nai've bayesian 73.4 75.4 0.45 57.5 69.7 0.36

Nai've Bayesian simple 71.6 74.0 0.42 - - -

Logistic regression 81.3 72.4 0.48 68.1 64.1 0.26

RBF Network 76.1 64.5 0.32 74.7 51.0 0.10

KStar 86.5 81.1 0.64 81.1 81.1 0.57

M ultiBoostAB 85.1 79.4 0.60 88.2 81.0 0.68

J48 78.8 72.7 0.45 78.0 71.2 0.42

Random forest 85.7 80.8 0.62 84.7 77.2 0.58

Support vector machine (1) 79.3 64.0 0.38 79.0 69.4 0.42

Support vector machine (2) 79.2 68.7 0.41 75.9 71.0 0.40

Support vector machine (3) 79.7 69.9 0.43 75.3 71.1 0.40

Support vector machine (4) 81.7 70.2 0.47 82.6 79.2 0.56

Support vector machine (5) 81.9 71.1 0.48 78.6 77.0 0.50

Support vector machine (6) 88.4 84.1 0.69 88.6 81.0 0.69

Support vector machine (7) 86.5 82.5 0.65 88.4 82.9 0.69

Support vector machine (8) 86.5 82.5 0.65 88.4 82.9 0.69

Support vector machine (9) 81.9 77.5 0.54 82.6 79.2 0.56

Support vector machine (10) 87.8 81.0 0.67 88.0 77.4 0.67

Support vector machine (11) 86.9 76.7 0.63 86.1 73.2 0.62
Table 8.50. Ten fold cross-validation o f  different data mining techniques applied in a single-step fashion to 
discriminate between cation channels and anion channels. This analysis is specific to ion channels. The cells 
coloured in yellow  correspond to the best performing data mining techniques. The cells highlighted in red 
correspond to data mining techniques where the predictive scores are not representative o f  the predictive 
power o f  the method (not normalised). This is normally due to a large class being well predicted whereas the 
smaller class can not be accurately discriminated.

8.3.3 TMFUN evaluation

The different data mining analyses described above were carried out in order to 

identify the best performing classifier and architecture to predict the molecular activity of  

membrane proteins at different levels o f  complexity o f  molecular function. The prediction 

o f  each class has been individually evaluated by ten fold cross-validation. However, it is 

necessary to combine the different classifiers and evaluate such the whole architecture in 

order to demonstrate the overall predictive accuracy o f  TMFUN and to determine the 

importance o f  the contribution o f  the transmembrane region to determining and undertaking 

the molecular function o f  the protein.
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TMFUN was evaluated by ten fold cross-validation. In each iteration, the different 

classifiers were trained using 90% o f the assembled data set and the remaining 10% was 

predicted by TMFUN. Prediction was achieved using three different methods: i) assuming 

equally weighted classifiers, ii) assuming unequally weighted classifiers where the support 

for each classifier corresponds to the GAv score and iii) assuming unequally weighted 

classifiers where the support for each classifier corresponds to the MCC score. The GAv 

and MCC values for each classifier was obtained from the classifier evaluations previously 

carried out.

8.3.3.1 Data set filtered at a sequence similarity threshold of 40%

Evaluation o f TMFUN using training sets o f low sequence similarity showed that 

the overall prediction o f the method assuming equally weighted classifiers (table 8.51) was 

less accurate than that assuming unequally weighted classifiers (table 8.52 and table 8.53). 

The overall prediction scores o f the method assuming unequally weighted classifiers based 

on the GAv (table 8.52) and the MCC (table 8.53) score showed similar values. However, 

at the most informative level (level 3) the predictive architecture based on the MCC scores 

were slightly better. Prediction o f molecular function assuming weighted classifiers based 

on the corresponding MCC values showed identical or higher values o f sensitivity for each 

functional class than assuming weighted classifiers based on the corresponding GAv values 

with the exception of ion channel. At the most informative level, with such low levels of 

sequence similarity, the best result was the 70% sensitivity to predict olfactory GPCR 

proteins. Other encouraging results were the sensitivity values to predict amine GPCR 

proteins and rhodopsin GPCR proteins (65%). At less informative levels, class A GPCR 

proteins were predicted with a sensitivity o f 83.2% (level 2) and the GPCR superfamily 

was predicted with a sensitivity o f 87.5%. 71.4% of the molecular transporters were 

correctly predicted and enzymes were predicted with a sensitivity o f 64.1% (level lb). 

Finally, proteins with transport activity were distinguished from enzymes and GPCR 

proteins with 70% accuracy (level la). The functional classes predicted with the lowest 

sensitivity scores include class A GPCR proteins other than amine, olfactory, peptide and 

rhodopsin GPCR proteins and ion channels. The confusion matrix derived from the ten fold
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cross-validation o f the TMFUN algorithm assuming weighted classifiers based on the 

corresponding MCC values (table 8.54) has been used to further investigate the incorrect 

predictions. Class A GPCR proteins other than amine, olfactory, peptide and rhodopsin 

GPCR proteins were found to be mainly predicted as other types o f GPCR proteins (26.7% 

was predicted as peptide GPCR proteins and 13.3% was predicted as non-class A GPCR 

proteins). No classifier was actually designed to predict “other class A GPCR” -  instead, 

when a protein predicted as class A was not further sub-classified as amine, olfactory, 

peptide or rhodopsin GPCR, TMFUN classified the given protein as “other class A GPCR”, 

i.e. an unknown class A GPCR. The introduction o f a classifier to predict this functional 

class might increase the sensitivity o f the method. Interestingly, 33.3% of the peptide 

GPCR proteins were found to be predicted as “other class A GPCR”. Therefore, there 

seems to be a reciprocal relationship between both classes that might reflect an 

evolutionary relationship between peptide GPCR proteins and a subset o f proteins 

belonging to the “other class A GPCR” class. The ion channel class was found to be 

predicted at a sensitivity value o f 12% (table 8.53), the prediction o f this functional class 

increased up to 24.4% and 30% assuming weighted classifiers based on the GAv values and 

equally weighted classifiers respectively. This functional class was found to be the most 

difficult class to predict and for considering the different classifiers to be used by TMFUN 

(tables 8.5, 8.7, 8.13, 8.15). The confusion matrix (table 8.54) showed that the majority o f 

ion channels tend to be predicted either as enzymes or molecular transporters. Similarly, the 

most common misclassification o f molecular transporters involves enzymes and the most 

common misclassification o f enzymes involved molecular transporters. Further analysis 

showed that approximately 50% o f the enzymes predicted either as ion channels or 

molecular transporters do indeed have transport activity (e.g. ABC transporter, proton 

pump pyrophosphatase, and calcium ATPase). Using the information contained in the 

confusion matrix, a distance between classes was computed and plotted using the Biolayout 

software (Enright and Ouzounis, 2001). The obtained plot (figure 8 .6 ) showed how 

enzymes, anion channels, cation channels and molecular transporters (edges in red) tend to 

form a cluster whereas GPCR proteins tend to from a separate cluster. These clusters are 

more obvious after filtering the distances between classes, reducing the background noise 

(figure 8.7). With the exception o f rhodopsin GPCR proteins, enzymes, ion channels and
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molecular transporters form a cluster while the GPCR proteins form a separate cluster. The 

observed clusters and the fact that approximately 50% of the enzymes predicted as proteins 

with transport activity do indeed transport substances through the membrane might indicate 

that the current classifiers detect the corresponding signature o f the function carried out in 

the membrane by the transmembrane regions rather than the overall protein function. Many 

enzymes (specially hydrolases) do transport substances through the membrane and also 

catalyze a chemical reaction. Based on the IUMB, these proteins were classified according 

to their overall enzymatic activity rather than the function carried out in the membrane. 

However, the features extracted by TMFUN only involve residues located in the 

membrane, which probably explains the observed misclassifications between enzymes, ion 

channels and molecular transporters. In order to further investigate this matter, it might be 

necessary to re-classify the assembled data set based solely on the function carried out in 

the membrane and restrict only the developed method to predicting the specific function 

local to the membrane. On the other hand, by combining TMDEPTH with data mining and 

pattern recognition methods applied to the extra-membranous region o f the protein, the 

limitation o f predicting local functions rather than the overall function o f a membrane 

protein could be mitigated.
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Sensitivity Specificity GAv Q nQ GC
enzyme 38.3 80.9 55.7

la gpcr 57.5 85.2 70.0 51.0 54.4 0.56
transport 67.5 62.9 65.2
enzyme 38.3 80.7 55.6

lb
gpcr 57.5 85.2 70.0

43.0 45.4 0.48
ionchannel 30.4 34.4 32.3
transporter 55.4 54.0 54.7
enzyme 38.3 80.7 55.6
gpcra 60.5 85.8 72.1

2
non-gpcra 22.0 39.3 29.4

40.2 35.4 0.41
anion 18.0 9.6 13.1
cation 21.0 33.1 26.4
transporter 52.9 51.6 52.2
enzyme 38.3 80.7 55.6
amine 57.5 76.7 66.4
olfactory 52.5 87.5 67.8
peptide 43.3 51.0 47.0

3
rhodopsin 25.0 55.6 37.3

38 35 0.45
other gpcra 20.0 18.2 19.1
non-gpcra 22.0 44.0 31.1
anion 18.0 9.6 13.1
cation 21.0 24.5 22.7
transporter 52.9 51.6 52.2

Table 8.51. Ten fold cross-validation o f  TMFUN. Where the consensus prediction was achieved assuming 
equally weighted classifiers.
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Sensitivity Specificity GAv Q nQ GC
enzyme 64.1 77.7 70.6

la gpcr 86.7 70.5 78.2 69.8 73.8 0.61
transport 70.8 64.1 67.3
enzyme 64.1 77.7 70.6

lb
gpcr 86.7 70.7 78.3

60.6 59.0 0.52
ionchannel 24.4 37.7 30.3
transporter 60.7 48.0 54.0
enzyme 64.1 77.7 70.6
gpcra 82.1 70.9 76.3

2
non-gpcra 60.0 41.1 49.7

57.8 49.7 0.46
anion 16.0 10.4 12.9
cation 15.5 35.2 23.4
transporter 60.7 48.0 54.0
enzyme 64.1 77.7 70.6
amine 65.0 74.3 69.5
olfactory 70.0 73.7 71.8
peptide 51.7 55.4 53.5

3
rhodopsin 55.0 42.3 48.2

54.7 49.5 0.5
other gpcra 36.7 16.9 24.9
non-gpcra 60.0 41.1 49.7
anion 16.0 10.4 12.9
cation 15.5 26.0 20.1
transporter 60.7 48.0 54.0

Table 8.52. Ten fold cross-validation o f  TMFUN, where the consensus prediction was achieved assuming 
unequally weighted classifiers. The support for each classifier was obtained from the ten fold cross-validation 
o f  the best performing classifier and corresponded to the geometric average o f  the predicted functional class.
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S e n s itiv ity S p e c ific ity G A v Q nQ G C
enzyme 64.1 77 .7 70 .6

la gpcr 87 .5 70 .5 7 8 .5 69 .6 73 .9 0.61

transport 70 .0 64.1 6 7 .0
enzyme 64.1 77 .7 70 .6

lb
gpcr 87 .5 70 .5 78 .5 60.7 58.7 0.52
ionchannel 12.0 36 .6 2 1 .0
transporter 71 .4 45 .8 57 .2
enzyme 64.1 77 .7 70 .6
gpcra 83 .2 70 .9 76 .8

2
non-gpcra 6 2 .0 40 .8 50 .3 58.8 48.8 0.46
anion 2 .0 3.0 2 .5
cation 10.0 40 .8 20 .2
transporter 71 .4 45 .8 57 .2
enzyme 64.1 77 .7 70 .6
amine 6 5 .0 74 .3 6 9 .5
olfactory 70 .0 71 .8 70 .9
peptide 51 .7 55 .4 53 .5

3
rhodopsin 65 .0 46 .4 54 .9 55.7 49.8 0.51
other gpcra 36 .7 16.9 2 4 .9
non-gpcra 62 .0 41 .3 50 .6
anion 2 .0 3.4 2 .6
cation 10.0 24.1 15 .5
transporter 71 .4 45 .8 57 .2

Table 8.53. Ten fold cross-validation o f  TM FUN, where the consensus prediction was achieved assuming 
unequally weighted classifiers. The support for each classifier was obtained from the ten fold cross-validation  
o f  the best performing classifier and corresponded to the Matthews correlation coefficient.

enzym e am ine o lfactory pep tide rhodopsin other gpcra non-g p cra anion cation transporter

64.1 0.2 0.9 1.0 1.5 2.5 3.3 1.9 2.7 15.2 enzym e

0 65.0 0 12.5 2.5 15 0 0 0 5.0 am ine
0 0 70.0 0 0 2.5 20 0 0 7.5 olfacto ry

1.7 6.7 1.7 51.7 0 33.3 3.3 0 1 7 0.0 pep tide
0 0.0 0 0 65.0 5 0 5 0 25 rhodopsin

0 3.3 0 26.7 3.3 36.7 13.3 0 3.3 13.3 o ther gpcra

14 0 4 4 2 6 62 0 2 4.0 non-gpcra
12 4 0 0 0 0 0 2 4 64 anion

44.5 0 0 0 0 0.5 0.5 3.5 10 33 cation

16.1 0 0.4 0.7 0 0.7 0.7 1.8 2.1 71.4 transporter
Table 8.54. Confusion matrix corresponding to the ten fold cross-validation o f  TMFUN using weighted 
classifiers based on their corresponding Matthews correlation coefficient. C ells coloured in grey correspond 
to true positives, cells coloured in yellow  correspond to m isclassifications with a percentage error between 
10% and 20%, cells coloured in red correspond to m isclassifications with a percentage error equal or higher 
than 20%.
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Amine

Peptide

Rhodopsin

Other GPCRA

Transporter

Enzyme

Olfactory

Non GPCRA

Anion

Cation

Figure 8.6. Distance relationships between the different functional classes extracted from the percentage 
confusion matrix obtained from the cross-validation o f  TMFUN assuming unequally weighted classifiers 
w hose support corresponded to the Matthews correlation coefficient. The red edges correspond to enzymes 
and proteins with transport activities (molecular transporters, cation channels and anion channels).
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Amine Peptide

Olfactory

Other GPCRA

Rhodopsin

Non GPCRA

Transporter

Enzyme

Anion

Cation

Figure 8.7. Distance relationships between the different functional classes extracted from the percentage 
confusion matrix obtained from the cross-validation o f  TMFUN assuming unequally weighted classifiers 
w hose support corresponded to the Matthews correlation coefficient. The red edges correspond to enzymes 
and proteins with transport activities (molecular transporters, cation channels and anion channels). Here, the 
edges have been filtered to reduce the background noise using a threshold o f  76%.

Although some o f  the predicted functional classes are broad families that could also 

be predicted using other methods, it is important to emphasize the importance o f  these 

results considering the limitations o f  our method. Firstly, topology prediction methods have 

a current success o f  70% to 80% in correctly identifying all transmembrane regions o f  a- 

helical membrane proteins. Incorrect prediction or over-prediction o f  a single 

transmembrane region can completely alter the protein vector used to classify a given 

membrane protein. Therefore, these result are all the more impressive considering that the 

topological model o f  a significant proportion o f  proteins contained in the given data sets 

have some kind o f  error, which lead to erroneous protein vectors. Secondly, TMFUN 

exploits solely the information contained in the transmembrane regions. Therefore, these
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results reflect the importance o f this region to assigning the molecular function o f a-helical 

membrane proteins. The functional work o f the transmembrane regions has often been 

thought to be restricted to the less protein-specific roles of maintaining structure and 

facilitating conformational changes (with the exception, o f course, o f transport proteins and 

channels), while the extra-membranous loops o f integral membrane proteins have been 

considered to play the major protein-specific functional roles such as ligand binding, 

chemical catalysis and signal transduction. There is no doubt about the importance o f extra- 

membranous loops in accomodating the different functions carried out by the protein. 

However, these results indicate that the transmembrane regions o f multi-spanning 

membrane proteins can also play a major part in refining molecular function. The most 

representative example supporting this idea is that by exploiting only the information 

contained in the transmembrane regions o f GPCR proteins, the nature o f its ligand can be 

predicted, even employing a training protocol that uses sequences o f low sequence 

similarity.

TMFUN has been trained using severe conditions, where no sequence in the 

training set shares a sequence identity equal or higher than 40%. To our knowledge, no 

previous work has been carried out under such conditions. Despite the severe level of 

sequence similarity, TMFUN has proven the principle underlying the TMDEPTH approach, 

which states that signatures derived from the predicted topology o f membrane proteins can 

be associated with specific molecular functions o f membrane proteins.

8.3.3.2 Data set filtered at a sequence similarity threshold of 90%

As expected, evaluation o f TMFUN using the data set filtered at a sequence 

similarity threshold o f  90% reported higher predictive scores than using a more constrained 

data set. As explained above, using more flexible sequence similarity thresholds might 

result in a given classifier being biased towards the subset of proteins sharing a higher 

sequence identity. However, TMFUN was also trained under low sequence similarity not 

only to prove that the principle underlying TMDEPTH can be used to predict the molecular 

function o f membrane proteins but also to facilitate the prediction o f those less represented
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proteins, which do not share significant sequence similarity with other proteins in the data 

set. On the other hand, the data set filtered at a sequence similarity threshold o f 90% is a 

larger data set, which better represents the population o f a-helical membrane proteins found 

in nature.

The differences between TMFUN assuming equally weighted classifiers (table 

8.55) and using weighted classifiers based on the GAv scores (table 8.56) and MCC scores 

(table 8.57) were found to be smaller using a larger and more flexible data set. However, 

the former method was still the less accurate method for prediction o f the molecular 

function o f a membrane protein. Consensus prediction based on weighted classifiers (either 

using the GAv or MCC scores) predicted the molecular function o f membrane proteins at 

its most informative level (level 3) with a generalized correlation (GC) o f 0.81. Amine, 

olfactory and rhodopsin GPCR proteins were predicted with sensitivity values higher than 

90%, peptide GPCR proteins were predicted with a sensitivity o f 84.5% and 77.5% of class 

A GPCR proteins other than amine, olfactory, peptide and rhodopsin were correctly 

predicted. At level 2, class A GPCR proteins were predicted with 91.7% sensitivity and 

other classes o f GPCR proteins were predicted with a sensitivity o f 70%.Interestingly, 70% 

of the anion channels were correctly predicted whereas only 49% of the cation channels 

were correctly identified. At level lb, enzymes, GPCR proteins, ion channels and molecular 

transporters were identified with a sensitivity o f 87.8%, 92.8%, 58.3% and 75.6% 

respectively. Finally, 74.9% of proteins with transport activity (ion channels and molecular 

transporters) were correctly predicted at the less informative level (level la). The observed 

results re-emphasize the importance o f the transmembrane regions in being able to define 

molecular function. This is particularly obvious for amine (92.9%), olfactory (92.3%) and 

rhodopsin (93%) GPCR proteins. Some o f the misclassifications reported under low 

sequence similarity have been hidden by a larger fraction o f correct predictions probably 

corresponding to subsets o f proteins sharing a significant sequence similarity. However, the 

relationship between enzymes, molecular transporters and ion channels is still obvious 

(table 8.58). The majority o f misclassifications corresponded to erroneous predictions 

between two o f these functional classes, 33.6% and 11.5% of the cation channels were 

predicted as enzymes and molecular transporters respectively, 12.3% o f the anion channels
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were predicted as molecular transporters and 17.4% o f the molecular transporters were 

predicted as enzymes. The relationship between these functional classes is evident in the 

plot made based on the distance relationships between the different functional classes 

(figure 8.8). Enzymes, anion channels, cation channels and molecular transporters (red 

edges) formed a cluster, whereas GPCR subclasses (green edges) formed a separated 

cluster. These clusters are more obvious after filtering the distances between classes, 

reducing the background noise (figure 8.9). As explained earlier, these results probably 

reflect the transport activity o f some enzymes such as ABC transporters and copper 

ATPases.

Sensitivity Specificity GAv Q nQ GC
enzyme 74.1 87.0 80.3

la gpcr 89.7 98.4 94.0 78.7 79.8 0.81
transport 75.6 84.6 80.0
enzyme 74.1 87.0 80.2

lb
gpcr 89.7 98.4 94.0 76.3 74.0 0.76
ionchannel 59.0 75.6 66.8
transporter 73.1 81.0 76.9
enzyme 74.1 87.0 80.2
gpcra 89.7 97.9 93.7

2 non-gpcra 62.0 69.9 65.8 74.8 69.6 0.71
anion 69.2 64.3 66.7
cation 49.5 72.6 59.9
transporter 73.1 81.0 76.9
enzyme 74.1 87.0 80.2
amine 90.7 99.2 94.9
olfactory 91.6 98.3 94.9
peptide 83.6 92.5 87.9

3 rhodopsin 91.0 98.9 94.9 74.3 76.1 0.8
other gpcra 75.8 77.8 76.8
non-gpcra 62.0 69.9 65.8
anion 69.2 64.3 66.7
cation 49.5 9.3 21.4
transporter 73.1 81.0 76.9

Table 8.55. Ten fold cross-validation o f TMFUN, where the consensus prediction was achieved assuming 
equally weighted classifiers.
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Sensitivity Specificity GAv Q nQ GC
enzyme 87.8 84.8 86.3

la gpcr 92.8 94.8 93.8 85.4 85.2 0.81
transport 74.8 84.7 79.6
enzyme 87.8 84.8 86.3

lb
gpcr 92.8 95.9 94.4

83.5 78.6 0.77
ionchannel 58.3 78.5 67.6
transporter 75.6 77.7 76.6
enzyme 87.8 84.7 86.2
gpcra 91.7 96.4 94.0

2
non-gpcra 70.0 63.3 66.5

82 74 0.72
anion 70.0 68.4 69.2
cation 49.0 74.3 60.3
transporter 75.6 77.7 76.6
enzyme 87.8 84.7 86.2
amine 92.9 100.0 96.4
olfactory 92.3 96.1 94.2
peptide 84.5 92.5 88.5

3
rhodopsin 93.0 98.9 95.9

81.4 79.3 0.81
other gpcra 77.5 75.6 76.5
non-gpcra 70.0 63.3 66.5
anion 70.0 68.4 69.2
cation 49.0 9.8 21.9
transporter 75.6 77.7 76.6

Table 8.56. Ten fold cross-validation o f TMFUN, where the consensus prediction was achieved assuming 
unequally weighted classifiers. The support for each classifier was obtained from the ten fold cross-validation 
o f the best performing classifier and corresponded to the geometric average o f  the predicted functional class.
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Sensitivity Specificity GAv Q nQ GC
enzyme 87.8 84.7 86.2

la gpcr 92.8 95.6 94.2 85.4 85.2 0.82

transport 74.9 84.8 79.7
enzyme 87.8 84.7 86.2

lb
gpcr 92.8 95.7 94.3

83.5 78.6 0.76
ionchannel 58.3 77.7 67.3
transporter 75.6 77.7 76.6
enzyme 87.8 84.7 86.2
gpcra 91.7 96.4 94.0

2
non-gpcra 70.0 63.3 66.5

82 74 0.72
anion 70.0 68.4 69.2
cation 49.0 74.3 60.3
transporter 75.6 77.7 76.6
enzyme 87.8 84.7 86.2
amine 92.9 100.0 96.4
olfactory 92.3 96.1 94.2
peptide 84.5 92.5 88.5

3
rhodopsin 93.0 98.9 95.9

81.4 79.3 0.81
other gpcra 77.5 75.0 76.2
non-gpcra 70.0 63.6 66.7
anion 70.0 68.4 69.2
cation 49.0 9.8 21.9
transporter 75.6 77.7 76.6

Table 8.57. Ten fold cross-validation o f  TM FUN, where the consensus prediction was achieved assuming 
unequally weighted classifiers. The support for each classifier was obtained from the ten fold cross-validation 
o f  the best performing classifier and corresponded to the Matthews correlation coefficient.

enzyme amine olfactory peptide rhodopsin other gpcra non-gpcra anion cation transporter
87.8 0 0.6 0.3 0 0.4 0.8 1.2 1.9 4.6 enzvme

0 92.9 0 1.4 0 2.9 0.7 0 0 0 amine
3.3 0 92.3 0.2 0 0.2 1.4 0 0.5 0.5 olfactory
0 0 0 84.5 0.5 5.5 7.7 0 0 0 peptide
2 0 0 0 93.0 1 2 0 0 1 rhodopsin

0.8 0 1.7 3.3 0 77.5 11.7 0 0.8 0 other gpcra
12 0 0 2.0 0 2.7 70 0 1.3 3.3 non-gpcra
8.5 0 0 0 0 0 0 70 6.2 12.3 anion

33.6 0 0 0 0 0 0.3 3.3 49 11.5 cation
17.4 0 0.3 0 0 0.3 0.4 0.8 2.2 75.6 transporter

Table 8.58. Confusion matrix corresponding to the ten fold cross-validation o f  TM FUN using weighted 
classifiers based on their corresponding Matthews correlation coefficient. Cells coloured in grey belong to 
true positives, cells coloured in yellow  correspond to misclassifications with a percentage error between 10% 
and 20%, and cells coloured in red correspond to m isclassifications with a percentage error equal or higher 
than 20%.
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Other GPCRA Olfactory

Amine

Rhodopsii

Non GPCRA Cation

Enzyme

Anion
Figure 8.8. Distance relationships between the different functional classes extracted from the percentage 
confusion matrix obtained from the cross-validation o f  TMFUN assuming unequally weighted classifiers 
w hose support corresponded to the Matthews correlation coefficient. The red edges correspond to enzymes 
and proteins with transport activities (molecular transporters, cation channels and anion channels).
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Other GPCRA

Transporter

Cation
Non GPCRA

EnzymeAnion

Figure 8.9. Distance relationships between the different functional classes extracted from the percentage 
confusion matrix obtained from the cross-validation o f  TMFUN assuming unequally weighted classifiers 
whose support corresponded to the Matthews correlation coefficient. The red edges correspond to enzym es 
and proteins with transport activities (molecular transporters, cation channels and anion channels). Here, the 
edges have been filtered to reduce the background noise using a threshold o f  42%.

In order to compare the predictive accuracy o f  TMFUN based on sequence 

similarity thresholds o f  40% and 90%, the Euclidean distance (1.11) between both versions 

was computed (table 8.59). This distance was computed at each level using the three 

predictive scores obtained from the evaluation o f  the method, namely the overall predictive 

accuracy (Q), the normalized accuracy (nQ) and the generalized correlation (GC). The 

obtained results showed that the Euclidean distance between the TMFUN method trained 

using a sequence similarity threshold o f  40% and 90% increases with the level o f  functional 

complexity. Therefore, as the prediction given by TMFUN further specifies the molecular 

role o f  the unknown protein, the TMFUN version trained using a data set filtered with a 

sequence similarity threshold o f  90% increases its accuracy with respect to the TMFUN 

version trained using a sequence similarity threshold o f  40%. The observed relationship
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between the predictive power o f both versions seems to be logarithmic (figure 8.10). 

Extrapolating these results the differential magnitude between the predictive accuracy using 

TMFUN trained at a sequence similarity threshold o f 90% and TMFUN trained at a 

sequence similarity threshold o f 40% could increase until no less than 35 different classes 

can be discriminated (at an expected Euclidean distance value o f approximately 60-65). 

There are two major factors that might explain why using a training set filtered at 

increasing sequence similarity filter reports more accurate values. One factor is the number 

of sequences contained in the training set, in order to further sub-classify newly predicted 

classes a significant number o f instances is required. At more severe levels o f sequence 

similarity it is likely to reach earlier down the tree a node where there are not enough 

instances to appropriately train the classifier. The second reason is that by using a more 

flexible training set, where the sequence similarity filter appropriately removes highly 

identical instances but still maintains other instances with marked similarity, better trained 

classifiers can be obtained. By using a sequence similarity filter o f 90%, highly redundant 

proteins sequences were removed. However, protein families having a marked sequence 

similarity among their corresponding members are not constraint by severe sequence 

similarity thresholds and therefore a better classifier can be implemented. Following this 

principle, the TMFUN version trained at a sequence similarity o f 90% implemented better 

classifiers for those protein classes with higher number o f sequences (compared to the data 

set filtered at a sequence similarity threshold o f 40%) while still not falling into bias due to 

the presence o f highly identical sequence. Comparison o f these two approaches showed that 

on average 83 additional instances were misclassified using the TMFUN version trained at 

a sequence similarity threshold o f 90%. This difference is not considered important taking 

into account that the data set filtered at a sequence similarity threshold o f 90% contains 

2,807 more instances that the data set filtered at a sequence similarity threshold o f 40%.
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Seq sim filter <40% Seq sim filter <90%

Q nQ GC Q nQ GC Euclidean distance
Level la 6 9 .6 7 3 .9 0.61 85.4 85.2 0.82 19.4

Level lb 60.7 58.7 0.52 83.5 78.6 0.76 30.3

Level 2 58.8 48.8 0.46 82 74 0.72 34.3

Level 3 55.7 49.8 0.51 81.4 79.3 0.81 39.1
Table 8.59. Comparison o f  the predictive accuracy o f  TMFUN using different thresholds o f  sequence 
similarity. The colum ns coloured in orange correspond to the ten fold cross-validation o f  TM FUN based 
sequence similarity threshold o f  40%. The colum ns coloured in blue correspond to the ten fold cross- 
validation o f  TMFUN based sequence similarity threshold o f  90%. In order to compare the predictive 
accuracy between both versions o f  TMFUN at a particular level, the Euclidean distance was calculated using 
the overall accuracy score (Q), the normalized accuracy score (nQ) and the generalized correlation (GC).

70

60

50

40

30

20

3515 20

Num ber of predicted classes

25 30

Figure 8.10. Comparison o f  the predictive accuracy o f  TMFUN using different thresholds o f  sequence 
similarity. The graph show s the Euclidean distance between evaluation results obtained at different levels 
between TM FUN trained with a sequence similarity threshold o f  40% and 90%. Increasing values o f  
Euclidean distance shows the increase o f  the predictive power o f  the TMFUN version trained at a sequence 
similarity threshold o f  90% with respect to that found for the TMFUN version trained at a sequence similarity 
threshold o f  40%.
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Although the TMFUN version trained at a filtered sequence similarity threshold of 

40% has proven that signatures derived from the predicted topology o f membrane proteins 

can be associated with specific molecular functions o f membrane proteins, the obtained 

results showed that in order to provide a tool for the automated prediction o f membrane 

proteins, the TMFUN version trained at a sequence similarity threshold o f 90% might be 

more appropriate. However, the TMFUN version trained at a sequence similarity threshold 

of 40% might still be useful to predict the function o f orphan proteins despite the fact that 

less highly informative predictions might be obtained.

An alternative option would involve the development o f a hypothetical TMFUN 

version trained using sequence similarity thresholds that range between 40%-90% in order 

to incorporate the advantages o f the approaches trained at a sequence similarity threshold of 

40% and 90%. However, to our understanding this would not show any additional 

improvement for various reasons: i) it will not prove the method as well as if a sequence 

similarity threshold o f 40% was applied and ii) it might constrain protein classes with 

marked sequence similarity so that the obtained classifier does not maximize its prediction.

8.4 Conclusions

Experimental approaches to annotate genes can not cope with the rate at which new 

genomes are being sequenced. Alternatively, different computational methods are being 

developed to predict the function o f these genes, thus facilitating experimental validation. 

However, the majority o f these computational methods have been designed for the 

functional prediction o f soluble protein. Furthermore, many o f the few specific 

computational approaches to predict particular functional classes specifically found in the 

membrane have not been appropriately evaluated. The developed approach is probably the 

first rigorous data mining method applied for the functional prediction o f polytopic 

membrane proteins. The data set was filtered at sequence similarity thresholds o f 40% and 

90% and the negative control sets used during the data mining process corresponded to 

other polytopic membrane proteins. The underlying principle for the feature extraction 

method is that signatures derived from the predicted topology of membrane proteins can be
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associated with specific molecular functions o f membrane proteins. Obtained results with 

the data set filtered at a sequence similarity threshold o f 40% proved this principle. Thus, 

reflecting the importance o f this region to assigning the molecular function o f a-helical 

membrane proteins and proving wrong the assumption o f transmembrane regions being 

mainly restricted to structural and conformational roles (with few exceptions). 

Classification analysis using the data set trained at a sequence similarity threshold o f 90% 

showed sensitivity values o f 70%-93% for predicting the different functional classes 

considered. More flexible data sets that still avoid pairs o f highly identical proteins might 

be more appropriate as larger sets permit more informative predictions and protein families 

with marked sequence similarity are not constrained by severe sequence similarity 

thresholds. This approach showed an MCC value o f 0.81 at the most informative level. To 

our knowledge, TMFUN is the most thorough single computational approach for prediction 

o f the molecular function o f polytopic membrane proteins developed to date, and should 

serve as a good baseline method for future computational developments.
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C H A PT E R  9 

Discussion

9.1 The genome explosion and the functional gap in the 
membrane proteome

In recent years, we have found that the gap between the number o f genes yet to be 

characterized and those genes already characterized is constantly increasing. The reason for 

this situation is simply that experimentally based methods cannot yet cope with the rate at 

which different genomes are being sequenced. This functional gap is even more severe in 

the membrane proteome, although different analyses have shown that: i) membrane 

proteins are extremely abundant (Arkin et al., 1997, Wallin and von Heijne, 1998), ii) many 

crucial cellular and physiological processes involve membrane proteins and iii) membrane 

proteins are o f great pharmacological importance (Wu and Yates, 2003). Such a 

challenging situation has been reached mainly due to the problems involved when 

extracting the protein from its lipidic environment. An alternative approach is to 

computationally analyze uncharacterized genes in order to predict structural and functional 

properties. Such predictions should eventually be tested in the laboratory in order to 

ultimately characterize unknown genes. Diverse computational methods have been 

implemented to characterize newly sequenced genomes: from gene and splice variant 

predictions to structural and functional prediction (including subcellular location, molecular 

function, post-translational modifications and protein-protein interactions). Due to the vast 

quantity o f available sequential and structural information concerning soluble proteins, 

computational methods tend to be biased towards the characterization o f soluble proteins. 

Therefore, the rate at which the functional gap observed in the membrane proteome 

increases is not being reduced as quickly. Although the computational methods developed 

to characterize biological features o f soluble proteins (e.g. enzymes) could be applied to 

membrane proteins, it is necessary to specifically train such methods with membrane 

proteins. Membrane proteins are so structurally and functionally distinct from their soluble
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counterparts that they should be regarded as two separate proteins classes and should be 

independently analyzed.

Membrane proteins are by nature very different to globular membrane proteins. The 

lipidic environment where membrane proteins are embedded has imposed a compositional 

constraint upon the transmembrane regions o f the protein, such as the requirement for a 

high proportion o f hydrophobic residues. Following this principle, functional prediction 

methods based on features that can be extracted from sequence, such as the amino acid 

composition and different physicochemical properties, might reflect instead the differences 

between globular and membrane proteins. Sugiyama and colleagues (Sugiyama et al., 2003) 

stated that sequence similarity based methods are less accurate in predicting the molecular 

function of membrane proteins probably due to the hydrophobic nature o f the 

transmembrane regions. This compositional bias o f membrane proteins might 

disproportionately affect particular methods for predicting molecular function. While 

methods based on features extracted from sequence can be severely affected, pattern 

discovery methods can also be differentially affected depending on the location o f the 

functional domain. If  the functional domain is located in an extramembranous loop, it is 

likely that it resembles a homologue domain located in a globular protein. However, if the 

functional domain is located in a transmembrane region, it is likely that this domain has 

evolved in order to adapt itself to the new environment and to interact with the hydrophobic 

secondary structures o f  the protein.

9.2 Previous research that provided the premise for this work

Considering the current functional gap in the membrane proteome, the proposed 

research was drafted to provide the scientific community with novel methods for the 

characterization o f unknown membrane proteins. Membrane proteins can be broadly 

classified into two structural classes: a-helical membrane proteins and |3-barrel membrane 

proteins. Functionally, a-helical membrane proteins are more diverse than p-barrel 

membrane proteins. The latter structural class has mainly been found to be involved in 

transport processes o f  substances through the membrane. On the other hand, a-helical
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membrane proteins perform a wide range o f molecular activities such as enzymatic activity, 

photosensitivity, transport o f ions and molecules through the membrane, signal 

transduction, protein networking, receptors and cell adhesion.

Previous research that considered interhelical associations o f crystallized membrane 

proteins using TMDistance (Togawa, PhD Thesis, 2006), showed that functional clusters of 

a-helical membrane proteins contained specific patterns o f inter-helical associations located 

at a similar depth (Lasso, Honours Thesis, 2001). This was unsurprising as binding and 

active sites located in the membrane must involve residues from different helices that are 

located at a similar depth in the membrane. However, two interesting aspects were 

extracted from these results. The first aspect was the substantial potential (though not 

exploited before by computational biologists) o f the amino acid depth value. The second 

aspect was the important role o f the transmembrane region in shaping the molecular 

function o f polytopic a-helical membrane proteins. Following these emerging observations, 

an ambitious idea was proposed: the ability to infer two dimensional features solely based 

on the amino acid sequence and to qualify the role of the transmembrane region in 

determining molecular function. This task would clearly involve extensive structural 

prediction and computationally expensive algorithms if  soluble proteins were to be 

considered. However, the spatial constraints imposed in the transmembrane region of 

membrane proteins can be used to infer two-dimensional properties by looking at pairs of 

residues located at a similar depth. Current topology prediction methods have an accuracy 

of 70-80% in correctly predicting the topology o f a-helical membrane proteins. Although 

current topology models can still be improved, there is no reason why these models should 

not be used in the interim to extract and exploit the information already contained. 

Therefore, as more accurate topological models are being developed, the computational 

infrastructure for feature extraction will have already been developed.
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9.3 Exploring the membrane proteome space, going up and down 
transmembrane regions of a-helical membrane proteins

The different computational approaches described in this thesis are combined into a 

single research project (figure 9.1), the aim o f  which is to provide computational tools to 

characterize unknown a-helical membrane proteins and investigate the role played by the 

transmembrane regions in determining molecular function. This thesis can be reduced to 

the same basic protocol that is followed by any data mining method where the steps to 

follow are: 1. Data set assembly (PROCLASS), 2. Feature extraction

(TM LOOP+TM DEPTH) and 3. Classification (TMLOCATE & TMFUN).

Sw iss-Prot

Proclass

Pattern
discoveiy

Manually curated  training s e ts

TM LO O P

Id e n tif ic a tio n  o f
Refined topological m odels

S tru c tu ra l p re d ic tio n  
F u n c tio n a l p re d ic tio n  
D e te c tio n  o f d is tan tly  

re la te d  d o m a in s  
R e fin e m e n t o f cu rre n t  

to p o lo g ic a l m o d e ls

TM DEPTH

Extracted fea tu res

fu n c t io n a lly  
im p o rta n t re s id u e s

S u b c e llu la r  lo catio n  
p re d ic tio n
E v o lu tio n a ry  re la tio n s h ip s  

b e tw e e n  o rg a n e lle s

F u n c tio n a l p re d ic tio n
|<40% & <90%)

Figure 9.1. Summary o f  the research carried out. Red rhombus correspond to novel computational tools developed  
in this study, the blue rhombus corresponds to a computational method, not developed by our group, but used in 
this research. Statements highlighted in blue correspond to the different functional properties detected or predicted 
by the different approaches. As this figure illustrates, all implemented methods are interrelated.
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9.3.1 Data set assembly

The first obstacle to overcome was the data set assembly from the Swiss-Prot 

database (Bairoch and Apweiler, 1998, Boeckmann et ah, 2003). This is probably one of 

the most tedious tasks, and yet crucial. In order to assemble large data sets incorporating 

thousands o f proteins, manual assembly is an unthinkable approach. This is not just because 

it is too time consuming but also because it is error prone. Up until now, the only 

alternative was to use automatic methods to assemble large data sets based on the 

functional annotation contained in the Swiss-Prot database. Automatic methods are, 

however, also error prone and would require an expert to manually analyze each cluster and 

re-classify proteins that have been erroneously clustered. In between these two extremes', an 

intermediate approach might be desirable. This approach should facilitate the manual 

assembly o f data sets by means o f a computational method that reduces the number of 

different data points (proteins) down to manually manageable numbers. The principle 

underlying this idea is straightforward: functional classes can be defined with a unique set 

o f terms, which include ligand binding and molecular activity, therefore all proteins 

containing this unique set of terms should automatically cluster together (and still be certain 

that the clustered proteins have the same molecular function). For instance, in order to 

retrieve sodium channels and glucose transporters the words to be used should be: 

“sodium”, “channel”, “transport”, “glucose” and “transporter” . If  the functional annotation 

space o f each protein is then converted into a binary vector composed o f five attributes 

(each binary attribute corresponds to a particular functional term, where “ 1” indicates that 

the corresponding term is present and “0 ” indicates that it is not) it is possible to cluster all 

proteins contained in the Swiss-Prot data base that share identical binary sequence (exact 

pattern matching). The cluster defined by the terms “sodium” and “channel” or “sodium”, 

“channel” and “transport” will contain all sodium channels. However, they will also contain 

other channels such as the sodium / proton antiporter or the chloride / sodium co-transporter 

because the “proton” and the “chloride” terms were not specified before clustering. Glucose 

transporters would be clustered in a similar fashion whereas the clusters defined by the 

terms “glucose”, “sodium” and “transport” or “transporter” will probably only contain 

sodium dependent glucose transporters. If  non-sodium channels are required, these proteins
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will be grouped together in the cluster defined solely by the “channel” term. Therefore, the 

method has reduced all non-sodium channels into a single cluster. As this example showed, 

the key to successfully applying this method to the functional classification o f large data 

sets is to select the appropriate functional terms. PROCLASS was implemented based on 

the principle described above. In order to ensure that the appropriate terms have been 

selected prior to clustering the Swiss-Prot database, a training stage was required, where the 

interaction between PROCLASS and the user leads to the selection o f the appropriate terms 

and descriptions o f synonyms and equivalent terms (e.g. Na+ and sodium; Proton and 

Proton-associated). Evaluation o f PROCLASS showed that 98% o f the clusters only 

contained proteins belonging to the same functional class. Therefore, the protein space 

containing thousands o f proteins has been reduced to hundreds o f clusters. Manual 

evaluation o f these clusters should be applied then to merge those clusters corresponding to 

the same molecular function but different functional annotation space. PROCLASS was 

applied to develop two different data sets. The first data set was based on the different 

subcellular location o f polytopic membrane proteins and the second data set was based on 

the different functions carried out by polytopic membrane proteins. Exploration o f the 

obtained clusters showed that specific annotations contained in the Swiss-Prot database 

needed further refinement (e.g. plasma membrane proteins). To our knowledge, this is the 

first attempt to classify all functions carried out in the membrane. Furthermore, the 

different functions carried out in the membrane and contained in the Swiss-Prot database 

have also been quantified. According to the information contained in the Swiss-Prot 

database, the enzyme class is the most common functional class found in the membrane 

(43%), followed by G protein-coupled receptors (20%), molecular transporters (15%), and 

ion channels (14%). Subsequently, functional subclasses have also being quantified 

showing interesting results. Lyases (EC4) and ligases (EC6 ) only accounted for 2% of all 

membrane proteins with enzymatic activity whereas no isomerases with two or more 

transmembrane proteins were observed. Sugar transporters were the most common type of 

molecular transporter (20%), cation channels were found to make up to 69% o f all ion 

channels found in the protein database and the class A o f GPCR was found account for 

84% of all GPCR. While these results might be used to infer the importance of particular 

functional classes, these results should not be used to quantify the importance o f the
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considered functional classes. Analysis with PROCLASS has not been designed to 

distinguish between subunits, therefore functional groups in the membrane might be 

overrepresented when a significant number o f proteins contained in the cluster are subunits 

o f protein complexes. The Swiss-Prot database might over-represent functional classes 

where a high percentage o f the corresponding protein members do share a marked sequence 

homology or a signature that make them recognizable and easier to be experimentally 

tested. Likewise, the Swiss-Prot database might well be biased towards those proteins and 

organisms o f higher research interest (either academic or industrial), although this influence 

should be mollified in future by the addition o f whole genomes. Additionally, trying to 

generalize the quantification o f the functions carried out in the membrane is not realistic. 

The reason for this is that particular functional classes might play essential roles in 

particular species whereas in other species the role o f such functional classes might not be 

that important. However, the quantification carried out is still valuable to identify those 

functional classes that might be under-represented in the database and analyze the current 

distribution o f functional classes contained in the Swiss-Prot database.

PROCLASS is the outcome o f a simple and original idea and it has proven to be a 

very useful tool for the manual curation of large sets o f proteins. Future data mining 

approaches should definitely consider the use o f this tool while assembling their datasets.

9.3.2 Feature extraction

9.3.2.1 Prediction of membrane dipping loops and refinement of current 
topological models

The next step towards functional prediction o f polytopic membrane proteins was the 

feature extraction process. The feature extraction method applied combines sequence and 

topological models (C hapter 6 ). However, one o f the major shortcomings o f current 

topology prediction methods is the inability to predict membrane dipping loops, also known 

as re-entrant loops. These structural domains have been shown to play essential functional
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roles as selectivity filters and molecular gates. However, due to their residue composition, 

which differs from that o f membrane spanning regions, current topology prediction 

algorithms often fail to correctly predict these structural domains. It was believed that in 

order to extract features that could accurately represent the combination o f sequence and 

topology, membrane dipping loops needed to be included and accounted for in such 

topological models. Therefore, the next obstacle to overcome was to develop a 

computational tool to predict membrane dipping loops.

The approach was based on the detection o f conserved patterns pertaining to the 

membrane dipping loop in protein families where at least one protein has been crystallized 

and found to contain a membrane dipping loop (Chapter 4). The main advantage o f using a 

pattern discovery approach is that the information contained in such patterns can be used to 

identify functionally important residues. Accordingly, the discovered patterns contained 

some residues that were already identified by experiment as functionally important 

residues, thus validating the approach. However, additional patterns and residues were 

identified that have not yet been identified by other methods. Interestingly, different 

patterns were found in different types o f membrane dipping loops (even if they shared a 

similar arrangement of secondary structures). This observation suggests that the discovered 

patterns contain residues placed specifically for the purpose o f functional mechanisms 

rather than folding mechanisms. Therefore, this information can not only be used to imply a 

particular fold (as these patterns are only found in particular membrane dipping loop 

structures) but also to infer functional similarities (e.g. selectivity filters o f channels).

Based on these promising results, a computational tool, named TMLOOP (Chapter 5) was 

implemented. The discovered patterns were used as weighted predictive rules to be 

matched against queried sequences. Rather than using the pattern with the highest support, 

a set o f partially overlapping patterns with support > 70% was considered in order to detect 

distantly related membrane dipping loops. During evolution, the constraints imposed by the 

outside world have been reflected in changes at the molecular level to ensure the 

adaptability o f an organism to a changing environment. Evolution o f membrane dipping 

loops might reflect evolutionary pressures for changes in the gating process o f a membrane 

protein, the re-adjustment o f specificity for the corresponding ligand according to new
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needs o f the cell, or even binding o f a different ligand in a similar fashion. All these 

pressures are ultimately translated into small variations o f the residues associated with these 

motifs and rearrangements with the interacting helices. Divergent evolution would generate 

two membrane dipping loops from a common ancestral structural motif with small 

variations in sequence that allow the binding o f the same ligand with different specificity or 

binding different ligands in a similar fashion. On the other hand, phylogenetically unrelated 

proteins might generate a similar three-dimensional membrane dipping loop to bind the 

same or a similar ligand, which would involve two different membrane dipping loops 

containing a similar (but not identical) selective filter or binding site. Evaluation o f the 

approach showed that the consensus motif method maximized the prediction o f these 

particular domains. The predictive tool was applied to the entire membrane proteome 

contained in the Swiss-Prot database and potential membrane dipping loops not yet 

discovered by experimental methods were discovered. TMLOOP writer (C hapter 5) was 

implemented to include the predicted membrane dipping loops considered as true positives 

in the transmembrane statement o f the corresponding Swiss-Prot files. Therefore, current 

topology models o f proteins predicted to have membrane dipping loops were refined.

A month before our TMLOOP paper was published (Lasso et al., 2006), Viklund 

and colleagues published similar work (Viklund et al., 2006). The authors analyzed a set o f 

79 chains obtained from the Protein Data Bank (Berman et al., 2000) and identified 36 

membrane dipping loops. As with our approach, detected membrane dipping loops were 

structurally classified into three different categories: helix-coil-helix m otif (corresponding 

to the helix-in-tum-helix-out domain), helix-coil or coil-helix m otif (corresponding to 

helix-in-tum-loop-out and loop-in-tum-helix-out) and the irregular secondary structure 

motif. The last structural class differs from our classification scheme. The reason for this is 

that we believe these domains might well be artefacts caused by crystallization conditions 

or actual true positives whose secondary structures have been disrupted by crystallization 

conditions. The authors performed a Principal Component Analysis (PCA) to discriminate 

between the different structural regions contained in polytopic membrane proteins, namely 

the transmembrane region, membrane dipping loops, water-interface regions and 

extramembranous loops. The PCA was based on the amino acid composition o f these
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regions. The obtained results showed that it was possible to completely describe the 

differences between these four regions based on the hydrophobicity, small residue content 

and polar-aromatic residue content (Tyr and Trp). Comparison o f these results with the 

results obtained from TMLOOP revealed an interesting fact: whereas different structural 

classes o f membrane dipping loops do not contain a common pattern, it seems that they 

have similar overall amino acid composition (the high proportion o f small residues, 

specially Gly and Ala, seem to be a specific property o f membrane dipping loops). 

Furthermore, the authors also implemented a predictive tool based on a Hidden Markov 

Model (HMM). Evaluation o f TOP-MOD showed a sensitivity o f 47%-69% and a 

specificity o f 72%. On the other hand, TMLOOP was found to accurately predict 

membrane dipping loops with a sensitivity o f 92% and a specificity o f 100%. Although 

TMLOOP provided a better prediction, it is important to remark that TOP-MOD was 

trained with only 36 sequences whereas the pattern discovery approach prior to TMLOOP 

used 580 partial sequences (corresponding to membrane dipping loops). TOP-MOD was 

applied to predict membrane dipping loops in E. coli, S. cerevisiae and H. sapiens. 

Interestingly, the obtained results showed that at least 10% of the polytopic membrane 

proteins contain membrane dipping loops. These results are clearly very different to the 

results obtained by TMLOOP, where only 2.1% o f the polytopic membrane proteins 

contained in the Swiss-Prot database have membrane dipping loops. There are different 

possible reasons for this discrepancy. The first possibility is based upon the differential 

protein content in the Swiss-Prot database and in individual genomes. Particular protein 

families without membrane dipping loops might be over-represented in the Swiss-Prot 

database, which underestimates the actual proportion o f membrane dipping loops. Another 

possible explanation could be that the HMM-based predictor has actually found a common 

structural feature among different membrane dipping loops, whereas TMLOOP has been 

focussed more on the functional aspects rather than on the structural aspects. Another 

possibility is that TOP-MOD overestimates the presence o f membrane dipping loops.

An interesting statement made by Viklund and colleagues was that the occurrence 

o f membrane dipping loops increases linearly with the number o f transmembrane regions, 

though this relationship may not be so clear cut. Due to the apparent physicochemical
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properties o f these domains, membrane dipping loops need to interact with neighbouring 

transmembrane helices in order to minimize the energy penalty imposed when locating 

polar and charged residues in the membrane. This might indicate that there could be a 

minimum number o f transmembrane regions required to stabilize such domain. Once that 

minimum requirement has been achieved, the number o f transmembrane regions should not 

be used to imply a higher number o f membrane dipping loops contained in the structure. 

Considering the identified crystallized protein complexes containing membrane dipping 

loops and the annotated transmembrane regions contained in the PDB_TM database 

(Tusnady et al., 2004), it was found that the potassium channel complex has six TMs and 

four membrane dipping loops, the aquaporin structure has six TMs and two membrane 

dipping loops, the vitamin B12 complex has 20 TMs and two membrane dipping loops, the 

C1C chloride channel complex has 20 TMs and eight membrane dipping loops, the 

photosystem I complex is composed of 30 TMs and one membrane dipping loop and the 

glutamate transporter homologue has 24 TMs and six membrane dipping loops. 

Considering this data, the relationship described by Viklund and colleagues does not seem 

to fit the real situation. Interestingly, the minimum number o f transmembrane regions for a 

protein complex containing at least one membrane dipping loop was found to be six. These 

results seem to be more in accordance with the idea o f a requirement for a minimum 

requirement o f number o f transmembrane regions in order to accommodate any number of 

membrane dipping loops.

9.3.2.2 Feature extraction by combining sequence and topology

As described earlier, using a combination o f sequence and topology has the 

objective o f being able to associate an approximate depth value for each residue located in 

the membrane. Subsequently, each possible pair o f residues (210 combinations considering 

the 2 0  common amino acids) located at a similar depth in the membrane is quantified and 

stored in a matrix. These matrices are then normalized in order to combine matrices 

corresponding to proteins belonging to the same cluster (identifying common patterns of 

inter-helical associations) and to compare matrices corresponding to proteins belonging to 

different clusters (identifying specific patterns o f inter-helical associations). Additionally, 

some extra features were computed: i) the percentage o f participation within the normalized
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matrix was obtained for each residue and ii) the normalized associations were clustered 

according to the physicochemical properties o f the 2 0  residues listed (non-polar, polar and 

charged). By combining sequence and topology, each protein is converted then into a 

protein vector containing 236 attributes, which correspond to two dimensional features.

TMDEPTH (Chapter 6) is not computationally expensive. The algorithm can 

process large sets, including hundreds o f proteins, within a few minutes. The only 

limitation o f the developed feature extraction method is its direct dependency upon 

topological models. Considering the implementation o f the algorithm, incorrect predictions 

or over-predictions o f a single transmembrane region can completely change the computed 

protein vector. Although the topological models used have been refined by the inclusion of 

membrane dipping loops, further improvement is needed in order predict the topology of 

polytopic membrane proteins, towards an accuracy > 90%.

9.3.3 Classification

To some extent, functional prediction o f membrane proteins was an integral part of 

the characterization o f membrane dipping loops, as the predictions included reference to 

ligand specificity. The discovered patterns can be used to identify functionally important 

residues, where predicted membrane dipping loops are directly related to the ligand-related 

function o f the protein. Therefore, TMLOOP can not only predict structural domains but 

also infer functional similarities. Different features can be predicted to functionally 

characterize an unknown gene. The most predominant feature is the prediction o f its 

molecular function. However, other functional properties can be predicted such as the 

subcellular location, post-translational modifications and protein-protein interactions. In the 

developed research, the extracted features obtained from TMDEPTH were mined for the 

purpose o f the elucidation o f subcellular location and molecular function.
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9.3.3.1 TMLOCATE

Different data mining techniques, such as Bayesian methods and support vector 

machines, were combined into a multilayer predictive algorithm. The final architecture of 

TMLOCATE (Chapter 7) showed that by mimicking the cellular sorting process the 

predictive accuracy o f the method was maximized. These results were in accordance with 

previously reported algorithms based on data sets of soluble proteins (Nair and Rost, 2005). 

Rather than just focussing on the positive results o f the method, our attention was also 

focussed on the incorrect predictions performed by TMLOCATE. Evolutionary 

relationships between the different organelles were then detectable. All organelles involved 

within the secretory pathway appear to be evolutionarily related. Additionally, the nuclear 

membrane proteins tended to be predicted as part o f the secretory pathway and more 

specifically, as proteins belonging to the endoplasmic reticulum. These results were in 

accordance with the arrangement o f organelles within the cell as it is well known that the 

outer nuclear membrane is contiguous with the endoplasmic reticulum (Alberts et al., 

1994). Further sub-classification within the secretory class showed that some o f the trained 

classifiers following the one-against-all approach achieved significant values o f sensitivity 

and specificity. However, evaluation o f the overall architecture showed significant 

misclassifications between subcellular compartments involved in the secretory pathway. 

This might indicate that other features (e.g. length o f transmembrane regions or 

extramembraneous features) not considered here, might be cooperatively involved in 

protein sorting within the secretory pathway. These results also showed an evolutionary 

relationship between the peroxisome and mitochondrion, and such a relationship is also in 

agreement with that published by Gabaldon and colleagues (Gabaldon et al., 2006). The 

method showed a normalized accuracy o f 75% in discriminating between proteins 

belonging to the chloroplast, mitochondria, plasma membrane and secretory organelles, 

thus reflecting the importance o f the transmembrane region in assigning the organellar 

location o f polytopic membrane proteins. This is the first rigorous attempt to specifically 

predict the subcellular location o f polytopic membrane proteins. Previous work carried out 

by Chou and colleagues (Chou and Elrod, 1999) was based on a training set where plasma 

membrane proteins accounted for 80% o f the proteins. Furthermore, no sequence similarity 

filter was applied in order to remove highly identical proteins. Therefore, the two
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approaches can not be compared, as the work carried out by Chou and colleagues is likely 

to be biased towards the prediction o f plasma membrane proteins whereas our approach 

represents a more balanced method.

It is believed that proteins localize to their appropriate organelle using a variety of 

mechanisms and this is probably the reason why methods based solely on sorting signals or 

amino acid compositions seem to have reached a plateau in their prediction accuracy. 

Further improvement o f this method should consider other features located outside the 

membrane (e.g N-terminus, C-terminus, extramembranous loops and signal peptides) that 

can be used to guide cellular sorting.

These results have shown that signatures derived from the predicted topology of 

membrane proteins can be associated with specific subcellular locations o f membrane 

proteins. However, it is not clear whether such patterns correspond to retention or targeting 

signals. Trafficking o f proteins to a particular organelle most likely involves a combination 

o f targeting and retention processes in order to appropriately direct and stabilize the given 

protein. Targeting signals often imply a protein carrier and/or a receptor belonging to the 

corresponding organelle that recognizes such a signal. Extensive work has been carried out 

to detect targeting signals in amino acid sequences (Bannai et al., 2002, Bickmore and 

Sutherland, 2002, Boden and Hawkins, 2005, Claros and Vincens, 1996, Cokol et al., 2000, 

Emanuelsson et al., 2000, Emanuelsson et al., 1999, Fujiwara et al., 1997, Hawkins and 

Boden, 2006, Nair et al., 2003, Petsalaki et al., 2006). Previous work has also shown that 

residues located in particular transmembrane regions are important targeting signals for 

particular organelles (Biermanns et al., 2003, Honsho et al., 2002, Jones et al., 2004). Such 

targeting signals are not just composed o f transmembrane regions but also portions of the 

extramembraneous domain. If such signals are to be recognized by other proteins (e.g. 

carriers and receptors), it is essential that these signals are accessible. Therefore, placing 

targeting signals in transmembrane regions might pose a difficulty with respect to 

recognition by proteins carriers and receptors. On the other hand, it is more likely that these 

signatures contained in the transmembrane domain are involved in the retention processes 

rather than targeting. Previous work has concluded that the transmembrane regions of
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particular membrane proteins are essential retention domains (Aoki et al., 1992, Cocquerel 

et al., 1999, Colley, 1997, Hobman et al., 1997, Hobman et al., 1995, Ma et al., 2004, Op 

De Beeck et al., 2004). Retention signals located in the transmembrane domain o f polytopic 

membrane proteins might be explained by the particular lipid composition o f lipid bilayers 

belonging to specific organelles. These compositional differences between organelle 

membranes might result in different physicochemical properties between these membranes. 

Particular membrane proteins being transported through the secretory pathway might 

therefore be retained in specific organelles where the physicochemical properties o f the 

given membrane trigger conformational changes in the transmembrane domain. These 

conformational changes might involve positional rearrangement o f transmembrane regions 

and new interhelical interactions, which ultimately minimise the potential energy o f the 

molecule. This theory is supported by several experimental analyses that showed that the 

presence o f hydrophilic residues in the middle o f transmembrane regions might be 

important for ER retention (Bonifacino et al., 1991, Cocquerel et al., 2000, Letoumeur and 

Cosson, 1998, Yang et al., 1997). Furthermore, the length o f the transmembrane regions 

has also been pinpointed as a form o f retention signal. The plasma membrane has a higher 

content o f cholesterol than the membrane found in the Golgi apparatus and consequently 

the plasma membrane is thicker than the membrane of the Golgi apparatus. Therefore, 

membrane proteins with longer transmembrane regions would not be retained in the Golgi 

apparatus whereas membrane proteins with shorter helices would be retained, as the protein 

would have reached its minimum potential energy (Munro, 1995). A similar retention 

property has been found in the ER (Pedrazzini et al., 1996, Yang et al., 1997, Szczesna- 

Skorupa and Kemper, 2000).

According to this theory, the majority o f the transmembrane residues would then 

probably play important roles for the stabilization of a given membrane protein within a 

particular lipid bilayer in order to minimize the molecular potential energy.
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9.3.3.2 TMFUN

As with prediction o f subcellular location, different data mining techniques were 

combined into a computational tool to predict the molecular function o f polytopic 

membrane proteins. Unlike the data set for subcellular location, the data set assembled 

using PROCLASS was large enough to apply more stringent filters at the sequence level. 

Therefore, two versions were implemented, a version trained under low sequence similarity 

(<40%) and a different version using a filtered set where highly identical proteins were 

removed (>90%). At the sequence similarity threshold of 40%, TMFUN predicted 

enzymes, GPCRs, and transporters with a sensitivity o f 64.1%, 87.5% and 71.4% 

respectively. At the most informative sub-level, TMFUN predicted 70% of the olfactory 

GPCRs under low sequence similarity. Further analysis showed that proteins belonging to 

different functional classes but with aspects o f similar function carried out in the membrane 

domain itself might be misclassified. These results were not unexpected as the feature 

extraction method uses only information contained in the transmembrane regions. 

Therefore, the extracted features might well explain the local functions carried out in the 

membrane rather than the overall function o f the protein. At the 90% sequence similarity 

threshold, TMFUN achieved higher predictive accuracies. Enzymes, GPCRs, ion channels 

and molecular transporters were predicted with a sensitivity of 87.8%, 92.8%, 58.3% and 

75.6% respectively. At the most informative level the different subclasses o f class A 

GPCRs were predicted at sensitivity values o f 84.5%-92.9%. Although the reported 

accuracies improved significantly, further analysis also showed that proteins belonging to 

different functional classes but with a similar function carried out in the membrane were 

again misclassified.

The results obtained using a sequence similarity threshold o f 90% are quite 

promising. In the short term future, further sub-classification should be carried out in order 

to obtain more informative predictions. However, the aim proposed at the outset was fully 

achieved as a computational tool for the prediction o f molecular function based solely on 

the information contained in the transmembrane region was successfully implemented. 

Although the transmembrane region might have been previously underestimated in terms of
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its relevance to molecular function (with the exception, of course o f transport proteins and 

ion channels), the observed results clearly reflect a direct association between the spatial 

arrangement o f residues in the transmembrane regions and the capacity for polytopic 

membrane proteins to carry out their functions, and therefore the importance o f the 

transmembrane region itself for modulating molecular function that may be primarily 

associated with extramembranous regions o f the protein, such as ligand binding or 

signalling.

Comparison o f these two versions might indicate that misclassifications reported 

under low sequence similarity have been overshadowed by a larger fraction o f correct 

predictions probably corresponding to subsets o f proteins sharing a significant sequence 

similarity. Therefore, the overall accuracy of the method increases as sequences showing a 

more significant sequence similarity are included in the set. However, more flexible data 

sets that still avoid pairs o f highly identical proteins might be more appropriate as larger 

sets permit more informative predictions, and protein families with marked sequence 

similarity are not constrained by stringent sequence similarity thresholds. Following this 

idea, the TMFUN version trained at a sequence similarity threshold o f 40% has proven that 

signatures derived from the predicted topology o f membrane proteins can be associated 

with specific molecular functions o f membrane proteins. However, in order to obtain a 

more informative prediction and improve the prediction of those protein families showing a 

marked sequence similarity, the TMFUN version trained at a 90% sequence similarity 

might be preferred for most functional annotation purposes.

Comparison o f this method to those aiming to predict different subclasses o f G- 

protein coupled receptors showed that our approach was more thorough than previous 

studies (Guo et al., 2005, Karchin et al., 2002, Inoue et al., 2004, Bhasin and Raghava, 

2004, Bhasin and Raghava, 2005). To begin with, all the proteins contained in our data set 

were polytopic membrane proteins. If soluble proteins were to have been used as the 

negative training class, the classifier would discriminate proteins based on the broad 

structural characteristics (membrane protein or soluble protein) rather than on functional 

characteristics. The reason for this is that the transmembrane region signal is stronger than
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the functional signal when soluble and membrane proteins are to be contrasted (as the 

number o f residues involved in transmembrane regions can make up a high proportion of 

the protein compared to the number o f residues directly involved in specific protein 

function), so like must be compared with like. Additionally, our approach applied filtering 

at the sequence level in order to remove highly identical sequences that would have biased 

the classifier. The GPCRpred software (Bhasin and Raghava, 2004) is perhaps the most 

similar approach to TMFUN. This program was implemented based on different support 

vector machines where the extracted features corresponded to the dipeptide composition of 

the polypeptide sequences (sequence similarity threshold = 90%). The program achieved 

99.5% accuracy for predicting GPCR proteins (five fold cross-validation). However, the 

negative class o f the corresponding training set was found to under-represent polytopic 

membrane proteins. GPCRpred was also designed to sub-classify the predicted GPCRs into 

sub-classes at various levels showing accurate predictive scores (two fold cross-validation). 

Amine GPCRs, Peptide GPCRs, Rhodopsin GPCRs and Olfactory GPCRs were predicted 

with an accuracy o f 99.1%, 99.7%, 98.9% and 100% respectively. On the other hand, 

TMFUN (sequence similarity threshold = 90%) evaluation by ten fold cross-validation 

yielded a sensitivity o f 92.9%, 84.5%, 93% and 92.3% respectively. Both methods show 

significant predictive accuracy and GPCRpred showed higher predictive values for each 

GPCR sub-family. However, the performance o f TMFUN has been evaluated against sets 

of other polytopic membrane proteins, whereas GPCRpred used, as a non-GPCR class, a 

set o f proteins mostly corresponding to soluble proteins. Ultimately, reliable comparison of 

these methods can only be achieved when training is performed with the same data set.

Interestingly, these results raise a series o f questions related to the biological basis 

of the signatures found in the membrane. As explained above, these results reflect the 

importance o f the transmembrane domain for indicating the molecular function o f the 

membrane protein. Therefore, even for membrane proteins whose molecular function is 

believed to take part mostly outside the membrane, there must be some kind o f specific 

functional property contained in the transmembrane domain that is related (either directly 

or indirectly) to the general molecular function o f the protein. These functional properties 

might relate to a wide range o f features such as binding specificities for particular
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prosthetic groups found in the membrane or in the lipid-water interface, specific 

conformational changes triggered by a particular ligand or lipid compositional 

dependencies. Therefore, when no ligand binding sites are found to be associated with the 

transmembrane domain o f the membrane proteins, other functional features can still be 

found that might be responsible for those signatures o f pairs o f  residues located at a similar 

membrane depth. The G protein-coupled receptor superfamily is functional class that is 

particularly well predicted by the method. Following functional sub-classification, the 

approach was found to predict specific class A sub-families with a sensitivity o f 85%-93%. 

The functional classification schemes were obtained from the GPCRDB database (Horn et 

al., 1998), whose classification is based on different ligand specificities. Considering the 

high predictive accuracies in accordance with the classification scheme, it is feasible to 

conclude that the extracted signatures related directly to the ligand binding specificity. 

However, the ligand binding sites might involve extramembraneous regions exclusively, 

transmembrane regions exclusively, or both regions (Schwartz, 1994). For instance, the 

ligand binding site in amine GPCRs is composed by different transmembrane regions 

whereas the ligand binding site in peptide GPCR proteins is located outside the membrane. 

This suggests that the extracted signatures do not necessarily need to be directly associated 

with the location o f the primary molecular function of the protein. Activation o f the G 

protein on the inside o f the membrane must be achieved through different conformational 

changes depending on the location o f the ligand binding site. Furthermore, these different 

conformational changes might also be translated into different mechanisms o f activation of 

different G-proteins.

TMFUN is the most thorough computational approach for predicting the molecular 

function o f polytopic membrane proteins to date. The approach can be applied not only for 

the automatic characterization o f newly sequenced genomes but also for the functional 

characterization of orphan genes, thus helping to reduce the current functional gap in the 

membrane proteome.
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9.3.4 Complimentary predictions in the TM project

The different methods developed in this thesis have been implemented to predict 

different functional features (figure 9.1) o f polytopic membrane proteins. While TMLOOP 

accurately predicts a particular structural domain that is directly involved in the molecular 

function o f the protein, TMLOCATE predicts the subcellular location within eukaryotic 

cells and TMFUN predicts the molecular function o f membrane proteins. These different 

predictions can be combined in order to refine functional characterization by highlighting 

specific mechanisms o f action and functionally important residues, and give insights into 

possible interacting functional partners, pathways and ultimately physiological processes.

The prediction obtained from TMLOCATE can be used to refine that from TMFUN by 

excluding those functional classes that are known not to be present in the predicted 

organelle. By excluding these classes, the trained classifiers might yield higher predictive 

accuracies as the number o f possible classes to be considered decreases. Furthermore, the 

predicted membrane dipping loops can be mapped onto the sequence in order to 

characterize a structural domain, give insights about the mechanism o f action o f the protein 

and highlight functionally important residues. For example, a hypothetical unknown protein 

predicted by TMFUN as a molecular transporter might also be found to have a membrane 

dipping loop similar to that found in the sodium:dicarboxylate symporter family. The 

information obtained from TMLOOP can be used to preliminarily assume a gating 

mechanism similar to that found in the glutamate transporter homologue (Yemool et al., 

2004) and identify residues o f potential functional importance. Additionally, prediction of 

the subcellular location o f the protein might indirectly be used to identify potential 

interacting partners. Subsequently, further analysis of the predicted protein-protein 

interaction might be used to identify the pathway involved. Therefore, the three 

computational methods may be interrelated to characterize the membrane proteins o f newly 

sequenced genomes and thereby significantly reduce the functional gap in the membrane 

proteome.
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The aims and objectives proposed for this research have been fully achieved. The 

developed methods have for the first time categorically shown that the transmembrane 

regions o f polytopic membrane proteins hold essential information associated with a wide 

range o f functional properties such as filtering and gating processes, subcellular location 

and molecular function. Future publications derived from this thesis should mark the 

beginning o f a concerted effort in the computational biology field aimed at informed 

prediction o f membrane protein domain structure, function and organellar location that may 

serve as a genuine complement to the laboratory characterization of membrane proteins.

9.4 Future work

The work carried out has shown very promising results, however further 

improvements can be made in order to obtain more accurate predictors. TMLOOP has 

proven to be a highly accurate tool for the prediction o f membrane dipping loops. Although 

TMLOOP writer has been implemented in order to refine current topological models, an 

interesting option would be to encapsulate the TMLOOP loop algorithm within a reliable 

topology prediction method. Another interesting line o f research would be to apply a data 

mining technique that can be used to identify common features not yet found. HMM has 

proven to be a highly accurate method in identifying remote homologues and specific 

domains. Therefore, it could also be applied to the current set o f membrane dipping loops 

in order to compare different techniques and maximize the prediction o f membrane dipping 

loops.

Although TMLOOP has been implemented to analyze membrane proteins 

exclusively, it might also be interesting to explore the sequence space o f soluble proteins 

with this algorithm. Possible hits found in soluble proteins should then be located in 

individual structures and mapped on to the functional properties o f the given soluble 

protein. In theory, these motifs should not be found on the protein surface of soluble 

proteins unless they have evolved to adapt themselves to a different physicochemical 

environment. A similar approach would be based on the identification o f folds found in 

specific soluble proteins with similar functional properties to particular membrane dipping
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loops (e.g. potassium binding sites in soluble proteins and the potassium selectivity filter 

found in membrane proteins). Comparison o f  the corresponding sequences might then yield 

insights regarding the evolution o f the domain.

As explained earlier, both TMLOCATE and TMFUN could benefit from the 

incorporation o f pattern discovery and data mining techniques applied to the extra- 

membraneous regions o f membrane proteins. These extra-membraneous regions contain 

important signals to define and modulate the subcellular location and function o f membrane 

proteins. Therefore, the predictive accuracy o f both methods could be significantly 

increased by addition o f features extracted from these regions (i.e. the N-terminus and C- 

terminus along with extracellular and intracellular loops). Additionally, other features 

corresponding to the transmembrane regions might be explored, such as transmembrane 

region length, as previous experimental research has described the role of this parameter to 

promote retention along the cellular secretory pathway (Munro, 1995, Pedrazzini et al., 

1996, Szczesna-Skorupa and Kemper, 2000, Yang et al., 1997).

TMFUN should also be further extended to report more informative predictions. The 

developed method has not yet reached it maximum predictive power. Therefore, data 

mining methods should be applied in order to further sub-classify the current predictions 

achieved by TMFUN. Likewise, specific (outside) predictors could be implemented to sub- 

classify a particular protein type. While the other recruited computational methods could be 

used to imply the general features of an unknown membrane protein (e.g. protease), the 

developed method could then be used to refine those general predictions (e.g. a protease 

predictor to sub-classify the different types o f proteases). These predictors would benefit 

from the absence o f the accumulative error acquired in previous nodes o f the multilayer 

predictor. Therefore, it is likely to implement highly accurate “sub-predictors” that might 

be very useful in combination with other computational methods. And last but not least, 

further work is required to identify the biological relevance o f signatures o f pairs of 

residues located at a similar depth in the membrane. GPCR subfamilies such as the peptide 

GPCR sub-family (where the ligand binding site is located outside the membrane) might 

represent good target classes with which to start this analysis. It is said that good research
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raises more questions than it answers... hopefully, our research to date may be thought o f in 

this light.
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CHAPTER 10 

Conclusions

Despite the important roles o f membrane proteins in diverse cellular processes, a 

severe structural and functional gap has emerged in the membrane proteome. While 

experimental studies are hampered by the lipid composition o f the membrane, very little 

effort has been made to design computational tools to specifically characterize membrane 

proteins o f known sequence but unknown function. Therefore, the research undertaken has 

been orientated towards the development o f novel computational tools to characterize 

polytopic membrane proteins at the topological level, subcellular location level and 

molecular function level.

At the topological level, TMLOOP and TMLOOP writer were designed to predict 

membrane dipping loops (so called re-entrant loops) and refine existing topological models 

contained in the Swiss-Prot database, which often does not contain any information 

regarding these particular domains. A full characterization o f all membrane dipping loops 

known to date was achieved. Sequence patterns were found, with both high sensitivity and 

specificity (C hap ter 4). The corresponding literature highlighted some o f the residues 

contained in these patterns as essential for the function o f the protein, thus supporting the 

pattern discovery approach. Furthermore, a significant group o f potential functionally 

important residues and motifs, not previously characterized, were identified. Based on the 

discovered patterns, a predictive tool was implemented (C hap ter 5). This tool was 

designed to predict membrane dipping loops using a variation o f the single m otif approach, 

named the collective m otif approach, which was shown to be capable o f detecting distantly 

related membrane dipping loops. Evaluation o f TMLOOP by tenfold cross-validation 

showed impressive levels o f both sensitivity and specificity. TMLOOP was successfully 

applied to the Swiss-Prot database predicting 75 plausible membrane dipping loops not 

detected by other methods. The topological models o f all true positive hits were 

subsequently updated by including a description of the predicted membrane dipping loop
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(Chapter 5). The added description included the approximated boundaries o f the structural 

domain and the corresponding structural classification.

Subcellular location and molecular function prediction methods relied on the same 

feature extraction method, named TMDEPTH (Chapter 6). This novel feature extraction 

method exploits the physicochemical constraints imposed by the lipid bilayer to combine 

sequence and topology, thus computing two-dimensional features in an original fashion. 

TMDEPTH uses refined topological models and amino acid sequences to calculate pairs of 

residues located at a similar depth in the membrane, and stores such information in 

normalized matrices.

TMLOCATE (Chapter 7) was implemented to predict the subcellular location of 

polytopic membrane proteins by combining a variety of different data mining techniques. 

The obtained results clearly reflected the importance o f the transmembrane region in 

assigning the organellar location o f polytopic membrane proteins. Additionally, the 

evolutionary relationships between different organelles extracted from the results o f the 

evaluation were in accordance with the literature. The obtained results showed that 

signatures derived from the predicted topology o f membrane proteins can be associated 

with specific subcellular locations of membrane proteins. Such signatures might in fact 

correspond to retention signals rather than targeting signals due to the likely poor 

accessibility o f the signals contained in the membrane to be recognized by components of 

the targeting machinery (e.g. protein carriers).

Similar to the development o f TMLOCATE, TMFUN (Chapter 8) was 

implemented to predict the molecular function o f polytopic membrane proteins by 

combining a wide range o f different data mining techniques. The method was trained with 

an assembled data set filtered at two different sequence similarity thresholds: i) 40% and ii) 

90%. At the sequence similarity threshold o f 40%, the obtained results clearly reflect a 

direct association between the spatial arrangement o f residues in the transmembrane 

regions and the capacity for polytopic membrane proteins to carry out their functions, and 

therefore the importance of the transmembrane region itself for modulating molecular
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function that may be primarily associated with extramembranous regions o f the protein, 

such as ligand binding or signalling. However, at the sequence similarity threshold o f 90%, 

TMFUN was found to attain maximal predictive accuracy. More flexible data sets, such as 

this, that still avoid pairs o f highly identical proteins might be more appropriate as larger 

sets permit more informative predictions, and protein families with marked sequence 

similarity are not constrained by stringent sequence similarity thresholds. Interestingly, the 

obtained results showed that even for membrane proteins whose molecular function is 

believed to take part mostly outside the membrane, TMFUN still recognizes 

transmembrane signatures that can be used to obtain reliable functional predictions. 

Therefore, there must be a specific functional property contained in the transmembrane 

domain that is related (either directly or indirectly) to the general molecular function of the 

protein. These functional properties might relate to a wide range o f features such as binding 

specificities for particular prosthetic groups found in the membrane or in the lipid-water 

interface, specific conformational changes triggered by a particular ligand or lipid 

compositional dependencies.

The assembled data set used to train both TMLOCATE and TMFUN were manually 

curated and yet contained a few thousand proteins. An additional tool was implemented, 

named PROCLASS (C hapter 3), to facilitate the manual curation o f large sets o f proteins 

according to their subcellular location and molecular function. Evaluation o f this tool 

showed that if the appropriate terms are selected, the number o f data points to be manually 

curated is extensively reduced and yet the effectiveness o f this automated approach that 

allows user intervention is similar to manually clustering the original data set, but can be 

undertaken in a fraction o f the time. This simple and original tool has shown to be crucial 

for the manual curation o f the assembled data sets and should be considered for many 

future classification purposes.

The developed research has fully achieved the aims and objectives set up at the early 

stages o f  this research. The developed methods have for the first time categorically shown 

that the transmembrane regions o f polytopic membrane proteins hold essential information 

associated with a wide range o f functional properties such as filtering and gating processes,
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subcellular location and molecular function. TMLOOP has proven to be the best current 

predictor o f membrane dipping loops, and future developments involving its encapsulation 

within a reliable topology prediction method will surely improve the accuracy o f future 

topological models. TMLOCATE is, to our knowledge, the first in-silico method that is 

able to specifically predict the subcellular location polytopic membrane proteins. TMFUN 

has significantly enhanced the standard o f functional prediction o f polytopic membrane 

proteins, and provides a sound basis for future work, involving data mining o f the 

extramembranous domains and integration o f the developed tools, which will further 

enhance our progress towards substantially reducing the current functional gap in the 

membrane proteome.
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