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Summary

Mass spectrometry is a powerful analytical technique that possesses the capability of 
molecular characterisation of complex mixtures. The technique has been the method 
afforded in this study for the characterisation of such mixtures of industrial relevance.

The last decade has seen an important revival of one area in particular, time-of-flight 
mass spectrometry, which has had a significant impact on the field of mass 
spectrometry. This has been largely due to two recently developed ionisation 
methods, namely electrospray and matrix-assisted laser desorption ionisation.

These ionisation methods have led to the development of novel time-of-flight mass 
spectrometer designs by commercial manufacture’s, which take advantage of the 
theoretically unlimited mass range and the acquisition of a full mass spectrum every 
injection pulse of ions. Matrix-assisted laser desorption and electrospray ionisation 
have been interfaced to two novel time-of-flight mass analysers, the ‘Autospec’ oa- 
ToF, a hybrid sector orthogonal-acceleration time-of-flight instrument and the ‘LCT’, 
a liquid chromatograph time-of-flight instrument, manufactured by Micromass U.K., 
Ltd respectively. They have been successfully used to investigate and fully 
characterise complex systems of industrial significance.

The ‘Autospec’ oa-ToF was used for high-energy collision induced dissociation 
experiments. The high sensitivity of the time-of-flight analyser was very powerful in 
the detection of product ions produced from various synthetic polymer precursor ions. 
The detailed structural information produced will be shown to fully characterise the 
polystyrene samples studied.

An expanding area of mass spectrometry is electrospray ionisation used with 
orthogonal acceleration time-of-flight. The two methods when used in reflectron 
mode have significantly removed early limitations on resolution that time-of-flight 
mass analysers initially possessed. Sampling the electrosprayed ions orthogonally 
results in an increased duty cycle, which can be advantageous if fast chromatography 
is required. Evaluation of the LCT instrument, will be shown to provide mass 
resolution of the order of 5000 at full-width half maximum, mass accuracies of the 
order of 5ppm, full scan sensitivity equal to that of a quadrupole instrument in single 
ion monitoring mode and the detection of singly charged ions greater than m/z 10000.

The research unit at Swansea University allowed the opportunity to investigate ion 
structural problems on an instrument built in house of BEE geometry. The energy 
released upon metastable fragmentation, leading to the formation of C3H3+ ions 
formed in some simple organic molecules yield peak shapes of a composite nature. 
The selection of ions from the translational energy-release distribution produced, 
have been investigated by consecutive reactions and will be shown to fully 
characterise isomeric ion structures.



Dedication

For my grandfather and grandmother who died prior to and during my studies 
respectively. Their love, friendship, generosity and total support during my life 
could never have been repaid and will never be forgotten. Thanks for your 
guidance. Also to my best friends, my parents. Two unique individuals who 
deserve only the best things that life affords them.



Acknowledgements

I would initially like to thank EPSRC and ICI for funding this research. My sincere 
gratitude goes to Professor Dai Games for allowing me to do research at Swansea in a 
well renowned mass spectrometric laboratory.

I acknowledge the help received from members of the mass spec team at ICI Wilton 
(Middlesbrough), Mike, Mark, Richy and my directors of study Dr Tony Jackson and 
Professor Jim Scrivens. On a personal level, I wish to show my total appreciation to 
Professor Scrivens for helpful discussions and support during my research period.

Many thanks go to members of the MSRU team at Swansea. Brian and Des for their 
help when parts needed frequent replacement on the mass spec and to Chris, Matt and 
Dave for help with computing and ToF related queries.

My sincere appreciation goes to my supervisor Professor Gareth Brenton for his 
excellent tuition and total support, not just relating to mass spec but life in general. 
Your discussions have been taken on board and will surely be beneficial to myself in 
the future, thanks.

Without the help and influences of my family, the hopefully privileged position I will 
soon be in would not have been possible.
My grandparents, for so long the backbone of such a wonderful family, were 
unknowingly to them, one of the biggest influences on me returning to further 
education. I just want to say a big thanks and wish you were still here today. The 
problems they had to face during their life, particularly the latter, was not what they 
deserved. Its fair to say on behalf of all the family, what you gave us was so much 
appreciated.

The biggest thank you of all goes to two very special people, my parents. Their 
unselfishness, love and friendship all of my life has been never ending and sometimes 
I wonder how you put up with me! Its sad the way things turned out, but I hope you 
both have the perfect health and happiness this century.

v



Glossary of abbreviations

A amp

APCI atmospheric pressure chemical ionisation

API atmospheric pressure ionisation

ASMS American society for mass spectrometry

B magnetic field strength

CE capillary electrophoresis

CEC capillary electrochromatography

Cl chemical ionisation

CID collision induced dissociation

CZE capillary zone electrophoresis

Da dalton

DC direct current

e electronic charge

E a p p ESA voltage

El electron impact

ESA electrostatic analyser

ESI electrospray ionisation

FAB fast atom bombardment

FD field desorption

FFR field free region

CO frequency of rf voltage

FWHM full-width half maximum

GC gas chromatography

KE kinetic energy

LC liquid chromatography

LCT liquid chromatograph-time-of-flight

LD laser desorption

LoD limit of detection

LSI liquid secondary ionisation

LSIMS liquid secondary ionisation mass spectron

m mass



m/z mass-to-charge ratio

MALDI matrix assisted laser desorption ionisation

MCP micro channel plate

MIKES mass-analysed ion kinetic energy spectrometry

MS/MS tandem mass spectrometry

oa orthogonal accelerator

PBMA polybutyl methacrylate

PC personal computer

PEG polyethylene glycol

PDMS polydimethyl siloxane

PMMA polymethyl methacrylate

PPb parts per billion

p p m parts per million

p p t parts per trillion

PS polystyrene

R centrifugal force

r f radio frequency

RSD relative standard deviation

S/N signal-to-noise ratio

SEC size exclusion chromatography

SEM secondary electron emission

SFC supercritical fluid chromatography

SIM single ion monitoring

SIMS secondary ionisation mass spectrometry

SIS superconductor-insulator-superconductor

TIC total ion current

ToF time-of-flight

TOFMS time-of-flight mass spectrometry (mass spectrometer)

V velocity

V volt

Vacc acceleration voltage

Vp orthogonal accelerator voltage

z number of electronic charges
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Chapter 1

Introduction
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1.0 Introduction

1.1 Introduction and thesis scope

Mass spectrometry has become the technique of choice for many problems in the 

characterisation of complex mixtures. The high sensitivity, versatility and rapid scan 

speeds that can be obtained have made the partnership of mass spectrometry with 

separation science approaches a very successful one. Mass spectrometry development 

continues to advance at a rapid rate. Newer ionisation techniques such as electrospray 

ionisation (ESI) and matrix-assisted laser desorption ionisation (MALDI) have come 

to dominate the field and to extend the applicability of the approach. Improvements in 

analyser design, together with ESI and MALDI, has importantly led to the 

reintroduction of ToF mass analysers.

Mass spectrometry information is used in a variety of applications, ranging from 

giving molecular weight data to providing detailed ion structural information. This 

work covers the major impact provided by some of these new approaches as well as 

studying the fundamental structural information that can be obtained from mass 

spectrometric experiments.

A thorough detailed examination of a new instrument (LCT, Micromass, U.K. Ltd) is 

undertaken. This orthogonal-acceleration (oa) ToF ESI based analyser is compared 

with existing ESI quadrupole instrumentation. In establishing the parameters of the 

instrument, clear indication is given, via practical examples, of the importance of the 

technical advances to problems of current industrial relevance. The first part of the 

evaluation concentrates on instrumental design characteristics and a fundamental
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discussion of the ESI process. The second part discusses the performance 

characteristics of the instrument, demonstrated using a number of practical analysis 

problems. A detailed comparison with existing methods is made and an evaluation of 

the importance of the instrumental improvements presented.

The oa-ToF approach has also found to have great utility as a second mass analyser 

when used in conjunction with a magnetic sector instrument. Here, in the 

conventional tandem mass spectrometry product ion experiment, the first mass 

analyser is used to select an ion of interest. This ion is then collisionally excited and 

the resulting product ions are detected using the second mass analyser. The oa-ToF 

approach presents significant advances over quadrupole or magnetic sectors in this 

type of experiment. The high sensitivity, the very fast acquisition rates and increased 

mass range provides practical improvements.

The pulsed nature of the oa-ToF analyser makes it ideal for MALDI experiments. The 

use of MALDI as an ionisation source coupled with a double focusing magnetic 

sector to select ions of interest presents a very effective partnership to an oa-ToF 

analyser. This enables high-energy collision induced dissociation (CID) product ion 

spectra to be obtained with high sensitivity on precursor ions of significant molecular 

weight. These spectra can be, in the case of synthetic polymers, be interpreted to 

provide detailed structural information. Some examples of this approach in the study 

of polystyrene oligomers is presented.

Ion structural studies of a more fundamental nature have also been made in order to 

probe the detailed information that can be obtained in tandem mass spectrometry
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experiments. A detailed examination of the various possible structures of CsH3+ has 

been made and conclusions regarding the information provided by the mass 

spectrometry experiments made.

1.2 Historical account of mass spectrometry

In 1886 Goldstein [1] discovered positive rays, which were later analysed by Wien 

[2] in a magnetic field. Wien concluded that these positive rays were deflected less 

and in the opposite direction to cathode rays in a magnetic field and that the rays held 

a positive charge. It was not until some years later however, that Thomson [3] 

interested in these positive rays, constructed a ‘parabolic mass spectrograph’. It was 

using this instrument that he produced a mass spectrum which demonstrated the 

existence of two stable isotopes of neon, resulting in the birth of mass spectrometry. It 

was probably never imagined that one century later the ability to mass measure 

molecules in the mega dalton mass range would at all be possible [4]. However, 

present day mass spectrometry offers this possibility through ESI and MALDI 

coupled with, in general, ToF instrumentation.

The former ionisation method relies heavily on multiple charging of the molecule, 

which was not unknown at the turn of the century. Thomson [3] obtained mass spectra 

which was observed to contain some multiply charged ions formed from some simple 

gases such as O2 , N2 , CO and CO2 .

Significant advances in the field of mass spectrometry were provided for by Dempster 

in 1918 [5] who developed the first magnetic sector instrument and by Aston [6] who 

constructed the first mass spectrometer which provided velocity focusing of the ions.

4



Aston developed an instrument in which these positive rays were first subjected to an 

electric field and then a magnetic field. It was found that positive rays with the same 

mass-to-charge (m/z) ratio, but with varying velocity could be focused at the same 

point on the detector. This was a major achievement at that time and set the 

foundations for which future double-focussing instruments were based. However, 

Dempster and Astons’ efforts would not have been made possible if was not for the 

pioneering work of Thomson. For it was he who was responsible for the discovery of 

the electron, one of the basic building blocks of all atoms and the measurement of its 

m/z ratio. He is therefore regarded by many as the ‘father of mass spectrometry’ [7].

1.2.1 What is mass spectrometry?

A simple definition could explain mass spectrometry: a physical analytical technique 

that separates gas phase ions according to their m/z ratio and detects them.

The creation of a charge on the molecule under investigation is brought about through 

ionisation. Once the sample molecules have been ionised, they need to be separated or 

resolved by a mass analyser. Upon separation the ions need to be detected, which 

results in a mass spectrum, ultimately providing molecular weight and depending on 

the method of analysis, structural information characteristic of the sample molecule. 

Therefore, the overall basic requirements of a mass spectrometer are simplified in 

Figure 1.01.
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Detector
Ionisation
Source

Figure 1.01: Schematic of the basic components of a mass spectrometer

1.3 Ionisation methods [10-14]

1.3.1 Electron impact (El)

Prior to the successful development of new ionisation techniques of the late 1980’s, 

electron impact (El) played an important role as one of the main ionisation methods 

used. (A comprehensive discussion for the ESI and MALDI techniques can be found 

in Chapters two and three respectively). El is restricted to compounds of a volatile 

nature unlike the other two methods and therefore only has a limited mass range of 

around m/z 1500. The technique can only be used in the positive ionisation mode and 

is generally termed a ‘hard’ ionisation method, since a high degree of fragmentation is 

induced through excess energy being imparted to the gaseous sample molecules upon 

impact. The technique however, is simple to use and does not suffer frequent source 

contamination problems inherent with ESI and MALDI.

The electron impact source was developed by Dempster [8] and improved by Nier [9] 

where gaseous sample molecules interact with a beam of electrons emitted from a
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heated filament. A simple schematic of the source is shown in Figure 1.02. Once the 

gaseous sample molecules cross the electron beam path an electron is displaced from 

the neutral molecule and the sample becomes ionised, resulting in the formation of a 

radical cation. Electrons emitted from the filament, are generally accelerated through 

an electric potential of 70V. It is has been well established that this voltage provides 

an ion transmission maximum and was therefore kept constant at this voltage 

throughout the study in Chapter four.

After ionisation, the ions need to be separated and sufficiently resolved from one 

another. Only sector, quadrupole and ToF instruments will be discussed here, since 

these were the only instruments used during this study. ToF will be discussed in more 

detail since the majority of the work made use of ToF instrumentation.

Ion beam 
to mass analyser

Filament

Ion
repeller

Electron
trap

Figure 1.02: Simple schematic of an electron impact source
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1.4 Mass analysers [10-14]

1.4.1 Sector instruments

The sector mass analyser can be described as the ‘classical’ method of mass analysis, 

since it has been in existence since the birth of mass spectrometry. However, its use in 

modem day mass spectrometric investigations has been somewhat overshadowed by 

quadrupole and ToF instruments. It does however provide high mass resolution for 

singly charged ions in comparison with the two former techniques and therefore still 

has a tremendous amount to offer.

1.4.1.1 Magnetic sector

A schematic diagram illustrating the principle of a single focussing mass spectrometer 

is shown in Figure 1.03. Ions of mass m, with electronic charge e (z charges) and 

velocity v are accelerated through a voltage VaCc from the ion source. The potential 

energy lost is equal to the kinetic energy gained and thus:

mv2 = zeVacc (Eqn.l)
2

An ion beam therefore, exiting the source can be separated according to their m/z 

ratios using the magnetic sector. Ions entering the magnetic field experience a force, 

of strength B, in a direction perpendicular to their original direction of motion. This 

force will be equal to Bzev, which causes the ions to follow a circular path. This force 

is equal to the centrifugal force where:

8



mv2 = Bzev 
R

(Eqn.2)

Where R equals the radius of curvature of the magnet. Manipulation of these two 

equations yields:

m = R2B2e (Eqn.3)
Z 2V a c.c.

The radius of curvature of an ions trajectory is therefore dependent upon its 

momentum. Thus, the magnetic sector can be classed as a momentum-to-charge 

analyser. Thus, by scanning the magnetic field or varying V aCc allows ions of various 

m/z ratios to reach the detector, resulting in a mass spectrum.

Magnet

Ion
Beam Detector

c _____________  plane
b ------------

Figure 1.03: Schematic of a single-focussing magnetic sector mass analyser, 
illustrating that small mass ions, A, are deflected to greater 
extent than ions of higher mass, B and C in a magnetic field
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1.4.1.2 Electric sector

The electric sector contains two cylindrical parallel plates of opposite potential but of 

equal magnitude. A schematic is shown in Figure 1.04. Ions moving in an electric 

field suffer a force perpendicular to their ion motion. Thus, the centrifugal force 

acting on ions in an electric field, is given by:

mv2 = zeEapp = zeVgpp (Eqn.4)
R 2d

Where Eapp is the electric field applied across the ESA (electrostatic analyser) plates 

and d is the half gap width of ESA. Substitution of equation 4 into equation 1 yields:

R = 2Vacc (Eqn.5)
E

Thus, in an electric sector the ion trajectory depends on the acceleration and ESA 

voltages only. Electric sectors therefore separate ions according to varying energy-to- 

charge ratios. For instance, ions of the same mass possessing different energies on 

entry into the electric sector will be brought to focus at separate points on a focal 

plane beyond the electric sector.
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+ ve potential

- ve potential

Detector
plane

Ion
beam

Low energy 
Medium energy 

High energy

Figure 1.04: Schematic of operation of an electric sector analyser,
illustrating that low energy ions are deflected more in an 
electric field than higher energy ions

1.4.1.3 Double-focussing instruments

The mass resolution of single focussing instruments is limited by the spread in kinetic 

energy and the angular divergence of the ion beam as it leaves the ion source. 

However, this resolution limitation can be overcome by a combination of a magnetic 

sector and electric sector. This geometry ultimately results in a substantial increase in 

resolution and sensitivity. This combination provides direction and energy focussing 

simultaneously. The point of double focussing is achieved when the direction and 

velocity curves crossover.
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1.4.1.4 Resolution of sector mass analysers

The definition of resolution for sector mass analysers is m/Am which is the difference 

between two masses that can be separated divided by the mass number of the mass 

obtained. Peaks are defined to be separated sufficiently down to a 10% valley. This 

means that the height of the valley is 10% of the height of the peaks, with each peak 

contributing to 5% of the valley, see Figure 1.05.

10% valley definition

Figure 1.05: Schematic illustrating the 10% valley definition

For this type of analyser, some of the advantages and disadvantages can be listed as:

12



Advantages Disadvantages

• High mass accuracy (double focus) • Expensive
• High resolution, > 100,000 • Not suited to pulsed
• Reproducible mass spectra ionisation methods,
• Mass range ~ m/z 15000 unless used in

conjunction with an 
oa-ToF

1.4.2 Quadrupole mass analyser [10-16]

This mass filter was developed by Paul and co-workers in 1950’s [15]. The operating 

principle of the quadrupole is different from the sector instruments described 

previously, due to the fact that ion focussing is not carried out nor is a magnet used. 

This analyser is called a mass filter, since it uses an alternating quadrupolar electric 

field to filter out masses other than those of interest. A quadrupole analyser is 

constructed from four equally spaced parallel rods of either hyperbolic or cylindrical 

cross section.

A voltage consisting of a DC component, U and a rf component, V0 cos cot is applied 

to opposite pairs of rods, see Figure 1.06.

13



-(U + V Cos (Dt)
► X

+(U + V Cos cot)

Figure 1.06: Schematic of a quadrupole mass analyser showing the applied 
potentials to the four parallel rods

The rods are separated by a distance of 2r0. A small acceleration voltage, typically of 

10-20V is used to accelerate ions from the source into the centre of the quadrupole, 

along the z-axis. The alternating electric field applied between the two pairs of poles 

will cause ions to oscillate in the x and y directions. Some ions of a particular m/z 

ratio will have a stable trajectory, pass through the filter and reach the detector. Other 

ions of different m/z ratio will have an unstable oscillatory movement, impact on the 

rods and be lost in the filter.

Ion motion in a quadrupole filter is complex and is described using a set of equations 

known as the Mathieu equations. A detailed derivation however is beyond the scope 

of this brief introduction. The oscillation of an ion is governed by several factors, the 

distance between the rods, co the frequency of the rf voltage and the m/z ratio of the
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ion itself. For ions to have a stable trajectory and reach the detector conditions a and q

described by equations 6 and 7 have to be met:

a = 8eU (Eqn.6) and Q = 4eVn (Eqn.7)
m r 02G)2

Thus, a/q = 2U/V0. This can be illustrated with a stability diagram which shows the 

relationship between a and q and the condition for stable oscillations.

It can be seen from Figure 1.07, that an ion of mass mi will reach the detector, but an 

ion of mass m2 will become unstable, hit one of the rods and be lost in the system. A 

mass spectrum can be obtained by varying U, the DC voltage and V0, the rf amplitude 

voltage whilst keeping the U/V0 ratio constant. The recorded mass is proportional to 

V0 so that a linear increase of V0 provides an easily calibrated linear mass scale.

0.237

unstable

a/q constant

0.706 q

Figure 1.07: Simplified stability diagram for a quadrupole mass analyser
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1.4.2.1 Resolution of quadrupole mass analysers

Resolution of quadrupole instruments is usually defined as unit mass resolution. This 

means that each mass can be separated from the next integer mass. Resolution is at its 

highest when the scan line, shown in Figure 1.07 approaches the apex of the stability 

region. Thus, as the mass increases the resolving power increases. However, this leads 

to a reduction in ion transmission.

Some of the advantages and disadvantages for this type of mass analyser can be 

summarised as follows:

Advantages

• Small and compact
• Inexpensive
• Reproducible mass spectra

Disadvantages

• Limited resolution
• Limited mass range < 4000
• Not suited with pulsed 

ionisation methods

1.4.3 ToF mass analysers [17-25]

TOFMS it would seem, reading through the literature, to be a relatively new 

separation technique due to the vast amount of publications in the last decade. This 

though is not the case. TOFMS has seen a massive resurgence due to highly 

sophisticated electronics, computers and ionisation methods developed over the last 

ten years.
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The first proposal for a TOFMS dates back to 1946 through the work of Stephens 

[26]. It was not until two years later that the first experimental account of the 

instrument called the Ton Velocitron’ was reported by Cameron and Eggers [27]. 

However, it was the design of Wiley and McLaren [28] in 1955 that the first TOFMS 

became commercially available by the Bendix Corporation and later by CVC 

Products (Rochester, New York). The instrument though was seen to have both low 

resolution and sensitivity and never used widely and was displaced by magnetic sector 

and quadrupole instruments, which possessed higher resolution and sensitivity.

1.4.3.1 Principles of TOFMS

TOFMS is a relatively simple mass spectrometric technique and as the name suggests, 

the separation of ions is dependent on their flight times in a field-free drift tube. The 

ToF experiment relies on the fact that ions are created at the same point and at the 

same time in the presence of an electric field. Ideally, all ions will enter the drift 

region with the same kinetic energy (KE), i.e.

KE = mv^ = zeVacc (Eq".8)
2

Thus, ions will be accelerated to different velocities depending on their m/z ratio. The 

velocities of ions, which ideally have the same kinetic energies as they enter the drift 

region, are dependent on mass:

v = (2zeVacc / m)lc (Eq".9)
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Therefore, the time taken to traverse the drift region, of length D, is given by:

t = D x (m / 2zeVaCc)1/2 (Eqn.10)

The arrival time of the ions, therefore can be converted directly to a mass spectrum, 

where:

Thus, small mass ions, which will attain a higher velocity, will reach the detector 

before higher mass ions, which will attain a lower velocity.

The maximum achievable resolution, as mentioned previously for early TOFMS, was 

rather poor. Resolution was initially limited since isobaric ions accelerated from the 

ion source are subject to initial temporal, spatial and energy distributions. If these 

distributions are not successfully minimised there will be a time lag for isobaric ions 

arriving at the detector, which seriously degrades resolution. To overcome the spatial 

distribution a dual stage source was devised [28], which still plays an important role 

in modem day ToF instrumentation.

Energy resolution can be achieved by use of a reflectron, which effectively doubles 

the flight path of the ions, resulting in an order of magnitude increase in resolution.

1.4.3.2 Types of ToF mass analysers

ToF requires a well defined starting point in time and space and is therefore 

immediately compatible with pulsed ionisation sources. However, TOFMS is not

m/z = 2zeVacc (t / D)2 (Eqn.l 1)

1.4.3.2.1 Linear ToFMS
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solely restricted to these type of methods. The development of orthogonal 

acceleration, see section 2.2.4, has paved the way for ToF to be used with ionisation 

methods that are of a continuous nature.

The linear TOF configuration can be seen in Figure 1.08. This particular type consists 

of two acceleration fields and provides focussing of the ions, i.e. ions of the same 

mass, but formed at different locations within the ion source will arrive at the detector 

at the same time. By varying the electric fields, the position of the space focus can be 

altered and the detector should be placed here. This will ultimately achieve longer 

flight times compared to a single field ion source resulting in a resolution 

enhancement for linear TOFMS. Improved ion beam collimation within the source 

also results in increased resolution.

1.4.3.2.2 Reflectron TOFMS [29]

Positioning the detector at the space focus in linear TOFMS has a resolution of around 

1000. The resolution can be increased by an order of magnitude by use of a reflectron 

for ionisation techniques with a large energy distribution, see section 2.2.5. This 

corrects for the energy distribution of the ions as they enter the drift tube and the 

increased flight path effectively allows better separation of the ions. A simple 

schematic is shown in Figure 1.09. Thus, for isobaric ions those with the lowest 

energy will not penetrate the reflectron as much as ions with a higher energy. The 

residence time for the latter ions is much greater but will ‘catch up’ with their 

identical mass, after being re-accelerated from the reflectron, at the detector. Thus, the
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flight time for ions, in an instrument employing a dual stage source and a single stage 

reflectron is given by:

t = (m/2zeVacc)1'2x [L i+ L 2 + 4d] (Eq".12)

where, Li and L2 are the drift lengths prior to and after reflection and d is the 

penetration depth of the reflectron.

1.4.3.2.3 Resolution of TOF mass analysers

The resolution of a ToF instrument is defined as:

R = m / Am = t / 2At

Where m is the mass of the ion, Am is the full width half maximum (FWHM) spread 

in the ion packet mass, t is the arrival time at the detector of the ions and At is the 

FWHM temporal width of the ion packet.

Some of the advantages and disadvantages can be listed as:

Advantages

• Speed
• Suited to pulsed techniques
• High sensitivity
• Theoretically, has an unlimited mass range

Disadvantages

• Requires fast digitisers
• Data system must contain 

sufficient memory to store 
a tremendous amount of 
generated mass spectra
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Drift tube

Figure 1.08: Schematic of a linear ToF mass analyser. Small high velocity ions are 
shown to reach the detector before larger lower velocity ions
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Figure 1.09: Schematic of a reflectron mass analyser. Isobaric ions that attain 
different energies after acceleration from the source, will arrive at the 
detector at the same time. The ion with the highest energy will 
penetrate the reflectron deepest and therefore spend longer in the 
reflectron than the low energy ion
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1.5 Ion Detectors [10-14]

In mass spectrometry ions are usually detected by techniques based on secondary 

electron emission (SEM) that make use of electron multipliers or micro channel plate

c  n
(MCP) detectors that amplify the signal intensity typically by 10 -10 for single ion 

detection. The detection of ions can be classified into two groups:

A. those which detect ions successively at one point, called point ion detectors and

B. those which detect ions at the same time along a focal plane, called multi point 

detectors.

Types of point ion detectors are:

1.5.1 The Faraday cup

Here a metal cup is positioned in the path of high velocity incoming ions. Ions which 

strike the cup transfer their charge to the cup resulting in a flow of electrons that in 

turn creates a current. The surface of the cup is usually coated with BeO, GaP or 

CsSb, and an ion striking the surface induces several electrons to be ejected. The 

emitted electrons induce a current in the cup and provides a small amplification of 

signal when an ion strikes the cup. This type of detector is incompatible with ToF 

because of its very long time constant typically 0.1 to 1 sec, but is ideal when 

monitoring a high intensity signal greater than ~ 10'11 A. This basic set up was put to 

use when trying to detect a beam around different sections of the instrument
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employed in Chapter four. The ion current was measured by a picoammeter (Keithley 

Instruments Inc., Ohio, USA).

1.5.2 Electron multiplier

1.5.2.1 Discrete dynode electron multiplier

As the name suggests this type of detector is made from a series of between 12-20 

dynodes. The dynodes are coated or made entirely from an electron emissive material 

and when an ion strikes the first dynode a shower of electrons are emitted. These 

secondary electrons are accelerated towards the second and subsequent dynodes 

where the process repeats itself causing a rapid amplification of the electron current. 

Depending on the number of dynodes and the type of dynode material the initial ion

• ( \ Hcurrent can be amplified upto 10 to 10 times, referred to as the gain. This type of 

detector was employed in the instrument described in Chapter four. These devices 

have usable lifetimes ranging from months to years depending on usage. However, 

they can dramatically fail if a vacuum accident or electrical discharge across the 

device occurs.

1.5.2.2 Continuous dynode electron multiplier

This type of detector is also known as a channel multiplier or channeltron. The device 

is hom shaped and constructed from glass with the inside coated with a 

semiconducting electron emissive material that has a high electrical resistance. A
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potential difference is applied across both ends, so that the potential varies linearly 

across the tube. An ion beam striking the tube causes the emission of secondary 

electrons which then pass along the tube creating an electron cascade effect. The gain 

can be adjusted by varying the potential, typically between 1-3 kV.

The second class of detectors are called multi-point ion detectors and are most 

familiar with ToF instrumentation. An example of this type of detector is discussed in 

section 2.2.6.
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Chapter 2

An evaluation of a novel orthogonal 
acceleration Time-of-Flight mass 

spectrometer
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Section A

ESI mechanism, instrument design and 
theoretical considerations of the LCT
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2.1 Aim

Evaluation of impact of novel oa-ToF technology in the qualitative and quantitative 

characterisation of complex mixtures of industrial significance.

2.1.1 Introduction

Mass spectrometric techniques are widely used in industry to characterise the, often

complex«mixtures that are produced. The interfacing of mass spectrometry to various
J

separation science approaches has led to the development of an extremely powerful 

technique. In recent years commercial, environmental and legislative pressures have 

led to the need for more sensitivity. The introduction of newer products based on 

higher molecular weight components have also led to the need to extend the mass 

range of the mass spectrometric detection systems.

The development of ESI and MALDI has provided the ability to produce ions from 

complex mixtures of wide mass ranges and the combination of these techniques with 

ToF analysers has greatly extended the applicability of mass spectrometry to modem 

industrial problem solving.

In order to evaluate the potential impact of these new approaches, an evaluation was 

made of a recently developed instrument, the LCT (liquid chromatograph-ToF). This 

instrument combines ESI with an oa-ToF analyser and promises to provide significant 

technical improvements over the commonly used ESI quadrupole instmments.
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In order to objectively evaluate the instruments performance, measurements 

including, sensitivity, mass resolution, mass range and mass accuracy were 

determined and compared with those obtained using conventional ESI quadrupole 

systems. The limitations of mass measurement on a quadrupole instrument are well 

characterised and documented in the literature and therefore not investigated during 

the study (see section 2.3.7 [72]). Limit of detection experiments carried out on the 

quadrupole instrument were carried out independently [1].

2.2 Detailed description of the LCT Mass Spectrometer

2.2.1 Introduction

The design of the instrument is at the forefront of modem day time-of-flight mass 

spectrometry using atmospheric pressure ionization (API) techniques. It is also very 

compact in size and designed to be user friendly. Instrument control, data acquisition 

and data processing is controlled through a Pentium II 450 MHz PC running 

Masslynx NT software (version 3) which is written in Microsoft conforming code.

A schematic showing the insides of the instrument is shown in Figure 2.01.
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2.2.1.1 Atmospheric Pressure Ionization

The LCT makes use of two API techniques. These are atmospheric pressure chemical 

ionisation (APCI) and electrospray ionisation (ESI). Results for this thesis made use 

only of ESI using a newly designed source trademarked ‘Z Spray™’. The ESI process 

will be described in some detail here.

MCP
DetectorPusher

Probe

Z-spray 
ion source

□
□
□
□
□

n
□
□
□
□

Reflectron

Figure 2.01: Schematic of the LCT
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2.2.1.2 Electrospray ionisation

The electrospray process for the production of ions from non-volatile samples is not 

new. The process seems to date from experiments by Zeleny [2] at the turn of the turn 

of the century. The process however did not develop and lay dormant for a number of 

years until Dole et al. [3] generated gas phase ions of polystyrene macromolecules.

Since these early developments the ESI process has seen rapid growth in many areas 

of research over the last decade due to further pioneering work by Fenn et a l [4]. 

Their work was initially presented at the 1987 ASMS meeting which demonstrated the 

ability to multiply charge poly(ethylene glycol)s with masses in excess of 20000 Da. 

The rest they say is history!

Electrospray has truly transformed the mass spectrometric field due to its ease of 

accessibility, low cost and the successful interfacing to various types of mass 

analysers. It can also achieve an extraordinary mass range of ~ 3 x 106 daltons due to 

its ability to multiply charge very large macromolecules. ESI was first interfaced and 

commercialised on quadrupole mass spectrometers [4-7]. Since then successful 

interfacing has also been achieved on magnetic sector instruments [8-11], quadrupole 

ion traps [12-13] and Fourier transform [14-16].

The first ESI-ToF instrument was reported in 1991 by Boyle et a l [17], where low 

energy ions were accumulated in a storage region before extraction pulses were
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applied prior to mass analysis. The instrument however possessed a poor duty cycle 

and suffered low mass resolution.

Orthogonal acceleration and the use of the reflectron has made ToF once again a force 

to be reckoned with. Building on the initial concepts of Dodonov et a l [18] the 

number of publications making use of API techniques combined with TOFMS has 

sharply risen during the 1990’s.

2.2.1.3 Mechanism and theory of the electrospray ionisation process

Electrospray in simple terms is a method by which ions present in solution can be 

successfully transferred into the gas phase. Although proposals have been made, no 

definite mechanism for the process has been reached. For the successful production of 

gas phase ions from analyte ions in solution, there is in general two requirements:

A. the ability to produce charged droplets at atmospheric pressure.

B. a decrease in the size of the charged droplets formed through solvent evaporation, 

leading finally to gas phase ions.

Generation of an electrospray is usually carried by applying a potential of around 3-4 

kV to a stainless steel capillary from which a solution containing the analyte of 

interest exits at a rate typically of the order of 10-150 pL min'1. A nebulising gas,
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If the instrument, for example, is set up for positive electrospray ionisation mode, the 

stainless steel capillary will become the positive electrode. Positive ions in the 

solution at the tip of the capillary will move to the surface of the solution and the 

negative ions will move away from the surface, toward the capillary.

The separation of ions at the surface of the solution caused by electrostatic forces 

coupled with surface tension forces at the meniscus cause the liquid eminating from 

the capillary to expand forming a liquid cone, referred to as the ‘Taylor cone’ [19]. 

The drifting of charged ions at the surface of the solution was proposed by Kebarle et 

al. [20] and has been called the ‘electrophoretic mechanism’.

The electric field created at the tip of the capillary, (Ec), which has a radius, rc, located 

a distance, d, from the counter electrode leading into the mass spectrometer can be 

calculated using the equation:

Ec = 2VC / [rc In (4d/rc)]

Where Vc is the potential in volts applied to the capillary.

The formation of a continuous flow of ions will lead to the breaking of the Taylor 

cone, releasing ions into the mass spectrometer, ultimately leading in an observed
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mass spectrum. The onset of instability in the Taylor cone, leading to an Electrospray 

[21] is given by:

E o n  w [ 2  X COS 0  / (s0 rc) ] 1/2

so = permittivity of free space 
6  ~  4 9 °

X = surface tension

Eon = instability in the Taylor cone

Combination of the two equations leads to a relationship for the capillary onset 

voltage (Von) where:

V„„= 2 X 105 ( x rc ),/2 In (4d/rc)

which estimates the voltage needed to be applied to the capillary that supports the 

electrospray process.

A solvent therefore, with a surface tension such as water, would find difficulty 

forming a Taylor cone compared to solvent systems such methanol and acetonitrile 

which have lower surface tensions. In the case of water, higher voltages would have 

to be applied to the stainless steel capillary compared to methanol and acetonitrile to 

form an electrospray process. This though could come as a disadvantage, mainly due 

to the higher possibility of arcing at the capillary tip. This in turn would lead to a loss 

in signal.
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The size of the initial droplets formed will depend on the solvent and the flow rate 

being utilised in the system.

The formation of gas phase ions from small pre-formed highly charged droplets is the 

whole essence behind the electrospray process. The mechanism by which this 

proceeds, as mentioned earlier, is still somewhat unclear.

When a potential has been applied to the capillary, the solvent exiting the capillary 

becomes charged and dispersed by Coulomb forces into a spray of charged droplets. 

The applied potential drives the droplets towards the end of the capillary with the 

assistance of a sheath gas, typically nitrogen.

There are currently two theories on how a charged droplet enters the gas phase for 

mass spectrometric analysis as a charged ion:

2.2.1.4 Dole [3]: Single Ion in Droplet Theory (SIDT)

As the charged droplets emerge from the capillary, desolvation occurs in the heated 

capillary causing the radius of curvature of the droplets formed to decrease thus 

increasing the charge density at the droplet surface. The droplets rapidly decrease in 

size through evaporation until the so called ‘Rayleigh limit’ [22] is reached, at which 

point the repulsive Coulombic forces are of the same order as the surface tension of 

the droplet. This causes droplet offspring due to ‘Coulomb explosion’. The offspring
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in turn continue to evaporate until they explode, until finally only one analyte 

molecule is left. Once the last of the solvent has been removed and providing the 

analyte and not the solvent retains the charge a sample ion will be observed.

2.2.1.5 Iribarne and Thomson [23,24]: Ion Evaporation Theory

Similarly, along the lines of Dole, evaporation of solvent from the pre-formed droplets 

increases the charge density at the droplet surface. Again the Rayleigh limit is reached 

when coulombic repulsion is of the same order of the surface tension of the droplet. 

Coulomb explosion again occurs over and over until the repulsive forces within the 

offspring daughter droplets are so great that the analyte ions are desorbed by field 

induction (due to surface charge density) into the gas phase. Ejection of ions is 

therefore proposed to occur via repulsion of forces of the charged ion and forces 

already present in the droplet.

2.2.2 ‘Z Spray™’ Ionisation source and sample introduction

For electrospray ionisation the formation of ions takes place outside the vacuum 

system of the instrument. The analyte of interest which is dissolved in a suitable 

solvent, is introduced into the ‘Z-spray’ ionisation source through a stainless steel 

capillary, which runs through the centre of a probe, at a flow rate of between 10- 

150pL/min. Application of a high voltage, typically 3500V to the end of the capillary,
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causes the solvent containing the analyte of interest exiting the capillary, to form a 

spray of highly charged droplets. A compressed nitrogen gas supply (100 psi, 7 bar) is 

connected to the mass spectrometer. This nitrogen which has a flow rate of 

approximately 75 Lhr'1 passes down the probe, around the outside of the capillary. 

The nitrogen aids the solvent containing the analyte of interest to form a spray as it 

leaves the end of the electrically charged capillary and also provides focusing of the 

spray beyond the sampling cone. The delivery of nitrogen at this point is called the 

nebuliser gas. This aerosol spray then enters the ‘Z-Spray’ ion source which is 

maintained at a temperature of 100°C. The charged droplets that have been formed are 

subject to rapid evaporation of the solvent, with ions of the compound of interest 

being formed. Nitrogen desolvation gas, also known as drying gas, which has a flow 

rate of approximately 620 Lhr'1, is used to assist the evaporation of the solvent. A 

desolvation temperature of around 150°-200°C was commonly used. These charged 

droplets are then extracted at a right angle from the spray into the sampling cone 

orifice which has a voltage of between 20 and 40 volts applied, which affects the 

degree of fragmentation. The ions then enter the ion block region of the source.

Figure 2.02 shows a schematic diagram of the ‘Z-Spray’ ion source.

After prolonged use contamination may occur from involatile compounds and buffers. 

These tend to collect at the orifice of the sampling cone and the baffle indicated in 

Figure 2.02, ahead of the spray. This leads to a reduction in sensitivity and the 

sampling cone and baffle require periodic cleaning in an ultrasonic bath, with 

acetonitrile and methanol. Gaining access to the sampling cone and baffle for cleaning 

purposes, is straightforward and poses no problem. The vacuum in the instrument is
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maintained whilst removing the required parts for cleaning by closing the isolation 

valve marked on Figure 2.02. The design of the ‘Z-spray’ ion source allows easy 

access for cleaning purposes and is a major improvement compared to other 

instruments used in this investigation, for example, the Platform II (Micromass 

Ltd.,UK) and Quattrro (Micromass U.K. Ltd.,) where cleaning is more tedious.
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Figure 2.02: Schematic of the ‘Z-Spray’ ion source
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2.2.3 Ion Guide Interface to the Time-of-FIight Mass Analyser

Ions which have entered the ion block region from the source are then subject to an 

extraction cone voltage of 7-12 volts, (refer to Figure 2.02). The ion block region is 

maintained at a pressure of approximately lmbar. The extracted ions then enter the 

first region of the mass spectrometer, (refer to Figure 2.01), where ions are introduced 

into the first hexapole ion guide which uses only rf voltages to transfer the ions 

towards the ToF analyser. The hexapole lens consists of six circular rods arranged in a 

hexagonal pattern. The rods are charged alternately positive and negative using only rf 

voltages applied to all six rods. The ions are then transmitted to the second region of 

the mass spectrometer, (refer to Figure 2.01). Here a second hexapole ion guide is 

employed again employing rf-only voltages, to transfer the ions.

These ions are then guided into the TOF analyser, the third region of the instrument 

which has a pressure < 1 x 10'6 mbar (refer to Figure 2.01). For the successful transfer 

of the ion beam to the orthogonal region acceleration region, also known as the 

‘pusher’ region, in the ToF analyser various ion optical voltages have to be tuned.

A fast rising (~ 10 nsec risetime) voltage, Vp is applied to the pusher which pulses a 

portion of the continuous ion beam in a direction orthogonal to the incoming ion beam 

axis. These ions then pass down the ToF tube to a reflectron and return towards the 

detector region (refer to Figure 2.01) and are detected by a micro channel plate (MCP) 

detector.
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2.2.3.1 Radio frequency (RF) only ion guides

Ion optical devices based on symmetrical arrangements of parallel rods such as, 

quadrupoles, hexapoles and octapoles can be used as ion guides to transfer and 

collimate an ion beam. To transmit ions, independent of mass, rf-only voltages are 

required to be applied to the rods. They are commonly referred to as multipoles lenses. 

Multipoles are precisely engineered devices and have 2p electrodes ( p = 2,3,4...) 

where p is the number of pairs of poles [25]. Multipoles using rf voltages only, play an 

important role in guiding and confining the ion beam from one part of the mass 

spectrometer to another.

The use of a quadrupole as an ion guide operating in the rf only mode has been 

applied to triple quadrupole (Qiq2Q3) mass spectrometers where the central 

quadrupole (q2) acts as an ion guide [26-28] for collision induced fragments. This 

quadrupole is used as a collision cell when filled with gas at a suitable pressure, to 

conduct low-energy collision induced dissociation (CID) experiments. Quadrupoles 

have also been used in multistage hybrid mass spectrometers [29-32] and in this and 

the Qiq2 Q3 design the rf-only quadrupole is used to collimate the ion beam, which has 

low kinetic energy, usually below lOOeV. A thorough investigation of the 

transmission and collimation of ion beams using rf-only mode of operation in a 

quadrupole has been carried out by Dawson and Fulford [28].

The transmission and confinement of ion beams in an octapole operating in the rf-only 

mode was researched over two decades ago by Teloy and Gerlich [33].
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Both research and commercial mass analysers have employed multipole lenses of 

some sort, to guide and transfer ions in the rf-only mode of operation [34-40]. They 

are usually employed on low energy ion beams and have been used in conjunction 

with a buffer gas that collisionally focuses the ions towards the central axis of the 

multipole. The buffer gas acts to damp the radial velocities of the ions, while the rf 

field constrains them close to the axis of the multipole [41] and is referred to 

collisional focusing. The technique employed is based on ideas of Douglas and French 

[42].

Investigative studies by Hagg and Szabo [25] suggest that the use of a hexapole or 

octapole as an ion guide, is better suited for ion beam collimation and transmission in 

the rf-only mode, than a quadrupole. The order, p, of the multipole lens is a measure 

of the effectiveness of ion transmission through the ion guide. The higher the order, 

the sharper the field boundary is near to the rods resulting in better ion containment. 

The choice of the multipole for the ion guide will depend on the application, 

specifically influenced by the ion energy and initial ion velocity.

To successfully transfer ions produced in the ion source to the ToF analyser in the 

LCT, two hexapole ion guides were used to guide and collimate the ion beam.

As the hexapoles are operated in the rf-only or total ion transmission mode, there is no 

mass separation and the hexapole acts as a powerful focusing lens. However, 

depending on ion energy, rf frequency and the rf voltage applied to the hexapole 

lenses, there is in practice a low mass cut-off. Low mass ions will oscillate to a higher
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extent than higher mass ions, and if the voltage is to high, the ions will collide with 

the rods instead of being transmitted [43].

2.2.3.2 Hexapole interface voltages

Initial studies involved compounds with molecular weight lower than m/z of 1000. It 

was noticed that the rf lens voltage had a major influence on ion transmission. Results 

showed that when a rf voltage of between 400-500 volts was applied to the lens 

assembly no low mass ions (lower than ~ m/z 100) were observed in the mass 

spectrum. In order to observe low mass ions, the rf voltage amplitude needs to be 

lowered.

When high mass work was being carried out in the range of m/z >1500 the rf voltage 

was increased from 100 volts to usually 200 or 300 volts.

Thus, careful consideration of the applied rf voltage, which in our investigation was 

molecular weight dependent, should take place prior to data acquisition.

i
i
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2.2.4 Orthogonal Acceleration source

2.2.4.1 Introduction

The growing interest in ToF mass spectrometry over the last decade owes much to the 

production of ion beams from pulsed laser ion sources. These sources are ideally 

suited for the ToF technique, which require a pulsed source of ions with a well 

defined starting point in time and space.

ToF instruments coupled to continuous ionisation sources such as El, chemical 

ionisation (Cl), and more recent API do not immediately form a suitable partnership 

due to their ‘continuous’ nature and their initial spatial, temporal and energy 

dispersions of the ions prior to entering the ToF drift tube. [44-45].

The spatial dispersion arises from the different positions of the ions, within the source, 

before they are pulsed into the ToF region. Temporal dispersion occurs due to the 

creation of ions at different times within the source and due to the ‘turnaround’ time 

for ions initially travelling away from the exit grids. The energy dispersion is due to 

the Maxwell-Boltzmann distribution, since the ions formed in the source move with 

velocities that are dependent on temperature and mass.

These initial dispersions cause the instrument to suffer poor resolution because of the 

range of flight times for isobaric ions. Thus, fitting a ToF instrument with a source 

that continuously produces ions does not provide such a straightforward partnership as 

with a pulsed source.
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Addressing these initial dispersions apparent with continuous ionisation sources with 

the intention of increasing the resolution of the instrument whilst maintaining the 

sensitivity advantage of ToF mass analysers has to be made prior to ToF analysis. In 

the 1950’s Wiley and McLaren [44] devised a pulsed dual stage ion source with 

dimensions and voltages optimized for overcoming these initial dispersions. Their 

initial ideas and concepts set the foundation on which ‘orthogonal accelerator’ designs 

o f modem ToF mass spectrometers are presently based.

Wiley and McLaren introduced a concept known as ‘time-lag focusing’ in order to 

overcome the initial energy distribution in their dual stage ion source. Here, there is a 

delay between the ionisation and acceleration of ions. The method did improve mass 

resolution but the simultaneous focusing of spatial and energy distributions was not 

achieved to a high degree. A disadvantage of time-lag focusing is that it is mass 

dependent, so only a small mass range can be sampled at any one time.

Lubman et al. [46] have developed an ESI ion trap/ToF instrument which has been 

used to store ions in a RF quadrupole ion trap before being pulsed as a packet into the 

ToF analyser. The energy spread of the ions is reduced in the trap through collisional 

cooling when helium gas is supplied to the trap. The instrument however offers only 

moderate resolution of 1500 full-width at half maximum (FWHM).

Wollnik et al. [47-48] have also employed pulsed extraction on their ToF instrument 

which has been fitted with an El source. The ions are pulsed as packets into the ToF
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analyser which contains a gridless reflectron. The concept of a gridless reflectron 

although giving increased ion transmission has poorer performance in terms of mass 

resolving power compared to a conventional grided reflectron [49]. Mass resolution of 

around 3000 (FWHM) was obtained on this type of instrument. A disadvantage of the 

gridless design is that the field equipotentials in the reflectron, particularly at the 

entrance are curved, and may be the reason why greater mass resolving power was not 

reported.

The coupling of continuous ionisation sources with ToF mass spectrometers utilising 

the methods mentioned above have not gained the success which orthogonal 

acceleration [50-54] has achieved. As this is a method which effectively eliminates the 

initial kinetic energy distribution or more precisely the velocity distribution along the 

ToF axis (y-axis). It pulses sections of the ion beam from a continuous ion beam into 

the ToF analyser and improves mass resolution and the effective duty cycle when 

compared to other designs. This particular method of gating the ions was employed in 

the LCT. Duty cycle, mass resolution and abundance sensitivity are all increased 

through the coupling of orthogonal acceleration sources [50-54], together with the 

employment of collisionally cooled rf only ion transfer multipoles [42], to ToF 

instruments utilizing continuous ionisation sources.

46



2.2A.2 Application of orthogonal acceleration in the LCT

The formation of ions within the atmospheric pressure ‘Z- spray’ source is continuous. 

An extraction voltage is applied to the ion block region (refer to Figure 2.02) which 

accelerates the ions into the rf ion guide region of the mass spectrometer. After 

traversing the two ion guide regions the ions are focused and steered into the 

orthogonal or pusher region (see Figure 2.01) through a series of lenses.

The orthogonal accelerator, is essentially an electrode and a series of grids which 

pulses a portion of the continuous ion beam at a right angle (see Figure 2.03) to the 

main ion beam axis (x-axis).

P u s h e r  e l e c t r o d e ,  o f f

C o n t i n u o u s  i o n  
b e a m

P u s h e r  e l e c t r o d e ,  o n

C o n t i n u o u s  i o n  
b e a m

IZZZZZ2
P u l s e d  p a c k e t  
o f  i o n s - T oF  d r i f t  t u b e

Figure 2.03: Illustration of the pusher [55].
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When the pusher electrode is switched off (refer to Figure 2.03) the ion beam fills the 

orthogonal accelerator region.

Once a potential has been applied to the pusher electrode, which lasts approximately 

lOps, a portion of the main beam is pulsed along the y-axis.

The time-of-flight of the ions is measured from the time the pulse was applied to the 

orthogonal accelerator, to the time ions reach the detector.

2.2.4.3 The orthogonal accelerator employed in the LCT

The orthogonal accelerator used in the LCT is a dual stage pusher as shown in Figure

2.04. The design of the orthogonal acceleration source is based on principles and ideas 

o f Wiley and McLaren [44].

Pusher ~ +/- 977 V

Continuous ion 
beam Grid 1 -+ /-4 1 0  V 

Grid 2 ~ +/- (20-80)V 
Guard ring ~ +/-1533 V 
Guard ring ~ +/-3067 V 
Grid 3 ~ +/- 4685 V

Figure 2.04: Schematic of the orthogonal accelerator showing its voltages

48



The orthogonal accelerator has two modes of operation, ‘fill-up’ mode and ‘push-out’ 

mode. During ‘fill-up’ mode the pusher plate and the first grid are at set at zero 

potential. During ‘push-out’ mode the voltages applied to each electrode have to be 

precisely set to certain calculated values to achieve simultaneous space and time 

focusing and are given in Figure 2.04. The ratio of the filling time of the pusher 

region, which is dependent on the velocity of the incoming ions, and the time between 

pulsing, which is dependent on the m/z of the heaviest ions under investigation, 

defines the duty cycle [56]. The duty cycle for the LCT is estimated to be 20% [57]. 

The exact dimensions of the orthogonal accelerator are unknown because the 

manufacturer has not supplied this technical information. The pusher voltage is 

approximately +/- 977 volts with a risetime of ~ 10 nsecs and a duration around 10 

psecs. The pusher can be operated at a maximum repetition rate of up to 20kHz, 

therefore 20,000 spectra/s can be collected and summed. This corresponds to a full 

mass spectrum being recorded by the MCP ~ every 50 psecs.

The ions traverse the orthogonal accelerator region through a linear electric field and 

accelerated orthogonally through three transmission grids into the ToF drift region 

with a final acceleration voltage of +/- 4685 volts plus ~ 60% of the pusher pulse 

voltage, therefore acquiring a final voltage of ~ +/- 5300 volts. The ions travel down 

the ToF drift tube until they are reflected by an ion mirror which serves to correct for 

the energy spread of isobaric ions. Once reflected the ions are detected by an MCP 

detector. The total effective distance the ions travel from the orthogonal acceleration 

region to the detector is estimated to be ~ 1.19 metres [57].
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2.2.5 Reflectron ion mirror

Situated at the other end of the flight tube, away from the orthogonal accelerator, (see 

figure 2.01) is a device called a reflectron or ion mirror. It makes use of a retarding 

electric field to reflect ions that have been pulsed from the orthogonal accelerator. The 

ions travel back through the reflectron towards the micro channel plate (MCP) 

detector which is placed on the same plane as the orthogonal accelerator.

The device itself is based on ideas and principles of Mamyrin et al. [58] which was 

used to provide energy focusing, particularly when ions have a large energy 

distribution.

The reflectron employed in the LCT is constructed from a series of ring shaped 

electrodes, with the first and last electrodes being grided. The name given to this type 

of reflectron is termed single-stage, as it has one linear field.

The reflectron compensates for an initial kinetic energy distribution of the ions in the 

flight tube after they have been pulsed by the orthogonal accelerator. In circumstances 

where the energy spread is large the resolving power would be very poor without such 

a device. When the energy distribution is small the reflectron has little influence 

except that it effectively doubles the path length compared to a linear ToF of similar 

dimensions.
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The underlying physical principle on which a reflectron operates is simple. Consider 

two ions of equal mass, but with different velocities that have been pulsed by the 

orthogonal accelerator. The ion with the greatest velocity (energy) will travel faster 

and reach the reflectron first. This ion will penetrate the repelling electric field to a 

greater depth than the slower ion. It will therefore spend a longer time in the 

reflectron.

By carefully considering the potential applied to the ring electrodes the slower ion will 

turn around and exit the reflectron before the more energetic ion. The more energetic 

ion catches up with the slower ion in the field-free region beyond the reflectron and 

the detector is placed here. This is termed energy focusing and provides a substantial 

increase in mass resolution for ToF instruments when a large energy spread is 

involved, for example, laser desorption.

When data is being acquired on the LCT the first electrode of the reflectron is set at 

the same potential as the final grid on the orthogonal accelerator, this is +/- 4685 

volts. The other electrodes provide a linear retarding field gradient and the maximum 

potential supplied to the back of the reflectron is + 1800 volts or -  1802 volts 

depending on which ionisation mode the acquisition is being performed under.
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2.2.6 Ion detection system

2.2.6.I Introduction

In mass spectrometry ions of interest are usually detected by techniques based on 

secondary electron emission (SEM) making use of electron multipliers or micro 

channel plates (MCP) detectors which amplify the signal typically by 105-107 for 

single ion detection. These type of detection systems are ideally suited to mass 

spectrometers such as quadrupoles, sectors and ToF.

The detection of ions can further be broken down into two groups, those which detect 

ions successively at one point, called point ion detectors and those which detect ions 

at the same time along a focal plane, called multi point detectors. The LCT made use 

of a multi point detector called a micro channel plate (MCP).

2.2.6.2 Micro Channel Plate (MCP)

MCP’s are the key detection element used in TOFMS. The sub-nano second temporal 

response time, high gain, high dynamic range and low noise characteristics have made 

them the preferred detector in all TOFMS applications.

The MCP is composed of an array of 104 to 107 capillary type electron multipliers 

parallel in position to each other. Each channel has a diameter in the range of 10-
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25Jim and are approximately 40-100 times greater in length than their diameter. The 

inner surface of each channel is coated with PbO glass which readily emits secondary 

electrons when struck by incident ions. A potential difference is placed across the 

MCP to cause electrons to accelerate from one side to the other. The top surface, the 

cathode, is held at a negative voltage and the bottom surface, the anode, is held at a 

positive voltage. Thus, having a negative charge, the electrons within the MCP 

accelerate towards the anode.

Amplification of the signal for a single MCP is typically 103 to 104. To maximise the 

amplification, the first electron emission should occur as close to the channel entrance 

as possible. For this reason, MCP channels are usually placed at an angle.

Performance and efficiency is also greatly improved by stacking two MCP’s on top of 

each other. The name given to this kind of setup is the ‘chevron design’ and was used 

in the LCT. The MCP’s are placed on top of one another but with the channels tilted 

in opposite directions. The shower of electrons from one MCP will enter the channels 

of the other at an angle, thus improving overall efficiency. The overall gain of a 

chevron MCP is typically 106-108.

Modem mass spectrometry is an important technique for the study of biological and 

polymer macromolecules in the thousand kilo or more dalton mass range. The 

detectors mentioned above have very low efficiency at very high m/z values.
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At these high masses, the incident ions have insufficient velocity to impart enough 

energy to an electron, on collision, to provide secondary electron emission (SEM).

Several research groups [59-61] have looked at detection methods that extend the 

mass range capabilities beyond that obtained with MCP’s and electron multipliers. 

One recent design is based on the use of a low temperature particle detector. These 

cryogenically cooled superconductor-insulator-superconductor (SIS) tunnel junction 

detector offer 100% detection efficiency for all macromolecular ions. Cryogenic 

detectors measure the thermal energy deposited by the ions on impact and thus have a 

sensitivity that is largely mass independent.

It is well documented that ToF instruments have an unlimited mass range. One 

limiting factor being the currently employed detectors response. The current upper 

mass limit of ToF instruments could well be extended by the use of cryogenic 

detectors in the future. Some disadvantages though in using these type of detectors is 

that they are relatively large in size compared to the MCP’s, they operate at very low 

temperature and have very small apertures.

2.2.7 Vacuum system of the LCT

The vacuum system of the instrument is shown in a simplified schematic in Figure

2.05. It makes use of three turbomolecular pumps. The first pump is an EXT 250 HI 

model (pump 1, in Figure 2.05) which provides fine pumping with a capacity of 250 L
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s'1 to the first hexapole region. The second (pump 2, in Figure 2.05) and third pumps 

(pump 3, in Fig ure 2.05) are EXT 70 models which provide a pumping capacity of 70 

L s '1 to the second hexapole region and the time-of-flight analyser, respectively. The 

backing lines for the three turbomolecular pumps are all connected to a rotary pump 

E2M28 model which provides rough pumping for the ion source and turbomolecular 

pumps backing. All pumps were manufactured by Edwards High Vacuum, Crawley, 

UK.

Monitoring the pressure inside the instrument is made through readings taken from a 

Pirani Gauge and Penning Gauge. The former measures the pressure in the ion source, 

for rough pumping, which was typically around 1 x 10"1 mbar and the latter measures 

the pressure in the time-of-flight analyser, for the turbomolecular pumping, which was 

typically as stated previously < 1 x 10'6 mbar.
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Figure 2.05: Schematic showing position of turbomolecular pumps in the LCT
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Section B

Performance characteristics of the LCT
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2.3 Investigation of the Performance Characteristics of the LCT Mass
Spectrometer

2.3.1 Introduction

Initial experiments on the LCT were aimed at determining the best instrumental 

settings for achieving high sensitivity and mass measurement accuracy, particularly 

those concerning the ToF analyser. No operation manuals accompanied the LCT, 

therefore operating parameters had to be established.

2.3.2 Mass range characteristics of TOFMS

2.3.2.1 Introduction

One of the main advantages of TOFMS is its theoretical unlimited mass range 

capability. However, in practice the mass range will be limited by the performance of 

the ionisation technique, the detector employed and the amount of memory that is 

available to store the vast amount of acquired data that ToF instruments achieve.

The detector sensitivity is less for high mass ions than for low mass ions, since the 

high mass ions have correspondingly lower velocities, (see section 2.2.6.2).
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23.2.2 Mass range of the LCT

The first phase of the investigation involved a study to determine the mass range in 

positive electrospray ionisation mode of a mixture of sodium iodide and caesium 

iodide salts (BDH Chemicals, England).

A solution of sodium iodide was prepared at a concentration of 2pg/pL in 50:50 

(isopropyl alcohol) IPAifhO. Caesium iodide was added to this solution at a 

concentration of 0.05pg/pL. Thus, in positive electrospray ionisation mode, a 

spectrum of monoisotopic [Na(NaI)n+] singly-charged cluster ions are observed. A 

little amount of caesium iodide is added to the solution to supply the m/z 132.9 ions in 

the gap between m/z 22.9 and m/z 172.9.

The Nal and Csl mixture in solution was introduced into the source part of the mass 

spectrometer directly by means of a lOOOpL Hamilton (Hamilton Bonaduz AG, 

Switzerland) gas tight syringe and a Havard Apparatus (South Natick, MA, USA) 

Model 22 syringe pump. The flow rate of the solution was kept constant at 50pL/min.

The LCT is a highly automated instrument and tuning is carried out entirely through 

the data system. On infusion of the salt mixture solution the instrument is tuned to 

give optimum performance before data was acquired.

Optimisation involves tuning source, hexapole transfer voltages and ToF analyser 

settings. The ToF analyser settings allows the selection of a flight time to be entered. 

The flight time then determines the repetition rate of the orthogonal accelerator, which
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pulses a packet of incoming ions at a right angle to their initial trajectory prior to 

entering the orthogonal accelerator. The flight time was varied between 5Ops and 

140ps in steps of lOps, which corresponds to a pusher frequency of ~ 20-5 kHz, and 

the observed mass range noted.

The electrospray source conditions were: capillary voltage of 3500V, sample cone 

voltage of 30V, extraction cone voltage of 3V, source temperature of 100°C and 

desolvation temperature of 150°C. The only parameters that were changed during the 

study, after optimisation of the first acquisition, was extraction cone voltage which 

was varied between 3-10V and rf lens voltage which was varied between 100-350V.

Data acquisition was performed in the continuum mode and was used throughout the 

study. In this mode, data is stored for every scan acquired. A scan time of Is and an 

interscan time (time between a scan finishing and the next one starting) of 0.1s was 

selected. Three hundred scans were collected in total. The following table (table 1) 

and graph (Figure 2.06) show the flight time, t plotted against the observed and 

theoretical masses for ions acquiring approximately 60% of the pusher potential.

Flight time (ps) Observed m/z Theoretical m/z
50 1704 1804
60 2470 2597
70 3379 3535
80 4450 4617
90 5625 5844

o o 6982 7215
110 8445 8730
120 10050 10389
130 11800 12193
140 13500 14141

Table 1

i
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The theoretical m/z ratio is calculated from the simple ToF equation, where:

t = D x [ ( m /( 2 z e V acc)]1/2

t = time
D = distance travelled by the ions 
m = mass
z = number of charges 
e = electronic charge 
Vacc = acceleration voltage

The effective distance travelled by the ions from the time they are pulsed until the 

time they are detected is ~ 1.19 metres. The acceleration voltage the ions obtain on 

exiting the orthogonal accelerator is constant and kept at 4685V. These ions however 

gain an additional percentage of the voltage applied to the pusher plate of the 

orthogonal accelerator. Therefore, the final voltage the ions obtain on entry to the ToF 

drift tube is approximately 5300V, which is about 60% of the pusher plate voltage 

[57].

Thus, for example, if the user sets a flight time of 5Ops then the theoretical m/z ratio 

would be m/z 1804.



Plot of flight time versus observed and theoretical m/z ratio
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Figure 2.06: Plot of flight time, t against m/z for observed mass and theoretically 

calculated masses for ions acquiring approximately 60% of the pusher potential.

A mass spectrum obtained from injection of the sodium iodide and caesium iodide 

mixture (discussed previously), acquired on the LCT is shown in Figure 2.07 (top). As 

can be seen from the uncalibrated mass spectrum, in which the y-axis has been 

expanded, singly charged ions approaching m/z 13000 are readily detected by the 

MCP on the LCT.
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Figure 2.07 : Mass spectrum of a Nal/Csl mixture, showing mass range capability of LCT (top) 
and Quattro II (bottom)
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The detection of singly charged ions observed on the LCT is over three times greater 

than that obtained on a quadrupole instrument. The comparison is shown in Figure 

2.07. The highest achievable mass range for singly charged ions obtained on a 

quadrupole (Quattro II) is shown in Figure 2.07 (bottom). This spectrum shows 

[Na(NaI)n]+ clusters observed up to m/z ~ 4000. Optimum operating conditions for the 

Quattro are discussed below:

A Nal solution was made to concentration of 10 ppm in IPA:H20 (50:50). This 

solution was then injected via a 20 pL loop injector into a MeOFFFLO (50:50) solvent 

flowing at 20 pL min"1 into the ESI source.

ESI conditions were, capillary voltage of 3500V, sample cone voltage of 40V and 

source temperature of 70°C. Data acquisition was performed in continuum mode over 

a mass range of m/z 200-4000, with a scan time of 8s with an interscan time of 0.01s. 

The number of points per dalton was set at 8.

The extended mass range capability of the LCT as shown in Figure 2.07, means that 

the instrument can be used to study systems of far greater complexity and molecular 

weight than quadrupole based systems.

An example, which demonstrates this fact, is given by the study of synthetic polymer 

distributions [62]. In these systems the molecular weight distribution and mass 

accuracy of individual oligomeric species are very important parameters to be 

determined. These
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Figure 2.08: Mass spectra obtained on the LCT and Quattro instruments illustrating the 
greater extended mass range achievable with the LCT
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systems have a large number of components covering a wide mass range and a high 

dynamic. Significant success has been obtained in the study of these particular 

systems using MALDI-ToF and it is interesting to compare these results with those 

obtained using ESI. Interfacing ESI with quadrupole mass analysers however does not 

provide a high enough mass range especially since many of these synthetic systems 

form singly charged ions in ESI. There are experimental difficulties in obtaining these 

polymeric distributions, which are mainly associated with choice of solvents and 

cations used to aid ionisation efficiency.

Figure 2.08 shows the limited mass range of the Quattro II, quadrupole mass analyser 

and the extended mass range of the LCT [62].

These polystyrene standards were dissolved in 50:50 (DMF:THF) to concentration of 

lOmg/mL. The alkali metal salts were dissolved in 50:50 (DMF:THF) to a 

concentration of lOmg/mL. The two solutions were then mixed at a ratio of 9:1 

(Polystyrene:salt). This solution was then injected via a 20pL loop injection into a 

stream of 50:50 (DMF:THF) flowing at a rate of 30pL/min into the ESI source.

The average molecular weight distribution detected on the Quattro instrument 

increases with increasing cation size. This difference is also apparent on the LCT. It is 

known [62] that when the cone voltage is increased, the clustered adduct ions 

observed in the LCT spectra are reduced, thus affecting the overall spectrum 

distribution.
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2.3.3 Calibration

2.3.3.1 Introduction

Whatever analytical instrument is used for experimental studies, the need for 

calibration is paramount prior to data analysis. Therefore, the LCT was properly 

calibrated to give the best mass accuracy measurements prior to acquiring data. 

Calibration required a suitable sample calibrant that gave a series of ions covering the 

mass range of interest. A suitable calibrant used for the LCT was found to be a 

mixture of Nal and Csl, (since it can be easily removed from the source) prepared at 

the same concentration as discussed previously in section 2.3.2.2. Upon calibration 

the mixture in solution is introduced into the source region of the mass spectrometer 

either by direct infusion or by means of a loop injection.

2.3.3.2 Calibration procedure

A mass spectrum of the halide salt mixture in solution was provided by direct infusion 

at a rate of 30pL/min is shown in Figure 2.09, with the same apparatus employed in 

section 2.3.2.2. Calibration data was acquired typically over a mass range of m/z 100- 

1000 with a scan time of Is and an interscan time of 0.1s.

Electrospray source conditions were: capillary voltage of 3500V, sample cone voltage 

of 10V, source temperature of 100°C and desolvation temperature of 150°C.

The rf lens voltage was set at 200V and the flight time of ions entered as 75 ps, which 

corresponds to a pusher frequency of ~ 15kHz.
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When the sample is injected via a loop injection a ‘peak’ arises in the total ion 

chromatogram (TIC) where each point on the peak gives a mass spectrum. When the 

sample is directly infused no peak is observed, normally just an horizontal line, where 

each point on the line gives a separate mass scan.

The acquired uncalibrated mass spectrum of the halide mixture, is then matched 

against a table of known masses of the peaks in the reference compound which is 

stored as a reference file in the computer software. Each peak in the reference file is 

then matched to the corresponding peak in the uncalibrated acquired mass spectrum. 

The mass differences between the reference compound and the calibrant are used as 

calibration points through which a calibration curve is drawn. The vertical distance of 

each calibration point to the curve is also calculated. This represents the residual mass 

error after calibration and the lower the residual values are the better.

Once an acceptable calibration has been performed, ie. to within 0.1 Da for nominal 

mass and to within 3 mDa for accurate mass the data is saved as a calibration file and 

applied for future acquisitions. A calibration report is then produced, see Figure 2.10.
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Figure 2.10: Calibration report
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If, however instrumental voltages were altered with regard to the voltages of the saved 

calibration file, a new calibration file would have to be set up otherwise inaccuracies 

in mass measurement accuracy would result.

2.3.4 Investigation of the Mass Resolution Performance

2.3.4.1 Introduction

Generally, resolution is limited by the initial, spatial and energy dispersions in the y- 

direction (direction of orthogonal pulse), as discussed previously in section 2.2.4.

Ions that have different spatial positions in the y-direction in the orthogonal 

accelerator can be focused onto a point just outside the accelerator, providing spatial 

focusing. At this point the spatial spread is decreased but the energy spread is 

dominant.

Optimisation of resolution in the reflecting geometry mode, as in the LCT, can be 

achieved by placing the space focus point just beyond the accelerator, by careful 

choice of voltages applied to the accelerator. This point then serves as the object plane 

for the reflectron. At this plane there will be a range of energies, due to the energy 

spread of the ions gained during acceleration. This energy spread though is overcome 

by the single-stage reflectron employed in the LCT, which provides first order space 

focusing.
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2.3.4.2 Resolution of the LCT

A peptide known as Melittin, a bee sting extract (MW 2844.754 Daltons), was used to 

measure the resolution of the instrument. Melittin was directly infused at a rate of 

20pL/min into the source region of the mass spectrometer at a concentration of 

lOppm in 50:50 acetonitrile:water and 0.2% formic acid. The acquisition was 

performed in positive electrospray ionisation mode.

Electrospray source conditions were: capillary voltage of 3500V, sample cone voltage 

of 60V, extraction cone voltage of 3V, source temperature of 100°C and desolvation 

temperature of 150°C. The rf lens voltage was set at 300V and the flight time of ions 

entered as 5Ops, which corresponds to a pusher frequency of 20 kHz.

Data was acquired over a mass range of m/z 200-1000 with a scan time of Is and an 

interscan time of 0.1s. Three hundred scans were acquired in total.

A characteristic feature of electrospray is its ability to form multiply charged ions.
^  I

Resolution of the LCT was performed on the multiply charged ions [M + 3H] , [M + 

4H]4+, [M + 5H]5+ . An example of the resolution of the quadrupuly charged ion is 

shown in Figure 2.11 (top) and corresponds to m/z 712.18. The calculation of 

resolution for this ion and the other ions in different charge states, was mass divided 

by the peak width at half height and found to be ~ 5450. This resolution can clearly be 

seen to be sufficient to distinguish separate isotopic peaks that differ by ~ 0.3 Da for 

this peptide.
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The resolution obtained on the LCT can be seen to be far greater than that obtained on 

the quadrupole instrument (Quattro II). Quadrupole instruments provide unit 

resolution. The resolution of the quadrupuly charged ion of melittin obtained on the 

quadrupole is shown in Figure 2.11 (bottom). Both spectra show an expanded region 

of the quadrupuly charged ion.

To obtain maximum resolution on the quadrupole instrument, the following 

parameters were set, where the mass range of m/z 650-850 was scanned. Capillary 

voltage 3500V, sample cone voltage 40V and source temperature of 70°C. The mass 

range was scanned in continuum mode with a scan time of 1 s and interscan time of 

0.01s. The number of points per dalton was set at 16. The sample solution solvent and 

carrier solvent was the same as the experimental conditions performed on the LCT.

Although the mass accuracy of quadrupole instrumentation has been well documented 

to be < 10 ppm, it has been shown that the ability to resolve and mass measure 

isotopic distributions of < 1 Dalton for the quadruply charged ion of Mellitin can not 

compete with the LCT.

72



711 712 713 714 715 716

712.7

—i Da/e 
716710 711 712 713 714 715

Figure 2.11: Comparison of resolution of [M+4H]4+ of Melittin obtained on LCT (top) 
and Quattro II (bottom)
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2.3.5 Determination of Limit of Detection (LoD)

2.3.5.1 Aim

The objective of this section was the determination of the lower limit of detection for

Dimethylol propionic acid (DMPA), a polymer additive used in food contact

applications.

2.3.5.2 Quantitative analysis

There is not one single universally accepted definition that clearly defines the limit of 

detection (LoD). Generally, it is regarded as the smallest amount of analyte that can 

be measured or detected with ‘reasonable confidence’ above the level of baseline 

noise. It is up to the analyst to decide what is ‘reasonable confidence’ through the use 

of statistical methods.

The application of mass spectrometry provides a suitable analytical method to 

quantitatively determine a particular molecular species in either organic or inorganic 

matrices. The LoD is especially important in trace analysis, particularly when the 

analyst has to decide whether a contaminant is present below or above a legalised 

limit. In these circumstances the LoD should be approximately an order of magnitude 

lower than the legalised limit.

Several standards of known concentration, containing the analyte of interest are 

introduced into the mass spectrometer and the MCP’s response recorded as a function

i
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of run time. The response is shown in the form of a peak, in what is called ‘The Total 

Ion Chromatogram’ (TIC). The peak area for a given response was determined using 

the ‘integrate’ icon from the MassLynx software. The MCP’s response for the average 

area of a sample blank is subtracted from the average area calculated for the sample, 

which is injected between three and five times. Once the average peak area response 

is obtained a calibration curve relating the ‘Average peak area’ versus ‘sample 

concentration’ can be produced.

Microsoft Excel was used to construct a ‘line of best fit’ by means of linear regression 

which takes the form:

y = mx + c

where,

m = slope of the curve 
c = intercept on the y-axis

An estimate of how well the experimental data points fit a straight line is then given 

by the correlation coefficient, r through the Microsoft: software. A perfect correlation
•y

between the plotted x and y values would result in r being equal to 1 .

For this study the LoD was calculated by two methods:

Method I: where, the analyte signal: baseline noise is 3:1 and

Method II: where, Ld = yb + kSb

Here, Ld is the lowest detectable signal, yb is the blank or baseline signal (intercept), 

Sb is the standard deviation of the blank values over the range of interest and the

75



multiple factor k generally equals 3 which was recommended by Kaiser [63] and the 

American Analytical Methods Committee [64].

2.3.5.3 Repeatability

To demonstrate the repeatability and hence the precision of the integrated areas, a 

sample of known concentration within the calibration range was injected into the mass 

spectrometer at least fifteen times to ascertain the percentage relative standard 

deviation (% RSD).

The repeatability is the closeness of the peak integrated areas between successive 

results obtained with the same method under the same conditions, that is, the same 

operator, at the same time on the same instrument.

The % RSD takes the form:

% RSD = standard deviation x 100% 
mean

The European Union [65] have drawn up recommendations for the precision of an 

analytical method and is shown in the table 2  below:

Concentration % RSD
1 ppm 16

1 0 0  ppb 23
lOppb 32
lp p b 45

Table: 2
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A simple definition for the precision of the fifteen replicate injections would be ‘the 

closeness of a series of replicate measurements to each other’.

2.3.5.4 Data interpretation

Quantitative measurements are subject to errors. These errors can be random or 

systematic errors.

Random errors are known to affect the precision or reproducibility of an experiment. 

This is shown for example, when replicate injections of the same sample are injected 

but have varying results (varying integrated areas see section 2.3.5.5.3(i)). The 

imprecise measurements therefore affect the repeatability of the result.

Systematic errors cause the results of replicate measurements to deviate from the true 

value of the quantity being measured. These errors are said to affect the accuracy of 

experimental measurements. These errors however would not be observed in the 

replicate injection study since a ‘true value’ is not known.

Another source of error is due to contamination caused by previously injected samples 

and termed the ‘carry-over error’. This type of error can be considered a systematic 

error since its dependent on the test method parameters and depends solely on the 

concentration of the previous sample.

I
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2.3.5.S LoDofDM PA

2.7.3.5.1 Aim

To quantitatively determine the LoD in full scan mode for DMPA on the LCT 

compared to the LoD in the single ion monitoring (SIM) regime on a quadrupole 

instrument (Platform II, Micromass).

2.3.5.5.2 Single Ion Monitoring (SIM)

An ideal mass spectrometer would sample every ion produced, all of the time. This, 

though in practical terms, is not possible for a quadrupole instrument.

The acquisition and recording of a single ion current at a selected m/z value is referred 

to as single ion monitoring (SIM). In SIM mode all other ions are excluded from the 

analysis and a major improvement in sensitivity over scanning the whole spectrum is 

observed, since the mass spectrometer will monitor the selected ion 1 0 0 % of the time. 

No time is wasted making measurements of the baseline noise between peaks or 

measuring ions that are not relevant to the analysis.

Thus, detection limits in full scan mode on a quadrupole are approximately two 

orders of magnitude greater than in SIM mode since the instrument spends a limited 

amount of time at each m/z value during scanning. The LoD level in SIM mode can 

be achieved in full scan mode by recording all the ions over the full mass range all of 

the time. Thus, the ions have to be recorded simultaneously which is not possible with 

a quadrupole instrument.
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ToF instruments coupled with a MCP detector and a TDC have the ability to record 

all the ions over the full mass range for every pulse of ions supplied by the orthogonal 

accelerator.

It was therefore hoped that the LoD in full scan mode for DMPA on the LCT was 

equal to that in SIM mode on the quadrupole instrument.

2.3.5.S.3 LoD of DMPA in full scan mode

DMPA, of molecular weight 134, is a monomer used in the manufacture of certain 

plastic materials, which are intended to come into contact with foodstuffs. Its structure 

is shown below:

CH2 OH

CH3  C  COOH

CH2 OH

After the plastic product manufacture, the DMPA can remain in the product and could 

migrate into foodstuffs which come into contact with the food packaging plastic. This 

could serve as a health risk to humans unless it is carefully monitored since it could be 

directly or indirectly consumed into the human body.
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The additives therefore, that are used for food packaging plastics are well regulated in 

most countries due to the possibility of health risk. The possibility of migration 

through the plastic depends on the type of plastic, diffusion properties of the additive, 

storage temperature and contact time between the plastic and the food.

The manufacturer of the plastic packaging must be made aware of the actual amount 

the additives migrate into the food. Thus, certain testing and criteria have to be met.

Schwope [6 6 ] discusses techniques to study the migration of plastic additives. 

Migration testing is not directly carried out on the food since it would be problematic 

to separate and quantitatively measure low concentrations of additives. Therefore, 

solvents such as distilled water, aqueous acetic acid and aqueous ethanol are used as 

food simulants.

To meet the criteria set by the European Standards Committee the analysis of DMPA 

should be quantitatively determined in the concentration range 1 0  ppb -  1 0 0  ppb. 

Thus, the LoD of DMPA in,

(i) 95% aqueous Ethanol
(ii) 10% aqueous Ethanol
(iii) 3% acetic acid

was determined.
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(i) DMPA (95% aqueous Ethanol)

ESI was carried out in negative ionisation mode. Optimum instrumental conditions 

were as follows:

Electrospray source conditions were capillary voltage of 3500 V, sample cone voltage 

of 20V, extraction cone voltage of 7 V, source temperature of 100°C and desolvation 

temperature of 150°C.

The sample solution was introduced via a lOpL rheodyne loop injection into a stream 

of 90% ethanol + 10% H2 O + 0.03% NH3 solvent flowing into the ESI source at a rate 

of 50pL min'1. A small amount of NH3 was added to the solution since it promotes the 

deprotonation of acidic compounds.

The rf lens voltage was set at 100 V and the orthogonal accelerator operated with a 

frequency of between 10-15 kHz. Data acquisition was performed in continuum mode 

with a scan time of Is and an interscan time of 0.1s. Mass spectra was acquired over a 

range m/z 90-140.

Figure 2.12 shows a typical example of a TIC trace obtained when a blank and 5 

sample injections were made at the lOOppb concentration level, which was also the 

adopted method for analysing all other samples during the study. Figure 2.13 shows 

the mass spectra obtained over the concentration range of interest, 10-100 ppb. The 

mass spectra obtained for this sample and all other samples studied during the LoD
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investigation was provided by selecting the area under one of the sample response 

peaks from the TIC in Figure 2.12 and subtracting the response from the blank. This is 

done manually through the MassLynx software.

The LoD was determined for m/z 133 which corresponds to [M-H]' the deprotonated 

molecule.

Data was acquired over the mass range m/z 90-140 since in-source fragmentation 

produced a large ion signal at m/z 89 due to loss of CO2 from the deprotonated 

molecule. The signal for this ion totally suppressed all other ion signals, so a different 

scan range was used. By decreasing the cone voltage to 3V, it was hoped that this 

would decrease in-source fragmentation, this though did not prove significant since 

ion suppression from m/z 89 was still apparent.

The molecular ion m/z 133 was chosen for the following reasons; specificity, higher 

mass produced lower interference from background ions.

As the concentration is increased it is quite evident from the mass spectra that the 

[M-H]' signal becomes more intense. At the lowest concentration level, 10 ppb, m/z 

133 is observed together with a tremendous amount of background signal.

The signal at m/z 113 cannot be assigned to be coming from the analyte nor to any 

solvent clusters that may have formed. It seems highly likely that this ion is present 

from the previous acquisition, where CO2 neutral was lost from the deprotonated 2 ,6 - 

DFBA (m/z 158) molecule. A thorough clean of the source region with 50:50

i
1
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Figure 2.13: Mass spectra at 100 ppb (top) and 10 ppb (bottom) of DMPA (95% aq.EtOH)
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Figure 2.12: TIC from 5 sample injections of lOOppb DMPA (95% aq. EtOH)
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Figure 2.15 : Repeatability study of multiple injections for lOOppb DMPA (95% aq.EtOH)



acetonitrileiFhO did not prove effective as the ion could still be observed in the mass 

spectra. The ion at m/z 113 although of greater intensity than [M-H]' at low 

concentration, did not suppress the [M-H]' signal in the respect that a suitable LoD 

could not be achieved.

Table 3 below shows the concentration and average area of sample minus average 

area of blank:

Concentration (ppb) Area
1 0 8

25 2 0

50 39
1 0 0 80.6

Table:3

A calibration curve was constructed from this data and is shown in Figure 2.14. The 

response across the desired range was linear with a regression coefficient of 0.99. The 

LoD determined by method I where the signal:baseline noise was 3:1 was found to be 

1 0  ppb.

The LoD determined by method II where Ld = yb + 3Sb was found to be ~ 2.5 ppb. 

Here, yb = -0.4 and the standard deviation of the blank = 0.6.

A repeatability study was also performed to ascertain the % RSD of 15 replicate 

injections at the 100 ppb concentration level. Figure 2.15 shows a typical example of 

the repeatability of the test method which was also carried out on all other LoD
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samples. From the chromatogram two peak areas were low and eliminated from the 

calculation. The reason for this low integrated area compared to the other values can 

be explained as follows. Occasionally, when the pneumatically assisted rheodyne 

injector was pressed to inject the sample, from the load position, it would turn to the 

inject position but almost instantaneously return to the load position, which suggests 

that some but not all of the sample was being loaded. This was a fault of the 

instrument that was rectified later. The % RSD was found to be 7 %. If, the two low 

peak-areas were therefore included in the % RSD calculation the error would have 

been much greater and not a true reflection of the repeatability study, since a 

systematic error was introduced by the system.

100

80 -

40 y = 0.8061X- 0.3823 
R2 = 0.9996

50 100

Concentration (ppb)

150

Figure 2.14: Calibration curve for DMPA (95% aq. EtOH)
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(«) DMPA (10% aqueous Ethanol)

ESI was carried out in negative ionisation mode. Optimum conditions were as 

follows:

Electrospray source conditions were capillary cone voltage of 3500V, sample cone 

voltage of 20V, extraction cone voltage of 9V, source temperature of 100°C and a 

desolvation temperature of 150°C.

A lOpL aliquot of sample solution was injected into a stream of 90% EtOH + 10% 

H2O + 0.03% NH3 by means of a rheodyne loop injector. The flow rate of the carrier 

solvent was set at IOOjiL min'1.

The rf lens voltage was set at 100V and the orthogonal accelerator operated at a 

frequency between 10-15 kHz. Data acquisition was performed in continuum mode 

with a scan time of Is and an interscan delay of 0.1s. Mass spectra was acquired over 

a range m/z 90-140.

For this experiment the stainless steel capillary inside the probe was changed together 

with the PEEK tubing leading from the rheodyne injector to the ESI probe to avoid all 

possible contamination from the previous sample.

Figure 2.16 shows the mass spectra obtained over the concentration range of 5-100 

ppb. The LoD was determined for m/z 133, corresponding to [M-H]'. At the lowest 

concentration of 5 ppb it can be seen that the background signals are significantly

87



greater than mass spectra obtained with higher concentration, which is to be expected. 

The mass spectra show characteristic ions which could take the form:

m/z Inference
133 [M-H]'
117 [M-OH]'
97 [M-H-2(H20)1'

The origin of the ion at m/z 129 remains unclear, one likely possibility is that it is a 

background signal (contaminant) already present in the source region. The mass 

spectra here was acquired over a mass range of m/z 90-140, since an intense ion again 

at m/z 89 totally suppressed all other ion signals.

Table 4 below shows the concentration and average area of sample minus average 

area of blank:

Concentration (ppb) Area
5 4

25 1 0

50 19
1 0 0 40

Table:4

A calibration curve was constructed from this data and is shown in Figure 2.17. The 

response across the desired range was shown to be linear with a regression coefficient 

of 0.99.
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Figure 2.16: Mass spectra at 100 ppb (top) and 5 ppb (bottom) of DMPA (10% aq. EtOH)
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The LoD determined by method I was found to be 5 ppb. The LoD determined by 

method II was found to be ~ 8  ppb since yb = 1.0 and the standard deviation in the 

blank over the calibration range was found to be 0.91.

The % RSD of 15 replicate injections at the 100 ppb level was found to be 10 %.

50

40

30

20
y = 0.3832X+ 1.0074 

R2 = 0.9955

50 100

Concentration (ppb)
150

Figure 2.17: Calibration curve for DMPA (10% aq.EtOH)

(iii) DMPA (3% acetic acid)

ESI was carried out in negative ionisation mode. Optimum conditions were as 

follows:

Electrospray source conditions were: capillary voltage of 3500V, sample cone voltage 

35V, extraction cone voltage 9V, source temperature of 100°C and desolvation 

temperature of 200°C.
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A lOpL aliquot of sample solution was introduced into the mass spectrometer by 

means of a rheodyne injection. The sample was injected into a solvent stream of 90% 

ethanol + 10% H2 O + 0.03% NH3 solution flowing at a rate of 20pL min'1.

The rf lens voltage was set at 100V and the orthogonal accelerator operated at a 

frequency between 10-15 kHz. Data was acquired in continuum mode with a scan 

time of Is and an interscan time of 0.1s. Mass spectra was acquired over a range m/z 

75-140.

Figure 2.18 shows the acquired mass spectra over the range 300-1000 ppb. The LoD 

was determined for m/z 133 which corresponds to [M-H]\

The concentration level required by the European Standards Committee for the LoD 

of DMPA could not be reached in 3% acetic acid solution. An ion at m/z 119 totally 

suppressed the signal for [M-H]* which was used to determine the LoD. Competing 

analytes, impurities, and cluster ions that cause signal suppression is one of the 

fundamental limitations of electrospray ionisation. The mass spectra show 

characteristic ions which could possibly take the form:

m/z Inference
133 [M-H]'
119 [2(CH3COOH)-HT
103 r2(CH3 COOH)-OHl'
89 [M-H-CO2 T
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The signal at m/z 119 is likely to evolve from loss of a proton from a preformed acetic 

acid cluster. The ion at m/z 103 is likely to be formed from loss of a hydroxyl group 

from the acetic acid cluster. A small signal is shown in the spectra obtained at a 

concentration of 300 ppb, at m/z 89. This probably corresponds to the loss of CO2  

from [M-H]'. To obtain a LoD that is required by the European Standards Committee, 

attempts were made to break up the acetic acid cluster ion that had formed at m/z 119, 

since it totally suppressed the signal for [M-H]' which was used for calculation of the 

LoD.

The desolvation gas was initially increased from the usual setting of 660 L/hr to 700 

L/hr with the intention of evaporating the solvent quicker. The desolvation 

temperature was altered over the range 150°C-250°C and the flow rate was changed 

between 10-120 pL min'1. The cone voltage was increased to over 150 volts but none 

of these significant changes however proved worthwhile and the required LoD could 

not be reached.

Table 5 below shows the concentration and average area of sample minus average 

area of blank:

Concentration (ppb) Area
300 7.2
500 19.2
600 2 2 . 2

800 37.8
1 0 0 0 50

Table:5
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Figure 2.18: Mass spectra at 1000 ppb (top) and 300 ppb (bottom) of DMPA (3% acetic acid)
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A calibration curve was constructed from this data and is shown in Figure 2.19. The 

response across this range was found to be linear with a regression coefficient of 0.99.

The LoD could only be determined by method I which was found to be 300 ppb, since 

a high negative intercept value made it impossible to calculate the LoD by method II. 

The % RSD of 15 replicate injections at the 1000 ppb level was found to be 16 %.

60

40
30
20 y = 0.0617x- 12.225 

R2 = 0.9923

500 1000

Concentration (ppb)

1500

Figure 2.19: Calibration curve for DMPA (3% acetic acid)

The following table (6 ) shows the LoD results obtained for DMPA on the LCT and 

Platform II instruments. The LoD experiments were carried out independently on the 

Platform II instrument [1].

94



LCT (LoD) Platform II (LoD)

DMPA (95% aq.EtOH) ~ 2.5-10 ppb < 1 0  ppb

DMPA (10% aq.EtOH) ~ 5-8 ppb < 1 0  ppb

DMPA (3% acetic acid) -3 0 0  ppb < 1 0  ppb

Table: 6

The results show that the LCT LoD (full scan mode) to be < 10 ppb which is 

approximately the same level to that in SIM mode on the Platform II for DMPA in 

95% aq.EtOH and 10% aq.EtOH.

The LoD for the sample in 3% acetic acid however showed to be approximately thirty 

times less sensitive in the SIM mode.

A possible reason for this could be due to ion signal suppression of [M-H]' from an 

acetic acid cluster of the form [2 CH3COOH-H]' occuring at m/z 119. This ion at m/z 

119 totally reduced the area of the deprotonated sample peak so much that it affected 

the quantitative analysis of the sample in full scan mode.

Problems with cluster formation in the acetic acid medium were probably related to 

the mobile phase used. Acetic acid media is not suited to the electrospray process in 

negative ionisation mode.
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2.3.6 LCMS sensitivity

2.3.6.1 Aim

The objective of this section was to compare the LCMS performance of the LCT in 

comparison with a quadrupole mass analyser, the Platform II. An alkylphenol 

ethoxylate was used to compare the separation efficiency [67].

Conventional scanning mass spectrometers such as the quadrupole, used as detectors 

for separation science, are reaching their fundamental limits when the mass spectral 

range of interest has to be scanned at a rate exceeding 1 scan/s. ToF technology 

however offers high scan rates and the LCT is capable of acquiring typically 20000 

scans/s and recording 10 spectra/s. Properties such as high speed and high mass range 

capabilities of ToF instruments make them well suited to high speed chromatographic 

separations over scanning instruments. Peak widths in separation techniques such as 

capillary electrophoresis (CE) and capillary electrochromatography (CEC) are of the 

order of a few milli seconds and scanning instruments have great difficulty in 

obtaining sufficient data points across such narrow peaks to aid characterisation.

2.3.6.3 Alkylphenol ethoxylates

Alkylphenol ethoxylates (APE’s), of structure shown below, are a group of surface 

active agents that are produced on a mass scale (million ton scale) worldwide.

2.3.6.2 Introduction
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CH2CH20

They find widespread industrial and household use as washing and cleaning agents 

since they are but one ingredient in surfactant and detergent formulations. It is 

therefore by no means unusual to find them ending up in municipal wastewaters and 

rivers, where they constitute a major environmental pollutant.

Their biodegrative products are known to affect the glands that secrete hormones 

directly into the bloodstream, such as pituitary and thyroid of fish [6 8 ].

One such biodegrative product, 4-nonyl phenol an estrogenic agonist is thought to be 

involved in the feminization of male fish in some U.K. rivers [6 8 ].

Therefore, the characterisation of this type of compound class is important for 

regulatory and environmental issues.

A reverse-phase gradient LC separation of the nonyl phenolethoxylate (R=nonyl, 

n= 1 0  and has an average molecular weight distribution of 660) was performed using a 

HP 1050 Chromatograph (Hewlett Packard Ltd., Stockport, U.K.). The nonyl 

phenolethoxylate was dissolved in methanol to an initial concentration of 1 ppm. This 

was diluted for analysis and injected via a 20pL loop injection into a stream of 

methanol flowing at a rate of lmL/min. This flow rate was split 50:1 (waste:ESI
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source) using a post column split (Accurate post-column splitting device, Presearch 

U.K. Ltd). Mass spectra was acquired in positive ionisation mode.

Figure 2.20 shows the TIC traces obtained from injection of sample diluted to a 

concentration of 200ppb on the Platform II (top) and 40ppb on the LCT (bottom).

A suitable well resolved separation could not be achieved on the Platform at the 

40ppb level. Over the elution period of 10-25 minutes the LCT TIC shows peaks that 

are more well defined and clearly resolved than the Platform instrument. The 

individual peaks correspond to the number of oligomers present on the nonyl 

phenolethoxylate. The LCT trace clearly resolves up to 18 components.

The oligomers detected on the Platform are wider and poorly shaped and this is 

evident over the whole chromatogram. This could be due to the apex of the peak 

being missed by the quadrupole as it slowly scans the mass range of interest as well as 

the significantly inferior signal-to-noise ratio.

The nonyl phenolethoxylate has a molecular weight distribution around m/z 660. The 

mass difference for each oligomer is 44 units which corresponds to the ethoxylate 

chain. Typical partial mass spectra associated with some peaks obtained in the TIC of 

the LCT are shown in Figure 2.21. The LCT has shown to provide a more efficient, 

better resolved separation from much lower levels of analyte concentation.

The high data acquisition rate of the LCT and increased sensitivity makes the use of 

oa-ToF technology very attractive for the separation sciences. This would be even
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more noticeable for separation science approaches such as CE and CEC where much 

lower sample loadings are commonly used and where peak widths are significantly 

lower.
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nonyl phenolethoxylate oligomers obtained using the LCT. 
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2.3.7 Exact mass measurement of synthetic polymer and functional fluid
additives

2.3.7.1 Aim

The objective of this section was to investigate the mass accuracy performance of the 

LCT. Ten additives contained in either synthetic polymer or functional fluid 

(lubricant) formulations were studied.

2.3.7.1.1 Introduction

Mass accuracy is defined as ‘the measurement of the closeness of the mass of a given 

measurement to the true mass of the substance’ [69]. Exact mass measurement refers 

to the accuracy of the mass measured to within a specified accuracy. Typically, results 

of <10 ppm are presented here. Accurate mass refers to the measurement of an ion’s 

mass to within a specified error or measurement to within sufficient accuracy to 

assign an elemental formula to that ion. Therefore, exact mass measurement 

determination by means of mass spectrometry is used to confirm the elemental 

composition of various compounds.

Accurate mass measurement has traditionally been performed at high resolution on 

instruments double focusing sectors [70] and more recently on Fourier transform ion 

cyclotron resonance (FTICR)[71] mass spectrometers.

Compounds of low molecular weight, typically < 1000 Da can be mass measured with 

routine accuracy to within 1-5 ppm or less on high resolution instruments.
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A disadvantage of using low resolution instruments, such as, quadrupoles and ToF, 

that made use of El, FAB and LSI is the high possibility of the presence of interfering 

ions from background signals which could effect the mass measurement accuracy for 

the analyte of interest if not properly resolved [72].

However, Roboz et al. [73] showed that mass accuracy measurement by FAB on a 

quadrupole gave an error to within 10 ppm. This mass accuracy error has also been 

demonstrated by Haddon et al. [74] by means of LSI on a quadrupole.

The development of ESI allows cleaner spectra to be observed. The chances of 

interfering ions from ESI effecting inaccuracies in mass measurement on low 

resolution instruments, is lower than using El for example.

It would therefore seem ideal to interface ESI to a sector instrument to obtain greater 

mass accuracy. The successful interfacing of ESI to sector instruments though is 

problematic since high voltages have to be used which do not aid the ionisation 

process.

ESI has been demonstrated to provide mass accuracies on low resolution instruments 

that gave errors that were comparable to high resolution instruments [72].

Kostiainen et al. [75] have demonstrated mass accuracy measurements on a 

quadrupole instrument in negative ionisation mode on some glucuronide derivatives 

by ESI to be comparable to measurements made by FAB on a sector instrument. 

Results showed errors of < 5 ppm.
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ToF is generally regarded as a low resolution instrument, but the interfacing of 

continuous ionisation techniques to an orthogonal acceleration type instrument [76- 

80] facilitates accurate mass measurement determination which now competes with 

high resolution instruments.

Bahr and Karas [81] have recently demonstrated that two synthetic isobaric peptides 

showed mass accuracies of < 5 ppm by means of ESI oa-ToF.

Keough et al. [82] have used an oa-ToF hybrid magnetic sector instrument equipped 

with an El or FAB source to mass measure product ions from MS/MS experiments on 

simple molecules such as CO, C2H4 and some isobaric residues in peptides. Errors of 

+/- 25 ppm for masses > 200 Da are routinely achieved. Mass accuracy was limited to 

masses < 200 Da due to the speed of their TDC.

The use of oa-TOFMS is suitable for fast separation techniques such as capillary 

electrophoresis (CE), capillary electrochromatography (CEC) and capillary zone 

electrophoresis (CZE) due to fast acquisition rates and high sensitivity. Peak widths 

obtained in the TIC for these separation techniques are narrow and need sufficient 

data points for characterisation. Scanning instruments could therefore not compete as 

well as ToF instruments which generate more spectra/s and has greater sensitivity.

Exact mass measurement of pharmaceutical compounds using CZE/ oa-TOFMS 

equipped with an ESI source has been performed by Tetler et a l [83]. The exact mass 

obtained showed an error of < 8  ppm which allowed the confirmation of molecular 

formula.

104



Solid phase extraction (SPE)/LC/oa-TOFMS in ESI mode, has also been shown to 

perform to within a 1 0  ppm error for the determination of pesticides in surface water 

by Niessen et al. [84].

Accurate end group determination by Nielen [85] has also been demonstrated to show 

errors < 5 ppm for low molecular weight polymers by ESI oa-TOFMS.

Exact mass measurements of lubricant polymer additives has been determined using a 

high resolution magnetic sector instrument by means of LSI [8 6 ].

There are few reports in the literature for the analysis of polymer additives by means 

of ESI. Jackson et a l [87], has applied ESI and MS/MS to the analysis of such 

additives on a triple quadrupole mass spectrometer.

Exact mass measurement determination of synthetic polymer and functional fluid 

additives using ESI oa-TOFMS is not cited in the literature and therefore has been 

investigated for a variety of such compounds of masses < 1500 Da.

2.3.7.2 Investigation of the factors affecting mass measurement accuracy
[88,89]

To investigate the factors that influence the mass accuracy measurement, fundamental 

equations for ToF instruments, derived from Newtons equations of motion, (see 

Chapter 1) had to be taken into account.
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The equations suggest a calibration law for ToF instruments which allows accurate 

mass measurement of mass spectra to be performed. The calibration law for time-to- 

mass conversion is of the form:

m 1/2 = At + B

where A and B are constants dependent on the instrument. The term A comes from 

the parameters for example, such as distance travelled by the ions in the drift regions 

and the acceleration voltages.

The term B comes from the parameters for example, such as minor electronic delays 

from detector rise time and jitter from the digitiser.

Thus, high resolution can be achieved in ToF mass spectra by the minimisation of 

jitter and flight time drift. Flight time drift is caused by drift over time of certain 

power supplies, for example the orthogonal accelerator.

ToF averages individual mass spectra so that the ‘jitter’ from electronic devices will 

also average in to the acquired data. This will lead to signal broadening and have a 

marked effect on mass measurement accuracy, since resolution will be degraded.

The precision of mass measurement due to a signal being received at the detector can 

be related to the reliability of identifying the mean distribution of ion arrival times and 

converting these times to mass. The peak signals in the mass spectrum should ideally 

be Gaussian shaped so that the data can be centroided (see later) which makes mass 

measurement values more accurate. Factors responsible for the degradation of mass 

measurement accuracy are a high signal/noise (S/N) ratio, insufficient data points
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generated per peak and the width of the distribution of ion arrival times for one mass, 

since the ion signal detected by the MCP influences the accuracy of the peak centroid.

2.3.7.3 The role of additives in plastics

Polymer additives have several key functions. They aid processing and finally 

characterise the formulated commercial product. The additives investigated were 

chemically different from one another and are added as antiwear agents, antioxidants, 

UV stabilisers, plasticizers, flame retardents or antifoam agents [90], some of which 

are discussed below. These type of additives tend to be polar involatile compounds 

and are added to the formulation at the 0.1-3% weight for weight (w/w) level or 

lower.

Antioxidants are added to a polymer formulation to slow down oxidation and to slow 

down the ageing process of the polymer, therefore providing a method of stabilisation. 

They are usually added to the polymer formulation at a level of 1%. These included 

Irganox 565, Irganox 1010, Irganox 1076 and Irgafos 168 in the study.

Degradation reactions induced by light and oxygen on plastics can cause chemical and 

physical damage to the product. Therefore, light stabilisers are added to a formulation 

at a concentration of < 2 % and are capable of retarding degradation through light. 

Tinuvin 327 and Tinuvin 770Df were investigated in the study.

Lubricants are added to a polymer formulation to influence the rheology of the final 

product in a desired way. They also provide the final product with a smooth finish.
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Lubricants are added to formulate rigid PVC for example. Only one additive of this 

type was investigated, commonly known as 3608.

Plasticizers are added to formulations to improve processibility, flexibility and 

stretchability of the product. The study included Emkarate 3020, TCP and TXP.

The characterisation of polymer additives by mass spectrometry gained popularity 

with the introduction of soft ionisation techniques such as FAB [91-93] and LD [94- 

96] in the 1980's. Ionisation techniques such as El and Cl require the additive to be 

thermally labile (volatile), whereas FAB and LD can analyse involatile compounds.

The characterisation of polymer additives in polymer formulations is difficult owing 

to the small amounts present. Chromatographic analysis of polymer extracts therefore, 

have to be employed due to the complexity of the polymer formulations.

Identification and characterisation of various polymer additives has recently been 

demonstrated by Langridge-Smith et al. [97] by means of a two step laser 

desorption/laser photoionisation TOFMS (L2MS) and by Davidson et al. [98] by 

means of supercritical fluid chromatography (SFC) with APCI on a quadrupole 

instrument.

Direct infusion mass spectrometry of some polymer additives was utilised and 

provided exact mass measurement data which could facilitate initial experimental 

optimisation of hyphenated separation techniques such as LC/MS, CE/MS or 

CEC/MS, for future investigative studies.
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2 3 .7.4 ESI oa-ToF of pure polymer additives

The pure polymer additives studied are shown in Table 7. They consist of four various 

groups of additives, antioxidants, light stabilisers, plasticizer or lubricant additives.

An example of how the exact mass measurement data acquisition was determined will 

be comprehensively discussed for Irganox 565 and 3608 which was presented as an 

unknown. It will be shown how elemental formulas can be calculated from the exact 

mass measurements made. All other additives investigated followed the same 

procedure. Therefore, it seemed appropriate to demonstrate the procedure only once. 

The mass spectrum and exact mass measurement spectrum, which contained the 

reference compound, for each additive will be shown for clarity in a joining appendix. 

Each spectra it-r.hfHild hejinted were not necessarily acquired on the same day.

2.3.7.5 Optimum source and instrumental voltage conditions

ESI was carried out in positive ionisation mode for every additive studied. Optimum 

source, transfer and analyser voltages were as follows:

Capillary voltage of 3500V, extraction cone voltage of 8 V, sample cone voltage 

variable between 40V and 100V, source temperature 100°C and desolvation 

temperature 150°C.

The rf lens voltage was set at either 200V or 300V and the orthogonal accelerator 

operated with a frequency of 10 kHz.
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Trivial name Chemical
name Structure Elemental

Composition
Molecular

Weight

TCP
Tricresyl phosphate C21H21P04 368

Irganox 565
2,6-di-tert-butyl-4- 
(4,6-bis(octylthio)- 

l,3,5-triazin-2- 
ylamino) phenol

U H 9  5C lH |7  

C4H9 SC |H |7

c 33h 56o s 2N4 588

Durad 220X Trixylenyl phosphate C24H27P04 410

Irganox 1076
Octadecyl-3-(3,5-di-

tert-butyl-4-
hydroxyphenol)-

propionate

<^H 9

H 0----- ( O ) ----- (c h 2)2c o 2c  18H37

C4 H9

c 35h 620 3 530

Irgafos 168 Tris (2,4-di-tert- 
butylphenyl) phosphite

C 4 H 9

C 4 H 9 — <^o)— °  ~ - P

3

c 42h 63p o 3 646

Irganox 1010 (3-(3,5-di-tert-butyl-4-
hydroxyphenyl)

propionate)

C4H9

HO-----( C j ) -----(CH2» C O lC H j-

C4H9 ___

- c
C73h 108o ,2 1176

Tinuvin 327 2,4-di-tert-butyl-6-95- 
chlorobenzotriazol-2- 

yl) phenol

HQ JC4H9

X
C4H9

c 20h 24o n 3c i 357

Tinuvin 770Df Bis (2,2,6,6,- 
tetramethyl-4- 

piperidyl) sebacete

h k T  J ^ ch,

) — C0MCHB1C02— (

HJC^I f^cH )
CHj CHJ

c 28h 520 4n 2 480

Emkarate

3020
Ditridecyl phthalate

.C02C13H27

o c
C02C13H27

C34 H5804 530

Table 7: Nomencluture, structure and molecular weight of the polymer additives 
studied
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Data acquisition was performed in the continuum mode, with a scan time of Is and an 

inter-scan delay of 0.1s. Mass spectra was acquired over a mass range that covered the 

mass of the polymer additive being investigated.

These instrumental conditions remained constant except where stated and are fully 

listed in Table 8  for each additive studied.

23.1.6 Exact mass data acquisition

An initial mass spectrum is acquired to determine which ion is to be accurately mass 

measured. In positive ionisation mode the ions produced are typically a protonated 

molecular ion, [M+H]+, or ions formed from adduct formation from ammonia, sodium 

or potassium, i.e. [M+NH4 ]+, [M+Na]+ or [M+K]+. For each additive studied, the ion 

assigned for mass measurement accuracy, together with its monoisotopic mass can be 

found in Table 9.

The following procedure describes how the exact mass measurement for each of the 

polymer additives investigates was determined.

After deciding which ion is to be accurately mass measured, the additive in solution 

was mixed with polyethylene glycol (PEG) which has the chemical structure 

[H(CH2CH2 0 )n0 H], or Leucine Enkephalin (MW 555) for provision of a ‘lock mass’, 

see Table 9. The resulting mass spectrum is mass calibrated with a ‘base’ calibration, 

set up prior to the analysis, from a mixture of Nal/Csl salts.
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Additive Sample
solvent

Carrier
solvent

Flow
rate
(pL

min'1)

Cone
Voltage

(V)

RF lens 
Voltage 

(V)
Reference
compound

Reference
ion

‘Lock
m ass’
(m/z)

Irganox

565
DCM CH3CN:H20

(1:1) 50 50 200 PEG 600 [PEG+Naf 613.3411

Irganox

1010

DCM:MeOH 
(1:9) + 0.1% 
Formic acid

MeOH:H20
(1:1)

300 35 150 LEU
ENK

[M +H f 556.2771

Emkarate

3020
THF:MeOH

(2:8)
MeOH:H20

(1:1) 300 35 150 LEU
ENK [M+H]+ 556.2771

Irganox

1076

DCM:MeOH 
(1 :9 )+  0.1% 
Formic acid

MeOH:H20
(1:1) 300 35 150

LEU
ENK

[M+H]+ 556.2771

Irgafos

168
DCM:MeOH

(1:9)
MeOH:H20

(1:1)
300 35 150

LEU
ENK

[M+H]]+ 556.2771

Tinuvin

327
DCM:MeOH

(1:9)
MeOH:H20

(1:1) 20 70 200 PEG 600 [PEG+H f 371.2281

Tinuvin 

770 D f MeOH MeOH 30 75 200 PEG 600 [PEG+Naf 525.2887

TCP CH3CN:H20
(9:1) CHjCN 30 100 200 PEG 400 [PEG+Na]+ 393.2101

TXP CH3CN:H20
(9:1) CHjCN 50 75 200 PEG 600 [PEG+Na} + 437.2363

Unknown
DCM:MeOH 

(65:35) + 
0.1% Formic 

acid

DCM:MeOH
(65:35)

50 50 300 PEG 1000 [PEG+Na]+ 833.4722

Table 8 : Experimental conditions for each additive studied
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A ‘unique’ calibration reference file was also set up which consisted of two PEG ions 

which sat on either side of the additive ion being accurately mass measured. The 

acquired mass spectrum over this region is then re-calibrated using this ‘unique’ 

reference file. This spectrum is then utilised for the exact mass measurement 

determination. (Data acquisition for all additives investigated was processed using 

standard procedures supplied with the MassLynx software).

Initially, background subtraction was performed using a first order polynomial, where 

a pre-selected percentage of data points that fall below the baseline are eliminated 

from the spectrum. The peaks obtained in the background subtracted spectrum are 

then smoothed by application of a ‘moving mean’ smooth to eliminate any inherent 

noise. The ‘moving mean’ takes the mean of the intensities of the acquired data points 

in the peaks and therefore proceeds to smooth the data. During this study all spectra 

were smoothed at least twice.

The spectrum of smoothed peaks is then mass centroided to calculate the mass at the 

peak centre. Only data points which have peak intensities greater than a pre­

determined threshold are mass centroided.

In this study the top 80% of the peak was measured, the threshold value was therefore 

set at 20% on each side of the peak. The threshold value reduces any effects 

interfering ions may have on the mass spectrum. Therefore, ions of lower intensity 

than the threshold value are eliminated.

Finally, exact mass measurement was determined using the mean of 5 separate 

acquisitions, following a ‘lock mass’ correction which was provided by the highest 

PEG mass in the unique reference calibration or Leucine Enkephalin. The ion used for
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Additive Concentration
(ppm)

Sample:PEG Ion
assignment

Monoisotopic
mass

Irganox 565 1 5:1 [M+H]+ 589.3974

Irganox 1010 1 0 0 n/a [M+NH4]+ 1194.8185

Em 3020 1 0 0 n/a [M+H]+ 531.4413

Irganox 1076 1 0 0 n/a [M+Na]+ 553.4597

Irgafos 168 1 0 0 n/a [M+H]+ 647.4593

Tinuvin 327 1 0 0 5:1 [M+H]+ 358.1686

Tinuvin 770Df 1 0 0 1 : 1 [M+Na]+ 503.3825

TCP 1 0 0 5:1 [M+H]+ 369.1256

TXP 1 0 0 5:1 [M+Na]+ 433.1545

Unknown 1 0 1 0 : 1 [M+Na]+ 809.7363

Table 9 : Sample concentration, mixture ratio and monoisotopic mass of
molecular ion mass measured

n/a - since 10p.L injection made from a Waters 2690 LC system (Waters, Corp., 
Milford, MA, USA) into the carrier solvent delivered by a Waters 2690 solvent 
delivery system. Here Leucine Enkephalin was used as ‘lock mass’ and infused into 
the mobile phase at a flow rate of 5 pL/min via a Harvard 22 syringe pump. No 
‘unique’ calibration was applied to this data only the base calibration, which gave 
residual errors of < 3 mDa.
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single mass measurement accuracy can be found in Table 8 . Results from the 5 

replicate measurements are found in Table 11.

(i) Irganox 565

Irganox 565 is a non-staining, phenolic antioxidant used as a post polymerisation 

process stabiliser for unsaturated elastomers, such as polybutadiene, polyisoprene and 

nitrile rubber. It maintains the color properties of the polymer and also been known to 

be used as an adhesive.

Optimum source, transfer and analyser voltages are discussed in section 2.3.7.5. 

However, sample cone voltage and rf lens voltage were set at 50V and 200V 

respectively. Mass spectra was acquired over a mass range of m/z 100-600.

A 1 ppm solution of sample was dissolved in dichloromethane (DCM). This solution 

was introduced via a 10 pL loop injector (rheodyne) into a stream of 1/1 acetonitrile + 

water solvent into the ESI source flowing at a rate of 50 pLmin'1. The mass spectrum 

produced from this infusion is shown in Figure 2.22 (top) which suggests that the 

sample has become protonated, hence the base peak at m/z 589. This initial spectrum 

is calibrated by a base calibration, provided by a Nal/Csl salt mixture, prior to 

analysis.
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100 300 600

Figure 2.23: Irganox 565 TIC (top) and mass spectrum containing PEG 600 (bottom)
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Figure 2.22: Irganox 565 mass spectrum (top) and exact mass measurement spectrum (bottom)
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A reference compound PEG 600, which has a distribution of peaks in series, of known 

masses, was dissolved in MeOH at a concentration of lppm and added to the sample 

solution at a ratio of 1:5 (PEG 600:Irganox 565).

After injection of the mixture (sample + reference) a peak appears in the Total Ion 

Chromatogram (TIC), shown in Figure 2.23 (top). The peak has been enlarged over 

the specific elution time of 0.9 and 1.85 minutes. Any point along this peak represents 

a mass spectrum which is provided by summing the intensities of every ion pulsed 

from the orthogonal accelerator.

A mass spectrum is produced (see Figure 2.23 (bottom)) from this TIC by subtracting 

some background signal (prior and after peak elution) from the total area under the 

peak. A ‘unique’ calibration reference file is then applied to this mass spectrum where 

exact mass measurement determination is carried out.

As can be seen from the background subtracted, smoothed and centroided mass 

spectrum in Figure 2.22 (bottom), the two reference PEG 600 ions that are situated on 

either side of the [M+H]+ signal, are m/z 569 and m/z 613. These ions correspond to 

[H(CH2CH2 0 )i2 0 H.Na]+ and [H(CH2CH2 0 )i3 0 H.Na]+ respectively. Accurate masses 

for [M+H]+ were measured using m/z 613.34112 as a ‘lock mass’ correction.

The results from 5 replicate analysis of Irganox 565 are summarised in the Table 10 

below. The theoretical monoisotopic m/z for [M+HJ+ equals 589.3974.
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Acquisition N° Measured m/z E rror (mmu) E rror (ppm)
1 589.3985 1 . 1 1.9
2 589.3928 -4.6 -7.8
3 589.3957 -1.7 -2.9
4 589.4001 2.7 4.6
5 589.3971 -0.3 -0.5

Mean 589.3968 -0.56 -0.94
Standard deviation 0.0028 +/- 2.79 +/- 4.74

Table 10: Results of 5 determinations for Irganox 565

The results show good accuracy and reproducibility. The deviation of the mean from 

the theoretical m/z value is -0.6 mmu (-0.9 ppm) and the standard deviation for the 5 

replicate measurements is +/- 2.8 mmu (4.7 ppm).

(ii) Unknown

The last additive to be accurately mass measured was presented as an unknown to 

investigate if an accurate emperical formula could be determined from the results 

obtained. Previous ’H and 13C NMR data had indicated that the additive was an ester 

derived from an unsaturated long chain aliphatic dicarboxylic acid and a shorter chain 

aliphatic alcohol.

The additive was dissolved in DCM:MeOH (65:35) to a concentration of 10 ppm. 0.1 

% Formic acid was added to the solution to aid ionisation. This solution was injected 

into a stream of DCM:MeOH (65:35) flowing at a rate of 50 pL min' 1 into the ESI 

source. The mass spectrum produced from this injection is shown in Figure 2.24 (top). 

The base peak in the mass spectrum occurs at m/z 809, a m/z difference of 22 from
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m/z 787. The peak at m/z 825 corresponds to an m/z difference of 38 from m/z 787. 

This suggests that the peaks at m/z 787, 809 and 825 correspond to [M+H]+, [M+Na]+ 

and [M+K]+. The sodiated base peak was chosen for exact mass measurement since it 

was the most intense peak in the spectrum.

PEG 1000 was dissolved in MeOH to a concentration of 10 ppm and added to the 

sample solution at a ratio of 10:1 (Unknown:PEG). The background subtracted, 

smoothed and centroided mass spectrum of the mixture is shown in Figure 2.24 

(bottom). Ions at m/z 789 and m/z 833 correspond to [H(CH2CH2 0 )i7 0 H.Na]+ and 

[H(CH2 CH2 0 )i8 0 H.Na]+ PEG reference ions respectively. Accurate masses for 

[M+Na]+ were measured using m/z 833.4722 as a ‘lock mass’ correction. The results 

from 5 replicate analysis are shown in the table below:

Acquisition N° Measured m/z
1 809.7433
2 809.7413
3 809.7343
4 809.7229
5 809.7443

The selection of [M+Na]+ as the target ion combined with the knowledge of its 

chemical functionality meant that candidate elemental compositions had to contain 1 

sodium atom and 4 oxygen atoms. The first measurement of m/z 809.7433 was used 

to calculate an empirical formula using commercially available OPUS software ( 

Micromass U.K. Ltd). An error limit of < 15 ppm was entered prior to computation 

and the following table lists the elemental compositions generated.

120



[M+Na]

[M+H]

[M+K]
125

m/z
850 600 950 1000500 550 650 700 750450 600200 350

[M+Na]

PEG 
REF 

Lock mass
PEG
REF

m/z770 775 780 785 790 795 805 810 815 820 825 830 835 840 845

Figure 2.24: Unknown mass spectrum (top) and exact mass measurement spectrum (bottom)
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ppm mmu Calculated mass C H N O P

-5.0 -4.0 809.7393 51 99 2 1 1

5.2 4.2 809.7475 51 98 2 3
-5.4 -4.3 809.7390 55 96 1 1

-7.0 -5.7 809.7376 53 94 4
8.5 6.9 809.7502 54 96 3
-8.7 -7.0 809.7363 52 98 4
8.9 7.2 809.7505 50 99 4 1

-9.9 -8 . 0 809.7353 46 99 4 3 1

1 0 . 2 8 . 2 809.7515 56 98 1

-10.3 -8.4 809.7349 50 96 3 3

Na

From the computed emperical formulas, only one satisfied the mentioned pre­

requisites and was found to be CsiFbgC^Na. The theoretical monoisotopic m/z for 

[M+Na]+ equals 809.7363. The mass measurements obtained were accurate enough to 

provide the correct elemental composition and showed an average error of 0.9 mmu 

(1.1 ppm), since the structure of the additive, of molecular weight 786, was shown to 

be:

(CH2)7C02 C8Hi7

-(CH2)7C02C8 Hi7

(CH2)(CH)2(CH2)4CH3

(CH2 )CH3

This additive has a trivial name of 3608 and is added to lubricant formulations.



Table 11 shows a summary of the exact mass measurement results.

The mass measurements gave impressive results for these classes of compounds. It 

should be noted that only a simple algorithm was used to calculate the results 

incorporating only one reference peak. Mass measurements of similar, or better 

accuracy could be obtained over much wider mass ranges by incorporating more 

reference peaks and fitting them over the mass range of interest.

123



U
nk

no
w

n

80
9.

74
33

80
9.

74
13

80
9.

73
43

80
9.

72
29

80
9.

74
43

80
9.

73
72 60 IT

m
oi
_bi)
■K

T
X

P

43
3.

15
37

|4
33

.1
54

3

43
3.

15
41

43
3.

15
23

43
3.

15
24

43
3.

15
34

-1
.1

4

-2
.6

2

Fi
g.

2.
32

T
C

P

36
9.

12
85

36
9.

12
88

36
9.

12
59

36
9.

12
48

36
9.

13
06

36
9.

12
77 ZVZ 5.

74

Fi
g.

2.
31

T
in

uv
in

77
0D

f
50

3.
38

56

50
3.

37
53

50
3.

38
17

50
3.

37
89

50
3.

37
72

50
3.

37
97

-2
.8

-5
.5

Fi
g.

2.
30

T
in

uv
in

32
7

35
8.

16
53

35
8.

16
51

35
8.

16
84

35
8.

16
51

35
8.

16
51

35
8.

16
58

-2
.8 0o 

1

Fi
g.

2.
29

Ir
ga

fo
s

16
8

64
7.

46
10

64
7.

46
10

64
7.

46
10

64
7.

46
10

64
7.

46
10

64
7.

46
10

2.
7

Fi
g.

2.
28

Ir
ga

no
x

10
76

55
3.

46
19

55
3.

46
19

55
3.

46
19

55
3.

46
19

55
3.

46
19

55
3.

46
19

2
.2 4.
0

Fi
g.

2.
27

E
m

30
20

53
1.

44
27

53
1.

44
27

53
1.

44
27

53
1.

44
27

53
1.

44
27

53
1.

44
27

1.
4

2.
5

Fi
g.

2.
26

Ir
ga

no
x

10
10

11
94

.8
18

4

11
94

.8
18

4

11
94

.8
18

4

11
94

.8
18

4

11
94

.8
20

1

11
94

.8
18

7

0.
24

0.
18

Fi
g.

2.
25

Ir
ga

no
x

56
5

58
9.

39
85

58
9.

39
28

58
9.

39
57

58
9.

40
01

58
9.

39
71

58
9.

39
68

-0
.5

6

-0
.9

4

<N
(N
(N

t n
*

A
cq

ui
s"

N
° rs i/)

M
ea

n

M
ea

n
E

rr
or

(m
m

u)
M

ea
n 

Er
ro

r 
(p

pm
)

A
pp

en
di

x

124



2.3.8 In source cone voltage fragmentation of low level aryl carboxylic
acids [67]

It has been demonstrated in the preceding sections the high sensitivity oa-toF 

technology possesses, yielding high ion signal-to-noise ratios from low levels of 

analyte concentration.

Specificity of structural assignment is facilitated if the mass spectra is composed of 

molecular and fragment ions. The LCT cannot perform MS/MS experiments, 

however, in source fragmentation can produce significant diagnostic ions. The 

technique of in-source CID has been applied to a variety of compound classes 

presented at low level concentrations and used to compare data obtained on the LCT 

and Platform instruments.

An example of one particular compound class studied was an aromatic carboxylic 

acid, trimellitic acid (TMA) of molecular weight 210 and structure shown below:

COOH

HOOC COOH

This compound class represents some of the impurities produced during synthesis of 

terephthalic acid, a major bulk chemical used for the production of polyester materials
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and a basic component of polyethylene terephthalate (PET) plastic, which is used to 

package beverages and household products.

TMA was dissolved to a concentration of 500ppb in methanol for analysis on the LCT 

and to a concentration of lOOppm in methanol for use on the Platform. The samples 

were injected via a lOpL loop injection into a stream of methanol flowing at a rate of 

10fiL/min into the ESI source. Data acquisition was performed in negative ionisation 

mode.

Figure 2.33 shows the partial mass spectrum obtained from the LCT (top) produced 

with a cone voltage of 75 V and the mass spectrum obtained on the Platform (bottom).

TMA yields an intense ion at m/z 209 at low cone voltages (< 25V), which 

corresponds to the deprotonated molecular ion [M-H]\ As the cone voltage is 

increased, carbon dioxide neutrals are eliminated and ions corresponding to [M-H- 

(44)n]", where n=l-3, are observed at m/z 165, m/z 121 and m/z 77. As the cone 

voltage was increased, the relative intensity of these structurally significant diagnostic 

ions increased.

It has been demonstrated that diagnostic fragment ions produced from in-source CID 

can be detected with a higher signal-to-noise ratio on the LCT from lower levels of 

analyte concentration. This procedure will facilitate the characterisation of complex 

mixtures when applied to separation science from low level sample concentrations 

and more importantly increase the specificity of structural assignment.
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2.4 Summary

The focus of modem industry on more and more complex product formulations, 

tighter environmental and legislative pressures and an overall increased competitive 

environment leads to a requirement for more sophisticated measurement science 

approaches.

Mass spectrometry has, for some years played a central role in the characterisation of 

these complex systems both alone and in combination with various separation science 

approaches.

The advent of oa-ToF technology forms an important advance in this area. The 

combination of increased sensitivity, mass range, mass resolution, scan speed 

compared with existing instrumentation gives an important edge in a competitive 

market. The equipment continues to develop at a fast pace and it is clear that this 

approach will make a significant impact in this area in the coming years.

2.5 Conclusions

Comparisons have been obtained between oa-ToF technology and existing quadrupole 

instruments. In all cases ESI was used as the ionisation method. The main areas 

studied were; mass range, mass resolution, sensitivity, scan speed and mass 

measurement accuracy. The main conclusions are as follows:
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1. The useable mass range of the oa-ToF is significantly higher than the 

quadrupole for singly charged ions. The mass range of the ToF could be significantly 

increased with improvements in faster digital electronics and improved detector 

design.

2. The mass resolution obtained on the oa-ToF (~ 5000 FWHM) is significantly 

better than that obtainable by quadrupole instrumentation. This means that less 

interference’s are observed and that higher mass species can be studied. Rapid 

advances in ToF development indicate that higher resolution systems are likely in 

the near future.

3. The combination of very fast data acquisition rates and sensitivity afforded by 

the oa-ToF makes it an ideal detector for many separation science approaches. The 

more faster techniques, with lower sample loadings and narrower peaks widths, means 

that the use of oa-ToF will become increasingly important.

4. The mass measurement accuracy of the oa-ToF gives results, in ESI mode, 

that are comparable with those obtained traditionally using magnetic sector 

instruments. The combination of sensitivity, mass resolution and the stability of the 

mass calibration that oa-ToF affords, means that exact mass measurements are 

relatively easy to perform.

5. The ease of the approach, the relatively compact deign of the instrument and 

the facility of computer interfacing and control, all add to the attractiveness of the 

technique. This enables the instrument to be utilised effectively by non specialists.
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Figure 2.25: Irganox 1010 mass spectrum (top) and exact mass measurement spectrum (bottom)
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Figure 2.26: Emkarate 3020 mass spectrum (top) and exact mass measurement spectrum (bottom)
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Figure 2.29: Tinuvin 327 mass spectrum (top) and exact mass measurement spectrum (bottom)
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Chapter 3

End group determination of some 
Polystyrene synthetic polymers by means of 

MALDI-CID orthogonal acceleration-
TOFMS
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3.1 Aim

The objective of the following chapter was to determine end group information of 

four polystyrene polymers by means of matrix assisted laser desorption ionisation- 

collision induced dissociation (MALDI-CID) TOFMS. The investigation was 

performed in a magnetic sector orthogonal acceleration ToF mass spectrometer. The 

instrument, commercially known as the Autospec-oa-ToF, was manufactured by 

Micromass U.K. Ltd.

3.2 Development and principles of MALDI

The ability to determine accurate and sensitive methods for molecular mass 

determination of biological and polymer macromolecules in the first instance seems 

rather difficult. Molecules of this type are typically several hundred kilo daltons in 

mass and need to be converted as intact ionised molecules from the solid phase to the 

gas phase. This seems problematic due to their large size, their involatility and 

generally because of their are polarity.

Until MALDI was developed, several earlier methods were adopted to ionise such 

large molecules. Field desorption (FD) [1] was used by application of an electric field 

to the sample, plasma desorption (PD) [2] and secondary ionisation mass 

spectrometry (SIMS) [3], made use of energetic ions or atoms to ionise the sample 

and laser desorption (LD) [4], where the sample was ionised by bombardment of short 

intense pulses of laser light.
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These earlier methods set the foundation on which the MALDI technique was built. 

MALDI [5-7] was developed over a decade ago and as since revolutionised modem 

day mass spectrometric analysis of bio and polymer macromolecules. As a desorption 

technique MALDI provides improved resolution and mass accuracy compared with 

PDMS and fast atom bombardment (FAB) [8 ] (where a beam of ions or high energy 

atoms are directed at the sample). The latter techniques, also inconveniently use more 

sample and take a longer time to generate spectra.

Critical to the success of the MALDI process is the matrix solution the analyte sample 

is mixed with. The analyte sample is mixed with an excess of matrix and the ratio is 

dependent on the analyte sample. The choice of matrix will depend solely on the 

molecule being investigated. Desorption occurs by firing a laser, typically N2 which 

has a laser wavelength of 337 nm, directly at the sample mixture. The mixture is 

generally spotted on a steel plate contained in the source region of the mass 

spectrometer. The matrix serves to absorb light from the laser and isolate analyte 

molecules. The combination also serves to reduce aggregates being formed from 

analyte molecules and provides protonated or deprotonated products that ionise 

analyte molecules. The sample mixture combination expands from the solid phase to 

the gas phase, where analyte molecules, depending on laser power, remain intact.

The laser delivers an efficient, quick and constant amount of energy to the sample. 

Molecular ions are generated just above threshold irradiance, whilst too much power 

will result in fragmentation. The N2 laser typically produces a 3ns pulse with a fixed 

energy of 180 pJ [9]. The energy transfer is efficient and the analyte molecules avoid 

thermal degradation due to the excess presence of the matrix. Ionisation is thought to
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be formed by a photoexcitation or photoionisation process followed by protonation or 

deprotonation from the matrix and sample combination [58].

In summary, MALDI is capable of producing intact molecular ions with molecular 

weight beyond several hundred kilo daltons. It is a pulsed technique which produces 

packets of ions from every laser pulse. Thus, MALDI can exploit one of the inherent 

advantages of TOFMS, its theoretical unlimited mass range.

3.2.1 MALDI TOFMS

The generation of ions from pulsed sources, such as MALDI immediately forms a 

suitable partnership to ToF mass analysers, since TOFMS requires a well defined 

starting point in time and space. Ion transmission is high since ToF acquires spectra 

over the full mass range without scanning. The ‘spotted’ (matrix plus sample) target is 

set perpendicular to the ToF axis. The ions formed from the desorption process, are 

extracted in this direction by application of an electric field and the flight time is 

measured over the linear or reflected flight path. However, a major limitation of early 

ToF experiments was the relatively poor resolution attained. A resolution of ~ 500 

was common in linear mode since the initial spatial and energy spread were not 

compensated for. The energy spread of the desorbed ions becomes large once they 

are extracted into the ToF analyser due to collisions with residual gas [10] and can be 

compensated for by a reflectron [1 1 ] but the distribution in time upon ion acceleration 

cannot be corrected by the reflectron [1 2 ].
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Significant developments in overcoming the resolution problem were reached in 1994 

when Lennon et al. [13] applied time-lag focusing, known today as delayed extraction, 

which provided spatial focusing of the ions. Their results showed an increase in 

resolution (cytochrome c) up to > 1000 (FWHM). The technique was based on the 

principles of Wiley and McLaren [14] in which a delay is introduced purposely 

between ion formation and the extraction of the formed ions. Extraction of the ions 

cause not only a velocity spread but also a spatial spread which limits resolution. 

However, if the time delay and careful choice of acceleration potential is applied, ions 

of the same mass will arrive at the detector at the same time, thus improving the 

resolving power of the instrument. One shortfall of delayed extraction is that it is 

mass dependent, this means that the larger the ion the longer the delay.

The combination of delayed extraction with a reflectron yields yet a more significant 

increase in resolution. Here ions are focused at a plane just beyond the extraction 

region, called the ‘space focus’ position. The ions arrive at the space focus with 

variation in velocity which can then be corrected for by the reflectron. Vestal et.al 

[15] have demonstrated a resolution of > 20000 (FWHM) for bovine insulin with this 

combination.

The development of TOFMS in the 1990’s owes (amongst other things) much to the 

MALDI technique. Developments in fast digital electronics for recording the vast 

amount of spectra generated every second, together with the reflectron and delayed 

extraction has placed TOFMS at the forefront of modem day mass spectrometry.

149



3.2.2 The application of MALDI TOFMS to Synthetic Polymers

The use of MALDI for the analysis of synthetic polymeric systems has gained 

widespread use since encouraging results were first reported in the early 1990’s. Bahr 

et al. [16] and Danis et al. [17] showed that molecular weights up to the order of 

several hundred kDa could be detected for poly(methylmethacrylate) (PMMA) and 

poly(styrene) (PS) polymers. ToF mass analysers are coupled to MALDI sources 

since they form a suitable partnership. Therefore, investigative studies of synthetic 

polymers by TOFMS owes much to the development of the MALDI technique.

Structural determination and molecular weight distribution are the two main 

experimentally investigative objectives of synthetic polymers by MALDI TOFMS. 

End group determination, repeat unit mass, the number average molecular weight 

(Mn), the weight average molecular weight (Mw) are parameters that can be 

determined for systematic characterisation of polymeric systems. Many of the above 

parameters have been determined from low molecular weight polymers (< 20000 Da) 

to polymers weighing up to 1.5 MDa. Many synthetic polymers have been studied 

since the introduction of MALDI. Some brief examples are discussed. Low molecular 

studies have been demonstrated on nylon 6 , polycarbonate, polybutylene adipate, 

polycaprolactone [18] of varying polydispersity, molecular weight distribution of 

poly(butylmethacrylate) (PBMA) has been studied and compared to size exclusion 

chromatography (SEC) data [19], polydimethyl siloxane (PDMS), polybutadiene and 

polyisoprene has been investigated by variation of the matrix sample [2 0 ] and the use 

of time-lag focusing has been applied to polyesters investigating cation influence [2 1 ]. 

However, the majority of studies have involved the characterisation of PMMA
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[18,22-32], PS [18-21,25,29,33-35] and polyethylene glycol) (PEG) [18,20,21,36-39] 

over the last decade.

A key aspect of polymer system analysis, is the addition of a metal salt to the sample 

preparation to aid ionisation. This enables metal-cation attachment called 

‘cationisation’ [22,40,41]. Silver and copper salts are used most frequently with non­

polar systems such as polystyrene and polybutadiene, since they have been shown to 

give better ion signal intensity [42,43]. Alkali metal cations are typically used for 

more polar, oxygen containing polymers and protonation is used for nitrogen 

containing polymers. Recent studies have shown that metallocenes such as ferrocene, 

nickelocene and cobaltocene can be used as cationising agents for PS and PEG 

samples [44]. Results showed that signal intensity was improved for higher polymer 

masses.

The acquisition of a MALDI spectrum is influenced by instrumental parameters such 

as acceleration fields, laser wavelength, laser energy, laser pulse width and incident 

angle of laser. Some of these effects have been analysed for wide polydisperse 

polymers [45].

The molecular weight distributions of polymers such as PS, PMMA and PEG with 

varying polydispersity have been thorougly investigated and show some fundamental 

limitations for systems that have a polydispersity > 1.2 obtained by the MALDI 

technique [18,46,47]. Thus, much attention has been paid concerning this phenomena 

[18,19,30,48].
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[A commonly used technique utilised for the calculation of the molecular weight 

distribution of synthetic polymers is SEC. This method is routinely used by the 

polymer manufacturer to yield a most probable molecular weight, which is taken at 

the apex of the peak obtained by the SEC chromatogram].

For polymers which have a narrow molecular weight distribution, polydispersity < 

1.2, data obtained by SEC and MALDI TOFMS are often in close agreement [25,49]. 

However, for systems with a polydispersity >1.2, the molecular weight distribution 

data do not agree [18,32,50]. This mass discrimination effect is thought to be due to 

factors such as sample preparation, salt added, laser intensity and different ToF 

instrumentation used [51].

Methods have been sought that overcome the conflicting results by fractionating the 

wide polydispered polymers by SEC. This results in each fraction having a narrow 

distribution which can then be reliably mass measured by the MALDI technique, thus 

becoming a detector for SEC. This procedure has been demonstrated by Nielen et.al 

[51,52]. The technique could open up many avenues for the study of high 

polydispersed homo- and copolymeric studies in the future.

3.2.3 Molecular weight characterisation of polymers [53]

Polymers are characterised by Mn, Mw and polydispersity values. Polymers are said to 

be polydisperse. This means that the individual molecules in the polymer have 

varying mass. Thus, only average values of relative molecular masses can be 

determined. Consider a polymer that could be fractionated. Each fraction would
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consist of Nx molecules of one relative molecular mass (Mx). The total number of 

molecules in the original polymer is said to be ENX. The relative mass of Nx 

molecules of relative molecular mass Mx is NXMX, so that ENXMX is the mass of the 

original sample. Therefore, the average number relative molecular mass (Mn) is the 

total mass divided by the total number of molecules:

M„ = ENxMx 
2 NX

The weight average molecular mass (Mw) can be determined from the weight of each 

fraction, where Wx= NXMX, therefore replacing Nx with Wx one obtains a weight 

average molecular weight where:

Mw =  SN xMx'
SNXMX

The polydispersity, Mw/Mn, is a measure of the width of the polymer molecular 

weight distribution.

3.2.4 Size Exclusion Chromatography (SEC) [54]

Briefly, SEC is an analytical method that can yield information about the molecular 

weight and molecular weight distribution of synthetic polymers. It is different from 

other chromatographic techniques since separation is based on molecular size and not 

on chemical interactions or attractions.
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The technique itself uses columns that are filled with small porous particles, made 

typically from PS cross linked with divinylbenzene. The polymer (in solution) under 

investigation is thus passed through the column. Larger molecules spend less time in 

the column and elute first compared to smaller molecules, since they cannot gain 

access to the pores. As the polymer elutes the detector response is measured as a 

function of time. The technique depends on a suitable calibrant, which should be of 

the same origin of the polymer under investigation, which has a known molecular 

weight distribution. [PS proved to be a suitable polymer to investigate since standard 

calibration samples, covering a large mass range are commercially available]. The 

calibration curve can then be manipulated to provide molecular weight (not absolute) 

information.

3.2.5 Polystyrene polymerisation

The method by which the four polystyrene samples were synthesised is termed 

‘anionic polymerisation’. An example of the synthesis procedure will be shown for 

Polystyrene A only, since the other samples were also polymerised anionically.

Anionic polymerisation in this instance is initiated by sec-butyl lithium, which results 

in the formation of an anionic intermediate which is resonance stabilised by the 

delocalisation of the pi electrons in the aromatic ring.
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Initiation

Nucleophilic attack on the styrene double bond yields a carbanion (a base, since it has 

an unshared pair of electrons). The anion thus formed may add additional molecules 

of the styrene monomer in a suitable solvent environment. Here, R represents C4 H9 , 

the attacking nucleophile:

R-

Benzene

Li
. +

Propagation

For active polymerisation to occur (as above) after the initiation reaction, the chain 

will want to retain its negative charge. This can be carried out in a suitable ‘aprotic’ 

solvent such as benzene, since it will not want to donate a proton to the living 

polymer. The chain however is stabilised by being capped with ethylene oxide. 

Ethylene oxide facilitates the addition of a single ethylene oxide unit when lithium is 

the counter ion. [It should be noted that this procedure is not typical for PS but only 

for this particular sample].
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R- CH2

Propagation 

+ styrene

Li+

n- 1

0

/  \
H2 C  CH2

CH2 CH CH2 CH2 O”
Li. +

Termination

The polymerisation is terminated, yielding the required product, Polystyrene A, by a 

final reaction in methanol. This then yields an alcohol end group.

R- CH2 CH- -CH2 CH2 O" Rr
Li.+

+ H
+

- L i +

26

-CH2 CH- -CH2 CH2 CH

26
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3.2.6 Ionisation mechanism of synthetic polymers (Polystyrene)

An absolute mechanism of ion formation produced by the MALDI technique, is still 

after one whole decade of existence, not clearly understood. It is assumed that the 

formation of ions may be generated in two ways. Ions could be ‘pre-formed’ in the 

condensed phase and be freed through irradiation from the laser pulse or that the ions 

could be formed by ion-molecule reactions, after the onset of the laser pulse, in the 

gas phase.

Polystyrene is a non-polar synthetic polymer, which has been shown to be efficiently 

detected by MALDI TOFMS if metal salts are added during the preparation stage. 

Thus, ionisation is achieved via a cation (metal attachment to the polymer). 

Polystyrene is cationised by a number of metals, particularly copper and silver, which 

form intense singly charged adducts in the acquired spectra. This phenomena has been 

investigated by a number of groups [40,55,56].

It is highly likely that the electrons from the metal d-orbitals form a bond with the pi 

system of the benzene ring. Experimental investigations by Lehmann et al. [57] 

indicate that the metal-polystyrene complex is formed in the gas-phase and not 

desorbed from the solid Maldi sample.

Zenobi et a l [58] have shown that protonation of polystyrene is highly unlikely since 

the reaction would be endothermic if a proton was available in the first instance. 

However, cation attachment in the gas phase is highly favorable since it would
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proceed exothermically. Several research groups have also concluded that 

cationisation of non-polar synthetic polymers takes place in the gas-phase [26,43].

3.3 MALDI-collision induced dissociation (MALDI-CID) of
Polystyrene

3.3.1 Introduction

The following project concerned itself with the study of four homopolymer PS 

samples of narrow polydispersity (all < 1 .2 ) and with average molecular weight of up 

to 5000 Da. CID was utilised to determine end group information from a selected 

precursor ion. End group information by MALDI TOFMS and MALDI-CID has 

previously been demonstrated to be a powerful tool for the structural characterisation 

of some synthetic polymers [59-63].

The combined masses of the end groups may be inferred by subtraction of the cation 

mass and a number of styrene repeat units from the m/z ratio of the intact oligomer 

ion peaks observed in the MALDI ToF spectra [60]. The error associated with each 

[Oligomer + cation]+ m/z ratio determines the accuracy in mass calculation of both 

end groups.

The MALDI CID spectra generated shows two intense series of ion peaks (denoted A 

and B), from which the masses of both end groups of the polystyrene can be 

determined. The experiments were carried out on a hybrid magnetic sector orthogonal 

acceleration ToF instrument. The magnetic sector facilitates the selection of an 

oligomeric precursor ion, generated from the polystyrene by MALDI. The selected
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ion is then induced to fragment by a collision gas, whose products can yield 

information on the end groups of the polystyrene. It is proposed that the masses of the 

end groups, from the polystyrene samples, of structure shown below, could be 

inferred from the m/z of the two series of fragment ions using the following 

equations:

m/z (A) = M(R ) + 90 + 104n + M(Cat) (Equation 1)

m/z (B) = M(R') +104 +104n + M(Cat) (Equation 2)

where, m/z (A) and m/z (B) are the mass-to-charge ratios of the ion peaks from the 

two series (denoted A and B respectively). The mass of the cation is M(Cat) and the 

masses of the end groups R and R are denoted as M(R) and M(R ) respectively. The

fragment ion peaks can be differentiated from other peaks observed in the acquired

Maldi-CID spectra since they are observed at low m/z and that:

m/z (precursor) = m/z (A) + m/z (B) + 104n -  M(Cat) +14 (Equation 3)

where, m/z (precursor) is the mass-to-charge ratio of the precursor ion selected by the 

magnetic sector.
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The four polystyrene samples investigated have the following structures, which are 

shown in Figure 3.01. Each polystyrene sample is shown to have different end groups 

which is achieved by a variation in the polymer synthesis. The results achieved 

demonstrate unambiguously how the masses of these end groups can be determined 

by this technique.

3.4 Experimental

3.4.1 Polymer synthesis

The four polystyrene samples were polymerised using standard high vacuum 

techniques. Three different lithium initiators were used dong with three different 

terminating agents to introduce a variety of end groups. Polystyrene A was initiated ' 

with sec-butyl lithium, polymerised in benzene and capped with ethylene oxide, 

which when lithium is the counterion, results in the addition of a single ethylene oxide 

unit. Termination with methanol yields the alcohol end group. Polystyrene B was 

initiated using N,N-dimethylbenzylaminolithium (synthesised according to the 

method of Schadler [64]), polymerised in 70:30 (benzene:ether) mixture and 

terminated with methanol. Polystyrene C and Polystyrene D were prepared in the 

same experiment. Both styrene monomers were initiated with propyllithium 

(synthesised according to the method of Hadjichristidis et a l [65]) and polymerised in 

benzene which contained 1-2 mL of tetrahydrofuran (THF). The living polymer was 

then divided into two, one half terminated with methanol, yielding Polystyrene C and 

the other half capped with 1H, 1H, 2H, 2H-perfluorooctyldimethylchlorosilane 

yielding Polystyrene D. Molecular weights were obtained by SEC using a
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C4H9 —(—CH2 CH—)— CH2CH2 OHPolystyrene A

Polystyrene B

Polystyrene C (CH3)2N(CH2)3—e C H 2 C lH —  H

Polystyrene D

(C H 3)2N (C H 2)3-f-C H 2C H ^ r Si(CH2)2(CF2)5CF3

CH3

Figure 3.01: Structures of the four Polystyrenes investigated
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conventional calibration procedure of polystyrene standards. The data is shown in 

table 1 below:

Sample
Number average 
Molecular weight 

(M„)

Weight average 
Molecular weight 

(Mw)

Polydispersity
(Mw/M„)

Polystyrene A 2600 2800 1.06
Polystyrene B 1600 1800 1.13
Polystyrene C 2400 2500 1.07
Polystyrene D 2800 2900 1.06

Table:!

3.4.2 Instrumentation

3.4.2.1 The ‘AutoSpec’ oa-ToF tandem mass spectrometer

All experimental work was carried out on the VG Autospec 5000-ToF which is a 

hybrid tandem mass spectrometer (MS/MS) that combines the power of a magnetic 

sector instrument (MS-1) for precursor ion selection, with an orthogonal acceleration 

ToF mass analyser (MS-2) which provides high sensitivity for full product ion 

spectra. A detailed schematic of the instrument design is shown in Figure 3.02. The 

instrument has been described in great detail elsewhere [66,67], so only a brief 

description of its operation will be described here.

The instrument itself is very versatile. It can be equipped with various external 

ionization sources depending on what method of analysis is preferred. Results for this 

thesis made use of the instrument equipped with a MALDI source.

The inlet system for the source region is fitted with a probe to which a thin narrow 

plate can be attached. The samples being investigated are mixed with a suitable matrix
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and then spotted on to the plate. The plate is then firmly fixed on to the probe and 

placed inside the ionization source. Ionization of the sample is achieved by firing a 

Nitrogen laser (A,= 337 nm) which is operated typically with a pulse rate of 10 Hz in 

the source, directly at the spotted target. The position of the laser when striking the 

spotted target is controlled by the computer software. A small camera is also fitted to 

the instrument to view the target during the acquisition of data.

Depending on the particular application of analysis the instrument can be set up so 

that the magnet by-pass is optional (see Fig.3.02), this then allows the user to perform 

either MS or MS/MS analysis.

If MS mode of operation was desirable, the magnet is switched off and the pulsed ion 

beam from the MALDI source enters a separate by pass flight tube before reaching 

the oa-ToF region. Once the ion beam enters the the oa-region, a ‘packet’ of ions is 

sampled orthogonally to the incoming beam axis and full range, high sensitivity MS 

spectra can be produced.

In MS/MS mode of operation the magnet is switched on and the magnet by pass is 

switched off. This particular set up allows the magnetic sector to select precursor ions 

from the pulsed beam.

Precursor ions are accelerated from the source with a voltage typically of 8  kV. After 

exiting MS-1, these ions are further focussed into a collimated beam by a two stage 

deceleration electrostatic lens to an energy of 800 eV. The focused precursor ion 

beam then enters a collision cell, where they collide with xenon collision gas. As a 

result of this collisional process product ions are formed . On exiting the collision cell 

both sets of ions, product and precursor, enter the oa-region and get deflected at an
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angle that is perpendicular to their incoming trajectory, into the oa-ToF analyser (MS- 

2).

Once the oa-region is full both sets of ions experience this ‘push-out’ pulse, which is 

automatically timed to coincide with the time at which both sets of ions pass through 

the orthogonal accelerator. These ions are accelerated to zero potential through a dual 

stage source and are detected by an MCP detector at the end of the linear ToF 

analyser which has pathlength of approximately 0.5 metres.

In both MS and MS/MS mode of operation, ions that do not get sampled by the 

orthogonal accelerator may be detected by a photomultiplier which is positioned at the 

end of the instrument.

The mass range of the oa-ToF in MS and MS/MS modes is limited by the repetition 

rate of the pusher. A mass range of m/z 7000 can be obtained with a repetition rate of 

30 kHz which corresponds to a flight time of approximately 33ps. To observe a lower 

mass range the repetition rate is increased, thus giving a lower flight time.

In conclusion, the time of flight of the ions is determined from the time of application 

of the pusher pulse to the time they are detected by the MCP detector of MS-2. This 

detector comprises of three MCP’s which allows detection of full product ion spectra. 

The maximum repetition rate of the pusher is 100,000 times per second. The MCP is 

capable of acquiring all of these spectra which is then summed.

When an ion strikes the MCP a count of one is recorded on a TDC. This process is 

repeated many times over the acquisition time period and the signal output is 

presented in the form of an histogram. Individual spectra are summed in a histogram
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memory and the histogrammed spectrum is then transferred to the host computer. 

Instrument control and data acquisition is made through the OPUS software.

The number of laser shots that were averaged to obtain a mass spectrum ranged from 

approximately 5000-15000, corresponding to 10-30 minutes acquisition time.

An inherent advantage of a ToF mass analyser is that it simultaneously transmits all 

the the ions that are produced in the mass spectrum. It achieves a 100 % sampling 

efficiency for pulsed ionisation sources due to its highly compatible partnership. It 

thus has greater sensitivity in MS and MS/MS mode of operation over conventional 

scanning mass analysers.

3.4.3 Sample preparation

The metal salts, copper (II) nitrate and silver nitrate (used to cationise the polystyrene 

samples), all-trans-retinoic acid (the matrix) and anhydrous THF were purchased 

from Aldrich Chemical Company (Gillingham, U.K.). Analytical grade THF was 

from Fisons Scientific Equipment (Loughborough, U.K.) and HPLC grade ethanol 

from BDH (Lutterworth, U.K.).

Samples for analysis by MALDI were prepared as follows: Except for silver nitrate in 

ethanol, each solution was prepared at a concentration of 10 mg mL'1. Anhydrous 

THF was used to dissolve each polystyrene and matrix. They were then mixed in a 

1:20 ratio (v:v) (PS:matrix). Copper (II) nitrate or a saturated solution of silver nitrate 

in ethanol was then added to the above solution in a 100:1 (v:v) ratio (PS +
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matix:salt). Approximately 0.5 pL of this final mixture was then applied to a stainless 

steel holder for analysis.

3.5 Results and Discussion

(i) Polystyrene A

MALDI-CID was performed on the [PS + Ag]+ ion with m/z 2914.6, from the 26-mer 

since this ion produced the most intense peak in the MALDI-ToF data. The MALDI 

product ion spectrum of the [PS + Ag]+ ion obtained by CID from the 26-mer is 

shown in Figure 3.03 (a).

The product ions are proposed to retain the cation (Ag+), except for some low 

intensity ions observed at a lower m/z ratio (< m/z 200). Below m/z 700 the product 

ion spectrum is dominated by a series of ions that are separated by a m/z ratio which 

is equivalent in mass of the styrene monomer (104 Da). The series are labelled A, B 

and G in Figure 3.03 (a). As stated some ions do not retain the cation, two of which 

are marked with an asterix. These particular ions could be formed from an 

‘intermediate’ of similar structure to that shown later. These ions are also seen in the 

CID spectra of PS by Derrick et al. [6 8 ].

End group characterisation of the PS may be inferred from the A and B product ion 

series produced from the fragmentation scheme proposed in Figure 3.03 (b). The A 

and B series are adduct ions formed with the silver cation. This particular PS is 

initiated with a butyl group of m/z 57 (represented as R') and terminated with an
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alcohol group of m/z 45 (represented as R"). The mass of each end group R' and R" 

can be derived from the B and A series respectively, by use of equations 2 and 1. For 

example, use of equation 2 for calculation of R' from product ion at m/z 476 in the B 

series, where n= 2 :

m/z (B) = M(R') + 104 + 104n + M(Cat)

476 = M(R') + 104 + 208+ 107 

M(R') = 57

Endgroup R" can be calculated for example, from product ion at m/z 450 in the A 

series, where n=2 :

m/z (A) = M(R") + 90 + 104n + M(Cat)

450 = M(R") + 90 + 208 + 107 

M O n  = 45

The structures assumed for the product ion peaks of the A and B series and 

mechanistic ion formation are shown in schemes I and II. It is thought that these ions 

are radical cations, assumed to be distonic in nature, where the radical site is 

positioned on a secondary carbon of the PS backbone. (A distonic ion is a radical 

cation where the charge and radical centres are separated by some distance [69]).

Direct cleavage of the PS backbone (with part of the cleaved backbone retaining the 

‘picked up’ cation) followed by loss of n(styrene monomers) (depolymerisation) leads 

to the formation of the A and B series. It can be clearly seen that the only difference 

in mechanism of both ion series is the site of cleavage, where perhaps the charge is
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CH2— C H 4- CH2—  CH— CH2—  CH-

[1+XT
X = Cu, Ag

CH2— C H i-C H 2— CH— CH-

D epo lym erisation

m/z (153 + Mgr, ) + 104(y-ri) for X = Cu 
m/z (197 + Mr „)+  104(y-n) for X = Ag

Scheme I: Proposed mechanism for generation of the A series from Polystyrene
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C H ,— C H t-C H o — CH

Depolymerisation -  (H2C = C H P h ) „

CH2—  C H j-  CH2—  CH 
I rx-n I

m/z (167 + MR , ) + I04(x-n) for X = Cu 
m/z (211 + Mj{t ) + 104(x-n) for X = Ag

Scheme II: Proposed mechanism for generation of the B series from Polystyrene
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directing the fragmentation. This would explain the peak intensities for the A and B

series.

The other intense product ion series, labelled the G series is observed at odd m/z 

ratios in the mass spectrum. It is postulated that these ions are formed by 

rearrangement reactions rather than by direct cleavage [63]. A possible structure for 

the G ion series is presented below:

Some ions observed in the mass spectrum are not labelled since they are not formed 

as part of any of the previously mentioned series. For example, the ion peak situated 

between B (n=0) and A (n=l) series at m/z 302 is proposed to be loss of ethylene 

oxide (m/z 44) from ion m/z 346 in the A series.

Also visible in the mass spectrum are two less intense series of product ion peaks, 

labelled a  and p, which can be seen in the expansion of the product ion spectrum in 

Figure 3.04. Each successive peak in the spectrum has a mass difference of 104 Da, 

corresponding to the mass of a styrene monomer. The structures of these ions and 

possible mechanism of formation is shown in Schemes III and IV.

Ph Ph

G
m/z 167+104« for X  =  Cu 
m/z 211+104/7 for X  = A g
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h 2c t  v > r a i 2

^ c- ( ch2-CHo— CH j -  CH?— CH

[ l+ x r
X = Cu, Ag

- H ? C = C H P h

H , C =  C—f CH?— CH-— CH-

m/z (166 + Mftrr) + 104y for X = Cu 
m/z (210 + Mftir) + 104y for X = Ag

Scheme III: Proposed mechanism for generation of the a  series from Polystyrene
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[ i+ x r
X = Cu, Ag

- H2C = C H P h

CH'

m/z (180 + Mftr) + 104x for X = Cu 
m/z (224 + M gr) + 104* for X = Ag

Scheme IV: Proposed mechanism for generation of the p series from Polystyrene
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The ions are proposed to be formed by means of 1,5-hydrogen rearrangements with 

the charge being retained by alternative fragments. The reactions proceed via loss of a 

styrene monomer and a portion of the oligomer with a saturated chain end. Here, the 

affinity to ‘pick up’ a silver ion (see previous text page) is greater with an unsaturated 

chain end than for a saturated chain end, since the delocalisation of the electron cloud 

is more pronounced. This phenomena seems very plausible since no product ions are 

seen in the spectra with cation retention at fragments with two saturated chain ends. 

The a  series of product ion peaks are generated with cation retention at the oligomer 

section that contains the alcohol group and the p series with cation retention at the 

section that contains the butyl group for Polystyrene A.

Four other product ion series, labelled C, D, E and F are observed in the mass 

spectrum. These are clearly seen in the mass spectrum which has been expanded in 

the y-direction (m/z 750-1150) in Figure 3.04. These ion peaks however, are of lower 

intensity than the A, B, G, a  and p series. These series of peaks are again proposed to 

be formed by 1,5-hydrogen rearrangements. Their structure and proposed mechanism 

of formation is shown in Scheme V for the C and D series and Scheme VI for the E 

and F series. Both mechanisms involve cleavage of the PS backbone, followed by the 

loss of a benzene molecule, resulting in the formation of product ions and neutrals 

with unsaturated end groups.
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Ph

X

\
R'— (-CH2 — CH -)-C H  ^  CH-fcH2—ChA-R"

Ph H  Ph Ph

[1+X ] +
X  =  Cu, A g

-QH6

X  |  R'— | c H2 — CjH ̂ -C H  = C H  

Ph Ph

+ H2C=CH-^CH2—Cp-)~R"

Ph

m/z (166  + Mr ,) + 104k for X  = Cu 
m/z (210  + M fti) +  104« for X  = A g

R'— (C H 2 — CH ̂ -C H  = C H

O R  

+ X H2C = C H  -^C H 2 — CH y ~  R"

Ph Ph Ph
D

m/z (90  +  M ftn ) +  104m for X  =  Cu 
m/z (134  +  M fttf) +  104m fo r X = Ag

Scheme V: Proposed mechanism for generation of C and D series from Polystyrene
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CH?— C H -fC H ,— CH

[i+xr
X = Cu, A g

R'— f  CH2 — CH 4 -C H 2 —  C H =  CH: H C =  CH—  C H -fC H 9 — CH

m/z (104  +  MR >) + 104n for X  =  Cu 
m/z (148  + M r , ) +  104n fo r X  =  A g

O R

■ch2—CH -j-an — c h — ch : HC CH—  C H -fC H o —  CH

m/z (256  +  MR h ) + 104m for X  =  C u 
m/z (300  +  MR n) + 104m for X  =  A g

Scheme VI: Proposed mechanism for generation o f  E and F series from Polystyrene



Polystyrene B

The [PS + Cu]+ ion at m/z 1969.1 from the 17-mer was chosen for study as it 

generated the most intense peak in the MALDI-ToF data. MALDI-CID was 

performed on this precursor ion and the acquired spectrum is shown in Figure 3.05 

(a).

Intense product ion peaks are observed below m/z 500 and the series labelled as A, B, 

G, a , and p each of which retain the cation (Cu+). Ions marked with an asterix do not 

retain the cation. Each of the above ion series are separated by a m/z ratio of 104 Da, 

equivalent to the mass of a styrene monomer.

End group characterisation of the PS is inferred from the A and B product ion series, 

produced from fragmentation of the PS backbone as shown in Figure 3.05 (b). The R' 

and R" m/z ratios obtained are consistent with those expected from Equations 1 and 2. 

The mechanism of formation of the A and B series (shown in Scheme I and II) is also 

consistent with the obtained m/z ratios.

Product ion peaks from the a  and p series are observed up to m/z 1300 in the acquired 

mass spectrum. Ion peaks representative of the E and F series are observed in the 

mass spectrum but show low intensity signals. Product ions of the C and D series are 

observed above m/z 1 0 0 0  but are not sufficiently resolved in the mass spectrum since 

they only have a mass difference of 1 Da. Mechanistic ion formation is shown in 

Schemes III, IV, V and VI for a , p, C, D, E and F series respectively.
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An intense ion at m/z 58 is observed in the mass spectrum. This ion is presumed to de 

due to loss of CCH2N(CH3)2) from the phenyl ring.

(iii) Polystyrene C

MALDI-CID was performed on the [PS + Cu]+ ion from the 22-mer, since this ion 

generated the most intense ion peak in the MALDI-ToF data. The MALDI product 

ion spectrum of the [PS +Cu]+ ion obtained by CID on the precursor ion at m/z 2439.4 

is shown in Figure 3.06 (a).

The most intense product ion peaks are observed below m/z 700. These series are 

marked A, B and G, in which these ions retain the copper cation. The fragmentation 

pattern for the A and B series is shown in Figure 3.06 (b). This series of ions is again 

separated by 104 Da, the mass of a styrene monomer. The m/z ratios of the A and B 

series agree with those predicted from Equations 1 and 2. Their mechanistic scheme 

of formation has been demonstrated and is consistent with the m/z ratios expected.

Six other ion peak series are also observed again in the acquired mass spectrum, that 

is a , p, C, D, E, F and G series. The first five of these produce lower signal-to-noise 

ratios than all other ions observed. Other product ions are observed whose m/z ratios 

suggest that cation retainment is absent. These particular ions are again marked with 

an asterix. The ion signal at m/z 58 is proposed to be of the same structure as the ion 

produced from direct cleavage of the substituent on the phenyl ring in Polystyrene B.
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Two other ions are observed at m/z 84 and m/z 98 and are postulated to be formed 

from two hydrogen rearrangement reactions from the [PS +Cu]+ precursor ion. Their 

structures may take the following form:

+ n - c h 2 - c h = c h 2 - c h 2 - c h 2 - c h = c h 2

/
h 3c

/
h 3c

m/z 84 m/z 98

(iv) Polystyrene D

The [PS + Cu]+ ion at m/z 2843.4 from the 22-mer was chosen for investigation as it 

generated the most intense peak in the MALDI-ToF data. MALDI-CID was 

performed on this ion and the acquired spectrum is shown in Figure 3.07 (a).

Intense product ion peaks are observed in the mass spectrum (expansion m/z 30-950) 

from the A and B series produced from fragmentation of the PS backbone, as shown 

in Figure 3.07 (b). The A and B series are adducts with copper and their m/z ratios are 

consistent with the expected m/z ratios from Equations 1 and 2. The product ions are 

therefore again used to infer end group characterisation of this PS. Other ions 

observed, B, p, C and E series occur at the same m/z ratios as with Polystyrene C 

since these ions are formed from the same end of the PS with the same end group. The
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C and E series of ions are observed at much lower signal intensity than the other 

series. The product ion peaks of the A, a , D and F series are observed at a m/z 

difference of 404 Da from data obtained with Polystyrene C due to the difference in 

terminating group at this portion of the PS. The D and F ions have a signal-to-noise 

ratio that is lower than all other ions observed in the spectrum. Ions are observed at 

m/z 58, 84 and 98 which do not retain the cation. Their origin is assumed to be the 

same and structurally the same as with Polystyrene C.

A product ion observed in the mass spectrum of Polystyrenes B, C and D occurs at a 

mass difference of 64 Da from the precursor ion. The origin of this ion is postulated to 

be the loss of Cu(I)H from the precursor ion. A possible mechanism could be of the 

form shown below:

fJ  +c\
H ,C ^ *  CH;

- CuH 
------->■

H ^
CHz

'CH>—( ^ a ^ - d ^ ^ C H 2-C H ^R ,

Ph Ph Ph Ph
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3.6 Conclusion

It has been clearly demonstrated that tandem mass spectrometric studies combined 

with the MALDI technique on the hybrid sector oa-ToF instrument is a powerful and 

excellent technique for the end group determination and thus structural 

characterisation of the Polystyrene samples investigated.

The ‘Autospec-oa-ToF’ facilitates precursor ion selection through a double focusing 

MSI whose CID products can be mass analysed by oa-ToF, situated at the end of the 

instrument, MS2. Sampling of the product ions orthogonal to the main ion beam axis 

into the ToF chamber greatly improves the sensitivity of full scan product ion spectra. 

The instrument takes advantage of MALDI, a pulsed technique, which has shown to 

provide good sensitivity by achievement of a 100% duty cycle. It should be noted, 

that a large portion of the ion beam is lost in the orthogonal accelerator, due to the 

grided extraction region.

The product ions produced, from fragmentation of the polymer backbone by CID, at 

low m/z ratios (A and B series), which are adducts with the cation from the metal salt 

used for cationisation, have proved vital for end group determination. Equations were 

used which provide unambiguously, efficient characterisation of the end groups from 

the samples investigated with great accuracy.

The technique of MALDI provides much quicker, efficient, reproducible data over the 

mass range of interest compared to other desorption techniques, for example FD. 

Acquiring a decent mass spectrum by FD at times could take as long as several hours
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providing the emitter does not fail during an acquisition, due to the low ion currents 

generated. The MALDI data obtained on the ‘Autospec’ does not have this problem. 

A time-to-digital converter (TDC) is employed which records a count of one, if a 

single ion arrives at the MCP detector. Spectra are produced in the form of a 

histogram of all ion events over the acquisition time period. Good signal-to-noise is 

achieved through low background noise provided for by single ion event recording. 

The histogrammed spectra is then transferred to the host computer.

The technique it is hoped will provide structural identification of unknown mixtures, 

and co-polymers which was previously unobtainable by other ionisation techniques. 

The use of MALDI (CID) TOFMS to aid the structural identity of co-polymers is at 

present still in its infancy but this technique could be exploited to further characterise 

such complex systems.
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Chapter 4

Studies of consecutive reactions to 
distinguish isomeric C3 H3 + ions formed in 

some simple organic molecules
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4.1 Aim

Some metastable reactions yield product ion peaks whose shape is composite in 

nature. One such reaction involves the formation of CsH3+ ions. The composite nature 

suggests that more than one isomer may be involved either as the precursor or 

product. Infact, two isomeric CsH3+ ions have been observed in the gas phase, the 

cyclopropenium and propargyl cations. The aim of this study was to investigate a 

series of precursors and study the isomeric nature of the C3H3+ products. Consecutive 

reaction studies provide an ideal method for differentiating between isomeric ion 

structures based on their internal energy content, given it is sufficiently difficult to 

distinguish solely on the basis of their mass-analysed ion kinetic energy (MIKE) 

spectra.

4.2 Introduction

One of the most important aspects of mass spectrometry is the powerful ability to 

characterise ionic structures of a wide range of molecules. At first, it seems straight 

forward, but the confirmation of structural identity of gas phase ions is by no means 

trivial. To aid the identity of the ions studied during this investigation, two important 

techniques were utilised. The methods employed were unimolecular (metastable) and 

collision induced dissociations (CID), whose principles rely heavily upon the internal 

energy of the sample ion. Without such techniques, the structural identity of ions 

would be difficult by mass spectrometric detection unless used in conjunction as a 

combined technique, i.e. GC-MS or LC-MS.
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Unimolecular product ion peak shapes are generally classified into the types shown in 

Figure 4.01. Small energy releases are characterised by a Gaussian shaped curve (I). 

Large energy releases, for example, the metastable reaction of doubly charged ions, 

form a dish-topped peak (III) due to instrumental discrimination in the z-direction (the 

non-focusing direction), other large energy releases are accompanied by flat-topped 

peaks (II). The final peak shape commonly observed is one that is composite (IV) in 

nature. It is assumed that this arises when the product ion is formed in one of two 

different structures, each having different translational energy release distributions, 

through having different internal energy.

Thus, metastable reactions can yield a tremendous amount of product ion information. 

However, these reaction types will not solely reveal any definite identifiable 

characteristics of ion structure since the technique is limited by variations in internal 

energy of the sample ion. The data obtained by metastable reactions though can be 

used to aid ion identity by means of CID.

CID analysis is slightly more difficult since the instrument must be capable of 

performing tandem mass spectrometry experiments (MS/MS). This can be achieved 

by magnetically selecting a precursor ion of interest, which can be induced to 

fragment by collision with a neutral gas. The product ions formed upon dissociation 

will reveal structural information specific of that precursor ion.

Interest arose for this study, from the metastable peak shape obtained from the 

metastable reaction CsHs* -> C3H3+ in toluene by Sen-Sharma et al. [1]. The peak
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Figure 4.01: Typical peak shapes obtained from metastable dissociations
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shape was composite in nature, proposed to be due to the formation of two product 

ions. A composite peak shape was also observed for the same product ion obtained 

from «-hexane by Goldberg et a l [2] and propene by Holmes et al. [3]. Holmes et al 

[4] estimated without showing any mass spectra that the composite nature was due to 

the formation of two structurally different isomers.

A powerful and extremely reproducible method does exist whereby metastable ions 

can be selected for CID analysis on the basis of their internal energies. The results 

achieved from this technique termed ‘consecutive reaction studies’ will demonstrate 

unambiguously that previous studies [1-3] showing the composite nature of the CsH3+ 

ion peak, formed from some metastable reactions was due to the formation of two 

structurally different C3H3+ ions. The study demonstrates how these different 

metastable ions will be structurally identified on the basis of their internal energy.

4.2.1 C3H3+ ion identification

Two isomeric C3H3+ ions have been observed in the gas phase, the cyclopropenium 

ion (structure A) and the propargyl ion (structure B):

+

C
H C = C H

Structure (A) Structure (B)
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This C3H3+ ion is observed in the mass spectra of a large number of organic 

compounds, the structure of which has generated great interest spanning three decades 

[1,4-9].

Ab initio calculations [7] indicate that the cyclic structure (A) is ~ 60 kcal mol' 1 more 

stable than the linear structure (B). Calculations have also showed that two other 

isomers are known to be stable below the lowest dissociation limit to C2H+ + H2, of 

structure [CH2CH-C:]+ and [H3CCC]+. However, the more stable cyclopropenium and 

propargyl cations have been the main isomers studied.

Considerable evidence has been concluded from metastable ion dissociation processes 

and kinetic energy release measurements from toluene [1 ], simple alkanes [2 ], allyl 

halides [11], propargyl halides [9,12] and the 1-halo-l-propynes [9] that the C3H3+ ion 

does to exist in two forms.

Methods other than mass spectrometry have been employed indirectly to aid structural 

identification of these two more stable isomers.

Coloumb explosion imaging experiments (CEI) [10] have indicated the presence of 

linear and cyclic ions to be present in 30% (linear) and 70% (cyclic) formed from 

electron bombardment of allene (C3H4). Here, ions impact on a thin foil with MeV 

energies, which when on impact, electrons from the ions are tom off. Coloumb 

explosion of the bare nuclei occurs which is detected in coincidence on a spatially 

resolved analyser plate.
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Reaction kinetic studies have been reported for both isomers with various organic 

compounds including ethyne and benzene on an ICR spectrometer [13]. For instance, 

results suggested that the linear ion is very reactive with ethyne leading to the 

formation of CsHs*, whereas the cyclic structure is unreactive, which would be 

expected since the linear isomer has higher internal energy.

CsH3+ ions formed from electron impact on methyl acetylene have been used in 

selected ion flow drift tube (SIFT) experiments [14]. Here, the ions are reacted with 

gases such as CO and H2 in the flow tube containing a carrier gas. Results provide rate 

coefficients and ion product information from ion-molecule reactions. Studies have 

indicated the presence of both isomers in a 65:35 ratio (cyclic:linear).

The above mentioned techniques however do not provide absolute methods of 

structural identification. Knowledge gained of this sort together with mass 

spectrometric information can yield absolute structural identity.

CID developed through Jennings [15] and McLafferty et al. [16] aids structural 

identity unambiguously. Structural ion identity has greatly expanded since the early 

work of McLafferty [17].

Collision induced product ion spectra has been obtained on various precursor C3H3+ 

ions formed from some simple organic molecules during this investigation and from 

previous studies [4,8,18]. CID/MIKE spectra obtained show significant differences 

when propargyl ions are generated at threshold compared to cyclopropenium ions.
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4.2.2 Consecutive reaction studies

The first report of a consecutive reaction involving metastable dissociation, was 

conducted by Jennings [19]. A metastable peak was observed at m/z 16.8 in the mass 

spectrum of toluene. It was proposed CsHs* ions formed from the dissociation of 

C7H7+ were further dissociated by the consecutive loss of C2H 2 to form C3H 3+, 

resulting in a peak at m/z 16.8 in the spectrum, obtained from a HV scan, which 

corresponds to a mass of 39 /91.

Since these early findings many reports have been cited in the literature involving 

isomeric ion structure identity and the probing of reaction pathways [20-24]. 

Metastable ions dissociating in a field free region (FFR) will contain a small 

distribution of internal energies, just above the critical energy barrier for reacting [25], 

relating to rate constants between 105- 106 s [26]. A range of translational energies can 

be released upon dissociation [27] resulting in the formation of product ions with a 

range of internal energies.

A consecutive reaction therefore involves a product ion from a metastable dissociation 

that is sufficiently capable of further reaction. For this investigation the two-step 

consecutive reaction process can be represented as:

mi+ -> ni2+ + (mi-ni2)

CID
 ► ni3+ + (m2-ni3)
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The first step mi+ -> ni2+ occurs in FFR1, (refer to Figure 4.02). These ions can be 

successfully transmitted to ESA1 by setting the magnetic field in the magnetic sector 

to admit ions of m2 /mi, since the metastable ion obtained from the first step will be 

observed in the MIKE spectrum at this mass.

Thus, stable m2+ ions exiting the magnetic sector will have the correct trajectory to be 

transmitted to the collision cell by setting the ESA1 voltage to n^E/mi, where E is the 

electric sector voltage required to accept, without hindrance, the stable ions that have 

received the full accelerating voltage.

Once the metastable ni2+ ions have reached the collision cell in FFR3, they are 

induced to fragment by leaking a neutral gas, typically nitrogen, into the collision cell. 

The ni3+ product ions obtained from this collision induced reaction can be detected by 

scanning around m3 E/m 1 on ESA2.

4.2.2.1 Energetics of consecutive reactions

The energetics for the metastable reaction occuring in a FFR, the first step of the 

reaction, can be best conceived by considering a potential energy curve for the 

reaction, as shown in Figure 4.03. Metastable ions which have lifetimes of the order 

of 105-106 s' 1 are denoted by the shaded area. The curve is representative of the two 

C3H3+ product ions formed from the metastable reactions investigated for toluene for 

example, occuring in FFR3.
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Figure 4.02: Schematic of ‘TES II’, illustrating the field free regions 
(FFR) and instrumental settings used for the 
consecutive reaction studies

201



The energy the mi+ ions contain is sufficient enough to overcome the energy barrier 

for reaction leading to the formation of m2+ product ions. The kinetic energy released 

in the decomposition of metastable ions can arise from two sources: the excess 

energy, e of the activated complex which is available for partitioning between the 

internal energies of the products and translational energy of their separation and 

c0r which is partitioned between internal and translational energy [26].

Thus, for reactions that have a distribution of translational energies the product ni2+ 

ions formed will have a distribution of internal energies. Large values of T will 

represent ni2+ ions with low internal energy (cyclic structure in this case), represented 

by the selected portion II in Figure 4.04. Small values of T will represent m2+ ions 

with a higher internal energy (linear structure), represented by the selected portion I. 

[s0 is the activation energy and s0r is the reverse activation energy].

Figure 4.04 shows the partial spectrum obtained for the metastable reaction of CsHs* 

-> C3H3+ in toluene occuring in FFR3.

This investigation utilised portions of the metastable peaks obtained from reactions 

occurring in FFR1, which have intensity differences in comparison (see later).
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Figure 4.03: Simple PE curve for the metastable reaction CsHs* -> C3H3+ in toluene 
occuring in FFR3. The products formed have different energies due to 
the different translational energy releases
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4.3

4.3.1

Experimental

Instrumentation

The instrument used during this study was built in house at Swansea University in 

1996. It is a double-focusing mass spectrometer of BEE geometry (B = magnetic 

sector and E = electric sector) conventionally known as ‘reversed geometry’. Figure 

4.05 shows a schematic of the instrument, which is known as TESII. The instrument 

was designed for high-energy resolution translational energy spectroscopy 

experiments (~ 20 meV FWHM), where a high energy ion beam is allowed to collide 

with neutral gas targets. Information regarding the electronic and vibrational 

structures of both the projectile ion and stationary target can be inferred from the 

energetics of the collision.

The ‘reverse-geometry’ of the instrument however, is ideal for MIKE mass 

spectrometry. Here, the magnetic sector is situated before the electric sector, which 

allows ions of a specific m/z ratio to be isolated from all other ions exiting the source. 

Any ion that dissociates in one of the field free regions before reaching the detector is 

called a ‘metastable ion’. Metastable fragmentation occuring in FFR3 can be detected 

on this instrument by scanning the electric sector voltage on ESA2. The spectrum 

produced is termed a ‘MIKE spectrum’. Thus, metastable reactions of a precursor ion 

will reveal energy release data specific to that ion.

Ions are formed in an electron impact source by introducing the sample into this 

region via an inlet system. This allows stable controllable pressures in the source of 

the order of 1-5 x 10' 5 mbar as read on the ion gauge. Electrons emitted from a heated
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filament are allowed to collide with molecules of the sample, causing ionisation. Ions 

are then extracted from the source by application of an acceleration voltage of 

typically 3kV.

For the consecutive reaction studies, the electron beam used for the formation of the 

required ions was generated from a rhenium filament. Rhenium was used since they 

were the only type readily available towards the end of the study, though the lifetime 

was not as good as the tungsten filaments.

Operating conditions were a trap current of 500 pA and a filament emission current of 

3 mA. Electrons were produced with an electron energy of 70 eV throughout the 

study. The resolving slits labelled SI, S2 and S3 in figure 4.05 were fully open to 

maximise sensitivity. Nitrogen was leaked into the collision cell, of length 10mm, to a 

pressure of ~ 1-5x1 O' 6 mbar, which was sufficient enough to decrease the precursor 

ion beam intensity by - 2 0 % in all experiments in order to avoid multiple collisions, 

since these could have had a serious effect on the product CID MIKE spectrum 

obtained.

Detection of the ions is achieved by scanning the voltage on ESA2 in tandem with the 

voltage on ESA3. ESA3 is much smaller than the other two electric sectors and 

designed solely for the elimination of unwanted ion signals that may arise from ESA2. 

The ion beam is detected by an off-axis electron multiplier. Here, the ions do not 

impact directly onto the first dynode of this particular detector. Ions initially strike a 

deflection dynode, where on impact a shower of electrons is produced. These 

electrons are then attracted to the first dynode of the electron multiplier where more
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Figure 4.05: Schematic of the instrument employed, ‘TES II’



and more electrons are generated on contact with each of the subsequent dynodes 

along the detector.

The current thus generated by the electron multiplier is then converted by a pre­

amplifier, into an analogue voltage. The voltage generated, determines the gain of the 

multiplier which can be varied to enable a 10'6 A or 10' 9 A scale to be chosen. This 

voltage is passed into a ‘Chopper Amplifier Unit’ with a gain which can also be 

varied in the range of 1-3000. The signal from the chopper amplifier is displayed on 

an oscilloscope which is then transferred to a 486 DX2 PC through an analogue-to- 

digital converter (ADC) operating under Power Basic software (Power Basic Inc, 

Monterray, CA, USA).

4.3.2 Calibration

The instrument was not initially designed for MIKES mass spectrometry as previously 

mentioned. Therefore, a method of calibration had to be employed prior to the 

acquisition of data since the acquisition software had to be substantially modified for 

this type of analysis.

It was decided to do two experiments involving the charge separation of doubly 

charged ions formed from benzene and toluene. It is well known that when a doubly 

charged metastable ion fragments into two separate ions of the same charge, that there 

is a large energy release associated with the repulsion between the two charges, 

forming a dish-topped peak.
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The first reaction investigated was:

782+ -» 63+ + 15+

from benzene. The magnet was set to select the C6H6 ion (occuring at m/z 39) and 

the metastable dissociation, from the charge separation, occuring in FFR3 was 

observed by scanning ESA2 around 63/39 x 2996 eV (2996 eV corresponds to the 

main beam position for ions accelerated from the source at 3 kV).

Jennings et al [28] had previously shown that the energy release associated with this 

reaction to be ~ 2.8 eV. The peak shape obtained in the MIKE spectrum for this 

reaction is shown in Figure 4.06. The energy release for this data can be calculated 

from the following equation [26]:

T = v2 mi2 eV. (AW / W ) 2  

16 x m2 m3

where y is the number of charges on the product ion, eV is the acceleration voltage, x 

is the number of charges on the precursor ion, AW is the width of the metasable peak 

and W is the main beam position, so:

T = l 2 x 782 x 3000. (205 / 2996)2
16 x 2 x 63 x 15

T = 2.82 eV
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Figure 4.06: Partial MIKE mass spectrum for the reaction 78 -> 63 in Benzene
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Figure 4.07: Partial MIKE spectrum for the reaction 91 -> 52 in Toluene
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The energy release of ~ 2.82 eV corresponds extremely close to the previous result 

obtained for this experiment.

The final experiment involved the reaction:

912+ -> 52+ + 39+

from toluene. The magnet was set to select C7H7 (m/z 45.5) and the charge sparation 

occuring in FFR3 was observed by scanning the electric sector voltage on ESA2 

around 52/45.5 x 2996 eV. The MIKE spectrum for this reaction is shown in Figure 

4.07. Previous results obtained by Beynon et al. [29] demonstrated an energy release 

of ~ 3.8 eV. Results obtained during this study showed the same result.

The experimental results obtained clearly demonstrate that the data acquisition 

software had been accurately modified for the provision of MIKE mass spectrometry 

experiments to be carried out.

4.3.3 Sample preparation

Thirteen C3H3+ precursor ions were investigated in total, which were formed from a 

variety of molecules.

Acetophenone, phenylacetylene, benzene, thiophene, 1-hexyne, n-hexane, n- 

butylbenzene and toluene were purchased from BDH (Poole,U.K.).
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2,4-hexadiyne and propargyl alcohol were purchased from Lancaster (Morecambe, 

U.K.), 1,5-hexadiyne from Alfa Aesar (Hertfordshire,U.K.) and propene from Aldrich 

(Milwaukee, USA).

Approximately 10pL of each sample solution was injected through a septum (as 

received) into a heated reservoir. The vapor is then leaked into the source, through a 

heated line via a re-entrant. The temperature applied to the reservoir and re-entrant 

depended upon the volatility of the liquid injected. Propene was the only gas studied 

and was leaked into the source via a separate inlet system from a pressurised gas 

cylinder.

All samples were administered into the source region up to a pressure of ~ 1-5 x 10' 5 

mbar. For CID analysis, nitrogen was leaked into the collision cell up to a pressure of 

~ 1-5 x 1 O’6 mbar as indicated on the ion guage. The pressure within the 10mm long 

cell is estimated to be ~ 300 times higher than this.

4.4 Results and Discussion

Some metastable reactions leading to the formation of the CsH3+ ion have been shown 

to be composite in nature [1-3]. Results obtained suggest that two possible structures 

for the CsH3+ ion exists. To carry out consecutive reaction studies, it was deemed 

necessary to look at these particular reactions again, since the instrument used in the 

current study was of different geometry. The following reactions studied initially 

involved metastable dissociation of the chosen precursor ion in FFR3 of the
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instrument. Figure 4.04 shows the reaction CsHs* -> C3H3+ from toluene, (Figure 4.18 

(appendix II) shows the reaction for C3H5+ -> C3H3+ in n-hexane and Figure 4.19 

(appendix II) shows the same latter reaction occuring from propene). The metastable 

MIKE spectrum produced from each clearly shows the formation of two different ion 

structures. The outer broader distribution is assumed to arise from the formation of the 

cyclopropenium ion and the inner distribution from the propargyl ion. The major 

reason the reactions were investigated was to provide the correct portion of ions, (due 

to difference in energy) to be selected for CID analysis.

Ions selected for consecutive studies were produced in FFR1, it was therefore 

necessary to look at the metastable peak shape produced for the mi+ -> m2+ 

dissociation reaction occurring in FFR1 for each molecule investigated, i.e. toluene, n- 

hexane and propene.

These experiments proved problematic, since the geometry of the instrument did not 

facilitate the necessary scan. The ability to observe and detect metastable reactions 

occurring in FFR1 would be straightforward if the instrument was equipped with a 

detector positioned after the magnet. The ideal case would be to have one electric

sector after the magnet (BE geometry) instead of two as in this case. The BE

2 • • geometry would allow a B / E  type scan which permits the fragment ions occurring in

FFR1 to be detected with ease. Here, the magnetic sector and electric sector would be

scanned simultaneously with the B2/E ratio kept constant.

An approximate shape of the dissociation occurring in FFR1 was however obtained, 

by a manual point-by-point method. For example, consider the metastable reaction of
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CsH5+ (65+) -> C3H3+ (39+) occuring in toluene in FFR1. These ions can be 

transmitted to ESA1 by setting the magnetic field to admit only ions of mass 39 /65 

(m/z 23.4). The voltage on ESA1 can be varied using an external 10V DC reference 

supply over different energy ranges, as acquired for the same reaction occurring in 

FFR3. Thus, once an appropriate voltage has been applied to ESA1, only ions of m/z

23.4 will have the ‘correct’ energy to be transmitted through FFR3 and on to ESA2. 

ESA2 can then be scanned over a very small energy range (<10 eV) which results in 

the detection of a broad peak on the oscilloscope. The signal intensity at the top of this 

peak is then measured. This method was carried out approximately twenty times to 

obtain sufficient data points for the ion intensity falling on the detector as a function 

of different energies. The final peak shape derived was an average of three 

determinations.

It is important to mention that the measurements obtained for the metastable 

dissociation of ions formed in FFR1 were generated from the mid-point energy of the 

reaction occurring in FFR3 and below. The data finally presented is therefore a 

reflection of these signal intensities gained. The reason for this was due to the 

presence of an artefact peak occurring on the high energy side of the beam. A brief 

explanation will be discussed later, but the presence of such a peak and its full 

characterisation was beyond the scope of the present investigation.

Prior to performing consecutive reaction studies it was necessary to perform CID 

analysis on various C3H3+ ions generated from different molecules. Thirteen 

molecules were chosen in total, some of which had previously been studied [8 ], (to
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see if results gained here were in agreement) and on some which had not been 

previously studied.

Previous studies [4] have shown that when cyclopropenium ions are generated at 

threshold energy compared to propargyl ions their CID spectra are significantly 

different when the ions are accelerated with a voltage of 3 kV from the source. Two 

product ion intensities, m/z 26+ (C2H2+) and m/z 25+ (C2H+) in the CID/MIKE are 

sensitive to change. CID product ions produced from cyclopropenium ions yield ion 

intensities where m/z 26+ > m/z 25+ and propargyl ions yield intensities where m/z 

25+ has approximately the same intensity as 26+. The differences can be seen by 

observing the partial CID/MIKE spectrum of propargyl chloride, shown in Figure

4.08, which is in agreement with Holmes et al. [4] and * 1-hexyne shown in Figure

4.09. It should be noted that these spectra do not necessarily correspond to the 

production of pure cyclopropenium and pure propargyl ions, although propargyl 

chloride is known to produce cyclopropenium ions at threshold energy [4].

Figure 4.08, for example shows two peaks. The mass of each peak can be calculated 

as follows; consider the left hand side peak, the mass can be derived from the energy 

associated with the centre of the peak, for example;

1916 (Peak centre) x 39+ (Precursor ion) = 25+
2996 (Main beam position)
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Other molecules investigated, illustrating clear differences in the m/z 26+:m/z 25+ 

ratio have been tabulated below (table 1). The partial CID/MIKE spectra of each can 

be found in Appendix II.

Precursor molecule m/z 26+:m/z 25+ Appendix II

Benzene 1.4 Fig.4.20

*Phenylacetylene 1.3 Fig.4.21

'Thiophene 1.3 Fig.4.22

’Acetophenone 1 . 1 Fig.4.23

2,4-Hexadiyne 1 . 1 Fig.4.24

Propene 1 . 1 Fig.4.25

*Butylbenzene 1 . 0 Fig.4.26

*n-Hexane 0.9 Fig.4.27

Toluene 0.9 Fig.4.28

'Propargyl alcohol 0.9 Fig.4.29

1,5-Hexadiyne 0.9 Fig.4.30

Table 1: * represents those molecules that do not appear to have been
previously investigated

The error associated from an average of three readings is +/- 0.1 
(arbitary units) in all cases.

From these highly reproducible differences obtained it is clear that more than one 

C3H3+ ion is being formed in the ion source which does not appear to isomerise to the 

most stable form (cyclic structure) within the time-scale of these experiments.

The CID of pure cyclopropenium ions can be achieved by selectively transmitting 

portions of ions that make up the broader distribution of the metastable reactions 

studied. Pure propargyl ions cannot be analysed since the inner distribution will 

always contain a small component that makes up the outer distribution.
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The expected mass spectra for the CID of cyclpropenium and propargyl ions chosen 

for consecutive reaction studies, should take the form of the constructed ‘stick’ mass 

spectrum shown in Figure 4.10 .
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Figure 4.08: Partial CID/MIKE spectrum of C3H3+ in Propargyl chloride
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Figure 4.09: Partial CID/MIKE spectrum of C3H3+ in 1-Hexyne
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Figure 4.10: Showing expected CID product spectra

A possible energy diagram illustrating the formation of the product ion formed from 

the CID of two structurally different C3H3+ ions could take the form of Figure 4.11
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Figure 4.11: Energy diagram showing product ions formed 
from CID of two structurally different C3H3+ 
ions
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4.4.1 Toluene

Different C3H3+ ions were chosen for CID analysis on the basis o f  internal energy. 

Various portions o f  the metastble peak occurring in FFR1, see Figure 4.12, were 

selectively transmitted to FFR3 for CID analysis.

I f  the assumption by Sen-Sharma et al. [1] was correct, he. that the central 

component, portion I o f  the metastable peak was due to the generation o f  propargyl 

ions, then it is known from these studies that the CID product ions o f  interest, m /z 26+ 

and m/z 25+, have approximately the same intensities. Thus, by selectively  

transmitting portion I ions, occurring at mass 39 /65 to the collision cell, the results 

generated should be o f  the same magnitude.

The outer more broader component o f  the peak, should yield results where the m/z 

26+ ion is o f  greater abundance when ions selected from portion II undergo CID if  

pure cyclopropenium ions are formed.

The partial CID/MIKE spectra obtained is shown in Figure 4.13. The top spectrum  

obtained from selecting portion I and the bottom spectrum obtained from selecting  

portion II. It is clearly evident that by selecting ions from portion II, that a more 

abundant m/z 26+ is observed, as would be expected i f  pure cyclopropenium ions 

were responsible for the broad component o f  the metastable peak.
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Figure 4.13: Partial CID/MIKE spectrum obtained from consecutive reaction in Toluene.
Top spectrum obtained from selecting portion I in Figure 4.12 and bottom from
selecting portion II
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The central component of the peak, portion I, does not generate the product ions of 

interest with the same intensity as would be expected if pure propargyl ions were 

solely being formed. A reason for this slight indifference could be due to the presence 

of some cyclopropenium ions. However, the spectrum obtained is significantly 

different from the CID for ions with lower internal energy.

It is reasonable to assume, from these results, that the composite nature of the peak 

was due to the formation of two structurally different C3H3+ ions.

To confirm these findings it was deemed necessary to study two more consecutive 

reaction investigations on n-hexane and propene. The following results proved more 

fruitful since the signal intensity was approximately 3 and 30 times respectively more 

intense than with toluene.

4.4.2 n-Hexane

The magnetic sector current was set to accept ions of mass 39 /41 (m/z 37.1). Ions 

from portion I of the metastable peak, shown in Figure 4.14 were transmitted to the 

collision cell by application of an appropriate voltage to ESA1. Selection of ions from 

portion II meant that the voltage across the ESA1 plates had be lowered by 

approximately IV.

Figure 4.15 shows the partial CID/MIKE spectrum obtained from selecting these 

different portions on the basis of internal energy. The spectra unambiguously
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Figure 4.15: Partial CID/MIKE spectra obtained from consecutive reaction in n-Hexane. Top
spectrum obtained from selecting portion I in Figure 4.14 and bottom spectrum
obtained from selecting portion II
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demonstrate the formation of two structurally different isomers. The ratio of 

abundances generated for the ions of interest do not remain constant. The selection of 

ions from portion II shows the m/z 26 + ion intensity is fairly constant whereas the 

m/z 25+ ion signal dramatically falls off, compared to selecting ions from portion I.

This seems to suggest that the inner distribution is composed of a greater proportion 

of propargyl ions in comparison to toluene.

4.4.3 Propene

As with n-Hexane H2 loss from the molecular ion generates a metastable composite 

peak. The intensity of this peak as mentioned was the most intense which allowed 

three separate portions of the peak to be individually selected for CID analysis, Figure 

4.16 shows the three different portions selected.

Figure 4.17, shows the partial CID/MIKE spectrum obtained by from selecting the 

different C3H3+ ions on the basis of varying internal energy. It is evident from the 

spectra, as with the other two molecules, that the product ion abundance does not 

remain constant. The higher energy ions (propargyl), portion I, generate product ions 

of approximate equal intensity. As the lower energy ions are selected, portions II and 

III, the m/z 26+ ion intensity remains fairly constant but again the m/z 25+ ion 

intensity significantly decreases, as would be expected for the generation of 

cyclopropenium ions.

These results ultimately confirm the presence of two C3H3+ isomers.
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Figure 4.17: Partial CID/MIKE spectra obtained from consecutive reaction in Propene. Top spectrum

obtained from selecting portion I in Figure 4.16, middle spectrum obtained from selecting
portion II and bottom spectrum obtained from selecting portion III
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4.5 Conclusions

Consecutive reaction studies have been used to identify structurally different C3 H3+

ions, based on internal energy. The main conclusions are as follows:

1. The metastable peak shapes leading to the formation of C3H3+ ions formed in 

toluene, n-hexane and propene are composite in nature. This signifies the 

proposed formation of two isomeric ion structures.

2. Further characterisation for the above proposal has been performed using

consecutive reactions utilising CID MIKE spectrometry. It has been shown 

unambiguously that the technique used is an excellent method for determining 

differences in isomeric ion structure on the basis of internal energy of the 

selected precursor ion.

3. The MIKE technique used for the consecutive reactions is very time

consuming, since the acquisition of data is extremely insensitive. The results 

generated for each consecutive reaction spectrum, meant that ESA 2 had to be 

scanned very slowly for long periods, typically of the order of 30-100ms/eV, 

to obtain enough data points for a useable spectrum.

4. The method although very insensitive is extremely reproducible.

5. An artefact peak was observed on the high energy side of the beam for the 

metastable reactions occurring in FFR1. It is proposed that the selected ions
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are fragmenting in one of the sectors, most likely to be within the flight tube of 

the magnetic sector, leading to a continuum type artefact.

6 . Initial proposals [1-3] that the composite nature for the metastable reactions 

investigated, was due to the formation of two structurally different C3H3+ ions 

has been shown by consecutive reaction studies to be correct.

7. The results estimated by Holmes et.al [4] are in slight disagreement since the 

CID spectra of C3H3+ ions derived from CsHs"1” ions (toluene) and C3Hs+ ion 

(n-hexane and propene) in this case, do not give intensity ratios of equal 

magnitude for C2H+ and C2H2+ product ions generated from propargyl ions. 

Two reasons could possibly be due to the fact that; different translational 

energies were used and that their results were overestimated, since the inner 

distribution of the metastable peaks contain more cyclopropenium ions than 

calculated.
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Figure 4.18: Metastable reaction of C3Hs+ C3H3+ in n-Hexane occurring in FFR3
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Figure 4.19: Metastable reaction of C3 H5+ -> C3 H3+ in Propene occurring in FFR3
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Figure 4.20: Partial CID/MIKE spectrum of C3H3+ in Benzene
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Figure 4.21: Partial CID/MIKE spectrum of C3 H3+ in Phenylacetylene
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Figure 4.22: Partial CID/MIKE spectrum of C3H3+ in Thiophene
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Figure 4.23: Partial CID/MIKE spectrum of C3 H3+ in Acetophenone
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Figure 4.24: Partial CID/MIKE spectrum of C3H3+ in 2,4-Hexadiyne
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Figure 4.25: Partial CID/MIKE spectrum of C3 H3+ in Propene
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Figure 4.26: Partial CID/MIKE spectrum of CsH3+ in Butylbenzene
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Figure 4.27: Partial CID/MIKE spectrum of CsH3+ in n-Hexane
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Figure 4.28: Partial CID/MIKE spectrum of C3H3+ in Toluene
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Figure 4.29: Partial CID/MIKE spectrum of C3 H3+ in Propargyl alcohol
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Figure 4.30: Partial CID/MIKE spectrum of C3H3+ in 1,5-Hexadiyne
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