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A bstract

Among all stochastic processes with independent increments, essentially only 

Brownian motion and Poisson process have a chaotic representation property. 

In the case of a Levy process, several approaches have been proposed in order 

to construct an orthogonal decomposition of the corresponding L2-space. In 

this dissertation, we deal with orthogonal (chaotic) decompositions for gener­

alized processes with independent values. We do not suppose stationarity of 

the process, as a result the Levy measure of the process depends on points of 

the space. We first construct, in Chapter 3, a unitary isomorphism between 

a certain symmetric Fock space and the space L2(P ',/i). Here V  is a co- 

nuclear space of generalized functions (distributions), and fi is a generalized 

stochastic process with independent values. This isomorphism is constructed 

by employing the projection spectral theorem for an (uncountable) family of 

commuting self-adjoint operators. We next derive, in Chapter 4, a counter­

part of the Nualart Schoutens decomposition for generalized stochastic pro­

cess with independent values. Our results here extend those in the papers of 

Nualart Schoutens and Lytvynov. In Chapter 5, we construct an orthogonal 

decomposition of the space L2(V' ,yi) in terms of orthogonal polynomials on 

V . We observe a deep relation between this decomposition and the results 

of the two previous chapters. Finally, in Chapter 6, we briefly discuss the 

situation of the generalized stochastic processes of Meixner’s type.
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Chapter 1

Introduction

A chaotic decomposition of the L2-space of functionals of Brownian motion 

plays a fundamental role in Gaussian analysis, see e.g. [10,35]. In a parallel 

way, a chaotic expansion of the L2-space of functionals of Poisson process 

has also been derived, see e.g. [21,43]. In fact, among all stochastic processes 

with independent increments, essentially only Brownian motion and Poisson 

process have a chaotic representation property, see [16]. In fact, for a gen­

eral stochastic process with independent increments, the space generated by 

the multiple stochastic integrals with respect to this (centered) process is a 

proper subspace of the corresponding L2-space. In the case of a Levy process, 

several approaches have been proposed in order to construct an orthogonal 

decomposition of the corresponding L2-space.

The first approach is due to Ito [21] and uses the Ito decomposition of a 

Levy process as a Gaussian process and an integral with respect to Poisson 

random measure over a two-dimensional Euclidean space. As a result, one 

gets a certain unitary isomorphism between the L2-space and a certain sym­

metric Fock space. This point of view has been, in particular, used to develop 

white noise analysis for Levy processes [17,18,33], see also [26-28,41].
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Another approach has been developed by Nualart and Schoutens [36], 

who used a system of polynomials which are orthogonal with respect to the 

Levy measure of the Levy process, see also [40] and [18].

If one realizes a Levy process through a probability measure on a space 

of generalized functions, then, under appropriate assumptions on a Levy 

process, polynomials (of infinitely many variables) form a dense subset of the 

L2-space. Hence following the idea of Skorohod [42], one can orthogonalize 

these polynomials. A remarkable feature of Levy processes, proven in [31], 

is that these orthogonal polynomials can be found explicitly, say in terms of 

the Nualart-Schoutens decomposition. As a result one can explicitly calculate 

the scalar product between orthogonal polynomials (see also see also [20]). 

In fact, it was shown in [31] that there exists a deep relation between the 

Nualart Schoutens decomposition and orthogonalization of polynomials with 

respect to a Levy white noise measure.

Orthogonal polynomials with respect to a Levy white noise measure have 

many additional, nice features in the case of a Meixner-type Levy process, 

in particular, for Gamma white noise measure, see [23,24,30,31], see also 

[1,2,22,32,38] and the references therein.

We should also mention the fundamental paper by Vershik and Tsilevich 

[44], which proposes an alternative way of constructing an isometry between 

the L2-space of a Levy process and the L2-space of a vector-valued Gaussian 

white noise.

In this dissertation, we deal with generalized processes with independent 

values, in the sense of [19]. We do not suppose stationarity of the process, 

as a result the Levy measure of the process depends on points of the space. 

It should be noted that majority of the above cited papers, including Ito’s 

fundamental result [21], do assume stationarity. Additionally, many results



of the dissertation are new even for Levy processes. We also mention that, 

due to our assumptions on the Levy measures, the corresponding generalized 

stochastic process is a probability measure on a space of generalized functions 

whose Laplace transform is analytic in a neighborhood of zero, cf. [25]. It 

should be however noted that, in this dissertation, we assume that the Levy 

measures have an infinite number of points in their support. The case where 

Levy measures may have a finite number of points in their support will be 

treated elsewhere.

The dissertation is organized as follows.

Chapter 2 contains some preliminary information, which is required for 

our further studies.

In Chapter 3, we employ the projection spectral theorem for an (uncount­

able) family of commuting self-adjoint operators [10], see also [8,9,11,29,30, 

38] for further applications of this theorem in infinite-dimensional analysis. 

We construct a certain family of commuting self-adjoint operators 

in a symmetric Fock space T . Here V  is the nuclear space of all smooth, 

compactly supported functions on R d. We prove that the family (A((/?))v?Gp 

satisfies the assumptions of the projection spectral theorem. As a result, we 

derive the spectral measure of the family (A (^))v?Gp at the vacuum state Q 

a probability measure (i on the space V ', the dual space of V  with respect 

to the zero space L2(Rd,dx). Furthermore, we get a unitary isomorphism 

/  : T  —> L2(V' ,p) such that Ifl  is the function identically equal to 1, and 

the image of each operator A(p)  under I  is the operator of multiplication by 

the monomial Here for u  G V'  and p  G V, {u>,p} denotes the dual

pairing between uj and p. As a by-product of our considerations, we have an 

explicitly described subset T of the symmetric Fock space T  such that each 

operator A(p)  maps the set 'I' into itself and A(p)  is essentially self-adjoint
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on We next derive the Fourier transform of the measure /i, which has the 

form as in the Levy-Khintchine formula. This, in particular, implies that 

/a is a generalized stochastic process with independent values. It should be 

stressed that all results in this chapter are new even for Levy processes, i.e., 

when the Levy measure of the process does not depend on point x  G Md.

In Chapter 4, we derive a counterpart of the Nualart-Schoutens decompo­

sition for generalized stochastic process with independent values. Our results 

here extend those in [36] and [31], and they have been known in the Levy 

process case.

In Chapter 5, we construct an orthogonal decomposition of the space 

L2(V',fj,) in terms of orthogonalized polynomials on V . We observe a deep 

relation between this decomposition and the results of the two previous chap­

ters. We get a unitary isomorphism between an extended (symmetric) Fock 

space F and L2(V\fi ) .  Here the extended Fock space F  has the form

OO
F = 0 / 4 m((Rrf)V<">).

n —0

where is an explicitly given measure on (Rd)n, and L2ym((Rd)n, is 

the space of all symmetric functions on (Rd)n which are square integrable 

with respect to the measure (dnb Such an interpretation of the extended 

Fock space is new even in the Levy process case, compare with [31].

Finally, in Chapter 6, we briefly discuss the situation of the generalized 

stochastic processes of Meixner’s type, compare with [30,38]. On the real line, 

a probability measure of Meixner’s type is (almost) completely characterized 

by two parameters, A 6 K and rj > 0. The class of these measures contains, 

in particular, the Gaussian, Poisson, and Gamma measures. In our infinite 

dimensional setting, a generalized stochastic process of Meixner’s type is 

characterized by two functions A(x) and rj{x) for x G R d. In our dissertation,
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we present a sketch of the proof of the following result. Let £(ip) be the 

cumulant transform of the probability measure fi on V  corresponding to 

functions X(x) and r)(x). (Recall that the cumulant transform of a probability 

measure is the logarithm of its Laplace transform.) Then

<%) =  /  £\(x)rt*)Mx ) ) dx '■JRd

Here, for a fixed x E Md, ^a(x),t?(x)((/7(^)) is the cumulant transform of the 

probability measure on R from Meixner’s class, corresponding to the param­

eters A(ar), 77(2;), and evaluated at point <p(x). A complete proof of this result 

will be given, elsewhere.
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Chapter 2 

Prelim inary

We refer our reader to [6,10,13,15] for further details and proofs.

2.1 Unbounded operators

The aim of this section is to recall for the reader some notions connected with 

unbounded operators. So let H  be a Hilbert space with inner product (•, •)// 

and let D be a linear subset (subspace) of H  (thus D C H). We consider a 

linear operator A : D —> H . We write D =  D(A ), where D(A) is called the 

domain of A. A  linear operator A with domain D(A)  is often denoted by 

(j4, D(A )) to stress the domain of A. If D is dense in / / ,  then we say that A 

is a densely defined linear operator.

A linear operator A is called symmetric if, for any / ,  g G D(A),

(A f ,g )n  = ( / , Ag)H.

If, additionally, the domain D(A)  is dense in / / ,  the operator A is called 

Hermitian.

If (/1,D(/1)) is a densely defined linear operator in // , then we define
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D(A*) as the set of those g G H  for which there exists g* £ H  such that

( A f ,g ) H = (/,£*)//, for all /  £ D(A).

D(A*) is a subspace of H. We call D(A*) the domain of the adjoint operator 

A*, and we set A*g = g*. Note that, generally speaking, the domain D(A*) 

of the adjoint of a densely defined linear operator (A, D(A))  need not be 

dense in II. Furthermore, one can give examples where D(A*) = {0}.

Note also that if (A, D(A)) is Hermitian, then D(A) C D(A*) and A f  = 

A*f  for each /  £ D(A).  An operator (A,D(A)) is called self-adjoint if 

(A, D(A)) = (A *, D(A*)), i.e., the operator A coincides with its adjoint.

For an operator (A, D(A)), the set

r A : = { ( f , A f ) \ f e D ( A ) } c H x H

is called the graph of the operator A.

If is a closed subset of II x / / ,  then the operator A is called closed. 

If this is not the case, then one may take the closure Ta ofT^ in H  x H.  

However, fA may happen not to be a graph of a linear operator, i.e., there 

may exist vectors {f ,g\)  and (/, <72) in such that gi ^  g2. If this is not 

the case, i.e., if fA is a graph of a linear operator, then we call (A, D(A)) a 

closable operator and the corresponding operator defined by Ta is called the 

closure of (A, D(A)), denoted by (A, D(A)).

One may show that any Hermitian operator is closable and any self­

adjoined operator is closed. However, the closure of a Hermitian operator is 

not necessarily a self-adjoint operator. If this closure is self-adjoint, then we 

say that (A, D(A))  is an essentially self-adjoint operator.

In applications we are mostly given Hermitian operators, rather than 

self-adjoint operators. Then, if one is able to prove that such an operator is
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essentially self-adjoint, then, by closing the operator (A,D(A)),  one derives 

a self-adjoint operator.

T h eo rem  2.1 (Nelson’s analytic vector criterion). Let (A , D(A)) be a densely 

defined, Hermitian operator in H . A vector f  G D{A) is called analytic (for 

A) i f  for each n G N, /  G D(An), and

for some t > 0. I f  there is a subset T> C D(A) such that ® is total in H  

and each f  G V  is analytic for A, then the operator (A , D(A)) is essentially 

self-adjoint.

Remark 2.2. A linear combination of analytic vectors is an analytic vector, 

so that we can only demand that ID be a total set in H, i.e., its linear span 

is dense in H.

Remark 2.3. Note that for any linear operators (A , D(A)) and (B, D(B))  in 

a Hilbert space H,  one defines

This, in particular, explains the meaning of the operator (An, D(An)).

Let (X, A)  be a measurable space. Let B(H)  denote the Banach space of 

all bounded linear operators in H. A mapping

is called a resolution of the identity if the following conditions are satisfied:

n =  1

D(AB) := { /  € D(B)  : B J  6 D(A)}

and then, for any /  G D(AB)

A B f  =  A ( B f ) .

A  3 a  E(a)  € B(H)

14



•  For each a £  A, E(a)  is an orthogonal projection in H .

•  E (0 )  = 0, E{ X)  = 1.

•  If {an}“  ,. a n G A,  n  6 N, a n are mutually disjoint, then for each 

f e H

oo oo
e(U  “»)/ = ££(<*»)/.

n = 1 n —1

where the series converges in H.

It follows from the definition of a resolution of the identity that for any 

vectors f , g  G H,  the mapping

A  3 a ^  (E(a) f ,  g)H

is a signed measure on (X, A),  and for any /  G H,

A  3

is a measure on (X ,A) .

We denote by B(R) the Borel u-algebra on R. To any self-adjoint op­

erator (A, D(A)),  there corresponds a unique resolution of the identity over 

(R, B{R)) such that

A = [  XdE(X).  (2.1)
J i

The equality (2.1) should be understood as follows:

D(A) : = { f e H  | f  \ 2d { E ( \ ) f J ) H < 00} (2.2)
•/ R

and for any /  G E( A)  and g G fI

( Af , g ) H = [  Xd{E{X) f , g)H. (2.3)
Jr

15



Furthermore, the inverse statement holds: If E  is a resolution of the identity 

over (R, #(R )), then E  determines a self-adjoint operator in H through the 

formulas (2.2) and (2.3).

Formulas (2.1)-(2.3) are called the spectral decomposition of a self-adjoint 

operator (in fact, the resolution of the identity is concentrated on the spec­

trum of A).

Let us now briefly discuss commutation of linear operators. In the case 

where A\  and A 2 are bounded linear operators, their commutation is defined 

straightforward:

A \ A 2f  = A2A \ f  for each /  G H. (2.4)

However, in the case where A\  and A 2 are unbounded operators, the operators 

A \ A 2 or A 2A\ may only be well-defined at zero. So, in the case where A\ 

and A 2 are additionally self-adjoint operators, one defines their commutation 

through the commutation of their resolutions of the identity. So we say that 

self-adjoint operators (A\, D(A\))  and (A2,D (A 2)) commute in the sense 

of their resolutions of the identity if, for any cti,ct2 € the operators

Ei(cti) and E2{a2) commute, where E\, and E2 denote the resolution of the 

identity of Ai,  and A 2, respectively. It can be shown that this definition of 

commutation indeed generalizes the definition (2.4) in the case of bounded 

self-adjoint operator.

The following theorem allows one to check that two given self-adjoint 

operators indeed commute in the sense of their resolutions of the identity.

T h eo rem  2.4. Let (Ai, D(Ai)), (A2,D (A 2)) be two Hermitian operators in 

/ / .  Let V  be a dense linear subset of II such that £  C D(A\)  D D(A2), 

AiD  C £ ,  A 2V  C £  and A\,  A2 commute on £  in the usual sense:

A \ A 2J  =  A2A \ f  for all f  G £ .
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Assume that each vector in D is analytic for both operators Ai and A 2 . Then 

the operators (A \,D(Ai) )  and (A2, D(A2)) are essentially self-adjoint and 

their closures (Ai , D(Ai ) )  and (A2,D (A 2)) commute in the sense of their 

resolutions of the identity.

2.2 Orthogonal polynom ials

Let (R,#(R),<r) be a probability space. We assume that the probability 

measure a has all moments finite, i.e.

x\ncr(dx) < 00, Vn G N.

Therefore the integrals JRx na(dx) are well defined. The numbers

mn =  / x na(dx), n G N,
J R

are called the moments of a.

If we take a sequence of monomials (xn)^L0, then according to the Gram 

Schmidt procedure they may be orthogonalized. Thus, we get a system of 

monic orthogonal polynomials:

Pn{%) — Xn +  Qn_ \Xn 1 +  a n- 2Xn 2 +  • • • +  C*0' (2-5)

(‘Monic’ means that the leading coefficient, i.e., the coefficient by x n, is 1.) 

Now we have to distinguish the two following cases:

Case 1: Suppose the support of a is infinite. Then (Pn)™=0 is an infinite 

system of orthogonal polynomials.

Case 2: If the support of a consists of k points, k G N, then we get only 

k orthogonal polynomials (Pn)^ l lQ.

In this dissertation we will deal only with Case 1.
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T h eo rem  2.5 (Farward’s theorem). Assume that the support of a is infinite. 

Then, there exist an > 0, n = 1 , 2 , . . . ,  and bn G R, n — 0,1, 2 , ,  such that

%Pni.*̂ ) — Pn+i(^) “I- bnPn( r̂) “I- anPn—\{xfi n  ^  1, 

x P q ( x ) =  Pl{x) +  &o-

Furthermore, for any an > 0, n = 1 ,2 , . . . ,  and bn £ M, n = 0 , 1 , 2 , . . . ,  there 

exists a probability measure a with finite moments such that the corresponding

polynomials for measure a.

We note that, generally speaking, there may exist different probability 

measures which have the same moments. That is, the measure a in the second 

part of Farward’s theorem is, generally speaking, not unique. However, there 

exist sufficient conditions which guarantee that the measure a is unique. The 

following theorem is an example of such a condition.

T h eo rem  2.6. Assume that a is a probability measure on M which has finite 

moments. Then the following three conditions are equivalent:

(i) There exists c > 0 such that, for all n G N,

polynomials (Pn(^))^=o defined by (2.6) form a system of monic orthogonal

m n < cnn\ (2.7)

(ii) There exists e > 0, such that

ei'x'a(dx) < oo.

(Hi) There exists c > 0 such that the Laplace transform of a,

is well defined and can be extended to an analytic function



If  either (i), or (ii), or (Hi) holds, then the measure a is a unique prob­

ability measure on M which has moments m n, so that there is a one-to-one 

correspondence between o and the system of orthogonal polynomials.

Remark 2.7. Let a be a measure on (M, Z3(M)) which satisfies either condition 

(i), or (ii), or (iii) of Theorem 2.6. Then, if we know the Fourier transform of 

(j, f R elix a(dx), for t from a neighborhood of zero in R, then we can evaluate 

the moments m n of a by differentiating the Fourier transform at zero, and 

so we can recover the measure a. Hence the measure a is uniquely identified 

by its Fourier transform in a neighborhood of zero.

2.3 Rigged Hilbert spaces

Let Hq be a real Hilbert space with scalar product (•, -)//0 and norm || • ||//0. 

We suppose that

where H + is a dense subset of H q. We also suppose that H + is a Hilbert 

space with respect to another scalar product (•,•)//+ and the norm || • \\H in 

H + is such that

(The more general case when || • < c\\ • for some constant c < oo can

be reduced to (2.9) by introducing an equivalent norm in //+ .) The elements 

of the set H+ play the role of test functions.

Each element /  G H q generates a linear continuous functional (/, •) on 

H + according to the formula

H + C H0, (2 .8)

M U  ^  IMIh+- v £ H +- (2.9)

(2 .10)
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We introduce a new norm || • ||w_ in H q by taking the norm of /  as the 

norm of the functional (/, •) corresponding to it:

ll/ll«_ : = l l ( / . - ) l l = s u p | ^ ^  I ¥> e ^  o j  . (2.11)

We complete H q in the norm (2.11) and obtain a linear normed space 

//_ , which is called the space with negative norm and its elements play the 

role of generalized functions. Thus we have constructed the chain

H + C H q C H_ (2.12)

of spaces with positive, zero and negative norms. (The elements of H - , Hq , H+ 

will be called generalized functions, ordinary functions and test functions, re­

spectively). A rigging of the space Hq by the spaces H+ and //_  is given by

( 2 . 12).

Each element £ G H -  is evidently a linear continuous functional on H+ 

so that

H-  C (//+)', (2.13)

where (H+)' denotes the dual space of H+. We will write (£,y>)tf0, or (f>^) 

for the action of the functional £ on an element p  E H+. It is obvious that

( e H . , < p e H + (2.14)

which is a generalization of the Cauchy-Schwarz inequality.

Initially, we have defined //_  as a Banach space. However, one may prove 

that H -  is a Hilbert space, i.e., the norm || • in //_  is generated by some 

scalar product (•, •)//_. Furthermore, //_  =  (H+)\ i.e. //_  can be thought of 

as the dual space of H+.

A  rigging H+ C H0 C //_  is called quasi-nuclear if the inclusion operator 

O : 11+ —»■ H q is quasi-nuclear (or of the Hilbert-Schmidt class), that is for
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one (and hence any) orthonormal basis ( e n ) ^  of //+ , we have
oo

E  iienii»o < °°-
n= l

In this case, we shall say that the space H + is imbedded into Hq quasi- 

nuclearly. The corresponding rigging (or the chain (2.12)) will also be called 

quasi-nuclear.

Example 2.8. Let H q = i 2 = ^ ( ^ )  be the Hilbert space of all square 

summable real sequences x = (xk)^=Q with scalar product
OO

(z>2/)//0 = ^ 2 x kyk.
k=0

More generally, for each sequence r  =  (rfc)^0, rk > 0, we define the corre­

sponding Hilbert space
OO

Ht = ^ ( t )  =  {{xk)^=0 | x k e  R, ^ 2 x 2krk =: \ \x \ \2H t < 00},
k = 0

00

(x , v)ht = ^ 2 x kykrk. (2.15)
k=0

Evidently, t 2 =  ^2(r ) with rjt =  1, fc G Z+ := N U {0}.

Denote by T  the set of all sequences r  =  (t/^^Lq with rk > 1, k G Z+. 

Clearly, for any r, r'  G T  such that r'k > rk, k £ Z+, HT> C H T and || • ||/// > 

|| • ||h t - Denote by 1R£° the set of all finite real sequences, i.e., all real sequences 

{xk)kLo sucb that x k = 0, k > K , for some K  G Z + := {0,1,2, . . . } .  For each 

t  G T, Mq0 C £2 (7 ) with dense inclusion. Therefore, if r  and t '  are as above, 

^ ( t ' )  is dense in

For every r  =  (r/c)^ z0 G T, one can take t ' = (2kTk)k^ 0 so that the 

imbedding Or/|T : HT> —* HT is quasi-nuclear. Indeed, let (en)£L0 be the 

natural orthonormal basis in £2, that is

en =  (zfc)j£=(n x k =  0 for k ^  ra, ;rn =  1. (2.16)
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Then the vectors (rn 2en)£T0 form a orthonormal basis in HT and, there­

fore, for the Hilbert-Schmidt norm of the imbedding operator 0 T/iT, we have
oo oo

II^V.tIIhs =  IK7*) 2 II//t =  k < °o-
k=0 fc=0

For every r  G T, the Hilbert space 7dr -i =  ^ ( r -1), 7' -1 :=  (r fc'1)fclo> 

dual to HT — £2(7") with respect to Hq = £2. The scalar product in HQ = £2 

defines a natural pairing of the elements of ^ ( t -1) and £2M , namely,
00

=  £ G ^ _1), ^ e £ 2{r).
k=0

Example 2.9. Given / G and a weight function p : Md —» M, p(a;) > 1, 

ar G Rd, p G C(lRd) (the space of all continious functions on Md), the Sobolev 

space W 2 (Rd,p(x) dx) is defined as the completion of C£°(IRd) (the space of all 

infinitely differentiable functions on with bounded support) with respect 

to the scalar product

(v5) 'llJ)wl(Rd,p{x)dx) — ^ a,0)L2(Rd,p(x)cte)> C5°(Rd). (2.17)
|a|</

The summation in (2.17) is over all indices a = (qi, . . . ,  a^), Qi , . . . ,  G Z+, 

|a | =  a i +  • • • +  ard < Z, and denotes the corresponding partial derivative.

We set H q =  L2(Rd,d:r) =  W20(IRd,d:c) and //+  =  Wj(Rd, p(x) dx), I G N. 

Clearly, //+ is densely and continuously embedded into H q . (Note that each 

p(x) dx) contains the set Co°(Mrf), which is dense in every Sobolev 

space, by its construction.) Then //_  is called a Sobolev space with negative 

index —I and is denoted by dx).

If I > d/2, then the Sobolev space dx) consists of continuous

functions, i.e., ,p(x) dx) C C(Rd). Furthermore, if m G Z+, / > d/2,

and if 1 < P \ ( x )  < p2(x) with

[  P iM
piO )
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then the inclusion W™+1 (Rd,p2 (x) dx) C W2 l(Rd,pi(x) dx) is quasi-nuclear.

2.4 Rigging of a H ilbert space by a nuclear 

space

Let $  be a linear topological space that is topologically (i.e., densely and 

continuously) imbedded into a Hilbert space H q . Just as in Section 2.3, each 

element /  6 Hq generates the linear continuous functional on <E> according to 

the formula

h(<P) =  <P €

Let denote the dual space of $  (i.e., the space of all linear continuous 

functionals on <£). Identifying /  with I f ,  we obtain the imbedding of H q into 

the space <3>'. Hence, we have constructed the chain

K i / 0 C (2.18)

We also say that (2.18) is a rigging of H q by the spaces $  and and is 

the dual space of H q with respect to zero space H q .

In what follows, we will only consider the case where $  is a nuclear space. 

So, let us define such a space. Let [Ht )t ^ t  he a family of Hilbert spaces. We 

assume that the set $  := H rer Hr is dense in each HT, and that the family 

(Ur) t £ t  is directed by imbedding, i.e.,

W ,  t "  G T  3 r#,/ G T  : Hr,„ C HT>, Hr», C tfT», (2.19)

where the imbeddings are continuous. On <$, we introduce a projective limit

topology with respect to the family of Hilbert spaces (H t ) t £ t  and natural 

imbeddings 0 T : $  —> Hr. By definition, this means that we consider the
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weakest topology on $  for which all the mappings 0 T) r  G T, are continuous. 

One can show that the collection of all possible open balls

U{ip\r\e) = G $  | ||v? -  i p \ \ H r  <  e}, ip G 4>, t  G T, e > 0. (2.20)

may be taken as a system of base neighbourhoods of this topology. This space 

$  constructed as above is called the projective limit of the family ( H t )t£t  

and is denoted by

4> =  proj lim Ht . (2.21)
tGT

If, additionally, for each r  G T, there exists r '  G T  such that HT> C HT 

and the inclusion operator Ot^t Ht > —> Hr is quasi-nuclear, then the space 4> 

is called a nuclear space.

Let <E> = proj limrGT HT be a nuclear space, and let H q be a Hilbert space. 

Assume that, for each r  G T, HT C Hq with continuous imbedding, and that

$  (and therefore each Hr) is a dense subset of H q . We can now construct

the riggings

Ht  Cl H q ^ H— r , t  G T1,

$ C H q C

Notice that if / /T/ C / /T, we have

//_ T C (2.22)

Theorem  2.10 (Schwartz). We have

*  =  U H 'r = U
t (ET r g T

TYzzs equality should be understood as follows: for each I G 4>' £/zere exists

r  G T  swc/i that I may be extended by continuity from $  to a linear continuous

functional on IIT, and vice versa if I G / /_ T /o r some t G T ,  £/ien I [ $  G
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Since <$' =  U rs r  H - T> one can introduce on the topology of the induc­

tive limit of Hilbert spaces (//_ T)T€r . This topology is defined by basic open 

sets

W(Ce(-)) =  c . 1 . s . ( I J { |K - £ V t < £(r) i - Z ' Z H - t ,} ) ,
t GT

where c.l.s. denotes ‘the convex linear span’, f  E and T 9 r 4  e(r) > 0. 

One writes <£' =  i n d l i m T h u s ,  we have

$  =  proj lim H t C H q C ind lim //_ T =  <£>', (2.23)
tsT reT

which is called a Gel’fand (standard) triple. The dual space is often called 

a co-nuclear space.

Example 2.11. Recall Example 2.8. Clearly, D re T ^ M  — ^o°- Indeed, 

the inclusion Rg° C D i-g t^ M  is evident, whereas for any sequence of real 

numbers (xk) ^ Q which has an infinite number of non-zero elements, one can 

always find t  E T  such that (xk)kLo & ^2(r )-

Setting <E> =  Rg° =  proj l i m T € T  £2( t ) ,  we get a nuclear space. In fact, 

convergence in this space means uniform finiteness of all sequences and 

coordinate-wise convergence. That is, a sequence converges to x in

Eg0 if and onIy if there exists /V E Z+ such that x ^  = 0, x k =  0 for allk > N  

and all n E N, and x —> x k as n oo for each k E {0,1,2 , . . .  , N  — 1}.

By Theorem 2.10 and Example 2.8,

=  ind lim (t -1)-
t GT

Note that

{ t _1 | r E T }  =  {(Tfc)fci0 | 0 < rk < 1, k E N}.

Denote by R°° =  R x R x • • ■. Then, clearly, C E°°, since each ^2(r_1) C 

E°°. On the other hand, for each sequence (£fc)£T0 E E°° one can always find
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t e  T  such that (xk)kL0 E ^ ( t  *)• Therefore, =  M°°. Thus, we get the 

Gel’fand triple

C £2 C M°°. (2.24)

In fact for each f  =  (£fc)£L0 ^ ®°° anc  ̂ x  ~  ( x k ) k L o  E Rq°, the dual pairing 

between £ and x with respect to the zero space £ 2  is given by

00

(£, z) =  (f, x)//0 =  ^  t o .  (2.25)
k=0

(Note that since x G R q°, the series in (2.25) contains only a finite number 

of non-zero terms, and hence it is well-defined).

Example 2.12. Recall Example 2.9. Denote V  = P (R d) := Co°(IRd). As men­

tioned in Example 2.9, V  is a dense subset of each Sobolev space Md, p(x)dx), 

I E Z+, p(x) > 1. Therefore

V C  P i W ‘(R\p(x)dx) .
i e z + , p ( x ) > i

In fact, one can show that

v =  p  Wi(Rd,p(x)dx).
l € Z + , p { x ) > l

Furthermore, using the fact stated in the end of Example 2.9, one can show

V  is a nuclear space. The convergence in V  may be described as follows: If

{fn)n=i c V > /  e  X>, th e n  /n  -> /  on if and only if

( J  supp( fn)
n £ N

is a bounded set in R d (i.e., the functions f n are uniformly finite), and for 

each index (c^, a 2, . . . ,  a^), on E Z+, i = 1 ,2 , . . . ,  d ,

(.Daf n)(x) ->• (Daf ) ( x ) as n 00
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uniformly on Rd. Here Daf  denotes the corresponding partial derivative of 

/ .  By Theorem 2.10,

V  =  indlim VT2-z(Md,p _1(:r)d!.T).
/ez+lP(x)>o

Example 2.13. Let <7 be a probability measure on (R, B(R)) which satisfies 

condition (i) (or equivalently condition (ii)) of Theorem 2.6 and has an infi­

nite support. Recall Example 2.11. Denote by V  the set of all polynomials on 

R. Recall the vectors en in £2 defined by (2.16). They form an orthonormal 

basis in £2. Consider the linear mapping I  defined by

Ien =  x n,

and extended by linearity to the linear span of the en vectors, i.e., to Rg°. 

Thus, /  is a bijective mapping between Rg° and V. Through it we define a 

nuclear space topology on V. Note that pk —i► p in V  as k —» 00, means that 

there exists N  G N such that
N  N

pk = Y l a i k x p =
i=0 i —0

and for each i — 0 ,1 , . . . ,  N,  as k —» 00.

As easily seen, the nuclear space V  is densely and continuously embedded 

into L2(R, cr). [Note that, if the measure a had finite support, the latter 

statement would fail, since in L2(R,cr) we would find non-zero polynomials 

on R which would be zero elements of L2(R,cr).]

2.5 Probability measures on co-nuclear spaces, 

M inlos theorem

Let

$  C I I Q C
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be a Gel’fand triple. We first need a cr-algebra on <E>'. For each p  G $ , we 

define a mapping as follows

$  3 uj i—y (cj, p'j G M. (2.26)

Then C($') is the minimal cr-algebra on with respect to which all mappings 

(2.26) are measurable. In particular, if p\, p 2, • • •, V?n G n G N and g := 

Rn —> M measurable, then

F(uj) =  g((u, pi),  ( o j , p 2), ■ • •, (w, <pn»  (2.27)

is a measurable function on A function of the form (2.27) is called a 

cylinder function, and C($') is called the cylinder <r-algebra on

Now, if p is a probability measure on ($ ',C ($ /)), then we call p a gener­

alized stochastic process.

Let p be a probability measure on (Rn,B (R n)). Then the Fourier trans­

form of p is defined by

F „(x )=  f  ei M fi{dy), i £ l " ,
JRn

where {x,y) = X\y\ + x 2y2  +  • • ■ + x nyn. The classical Bochner theorem states

that a function F  : Mn —> C is the Fourier transform of a unique probability

measure on (Kn, B(Rn)), i.e., F = FM, if and only if F(0) =  1 and F  is 

positive definite, i.e., for all c i , . . . ,  cn G C, n G N, aq ,. . . ,  x n G we have
n

Y  C j C k F ( x j  -  x k) > 0.
j , k = l

Let now p  be a probability measure on ($',(?). Analogously to the finite­

dimensional case, we define the Fourier transform of p  by

F M =  [  e ^ / x i d w ) ,

The following theorem is an infinite-dimensional generalization of the 

Bochner theorem.
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Theorem  2.14 (Minlos). Suppose F  : 4> —> C. Then F is the Fourier 

transform of a unique probability measure p on (<£>', C(4>')) if  and only if

• F is positive definite, i, e., for all c\ , . . . ,  cn G C, n G N, ipi, . . . ,  <pn G $

j,k— 1

• F is continuous on i.e., F  ̂ is continuous on each FtT, r  G T.

Remark: The third condition of the Minlos theorem is a new condition 

compared with the Bochner theorem (in the finite-dimensional case, one au­

tomatically gets the continuity of the Fourier transform).

2.6 Projection spectral theorem

As we see from the previous section, one way of defining a probability measure 

on a co-nuclear space is through the Minlos theorem. Another possible way 

of construction of such a measure is given through the projection spectral 

theorem, which we will discuss below.

Let us first recall the spectral theorem in the case of one self-adjoint 

operator. Let H  be a real, separable Hilbert space and let (A , D(A)) be a 

self-adjoint operator. Let Q G H  and assume that Q is cyclic for A , i.e., 

Q G D(An), n G N, and the set {Q, AFl, A 2Ft,. . .  } is a total set in H. Then, 

the spectral theorem states that there exists a unique probability measure p 

on M such that the linear mapping /  given through

• F( 0) =  1;

we have

n

m  =  l, I A nn  = xn, n G N
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extends by continuity to a unitary operator

/ : / / - >  L2(R,/i).

Under / ,  the operator A goes over into the operator of multiplication by x, 

given by

D{x-j  = { f e  L 2(R,p)  : x f ( x )  € L2(R,p)}

and (x • f) {x) = x f (x ) ,  f  G D(x-). Thus, I A I ~ l = x-. In fact, the measure 

p  is given by

p(a) = (E(a)Q, Sl)H, a G B(R),

where E(-) is the resolution of the identity of A. The measure p is called the 

spectral measure of A (at Q).

The following theorem generalizes the above result to the case of a family 

of commuting self-adjoint operators indexed by elements of a nuclear space.

Theorem  2.15. (P rojection  spectral theorem  for a fam ily of com ­

m uting, self-adjoint operators) Assume that we have two Gel’fand triples 

D / /  D $  and 'I'' D T  D  T , where H and T  are seperable Hilbert spaces. 

Also assume that we have a family of Hermitian operators in T

such that

1. n(A(v )) = t>,v e  $ , •

2. j4(y>)4' C 'I' for each p  G 4\, and furthermore M:f)  : 41 —> ’I' is contin-

uous;

3. A(ipi)A(<p2 ) f  = A((p2)A(ipi)f, f  G T, (i.e., the A(ip)’s algebraically 

commute on 4');

4■ for all f , g  G T, the mapping

$ 9 ^ h ( % ) / , c,)7 g I
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is continuous;

5. There exists a vector Q in T  which is cyclic for (A{<p))^^, i.e., the set

{fi, A(ipi )  • • • A(ipk) n  | <£i,. . . ,  ipk G $, k G N} 

is total in T ;

6. for any f  G 'F and (/? G £/ie vector f  is analytic for the operator 

A(<p).

Then, each operator A(<p), G is essentially self-adjoint and we denote its 

closure by (A(p), D(A(p))) . These operators commute in the sense of their 

resilutions of the identity. Furthermore, there exists a unique probability 

measure p on ($ ',£ ($ '))  such that the linear operator I : T  —» L 2(A>',p) 

given through IQ = 1 and

I{A{ipi) • • • A{<pn)Q) = I (A fo i )  • • • A{ipn)Q)

= {(Pi ,w) ■ • • (tpn,uj) £ L2(4>', p)

is unitary. Under the action of I, each operator (A(tp), D(A(<p))), tp G $  

goes over into the operator of multiplication by (upip) in L 2{§' ,p), given by

D((V, w>.) =  {F € : {(p ,u ) F ( u ) e

and for each F G

{(<PM • F){u) = {ip,uj)F{uj).

2.7 Tensor product

We will now construct a tensor product of n Hilbert spaces, n G N, n > 2. 

For simplicity of notation, we will only consider the case of tensor product of
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the identical Hilbert spaces (the general case of different Hilbert spaces may 

be treated by complete analogy).

So, let H be a real separable Hilbert space and let (ej)£L0 be an orthonor­

mal basis in H. Let n G N, n > 2. We construct formal products

ea =  eQl 0  ea2 0  • • • 0  ean,

where a  G Z” . We define the separable Hilbert space

H®n =  / /  0  / /  0  • • • 0  / /s ^
n-times

as the real Hilbert space with orthonormal basis (ea)aezn. Thus, vectors 

from H®n have the form

/  — f c f i a .1 f a  £  R ,
a£Z™

I I / I I V  =  £

^   ̂ f a 9 a -  
a£Z™

Let f W  = YlpLo ^ — 1 , ,7i, be some vectors from H. Then, we

define the vector 0  0  • • • 0  / ( n) as the element of given by

As easily seen,

| | / (1)® - - - ® / (n)||«®" =  | | / (I)| l « - ' - | | / W ||H-

The above definition of tensor product depends on the choice of an or­

thonormal basis in H. However, a change of orthonormal basis leads to a 

tensor product being isomorphic to the initial one. In particular, for any
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f^2\  • ■ •, £ H , the construction of the vector 0  0  • • • 0

does not depend on the choice of orthonormal basis (under this isomorphism).

A typical example of tensor product is the n-th tensor power of an L2- 

space L2(R,Tl, n), which is nothing else but L2(Rn,7Zn, Even more

generally, for L2-spaces Hi = L2{Riy7li, /•*»), the tensor product

H i ® H 2<g)- ■ ' ® H n =  L 2( R i x R 2 x - • ■ x R n , K 1x R 2 x -• • x7̂ n,^i0^20- • -0/i„).

Let us discuss a tensor product of linear, generally speaking unbounded 

operators. For simplicity of notation, we will construct a tensor product of 

two operators acting in the same Hilbert space H. So, let (A, D(A))  and 

(B, D(B))  be linear operators in a real, separable Hilbert space H. Our aim 

is to construct a linear operator A 0  B  in H  0  H. As domain of A 0  J3, 

D(A  0  B), we take the linear span of vectors of the form /  0  where 

/  G D(A) and g G D(B).  Then, we get

A B  f ® g  = ( A f ) t o ( B g ) t

and extend this definition by linearity to the whole set D{A 0  B ).

The linear unbounded operator (A 0  B, D(A  0  B)) is called the tensor 

product of (A , D(A)) and (£ , D(B).

Let us consider the special case, where the operators (A, D(A) and (B, D(B) 

are Hermitian and A and B  are essentially self-adjoint on D(A) and D (B ), 

respectively. Then, one can prove tha t the tensor product (A 0 B , D (A® B))  

is a Hermitian operator which is essentially self-adjoint.

Let us now assume that we have a Gel’fand triple

$  =  proj lim HT C  Ho C  ind lim H - T =
t £ T  t £ T

Let n G N, n > 2. For each r  G T, we can evidently construct the n-th tensor 

power of IIT, i.e., H f n. As easily seen, the Hilbert space H f n is topologically
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imbedded into H®n. One can prove that the dual space of H f n with respect 

to the zero space H®n is //? " , so that we get the following rigging of H®n:

H f n c  H®n c  //?;*.

Furthermore, a straightforward calculation shows that, if the imbedding 

Hr C Ho is quasi-nuclear, then so is the imbedding H f n C H®n. Finally, 

one can show that the intersection of all H f n, r  G T, is dense in each H f n. 

Therefore, f l r e T  H f n may be considered as a nuclear space, which is usually 

denoted by <$®r\  Furthermore, the dual of with respect to centre space 

H q 71 is denoted by and is equal to indl imTGT . Thus, for each

n > 2, we get the Gel’fand triple

=  proj lim H f n C H®n C ind lim H?? =  $ '0n. (2.28)
r € T  t ^ T

2.8 Sym m etric tensor product

We define on Hq n the operator Symn by

Symn f i  <S> • • ■ ® f n := /«■(!) ® ® /a(n),
c r£S n

where S n is the set of all permutations of { 1 ,... ,n}. As easily seen, Symn 

extends to an orthogonal projection in H q 71.

Denote H q 71 := Symn //®n, where Symn H®11 is the subspace of H f n onto 

which Symn projects. Also, for / i , . . . ,  f n G Hq, we denote

h  © • • • © fn = Symn(/i 0  • • • <8> /„).

Note that, for each a £ Sn,

J \  O  • • ■ 0  f n — f a (  1) O  ’ ’ * O  /cr(n)-
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The space //®n is called the n-th symmetric tensor power of H q , and for 

f \ , • • ■ j fn £ H q , f i  O • • • O fn is called symmetric tensor product of f i , . . . ,  f n. 

Clearly, for each /  G II0, f®n = / ° n.

In the case where Hq = L2(R,fi), so that H®n = L2(Rn, /x®n), the sym­

metric tensor power H®n is the subspace of L2{Rn,(i®n) which consists of all 

functions /  G L2{Rn,fi®n) which remain invariant under the permutation of 

their variables, i.e., for each a G Sn,

J {xi , . . . ,  x , /O m d  , ,  x a(n)) -a.e.

In the case of Gel’fand triple (2.28), we have that f]TeTH®n is dense 

in H®n, and if HT> C  HT, then //®n C II®n topologically, and if the 

former inclusion was quasi-nuclear, then so is the latter inclusion. Thus, 

proj limreT H®n is a nuclear space, which is denote by <I>0n. Next, one can 

easily shows that for each r  G T  the dual space of H®n with respect to zero 

space H t  is H®?, so that we get the Gel’fand triple

$ 0n =  proj lim JI®n C / / 0On C indlim //® Tn -  $ '° n.
t € T  t ^ T

2.9 Sym m etric Fock space

The Fock space is the Hilbert space made of the direct sum of symmetric 

tensor powers of a single-particle Hilbert space.

Below, we will need the following notation: If H  is a Hilbert space and 

a > 0, then aH  is the Hilbert space which coincides with H  as a set and the 

inner product in aH is given by

(f,g)aH — a(/>fl,)flr-
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Let H  be a separable, real Hilbert space. We define the symmetric Fock 

space over H  as
oo

7 ( H )  : = 0 J F M ( f f ) ,
n=0

where © ^L0 denotes orthogonal sum of Hilbert spaces, for each n E N

7 ln)(H) := H Qnn\, (2.29)

and J-o(H) := E. That is, 7 ( H )  consists of all sequences /  =  (/*°\ / © . . . . )  

where /<°> E E, /<'> E H, /<2> 6 / / ° 2, /<3> E H ° 3, . . . ,
OO OO

ll/ll^(//) =  l/ol2 +  =  l/°i2 +  < 00’
n = 1 n=l

and for any /  G H ) as above and g = . . . )  G ^ { H )
OO

U , 9 ) h h ) =  f i0)9 i0) + E ( /<n)-S(n))«e"n! ■
n = 1

The subspaces ^ ^ ( H )  are often called the n-particle subspaces, and the 

vector Q = (1,0,0, •••) G H ) is called the vacuum.

In view of the definition of the Fock space, we will treat any H ° n as a 

subspace of ^ ( H ) ,  so that any vector f ^  G H Qn will be identified with the 

vector

( 0 , . . . , 0 , / w ,0 ,0 , . . . )

in 7(H ) .

We will now construct a special orthonormal basis in T(H) .  Below, we 

will denote by Z“ 0 the set of all infinite sequences of the form (ckq, o q ,. . . ,  a n, 0 ,0 , . . . ) ,  

where a o ,a i , . . .  , a n G Z+, n G Z+. For a  G we denote |a | :=

c*o +  cni +  ■ • •. If (en)JJl0 is an orthonormal basis of H, then we can con­

struct an orthonormal basis of F (H )  as follows

=  f — j— r - i — ) 5 eo “° © e f “■ © e f 52 © • ■ ■ , a  E Z“ 0, (2.30)
Vafo'Qq.'a !̂ • ■ • '
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where if a  = (0 ,0 ,. . .) ,  then e a  = (1 ,0 ,0 ,. . .)  =  ft. Note that e a  G 

The basis (ea)aGZooQ is called the basis of occupation numbers.

2.10 Rigging of a Fock space

Let H  be a real, separable Hilbert space. For any sequence q  = (qn)%Lo» Qn > 

1, we define the weighted Fock space ^ ( H .q )  as follows:

(Recall the notation introduced in the beginning of Section 2.9). In particu­

lar, if qn = 1 for all n  > 0, F(H,q) = T (H) .

Let H +  C H q quasi-nuclearly. Fix any sequence q  as above. As we 

discussed in Section 2.7, for each n  > 2, the inclusion H+n C //®n is also 

quasi-nuclear. Therefore, for q  =  ( q n ) ^ =Q as above, one can find another 

sequence q' = (O £ L 0, Qn > Qn, such that

quasi-nuclearly. Indeed, denoted by ||On ||//s the Hilbert-Schmidt norm of 

the inclusion operator On : H f n —> //®n. We know that ||On||//s < 00. Fix 

any q' = { q 'n ) ^ 0, Q n  —  Q n -  Then, clearly, the imbedding operator

oo

n = 0

O : F ( n +, q ) - > F ( n 0.q)

is continuous. Then the Hilbert-Schmidt norm of O is equal to
oo

which is finite for sufficiently quickly growing e.g. take
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Let us take any Gel’fand triple

$  =  proj lim Ht C Hq C ind lim H - T =
t € T  t Z T

It follows from the above that

proj lim F ( H T,p) (2.31)
tGT, q=(qn)%L0, qn> 1

is a nuclear space. Indeed, fix any r  and p as above. Choose first t ' G T  

such that H't C Ht quasi-nuclearly and then choose q' = (q'n) ^ 0, q'n > qn, so 

that F ( H T>,q') C F ( H T,q) quasi-nuclearly. In fact, the space (2.31) consists 

of all finite sequences . . . , /^n\  0 ,0 , . . . )  such that G $°*, i =

0 .1 ,. . .  ,n , n G N. We denote this space by J-finW- The convergence in 

this space means uniform finiteness and coordinate-wise convergence in each
$On

Thus, we get the Gel’fand triple

7-fln($) c  F(Ho)  C /•„*„($),

where j ^ ^ )  is the dual space of .7-fin ($) with respect to the zero space 

F ( H 0). This space consists of all sequences F — (F^°\ F^l\  . . . ) ,  where 

pin) ^ $ /©n) and the dual pairing between F  and /  =  (/^°\ / ^ \  . • •, f^n\  0 ,0 , . . . )  

is given by
n

{ F J ) w o) = E (F(,)’/ (i))«o0"n!'
2=0

2.11 Creation, annhilation and neutral oper­

ators

Let us introduce some linear operators in the Fock space which will be heavily 

used in our research.
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Let H  be a real, separable Hilbert space. Denote by Fnn(H) the subspace 

of the Fock space F(H )  consisting of all vectors of the form

/  =  ( / (0). / (1). . - . . / (n). 0 ,0 , . . . ) ,  / (,) 6

We can endow Fnn{H) with a topology such that convergence in Fan{H) 

means uniform finiteness and coordinate-wise convergence in each F ^ ( H )  

(this topology is similar to that of Mq°).

Let /  G H. We define a creation operator a+(f)  as a linear continuous 

operator on Fnn(H) given through

a+ ( / ) flW =  /  © <?<“>, .9<"> 6 F m ( H) ,  n  e  Z+.

Note that, since

Symn+1( l  <8> Symn) -  Symn+1, 

we have, for each u ^  G //®n,

a+(f)  Symn u{n) = Sym n+1( /  ® u{n)). (2.32)

Also we can write

(g{0\ g m , .. .  , 9(n), 0 ,0 , . . . )  (0.9<°)/. /  0  g <'>,..., /  0  3(n), 0 , . . . ) .

Next, we define an annihilation operator a ~ ( f ) as a linear continuous 

operator on Fnn(H) given through

a (/)9°™ =  re(/> <?)h90("-1)! " £ N ,

a~(f)Q = 0. (2.33)

Assume that / /  =  L2(R,{i), so that H Qn = Llym(Rn, /r®n). Then, (2.33) 

implies that for each g ^  G / / ° n,



Note also that

(9(0), 9m , ■ ■ ■, 9{n) ,0 ,0 , . . . )  (a - (/)«,<», a -  (/)g<2>, . . . ,  a"  (/)g<">, 0 ,0 , . . . ) .

Assume again that H  =  L2(/?,^), and let /  be a bounded, measurable 

function on R. We define the neutral (also called preservation) operator 

a°(/) as a linear continuous operator on (H) given through

a ° ( m  = 0,

a ° (/)9 0" =  n ( /9) © g ® '-1) e  J* n\ H ) ,  (2.34)

where f g  denotes the point-wise product of function /  and g. (Note that 

since /  is bounded f g  G L2(i?,//).)

Remark 2.16. In what follows, we will also use a neutral operator a °(/) for 

functions /  which are not necessarily bounded. In that case, the domain of 

a°(f)  must be reduced in order to allow the vector f g  in (2.34) to be an 

element of L2(R,fi). For example, if /  G L2(R, fi), the function g G L2(R,g)  

could be bounded.

Direct calculations show that a~(f)  is the restriction to J7̂ n(H) of the 

adjoint operator of a+(f )  in T^H):

(a+( f ) F , G)j;[h) = ( F ,a - U ) G ) r {H), F,G  e  F Rn(H).

On the other hand, the neutral operator a°(f)  is symmetric in T{H),

(aa(J)F,G)nH] =  (F,a°( f)G)n f{ ) , F,G e

Remark 2.17. Note that formulas (2.33) and (2.34) imply that, for / ,  # ! , . . . ,  gn G 

H

a ~ U ) g i  0 ^ 2  o • • • o g n = ( f , g i ) H 9 2  o • • • ® g n + (Z,^)//^ ©#3 o • • • o g n

40



+  ■ ' ' +  ( / i  9n) h 9 i  ©  ' ' ' ©  fJn—11 (2.35)

and

a ° ( / ) # l  ©  9 2  ©  • • • ©  9 n  = ( f 9 l )  ©  9 2  O  • • • 0  9 n  +  9 \  ©  ( / ^ )  ©  9 3  ©  • ■ • ©

+  • " +  5l © 32 0  ' " 0  9 n —\ 0  ( / 9n)-  (2.36)
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Chapter 3

Generalized stochastic  

processes w ith independent 

values through the projection  

spectral theorem

We will now discuss how a generalized stochastic process with independent 

values (to be defined below) can be constructed by using the projection spec­

tral theorem (Theorem 2.15).

Assume that for each x G R d, a(x, ds) is a probability measure on 

(IR,#(R)) which contains an infinite number of points in its support. We 

also assume that for each A G #(R),

R d 3 x  I—> a (x , A) (3.1)

is a measurable mapping. (Note that, if d =  1, cr(x,ds) is just a Markov 

kernel on (R,Z3(R)).) Hence, we can define a <j-finite measure dxa(x ,ds)  on 

(Rd x R ,B {R d x R)).
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Let 8 0{Rd) denote the collection of all sets A £ 8 (R d) which are bounded. 

We will additionally assume that, for each A £ 8o(Rd), there exists for Ca > 0 

such that

f \s\ncr(x,ds) < C%n\ n £ N, (3.2)
J R

for all x  £ A. In particular, for each fixed x £ R d, the measure a(x, ds) 

satisfies conditions (i), or equivalently condition (ii), of Theorem 2.6.

We fix the Hilbert space

Hq = L2(R d x R,dx  cr(x,ds)). (3.3)

Recall the nuclear space V  = Co°(IRd) from Example 2.12. Recall the nuclear

space V  from Example 2.13. We construct the nuclear space

y  = V ® V .  (3.4)

This space consists of all functions of the form

n

f ( x , s )  = ^ ~2skak{x), 
fc=o

where n £ N and ao(x), cl\(x ), • • • , an(x) £ V.

Let f n —> f  as n -> oo in 5?. Then, as easily seen, there exists N  £ N

such that
n

fn (x , s) = ^ 2  sfc4 n)(x), n £ N,
fc=0

n

f ( x , s )  = ' ^ 2 s kak(x), (3.5)
k.=0

where a ^ \ x ) , a k(x) £ V  and

a ^ \ x )  —> afc(ar) in V  as n —» oo. (3.6)
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L em m a 3.1. The space TP is topologically, i.e., densely and continuously, 

embedded into

Hq = L2(Rd x R, dx a(x, ds)).

Proof. Let us show that TP is a dense subspace of H q . Equivalently, we have 

to prove that the orthogonal compliment to TP in H q is the zero space, i.e., 

=  {0}. Let g G TPL, i.e., g G H q is such that

(g J )H 0 = o y f e y .

Hence for any a G V  and k > 0

Fix any compact set A in and let a G T> be such that the support of a is 

a subset of A. Then,

hence

(3.7)

We state that the function

belongs to L2(A, dx). Indeed, by Cauchy’s inequality and (3.2)
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Since the set of all functions a E V  with support in A is dense in L2(A,dx), 

we therefore conclude from (3.7) that, for a.a x £ A,

Since g E H0, we get that, for a.a. x  £ R d, g(x,-) £ L2(R, cr(x, ds)). By 

(3.2), the set of all monomials sk is a total set in L2(R, a(x, ds)). Hence, by

(3.8), for dx-a.a. x  £ A g(x,s) = 0 for a(x,  ds)-a.a. s £ R. Since A was 

arbitrary, we get for dx-a.a. x £ Rd g(:c, s) =  0 for a (x , ds)-a.a. s £ R. 

Hence, for any © £ B(Rd) and A £ Z3(R), we have

since for a.a. x £ Rd, JA <r(:r, ds) \g(x, s)| = 0 . Consider the measure

dx a (x , ds) |g(:r, s)|

on Rd x R. This measure is equal to zero on all sets of the form 0  x A. Hence, 

it must be the zero measure on (Rd x R ,B (R d x R)), since the collection of

stable (see e.g. [5, Ch. I, Theorem 5.4]). Thus, for each ̂  £ B{Rd x R),

f y  dx a(x, ds) \g(x, s)| =  0, which implies that |g(:c,s)| =  0 for dx cr(x,ds)-

a.a. (x, s) £ R d x R, i.e., g = 0 as an element of H q.

Let us now prove the continuity of the embedding of 5? into Ho. Let

f n -» /  as n —> oo in 5?. Recall formulas (3.5) and (3.6). Using the

dominated convergence theorem, we hence conclude that Jn —> f  in H q . □

Thus, we get a Gel’fand triple

where 5^' is the dual space of <5? with respect to the zero space H q .

VA: > 0. (3.8)

the sets of the form 0  x A generates the cr-algebra B(Rd x R) and it is f)-

y  c H q c
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Thus, by Section 2.10, we get the Gel’fand triple

C ? ( H 0) C m y ) .

Our aim is to construct a special probability measure on V  using the 

projection spectral theorem for a family of commuting self-adjoint operators 

(Theorem 2.15).

So, we set *  := T  := JF(H0\  T* := T ^ ) ,  <F =  V, H  =

L2(Rd, dx), $ ' =  £>'.

For each tp e  T>, we define

■4(<p) := 0  1) +  0  1) +  a°((fi(x)s), (3.9)

where (y? <g> l)(x, s) := We set ^(^(v?)) — an(l as easily seen

C 'F.

T h eo rem  3.2. The operators (A{^p)).^&̂  and the GeVfand triples <F' D  H D  

<F and T' D  F  D T satisfy the conditions of Theorem 2.15, so that the 

statement of this theorem holds for these operators and Gel fand triples.

Proof. We check the conditions of Theorem 2.15.

1. This condition is clearly satisfied.

2. We already know that /!(</?)'!' C 'F, y? G <F. For each </? G V,  the linear 

operator

T>3 f ^ p f  e v

is continuous (see Example 2.12 for the description of convergence in V)  and 

the linear operator

V  3 f  sf{s)  e V

is also continuous (see Example 2.13 for the description of convergence in V). 

This implies that for each n E N the linear operator

a°(ip{x)s) : (V  <*> V ) Qn {V <X> V ) Qn
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is continuous. Therefore,

a°(ip ® s) : T —>•

is continuous.

Next the continuity of

a+((p ® 1) : ^  ^  and a (y> ® 1) : T —>■ 'F

easily follows from their definition. Thus, the operator

is continuous.

3. For any linear operators A, B , we denote by [A, B] the commutator of 

A, B: [A,B] : = A B -  BA.

Let H = L2(R,v)  be an L2-space and let F{T-L) be the corresponding 

Fock space. Then, for any / i ,/2  G H ,

[a+(/i), a+ ( /2)] =  0. (3.10)

Indeed, for each gQn E F i j i )

a + ( / i ) a + ( / 2) s On =  / i © / 2 © 9 0 n  

=  / 2 © / i 0 . 9 On

=  a+(h)a+(h)g*”

Taking the adjoint operators in (3.10), we get

[o (/i), a ( /2)] =  0. (3.11)

Next

(3.12)
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Indeed by (2.35),

o - ( / i ) a +(/2)ff®n =  a - ( / 1) / 2 ©s®"

=  (/ii f2)'HQ®n +  n (h,g)'H f 2 ©

and

a+( f 2 )a- (h)g®n = a+(f2) ( fu g)H n g ® ^

=  n { f i , g ) n  /2 0 ^ M ,

so that

(a~(fi)a+{f2) -  a+{f2)a-{h))g®n = ( h J 2)u9®n,

which proves (3.12).

Next

[a°(/i) ,a °(/2)] =  0.

Indeed, by (2.36),

a°(fi)a°(f2)g®n = aP(fi) n ( f2g) © g{n~l\

= n ( f i f 2g) Q g {n~1] +  n(n -  l )( f ig)  O ( f 2g) © g{n~ 

= a°( f2)a°(fi) g®n.

Next

[a°(/i) ,a+( /2)] =  a+ ( / i / 2).

Indeed by (2.36)

a ° ( / i ) « + ( / 2 ) 3 8 n  =  a ° ( / . ) / 2 © 9 ® n

= (/1/2) © 3®" + n/2 © ( f i g )  © 9 ®(n_1)
=  a+( /1/ 2)S®n + a+ (/2)a°(/1)S®".
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Note that (3.13) means that

a°{fi)a+{f2) -  a+( /2)a°(/i) =  a+( / i / 2), 

and taking the adjoint of these operators we get

a - ( /i)a ° ( /2) -  a°(f1)a - ( f2) = a “ ( / i / 2).

Thus

K ( / i ) i  a+if2)] = (3.14)

By (3.10)- (3.14), taking a function A, we get;

[a+{.fi) + a (,/i) +  a°(A/i), a+( /2) +  a ( /2) +  a°(A/2)] 

— [a+(/i)j a+(/2)] +  la+( f i ) , a (/b)] +  [a+(/i)> a°(^/2)]

+  [a (/i)»a+(/2)] +  [a (/i)»a (/2)] +  la (/i)>a°(^/2)]

+  [a°(A/3), a+( /2)] +  [a°(A/i),a ( /2)] +  [a°(A/i), a°(A/2)]

— — (/ii f2 )n l  ~  a+{^f l f2)  +  ( /i , /2)wl 

+  a ( ^ / i / 2) +  ^+( ^ / i / 2) _  a (A /i7*2)

- 0 .  (3.15)

Applying formula (3.15) to our case with function A(x, s) =  s, we get that

[A(y?i), A(<^2)] =  0.

4. To prove condition 4, we need to check that for any / ,  g G T, the 

mappings

(3.16)

P  3 ^  i-» (a“ (v? <8> l) / ,^ ) jr , (3.17)

P  9 (f i-> {aQ(ip(x)s)f,g)j: (3.18)
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are continuous. Indeed, for any G (D &  P ) ° n, g(n+l') G (V  <g> /p ) Q(n+1\

x dx i • • • dxn+i a(xi ,dsi )  ■ ■ ■ a(xn+i,dsn+1),

which continuously depends on (p G V,  by the dominated convergence theo­

rem. This proves continuity of (3.16). Next, we note that the mapping (3.17) 

can be written as

x dx i • • • dxn cr(xi,dsi) • • • <7(xn, dsn),

and again by the dominated convergence theorem, (3.18) is continuous in 

<p G V.

5. We will now prove that Q G T  is cyclic for We note that

this fact is not trivial sense the set {$  ® l.tp G V}  is not total in Hq. For 

each A G Bo(Rd), we denoted by x a  the indicator function of A. For each 

A G Bo(Rd), we define

(a+(</? (g> l ) / (n), <3,(n+1)) #©("+!) =  ((</?& 1) © / (n),2 (n+1)) //©("+!) 

=  ( ( ^ ® l ) ® / (n)^ (n+1)) W?(n+D

( / ,« +( ^ l ) ^  =  (a+ (̂ <g> 1 )£ ,./% ,

which is continuous in by the proved above. 

Finally, for any f^n\ g ^  G ( 'D(dV)Qn by (2.34)

(a°(ip(x)s)f{n\ g {n)) Ho,
n

/1(A) =  a+(xa ® 1) +  a (xa 0  1) +  a°(xA(z)s)-

As domain for A(A), we will choose all finite sequences
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where for each i — 0 , 1 ,2 , . . . ,  n, f ^ ( x i, s i . . . , s*) is a finite sum of func­

tions of the form f \ l\ x i , . . .  , ^ / ^ ( s i , . . .  , sz), where is a measurable, 

bounded, symmetric functions on (Rd)1 with bounded support and is a 

symmetric polynomial on R*.

For each A £ # 0(Md)), we can always find a sequence ( ^ n ) ^ ,  </?n £ V , 

such that —>• Xa(^) a.e. and the sequence ((pn)%L\ is uniformly finite (i.e., 

UneN SUPP is bounded) and uniformly bounded.

From here it follows that it suffices to prove that f2 is cyclic for the family 

(y4(A))AGiBo(Kd) in F ( H q). Denote by F  the closed linear span of the vectors

{ n M ( A i ) - - M ( A „ ) n ,  A ,  A „ e 8 o ( I ,') 1 n e N } .

Thus, we have to prove that F = F(Ho).

L em m a 3.3. For any sets A i , . . . ,  A* £ Bo(Rd) which are mutually disjoint, 

and any l\ , . . . ,  U £ N such that l\ +  • • ■ +  lt = n, n £ N.

O • • • © (X A ife )^ -1) £ F.

Proof. We will prove by induction in n. We have

A(A)Q = x a  3  1,

which is the statement for n =  1. Let us assume that the statement holds up

to n, and let us prove it for n +  1. So, let / i , . . . ,  k £ N, l\ -I b k =  n +  1,

and let A l5. . . ,  A* be mutually disjoint. We have to consider two cases. 

Case 1: /] =  1. Since Ai H Aj = 0  for each j  = 1,3

(Xa , (* i )1) 3  (XA2f e ) 4 2_1) ® • • • 3  (xa, ( ^ ) 4 _1)

=  ^ (A i )(xa2(^2)42_1) 3  • • • 3  (xa, ^ ) ^ - 1) 

and by the assumption

(XA2(Z2)42-1) © ■ ■ • © ( x a . ( ^ ) 4 _1) 6 F<
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since l2  +  I3  +  • • • +  k = n.

Case 2: li > 1. We get

^(AiXxA^iyi1-2) © (XA2fe)42_1) O • ■ • © (xA.fe)5!1-1)

=  (XAi(#i )1) o  (Xa X^i)^ 1"2) © (XA2f e ) 4 2_1) © ■ • • © (XaX ^ ) 4 _1)

+  (^ J  dx J  a{x ,dSl)slr 2̂  x (xa2(^2)42_1) © - , -©( Xa1( ^ ) 4 ” 1)

+  (Xax(^i)5i1_1) © (XA2f e ) 4 2-1) © ’ • • © (XaX ^ ) 4 _1)- (3-19)

The left hand side of the equation (3.19) belongs to F , since

(/1 — 2) +  l2  +  • • • +  li — n,

the vector

[ dx f a(x ,ds i)s li ~ 2  x ( x a 2(^ 2)4 2_1) © • •' © ( x a X ^ ) 5!1” 1)
J A] j  R

belongs to F, since l2  +  • • • +  h < n — 1, and

(XaX^i)!) © (XaXz iX i1-2) © (XA2f e ) 4 2_1) © • • • © (Xa, ( ^ ) 4 _1)

belongs to F, since

1 +  (^l — 1) +  I2 T  • • • +  l i  =  TL +  1 

and we use Case 1. □

L em m a 3.4. F {H q) coincides with the closed linear span of the functions of 

the form

(xa1(^i)4 i_1) © • • • © ( x A , f e ) 4 -1)-

where sets A ] , . . . ,  A* 6 Bo(Rd) are mutually disjoint, and /1, . . . ,  U G N
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Proof. Let us first prove tha t the closed linear span of the set

{xa(x)s" | A € B0(R'i), n e  Z+}

is dense in L2{Rd x R ,dxa(x ,ds) ) .  Indeed, let g € L2(Md x R ,d x a (x ,ds)) 

and let g be orthogonal to all elements of this set, i.e,,

dx a(x ,ds)sng(x, s) = 0 for all A G B q ( x ) } n G Z+.
J a 7k

By the Cauchy inequality,

dx cr(x, 7s)|s |n|g(:r, s)|
J a  7 R

< ( /  dx a(x, 7 s)|s |2n ) I dx a(x,ds)g(x, s)2 ) < 00
\7a 7r / \7a 7r /

by assumption (3.2). Hence, the function

|s |n|g(:r, s)| G Z7(A x R, dx a(x, ds)),

so

/  cr(x,ds)sng(x,s) G

For any A' G #o(R ), A' C A,

/ / <7(2;, ds)sng(x, s) = 0,
7 a' 7r

hence for dx-a.a,. x e R d

j  a(x, ds)sng(x, s) = 0. (3.20)
7r

On the other hand, for dx-a.a. 2 G Rd

<7(2, s) G L2(R, <7(2,7s))

and by (3.2), the set of all monomials sn, n G Z+, is dense in L2(R, <7(2 , ds)). 

Hence g(x , ds) = 0 for <7(2’, 7s)-a.a. s G R. Thus, #(2 , 7s) =  0 for a.a.
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dx a(x, ds)-a.a. (x,s)  G Rd x R, i.e., g = 0 as an element of L2(Rd x 

R, dx cr(x, ds)).

Since, the Lebesgue measure dx is non-atomic, we can analogously show

with A i , . . . ,  Aj G Bo(Rd), mutually disjoint, and l \ , . . .  Ji  G N coincides 

with L 2((Rd x R)1, dx\ a(x i ,ds i)  • ■ • dxi a(x i , ds{)). From here, by applying 

the symmetrization projection onto L2(Rd x R, dxa(x, ds))Ql we conclude the

By Lemma 3.3 and Lemma 3.4, we get F = F ( H q).

6. Finally, let us prove that each vector from F ^ S ^ )  is analytic for each 

operator A(tp), ip G V.

We start with the following lemma.

L em m a 3.5. Fix any A G Bo(Rd). Then, for n, m  G N and any x \ , . . . ,  x n G

Proof. For any x\, X2 , . . . ,  x n, we have, by (3.2) and using an easy combina­

toric formula,

that for each i G N the closed linear span of all functions of the form

(x a A x i )s i 1) - - - ( x a Ax i)si l )

statement. □

(|s] | +  |S21 +  ' • • +  |sn|)m<7(xi, ds i) • • • &(xn, dsn)

I  l i " - i i n £ Z - | - 1 / i + i 2 H ------ +  ̂ n  — ITT-

a(xi ,dsi )  ■ ■ ■ <r(xn, dsn)
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17(x2,ds2)••• /  \sn\lna(xn, dsn)
J R

r
U U - - - U/l ,...,/nGZ+ , /1 + Z2H---Mn—TTl

= C rm !  £  1
—1-̂2 H \-ln=TTl

(n +  77?-)!
< C T mP , , 

m! n!
_ ^m (n +  m )!
“  Ca n! '

□

Remark 3.6. In fact, we will use the following weaker estimate:

f  (|si| +  |s2|H------+  \sn\)ma ( x i , d s i ) - ■-(j(xn,dsn) < C™(m + n)\ (3.21)
JRn

for all x\, X2 , ■ • • , x n G A.

It suffices to prove that each vector of the form

f {m){xu s1:x 2, s 2 . • . , x m,sm) = g{m)(x i , x2, ■ ■ • ^ m ) ^ 1

where g ^  G V Qrn, Zi, . . . ,  im > 0, m  G N, is analytic for each A(</?), (p G 

We will denote n \= l\ +  Z2 + • • • +  Zm.

Below we will denote by C different positive constants whose explicit 

values are not essential for us. So, we fix p> G V  and we have to prove that 

there exists C  such that

\\An (<e)f{m)\ \ w ° )  < c"n!. neN. (3.22)

Since

U n M f im)\\hHo) = ( A n ( f ) f imK A n M f {m)) n Ho)

= (-42"(vp)/<m),/ (m)) (̂«o),
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(3.22) is equivalent to

(-42"(v ) / (’" > ,/< "% „0) < C " > !)2. (3.23)

Choose A G Bo(Rd) such that

M  < c XA, |9(m>| < C x T -

Then (3.23) would follow from

(B 2n(A )^ (m),7/>(m))^  < Cn(n\)2, (3.24)

where

B{ A) =  a+(xA(z)l(s)) +  a “ (xA(z)l(s)) +  ci0(xa(z)|s |)

and

SUX2,S2, • • • , x m,sm) = X®m(x'i’x 2 , • • • , x m)\si\h O • • • O 

We see that

B 2n{A) -  (a+(xA(^)l(s)) +  a “ (xAWl(s ) )  +  a°(xA (z)|s|))2n,

which is a sum of 32n terms where every term is a product of 2n operators each 

of which is one of the operators a+(xA(^)l(s)),  a ~  ( x a { x ) 1 ( s ) ) ,  a°(XA(^)|5|). 

Since we have to estimate (B 2n(A)'0(mV</;^ ) , we are interested only in those 

terms which have the same number of creation and annihilation operators. 

Denote this number by k. Thus, we consider a term in which we have a 

product (in arbitrary order) of k creation operators a +(xA(^)l(-s)), k anni­

hilation operators a~(xA(^)l(-5)) and (2n — 2k) = 2(n — k) neutral operators 

a°(xA(^)l-^l)• Denote such a term by D. Without loss of generality, we 

assume that



is > 1 (otherwise we need to extent the set A).

By using (3.21), for any q, r E N, /  E L2(M<7, a(xi,  dsi) ® • • • 0 a ( x q, dsq)), 

G A, by the Cauchy inequality,

/  ( H  +  |s2| + -----1- |5<7|)7’/ ( s i>52, • •. , s q)a{x1,dsi)a(x2,ds2) • • • a{xq, dsq)
J R n

< (  /  (|si| +  M H  \-\sq\)2ra (x u dsi)(r(x2,ds2)"-(7(xq,dsq) )
\  JRn J

x  W I W l h r * ,ct(xj ,dsi)<gl---®CT(xq,dsq))

< C 2r+q((2r +  9)!)^ ||/||£,2(ki,

<  C 2r+<7( ( 2 ( r  +  ^ ) ) ! ) 2 | | / l l / , 2 (K‘? , a ( x 1,d.s] )®  - ® (T(x9 ,c/.s9 ))

< C (̂  ̂ ~I- <7) • 11 ̂ 11ZL.2(R̂ ,cr(o; 1 ,g(sj )<S>-• •cgiCT(a;(j.cfsg)),

(3.25)

where we used the inequality:

(2/)! =  1 • 2 ■ 3 ■ 4 • • • (2/ — 1) • (21)

< 2 - 2 • 4 • 4 - - ■ (2Z)(2/)

=  (2 • 4 • 6 • ■ • (2Z))2 

=  (2l 1 ■ 2 • 3 • ■ • I)2 

=  22Z(/!)2, / E N.

Therefore,

(D'i/j('rn\ i l ’('rn̂ )jc < C nm !(m + l )(m +  2) • • • (ra +  fc)(ra +  A: +  2(n — A:))! (3.26)

where the factor ml comes from the fact that belongs to J r m̂lL2(IR x 

R, dx cr(x, ds)), the factor (m +  l ) (m +  2) • ■ ■ (to +  fc) comes from the fact 

that we have k annihilation operators, and the factor (to +  k +  2(n — k))\ 

comes from the estimate (3.25) and the fact that we have 2(n — k) neutral 

operators.
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Hence, by (3.26)

< C n(m +  k)\ ((m + k) + 2(n -  k))\ 

< C n(2{m + k) + 2 ( n - k ) ) \

=  Cn(2m + 2 n)!

<  C"*(2n)!

<  C"(n!)2,

where we used that, for a fixed m,

(2n +  2m)! < Cn(2n).

From here the estimate (3.24) follows. □

Let us find the Fourier transform of the spectral measure /i of the family 

(v4((/?))y,€p in ^ ( H q) from Theorem 3.2. a(x,ds).

T h eo rem  3.7. The spectral measure fi of the family of operators (A(tp))v>£'D 

in which exists due to Theorem 3.2, has the following Fourier trans­

form:

fj,(duj) = exp — i  [  dxa{x,{Q})<p{x)‘ 
L 2 J^d

r  r i  ̂ (3'27)
+ /  dx (j{x,ds) — {elip̂ s — i(p{x)s — 1]

s*

where R* M \  {0}.

Proof. We will divide the proof into several steps.

Step 1. Formula (3.27) is evidently equivalent to the following formula:



where ^  G V  and t G R. Fix any </? G P . Consider the following measurable 

mapping:

x R* 3 (x,s) i-3 y?(x)s G (3.29)

Let £(dz) be the image of the measure dx a(x,ds)-^  under the mapping 

(3.29). Let also

a = dx a(x, {0})</?(x')2.
JRd

Then, the right hand side of the formula (3.28) can be written in the form

exp -a ( i t )2 +  / £(dz)[eltz — itz — 1]
- 2  ./lo

Since the function eltz — itz  — 1 vanishes when z = 0, we continue

=  exp ^-a{it)2 +  f  £(dz)[eltz — i tz  — 1]
./TO*

Let us check that £(dz) is a Levy measure, i.e., it satisfies

f  (z2 A 1 )£(dz) < oo. 
J r *

So, let us first show that

z2£(dz) < oo.

Indeed

bU]\{0}
z 2((dz) < f  z2t;(dz)

J r

= j  dx j  a(x,ds)-^(s(p(x))2 
J Rd J K* 5

=  / dx(f (x )2 / cr(x,ds) < oo. 
./IRd 7 r *

(3.30)
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'supp </>
dx j a(x, ds) g X{|sy3(x)|>l} (^, Xs)

J r* 5

< I  dx I a ( x , d s ) ^ X{\s\>------i ^ ^ z )J  supp (p J r * 5 {- ™ p y e ud M y ) \ f

/ dx I sup |(p(y)\ / o(x,ds) < +oo.
^supp 95 yy€Md J  J r *

<

Therefore, the expression in (3.30) is the Fourier transform of an infinitely 

divisible random variable (see e.g. [4]). In particular, the right hand side 

of formula (3.28), considered as a function of £, is the Fourier transform of 

a random variable. We state the Lapace transform of an infinite divisible 

random variable can be extended to a function of complex variable which is 

analytic in a neighborhood of zero.

Indeed, we first note that the right hand side of (3.28) can be written as 

(it)2 'exp dxcr(x, {0})</?(:r)2

tp(x)n sn~2 (it)n
+  / dx cr(x, ds) ^

J Rd J r.* n=2

By (3.2),

dx cr(x, ds) V  
J R d J r * ^

n!

|^ (x )|n|s |n- 2|i |n

(3.31)

< 00
n!

for \t.\ < Csupp(¥,). Hence, (3.31) can be extended to an analytic function

{2 6 C | \z\ Csupp(yj)} ^ z 1  ̂ exp
'Md

dx cr(x, {0})(^(x)'



Hence, by Theorem 2.6 and Remark 2.7, if we show that equality (3.28) holds 

for all t from a neighborhood of zero in M, then it will follow that equality 

(3.28) holds for all t £ R, and so (3.27) holds.

Step 2. For each x  £ Rd, we define a measure v(x, ds) on M* by

v{x,ds)  := \ a ( x , d s ) .

We also define a measure x (.t , ds) on M by

>r(x, ds) = o{x , {0})<io(ds) +  v{x, ds). (3.32)

Here ^o(^) is the Dirac measure at 0. Note that the measure cr(x, {0})<50(<is)

is concentrated at 0, while the measure v(x, ds) is concentrated on 1R*. Define

a Hilbert space

Ho := L2(Rd x R, dx x(x ,  ds)). (3.33)

We construct a unitary isomorphism

U : H0 -> Tio (3.34)

by

| / ( . r , 0 )  if s = 0,
( U f ) ( x , s ) = <  (3.35)

[/( .r ,.s ) , i f . s^O.

We naturally extend this isomorphism to a unitary operator

U : F ( H 0) -> TiHo).  (3.36)

We will use the same notation for operators in JF(Hq) and their images under 

U , i.e. operators in T^Ho). An easy calculation shows that an operator A{ip) 

in J 7('Ho) has the form

A(<p) = a+((p(x)s)+a-{(p(x)s)+a°{(p(x)s)+a+((p{x)x{o}(s))+a-{(p(x)x{o}{s)).

(3.37)
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The initial domain of this operator (before closure) is UJ-fin( ^ ) .

Step 3. Fix any A i , . . . , A n G #o(Rd)> disjoint. Denote A =

Fix any A i , . . . ,  Am— disjoint, bounded, measurable subsets of R*, and set 

Aq := {0}. (We consider a metric on R* such that the distance from any 

point in R* to 0 (in the limiting sense) is +oo).

Consider the functions

in H q. These functions are evidently orthogonal. Let R  be the subspace of H q 

which is the closed linear span of the functions (3.38). Thus, (eiJ-)j==ii...inij =o,i,...,m 

form an orthogonal basis in R. Consider the symmetric Fock space over R, 

i.e., ^ ( R ) .  An orthogonal basis of this space is formed by the vectors

where ay G Z+. Denote by G(R) the linear span of the vectors (3.39). 

Consider operators

Denote by the closed subspace of T (R )  in which vectors (eij“*J)QiJ.ez+ 

form an orthogonal basis. Consider the tensor product of Hilbert spaces

(3.38)

• nm (3.39)

in J-'(R) with domain G(R). We have

(3.40)

a  (e-ij  ) ( ' ( a \0, .. . ,anm) ~  r'(aio,...,Q ,j + l,...,anm) 1

a (ey)e(o10,...,Qnm) 7̂ (3.41)

x ( x , d s ) e {ai0 , C£ij — 1 .  ,C*nm)i^nm

T-jo i 03 ' •' &> Tj
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By the definition of symmetric tensor product, we may construct a unitary 

isomorphism

S  : Tio <X> J n  03 • • • 03 T nrn —> T ( R )

by setting

Sef0ai° ® e f“n ® • • ■ <8> e®“"m =  e?0“'° © ef,an 0  ■ • ■ ©

Then it follows from (3.40) and (3.41) that each operator

S ~ 1a ij S

has the form

1 ® • • • 0  Aij 0  ■ • • 0  1,

where the operator (staying at the i j - th place) is the operator acting

in JFij with domain which is the linear span of the vectors (e®at,)ay€z+- As

easily seen from our previous considerations, each operator is essentially 

self-adjoint in Jrlj .

By [7, Chapter 3], we can construct the Fourier transform of the finite 

family of operators (A^)i=ii...)nij=o,i)...,m in the Hilbert space J îo ^

Tnm. Its spectral measure, denoted by 7 , is the product measure

7  =  7 1 0  ®  711  ®  ®  I n m

on E n(m+1)j where 7 is the spectral measure of the operator in T i j  at 

the vacuum state e®°. By formula (3.41), we have

Aijef*13 =  e®(QtJ+1) +  otijef*'3 +  f  d x  f  v ( x ,  d s )  e®(aiJ_1)
JAi J Aj

if j  7̂  0, and

A ,o e T '°  =  e T ‘°+1) +  «<o /  d x a ( x ,  {O})̂ "™-1*.
J  Ax
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From here we immediately find that 7^  is the centered Poisson measure with 

parameter f A dx f A u(x,ds)  if j  ^  0, and the Gaussian measure with mean 

0 and variance f A dxa(x ,  {0}) if j  = 0 (see [15, Chap. 1, Sec. 4]). Hence, 

we have, for r i0, . . .  rnm G M,

ŷ nCm + l)

=  exp

el(y™rio + -+ynmrnm)driiQ(yiQj . . . d7nm(ynm)

~ \ ( ^ J  d x a ( x ,  {0})ri0 + • • • + J  d x a ( x , { 0 } ) r .  

+ j  d x  j  v ( x ,  d s ) ( e lTu — i r n  — 1)
J Ai J Ai

i / ( x , d s ) ( e trnm -  i r nm -  1)
J j d x c r ( x ,  {OjXxA^Ono + • • • + XAn(x )rno)2 
* Jmd

+  • • • +  I dx I
J An J A

(3.42)

=  exp

+  I dx j  v(x,ds)(el^ x'^ — i f ( x , s )  — 1)
J R d J R*

where

f ( x , s )  = XAn(x )XAi(s)ru +  • • • +  XAnm(£)XAm(s)rr 

S tep  4. We define, for a function g(x ,s ), an operator

B{g) := a+(g) +  a~(g) +  a°(g(x, s )x r* (s))

in TiTio) (on a proper domain). We now set

g(x, s) : =  xax Mx{o} {s)r10 +  ■ • • +  XAn (z)X{o} (s)rnQ

+  XA](^)XA1(s)n i +  hXA„WxAm(5)rnm.

By Step 3 and estimate (3.24), for any z e  C with \z\ sufficiently small, we

(3.43)

have

zn(B(g)nQ, n)jr(Ho)
L  ---------= exp
n—0

dx a(x, {0})z2g(x, 0)'

+  f  dx f  v(x, ds)(eZ9̂ x,s  ̂ — zg(x,  s) — 1)
j R d J R *

64



S tep  5. Let us fix sets A i , . . . ,  An as above, let r i , . . . , rn £ R. Set

iJj ( x ) := xa , M n  +  • • • +  Xa„ (z)?V  (3.44)

We now approximate the function

f ( x } s) := '0(^)x{o}(s) +  ip(x)s 

point-wise by function as in (3.43). Then, at least informally, we get

r" (B ( /)" n ,n )W o)E
n= 0

n\
= exp

' z2

+ [ d.T
J Rd

= exp

+ f da:
J r d

+ f  d x  f  y { x ,  d s ) { e z^ xS)s -  z  i p ( x ) s  - 1) 
•/Rd A*

a ( x ,  { 0 } ) t p ( x ) 2d x

g(.T,  d s )  ^  _ z t p ( x j z  _
S2

(3.45)

Let us justify this limit. We can assume that the functions g k { x , s )  of the 

form (3.43) by which we approximate the function f ( x , s )  satisfy

\gk ( x , s ) \  < C x a M O - s I  + X { o } ( s ) ) ,

for all k £ N, where C  > 0.

We have, for x  £ Rd, ,s £ R*, and z  £ C,

1 |̂ |n|pjfe(̂ , 5)|n . , x ^  \ z \ n C n \s\

(3.46)

i E < X a (x ) E (3.47)
n = 2 n=2

Hence, by (3.2), (3.47), and the dominated convergence theorem,

f  d x  f  cr(x,  d s ) s ~ 2 ( e Z9k(x,s') — z  g k ( x ,  s )  — 1)
J Rd J r *

—» f  d x  f  a ( x ,  d s ) s ~ 2 ( e z%lj^ s — z i [ ) ( x ) s  — 1), 
./Rd Jr*
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as k —> oo, for z from a neighborhood of zero in C. Also by (3.46) and 

dominated convergence theorem

d x a ( x , {0})^(;r,0 )‘ dx a(x, {O})'0(x)“

Hence, for z from a neighborhood of zero in C, 
,2  r

exp
’Rd

d x a { x , {0})^fc(a;, 0)"

+ f  d x  f  a ( x , d s ) s  2 ( e Z9k x̂,s  ̂ — z  g k ( x ,  s )  — 1) 
Jr<* Jr*

f d x  <j(x, { 0 } ) i p ( x ) 2 
_  ̂ J Rd

+  f d x  f a ( x , d s )  s ~ 2 ( e z^ x ŝ — z ,i p ( x ) s  — 1)
J Rd J R.

—► exp

Next, let us show that

j ^ z n(B(gkr n , n ) nHo)

n=0 n! E71=0 n!
(3.48)

as k —y oo for 2 from a neighborhood of zero in C. We first note, by the 

dominated convergence theorem and (3.46), that for a fixed n £ N,

(#(<?fc)n£J, Q)f(u0) -> (A(V^)n^ , fi)^(Ho)

as fc —>• oo. Furthermore, as follows from (3.24), there exists a constant C > 0 

such that

|(B (9*)nn , n ) ^ (H0)| < C " n !  (3.49)

for all k £ N. Therefore, (3.48) holds by the dominated convergence theorem. 

Hence, we conclude that, for some c > 0, we have

E71=0
z n( A ( i p y n , n ) r {H0)

n\
= exp [  dxcr(x,{0})^(a:,0)1 

* J  Rd

+  f  dx f  cr(x,ds)s 2(ez^ ^ s — zi{j(x )s — 1)
J Rd Jr*

(3.50)
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for all z  E C, \z\ < e. As easily seen from the above considerations, e depends 

only on A =  U?=i A* an<̂  on s u PxeA = m a x *=i,...,n N -

S te p  6. We fix any cp £ V.  Let A be the support of the function </?. 

We will now approximate y? by functions as in (3.44). For each k, we will 

denote corresponding A-sets by A[k\ A ^ \  . . . ,  A so that AUi = A. We 

will also assume that s u p ^  < C  f°r all k E N. By the dominated

convergence theorem, we get

' z2 f
exp — / dxa(x,{0})'ipk{x)2

. *  J R d

+ f dx f a(x,ds) s~2(ez^k^ s — z ,ipk(x)s —  1)
J Rd Jr*

V  /■
->• exp — dxa{x ,{0} ) t f (x )2

. *  J R d

+ f dx f a (x } ds) s~2(eztfî s — z <p(x)s — 1)
Jrd Jr*

for z E C from a neighborhood of zero. So, to prove the theorem, it remains 

to show that, for z E C from a neighborhood of zero,

^  zn(A(ii>k)nn,  n )W o) v ^  zn(A(ip)nn, n ) nHo)

Tl —  O
n\ £

7?.— 0
77.! (3.51)

Similarly to (3.49), we have, for all k E R,

|(A(,0/C)nf2,n)j-(Ho)| < Cn n!

Hence, by the dominated convergence theorem, formula (3.51) would follow 

if we show that, for each 77 E N

(A('ipit)nfl,Cl)j:('H0) —> (A((p)nQ, £l)jr(Ho) as k -» 00, (3.52)

which again follows by the dominated convergence theorem. 

We will now summarize the main results of this chapter.

□
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C o ro lla ry  3.8. Assume that condition (3.2) is satisfied. Let a Hilbert space 

H0 be given by (3.3), and let a nuclear space FA is given by (3.4). For each 

ip G V, let A(p) be the Hermitian operator on ^(Hq) defined by (3.9), with 

domain Tfai(SA'). Then these operators are essentially selfadjoint on 

and their closures are denoted by (A(p), D(A(p))) . The latter selfadjoint 

operators commute in the sense of their resolutions of the identity. Further­

more, there exists a unique probability measure ft on ( V , C ( V ) )  such that 

the linear operator I  : J r(Ho) —> L2{ V  ,ti) given through IUL =  1 and

I(A(ipi) • • • A (p n)Q) = I ( A (p i) • • • A{pn)Ft)

= (p ip*;)•■• (pm u) G L2( V , n)

is unitary. Under the action of I , each operator (A(<p), D(A(p))) , p  E V  goes 

over into the operator of multiplication by (to,p) in L2(T>',iT). The Fourier 

transform of the measure p is given by (3.27).

Denote by B0(Rd) the linear space of all measurable bounded, real-valued 

functions on R d. For each f  G Bo(Rd), we may define a random variable

(f,uj) as an L2{V',fi)-limit of functions (pn,iv) with p n G V, n G N, such

that p n —> f  in L2(Rd,dx). The Fourier transform f v , is clearly

given by the right hand side of (3.27) in which p  is replaced by / .

Let A], . . . ,  An G Bo(Rd), mutually disjoint. Then for any £i, . . . ,  tn G M,

by (3.27),

So, the random variables (xa^cj),  . . . ,  (Xau> are independent. Thus, the

probability measure p  is a generalized stochastic process with independent 

values, see [19].
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Chapter 4

N  ualar t—S chout ens 

decom position

The aim of this chapter is to generalize the Naulart-Schoutens chaotic de­

composition of the L2-space of a Levy process ( [36], see also [31,40]) to 

the case of a rather general generalized stochastic process with independent 

values.

We start this chapter with a discussion of an orthogonal decomposition 

of a general Fock space. This decomposition generalizes, in some sense, the 

well-known basis of occupation numbers in the Fock space, see Section 2.9.

Let H  be a real seperable Hilbert space. Let (Hk)%L0 be a sequence of 

closed subspaces of H  such that
oo

/ /  =  ®  #*•

Let n > 2. Then clearly

®  Hk l ® Hk2® ■■■(?) Hkn. (4.1)
(/ci,A:2,...,A;n)€27J.
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Denote by Symn the orthogonal projection of H m  onto H Qn. Recall that, 

for any / i , / 2l. •. , / n € H

n\ Symn /i  0  • • • 0  / n =  ^  f a(i) 0  • • • 0  /*(„). (4.2)

For each (fci, fc2, . . . ,  fcn) G Z" ,  let ///Cl 0  Hk2 O • • • © //*„ denote the Hilbert

space Symn(Hkl 0  Hk2 0  • • • 0  Hkn), i.e., the space of all Symn-projections of 

elements of Hkl 0  Hk2 0  • • • 0  .

Assume that (&i, fc2, . . . ,  fcn) G > (h ,h ,  ■ ■ • Jn) € Z+ are such that

there exists a permutation a E Sn such that

(/c 1, fc2 j • • • j ^n) — (^a(l) ? ĉt(2) > • • • ? ĉr(n)) • (4-3)

Then

tffci © Hk2 © • • • © Hkn = Hh 0 H l20 - - - Q  Hln. (4.4)

Indeed, take any G //*x, / 2 G ///2, . . . ,  / n G ///n. Then

/l  O / 2 O • • • O fn = fail) © /er(2) © * ' ' © /a(n)- (4-5)

We have G Hia(i) = Hki. Therefore, the vector in (4.5) belongs to 

IIkl (0//fc2 0  * * * (0 Hkn * Since the set of all vectors of the form f  j CO f  2 CO * * * CO fn 

with fi G Hit is total in O Hi2 O • • • © Hin, we therefore conclude that

Hh © Hh © • • • O Hln C / / fcl 0  Hk2 © • • • © / / fcn

By inverting the argument, we obtain the inverse conclusion, and so formula 

(4.4) holds.

If no permutation a G Sn exists which satisfies (4.3), then

tf fcl 0  0  • • ■ © Hkn±  Hh © Hh © • • • © Hln. (4.6)
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Indeed, take any f i  G H kz, Qi G Hit , i =  1 , 2 , . . . ,  n. Then

( / l  ©  /2  O  • • • ©  / m  P i ©  9 2  ©  • • • O  0 n )\ /  //On

=  ( Symn (fi ® f 2 ® ® f n),gi ® g2  ® ® gn)
\  J H®n

Since the vectors of the form / i © / ^ © -  • - O /n  with f i  G ///c t and <7i©<?2© - • -©SVi 

with G Hti form a total set in Hkl © Hk2 © • • • © Hkn and H ^Q H ^Q -  ■ -OHin, 

respectively, we get (4.6).

By (4.1), the closed linear span of the spaces Hkl © Hk2 © • • • © Hkn with 

(fci, /c2, . . . ,  fc„) G Z" coincides with / / ° n. Hence, by (4.4) and (4.6), we get 

the orthogonal decomposition

a €  Z^°0' |<*|=n

Hence, by (4.7) and the definition of F'(H), we get the following

L em m a 4.1. We have the orthogonal decomposition of the symmetric Fock 

space Jr(H):

H®°° © H f a1 © H f Q2 © • • • . (4.7)

’+ , 0

(4.8)

Next, we have:

L em m a 4.2. Let a  G Z“ 0, |a | > 2. Then

Symn : ( / /0° “° ® / / f Q1 ® / /2° “2 ® • • • ) a 0'.a1\a2\ ■ ■ ■ 

-4 ( / /o0a° 0  H f ai © fff* 2 © • • •) |a|! (4.9)

is a unitary operator.
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Proof. We start the proof with the following well-known observation (see e.g. 

Proposition 2.4 in [14], where this statement is shown in a much more general 

setting). Let k,l  > 1, n := k + I. Then we have:

Symn =  Symn(Symfc <g> Symz).

Hence, for any a  G Z + 0> |a | =  n, we get

Symn =  Symn(SymQ0 & Symai <g> SymQ2 &•••)•

Therefore, we have the following equality of subspaces of H®n :

H $a° © H f a' © © • • ■

=  Sym„ ® H f ai 0  t f f ” 2 0  • • •)

=  Sym„ ( SyrnO0 0  Symai © Sym02 0  • • •) ( / /o0QO 0  / / f Q1 0  / / f “2 0  • • •)

=  Sym„ ( / /^ “° © H f a' 0  H$°2 ©•• • ) .

This shows that the image of the operator Sym„ in (4.9) is the whole space

n\. Hence, we only need to prove that this operator

is an isometry.

Fix any / j , ^  G Hi with i G Z+ and any a  G Z“ 0. Then, by (4.2)

(  Sym„ (/® “° 0  / ? “■ 0  /®“2 0  • ■ •), Sym„ (s ®“" 0  g f a ' 0  3®“’ ® • • • ) ) HOnn! 

=  (  Symn (/® °“ 0  /® Q' 0  /®“2 0  ■ ■ ■), 3®““ 0  3®“' 0  3®“2 0  ■ ■ •) ^ n \

(4.10)
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Since the set of all vectors of the form /®ai with fi £ Hi is a total subset 

of H f a\  we conclude from (4.10) that the operator in (4.9) is indeed an 

isometry. □

By Lemmas 4.1 and 4.2, we get 

L em m a 4.3. The symmetrization operator

Sym : 0  ( / /0Q“° ® H f a' 0  ® ■ Jaolcnlaa!------ >

is unitary.

Remark 4.4. Let us assume that each Hilbert space is one-dimensional 

and in each Hk we fix a vector £ Hk such that ||efc|| =  1. Thus, ( e * ) ^  is 

an orthonormal basis of H. By Lemma 4.3, the set of the vectors

( ( a o W .a J .  • • • )^ e ® a° O e fai O ef*2 © • • • )
V / aGẐ o

is an orthonormal basis of ^(/Z ), which is a basis of occupation numbers.

Now, we want to apply the general result about the orthogonal decomposi­

tion of the Fock space to the case of F(H),  where H = L2(KdxM, dx a(x, ds)) 

is as in Chapter 3. (We have dropped the lower index 0 in Ho).

We denote by (g^n^(x, s))n>o the sequence of monic polynomials which are 

orthogonal with respect to the measure <j(x, ds). By Section 2.2, we have the 

following recursive formula:

sq(n)(x, s) =  q{n+1){x, s) +  bn(x)q{n)(x, s) +  an(x)q{n~1)(x, s), n > 1, 

sqi0\ x ,  s) = q{1)(x, s) +  b0(x).

(4.11)

From now on, we will assume that the following condition is satisfied:
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(A) For each n E N, the function an(x) from (4.11) is locally bounded on 

R d, i.e., for each A E Bo(Rd), supxeA an(x) < oo.

Denote by £  the linear space of all functions on R d x R which have the 

form
n

f {x ,  s) = ^ 2  Vk(x)q{k)(x, s), (4.12)
fc=o

where n E N, p  E P , k = 0 , 1 , . . . ,  n, and each q̂ k\ x ,  •) is the /c-th order 

monic orthogonal polynomial on M with respect to the measure cr(x:ds), 

x  E R d. Analogously to Lemma 3.1, we get the following

L em m a 4.5. The space £  is densely embedded into

H = L2(Rd x R,dx  a(x,ds)).

Proof. Let f ( x , s )  = ip(x)q^k\ x ,  s), where ip E V.  Let us show that /  E H. 

Denote A := supp(a). We have

f f a(x ,ds ) f (x ,  s)2 < C f dx (  a(x, ds) q̂ k\ x ,  s)2. (4-13)
. / Rd J  K ./A J  R

If k =  0, then q ^ ( x , s )  = 1, and the right hand side of (4.13) is evidently 

finite. By the theory of orthogonal polynomials (see e.g. [15] or [6])

I  (r(x,ds2)q {k)(x ,s )2 = al (x)a2(x) • • -ak(x), k > 1. (4.14)
Ju

Hence we continue (4.13)

< C  dx cr(x,ds)ai(x)a2(x) ■ • ■ ak(x) < oo
J  a  J  R

by (A). Thus, £  C H.

We now have to show that £  is a dense subset of H . Let g E H  be such 

that

( 9 J ) h  =  o  v / e £ .
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Hence for any <p G V  and k  > 0

/ d x  / a ( x ,  d s )  g ( x ,  s )  p ( x )  q^k\ x ,  s ) = 0.
J R d J R

Fix any compact set A in Rd and let <p G T> be such that the support of <p is

a subset of A. Then,

Hence

/ d x i p ( x )  ( / a ( x ,  d s )  g ( x ,  s )  q^k\ x ,  s ) ) = 0.
J R d \ J  R J

J  d x p ( x ) ^ J  a ( x ,  d s )  g ( x ,  s )  q^k\ x ,  s)^ =  0. (4.15)

We state that the function

A3i 4  / a ( x ,  d s )  g ( x ,  s )  q^k\ x ,  s )
Jr

belongs to L2(A, d x ) .  Indeed, if k  = 0, then s )  = 1 and this statement

evidently follows from Cauchy’s inequality. Assume that k  > 1. Then by 

Cauchy’s inequality, (4.13), and condition (A),
2

d x  I a ( x , d s )  g ( x , s )  q^k\ x , s )
J a  \ J  R

<  [  d x  f  a ( x , d s i ) g { x , s i ) 2 [  a ( x , d s 2) q {k)( x , s 2) 2 
J a  J r  J r

=  d x  a ( x ,  d s )  g ( x ,  s ) 2 a \ ( x ) a 2 ( x ) • • • a, k{x)
J  a  J r

— T7suPa*(a') ] I  d x  I c r ( x , d s )  g { x , s ) 2 < 00.
\ i = i  /  J  a  J r

Since the set of all functions G V  with support in A is dense in A2(A, d x ) ,  

we therefore conclude from (4.15) that, for d x - a.a x  G A,

j  a ( x ,  d s )  g { x ,  s )  q^k\ x ,  s )  = 0, VA > 0. (4-16)
J r

Since g G H, we get that, for dx-a.a. £ G Md, p(x, •) G L2(IR, <7(2:, ds)). Since 

{q^k\ x ,  -)}fcTo f°rm an orthogonal basis in L2(R,a(x,  ds)), we conclude from
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(4.16) that for dx-a.a. x e R d g(x, s) = 0 for a(x, ds)-a.a. s G R. From here, 

analogously to the proof of Lemma 3.1, we get that g = 0 as an element of 

H . Hence £  is indeed dense in H. □

For each n G Z+, we define

£ n ■= {<7n(z, s) = fn(x) q{n){x, s) \ f n G T>}.

We have £ n C £, and the linear span of the £ n spaces coincides with £. For 

any gn{x,s) = f n{x)q{n\ x , s )  G £ n and gm(x,s) = f m( x ) q ^ ( x , s )  G £ m, 

n, m  G Z+, we have

(.gn,gm)H=  /  gn(x,s) gm(x ,s )dxa{x,ds)
JR-XR (4<17)

=  /  f n ( x ) f m ( x ) (  /  9 ( n ) ( x , 5 ) g ( m ) ( x , s ) c j ( a : , d s ) ) d 2 : .  
jRd W r 7

Hence, if n ^  m, then

(9ni9m)H 6»

which implies that the linear spaces {£n}£T0 are mutually orthogonal in // . 

Denote by / / n the closure of £ n in / / .  Then by Lemma 4.5,

H = 0 H „ .
T l— 0

By (4.17), setting n = m, we get

119 n  11 / / n =  [  f n ( x ) (  [  q { n \ x , s ) 2 ( j ( x , d s ) \ d x  
J R d x J R  '

= [  fn(x )pn{dx),
JRd

where

P n ( d x )  =  J  q ^n \ x ,  s ) 2 a ( x ,  d s ) ^ j d x  

is a measure on (Rd, 5 (R d)). Consider a linear operator

£> 3  I n  ^  ( J n f n ) ( x , s ) : =  f n ( x ) q { n \ x , s )  G £ n .
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The image of Jn is clearly the whole £ n. Now, £ n is dense in Hn, while V  is 

evidently dense in L2(Rd, pn(dx)). By (4.18), for each f n G V ,

H ' A i / n l U n  =  W f n \ \ L 2 ( R d , p n ( dx ) ) -  

Therefore, we can extend the operator Jn by continuity to a unitary operator

Jn : L2(Rd, pn(dx)) -» Hn. (4.19)

In particular,

Hn =  { /n W g (n)(.^,s) | f n G L2(Rd, pn{dx) )} .

Therefore, for each k > 2

H n k =  ■ ■ , X k ) q {n}( , X u S l ) -  ■ - q in) ( X k , S k )  I

Since the operator J n in (4.19) is unitary, we get that the operator

J®k : L2(Rd,pn{dx))®k ->

is also unitary. The restriction of J®k to L 2(Rd, pn(dx))ek is a unitary oper­

ator

J®k : L2(Rd, pn{dx))Qk -> (4.20)

Indeed, take any f n G L2(Rd, pn(dx)). Then f®k G L2(Rd, pn(dx))Qk and the 

set of all such vectors is total in L2(Rd, pn(dx))°k. Now, by the definition of

J®k, we get

and furthermore the set of all vectors of the form (Jn fn)®k is total in H®k. 

Hence, the statement follows.
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For any e  L2 (M.d, pn(dx))®k,

{Jnhfnk)) (x l ’Sl<--->x k,Sk) = I n \ x  1,- ■ ■ ,Xk)q[n) (Xi, Si) ■ ■ ■ q[n) {xk, Sk).

Hence, the unitary operator (4.20) acts as follows

L2(Rd,pn(dx))Qk 3 f l k){xi, . . . , x k)

{Jnkfnk))(x h s li' ■ - , Xk,Sk) = ■ • • , Xk)g{n) {x l , Si) ' ” q(n) (xk, Sk) .

Thus, each function G H®k has a representation

g ^ i x u s i , . .  - , x k, s k) = f i k){xu . .. , x k)q{n) (xu si) • • • q{n)(xk, sk),

where f [nk) G L2(Md, pn(dx))ok and \\gn]\\Hok =

For each a  G Z + 0, we consider the Hilbert space

£2((K<*)M) := L2(Rd,p0(dx))ea° ® L2(n.dtpi(dx))Ga' (4.21)

Wo now define a unitary operator

Ja : l \ ((Mrf)l“l) -> / / ^ “° »  H f a‘ «  • ■ • ,

where

J a  =  J o * *  ®  ^ f a i  ®  • • • •

We evidently have, for each f a G L2 ((Md)lal),

(*/a fa)  (*̂ 1 j 1̂) X2) S2 j • ■ ■ 5 X|Q|, S|a|)

=  f n{x i , x2, . .  • ,X|a|)g(0)(a;i,Si) • • -q(0)(xao,s no)

x g ((rQ,Q_).2, SQ,g_)_i) g ((cq,q_|_q,1, Sq,0_).q,j ) • • • .

For each a  G Z + 0, we define a Hilbert space

ga := L 2 ((Md)l"l)a0^ i! - -  - •
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The Ja is evidently a unitary operator

Ja - - Qa^  ( H t °  ® H? ai X • • • )ca0!<»i ! • • • .

Denote

a := ©  ft,.
a € Z ° ? 0

Hence, we can construct a unitary operator

J : G - > 0  ( //0° “0 »  / / ? “' ® ■ )a0!ai! • ■ ■
a e z ^ o

by setting

J  := J Q.
a e z ^ o

By Lemma 4.3, we get a unitary operator

U : G ->

by setting

7?. := Sym J.

Thus, by Theorem 3.2, we get

Theorem  4.6. Let condition (A) be satisfied. We have a unitary isomor­

phism

K  : G L2(V',IJ.)

given by K  := ITt, where the unitary operator I  : T ( H )  —> L2( V , p )  is from 

Theorem 3.2.

We will now give an interpretation of the unitary isomorphism /C in terms 

of multiple stochastic integrals. Since the results below will not be used
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anywhere else in this dissertation, we will present only a sketch of the proof, 

omitting some technical details.

Let us recall that the operators A(ip) in T ( H )  are given by

A((p) := a+((p(x)l(s)) +  a°((p(x) s) +  a _ (v?(:c)l(s)).

Now, for each k € N, we define operators

:= a+(ip{x) sh~l ) +  a°((p(x) sk) +  a~(ip(x) sk~l ).

In particular, A^l\y>) =  A(ip). We state that, after the closure, the opera­

tor A^k\(p) go over, under the unitary isomorphism I, into the operator of 

multiplication by I(<p(x) sfc_1).

Let us explain this result in the case where g>(x) = Xa(^), where A = 

(a i, 6]) x • • • x (a^ bd) (recall d is the dimension of the underlying space). For 

each n € N, let us consider a partition

Ai U A2 U ■ • • U An =  A

of the set A into mutually disjoint sets Ai, A2, . . . ,  An such that

[ dx = — f dx , 2 =  1, 2, . . . , n ,
Ja t n J A

for example

Ai =  (ai H----------- (2 — 1), a\ H----------- 2) x (a2, 62) x • • • x (0̂ , bf).
n n

Let us first consider the case where k = 2. We state that, in the Fock space 

J r(L2(Rd x R, dx cr(x, ds))),

n  „

X a ( x ) s =  lim [ v4 ( 1 ) ( x a J 2 ^ -  /  d x S l  . (4.22)
n - >  0 0  L I ai = 1 J A
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We denote by P n the orthogonal projection of the symmetric Fock space onto 

its n-particle subspace. Then

P 2 ( X ^ '4<1,(XAi)2n )  =  y^(XA,(x)s)®2,
i = 1 i = l

and

Next

and

^(X A i(^)l(s))® 2||^2(RdxKdx(7(I)ds))®2
1 = 1

n

“  IK^A*(,T) ^ 'S))(8,2|ll2(MdxR,dxcj(x,ds))®2
i = l

= f /  d x  f  1 ( s ) a ( x , d s ) ^
• i */ A i v Ki= l

= j : {  dx
i = 1 J  A*

do: — ) n
a n J

\ 21
dx ) -----> 0 as n —>- oo.

/ n

P l ( X l ^ (1)(XAt)2^ )  =  X ^ a 0(xA,W 5)a+(xAlW  1(5))
i= l  

n

=  ^ 2 x a A x ) s  =  X a ( z ) s ,

i= l  i= l

z=l

P0( £ ^ W n )  (XAI(^ ) l(s ))a +(xAl (^ )l(5 ))n
i= i

dx a(x,ds) l(s)Q 
dA, dR

i= l  i= l
n

i= l  ,' Ai

=  /  d x O ,  

J A

which proves (4.22).
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Next, we state that, for each element from a proper domain,

A (2)(xa)  =  lim I ' j r  A {l\ x A i ) 2 ~  f  dx l l , (4.23)
71—>OC _

1 = 1 ' A

where the limit is understood in the strong sense in the Fock space Jr(H). 

Clearly, formula (4.22) is a special case of (4.23) when we apply this equality 

to the vacuum vector Q. It is sufficient to check (4.23) on any vector G 

L2(Rd x M,d.Ttf-(.T,d5))Q/\

Analogously to the above, we get:

^ + ( X A , W l ( s ) ) a + ( x A l W l ( s ) ) / (fc}

t=i

=  (xa,M  I M ) ^ )  Q / (fc) —>■ 0 as n —> oo.
t= l

Next, let us show that
n

^ a +(XAi(a?)l(5))a°(XAi(ic)s)/(fe) -> 0 as n -* oo.
z=i

It is easy to see that it suffices to check this statement for k = 1 and 

f ^ ( x , s )  = g(x)sl. Then
n

II ^ ^ ( X A ^ z )  1 ( 5 ) ) a ° ( X A l ( ^ ) s ) ^ W 5 / | | i 2 (Kd xR)d;Cff(X)(is))G2 

= 1
n

=  II 1W )(X A .W 9(^)s,+1)|||2 (RdxM^ (Xida))02
i= 1 

n

=  l l X ^ X ^ C 1 ) 1 ^ ) ) 0  ( X A . ( i ) 9 ( a : ) « ' + 1 ) l l? , s ( R J x R , d i « ( i , < t ) ) © 2
1= 1

n

= l|Sym2 ( ^ ( X A t(^) 1(5)) 0  (xAt(^)^(^)5/+1))||^2(MdxlR,dxcT(Xids))o2
1=1

n

< II l(s)) »  (XA.(x)9(2:)^+1)|ll2(Kd)<RiliI(,(Xids))»2
i =  1 

n

y   ̂ I K X A iW  1 (^ ) )  II L2(RdxR.dxg(x,ds)) ’ II (XA* (*^) 9 ^ x )  & ) II L2(RdxR,dxa ( x , d s ) )

i = 1
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71 J *  — [  J  A i

=  y~^ f  dx f  a(x,ds)  1(5) • f  dx'g(x')2 f  (s')2(z+1) <j(x', ds')
J Ai »/K »/Ai */K

< C  ^  f  dx • f  dx'g(x')2 
i=l J Ai 

^  ^ dx • f  dx'g(x')2 
i=l ^Ai

=  — C j  dx • f  dx'g(x')2 —> 0 a s n —»oo. (4.24)
71 J a J a

Next, we state that
n

Y a°^x A,(^)s)a+(XAl(a :) l(s ) ) /(A:) -> a+(xA(z )s ) / (fc).
t= 1

Indeed, 

(a +(XAt(^) l ( s ) ) / (/c)) ( x i ,S i , . . . ,Xjfc+i,Sit+i) 

=  Symfc+1 (xAi(^i) l ( s i ) / (fc)(x2,s 2, . . . , % i , % i ) ) -  

Hence, analogously to the above,
n

Y  {a°(XAi(oc)s)a+(xAl(x ) l ( s ) ) / (fc)) ( z i ,s i ,  • •. ,x fc+i,s/c+i)
1 =  1

n fc+1

=  ^ s ymfc+j XAi(^j)^jXA,(^l) l ( 5l)/^H -T2, S2, ■ • • , .T/c+i, .Sfc+i)̂
i=l j = l

n

=  y ^ S y m fc+1 ( xat(-Ti ).si/ (A:)(.T2,52,. . . ,  x ^ i ,  .sfc+1)) 
i=i

n fc+1

+  y ^ S y m t+1 ( j^ X A i(a:j)sjXA1(ii)  l ( ^ i ) /<fc)(^2 , S2, . . . , Xfc-|-i, S/c -̂i)̂
i=l j=2

n

y ^ S y m fc+1 (x A i(z i)s i/(A:)(z2 , S2, . . . , Xk+h <Sfc+l)̂
i= 1

= (a+(X A M s)/(fc))(xi , 5 i , . . . ,  Xfc+i, Sfc+i) a s n —>00. 

Similarly to the above, we then have
77.

Y  a~(XAi(x) l(s ))a “ (xAt(x ) H s) ) f (k) °>
1 = 1
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X ^ a ° ( X A l ( ^ ) s ) a  ( x a , ( z ) 1  ( s ) ) f {k)  - » 0 ,

i = l

n

a - (XA,(z) l(s ))a0(xA i(z)s)/(fc) ->■ a~{xA(x ) s ) f [k) as n -> oo.
i = l

Next,

a  (X A j(^ )  I ( 5 ) ) a + (XA, ( z )  1 ( s ) ) / w
1 = 1

n

=  ] T V ( x Al(x)l(s))Symfc+1 [x a ^ i)  l ( s i ) / (fc)(x2 , S2 , • • • , £/c+l, S/j+i)
i = l

= S  /  dx cr{^ ,ds) l (s) f {k)(x1, s u . .. , x k, s k) 
i=1 l ^a, ./r

+  /cSymfc (xa ,(z i)1 (si dy J^a(y ,du)  1 ( u ) f {k)(y . U, X2i $2, • ■ ■ ) Xk, Sjc)^

d x ) f [ >(xu s i , . . .  , x k, s k)

ti r  r

+ Symk ( k ' ^ 2 x A l(x M s i) /  dy a(y,du) f {k\ y
 ̂ I  */ A; w R

->■ J  d x j f  >(x1 , s 1?. . . , x k, s k)

analogously to (4.24).

Similarly,

n

^ a +(xA,(^) l ( 5))a_ (XAjM l ( s ) ) / (fc) -> 0 as n —̂ oo
Z=1

Finally, we should treat the term X^=i a°(XAi(^)5)a°(xAi(2:)5 ) /^ ^  We can 

write

^ 2 a ° ( x A i(x)s)a°{xAi(x )s) f ik)
i=1

n k k

=  Symt ( £ Z  XAr(Xi)Sl XA,(^m)5m/ (/c)(Xi, Si, . . . , re*, Sfc))
i = l  i = l  m = l
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n k

=  Symfc ( E E  X A i ( x l ) s l  ̂{ X \  j Si j • • • 5
i = 1 /=1 
n

+ Symfc ( E  E  XAj { x l ) s i X & i  { x m ) S m   ̂( X 1 ) , . . . , £fc, Sfc)̂
i = 1 /,m=l,...,/c 

l^m
K

= Symfc ( ^ x a ( ^ ) s ? / (/c)(zi>51i • ■ • ,^fe,Sfc))
/=i
n

+  Symfc ( E  E  XAi {x l)siXAi ( % m ) s rn )(a?l,S l,..., *£fci Sfc)̂
i= l  Z,m=l,...,fc 

l^m

=  a°(xA(x)s2) f {k)
n

+  Symfc ( E  E  XAi (xi)siXa1 {x m)Sm  ̂(x li ■ • • •> x ki Sfc)̂
i= l  Z,m=l,...,fc 

l^m

-> &°(x&(x )s2) f ^  as n —» 0.

Thus, equality (4.23) is proven.

We know that, under the isomorphism /, each operator v4 ^ ( xaJ  goes 

over into an operator of multiplication. Therefore, for each n, under the 

isomorphism /, the operator

X M (1)(X aJ2 -  [  d x l
i=i 7 a

also goes over into an operator of multiplication. But by (4.23), the operator 

^4^(Xa) is the limit of the operators X^=i ^ H x a J 2 — f A d% 1 as n —> oo. 

Hence the limiting operator j4 ^ (x a )  should also be an operator of multipli­

cation. Since IQ = l(u;), by (4.23) the image of A ^ ( x a ) is the operator of 

multiplication by I ( x a ( x ) s ) .  From here, we conclude the general statement 

that A^2\cp) goes over into the operator of multiplication by I(ip(x) s). Thus 

the statement is proven for k = 2.
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For a general k, analogously to (4.22) and (4.23), we get

From here, by induction, we conclude that the operator A(k+1\(p) goes over 

into the operator of multiplication by I((p(x) sk).

For each k = 0 ,1 ,2 ,.. .  and <p G V  we define

As we have just shown, each operator A^k+l\tp)  goes over, under /, into the 

operator of multiplication by (</?).

Suppose, for a moment, that the measures <t(.t, ds) do not depend on 

x  G R d. For a fixed p  G P , let us orthogonalize in L2{V' ,p)  the functions 

(Y^( ip))^L0. This is of course equivalent to the orthogonalization of the 

monomials (sfc)£L0 in L2(R,cr). Denote by ( q ^ ) ^ Q the system of monic 

orthogonal polynomials with respect to the measure a. Thus, the random

appear as a result of the orthogonalization of ( F ^ ^ ) ) ^ -  Since q ^ ( s )  =  1, 

we have

Y ^ ( V) : = I ( V(x ) sk).

variables {Z^k\ p ) ) ^L 0, where

Z {k\<p) := I{i f (x)q{k\ s ) )

For each k > 1, we have a representation of q ^ (s )  as follows:
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Thus,

Z {k){p) =  I ( p ( x ) q{k)(s))
k

= %(*)•■>’)
z=0

=  £ j < * V m ( v ) .
i—0

Hence, the image under I~ l of the operator of multiplication by Z ^ ( p )  is 

the operator
k

R {k)M  ■ = bik](a+M x )sl) +  a~(p{x)sl) +  a°{p{x)sl+l))
i=0

k
,( fc) J + 1

i=0 i=0 i=0

= a+ ( p ( x ) q ^  (s)) +  a _ (y> (x)^(s)) +  a°(^(x)5 q̂ k\ s ) ) .

Let us now consider the general case, i.e., the measure a(x,ds)  does de­

pend on x G We are using the monic polynomial (q̂ k\ x ,  -))^Lq which are 

orthogonal with respect to the measure cr(x,ds). We have

q{k){x,s) = ^ 2 b \ k\ x )  s \
i—0

We now define

Z (k)(p) : = I (p (x ) q ik)(x,s))
k

= x)b\k\ x ) s l)
i=0

=  £ > < •  )(<pb\h)).
i—0

Hence, the image under / -1 of the operator of multiplication by Z^k\ p )  is 

the operator

R {h\ p )  : =  (a+(ip(x)b[k){x)s ' ) +  a~(p(x)b[k)(x)sl) +  a°(<p(x)b\k)(x)sl+1))
i=0
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= a+ ( f { x ) X  ^  ̂  50  +  a (?(x)  X  bik) (X) 5‘
i=0 i=0

+ a°(p(x ) ^ 2 b\k\ x ) 5l+1)
»=o

=  a+(p(x)q(k\ x ,  s)) -(- a~(p(x)q(k\ x , s ) )  +  a ° ( p ( x ) s q ^ ( x 1s)).

We will now introduce a multiple Wiener-Ito integral with respect to 

Z ^ ' s. So, we fix any a  G \a\ = n, n G N. Take any A i , . . . ,  An G

£ 0(Md), mutually disjoint. Then we define

dZ(0)(xi) • • • dZ{0)(xao)dZil){xao+1) • • • dZ{l\ x ao+ax)
Ai xA2X'"XAn

x dZ{2) (xaQ+ai

=  [  X A 1 ( ^ i ) X A 2 ( ^ 2 )  • • • X A n ( £ n ) d Z ( 0 ) ( > i )  • • • d Z ( 0 ) ( ^ a o )
J{ Rd)n

x dZ(1)(zao+i) • • • d Zm (xaa+ai)dZ{2){xao+ai+i) ■ ■ ■

:= Z<°>(A,) • ■ • • • • Z<I>(Aao+ai)Z<2>(Aao+ai+1) • ■ • .

Here

Z<*>(A) := Zw (*a ).

Using that the sets A i , . . . ,  An are mutually disjoint,

/ - 1(Z '0)(A ,) • ■ • Z <0,(Aao)Z (1)(Aao+i) • • ■ Z<1>(A<w+ai)Z (2)(Aao+ai+1) ■ ■ •)

=  fl(0)(XA,) ■ • • R {0)( X A j R m ( x ^ o+1) ■ ■ ■ R m (XAao+J R {2)( X A ^ „ 1+1)- ■ ■ 

=  a+(XAi<?(0)) '' • a+(XA<.09(0>)a+(XAO0+19(1)) • • • a+(XAO0+etl <7(1)) 

x a+(XA„0+Q1+i<?(2)) • • • 0  

=  (Xa,?<0)) 0  • ■ ■ O (Xa„09(G>) O (Xa„0+,9 (1)) O • • • © (Xa„0+o1<?(I))

© (Xa„0+<>1+i 9<2)) © • ■ •

=  Symn ( (xa1</(0)) © ••' 0  (XAO09(0)) © (Xa„0+,7(I)) © • • •



© (XA„0 +ai<7(1)) ©•■•)

=  Symn (  (xa, © ••■ ©XA«0 )(a:i, - • ■,i«o)<l(0 )(I i . si ) , " ? <0 | (I o . .s«o)

©  (XAQo + i © • • • ©  XAQo+Ql )(^qo+1 j • • ■ » %ao+ai )  ̂(^ao+1 5 ^ao+l)

(-r a0+ai 5 ^ao+ai ) ©  ' ' ' ^

=  ft((XA, © ■ • ■ © Xaqq ) © (xaO0+i © • ' ' © XA„ (+C11 ) © • • ' ) •

Hence

Z(°)(Al) • • • Z(0>(Aao)Z‘1)(Aao+1) ■ ■ ■ Z<1)(Aao+t,1)Z<2,(Aao+ai+i) • • •

=  AC((XA, ©  ' ■ ' ©  XA„0 ) ®  (XAa0 + l ©  ■ ■ ■ ©  XAQ0 + Qj ) ©* ■ ■ ) •

The set of all vectors of the form

((Xa , 0  • • • © Xa„0) © (xaqo+i © '' ' © Xaqo+q1 ) ©• • • )

is total in Qa. Therefore, by linearity and continuity, we can extend the 

definition of the multiple Wiener-Ito integral to the whole space Qa. Thus, 

we get, for each f a G Qa,

f  f a ( x u -  • •, x\a\)dZ{0){xi) • • • dZ{0)(xao)dZ{1)(xao+l) • • • dZ{1)(xao+ai)
J(Rd)\o-\

x dZ{2)(xao+ai+i) • • • =  K f a.

Thus, we have the following theorem.

T h eo rem  4.7. The unitary isomorphism

K : g -> L2(X > »

from Theorem f . 6  is given by

g  =  g a 3  ( f a)a€ZooQ =  / • —>• /C/
+,0
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= y i f  f a (x \T - - ,X\a\)dZ{0)( x i ) - - - dZ{0)(xao)
a6Z-0 A *4)'0'

x dZ{1)(xaQ+1) • • • dZ(1)(zQ0+QJ d Z (2)(:rQ0+ai+1)

Remark 4.8. Let us recall tha t in Step 2 of the proof of Theorem 3.7, we have 

constructed an equivalent representation (3.37) (see also (3.32)-(3.34)) of the 

operator A (ip) in the symmetric Fock space .F(L2(Rd x R, dx x(x,  ds))). The 

part

Q(<p) :=  a + ( ^ ( x ) x {o}(s)) +  a~(v?(:r)x{o}(s))  

of this operator describes the Gaussian part of the process, while the part

^  (<p) =  a+((p(x)s) +  a~((p(x)s) +  a?(tp(x)s)

describes the jump part.

It is easy to see that, under the unitary isomorphism (3.36), for k > 2, 

the operator A^k\ p )  goes over into the operator

—  ^ ( ^ ( x )  s k )  +  a _ ( (̂ ( ; r )  S k )  +  ^ M x )  S k ) .

Recall that the operator ^ ^ ( p )  := J Z (y?) describe the jump part of the 

Levy process. Thus, for k > 2, the operators ( ^ ^ k\ i p ) ) ^ v  describe the 

same jump process as ^(y>), but with jumps having value sk , rather than s.

To be more precise, consider for simplicity the case where cr(x, ds) = a(ds) 

does not depend on x  and v(ds) — ^a(ds )  is a measure on R*. Assume also 

that f Rt s v(ds) =  \cr(ds) < +oo. Then, the application of the projection 

spectral theorem to the family (#Z (p))<p£V leads to a probability measure 

rj(dw) on V  having the Fourier transform



In fact, the measure v is concentrated on the subset /C C V  given by

JC:= j Y  ^ S I 7  € r i ,
[(x,.s)G7 J

where

r := | 7 c R dxR*  I if (a;2,s2) € T, { x i , S i )  /  (x2,52) then x x ^ x 2

and for each bounded A C R d and e > 0:

|7  H (A x { |s| >  e})| <  oo, ^  |s | <  oo j .
(x, s)£7n(AxR*)

Here, for a set A, \A\ denotes the the number of points of the set A , and 5X

denotes the Dirac measure at x.

If we now apply the projection spectral theorem to the family (af ^ ( <P))>pev, 

k > 2, then this will lead us to the probability measure rfk\ d w )  on V  having 

the Fourier transform

el&'u>'irfk\duS) = exp /  dx /  u(ds)(eltp̂ sk — i(p(x)sk — 1) , ip G V.

Each measure is concentrated on the set

£<*> := J Y  4 s | 7 e r < * 4 ,
[(x,s)G7 J

where

r {k) := | 7 C R dxR* I if (.Ti,si),(.T2,s 2) G T, (.ti,si) ^  (.t2,s 2) then x x ^  x 2 

and for each bounded A C R d and e > 0:

|7 fl (A x {\s\ > e})| < oo, |s |fc< o o } ,
(x, s)G7n(AxRH')

and rfk  ̂ is the push-forward (image) of the measure v under the transforma­

tion

8X s i  ̂ ^ 2  S 2

(x,s)e 7 (x,s)ey

sk.
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Chapter 5 

D ecom position in orthogonal 

polynom ials

Let us recall that, in Chapters 3 and 4 we have constructed the following 

unitary operators:

HH)  -A L2(r>»,
Q =  ©  Go, - A  F(H) ,

g =  ©  L2{V,ti).
a€Z+,o

For any / i ,  / 2, . . . ,  f n we call the function

P 7 3 W H  ( / l , w) - "  {fn,u)  — (/i © • • ■ © / n, CJ®n) (5-1)

an algebraic monomial of n-th order on V . Let Va\g{V)  denote the linear 

spaces of all algebraic polynomials on V , thus each element of 'Paig(£)/) is a 

finite sum of function of the form (5.1) and constants.

We note that, by Theorem 3.2, "Paig^O is a dense subset of L2(V',jj,). 

Denote by the linear space of all algebraic polynomials of order < n.
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Denote V ^ { V ' )  the closure of V ^ ( V )  in L2(P ',^ ) . Elements of V ^ ( V f) 

are usually called measurable polynomials of order < n. Denote

where 0  denotes orthogonal difference in L2( V , /jl) .  Elements of P ^ ( P ')  will 

be called measurable orthogonal polynomials of order n. By construction, 

for each n,

V ^ ( V o =  0 P w (r>'). (5.2)
k= 0

Now consider the space © ^L0 (£>'). By (5.2),

oo
^ a ig ( 2 ? ') C 0 P (n)(I>')- (5-3)

71 =  0

We know that Va\g( V )  is dense in L2( V . /i). Hence, its closure coincides with 

L2(P 7,//). Therefore, by (5.3), the closure of © ^L0 R ^ ( V ' )  also coincides 

with L2{V',fi). But © ^L0pM(2}7) is closed, as orthogonal sum of closed 

subspaces. Therefore, we get the following trivial proposition, see e.g. [42]

P ro p o sitio n  5.1. We have

OO

L2{V',fi) = 0 P W (5 ').
7 1 = 0

We now want to explicitly describe the space (V') as a subspace

of g.
From now on, we will assume that the following condition is satisfied. 

This conditions is evidently stronger than condition (A).

(B) The functions an(x) and bn(x) from (4.11) are locally bounded on R d.
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T h eo rem  5.2. For each n > 0, we have

p(n)(p ') 0  ga
J+>o

lao + 2ai + 3a 2H— = n

Proof. We will use the notations from Chapter 4. For a G Z+o, we denote 

by Gq the subspace of ^ ( H )  given by

Ga -.= n g a = n aga =  ( / /0Oa° © H f ai © • • • )\a\ \ .

We need to prove that

/-ip(")(£)') =  0  G a = . <j(»). (5.4)

lao+ 2a i  H-3a 2H— =n

We will first obtain a description of the space =:

As follows from the proof of Theorem 4.6, each element of the space Ga

has a representation

Symw ( f ( x  1, 22, ■ • • ,£|a|)<7(0)(£i>s i) • • •9(0)( r QO,s ao)

X ( x a o -)_i , S Qo_ j - i ) , , , (J'  ̂  ̂((T0,q-|-q,-|-1 , S a o _)-a i  ) ' ' ‘ )  7

where

/  G L2(Md, pQ(dx))®a° © L2(Rd, pi(dx))®ai © • • • (5.6)

(Note that, due to symmetrizator Syni|Q|, we may take a function /  as in

(5.6), rather than from the space L2((Ed)lQl), see (4.21).) Recall that

pn(dx) = (  /  q ^ i x ,  s)2a(x, ds)'jdx
J  K

=  ai(x)a2(x) ■ ■ ■ an(x) dx ,

for n > 1, and po(dx) =  1. By assumption (A) the functions di{x) are locally 

bounded. Therefore, each measurable, bounded function on (Rd)lQl with
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compact support (i.e, /  G Bq(Rdl“l)) belongs to the space L2(Rd, p0(dx))®a°® 

L2(Md, pi(dx))®ai&- • •. Furthermore, the set of functions as in (5.5) with /  G 

Bo(Rd\a\) is dense in Ga. Hence a total set in M ^  is obtained by taking all

functions of the form (5.5) with /  G #o(®^Q')> where l a 0+2ai+3o;2H---- < n

and the vacuum vector fL

L em m a 5.3. For each a  G Z+ 0 with lc*o +  2au +  3<a2 +  • • • < n, and for 

each f  G BQ(Rd̂ ) ,  consider the function

Symw ( f i x !. x2, ■ ■ ■, XW) s° • • ■ «"0si0+1 • • ■ 4 0+O1

* ^oo+«l + l ’ ’ ^ao+ai+a2 * ' ) ‘ (^-7)

Then the set of all such functions is a total set in M^n\

Proof. To simplify the proof a little bit, we will assume that, for each x G R d, 

the measure a (x , ds) has infinite support. (If this is not the case, the proof 

below requires an easy modification.)

Recall that q ^ ( x , s )  =  1 and

g ( n + 1) ( x ,  5 )  =  sq(n)(x, s) -  bn(x)q{n\ x ,  s) -  an(x)q{n~l)(x, s).

By condition (B), the functions an(x) and bn(x) are locally bounded. We 

therefore have that

q{n)(x,s) = J 2 c l n)(x )sL, (5.8)
1 = 0

where each Cjn\ x )  is a measurable, locally bounded functions on R d. By 

substituting (5.8) into (5.5), we see that each function of the form (5.6) with

/  G B0( ^ |Q|) can be represented as a finite sum of functions as in (5.7) with

lo;o T 2ot\ T 3ct2 T ■ • • ^  n.
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Next, we note that, since q(n\ x ,  s) is a monic polynomial in s, we in fact 

have
n  — 1

9M (x,s) =  sn +  £ c , (")(x) s'.
1=0

Therefore,

1=0
From here, we can conclude by induction that

n —1

sn =  9(n)(x , s) +  ^  4 ^  (x ) Qin)(x > s)> (5-9)
1=0

where d\n\ x )  are measurable, locally bounded functions on R d. By sub­

stituting (5.9) into (5.7), we see that each function of the form (5.7) with 

/  6 £ 0(Md)N can be represented as a finite sum of functions as in (5.5) with 

lao -(- 2Q] -|- 3a2 +  • • • ^  7i. Ed

For any / i ,  / 2. . . . ,  f n E P ,  let us consider the monomial 

Then

/■' </i © h  © • • ■ © /„, W«n> = A ( h )  ■ ■ • /!(/„) a
L em m a 5.4. For any /] , / 2, . . . ,  f n G P , ^4(/i) • • • 7l(/n) f2 ca7i 6e represented 

as a finite sum of functions as in (5.7) with lao +  2au + 3a2 +  • • • < n.

Proof. We will prove this statement by induction. For n = 1,

A ( f 1)Q = f 1(x)s°,

so the statement holds. Let us assume that the statement holds for 1, 2 , . . . ,  n, 

and we want to prove it for n +  1. It suffices to show that, for each element 

as in (5.7) with l a 0 +  2c*i +  3a2 +  • • • < n, the image of this elements under

96



the action of the operator A(<p), ip G Z>, can be represented by a finite sum 

of elements as in (5.7) with l a 0 + 2a\  +  3a 2 4- • • • < (n 4- 1). So we fix any 

a G Z+ o with 1 a Q +  2aj 4- 3a2 4- • • • < n and /  G Bo(Md̂ ) .  Then

-4M Sym|o| (/(^l. *2, ■ ■ • , I|«|) 5? - ■ • «°0 4„+l • • • 4 0+a, •

=  (a+((p(x) 1(5)) 4- a°(ip(x) s) +  a~(ip(x) 1 (s)))

X Symw ( / ( . r , , 12, . . . ,  .T|a|) .s? • • • s°0 4 o +1 • • ■ ■ • •)

=  Symw+1 ( tp(x!)f (x2, x3, . . . ,  i | 0|+1) s? s5 • • • s°0+, s*0+2 • ■ • s i0+ai+1 • • ■ ) 

M
+  E  SymM \ Sl f ( Xu X2’ ■■■’ *w) s i "  ' s°o 4„+ i

1 = 1 
lal

J
’ao+^l

+ E dycr(y,du)<p(y) 1 (u)
1 = 1  1

x Sym ^j.j [ f ( x i , x2, . . . ,  x t_u y, x l+u . . .  ,Z|Q|_i)

X S°1 4  • ■ • S°04 0+1 • • • 4 o+ai • ■ ■ L=u ) • (5.10)

For the first term in this sum, we have

l(ao T 1) T 2a 1 4- 3a2 4~ ■ ■ ■ = n T 1. (5.11)

For elements in the sum corresponding to the neutral operator, we note that

lc*o 4- 2»i 4- • • • +  (j 4- l)(o!j — 1) 4- (j  4- 2)(aJ+i 4- 1) 4- • • •

=  lao 4- 2ai 4- ■ • • 4- {j 4- l)atj — (j  4-1)4- (j  -f 2)ay+i 4- (j 4- 2) 4- • • •

=  n -  (.7 4-1)4- 0  +  2) =  n 4- 1. (5.12)

Finally, for elements in the sum corresponding to the annihilation operator 

we evidently have that the elements have the corresponding value < n -  1. 

Hence, by (5.10), (5.11) and (5.12), we conclude the statement. □

Thus by Lemma 5.4, for any / 1, / 2, . . . ,  fk G V, k < n,

M D M h )  ■ ■ ■ A( fk)Q c  M (n).
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To finish the proof of the Theorem, we only need to show that every func­

tion as in (5.7) with l a 0 +  tL&\ +  3a 2 +  • • ■ =  n  can be approximated in 

F ( H)  by linear combinations of vectors of the form A(y>\) • • • A{ipn)VL, where 

V?i> • ■ ■, £ T>. But this directly follows from the proof of Theorem 3.2, see

in particular, the proof of Lemma 3.3 □

For any / i , . . . ,  f n G £>, we evidently have

</i,w> • • • (/»,w) =  (A © ■ ■ • © e V^(V)  c  T'&iV).

We denote by • •©/«, w) the element of L2( V , /x), which is obtained

as the orthogonal projection of (/iO- • •©/ n, a;®71) onto p(n)(X>'). Our next aim 

is to obtain the explicit form of the vector / _1P ^ ( / i  ©• • • ©/ n , w)  e r ( H ) .

To this end, let us recall the definition of a second quantization operator. 

Let {A, D(A))  be an (unbounded) linear operator in the Hilbert space H . We 

want to define an unbounded linear operator (dT(A), D(dT(A)))  in T(H) .  As 

the domain D(dT(A))  of this operator we will choose the linear span of the 

vacuum vector and vectors of the form / i  © • • • © / n, where / i , . . . ,  f n G 

D(A),  n G N. The action of dT(A) is then defined by

dT(A)n =  0 , 

dr  (A) / ! ©• ■■©/ „
71

= ^ 2 f i G - - - Q  f , - i e { A f i ) o f , +!&■■■&fn, n S N .  (5.13)
i= 1

For example, the neutral operator a°(ip(x)s) is an (extension of) the dif­

ferential second quantization of the operator of multiplication by <p(x)s in 

L2(Rd x R, dxcr(x, ds)):

a°(ip(x)s) = d T{M^x)s). (5.14)
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Analogously to the differential second quantization operator dT(A) in T(H) ,  

we can define an operator N(A)  in the full Fock space T m \(H) = 0 ^ o 

by the formula

N{A)t t  = 0,
n

N { A )  f i  0  • • • <g> f n =  ^ 2  /i  ® ® f i - i  0  (A f i ) 0  / i+i 0  • • • 0  /n, n G N,
j=i

where / ] , . . . ,  /„  G 'D(A). Then, for each G / / <8ln which belongs to the

domain of N(A),  we have

dT(A)  Sym„ /<"> =  Symn N(A)  /<">. (5.15)

For each ip G D, we define operators ^°(^) and J _(y?) in L2(Rd x

R, d x a ( x , ds)) by

<7(n)(z, 5)) =  / M  g(n+1)(a:, s), 

J°(^ )(/(z )< 7(n)(;r,s)) =  y?(:r) /(x )  6n(x) q{n)(x, s), 

J~((p)( f (x)q{n)(x,s)) = ip(x) f ( x ) a n(x)q{n~i){x,s),

where /  G P , n > 0. Thus, by (4.11) the operator M ^ x)s of multiplication 

by </?(.t).s has representation

A'i^(x)s — J +M  +  ^ 0(v?) +  J M -

Hence, by (5.14), we get

a°(ip(x)s) = d r ( J +(</?)) +  dT(J°(<p)) +  dT(J-(<p)).

Therefore,

yl(V) =  a+(¥>(x)l(s)) +  a - ( Vp(3:)l(s)) +  d r ( J + (V)) +  d r ( J 0(V)) +  c (r(J-(y )).
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We denote

A +(p) := a+M%)  1(5)) +  d r ( J +(^)),

A 0(ip) : = d r ( J ° ( t p ) ) ,

A-(ip) := a~(ip(x) 1(5)) +  dr(J~(<p)),

so that

A(ip)  =  A +(<p) +  A 0 (ip) +  A~((p).

T h eo rem  5.5. For any / j , . . . ,  f n G V,

i - ' P ln)( h  ©  • ■ ■ 0  /„,w) =  / ! + ( / ! )  • • ■ A + ( / n ) a

Proof. We note that

/ “ ‘ ( / i  © • • • ©  /„ ,^ ® n> =  • ■ • A ( f n)Q.

Thus, by (5.4), we are interested in the projection of the vector A(f \ )  • ■ • A ( f n)Q 

onto G^n\  Hence, to prove the theorem it suffices to show that, for each 

<p £ V, A +((p) maps G ^  into G^n+1\  A Q((p) maps G^  into G^n\  and A~(ip) 

maps G ^  into G^n~l\

By (5.5), (5.6) and analogously (5.11) and (5.12), we conclude that A +(tp) 

maps G ^  into G^n+1\  Clearly, we also get that A 0(ip) maps G ^  into G^n\  

Next, we see that the operator a~(ip(x) 1(5)) maps a function as in (5.5) 

into a sum of functions of ‘order’ n — 1, by annihilating one polynomial 

q(Q\ x i ,  and zeros, which are obtained by annihilating polynomials q̂ l\ x ,  s) 

of order I > 1, by orthogonality of these polynomials to q ^ ( x ,  s ) =  1. Thus, 

a~((p(x) l(s)) maps G^  into G^n~2f  Also easily seen, dF(J~((p)) maps G ^  

into Thus, A~(<p) maps G^  into

□
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Recall that, for each n G N, we denote by Bo((Rd)n) the linear space of all 

bounded, measurable, real-valued functions on (R d)n with compact support. 

We introduce a topology on BQ((Rd)n) which yields the following notion 

of convergence: f n —> f  as n —» oo means that there exists a compact set 

A C R d such that supp(/n) C A for all n G N and supxeRd \ fn(x) — f  (x)\ —» 0 

as n —> oo.

We denote by V(n)  the set of all (unordered) partitions of the set {1, . . . ,  n}. 

For each partition 9 = {0i , . . . ,0f} G 'P(n), we set |0| := I. For each 

9  G V{n),  we denote by (R d the subset of (Rd)n which consists of all

(rci, . . .  , x n) £ (R d)n such that, for all 1 < i < j  < n, =  Xj if and only

if i and j  belong to the same element of the partition 9. Note that the sets 

(Rd)l^  with 9  G V{n)  form a partition of (Rn)n.

For example, for n = 2, V{2) has 2 elements: 9 = {{1}, {2}} and rj =  

{{1,2}}. Then,

(Rd){2) = { ( xu x 2) e  (R d)2 I Xi ±  x 2},

{Rd){2) = { ( x u x 2) G (Rd)2 | xi = x 2}.

Of course,

(Rd)2 = {Rd) f ] U (Rd) W .

For n =  3, V(Z) has 5 elements: a = {{1,2,3}}, ft =  {{1,2}, {3}}, 7 =  

{{1,3}, {2}}, 9 = {{1},{2,3}} and 7 =  {{1}, {2}, {3}}, so that

(R d) ®  ==  {(®ii X 2 X 3 ) G { R d ) 2 X \ =  X 2 = X 3 } ,

(E ")®  == X 2 X 3 ) G (:R d )2 X\ =  X 2 ^ X 3 } ,

(R rf) ®  == {(^i» X 2 X 3 ) G ( R d ) 2 Xi II H CO db X 2j ,

(R rf) ®  == {(^i> X 2 X 3 ) G { R d ) 2 Xl ^ X 2 = ^ 3 } ,

c R d y v  == {(®i. X 2 X 3 ) G ( R d ) 2 X l , X 2 , X 3 different}
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For each G Bo((Rd)n) and 9 = {9 \ , . . . ,  9i) G V{ri) with

max < max 02 < ■ • • < maxfy, (5.16)

we define

(X0/ (n))(.Tl,5i,. . . ,.T/,S/) :

=  fen\ x i>- ■ •, ^z)^(!0ll_1)(^i , si)g'(|02|_1)(^2, «s2) • • -(?(|0' l_1)(x/,s/), (5.17)

where \9i\ denotes the number of elements in the set 9iy and the function 

f l n\ x i , . . .  ,xi) is obtained from the function / ^ ( y i , . .  • ,  yn) by replacing, 

for all i G 0i, 2/i with 27, for all i G 02? y» with x2, and so on.

For example, for the partition 9 — {{2}, {1,3}}, we have 0i =  {2}, 92 = 

{1,3} since maxf?i =  2 < m ax02 =  3, and f f \ x \ , x 2) — fg3\ x 2, x i , x 2).

Theorem  5.6. For any h \ , . . . ,  hn G V,  n G N, and setting J ' ^ { x i , . . . ,  xn) =  

h\ ( x i) • • • hn{xn), we have

r 1r <-n\ h 1e - - - e h n,uj )= Y  Sym|e|(x9/ (n)).
0 < E P ( n )

Proof. By Theorem 5.5, (2.32) and (5.15)

r ’ p("i(A, o  • • • © ftn,w) =  A+(hV ■ ■ ■ A+(hn)n

= (a+(/i,(x) 1 (s)) +  d r(,/+(/i1))) ■ ■ ■ (a+(/in(x)l(s)) +  d r ( J+(hn)))Q

=  S y m J fi+ t/n W lM ) + ^ (- /+(M )) • • • (/?+(M z )l(s ))  +  N ( J +(hn)))Q,

(5.18)

where for g 6 H, R+(g) is the free creation operator in the full Fock space 

•Ffuii  ( H ) .

R + (g) / (n) =  g »  / <n>. / <n) e  //®n.

Thus, by formula (5.18), to prove the theorem, we need to show that 

(R+(h,(x)\{s))  +  lV(J+(/ii))) ■ ■ • (rt+(M z )l(s ) )  + N ( J +(hn)))n
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=  ^  ®  ®  h n) -  
d€V{n)

We will prove this statement by induction in n. For n = 1, we evidently have 

(/?+(*! (X)1(S)) +  W (J+(/n)))fi =  h 1( x ) l = l {[1]}hu 

so the statement holds. Let us assume that, for any /i2, . . . ,  hn+i 6 V

(R+(h2(x)l(s)) + N ( J +(h2))) ■ ■ ■ (R+(hn+1(x)l(s)) + N ( J +(hn+1)))Q 

=  l e{h2 ® ® hn+i),
6>e75(2,...,n+l) 

where V {2 , . . . ,  n+ 1) denotes the set of all unordered partitions of { 2 , ,  n +  

1} and Xg(h2 ® • • • 0  ton+i) is defined by analogy with (5.17). Hence, for any 

h\ G 2?,

(ft+(/n (x)l(s)) +  I V ^ M )  ■ ■ ■ (R+(hn+l(x)l(s)) + N ( J +(hn+1)))n  

= (R+ (hi(x)l) + N  (J+ (hi))) ^  I 0(h2 ® ^ - ® h n+1),
eev{2,...,n+i) 

Fix any 9 = {9\ , . . . ,  9k) £ P ( 2 , . . . ,  n +  1). Then 

H+(/ii(:r)l(s))j0(/i2 ® • • • ® ^n+i) 

=  (/ii(x)l(s)) ® Ze{h2 ® • • • ® /in+i)

=  X0+(/?a N> h2 OO • • • 50 /?•„+!),

where #+ G V(n  +  1) is given by 

9+ = { { I} ,# !,... A } . 

Next,

k

h n + 1) E  Xgo (hi <g> h2 <g> • • • <8> /ln+l)>
.7 =  1
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where 0° G V(n  -f 1) is given by

Qj — { î> • • • j 0j-i> U {1}, 0j+i , . . . ,  0fc}-

From here, it follows that

(H+(/n(a:)l) +  yV(./+(/7,i))) • • • (fl+( M * ) l )  +  N ( J +(h,n)))n

=  ^  ®  ®  ^ n + l ) -
£GP(n+l)

□

In order to calculate the scalar product of orthogonal polynomials P ^  (f ^ , us) 

and p (n)(g(n) ,cj), we proceed as follows.

Let us fix a sequence c = (c* ;)^  such that each Ck is a measurable function 

from R d to [0, +oo) and C\(x) = 1 for all x G M.d. We will now construct an 

extended symmetric Fock space F C(H).

Let us fix n G N and a partition 0 = {0i , . . . ,  0j} G V(n)  satisfying (5.16)

We define a measure on as the push- forward of the measure

(c|0,|(X]) • • • C\0l\(xi)) n\ (|0i|! • • • \9[\\)~ldxi ■ ■ ■ dx{ (5.19)

on (M.d) ^  under the mapping

(Kd)(0 9 y =  (yi. ■ • •, Vl) H4 (R lv , . . . ,  R%y) 6 (Md)l'J‘\  (5.20)

where

Wey ijj for i G 0j

and

(R‘,)(‘) =  {(y, , . . . ,  yt) e  (IT')' | y, ^  Vj if i *  j} .  (5.21)

104



For example, if n = 3, 9 =  { 0 i , 02 } ,  with 91 =  {2}, 92 = {1,3}, then the 

mapping (5.20) is

(Md)(2) 3 y  = (yi,y2) ■-* (2/2, 2/1, 2/2) e  (Md)̂ 3).

Recalling that the sets (Md) ^  with 0 E V{n)  form a partition of (Rd)n, 

we define a measure on (Md)n such that the restriction of to each 

(Kd) ^  is equal to c} ^ . For example, for n = 2,

[  f {2)(xl , x 2)Cc2)(dxi X dx2)
J(Rd)2

= [  / (2)(.Ti,.T2)d.Tid.T2 • 2 +  f  f {2)(x,x)c2(x)dx
J { 1̂̂ x2} J  Rd

=  2 f  } ^ { x \ , x 2)dx\dx2 4- j f^2\ x , x ) c 2(x)dx.
J( l d)2 ./Rd

Let us fix a permutation 7r E Sn and a partition 0 — { 0 i , . . . , 0/ }  E 

P(n) satisfying (5.16). The permutation 7r maps the partition 9 into a new 

partition

{ 7T0! ,  . . .  ,7T0/} E V(n).

We call this new partition /? = {/?i,...,/? /} , where the elements of the parti­

tion /? are enumerated in such a way that

max/?! < max/?2 < • < max/?/.

Thus, the permutation 7T £ Sn identifies a permutation n E Si (dependent 

on 9) such that

7T9j, /?7r(i), i 1, . . . , /.

For example, let n =  3, 0 =  {0i,02} with 0i =  {2}, 02 =  {1,3}. Let 

7r E 5*3 be given by
123 
231
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Then n9i = {3}, 7r02 =  {1,2}, Pi =  {/?i,/?2} with Pi = {1,2}, p2 = {3} and 

the permutation 7r E S2 is given by

since

7T0i =  /?2 =  ^ (1),

7T02 =  Pi =  Pir{2).

For each function f ^  : (Rd)n —> R, we define its symmetrization by 

(Symn / (n))(a:1, . . . ,  x n) = ^  f {n)(x a( 1), • • • ,^V(n)), fai, • ■ •, xn) E (Rd)n.
n - TTGSn

For any functions / 1, . . . ,  f n : R d —> R, we denote

/1 O • • • 0  fn := Symn(/i • • • & /„).

L em m a 5.7. For eac/i n E N, Symn zs an orthogonal projection in the Hilbert 

space L2((Rrf)n, cin )̂ •

Proof. We evidently have that Sym2 =  Symn. By construction, the measure 

remains invariant under the transformation

(Rd)n 3 (Xi, . . . , £n) I  ̂ (^tt(I) , ■ • • , ^7r(n)) ^ (R^)11

for each 7r E Sn. Therefore, the operator Symn is bounded and self-adjoint 

in L2((Rd)n, dC ^) .  Hence, it is an orthogonal projection. □

For each n E N, we denote by Fscy™(H) the subspace of L2((Rd)n, cin)) 

that is the image of the orthogonal projection Symn. Clearly, F sy™(H) con­

sists of all ((^-versions of ) symmetric functions from L2((Rd)n, Cc^)- We 

define an extended Fock space
00

F r w  : = ® f sc7 ( k ).
n—0 
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We note that, for c =  (1,0,0, . . . ) ,  we get F sJ m(H) = J7(H). Otherwise, 

i.e, if for some n > 2, cn(x) > 0 on a set of positive Lebesgue measure, 

then F ^l i )  is a proper subset of F I n d e e d ,  for each n > 2 and each 

measurable subset of (RdYn\  ( in\ A )  = n\ f A dx\ • • • dxn, see (5.19) in the 

case where 0  E  V(n),  6  =  { 0 i , . . . , 0 n}> — {o^}, i  =  1,2 , . . . , n .  Since

/ (Rd)n\(Rd)(n) dx 1 • • • dxn =  0, we may therefore embed F(H )  into F s/ m{H) by 

identifying each function f ^  E H Qn with the function from Fs/ m(H) which 

is equal to / ^  on (Md)̂ n\  and to zero otherwise. Evidently, the orthogonal 

compliment to F (H )  in F f m(H) is a non-zero space.

Next, recall the system (q^^x .s ) )  of monic orthogonal polynomials (in 

the s-variable) in L2(R,a(x,ds)) .  From now on, we will use the sequence 

(cjfc)Ji1 defined by

Cjt(aj) =  [  q('k~1\ x , s ) 2<j(x,ds)) k E N. (5.22)
J R

Thus, ci(a:) =  1, and, by (4.14), for k > 2,

ck(x) = ai(x)a2{x) • • • ak-i(x).  (5.23)

L em m a 5.8. For any / i , . . .  , / n,<7i, • • • , g n £ F>, we have

(/><»)(/, © . . . © / „ ,  •), p M ( gi © ■ ■ • © gn, ■))LHV,I1}

=  ( / l  © ■ ' • © / n, Si ©  " ■ © g n ) F¥ . n( H)  ■

Proof. By the polarization identity, it suffices to prove Lemma 5.8 for any

/i =  9i. ■ • ■. fn =  gn 6 P. Denote / (n> = /, ® • • • ® /„. By Theorem 5.6,

(pM (/<">,.), p W ( / W . ) ) [iirt

=  E E ( S y m ^ / ^ S y m ^ V ' " ) ) ) ^
0£V{n)tEV(n)

=  E E (Sym ,(Ie/<">),I{/<">))„w J!. (5.24)
/-I 6,Z€P(n)

\ 9 \ = \ S \ = l
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On the other hand, by Lemma 5.7

(Symn / (n),Symn / (n))f S’" (h)

=  (Sym„ / (n), Sym„ f (n))L2 U„ar ^ : 

=  (Sym / W)i2((RJ)„ ^ , )

(Sym n / (">)/(n)^ n)
• / ( R d ) n

=  E /  , >(Symn / w ) / (n)rfC'nf)- (5.25)

By (5.24) and (5.25), the lemma will follow if we show that, for a fixed 

 ̂ G 'P(n) with |£| =  Z,

=  /  (Sym„ / (">)/w  dC*"'. (5.26)
7(Kd)[n)

So, we fix a partition £ =  {£i, . . . ,  £/} G V(n)  and assume that

m ax(j < max <̂2 < • • • < m ax(|.

Denote hi := |&|, i = 1 , . . . ,  I. By the definition of X ^ f ^  (see (5.17)) 

{X^f{n)) (y i , su . .. ,yh Si)

= ( n î) ( n 2̂) ̂ " '  (n ^

x q{kl~l){yu s1)q{k2~l)(y2, s2) • • • q(kl~1}(yi, s*)- (5-27)

Let 9 = {9\ , . . . ,  9i} G V(n)  and assume that (5.16) is satisfied. Let r.L := |^ |, 

i = 1, . . .  J.  We may assume that there exists a permutation n G Si such 

that

Ti kn(^, z 1, . . . ,  I. (5.28)
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Indeed, the corresponding term in the sum on the left hand side of (5.26) 

vanishes, as we will necessarily have, for each x G Mn, the scalar product 

of two different orthogonal polynomials in L2(1R, a(x, ds)). Analogously to 

(5.27), we have

= (n fh)(yi)( n te) • ■ • (n̂ i) ̂
'  '.72 €02 '  j  1 ^ - 0 1 '

X qr(ri_1)(yi, s l )q{r2~1)(y2, s2) • ■ ■ q{ri~l){yi, s/). (5.29)

Hence

/! Sym, (Xe/ (n) )(?/i, s i , . . . ,  y/, s<)

= '^2{Ze f ('n'>){yx-i( i)> sx-i(i), • • •, yx- i(i)^sx~i(i))
x£Si

=s( n /«')(yi)( n /m)̂ )---( n /*)w
x € S (  ' j i € 0 x (i) '  J2G0x (2) J l € 0 > c ( l )

X <7(r"(1)_1)(y1,5i)g(r- (2)“ 1)(y2,52) • ■ •9(rx(I)_1)(^,5/)

Hence, by (5.22)

(Sym

= J 2 (  [  ( n  n  /u )(y i)cfc i(y i)^ i)
7T K jlG07?(i)

 ̂ ( II 4)( )̂(IIfiMyfckMdyi)* (5-3°)
K j l £ 0 n ( l )  i l € £ l

where the summation is over all permutation 7f E 5) which satisfy (5.28).

Let us fix such a permutation n. Then, there exist k\\ • • • ki\ = r j  • • -r/!

permutations 7r £ Sn which satisfy

7T̂ j 7̂r(i) i  ̂ 1 , . . . , / .  (5.31)
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Note that, for each permutation n satisfying (5.31) and for ( y i , . .. ,yn) £

( / l  0  ' ' ' 0  f n ) { y n  1 (1) 5 • • • > V n ~ l (n )) ( / ^ ( l )  0  ’ " ’ 0  f n ( n ) ' )  ( V l  i • • • > U n )

Let £, 0 G 'P(n) be such that condition (5.28) is satisfied by some permu­

tation 7? G S/. Denote by S'n[0,^] the set of all permutations t t  G Sn which 

satisfy (5.31) with some permutation 7r G Si. (Note the permutation 7r is 

then completely identified by nr, 0 and £ and automatically satisfies (5.28).) 

Clearly, if 9 and 9' are from V(n)  with \9\ = \9'\ = I, both satisfying (5.28), 

and 9 ^ 9 ' ,  then

(5.32)

Sn[9 ,£ \nSn{9/,Z] = 0. (5.33)

Furthermore,

(5.34)
0€P{n), \O\=l  

9 satisfying (5.28)

Hence, by (5.29), (5.32), (5.33) and (5.34),

(Sym ,(!*/<">), V < "> )„0,Z!

, ^ 7 r ~ 1 (1 ) )  • • • i •X'tt 1 ( f t ) )  ̂(*^1 j • ■ • > ^ n )  Q  (* ^ 1 1 • • • i * ^n )  •

Hence

£  (Sym
o e p { n ) , \ e \ = i
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£  (Sym ,(Ie/W ),X 4/ W ) „ g lZ!
6£P{n) , \6\=l  

9 satisfying (5.28)

=  ^ ! ^  j (RdM
0eP(n),|0|=/ 7r€Sn[0,£r^ ^

9 satisfying (5.28)

X f {n)( x . . . ,Xn)dC^}(^l, • • ■ ,Zn)

=  A  V  /  / ( n ) ( ^ 7 r - > ( l ) , - - - , ^ 7 r - > ( n ) ) / ( n ) ( ^ l , - - - ^ n ) r f C r ,e) ( a?l > - - - » a ; n )

n! 7TG5n An-)?0

=  I  n ^ i E  f { n ) ( Z n ( l ) ,  ■ ■ ■ , V n ( n ) ) f { n ) ( * U  ■ ■ ■ iX ^d C ^ iX : ,  . . . , X n )
J(Rd) n) n! T7'4 n(zSn

i}(Synin f {n)) f in)d C ^ ( x i y. . . ,  xn),

so that (5.26) is proven. □

For each n £ N, let Rn denote the linear span of functions of the form

/ l  0  h  0  • • • 0  / n ,

where / i ,  / 2, • • •, / n  £ T*- This is a dense subset of L2((Md)n, C<^). Clearly 

Symn Rn is the linear span of functions of the form

/i  O f 2 O • • • O f n 

with / i ,  f 2, . . . ,  f n G V,  and Symn Rn is dense in the Hilbert space 

F ^ m(/ / )  =  Symn L2((R‘i)".Cin)).

By Lemma 5.8, for any f^n\ g ^  £ Symn R n

(P M ( f M , . ) , P (n\ g M , . ) )L2(T„JM) = (/<">. S(b))f--(« ) .

Therefore, the linear mapping

Sym„ Rn 3 /<"> /*»>(/<">, ■) e L 2(V”,/j,)
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can be extended by continuity to an isometric operator

Un : F ^ ( H )  - f  L2(m).

For each E F w e  denote

p(")(/("),.) ;= Unf {n).

On the other hand we know that the set {p(n)(/(n)?.) | / ( n) g Rn} is dense 

in and p(nl(X>') is a closed subspace of L2(/i). Therefore, the image

of Un is (£>'), and

Un : F S/™(H) e-> P ^ ( P ')  

is a unitary operator. By Proposition 5.1,

OO
t 2( i r , /1) =  0 p W ( B ') ,

7 1 = 0

and by definition
oo

F r ( t f )  =  © F
7 1 = 0

Thus, we conclude the following decomposition of L2{V,fT) in orthogonal 

polynoials.

T h eo rem  5.9. Let c = (Ck)21i, 6e defined by (5.22). Then we have a unitary 

isomorphism

oo

F T ( H )  3 F  = (/<">)”  o UF  := /(0 ) +  £  P w ( / w , ■) £ Ls( 2 ? » -
7 1 = 1
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Chapter 6

An example: M eixner-type  

processes w ith independent 

values

Lot us first recall Mcixner’s classification of orthogonal polynomials which 

have generating function of exponential type, see e.g. [15] for further detail.

Assume that functions f ( z )  and 'L(z) have a Taylor series representation 

around zero. Also assume that /(0 ) = 1, 4/(0) =  0, and 4/'(0) =  1. Then, 

the equation
OO (n) / \

G{x, z) := exp(xV(z) ) f ( z)  = ^  zn (6.1)
c ' n!
n= 0

determine a system of monic polynomials p^n\ x ) ,  n E Z+. Meixner [34] 

found all classes of such polynomials which are orthogonal with respect to a 

probability measure v on R and have infinite support. In fact, a given system 

(p(n\ x ) ) ° T0 of monic polynomials is orthogonal and has generating function 

(6.1) if and only if there exists / E R, A E M, k > 0 and 77 > 0 such that

xp^n\ x )  =  p(n+1\ x )  +  (nX +  l)p^n\ x )  +  n(k  +  77(71 — 1 ))p^n~lS> (x). (6.2)
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If one only considers the case where the measure of orthogonality, v, is cen­

tered, i.e.,

xp^n\ x )  = p(n+1\ x )  +  n\p(n\ x )  +  n(k  +  77(72 — l))p^n ^(z). (6-3)

Clearly A g K  and 77 > 0 if and only if either a, ft G M, a  and (3 being of the 

same sign, or Im(a) 7̂  0 and a  and (3 are complex conjugate.

We have to distinguish the following five cases:

I. (Gaussian case) Now a = ft = 0 (or equivalently A =  77 =  0). The 

orthogonality measure v is the Gaussian measure:

then I = 0, so that (6.2) becomes

For fixed parameters A and 77, we define a, (3 G C so that

a +  (3 = —A, aft =  77, (6.4)

or equivalently

1 +  Xt -f r]t2 — (1 — at)( 1 — ftt). (6.5)

(6 .6 )

The Fourier transform of the Gaussian measure v is given by

(6.7)

Furthermore



The (p(n) )^ 0 is a system of Hermite polynomials.

II. (Poisson case) Assume a  7̂  0, ft = 0 (which corresponds to the choice

of A 7̂  0 and 77 =  0). Now v is a centered Poisson measure:

<Mx) =  exp ( ~ 3 3 j  f j j  i  6{_a n + i ) (dx ) ,

where 5a denotes the Dirac measure with mass at a. The Fourier transform 

of v is given by

[  exp(iux)dv(x) =  exp ( - ^ ( e~lOLU — 1 +  iau) ] .
J r  \ a J

Furthermore, in a neighborhood of zero,

ty(z) =  —— log(l — az), 
a

f ( z )  = exp ( k ( ~ 2  log(l -  az)  +  - ) )  , y a a j

so that

G(x, z )  = exp ~  l°g(l ~  a z ) +  k ^“ 2 ^°g(l ~  a z ) +  •

The (p^n^)^T0 is a system of Charlier polynomials.

III. (Gamma case) Assume a — ft 7̂  0 (which corresponds to A =  — 2a: G 

K, 77 =  oft > 0). v is a centered gamma measure:

— l +  k / a 2f  k \ ~  1
dv(r) =  X(-oo - k / a )  W  ( - X  + -  J ex/a, a  > 0,

/  £ \  -l+fc/a2
dv(x) = X{-k/a,+oo){x) I *  + - )  e*1*, OL < 0.

The Fourier transform of the gamma measure v (in a neighborhood of zero) 

is given by



Next,

z
»(*) =

1 — a z '

f ( z )  =  exp ( ~ k { \ log(l -  az) +  - — ^ - r - ) )  , 
\  a* (1 — az)a  J

so that

G(x, z) =  exp ( —^  k ( \ log(l -  az)  +  Z
1 — az  \ a 2 (1 — az)a

The ( p ^ ) ^ L Q is a system of Laguerre polynomials.

IV. (Pascal case) Now a ^  ft ^  0, a,/3 e R  (which corresponds to 77 > 0 

and A2 -  477 > 0). Then v is a centered Pascal measure (negative binomial 

distribution):

M x ) =S H)
where (x)o := 1, (x )n := x (x  +  1) • • • (x  + 72 — 1), 72 G N, x G R, and we 

assumed that |a | > \ft\. The Fourier transform of v (in a neighborhood of 

zero) is given by

c  w  ( \ I k , ae lPu -  fteexp{iux)dv{x) — e x p  -  log
— iau

aft a — ft

Furthermore

T  (  \  1  1 (  1  “  P ZV{z) =  a  l°ga — ft \  1 — az

/ w = e x p ( _ _ ± _ i o g ( i i f g h ) ) ,

so that

(  x f l - f t z \  k ( ( 1  -  f tz )i  
G(x, z) = exp ------  log      log

a - f t  \ l - a z j  a - f t  ^ ( l - a z ) ^  

The ( p ^ ) ^ L Q is a system of Meixner polynomials of the first kind.
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V. (Meixner case). Now Im(a) ^  0 , a = (3 (which corresponds to 77 > 0 

and A2 — 4?7 < 0). The measure v is a centered Meixner measure

where we assumed that Im(a) > Im(/3). The formulas for the Fourier trans­

form of z/, the functions T(z),  \I/_1(2), and G(x, z)  have the same form as 

in the case IV, but with complex conjugate a, (3. The ( p ^  (x))^=0 is a sys­

tem of Meixner polynomials of the second kind, or the Meixner-Pollaczek 

polynomials.

In fact, all the above formulas for the Fourier transform and the generat­

ing function can be written down in a common form if one uses infinite sums 

involving a and /3, see [38].

For each measure of orthogonality of polynomials from the Meixner class, 

ẑ , the Laplace transform of z/,

also defined in a neighborhood of zero in R, is called the cumulant trans­

form of v. We denote by C\^(u) the cumulant transform of the measure v 

corresponding to parameters k = 1, A, and 77.

For any A G R and 77 > 0, let a \ tT1(ds) be the probability measure 

on (R ,#(R )) which is the measure of orthogonality of monic polynomials 

( q ^ ( s ) ) n>o which satisfy the recurrence relation:

sq(n\ s )  = q(n+1\ s )  + \ {n  + ^ q ^ i s )  + r]n(n + l)q(n ^(s). (6.8)

arctan

is well-defined in a neighborhood of zero in R. The function
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Note that the probability measure a \ iV belongs to the Meixner class.

We have [40], see also [34]:

P ro p o sitio n  6.1. For any k > 0, A G R and r/ > 0, let Vk,\,v be measure 

of orthogonality of monic polynomials satisfying (6.3). Then the measure 

vk,\,-q is infinitely divisible and k s~2<j\^(ds) is its Levy measure:

From now on, we fix any measurable, locally bounded functions A : R.d —> 

R and 77 : R d —» (0 ,00). For each x  G let a(x,ds)  be the probability

measure on (R,B(R)) defined by

Cf(x, ds) . <̂ A(a:),77(x) (ds) ,

see Proposition 6.1. By (6.8), the corresponding functions an(x) and bn(x) 

are given by

an(x) = rj(x)n(n +  1), bn(x) = X (x)(n +  1),

and so condition (B) is satisfied. Thus our results in Chapters 3-5 are appli­

cable to cr(.x, ds). Note that, by (5.23), the corresponding functions ( ^ ( . t ) ) ^  

are given by

ck(x) = rj(x)k 1(k — l)!/d , k G N.

(Here 0° 1.) Hence, by (5.19), the measure on (Rd) ^  is the push-

I exp(iux) VkXr){dx) = exp k / a \ >rj(ds)s 2(exus — 1 — ius) 
R  L J R

(Note that, for s =  0, the function s 2(ems — 1 — ius) is assumed to take the 
2

value — y . j  In particular,

(6.9)

forward of the measure

r]{xi )1011 1 ■ ■ ■ r}(xi)ldl1 ^l^il -  1)! |di|! • • • (|(9/| -  1)! |d/|!
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x n!(|0i|! ■ • ■ |0/|!) 1 dxi • • • dxt

r j ( x • • • ?7(x/)|0' l_1(|0i| — !)!■•■ (|0/| -  1)! n\ dx i • ■ • dxt.

Furthermore, by Theorem 3.7, the Fourier transform of the corresponding 

measure p on V'  is given by

Thus, our results extend the corresponding results of [30,31] and [38].

Remark 6.2. Recall that in [30,31] A and rj were constants, and in [38] the 

functions A and rj were assumed to be smooth, whereas we do not even assume 

that these functions are continuous.

As follows from the proof of Theorem 3.7, the Laplace transform of the 

measure (i,

is well-defined in a neighborhood of zero in V.  Hence, we can define its 

cumulant transform

Proof. We will only sketch the proof of this theorem. By approximation, it 

suffices to prove the following statement.

Fix any A G Bo(Rd) and any constant e > 0. Then there exists a constant 

C > 0 for which the following holds. Let A, . . . ,  A G Bo(Rd) be mutually

=  exp dx j  a(x, — iip(x)s — 1] . (6.10)
Jw s -I

which is also defined in a neighborhood of zero in V.

T h eo rem  6.3. We have, for ip from a neighborhood of zero in V,

(6 . 11)
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disjoint and (J j= i A i = Fet functions A and 77 take on constant values on 

each set Aj,  j  =  1 , . . . ,  n, and let the functions |A| and 77 be bounded by e on 

A. Let a function p  be given by

n

(6-12)
3 =1

where

max \rA < C.

Then formula (6.11) holds for this function p.

Indeed, denote by A j and rjj the value of A and 77 on Aj.  By (6.9), (6.10), 

and (6.12),

£(<p)  =  5 ^  f  d x  f  c r ( x , d s ) s ~ 2( e r:>s — r j s  — 1 )
j _  1 J Aj J R

= Y l ( ^ J A dx^  f RaAsu(ds)(er3S -  r3s -  f)

=  l t , ( ^ f A cW rj)
r  n

=  /  y ^ X A j ( ^ ) ^ A ( x ) M x ) M X)) doc
■/R- ,=1

I £\{x),r](x) (vA^O) dx,
JRd

where we used that Ca(i ),tj(b)(0) — 0- From here the statement follows.

□
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