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Abstract

Among all stochastic processes with independent increments, essentially only
Brownian motion and Poisson process have a chaotic representation property.
In the case of a Lévy process, several approaches have been proposed in order
to construct an orthogonal decomposition of the corresponding L?-space. In
this dissertation, we deal with orthogonal (chaotic) decompositions for gener-
alized processes with independent values. We do not suppose stationarity of
the process, as a result the Lévy measure of the process depends on points of
the space. We first construct, in Chapter 3, a unitary isomorphism between
a certain symmetric Fock space and the space L?(D’', ). Here D' is a co-
nuclear space of generalized functions (distributions), and u is a generalized
stochastic process with independent values. This isomorphism is constructed
by employing the projection spectral theorem for an (uncountable) family of
commuting self-adjoint operators. We next derive, in Chapter 4, a counter-
part of the Nualart Schoutens decomposition for generalized stochastic pro-
cess with independent values. Our results here extend those in the papers of
Nualart Schoutens and Lytvynov. In Chapter 5, we construct an orthogonal
decomposition of the space L?(D’, i) in terms of orthogonal polynomials on
D’. We observe a deep relation between this decomposition and the results
of the two previous chapters. Finally, in Chapter 6, we briefly discuss the

situation of the generalized stochastic processes of Meixner’s type.
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Chapter 1

Introduction

A chaotic decomposition of the L2-space of functionals of Brownian motion
plays a fundamental role in Gaussian analysis, see e.g. {10,35]. In a parallel
way, a chaotic expansion of the L?-space of functionals of Poisson process
has also been derived, see e.g. [21,43]. In fact, among all stochastic processes
with independent increments, essentially only Brownian motion and Poisson
process have a chaotic representation property, see [16]. In fact, for a gen-
eral stochastic process with independent increments, the space generated by
the multiple stochastic integrals with respect to this (centered) process is a
proper subspace of the corresponding L?-space. In the case of a Lévy process,
several approaches have been proposed in order to construct an orthogonal
decomposition of the corresponding L?-space.

The first approach is due to It6 [21] and uses the Itd6 decomposition of a
Lévy process as a Gaussian process and an integral with respect to Poisson
random measure over a two-dimensional Euclidean space. As a result, one
gets a certain unitary isomorphism between the L2-space and a certain sym-
metric Fock space. This point of view has been, in particular, used to develop

white noise analysis for Lévy processes [17,18,33], see also [26-28,41].



Another approach has been developed by Nualart and Schoutens [36],
who used a system of polynomials which are orthogonal with respect to the
Lévy measure of the Lévy process, see also [40] and [18].

If one realizes a Lévy process through a probability measure on a space
of generalized functions, then, under appropriate assumptions on a Lévy
process, polynomials (of infinitely many variables) form a dense subset of the
L2-space. Hence following the idea of Skorohod [42], one can orthogonalize
these polynomials. A remarkable feature of Lévy processes, proven in [31],
is that these orthogonal polynomials can be found explicitly, say in terms of
the Nualart-Schoutens decomposition. As a result one can explicitly calculate
the scalar product between orthogonal polynomials (see also see also [20]).
In fact, it was shown in [31] that there exists a deep relation between the
Nualart -Schoutens decomposition and orthogonalization of polynomials with
respect to a Lévy white noise measure.

Orthogonal polynomials with respect to a Lévy white noise measure have
many additional, nice features in the case of a Meixner-type Lévy process,
in particular, for Gamma white noise measure, see [23, 24, 30, 31], see also
[1,2,22,32,38] and the references therein.

We should also mention the fundamental paper by Vershik and Tsilevich
[44], which proposes an alternative way of constructing an isometry between
the L2-space of a Lévy process and the L2-space of a vector-valued Gaussian
white noise.

In this dissertation, we deal with generalized processes with independent
values, in the sense of [19]. We do not suppose stationarity of the process,
as a result the Lévy measure of the process depends on points of the space.
It should be noted that majority of the above cited papers, including [té’s

fundamental result [21], do assume stationarity. Additionally, many results



of the dissertation are new even for Lévy processes. We also mention that,
due to our assumptions on the Lévy measures, the corresponding generalized
stochastic process is a probability measure on a space of generalized functions
whose Laplace transform is analytic in a neighborhood of zero, cf. [25]. It
should be however noted that, in this dissertation, we assume that the Lévy
measures have an infinite number of points in their support. The case where
Lévy measures may have a finite number of points in their support will be
treated elsewhere.

The dissertation is organized as follows.

Chapter 2 contains some preliminary information, which is required for
our further studies.

In Chapter 3, we employ the projection spectral theorem for an (uncount-
able) family of commuting self-adjoint operators [10], see also [8,9,11,29,30,
38] for further applications of this theorem in infinite-dimensional analysis.
We construct a certain family of commuting self-adjoint operators (A(¢))sep
in a symmetric Fock space F. Here D is the nuclear space of all smooth,
compactly supported functions on R% We prove that the family (A(¢)),ep
satisfies the assumptions of the projection spectral theorem. As a result, we
derive the spectral measure of the family (A(¢))pep at the vacuum state

- a probability measure u on the space D', the dual space of D with respect
to the zero space L?(R? dz). Furthermore, we get a unitary isomorphism
I: F — L?(D, ) such that I is the function identically equal to 1, and
the image of each operator A(y) under [ is the operator of multiplication by
the monomial (w, ). Here for w € D' and ¢ € D, (w, ) denotes the dual
pairing between w and ¢. As a by-product of our considerations, we have an
explicitly described subset ¥ of the symmetric Fock space F such that each
operator A(y) maps the set ¥ into itself and A(y) is essentially self-adjoint



on ¥. We next derive the Fourier transform of the measure u, which has the
form as in the Lévy-Khintchine formula. This, in particular, implies that
i is a generalized stochastic process with independent values. It should be
stressed that all results in this chapter are new even for Lévy processes, i.e.,
when the Lévy measure of the process does not depend on point z € R?,

In Chapter 4, we derive a counterpart of the Nualart-Schoutens decompo-
sition for generalized stochastic process with independent values. Qur results
here extend those in [36] and [31], and they have been known in the Lévy
process case.

In Chapter 5, we construct an orthogonal decomposition of the space
L?(D', 1) in terms of orthogonalized polynomials on D’. We observe a deep
relation between this decomposition and the results of the two previous chap-
ters. We get a unitary isomorphism between an extended (symmetric) Fock

space F and L?(D', ). Here the extended Fock space F has the form
F =P L% (R, ¢™).
n=0

where (™ is an explicitly given measure on (RY)", and L% ((R%)",¢™) is
the space of all symmetric functions on (R%)" which are square integrable
with respect to the measure (™. Such an interpretation of the extended
Fock space is new even in the Lévy process case, compare with [31].
Finally, in Chapter 6, we briefly discuss the situation of the generalized
stochastic processes of Meixner’s type, compare with [30,38]. On the real line,
a probability measure of Meixner’s type is (almost) completely characterized
by two parameters, A € R and n > 0. The class of these measures contains,
in particular, the Gaussian, Poisson, and Gamma measures. In our infinite

dimensional setting, a generalized stochastic process of Meixner’s type is

characterized by two functions A(z) and n(z) for z € R?. In our dissertation,

10



we present a sketch of the proof of the following result. Let €(p) be the
cumulant transform of the probability measure y on D’ corresponding to
functions A(x) and n(z). (Recall that the cumulant transform of a probability

measure is the logarithm of its Laplace transform.) Then

o) = /R , O () de.

Herc, for a fixed z € RY, €(3)n)(()) is the cumulant transform of the
probability measure on R from Meixner’s class, corresponding to the param-
eters A(z), n(z), and evaluated at point ¢(x). A complete proof of this result

will be given elsewhere.
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Chapter 2

Preliminary

We refer our reader to [6,10,13,15] for further details and proofs.

2.1 Unbounded operators

The aim of this section is to recall for the reader some notions connected with
unbounded operators. So let H be a Hilbert space with inner product (-,-)g
and let D be a linear subset (subspace) of H (thus D C H). We consider a
linear operator A : D — H. We write D = D(A), where D(A) is called the
domain of A. A linear operator A with domain D(A) is often denoted by
(A, D(A)) to stress the domain of A. If D is dense in H, then we say that A
is a densely defined linear operator.

A linear operator A is called symmetric if, for any f,g € D(A),

(Af,9)u = (f,Ag)n.

If, additionally, the domain D(A) is dense in H, the operator A is called
Hermitian.

If (A, D(A)) is a denscly defined linear operator in /7, then we define

12



D(A*) as the set of those g € H for which there exists g* € H such that

(Af,9)u = (f,9")u, forall f € D(A).

D(A*) is a subspace of H. We call D(A*) the domain of the adjoint operator
A*, and we set A*g = g*. Note that, generally speaking, the domain D(A*)
of the adjoint of a densely defined linear operator (A, D(A)) need not be
dense in /1. Furthermore, one can give examples where D(A*) = {0}.

Note also that if (A, D(A)) is Hermitian, then D(A) C D(A*) and Af =
A*f for each f € D(A). An operator (A, D(A)) is called self-adjoint if
(A, D(A)) = (A*, D(A*)), i.e., the operator A coincides with its adjoint.

For an operator (A, D(A)), the set

Pa=A{(/,Af)| feD(A)} CH xH

is called the graph of the operator A.

If T'4 is a closed subset of /7 x H, then the operator A is called closed.
If this is not the case, then one may take the closure T'y of 'y in H x H.
However, T'4 may happen not to be a graph of a linear operator, i.e., there
may exist vectors (f,g1) and (f, go) in T'4 such that g, # go. If this is not
the case, i.e., if T'4 is a graph of a linear operator, then we call (A4, D(A)) a
closable operator and the corresponding operator defined by "4 is called the
closure of (4, D(A)), denoted by (A, D(A)).

One may show that any Hermitian operator is closable and any self-
adjoined operator is closed. However, the closure of a Hermitian operator is
not necessarily a self-adjoint operator. If this closure is self-adjoint, then we
say that (A, D(A)) is an essentially self-adjoint operator.

In applications we are mostly given Hermitian operators, rather than

self-adjoint operators. Then, if one is able to prove that such an operator is

13



essentially self-adjoint, then, by closing the operator (A, D(A)), one derives

a self-adjoint operator.

Theorem 2.1 (Nelson’s analytic vector criterion). Let (A, D(A)) be a densely
defined, Hermitian operator in H. A vector f € D(A) is called analytic (for
A) if, for eachn € N, f € D(A™), and

(e <]

t'!l
Y llAm Il < oo
n.

n=1

for some t > 0. If there is a subset © C D(A) such that ® is total in H
and each f € © 1is analytic for A, then the operator (A, D(A)) is essentially
self-adjoint.

Remark 2.2. A linear combination of analytic vectors is an analytic vector,
so that we can only demand that © be a total set in H, i.e., its linear span

is dense in H.

Remark 2.3. Note that for any linear operators (A, D(A)) and (B, D(B)) in

a Hilbert space H, one defines
D(AB):={f € D(B): Bf € D(A)}
and then, for any f € D(AB),
ABf = A(Bf).

This, in particular, explains the meaning of the operator (A", D(A™)).

Let (X, .A) be a measurable space. Let B(H) denote the Banach space of

all bounded linear operators in H. A mapping
A>3 a— Ela) € B(H)
is called a resolution of the identity if the following conditions are satisfied:

14



e For each o € A, E(a) is an orthogonal projection in H.
e E(©)=0, E(X)=1.

o If {a,},, an € A, n € N, a, are mutually disjoint, then for each

feH
(o) = Y Blan.

where the series converges in H.

It follows from the definition of a resolution of the identity that for any

vectors f,g € H, the mapping
Ad>Sam— (E(a)f,g)H
is a signed measure on (X, .A), and for any f € H,

A3 am (E(@)f, fu

is a measure on (X, .A).

We denote by B(R) the Borel o-algebra on R. To any self-adjoint op-
erator (A, D(A)), there corresponds a unique resolution of the identity over
(R, B(R)) such that

Az/RAdE()\). 2.1)

The equality (2.1) should be understood as follows:
D)= { € H| [ R d(BWS, P <0} (2.2
JR
and for any f € D(A) and g€ H

(Af, g)n = /R NA(E(N)/,9)n. (2.3)

15



Furthermore, the inverse statement holds: If F is a resolution of the identity
over (R, B(R)), then F determines a self-adjoint operator in H through the
formulas (2.2) and (2.3).

Formulas (2.1)-(2.3) are called the spectral decomposition of a self-adjoint
operator (in fact, the resolution of the identity is concentrated on the spec-
trum of A).

Let us now briefly discuss commutation of linear operators. In the case
where A; and A, are bounded linear operators, their commutation is defined

straightforward:
A1Ayf = AyAf foreach f € H. (2.4)

However, in the case where A; and A, are unbounded operators, the operators
A1 A or A2A; may only be well-defined at zero. So, in the case where A,
and A, are additionally self-adjoint operators, one defines their commutation
through the commutation of their resolutions of the identity. So we say that
self-adjoint operators (A;, D(A;)) and (A2, D(A;)) commute in the sense
of their resolutions of the identity if, for any a;, s € B(R), the operators
Ei(a;) and E3(az) commute, where Fy, and E; denote the resolution of the
identity of A;, and A,, respectively. It can be shown that this definition of
commutation indeed generalizes the definition (2.4) in the case of bounded
self-adjoint operator.

The following theorem allows one to check that two given self-adjoint

operators indeed commute in the sense of their resolutions of the identity.

Theorem 2.4. Let (A}, D(A;)), (As, D(Az)) be two Hermitian operators in
. Let ® be a dense linear subset of H such that © C D(A;) N D(Asg),
AD CD, AD C D and A;, Ay commute on D in the usual sense:

A1Asf = AA f forall f€D.

16



Assume that each vector in ® is analytic for both operators A, and As. Then
the operators (A1, D(A1)) and (Ag, D(As)) are essentially self-adjoint and
their closures (Ay, D(A;)) and (Ay, D(A3)) commute in the sense of their

resolutions of the identity.

2.2 Orthogonal polynomials

Let (R,B(R),0) be a probability space. We assume that the probability

measure ¢ has all moments finite, i.e.
/ |z|"o(dz) < 00, Vn €N.
R
Therefore the integrals fm z"o(dz) are well defined. The numbers

mn=/x"a(dx), neN,
R

are called the moments of o.
If we take a sequence of monomials (2")32 ,, then according to the Gram-
Schmidt procedure they may be orthogonalized. Thus, we get a system of

monic orthogonal polynomials:
Po(z) = 2"+ an_12" N+ appx™ 2 + - + . (2.5)

(‘Monic’ means that the leading coefficient, i.e., the coefficient by z”, is 1.)
Now we have to distinguish the two following cases:
Case 1: Suppose the support of ¢ is infinite. Then (P,)%2, is an infinite
system of orthogonal polynomials.

Case 2: If the support of o consists of k£ points, £ € N, then we get only

k-1
n=0"

k orthogonal polynomials (P,)

In this dissertation we will deal only with Case 1.

17



Theorem 2.5 (Farward’s theorem). Assume that the support of o is infinite.

Then, there exista, >0, n=1,2,...,andb, € R, n=0,1,2,..., such that

CEPn(.’II) = Pn+l(x)+ann($)+anPn—1(x)a nZL
.I'Po(ll') = P1($)+b0.

Furthermore, for any a, >0, n=1,2,..., andb, € R, n=0,1,2,..., there

(2.6)

exists a probability measure o with finite moments such that the corresponding
polynomials (P,())%, defined by (2.6) form a system of monic orthogonal

polynomials for measure o.

We note that, generally speaking, there may exist different probability
measures which have the same moments. That is, the measure o in the second
part of Farward’s theorem is, generally speaking, not unique. However, there
exist sufficient conditions which guarantee that the measure o is unique. The

following theorem is an example of such a condition.

Theorem 2.6. Assume that o is a probability measure on R which has finite
moments. Then the following three conditions are equivalent:

(i) There exists ¢ > 0 such that, for alln € N,
m, < c"n! (2.7)
(ii) There exists € > 0, such that
/e"”'a(dz) < 00.
R
(iii) There exists ¢ > 0 such that the Laplace transform of o,
(—e,e) 2y /Reyxa(d:v) €eR
is well defined and can be extended to an analytic function
heCHd<d9wﬁA€%Mﬂ€C

18



If either (i), or (i), or (iii) holds, then the measure o is a unique prob-
ability measure on R which has moments m,, so that there is a one-to-one

correspondence between o and the system of orthogonal polynomials.

Remark 2.7. Let o be a measure on (R, B(R)) which satisfies either condition
(1), or (ii), or (iii) of Theorem 2.6. Then, if we know the Fourier transform of
o, fR e® o(dx), for ¢ from a neighborhood of zero in R, then we can evaluate
the moments m,, of o by differentiating the Fourier transform at zero, and
so we can recover the measure 0. Hence the measure ¢ is uniquely identified

by its Fourier transform in a neighborhood of zero.

2.3 Rigged Hilbert spaces

Let Hy be a real Hilbert space with scalar product (-, )y, and norm || - || g,.

We suppose that
H, C Hy, (2.8)

where H, is a dense subset of Hy. We also suppose that H, is a Hilbert
space with respect to another scalar product (-, ), and the norm || - [|;, in
H, is such that

lollmy < llelly,, ¢ € Hy (2.9)

(The more general case when || - || 5, < c|| - ||, for some constant ¢ < oo can
be reduced to (2.9) by introducing an equivalent norm in H,.) The elements
of the set H, play the role of test functions.

Each element f € Hy generates a linear continuous functional (f,-) on

H, according to the formula

(fr0) = (f, )0 (2.10)

19



We introduce a new norm || - || in Hy by taking the norm of f as the

norm of the functional (f,-) corresponding to it:

f’ QO)Hol

Wl o= 110/ ) = sup { | peHy p#0b.  (@11)
1ol

We complete Hy in the norm (2.11) and obtain a linear normed space
H_, which is called the space with negative norm and its elements play the

role of generalized functions. Thus we have constructed the chain
H, CHyCH_ (2.12)

of spaces with positive, zero and negative norms. (The elements of H_, Hy, H
will be called generalized functions, ordinary functions and test functions, re-
spectively). A rigging of the space Hy by the spaces /{1, and /_ is given by
(2.12).
Each element £ € H_ is evidently a linear continuous functional on H,
so that
H_ C (Hy), (2.13)

where (H,)' denotes the dual space of H,. We will write (&, ¥)n,, or (£, )

for the action of the functional £ on an element ¢ € H,. It is obvious that

€ D)ol < W€llar_llepllnr, €€ Hoyp € Hy (2.14)

which is a generalization of the Cauchy—-Schwarz inequality.

Initially, we have defined H_ as a Banach space. However, one may prove
that H_ is a Hilbert space, i.e., the norm | - ||, in H_ is generated by some
scalar product (-, )y . Furthermore, H_ = (H,)', i.e. H_ can be thought of
as the dual space of H,.

A rigging H, C Hy C H_ is called quasi-nuclear if the inclusion operator

O : II, — H, is quasi-nuclear (or of the Hilbert-Schmidt class), that is for

20



one (and hence any) orthonormal basis ()%, of H,, we have

o)
> llenl, < oo.
n=1

In this case, we shall say that the space H, is imbedded into Hy quasi-
nuclearly. The corresponding rigging (or the chain (2.12)) will also be called

quasi-nuclear.

Example 2.8. Let Hy = ¢, = {3(R) be the Hilbert space of all square

summable real sequences z = (zx)5, with scalar product

(=, 9)u = Z TkYk-
k=0

More generally, for each sequence 7 = (7x)32,, 7 > 0, we define the corre-
sponding Hilbert space

H. = 62(7—) = {(xk)l?;o | zr € R, Zzsz = ”‘TH?-[, < OO},
k=0

o0
(z,9)u, = Z TkYk Tk- (2.15)
k=0

Evidently, ¢, = {y(7) with 7, =1, k € Z; := NU {0}.

Denote by T the set of all sequences 7 = (7)>, with 7 > 1, k € Z,.
Clearly, for any 7,7" € T such that 7, > 7, k € Z,, H» C H; and || - || >
|-l s, . Denote by R the set of all finite real sequences, i.e., all real sequences
(zk)52, such that 2y = 0, k > K, for some K € Z, := {0,1,2,...}. For each
7 € T, R§® C ¢y(7) with dense inclusion. Therefore, if 7 and 7' are as above,
C5(7") is dense in £5(T).

For every 7 = (1), € T, one can take 7 = (2%7;)%°, so that the
imbedding O,., : H.» — H, is quasi-nuclear. Indeed, let (e,)%2, be the

natural orthonormal basis in £,, that is
en = (Th)iegs zx =0for k#n, r, =1. (2.16)

21



-1
Then the vectors (7 ?e,)%2, form a orthonormal basis in H, and, there-

fore, for the Hilbert-Schmidt norm of the imbedding operator O, ,, we have

oo o0
-1 2 -
10+ ks = Z 1(7%) 2ekl|y, = 22 £ < oo
k=0 k=0

For every 7 € T, the Hilbert space H,-1 = £(771), 771 := (r7)®,, is
dual to H, = £3(7) with respect to Hy = ¢3. The scalar product in Hy = £,
defines a natural pairing of the elements of ¢3(7~!) and £y(7), namely,

(&0 i = D &kpr, €€ b(T7)), p € (7).
k=0

Ezample 2.9. Given | € Z, and a weight function p : R — R, p(z) > 1,
r € R?, p € C(R?) (the space of all continious functions on R¢), the Sobolev
space W}(R?, p(x) dz) is defined as the completion of C$°(R?) (the space of all
infinitely differentiable functions on R? with bounded support) with respect
to the scalar product

(@, V)wi (R4, p(z) do) = Z(Da% DY) 12(re, p(zydz)s @ ¥ € CoO(RY). (2.17)

led <t

The summation in (2.17) is over all indices @ = (e, ..., q), @1,. .., 04 € Ly,
| = @1+ -+ ay <1, and D denotes the corresponding partial derivative.

We set Hy = L*(R?,dz) = WP(R? dzx) and H, = W}(R? p(z)dz), | € N.
Clearly, H, is densely and continuously embedded into Hy. (Note that each
WE(R?, p(z) dx) contains the set C$°(R?), which is dense in every Sobolev
space, by its construction.) Then /7_ is called a Sobolev space with negative
index —[ and is denoted by W, {(R%, p~!(z) dz).

If [ > d/2, then the Sobolev space W/(R¢, p(z) dz) consists of continuous
functions, i.e., Wi(R¢, p(z) dz) C C(R?). Furthermore, if m € Z,, | > d/2,
and if 1 < p(z) < po(x) with

2
P1 (I)
dx < 00,
/Rd p3(x)

22



then the inclusion Wi*™(R?, py(z) dz) € Wi (R?, pi(x) dz) is quasi-nuclear.

2.4 Rigging of a Hilbert space by a nuclear
space

Let ¢ be a linear topological space that is topologically (i.e., densely and
continuously) imbedded into a Hilbert space Hy. Just as in Section 2.3, each
element f € Hj generates the linear continuous functional on & according to

the formula
lile) = (f,0)n,, @€

Let @' denote the dual space of ® (i.e., the space of all linear continuous
functionals on ®). Identifying f with [, we obtain the imbedding of Hj into

the space ®’. Hence, we have constructed the chain
®C HyCd'. (2.18)

We also say that (2.18) is a rigging of Hy by the spaces ® and @', and ¢’ is
the dual space of Hy with respect to zero space Hy.

In what follows, we will only consider the case where ® is a nuclear space.
So, let us define such a space. Let (H,),er be a family of Hilbert spaces. We
assume that the set ® := (") ., H, is dense in each H., and that the family
(11;),er is directed by imbedding, i.e.,

V’/"’,T” eTIMeT: H.w Cc Hyy Hoe C Hyn, (219)

where the imbeddings are continuous. On @, we introduce a projective limit
topology with respect to the family of Hilbert spaces (H,).er and natural
imbeddings O, : ® — H,.. By definition, this means that we consider the
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weakest topology on @ for which all the mappings O,, 7 € T, are continuous.

One can show that the collection of all possible open balls
Ulp;Tie) ={Y e |lp—tlly, <€}, p€® 7T, e>0 (220)

may be taken as a system of base neighbourhoods of this topology. This space
® constructed as above is called the projective limit of the family (H,).er
and is denoted by

® = proj lim H,. (2.21)

T7€T
If, additionally, for each 7 € T, there exists 7/ € T such that H. C H,

and the inclusion operator O,/ . H — H, is quasi-nuclear, then the space ®
is called a nuclear space.

Let ® = projlim, ., H: be a nuclear space, and let Hy be a Hilbert space.
Assume that, for each 7 € T, H, C Hy with continuous imbedding, and that
® (and therefore each H,) is a dense subset of Hy. We can now construct

the riggings
H.C Hy CH., T1€T,
®C Hy C9.
Notice that if H,» C H,, we have
H..CH_,. (2.22)

Theorem 2.10 (Schwartz). We have
=|JH =JH-
T€T TeT
This equality should be understood as follows: for each | € ®' there ezists
7 € T such that ! may be extended by continuity from ® to a linear continuous

functional on H,, and vice versa if | € H_, for some T € T, then (| ® € ¥'.
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Since ® = |J__ H_-, one can introduce on @’ the topology of the induc-

TET
tive limit of Hilbert spaces (H_,),e7r. This topology is defined by basic open
sets
Ue,e()) =cls. (Ll =€l <e(r) 1€ €@, 6-¢ € Ho}),
T7€T
where c.l.s. denotes ‘the convex linear span’, £ € ® and T > 7 — &(7) > 0.
One writes ®' = ind lim,cr H_,. Thus, we have
® = projlim H, C Hy Cindlim H_, = &', (2.23)
T€T TeT
which is called a Gel’fand (standard) triple. The dual space @’ is often called

a co-nuclear space.

Ezample 2.11. Recall Example 2.8. Clearly, (), cpf2(7) = R§°. Indeed,
the inclusion R C (), f2(7) is evident, whereas for any sequence of real
numbers (z4)52, which has an infinite number of non-zero elements, one can
always find 7 € T such that (z4)2 & l2(7).

Setting ® = R = projlim, .y f2(7), we get a nuclear space. In fact,
convergence in this space means uniform finiteness of all sequences and
coordinate-wise convergence. That is, a sequence (z("));?zl converges to z in
RS if and only if there exists N € Z. such that m,(c”) =0,y =0forallk > N
and all n € N, and x,(cn) — z, as n — oo for each k € {0,1,2,...,N — 1}.

By Theorem 2.10 and Example 2.8,

@' = ind lim £, (771).

TeT

Note that
{r7'7eT={(m)2 0<% <1, k€ N}

Denote by R® = R x R x - --. Then, clearly, ® C R, since each l(77!) C

R*. On the other hand, for each sequence ()32, € R* onc can always find
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7 € T such that (), € €2(77!). Therefore, ® = R*®. Thus, we get the
Gel’fand triple
Rg° C 4, C R™. (2.24)

In fact for each £ = (&), € R*® and = = (z4)2, € R, the dual pairing

between £ and z with respect to the zero space ¢; is given by

o0

(€ z) = (§,2)H, = ZEkxk- (2.25)

k=0
(Note that since z € R, the series in (2.25) contains only a finite number

of non-zero terms, and hence it is well-defined).

Ezample 2.12. Recall Example 2.9. Denote D = D(R?) := C°(R?). As men-
tioned in Example 2.9, D is a dense subset of each Sobolev space Wi (R, p(z)dz),
l e Z,, p(x) > 1. Therefore

DcC ﬂ Wi(RY, p(x)dz).
l€Z+,p(z‘)21
In fact, one can show that
D= () WiR p(x)dz).
l€Z4 ., p(z)21
Furthermore, using the fact stated in the end of Example 2.9, one can show

D is a nuclear space. The convergence in D may be described as follows: If

(fa)2, C D, fe€D,then f, — fonD if and only if

| supp(/»)

neN

is a bounded set in R? (i.e., the functions f, are uniformly finite), and for

each index (a;, a9,...,04), 0 € Z4,1=1,2,...,d,
(D*fa)(z) = (D*f)(z) asn— o0
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uniformly on R Here D®f denotes the corresponding partial derivative of

f. By Theorem 2.10,

D' = indlim W;Y(R% p~!(z)dz).

l€Zy,p(z)20

Ezample 2.13. Let o be a probability measure on (R, B(R)) which satisfies
condition (i) (or equivalently condition (ii)) of Theorem 2.6 and has an infi-
nite support. Recall Example 2.11. Denote by P the set of all polynomials on
R. Recall the vectors e, in ¢; defined by (2.16). They form an orthonormal
basis in ¢;. Consider the linear mapping / defined by

le, =2z",

and extended by linearity to the linear span of the e, vectors, i.e., to R§°.
Thus, I is a bijective mapping between R3° and P. Through it we define a
nuclear space topology on P. Note that py — p in P as k — 0o, means that

there exists N € N such that

N N
pe=) axt', p=)» az,
i=0 i=0
and for each ¢ =0,1,..., N, a; — a; as k — oo.

As easily seen, the nuclear space P is densely and continuously embedded
into L?(R,o). [Note that, if the measure ¢ had finite support, the latter
statement would fail, since in L?(R, o) we would find non-zero polynomials

on R which would be zero elements of L*(R, c).]

2.5 Probability measures on co-nuclear spaces,
Minlos theorem

Let
& C Iy Cd
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be a Gel'fand triple. We first need a o-algebra on ®'. For each ¢ € ®, we

define a mapping as follows
® 5w (w,p) €R. (2.26)

Then C(®’) is the minimal o-algebra on @’ with respect to which all mappings
(2.26) are measurable. In particular, if ¢1,¢s,...,0, € ®,n € Nand g :=

R™ — R measurable, then

F(w) = g(<wv (P1>, <w’ (P2>, RIS <(.U, Son)) (227)

is a measurable function on ®'. A function of the form (2.27) is called a
cylinder function, and C(®') is called the cylinder o-algebra on &’

Now, if u is a probability measure on (®',C(®")), then we call yu a gener-
alized stochastic process.

Let u be a probability measure on (R”, B(R™)). Then the Fourier trans-
form of u is defined by

F@)= [ é=udy). zeR

where (z,y) = 1y1 + Z2y2+ - - -+ ZnYn. The classical Bochner theorem states
that a function F': R® — C is the Fourier transform of a unique probability
measure on (R" B(R")), ie, F = F,, if and only if F(0) = 1 and F is
positive definite, i.e., for all ¢;,...,c, € C, n €N, z1,...,z, € R%, we have
n
Z cjteF(xj — xi) > 0.
Jk=1
Let now u be a probability measure on (®’,C). Analogously to the finite-

dimensional case, we define the Fourier transform of x by

Fu(p) = /q) e u(dw), €.

The following theorem is an infinite-dimensional generalization of the

Bochner theorem.
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Theorem 2.14 (Minlos). Suppose F : ® — C. Then F is the Fourier

transform of a unique probability measure p on (®',C(®")) if and only if

o ['is positive definite, i.e., forallcy,...,c, €C,n €N, 1,...,0, €

we have

Y cTF (e — k) 2 0;

jk=1
o F is continuous on ®, i.e., F, is continuous on each H,, T € T.

Remark: The third condition of the Minlos theorem is a new condition
compared with the Bochner theorem (in the finite-dimensional case, one au-

tomatically gets the continuity of the Fourier transform).

2.6 Projection spectral theorem

As we see from the previous section, one way of defining a probability measure
on a co-nuclear space is through the Minlos theorem. Another possible way
of construction of such a measure is given through the projection spectral
theorem, which we will discuss below.

Let us first recall the spectral theorem in the case of one self-adjoint
operator. Let H be a real, separable Hilbert space and let (A, D(A)) be a
self-adjoint operator. Let 2 € H and assume that Q is cyclic for A, i.e.,
Q€ D(A™), n € N, and the set {Q2, AQ, A%Q2,...} is a total set in H. Then,
the spectral theorem states that there exists a unique probability measure y

on R such that the linear mapping / given through
IN=1 TA"Q=1z", neN,
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extends by continuity to a unitary operator
[:H— L*R,p).

Under I, the operator A goes over into the operator of multiplication by z,
given by

Dfz}={/ € L*(R,p) : z/(z) € L*(R, )}
and (z - f)(z) = zf(z), f € D(z-). Thus, IAI"! = z-. In fact, the measure
jt is given by

u(e) = (E(@)Q,Q)n, o€ B(R),

where E(+) is the resolution of the identity of A. The measure u is called the
spectral measure of A (at Q).

The following theorem generalizes the above result to the case of a family

of commuting self-adjoint operators indexed by elements of a nuclear space.

Theorem 2.15. (Projection spectral theorem for a family of com-
muting, self-adjoint operators) Assume that we have two Gel’fand triples
P DOHDP and V' DO F DOV, where H and F are seperable Hilbert spaces.
Also assume that we have a family (A(¢))pce of Hermitian operators in F

such that
1. D(A(p)) =¥, p € &;

2. A(e)¥ C ¥ for each ¢ € ®, and furthermore A(¢) : ¥ — VU is contin-

uous;

3. A(p1)A(pa)f = A(p2)A(pr)f, f €T, (ie., the A(p)’s algebraically

commute on V),
4. for all f,9 € ¥, the mapping

239 (Alp)/,9)r €R
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18 continuous;

5. There exists a vector Q in F which is cyclic for (A(y))yecs, i.e., the set
{Q1 A(SO]) A((Pk)ﬂ | P1y Pk € q)) ke N}

18 total in F;

6. for any f € U and ¢ € P, the vector f is analytic for the operator
A(p).

Then, each operator A(p), v € P, is essentially self-adjoint and we denote its
closure by (A(y), D(A(¢))). These operators commute in the sense of their
resilutions of the identity. Furthermore, there erists a unique probability
measure p on (®',C(®)) such that the linear operator I : F — L*(®',u)
given through I =1 and

H(A(p1) - A(pn)Q) = I(A(1) - Alen)Q)
= (p1,w) -+ {pn,w) € L*(¥', )

is unitary. Under the action of I, each operator (A(p), D(A(p))), ¢ € ®
goes over into the operator of multiplication by (w, ) in L*(®',u), given by

D(<907w>) = {F € Lz(cbl’p’) : <901W>F(w) € L2(Q)"#)}
and for each I’ € D({p,w)-),

({p,w) - F)(w) = (p,w) F(w).

2.7 Tensor product

We will now construct a tensor product of n Hilbert spaces, n € N, n > 2.

For simplicity of notation, we will only consider the case of tensor product of
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the identical Hilbert spaces (the general case of different Hilbert spaces may
be treated by complete analogy).
So, let H be a real separable Hilbert space and let (e;)?2, be an orthonor-

mal basis in H. Let n € N, n > 2. We construct formal products
ea:ea1®ea2®"'®eana
where o € Z7,. We define the separable Hilbert space

H"=H®H®---®H

v
n-times

as the real Hilbert space with orthonormal basis (ea)0621. Thus, vectors

from H®" have the form

f:=‘§::j;ea, fa ER,

a€ZT
1P en = Y fa
a€Zl
f g H®n = Z faga
a€ZT
Let f®) =372 f;k)ej, k=1,...,n, be some vectors from H. Then, we

define the vector f() ® f@ @ ... ® f(™ as the element of H®" given by

f(l) R ® f(n) — Z f(l) f(”)e

a€ZY

As easily seen,

“f(l) Q- ®f(n)HH®" — ”f(l)HH . ”f(n)HH.

The above definition of tensor product depends on the choice of an or-
thonormal basis in H. However, a change of orthonormal basis leads to a

tensor product being isomorphic to the initial one. In particular, for any
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SO @ f™ e H the construction of the vector fU @ fA ® ... f
does not depend on the choice of orthonormal basis (under this isomorphism).

A typical example of tensor product is the n-th tensor power of an L%
space L*(R,R,p), which is nothing else but L%(R",R", u®"). Even more

generally, for L2-spaces H; = L?(R;, R;, u:), the tensor product
Hi®QH,® --®@H, = LZ(R1XR2X' X Ry, RixRox - X Ry, h1 2@ - @ phn).

Let us discuss a tensor product of linear, generally speaking unbounded
operators. For simplicity of notation, we will construct a tensor product of
two operators acting in the same Hilbert space H. So, let (A, D(A)) and
(B, D(B)) be linear operators in a real, separable Hilbert space H. Our aim
is to construct a linear operator A ® B in H ® H. As domain of A ® B,
D(A ® B), we take the linear span of vectors of the form f ® g, where
f € D(A) and g € D(B). Then, we get

AB f®g=(Af)®(Bg),

and extend this definition by linearity to the whole set D(A ® B).

The linear unbounded operator (A ® B, D(A ® B)) is called the tensor
product of (A, D(A)) and (B, D(B).

Let us consider the special case, where the operators (A, D(A) and (B, D(B)
are Hermitian and A and B are essentially self-adjoint on D(A) and D(B),
respectively. Then, one can prove that the tensor product (A® B, D(A® B))
is a Hermitian operator which is essentially self-adjoint.

Let us now assume that we have a Gel'fand triple

d = prfg%im H.C Hy C ingelqim H.,. =%
Let n € N, n > 2. For each 7 € T, we can evidently construct the n-th tensor

power of [1,, i.e., [{®". As easily seen, the Hilbert space H®" is topologically
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imbedded into HZ™. One can prove that the dual space of H®" with respect

to the zero space HY™ is H®?, so that we get the following rigging of HZ™:

er,
® ® ®
H®" C HZ" C H®".

Furthermore, a straightforward calculation shows that, if the imbedding
H,. C Hy is quasi-nuclear, then so is the imbedding H®" C HE". Finally,
one can show that the intersection of all H®", 7 € T, is dense in each H®".
Therefore, [, cr HE™ may be considered as a nuclear space, which is usually
denoted by ®®". Furthermore, the dual of ®®" with respect to centre space
H®™ is denoted by ®®", and is equal to indlim,cr H®". Thus, for each
n > 2, we get the Gel’fand triple

PO — proj lim H?” C Hae’” C ind 17i1m H?f = §'®n, (2.28)
7€T TE

2.8 Symmetric tensor product

We define on HY™ the operator Sym,, by

1
Sym, fi1® - ® fn:= o Z foy ®++ ® formy,

' 0€Sn

where S, is the set of all permutations of {1,...,n}. As easily seen, Sym,,
extends to an orthogonal projection in H&".
Denote /7™ := Sym,, HE", where Sym, HE™ is the subspace of H&" onto

which Sym,, projects. Also, for fi,..., f, € Hp, we denote
f100 fu=8ym,(fi® ® fn)
Note that, for each o € S,,

1O 0 fa=fo) O O fom)
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The space H™ is called the n-th symmetric tensor power of Hy, and for
fivoo oo fn € Hoy 1@+ © fn is called symmetric tensor product of fi,..., f..
Clearly, for each [ € I1y, [®" = fO",

In the case where Hy = L?(R, i), so that H®" = L?(R"™, u®"), the sym-
metric tensor power HY™ is the subspace of L?( R™, u®™) which consists of all
functions f € L?(R™, u®") which remain invariant under the permutation of

their variables, i.e., for each o € S,

J(@1, . 20) = [(To)s - - Tomy) w2 -ae.

In the case of Gel'fand triple (2.28), we have that () ., H®" is dense
in 7IQ", and if H, C H,, then H8" C II®" topologically, and if the
former inclusion was quasi-nuclear, then so is the latter inclusion. Thus,
projlim . H®" is a nuclear space, which is denote by ®®". Next, one can
easily shows that for each 7 € T the dual space of HP" with respect to zero

space HY™ is HO?, so that we get the Gel’fand triple

-7

®°™ = projlim [/®" C HP" C indlim H=} = '™,
T7€T TeT

2.9 Symmetric Fock space

The Fock space is the Hilbert space made of the direct sum of symmetric
tensor powers of a single-particle Hilbert space.

Below, we will need the following notation: If H is a Hilbert space and
a > 0, then aH is the Hilbert space which coincides with H as a set and the

inner product in aH is given by

(fa g)aH = a(fa g)H
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Let H be a separable, real Hilbert space. We define the symmetric Fock
space over H as

F(H) = é]—'(")(H),

n=0

where @7, denotes orthogonal sum of Hilbert spaces, for each n € N
F™(H) .= Hn!, (2.29)

and Fo(H) :=R. That is, F(H) consists of all sequences f = (f©@, f1) )
where /@ ¢ R, /M e H, f& € HO2 fO) ¢ O3
||f||2f(H) = !fo|2 + Z”f( )”}‘(n)([-{) = |fo|2 + Z”f( )||H0nn! < 00,
n=1 n=1
and for any f € F(H) as above and g = (9, g™, ...) € F(H)
(f,9)ran = O+ (S, 9™) yonn!.
n=1

The subspaces F(™(H) are often called the n-particle subspaces, and the

vector = (1,0,0,---) € FO(H) is called the vacuum.

In view of the definition of the Fock space, we will treat any H®™ as a

subspace of F(H), so that any vector f™ € HO" will be identified with the

vector
0,...,0,f™.0,0,...)
in F(H).
We will now construct a special orthonormal basis in F(H). Below, we
will denote by Z°, the set of all infinite sequences of the form (g, a1, ..., 00,0,0,. ..
where ap,a1,...,an € Zy, n € Zy. For a € Z3;, we denote |a| :=
ag +ay + . If (e,)82, is an orthonormal basis of H, then we can con-

struct an orthonormal basis of F(H) as follows

1 % [o1 a o' oo
ea=(m) e e 0ed? 0., a € Ly, (2.30)
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whereif a = (0,0,...), theney, = (1,0,0,...) = Q. Note that e, € FUD(H).

The basis (€q)aczz, is called the basis of occupation numbers.

2.10 Rigging of a Fock space

Let H be a real, separable Hilbert space. For any sequence g = (¢,)%2.q, gn >

1, we define the weighted Fock space F(H,q) as follows:

o0

F(11,9) = @ Falll)gn.

n=0
(Recall the notation introduced in the beginning of Section 2.9). In particu-
lar, if ¢, =1 for all n > 0, F(H,q) = F(H).

Let H, C Hj quasi-nuclearly. Fix any sequence g as above. As we
discussed in Section 2.7, for each n > 2, the inclusion H{™ C HP™ is also
quasi-nuclear. Therefore, for ¢ = (¢,)3%, as above, one can find another

sequence ¢’ = (4,,)%%0, G = qn, such that
f(H-f-) q/) C ‘F.(Hth)

quasi-nuclearly. Indeed, denoted by ||O,||ns the Hilbert-Schmidt norm of
the inclusion operator O, : H®" — H{™. We know that ||O,|lgs < co. Fix

any ¢ = (¢,)%,, ¢, > Gn. Then, clearly, the imbedding operator
O:F(Il.q) = F(lly.q)

is continuous. Then the Hilbert-Schmidt norm of O is equal to

[e o]

q
”0”1275 = Z “On“%{S q_7
n

n=0

which is finite for sufficiently quickly growing (¢,,)%2,, €.g. take

tn = (10nll}159:2™) 7"
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Let us take any Gel’fand triple
® = projlim H, C Hy CindlimH_, = &’
7eT el
It follows from the above that

proj lim F(H,,p) (2.31)

T7€T, q=(qn)$,°=o, 21

is a nuclear space. Indeed, fix any 7 and p as above. Choose first 7/ € T
such that H. C H, quasi-nuclearly and then choose ¢’ = (¢},)%2, ¢/, > qn, SO
that F(H,,q') C F(H,,q) quasi-nuclearly. In fact, the space (2.31) consists
of all finite sequences (f©@, fM), ... 7™ 0,0,...) such that f() € &% i =
0,1,...,n, n € N. We denote this space by Fg,(®). The convergence in
this space means uniform finiteness and coordinate-wise convergence in each
oo,
Thus, we get the Gel’fand triple

Fin(®) C F(Ho) C Fy(P),

where Ff (®) is the dual space of Fg,(®) with respect to the zero space
F(Hy). This space consists of all sequences F = (F©, FM ) where
F(™ € ®©" and the dual pairing between F and f = (f©, fO . f™ 0,0,...
is given by

n

(F’ f)]“-(Ho) = Z(F(z),f(l))HoOnn'

1=0
2.11 Creation, annhilation and neutral oper-

ators

Let us introduce some linear operators in the Fock space which will be heavily

used in our research.
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Let H be a real, separable Hilbert space. Denote by Fs,(H) the subspace
of the Fock space F(H) consisting of all vectors of the form

f = (f(O)’f(l)" v 7f(n))010" M ')’ f(l) 6 ‘F(l)(H)'

We can endow Fg,(H) with a topology such that convergence in Fq,(H)
means uniform finiteness and coordinate-wise convergence in each F®(H)
(this topology is similar to that of R$).

Let f € H. We define a creation operator a®(f) as a linear continuous

operator on Fgn(H) given through
a+(f)g(n) = f®g(n)1 g(n) € F(n)(H), neZ,.

Note that, since

Sym,,,(1 ® Sym,,) = Sym,,,,

we have, for each u(™ € H®"
a*(f) Sym, u™ = Sym,,(f ® u™). (2.32)
Also we can write
(3@, gM, .. g™.0,0,...) Y (0,406 fogV,.... fog™0,.. ).

Next, we define an annihilation operator a~(f) as a linear continuous

operator on Fg,(H) given through

a (f)g® =n(f,9)ug®" ™V, neN,

a~(f)2 = 0. (2.33)

Assume that H = L*(R,p), so that H®" = L2 (R" u®"). Then, (2.33)
implies that for each ¢™ € HO,

(a'(f)g("‘))(a:l,zg, ey Tpo1) =N /R f(:v)g(")(x,xl, To, ..., Tpo1)u(dz).
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Note also that

(0)

n a=(f)y , _ - - n
99,9, .. ,g™.0,0,...) Y (@ ()W, a (£)g?,...,a=(f)g™,0,0,...).

Assume again that H = L%(R,u), and let f be a bounded, measurable
function on R. We define the neutral (also called preservation) operator

a®(f) as a linear continuous operator on Fg,(H) given through
0 -
a (f)Q - 0»
®(f)g" = n(fg) © g®" " € FW(H), (2.34)
where fg denotes the point-wise product of function f and g. (Note that
since f is bounded fg € L*(R,u).)

Remark 2.16. In what follows, we will also use a neutral operator a®(f) for
functions f which are not necessarily bounded. In that case, the domain of
a®(f) must be reduced in order to allow the vector fg in (2.34) to be an
element of L2(R, p). For example, if f € L?(R, ), the function g € L%(R, p)
could be bounded.

Direct calculations show that a=(f) is the restriction to Fg,(H) of the
adjoint operator of a®(f) in F(H):

(@™ (NF, G ry = (F,a” (f)G)ry, F.G € Fan(H).
On the other hand, the neutral operator a°(f) is symmetric in F(H),
@ (f)F, G)riny = (F,a®(H)G)rry, F,G € Fan(H).

Remark 2.17. Note that formulas (2.33) and (2.34) imply that, for f,g1,...,9, €
H

()9 0980 O =(f,0)hg2 0 O g+ (f,92)H01 O gz O - O gn
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+"'+(f»9n)H.‘71®"'@f]n_1, (235)

and

°(f)1000  0g=(/01)000 Og+n0O(f52) 06O Og
+ 10RO Ogn10(fgn). (2.36)
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Chapter 3

Generalized stochastic
processes with independent
values through the projection

spectral theorem

We will now discuss how a generalized stochastic process with independent
values (to be defined below) can be constructed by using the projection spec-
tral theorem (Theorem 2.15).

Assume that for each z € R¢ o(z,ds) is a probability measure on
(R, B(R)) which contains an infinite number of points in its support. We

also assume that for each A € B(R),
R? >z o(z,A) (3.1)

is a measurable mapping. (Note that, if d = 1, o(z,ds) is just a Markov
kernel on (R, B(R)).) Hence, we can define a o-finite measure dz o(z,ds) on

(R¢ x R, B(R? x R)).

42



Let By (R?) denote the collection of all sets A € B(R?) which are bounded.
We will additionally assume that, for each A € By(IR%), there exists for Cy > 0
such that

/ [s|"o(z,ds) < Cin! n €N, (3.2)
R

for all z € A. In particular, for each fixed z € R?, the measure o(z,ds)
satisfies conditions (i), or equivalently condition (ii), of Theorem 2.6.

We fix the Hilbert space
Hy = L*(R* x R,dz o(r,ds)). (3.3)

Recall the nuclear space D = CP(R?) from Example 2.12. Recall the nuclear

space P from Example 2.13. We construct the nuclear space
S =DRP. (3.4)

This space consists of all functions of the form

n

f(zs) =3 stanla),

k=0

where n € N and ag(z),a:(z), - ,a,(z) € D.
Let f, — f asn — oo in %/. Then, as easily seen, there exists N € N

such that
fu(z,s) = Z sfal™(z), neN,
k=0
flz,s) = Z s*ax(z), (3.5)
k=0
where afc") (z),ak(z) € D and
al™(z) — ax(z) in D as n — oo. (3.6)
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Lemma 3.1. The space . is topologically, i.e., densely and continuously,

embedded into
Hy = L*(R* x R, dz o(z,ds)).

Proof. Let us show that .# is a dense subspace of Hy. Equivalently, we have
to prove that the orthogonal compliment to . in Hy is the zero space, i.e.,

S+ ={0}. Let g € S, ie., g € Hy is such that
(g,f)H():O ery
Hence for any a € D and k > 0

/Rd dm/RU(x,ds) g(z,s) a(z) =0

Fix any compact set A in R and let a € D be such that the support of a is
a subset of A. Then,

[ asato ( /R o(z,ds) gl ) Sk) o

/A dz a(z) (/R U(x,ds)g(a:,s)s’“> = 0. (3.7)

We state that the function

hence

A>zm— /a(m, ds) g(z, s) s*
JR

belongs to L2(A, dz). Indeed, by Cauchy’s inequality and (3.2),

/A iz ( /R o(z,ds) g(z, ) sk>2

S/ d:c/a(as,dsl)g(:z,sl)2 /a(x,dsz) 52k

A R R

< CFF (2k)! / afac/(7(3:,(131)9(:10,51)2 < oo.
A R
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Since the set of all functions a € D with support in A is dense in L%(A, dx),

we therefore conclude from (3.7) that, for a.a z € A,
/a(x,ds) glz,s)s* =0, Vk>0. (3.8)
R

Since g € Hy, we get that, for a.a. = € R, g(z,-) € L*(R,o(z,ds)). By
(3.2), the set of all monomials s* is a total set in L?(R, o (z,ds)). Hence, by
(3.8), for dz-a.a. z € A g(z,s) = 0 for o(z,ds)-a.a. s € R. Since A was

arbitrary, we get for dz-a.a. z € R? g(z,s) = 0 for o(z,ds)-a.a. s € R,
Hence, for any © € B(R%) and A € B(R), we have

/9><A dro(z,ds)|g(z,s)| = /edz (/A o(z,ds) |g($,s)|> — 0,

since for a.a. z € R%, [, o(z,ds)|g(z, s)] = 0. Consider the measure
dzo(z,ds)|g(z,s)|

on R¢x R. This measure is equal to zero on all sets of the form © x A. Hence,
it must be the zero measure on (R? x R, B(R¢ x R)), since the collection of
the sets of the form © x A generates the o-algebra B(R? x R) and it is -
stable (see e.g. [5, Ch. I, Theorem 5.4]). Thus, for each ¥ € B(R¢ x R),
Jydzo(z,ds)|g(z,s)| = 0, which implies that |g(z,s)| = 0 for dzo(z,ds)-
a.a. (z,8) € R x R, i.e,, g =0 as an element of Hy.

Let us now prove the continuity of the embedding of % into Hy. Let
fo = fasn — oo in . Recall formulas (3.5) and (3.6). Using the

dominated convergence theorem, we hence conclude that f, — [ in Hy. O
Thus, we get a Gel’fand triple
& C Hyc &,
where %’ is the dual space of .% with respect to the zero space 1.
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Thus, by Section 2.10, we get the Gel’fand triple
Fan(F) C F(Hp) C F ().

Our aim is to construct a special probability measure on D’ using the
projection spectral theorem for a family of commuting self-adjoint operators
(Theorem 2.15).

So, we set ¥ := Fy (), F := F(Hyp), ¥* := F (&), o =D, H =
L*(R¢,dz), @' = D',

For each ¢ € D, we define

Alp) =a*(p® 1) +a (p® 1) + a’(p(x)s), (3.9)

where (p ® 1)(z,s) := p(z). We set D(A(p)) = ¥, and as easily secn
Alp)¥ C 0.
Theorem 3.2. The operators (A(y)),co and the Gel’fand triples ® > H D

® and V' O F D VU satisfy the conditions of Theorem 2.15, so that the

statement of this theorem holds for these operators and Gel’fand triples.

Proof. We check the conditions of Theorem 2.15.
1. This condition is clearly satisfied.
2. We already know that A(p)¥ C ¥, ¢ € ®. For each ¢ € D, the linear
operator
D>f—efeD
is continuous (see Example 2.12 for the description of convergence in D) and
the linear operator

P> frsf(s)eP

is also continuous (see Example 2.13 for the description of convergence in P).

This implies that for each n € N the linear operator
a’(p(z)s) : (D ® P)°™ — (D P)°"
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is continuous. Therefore,
(p®s): U =T

1s continuous.

Next the continuity of
at(p®1): ¥ - ¥ and a (p®1): ¥ > ¥
easily follows from their definition. Thus, the operator
Alp): ¥ — ¥

is continuous.

3. For any linear operators A, B, we denote by [A, B] the commutator of
A, B: [A, B] = AB - BA.

Let H = L2%(R,v) be an L?-space and let F(#H) be the corresponding
Fock space. Then, for any fi, fo € H,

[a®(f1), a*(f2)] =0. (3.10)

Indeed, for each g®™ € F(H),

at(f1)a*(f2)g°" =10 0 ¢°"
=f®fLog°"
=a*(f2)a™(f1)g™".

Taking the adjoint operators in (3.10), we get
[a™(f1), a™(f2)] = 0. (3.11)

Next

[a™(f1), a*(f2)] = (f1, fo)m 1. (3.12)
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Indeed by (2.35),

a”(/1)a*(/2)9%" = a” (1) [2© ¢g®"
= (f1, f2)ug®" +n(f1,9)n L2 © g®mb,

and

at(f2)a” (f1)g®" = aT (f2)(f1,9)n n gD

=n(fu.9)n f20 g®("‘1),

so that

(a™(f)a™(f2) — a*(f2)a™ (f1))d®" = (f1, f2)ug®",

which proves (3.12).
Next

[°(f1),a%(f2)] = 0.
Indeed, by (2.36),

ao(fl)ao(fz)g®" = ao(fl) n (f2g) © g(n—l))
=n(f129) © ¢" 7V +n(n - 1)(f19) © (f29) © 4" 7,
= a’(f2)a’(f1) g™

Next
[a°(f1),a* (f2)] = a* (£ f2). (3.13)
Indeed by (2.36)
(f)a* (£2)9°" = (/1) @ ¢*"

= (fif2) © g®" +nfo® (fig) ® g®(n—1)
= a (1 /2)g%" + a* (f2)a(f1)g®"
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Note that (3.13) means that

a®(1)a*(f2) — a¥(f2)a®(f1) = a* (f1f2),

and taking the adjoint of these operators we get
a™(/1)a’(f2) — a()a”(f2) = a”(fifa).
Thus
[a™(f1), a™(fo)] = a™ (fLfo). (3.14)
By (3.10)-(3.14), taking a function \, we get;
[a* (f1) + a~ (1) + a®(NA), at (fa) + a7 (f2) + ao(Afz)]

= [a* (f1),a* (fo)] + [a* (f1),a” (f2)] + [a* (1), a® (A fo)]

+[a™(f1), et (o)l + [a™ (1), e (f2)] + [a™ (f1), @’ (A f2)]

+ [a®(AA), et (f2)] + [°(Mfr), e (f2)] + [a° (A1), (A f2)]

~(f1, f)ul = a* (A1 f2) + (1, f2)nl

+a”(M1f2) Fat(Afif2) —a” (M f1f2)
—0. (3.15)

Applying formula (3.15) to our case with function A(z, s) = s, we get that

[A(p1), A(p2)] = 0.

4. To prove condition 4, we need to check that for any f,g € U, the

mappings
D> = (a’—(¢®l)f»g)fv (317)
D3¢~ (a®(p(2)s)f, 9)F (3.18)
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are continuous. Indeed, for any f™ € (D ® P)°", g(+V) ¢ (D @ P)On+1)]
(a+((P ® 1)f(n)a9(n+l))HOO(n+1) = ((‘P ®1)0e f(n)ag(n-'-l))HéD(n-i—l)
= ((50 ®1)® f(n)’ g(n+1))H5®("+l)
- / (p(xl)f(n)(x% 82y ¢y T+, 3n+l>g(n+l)(x1: S81y. ..y Tnt1, 3n+1)
(RexR)(n+1)
X dzy - drpyy0(z1,ds1)  0(Tns1, dSn1),

which continuously depends on ¢ € D, by the dominated convergence theo-
rem. This proves continuity of (3.16). Next, we note that the mapping (3.17)

can be written as

(fia™(¢®1)g) = (a"(p® 19, f)
which is continuous in ¢ by the proved above.

Finally, for any f™, g™ € (D ® P)°®" by (2.34),
(ao((p(x>s)f(n), g(n))HéDﬂ
:/ ( ¢(:Ei)si)f(”)(x1,sl,---,:cn,sn)g(”)(xl,sl,--.,xn.sn)
(RExR)™ 43
X dxy - -dzyo(zy,dsy) - 0(Tn, dsn),

and again by the dominated convergence theorem, (3.18) is continuous in
p€eD.

5. We will now prove that Q € F is cyclic for (A(y)),ep. We note that
this fact is not trivial sense the set {¢y ® 1,¢ € D} is not total in Hy. For
each A € By(R?), we denoted by xa the indicator function of A. For each
A € By(RY), we define

A(A) =a*(xa ® 1) +a™(xa ®1) +a’(xa(z)s).
As domain for A(A), we will choose all finite sequences
(fO w1 ™ 0,0,...), neN
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where for each i = 0,1,2,...,n, f®(z1,s1...,1;,5) is a finite sum of func-
tions of the form f(zy, ... 2 f$(sy, ..., ), where fl(i) is a measurable,
bounded, symmetric functions on (R%)* with bounded support and fg(i) is a
symmetric polynomial on R®.

For each A € By(R%)), we can always find a sequence (¢,)%%;, ¢n € D,
such that ¢, — xa(z) a.e. and the sequence (¢,), is uniformly finite (i.e.,
U,.cn SUPP ¢ is bounded) and uniformly bounded.

From here it follows that it suffices to prove that €2 is cyclic for the family

(A(A))aepore) in F(Hp). Denote by F the closed linear span of the vectors
(Q,AAD) - A(A)Q, Ay,..., A, € Bo(RY), n € N}
Thus, we have to prove that £ = F(H,).
Lemma 3.3. For any sets Ay, ..., A; € Bo(R?) which are mutually disjoint,
and any ly,...,l; E N such thatl, +---+ 1, =n,n €N,
(xa, (@)si ™) @+ © (xa,(z)si ™) € F.
Proof. We will prove by induction in n. We have
A(D) = xa® 1,

which is the statement for n = 1. Let us assume that the statement holds up
to n, and let us prove it for n+ 1. So, let 1,...,. L EeN, 1+ -+, =n+1,
and let Aj,...,A; be mutually disjoint. We have to consider two cases.
Case 1: Iy = 1. Sincc A;NA; = foreach j =1,3,...,1,
(xa (#1)1) D (xaa(22)s3 ™) © -+ © (xa,(z:)s: ™)
l,

= A(D1)(Xa,(22)s537) @+ © (xa,(z:)s ")
and by the assumption

(Xas (22)s27 1) @ -+ © (xa,(zi)si ™) € F,
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since lp + I3+ -+, =n.
Case 2: [; > 1. We get

A(A1)(xa, (21)5172) © (Xaq(22)s87) © -+ © (x4, (z:)si ™)

(X1 (22)1) © (xa, (21)57 %) © (xa, (22)55 ™) © -+ © (xa, ()i 7")
(/Al d:c/ o(x,ds;)st™ 2) X (Xa,(22)s2 N @ - O (xa,(zi)s"™h)
+ 08, (@57 © (xaa (@)™ © - © bxan (@5t (3.19)

The left hand side of the equation (3.19) belongs to F, since
(Lh=2)+b+- - +1li=n,

the vector

/ dz/ o(z,ds1)s% 72 x (xa,(22)s27) @+ O (xa, (z:)st ™)
A

belongs to F, since [, +---+1; <n—1, and

(xa: (21)1) © (xa, (21)51 %) © (Xa5 (@2)s771) © -+ © (xa(@i)sy ™

belongs to F, since
1+ (G- 4+ +li=n+1
and we use Case 1. O

Lemma 3.4. F(Hy) coincides with the closed linear span of the functions of

the form
(xau(z1)s? ™) @ - © (xa, (@:)sy ),

where sets Ay, ..., A; € By(R?) are mutually disjoint, and l,,...,l; € N
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Proof. Let us first prove that the closed linear span of the set
{xa(z)s" | A € Bo(R?), n € Zy}

is dense in L2(R? x R,dzo(x,ds)). Indeed, let g € L*(R? x R, dro(z,ds))

and let g be orthogonal to all elements of this set, i.e,,
/ d:c/ o(z,ds)s"g(z,s) =0 forall A € By(z), n€ Zy,.
A R

By the Cauchy inequality,

[ @z [ ote.dlsPlgta )

< (/A dx/lka(x,ds)ls]z")w (/A dz/Ra(x,ds)g(x,s)?) s

by assumption (3.2). Hence, the function
|s|"g(x, s)| € LY(A x R, dz o(z,ds)),

S0
/a(zz,ds)s"g(z,s) € L'(A,dz).
R

For any A’ € By(R?), A’ C A,

/ : /m o(z,ds)s"g(z,5) =0,

hence for dz-a.a. € R¢

Ao(x,ds)s"g(z,s) =0. (3.20)
On the other hand, for dz-a.a. z € R¢

g(z,s) € L*(R, o(z,ds))

and by (3.2), the set of all monomials s, n € Z,, is dense in L*(R, o(z, ds)).

Hence g(xz,ds) = 0 for o(z,ds)-a.a. s € R. Thus, g(x,ds) = 0 for a.a.
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dro(zr,ds)-a.a (z,s) € R? xR, ie, g = 0 as an element of L?(R? x
R,dzo(z,ds)).
Since, the Lebesgue measure dz is non-atomic, we can analogously show

that for each i € N the closed linear span of all functions of the form

(xar (@)t ™) - (xa, (z:)sf ™),

with Ap,...,A; € By(RY), mutually disjoint, and [,...,l; € N coincides
with L2((R? x R)*,dz, o(z;,ds;) - - - dz; o(z;, ds;)). From here, by applying
the symmetrization projection onto L?(R? x R, dzo(z, ds))®* we conclude the

statement. O

By Lemma 3.3 and Lemma 3.4, we get F' = F(H,).
6. Finally, let us prove that each vector from Fg, (%) is analytic for each
operator A(p), ¢ € D.

We start with the following lemma.

Lemma 3.5. Fiz any A € BO(Rd). Then, forn,m € N and any z;,...,2, €
A,

/ (Is1] + [s2| + - + [sn]) "o (z1,ds1) - - - 0(zp, dsp)

|
< cplntmt
n!
Proof. For any z1,%s,...,I,, we have, by (3.2) and using an easy combina-

toric formula,

/ (|s1] + |se| + -+ + |sa)™0(z1,ds1) - - 0 (X, dSn)
m!
= 2. W—ﬁ/ |1 fs2l" - sl
Uyeodn€Za, lHlotlp=m 1% n: JR"

o(z1,ds1) - o(xn,dsy,)

m! / I / l
= Ti7 1 71 S G';U)ds Sol‘?
2 WLl Jp il oendsy) | s

[reodn €2, i+ Hln=m
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R

<cy > Tvz—'m!’ﬁll!lzl L)
Uk €2, i +lp 4oty =m 12T

= CTm! > 1
U oeln €24yl +ln=m
(n 4+ m)!

m!n!
(n+m)!

nl

< CPm!

Remark 3.6. In fact, we will use the following weaker estimate:
/ (|s1] + |s2| + <+ + |sal)"o(21,d81) - - - 0(zp,dsn) < CR(Mm+n)! (3.21)
Rn

for all z{,22,...,2,, € A.

It suffices to prove that each vector of the form
f(m)(l'l,Sh.I'Q, So... ,xm,Sm) = g(m)(xh Zo,. .. yxm)slll (OREERO) Si::v

where g™ € D™ I;,... I, >0, m €N, is analytic for each A(p), ¢ € D.
We will denote n :=1l; + Iy + -+ + {,.

Below we will denote by C' different positive constants whose explicit
values are not essential for us. So, we fix ¢ € D and we have to prove that

there exists C such that
IA™ () f™ || 7o) < C™n!, n €N, (3.22)
Since

1A () f ™ gy = (A" () £, A™(0) f™) 2 (h10)
= (A (@)™, [ x(a0)s
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(3.22) is equivalent to
(A () f™, f(m))}'(Ho) < C™(nh)2. (3.23)
Choosc A € By(R?) such that
el < Cxa,  1g™] < CxE™

Then (3.23) would follow from

(BZ"(A)%/)(m),lb(m)); < C™(n)?, (3.24)
where
B(A) = a*(xa(z)1(s)) + a”(xa(z)1(s)) + a’(xa()]s])
and
U (21, 51,29, 82, -+ Ty Sm) = X (21, T25 - T [51] O -+ O [
We see that

B™(A) = (a*(xa(2)1(s)) + ™ (xa(2)1(s)) + a®(xa(2)Is)) ™",

which is a sum of 3*" terms where every term is a product of 2n operators each
of which is one of the operators a*(xa(z)1(s)), a~(xa(z)1(s)), a®(xa(z)|s])-
Since we have to estimate (B n(A)pm, 'gb(’”)) , we are interested only in those
terms which have the same number of creation and annihilation operators.
Denote this number by k. Thus, we consider a term in which we have a
product (in arbitrary order) of k creation operators at(xa(z)1(s)), k£ anni-
hilation operators a™(xa(z)1(s)) and (2n — 2k) = 2(n — k) neutral operators
a®(xa(z)|s|). Denote such a term by D. Without loss of generality, we

assume that

vol(A) :=/d:c
A
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is > 1 (otherwise we need to extent the set A).
By using (3.21), for any q,7 € N, f € L¥(R?, 0(z;,ds1) ®- - ®0(z,, dsy)),
Iy, ..., T4 € A, by the Cauchy inequality,

/ (|s1] + |s2| + -+ |sq])" (51, 82, ..., Sq)o(z1,ds1)0 (2, dSs) - - - 0 (24, dsg)
%
S (/ (‘811 + |82| + -+ |Sq|)2r0'(.'l'1, dSl)O'(.’L‘Q, dS‘z) ] 0(.’Eq,d5q)>
R™
XN S| c2(®9,0 (21 .d51)8 @0 (2q,dsq))
1
< C¥H(2r 4+ )2 | f 1| L2(Re.0 (21 ds1)@ -0 (2q.ds))
1

S CPH2>r + )2 f 1 2(Re 0 Cor sy o0 (2 .dse))

< CT'H’(T + q)!”f”L?(]Rq,a(rl,d51)®~~-®t7(-’rqusq))’
(3.25)

where we used the inequality:

@)'=1-2-3-4..-(21—1)-(2])
<2-2-4-4---(20)(2)
=(2-4-6--(20))?
=(21-2-3---1)?
=222, leN.

Therefore,
(D™ M) 2 < Crml(m+1)(m+2) - (m+k)(m+k+2(n—k))! (3.26)

where the factor m! comes from the fact that (™ belongs to F™ L?(R x
R,dz o(z,ds)), the factor (m + 1)(m + 2)---(m + k) comes from the fact
that we have k annihilation operators, and the factor (m + k + 2(n — k))!
comes from the estimate (3.25) and the fact that we have 2(n — k) neutral

operators.
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Hence, by (3.26)

(Dy™, ™)z < C™(m + k) ((m + k) + 2(n — k))!
< CM2(m+k) +2(n — k))!
= C™(2m + 2n)!
< C™(2n)!

< Cn(nh)?,
where we used that, for a fixed m,
(2n 4+ 2m)! < C™(2n).
From here the estimate (3.24) follows. O

Let us find the Fourier transform of the spectral measure u of the family

(A(¥))pep in F(Hop) from Theorem 3.2. o(z,ds).

Theorem 3.7. The spectral measure p of the family of operators (A(¢)),ep
in F(Iy), which exists due to Theorem 3.2, has the following Fourier trans-

form:
/, ) u(dw) = exp [— %/md dzo(z, {0})p(z)? (3.27)
1 ip(xT)s ; '
+ /Rd dx/m* a(x,ds)?[e s —jp(z)s - 1]]’
where R* := R\ {0}.

Proof. We will divide the proof into several steps.

Step 1. Formula (3.27) is evidently equivalent to the following formula:

’/7;1 ey (dw) = exp [— % /Rd dz o(z, {0})p(z)*?

' ] (3.28)
+/ dx/ a(:z:,ds)—z[ei“"(x)s” —ip(z)st — 1]],
Re R* S
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where £ € D and ¢t € R. Fix any ¢ € D. Consider the following measurable

mapping:
R? x R* 3 (z,5) = ¢(z)s € R. (3.29)

Let &(dz) be the image of the measure dzo(x,ds); under the mapping
(3.29). Let also

a :=/ dzo(z, {0})e(z)%
Re
Then, the right hand side of the formula (3.28) can be written in the form
1 1\ 2 itz :
exp [—a(zt) + | &(dz)[e"* — itz — 1]]
2 R
Since the function e"? — itz — 1 vanishes when z = 0, we continue
1 £\ 2 itz :
= exp {—a(zt) + [ &(dz)[e™* — itz — 1]] (3.30)
2 .
Let us check that £(dz) is a Lévy measure, i.e., it satisfies
/ (22 A 1)€(dz) < oo.
R‘

So, let us first show that

/ 22¢(dz) < co.
J[-1,1\{0}

Indeed

/ 2(dz) < / 2¢(dz)
(-1,1\{0} R

= /Rd dz /}R'cx(a:,ds)s—lz(sgp(x))2
_ /R dz o(z)? /Wo(x,ds) < 0.
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Next,

1
/X{|z|>1} 2)€(dz) /Rd dl/ o (2, ds) 5 X{lse(a)|21} (5, )

/ dx/ o(z,ds) 2X{|q<p(r)|>1}(s z)
supp R

/Supp‘pdx/n; o(z,ds) 2X{|s|_m Llw(y)l}(s,x)

sup |¢(y)| o(z,ds) < +o0.
upp ¥ R

y€ERd

=

IA

Therefore, the expression in (3.30) is the Fourier transform of an infinitely
divisible random variable (see e.g. [4]). In particular, the right hand side
of formula (3.28), considered as a function of ¢, is the Fourier transform of
a random variable. We state the Lapace transform of an infinite divisible
random variable can be extended to a function of complex variable which is
analytic in a neighborhood of zero.

Indeed, we first note that the right hand side of (3.28) can be written as

exp | [ daola (0ot
/Rdd:r/ xds)z‘p n22t)] (3.31)

- L) s3]
/Rdd:r/mta(x,ds); _ < 00

for |t| < Csupp(s). Hence, (3.31) can be extended to an analytic function

By (3.2),

2 .
(s € C1 2] < Cu} 3 5 030 | [ doole, (0o(o)
Re

oozn
+ —/gox"d:c/a:c,dss"_z].
> e [ otwa

On the other hand, by (3.22),
[ el utaw) < o7
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Hence, by Theorem 2.6 and Remark 2.7, if we show that equality (3.28) holds
for all ¢t from a neighborhood of zero in R, then it will follow that equality
(3.28) holds for all ¢ € R, and so (3.27) holds.

Step 2. For each z € R?, we define a measure v(z,ds) on R* by
) — 1
v(z,ds) = —;ia(x,ds).
We also define a measure »(z,ds) on R by
»(z,ds) = o(z,{0})do(ds) + v(z,ds). (3.32)

Here Jy(ds) is the Dirac measure at 0. Note that the measure o(z, {0})do(ds)
is concentrated at 0, while the measure v(z, ds) is concentrated on R*. Define

a Hilbert space
Ho := L*(R? x R, dz »(z, ds)). (3.33)

We construct a unitary isomorphism

U : Hy — Ho (3.34)

U (e.s) = f(x,0) ifs=0, (3.35)

J(z,8)s if s#0.

We naturally extend this isomorphism to a unitary operator
U: F(Hy) = F(Ho). (3.36)

We will use the same notation for operators in F(Hy) and their images under
U, i.e. operators in F(Hy). An easy calculation shows that an operator A(p)

in F(Ho) has the form

A(p) = a* (p(z)s)+a (p(z)s)+a’(p(z)s)+a* ((z)x (0} (5))+a~ (0(2)x{0) (5))-
(3.37)
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The initial domain of this operator (before closure) is U Fg, ().

Step 3. Fix any Ay,..., A, € By(R?), disjoint. Denote A = [J_, A;.
Fix any Ay,...,A,,— disjoint, bounded, measurable subsets of R*, and set
A := {0}. (We consider a metric on R* such that the distance from any
point in R* to 0 (in the limiting sense) is +00).

Consider the functions
€i; = Xaxa,, 1=1,...,n,j=0,1,...,m (3.38)

in Hy. These functions are evidently orthogonal. Let R be the subspace of H,
which is the closed linear span of the functions (3.38). Thus, (ei;)i=1,...n, j=01,...m
form an orthogonal basis in R. Consider the symmetric Fock space over R,

i.e., F(R). An orthogonal basis of this space is formed by the vectors
e OefM O @B = €. anm) (3.39)

where o;; € Z,. Denote by G(R) the linear span of the vectors (3.39).

Consider operators

at(e;;) +a(e;) +a’(ey), if j#0,
4y = ( J) ( J) ( J) J# (3.40)
a*(eio) +a” (ei), if j=0

in F(R) with domain G(R). We have

a°(€4)€(a10,anm) = Uij€(aro,anm) i J # O, (3.41)
a” (eij)e(alo,‘..,anm) = aij/ dl'/ %(.’L‘, dS) e(mo,...,a,-j—l,...,anm)~
i Aj

Denote by F;; the closed subspace of F(R) in which vectors (ega”)

aij €Ly

form an orthogonal basis. Consider the tensor product of Hilbert spaces

Flo® F11 Q- & Fprm.
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By the definition of symmetric tensor product, we may construct a unitary
isomorphism

S:F1o®F11 Q- & Fpm — F(R)
by setting
SefT @ e ® - @ el = el @ e @ @ e8onm,
Then it follows from (3.40) and (3.41) that each operator
S7'a;;S
has the form

1®"'®Aij®"‘®1)

where the operator A;; (staying at the ij-th place) is the operator a,; acting
in F;; with domain which is the linear span of the vectors (ega”)m ez, As
easily seen from our previous considerations, each operator A;; is essentially
self-adjoint in F;;.

By [7, Chapter 3], we can construct the Fourier transform of the finite
family of operators (Ai;)i=1,..n,j=01,..m in the Hilbert space Fio® F1:1 ®---®

Fum- Its spectral measure, denoted by 7, is the product measure

Y=7%0®711® @ Ynm

on R™™+1D  where 7i; is the spectral measure of the operator A;; in F;; at
the vacuum state ego. By formula (3.41), we have
Aije?;‘% = 6?}(0““) + auef’j"” + Oéij/ d:z:/A v(z,ds) e;e;(o‘“"_l)
i i
if j #£ 0, and
AeB0 = 8@t 4 oo [ dro(x, {0})ed 0,
A,
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From here we immediately find that v;; is the centered Poisson measure with
parameter [, dz [ A, v(z,ds) if j # 0, and the Gaussian measure with mean
0 and variance [, dzo(z,{0}) if j = O (see [15, Chap. 1, Sec. 4]). Hence,

we have, for rig,...7wm € R,
/ e'i(leT'lo+<-~+ynm7'nm)d,)/10(ylo) e d,-ynm(ynrn)
Rn(m+1)

= exp [ ;( dro(z, {0})r¥ +- + /An dro(z, {0})""7210>

/ dz/ v(z,ds)(e™ —iry — 1)
A1 Ay
/ dx/ v(z,ds) (™™ — irpm — 1)]

—exp{ 2/ dz oz, {0})(xa,(2)r10 + - + XAn (T)Tn0)?
/Rdd:r/ v(z,ds)(e @) —if(z,s) - 1)]

(3.42)

where
f(x’ s) = XAII(:E)XAI (S)Tll +- 4 XAnm('r)XAm (s)rnm

Step 4. We define, for a function g(z, s), an operator
B(g) == a*(g) + a7 (9) + a’(g(z, s)xr-(s))
in F(H,) (on a proper domain). We now set

9(2,) = xm (@)xg0) ()0 + - + X (2)x10} (8)7n0 (3.43)

+ XAI( )XAJ( )TU + 0+ XA (m)XAm(S)rnm~

By Step 3 and estimate (3.24), for any z € C with |z| sufficiently small, we

have

Z 2"(B(9)" 2 Q) r ) _ exp E /Rd dz o(z,{0})2%g(x,0)?

n!

n=0

+/ d:c/ v(x,ds)(e?9®9) — zg(z,s) — 1)].
R¢  JR*

64



Step 5. Let us fix sets Aj,...,A, as above, let r1,...,7, € R. Set

W(x) = xa, ()1 + -+ xa, (T)70. (3.44)

We now approximate the function

f(z,8) = P(x)x10)(8) + P()s

point-wise by function as in (3.43). Then, at least informally, we get

5 BN Do _exp[ 22 / o(z, {0})()*dz

n=0
/ dr/ v(z,ds)(e* @5 — z4h(z)s — 1)]
R4

—exp[ 2'/ o(z, {0})(z)dz

z,ds)
+/ d:c/ —T;—9(62¢<I>3—zw(x)z—1)J.
R4 R* S

(3.45)

Let us justify this limit. We can assume that the functions gx(z,s) of the

form (3.43) by which we approximate the function f(z,s) satisfy

|9k (z, 8)| < Cxalz)(Is] + X103 (), (3.46)

for all £k € N, where C > 0.
We have, for x € R? s € R*, and z € C,

L& [l lgi(z, )" =, |zfnCrjs|-?
ED3 g2 9 @y 3o (3.47)

|
s n

Hence, by (3.2), (3.47), and the dominated convergence theorem,

/ d:r/ o(z,ds)s 2 (e* %) — 2 gy (x,8) = 1)
R¢  JRe
— d:c/ o(z,ds)s 2 (e*¥@)* — z4)(z)s — 1),
Rx

R4
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as k — oo, for z from a neighborhood of zero in C. Also by (3.46) and

dominated convergence theorem

/da:a(z,{O})gk(:r,O)z—)/ dzo(z, {0})¢(z)2.
R¢ R¢

Hence, for z from a neighborhood of zero in C,
22
exp [— / dz o(z, {0})ge(z, 0)?
2 Jpe
+/ dm/ o(z,ds) s72(e*%@%) — z gi(z,5) — 1)]
R¢ R*
2
s exp [— / de o(z, {0})¥(z)?
2 Jpa

+/ d:z/ o(z,ds) s72(e*¥@)5 — zqp(z)s — 1)] .
Re R
Next, let us show that

(3.48)

i Zn(B(gk)nQ) Q)f('Ho) - i zn(A(w)nQ’ Q)}—('Ho)
n! n!
n=0 n=0
as k — oo for z from a neighborhood of zero in C. We first note, by the

dominated convergence theorem and (3.46), that for a fixed n € N,

(B(gr)"™S% Q) Fro) = (A(W)"2, Q) F(0)

as k — oo. Furthermore, as follows from (3.24), there exists a constant C' > 0
such that
I(B(gk)nﬂ’ﬂ)}'(%o)l < C"n! (349)

for all k € N. Therefore, (3.48) holds by the dominated convergence theorem.

Hence, we conclude that, for some ¢ > 0, we have

S ZAW 0 Dy _ [5 /R dzo(z, {0})u(z,07

n!

n=0

+ /Rd dz /m- o(z,ds) s72(e¥®* — z4p(z)s — 1)
(3.50)
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for all z € C, |z| < €. As easily seen from the above considerations, ¢ depends
only on A = |, A; and on sup,¢, [¢¥(x)| = maxi=y,._ . |ri.

Step 6. We fix any ¢ € D. Let A be the support of the function .
We will now approximate ¢ by functions ¢ as in (3.44). For each k, we will
denote corresponding A-sets by Agk), Agk), . Agi , so that [J2%, An, = A. We
will also assume that sup,¢, |¥k(z)] < C for all £ € N. By the dominated

convergence theorem, we get

2

o |5 [ daola (0wile)
+ /md dx /m- o(z,ds) s72(e*¥:®® — 24y (x)s — 1)]
— exp {zj / dr o (z, {0}) ¢(z)?

./Rd da:/ o(z,ds) s72(e*?®)* — 2 p(z)s — 1)]

for z € C from a neighborhood of zero. So, to prove the theorem, it remains

to show that, for z € C from a neighborhood of zero,

i (A wk) Q Q) 7 (m0) . i 2*(A(p)", Q) Fao)

m (3.51)

n=0 n=0

Similarly to (3.49), we have, for all k£ € R,

[(A(Wr)"Q, Q) rap)| < C™ !

Hence, by the dominated convergence theorem, formula (3.51) would follow

if we show that, for each n € N

(A(YK)™ 2, Q) Fr0) = (Al0) "L D) rag)  as k — o0, (3.52)
which again follows by the dominated convergence theorem. O

We will now summarize the main results of this chapter.
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Corollary 3.8. Assume that condition (3.2) is satisfied. Let a Hilbert space
Hy be given by (3.3), and let a nuclear space % is given by (3.4). For each
w € D, let A(yp) be the Hermitian operator on F(Hy) defined by (3.9), with
domain Fgn(). Then these operators are essentially selfadjoint on Fga(5)
and their closures are denoted by (A(p), D(A(p))). The latter selfadjoint
operators commute in the sense of their resolutions of the identity. Further-
more, there erists a unique probability measure v on (D',C(D’)) such that

the linear operator I : F(Hy) — L*(D', ) given through I =1 and

I(A(1) -+ Alpn)Q) = I(A(1) -+ - A(0n)R)
= (p1,w) - {pn,w) € L¥(D', )

is unitary. Under the action of I, each operator (A(p), D(A(¢))), ¢ € D goes
over into the operator of multiplication by (w,¢) in L3(D’',u). The Fourier

transform of the measure u is given by (3.27).

Denote by By(R?) the linear space of all measurable bounded, real-valued
functions on R¢. For each [ € By(R%), we may define a random variable
(f,w) as an L%*(D', p)-limit of functions (p,,w) with ¢, € D, n € N, such
that ¢, — f in L?(R?,dz). The Fourier transform [, €'/} u(dw) is clearly
given by the right hand side of (3.27) in which ¢ is replaced by f.

Let Ay, ..., A, € Bp(RY), mutually disjoint. Then for any #,...,t, € R,
by (3.27),

/,eXP [i(t1(xars W)+ - Fta(Xn, )] p(dw) = H/D expliti (xa,, w)] p(dw).

So, the random variables (xa,,w),.-.,{xa,,w) are independent. Thus, the
probability measure p is a generalized stochastic process with independent

values, see [19].
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Chapter 4

Nualart—Schoutens

decomposition

The aim of this chapter is to generalize the Naulart-Schoutens chaotic de-
composition of the L2-space of a Lévy process ( [36], see also [31,40]) to
the case of a rather general generalized stochastic process with independent
values.

We start this chapter with a discussion of an orthogonal decomposition
of a general Fock space. This decomposition generalizes, in some sense, the
well-known basis of occupation numbers in the Fock space, see Section 2.9.

Let H be a real seperable Hilbert space. Let (Hx)z, be a sequence of

closed subspaces of H such that

Let n > 2. Then clearly
Hen — (@Hk,> ® (@sz) .. @ (@Hkn)
= kn=0

— @ Hy @H, ® - ® Hg, . (4.1)

(k1k2,...kn)EZT
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Denote by Sym,, the orthogonal projection of H®" onto H®". Recall that,
for any f13f2a"'»fn €H

n!Sym, f1® - Q f, = Z Jo) @+ ® fon) (4.2)
G'ESn

For each (ki,k2,...,kn) € Z%, let Hy, © Hy, ©® -+ © Hy, denote the Hilbert
space Sym,,(Hy, ® Hy, ® - - - ® Hy, ), i.e., the space of all Sym, -projections of
elements of Hy, ® Hy, ® - - @ Hy,.

Assume that (ki, ks, ..., kn) € Z7% |, (l1,l3,...,ln) € Z7 are such that

there exists a permutation o € S, such that
(k1. k2, ... kn) = (o) lo@)s - 5 lony)- (4.3)
Then
Hy, OHp®---OHy, =H,0H,® -0 H,. (4.4)
Indeed, take any f; € Hy,, fo € I1,,,..., fn € H,. Then
HOLO O f=[ 0O fo@  C fom (4.5)

We have f,; € H,
Hy, &, & O}, . Since the set of all vectors of the form [1® 2O - O [,

siy = Hi,. Therefore, the vector in (4.5) belongs to

with f; € H, is total in H;, © H,, ©® --- © H,,, we therefore conclude that
Hh@Hl'Z@”'@HlnCHkIQHkQG"'GHkn

By inverting the argument, we obtain the inverse conclusion, and so formula
(4.4) holds.

If no permutation o € S, exists which satisfies (4.3), then

Hy, OH,® - - OH, L H,OH,® - O H,. (4.6)
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Indeed, take any f; € Hy,, g: € H,,1=1,2,...,n. Then

(fl®f2®"’®fm91®92®"'®9n)H®n

= (Symn(f1®fz®--'®fn),gl®gz®---®gn)

1 n
= S 1o 9

' 0E€S, i=1
1 n
= Z H(fi,gg(i))ﬁ =0.
" 0ES, i=1

Since the vectors of the form f1® fo©-- O f, with f; € H, and g1©g2:0- - -Ogn,

H®n

with g; € H, form a total set in Hy, O H, ®---OHy, and H, 0O H,©---OHy,,
respectively, we get (4.6).

By (4.1), the closed linear span of the spaces Hy, ® Hi, ©® -+ - © Hy, with
(k1, ko, ... kn) € Z7} coincides with H®". Hence, by (4.4) and (4.6), we get

the orthogonal decomposition

H"= @ HE®OHP" @ HP™ 0. (4.7)

a€ZP, |al=n

Hence, by (4.7) and the definition of F(/7), we get the following

Lemma 4.1. We have the orthogonal decomposition of the symmetric Fock

space F(H):

F(H)= @ H™ o HP* o HE™ - (|al). (4.8)

an‘f_o

Next, we have:

Lemma 4.2. Let o € Z%, |a| > 2. Then

Sym,, : (H[?"“’ QHX Q HY* @ - - ~)a0!a1!a2! e

= (H*®* O HP" 0 HP** © -+ ) |al! (4.9)
1S a unitary operator.
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Proof. We start the proof with the following well-known observation (see e.g.
Proposition 2.4 in [14], where this statement is shown in a much more general

setting). Let k,l > 1, n:= k +[. Then we have:
Sym,, = Sym,,(Sym,, ® Sym,).
Hence, for any o € Z, |a| = n, we get
Sym,, = Sym, (Sym,, & Sym, ® Sym,, ®---).
Therefore, we have the following equality of subspaces of H®" :

HP® @ HP® 0 HP* @ - -
= Sym, (HE* @ H¥*" @ HY* ® - )
= Symn (Symao R Syrna1 ® Syrna2 R--- ) (Hé@ao ® H{@ou ® Hé&tlz ®--- )
= Sym, (H§™ ® 1P & H§™ @ ).

This shows that the image of the operator Sym,, in (4.9) is the whole space

HP®OHP* ©HP**®- - n!. Hence, we only need to prove that this operator

is an isometry.

Fix any f;,g; € H; with i € Z, and any o € Z3;. Then, by (4.2)

Hon

(Symn( 6@010 ®f{®a1 ®f5®02 ®),Symn (9830'0 ®gi®al ®g§®0‘2 ®)) n!

= (Sym, (8= @ fFm @ ff7 ) gf 0P @gf ) nl

aq

= Z (fo»%)ioo- Z (fl»fh)Hl"'

00€ESaq 01€8a,
_ Qag Qoo | ®a; Qo) 1.,
=\Jo 9 ) o Ov’0~( 1 91 ) oy H1 7
HO ag Hl @]
— ®ao® ®a1® ®0<o® ®a1® ) anlaq! -
—J P e 0_a1' . .
( 0 fl ng gl HOG)QO®H§D011®'"

(4.10)
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Since the set of all vectors of the form f®* with f; € H; is a total subset
of H>™, we conclude from (4.10) that the operator in (4.9) is indeed an

isometry. (]
By Lemmas 4.1 and 4.2, we get

Lemma 4.3. The symmetrization operator
Sym: @ (HS™ ® HY™ @ H9™ ® - )aglon!as! -+ — F(H)
a€ZP,

18 unitary.

Remark 4.4. Let us assume that each Hilbert space Hj is one-dimensional
and in each Hy we fix a vector e € Hy such that ||ex|| = 1. Thus, (ex)32, is

an orthonormal basis of /. By Lemma 4.3, the set of the vectors

1
((050!01!062! ) 2B e 0e? 0 )
a€Zy,

is an orthonormal basis of F(H), which is a basis of occupation numbers.
Now, we want to apply the general result about the orthogonal decomposi-
tion of the Fock space to the case of F(H), where H = L}(R¢xR, dz o(z,ds))
is as in Chapter 3. (We have dropped the lower index 0 in Hy).
We denote by (g™ (z, s))n>0 the sequence of monic polynomials which are
orthogonal with respect to the measure o(z,ds). By Section 2.2, we have the

following recursive formula:

sq™(z,s) = ¢V (z, s) + bn(:z:)q(")(x, s)+ an(:z:)q("'l)(x, 5), n>1,

sq9(z,s) = M (z, s) + bo().
(4.11)

From now on, we will assume that the following condition is satisfied:
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(A) For each n € N, the function a,(z) from (4.11) is locally bounded on
RY, i.e., for each A € By(R?), sup,¢, an(z) < 0.

Denote by £ the linear space of all functions on R? x R which have the

form

f(z,5) =Y or(2)q®(z,5), (4.12)
k=0

where n € N, p € D, k = 0,1,...,n, and each ¢*)(z,) is the k-th order
monic orthogonal polynomial on R with respect to the measure o(z,ds),

r € R Analogously to Lemma 3.1, we get the following

Lemma 4.5. The space £ is densely embedded into
H = I*(R% x R,dz o(r,ds)).

Proof. Let f(z,s) = o(z)¢®(z,s), where ¢ € D. Let us show that f € H.
Denote A := supp(a). We have

/Rd '/ma(z,ds)f(m,s)Z < C'/A dm/RU(fE,ds) 7% (z, s)2. (4.13)

If £ = 0, then ¢{©(z,s) = 1, and the right hand side of (4.13) is evidently
finite. By the theory of orthogonal polynomials (see e.g. [15] or [6])

/E;a(m,d.s‘g) g (z,5)? = ay(x)ag(x) - ar(x), k> 1. (4.14)

Hence we continue (4.13)

< C’/A d:r/Ra(x,ds)al(x)ag(x) cap(z) < 00

by (A). Thus, £ C H.
We now have to show that £ is a dense subset of H. Let g € H be such
that

(9. /)u=0 Vjek
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Hence for any ¢ € D and k > 0

/ dr / o(v,ds) g(z, s) p(z) ¢ (z,5) = 0.
R¢  JR

Fix any compact set A in R? and let € D be such that the support of ¢ is

a subset of A. Then,

/R L4z p(z) ( /R o(z,ds) g(z, s) q(k>(x,3)> ~0

/A dz ¢(z) </1R o(z,ds) g(a:,s)q(k)(z,s)> =0. (4.15)

We state that the function

Hence

A>z— / o(z,ds) g(z,s) ¢¥ (z, s)
R

belongs to L?(A, dz). Indeed, if k = 0, then ¢(¥(z, s) = 1 and this statement
evidently follows from Cauchy’s inequality. Assume that k > 1. Then by
Cauchy’s inequality, (4.13), and condition (A),

/A dz (/};a(a:,ds)g(a:,s) q(k)(:z:,s))2

7 | o(z,ds1) g(z,s1)? | oz, dsy) q® (z, s0)?
s/Ad./R(,dm >/R<d>q( )
=/dx/a(:c,ds)g(.r,s)2a1(17)a2($)'"ak(x)

A R

< (ﬁsupa,(m)) AdrAa(m,ds)g(m,s)z < 0.

=1 z€A
Since the set of all functions ¢ € D with support in A is dense in L2(A, dz),

we therefore conclude from (4.15) that, for dz-a.a z € A,
/0(.1:, ds) g(z,s) ¢®(z,5) =0, Vk>0. (4.16)
R

Since g € H, we get that, for dz-a.a. z € R?, g(z,-) € L*(R,o(x,ds)). Since

{q®(z, )}, form an orthogonal basis in L?(R, o (x, ds)), we conclude from
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(4.16) that for dz-a.a. z € R? g(z, s) = 0 for o(z,ds)-a.a. s € R. From here,
analogously to the proof of Lemma 3.1, we get that g = 0 as an element of

H. Hence £ is indeed dense in H. O

For each n € Z,, we define

L4 = {ga(z,5) = fulx) d"(,5) | fo € D}.

We have £, C £, and the linear span of the £, spaces coincides with £. For
any g,(z,8) = [n(z)¢™(z,5) € £, and gn(z,5) = fm(z)¢™(z,8) € Lpn»

n,m € Z,, we have
(Gns9o)s = [ 90(2:5) gm(a, )z o,
R4 xR

(4.17)
= [ 1@) @) [ 4906z 5) oz, ds) ) o

Hence, if n # m, then
(gn»gm)H = 07

which implies that the linear spaces {£,}%, are mutually orthogonal in H.

Denote by H, the closure of £, in H. Then by Lemma 4.5,

H:éHn.

n=0

By (4.17), setting n = m, we get
lanll, = [ J2@) ([ ¢P(z,5)?o(x,ds) )dz
! /‘R'* (/R ) (4.18)
= [ fi)on(ao)

where
pn(dz) = (/ q™(z,s)? a(z,ds))dr
R
is a measure on (R%, B(R%)). Consider a linear operator
D> [nrm (Jn/n) (fE, s) = fn(x)q(n)(xv S) € L.
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The image of J, is clearly the whole £,. Now, £, is dense in H,,, while D is
evidently dense in L2(R¢, p,(dz)). By (4.18), for each f, € D,

”Jnfn“Hn = an“LZ(Rd.Pn(dx))'

Therefore, we can extend the operator J, by continuity to a unitary operator

Jp : L3R, p,(dz)) — H,. (4.19)

In particular,

Hp = {fn(z) ¢ (2, 5) | fn € L*(R?, pn(dz))} .
Therefore, for each k > 2
HE = { [P, 20 g (@) 0 (e 50)|
f19 € I2(RY, pa(dx))® = L2((RYF, pu(dzr) -+« pu(dee)) }.
Since the operator J, in (4.19) is unitary, we get that the operator
IS : LR, py(dr))®* — HE*

is also unitary. The restriction of J& to L2(RY, p,(dz))®* is a unitary oper-

ator

JEF . LA (RY, pn(dz))®* — HOF. (4.20)

Indeed, take any [, € L?(R¢, p,(dz)). Then [ € L?(R?, p,(dz))®* and the
set of all such vectors is total in L?*(R¢, p,(dz))®*. Now, by the definition of

J®k we get
J?kf;zg’k = (Jn fn)®k € Hv?kv

and furthermore the set of all vectors of the form (J, f,)®* is total in HO*,

Hence, the statement follows.
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For any f{¥ € L2(R¢, pa(dx))®*,

(Jr?kfy(y,k))(rl) 81y s Tk, Sk) = f7(1k)(1"17 v 1xk)q(n)(x17 31) e q(n)(l'k, Sk)'
Hence, the unitary operator (4.20) acts as follows

LQ(]Rd,pn(duv))o'c > f,(Lk)(xl, Ce Zg)

B (JE ) @1, s1, 0wk, sk) = [ (1, 2k)g™ (@0, 81) - g (k).
Thus, each function g,(ik) € H®* has a representation
g (1,81, zky sk) = (2, zk) g™ (@, 81) - 0™ (i, sk),

k k k
where £ € L*(R?, p,(dz))®* and |g{ )HH,?" = || £ )||L2(1Rd,pn(dx))®k~

For each o € ZY,, we consider the Hilbert space
L5 ((RY) := L2(R?, po(dz))®* ® L*(R?, p1(dz))®* @ -+ . (4.21)
We now define a unitary operator
Jo t LE((RY) = [1§% 0 HP™ - -+,

where
Jo = (‘)X’C'O@J{@al@... .
We evidently have, for each f, € L2((R?)l),
(Ja fa) (.Tl, 81,722,825+ -, L|a|, 3|a|)
= fn(xl»x% BRI x|a|)q(0)(x1, 31) e q(O)(‘ram 300)
X q(l)(xao-i-l, 3a0+1) e q(l)(mao+apsao+m) te

For each a € ZY,,, we define a Hilbert space
Go = L2 (R aglery! - -
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The J, is evidently a unitary operator
Jo: Ga = (HE® @ HP* @ - agloy! -+ .

Denote

g:= @ ga-

a€ZP,

Hence, we can construct a unitary operator

J:G— P (HE*® @ HP* & - )aglay! - --

a€ZP,

by setting

J = @ Ja

a€ZP,

By Lemma 4.3, we get a unitary operator
R:G— F(H),

by setting
R :=SymJ.

Thus, by Theorem 3.2, we get

Theorem 4.6. Let condition (A) be satisfied. We have a unitary isomor-

phism
K:G— L}D,p

gwen by K := IR, where the unitary operator I : F(H) — L*(D', u) is from
Theorem 3.2.

We will now give an interpretation of the unitary isomorphism X in terms

of multiple stochastic integrals. Since the results below will not be used
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anywhere else in this dissertation, we will present only a sketch of the proof,
omitting some technical details.

Let us recall that the operators A(y) in F(H) are given by

Alp) = a* (p(z)1(s)) + a°(p(z) 5) + a” ((2)1(s)).

Now, for each k € N, we define operators

ABN(p) = a* (p(x) 1) + a’(p(2) s*) + a™ (p(2) s*71).

In particular, AM(p) = A(p). We state that, after the closure, the opera-
tor A®) () go over, under the unitary isomorphism I, into the operator of
multiplication by I(p(z) s*71).

Let us explain this result in the case where p(z) = xa(z), where A =
(ay,by) X+ -+ x (ag, bg) (recall d is the dimension of the underlying space). For

each n € N, let us consider a partition
A LUAU---UA, =A

of the set A into mutually disjoint sets A;, As, ..., A, such that

/d:v=l/d:z:, 1=12,...,n,
A, nJja

b1 —a:

for example

b, —
(i—1), ay + 21—

A; = (a + i) X (ag, b2) X «++ X (ag, ba).

Let us first consider the case where £k = 2. We state that, in the Fock space

F(L}(R? x R,dz o(z,ds))),

xa(z)s = nlgEo [Xn: AW (xa )20 — /Ad:v Q} : (4.22)
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We denote by P, the orthogonal projection of the symmetric Fock space onto

its n-particle subspace. Then

PQ(ZA“) Xa,)’0) = Zml(x

and

n
| Z(XAi(33)1(5))®2”i?(mdxm.dza(z,ds))m

= Z I(xa.(* "’))®2HL2 R xR,dz o(z,ds))®2

=§ /iala:/ml(s)a(af,ds))2
=g(/&dx)2
= (/Ad:c%>2n
=(/Adx)2%—>0 as n — 00.

Next

P, (ZA(I)(XA )20) = za xa.(2)s)a* (xa,(2) 1(s))

i=1

= ZXA,-(CE)S = xa(z)s,

and

Po( - AD(xa)?0) = Za xa.(@) 1(s))a* (xa, (z) 1(s))9
_Z / dz /R o(z, ds) 1(s)Q2

=/dch,
A

81
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Next, we state that, for each element from a proper domain,
A®(xa) = lim [Z AN (xa)? - / dz 1], (4.23)
n—o0 =1 A

where the limit is understood in the strong sense in the Fock space F(H).
Clearly, formula (4.22) is a special case of (4.23) when we apply this equality
to the vacuum vector Q. It is sufficient to check (4.23) on any vector f*) €
L2(R? x R, dzx o(z, ds))®*,

Analogously to the above, we get:

Z at(xa.(z)1(s))at (xa,(z) 1(s)) f®

= (2 (@ 16)™) 059 50 asn oo

i=1

Next, let us show that

Za xa, (2)1(s))a’(xa,(z)s) f*¥) =0 asn — oco.

It is easy to see that it suffices to check this statement for £k = 1 and

fO(z,s) = g(zx)s'. Then
I Z (Xa:(2) 1(s))a (XAi(x)S)Q( Sl||%2(mdxk,dm(z,ds))®2
= |l Z a* (xa.(2) 1()) (xa. (2) 9(z) 8" )| 2(exm o o(a.ds))o?

= || Z(XAi(I)l(S)) ® (xa.(z) 9(z) Hl)”/, (RExR,dz o(z,ds))O2

n

= [18ymy (0 (xa,(2) 105) ® (xa,(2) 9(2) 5*1) ) ik de et

i=1
< ” Z(XA;(;U) 1(5)) X (XA1 (LL‘) g(l‘) 'SH-I)”iz(]Rdx]R,dz:a(:r:,ds))®2
= Z (xa.(z) 1(‘9))II%Z(Rde,d:ccr(x,ds)) [l(xa:(z) g(z) Sl+l)“iz(Rde,dma(z‘ds))
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= ;/ dm/ o(z,ds) 1(s / dz'g(z')? /R(s')2(l+1)g(x',ds')

SCZ/‘d:U- ld:v’g(:c’)2
—/d:c Z dacg:r:)2

=~—C/dm~/dx'g(x’)2—>0 asn — oo.
noJa A

Next, we state that

(4.24)

Z a’(xa.(z)s)a* (xa,(2) Us) P — a*(xalz)s) /.

Indeed,

(¢ (xa (@) 1N FP) @151, Tt 1)

= Symgpr (Xo,(@1) 11D [ 2,0, B, st4a))

Hence, analogously to the above,

n

> (a°(xAi<x>s>a+(xA,.(z> 1)/ ®) (@151, Thrr, 5501)

= Z Symy.y; (XAz (z1)s1f 9 (22, 82, - -, T, Sk+1)>

k+1

- ZsymkH (XA,(UCI )s1f* (22, 52, --,wk+1,8k+1))

= (a (XA(.’L')S)f(k))(.’L'], S1, .- 1xk+la8k+1) asn — o0.

Similarly to the above, we then have

Za xa,(z)1(s))a” (xa,(z) 1(s)) f*) — 0,
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n

>’ (xa.(@)s)a” (xa,(2) 1(s)) f ¥ = 0,

=1

Za_(XA*(x) 1(s))a’(xa, (z)s) f* = a~(xa(z)s) f*  asn — .
Next,
Z a”(xa, () 1(s))a* (xa,(z) 1(s)) f®

- Za‘ xa,(z) 1(5))Symk+1 [XA (z1) 1(51)f(k)(9€2752 ----- xk+115k+1)}

—Z /dx/ (z,ds) 1 3:1 S1y.vvs Tk, Sk)
+ kSym (xa,(@1)1(s1) / dy / oy, dw) Lw) [Py, w, 23,5, 7, 50) )|
A, R

+ Symy, (kZXA z1) sl)/ dy/ o(y,du) f y,u 9,82, ..., Tk, sk))

analogously to (4.24).
Similarly,

n

> at(xa, () 1(s)a” (xa,(x) 1(s) /P = 0 asn— oo

i=1
Finally, we should treat the term Y7 a®(xa,(z)s)a’(xa,(z)s)f*). We can
write

3 el ()9)a (xa, (2)5)/

b

n

k
= Sym, ( ZXA (z))s Z (a:m)smf(k)(zl, S1y. .-, Tk, sk)>

=1 =1 m=1
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n k
= Symk (Z Z XAI-(CL'[)Sff(k)(CUI, S15.., Tk, Sk))
i=1 [=1

+5ym (3 Y xa@)sixa,En)sm SO (@151,
i=1 I,m=1,....,k
l#m

k
= Symy (Z xa(z)st [ (21,1, .., 2k, Sk))
=1

+yme (30 D xadladsixa,En)sn SO (@51,

=1 {im=1,....k
l#m

= @(xa(2)s) /@

+Symk(z Z XAi(xl)leAz(xm)smf(k)(xla517

=1 I,m=1,...k
#m

— a%(xa(z)s?)f® asn — 0.

Thus, equality (4.23) is proven.

isomorphism /, the operator

S AD(ya )2 / dz1
i=1 A

the statement is proven for k = 2.
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We know that, under the isomorphism I, each operator A (xa,) goes

over into an operator of multiplication. Therefore, for each n, under the

also goes over into an operator of multiplication. But by (4.23), the operator
A®)(xn) is the limit of the operators Y7 | AV (xa,)? — [, dz 1 as n — oo.
Hence the limiting operator A (xa) should also be an operator of multipli-
cation. Since IQ) = 1(w), by (4.23) the image of A®)(x,) is the operator of
multiplication by I(xa(z)s). From here, we conclude the general statement

that A®) () goes over into the operator of multiplication by I(¢(z) s). Thus



For a general k, analogously to (4.22) and (4.23), we get

xa(z) s* = lim [ZA(’“) xa,)AM (xa,)Q - /dx/a(x ds) s*~ lQ]

n—00
AFD (yp) = li_)m [ZA(k)(XAi)A(l)(XAi)—/dz:/a(x,ds) sk_lﬂ]
n—oo | £— A R

From here, by induction, we conclude that the operator A%+ (¢) goes over
into the operator of multiplication by I(p(z) s*).
For each kK =0,1,2,... and ¢ € D we define

Y8 (p) := I(p(z) s°).

As we have just shown, each operator A*+1)(p) goes over, under I, into the
operator of multiplication by Y ®) ().

Suppose, for a moment, that the measures o(z,ds) do not depend on
z € R% For a fixed ¢ € D, let us orthogonalize in L?(D’, x) the functions
(Y®)(p))22,. This is of course equivalent to the orthogonalization of the
monomials (s*)%, in L%(R,o). Denote by (¢*¥))%2, the system of monic
orthogonal polynomials with respect to the measure o. Thus, the random

variables (Z™®())%.,, where

Z®(p) = I(p() ¢¥(5)),

appear as a result of the orthogonalization of (Y *)())22,. Since ¢ (s) = 1,
we have
ZO(p) = YO (y) = (p, w).
For each k£ > 1, we have a representation of ¢(*)(s) as follows:
k

¢ (s) = Z bgk) st

1=0
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Thus,

Z® () = I(p(x) ¢¥(s))
k

=Y b1 (p(r) s")
1=0

=2 _07Y ()
1=0

Hence, the image under 1! of the operator of multiplication by Z®¥)(y) is

the operator

RB () : Zb #(2)s") +a~(p(2)s") + a”((z)s™)

=at (cp(’l’) Z I)Ek)(si) +a” (cp(r) i bfk)si) +a® ((,o(;z:) i bgk)si“)
=0 i=0 i=0

= a*(p(2)g™(s)) + a” (p(x)q™ (5)) + a®((x)s ¢V (s)).
Let us now consider the general case, i.e., the measure o(z, ds) does de-

pend on = € R%. We are using the monic polynomial (¢*)(z, -))$2, which are

orthogonal with respect to the measure o(z,ds). We have

(k (z,s) Zb(k st

q

We now define

I
|-<
—_
R
~~
BS)
S
x
~—

Hence, the image under I~} of the operator of multiplication by Z®*)(y) is

the operator

k
R(k Z $)b k)(23) )+ a—(tp(x)bl(k)($>si) + ao(cp(z)bgk)(x)si“))

1=0
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k
1=0 =0

_ ((P (z) 2’“: b® () Si) +a (v(w) Z b\¥ () 51)

+ a° (cp(x) Z ¥ (z) s”’l)

=0

= a*(p(2)g™ (2, 5)) + 0 ((2)g® (2, 8)) + a°(io(2)s ¢ ¥ (2, 5)).

We will now introduce a multiple Wiener-Ito integral with respect to
Z&)s. So, we fix any a € Ly, o] = n, n € N. Take any Ay,...,A, €
Bo(R%), mutually disjoint. Then we define

/ dZ(O) (.’E]) e dZ(O)(l‘ao)dZ(l)(xa0+l) . _dz(l)(xao+al)
JA1xAax - xAn
X dZD (Tagrans1)
= /( y XAx(ml)XAz(CUQ) . XAn(xn)dZ(O)(xl) . dZ(O)(xao)
Ra)n

X dZ(l)(‘Tao—H) e dZ(l)(xozo+al)dZ(Z)($00+a1+l) o

= Z(O)(Al) T Z(O)(Aao)Z(l)(Aaﬁ-l) T Z(l)(Aao+a1)Z(z)(Aao+al+1) o

Here

Z®(A) = Z®(xa).

Using that the sets Ay, ..., A, are mutually disjoint,

I7HZO(AY) - ZO(D8ag) 2D (Dagsr) -+ 2D (Dagrar) 2P (Dagrans1) )
= RO(xa,) RO (Xa0) BV (X2ager) " BY Xagrar ) BD (Xtragrarss) -
= a+(XA1q(0)) e a*(XAuoq(O))a“L(XA%Hq(l)) e a’+(XAu0+a] q(l))
X aF (Xaggsaps190) - Q2
= (X810?) @+ O (X230, 8?) © (X20g1:7™) @+ © (X2rag ey )
O] (XAao+a1+1q(2)) ORRS

= Sym, ([(xa,0?) 0+ © (X80, 8] @ [ (Xasp0™) 0+ -

88



© (XAa0+a1q(l))] ®-- )

= Sym, ([(Xm O O Xag ) (T1y - -  Tag)q O (21, 81) - 'q(o)(zao:sao)]
® [(XAQOH O O Xdagray (Tagt1s- - - s Tag+ar) 4 (Tag+1, Sag+1)
4 (Tagra s Sagrar)| @)

- R<(XA’ O GXAGO) ® (XAaoH O QXAQ()-HH) ®: )
Hence

Z(O)(Al) . Z(O)(AQO)Z(I)(AQOH) e Z(l)(Aao+a1)Z(2)(Aao+a1+l) e

=K((xa: @ O Xaug) ® (X2ags1 © " @ Xdagie, ) ® 7 )-
The set of all vectors of the form
(X2, @ O Xng) € (XBagsr @' O XAagsa,) @)

is total in G,. Therefore, by linearity and continuity, we can extend the
definition of the multiple Wiener-It6 integral to the whole space G,. Thus,

we get, for each f, € G,,
/( o Jol1y - 210)dZ O (1) -+ dZO(240)dZ M (20g41)  + + A2 (T gt )
X dZP(Tagtay+1) = Ko
Thus, we have the following theorem.
Theorem 4.7. The unitary isomorphism
K:G— LY D, u
from Theorem 4.6 is given by

g= @ Ga 3 (fa)acze, = f— Kf

aEZf_o
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= Z / fa(l'l:“-»xlal)dZ(O)(xl)"'dZ(O)(xao)
,J Rl

a€Zy

X dZ(l)(xao+l) o 'dZ(l)(xaoﬂn)dZ(Z)(xao+al+1) Tt

Remark 4.8. Let us recall that in Step 2 of the proof of Theorem 3.7, we have
constructed an equivalent representation (3.37) (see also (3.32)—(3.34)) of the
operator A(yp) in the symmetric Fock space F(L2(R¢ x R, dz »(z,ds))). The
part

G(p) = a™ ((z)x{0}(5)) + @™ ((z)x 10} (3))

of this operator describes the Gaussian part of the process, while the part

S () = a*(p(2)s) + a” (p(z)s) + a°(p(z)s)

describes the jump part.
It is easy to see that, under the unitary isomorphism (3.36), for & > 2,

the operator A () goes over into the operator
I Bp) = a*(p(z) s*) +a(p(z) *) + a®(p() s°).

Recall that the operator _#((p) := _# () describe the jump part of the
Lévy process. Thus, for k > 2, the operators (_Z ¥)(¢)),ep describe the
same jump process as _Z (), but with jumps having value s*, rather than s.

To be more precise, consider for simplicity the case where o(z, ds) = o(ds)
does not depend on z and v(ds) = %o(ds) is a measure on R*. Assume also
that [, sv(ds) = [. 20(ds) < +00. Then, the application of the projection
spectral theorem to the family (_Z(p)),cp leads to a probability measure

n(dw) on D' having the Fourier transform

/, e'?wn(dw) = exp [/Rd d:c/ v(ds)(e¥@®® —ip(z)s —1)|, ¢ €D.
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In fact, the measure v is concentrated on the subset K C D’ given by

K= ZéIsMeI‘ ,

(z,8)€v

where

I:= {7 C RYxR* [ if (21,81), (22, 52) €T, (z1,51) # (22, 52) then z; # z,
and for each bounded A ¢ R? and ¢ > 0:

Iy N (A x {|s] > €})] < oo, S <oo}.

(z, ) €YN(AXR*)
Here, for a set A, |A| denotes the the number of points of the set A, and 4,
denotes the Dirac measure at z.
If we now apply the projection spectral theorem to the family (_Z *)()),ep,
k > 2, then this will lead us to the probability measure 7(*)(dw) on D’ having

the Fourier transform

/ ei(%u)n(k)(dw) = exp [/ d’[/ I/(dS)(ei‘P(I)sk _ 'L(P(:E)Sk _ 1)]» pE D.
D R K

Fach measure 7(®) is concentrated on the set

Kk .= Z 5Is|76F(k) ,
(z,s)ey

where
Lk .= {’y C R¥xR* | if (z1,51), (z2, s2) €T, (71, 81) # (T2, 82) then z; # xy
and for each bounded A C R? and ¢ > 0:

[y (A X {]s] > €})] < oo, > s <o},

(z, s)eYN(AXR*)
and (¥ is the push-forward (image) of the measure v under the transforma-

tion

Z 6,8 Z 8, s*.

(z,s)€ (z,8)€v
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Chapter 5

Decomposition in orthogonal

polynomials

Let us recall that, in Chapters 3 and 4 we have constructed the following
unitary operators:
F(H) = L(D/, ),
G= P 6. 5 F),

aEZ‘f‘o
G= P 6. =F 12D p).
a€ZP,

For any f1, fa,..., fn € D, we call the function
Dlaw'_)(flvw>”'<fmw>=<f1®"'®fmw®n> (51)

an algebraic monomial of n-th order on D'. Let P, (D’) denote the linear
spaces of all algebraic polynomials on 7', thus each element of P,s(D’) is a
finite sum of function of the form (5.1) and constants.

We note that, by Theorem 3.2, P,,(D’) is a dense subset of L*(D', p).

Denote by PS;)(D') the linear space of all algebraic polynomials of order < n.
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Denote ’Pa,g

(D) the closure of Pilng) (D') in L*(D', ). Elements of Palg( )

are usually called measurable polynomials of order < n. Denote

PO(D) = PR(D) o Pl (D)

where © denotes orthogonal difference in L?(D’, u). Elements of P(™(D') will
be called measurable orthogonal polynomials of order n. By construction,

for each n,
PRID) = PPRD). (5.2)
k=0
Now consider the space @2 ,P™(D’). By (5.2),
Pag(D') C EBIP’(")(D’ (5.3)
n=0

We know that P, (D’) is dense in L?(D’, ). Hence, its closure coincides with
L*(D', ). Therefore, by (5.3), the closure of @.>,P™ (D) also coincides
with L2(D', ). But @22, P™(D') is closed, as orthogonal sum of closed

subspaces. Therefore, we get the following trivial proposition, see e.g. [42]

Proposition 5.1. We have
XD, 1) = PP(D).

We now want to explicitly describe the space K~*P( (D) as a subspace

of G.
From now on, we will assume that the following condition is satisfied.

This conditions is evidently stronger than condition (A).

(B) The functions a,(z) and b,(z) from (4.11) are locally bounded on R¢.
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Theorem 5.2. For each n > 0, we have

K1PM(D) = $ Ge
a€ZP,
lag+2a; +3ag+=n

Proof. We will use the notations from Chapter 4. For a € Z3,, we denote

by G, the subspace of F(H) given by
Goa =RGa=RaGo=(HP® O HY*" ©--)|af!.
We need to prove that

[T'PM(D) = @ G, = GM. (5.4)
a€Zy,
lag+2a)+3az+=n

We will first obtain a description of the space @)_, Gk = M),
As follows from the proof of Theorem 4.6, each element of the space G,

has a representation

Symlal (f(:El,iﬁz, s ,$1a|) q(O)(‘rl’Sl) T q(O)(Iaoa Sao)
x q(l)(xa0+1’ 5a0+1) T q(l)(xao+a+la Sao+a1) e )v (5-5)
where
] € LA(RY, po(dz))®™ & LE(RY, py(dz))® @ - - (5.6)

(Note that, due to symmetrizator Sym,;, we may take a function f as in

(5.6), rather than from the space L2 ((R?)le!), see (4.21).) Recall that
pn(dz) = ( / q(")(x,s)2o(x,ds))dm
R
= ai(z)as(z) - - an(z) dz,

forn > 1, and po(dz) = 1. By assumption (A) the functions a;(z) are locally

bounded. Therefore, each measurable, bounded function on (R%)l%! with
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compact support (i.e, f € By(R%)) belongs to the space L?(R?, po(dz))®* ®
L*(R%, p1(dz))®* ®- - - . Furthermore, the set of functions as in (5.5) with f €
By(R¥) is dense in G,. Hence a total set in M (™ is obtained by taking all
functions of the form (5.5) with f € By(R4¢!), where 1ag+20;+3a+--- < n

and the vacuum vector 2.

Lemma 5.3. For each o € ZY with lag + 201 + 3ag + -+ < n, and for
each f € Bo(R4), consider the function

0 0
Sym|a| (f(l’l,l“z, cen ,33|a|) 81 Saos,l,‘oﬂ ce Séﬁm
2 2
XSaotar+1" " Sagtar+as """ ) (57)

Then the set of all such functions is a total set in M),

Proof. To simplify the proof a little bit, we will assume that, for each z € R¢,
the measure o(x,ds) has infinite support. (If this is not the case, the proof
below requires an easy modification.)

Recall that ¢ (z,s) = 1 and
q(n+l)(x, S) = sq(n)(x’ 8) - bn(:c)q(")(;r, S) - an(x)q(n—l)(l,, S)'

By condition (B), the functions a,(z) and b,(z) are locally bounded. We

therefore have that
¢ (z,5)=> M (@)s, (5.8)
1=0

where each Cl(") (x) is a measurable, locally bounded functions on R¢. By
substituting (5.8) into (5.5), we see that each function of the form (5.6) with
[ € Bo(R¥°!) can be represented as a finite sum of functions as in (5.7) with

1a0+2a1+3a2+---Sn.
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Next, we note that, since ¢™(z, s) is a monic polynomial in s, we in fact

have
n—1
™ (z,s) = s" + Z c™(z) s,
1=0
Therefore,

n—1
s" = q"(z,s) - Z Cl(n)(rc) st
=0

From here, we can conclude by induction that

n—1
"= q"(z,5)+ > diV(z) ¢ (z, 5), (5.9)
=0

where dl(")(x) are measurable, locally bounded functions on R? By sub-
stituting (5.9) into (5.7), we see that each function of the form (5.7) with
f € Bo(R%)l* can be represented as a finite sum of functions as in (5.5) with

lag + 207 + 3as + - - < n. O

For any fi, fa...., fn € D, let us consider the monomial
(1O f® O frn,w®).

Then
IT"fi0 20 @ f,w®) = A(f1) - A(fa)

Lemma 5.4. For any f1, fo, ..., fn € D, A(f1) - A(fr) 2 can be represented

as a finite sum of functions as in (5.7) with lag + 207 +3az + -+ < n.

Proof. We will prove this statement by induction. For n =1,

A(N)Q = fi(z) s°,

so the statement holds. Let us assume that the statement holds for 1,2, ..., n,
and we want to prove it for n + 1. It suffices to show that, for each element

as in (5.7) with lag + 27 + 3ag + - - - < n, the image of this elements under
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the action of the operator A(yp), ¢ € D, can be represented by a finite sum
of elements as in (5.7) with lag + 201 + 3as + - - < (n+ 1). So we fix any
a € LT, with 1lag + 20y + 3 +--- <nand f € By(R42!), Then

A(p) Symy, (f(:rl,xz, e Tf)) 8 sgo Sivo+1 . S;OMI .. )
= (a*(p(2) 1(s)) + a’(io(z) s) + a” (p(z) 1(s)))
X Symyqy (f(ml, T2, . .., T|a]) §9... ngo s}on . -siﬁal e )
= Symyq) 41 (cp(xl)f(:rz,xg, co o Tlaf+1) CYCERE Sgo+1 S(Ixo+2 " '5é0+a1+1 " )

lor}
0 0 .1 1
+ E Sym,y ((p(xl) S1f(T1, 2, Tiag) 87 " Sap Sapt1 " Sagtay " )
=1
o]

£y /}R . Wy dwe(y) 1(u)

=1"

X Sym 4 - (f(xl,xz, T Yy T - -5 Tja)-1)

X 806850 5hae1  Shoray o= ). (5.10)
For the first term in this sum, we have

Hag+1)+20 +3a2+ - =n+1 (5.11)
For elements in the sum corresponding to the neutral operator, we note that
lag+201+ -+ G+ D — 1)+ (G +2)(ajp1 + 1)+ -+
=lag+2m+ -+ G+ 0o -G+ + G +2ajm+(G+2)+- -
=n—(G+1)+(+2)=n+1 (5.12)

Finally, for elements in the sum corresponding to the annihilation operator
we evidently have that the elements have the corresponding value < n — 1.

Hence, by (5.10), (5.11) and (5.12), we conclude the statement. O
Thus by Lemma 5.4, for any fi, f2,...,fx € D, k < n,
A1) A(f2) -~ A(f) 2 € M™.
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To finish the proof of the Theorem, we only need to show that every func-
tion as in (5.7) with lag + 205 + 3ay + -+ = n can be approximated in
F(H) by linear combinations of vectors of the form A(p;) - - - A(p,)Q2, where
©1,...,¥n € D. But this directly follows from the proof of Theorem 3.2, see

in particular, the proof of Lemma 3.3 a

For any f1,..., fn € D, we evidently have

(f1,0) - (fyw) = (1O © fn, ™) € PLID') C PLI(D).

We denote by P™(f,®--® f,,w) the element of L?(D’, 1), which is obtained
as the orthogonal projection of (f;®- - -® f,,w®") onto P™ (D). Our next aim
is to obtain the explicit form of the vector I"'PM(f, © - ® fn,w) € F(H).

To this end, let us recall the definition of a second quantization operator.
Let (A, D(A)) be an (unbounded) linear operator in the Hilbert space H. We
want to define an unbounded linear operator (dI'(A), D(dT'(A))) in F(H). As
the domain D(dI'(A)) of this operator we will choose the linear span of the
vacuum vector 2 and vectors of the form fy © -+ © f,, where fi,..., f, €

D(A), n € N. The action of dI'(A) is then defined by

dl(A)Q =0,
dU(A) f1® O fa

=Y H00fiaGAL)O fin1® - Ofs, neN  (513)
i=1

For example, the neutral operator a®(p(z)s) is an (extension of) the dif-
ferential second quantization of the operator of multiplication by ¢(z)s in

L*(R?¢ x R, dzx o(z,ds)):

ao(So(l") S) = dF(M¢(1)s)- (514)
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Analogously to the differential second quantization operator dI'(A) in F(H),
we can define an operator N(A) in the full Fock space Fy,(H) = @, H¥"n!
by the formula

NA A ®fa=) /i®  ®fi1®(Af)® fis1® - ® fa, nEN,
i=1

where fi,..., fo € D(A). Then, for each f(® € H®" which belongs to the

domain of N(A), we have
dT'(A) Sym,, f™ = Sym, N(A) f™. (5.15)

For each ¢ € D, we define operators J*(y), J%(¢) and J~(p) in L%(R? x
R,dz o(z,ds)) by

I (@) (f(z) ™ (z, 5)) = p(z) f(x) ¢+ (z,s),
(@) (f(z) g™ (z,5)) = p(z) f(z) bu(z) ¢ (2, 5),
() ([ (x) ¢ (z,5)) = p(z) [(z) an(z) ¢ (z, 5),

where f € D, n > 0. Thus, by (4.11) the operator M), of multiplication
by ¢(z)s has representation

My@ys = J*(0) + J°(9) + I ().
Hence, by (5.14), we get
a®(p(z)s) = dT (J*(p)) + dT(J°(p)) + dT(J ™ (¢))-
Therefore,

Alp) = a*(p(2) 1(s)) +a~ (p(2) 1(5)) +dT (I (19)) +dT(J° () +dL (I ()
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We denote

At () := a*(p(x) 1(s)) + dT(J* (),
A%(p) := dT(J°()),

A™(p) = o (p(2) 1(s)) + dT(J7(#)),

so that
A(p) = A () + A%(p) + A (p).

Theorem 5.5. For any fi,...,f, € D,
IFP(fLo 0 frw) = AT (L) AT (fr)Q
Proof. We note that
IFAO 0 fo,w®) = A(f) - A(fa)2

Thus, by (5.4), we are interested in the projection of the vector A(f1) -+ A(f,)2
onto G™. Hence, to prove the theorem it suffices to show that, for each
0 € D, AT(¢) maps G™ into G™*1), A%(p) maps G™ into G™, and A~ (y)
maps G™ into G~ 1,

By (5.5), (5.6) and analogously (5.11) and (5.12), we conclude that A*(p)
maps G™ into G™*+Y. Clearly, we also get that A%(¢) maps G™ into G,
Next, we see that the operator a™(y(z) 1(s)) maps a function as in (5.5)
into a sum of functions of ‘order’ m — 1, by annihilating one polynomial
q©(z;, s;) and zeros, which are obtained by annihilating polynomials ¢ (z, s)
of order [ > 1, by orthogonality of these polynomials to ¢® (z, s) = 1. Thus,
a~(¢(x) 1(s)) maps G™ into G™=1. Also easily seen, dI'(J~(¢)) maps G™
into G™~Y, Thus, A~ (¢) maps G™ into G™~V,
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Recall that, for each n € N, we denote by By((R%)") the linear space of all
bounded, measurable, real-valued functions on (R%)™ with compact support.
We introduce a topology on By((R%)") which yields the following notion
of convergence: f, — f as n — oo means that there exists a compact set
A C R%such that supp(f,) C A for alln € N and sup,cga | fo(z)— f(z)] = 0
as n — oo.

We denote by P(n) the set of all (unordered) partitions of the set {1,...,n}.
For each partition § = {61,...,6,} € P(n), we set |§| := [. For each
6 € P(n), we denote by (R%){™ the subset of (R%)™ which consists of all
(z1,...,7,) € (RY)" such that, for all 1 <i < j < n, z; = z; if and only
if 7 and j belong to the same element of the partition §. Note that the sets
(Rd)ﬁ,") with 8 € P(n) form a partition of (R™)".

For example, for n = 2, P(2) has 2 elements: 6§ = {{1},{2}} and n =
{{1,2}}. Then,

(Rd)e(92) = {(z1,22) € (R)? | 21 # z2},
(Rd)1(72) = {(z1,22) € (RY)? | 2, = 2}.

Of course,
(]Rd)z — (Rd)§2) L (Rd)%z)'

For n = 3, P(3) has 5 elements: o = {{1,2,3}}, # = {{1,2},{3}}, v =
{{1,3},{2}}, 6 = {{1},{2,3}} and n = {{1}, {2}, {3}}, so that

(RYD) = {(z1, 72, 73) € (R)? | 11 = 72 = 73},
(R")Ef) = {(z1,72,73) € (RY)? | 2, = 22 # 73},
(Rd)(ya) = {(z1,72,73) € (R)? | 21 = 23 # 75},
(RHP = {(z1, 29, 23) € (RY)? | 21 # 22 = 23},
(Rd)$,3’ = {(z1, 22, 23) € (RD? | 24, z9, x5 different}.
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For each f(™ € By((RY)™) and 6 = {#,,...,6;} € P(n) with
max f; < maxfy < --- < max¥f,, (5.16)

we define

(Ief(n))(mla S1y- -+, Ty, Sl) .
= fﬁ(n)(xlv s 7-Tl)q(|91|_1)(z1v Sl)q(lezl—l)(x% 52) e q(loll_l)(‘rla 8[), (517)

where |6;| denotes the number of elements in the set §;, and the function

(Sn) (z1,...,;) is obtained from the function f™(yi,...,y,) by replacing,

for all i € 8y, y; with z;, for all i € 8y, y; with z,, and so on.
For example, for the partition 8 = {{2},{1,3}}, we have 6, = {2}, 0, =

{1, 3} since max#; =2 < maxf, = 3, and f£3)(x1,x2) = fés)(xg,xl,:cg).

Theorem 5.6. Forany hy, ..., h, € D, n €N, and setting [™(z;,...,2,) =

hi(zy) -+ hn(z,), we have

[—lp(n)(hl OREREO) hmw) = Z Symwg(Iof("))'
8eP(n)

Proof. By Theorem 5.5, (2.32) and (5.15)
I'P™(hy & @ hpyw) = AT (hy) - AT (h)Q
= (a* (hi(z)1(s)) + dL(J* (1)) -+ (@ (ha(z)1(5)) + dT(J7 (ha)))2

= Sym, (R* (h1(z)1(s)) + N(J*(h1))) - - - (R* (hn(x)1(s)) + N(JF(ha)))R2,
(5.18)

where for g € H, R*(g) is the free creation operator in the full Fock space
]:full(H>:
B (g)[™ =g [, [ e e

Thus, by formula (5.18), to prove the theorem, we need to show that
(R (ha(2)1(8)) + N(JF(h1))) - - - (RF (ha(2)1(s)) + N(J T (hs)))S2
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6P (n)

We will prove this statement by induction in n. For n = 1, we evidently have
(RT(h1(2)1(s)) + N(JF (M) = h1(2)1 = Ly,
so the statement holds. Let us assume that, for any hg,...,h, 1 €D

(R*(ha(2)1(s)) + N(J*(h2))) - - - (R (hnsa(2)1(s)) 4 N(J ¥ (hny1)))R2
= Z To(he ® -+ @ hny1),

9eP(2,...,n+1)
where P(2,...,n+1) denotes the set of all unordered partitions of {2,...,n+
1} and Zy(hy ® - - - ® hyy1) is defined by analogy with (5.17). Hence, for any
h, €D,

(R*(h(2)1(s)) + NI+ (7)) -+ (R (hasa (2)1(5)) + N (I (hn41)))Q2
= (R*(m(2))) + N(J*(m))) D To(ha®- - ® huy),

0eP(2,...,n+1)

Fix any § = {6;,...,0x} € P(2,...,n+1). Then

R¥(h1(2)1(5))Zo(h2 ® - - - @ hn1)
= (h1(z)1(s)) ® Zg(h2 ® - -+ ® hn 1)

= Ty (b R ha 80+ R hny1),
where 87 € P(n + 1) is given by
6t = {{1},6,,...,6:}.

Next,

k
NI (h))Ze(ha ® -+ R hpy1) = zfag?(hl Qhy®  ® hny1),

7=1
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where 09 € P(n + 1) is given by
9(7] = {01, e ,9]'_1,9]' U {1}, 9j+1v e ,ek}.
From here, it follows that

(R (ha(2)1) + N(J* (1)) - (R* (ha(2)1) + N(J* (h)))02

= Z Ze(h1 ® -+ ® hpga).
£EP(n+1)

O

In order to calculate the scalar product of orthogonal polynomials P™ (£, w)
and P’ (g™ w), we proceed as follows.

Let us fix a sequence ¢ = (cx)§2; such that each ¢ is a measurable function
from R? to [0, +00) and ¢;(z) = 1 for all z € R% We will now construct an
extended symmetric Fock space F.(H).

Let us fix n € N and a partition § = {6;,...,6,} € P(n) satisfying (5.16)

We define a measure Cﬁf},) on (R%){™ as the push- forward of the measure
(o (1) - o (@) 0l (641 -+ 16,]Y) " day - - day (5.19)
on (R%)® under the mapping
(RO 5y = (y1,...,9) = (Ryy, ..., Rpy) € (R, (5.20)

where

Ryy = y; forieb;

and

RHO = {(yr,...,y) € RY! | y; # y; if i # 5}, (5.21)
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For example, if n = 3, § = {6;,0,}, with 8; = {2}, 6, = {1,3}, then the
mapping (5.20) is

RYP 5y = (y1,1) = (¥2,91,%2) € (RHY.

Recalling that the sets (Rd)gn) with § € P(n) form a partition of (R%)",
we define a measure Cc(") on (R%)" such that the restriction of (c(") to each

(Rd)é") is equal to {C(‘T;,). For example, for n = 2,

. f(2)(1'1,$2)cc(2)(d1'1 X d.’L’g)
(Re)

=/ f(2)(m1,x2)dm1dm2 . 2+/ FO(z, z)cy(x)dx
{z1#z2} Rd

=2 fO(zy, 25)dz,dzy +/ fO(z, z)co(x)dz.
(R4)? Rd

Let us fix a permutation 7 € S, and a partition § = {6,,...,6,} €
P(n) satisfying (5.16). The permutation 7 maps the partition # into a new

partition

{mby,...,70,;} € P(n).

We call this new partition 8 = {4, ..., 5}, where the elements of the parti-

tion S are enumerated in such a way that
max f; < max 3 < -+ - < max f;.

Thus, the permutation 7 € S, identifies a permutation # € S; (dependent
on @) such that
70; =,3fr(i), i=1,...,L

For example, let n = 3, 6 = {60;,6,} with 6, = {2}, 6, = {1,3}. Let

123
231)°
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Then 7T91 = {3}, 7T02 = {1,2}, ﬁl = {Bl,ﬂz} with 51 = {1,2}, ,82 = {3} and

the permutation 7 € S, is given by

. 12
—\21)’

mh = Py = ﬂfr(l)v
0y = B1 = Br).

since

For each function f( : (R¥)" — R, we define its symmetrization by

1

(Sym, [™) (@1, 20) = = D [P (@), Zom)s (21505 20) € (RO™
n TESn

For any functions fi,..., f. : R = R, we denote

fro- O foi=8ym,(fi Q- & fn).

Lemma 5.7. For eachn € N, Sym,, is an orthogonal projection in the Hilbert

space L2((RY)", Cc(")).

Proof. We evidently have that Sym? = Sym,,. By construction, the measure

c(”) remains invariant under the transformation

RY™ 3 (21, ., %) = (Tr()s - -+ Ta(n)) € (RH"

for each m € S,,. Therefore, the operator Sym,, is bounded and self-adjoint

in L?((R%)", d{é”)). Hence, it is an orthogonal projection. O

For each n € N, we denote by F¥™(H) the subspace of L?((R%)",¢{™)
that is the image of the orthogonal projection Sym,,. Clearly, F2"(H) con-
sists of all (¢{™-versions of ) symmetric functions from LA((RH)™, (c(n)). We

define an extended Fock space
FY™(H) := (D FI(H).
n=0
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We note that, for ¢ = (1,0,0,...), we get F¥™(H) = F(H). Otherwise,
i.e, if for some n > 2, ¢,(z) > 0 on a set of positive Lebesgue measure,
then F(H) is a proper subset of F&¥™(H). Indeed, for each n > 2 and each
measurable subset of (R9)™, ¢{M(A4) = n! [, dzy - dz,, see (5.19) in the
case where § € P(n), 0 = {61,...,6,}, 0; = {z;}, i = 1,2,...,n. Since
f(Rd)n\(Rd)(n) dz, - - - dz, = 0, we may therefore embed F(H) into F¥™(H) by
identifying each function f(™ € H®™ with the function from F™(H) which
is equal to f(™ on (R%)™ and to zero otherwise. Evidently, the orthogonal
compliment to F(H) in F¥™(H) is a non-zero space.

Next, recall the system (¢¥)(z, s)) of monic orthogonal polynomials (in
the s-variable) in L?(R,o(z,ds)). From now on, we will use the sequence

(ck)2, defined by

c(z) = Aq(k“l)(x,s)za(x,ds), k € N. (5.22)

Thus, ¢;(z) = 1, and, by (4.14), for £ > 2,

cr(z) = a1(z)az(z) - ak-1(x). (5.23)

Lemma 5.8. For any f1,..., fu,91,--.,9n € D, we have

(PP (100 far ) P (g1 O © gni)) ooy
=10 O fa,g1 0 Ogn)rym)-

Proof. By the polarization identity, it suffices to prove Lemma 5.8 for any

fi=ag1,...,fn=gn €D. Denote f™ = f; ® --- ® f,. By Theorem 5.6,

(P(n)(/(n), 9, p(n)(f(n)’ .))Lz(#)
= > > (Symp(Zaf™), Symig(Zef™)) s

0P (n) £€P(n)

=Z D> (Symy(Zof ™), Zef™)) e I (5.24)
=1 0{67’(11)
61=|€1=1
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On the other hand, by Lemma 5.7
(Symy, £, Sym,, f™)psrm n)
—_ (n) (n)
- (Symn f ) Symn f )Lz((Rd)",(én))
— (n) f(n)
= (Symn TR )Lz((Rd)”,an))

= / (Sym,, ) f"d¢
. (Rd)n

= > /( . )(n)(Symn F) fmdct. (5.25)

By (5.24) and (5.25), the lemma will follow if we show that, for a fixed
¢ € P(n) with [¢| =1,

5 (ST ) )

9cP(n), |0]=l

= [ Em f ). (5.26)
(Re){™ h
So, we fix a partition £ = {&;,...,&} € P(n) and assume that
max§; < maxép; < -+ < maxé;.

Denote k; := |&[, i =1,...,l. By the definition of Z f™ (see (5.17))

(Iéf(n)>(y1,51, v ayl»sl)

= (T4 ) (I A ) (T )

i1€& i2€&2 (123

X gDy, 5)0 g s) " Dus). (527)

Let = {6y,...,0i} € P(n) and assume that (5.16) is satisfied. Let r; := |6,],
i =1,...,l. We may assume that there exists a permutation 7 € S; such
that

ri =kzey, t=1,...,L (5.28)
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Indeed, the corresponding term in the sum on the left hand side of (5.26)
vanishes, as we will necessarily have, for each x € R", the scalar product
of two different orthogonal polynomials in L?(R, o(z,ds)). Analogously to
(5.27), we have

(Iof("))(yl, S1,+ -0 Yl Sz)

(T ) ( T s ) ( TL 5 )0

J1€6, Jj2€62 N

x ¢y, 519 (ya, 82) - 47D (i 81). (5.29)

Hence

l' Syml(Ief(n))(yla Sty Yl Sl)

= Z(Iﬁf(n))(yx'l(l)y Ss1(1)r -+ 1 Yo 1(1)s S 1(1))

€S
" (1;[( ) (I,I( i) ) (H) i) o

x gD (yy, 81)g"D 7D (yg, 52) - - g0 7Dy, 5)

Hence, by (5.22)

(Symy(Zof™), Ze f™) o U!

= Z (/Rd( H Fi) (y)( H f‘il)(yl)ckl(yl)d%)

J1€871) i1€6
o (/]Rd ( H sz)(yl)( H fi,)(y[)ckl (yl)dyl), (5‘30)
J1€Bz ) i€

where the summation is over all permutation 7 € S; which satisfy (5.28).
Let us fix such a permutation 7. Then, there exist k! - k! = ! on!

permutations m € S, which satisfy

ﬂ{i :Hﬁ(i), 1= ],...,l. (531)
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Note that, for each permutation 7 satisfying (5.31) and for (y1,...,yn) €
(R

(fl PR fn)(yn"l(l)v v »yn‘l(n)) = (fn(l) @ ® fn(n))(ylv cee ayn)

(11 )o (T )

NETEL JIETE
( H f.71>(y1 ( H fJ() yl) (532)
J1€0z(1) 1€z (1)

Let £,6 € P(n) be such that condition (5.28) is satisfied by some permu-
tation 7 € S;. Denote by S,[6,&] the set of all permutations = € S, which
satisfy (5.31) with some permutation 7 € S;. (Note the permutation 7 is
then completely identified by 7, § and £ and automatically satisfies (5.28).)
Clearly, if § and 6’ are from P(n) with || = |8'| = [, both satisfying (5.28),
and 6 # ¢, then

Salf, 61N S,[8, €] = @. (5.33)
Furthermore,
U  s.e.g=5. (5.34)
0eP(n), |8|=!

0 satisfying (5.28)

Hence, by (5.29), (5.32), (5.33) and (5.34),

(Symy(Zof™), I £ )H@
1 n
== Z / Nz p 1),...,:vrl(n))f(”)(xl,...,xn)g( )(xl,...,xn).
n! Rd

)
TESR[0.£] 3

Hence

Z (Syml(zﬂf(n))vzﬁf(n)),q@t !

0P (n),|0]=!
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= Y (Sym(@ef™),Ief™) o
6eP(n),|0|=!
O satisfying (5.28)

1

0eP(n),|0|=t wES.[0,¢]
Osatlsfymg (5.28)

X f(")(xl . ,ﬂ?n)dd?(% ey Tp)

1
ST PV LT LN SHENNES
" nes 3
' 1
- /(IRd)(n) n! Z ,f(”)(m”(l), e ’rn(n))f(n)(T )dc(n)(ﬁ»- 2 Tn)
) € " €Sy

= [ S OO e, )
(R4 °
so that (5.26) is proven. O
For each n € N, let R, denote the linear span of functions of the form
1®fa® - ® fn,

where fi, fa,..., fn € D. This is a dense subset of L*((R%)", ™). Clearly

Sym,, R, is the linear span of functions of the form
10200 fa
with fi, fo,..., fn € D, and Sym,, R, is dense in the Hilbert space
FP(H) = Sym,, L2((R%)", ¢{).
By Lemma 5.8, for any f™, ¢ € Sym, R,
(P(n)(f(n)a~)»P(n)(g(n) ))LZ(D' ) (f(n) )Fsy"’(H)
Therefore, the linear mapping

Sym, R, > f™ — P™(fM ) e LX(D”, u)
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can be extended by continuity to an isometric operator
Us : F(H) = L2().

For each f(™ € F¥™(H), we denote
PM(fM ) = U, f™,

On the other hand we know that the set {P™(f™,.} | f(™ € R,} is dense
in P(™(D’), and P (D) is a closed subspace of L?(1). Therefore, the image
of U, is P(M(D'), and

Un : FO™(H) = PM(D')

is a unitary operator. By Proposition 5.1,
LD, ) = P P(D),
n=0
and by definition
FY™(H) = (D F (H).
n=0

Thus, we conclude the following decomposition of L*(D’, u) in orthogonal

polynoials.

Theorem 5.9. Let ¢ = (cx)52,, be defined by (5.22). Then we have a unitary

isomorphism

PO (H) > F = (f)2, o UF 1= [(0) + 30 PY(, ) € (D', )

n=1
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Chapter 6

An example: Meixner-type
processes with independent

values

Let us first recall Meixner’s classification of orthogonal polynomials which
have generating function of exponential type, see e.g. [15] for further detail.

Assume that functions f(z) and ¥(z) have a Taylor series representation
around zero. Also assume that f(0) = 1, ¥(0) = 0, and ¥’(0) = 1. Then,

the equation

o (0)(g
G(z, z) = exp(z¥(2))f(z) = Z d n$ ) 2" (6.1)

determine a system of monic polynomials p(™(z), n € Z,. Meixner [34]
found all classes of such polynomials which are orthogonal with respect to a
probability measure v on R and have infinite support. In fact, a given system
(p™(z))%, of monic polynomials is orthogonal and has generating function

(6.1) if and only if there exists | € R, A € R, & > 0 and n > 0 such that
zp™(z) = p™ (@) + (nA + D™ (2) + n(k +n(n - 1)p" V(z).  (6.2)
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If one only considers the case where the measure of orthogonality, v, is cen-

tered, i.e.,

/Rxdu(x) =0,

then [ = 0, so that (6.2) becomes

2p™ (@) = p"*(z) + nxp™ (@) + n(k + (n — D" a).

For fixed parameters A and 7, we define , 8 € C so that
a+pf=-X  af=n,

or equivalently

1+ At +nt* = (1 — at)(1 - Bt).

(6.3)

(6.4)

(6.5)

Clearly A € R and n > 0 if and only if either «, 8 € R, a and  being of the

same sign, or Im(a) # 0 and o and [ are complex conjugate.

We have to distinguish the following five cases:

I. (Gaussian case) Now @ = 3 = 0 (or equivalently A = n = 0). The

orthogonality measure v is the Gaussian measure:

2
dv(z) = (27k) " exp (—;—k> dz.

The Fourier transform of the Gaussian measure v is given by

/exp(ium)du(m) = exp (—%kuz) , u € R.
R

Furthermore,
1. 5
U=z f(z) = exp(—5k22),

so that
1
G(z,z) = exp (mz — §k22) .
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The (p™)2, is a system of Hermite polynomials.
I1. (Poisson case) Assume a # 0, 8 = 0 (which corresponds to the choice

of A# 0 and n = 0). Now v is a centered Poisson measure:

k\x=1(k\"
@) =ewp (-5 ) S04 (£) 6 anry(a)

n=0
where §, denotes the Dirac measure with mass at a. The Fourier transform

of v is given by
: k .
/exp(zu:c)a’z/(a:) = exp (;(e 1+ zau)) .
R
Furthermore, in a neighborhood of zero,
1
U(z) = - log(1 — az),
J(z) = exp | k( ! lo (1—az)+i)
z)= p Cl2 g o )
so that
z 1 z
G(z,z) = exp - log(1 — az)+k Jlog(l—az)-i-a .

The (p™)%, is a system of Charlier polynomials.
II1. (Gamma case) Assume o = 3 # 0 (which corresponds to A = —2a €

R, n = a? > 0). v is a centered gamma measure:
k ~14k/a?
dv () = X(-c0,~k/) (%) (‘fl? + a) el a>0,

k —1+k/02
dU(:E) = X(—k/a,+oo)(x) <x + E) e:r/a) a <0

The Fourier transform of the gamma measure v (in a neighborhood of zero)

is given by

/R exp(iuz)dy(z) = exp (k (% _ 5(13 log(1 + aiu))) .
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Next,

V() = 1=,
) = exp (7 log(1 - az) + m)) ,
so that
xz 1 z
G(z,z) = exp (1 — k (-&—2-log(1 —az) + m)) .

The (p(™)22, is a system of Laguerre polynomials.
IV. (Pascal case) Now a # 8 # 0, a, 8 € R (which corresponds to n > 0
and A2 — 4n > 0). Then v is a centered Pascal measure (negative binomial

distribution):

n=0
where (3)g := 1, (%) == x#(3c+1)- - (x+n—-1),n € N, z € R, and we
assumed that |@| > |8|. The Fourier transform of v (in a neighborhood of

zero) is given by

' B k ae—iﬁu _ Be—iau
/Rexp(zu:c)du(w) = exp <_ﬁ log s ) .

Furthermore
1 1-p3z
=) = a—ﬂlog(l——az>’
ok (1 - Bz)
f(z) = exp ( a_ﬁIOg ((1 —az)é>) :
so that

Q= -

_ T 1- 2 k (1 - F2)
G(z,2) = exp (a_ﬁlog<1—az> _a—ﬁlog<(1—az)

The (p™)=, is a system of Meixner polynomials of the first kind.

n=0

)
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V. (Meixner case). Now Im(a) # 0, @ = § (which corresponds to > 0

and A% — 41 < 0). The measure v is a centered Meixner measure
k) ko (a+ Bk
w0 = ((55)) (s 3 (- 5e))

X exp [_ (x _ %) arctan (‘I(;Njé))] )

where we assumed that Im(a) > Im(3). The formulas for the Fourier trans-

2

form of v, the functions ¥(z), ¥~!(2), and G(z, z) have the same form as
in the case IV, but with complex conjugate a, 8. The (p™(z))%, is a sys-
tem of Meixner polynomials of the second kind, or the Meixner-Pollaczek
polynomials.

In fact, all the above formulas for the Fourier transform and the generat-
ing function can be written down in a common form if one uses infinite sums
involving o and S, see [38].

For each measure of orthogonality of polynomials from the Meixner class,

/Re“‘”u(dx)

is well-defined in a neighborhood of zero in R. The function

€(u) = log ( /R e“’“’u(dr)) ,

also defined in a neighborhood of zero in R, is called the cumulant trans-

v, the Laplace transform of v,

form of v. We denote by €, ,(u) the cumulant transform of the measure v
corresponding to parameters k = 1, A, and 7.

For any A € R and n > 0, let 05,(ds) be the probability measure
on (R,B(R)) which is the measure of orthogonality of monic polynomials

(™ (5))nx0 which satisfy the recurrence relation:
sq™M(s) = ¢V (s) + A(n + 1)g™(s) + nn(n + 1)g"~I(s). (6.8)
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Note that the probability measure o), belongs to the Meixner class.

We have [40], see also [34]:

Proposition 6.1. For any k >0, A € R and n > 0, let v, be the measure
of orthogonality of monic polynomials satisfying (6.3). Then the measure

Vkag 18 infinitely divisible and k s~y ,(ds) is its Lévy measure:

/exp(iu:c) Vkan(dz) = exp [k/ Oxq(ds)s™2(e™ — 1 —jus)| .
R R

(Note that, for s =0, the function s™2(e™* — 1 — ius) is assumed to take the

value —%. ) In particular,

Crq(u) = /Ra,\,,,(ds)s“Q(e“s —1—us). (6.9)

From now on, we fix any measurable, locally bounded functions A : R¢ —
R and 7 : R? — (0,00). For each z € R% let o(x,ds) be the probability
measure on (R, B(R)) defined by

o(z, ds) 1= ox@)m(z)(ds),

see Proposition 6.1. By (6.8), the corresponding functions a,(z) and b,(z)

are given by
an(z) =n(z)n(n+1), bu(z) = A(z)(n+ 1),

and so condition (B) is satisfied. Thus our results in Chapters 3-5 are appli-
cable to o(z, ds). Note that, by (5.23), the corresponding functions (cx(z))52,

are given by

cr(z) = nlx) k- 11K, keN.
ere = 1. ence, by (5.19), the measure (., on is the push-
Here 0° := 1.) Hence, by (5.19), th ) on (R%)S" is the push
forward of the measure
(z) () (160 = DG - (18] = 1)!!

118



x nl(|61]!- - |6 dy - - - day
= n(z,) "1 ()P ()6, - 1) (160 — 1) nlday - - - da.

Furthermore, by Theorem 3.7, the Fourier transform of the corresponding

measure y on D' is given by

. 1. .
/ ez(cp.@“(dw) = exp [/ d:c/ o(:v,ds)—2[eup(z)s _ iso(:c)s — 1] . (6.10)
D R4 R S

Thus, our results extend the corresponding results of [30,31] and [38].

Remark 6.2. Recall that in [30,31] A and 7 were constants, and in [38] the
functions A and 7 were assumed to be smooth, whereas we do not even assume

that these functions are continuous.

As follows from the proof of Theorem 3.7, the Laplace transform of the

measure /i,
> / e p(dw)
'DI

is well-defined in a neighborhood of zero in D. Hence, we can define its

e() = log ( I e<’*"w>u(dw)) ,

which is also defined in a neighborhood of zero in D.

cumulant transform

Theorem 6.3. We have, for ¢ from a neighborhood of zero in D,

(p) = /w Cr@)m@) (0()) da. (6.11)

Proof. We will only sketch the proof of this theorem. By approximation, it
suffices to prove the following statement.
Fix any A € By(R?) and any constant € > 0. Then there exists a constant

C > 0 for which the following holds. Let A,...,A € By(R%) be mutually
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disjoint and U?:1 Aj; = A. Let functions A and 7 take on constant values on
each set A;, j =1,...,n, and let the functions |A| and 7 be bounded by € on
A. Let a function ¢ be given by

pl) = rixa,(2), (6.12)
j=1

where

.....

Then formula (6.11) holds for this function ¢.
Indeed, denote by A; and n; the value of A and 7 on A;. By (6.9), (6.10),
and (6.12),

¢(yp) = ; /A s /R o (2, ds)s~2 (e — 1y — 1)

= : (/AI d:r) /]Ra,\y,,j(ds)(e”s —r;s—1)
= .n (/A, dm) Cx;m; (75)

j=1

= [ > XA, (@)@ () dz
Rd j=1

- / Exermie)(0(2)) dr,
Rd

where we used that €y(5),z)(0) = 0. From here the statement follows.
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