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SUMMARY

The popularity o f  the variable-speed induction machine as a drive mechanism has 

increased rapidly. This has led to the voltage source inverter induction machine being 

used to drive numerous applications such as electric vehicles and trains. 

Unfortunately, the condition monitoring and fault detection o f these types o f drives is 

an area, which has been left largely untouched by the research community. This is due 

to the high harmonic contents o f the machine supply making the rigorous 

mathematical analysis o f the drive complex.

Fortunately, the interesting development in signal processing theory, especially 

wavelet transform, has sparked a new interest in condition monitoring o f voltage 

source inverter induction machine. The wavelet transform have two important 

features, which, are important for the condition monitoring and fault detection 

purpose; time localization ability and multi-resolution analysis. Furthermore, the 

wavelet can be combined with artificial intelligent system to provide an acceptable 

system with high accuracy and reliability.

The work herein presented is a contribution to voltage source inverter induction 

machine condition monitoring and fault detection using the combination o f wavelet 

transform and fuzzy logic. The research was concentrated on some typical fault events 

o f  voltage source inverter that allow reduced operating conditions o f the drive system  

without triggering the short circuit protection.
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CHAPTER 1

INTRODUCTION

1.1 General Introduction

With the development of power electronics, microprocessor and digital signal processor 

(DSP), induction motors are predominantly fed from pulse width modulation (PWM) 

inverters for variable-speed operation. PWM inverter fed motors are usually more reliable 

than those supplied directly on-line. For example, the problem of broken rotor bars, 

mainly due to excessive starting torque, is practically avoided by the technique of soft 

starting with an inverter [ 1 ,2 ].

However, a previous study of three-phase voltage-fed inverter demonstrated that they can 

also develop various faults which is preventing their wide spread application [3-6]. These 

faults can lead to motor failure if left undetected. As we all aware, motor problems can 

cause crises that are expensive and quite annoying, in particular, if the problem could be 

prevented [7-10].

To solve this problem, the condition monitoring and fault detector of voltage source 

inverter (VSI) is necessary. The condition monitoring, fault detection and diagnosis 

system allow preventive and condition-based maintenance to be arranged for the system 

during scheduled downtime. This will prevent an extended period of downtime caused by 

extensive machine failures, which will improve the overall availability and performance, 

while reducing maintenance costs.

Condition monitoring means the continuous assessment of the performance and health of 

the system throughout its useful operating life. Diagnosis, though, is a special case of the 

more general problem of condition data interpretation, as it sets out to determine the 

source of any abnormality in the data, based on a given set of possible cause and effect 

symptoms. The aim of diagnosis is: based on a minimum amount of input data, using the
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minimum and simplest analysis, to determine and isolate as fast as possible, the cause of 

any inadequate performance or any actual equipment failure.

An effective condition monitoring system will necessarily consist of the following 

criteria:

1 . the system should be non-invasive

2 . the measuring of selected parameters which can be analysed to give an early 

indication o f damage or wear

3. easy extension to a wider range of monitoring requirements should be possible

4. recommended actions based upon the analysis

5. remote operation should be possible

In the early days, monitoring tasks were performed by the people who actually operated 

the system. They could assess the system condition based on their own personal 

experience. Later, when the system became more complex, measurement systems were 

introduced to measure and analyse the key parameters, and to provide an objective 

judgement of the system condition.

It is important to stress here the difference between protection and condition monitoring. 

Protection is basically designed to act only once a fault has occurred, and will normally 

result in some executive action, such as activating a main circuit breaker to switch off the 

power if an excessive current is detected. Monitoring should be designed to pre-empt 

such occurrences and give an early indication of the onset of possible malfunctions [7].

1.2 Condition Monitoring

The ultimate objective of any condition monitoring and fault diagnosis process is to 

recognise the development of faults at early stage, so as to assist maintenance personnel 

and, where necessary, to activate alarms. The overall requirement is to act in a convenient 

and quick manner so as to control the cause of a fault.

To determine the cause of any problem, two forms of condition monitoring of a system 

are normally used:

2



Off-line monitoring. With this method, system parameters, such as current, voltage or 

vibration [11-13], are measured, recorded and analysed in the field or in a laboratory. 

Advanced signal processing techniques are usually required for in-depth fault diagnosis. 

The effectiveness of off-line fault diagnosis depends mainly on the quality of the data 

obtained, the suitability of the data-analysis equipment and the technique used to derive 

the information from the data. Off-line monitoring is commonly used on many complex 

systems where continuous measurement is expensive or where data measurements must 

be made at many different locations in the system or plant.

On-line monitoring. With this method, directly measurable parameters, such as current, 

voltage, temperature and speed are measured continuously. These parameters, together 

with derived, non-measurable quantities (in the form of state variables or parameter 

estimation), are compared continuously to permitted levels, or suitably processed to 

determine trends. Typically, this method requires rapid processing and hence, complex 

signal processing and fault diagnosis techniques should be avoided.

On-line monitoring is particularly important in safety-critical applications where the 

system is mainly to survive most minor faults. Normally, an artificial intelligent (AI) 

technique is integrated into on-line condition monitoring and fault diagnosis system 

[14,15]. Such technique required “minimum configuration intelligence” since no detailed 

analysis o f the fault mechanism is necessary, nor is any modelling o f the system required. 

A modern condition monitoring and fault diagnosis system may also be augmented by a 

system that advises the operator on action to be taken when a certain fault occurs.

1.3 Fault Signatures

A fault is a physical defect in a system element or component. It can cause changes in the 

element’s behaviour and possibly, in related element’s, which can result in a failure of a 

whole system. These changes could manifest themselves in different ways, such as 

overheating [16], over speed, excessive vibration or deterioration in the relationship 

between the input/output parameters of the element or system. Often, more than one type 

of change will occur in a single defective element.
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These observable changes in a faulty element’s behaviour can be considered as fault 

signatures. The signature will depend on the element itself, its input and/or output, and 

the type of defection.

Normally, changes in the element behaviour can be well observed from the signal 

patterns, obtained from the sensors. The inherent nature of many sensors is that their 

output is an electrical signal, with a characteristic pattern of voltage or current and, with 

‘information’ held in signal magnitude, frequency or phase. Advance signal processing 

techniques such as fast fourier transform (FFT) [17], higher order spectra [18-20], Park’s 

vector analysis [2 1 ] and wavelet transform [22,23] are required to extract embedded 

information that indicates deviation from normal operating conditions. For that reason, 

some signal processing techniques will be reviewed in Chapter 2.

1.4 Research Objective

A number of common practical faults of voltage source inverter (VSI), are identified 

[3,4,24], the drive system can operate for a considerable period of time, but with degraded 

performance. This operating mode is, of course, accompanied by disturbed output voltage 

waveforms and will overstress other switching devices. Also, VSI faults generate load 

disturbances related to the presence of a pulsating electromagnetic torque and a 

substantial dc component in the stator current, which will saturate the machine and induce 

an oscillating air gap torque at the fundamental frequency. These situations can lead to 

catastrophic breakdown of the motor if left undetected. Continuous monitoring for such 

condition is of great importance.

The objectives of the present work are to study, investigate and design the real-time, non- 

invasive condition monitoring and fault diagnosis algorithm of three-phase pulse width 

modulation (PWM), VSI for closed-loop, fuzzy logic, voltage/frequency (v/f) speed 

control strategy of an induction motor drive. The research concentrated on some typical 

true fault events of VSI that allow reduced operating conditions of the drive without 

involving the short circuits protection. The proposed algorithm should be robust and 

simple, which is important for the implementation of on-line monitoring system. For this
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reason, the combination of wavelet transform technique and fuzzy logic system is 

proposed.

For the development of such algorithms, it is advantageous to test their effectiveness and 

validity through computer modelling and simulation. Indeed, this represents a very 

important step to the initial design of an efficient algorithm for the condition monitoring 

and fault diagnosis system. In the present work, computer simulations have been carried 

out with the simulation package MATLAB and SIMULINK [25,26]. Then, the reliability 

and accuracy of the proposed algorithm are verified using the real experimental data.

1.5 Overview Of The Thesis

Chapter 2 provides an overview of the condition monitoring fault diagnosis system. Their 

related works and the theory of monitoring process and signal analysis techniques are 

included.

Chapter 3 describes the voltage source inverter (VSI) and the pulse width modulation 

(PWM) techniques. The operation principles for single-phase and three-phase are 

presented. This is followed by the discussion of VSI faults.

Chapter 4 outlines the modelling and simulation process of three-phase inverter and 

induction motor drive. The system is simulated in MATLAB/SIMULINK environment.

Chapter 5 describes the proposed fault diagnosis algorithm for three-phase PWM VSI 

induction motor drive using the combination of wavelet transform and fuzzy logic system. 

The development of the proposed scheme is thoroughly discussed.

Chapter 6 demonstrates an application of the proposed algorithm. The experimental set­

up is presented in detail. This is followed by illustrating the performance of a proposed 

detection system. Comparison studies between the acquired experimental results with the 

simulation results, are also presented.
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Chapter 7 draws together the main conclusion of the thesis and outlines some possible 

future directions.

1.6 Publications

As a result, 6  papers have been published.

a) Refereed Journal Publications

i) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Fault detection and

diagnosis of 3-phase inverter system”, International Journal of Reveu 

Des Energies Renouvelables, 2001.

b) Refereed Conference Publications

i) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Condition monitoring 

of PWM voltage source inverters”, IEEE International Conference on 

Electrical and Electronics Technology (TENCON), 2000, Malaysia.

ii) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Advanced DSP based 

fault detection of PWM voltage source inverters”, International 

University Power Engineering Conference (UPEC), 2000, Ireland.

iii) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Fault detection of 3- 

phase voltage source inverter using wavelet transform”, IEEE 

International Symposium on Diagnostics for Electrical Machines, 

Power Electronics and Drives, 2001, Italy.

iv) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Fault detection and 

diagnosis of 3-phase voltage source inverter”, International University 

Power Engineering Conference (UPEC), 2001, United Kingdom.
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v) Khanniche, M.S., and Mamat-Ibrahim., M.R., “Fault detection o f  

voltage source inverter using combination o f wavelet transform and 

fuzzy logic system”, IEEE International Symposium on 

Diagnostics for Electrical Machines, Power Electronics and Drives, 

2003, USA (accepted for publication).
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CHAPTER 2

CONDITION MONITORING AND FAULT DIAGNOSIS

2.1 Introduction

The increase of productivity requirements and better performance specifications lead to 

more demanding operating conditions of many engineering systems. Such condition will 

increase the possibility of the system failure, which are characterised by critical and 

unpredictable changes in the system dynamics. In general, the feedback control algorithm, 

which is designed to control small perturbation that may arise under normal operating 

condition, cannot accommodate abnormal behaviour due to the component faults [27]. 

The system may collapse completely.

Most o f the power electronic devices normally operate in an environment requiring rapid 

speed variation, frequent stop / starting and constant overloading. The circuits are 

subjected to constant abuse of over-current surges and voltage overswings. Although 

protection devices such as snubber circuits are commonly used, switching devices are 

physically small and thermally fragile. Even a small electrical disturbance can cause 

thermal rating to be exceeded resulting in rapid destruction [16].

Generally, the malfunctioning of power electronics system may due to multiple and 

complex causes. This fact is due to the high integration and interaction of multiple 

heterogeneous components. External causes such as swell/dips at the input of an inverter 

or short-circuit of the output load are low dynamic failures and can often be stopped 

before the destruction of the device. On the other hand, internal causes such as 

semiconductor breakdown or faulty control signals provide high dynamic failures and it 

may be very difficult to limit the failure and save all the components. For example, a leg 

short-circuit in a 2-level IGBT inverter must be less than 10 ps to save the power devices 

[154].
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In many cases, occasional failures may be tolerated, but, in the case of expensive, high 

power systems, multi-converter integrated automation systems and safety critical systems, 

advanced indication of unusual performance, which may lead to sudden system failure is 

mandatory.

Therefore, the knowledge and information about the fault behaviour of power electronic 

circuits is important to improve system design, protection and fault tolerant control.

2.2 Overview of Related Work

Condition monitoring of the power electronics circuit, especially VSI has received 

considerable attention in recent years. The literature concerns mostly with the 

classification and the analysis of true fault operation of single components of power 

electronic circuits. In the following, some selected, related works published recently, are 

described.

An early study was made by Gentile [28], who in 1993, analysed inverter-fed induction 

motor faults based on the space vector theory. Two types of modulation technique are 

discussed: six step modulation and sinusoidal PWM. The inverter faults like the open of a 

phase, the failure to turn-on of the transistor and the delay in a branch command are 

detected using current spectrum and dc component in the phase currents. The authors also 

discussed the remedial strategies to reduce the damage level of the electrical drive.

Renfew [29] in 1993, have investigated the technique to detect the 3-phase inverter faults 

by using the simplest criteria available in input and output waveform. The value of dc 

component in current and voltage was used as main indicators to detect the faults. Then 

the knowledge-based system was implemented to analyse the results. In this paper, three 

different types of converter were considered: single-phase converter, three-phase 

converter and cycloconverter. The results showed that the chosen criteria could be used 

effectively to detect the faults, which can lead to a reduction of performance in the motor 

operation.
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Also in 1993, Craig [30] presented a fault detection procedure for single-phase bridge 

converter, based on device firing signals, phase current direction and fly wheeling 

currents. In the published paper, it was shown that the system is able to continuously 

monitor the condition of a single-phase bridge, identify the faulty device and its mode of 

failure.

A difference approach was reported by Wiechmann [31] in which they described a real­

time converter operation surveillance. Fault detection is based on a real-time signal error 

produced by comparison between real time simulated and acquired data. The error is then 

compared with characteristic anomalous signal patterns to produce a diagnosis.

Aris [32] in 1994, reported the use of digital signal processing and a knowledge based 

approach to detect and analyse all possible faults in the 3-phase inverter circuit. The dc 

level of phase currents and the amplitude of phase voltages are used as an input to the 

fuzzy logic. The implementation of fuzzy logic technique was successfully demonstrated 

by interfacing it with the power electronic design tool package run on SUN workstation.

Debaprasad [3], also in 1994, have investigated the various fault modes of a 3-phase 

voltage-fed PWM inverter system for induction motor. The important fault modes are 

clearly identified. The predicted faults performances are then substantiated by simulation 

study. The result has been used to determine stresses in power circuit components and to 

evaluate satisfactory post-fault steady-state operating region.

Smith [4] in 1997, have developed a real time condition monitoring method to detect the 

intermittent loss o f firing pulses of an individual switching device in 3-phase PWM 

inverter induction motor drives. The method is based on the time-domain response 

analysis of the induction motor current space vector and is claimed to be adaptive to 

changes in the operating point during variable-speed operation.

Blaabjerg [33] also in 1997, proposed a new topology for low cost, fully fault protected 3- 

phase PWM-voltage source inverter with true phase current information. The phase 

current is reconstructed from a dc link current measurement and the output is protected by 

a special arrangement in the dc link. This paper also proposed a new method to ensure a 

reliable and correct phase current reconstruction. The acquisition technique has added a
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controlled dc link sampling, which gives a noiseless sampling and a correct average value 

of the phase current.

Retiere in [34] demonstrated a VSI fault detection scheme based on space vector 

technique. This technique utilised voltage and flux vectors, in order to detect the inverter 

leg short circuit and single gate-turn-off thyristor (GTO) short circuit. He showed that the 

space vector offers a great potential to detect the consequences of GTO faults with respect 

to initial condition, the machine parameters and the control strategy. Such faults can cause 

severe electrical and mechanical damage. A 5 kW induction motor had been used to 

validate his approach.

In 1998, Mendes [35] described a Park’s vector approach on detecting and diagnosing the 

3-phase inverter fault in variable speed ac drives. The phase currents are used as an input 

to the Park’s vector system. Power switch faults either an open-circuit or short-circuit are 

characterised by distinctive patterns of the Park’s vector, where angular orientation is 

associated with the faulty power switch. The location o f the faulty device can be obtained 

using an auxiliary sectogram. The prototype model was built to prove the practicality of 

this technique.

Filipetti [24] in 2000, suggested that it is possible to use spectrum and instantaneous value 

of supply currents and voltages for detecting VSI faults in open-loop drive systems. He 

showed that the significant changes are clearly visible to distinguish between the healthy 

and faulty condition. Also, he suggested that for closed-loop drives system, more 

sophisticated procedures and techniques should be adopted in order to assess VSI 

condition. Advance artificial intelligent (AI) techniques such as genetic algorithm (GA) 

are highly recommended because they are simple, powerful, general purpose, derivative 

free, stochastic global optimisation method (search algorithm) inspired by the laws of 

natural selection and genetics.

2.3 Monitoring Process

Condition monitoring process covers a range o f activities starting from data collection to 

user display. The activities involved can be divided into a number of easily identifiable
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functional stages, which are often referred as the elements of a condition monitoring 

process. In general, condition monitoring and fault detection process can be divided into 

three main stages: Pre-processing, signal processing and user interface [36,37]. Figure 2-1 

below shows the general operation of the condition monitoring and fault diagnosis 

process.

Plant
Signal

Processing
Data storage & 
Pre-processing User Interface

Figure 2-1: General operation o f condition monitoring and fault diagnosis.

2.3.1 Pre-processing

Condition monitoring systems depend on sensors for obtaining the information signals. 

These sensors might measure voltage, currents, vibration, temperature, speed etc. In the 

case of three-phase induction motor drive system, stator currents and voltages are 

normally preferred because they allow for the realization of non-invasive diagnostic 

systems and the sensors required are usually present in the drive.

The pre-processing stage converts the sampled signal to a suitable format for the 

processing stage. At this stage, sensor failure should be detected. The reliability of the 

sensors can be increased by monitoring the sensors themselves. Sensor fault detection 

methods can be divided into direct and model based. The direct method is based on an 

evaluation of the actual sensor signals while model based methods use information about 

the monitored system to create an ‘analytic’ sensor redundancy. Model based methods 

can identify less prominent sensor faults than the direct method.

2.3.2 Signal Processing

In the processing stage, the condition and type of fault of the system is determined. This 

can be implemented using several methods. The three basic methods, which are normally 

used for fault diagnosis of drive, are:
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1. Signal processing using model based on first principles

2. Signal processing using feature extraction and pattern recognition

3. Signal processing using knowledge base.

The methods mentioned above use different amounts of process knowledge, as illustrated 

in Figure 2-2, [36], The amount of available process knowledge limits the applicable 

methods. The choice of a method, however, is determined by a required performance and 

may not require all available process knowledge. It is known that each method has it’s 

own advantages and disadvantages. In the following, they are introduced respectively.

Process

Knowledge

i L

First Principle Feature Extraction Knowledge Base

Figure 2-2: Required process knowledge.

2.3.2.1 First Principle Method

The first principle method, known as model based method, uses a mathematical model for 

generating a description of the behaviour of the system, both for healthy and faulty 

conditions. Different approaches and techniques for condition monitoring using 

mathematical models were developed in the last 20 years [38-40]. It include parameter 

estimation [41-44] and state estimation [45-47].

The parameter estimation technique used the undesired changes of physical parameters to 

detect and diagnose faults directly. Because of the obvious physical meaning of 

parameters, this technique is of great advantage to fault diagnosis. One main advantage of
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parameter estimation is a drive system can be modelled accurately by balancing the 

equations [44]. According to the magnitude of parameter change, the degree of 

seriousness of the fault can be estimated. However, it may be difficult to get the unique 

physical parameter according to the mapping relationship between the physical parameter 

and model parameter [48].

On the other hand, the state estimation method makes use of predicted outputs to generate 

a residual series. Faults can be detected by analysing the information available in the 

residual series. When the state estimation technique is used, the influence of large 

modelling error cannot be ignored.

The advantages of first principle method are:

1. Only a limited amount of measured data is needed.

2. Much insight into the behaviour of the system is gained and this information can 

be used for other applications.

3. The method is well suited for newly design system.

The disadvantages are:

1. The model is only an approximation of the real system.

2. Through process knowledge is needed for development of the model.

3. Only a limited subset of faults can be modelled.

23.2.2 Feature Extraction and Pattern Recognition Method

Feature extraction and pattern recognition method, typically using statistical analysis are 

widely used to solve various fault diagnosis problems [49]. These methods are based on 

the classification and recognition of signal waveform. The classification is done by 

matching (part of) the signal with a set of reference signals [50,51]. The sensor signal will 

be classified a member of the class that corresponds with the best matching reference 

signals.

The isolation of part of the signal that is unique for the classes results in a better control 

of the classification problem. The influence of fluctuations in the signal that are caused by
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instabilities and noise will be reduced to a minimum. The process of isolating these parts 

of the signal is called the feature extraction process, while the matching process is known 

as pattern recognition [36].

This method is suitable to monitor the system for which an accurate model is not 

available. But, some mathematical descriptions or a look-up table are required for each 

feature that corresponds with a fault, over a wide range of operating condition.

Several faults can be detected independently using the same signal if there is no 

correlation between the patterns of the features for the different faults. Further, this 

method can be extended with new functions for the detection of new faults without 

changing the existing condition monitoring and fault diagnosis system.

The advantages of the feature extraction and pattern recognition method are:

1. The method is suitable for the system when a mathematical model is not 

available.

2. Little process knowledge is required.

3. The detection algorithms are only triggered by predefined patterns of the sensor 

signals. This reduces the noise influence.

The disadvantages are:

1. Detailed knowledge of the behaviour of the signal is needed to determine which 

parts of the signals are relevant.

2. Measurement data of faults are required.

3. High performance computing techniques might be needed.

2.3.2.3 Knowledge Based Method

Method based on knowledge, also known as an artificial intelligent (AI) include expert 

system [52,53], neural network (NN) [54-57], fuzzy logic (FL) [32,58-60], fuzzy-neural 

[61,62] and genetic algorithm (GA). In knowledge based systems, several quantities can 

be utilised as an input function such as currents, voltages, vibration and magnetic field. 

Also, fault detection and evaluation can be accomplished without an expert [63]. The
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essence of an expert system is the ability to manage knowledge based production rules 

that model the physical system [64].

The neural networks are general non-linear function approximators. This function is 

achieved by using an appropriate network built up from artificial neurons, which are 

connected by appropriate weights. However, the exact architecture of a NN is not known 

in advance, which usually obtained after a trial and error method. NN are able to learn 

expert knowledge by being trained using representative sets of data. At the beginning of a 

N N ’s training session, the NN will not be accurate. An error quantity is measured and 

used to adjust the neural network’s internal parameter in order to produce more accurate 

output decisions. This process is repeated until a suitable error is achieved. Once the 

network is sufficiently trained and parameters have been saved, the NN ’s contain all the 

necessary knowledge to perform their tasks [65-68,90].

Fuzzy logic systems are expert, rule-based systems, but they can also be considered to be 

general non-linear function approximator. In contrast to NN, FL give a clear physical 

description o f how the function approximation is performed [69-71]. The details on FL 

are given in the Appendix A.

Fuzzy-NN technique is basically NNs with fuzzy features [72]. Neural networks are used 

to tune membership functions of fuzzy systems that are employed as decision-making 

systems. Although FL can encode expert knowledge directly using rules with linguistic 

labels, it usually takes a lot of time to design and tune the membership function, which 

quantitavely define these linguistic labels. Neural network learning techniques can 

automate this process and substantially reduce development time and cost while 

improving system performance.

The genetic algorithm can solve the problem that do not have a precisely defined solving 

method, or if they do, when following the exact solving method would take far too much 

time. GA works by creating many random solutions to the problem at hand. Being 

random, these starting solutions are not very good: schedules overlap and itineraries do 

not traverse every necessary location. This population of many solutions will then be 

subjected to an imitation of the evolution of species. All of these solutions are coded as a 

series of zeroes and ones. The evolution like process consists in considering these Os and
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Is as genetic chromosomes that, like their real life, biological equivalents, will be made to 

mate by hybridisation, also throwing in the occasional spontaneous mutation. The 

offspring generated will include some solutions that are better than the original, purely 

random ones. The best offspring are added to the population while inferior ones are 

eliminated. By repeating this process among the better elements, repeated improvements 

will occur in the population, survive and generate their own offspring. Further reading 

about GA is recommended in [73-76].

The advantages of knowledge based method are:

1. Very fast. This is useful for real-time systems.

2. Little process knowledge is needed.

3. Robust, especially regarding noise.

The disadvantages are as follow:

1. An extensive set of measured data is required for all classes of conditions, 

including faults.

2. Training period especially neural network is time consuming.

2.3.3 User Interface

Once the pre-processing and processing stages have been done, the result should be 

presented to the user/operator. The use of screens can improve the presentation of 

information significantly. The regular process variables and the condition monitoring 

diagnosis should be displayed. Furthermore, the best maintenance advice also should be 

given.

The design of the user interface should be ergonomic and user friendly. For condition 

monitoring systems, it is useful to distinguish between two types o f display: survey 

display and specific display [36]. During normal operation, the survey display presents 

the status o f the system. The specific display will be used during faulty condition.
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2.4 Signal Analysis Technique

A variety o f other signal processing techniques are available for analysing different types 

of signals. In what follows, techniques that can be associated to the current signature 

analysis will be briefly discussed.

2.4.1 Fourier Transform (FT)

The Fourier transform, in essence, decomposes or separates a waveform or function into 

sinusoidal of different frequency which sum to the original waveform. It identifies and 

distinguishes the different frequency sinusoids and their respective amplitudes. In many 

situations, FT-based stator current signature analysis was found the best medium for 

signature analysis [54 - 59].

Mathematically, Fourier transform can be expressed as
\

oo

F {ja>)=  \f( t)e* * d t (2 .1 )

Essentially, f(t) is the time-domain signal, which is composed of a sum of sinusoidal 

waves. f(t) is multiplied by series of rotating phasors e jcot , where co = 2jrf and y-V-1. 
F(jco) is a complex variable and is known as the Fourier transform of f(t). We can then 

expand the Fourier transform into its complex form,

F (j(o ) = ReO'fi>) + j  = F(jco) \ em CO) (2 .2)

F(jco) = [Re2 (jco) + Im2 (jco)\ (2.3)

where |F(yry)| is the amplitude density, or the amplitude spectral density, and 0  (&>) is

the phase angle. The Fourier transform can be viewed differently according to the type of 

signal being handled, and it is particularly useful to consider continuous periodic, non-
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periodic signals and discrete signals. These cases will be discussed in the following 

section.

2.4.1.1 Fourier Series Analysis

Continuous periodic function, such as an analog current or voltage signal, may be 

represented by a Fourier series consisting of the sum of sine waves whose frequencies are 

all multiples of the fundamental frequency. The amplitudes of the sine waves are known 

as the Fourier coefficients. An additional constant term, equal to the mean value of the 

waveform during the period x, is included as an effective dc value. The function is 

expressed mathematically as

oo oo

(2.4)

oo

(2.5)
n=l

where

A continuous periodic time function can be therefore represented as a discrete series of 

frequencies in the frequency domain. Thus, a continuous signal can be represented



(approximately) to a required accuracy by a finite, often small, set of numbers 

representing frequency, amplitudes and phase shifts. This compaction of data usually 

allows trends to be easily recognised.

In practical terms, Fourier analysis usually determines the C„ coefficients by two possible 

methods. This is done, firstly, by passing the time-domain signal through a number of 

filters tuned to different frequencies, and then measuring the power transmitted at each 

frequency by an appropriate detector.

Secondly, the Fourier transform can be directly calculated by transforming the continuous 

signal into a discrete signal, via a sampling process, and then using the Discrete Fourier 

Transform to calculate the coefficients. It can be easily processed using digital 

techniques.

2.4.1.2 Discrete Fourier Transform (DFT)

In practice, the Fourier components of the signal are obtained by digital computation 

rather than by analogue processing. The analogue signals have to be sampled at regular 

intervals and the sampled values then, converted into digital form. This is normally 

achieved by using a sample-and-hold circuit, followed by an analogue to digital (A/D) 

converter. Provided that the number of samples recorded per second is adequate, the 

waveform will be fully represented. The theoretically necessary sampling rate is called 

the Nyquist rate frequency, and this is given by 2fmax, where f max is the frequency of the 

highest frequency sinusoidal component in the original signal of significant amplitude.

Under these considerations, the equivalent equation to that given in equation (2.1) 

becomes,

F 0'a>) = T  £  f(nT) e~Jh'“T ,k  = 0,1,2,3,....., N - 1 (2.6)
A  n=l

and the corresponding inverse transform is,

20



m =
k = 1

(2 .7)

where k represents the harmonic number of the transformed component.

In practice, a large number of multiplication and addition operations are required when 

calculating the discrete Fourier transform (DFT). Each term on the right hand side of the 

equation (2 .6 ) needs to be calculated and this involves the multiplication of an 

exponential term (which is always a complex number) by another term, which is either 

real or complex. Then, the entire product must be added together. Therefore, to calculate 

N sampled numbers will require N 2 mathematical operations. An algorithm, which can 

reduce the number of calculations, is the so-called fast Fourier transform (FFT) [17, 

77,78]. This algorithm permits an adequate representation in the frequency domain for all 

forms of time-domain signals.

The main limitation of Fourier analysis is that it is difficult to recognise periodicity in 

complicated signals, such as in some vibration signals (example, from gear box), which 

appear as a repetitive harmonic amongst a series o f harmonics in the spectral space. 

Secondly, if at some point in the signal f(t), there is a local oscillation (possibly 

representing a particularly interesting feature), this will contribute to the calculation of the 

Fourier transform, but its location on the time axis will be lost. There is no way of 

knowing whether the value of F(co), at a particular frequency, is derived from frequencies 

present throughout the life of signal f(t), or just during one, or a few, selected periods. 

These drawbacks to the Fourier transform have led to the development of other signal 

processing techniques.

2.4.2 Higher Order Spectra (HOS)

Higher order spectra is a relatively new tool for signal processing. Several key papers 

in HOS were published in the 1960’s [79-81], but most o f these papers took a 

statistical and theoretical viewpoint o f  the subject. It was not until the 1970’s [82,83],
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that researchers started to apply HOS technique to real signal processing problems. 

That interest has recently been extended to the area o f condition monitoring [83-89].

HOS measures are extensions o f second-order measures (such as the power spectrum) 

to higher orders, such as at 3rdand 4th order. The 3 rd order poly spectrum is the easiest
thto compute, and hence the most popular, and is called the bispectrum. The 4 order 

polyspectrum is called the trispectrum.

Given a discrete time signal x(ri), the DFT of x(n) is defined as

* ( / ) =  Y .x ( n ) e 1Jm (2 .8 )
n — -oo

The well known second-order measure, the power spectral density (PSD) P(f) of x(n) can 

be defined in terms o f X(j) as

P(f) = E [X ( f )X '( f ) ]  (2.9)

where E[] is the statistical expectation, or average, and X*(f) is the complex conjugate of 

X (f). The PSD is a linear transform and is a function of the frequency index f. Extending 

these definations to third and fourth-order measures, gives rise to the bispectrum B(f], fi)  

and trispectrum T{fI} f 2, ̂ j), defined as

B ( f \ , f i )  = E \X ( f \ ) X ( f i ) X * ( f i  + f i ) }  (2 .1 0 )

T(f l, f i , f i )  = E [ X ( f l) X( f 2 ) X( f 3 )X* ( f i  + / 2 + A ) ]  (2.11)

From equations (2.10) and (2.11), it may be seen that, unlike the PSD, the bispectrum and 

trispectrum are functions of more than one frequency index. Further, it may also be seen 

that they are complex quantities, which contain both magnitude and phase information 

about the original time series.
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The bispectrum detects the phenomenon known as quadrant phase coupling (QPC). QPC 

occurs among the three frequencies /;, and f j+  / 2 , when the phases of the three 

frequency components sum to zero, i.e, 0 /y + 0  ̂= 0 /y + fl. QPC is indicated by a peak in the 

bispectrum at the bifrequency B(f] , f i)  and when the associated biphase O (/} ,f i )  tends to 

zero.

Similarly, the trispectrum detects the presence of cubic phase coupling (CPC). CPC 

occurs among the four frequencies /;, f 2 , f  and /;+  _/?+ /j , when the phases of the four 

frequency components sum to zero, i.e, 0 /y + 0^ + 0 y3 = 0/y +/> +/3- CPC is indicated by a 

peak at the trifrequency B(f] , f i)  and by the associated triphase Q>(fi, f 2 , f 3) approaching 

zero.

The bispectrum and trispectum have been proved in [88,89] as the optimum tools for 

detecting phase coupling when the induction motor drive is considered to be a simple 

system.

2.4.3 Introduction To Wavelet Transform (WT)

Wavelets are functions that satisfy certain mathematical requirements and are used in 

representing data or other functions. This idea is not new. Approximation using 

superposition of functions has existed since the early 1800's, when Joseph Fourier 

discovered that he could superpose sines and cosines to represent other functions. 

However, in wavelet analysis, the scale that is used to look at data plays a special role. 

Wavelet algorithms process data at different scales or resolutions. If a signal is look at a 

large "window", one would notice gross feature. Similarly, if a signal is look at a small 

window, the small features will be noticed. The result in wavelet analysis is to see both 

the forest and the trees, so to speak. This feature makes wavelets interesting and useful.

The wavelet analysis procedure is to adopt a wavelet prototype function, called a mother 

wavelet. Temporal analysis is performed with a contracted, high-frequency version of the 

prototype wavelet, while frequency analysis is performed with a dilated, low-frequency 

version o f the same wavelet. Because the original signal or function can be represented in 

terms of a wavelet expansion (using coefficients in a linear combination of the wavelet
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functions), data operations can be performed using just the corresponding wavelet 

coefficients. The best wavelets are adapted to the data, or truncate the coefficients below 

a threshold, the data is sparsely represented. This sparse coding makes wavelets an 

excellent tool in the field of data compression. The detailed discussion about WT will be 

given in Chapter 5.

2.4.4 Park’s Vector

A two dimensional representation can be used for describing three-phase VSI phenomena, 

a suitable one being based on the current Park’s vector [21,35]. As a function of mains 

phase variables (ia, h, ic), the current Park’s vector components (id, iq) are;

2 . 1 . 1 .
Id =  A — l a  7=  l b  7=  Ic ( 2 .1 2 )

V3  ^ 6  S

iq =  ~ =  i b — ]=  ic (2.13)
V2 V2

Under ideal conditions, three-phase current lead to a Park’s vector with the following 

components

s  .id =  iMsmokt  (2.14)
2

Vb . . , n .  
iq = - y  im sin(6 * t - —) (2.15)

where i M is the maximum value o f supply current and cos is the supply frequency. Its 

representation is a circular pattern centred at the origin of the coordinate, as illustrated by 

Figure 2-3 [35]. The identification of fault (in this case, power switches open-circuit fault) 

can be obtained by determining the sector of the fault-finding sectogram, as shown in 

Figure 2-4.
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2.5 Summary

In this Chapter, the overview of the condition monitoring and fault detection has been 

presented. The condition monitoring process covers a range of activities starting from 

data collection to user display. In general, it can be divided into three main stages: Pre­

processing, signal processing and user interface. The following are the main points made 

in this Chapter.

1. Electrical drive faults, are normally preceded by a deterioration of the electrical 

characteristic of the drive. If this deterioration can be detected by measurement, 

then an observation of this degradation will be a valuable means of monitoring 

when catastrophic breakdown occurs.

2. To achieve a high degree of accuracy in detection and fault identification, a 

suitable signal processing technique must be applied. A variety of signal 

processing techniques are available such as Fourier transform, higher order 

spectra, wavelet transform and park’s vector.

Figure 2-3: Park's vector pattern for healthy voltage source inverter.
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C H A PTER  3

VOLTAGE SOURCE INVERTER AND PWM SWITCHING

TECHNIQUES

3.1 Introduction

with controllable magnitude and frequency. A variable output voltage can be obtained by 

varying the gain of the inverter whereas the switching frequency is determined by the rate 

at which the semiconductor devices are switched on and off. This can be accomplished by 

pulse-width-modulation (PWM) within the inverter circuitry [92-97, 108].

The inverter circuits can be classified as either voltage source inverter (VSI) or current 

source inverter (CSI). In the case o f VSI, the inverter is supplied by a constant or low 

impedance dc voltage source such as a battery or a rectifier and independent of the load 

current drawn. On the other hand, the current-source inverter (CSI) is supplied with a 

controlled current from a dc source with high impedance [98-104], In the present work, 

only the VSI is considered throughout the thesis. The VSI can be single-phase or three- 

phase, depending on the application as depicted in Figures 3-1 and 3-2 respectively.

The function o f the inverter circuit is to generate an ac output close to sinusoidal shape

T1 D1 T3 D3? u _ ?

Vdci Load

T4_y  D4 T2 | /  D2

Figure 3-1: Single-phase bridge inverter.

27



T5T3
D5D3

Vdc i
Phase A

Phase B
Phase C

T4

Z N Z

Figure 3-2: Three-phase bridge inverter.

3.2 Single Phase Bridge VSI Inverter

The basic circuit o f single-phase bridge VSI inverter is shown in Figure 3-1. It consists of 

four power switching devices acting as choppers. The feedback diodes are connected 

across the devices to provide a return path for the current in the case of an inductive load. 

The shunt capacitor C is used to filter out the ac ripple and provides a stiff dc source to 

the inverter.

When transistors 77 and T2 are turned on and T3 and T4 are turned off at the same instant 

of time, the input dc voltage Vs appears across the load. If transistors T3 and T4 are 

switched on and T1 and T2 are off, the voltage across the load is reversed and becomes 

-Vs. If the aforementioned sequence of switching is kept the same for alternate 180-degree 

intervals, an alternate output voltage would appear across the load. The gating signals of 

the four transistors and the output voltage are shown in Figure 3-3. The rms value of the 

output voltage is given by

= (3-i)
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For a purely resistive load, the load current has an identical square shape to the output 

voltage. As a result, the feedback diodes are unnecessary because load current reverses 

immediately when the output voltage changes polarity.

Vac
offon

Vac
off on

T/2

(a)

Vo

Vac

- Vac

0 T/2

(b)

Load
current

T/2 W t

(C)

Figure 3-3: Voltage and current waveforms for a single phase bridge inverter with 
inductive load; (a) gate signals; (b) load voltage;

(c) load current, A= D l, D2, B= Tl, T2, C= D3, D4, D= T3, T4



However, if the inverter supplies an inductive load, there will be a phase shift between the 

load current and the load voltage. Figure 3-3 (c) shows the load current waveform in the 

case of an inductive load. For an interval when the load voltage changes polarity, the load 

power becomes negative as the voltage and current have opposite signs. This signifies a 

reverse power flow from the load to the dc supply through the inverter feedback diodes.

3.3 Three Phase Bridge VSI Inverter

The three-phase bridge inverter has been widely used in high power applications such as 

variable speed ac motor drives and uninterruptible ac power supplies. Figure 3-2 shows 

the basic circuit of the three-phase bridge inverter supplied by a dc link from a voltage 

source and connected to a three-phase balanced ac load. A symmetrical three-phase 

output is generated by keeping a phase displacement of 1 2 0 ° between the switching 

sequences in the three arms of the bridge inverter. Two types of operation can be applied 

to the transistors: 180° conduction or 120° conduction. Throughout the thesis, only the 

180° conduction is used.

This mode of operation implies each transistor is to be turned on and off for an interval of 

180°. This signifies that each output terminal of the inverter is connected alternately for 

the same interval to the positive and negative terminals of the dc supply. Three transistors 

remain on at any instant of time to provide the positive and negative rails for the current. 

For example, if 77 is switched on, terminal A (phase A) is connected to the positive 

terminal o f the dc input terminal, while if T4 is switched on, terminal A is connected to 

the negative terminal of the dc input terminal. There are six modes of operation in one 

cycle and the duration of each mode is 60°. Hence the term three phase six-step VSI 

inverter.

The gating signals for the transistors in the sequence of 77, T2, T3, T4, T5 and T6 are 

shifted from each other by 60° as shown in Figure 3-4. If this type of inverter is used to 

feed a balanced star connected load, the phase voltage waveform has six steps per ac 

cycle and is termed a six-step wave. The equivalent circuits for the six steps and the 

calculation of the phase voltage waveforms are presented in Appendix B. Resulted phase
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and line-to-line voltage waveforms in the case of three phase balanced resistive load are 

depicted in Figure 3-5. However, these waveforms are not load dependent and they are 

valid for any balanced three-phase linear load or ac motors.

0 0 1 2 0 1 8 0 2 4 0 ° 3 0 0 3 0 0

T,
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Figure 3-4: Gating signals for 180° operation.
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Figure 3-5: Voltage waveforms for six-step VSI with 180 ° operation; 
(a) phase voltages; (b) line-to-line voltages.

3.4 PWM Switching Techniques

As previously mentioned in section 3.1, the semiconductor devices are switched on and 

off in order to control the output of the inverter. However, the switching action of the 

inverter normally results in non-sinusoidal ac waveforms. In other words, the output 

waveform would suffer from the presence of low order harmonics. As a result, the 

generated power due to the harmonic contents in the waveforms is dissipated as heat and 

increases the motor (load) temperature, and consequently reduces efficiency.

PWM technique is then identified as a technique that can overcome the mentioned 

problem. The PWM signals are pulse trains with variable pulse widths. The frequency of 

a PWM signal must be much higher than that of the modulating signal, the fundamental 

frequency, such that the energy delivered to the motor and its load depends mostly on the 

modulating signal [105]. In general, the PWM technique controls amplitude and 

frequency of the output ac waveforms and at the same time minimises the harmonics 

content. Several PWM techniques have been developed in the past. The most popular
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PWM techniques applied in ac drives are sinusoidal PWM (SPWM), space vector PWM 

(SVPWM) and current-impressed or hysteresis PWM (HPWM). Only the SPWM is 

considered throughout the thesis.

3.4.1 Sinusoidal PWM (SPWM)

SPWM refers to the generation of PWM outputs with a sine wave as the modulating 

signal. In this technique, the modulating signal is compared directly with a high frequency 

carrier triangular wave and the intersection points define the switching instants of the 

pulses, as shown in Figure 3-6. The amplitude of the carrier signal is fixed, while the 

amplitude o f the modulating signal is variable. The carrier signal frequency determines 

the number of pulses per ac cycle and this gives the switching frequency.

As for the harmonic contents in the output voltage waveform, the PWM pushes the 

harmonics into a higher frequency range around the carrier frequency f c. In other words, 

the predominant harmonics would occur as side bands of the carrier frequency f c and its 

multiples [98,100,106,107].

As stated before, this type of sampling is only appropriate for analogue implementation 

and therefore it is not possible to define the pulse widths using direct analytical 

expression. That is because the switching instants are defined by the instantaneous 

intersection of the carrier wave and the modulating wave. As illustrated in Figure 3-6, the 

modulating wave is varying while the sampling process is taken place. This means that 

the pulse width is proportional to the height of the modulating wave at the instant when 

switching occurs (fc and fc) [92,94], Hence, the centers of the resulted pulses are not 

uniformly spaced. However, according to [94] the pulse width can be defined using a 

transcendental equation of the form,

T
1 + ^  {sin(&tf,)  + sin(cu^2)} (3.2)
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Figure 3-6: 2-level Natural sampling generation

where Tc is the carrier period and Ma is the modulation index. It is also shown in [94] that 

the switching instants of the pulses are defined via a non-linear equation. Consequently, 

these equations can be simply solved using numerical techniques such as Newton- 

Raphson. It should be noted that the PWM waveforms shown in Figure 3-6 swings 

between two voltage levels + 1  and - 1 , and therefore it is usually referred to as 2-level 

PWM waveform [92,94,100]. On the other hand, it is possible to produce a 3-level PWM 

waveform by switching between +1, 0 and -1  as shown in Figure 3-7.
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The pulse width can be defined using a transcendental equation of the form,

T
5  p = -fj- Ma{sin(o)t]) + sin(6 tf2)} (3.3)

A wide variety of SPWM techniques can be derived from the foregoing 2-level and 3- 

level natural sampling generation in order to improve the overall system performance and 

the generated input and output harmonics content. Some of these techniques will be 

discussed in the following sections.

3.4.2 Modified SPWM

It is clear as shown in Figures 3-6 and 3-7, that the peak output voltage of the SPWM 

inverter depends on the modulation ratio. Higher output voltage can be obtained by 

increasing modulation ratio towards 1. However, the inverter output deteriorates when 

modulation ratio approaches 1. This is because the widths of the pulses that are near the 

peak of the sine wave do not vary significantly with the variation of modulation ratio, 

which is due to the characteristics of a sine wave.

SPWM can be modified so that the carrier signal is applied during the first and last 60° 

intervals per half cycle of the output ac waveform, while the 60° to 1 2 0 ° intervals are kept 

unmodulated, as shown in Figure 3-8, below. This modified SPWM increases the 

magnitude of fundamental components compared to the SPWM technique and reduces the 

number of switching of power devices. However, it generates a low order harmonic 

component in the output waveform due to the unmodulated interval between 60° and 1 2 0 ° 

(also between 240° and 300°) [97,99]. Also the hardware implementation is rather 

complex.
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Figure 3-8: Modified SPWM generation.

3.4.3 Third-Harmonic Injection SPWM

This is an improved technique derived from the SPWM through the injection of 

approximately 17% third harmonic component to the original sine modulating wave. This 

results in a nearly flat-topped modulating wave that increases the fundamental output 

voltage by approximately 20%, while maintaining a low harmonic distortion [95,97]. 

Moreover, it has been shown that the hardware implementation of this technique is quite 

simple [97]. Furthermore, it should be noted that the addition of the third harmonic to the 

original modulating signal doesn’t affect the quality o f the output voltage because the 

output of the three phase inverter doesn’t contain triplen harmonics [97,99]. The 

modulating wave would be of the form,

m(t) =  M[sm(cot) + 0.17 sin(3ru/)] (3 -4)

The modulating wave with third harmonic injection is shown in Figure 3-9.
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Figure 3-9: 2-level 3rd harmonic injection natural sampling SPWM generation.

3.5 VSI Faults

A voltage source inverter induction motor drive system, as shown in Figure 3-10, can 

develop various types o f faults that can be classified as follows:

• Input supply single line to ground (FI)

• Rectifier diode short-circuit fault (F2)

• Earth fault on dc bus (F3)

• DC link capacitor short-circuit fault (F4)

• Inverter transistor base drive open-circuit fault (F5)

• Inverter transistor short-circuit fault (F6 )

• Inverter transistor intermittent misfiring fault

• Line to line short-circuit fault at machine terminal

• Single phasing fault at machine terminal (F7)
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Faults may also occur inside the machine itself. The common machine fault is the 

winding insulation failure, which is due to excessive voltage or current stress, is 

practically avoided if an inverter power supply is used. This is because the line voltage 

surges are absorbed at the converter input, and converter over-current protection limits the 

machine current [3,6].

In this section, only inverter faults, which reduce the operating condition of the motor 

without involving a drive protection system, will be discussed. They are inverter base 

drive open-circuit fault, inverter transistor intermittent misfiring fault and single phasing 

fault at machine terminal.

T3 T5
Dr 1 Dr 3 Dr 5

D3 D5
F6 Induction

Machine
3-Phase
Supply_

F4

D4 D6 D2

Dr 6Dr 4 Dr 2 T4 T6 T2

Figure 3-10: A PWM VSI system indicating the possible failures mode.

3.5.1 Inverter Transistor Base Drive Open-Circuit Fault

To operate power transistors such as MOSFETs or IGBTs, an appropriate gate voltage 

must be applied in order to drive transistors into the saturation mode for low on-state 

voltage. Malfunctioning of gate drive circuits can lead to the transistor base drive open- 

circuit fault.
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Since the transistor 77 has now an open-circuit fault (F5), the phase A of the induction 

machine is connected to the positive dc rail through the diode D l. The machine phase A 

voltage is then determined by the polarity of current and the switching pattern of 

transistor T4. The phase voltage ( VA) will be clamped to the negative rail if stator current 

phase A, (iA) is positive. On the other hand, the phase voltage VA will be clamped to the 

negative rail when transistor T4 is switch on, and then to the positive rail when transistor 

T4 is off and D l is on, if iA is negative.

The dc offset current in phase A will be equally divided between the phase B and phase C 

and worsen the current stress of the switching devices in phases B and C.

If the inverter system is connected to the induction motor, the maximum average torque 

capability of the drive is substantially reduced because the dc offset will produce a 

braking torque. Also, interaction between the dc offset component of the stator flux and 

the fundamental frequency rotor current will cause a fundamental frequency pulsating 

torque that can be particularly harmful at low operating frequency and low shaft inertia.

3.5.1.1 Circuit Analysis

The circuit considered in this analysis is 180° conduction mode. For this analysis, 77 is 

off all the time (77 base drive open-circuit fault). These modes of faulty operation are 

given below in Table 3.1.

If this inverter is used to feed a balanced star connected load, as shown in Figure 3-2, the 

phase voltage waveform has six steps per ac cycle. The equivalent circuits for the six 

modes of operation in a full cycle are shown in Figure 3-11. The computation o f the phase 

and line voltages for a single mode of operation can be defined as follows:

During mode 1 for 0° < cot < 60 °, the phase voltages are:

(3.5)

(3.6)
v  

V =
BN 2

40



while the line voltages are,

V = V  - V  = 0 -y AB y  AN y BN u

f

II

2  , 2
(3.8)

V V
V - V  - V  - _ K
y BC v  BN v  CN 2  2 ~ (3.9)

y cA = Vcn ~V AN = -  0 = (3.10)

If the same procedures applied to the remaining modes of operations, Table 3.2 is 

constructed, in which the six step phase and line voltages are given. The phase and line- 

to-line voltage waveforms in case of inverter transistor base drive open-circuit faults are 

shown in Figure 3-12. It can be clearly seen from the phase and line voltages that there 

will be a dc offset and harmonics present. The voltages are unbalanced and non- 

sinusoidal.

Table 3.1: Switching patterns o f three phase bridge inverter using 180° mode o f  
operation for T1 base drive open-circuit fault.

IG B T s

In terva ls

T, t2 T3 t4 t5 t6

0° -6 0 ° off off off off on on

6 0 °-1 2 0 ° off on off off off on

1 20°-180° off on on off off off

1 8 0 °-240° off on on on off off

2 4 0 °-3 0 0 ° off off on on on off

300°- 360° off off off on on on
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Figure 3-11: Equivalent circuits when T1 base drive open-circuit fault.

Table 3.2: Six-step phase and line voltages for a balanced wye-connected load.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Van 0 0 0 - 1 / 3  Vdc - 2 / 3  Vdc - 1 / 3  Vdc

Vbn - 1 / 2  Vdc 0 1 / 2  Vdc 2 / 3  Vdc 1 / 3  Vdc - 1 / 3  Vdc

VCN 1 / 2  Vdc 0 - 1 / 2  Vdc - 1 / 3  Vdc 1 / 3  V ^ 2 / 3  Vdc

VAB 1 /2  Vdc 0 - 1 / 2  Vdc -V d c - V d c 0

Vbc - V d c 0 Vdc Vdc 0 - V d c

V CA 1 /2  Vdc 0 - 1 / 2  Vdc 0 Vdc Vdc
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Figure 3-12: Voltage waveforms o f six-step VSI with 180 0 operation for inverter 
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3.5.2 Intermittent Misfiring

Intermittent misfiring in the inverter is one of the possible faults. The misfiring can be 

caused by a number of conditions such as a base drive open-circuit fault due to control 

circuit element deterioration or degraded caused by EMI. Misfiring of one switching 

device will cause part of the output voltage waveform (positive or negative) to be lost. 

Therefore, the stator current waveshape will also change following the short duration 

voltage disturbance.

Denoting the normal three-phase output voltage o f the inverter as VABc(t)> a misfiring 

disturbance can be modeled using an incremental output voltage A VAb c ( 0 ,  which lasts for 

a pulsewidth. Depending on the location of the faulty device, vector A VAb c ( 0  is m one of 

the A , -A, B, -B, C and -C directions where A, B and C coincide with the three-phase 

winding axes. For example, a misfiring fault of switching device T1 (during the positive 

half cycle o f phase A) will produce a voltage disturbance in the -A  direction, because a 

positive voltage pulse is lost in the corresponding phase. Therefore, AVABc(t) can be 

expressed as a pulse function with known amplitude and duration

AVABC (t) = Vdc eABC. U(t - to) [l- u ( t  - to - A-)\ (3.11)

where VdC is the dc-link voltage, e As c  is a unity vector representing the direction of the 

voltage disturbance in the stator coordinates, u(t) is the unit step function, tQ and At 

indicates the starting instant and duration of the lost voltage pulse [4].

The duration of the fault is dependent on the frequency of the PWM carrier and the 

reference output voltage. The later switching pattern is not changed by the disturbance. 

The other two phases of the inverter may be disturbed simultaneously. This fault will over 

stress other switching devices and degrade the output voltage waveform. The fault 

occurring at the peak o f the output voltage has a more significant effect than that when 

the reference voltage is crossing zero.
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3.5.3 Single Phasing

The condition in which the three-phase motor operates with one of its stator phase open- 

circuited (F7) is referred to as single phasing, as shown in figure 3-10. In practice, single 

phasing of three-phase motor can often be the result of one of the supply fuses being 

blown, commonly by a shoot through fault occurring due to missing blanking pulses in 

the base drive inverter circuit [6 ]. Also, a transistor might fail due to current stress or 

voltage stress. The failure due to current stress occurs when the device is carrying load 

current whereas the voltage failure occurs when device is switching off the load current or 

blocking forward voltage.

Following the fault, the three-phase motor can operate in single-phase mode with reduced 

load torque only if the fault is detected and isolated while the motor is still in motion. The 

three-phase motor operated in single-phase mode with one phase open-circuit can supply 

only 33% of rated three-phase motor torque without exceeding machine current rating. 

Since single-phase motor do not produce starting torque, the special remedial strategies 

need to be implemented in order to start the motor from the zero speed [6 , 91].

3.6 Summary

In this Chapter, the types of voltage source inverters (VSI) for single-phase and three- 

phase were introduced. Then followed by SPWM techniques. The remainder of the 

chapter then focussed on various VSI faults. The following are the main points made in 

this Chapter.

1. An inverter circuit can be classified as either voltage-source or current-source. In 

the case of the voltage source inverter (VSI), the inverter is supplied by a constant 

or low-impedance dc voltage source such as a battery or a rectifier. On the other 

hand, the current source inverter (CSI) is supplied with a controlled current from a 

dc source with high impedance.

2. There are several typed SPWM techniques to improve the source utilisation and 

reduce the harmonic contents in the generated current and voltage waveforms.
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These techniques can be derived from 2-level or 3-level natural sampling 

modulation.

3. A voltage source inverter can develop various types of faults. In this research, 

only the inverter faults, which reduce the operating condition of the motor without 

triggering the drive protection system is discussed. They are inverter base drive 

open-circuit fault, inverter transistor intermittent misfiring fault and single 

phasing fault. These types of faults have a high potential to cause the catastrophic 

breakdown.
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C H A PTER  4

MODELING AND SIMULATION OF INVERTER SYSTEM

4.1 Introduction

In power electronic systems, the simulation is mainly performed to analyse and design the 

circuit configuration and the applied control strategy. With the help o f several powerful 

computer simulation tools, which are currently available on the market such as 

MATLAB/SIMULINK and Pspice, the analysis and design process can be very effective. 

The power electronic circuits can be schematically expressed by using actual power 

semiconductor device models and passive elements. Furthermore, particularly in 

MATLAB/SIMULINK, the circuits also can be modelled by using state equations [109- 

115] and the switching function concept [116-118].

This chapter describes the simulation model for the 3-phase VSI. The model was based on 

the switching function concept and implemented using the functional block of 

MATLAB/SIMULINK package. Using the switching functional concept, the power 

conversion circuits can be modelled according to their function, rather than circuit 

topologies. Therefore, a simplification of the power conversion circuit can be achieved 

[118].

4.2 General Theory of Switching Function

The converters/inverters can be modelled as a black box with the input and output ports; 

dc, ac and control, as shown in Figure 4-1. The dc and ac ports can be inputs or outputs 

depending on the mode of operation. The control port consists only o f inputs. In order to 

describe the task to be performed by the circuit, the transfer function needs to be obtained, 

also the transfer function is required to compute a dependent variable in terms of its
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respective independent circuit variable. Therefore, the general transfer function can be 

defined as

~  r  r? +. Dependent Variable
Transfer Function = ------------------------------  (4.1)

Independent Variable

With the applied control strategy, each transfer function consists of the various particular 

switching functions. Using the switching function theory, the detailed relationship 

between the input and output variables can be obtained. Therefore, the proper switching 

function is important in order to describe the role o f the static power converters.

Input
Power
Converter

Control Circuit

► Output

Figure 4-1: Block diagram for the general static power conversion.

4.3 Switching Function for 3-Phase VSI

Figure 4-2 shows the circuit configuration and variables for the VSI circuit. Based on the 

transfer function theory, input current (/,„) and output voltage (V AB, Vbcc, Vca) are the 

dependent variables. While the input voltage ( Vdc) and output currents {Ia, h , Ic) are the 

independent variables. Therefore, the relationship between the input and output variables 

can be defined as

[Vab, Vbc, Vca] = TF. Vdc (4.2)

Iin =  T F  [ I a , I b , I c \  (4.3)

where T F  is the transfer function of VSI circuit.
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In order to define the switching functions, a control technique to be applied to the system 

should be selected. In this project, the SPWM technique is used as a control strategy. Two 

switching functions (SFj, SF2) are obtained from SPWM, as shown in Figure 4-3. The 

switching function SFj expresses the output voltage V ao, V b o  and Vco• The SF/ is used to 

calculate the inverter line-to-line voltages ( VAB, Vbc, Vca) and the phase voltages (Van, 

Vbn, V qn). On the other hand, the switching function SF2 designates the voltage across the 

switch. It can be used to derive the load currents (Ia , h ,  I c )  as a ratio of voltages and 

respective impedances.

Is1 Is3 Is5

T3
D5

Vdc 1
Phase A

Phase B
Phase C

T4 T6
D4 D2

Figure 4-2: Circuit configuration o f VSI

Generally, the transfer function consists of the several switching functions as

TF = [SF \,SF i ] (4.4)

Based on the above-mentioned theoretical explanation, SFj and SF2 can be expressed as

SFi = ^ A n  sin(«<y t )
n= 1

00

SF 2 = Bo + ^ B n  sin (non t)

(4.5)

(4.6)
n=l
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modulating signal carrier signal

w t

(a)

0

-1 -  -  -  -I

w t

(b)

0 w t

(C)

Figure 4-3: SPWM control strategy and switching function, (a) Modulation and carrier 
signals, (b) Switching function S F ( c )  Switching function SF2

For a three-phase VSI system, each phase has two switching functions such as SFj_a, 

SFj_b, SFj_c, SF2_a, SF2_b and SF2_c. Then, by using the switching function SFi _ a b c .  the 

equations for VAo, Vbo and V co  can be obtained as

Va o = — S F \ a 
2
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= —̂ -'^A nsm (ncot) (4.7)
2  n= 1

Vb o =  —  S F  i B 
2

T/j «
=  — - .  ^  A n  sin ( n o t  -1 2 0 ° )  (4.8)

2  ,,=]

V c o = — SF\ c 
2

T 7 .  00

= — .^ A s in f ) ia ) f  + 120o) (4.9)
2  .1.1

Therefore, the inverter line-to line voltage equations can be derived as

Vab =  V ao -  Vm =  —  F* A  sin n ( < 0  /  + 30°) (4.10)
2  n=l

Vb c = V b o - Vco =  ^ - V d c ^ A n  sin n ( o ) t - 90°) (4.11)
2  n=i

V ca =  Vc o - V ao  =  —  V d c Y ^ A n  sin n ( a > t  +  l 5 0 ° )  (4.12)
2  n=l

From the VSI circuit diagram in Figure 4-2 (balance operating system), V^o is calculated 

as

F v o  =  i ( K 4 0  +  Vb o  + Vco) (4.13)

Using equations (4.7), (4.8), (4.9) and (4.13), the phase voltages can be written as 

Va n  =  (Vao  - Vno)
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=  — Vao  -  — (V bo  +  V co )  
3 3

(4.14)

Vbn  =  (  Vbo - Vno)

=  j V s o - j ( V a o  +  V c o )  (4.15)

Vcn  =  ( V co  - Vno)

=  j V c o - j ( V m  +  V bo)  (4.16)

Assume the loads connected to the 3-phase VSI are R-L loads and balanced. Then, the 

load currents can be derived as a ratio of the phase voltages and respective impedances as

lA = - ^ —  (4,17)
R + jco L

T V B N  S A  I O N
I b  = ------------- (4.18)

R + jco  L

V cn
Ic = — ———  (4.19)

R + jco L

The switch currents (Isi, IS3 , Iss) are calculated by the product of the load currents with 

their switching function SF2_a,b.c-

Is \= I a (S F 2_a) (4.20)

Is3 = Ib ( SF2_ b) (4.21)

Is5 - I c ( S F 2_c:) (4.22)
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4.4 Implementation of Functional Model

Figure 4-4 shows the functional model for 3-phase VSI. The model consists of 6  main 

blocks: 3Phase_Ref_Signal, PWM, VSI_ Switching_ Function, Inverter_ Circuit, Load_ 

Currents and Switching_ Currents. A detail blocks description is given below.

VAN

V  PhaseA

\£N
VPhaseB

V PhaseC

SF1_A

Legl
RAMA

SF1 B

CU1 Sre_A
R A M A___

IVbd index SF1_C
0ut2 Sre B VCN

RAMB

StbjC SF2A VCN

SF2_B

S F 2A
RAMC

VJineABSF2C Leg3
SF2_B

SF2CMri
VBC

VJineBC

100
VGA

VJineCA

Figure 4-4: Block diagram o f simulation model for 3-phase VSI using switching function
concept.
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3Phase_Ref_Signal block: This functional block produces a 3-phase sinusoidal control 

signal, as shown in Figure 4-5. The frequency and amplitude of the signal is determined 

by M odindex and Frequency blocks.

index

Frequency

Out1Dot Product
Phase A

Clock

Out2Dot Productl
Phase B

Out3Dot Product2
f(u)

f(u)

Phase C

Figure 4-5: The unmask o f 3Phase_Ref_Signal block.

PWM block: This functional block generates a PWM signal by comparing a modulation 

signal and carrier signal, as shown in Figure 4-6. The MATLAB program used to 

compare the signals is given in Appendix C(i).

compsignal_a

C D
Sine A

PWM A

V_PhaseA7

compsignal_b

C D
Sine B

PWM B
In4

V  PhaseAl

compsignal_c

C D
Sine C

PWM_C

PWM

PWM1

PWM2

MATLAB
Function

MATLAB
Function

MATLAB
Function

V_PhaseA2

Figure 4-6: The unmask o f PWM block.
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VSI_Switching_Function block: This functional block implements the switching function 

concept of VSI. The block accepts three PWM signals and generates two switching 

function for phase A, phase B and phase C, as shown in Figure 4-7. The MATLAB 

program used in this block is given in Appendix C(ii).

►CD
SF1 A

MATLAB Fen

p w M a

MATLAB Fcn1

CD
PWM B

MATLAB Fcn2

CD
PWM C

MATLAB
Function

MATLAB
Function

MATLAB
Function

Figure 4-7: The unmask o f VSI_Switching_Function block.
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Inverter Circuit block: This functional block performs the 3-phase inverter operation 

circuit. The dc input is supplied by the vd block (in this project, 80V). The block outputs 

are: line to line voltages ( VAB, VBc, Vca) and phase voltages (VAN, VBn, Vqn). The 

Inverter_Circuit block details are shown in Figure 4-8.

o
Vinput < D

VAN

< D
VBN

VAO

lnverter_Leg1

VCN

VBO VNO KZD
VAB

Gain

lnverter_Leg2

KID
VBC

VCO

lnverter_Leg3
VCA

In1 Out

In1 Out

In1 Out

Figure 4-8: The unmask o f  Inverter_ Circuit block.

Load_Currents block: This block generates the load currents output by implementing the 

equations (4.17), (4.18) and (4.19), as shown in Figure 4-9. The inputs to the block are 

phase voltages. The R-L loads are assumed to be balanced.

c i}
V AN ♦ C D1/60ev

IntegratorInductor

Resistor

Figure 4-9: The unmask o f phase A Load _ Currents block.
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Switch_Currents block: This functional block produces the switch current output by 

multiplying load currents and switching function SF2 . The block diagram is shown in 

Figure 4-10 below.

C Z >
IA

C
SF2 A

Product
*CD

Is1

I S3
Productl

SF2 B

C I >
1C

c i >
SF2 C

Product2
*CD

li5

Figure 4-10: The unmask o f Switch_ Current block.

4.5 The Simulation Results of 3-Phase VSI

The simulation parameters are as follows: dc link input voltage, VdC = 100V, resistor load 

, R = 10Q, inductor load, L =60 mH, carrier signal frequency^ = 7kHz, modulation signal 

frequency, f m = 50Hz. In order to verify the developed model, the system was tested with 

three different modulation index values, Ma = 0.8, 0.6 and 0.4.

The switching function signals SF} and SF2 for the SPWM control strategy, voltage 

waveforms and current load waveforms for Ma — 0.8, 0.6 and 0.4 are shown in Figures 4-
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11, 4-12 and 4-13, respectively. It can be seen that the load currents are sinusoidal and 

their amplitude is proportional to Ma.

Figures 4-14 to 4-19 show the simulation results of transistor 77, T2, T3, T4, T5 and T6 

open circuit fault, respectively. The modulation index value is Ma = 0.4. As can be clearly 

seen, this type of fault introduced the dc offset to the currents. Since the system is 

symmetrical and balanced, a larger dc offset magnitude is observed in faulty phase, and 

this magnitude is equally divided between the other two phases with opposite polarity.

Due to the dc offset, the stress on the healthy transistor becomes excessive because it now 

carries the entire phase current. Also, the upper leg and the lower leg of other transistor 

carries unequal current stress. Such conditions may lead to catastrophic breakdown to the 

inverter system.

Figures 4-20 to 4-22 show the simulation results of transistor Tl, T2 and T3 intermittent 

misfiring fault for 0.01s. The modulation index value is Ma = 0.4. It can be seen that the 

load currents distorted for a while before they returned back to their normal condition.

Figures 4-23 to 4-25 show the simulation results of phase A, phase B and phase C single 

phasing fault. The modulation index value is Ma = 0.4. Inspection of the load currents 

indicates that no dc offset introduced, but the magnitude of the other two phases are 

decreased about 14% compared to normal 3-phase condition. This agreed with the 

equations (4.13), (4.17), (4.18) and (4.19).
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SPWM for Phase C
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Figure 4-11: Switching functions, voltage and current waveforms o fV SIw ith  the SPWM  
control fo r  Ma =  0.8. (a) Phase A switching function SF /  and SF2 (b) Phase B switching 
function SF  /  and SF2 (c) Phase C switching function SFj and SF2 (d) Phase voltages 

(e) Line to line voltages (f) Load currents.



SPWM for Phase A

0.002 0.006 0.008 0 016 0.018
Time (s)

0.002

0.002 0.004

0 004

0.004

0 006

0.006

0 006 0.008 0.01 0.012 
Time (s)

SPWM for P hase B

0.016

0.018

0.002

0 002

0.004

0 004

0.006

0 006

0.008

0.008

0.012

0.012

0 014

0 014

0.016

0.016

0.018

0.018

0.014 0.016

(b)

6 2

08



SPW M for P hase C
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Figure 4-12: Switching functions, voltage and current waveforms o fV S l with the SPWM  
control fo r  Ma =  0.6. (a) Phase A switching function SF ) and SF2 (b) Phase B switching 
function SF) and SF2 (c) Phase C switching function SF) and SF2 (d) Phase voltages 

(e) Line to line voltages (f) Load currents.
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Figure 4-13: Switching functions, voltage and current waveforms o fV S I with the SPWM  
control fo r  Ma =  0.4. (a) Phase A switching function SF/ and SF2 (b) Phase B switching 

function SF) and SF2 (c) Phase C switching function SFj and SF2 (d) Phase voltages, 
(e) Line to line voltages (f) Load currents.
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Figure 4-14: Simulation results o fV S lw ith  transistor Tl open-circuit fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-15: Simulation results o fV S l with transistor T2 open-circuit fau lt at t^O Js.
(a) Phase voltages (b) Load currents
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Figure 4-16: Simulation results o fV S l with transistor T3 open-circuit fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-17: Simulation results o fV S l with transistor T4 open-circuit fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-18: Simulation results o f  VS1 with transistor T5 open-circuit fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-19: Simulation results o fV SIw ith  transistor T6 open-circuit fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-20: Simulation results o fV SIw ith  transistor Tl intermittent misfiring fau lt at
t=0.2s fo r  0.01s. (a) Phase voltages (b) Load currents
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Figure 4-21: Simulation results o fV SIw ith  transistor T2 intermittent misfiring fault at
t=0.2s fo r  0.01s. (a) Phase voltages (b) Load currents
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Figure 4-22: Simulation results o f  VSI with transistor T2 intermittent misfiring fau lt at
t-0 .2 s  fo r  0.01s. (a) Phase voltages (b) Load currents
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Figure 4-23: Simulation results o fV SIw ith  phase A single phasing fau lt at t-0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-24: Simulation results o f  VSI with phase B single phasing fau lt at t=0.2s.
(a) Phase voltages (b) Load currents
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Figure 4-25: Simulation results o f  VSI with phase C single phasing fault at t=0.2s.
(a) Phase voltages (b) Load currents
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4.6 The Simulation of 3-Phase Induction Motor Drive

In this section, the 3-phase PWM VSI is connected to the induction motor drive. The 

induction motor is simulated using the dynamical equations that are formulated in the 

synchronous reference frame, as discussed in [108]. The rated parameters of the simulated 

induction motor were determined experimentally and are given in table 4.1.

Figure 4-26 shows the functional model for the system. The model consists of 4 main 

blocks: Inverter block, Fuzzy Controller block, Gate driver block and Induction motor 

block.

Table 4.1 : The rated parameters fo r induction motor

3hp, 410V, 50Hz

Stator Rotor Magnetising
Parameter

4 poles, 1415rpm /?v= 1.88Q Rr =  2.12a Lm = 0.1545H
Friction constant = 0.0028N.m/rad/sec L/t = 0.0125H L /r =  0.0125H

Drive inertia = 0.055kg.m2 Ls = 0.1649H Lr = 0.1649H

The Fuzzy Controller block has two inputs and one output. The inputs are the reference 

speed and the actual rotor speed. Inside the block, the speed error (the error between the 

rotor speed and the reference speed) and its rate o f change is calculated using the 

following equations

e0 W  = W  ~  <°r (k) (4.23)

k eQ (k) = e0 (k) - e 0( k - 1) (4.24)

where co*(k) is the speed command in Ath sampling interval, (Or{k) is the rotor speed 

response in the Ath sampling interval, e0 (k ) is the speed error in the Ath sampling interval, 

and Ae0(k) is the speed error change in the Ath sampling interval. On the other hand, the 

output of the FLC is the current command change Ai* , which is integrated at regular Ath 

sampling intervals and yields the following current command

C  W  = C  “ !) + ° o <  (*) (4-25)
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where the integral gain Go can be varied to tune the output of the fuzzy controller for a 

desired performance. The detailed description of Fuzzy Controller block is given in [108].

The Gate Driver block has two inputs ( Ai* and actual rotor speed) and four outputs (a

synchronous speed a>s, phase A voltage controller signal (A sig), phase B voltage 

controller signal (B sig) and phase C voltage controller signal (C sig)). The phase voltage 

signals are fed to a 3Phase_Inverter to produce the stator voltages. On the hand, the cos, is 

feed to the Induction Motor block.

The Induction Motor block has six inputs and one output. The inputs are phase A stator 

voltage ( Vsa), phase B stator voltage (V Sb), phase C stator voltage ( Vsc), coSi Load value and 

disturbance. The output is the actual rotor speed.

Figure 4-27 shows the rotor speed response and the stator currents during starting 

operation for open-loop induction motor drive. Throughout the simulation, the motor is 

running at the rated parameters and torque. The speed is set to lOOOrpm. Observations of 

the results show that the rotor takes 0.8s to reach lOOOrpm. The starting current reaches 

the maximum five times the steady state value.

Figure 4-28 shows the rotor speed response and stator currents during the soft starting 

closed-loop FLC operation. Inspection of the results show that the rotor speed reaches its 

reference speed from stand still at t= 0.5s with no overshoot. As the motor accelerates and 

the speed builds up, the starting current reaches the maximum four times the steady state 

value. These results show that the FLC increased the speeding time for the rotor to reach 

the reference speed by 37.8% compared to open-loop drive. Also the soft-starting 

algorithm employed in the closed-loop drive reduced the starting current by 2 0 %.

The third simulation is to examine the transient characteristics of the speed drive system 

during step changes in load torque, as shown in figure 4-29. The motor was initially 

operated at lOOOrpm at no load when a rated load was applied to the rotor shaft. The FLC 

restore the rotor speed to the reference speed within 0 .6 s with a maximum speed variation 

of 60rpm.
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4.7 Summary

In this Chapter, the computer simulation of VSI carried out in MATLAB/SIMULINK has 

been presented. The model was based on the switching function concept. This was 

followed by the derivation of the motor in d-q synchronous rotation reference frame and 

the simulation results. The following are the main points made in this Chapter.

1. By using the switching function concept, simplification of the power conversion 

circuit can be achieved. The design parameters such as voltage and current ratings 

of the power device and the load current can be easily calculated.

2. The per-phase equivalent circuit of the induction motor is sufficient to highlight 

the essential features of the motor performance under steady state operation. An

! alternative model, termed the dynamic model, is used to represent the dynamics of
|

the induction motor and describe its real performance under both transient and 

| steady state conditions, which are based on the selection of desired reference

frames. The most common reference frames are the stationary frame, the rotor
I
j frame, and the synchronous frame. The model equations expressed in the

I synchronous frame are the most commonly used model for transient and steady

| state analysis
i

i

i
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Figure 4-27: Simulation results o f  open-loop induction motor drive at rated parameters, 
(a) Rotor speed response (b) The stator currents.
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Figure 4-28: Simulation results o f  closed-loop FLC induction m otor drive at rated 
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change in load torque, (a) Rotor speed response (b) The stator currents.
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CHAPTER 5

PROPOSED FAULT DIAGNOSIS ALGORITHM 

5.1 Introduction

Real time condition monitoring systems of modern electrical drives, even though quite 

expensive, allows the operator to obtain a full and effective identification o f system 

working conditions. This can improve the reliability of industrial processes and reduce 

costs due to forced outages o f drives. In fact, by early detection and correct identification 

of faults, an electrical drive can work even if a failure is going to occur. It is just 

necessary to keep fault development under control and to schedule maintenance stop. 

Therefore, costs due to drive service can be reduced and repair work becomes easier due 

to fault identification

In this chapter, a description of the proposed fault diagnosis algorithm for 3-phase pulse 

width modulation (PWM) voltage source inverter (VSI) for closed-loop, fuzzy logic v/f 

speed control strategy of an induction motor drive is given. A combination of wavelet 

transform (WT) and fuzzy logic (FL) is chosen to detect and identify the faults. This 

method offers good detection efficiency and reliability

5.2 System Design

Figure 5-1 below shows the flowchart of the fault detection scheme proposed. The 

process can be divided into three main stages: detection, feature extraction and fault 

identifier. The development o f the proposed scheme is based on wavelet transform and 

fuzzy logic, which is thoroughly discussed in the following subsection.
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Figure 5-1 (b) : Flowchart o f feature extraction program  

5.2.1 Change Detection of Stator Currents

A change in stator current waveform is defined as the instant at which a sudden increase, 

decrease, transient or irregularity are observed in the current. Thus, the application of the 

wavelet analysis is well suited. The wavelet transform provides a good means o f studying 

how the frequency content changes with time and consequently, is able to detect and 

localise short-duration malfunctions. A detailed discussion about wavelet transform is 

given in the next section.
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In this project, a discrete wavelet transform (DWT) is used to detect the change with the 

aid of a ‘sliding data window’. The window slide across the current waveforms by a time 

step of 1 cycle while capturing 4 cycles of the waveform at each time step. At each time 

step, the data in the window is fed to the DWT algorithm to compute the corresponding 

DWT coefficients. A change is considered to have occurred in the stator current 

waveforms if any wavelet coefficient spike exceeds or falls below a given band. On 

detecting the current waveform change, the sliding data window aligns itself to the point 

when the change was detected. Then, the dc offset in the currents is computed before 

feeding them to the fuzzy logic system algorithm.

The DWT program used in this thesis project is written in MATLAB M-file [25], which 

is given in Appendix D.

5.2.1.1 Wavelet Transform

In 1982, Morlet et al [119, 120] introduced octave decompositions for seismic data. Two 

years later, the link between Morlet’s work and the theory of wavelets was placed on a 

firm footing by Grossman and Morlet [121]. Wavelet functions are localised in time and 

frequency. The wavelet functions are created from a single characteristic shape, known as 

the wavelet mother function, by dilating and shifting the window as shown in Figure 5-2. 

Dilation involves stretching and compressing the mother wavelet in time.

The wavelet can be expanded to a coarse scale to analyse low frequency, long duration 

features in the signal. Correspondingly, the wavelet can be shrunk to a fine scale to 

analyse high frequency, short duration features. It is this ability to change the scale of 

observation to study different-scale features in the signal that has become a hallmark of 

wavelet analysis.

The wavelet transform of the signal is generated by finding a linear combination of the 

wavelet functions to represent the signal. The weights o f this linear combination are 

termed the wavelet coefficients. The reconstruction of the signal from these wavelet 

coefficients arises from much older theory known as CalderOns reproducing identity 

[121]. The existence o f a reconstruction formula reassures the preservation of information
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Figure 5-2: Time frequency atom used in wavelet transform, where the wavelet atoms

change the width o f  window function.

in the transform (except for a constant dc offset).

An important development in wavelet theory was the construction of smooth orthogonal 

wavelets with finite support by Daubenchies in 1988 [122]. Because the wavelet functions 

are orthogonal, a fast transform known as the discrete wavelet transform (DWT) can be 

used and the reconstruction of the signal from its wavelet coefficient is straightforward 

and stable. Finite support means that the wavelet functions are only non-zero over a finite 

duration, which is important if the wavelet transform is to represent local features in the 

signal. Interestingly, the simplest member of Daubechies family of wavelets was found by 

Haar in 1909 (but possesses no smoothness).

Shortly after the discovery of orthogonal wavelets, biorthogonal wavelets were introduced 

[123] in which the reconstruction wavelets are biorthogonal to the analysis wavelets. This 

has led to more freedom in the design of wavelet functions. Since then, several other 

wavelet-like families have been developed including wavelet packet [124] and local 

trigonometric bases [125].
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A major feature o f  wavelet is their smoothness which leads to their use in representing 

locally smooth signals. The representation o f  smooth functions in the wavelet domain is 

often sparse as the signal can be accurately reproduced using only a small num ber o f  

wavelets. A technique called thresholding, in which insignificant wavelet coefficients are 

set to zero, leads to effective applications in compression and noise-removal. In addition, 

because wavelets are localised in time, wavelet techniques are particularly suited to the 

signals containing transient features as shown in figure 5-3, which are difficult to study 

with conventional methods. Fault detection has become one o f  the most successful 

applications o f  wavelet analysis [126-132].

In general, the non-orthogonal wavelet transform, com m only known as the continuous 

wavelet transform (CW T), is mostly used for data analysis where the redundancy o f  

information aids in both qualitative and quantitative interpretation. In contrast, the D W T 

is used in applications where the efficiency and compression properties o f  the transform 

are important. The range o f  applications that have been proposed over the past ten years is 

enormous. It seems that wavelets have found a use in almost every branch o f  science and 

engineering. Some useful overviews and tutorials o f  wavelet applications in a range o f  

fields can be found in [133-138]. Due to rapid pace o f  development, many recent 

applications and software can be found on the W orld-W ide Web (W W W ). A good place 

to start is the wavelet digest at http:/7w w w .wavelet.org/.

&

Distance Distance

Figure 5-3: Wavelet phase coefficient
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5.2.1.2 The Continuous Wavelet Transform

The continuous wavelet transform (CWT) is a time-frequency decomposition, which links 

a time (or space) domain function to its time-scale wavelet domain representation. The 

concept of scale is broadly related to frequency. Small scales relate to short duration, high 

frequency features and correspondingly, large scale relate to long duration, low frequency 

features. The CWT is defined as

C(x,,s) = T(x) \j/A (5.1)

where T(x) is the measured signal, y/ (x) is the analysing wavelet, x is a location, s is the 

scale parameter and C(x,s) is the two-parameter array o f wavelet coefficients. The asterisk 

superscript * denotes complex conjugation.

The CWT in equation (5.1) is calculated by convolving the wavelet function with the 

signal over a range o f carefully chosen scales. Using the convolution theorem, we can 

simplify the CWT in the frequency domain.

C(w,s) = f(co)y/*(scjo) (5.2)

A A

where C ,T  and y/ are the Fourier transforms of C, T and y/ respectively. Note that here 
*( x \

we define y/* — and yr* (sco) as a Fourier transform pair for simplicity [158].

The frequency domain representation in equation (5.2) highlights the link between the 

CWT and filter-bank transforms. In fact, the CWT originated from the design o f an 

octave-band decomposition by Morlet et.al in 1982 [119,120]. Morlet applied a series of 

band-pass filters, each centered about a power-of-two multiple of some base frequency, in 

order to study the time-frequency content of seismic signals. In addition, Morlet required 

the impulse response o f each of these band-pass filters to have a constant number of 

oscillations.
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The result was essentially the CWT given in equations (5.1) and (5.2) with each wavelet 

interpreted as a band-pass filter. Morlet choose a Gaussian-modulated complex 

exponential as the characteristic filter function because of its optimal localisation in both 

time and frequency. The coefficient C therefore provided a measure of the local 

frequency content o f the signal in a series of octave bands.

The importance o f this method of filter-bank construction was described two years later 

by Grossman and Morlet [121] who found that the filters chosen by Morlet met the 

conditions of CalderOn’s identity. CalderOn’s identity allows us to reconstruct the 

original signal T in terms of the filter function and the coefficient C. The key difference 

between the CWT and earlier filter-bank transforms is that the CWT filters are all 

generated from a single characteristic function by dilations and shifts.

5.2.1.3 The Discrete Wavelet Transform

The CWT described in the previous sections is an over determined transform. This 

redundancy of information is very useful for analysing the space-frequency content of 

signals. However, the cost of this extra information is an increased computational time for 

the transform. The discrete wavelet transform (DWT) uses an orthogonal or biorthogonal 

basis to represent the signal. Thus, in applications requiring good computational 

efficiency the DWT may be preferable to the CWT.

The discrete wavelet transform DWT can be simply thought of filter banks. A filter bank 

is defined as a set o f filters, which are applied to a signal together with changes in 

sampling rates. The simplest case is the two-channel filter bank, which consist o f a low-

pass filter and a high-pass filter, represented by the coefficients h and g  respectively. 

The DWT applies these filters to the data vector keeping only every second data point in 

the filtered response. The subsampling operation is termed downsampling. The DWT can 

be represented in matrix form by the composite matrix Y where

Y =
L

B
(5.3)
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where M  is a wavelet vanishing moment.

The filter coefficients h and g  are normalised by a factor of (1/V2 j to preserve the 

energy of the filtered output following the downsampling. The downsampling is achieved 

in matrix form by removing every second row o f the standard filtering matrix, resulting in 

the double column shift between the start of each row of filters in Y. The DWT matrix Y 

now has a block-banded structure and still possesses the sparsity required for fast 

multiplication. The DWT is performed by applying Y to a signal T = T(n) to obtain a 

transformed vector containing the downsampled low-pass output a and high-pass output 

b .

T a
YT = T =

B b_

The low-pass coefficients a are known as the approximation coefficients. 

Correspondingly, the high-pass coefficients b are known as the detail coefficients.

The inverse discrete wavelet transform (IDWT) is performed by applying the inverse 

matrix Y ] to the transform coefficients. The matrix Y x is a filtering matrix composed of 

low-pass and high-pass coefficients, h and g, known as the synthesis filters.



The submatrices L and B are constructed from h and g  just as in equations (5.4) and (5.5).

5.2.1.4 Daubechies Wavelet

When the DWT scheme is applied to the signal, the correct choice of wavelet to be used 

is very important. It depends on the required analysis. For space-frequency analysis, we 

need a wavelet that is optimally localised in terms of both spatial width and frequency 

bandwidth. For smooth signals, we generally want a wavelet that is itself smooth and 

therefore has a good frequency localisation. In contrast, signals that contain 

discontinuities are better analysed using wavelets with good spatial localisation to 

accurately map rapid changes in the signal.

The Daubechies wavelet transform is named after its inventor [122]. The Daubechies 

wavelet is a continuous and compactly supported wavelet. The compact support of the 

wavelet allows the wavelet transformation to efficiently represent functions or signals, 

which have localized features. Many real world signals have these features, and 

decompositions such as the Fourier transform are not well suited to represent such 

signals. The efficiency of the representation is important in signal detection applications.

In this approach, Daubechies used the scaling function to compute the wavelet y/ . The 

scaling function and wavelet are defined by [157]:

^(x) = ^ ck (j>{2x - k) (5.8)
k=0

r W  = X ( - 1)*ci-k ^ ( 2 x -k ) (5.9)



The Daubechies 4 (D4) wavelet, which has four vanishing moments is proposed in this 

thesis to detect the transient of the signal. The selection is decided after a series of tests 

were made with the real experimental data. The D4 was found to offer a better sensitivity 

and clear spike in detecting the faults compared with the other Daubechies families. 

Chang et.al [128] demonstrated that the Daubechies wavelet is the best wavelet to detect 

the transient and irregularity of the signal. In fact, D4 is only the most compact of 

sequence of a wavelet sets [2 2 ].

5.2.1.5 W avelet Filter Coefficients for D4

A particular set o f wavelets is specified by a particular set o f numbers, called wavelet 

| filter coefficients. The simplest and most localized member o f Daubechies wavelet is

| called D4, has only four coefficients Co, cj, C2 and cj.

Consider the following transformation matrix acting on a column vector o f  data to its 

right:

€Q € 1 C2 C3
C3 -C2 Cl —CO

CO Cl C-2 c3

-C2 Cl -CO

CO C l C2 C3

C3 — C2 C l - c o

€■2 C3 co C l

C i -C O c 3 - 0 2 .

Blanks entries signify zeroes. The first row o f matrix generates one component o f the 

data convolved with the filter coefficients Co, cu C2 and cj. Likewise the third, fifth 

and the other odd rows. Meanwhile, the even rows perform a different convolution 

with coefficients cj, -C2, ci and -Co. The action o f the matrix, overall, is thus to 

perform two related convolutions, then to decimate each o f them by half (throw away 

half the values), and interleave the remaining halves.
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The filter co, cj, C2 and cj is called low-pass filter, and the filter C3, -C2, cj and -Co is 

called high-pass filter. These two filters are called quadrature mirror filters  [138]. In 

fact, the c s are chosen so as to make high-pass filter yields, insofar as possible, a zero 

response to a sufficiently smooth data vector. This is done by requiring the sequence 

C3, -C2, cj and -co to have a certain number o f vanishing moments. When this is the 

case for p  moments, a set o f wavelets is said to satisfy an approximation condition of 

order p . This results in the output o f low-pass filter, decimated by half, accurately 

representing the data’s approximate information. The high-pass filter output is 

referred to as the data’s detail information.

For such a characterisation to be useful, it must be possible to reconstruct the original 

data vector o f length N  from its N/2 approximation components and its N/2 detail 

components. That is effected by requiring the matrix in equation (5.10) to be 

orthogonal, so that its inverse is just the transposed matrix.

ao C3  • • • C2  c i '

The matrix in equation (5.10) is inverse to matrix in equation (5.11) if  and only if  

these two equations hold,

ci - c 2

C2 C l CO C3

C3 — CO C l — 02

C3  —Co

c 2 C l Cq C3
ca ~ co €i  ~ c 2

C2 Cl c0  c3

C3 - C 0 C l —c 2 _ (5.11)

cl + cl + c l + c l  = 1 (5.12)

c0 c 2 +  C| Cj =  0 (5.13)
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If additionally the approximation o f order p  = 2, then two additional relations are 

required,

c3 - c 2 +C\ - c 0 = 0 (5.14)

0c 3 - 1 c 2 + 2 c ] - 3 c 0 = 0  (5.15)

Equations (5.12), (5.13), (5.14), and (5.15) first recognized and solved by Daubechies. 

The solution is

1 + V3Co —-----
4V2

3 + V3 

C' “  4V2

3-V3  
C!~ 4V2

1-V3 

C3“  4V2

(5.16)

(5.17)

(5.18)

(5.19)

5.2.1.6 The Implementation o f DW T

In this project, the DWT is implemented using multiresolution signal decomposition 

algorithm. The stator current signal T(n) (sampled at 2 kHz, and 400 samples per 

window) is passed through a series of a high pass filters to analyse the high frequency and 

a series of low pass filter to analyse the low frequency.

At the first level, the signal is passed through the high pass and low pass filters, followed 

by sub-sampling by 2. The output of the high pass filter has 200 samples (half the time
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resolution) and the frequency range of 1 kHz to 2 kHz (double the frequency resolution). 

These 200 samples constitute the first level of DWT coefficients, 8 j. The output of the 

low pass filter, DWT coefficient a], also has 200 samples, but it spans the other half of 

the frequency band, frequencies from 0 to 1 kHz.

At the second level, aj is passed through the high pass and low pass filters, and followed 

by sub-sampling by 2. The output of the high pass filter, 8 2  has 100 samples points (half 

the time resolution o f the first level) and the frequency range of 500 Hz to 1 kHz (twice 

the frequency resolution of the first level). Meanwhile, the output o f the low pass filter, 

DWT coefficient 8 2 , also has 100 samples, but it spans the other half of the frequency 

band, frequencies from 0 to 500 Hz. The process continues until it reached the level j  = 3.

The information about the system disturbance or fault is obtained from the detail 

coefficients 6 3 , These coefficients are non-zero when disturbance exists. The DWT 

process is illustrated in Figure 5-4.
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Figure 5-4: Multiresolution signal decomposition

5.2.1.7 Recent Development of Fault Detection Using Wavelet Transform

With no doubt, the potential o f wavelet transform in fault detection applications is great. 

As a result, it has recently attracted a significant attention in the condition monitoring and 

fault detection research community worldwide.
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Chao-Ming Chen and Keneth A. Laparo [126] in 1998, proposed an algorithm based on 

discrete wavelet transform to detect electrical faults in vector-controlled induction motor 

system. The algorithm computes a ‘fault index’ in stator currents to determine the stator 

winding faults. The simulated results have showed that the fault signature can be clearly 

observed.

In 1999, Arturi et.al [127] presented a dynamic analysis of electromechanical converters 

by means of wavelet transform. The analysis proposed in this paper is realised by 

connecting a four-quadrant converter to an induction machine. Under this technique, a 

specific behaviour which occurred during the transient conditions is used as a tool to 

define the optimal working conditions of the system and the suitable control strategies.

Wavelet transform has been also used to detect the remote short-circuit in dc railway 

system, as proposed by Chang et.al [128], in 2000. The remote short-circuit current is 

determined mainly by the steel rail impedance, which is time varying due to the skin 

effect. The results showed that the wavelet transform, through the displays of its 

coefficients is successfully able to discriminate the remote short-circuit current from the 

train starting current. The detailed experimental results are given by Chang et.al [130], in 

2001. In the latter paper, the wavelet analysis is combined with a neural network to 

produce a complete and efficient remote short-circuit detection system.

The combination of wavelet transform and neural network was proposed by Borras et.al 

[129], in 2001 as a new tool for diagnosis of power system disturbances. This system will 

automatically detect, compact and classify the disturbances. The simulated results showed 

that this combination technique offered great potential for electrical power system 

diagnosis, especially in the area o f power quality problem.

Zhongming and Bin [131] presented the same technique to detect rotor bar breakage of 3- 

phase induction motors. New features of rotor bar faults are obtained by wavelet packet 

decomposition o f the stator current. These features are of multiple frequency resolutions 

and obviously differentiate the healthy and faulty conditions. The features with different 

frequency resolutions are used together with the speed slip as the input sets of a 4-layer 

perceptron network. The laboratory result showed that the proposed technique is able to 

detect the faulty rotor bar with high accuracy.



Recently, Peng and Andrew [132], in 2002 proposed an algorithm to classify wheel 

bearing faults of train in wayside conditions using a combination of optimal wavelet 

features and neural network. By using the tree structure strategy, the authors reported that 

the missing rate of condemnable bearing is reduced to less than 1 %. The algorithm is 

proved fast and robust in wayside condition. To support these claims, the experimental 

results are supplied by the authors.

5.2.2 Fault Identifier

The fault identifier process by fuzzy logic system leads to the determination o f particular 

faults, occurring in the system. This process takes place after a system checked the status 

of stator currents. The currents need to be checked to ensure that all three-phase currents 

are connected to the system. Otherwise, the fuzzy system will prompt a single phasing 

fault.

On detecting faults, the system will calculate the value of dc offset in the currents. The 

value and polarity o f the dc offset is then fed to the fuzzy logic system to determine the 

faults. Fuzzy logic algorithms adopted in the proposed fault identifier are systematically 

designed according to intuition and experiences about the 3-phase VSI behaviour. The 

advantage of using fuzzy logic is that it is easy to apply heuristics knowledge and ‘rule- 

of-thumb’ experience. In this project, the level of dc offset of all three stator currents are 

considered as the variables to the fuzzy system.

5.2.2.1 The Proposed Fault Identifier Using Fuzzy Logic System

To identify the faults is not always a straightforward case, particularly when in practice, 

the signal always contains noise and disturbance. For instance, a slight load unbalance 

during normal operation may introduce a low level dc offset on one of the phase currents. 

Measurement and sensor errors may also give misleading information. To exclude such 

cases from faulty operation category, fuzzy rules should be carefully designed.
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A. Fuzzy System Input-Output Variables

In this thesis, the stator current dc offset of phase A (IAdc),  phase B ( I Bdc) and phase C 

(Icdc) are considered as the input variables to the fuzzy system. The VSI condition VM is 

chosen as the output variable. All the fuzzy system input and output variables are defined 

using fuzzy set theory as below.

IaiIc —  } fJ. lAdc (i.-ldcj ) /  iAdcj e hdc} (5.20)

hdc = { jU. iBilc (I Bdcj )/iBdcje hdc} (5.21)

I c d c  =  { JU ICtlc ( io tc j )  /  icdcj g  I c d c }  ( 5 .2 2 )

VM = { fiiM (virij) /vnij  e VM} (5.23)

where iAdcj, iBdcj, icdcj and virij are the elements o f the discrete universe o f discourse hdc, 

hdc, Icdc and VM, respectively. Also, iiIAdc(iAdcj), ^BdcOBdcj), filcdcOcdcj),^r\d fiVM(vmj) are, 

respectively, the corresponding membership functions.

B. Construction O f The Fuzzy And Membership Functions

Fuzzy rules and membership functions are constructed by observing the input data set. 

For the measurements related to the stator currents dc offset, more insight into the data is 

required. Therefore, membership functions will be generated for negative dc offset (-DC), 

zero dc offset (Z) and positive dc offset (+DC).

For the measurement related to VSI condition, it is necessary to know if the VSI is in 

good condition (G), load disturbance (LA, LB, Lc), switching device intermittent misfiring 

fault (Tjjf, T2if, T3if, Tjjf, T5if, T6if), or power device base open-circuit fault (T]of, T2of , T3of, 

T4of, Tsofi Tfof)- The optimised membership functions for this project are shown in Figure 

5-5.
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DCDC-

Figure 5-5: Fuzzy membership function fo r stator currents DC offset.

5.2.3 Feature Extraction

The feature extraction process is introduced to enhance the difference between the 

transistor base drive open-circuit fault and an intermittent misfiring of inverter switching 

devices. The process takes place only after a fault has been detected by FLS in the stator 

current waveforms. On detecting and identifying the fault, the system will wait for 4 

cycles before checking the fault for the second time. The transistor base drive open-circuit 

fault is considered to have happened if the dc offset still exists in the stator currents.

However, if the dc offset is found to be zero or near zero in the later event, the 

intermittent is considered to have happened. In case o f intermittent misfiring, as described 

by K.S. Smith et.al [4] the currents normally take a few cycles to settle back to normal 

operating condition, depending on drive controller type.

Once the form of the initial membership functions has been determined, fuzzy If-Then

rules can be derived. The rules for this proposed VSI fault diagnosis and feature

extraction algorithm are shown in Table 5.1 and Table 5.2 respectively. For instance, 

from the tables:

The first If-Then rule statements are,

I f  I a d c  = Z and I b d c  = Z and I c d c  = Z,

Then VM= G
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The second If-Then rule statements are,

I f  I a d c  = -DC or +DC, and I Bd c  = Z and I Cd c  = Z

Then VM= LA

The fifth If-Then rule statements are,

I f I a d c =  -DC and I Bd c  = +DC and I c d c  = +DC,

Then VM = T/,/ or Tj0f

The system will wait for 4 cycles before checking the dc offset for the second time.

I f  I a d c  = -DC and I Bd c  = +DC and I c d c  = +DC,

Then V M - T]of  

Or

If I a d c  ~ Z and I Bd c  = Z and I c d c  = Z,

Then VM= Tuf

5.3 Summary

In this Chapter, a detailed description of the proposed fault diagnosis algorithm for 3- 

phase pulse width modulation (PWM) voltage source inverter VSI) for closed-loop, fuzzy 

logic voltage frequency (v/f) speed control strategy of induction motor has been 

presented. The algorithm proposed was based on the combination of wavelet transform 

and fuzzy logic. The following are the main points made in this Chapter.

1. The wavelet transform is generated by finding a linear combination o f wavelet 

functions to represent the signal. The weight of this linear combination is called 

the wavelet coefficients. The wavelet is localised in time, which is important to 

study the transient signal.

2. The fault identifier algorithm by the fuzzy logic system leads to the 

determination o f particular faults in VSI. Fuzzy logic adopted in this project is 

systematically designed according to intuition and experiences. The advantage
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of using fuzzy logic is that it is easy to apply heuristics knowledge and rule-of- 

thumb experience.
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Table 5.2: Fuzzy If -  Then rules for feature extraction

Rule no. I f T h e n

- D C z +  D C VSI sta tu s Ti of T^o/ T30J T-tof Tsof Ttfo/

1 Iadc V

Ibdc V VM a/

Icdc V

2 Iadc V

Ibdc V VM a/

Icdc V

3 Iadc V

Ibdc a/ VM a/

Icdc V

4 Iadc V

Ibdc V VM a/

Icdc a/

5 Iadc V

Ibdc V VM V

Icdc a/

6 Iadc V

Ibdc a/ VM a/

Icdc a/

7 Iadc V

Ibdc V VM a/

Icdc a/

109



CHAPTER 6

EXPERIMENTAL RESULTS AND DISCUSSION 

6.1 Introduction

In this chapter, a general description of the experimental set-up o f the induction motor drive 

system is given. The implementation of fuzzy logic controller (FLC) algorithms is utilised on the 

single chip, Intel 80C196KC 16-bit embedded microcontroller, a low cost derivative of the MCS- 

96 architecture.

This is followed by practical results o f the proposed condition monitoring and fault detection 

system. Comparison studies between the practical results and simulation results are included.

6.2 Experimental Set-up of The Induction Motor Drive System

The experimental set-up o f the complete induction motor drive system used in this thesis project 

is shown in Figure 6-1 and Figure 6-2. The drive system is comprised o f five primary sections. 

The first section is the full-wave uncontrolled diode bridge, which converts the three-phase ac 

voltage to a rectified dc voltage.

The second section is the dc-link, which embraces an energy storing capacitor (6600pF with rated 

voltage o f 350V). The capacitor is connected across the dc-link terminals to provide a smooth and 

constant dc supply.

The third section o f the system is the PWM inverter bridge and the gate driver circuits. The dc 

input voltage is converted to a symmetrical ac output voltage o f desired magnitude and 

frequency. The power devices used in the inverter bridge are the insulated gate bipolar transistors 

(IGBTs). The IRGPH40F IGBTs used in this project are rated at a maximum voltage of 1200V, 

peak current of 58A and a continuous current of 29A.
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The ultra fast recovery diodes are connected across the IGBTs to allow freewheeling in the 

circuit. The reciprocal circuit is added to the inverter circuit so that the switching signal of any 

power devices on the same arm is complemented. A dead time is introduced to the 

complementary signals to prevent short-circuiting the dc-link. The TLP 759 opto-coupler is used 

to isolate the microcontroller board circuit from the driver circuit. In addition, protection circuits 

against over current, over voltage and short circuit are included.

In order to develop near-sinusoidal current waveforms with minimum low-order harmonics 

content, the sinusoidal pulse width modulation (SPWM) with a switching frequency of 3.5kHz is 

used. It should be noted that, higher switching frequencies could reduce torque pulsation, which 

is normally notable at low speed operation. Hence, the motor acoustic noise is minimised. 

However, the switching losses become excessive because of the increase in the switching 

frequency. Also, this can heave the temperature of the power devices and thus shorten their lives.

The fourth section is the microcontroller circuit. In this project, the Intel EV80C196KC single 

evaluation board is used. The board comprises a single chip 80C196KC microcontroller, two 16- 

bit and one 8 -bit memory banks, a UART for host communication and digital I/O facilities. The 

microcontrollers main tasks are summarised below:

a) Calculation of motor speed by counting the encoder pulses through the HSI interrupts 

service routine.

b) Digital filtering for speed measurements and estimation of motor acceleration

c) Closed -loop speed regulation using fuzzy logic control

d) Calculation of the SPWM switching instants

e) Generation of the SPWM pulses through the HSO interrupt service routine.

Detailed descriptions of the microcontroller and the implementation of closed loop fuzzy logic 

speed controller are given in [108,156].

The fifth section o f the drive system is the 3-phase ac induction motor, dc shunt generator and 

speed sensor. The induction motor used is a star-connected with the following specifications:

2.2 W, 4 poles, 410V, 50Hz, 1415r/min, 5A and rated torque of 15.1N.m.
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A variable resistor bank, which is used to produce the load torque, is connected to the output 

terminals of the dc generator. The generator is mechanically coupled to the shaft of the induction 

motor. The rated values o f the generator are as follows:

110V, 1.5kW, 1440r/min and 13.6A.

In this project, the speed o f the motor is sensed via an optical shaft encoder, which is mounted on 

the induction motor shaft. The encoder used is capable o f generating 1024 pulse per one rotor 

revolution. The M/T speed estimation method is implemented in the system. The M/T method 

offered high resolution and high accuracy in a short detection time [155]. The principle of this 

method is given in [156].

6.3 Experimental Results

In this section, the assessment of the proposed condition monitoring and fault detection algorithm 

for three-phase PWM, VSI for closed-loop, fuzzy logic, v/f speed control strategy o f an induction 

motor drive is considered. A series o f normal and faulty condition tests have been conducted 

rigorously in order to bring out the effectiveness of the proposed technique.

Throughout this test, the induction motor is running constantly at a speed of lOOOrpm and lightly 

loaded. The dc-link of the inverter is set to a value of 100 V dc. Then the inverter faults condition 

is suddenly applied to the system. The phase currents which, are sampled at 2kHz, are examined 

as a function of failure modes and their wavelet transform are shown, in order to detect the 

inverter failures and to study the effectiveness o f the proposed algorithm. The occurrence of a 

fault is detected by a sharp rise or drop in the magnitude of the D4 wavelet coefficient.

If the fault is detected, the fuzzy logic system will be activated to determine the type of fault. The 

fault is then determined by checking the value and the polarity of the dc offset in the phase 

currents.
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6.3.1 Inverter Transistor Base Drive Open-Circuit Fault

Figures 6-3 to 6-14 shows the phase currents and wavelet coefficient D4 when the transistor 77, 

T2, T3, T4, T5 and T6  is open-circuit fault, respectively. It should be noted that this fault 

introduced the dc offset to the phase currents, as can be clearly seen. A larger dc offset magnitude 

is detected in faulty phase, as compared to the other phases. Also, the polarity o f dc offset in the 

faulty phase is opposite with the other phases.

There is no doubt that the DWT is able to capture the significant irregular data pattern such as 

sharp “jumps” in current waveforms, as clearly observable in Figures 6-4, 6 -6 , 6 -8 , 6-10, 6-12 

and 6-14. Immediately after the fault occurrence, a sharp spike appears in the detail coefficient 

signal indicating the occurrence of the fault. As mentioned before, the wavelet is localised in 

time. This feature is important to determine the exact instant when the fault has occurred. Here is 

a noteworthy example of an advantage of DWT analysis.

In addition, Figures 6-15 to 6-20 demonstrate simulation results obtained for the aforementioned 

faults. The same operating conditions applied in the experimental tests are considered here for the 

simulation. The inspection of these figures indicates the experimental results agree with those of 

the simulation results. But in the simulation results, the transient response that is created by the 

controller for maintaining the speed when the fault has occurred is clearly visible. This is because 

the sampling time used in simulation is 10kHz compared 2kHz used for experimental works.
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Figure 6-2: Photos o f  experimental set-up fo r  induction motor drive, (a) The complete
system, (b) Power electronic circuits, and (c) Microprocessor board.
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Figure 6-17: The simulated current waveforms for inverter transistor T3
open-circuit fault.

Phase A
10

5

0

■5

4.154.1 4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6
Phase B

5

0

•5

4.154.1 4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6
Phase C

5

0

■5

4.154.1 4.2 4.25 4.3 4.35 4.4 4.45 4.5 4.55 4.6
Time (s)
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6.3.2 Inverter Transistor Intermittent Misfiring Fault

In this test, the transistor intermittent fault is introduced in the inverter circuit by suppression of 

firing pulse to the transistor for a short period o f time. Figure 6-21, 6-23 and 6-25 shows the 

phase currents when the intermittent fault of 77, 72 and T3 occurred, respectively.

It can be seen that the system is able to recover from the disturbance and the phase current 

distortion decays in few output cycles under the effect o f the fuzzy logic controller. These results 

agree with the experiment results mentioned in [4].

The DWT coefficient successfully detects the intermittent misfiring fault, as shown in Figure 6 - 

22, 6-24 and 6-26. The sharp spikes appeared when the fault started and vanished. In addition, by 

observing the D4 coefficient, the instant when the fault started and vanished can be obtained. This 

information is very useful for the machine operator. If the intermittent misfiring faults happen so 

frequently, the system might need to be stopped to avoid catastrophic breakdown caused by the 

high current transient.

Figures 6-27 to 6-29 show the simulated results of the inverter transistor intermittent misfiring 

fault. These results agree with the experimental results.

6.3.3 Single Phasing Fault

Throughout this test, the single phasing fault condition is introduced by switching off one of the 

induction motor phases. Figure 6-30, 6-32 and 6-34 show the experimental phase current 

responses when the single phasing fault occurred in the circuit. Inspection of the current 

waveforms indicates that the current magnitudes o f the other two phases are increased 

significantly. No dc offset was introduced with this fault.

Under this type o f fault, as mentioned in Chapter 3, the three-phase motor will continue to 

operate but as a single-phase motor. This motor will be unable to restart with a single-phase 

supply, unless a rotating magnetic field somehow produced at standstill [6 ].
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The D4 wavelet coefficient for the phase currents is shown in Figure 6-31, 6-33 and 6-35. It may 

be clearly seen that the coefficient surging has occurred, in response to the faulty current 

condition. As a result, the single phasing fault can be easily detected by the wavelet coefficient.

Figures 6-36 to 6-38 show the simulated results of the single phasing fault condition. As shown, 

there is a fair agreement between the simulated and experimental results.

6.3.4 Dc Offset

Once the fault is detected by the DWT, the system will start to calculate the currents dc offset. 

Then, the dc offset value and the polarity will be fed to the fuzzy logic system to determine the 

type of fault, as previously described in section 5.2.2.1. Table 6.1 below show the value and the 

polarity of dc offset for experimental base drive open-circuit faults and intermittent misfiring 

faults. The 1st reading is taken just after the fault is detected, for the duration o f 4 cycles while the 

2nd reading is taken 4 cycles after the 1st reading, also for the duration of 4 cycles. The table 

shows that the proposed fault identifier algorithm agrees with the experimental results. In this 

thesis project, if the dc offset magnitude is less than 0 .1 , it will be considered as a healthy 

condition.

Example 1:

1 st reading:

I a d c  = “0.399 and I b d c ^  0.2644 and I c d c  = 0.1776 

Then wait for 4 cycles

2 nd reading:

I a d c  = “0.6057 and I b d c  = 0.4029 and I c d c  ~ 0.2776 

Result: T1 base drive open-circuit fault.

Example 2:

1 st reading:

I a d c  = -0.5197 and I b d C =  0.3271 and I c d c  = 0.0866 

Then wait for 4 cycles

2 nd reading:

I a d c  = 0.0452 and I b d c  = 0.0189 and I c d c  = -0.0879
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Result: T1 intermittent misfiring fault.

6.4 Summary

In this Chapter, a description of the experimental set-up for the proposed fault diagnosis 

algorithm for 3-phase pulse width modulation (PWM) voltage source inverter (VSI) for closed- 

loop, fuzzy logic voltage frequency (v/f) speed control strategy of an induction motor has been 

presented. Illustration of the stator current waveforms when the VSI is subjected to different 

types o f fault follows this. The wavelet transform of stator currents were obtained, which 

demonstrated the validity o f the designed condition monitoring and fault detector algorithm. 

Comparison studies between the acquired experimental results with those obtained via 

simulation, for the same operating conditions, were considered.
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Table 6.1: Dc offset reading

Type of fault
1st.

Reading
2nd.

Reading

Ia d c Ib d c Ic D C Ia d c Ib d c I c D C

T1 base drive open-circuit -0.399 0.2644 0.1776 -.6057 0.4029 0.2776

T2 base drive open-circuit -.3846 -.2564 0.6999 -.3992 -.3556 0.7226

T3 base drive open-circuit 0.1562 -.369 0.2427 0.3159 -.6283 0.3534

T4 base drive open-circuit 0.4602 -.322 -.1830 0.5892 -.3432 -.2920

T5 base drive open-circuit 0.2369 0.1513 -.4165 0.2072 0.262 -.6025

T6 base drive open-circuit -.2083 0.4829 -.2924 -0.2903 0.5579 -0.3431

T1 intermittent misfiring -.5197 0.3271 0.0866 0.0452 0.0189 -.0879

T2 intermittent misfiring -.1575 -.2735 0.6042 -.0026 -.0186 0.0889

T3 intermittent misfiring 0.1439 -.4632 0.1297 -.0790 -.0063 -.0789
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CHAPTER 7

CONCLUSSIONS AND RECOMMENDATIONS

7.1 Conclusions

Safety, reliability, efficiency and performance are some of the major issues and concerns for the 

motor drive system applications. With factors such as aging systems, high reliability demands and 

cost competitiveness, the issues o f preventive and condition-based maintenance, online- 

monitoring, system fault detection and diagnosis are of increasing importance. The key issues for 

the successful motor drive application are a quality of motor, proper choice of drive system, 

understanding the capabilities o f the system and proper maintenance.

However, the use o f motor drive in today’s industry is extensive and the system can be exposed 

to different hostile environments, misoperations, or manufacturing defects. Different internal 

motor faults (e.g., broken rotor bars, bearing damage, inter turn short-circuit) along with external 

motor faults (e.g., inverter transistor base drive open-circuit, transistor intermittent misfiring, 

phase-failure, asymmetry o f main supply) are expected to happen sooner or later. These types of 

faults usually refer to the gradual deterioration that can lead to motor drive failure if left 

undetected. Early fault detection and diagnosis allow preventive and condition-based 

maintenance to be arranged for the motor drive system during scheduled downtimes and prevent 

an extended period of downtime caused by extensive system failures, and will also reduce the 

maintenance costs. Therefore, the objective of this research work is to study, investigate and 

design the real-time, non-invasive, condition monitoring and fault detection algorithm for a three- 

phase induction motor drive system. The VSI for the drive system is based on v /f fuzzy control 

strategy.

It should be stressed that the designed algorithm ought to be sensitive to any type o f disturbance 

occurred in the VSI. For this purpose, comprehensive investigation o f state-of-the-art modem 

condition monitoring and fault diagnosis has been presented in Chapter 2. Moreover, the 

development of the new algorithm based on discrete wavelet transform and fuzzy logic has been 

thoroughly discussed in Chapter 5.
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The basic theory and general mathematical representation of VSI and PWM switching techniques 

have been reviewed in Chapter 3. In addition, the VSI faults analysis such as inverter transistor 

base drive open-circuit fault, intermittent misfiring and single phasing has been described in 

details.

The normal and faulty VSI operating conditions have been initially assessed through computer 

modeling and simulation using MATLAB and SIMULINK. The VSI model was based on 

switching function concept, as successfully presented in Chapter 4. The observations made from 

simulation results provide a clearer picture in understanding the VSI circuit behaviour, especially 

under faulty conditions. For example, an open-circuit fault will introduce a dc offset to the stator 

currents, leading to the healthy transistor of the faulty leg becoming excessively stressed because 

it now carries the entire phase current. Also, the upper and the lower transistor o f other legs carry 

unequal current stress. Such condition may eventually lead to catastrophic breakdown to the 

inverter system.

Furthermore, the comprehensive transient study of the drive system, which the induction motor is 

simulated using the dynamical equations that are formulated in the synchronous reference frame, 

is also presented in chapter 4. This simulation was found useful for the initial design of the closed 

loop fuzzy based control system.

The proposed condition monitoring and fault detection algorithm have been extensively tested 

through experimental works. The assessment o f this algorithm was based on its capabilities in 

detecting and identifying the various VSI faults as presented in Chapter 6 . The experimental 

results revealed that the stator currents contain the important information associated with VSI 

faults. The proposed algorithm that is the combination of wavelet transform and fuzzy logic 

proved to be an effective technique in extracting the special VSI fault features in stator currents.

It has also been established that the wavelet transform has the capability to identify the signals, 

such as VSI faulty current signals that contain short duration, transient features. At low 

frequency, the wavelet transform has good localisation in frequency but poor localisation in 

space. At high frequency, the transform has poor localisation in frequency but good localisation 

in space. The wavelet transform also remove the difficulty of choosing an appropriate width of 

analysis window, required by other time-frequency transforms, as the width o f the wavelet 

analysis window is incorporated implicitly into the transform.
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Fuzzy logic is used to identify typical fault conditions. The fuzzy logic algorithms are 

systematically designed according to intuition and experiences about the 3-phase VSI behaviour. 

The advantage o f using the fuzzy logic is that it is easy to apply heuristics knowledge and ‘rule- 

of-thumb’ experience. The dc offset level of all three stator currents are considered as the 

variables to the fuzzy system. The results show that the application o f fuzzy logic as a VSI 

identifier is well suited.

7.2 Recommendations for Future Work

The prime targets o f the proposed condition monitoring and fault detection algorithm have been 

successfully fulfilled. The accomplished targets have been demonstrated through series of 

simulation and experimental studies. To further improve and develop the presently proposed 

algorithm, a few suggestions are proposed as follows:

a) The proposed condition monitoring and fault detection algorithm is fully built on 

MATLAB and SIMULINK platform. Therefore, the physical drive system could be 

easily connected to the proposed algorithm model by using xPC Target (product of 

Mathworks Inc.). xPC target is a high performance, host targeting prototyping 

environment that enables SIMULINK model to be connected directly to the system 

and execute them in real-time on PC-compatible hardware. Furthermore, if the 

extended real-time tool box ( product of Humusoft S.R.C) is used, the designer can 

access to external analog and digital signals with almost no hardware knowledge 

needed.

b) As far as power converters for commercial applications o f electric drives are 

concerned, relatively small number of configuration exists. Therefore, a similar 

circuit topologies should produce similar results for typical faults and hence, it is 

possible to study a diagnostic system able to operate regardless of different 

manufacturers and ratings. However, for closed-loop drives, the control itself 

modifies the behaviour o f machine supply variables. So, it is necessary to test the 

proposed algorithm to other type of controllers to ensure that it can be used as 

universal VSI condition monitoring and fault detection system.
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APPENDIX A

Fuzzy Logic System

In recent years, fuzzy logic (FL) has emerged as one o f the most attractive control 

tools used in several applications in the lack o f  complete and precise mathematical 

information. FL is based on human reasoning and an intuitive approach in interpreting 

problems and finding solutions. It utilises linguistic knowledge to represent a system. 

FL deals with objects in terms o f degree o f membership with all possible grades o f 

logic between 0  and 1 , and the shades o f grey between white and black.

Fuzzy logic is essentially based on the theory o f fuzzy sets, which was introduced at 

first by Lotfi A. Zadeh in 1965 [139]. In 1973 [140], an important breakthrough in 

fuzzy development was made, which introduced the concept o f  linguistic variables 

and fuzzy conditional statements (fuzzy rules). A linguistic variable is defined as a 

variable whose values are linguistic terms rather than numbers, while the fuzzy 

conditional statements are expressions o f the form IF A THEN B , where A and B are 

fuzzy sets. Since then, the literature on FL has been growing rapidly, which illustrated 

its useful implication in many industrial applications [141, 142].

Fuzzy Set and Fuzzy Logic

Fuzzy set and fuzzy logic are powerful mathematical tools used to model uncertain 

system behaviour in the absence o f complete and precise information about the 

system. It will be convenient to summarise the relevant properties o f the fuzzy set 

theory and the basic concepts o f FL that are aimed to aid the development o f FL in 

later sections. In what follows, all letters and terms in italic are referred to notation 

and properties o f fuzzy sets, respectively.



A. Definition of Fuzzy Sets and Terminology

A fuzzy set A o f  a universe o f discourse U  is characterised by a membership function 

jua(x): U -»  [0 , 1 ], where jua(x)  specifies the grade or degree to which any element* in 

U  belongs to the fuzzy set A. The general definition o f fuzzy set A can be obtained as:

A = [ { x , p A(x)) | * eC/, juA(x) e [0 ,l] } (A .l)

Definition (A .l), associates with each element * in U  a real number /ua(x)  in the 

interval between [0,1], which represents the degree o f membership o f  * in A. Larger 

values o f p A(x) indicate higher degrees o f membership and vice versa. Figure A -l 

shows a characteristic example o f a membership function that maps elements o f U  to 

a membership range which is usually in the interval between [0 , 1 ].

0.5

* 1  * 2  * 3  * 4  * 5  * 6  * 7  * 8  * 90

Figure A - l : Membership function offuzzy set A.

It follows from Figure A -l that the fuzzy set A can be represented concisely by the 

summation

A = fi\ / x\ +  +jun / xn (A.2)

or

A = ' Z p i / x i ( A3 )
i= 1

A - 2



in which //„ i = is the degree o f membership o f x,- in fuzzy set A. It should be

noted that the + sign in equation (A.2) and (A.3) refers to the set union rather than the 

arithmetic summation, while the / sign used to connect each element with its 

membership value and has no connection to the arithmetic division.

The support o f  fuzzy set A is the set o f all elements x (x/, X2, in the universe o f  

discourse U, at which /Ua(x) > 0. The crossover poin t in fuzzy set A is an element (or 

elements) x in U  whose degree o f membership in A is 0.5 (such as xj and x j in Figure 

A -l). However, if  the fuzzy set A whose support is just a single element x/ and jua(xi) 

e  [0 , 1 ] is called fuzzy singleton.

B. Basic Theoretic Operations on Fuzzy Sets

For simplicity o f  illustration, two fuzzy sets A and B in the universe o f  discourse U  

with membership functions pa and jub, respectively, are considered in which

a  =  { { x ’ V a ( * ) )  } »  / ' a  ( * )  e  I A 1 ]  , x e U  (A.4)

B = { (*>As(*)) }. A b (* )g [0,1] , x g  U  (A.5)

It should be noted that the set operation with A and B are performed based on 

operations on their membership functions as in the following,

Definition 1: Equality: The fuzzy sets A and B are equal denoted by A = B i f  and only 

if  for every element x in U,

Ma(x) = Jub(x) , x g U  (A.6 )

Definition 2: Complementation: The fuzzy sets A and A are complementary for all 

element x in U  if



(A.7)

Definition 3: Intersection: The membership function juAnB o f  the intersection 

operation between the fuzzy sets denoted as A n  B is defined for every element x i n U  

by

^ n sW  = min{ ftW » ^ W } , x e U  (A. 8)

Definition 4: Union: The membership function juAuB o f the union operation between 

the fuzzy sets denoted A u  B is defined for every element x in U  by

A .^aO ) = max {n A(* ),//„ (x)} , x  e U  (A.9)

Definition 5: Algebraic Product : The membership function juA B o f  the algebraic 

product operation between the fuzzy sets denoted A - B is defined for every element x 

in U  by

Ma-b(*) = Ma(x) * Mb(*) , x e U  (A. 10)

Definition 6: Cartesian Product : If A and B are fuzzy sets in the universe o f 

discourse U, the Cartesian product ( or cross product) denoted A x  B is the set o f 

ordered pairs given as

A x  B = {(a ,b ) \ a g A, b e  b } (A .l 1)

C. Fuzzy Relations and Compositional Operators

A fuzzy relation Rf from a fuzzy set A to a fuzzy set B is a fuzzy subset o f the 

Cartesian product A x  B , where A and B are subsets o f the universes Uj and U2 , 

respectively. This leads to the definition o f the fuzzy relation i?/as

A - 4



Rj = { { ( x , y \ j uR(x,y))  | ( x ,y )e  Ax B, juR(x,y)<=i [0,l]} (A.12)

where the membership functionjuR(x,y)  gives the degree o f  membership o f the

ordered pair(x,y) in the fuzzy relation Rf. In other words, this degree o f membership 

indicates the degree to which x is in relation withy.

If Rf  is a relation from fuzzy set A to fuzzy set B and S' is a relation from fuzzy set B 

to fuzzy set C, then the composition o f R f  and S results in a fuzzy relation denoted 

by R /  o S  and defined by

R / o S  = |( ( x ,  z), max(j iR (x, y )  * fts (y,  z))j j  (A. 13)

where * denotes a compositional operators such as intersection (min), product, 

bounded product and drastic product. Suitable selection o f any o f  these operators 

depends highly on the designer, where it is chosen to fit a specific application. In 

many FLC applications, the max-min and the max-product compositional operators 

are the most frequently used due to their ease o f implementation [143]. A more 

detailed discussions on fuzzy relation and compositional rules o f inference are 

presented in [144, 145].

The Principles of Fuzzy Logic System (FLS)

In general, a FLS is a nonlinear mapping o f an input data (feature) vector into a scalar 

output. A FLS maps crisp inputs into crisp outputs. It contains four components: , 

fuzzifier, rules, inference engine, and defuzzifier. Figure A -l shows the basic 

configuration o f  a typical FLC.



A. Fuzzification Process

The basic function o f the fuzzification stage is to convert the crisp input variable into 

a fuzzy singleton within a certain universe o f discourse. This can be accomplished by 

mapping the crisp values o f the input variable through all the fuzzy sets over the 

corresponding universe o f discourse. The mapped data are further converted into a 

fuzzy singleton which basically gives the degree o f  membership for each crisp value 

in relation with all fuzzy sets within the corresponding universe o f discourse. The 

fuzzification process can be expressed by

x = fuzzifier ) (A. 14)

where xo and x represent the crisp input value from a plant and the pre-defined fuzzy 

set for the input variable, respectively.

Crisp

Input

Crisp

Output

RULES

FUZZIFIER DEFUZZIFIER

INFERENCE

Figure A-2: Block diagram o f  a typical FLS.

B. Fuzzy Rules

Rules may be provided by experts or can be extracted from numerical data. In either 

case, engineering rules are expressed as a collection o f IF -  Then statements, e.g.:

Rule i : IF x is At AND y  is Bt THEN z  is C,

A - 6



where x, y  and z are linguistic variables representing the plant state variables and the 

output control variables. A t, Bj and C, are fuzzy labels o f the linguistic variables x, y, 

and z in the universes o f discourse U, V, and W, respectively. In this rule, the IF part is 

known as the antecedent, while the THEN part is known as the rule consequent. 

Hence, the fuzzy rule is a conditional statement in which the antecedent is a condition 

and the consequent is a control action for the system under control.

The number o f fuzzy rules is determined by computing the product o f the num ber o f 

fuzzy sets in each input linguistic variables, x  and y. These rules are then designed to 

produce as a conclusion / different outputs, where / is the num ber o f fuzzy sets in the 

output linguistic variable, z. For example, in the case o f two-input-single-output fuzzy 

system, where both input variables have the same number o f  fuzzy sets 5, then there 

should be 5*5 = 25 fuzzy rules.

In many cases, large number o f rules can be reduced using several methods [143, 

146]. One m ethod is achieved by the reduction o f the antecedent (linguistic) variables 

or their fuzzy sets. The other method is to keep track o f the rules being com puted 

during real-tim e or by off-line inferencing o f  the FLS and trying to eliminate those 

rules which are either not used at all or used very little.

C. Fuzzy Inference Engine

Fuzzy inference is the process o f formulating the mapping from a given input to an 

output using fuzzy logic. The mapping provides a basis from which decisions can be 

made. Just as humans use many different types o f inferential procedures to help them 

understand things or to make decisions, there are many different fuzzy logic 

inferential procedures. Only a very small number o f them are actually being used in 

engineering applications o f FL [69]

There are two types o f  fuzzy inference systems that are normally used, Mamdani-type 

and Sugeno-type. These two types vary somewhat in the way output are determined. 

M amdani's type is the most commonly seen fuzzy methodology. M am dani’s method
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was among the first control system built using fuzzy set theory. It was proposed in 

1975 by Ebrahim Mamdani [147]. M amdani’s effort was based on Lotfi Zadeh on 

fuzzy algorithm for complex systems and decision processes published in 1973 [140]. 

Meanwhile, the Sugeno-type was first introduced in 1985 [148]. It is similar to the 

Mamdani method in many aspects. In fact the first two parts o f the fuzzy inference 

process, fuzzifying the inputs and applying the fuzzy operator, are exactly the same. 

The main difference is that the output membership functions are only linear or 

constant for Sugeno-type fuzzy inference. Details o f  these two types can be found in 

[69, 149-153].

D. Defuzzification Process

This process is needed to maps output sets into crisp output numbers. This can be 

expressed by

y 0 = defuzzifier (y) (A. 15)

where y  and yo are fuzzy and crisp outputs, respectively. There exist several de­

fuzzification methods. Some o f the earliest used the “mean o f  maxima ”, meaning that

the crisp output is taken as the value at which the membership function o f  the inferred 

fuzzy set reached its maximum, but if  there are many maxima the mean o f  these is 

taken. In the present, the “centroid” or “centre o f  gravity” method is the most 

commonly used. It can be computed by defining the contour or aggregate o f the 

inferred control action, which is used to solve the following discrete formula

---------------------------------------------------------------------- (A. 16)
Ip'Ĵ'agg )k=\

where y* represent the subdivided discrete samples into N  equal subintervals o f the 

output universe o f  discourse, while p ags(yk) contain the corresponding aggregated 

degree o f  membership for each sample.
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E. Fuzzy Linguistic Variables

Linguistic variables are defined as variables whose values are words or sentences in 

natural or artificial languages. They play an essential role in providing a systematic 

mean for an approximate characterisation o f complex or ill-defined systems. For 

example, by employing the concept o f fuzzy set theory, the stator current D C offset 

can be described approximately. The D C offset is a linguistic variable comprising 

some fuzzy sets such as NB (Negative Big), NS (Negative Small), ZO (Near Zero), PS 

(Positive Small), and PB (Positive Big). In other words, the attribute D C offset is a 

fuzzy variable, whose values are linguistic labels o f  fuzzy sets. Each set is defined by 

an appropriate membership function as shown in Figure A-3, where a normalised 

universe [+1,-1] is being used. Membership functions having the forms o f  triangle­

shaped and trapezoid-shaped are used here due to their ease o f implementation 

compared to other existing functions.

It should also be noted that the number o f fuzzy sets and the correct selection o f the 

membership function have a substantial effect on the performance o f the FLS. 

Moreover, the proper choice o f the plant state variables and control variables is 

essential to characterise the operation o f the fuzzy system. And indeed, the essence o f 

the FLS performance depends strongly on the derivation o f useful fuzzy control rules.

NB NS ZO PS PB

0.5 -

1 0 +1

DC Value

Figure A-3: Example o f  membership functions for the linguistic variable.
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APPENDIX B

Six-Step VSI inverter using 180° mode of operation

In this mode o f  operations, each IGBT conducts for an interval o f  180° in a cycle. 

This implies that each output terminal o f the bridge inverter is connected 

consecutively for that interval to the positive and negative terminals o f the dc supply. 

Three IGBTs remain on at any instant o f time to provide the positive and negative 

rails for the current. Thus, there are six modes o f operation in one cycle and the 

duration o f each mode is 60°. These modes are given below in Table A.l .

Table A. l :  Switching patterns o f  three phase bridge inverter using 180° mode o f

operation.

IGBTs
Intervals

Tj t2 t3 t4 t5 t6

0 ° - 6 0 ° on off off off on on
60° - 1 2 0 ° on on off off off on

1 2 0 ° - 1 8 0 ° on on on off off off

1 8 0 ° - 2 4 0 ° off on on on off off

2 4 0 ° - 3 0 0 ° off off on on on off

3 0 0 ° - 3 6 0 ° off off off on on on

If this type o f inverter is used to feed a balanced star connected load, as shown in 

Figure 3-2, the phase voltage waveform has six steps per ac cycle and is termed a six- 

step wave. The equivalent circuits for the six modes o f operation in a full cycle are 

shown in Figure A-l .  The equivalent load impedance and load current for all the six 

modes are defined as follows:

^ e q  ~  %  + = ^  Z  (A. 1)

and,
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l L
Y d c _ ^ V_do
^eq  ̂ Z

(A.2)

Therefore, the computation o f the phase and line voltages for a single mode o f  

operation can be defined as follows,

During mode 1 for 0° < cot < 60 °, the phase voltages are:

i VV  = V  = _L * 7 -  LJ£-
V AN v  CN 2  3 (A.3)

v  = - /  * 7  = - —VY BN l L z  3 Y dc

while the line voltages are,

V = V  - V  =r  AB v  AN Y BN = V.dc

(A.4)

(A.5)

Vbc = V SN~VCN= ~ V dc- ]̂ -  = -  F* (A.6 )

Vc* = V c n - V m = ^ - ^ -  = 0 (A.7)

If the same procedures applied to the remaining modes o f operations, Table A.2 is 

constructed, in which the six steps phase and line voltages are given.
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Model Mode 2

Mode 3 Mode 4

Vdc t

Mode 5 Mode 6

Vdc t

Figure A-l :  Equivalent circuits

Table A.2: Six-step phase and line voltages fo r a balanced wye-connected load.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

Van i/s vdc 2/3 Vdc 1/3 Vdc -1/3 Vdc -2/3 Vdc -1/3 Vdc
Vbn -2/3 Vdc -1/3 Vdc 1/3 Vdc 2/3 Vdc 1/3 Vdc -1/3 Vdc

VcN 1/3 Vdc -1/3 Vdc -2/3 Vdc -1/3 Vdc 1/3 Vdc 2/3 Vdc

Vab vdc Vdc 0 - V dc - V dc 0

Vbc -vdc 0 Vdc Vdc 0 -V dc

VCA 0 -V dc -Vdc 0 Vdc Vdc
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APPENDIX C

(i) Program for compsignal matlab function block.

f u n c t i o n  [ y ]  = c o m p s i g n a l ( a )
% T h i s  p r o g r a m  i s  t o  c o m p a r e  t w o  i n c o m i n g  s i g n a l .  
x l = a ( 1 ) ;  
x 2 = a ( 2 ) ;  
i f  x l  >= x2  

y = l ;
e l s e

y = - l ;
e n d

(ii) Program to calculate sf2.

f u n c t i o n  [ y ]  = s f 2 ( a )  
x l = a  ( 1 ) ;  
i f  x l  >= 0 

y = l ;  
e l s e  

y = 0 ;
e n d



A PPEN D IX  D  

The DWT M -file

s= 'data frame';
Q.*6

%Perform decomposition at level 3 of s using D4 .
[c,l]= wavedec(s,3,'db2');
%extract detail coefficients at level 1,2 and 3 from wavelet
%decomposition structure [c,l].
dcl=wrcoef('d',c,1,'db2' , 3) ;
dc2=wrcoef('d',c,1,'db2', 2) ;
dc3=wrcoef('d',c,1,'db2',1);
%plot detail coefficients at level 3, D4.
plot(tout,del);grid;ylabel('D4 Coefficient');title('Phase 
B ');xlabel('Time (s)');
%
function [c,l] = wavedec(x,n,varargin)
%WAVEDEC.
% WAVEDEC performs a multi-level 1-D wavelet analysis..
%
% The structure is organized as:
% C = [app. coef.(N)|det. coef.(N)|... |det. coef.(l)]
% L(l) = length of app. coef.(N)
% L(i) = length of det. coef.(N-i+2) for i = 2,...,N+1
% L(N+2) = length(X).
%
if errargn(mfilename,nargin,[3:4],nargout,[0:2]), error('*'), 
if errargt(mfilename,n,'int'), error('*'), end 
if nargin==3

[LoF_D,HiF_D] = wfilters(varargin{1},'d ');
else

LoF_D = varargin{l}; HiF_D = varargin{2};
end
%
% Initialization.
Q.*o
s = size(x); x = x(:)'; % row vector 
c = []; 1 = [length(x)];
%
for k = 1:n

[x,d] = dwt(x,LoF_D,HiF_D); % decomposition
c = [d c]; % store detail
1 = [length(d) 1]; % store length

end
o,
% Last approximation, 
c = [x c] ;
1 = [length(x) 1];
&
if s (1)>1, c = c'; 1 = 1'; end
o.*0
g.“o
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function x = wrcoef(o,c,1,varargin)
%WRCOEF.
% WRCOEF reconstructs the coefficients of a 1-D signal,
% given a wavelet decomposition structure (C and L).
o,

% X = WRCOEF('type 1,C,L, 'wname') and
% X = WRCOEF('typeC,L,Lo_R,Hi_R) reconstruct coefficients
% of maximum level N = length(L)-2.
“6
o,

if errargn(mfilename,nargin,[4:6],nargout,[0:1]), error('*1), end 
o = lower(o(1));
rmax = length(1); nmax = rmax-2;
if o=='a 1, nmin = 0; else , nmin = 1; end
if isstr(varargin{1})

[LoF_R,HiF_R] = wfilters(varargin{1},'r'); next = 2;
else

LoF_R = varargin{l}; HiF_R = varargin{2}; next = 3;
end
if nargin>=(3+next) , n = varargin{next}; else, n = nmax; end

if (ncnmin) I (n>nmax) I (n~=fix(n))
errargt(mfilename,'invalid level value1,'msg'); error('*');

end

% Get DWT_Mode
dwtATTR = dwtmode('get');

switch o
case 'a'

% Extract approximation, 
x = appcoef(c,1,LoF_R,HiF_R,n); 
if n==0, return; end 
FI = LoF_R;

case 'd'
% Extract detail coefficients, 
x = detcoef(c,1,n);
FI = HiF_R;

otherwise
errargt(mfilename,1 invalid argument value 1,'msg1); error(1 * 1)

end

imin = rmax-n;
x = upsaconv('ID',x,FI,1 (imin+1),dwtATTR);
for k=2:n , x = upsaconv(1 ID',x,LoF_R,1 (imin+k),dwtATTR); end

function d = detcoef(c,1,n)
%DETCOEF.
% D = DETCOEF(C,L,N) extracts the detail coefficients
% at level N from the wavelet decomposition structure [C,L].
a.“o
% D = DETCOEF(C,L) extracts the detail coefficients 
% at last level n = length(L)-2.
%
if errargn(mfilename,nargin, [2:3],nargout, [0:1]), error('*');end
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rmax = length(1); 
nmax = rmax-2;
if nargin==2 , n = nmax; end
if (n < 1) | (n > nmax) I (n ~= fix(n))

errargt(mfilename,'invalid level value' ,'msg'); error(1*')
end
o*o
% Extract detail coefficients, 
k = rmax-n;
first = sum(l(1;k-1))+1; 
last = first+1(k)-1; 
d = c(first:last);
g,*©
o"o
function a = appcoef(c,1,varargin)
%APPCOEF.
% APPCOEF computes the approximation coefficients of a 
% one-dimensional signal.
o,
% A = APPCOEF(C,L,'wname1,N) computes the approximation 
% coefficients at level N using the wavelet decomposition 
% structure [C,L].

if errargn(mfilename,nargin,[3:5],nargout,[0:1]), error('*'), 
rmax = length(1); 
nmax = rmax-2; 
if isstr(varargin{1})

[LoF_R,HiF_R] = wfilters(varargin{1},'r '); next = 2;
else

LoF_R = varargin{l}; HiF_R = varargin{2}; next = 3;
end
if nargin>=(2+next) , n = varargin{next}; else, n = nmax; end

if (n < 0) | (n > nmax) I (n ~= fix(n))
errargt(mfilename,'invalid level v a l u e m s g '); error('*'

end
g."o
% Initialization, 
a = c (1:1 (1) ) ;
o*o
% Iterated reconstruction.
imax = rmax+1;
for p = nmax:-l:n+l

d = detcoef(c,1,p); % extract detail
a = idwt(a,d,LoF_R,HiF_R,1 (imax-p));

end
*6

function [a,d] = dwt(x,varargin)
%DWT .
% DWT performs a single-level 1-D wavelet decomposition.
o,
~o
g,*0
if errargn(mfilename,nargin,[2:7],nargout,[0:2]), error('*'),

if isstr(varargin{1})
[LoF_D,HiF_D] = wfilters(varargin{1},'d '); next = 2;

end

end
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e l s e
LoF_D = varargin{l}; HiF_D = varargin{2}; next = 3;

end

% Default: Shift and Extension. 
dwtATTR = dwtmode('get'); 
shift = dwtATTR.shiftlD; 
dwtEXTM = dwtATTR.extMode;

% Check arguments for Extension and Shift, 
for k = next:2:nargin-1 

switch varargin{k}
case 'mode' , dwtEXTM = varargin{k+1}; 
case 'shift' , shift = mod(varargin{k+1},2); 

end
end

% Compute sizes.
If = length(LoF_D); 
lx = length(x);

% Extend, Decompose & Extract coefficients. 
flagPer = isequal(dwtEXTM,'per'); 
y = wextend('ID',dwtEXTM,x,lf-1); 
a = convdown(y,LoF_D,lx,If,shift, flagPer); 
d = convdown(y,HiF_D,lx,If,shift, flagPer) ;

%---------------------------------------------------------------------------------
 %
% Internal Function(s)
%-------------------------------------------------------------------------------- %
function y = convdown(x,f,lx,If,shift,flagper)
%
y = wconv('ID',x,f); 
y = wkeep(y,lx+lf-1); 
y = dyaddown(y,shift);
if flagper , y = wkeep(y,ceil(lx/2),1); end
%-------------------------------------------------------------------------------- %
o*5
o*o
function x = idwt(a,d,varargin)
%IDWT Single-level inverse discrete 1-D wavelet transform.
%
Q,"O
if errargn(mfilename,nargin,[3:8],nargout,[0:1]), error('*'), end 
if isempty(a) & isempty(d) , x = []; return; end

if isstr(varargin{1})
[LoF_R,HiF_R] = wfilters(varargin{1},'r'); next = 2;

else
LoF_R = varargin{l}; HiF_R = varargin{2}; next = 3;

end

% Default: Length, Shift and Extension.
lx = [];
dwtATTR = dwtmode('get');
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% Check arguments for Length, Shift and Extension, 
k = next;
while k<=length(varargin) 

if isstr(varargin{k}) 
switch varargin{k}

case 'mode' , dwtATTR.extMode = varargin{k+1};
case 'shift' , dwtATTR.shiftlD = mod(varargin{k+1},2);

end
k = k+2;

else
lx = varargin{k}; k = k+1;

end
end

% Reconstructed Approximation.
x = upsaconv('ID',a,LoF_R,lx,dwtATTR)+ ... % Approximation,

upsaconv('ID',d,HiF_R,lx,dwtATTR); % Detail.
Q.
o

%
a■q
function y = upsaconv(type,x,f,s,dwtATTR,shiFLAG)
%UPSACONV Upsample and convolution.
a“6
% Y = UPSACONV('ID',X,F_R) returns the one step dyadic
% interpolation (upsample and convolution) of vector X
% using filter F_R.

% Y = UPSACONV('2D',X,{F1_R,F2_R},DWTATTR) returns the one step 
% interpolation of matrix X using filters F1_R and F2_R where
% the upsample and convolution attributes are described by DWTATTR.
%
% Y = UPSACONV('2D',X,{F1_R,F2_R},S,DWTATTR) combines the 
% other usages.
O"5
if isempty(x) , y = 0; return; end
o*0
% Check arguments.
% if errargn(mfilename,nargin, [3:6],nargout, [0:1]), error('*'), end
o"o
y = x;
if nargin<4 , sizFLAG = 1; else , sizFLAG = isempty(s); end
if nargin<5 , dwtATTR = dwtmode('get'); end
if nargin<6 , shiFLAG = 1; end
dumFLAG = ~isstruct(dwtATTR);
if ~dumFLAG , perFLAG = isequal(dwtATTR.extMode,'per'); else , perFLAG 
0; end
shiFLAG = shiFLAG & ~dumFLAG;

switch type
case {1,'1','Id','ID'} 

ly = length(y);
If = length(f); 
if perFLAG

I = Getlndices(ly, If); y = y(I); 
if sizFLAG , s = 2*ly; end
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elseif sizFLAG
s = 2*ly-lf+2;

end
if shiFLAG , shift = dwtATTR.shiftlD; else , shift = 0; end 
y = wconv('ID1,dyadup(y,0) , f) ;

case {2,'2','2d','2D'} 
sy = size(y);
If = length(f{1}); 
if perFLAG

I = Getlndices(sy(1), If) ; y = y(I,:);
I = Getlndices(sy(2),If); y = y(:,I); 
if sizFLAG , s = 2*sy; end 

elseif sizFLAG
s = 2*sy-lf+2;

end
if shiFLAG , shift = dwtATTR.shift2D; else , shift = [0 0]; end 
y = wconv('col',dyadup(y, 'r o w 0), f{1}) ; 
y = wconv('row',dyadup(y, 'col1, 0),f{2});

end
shift = mod(shift, 2); 
if perFLAG

y = wkeep(y,s, 'c' ) ;
if any(shift) , y = wshift(type,y,shift); end

else
y = wkeep (y, s, ' c ', shift) ;

end

*6

% Internal Function(s) 
%----------------------

function I = Getlndices(len,If)

lm = floor((lf-1)/2);
I = [1:len , 1:lm]; 
if lf>2*len

I = mod(I,len);
I (I==0) = len;

end
____ a— "5

function err = errargn(ndfct,nbargin,argin,nbargout,argout) 
%ERRARGN Check function arguments number.
% ERR = ERRARGN('function',NUMARGIN,ARGIN,NUMARGOUT,ARGOUT) 
% is equal to 1 if either the number of input
% ARGIN or output (ARGOUT) arguments of the specified
% function do not belong to the vector of allowed values 
% (NUMARGIN and NUMARGOUT, respectively).
% Otherwise ERR = 0.
o*0
a*0
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if isempty(find(argin==nbargin)) | isempty(find(argout==nbargout|
err = errargt(ndfct,'invalid number of arguments','msg');

else
err = 0;

end
o*5
function err = errargt(ndfct,var,type)
%ERRARGT Check function arguments type.
% ERR = ERRARGT(NDFCT,VAR,TYPE)
% is equal to 1 if any element of input vector or 
% matrix VAR (depending on TYPE choice listed below)
% is not of type prescribed by input string TYPE.
% Otherwise ERR = 0.

[r,c] = size(var); 
err = 0;

switch type
case ' int'

if (isstr(var) I any(var < 1) | any(var ~= fix(var)))
err = 1; txt = 'integer(s) > 0 , expected';

end

case 'inO'
if (isstr(var) | any(var < 0) | any(var ~= fix(var)))

err = 1; txt = 'integer(s) => 0 , expected';
end

case 'rel'
if (isstr(var) | any(var ~= fix(var)))

err = 1; txt = 'integer(s) expected';
end

case 'rep'
if (isstr(var) | any(var <= 0))

err = 1; txt = 'real(s) > 0 , expected';
end

case 'reO'
if (isstr(var) | any(var < 0))

err = 1; txt = 'real(s) => 0 , expected';
end

case 'str'
if any(~isstr(var))

err = 1; txt = 'string expected';
end

case 'vec'
if r ~= 1 & c ~= 1

err = 1; txt = 'vector expected';
end

case 'row'
if r ~= 1

err = 1; txt = 'row vector expected';
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e n d

case 'col'
if c ~= 1

err = 1; txt = 'column vector expected1;
end

case 'dat'
if isempty(var)

err = 1; txt = 'date expected';
else

ss = rem(var,100); 
mn = rem(fix(var/100),100); 
hh = rem(fix(var/10000),100); 
jj = rem(fix(var/1000000),100); 
mm = rem(fix(var/100000000),100); 
aa = fix(var/10000000000); 
if any(. . .

ss < 0 11 ss > 59 |...
mn < 0 I mn > 59 | . . .
hh < 0 I hh > 24 | (hh

j j < 1 1 jj > 31 | . . .
mm < 1 I mm > 12 | ...
aa < 0 I aa > 9999 ...
)

err = 1; txt = 'date expected';
end

end 

case 'mon'
if (any(var < 1 I var > 12 | var ~= fix(var))) 

err = 1; txt = 'month expected';
end

case 'msg'
err = 1; txt = var;

otherwise
err = 1; txt = 'undefined type of variable';

end

if err == 1
if size(txt,l) == 1

msg = [' ' ndfct ' ---> ' txt];
else

msg = str2mat([' ' ndfct ' ---> '],txt);
end
if type=='msg'

txttitle = 'ERROR ...
else

txttitle = 'ARGUMENTS ERROR';
end
if ~mextglob('is_on') 

disp(' ')
S p  ( * ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k l c ' k ' k ' k ' k ' k ' k ' k ' k  * "j •

disp(txttitle);

0 | mn
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disp (1------------------------------------------- ');
disp(msg);
disp (' ****************************************' ) ; 
disp(1 ')

else
errordlg(msg,txttitle,1 modal');

end
end
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