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A bstract

Theories with a chemical potential are difficult to  trea t numerically because 
the action is complex and therefore methods based on a probability interpre
ta tion of the weight break down. This is an issue known as the sign problem. 
Complex Langevin dynamics was first proposed in the early 1980s and does 
not rely in a probability interpretation of the weight, so it can in principle be 
applied even where there is a severe sign problem. However, the combined 
problems of numerical instabilities and incorrect convergence impeded such 
early studies. In this work, the problem of runaway trajectories is cured by 
the use of a general adaptive stepsize procedure, which can be applied to 
both abelian and non-abelian theories. A study of the three-dimensional XY 
model at non-zero chemical potential follows, in which the problem of incor
rect convergence is encountered. A formal justification of complex Langevin 
dynamics is given, from which a set of criteria are derived which can be used 
to test the validity of results. These ideas are applied to  the SU(3) spin 
model, which is found to pass them  all and therefore give correct results. 
An improved integration algorithm, which eliminates leading order step size 

corrections, is outlined and shown to give improved results.



Chapter 1 

Introduction

Field theories with a complex action are difficult to trea t nonperturbatively, 
because the weight in the partition function is not real. Standard numerical 
approaches based on a probability interpretation and im portance sampling 
will then typically break down, which is commonly referred to  as the sign 
problem. This is a pressing problem for QCD, where a nonperturbative 
determ ination of the phase diagram in the plane of tem perature and baryon 
chemical potential is still lacking [1].

Several methods have been developed to explore at least part of the phase 
diagram [2--12], but in general these can only be applied in a limited region. 
Recent years have also seen an intense study of the sign problem in QCD 

and related theories, which has led to new formulations [13,14] and consid
erable insight into how the complexity of the weight interplays w ith physical 
observables [15-24]. A constrained sampling of field space, yielding a joint 

probability distribution for only a small number of observables, is the notion 

behind the factorization/density of states/h istogram  approaches [12,25-27]. 

In some theories, it is possible to group degrees of freedom together in such 

a way th a t the sign problem is manifestly absent [28-31]. This is the idea 
behind the meron cluster algorithm [32] and it has been applied recently 

to random m atrix theory at finite chemical potential [33]. Recent success-
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Figure 1.1: Conjectured phase diagram

ful applications of this have been to models derived from QCD in combined 
strong-coupling and heavy-quark expansions [34 40]. This suggests that the 
sign problem is not a problem of principle for a theory, but instead tied to 
the formulation and/or algorithm. For QCD an exact reformulation without 
a sign problem has unfortunately not (yet) been found.

As a result, although constructing the phase diagram of QCD from first 
principles remains out of reach of current techniques [41], it is nevertheless 
possible to derive the general phase structure from other arguments. A con
jectured QCD phase diagram as a function of quark chemical potential [1] is 
shown in Figure 1.1. The region of small chemical potent ials along the T-axis 
can be studied by various methods, because here the sign problem is not se
vere and so the techniques based on standard approaches can be applied (see
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below). Heavy ion collisions, which probe the Quark-gluon plasma phase are 

of particular interest here. In the very high density regime, one can use the 

fact th a t the system is weakly coupled, yielding the colour-flavour locking 

phase (CFL). Unfortunately, this regime is only valid at exponentially high 

densities and so is unlikely to be of relevance to  either astrophysics or experi
ments. This leaves the m ajority of the phase diagram without a reliable tool 

to determine it. Unfortunately the region of serious interest in astrophysics, 

th a t of cold dense m atter, lies in this regime.

The most simple way of removing the complex phase from the weight is 
to absorb it into the observable. The to tal observable is then found from the 
ratio of two expectation values sampled with respect to the phase quenched 
weight,

J P 0 O ( f l e * | e - * W |
'  '  f  Defied |e "s « |  ’  ̂ J

(Oei<PU
(ei«’)

(1 .2)
pq

The phase quenched weight is real and positive, therefore standard tech
niques employing im portance sampling can be used. Unfortunately, this 
process breaks down as the volume ft is taken to infinity. This is because the 
denominator is a ratio of the partition functions which vanishes exponentially 

in the thermodynamic limit,

( ^ ) p ,  =  =  e - ^ f ,  (1.3)
pq

where A /  is the difference in free energies between the phase quenched and 
full theories. Therefore the simulation is required to run exponentially longer 

in order to average out the fluctuations, nullifying the gain from simulating 

a real and positive weight. However, the method can be used to  great effect 

when the severeness of the sign problem, as measured by (ellf)pq is not too

3



close to zero, which limits use to small volumes and chemical potentials.
Although a sign problem may be present with a real chemical potential, 

taking an imaginary chemical potential fi = if±i makes the action real. By 

expanding in /i2, it can be seen th a t observables which are even in n  will 

be continuous across the boundary between real and imaginary chemical 

potential a t fi2 =  0. Therefore, it is possible to perform simulations with 
a real action and extrapolate to regions of small real chemical potential by 

analytic continuation. As with any technique involving and expansion, the 

reliability of results breaks down for larger chemical potentials.
An alternative way of examining the region of small chemical potential 

is to perform a Taylor expansion in fi. The coefficients of the expansion will 
involve expectation values of observables at fi = 0, where there is no sign 
problem and can therefore be computed using standard  methods. Provided 
the chemical potential is small the Taylor expansion method allows the n ^  0 
region of the phase diagram to be probed.

1.1 Stochastic quantization

The stochastic quantization method provides an alternative way of defin
ing quantum  expectation values compared to the canonical or path  integral 
methods. The method begins by first observing the im portant analogies 
between Euclidean quantum  field theory and classical statistical mechanics, 
specifically th a t the measure of a quantum  path  integral is closely related 

to the Boltzmann distribution for a classical statistical system. This means 
th a t the quantum  path  integral

may, with the identification of 1/h  = k T , be interpreted as a statistical 
expectation value with respect to a system in equilibrium at a tem perature

4



T.

The fundamental principle of stochastic quantization is to  consider the 

measure of the Euclidean path  integral to be the equilibrium distribution of 

a stochastic process. The task is then to  define a process which has this as 

its stationary distribution. Brownian motion provides a simple example of 

such a process th a t yields a correct distribution in the limit of large times. 

S tart by writing the equation of motion for a particle in a 3d viscous fluid 

under the influence of random noise kicks,

mvi = - a v i  +  r]i, (1.5)

with rji random noise representing interactions with other particles and a  
the coefficient of friction. The stochastic sources rji represent Gaussian noise 
with width A,

{r}i(t)r)j(t')) =  2A8(t -  t ')5ij , (rji{t)) =  0. (1.6)

The equation of motion can be solved for time t , giving

Vi(t) = e~™tvi(0) H [  e~™^t~T')rjj(r)d r. (1-7)
171 Jo

Assuming for simplicity th a t fj(0) =  0, the average kinetic energy is given 

by

^m(vi( t)vi( t))  = [  [  e_ - (2<_T_T/)(^(r)77i( r /)) drdr',
z z m  J q J q

=  (1 .8)
Z a

After large times the particle comes into therm al equilibrium with the fluid, 

so th a t all ^-dependence vanishes, and therefore should have a kinetic energy

5



equal to | kT.  This allows the width of the noise to be identified as

A =  akT .  (1-9)

This simple analysis shows th a t it is possible to derive results about bulk 

properties, such as average kinetic energy, from an analysis of the micro

scopic movements of individual particles by averaging over a suitably chosen 

stochastic source.
This idea of measuring with respect to  the stationary distribution of a 

stochastic process can be generalised to field theory, which therefore provides 
an alternative way of defining expectation values.

The procedure begins by adding an additional fictional time-like param 
eter 0, the Langevin time, to  the degrees of freedom,

0 - 0 (0 ). (1.10)

The demand is then th a t 0 evolves in Langevin time according to some
stochastic process which relaxes to  a unique stationary distribution. This
stationary distribution should be the “correct” distribution, e~5, so tha t 
averages over noise will be equivalent to averages with respect to  this weight. 
A suitable stochastic differential equation is the Langevin equation,

=  (111)

with the stochastic noise term  77 obeying the relations

(77(0 )77(0 ')) =  25(0 -  0 '), (77(0 )) =  0 , (1 .12)

i.e. 77 is Gaussian,

P(n)  ~  e - ”2/i. (1.13)

To ascertain th a t the Langevin equation does indeed generate a sequence of

6



correctly distributed configurations, it is sufficient to  show th a t the process 

is reversible. This property, also known as detailed balance, requires th a t the 

forward and reverse transition probabilities Ptr(<^ —> ft)  between two states 
4> and f t ,  are balanced with the probability of being in a particular state,

Peq(<f>),
PeMPtM ->  </>') =  -  </>)• ( 1-14)

The desired probability distribution is Peq(<f>) ~  e~s ^ \
In order to see th a t the Langevin process satisfies this, we start by dis

cretizing time d  = t i c , and expanding to lowest order in t. This gives the 
update rule

0(n + 1) =  <(>{n) -  (1-15)

The probability to  transition from state </> to another sta te  f t  after a single 
update can then be found by reversing the update rule Eq. (1.15),

Ptr{(p f t )  = N 0 exp < - i
f t -( f)  , r 8S' 2

(1.16)

From Eq. (1.16) it follows th a t

P M  -> <t>')
P M  -  <t>)

=  exp | - I  ( V  -  0 ) g  -  (0 -  < ^ )  +  0 (e )}  . (1.17)

Assuming the difference f t  — (f) is small, the action can be expanded to  lowest 
order around <f>, giving

S(4>') = s[<p + (4>’ -  f t  = S(<p) + (4>' -  f t j t  +  o(c). (1.18)

It then follows th a t



and therefore th a t in the limit of e —> 0, the ratio of transition probabilities 

is
PtM -» 0') SW-SW) ii  Of ) ,

p * W  -  <fi) ’ { ' ’
which is precisely the requirement of detailed balance in Eq. (1.14). At this 

stage it is im portant to note th a t this justification of Langevin dynamics is 
reliant upon the action being real; if this were not the case then it would 

not be possible to  interpret the equilibrium distribution e-5  as a probability. 

There exist other more formal proofs of the Langevin method involving the 
dual Fokker-Planck equation, but again they also rely on the action being 
real.

1.2 Com plex Langevin dynam ics

Although the formal proofs for the correctness of the Langevin equation 
break down when the action is complex, it is nevertheless possible to write
a complex Langevin equation. Despite the lack of a formal proof, complex
Langevin dynamics [42,43] offers the possibility of a general solution to  the 
sign problem. In this formulation the fields, denoted here collectively as 
4>, are supplemented with an additional fictional Langevin time d and the 
system evolves according to the stochastic equation,

d<)>x(d) .

In this case, the action is complex and as a result the fields are complexified 

to
<p^4)R + i(pl . (1.22)

8



The Langevin equations then read (using general complex noise)

8(f)x <£—

S(f>x (f>—

(1.23b)

(1.23a)

The strength  of the noise in the real and imaginary components of the 
Langevin equation is constrained via 7VR — N\ = 1, and the noise furtherm ore 

satisfies

<̂ x W V y  ($ ')) =  (vlWrfyit i ') ) = 28(x ~  y)8($ ~  0 '), (1.24b)

i.e., it is Gaussian. Since the complex action is only used to generate the 
drift term s but not for im portance sampling, complex Langevin dynamics 
can potentially avoid the sign problem.1

In the limit of infinite Langevin time, noise averages of observables should 
equal the standard  quantum  expectation values. W hen the action is real, for
mal proofs th a t Langevin dynamics converges to the correct distribution can 
be formulated, see for instance the justification based on detailed balance of 
Sec. 1.1 and argum ents th a t use properties of the associated Fokker-Planck 
equation [50]. If the action is complex and the Langevin dynamics extends 
into the expanded complexified space, these proofs no longer hold. Never
theless, a formal derivation of the validity of the approach can still be given, 

employing holomorphicity and the Cauchy-Riemann equations. We sketch 
here the basic notion, suppressing all indices for notational simplicity, and 

refer to C hapter 5 and Ref. [58] for details.
Associated with the Langevin process (1.23) is a (real and positive) prob

ability density P[</>R, (fil \ tf], which evolves according the Fokker-Planck equa-

1Early studies of complex Langevin dynamics can be found in, e.g., Refs. [44-49]. 
Ref. [50] contains a further guide to the literature. More recent work includes Refs. [51-60].

(1.24a)
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tion
dP\<tP, <?-,$]

with the Fokker-Planck operator

L t  =
3

d<t>K
3

R d(f>R
-  K R +

3_
3(f)1 -  K \

(1.25)

(1.26)

Stationary solutions of this Fokker-Planck equation are only known in very 

special cases [46,56,58,61]. Expectation values obtained by solving the 

stochastic process should then equal

f  D<j>KD4>1 P[<j>R, 01;
f  D<t>*D<p P[<!>*-,<p\-8\

(1.27)

However, we may also consider expectation values with respect to  a complex 
weight p[4>\d\,

(0 ) pW  j  D4> p W,0] '
(1.28)

where, using Eq. (1.21), p evolves according to a complex Fokker-Planck 
equation

3d
tt  _  ®
L ° ~  3cf>

3_ 3 S  
dcf) 3<j)

(1.29)

This equation has the desired stationary solution p[<f>] ~  exp( - S ) .
Under some assumptions and relying on holomorphicity and partial inte

gration [58], one can show th a t these expectation values are equal, and

(O)p (0) -  (O)p(0). (1.30)

If it can subsequently be shown th a t

lim ( 0 ) p^)  = (O)p(oo), p{(f>\ oo) ~  e x p (-S ) ,
v —>oo

(1.31)

the applicability of complex Langevin dynamics is dem onstrated. These ar
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guments are explained in detail in Chapter 5 where it is shown th a t indeed 

this is the case, provided a certain set of criteria are satisfied.

1.3 Thesis outline

The complexification of the fields introduces new degrees of freedom, which 

are typically unbounded and can potentially follow divergent trajectories 

which renders numerical simulations unstable. Indeed, in most cases the 
classical flow will have unstable fixed points, meaning th a t a classical solution 

would be driven out to infinity in a finite time. However, the introduction of 
the stochastic noise term  has the effect of kicking off these trajectories and 
therefore keeping the dynamics stable.

Nevertheless, in most theories, the force term  grows very quickly (often 
exponentially) in the direction of the imaginary part of the complexified 
variables. This means th a t if the field is sent out on a long trajectory by the 
classical flow, it can become difficult to do the numerical integration correctly. 
Since this problem is numerical in origin, it can be overcome by careful 
integration when the force term s become large. An algorithm for controlling 
the force term  and adapting the stepsize appropriately is explained and tested 
in detail in Chapter 2.

Following from the analysis of the adaptive stepsize algorithm, a detailed 

study of the XY model at nonzero chemical potential follows in Chapter 3. 
This model is useful as a test theory because it can be rew ritten in terms of 

dual variables which makes the action real and therefore explicitly removes 
the sign problem. By making comparisons with both the dual theory and 
also simulations at zero and imaginary chemical potential, the validity of the 

complex Langevin results are found to be correlated with the phase of the 
theory. Derived from these results, a set of tests are developed which are 

general and can be used to indicate whether the complex Langevin process 
has converged correctly.

11



Motivated by the incorrect convergence in the disordered part of the phase 
diagram, in C hapter 4 the XY model is rew ritten in term s of components, 

rather than  a spin variable. Although in principle both representations are 

equivalent, the complex Langevin processes converge differently leading to 

improved results with components.
A more serious and vexing problem with complex Langevin dynamics 

which has been observed since the early studies of the 1980s is th a t in some 

cases the complex Langevin process will converge to a stable distribution, 

but on closer inspection observables are incorrect, as was found with the 
XY model. Indeed, even in simple models of a single degree of freedom, 
where the exact result is readily available, the complex Langevin process 
can give wrong results. In Chapter 5 we cover a formal justification for the 
method and identify some points a t which the argument might fail. Prom 
these we derive a necessary condition for correct results which can be checked 
numerically.

A detailed study of the SU(3) spin model with a chemical potential follows 
in Chapter 6, where the ideas and methods developed in the proceeding 
chapters are applied. Although this model also has a reformulation w ithout 
a sign problem, at present it has not been used to  generate results with which 
to compare. Nevertheless, the checks and tests which have been developed 
for complex Langevin dynamics all consistently suggest th a t the results are 

correct.

12



Chapter 2 

Adaptive stepsize

The m ajority of this chapter is based on [57], of which I am the author. 
W here text is included for which I was not the original author, it is marked 
with a footnote.

2.1 Introduction

As has been well known since the 1980s, there are a number of problems 
associated with complex Langevin dynamics, see e.g. Refs. [44,46,47]. These 
can roughly be divided under two headings: instabilities and convergence. 
The first problem concerns the appearance of instabilities when solving the 
discretized Langevin equations numerically. Sometimes, bu t not always, this 
can be controlled by choosing a small enough stepsize. The second problem 

pertains to convergence. In some cases complex Langevin simulations appear 
to converge but not to the correct answer (see e.g. Ref. [47]). In order to 

disentangle these issues, we tackle in this chapter the first one and present 

adaptive stepsize algorithms th a t lead to a stable evolution and are not con
strained to very small stepsizes only. A discussion of the second problem is 

deferred to subsequent chapters.

The chapter is organized as follows. In Section 2.2 we introduce the
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problem, indicate why an adaptive stepsize might be necessary and outline 

the basic idea behind the algorithms, extending the ideas of Refs. [46,47]. To 

avoid notational cluttering we use a real scalar field, bu t we emphasize th a t 

the method is more generally applicable. We then present two algorithms 
implementing the basic idea, and apply them  to the three-dimensional XY 

model at finite chemical potential in Section 2.3 and the heavy dense limit 
of QCD in Section 2.4. The la tter was previously studied in [54]. We show a 

few selected results to indicate the applicability of the approach. The issue 
of convergence in the XY model is discussed in detail in Chapter 3 and in 

more generality in C hapter 5.

2.2 A daptive stepsize

Consider a real scalar field cp w ith the Langevin equation of motion

dcp SS
£  = - s i  + ri- M

Here d is the supplem entary Langevin time, —SS/S(/) is the drift term  derived 
from the action S , and 77 is Gaussian noise. The fundam ental assertion of
stochastic quantization is th a t in the infinite (Langevin) time limit, noise

averages of observables become equal to  quantum  expectation values, defined 
via the standard functional integral,

= (2.2)

where the brackets on the left denote a noise average.
If the action is complex the drift term  becomes complex and so the field 

acquires an imaginary part (even if initially real). One must therefore com-
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Figure 2.1: Example of a classical flow diagram in the XY model at nonzero 
chemical potential (/i =  2). The arrows denote the normalized drift terms 
( K R, K l ) at (0R,0 I). The dots are classical fixed points.

plexify all fields, (f) —> <fi + i(f> . The Langevin equation then becomes

d4,R =  A'r  + , ,  A'R =  - R e ^  , (2.3)
d d  8(f)

%  = K \  K '  = - \ m f
d'd ’ 8(p

<j)—

<j)—
(2.4)

Here we restrict ourselves to real noise.
The complexification changes the dynamics substantially. Suppose that 

before complexification (f) is a variable with a compact domain, e.g. —n <  

(f> <  7r. After complexification, the domain is noncompact since — cxd < 
(pl <  oc. Moreover, there will be unstable directions along which (fr] —> ±oc. 
This is best seen in classical flow diagrams, in which the drift terms are 
plotted as a function of the degrees of freedom (pR ,(f)1. In Fig. 2.1 we show 
an example of a classical flow diagram in the XY model at finite chemical 
potential (to be discussed below). More examples of classical flow diagrams
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with unstable directions can be found in Refs. [47,53,54,59]. The arrows 
denote the drift term s ( K R, K l) a t The length of the arrows is

normalized for clarity. In this case there are unstable directions a t 0R ~  

—0.7 and <pR ~  2.4. The black dots denote classical fixed points where 

the drift term s vanish. Generally speaking, the forces are larger when one 
is further away from the fixed points. In absence of the noise, one finds 
generically th a t configurations reach infinity in a finite time, since the forces 

grow exponentially for large imaginary field values.
When a Langevin trajectory makes a large excursion into imaginary di

rections, for instance by coming close to an unstable direction, sufficient care 
in the numerical integration of the Langevin equations is mandatory. In some 
cases it suffices to employ a small stepsize e, after discretizing Langevin time 
as t9 = ne. However, this does not solve instabilities in all situations. More
over, a small stepsize will result in a slow evolution, requiring many updates
to explore configuration space.

To cure both  problems, we introduce an adaptive stepsize, en, in the 
discretized Langevin equations,

<f>x(n  +  1) =  4>x(n ) +  en K R(n) +  y/^r]x (n), (2.5)

+  1) =  4>l(n) +  enK l { n ), (2.6)

where the noise satisfies

(^7x(^)) — i j]x ij^ )^ }x ' i j l  ) )  C2‘$ x x '$ n n ' • (^•'^)

The m agnitude of the stepsize is determined by controlling the distance a 
single update makes in the configuration space.

At each discrete Langevin time n, we monitor the quantity

K™ax =  m a x \Kx(n)\ = max J k r 2 {ti) +  K l 2 (n). (2.8)
X  X  v
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We then place an upper bound on the product e K max and define the stepsize 

€n as
( K max)

cn = (2.9)I f  max ' 'Ixn

Here e is the desired average stepsize (which can be controlled) and the 

expectation value of the maximum drift term  ( K max) is either precomputed, 
or computed during the therm alisation phase (with an initial guess). In this 

way, the stepsize is completely local in Langevin time and becomes smaller 

when the drift term  is large (e.g. close to an instability) and larger when it 
is safe to do so.

In the second formulation1, we keep eK max within a factor p relative to  a 
reference value /C, i.e.,

- K < ( K m^ < p K .  (2.10)
P

If this range is exceeded the stepsize is increased/reduced by the factor p. 
This is iterated several times, if necessary. Both p and /C have to be chosen 
beforehand, but this does not require fine tuning as long as clearly inadequate 
regions are avoided.

At this stage it is useful to  identify the relationship between the adaptive 
stepsize procedure described above and the introduction of a kernel. W ith a 
field dependent kernel T(x),  the Langevin equation is modified to

dx = ( T K +  T')dt + y / fdw,  (2.11)

with the noise term  dw = \fdtr\.  The extra term , F', is required in order for 
the Fokker-Planck equation to have the same fixed point as w ithout a kernel. 

The derivation follows from the definition of expectation values,

(f(x)) =  J  f { x )P (x \ t )d x .  (2.12)

2The second adaptive stepsize algorithm was developed and implemented by Sta- 
matescu
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Differentiating and Taylor expanding to first order in dt gives

Wt{f{x))  = 7t / ( x ) +  / '( * ) ( r t f  + r ' ) d t + 1-f " ( x ) T r , i d t - f ( x )  . (2.13)

Making use of the noise correlations and the definition of expectation values 

from (2.12) it follows tha t

which is the Fokker-Planck equation. Importantly, the inclusion of the extra 
kernel term T' does not alter the fixed point structure of the Fokker-Planck 
equation, which therefore still has the correct stationary solution of P  ~  e ~s .

The adaptive stepsize algorithm described above can instead be cast as a 
kernel of the form

However, the im portant difference between a correct implementation of a 
kernel and the adaptive stepsize procedure is the missing extra term  in the 

Langevin equation, T'. Note th a t older literature which discusses the use of 
reducing the stepsize to stabilize the dynamics also neglects this term.

In a field theory, the missing term  in the Langevin equation appears only 

on the site of K mayi and its nearest neighbours. This will therefore be expected 
to have an effect of the order 0 (1 / 0 ,) which will vanish in the therm odynam ic 

limit.
At this stage it is im portant to note th a t computing noise averages is 

complicated by the inclusion of an adaptive stepsize. Some configurations will 
appear more frequently after each Langevin update due to the stepsize being

J  [/'(x)(rtf +  r') + /"(x)r] P ( x ; t)dx = J  / ( * )  <)• (2.14)

After integrating by parts and rearranging term s it follows tha t

(2.15)

, ( K ^ )  1
\  ’ \K max\ j

mm (2.16)
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reduced to accommodate a large drift term . This means th a t if samples are 
taken after each timestep, the correct noise average when using an adaptive 

stepsize procedure is

(O) =  (2.17)
€n

This procedure of reweighting observables with the tim estep does not provide 

a fix for the lack of the kernel term  in the Langevin equation.
Alternatively, one can avoid the issue of oversampling regions where the 

stepsize is small, taking samples after some fixed period of Langevin time 

instead of after each Langevin update. Provided this duration of time is suf
ficiently long to eliminate correlations between samples, this m ethod should 
produce correct expectation values with respect to the configurations gener
ated by the Langevin dynamics.

In the next sections, we apply these formulations to the XY model a t 
nonzero chemical potential and QCD in the heavy dense limit respectively.

2.3 XY  m odel

We dem onstrate the first im plem entation using the three-dimensional XY 
model at finite chemical potential [30]. The action is

2

cos (0x 4*x+o
x  is=0

The theory is defined on a lattice of size =  N TN%, w ith periodic boundary 

conditions in all three directions. The chemical potential is introduced as 
an imaginary constant vector field in the tem poral direction [62] and couples 
to  the conserved Noether charge associated with the global symmetry 4>x —> 

4>x +  a. As always, the action is complex when f± ^  0 and satisfies =
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S(-»')2
The drift terms, after complexification, read

K x = ~ P Y 1  t Sin ( tx  -  <t>x+i>) cosh {<t>\ -  ^
V

+  sin (</>* -  <f>*_0) cosh (</>]. -  (plx _ 0 +  f i d ^ )  , (2.2)

K l  = ~ P ^ 2  [ cos (0* ”  sinh “  &+* ~  Vs*,o)
V

+  cos (</£ -  </£_*) sinh {<f>lx -  (plx _ 0 +  fiS^o) . (2.3)

As anticipated, they are unbounded due to the (p1 variables.
To construct the flow diagram in Fig. 2.1, we have chosen the field vari

ables a t the six sites neighbouring (px as random variables between ±7r. Note

th a t the drift terms change sign when (f>x —■K <Px +  tt, for given .t, explaining 
the symmetry in Fig. 2.1. The normalized drift term s and the classical fixed 
points ( K ^  = K lx = 0) are independent of (3.

In an attem pt to solve these Langevin equations numerically with a fixed 
stepsize, we found th a t instabilities and runaway trajectories appear so fre
quent, tha t it is practically impossible to construct a thermalized configu
ration, even when the stepsize is very small, say, e ~  10-5 . This becomes 
worse on larger volumes.3 We therefore switch to the adaptive scheme, using 
the first implementation. In Fig. 2.2 we show examples of the maximal drift 
term  K max and the adaptive stepsize en as a function of Langevin time for 
three different lattice volumes and two values of /? and /!. We observe th a t 

the maximal force fluctuates over several orders of m agnitude during the evo

2At nonzero chemical potential, it is preferable to interpret this system as a three- 
dimensional Euclidean quantum field theory at finite temperature (with coupling 0  and 
inverse temperature N r ), rather than as a three-dimensional classical spin system with 
inverse temperature 0. Models in this class can also be studied using world-line formula
tions [29,30].

3This is in sharp contrast with the relativistic Bose gas in Ref. [55], where instabilities 
were not encountered for the parameter values used there.
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lution (note the vertical logarithmic scale). Moreover, the frequency and size 

of the fluctuations increase when increasing the lattice volume. This is con

sistent with the picture developed above: on a larger volume there are more 
opportunities to be on a potentially unstable trajectory  and subject to large 

forces. The effect also gets worse at larger chemical potential. K max and en 

are inversely proportional, as expected. We note th a t although it is necessary 

to  use a tiny stepsize occasionally, the algorithm is designed such th a t the 
evolution will continue with a larger stepsize as soon as possible. As a result, 

the time average of en is close to  the input tim estep e =  0.01 in all cases.4 

We emphasize th a t after the im plem entation of this algorithm we have not 
observed any instabilities, for a wide range of param eters (0.1 < ft < 2, 
0 < / i  < 6), lattice sizes (up to 163), and long runtimes (we explored millions 
of timesteps, corresponding to Langevin times of several thousand).

To illustrate the m ethod, we introduce two related models with a real 
action: the XY model with imaginary chemical potential fi = z/q, w ith the 
action

^im ag — ft ^   ̂COS ( 0 x  ftx+P “1“ /^I^j/,o) j ( 2 - 4 )
X 71S

and the phase quenched theory, obtained by taking the absolute value of the 
complex weight, i.e. e~s —> |e-S | =  e~5pq, which yields the action

S pq = - f t  ^ 2  cos “  0*+*) cosh (A^,o) • (2.5)
X ,V

This is the anisotropic XY model, with direction-dependent coupling /?„, 

where fto = /?cosh/z and fti — ft (i = 1,2). Both models are solved using 
real Langevin dynamics. The drift term s are bounded and there are no 

instabilities.
In Fig. 2.3 we show the expectation value of the action density (S ) /Q  

in the high-/? phase, at ft =  0.55, for small values of /i2.5 The lattice sizes

4In practice, one may take en <  I always, to prevent the appearance of large timesteps.
5Recall that at zero chemical potential, the three-dimensional XY model has a contin-
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Figure 2.2: Example of the Langevin evolution of the maximal drift term 
K mRX/ /3  and the adaptive stepsize t n in the three-dimensional XY model with 
P  =  0.55 and /< =  0.25 (left) and P  =  0.1 and /i =  2 (right) on lattices of 
size 4'5 (top), 103 (middle) and 163 (bottom). The input stepsize is c =  0.01. 
Note the vertical logarithmic scale.
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are 63 and 83, showing th a t finite size effects are under control. The result 

at imaginary h appears at /  <  0, while the complex and phase quenched 

results are plotted at /  > 0. At n = 0 all results agree (within the statistical 

error). The complex and phase quenched results differ, as can be expected 

from e.g. a Taylor expansion of the observable for small /z. The results for 

imaginary and real /z appear continuous around /  = 0, which is expected

from the analyticity of the partition function in /  on a finite lattice. The

lines indicate second-order fits to the da ta  on the 63 lattice, with the results

{S)/n = -0.9433(7) -  0 .5 0 2 (4 ) / +  0 .1 9 (1 ) / ,  (2.6)

(S)pq/Q = -0 .940(2) -  0 .3 5 (2 ) /  -  0 .0 4 (3 ) / .  (2.7)

In the first case, the da ta  at real and imaginary /z are combined in the fit.
For imaginary /z we observe a cusp at /zi =  t t /N t . This is similar to 

the Roberge-Weiss transition in QCD [6, 64] and is due to the periodicity 
Hi — /zi -(- 2tt /N t .6 Note th a t the dashed lines in Fig. 2.3 reflect this sym
metry. It would therefore be interesting to determine the phase structure of 
the XY model at imaginary chemical potential and finite N T. In the three- 
dimensional thermodynamic limit (N T is taken to  infinity as well) and vanish
ing chemical potential, the magnetized and symmetric phase are separated at 
the critical coupling /5c(/z =  0). Consequently it is intriguing to analyse the 
interplay between the putative Roberge-Weiss transition and the standard 
magnetization transition in this limit, in particular since it would result in 

a breakdown of analyticity of /?c( / )  around /  =  0 and make /?c(/z =  0) a 
multicritical point.

uous phase transition at ftc{n =  0) ~  0.4542 (see e.g. Ref. [63]), separating the symmetric
phase at small ft from the symmetry broken phase at large ft.

6One way to see this is by using a field redefinition, <j>x =  <$>'x +  fijr, which moves the 
^ dependence to the boundary condition (/)'Nt x =  <f)'0 x — /UiYt , similar as in fermionic 
models. The centre symmetry is of course trivial in this model.
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Figure 2.3: Action density (S ) / f l  in the three-dimensional XY model as a 
function of / r  a t ft =  0.55 on lattices of size 63 and 83, for the full theory 
(circle, square, fi2 > 0), at imaginary \i (circle, square, (i2 < 0), and phase 
quenched (triangles, fi2 > 0). The vertical lines at /q = n / N T indicate the 
Roberge-Weiss lines at imaginary /i. The dashed lines are the second-order 
fits (2.6, 2.7), incorporating the RW reflection symmetry.

2.4 H eavy  dense lim it o f  Q C D

To show the generality of the adaptive stepsize method we now apply it to 
the heavy dense limit of QCD in four dimensions7. Here we shall present 

results obtained with the second algorithm. The stochastic quantization for 
this theory was studied in Ref. [54]. Here we briefly repeat the essential 

equations; we refer to Ref. [54] for further details.

'This section, which is the work of Stamatescu, formed a part of the original paper [57] 
and is included here for completeness.
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The gluonic part of the action is the standard Wilson SU(3) action,

Sb[U] = -p Y1 E  Q [Tr ^ u&] - J) - (2-1)
l l < V

where Ux are the plaquettes and (3 = 6/ g 2. The fermion determ inant 
(starting from Wilson fermions) is approximated as

det M  «  P  det (1 +  det (1 +  h e ^ V ^ f  , (2.2)
X

where h = (2k)Nt . Here k is the Wilson hopping param eter and N T = 1 /T  
the number of sites in the tem poral direction. The lattice spacing a =  1. 
The determ inant refers to colour space only. The (conjugate) Polyakov loops 
are

Nr - 1 0

=  n =  n u ^ , r  (2 -3)
T=0 t=Nt —1

A formal derivation of Eq. (2.2) follows by considering the heavy (k —*■ 0) and 
dense (/x —> oo) limit, keeping the product fixed (see Ref. [66] and refer
ences therein). The anti-quark contribution is kept to  preserve the symmetry 
under complex conjugation.

The Langevin process is

^x,/i Rx,n Ux.ft, Rx,n exp [xAa (tKxfia T  \Z^7a;/ia)] ) (^•‘̂ )

where Aa are the Gell-Mann matrices and the noise satisfies {r}x^a) — 0, 

{Vxnatlyvb) = ZSfjusSabSxy. The drift term  K Xixa =  ~ D xlia (S B +  S F), where 
S F = — In det M , is complex due to  the fermion contribution. For explicit 

expressions, see Ref. [54].

This Langevin process suffers from instabilities, which can be partially 
controlled using small enough stepsize. Applying the second formulation of
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Figure 2.4: Example of the Langevin evolution of the maximal drift term  
e K max (left) and the adaptive stepsize e (right) in the heavy dense limit 
of QCD with (3 = 5, k =  0.12 and // =  0.7 on a lattice of size 24, using 
JC = 2 x  i t r 4.

the adaptive stepsize algorithm completely eliminates runaways. In this setup 
measurements are performed after a Langevin time interval of length At)  (this 
defines one “iteration” ). The number of sweeps N sweep in an iteration depends 

on the Langevin tim estep e: if the la tte r is decreased by a factor p, N sweep 
is increased by the same factor, and conversely. This makes the statistical 

analysis straightforward, since each iteration has the same weight At?
( -/Vsweep. Note tha t Asweep will no longer be decreased and correspondingly e 

will no longer be increased if the former reaches 1.
To dem onstrate this approach, we show in Fig. 2.4 a characteristic evo-
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Figure 2.5: As above for |T r  U4 U4 , indicating the deviation from unitarity 
during the evolution.

lution of eA"inax (left) and the stepsize e (right), using JC = 2 x 10~4 and 
p = 2, with initial e — 1 x 10~5, N sweep = 1 6 .  The total number of iterations 
is Ariter =  3 x 10° leading to a total Langevin time ?9tot =  N xteT x A?9 =  48. 
Varying these input param eters by factors of two or more does not change 
the results but may only affect the statistics. K max is the maximum value of 
\KXfia\ over x , p  and a in the last sweep of an iteration. We observe tha t the 
product e K mHX remains bounded, as required, while the stepsize (and hence 
/ f max) fluctuate substantially. In Fig. 2.5 we show the evolution of |T r  U±U\, 
which measures the deviation from unitarity [54], acknowledging the typical 

fluctuations in stationary regime.
As mentioned above, after the implementation of this algorithm, we have 

not encountered any instability.

2.5 C onclusion

Instabilities can make complex Langevin simulations extremely problematic. 

We have shown th a t they result from large fluctuations in the m agnitude of 

the drift term  and the presence of unstable directions in complexified field
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space. This can be cured by using an adaptive time-local stepsize. The 

scheme is generic and could be applied to other theories such as QCD. While 

we have no proof th a t stable evolution is guaranteed, we have not encountered 

any instability using this method in the XY model a t finite chemical potential 

and QCD in the heavy dense limit, for a wide selection of param eter values 

and system sizes. W ith a fixed stepsize on the other hand, instabilities can 
appear so frequently th a t it is virtually impossible to  generate a thermalized 

ensemble.
This adaptive stepsize procedure can be w ritten as a kernel. However, the 

addition of a kernel requires an extra term  to be introduced into the Langevin 
equation in order to preserve the correct stationary solution. Although this 
term  was neglected, in the case of a field theory its effect vanishes in the 
thermodynamic limit, since it appears only as 0 (  1/D). However, it is less 
clear th a t in simple models of a single variable th a t the extra term  can be 
ignored. Nevertheless, empirical results suggest th a t the algorithm works 
correctly.

Runaways are due to specific instabilities of the complexified Langevin 
equations caused by the strong increase of the drift in the  non-compact imag
inary directions. We have shown th a t these runaways can be eliminated by 
using a dynamical step size, which indicates th a t they are not a question of 
principle for complex Langevin dynamics but one of numerical accuracy in 
following the trajectories. We consider this to be an im portant result of our 
analysis. Of course, for practical calculations one should consider further op
timization of the algorithms by applying methods developed for general real 

Langevin processes (see, e.g., Ref. [67]) after analysing their adequacy to the 
complex Langevin problems of interest. Note it is known th a t some cases, 

such as slave equations, lead to a distribution with a mean but no variance. 
The repulsive runaway trajectories are im portant and cannot be ignored.

We emphasize th a t the adaptive stepsize perm its a fine tracing of the drift 
trajectories. If the process picks up a diverging trajectory  the noise term  will
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typically kick the process off it. The present results suggest therefore th a t 

runaways are not due to following diverging trajectories [58] but rather due 

to  following “wrong” trajectories, i.e. trajectories which, because of accumu
lating errors in the evaluation of the drift, do not belong to the dynamics 

of the problem. This both stresses the necessity of ensuring precision in the 

calculation and helps in disentangling various sources of deficiency in the 

search for a reliable method.
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Chapter 3 

X Y  m odel

3.1 Introduction

In this chapter, we continue our investigation into the applicability of complex 
Langevin dynamics at finite chemical potential [54-58]. We consider the 
three-dimensional XY model for a number of reasons. In Chapter 2 it was 
shown th a t this theory is very sensitive to instabilities and runaways and 
therefore requires the use of an adaptive stepsize [57]. This is similar to the 
case of QCD in the heavy dense limit [54,57]. As with QCD, this theory 
has a Roberge-Weiss periodicity a t imaginary chemical potential [57,64]. 

Furthermore, as shown in Chapter 4, the XY model is closely related to the 
relativistic Bose gas at finite chemical potential, for which complex Langevin 

dynamics was shown to work very well (at weak coupling in four dimensions) 
[55,56]. Finally, this theory can be rew ritten using a world line formulation 
w ithout a sign problem [30,31], which can be solved efficiently using the 

worm algorithm [31,68]. This allows for a direct comparison for all param eter 

values.
The chapter is organized as follows. In Sec. 3.2, we remind the reader 

of some details of the XY model a t real and imaginary chemical potential, 

the adaptive stepsize algorithm we use and the related phase-quenched XY
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model. The world line formulation and some properties of the strong-coupling 

expansion are briefly mentioned in Sec. 3.3. We then test the validity of 

complex Langevin dynamics in Sec. 3.4 and develop diagnostic tests in Sec. 
3.5.

3.2 X Y  m odel

The action of the XY model a t finite chemical potential is

2

S  /3 ^   ̂ ^   ̂COS\(fix 0x+i> if-lS j/.o)?
x  u —0

where 0 <  (f)x < 2i\. The theory is defined on a lattice of size Cl = N TN%, and 
we use periodic boundary conditions. The chemical potential n  is coupled to 
the Noether charge associated with the global symmetry <j)x —»■ (j)x +  a  and 
is introduced in the standard  way [62]. The action satisfies 
At vanishing chemical potential the theory is known to undergo a phase 
transition at (3C = 0.45421 [31,63] between a disordered phase when (3 < (3C 
and an ordered phase when (3 > (3C.

The drift term s appearing in the complex Langevin equations are given

by

K x = [ sin( ^  -  ^x+o) cosh(<^ -  4>lx + 0  -  nSUt0)
I/

+  sin(</£ -  <£*_*) c o s h (^  -  +  fj,5„t0) , (3.2a)

K l  =  [ c o s ^ x  -  4>x+o) s in h ( ^  -  4>lx+ i/ -  f i 6 v ,o )
V

+  cos(0* -  </£_*) sinh(0* -  $x_v +  0) . (3.2b)

The equations are integrated numerically by discretizing Langevin time as
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$ =  nen with en the adaptive stepsize. Explicitly,

0* (n  +  1) =  t x  (n ) +  enK x(n )  +  v ^ ^ W ,  (3.3a)

4>lx(n +  1) =  0x(n ) +  en K l ( n )> (3-3b)

where we specialized to real noise, with (f]x (n)r]x>(n')) = 26xx>8nn/. In the 

case th a t /i =  01 =  0, the drift term s are bounded and \K*\ < 6(3. W hen

(j) 1 7̂  0 , the drift term s are unbounded, which can result in instabilities and

runaways. In this particular theory, much care is required to  numerically 
integrate the dynamics in a stable manner and we found th a t an adaptive 
stepsize is m andatory [57]. At each timestep, the stepsize is determined 
according to

/_  _ {K max) \
Y ,€~ K ^ r j

mm

where

K n ‘“  =  max \K x ( n ) +  i K l ( n ) I • (3-5)
X

Here e is the desired target stepsize and ( K max) is either precomputed or 
computed during the therm alisation phase. All observables are analyzed 
over equal periods of Langevin tim e to  ensure correct statistical significance, 
as discussed in Chapter 2.

The observable we focus on prim arily in this study is the action density 
{S)/Q.  After complexification the action is w ritten as S  = S R 4- i S l , w ith

S R = -@ '5 2  cos(^x -  <Px+o) cosh(0 l ~  <t>lx+o -  /^ ,o ) ,  (3.6a)

s l  = sin(0* -  0*+*) sinh(</>* -  (pl+£> -  n 8 Vt0). (3.6b)
X,U

After noise averaging, the expectation value of the im aginary part is consis

tent w ith zero while the expectation value of the real part is even in /j , as is 
expected from symmetry considerations.
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By choosing an imaginary chemical potential /z =  in i the action (3.1) 

becomes purely real. This has both  the advantage of enabling standard 

Monte Carlo algorithms to be applied (we choose to employ real Langevin 
dynamics) and th a t the behaviour at //2 >  0 can be assessed by continuation 

from fi2 0. The action and drift term  with imaginary chemical potential 
are

^im ag (3 ^   ̂C O S(0X 0x+i> “t-  /^I^i/,o)? ( 3 - 7 )
x ,v

K x  =  -  ( 3 ^ 2  [sin(0* -  <t>x+v +  +  sin (<j>x  ~  <f>x-o ~  fJ>i^.o)] • (3-8)
V

This theory is periodic under fi\ Mi + 2ir/NT, which yields a Roberge-Weiss 
transition at fii — ^ / N T, similar to QCD [64]. This periodicity can be made 
explicit by shifting the chemical potential to the final time slice, via the field 
redefinition 0XjT — ► (f)'X T  = 0X-T — /q r . The action is then (for arbitrary 
complex chemical potential)

<Sfts — (3 ^ 2  cos(0x 0£+£ i N T n & T ,N T &i/,o)- (3.9)
x,v

We have also carried out simulations with this action and confirmed the 
results obtained with the original formulation. The sole exception was the 
largest (3 value (/? =  0.7), where the original action missed the Roberge-Weiss 
transition, while the final-time-slice formulation located it w ithout problems.

The severity of the sign problem is conventionally (see e.g. Ref. [1]) es

tim ated by the expectation value of the phase factor e%tp = e~s / \e~s \ in the 

phase quenched theory, i.e. in the theory where only the real part of the 
action (3.1) is included in the Boltzmann weight. In this case, the phase 
quenched theory is the anisotropic XY model, with the action

*S*pq ^   ̂(3y C O S(0X 03;_|_£,), (3.10)
x,v
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where (3q = (5 cosh /z, and /?ij2 =  /?.

3.3 World line formulation

The advantage of the XY model is th a t it can be formulated w ithout a sign 

problem by an exact rewriting of the partition function in term s of world lines 

[30,31].1 Moreover, this dual formulation can be simulated efficiently with 
a worm algorithm [31,68], which allows us to compare the results obtained 

with complex Langevin dynamics with those from the world line approach. 
We briefly repeat some essential elements of the world line formulation and 
refer to Ref. [31] for more details. The partition function can be rewritten 
using the identity

OO
e0 ms4  _  Ik(0 )eik*, (3.1)

k=-oo

where h{P)  are the modified Bessel functions of the first kind. Using this 
replacement and integrating over the fields, the partition function is written
as

Z  =  f  D<t> e~s  =  £  n  I k̂  (j3)ek^ ^  ( £  [**,„ -  kx. ^ }  ) . (3.2)
J  [Jfe] X , v  V V J

The sum over [k] indicates a sum over all possible world line configurations. 

Since (S) =  —/ ? ^ r ,  the action can be computed from

<s> =  - / ? ( £
X , V

Ikx,v —1(/^) kXt v

L K M  P  J
> , (3.3)
w]

where the brackets denote the average over world line configurations. To 
compute this average, we have implemented the worm algorithm, following

1The world line formulation has of course a long history in lattice gauge theory, see e.g. 
Ref. [69]. Recent work includes Refs. [70-72]. For a review, see Ref. [30].
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Ref. [31]. We note here, amusingly, th a t the world line formulation has a 

sign problem at imaginary chemical potential.

Inspired by Ref. [73], we have also studied a (low-order) strong-coupling 

expansion of this model, using

At strong coupling the chemical potential cancels in most world lines, except 
when the world line wraps around the tem poral direction. At leading order in 

the strong-coupling expansion, it then appears in the combination {\(5e^)NT. 
In the therm odynam ic limit it therefore contributes only when 3efl > 1. 
Hence a simple strong-coupling estim ate for the critical coupling a t nonzero 
// is given by

pc(n) =  2e-". (3.5)

The //-independence at small (3 and fi is known as the Silver Blaze feature in 
QCD [74].

The partition function is expressed in term s of the free energy density /  
as Z =  exp(—D/) .  A strong-coupling expansion to  order (3A on a lattice with 
N t > 4 yields

}  = - \ 0 1 - f i 0 4 + O ( 0 i), (3.6)

and hence

( S ) / f t = - 5 / ? 2 - | ; / ? 4 +  0 (/?6). (3.7)

In the phase quenched theory we find

/ pq =  — j /? 2 (2 +  cosh2 //) — jrj/34 (14 +  8 cosh2 // — cosh4 //) +  (3.8)

We can now estim ate the severeness of the sign problem at strong coupling.
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The average phase factor takes the standard form,

(e^)pq =  =  exP [-ftA/], A f = f -  / pq, (3 .9)
pq

where in this case

A /  =  j/3 2 (cosh2 / i  — l)  +  (cosh2 fi -  l)  (7 — cosh2 /x) +  0(j36). (3.10)

On a finite lattice and for small chemical potential we find therefore the sign 

problem to be mild in the strong-coupling limit, since the volume factor is 

balanced by (32fi2 /A  <C 1.

3.4 Com parison

We sta rt to assess the applicability of complex Langevin dynamics for this 
model at small chemical potential. In this case we can use continuity ar
guments to compare observables at real and imaginary chemical potential. 
In Fig. 3.1 the real part of the action density is shown as a function of /x2, 
for several values of (3: from the ordered phase at large (3 to the disordered 
phase a t low (3. We observe th a t a t the highest values of (3 this observable is 
continuous across /i2 =  0, which is a good indication th a t complex Langevin 
dynamics works well in this region. The cusp a t fi\ =  t t / N t  (corresponding 
to fi2 = —0.154) reflects the Roberge-Weiss transition. At lower /?, however, 

we observe th a t the action density is no longer continuous: this is interpreted 
as a breakdown of complex Langevin dynamics. In order to verify this, Fig. 

3.1 also contains the expectation values of the action density found using the 
worm algorithm in the world line formalism for real ji. As expected, in this 

case the action density is continuous across /i2 = 0 for all values of /?, con

firming the interpretation given above. We have verified th a t the jum p in the 

action density at lower (3 is independent of the lattice volume. We have also 

verified th a t the discrepancy a t j i 2 =  0 between real Langevin dynamics and
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Figure 3.1: Real part of action density ( S ) / Q  as a function of /i2 on a lattice 
of size 82, using complex Langevin dynamics and the world line formulation 
at real fi (p2 > 0) and real Langevin dynamics at imaginary /i (p2 < 0). The 
vertical lines on the left indicate the Roberge-Weiss transitions at 0 \ =  7r/8.
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the world line result (at e.g. (3 =  0.4) is due to  the finite Langevin stepsize.

For small /?, the numerical results found w ith the worm algorithm are 

consistent w ith those derived analytically in the strong-coupling limit above. 

The expectation value of the action density is //-independent and hence the 

Roberge-Weiss periodicity is smoothly realized. Using Eq. (3.7), we also find 
quantitative agreement: in the strong-coupling expansion (S)/Q, = —0.0621+ 

0 (1 (T 4) for (3 =  0.2 and -0 .145  +  10~3) for (3 =  0.3.
As discussed above, for the param eter values and lattice sizes used here 

the sign problem is not severe: taking //2 =  0.1 and [3 = 0.2, we find th a t

0 2u2
« 0 .5 1 ,  <e‘*>pq « 0 .6 0 .  (3.1)

We take this as a first indication th a t the observed breakdown is not due to 
the presence of the sign problem, especially since complex Langevin dynamics 
has been dem onstrated to work well in other models where the sign problem 
is severe [55,56].

To probe the reliability of complex Langevin dynamics for larger values 
of //, we have computed the action density for a large number of param eter 
values in the (3 — // plane. Our findings are summarized in Fig. 3.2, where 
we show the relative difference between the action densities obtained with 
complex Langevin (cl) and in the world line formulation (wl), according to

A S  = { S h A _ _ { s U  (32)
w ) w l

Also shown in this figure is the phase transition line /?c(/x), taken from Ref. 
[31]. We observe a clear correlation between the breakdown of Langevin 

dynamics and the phase boundary: complex Langevin dynamics works fine 

well inside the ordered phase, bu t breaks down in the boundary region and 

the disordered phase. The largest deviation around // =  2 is due to the Silver 
Blaze effect: the difference between the action density found with complex
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Figure 3.2: Colour plot indicating the relative difference A S  between the 
expectation value of the action density obtained with complex Langevin dy
namics and in the world line formulation, see Eq. (3.2). Also shown is the 
phase boundary &(//) between the ordered (large (3) and disordered (small 
P)  phase [31].

Langevin dynamics and the correct //-independent action density is maximal 
just before crossing over to the other phase, where the agreement improves 
quickly.

3.5 D iagn ostics

In this section we attem pt to characterize the results presented above in terms 
of properties of complex Langevin dynamics and the distribution </>']
in the complexified field space, see Eq. (1.27). We suppress Langevin time 
dependence, since we always consider the quasi-stationary regime, i.e. the 
initial part of the evolution is discarded (we considered Langevin times up
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to d ~  2 x 104). Our aim is to argue th a t the discrepancy at small ft is 

introduced by complex Langevin dynamics rather than  by the presence of a 

chemical potential and hence not due to the sign problem.

A first test of the validity of complex Langevin dynamics is to compare 

simulations at fi = 0 using a cold start, i.e. with f t  = 0 initially, and a 
hot s ta rt in which f t  is taken from a Gaussian distribution.2 W hen fi =  0, 

a cold s ta rt corresponds to  real Langevin dynamics. In the case of a hot 

start, however, the fields lie immediately in the complexified space and so 

the dynamics is complexified. Comparison of results obtained with these two 
initial ensembles gives insight into the inner workings of complex Langevin 
dynamics. We have com puted the expectation value of the action density at 
fi = 0 using both  a hot and a cold start. We found them  to  agree a t large 
ft, despite the fact th a t the im aginary components of the field are initialised 
randomly. However, when ft <  0.5, they disagree. Moreover, the result from 
the cold s ta rt agrees w ith the one obtained in the world line formulation. 
One is therefore led to conclude th a t when fi = 0 the imaginary components 
f t  are driven to  zero (more precisely, to  a constant value) a t large ft bu t 
are not constrained at small ft. In other words, the drift term s are not 
capable of restoring the reality of the dynamics. It is tem pting to relate this 
to being in (or close to) the disordered phase. We note th a t it cannot be 
understood from the classical fixed point structure, since this is independent 
of ft. We also remark th a t the dynamics at small ft resembles Langevin 
dynamics with complex noise (N\ > 0) [58], where the trajectories are kept 
in the complexified field space by the stochastic kicks on (ft (rather than  by 

the drift terms, as is the case here).

In term s of the distribution P[(j)R, ft], these findings imply th a t P[(/)R, ft] ~  
e~s S(ft)  a t large ft, but not a t small ft. This can be further investigated by

2The real components 0 R are taken from a Gaussian distribution always.
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studying the width of the distribution in the imaginary direction,3

< ( ^ > - ( hE W )!} - ( b ?*'-}’ - <31»

When = 0 the width should vanish, while when turning on /i one may ex

pect it to  increase smoothly. The results are shown in Fig. 3.3. For the larger 

f3 values this is exactly what is observed: the width increases smoothly from 
zero. For the smaller f3 values, however, we observe tha t the width is nonzero 

even when /i = 0 (when using a hot start), and remains large for nonzero fi. 
At larger values of /i the width is driven again towards zero and agreement 
with the world line results improves, see Fig. 3.2. We remark here th a t it is 
possible th a t different distributions (with different widths) yield the same re
sult for observables. This is w hat is theoretically expected in the presence of 
complex noise (Nj > 0) [58] and can be seen analytically in Gaussian models 
with complex noise, where a continuous family of distributions P [0R, 01; Â j] 
all yield the same result for observables, independent of even though the 
width of these distributions is nonzero and increases w ith N\ [75]. In the 
case we study here, however, we find th a t the failure of complex Langevin 
dynamics in the disordered phase is correlated with the spread of the distri
bution P[(f)R,<f)1] in the noncompact direction. We conclude th a t a relatively 
narrow distribution, with a smoothly increasing width, is required. We note 
again th a t this resembles observations made in simulations of non-Gaussian 
models with complex noise [58,76].

To investigate the interplay between (the width of) the distribution and 
observables, we express expectation values as

(A[<Pr , t I]) = ^ f  i V W  P[<t>R, 4>l]A{<f>R, (3.2)

3The mean value (01) =  0; in the large f3 phase, this requires averaging over a large 
number of initial conditions.
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Figure 3.3: W idth of the distribution T[0R,0 ]] in the imaginary direction for 
various values of (3 as a function of fi1 on a 103 lattice (left) and. for larger
//. as a function of ft on a 83 lattice (right).

with
z  = I  D<t>HD<t>'P [0 Ry ] .  (3.3)

In general the operator A is not required to be holomorphic, since this will 
allow more insight in properties of the distribution.4 The distribution of an 
operator A can then be defined according to

J  D ^ D ^ P ^ , ^ } / (3.4)

where

P (A ) = ^ J  D(/>r D<j>' P[4.R,<t>'\S(A -  .4[^R,0 ']), (3.5)

with the normalization
f d A P ( A )  = l. (3.6)

Distributions P{A)  can be constructed numerically, by sampling A from con

figurations generated by complex Langevin dynamics.
The distribution for the action density is shown in Fig. 3.4, comparing

again a hot and cold s ta rt at fi = 0. This figure supports the earlier claim

1 Of course only holomorphic functions correspond to observables in the original theory.

<̂>= f  dA  4

P=0.3
P=0.4
(3=0.5
P=0.6
p=07
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Figure 3.4: Distribution of action density S /Q  for various values of [3 at n — 0 
on a 8,{ lattice, using a hot, and a cold start.

that real and complex Langevin match at larger (3 but fail at smaller (3. 
However, the reason for failure is somewhat subtle. Naively, one might expect 
a large “tail" caused by excursions in the complexified field space to affect the 
expectation value but this does not appear to happen. Instead we find tha t 
the entire distribution is shifted and becomes only slightly wider at (3 <  0.5 
when the hot start is used.

Finally, the observed difference at large and small (3 also appears promi
nently in the actual dynamics, i.e. in the drift terms. We have analyzed the 
maximal force K max appearing in the adaptive stepsize algorithm. In the case 

of real Langevin dynamics, the drift term s are limited by an upper bound 

of A"max < 6/5. In the complexified space there is no upper limit and the 
drift term s can in principle become several orders of m agnitude larger [57]. 

The distribution of K max is plotted at (i = 0 with hot and cold starts in 
Figure 3.5. In the large (3 phase, the distributions appear identical, with 
K max < Q[3' This is consistent with the conclusion reached above. However, 

one should investigate whether the relevance of the extra drift term  from a
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kernel would make a difference to this conclusion. In the low 0  phase the 

distributions are dramatically different: in the complexified dynamics, trig

gered by the hot start, much larger forces appear. The distributions are no 

longer peaked but very broad with a long tail (note the horizontal logarith

mic scale). At 0  = 0.5 we observe interesting crossover behaviour: both the 
peaked distribution bounded by K max = 60  and a decaying “tail” character
istic of small 0  distributions appear.

To study the two possible distributions of K max further, we show in 

Fig. 3.6 the same results but now w ith (i = 0.1. In this case the hot and 
cold sta rts  yield identical distributions, since both simulations are complex
ified due to  the nonzero chemical potential. The striking difference between 
the distributions at large and small 0  is still present. At large 0  the force 
can occasionally be large, making the use of an adaptive stepsize necessary. 
However, the typical value is still determined by the maximal value for real 
Langevin dynamics, i.e. 60. At small 0  this part of the distribution is com
pletely gone and is replaced by a broad distribution a t much larger K max 
values. Again at 0  = 0.5 we observe crossover behaviour with both features 
present. These results are qualitatively the same on larger volumes.

Let us summarize the findings of this section. Complex Langevin dynam
ics works well a t large 0  in the ordered phase. The distribution P[cf)R, 01] in 
the complexified field space is relatively narrow in the noncompact direction 

and Langevin simulations started  with hot and cold initial conditions agree. 
The drift term s do occasionally become large but the typical size is set by 

the maximal value for real Langevin evolution. At small 0, in or close to the 
disordered phase, the distribution is much wider in the (0 direction. Typical 

drift term s are much larger, with a wide spread in the distribution. At /i =  0 

complexified dynamics does not reduce to real dynamics. There is a strong 

correlation with the phase the theory is in (see Fig. 3.2), but not with the 
sign problem, since these observations also hold a t fi =  0 and are indepen

dent of the lattice volume. Moreover, for the lattice volumes we consider the
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sign problem is not severe. We emphasize th a t a firm conclusion can only 
be drawn after all the findings presented above are combined consistently, 

while the observation of e.g. large drift term s or a large width by itself would 

clearly be insufficient.

3.6 Conclusion

We have studied the applicability of complex Langevin dynamics to simulate 
field theories with a complex action due to  a finite chemical potential, in the 
case of the three-dimensional XY model. Using analytical continuation from 
imaginary chemical potential and comparison with the world line formulation 
we found th a t complex Langevin dynamics yields reliable results at larger (3 
but fails when (3 <  0.5 at small chemical potential. We established th a t the 
region of failure is strongly correlated with the part of the phase diagram 
which corresponds to the disordered phase. We have verified th a t these 
conclusions do not depend on the lattice volume. Failure a t small j3 values 
was also observed a long time ago in the case of SU(3) field theory in the 
presence of static charges [47].

Due to the use of an adaptive stepsize algorithm no runaways or instabil
ities have been observed. The results we found in the disordered phase are 
therefore interpreted as convergence to the wrong result. To analyze this, we 
have studied properties of the dynamics and field distributions in the com
plexified field space. For the smaller (3 values, we found th a t complexified 
dynamics does not reduce to real dynamics when fj, = 0. Furthermore, for 
the system sizes and param eter values we used, the sign problem is not se

vere. We conclude therefore th a t the failure is not due to the  presence of the 

sign problem, but rather due to  an incorrect exploration of the complexified 

field space by the Langevin evolution. The forces appearing in the stochastic 

process behave very differently at large and small (3. Interestingly, in the 
crossover region a t (3 «  0.5, the dynamics shows a combination of large and
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small (3 characteristics.
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Chapter 4 

Com ponent representation

4.1 Changing representation

Many theories have different but equivalent representations and results should 
in principle be independent of this choice. As was discussed in Chapter 3 
with the XY model, some theories can be transformed and w ritten in terms 
of new variables in such a way th a t the sign problem is removed. However, 
this relies on the existence of such dual variables and in general this is not 
the case. W hat is often possible, however, is to  transform  the degrees of 
freedom, which are typically elements of a Lie group, to those in a different 
representation.

The degrees of freedom in which the XY model was w ritten in Chapter 3 

were angular spin variables. However, there is the freedom to transform a 

polar coordinate into a rectangular coordinate by writing the spin in term s 
of components, fa = cos ip, fa  = sin </>, so th a t

f a + i f a  = e ^ .  (4.1)
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This comes with the constraint on the two variables,

01 + 02 — (4 -2)

All expressions can then be expanded and w ritten in term s of the new com

ponent variables </> 1;2 instead of the spin angle.

In this formalism, the action of the XY model is

S  — [3 ^   ̂COs((/?x 'px-\-v (4.3)
X yV

— ~  2 0a,x0q,x+i> c o s h (^ i0) ~ 2sinh(/i<5l/!o)ea)60a,x0fe,x+i>, (4.4)
X , V

with a = 1,2. Complexification is then done separately on each 0O so tha t 
the drift term s in the Langevin equation are in the direction of each of the 

components,
x e

(4.5)l x a yX  r ,
00a,x

Explicitly they read

K a,x =  - f  X  [cosh(#*^.o)(^i+i> +  4>*,z-o) +  sinh(/i4,o)£at(^6,I +i> “  v'b.x-i')]

(4.6)

< x = - ^  X  [cosh(M -,o )« I+1> + 4L,x-i,) ~ sinh(;j<5t,o)f-at(0fc|I+  ̂-  <i\x-b)]

(4.7)

The Langevin equation therefore consists of updates for bo th  the complexified 

variables

0 a ,x ( n  +  1 )  =  0a,X +  ^ a Rx +  V ^ 7 a ,x  ( 4 -8 )

0 a ,x ( n  +  1 )  =  0 i ,x  +  € ^ a ,x -  ( 4 '^ )
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The Langevin update does not preserve the constraint given by Eq. (4.2) 

and so it must be imposed to  form the complete update.

4.2 Applying the constraint

After each update, the constraint \<p\2 = (j)\ +  <pl = 1 will no longer hold. 

Therefore, the fields must be modified after each update so th a t the variables 

are put back onto the complexified circle. A rescaling procedure preserves 
the symmetry between both  components,

(4.10)
V 0 1 + 0 2

However, after complexification, the denom inator will be complex,

+  (4.11)

In order to take a square root of a complex number, one must choose a branch 
cut. The usual choice for this is the negative real axis, which shall be used 
here. The principle square root of a complex number z = rew is then given 

by
^~z = ^ e iip/2, (4.12)

with —7r < ip < 7r. In component representation, z =  x  +  iy, Eq. (4.12) is 
equivalent to

v/* = \J +  *'sign (y) (4-13)

Using this definition, the rescaling procedure to  put the spin components 
back onto the complexified circle can be specified. S tarting  with the defini

51



tions

a =  Re (<f>\ +  <f>l) =  0*2 -  0„2, (4.14)

6 =  Im (4>\ +  0^) =  2i<p*<f)la, (4.15)

r = y/a2 +  62, (4.16)

the scaling factor is

A — a /02 +  0 | — \/a  +  ib

R̂+̂ W ^ ±zvV- (417)
After complexification, the rescaling of 0a is then

R ^  ( 4 18)
a r

0i -> A l^  ~  (4.19)
a r

This procedure therefore defines a general m ethod for updating a com
ponent form of the spin variable and rescaling it back onto the complexified
circle. The rescaling prescription suffers from a problem, however. If the 

components are one of the forms

<f>\ =  4>l, <f>\ =  (4-20)
<f>l =  02? <f>\ =  <t>2i ( 4 -2 1 )

then A = 0 meaning th a t the denom inator vanishes and the rescaling proce
dure breaks down. By transforming back to  the angular representation,

0 f  =  cos p R cosh ip1, (f)\ =  -  sin p R sinh y>!, (4.22)

(f)R =  sin ipR cosh p l , 02 — cos cosh ^  (4.23)
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the configurations above where A = 0 correspond to where the im aginary 

part of the angle tpl diverges to infinity

co sh ^ 1 =  s in h ^ 1. (4.24)

This is a problem in the angular representation too, although numerical 

simulations will break down due to  the lim itations of computers for storing 
large floating point numbers. The adaptive stepsize algorithm used in the XY 

model prevents these configurations from being generated by discouraging 
updates in this direction.

Although such configurations are permissible in this formulation, they do 
not cause such numerical problems since the scaling factor A  never exactly 
vanishes, it can be small, however. This has the effect of sending the com
ponents further to  infinity in order for the constraint to  be satisfied. This 
means th a t the component representation can explore more of the configu
ration space than is possible w ith the spin representation.

4.3 R esults

Comparing results from the spin formulation with the new component rep
resentation, it can be seen in Figure 4.1 th a t although agreement w ith the 
correct result (using the world line formalism) is better than  with the spin 

formulation, unfortunately it still does not give correct results. This can be 
seen clearly when plotted as a colour map, comparing the expectation value 

for Re (S ) using complex Langevin and world line methods. The Silver Blaze 
feature is again not present with the Langevin data, resulting in the strongest 
discrepancy in this region.

Examining the histograms of certain observables can provide some insight 
into the space th a t is being explored by the simulation.
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Figure 4.1: Plot of Re (S)/Q  on 8’* lattice at (3 =  0.3.
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Figure 4.2: Colour map of relative error using component representation. 
Compare with the equivalent plot using the spin formulation.
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4.4 Vortex loops

Vortices are known to  play an im portant part in the Kosterlitz-Thouless 

phase transition of the 2d XY model. In the 3d XY model, vortices are not

volume. There is a possibility th a t different representations of the XY model, 
in spin or component form, will give rise to different vortex behaviors.

A vortex is loosely defined to  be the winding number of the angles around 

a fixed point in a field 0, which can be w ritten as

around a closed contour C. Since the field <f> is required to  be continuous, the 
integral will be an integer multiple of 27r. The winding number is therefore 
vx and is an integer. The points around which vx is positive are called 
vortices, whilst those with negative vx are called anti-vortices. A more precise 
definition, in the case of a spin field on a lattice, is

where taking [x; y\ maps the real number x  to the interval [—y/2, y/2). There
fore, the winding number vx, which is around the point x + p,/2 + i>/2 can 
be one of —1,0,1.

By considering a sum of neighbouring winding numbers, it can be seen 

th a t the shared link will cancel,

/ T  V x+fanv  ^ [0 x + /i  4*x+p,+vi T  [0x+ /i+ £ ' 0 x + / i j  27?"]̂  T  • • • • (4.27)

Therefore it follows th a t the sum over the lattice volume of vx will vanish 

and hence there are always an equal number of vortices and anti-vortices.

confined to the plane, but instead form non-trivial loops through the lattice

(4.25)

(fix+jj.: 2?r] +  <px .̂jjL̂.c,: 2tt] T

[0x+i> ^x+g+P) 27r] T  [0x+i> ^xi 2tt]) ,
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In the case of the 3d XY model, vortices form closed loops which wind 

through the volume. The procedure to trace all the loops in a given configura

tion {(f)x} begins by observing th a t the lattice volume can then be considered 

to consist of face-centred cubes, with each face of the cube (a plaquette) hav

ing a winding number. Note the relationship between the “outward” (v+) and 

“inward” (v ~) facing loops v~ = Each of the plaquettes is initially
marked as “unread” to avoid the possibility of multiple counting. Starting 

from a particular cube, labelled at site x , compute the available exit plaque

ttes, which are those plaquettes from v~01 , v ~02, v ~12, v++^ QV ^ +i)02, ^ + 0,12 
for which v = +1 and are unread. If there is only a single available exit, 
then tag this plaquette as “read” and repeat the process on the cube in tha t 
direction until the loop arrives back at the original site. If there is more than 
one available exit then there is an ambiguity and the tracing procedure must 
make a choice of how to deal with these situations. The two most commonly 
used procedures are either to choose the exit which maximises loop length 
or to make the choice at random, which is the scheme used here. If there 
are no exits from the cube then an error has occurred since all vortex loops 
must eventually close. By moving systematically through the lattice, all the 
plaquettes will eventually be marked as “read” which signifies th a t all loops 
have been traced.

Note th a t this procedure is identical in the component formulation, since 
the angle can be computed from the components,

arctan(0I/ 0 R) if > 0

a rc ta n ^ 1/ ^ 11) +  n if 01 > 0 ,4>r <  0

arctan(0I/ 0 R) — n if 4>l < 0,4>r < 0

+7T/2 if <Pl > O,0R =  0

— 7t/2 if < 0 ,^ R =  0

undefined if <t>1 - 0,</>R =  0
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length number
4 12
6 4
8 2
10 3
12 2
14 2
18 2
32 1
58 1
74 1
148 1

1458 1

Table 4.1: Number of plaquettes in a typical configuration at f3 = 0.3, ji = 0.5 
on a 123 lattice.

which is provided by the a tan2  function in most com puter programming 
systems. Note th a t in both the spin and component representations, the 
imaginary part of the angle (f)1 is ignored in the process of computing vortex 
loops. Note th a t in the world line formalism the angles cannot be recovered, 
since they are integrated out and replaced with new degrees of freedom.

The ordered and disordered phases are expected to display different vor
tex behaviours. In an ordered phase, where neighbouring angles are closely 
aligned, there will be few plaquettes with non-zero winding numbers and 
hence there will be few vortex loops. The disordered phase is expected to 
have more vortex loops since the neighbouring spins are not closely correlated 
and therefore non-zero winding numbers are more likely.

An example configuration, generated at (3 = 0.3, // =  0.5 on a 123 lattice, 

has a single large vortex loop and several short loops, shown in Table 4.1. To 
get any meaningful information about vortex loops, it is necessary to average 

over many configurations, as with any other observable. Two quantities may 
be com puted, the average winding number (i£ i/u,)/(3 fi) and the average loop
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—  spin cold <|v|> = 0.7620 +/- 0.0006
—  spin hot <|v|> = 0.7181 +/- 0.0006
—  component cold <|v|> = 0.7627 +/- 0.0006
—  component hot <|v|> = 0.7596 +/- 0.0006

M-3, p=0,103

0.01

d  0.001

0.0001

e-05
400 800200 600

Length

Figure 4.3: Histogram of fraction of volume taken by vortices as a function 
of length at /i =  0, with hot and cold starts and both spin and component 
represent at ions.

length. However, since it is important to distinguish between a small number 
of long loops and a large number of short loops (which may have a similar 
mean length), a histogram of vortex loop length gives more information.

The distribution of the fraction of lattice volume consumed by vortices 
as a function of length is shown in Figure 4.3, computed using hot and cold 
starts with both spin and component representation. This is a useful quan
tity because it shows clearly that longer, less frequent vortex loops are just 
as important as the more frequent but shorter loops. Up to a certain point 
the contribution is L P ( L ) / Q  is flat and consistent for both hot/cold starts 
with both representations. However, the erroneous data for hot start spin 
representation decays earlier than the cold start and component representa
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tion data. This means th a t the missing vortices in the spin representation 

complex Langevin simulations come exclusively from the long vortices th a t 

wind around the volume.
The discrepancy in vortices has a direct im pact on other expectation 

values, im portantly on the value of cos(v?x — <Ac+t>)- In order for a plaquette 
to have a non-zero winding number, on at least one of the links the difference 
must be greater than 7r,

\Vx ~  Vx+v\ >  7T- (4.29)

This will be evident in a histogram of the sampled values of cos(^x — (px+o). 
P laquettes which have a non-zero winding number will have links which con
tribute towards cos Atp ~  — 1, whereas if the winding number is zero the links 
will be contributing towards cos A<p ~  +1. This discrepancy can be seen in 
Figure 4.4. In the ordered phase, a t high (3, the histograms of Re cos(A</?x) 
match, which is not unexpected considering th a t other observables also agree. 
However, it is in the disordered phase at low (3 where the discrepancy is ev
ident. The spin representation samples a much wider range of values for 
Re cos(Acpx), as can be seen from the slowly decaying tails. As as result, the 
peak at —1 is lower which indicates th a t there are fewer vortices present.

4.5 Conclusion

The failure of the complex Langevin method with the XY model occurs 

even when /i =  0 and the sign problem is absent. By using hot initial 
conditions, in which the variables are spread in the complex plane, the real 

and complex dynamics can be compared. In the ordered phase, where the 

complex Langevin results are correct, the variables are driven back to the real 
axis after thermalisation. However, in the disordered phase the dynamics fails 

to a ttrac t the variables back to the real axis. This is in contrast to the Bose 
gas, for which complex Langevin dynamics was found to give correct results 

in all parts of the phase diagram. This difference is surprising when the
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100

—  P = 0.3, spin, (cold)

—  P = 0.3, component

—  P = 0.3, spin (hot)

(i =  0 , 4’’

0.01

100

—  p = 0.7, component
—  P = 0.7, spin 

(a = 0 (hot start). 4

E
fibo

0.01

Figure 4.4: Histograms of Re cos(A(px ), comparing spin and component rep
resentation, at high and low j3 on a 4 A lattice.
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actions of the two theories are examined by rewriting the spin variables of 

the XY model in term s of components. Doing this it can be seen th a t the 

XY model is merely the limit of the Bose gas in which A —► oo and the mass 

is chosen to be m 2 =  —2d = —6. Unfortunately, it is not possible to  realise 

the XY model in this way, because of the difficulty in taking the limit in A. 
By rewriting the XY model in term s of components, which mirror the real 
and imaginary components in the Bose gas, and adding the constraint th a t 

0i +  02 =  the similarity in the actions is apparent.
The results th a t the component representation gives are closer to the 

correct results, found from the world line method, than  from using the spin 
representation, but are still not exactly correct in the low-/? phase. The 
difference between the two representations in the disordered phase can be 
seen by examining the vortices, in particular the distribution of vortices as a 
function of length. The evidence from histograms of both vortex loop length 
and the more simple measure of cos(A„(^) show th a t there are slightly too 
few vortices in the spin representation. The vortices th a t are in th a t sense 
missing are those th a t are very long and wrap around the whole volume.
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Chapter 5 

Justification and criteria for 
correctness

The contents of this chapter first appeared in [58], and then in Ref. [77] of 
which I am an author.

5.1 Introduction

The problem of convergence to  the wrong limit, where the simulation gives 

well defined but incorrect results, is not limited to  the case of the XY model 
in Chapter 3, but has been found since the early complex Langevin stud
ies of the 1980s. Incorrect convergence remains the main issue preventing 
complex Langevin dynamics being widely used for complex action problems. 

In this chapter we cover a formal justification for complex Langevin dynam

ics and identify some points at which it might fail. By studying the long 
time evolution of observables with respect to real and complex measures, we 

derive a criterion which must be satisfied in order for correct results to  be 

obtained [58,77].

The central object of interest is the expectation value of a particular
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observable, given by
in \ -  f  0{x)e-s^dx
{° } ~  f e - * * ) d x  ' ( 5 ' 1 }

where for notational simplicity we use a single real degree of freedom, x.
The action S(x)  is complex, preventing a probability interpretation of the 

measure and ruling out methods based on im portance sampling. The complex 
Langevin equation is

Y t = K * +  ^  =  K v +  V ^ Tfi- (5-2)

where the real variable is analytically continued as x —* 2 =  x  +  iy  and t is
Langevin time. The drift term s are given by

K r =  - R e  dS{x)
dx

T dS(x)  K y = - I m  — —
x- >x+i y  ^

, (5.3)
x —>x+iy

and the two noise term s 7/R, rji are independent Gaussian random numbers 
with variance 2 and normalisation N\ > 0 and ÂR — N\ = 1. A numerical 
simulation can then be implemented by integrating these equations to large 
times t —> 00.

By Ito calculus, if /  is a twice differentiable function and z(t)  is a solution 
of Eq. (5.2) then

! < / ( * ) )  =  (LJ(z)) ,  (5.4)

where L  is the operator

L = [Nr V x +  K x\ V x +  [A/jVy +  K y] V y, (b-5)

and ( / )  denotes a noise average with respect to the stochastic process.
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5.2 Formal justification

The dynamics resulting from solving the complex Langevin equation is de

scribed by a dual Fokker-Planck equation for the evolution of the probability 

density P ( x , y\ t),

J ^ (z >  *) =  LTP ( x , y - 1) ,  (5.6)

with the operator

/ /  =  V^TVrV* -  K x\ +  V„[/V,VS -  K y\, (5.7)

the formal transpose of Eq. (5.5) with respect to the bilinear pairing

( P , f )  = J  f ( x , y ) P ( x ,y ) d x d y ,  (5.8)

so tha t
(.P , L f )  =  { L T P J ) .  (5 .9)

To understand the time evolution of the real density P ( x , y \ t )  one must 
also examine the evolution of the complex density p{x\ t), determined by

§-t P(x '^) = Lo p(x;t).  (5.10)

Here, the complex Fokker-Planck operator Lg is

L l  =  V X[VX +  V*S(z)]. (5.11)

This equation has p(x\ oo) oc exp[—S(x)] as a stationary solution, which is ex
pected to be unique. Numerical studies (where feasible) of Eq. (5.10) confirm 

this to be true; in fact, convergence to this distribution seems exponentially 

fast.

Expectation values with respect to the two densities can now be defined
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a s

 ̂ I P( x ,y',t)dxdy
I ( ) ( x  +  i y ) P ( x ,  y ; t ) d x d y

(5.12)

f  0 ( x ) p ( x ;  t ) d x
(5.13)

The result that one would like to show is

( O ) p ( t )  —  ( 0 ) p ( t ) (5.14)

if the initial conditions (0)p(o) =  (^)^(o) match, which is assured provided

One expects the dependence on the initial conditions to vanish in the limit 
t —> o c  by ergodicity.

To establish a connection between the expectation values with respect 
to P  and p, one moves the time evolution from the densities to the observ
ables. Since we are only interested in functions of z  =  x  +  i y  (holomorphic 
functions), we may act with the Langevin operator

The Cauchy-Riemann equations imply that V y =  zVx and therefore the 
action of L  and L  on holomorphic functions agree. Since we only consider 
holomorphic observables here, L and L  may be used interchangeably.

We now use L  to evolve observables according to the equation

P(x ,y ;0) (5.15)

L  =  [ V Z -  ( V

(5.16)

6 6
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which is formally solved by

0 (z \  t) = exp[tL]0(z).

This requires th a t the operators L, L  and their transposes may be exponen
tiated. Although a general m athem atical answer to  this question remains 

elusive, numerical results show this to be true in all cases considered.
To examine the evolution we define the function

F ( t , r )  = J p ( X, y , t - r ) 0 ( X + ly ; r ) dxdy, (5.17)

and observe th a t F(t ,  r)  interpolates between the two expectation values:

F(t ,0 )  = (O)Pit), (5.18)

F ( t , t )  =  < O W  (5.19)

The first can be seen easily, while the second makes use of the initial condi
tions and

F ( t , t )  = J  P (x , y ,0 )  (etL0 ) (x +  iy\Q)dxdy

= j  f a ;  0) (etLoO)  (*; 0)dx = jo(X; 0) ( e ^ p )  (x ;0 )d ,

=  {OUt),  (5.20)

where it is only necessary to assume th a t integration by parts in x  does not 
produce any boundary terms.

The desired result of Eq. (5.14) follows if F ( t , r ) is independent of r .  To
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check this, we need the r  derivative to vanish,

d  f
—  F(t ,  t )  =  -  I (L t P ( x , y \ t  -  r ) )  0 ( x  +  iy \ r )dxdy

+  J  P ( x , y \ t  — t ) L O ( x  +  iy \r )dxdy.  (5-21)

Integration by parts, i f  applicable without boundary terms at infinity, then 

shows th a t the two term s cancel and therefore F ( t , r)  is independent of r , 
irrespective of N\.

This is therefore a point at which the formal argument might fail: if the 
decay of the product

P{Xj y \ t  — r ) 0 { x  + iy\T)

and its derivatives is insufficient for integration by parts w ithout boundary 
terms.

In Ref. [77] a study of the U (l) one-link model found th a t the r-derivative 
is largest at r  =  0. This motivates the superficially weaker condition

d ,
,limt—>oo ot

=  0. (5.22)
'=0

This modification to the condition is still a sufficient criterion for correctness, 
provided it holds for a sufficiently large set of suitably chosen observables. 

Taking the limit t —» oo in Eq. (5.21) causes the first contribution to  vanish 
because of the equilibrium condition, L TP ( x , y\ oo) =  0. Therefore, the 

criterion for correctness reduces to

E o = J  P(x,  y; oo)LO(x  +  iy, 0)dxdy = (LO) = 0. (5.23)

This is fairly simple to check for a given observable, but it is in fact a strong 

statem ent since it must hold for all observables. Therefore, Eq. (5.23) really 
represents an infinite tower of identities which must all be satisfied. Since 

the criterion must be satisfied for all observables, if there is at least one
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observable for which it is violated then the justification definitely breaks 

down. Hence, in practice the criteria can be checked for a small number of 
observables which still yields a necessary criterion [77].

5.3 Conclusion

Complex Langevin dynamics is a general procedure th a t can be applied where 

the sign problem prevents the use of im portance sampling. The vexing prob
lem of convergence to the wrong limit, which at present cannot be cured, 

remains the m ajor barrier preventing the method from general usage.
Although the formal proofs th a t Langevin converges correctly break down 

when the action is complex, the arguments described in this chapter set out 
a justification of the method. The conclusion is th a t, provided the vari
ous integration by parts can be done without boundary terms, expectation 
values from the complex Langevin process are correct. This is an impor
tan t result, because it shows th a t provided certain criteria are met, complex 
Langevin dynamics can be relied upon to  give correct results. The justifica
tion goes further, because it shows where to look in simulation data  to  decide 
whether the criteria have been met. By computing the consistency condition

7
(L O ) =  0 and the decay rate of histograms it is possible to  infer whether 
the boundary term s are im portant. Therefore these are self consistent checks 

and are independent of other methods.
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Chapter 6 

SU(3) spin model

6.1 Introduction

In this chapter we consider the three-dimensional SU(3) spin model a t nonzero 
density, an effective Polyakov loop model which follows from the QCD La- 
grangian in a combined strong-coupling and heavy-quark expansion and 
one of the first QCD-related models addressed with complex Langevin dy
namics [78,79]. Our reason to revisit this model is partly  due to the re
cent discussion of G attringer, who showed how a reformulation in term s of 
fluxes eliminates the sign problem [37]. Moreover, given th a t our under
standing of complex Langevin dynamics has steadily improved in the past 
years [7,51-56,80--83], we consider it worthwhile to reconsider the model and 
apply recently developed tools [80,81,83] to assess the applicability of com
plex Langevin dynamics in detail, something th a t was not undertaken in the 

classic papers [78,79].

This chapter is organized as follows. In the next section we introduce the 
SU(3) model and summarize some basic results at finite density. The complex 
Langevin equations are given in Section 6.3. Besides the standard lowest- 

order discretization, we also describe a higher-order algorithm to eliminate 
leading stepsize corrections [84]. In Section 6.4 we discuss our current under-
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standing of the applicability of complex Langevin dynamics at finite density 

and review the various ways in which the outcome of a complex Langevin 

process can be assessed, in particular when the exact result is not available. 

Section 6.5 constitutes the main part of the chapter. Here we present a variety 
of numerical results assessing the applicability of complex Langevin dynam
ics in this model, both in the disordered and the ordered phase. We also 

dem onstrate th a t the higher-order algorithm eliminates most of the stepsize 

dependence. Conclusions are drawn in Section 6.7. The higher-order algo
rithm  is discussed in some more detail in Appendix A, while Appendix B can 

be used to scrutinize the stepsize dependence and criteria for correctness.

6.2 SU(3) spin m odel

We consider the three-dimensional SU(3) spin model at nonzero chemical 
potential, with the action [78]

S  = S B + S F, (6.1)

where

3

s B = - P  EE ̂ Tr UxTr: Ux+P +  Tr f/jT r
X v —1

S F = - h ^ 2  (e^Tr Ux +  e ^ T r l / J ) . (6.3)
X

The model can be thought of as an effective dimensionally reduced version 

of QCD, where Tt Ux represents the trace of the Polyakov loop; the Ux s 

are SU(3) matrices living on a three-dimensional lattice (we use periodic 

boundary conditions). The first term  then represents the gluon contribution 
with effective coupling /?, while the second term  represents heavy quarks, with 
coupling h. Chemical potential favours quarks over anti-quarks, resulting in a 

complex action, Sp(fi) = S f {—ft*)- The fermion term  is a simplified version
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of the contribution derived in the heavy dense limit [54]. The partition 
function,

X

is even in fi due to charge conjugation invariance. Here /  denotes the free 

energy density and ft is the three-dimensional volume.

The phase structure of this theory has been studied in Refs. [78,79], using 

both complex Langevin dynamics and mean-held theory. Recently it has also 

been investigated using a reformulation of the theory which is sign-problem 
free [38]. For small h, the theory has a disordered (confined) phase for smaller 
P values, and an ordered (deconfined) phase for larger P values. The two 
phases are separated by a first-order phase transition. This is the case for 
vanishing and small chemical potential. W ith increasing chemical potential, 
the transition weakens and turns into a crossover at a critical endpoint. For 
larger h, there is a crossover only.

We will also consider two closely related models which have a real action, 
namely the model with imaginary chemical potential, /i =  z/q, and the phase- 
quenched model, obtained by discarding the imaginary part of the action, 
such th a t

In contrast to QCD, the SU(3) spin model does not have a Silver Blaze 
problem. The Silver Blaze problem [74] refers to the region in the phase 

diagram where the chemical potential is nonzero but bulk therm odynamic 
observables, such as the pressure and the density, are /i-independent. This /i- 
independence requires a precise cancellation which can be highly non-trivial 

in a numerical approach, as can be seen from studies of the eigenvalues of the 

Dirac operator [74,85]. We note here th a t complex Langevin dynamics has 
been shown to be able to solve the Silver Blaze problem, in the relativistic 

Bose gas [55,56] and in one-dimensional QCD [82]. To see th a t the Silver

(6.5)
X
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Blaze region is absent in this model, consider the density,

<”> =  =  (Ae^Tr Ux -  /le^TrC/t) . (6.6)

A nonzero density induces a difference between (Tr Ux) and (Tr Ul). On the 

other hand, in the Silver Blaze region, (n) = 0 and (Tr Ux) =  (Tr£/,J). It 

is clear from the expression above th a t it is not possible to simultaneously 
satisfy these conditions when fi ^  0, hence the Silver Blaze region is absent.1 

Similarly, the density in the phase-quenched theory,

(n)pq =  h sinh /i (Tr Ux +  Tr [/* ) pq , (6.7)

is nonzero as soon as fi > 0.
The severeness of the sign problem is conventionally estim ated via the 

expectation value of the complex phase factor eltf = e~s / \e~s \ in the phase 
quenched theory,

( e <v)pq =  4 -  =  ( 6 . 8 )
pq

The full and the phase-quenched theory differ as soon as / i  is nonzero, which 
can be seen by performing a Taylor series expansion around fi = 0. To second 
order in the free energy densities read

/ ( / i )  =  / ( 0 )  -  ( c j  +  c2h) hfi2 +  < 9 ( / i 4 ) ,  (6.9)

/ p q M  =  / ( 0 )  -  C i V 2 +  0 ( / i 4 ) ,  ( 6 . 1 0 )

1For completeness, we recall that (TrUx) and (TrLd) are both real in the full theory,
while at imaginary ii the real parts are equal and the imaginary parts are opposite. In the 
phase-quenched theory, they are real and identical. Note also that the fermion contribution 
breaks the Z(3) symmetry of the bosonic sector, hence (TVUx) and (Trt/J) are never 
strictly zero.
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with

c> =  ^ E < TrC/^ = o '  (6-n )
X

^ E (u ‘  -  u $  ^  (y» - UD  U  • <6-12)
x y

Since c2 is negative [Tr (Ux — U£) is imaginary], /  — / pq > 0, as it should be. 

Similarly, (n) < (n)pq.

6.3 D iscretized com plex Langevin dynam ics

In order to  solve the complex Langevin evolution numerically, we follow Ref.
[78] and diagonalize the SU(3) matrices in term s of the angles (ft 1(2, such th a t

Tr Ux = ei<i>lx +  ei<t>2x +  (6 13)

Tr Ul = e~i<t>lx +  e~i4>2x +  ei{<plx+<t>2x). (6.14)

We then have to  include the reduced Haar measure and consider the partition 
function

/7T
d<j)l x d4>2xe - s'«, (6.15)

where

Seff — S b +  Sp  +  Sfj, (6.16)

with

S h = ~ Y ,  In
2 I &1X ~  0 2 x  \ ■ 2 (  ^(ftlx +  (ft2x \ ■ 2 f  ^ l x  +  2 0 2asin ------   sin     sin 1

2
(6.17)

We note th a t it is also possible to implement complex Langevin dynamics 

directly for the SU(3) matrices, see e.g. Refs. [54,79].

Langevin dynamics provides a stochastic update for the angles (ftax (a =
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1,2), according to

Sz&ax = K ax +  Vax, K ax =  ~ , (6.18)
Uu d(pax

where t? denotes the Langevin time, K ax is the drift term , and the noise 

satisfies

(flax) — 0, (’naxVa'x'') ‘̂ ^aa'^xx1 ■ (6.19)

When the action and hence the drift term s are complex, the angles do 

not remain real under the Langevin evolution. We therefore write (pax = 

0a.x +  *^Lcj and consider the following complex Langevin equations, using 
real noise,

9 A  = K l  + VaX, K *  =  -R e  aScffQ t i ^ a x  a x  ,a x ,  ax

3  / I TV"I TV"I T 3 S efi
^ 4 > a x  =  K a x  1 a x  =  ~ I m

(6 .20)
4>ax-*4>a.x+iftax

d d ax ax ax d(f)c  ̂a x  » • ' r o i

(6 .21)

After complexification, we write JJ~l instead of JJl in the remainder.
To solve these equations numerically, Langevin time is discretized as d = 

en, where e is the Langevin time step. The standard algorithm discretizing 
Eq. (6.18) reads2

4>ax{n +  1) =  <f)ax(n) +  tK[(pax(n)\ +  \ferjax(n), (6.22)

where

(^?ax( '̂)) — 0, (y)ax(jl)'Tlalxl(jl )) =  ^^aa'^xx'^nn1 • (6.23)

The contribution to the drift term  from the H aar measure requires careful 

integration. For this we use the adaptive stepsize algorithm of C hapter 2 and 
Ref. [?].

It is well-known th a t Langevin dynamics has finite stepsize corrections,

'Complexification is obvious and we do not give the discretized equations explicitly.
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which are linear in e in the lowest-order discretization given above [50]. 

It is therefore necessary to  extrapolate to zero stepsize. In our previous 

work [?, 54 56,80 83], we have only considered the lowest-order algorithm. 

However, motivated by the results to  be presented below, we implemented 

a higher-order algorithm to improve the stepsize dependence. A standard  
Runge-K utta scheme, where the drift terms are improved but the noise is 
kept as above, will not remove the leading stepsize correction [86]. Instead, 

it is necessary to modify the noise term s as well. We use the algorithm pro
posed in Ref. [84] for real Langevin dynamics, which is explicit and easy to 

implement.3 It takes the following form

i>ax(n) = 4>ax(n) +  ^eK[4>ax{n)\,

1 3
i>ax(n) = (t>ax(n) +  -eK[(j)ax{n)] +  -A /ed ax(n),

<Pax(n +  1) =  (j>ax(n) +  ( i f [ ^ ax(n)] +  2K[ipax(n)]^ +  y /eaax{n). (6.24)

Here d ax(n) is a random variable taken according to

1 a/3
d aa:(n) — -C*ax(ft) -|- ^ai(^)) (6.25)

while a ax(n) and £ax(w) are independent Gaussian random  variables with 
variance 2 and vanishing mean, i.e.,

(c^aa: ( ^ ') <̂ a /x/ ( ^  ) )  =  (^ a x (^ ,)^ a /x/ ( ^  ) )  — ^ ^ aa '^ xx '^ n n ', 

((*ax{n)ta'x'(ri)) = {aax(n)) = (£ax(n)) =  0. (6.26)

In Ref. [84] it was shown analytically, for the case of a real drift term , th a t 
with this update the remaining correction is 0 ( t 2) for a system with one 

degree of freedom and 0 ( e 3jf2) for a coupled system. In Appendix A we 

discuss this algorithm in some more detail.

3For other approaches, see e.g. Refs. [87,88].
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6.4 Justification and criteria for correctness

In the case of a real action, it can be shown th a t stochastic quantization and 

Langevin dynamics is equivalent to standard path  integral quantization [50]. 
As is well-known, such a general statem ent is lacking in the case of a complex 

action [50]. Indeed, it can occur th a t under complex Langevin evolution 

expectation values converge to a wrong result [44,46,47,52,53,81,89]. It is 
therefore im portant to  be able to judge the outcome of a complex Langevin 

process using assessments which are general and can be used in a variety of 

theories, especially when there are no known results to  compare with.
The first assessment employs analyticity at small fi2: observables, which 

are even under charge conjugation, should be analytic as a function of //2 
(in a finite volume) [6,90]. Results at positive fi2 can be compared with 
those where /i2 <  0, i.e. at imaginary potential, obtained using real Langevin 
dynamics or any other standard approach. This test is limited to  small 
chemical potentials.

A more formal justification of the complexified dynamics can be found in 
Refs. [80,83]. Here we summarize th a t discussion briefly in order to arrive 
at the criteria for correctness developed in Ref. [83]. We consider expec
tation values with respect to the real and positive probability distribution 
P [0R, 01; i?], sampled by the stochastic process,

{° ) p m  =  J W ¥ p W ^ \  ' { ]

Here $ is the Langevin time. W ith the help of the Langevin equations for 

4>R and (f)1, one finds the Fokker-Planck equation for P[</>R, <pl] $],

d P [ 4 > R , ( j ) l \ d \  r T p r ± R  j A . 9 i t t  8  \  8  R 1 8  j

8 ( f ) 1
(6.28)
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We also consider expectation values with respect to a complex weight p[(p\ t?],

<«■»>

where <f) is real and p[<f>\ #] satisfies

<9p[0;$] T , , T d
00  =  L 0 p[<f>, $], L0 = -

d_ 3S 
d(f) ^  dtp

(6.30)

Note th a t the Fokker-Planck operators LT, acting on the real density P[(pR, (pl \ tf], 

and Lq , acting on the complex density p[0;?9], should be distinguished. Fur
thermore, Eq. (6.30) has a stationary solution, p[<f>] ~  exp(—S), whereas for 
Eq. (6.28) no generic stationary solution is known.

Employing th a t the only permissible observables are holomorphic and 
making use of partial integration, one can show th a t expectation values with 
respect to the two densities are equal,

(O}p(0) = (0 ) p(0). (6.31)

If subsequently one can show th a t p[<j)\ $] reaches the unique stationary so
lution ~  exp (—S') in the limit th a t d —» oo, the use of complex Langevin 
dynamics is justified [80].

The equivalence in Eq. (6.31) relies on the ability to do partial integration 

without receiving contributions from boundary terms, i.e. the distributions 
should be well localized and decay strongly. It was shown in Ref. [83] th a t 
this condition can be expressed as a set of criteria on holomorphic observables 

O, which take the form
(LO) = 0. (6.32)

Here L denotes the Langevin operator

i = ( h + K ) w  ( 6 - 3 3 )

78



which depends on holomorphic degrees of freedom (f>. Although it differs from 

L  and L0, the action of L  on holomorphic observables agrees with th a t of L. 

The expectation value in Eq. (6.32) is taken with respect to the weight P  in 
the limit th a t the Langevin process has equilibrated ($ —> oo). In principle, 

the criteria (6.32) should be satisfied for a large enough set of holomorphic 

observables [83].
Adapting this to the model at hand, L reads

We will consider only local observables and denote these as 0[(pi x , (p2x\ — Ox. 
We can then write

6.5 Results and justification

In this section we present a number of results obtained with complex Langevin 
dynamics. As mentioned earlier, our goal is not deliver a detailed study of

(6.34)

(6.35)
a

where
(6.36)

In terms of the real and imaginary parts, this yields explicitly

Re LOx = Y  (R e O f  + K * R e  O f  -  K Jaxlm  C f )  , (6.37)
aa

Ira LOx = Y  ( Im ° f  + O f  +  R«xRe C f )  , (6.38)
a

and the criteria read

(R e L O x) =  0, (Im LOx) =  0. (6.39)
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critical properties and the phase structure; rather the aim of this study is to 
assess the reliability of the complex Langevin algorithm, using the criteria 
discussed in the previous section.

A
<N

b
+

s-h-
v

0.5

0.1250.12 0.14

Figure 6.1: (Tr ( U;r -F U T ]) /2) as a function of ft at fi — 0 and h — 0.02 on 
a 103 lattice, using real Langevin dynamics.

The results we show here are obtained using a relatively small value for 
the fermion coupling, h =  0.02, so that there is a clear transition between the 
ordered and the disordered phase. We consider ft values between 0.12 and 
0.139; the critical ft value for the fermion coupling we use is around 0.1324 at 
// =  0. This is demonstrated in Fig. 6.1, where we show (Tr ( Ux +  U ~ ] ) /2) — 
(Tr U x ) as a function of ft at fi =  0 on a 103 lattice.

As a first test, we probe the transition by varying /i instead of ft. As 
mentioned above, observables which are invariant under charge conjugation 
should, in a finite volume, be analytic in f i2 [6,90]. This yields the possibility 
to compare results at positive / r  with those at negative //2, corresponding 
to imaginary potential. Since in this case the action is real, real Langevin 
dynamics can be used, which is theoretically well founded. In Fig. 6.2 we 
show (Tr ( Ux + U ~1) /2) as a function of [ i 1 for eight different ft values. We
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1.5

A
fN

b  + ' 
b
v->t-
v

0.5

0

Figure 6.2: Analyticity in //2: (Tr (Ux +  U ~ l ) /2) as a function of ( i 2 for 
various (3 values with h =  0.62 on a 103 lattice. Data at imaginary // (with 
f j2 <  0) has been obtained with real Langevin dynamics, data at real // (with 
//2 > 0) with complex Langevin dynamics.

observe smooth behaviour as ft2 is increased. This is an indication that 
complex Langevin dynamics works well. We note that this is true in both 
phases as well as in the transition region. This is in contrast to the case 
of the XY model recently studied using complex Langevin dynamics, where 
correct results were obtained in only part of the phase diagram [81].

The strength of the transition weakens as /j 2 increases and, vice versa, 
increases as //2 decreases [38,78,79]. This can be seen in Fig. 6.3, where we 
show the Langevin time evolution of (Tr (Ux +  U~x) /2) at //2 =  —0.65 and 
(3 — 0.134 (left) and /i2 = 0.1 and (3 = 0.132 (right). We observe clear first 
order behaviour at f i2 =  —0.65. while at /i2 =  0.1 the transition is much 
weaker.

Next we consider the density as a function of// in the full and the pliase- 
quenched theory. In Fig. 6.4 we show the density for chemical potentials up 
to // =  3.5, at (3 =  0.125. For this (3 value the model is in the disordered phase

p=0.128
V p=0.126 
0 P=0.124 
♦ P=0.120

-0.5 0.5
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|3=0 134, g ‘=-0.65. /i-Q.02, 10 (5=0.132. n =<> 1. h-0.02, 10

41X10 6000
Langevin tim e

4000 6000 8000 10000
Langevin tim e

Figure 6.3: Langevin time evolution of (Tr ( U x + U ~ ] ) /2) in the transition 
region, at imaginary chemical, /i2 =  —0.65 and ft =  0.134 (left) and real 
chemical potential, fi2 =  0.1 and j3 — 0.132 (right). The other parameters 
are as above.

o.fo

(3=0.125, h = 0.02 . 10
0.015

0.01

AC
V

0.005

0.5 0.4 0.8

G  G  full
A -A  phase  q uenched

0.5

Figure 6.4: Density (n)  in the full and the phase-quenched theory as a func
tion of fji at /3 =  0.125 and h =  0.02 on a 103 lattice. The inset shows a 
close-up of the small p region. The lines are the predicted linear dependence 
for small //, evaluated at // =  0.
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at smaller fi values and in the ordered phase at larger n  values. The densities 

in the full and phase-quenched theories are similar, but not equal. We recall 

tha t there is no Silver Blaze region in this model. This can be seen in the 
inset, which shows a close-up: the density in the full theory is below the one 

in the phase-quenched theory, but it is nonzero (we have verified th a t there 
are no visible finite-size effects remaining). The lines indicate the expected 
linear dependence of the densities on //, using the lowest-order Taylor series 

expansion, see Eqs. (6.9, 6.10),

(n) = 2 (ci +  c2h) h/i +  0 ( / i 3), (6.40)

where the coefficients clj2 have been defined in Eqs. (6.11, 6.12). In the
phase-quenched theory the term  with c2 is absent. We have computed the
coefficients and find

ci =  0.1446(21), c2 =  -3.534(72). (6.41)

Using these coefficients yields the straight lines in the inset of Fig. 6.4, jus
tifying the results of complex Langevin dynamics.

In Fig. 6.5 we show (Tr U) and (Tr U~l ) as a function of /j, in the full the
ory, using the same param eters as in Fig. 6.4. Recall th a t (Tr U) and (Tr U~l )
are both real and th a t one expects (Tr U) < (Tr f /—1), due to the nonzero
density. At small //, the linear dependence on fi can again be expressed in 
terms of the coefficients ci)2 and we find

(Tr U) = ci +  c2hn  +  (6-42)

( T r t / -1) = Ci — c2hfi +  0( / jl2). (6.43)

This yields the straight lines in the inset of Fig. 6.5, justifying again the re

sults of complex Langevin dynamics. In the phase-quenched theory, (Tr U)pq 
and (T rf /_1)pq are equal and slightly below (Tr (U +  U~l ) /2) in the full

83



(3=0.125, /j=0.02, 10'
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V
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H
V

0.5 0.2

0.5

0.5 2.5

Figure 6.5: (TvUx) and (Tr U~]) as a function of /r in the full theory. The 
parameters are as in Fig. 6.4. The inset shows a close-up of the small n  
region. The lines are the predicted linear dependence for small /i, evaluated 
at fi — 0.

theory (not shown).
The average phase factor, indicating the severeness of the sign problem, 

is shown in Fig. 6.6 for a typical choice of parameters. The lines indicate the 
behaviour expected at small chemical potential,

(e'p,,,, =  e -nA/, A /  =  /  -  / pq =  y  +  C V ) .  (6.44)

As in preceding studies [54 56,81,82], we have not observed a correlation 
between the severeness of the sign problem and the efficiency of the complex 
Langevin algorithm. We also note that the average phase factor behaves in 
a non-monotonic manner as a function of \ i in the transition region.

In order to assess complex Langevin dynamics in detail for larger [x val
ues, we now focus on two points in the phase diagram: ft =  0.125, fx =  I 

in the disordered phase and ft =  0.125, // =  3 in the ordered phase. To
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P=0.125, /?=0.02, phase quenched

0.8

cr 0.6 
c .
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9-<L>

V 0.4

0.2

0 3 4

Figure 6.6: Average phase factor in the phase-quenched theory (et<p)pq as a 
function of /i, for various volumes at (3 = 0.125 and h = 0.02. The lines 
indicate the expected behaviour using the leading fi2 term  at small

control the statistical error we have carried out simulations using a total 
Langevin trajectory of length 10.000 (after discarding the therm alization 
stage) in the disordered phase; in the ordered phase fluctuations are smaller 
and a Langevin trajectory of 5,000 is sufficient. Errors are determined with a 
jackknife analysis. We have used a number of stepsizes, from e =  0.001 down 
to t =  0.00005, employing both the standard lowest-order algorithm and the 

improved higher-order algorithm. The results are collected in Tables 1 and 
2 in Appendix B.

In Fig. 6.7 we show (T rU) and (Tr U~l ) as a function of the Langevin 

stepsize for /r =  1 (left) and 3 (right). Statistical fluctuations in the dis
ordered phase are larger, even though the Langevin trajectory is twice as 

long. For the lowest-order algorithm stepsize dependence is clearly visible, 
as expected. The dotted lines indicate a linear fit using the data  at the four 

smallest stepsizes. In the case of the higher-order algorithm, there appears 
to be no stepsize dependence visible; the dashed lines indicate the average

85



.24

0 23
0=0-125, p = l, A=0.02, 10

.36

035
□  lowest order 
O improved

_ A 1.745b
H  1 1A

1 1 1 1 1

------- ®-------------- ffl-----

m

_ 0=0.125, |i=3, h=0.02t 103
i . i

i ■■■■*------1

---------

m

i . i

i 
1 

i 
1 

i 
1 

i 

9 
a 

-

1 ' 1 1 i 1 1

. _b ---------------- — __fl>___ --------- ----------«

□  lowest order
m ' -

O  improved
i i

D 0.00025 0.0005
e

0.00075 0.001

Figure 6.7: Stepsize dependence of (Tr Ux) (top panes) and (Tr U~l ) (bottom  
panes) at // =  1 (left) and 3 (right) on a 103 lattice for (3 =  0.125 and h = 0.02, 
using both the standard lowest-order and the improved algorithm.
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Figure 6.8: Stepsize dependence of the real part of (LTrUx) and (L T i U ~ l ) 
a t (i =  1 (left) and 3 (right), using both the standard and the improved 
algorithm. O ther param eters as in Fig. 6.7.

of the five data  points in each case.4 Importantly, we note th a t the results 

from both algorithms are consistent in the limit e —> 0, see also Appendix B.
In order to justify these results, we have computed (LO)  (which should 

be equal to zero), where O =  T rf/, T r U ~ 1 and n. Since these observables

4Theoretically, corrections of 0 ( e 3/ 2) are expected [84].
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Figure 6.9: Histograms for R eT rf/x (left) and Im T r Ux (right) at ft = 0.125, 
h =  0.02 and // =  0,1, 3 on 83 and 123. The vertical lines denote the bound
aries in SU(3), i.e. without complexification. Note the vertical logarithmic 
scale.

are holomorphic, we drop the tilde on the L from now on. Note tha t (L n ) 
is not independent, since n is a linear combination of Tr U and Tr U~l . The 
imaginary parts of (LO) are consistent with zero. The stepsize dependence 
of the real parts is shown in Fig. 6.8 for // =  1 (left) and 3 (right). Note the 
different vertical scale: the stepsize dependence is stronger in the ordered 
phase.5 For the lowest-order algorithm there are again clear finite-stepsize 
corrections, which vanish in the limit th a t e —> 0. In the case of the higher- 
order algorithm, finite-stepsize corrections are much smaller or even absent. 

We find th a t (LO) goes to zero in the limit tha t the stepsize is taken to 
zero. This observation is a necessary requirement for the applicability of 
complex Langevin dynamics. Interestingly, larger finite-stepsize corrections 

correspond to larger deviations of (LO) from zero. It turns out tha t this 
is also seen when using real Langevin dynamics, e.g. in the phase-quenched 

theory. We conclude therefore that com putations of (LO) yield a sensitive 
test to quantify finite-stepsize errors.

As a final assessment, we discuss the extent to which the complexified field

5Larger stepsize corrections in the  ordered phase a t larger values of /x are also seen in 
the Bose gas, where the stepsize is effectively enhanced as e*‘t  [56].
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space is explored. A sufficiently localized distribution in the imaginary field 

direction is required for the formal justification to hold [80,83]. In Fig. 6.9 we 

show histograms for R eT r U (left) and Im T rf /  (right), obtained by binning 
the d a ta  sampled during the Langevin process, for three different fi values and 

two lattice volumes at ft = 0.125. For real dynamics, i.e. when the angles (f) 
are real and U E SU(3), Tr U is complex-valued, taking values in a triangular 

shape with corners at 3e2qm/3 (q =  0 ,1 ,2 ). The corresponding boundaries are 

shown in the figures as vertical dashed lines and the histograms at / j l  =  0 are 
contained within these boundaries. After complexification, (fii^ are no longer 

proper angles and the dynamics takes place in the larger group SL(3,C). 
At nonzero /i, we observe th a t the SU(3) boundaries are indeed crossed, as 
required, but th a t the distribution appears to remain localized (note the 

vertical logarithmic scale). The tails of the distributions are noisy, as they 
are visited during the Langevin process very rarely. There is very little 
volume dependence. We also note th a t the histograms at /i = 1 (in the 
disordered phase) resemble the histograms at fi = 0, while a t /i =  3 (in 
the ordered phase) they are significantly different, which is reflected in the 
larger expectation value of (Tr U). The histograms for Im T r U are symmetric 
within numerical uncertainty, since (Tr U) is real.

Finally, in Fig. 6.10 we show the histogram for <pl = For real
Langevin dynamics at f i  = 0, 4>l =  0. At finite /i, nonzero values are gen

erated by the complex drift term . We observe th a t the distribution drops 
exponentially, over many decades, before the signal becomes noisy. The 
straight dashed lines indicate P(<i>1) ~  with b =  35,45, and are meant

to guide the eye. Note th a t the exponential drop is considerably faster than 

in the U (l) model studied in Refs. [80,83], where b ~  2 and complex Langevin 
dynamics failed. This fast drop and localization of the distribution is another 
requirement for the applicability of complex Langevin dynamics.6

6An open question is what happens to expectation values of the form (Tr Uk) with k 
large. These observables contain terms of the form e~k  ̂ cos(A;</>R) and the presence of the 
rapidly oscillating cosine should be taken into consideration, see also Ref. [83].
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Figure 6.10: Histogram P (0 J), where 01 = at (3 =  0.125, h =  0.02
and p =  0 ,1,3 on 83 and 123. When p =  0, 01 =  0. The dashed straight 
lines are P{(p] ) ~  e~ĥ  I with b =  35,45. Note the vertical logarithmic scale.

6.6 E ffective one link m od el

Since it is always possible to consider each lattice site coming into equilibrium 
with a heat bath from the surrounding sites, it is sufficient that if the results 
from a complex Langevin simulations agree with the exact results for all 
complex /?, then the full model must also converge correctly. This is of 
course a stronger requirement than is strictly necessary, since not all possible 
complex /3 will be sampled by the full model. In order to better understand 
the convergence of the complex Langevin process, one can write the nearest- 
neighbour terms in the action to focus on a single site, at position x ,

TrUx ^ £ T r U l ,  + T1Ul_A + 

TrUl f ^ T r t W  + Trt/*.* (6 .45)
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This motivates a simple toy model, where the coupling f3 is replaced with 

a complex param eter which encompasses the effect of the complex neigh
bours. W riting pege11 = 6(3u, w ith u representing the interactions with the 

neighbours and is in general a complex number. Then the toy model has the 

action

S  = - P i T t U -  02T ^ U \  (6.46)

with the param eters given by

Pi = P ^ e %1 +  heM, (6.47)

P2 = Pe +  he~'1 (6.48)

Typical values for u can be computed from simulations of the full lattice 
model, where histograms show th a t even when /i /  0 the range of values 
th a t u can take remain largely within the confines of SU (3). Specifically, 
this means th a t peg <  3 and — n <  7 <  n.

As before, the elements of SU(3) can be reduced to two angles, which 
requires introducing the reduced Haar measure, so th a t the to tal action has 

again a contribution from S h =  — In / / ( 0 i, <fo),

=  sin2 ( sin2 sin2 ( ‘h + 2 h \  (g 4g)

The exact result is given by the double integral,

,  .  //■ !„ Q ( 0 i , < h)e-s ^ d ^ d 4 > 2
JJ!n

which can be com puted directly by numerical integration.

Taking the param eters in the toy model the same as in the full simulation, 
so th a t [i =  1 and h =  0.02, the complex Langevin results are found to agree 

with the exact results for all complex /?, see Figure 6.6. This satisfies the 
strongest requirement, th a t complex Langevin works for all complex /?, which

90



is therefore sufficient for correct convergence of the full model.

6.7 Summary and outlook

In this chapter we revisited the SU (3) spin model, an effective dimensionally 

reduced Polyakov loop model for QCD in the strong-coupling and heavy- 

quark limit, a t nonzero chemical potential. To handle the sign problem we 

employed complex Langevin dynamics, paying special attention to the justi
fication of the method. Using analyticity at small f i 2 (Taylor series expan
sion and smoothness in /x2), formal criteria for correctness, and localization 
of distributions in the complexified space, we arrive at the conclusion th a t 
complex Langevin dynamics is reliable in both  the ordered and the disor
dered phase, including the critical region. This should be contrasted with 
the case of the XY model, where correct results were obtained in the ordered 
phase but neither in the disordered phase nor in the transition region [81]. 
In the XY model this failure was detected by an apparent lack of analyticity 
at small /x2 and the presence of very broad, slowly decaying distributions (as 
well as by comparing to results obtained in the world line formalism [91]). 
We can therefore conclude th a t the assessments employed here can be used 
constructively to  rule out or support the applicability of complex Langevin 
dynamics.7 We emphasize th a t these tests are generally applicable and not 
specific to  the theory considered here. Besides supporting the results of com

plex Langevin dynamics, we found th a t the criteria for correctness are also 
relevant for real Langevin dynamics, as they show clear sensitivity to finite- 
stepsize effects. In order to  eliminate the leading-order stepsize dependence, 
we have successfully implemented a simple higher-order algorithm and found 

it to remove essentially all stepsize dependence in the observables.

Nevertheless, it will still be interesting to compare with results obtained in the flux 
formulation [37,38].
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Figure 6.11: Plot of Re(TrU )  using j3eir =  0.5.2 over a range of phases 
—7r < 7 < 7r, solid lines are com puted directly from the integral. The inset 
shows the agreement with the exact result to within small errors.
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A Higher-order algorithm

In this appendix, we discuss the higher-order algorithm (6.24) in some more 

detail. In Ref. [84] the algorithm is constructed by considering a single update 

step. It was also shown th a t the set (6.24) is part of a more general update 

rule. In order to complement the analysis of Ref. [84], we dem onstrate the 

algorithm here using a simple linear kernel. We emphasize th a t the analysis 
in Ref. [84] is for general nonlinear drift term. For notational simplicity, we 
use a single degree of freedom <f).

The goal is to  solve to  higher accuracy

4>n+1 — fin T  ^R"(0n) T  — 2(5wn/. (A .l)

Consider the linear kernel K  = The solution of the stochastic process,
with vanishing initial conditions, is then given by

n —1

<t>n = ( i -  ew)n“ 1_177i, (A.2)
i= 0

leading to

lim (( f ) n 4 > n )  =  ~  j p  ^  ^  =  ~  (1  +  7 ) e u J  +  ■••')» (A.3)n-> oo LJ 1 — CLO 2 J

indicating the linear stepsize dependence (we always assume ecu < 1).
Ref. [84] proposes the following update



where the coefficients a, 6, k and I are to be determined, and the noise satisfies

1 \/3
dn 2 ^ n  ̂ 6_^n, (A’b)

and

(<anCVn') — (£n£n7) — 2^nn/, (^n£n7) — i^n) — (^n) — 0- (A-6)

Note th a t
2

(c^n^n7) ~2^nn'i (®nfin7) $nn'■ (A-7)

Straightforward substitution in the case of the linear kernel gives

0n+l — 0n £CJ0n “1“ \ft1Jni (A-8)

with

a; =  a>(a +  6) ^1 — > ?)n = &n ~  {ak  +  bl)eujan. (A.9)

Noting th a t

{VnVri) =  2 ^1 -  (ak + bl)eu> +  i(afc +  bl)2{euj)2̂ j 5nn>, (A.10)

we find, see Eq. (A.3),

1 (77*774) 1 / 1  , 1 +  a +  6 -  2(afc +  6Z)
hm < ^ „ )  =  3 5 - ^  =  -   « ,  +  . . .

( A l l )
We can now determine the coefficients and take

a +  6 =  l, ak + bl = 1. (A. 12)
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The resulting expectation value is

1 (  62lj2 \
lim {(f>n(f>n) = -  I 1 ----- —  +  . . . ) ,

n—*oo u> \  0  J
(A.13)

with a remaining correction of 0 ( e 2). The two conditions above do not fully 

determine the coefficients a, 6, k, I. Ref. [84] argues th a t a further condition

ak2 +  bl2 = (A .14)

follows from minimizing the local truncation error, which is beyond the scope 

of the linear example discussed here. In the main part of the chapter, the 
coefficients are taken as

a = i  6 = !  f c = 0 ,  ( = l  ( A15)

which satisfies the constraints above.

B Tables

In this Appendix we list the results for the stepsize dependence obtained at 
j3 = 0.125 and h = 0.02 on a 103 lattice, for fi =  1 (Table 1) and fi = 3 
(Table 2). The to tal Langevin time is 10,000 for fi =  1 and 5,000 for (i =  3, 
after discarding the therm alization stage.

Every table shows the real part of the three observables (Tr Ux), (Tr U~l ) 
and (n) in the upper part, and the real part of the criteria (LTr Ux), (LTV U~l ) 
and (L n ) in the lower part, for both  the “lowest-order” and the “improved” 
algorithm. Here lowest-order algorithm refers to  the standard discretization 

(6.22), which has corrections th a t are linear in the stepsize; improved algo
rithm  refers to the higher-order algorithm (6.24) of Ref. [84]. In the case 
of the lowest-order algorithm we performed a linear extrapolation, using the 

values a t the four smallest stepsizes. Since there is very little stepsize depen
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dence left in the case of the improved algorithm, the average is shown.
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e (Tr U) ( T r t / - 1) (n)

lowest
order
algorithm

0.001
0.00075
0.0005
0.00025
0.0001
0.00005

0.2288(22)
0.2290(23)
0.2369(23)
0.2429(27)
0.2396(26)
0.2413(21)

0.3479(17)
0.3488(18)
0.3553(18)
0.3606(21)
0.3584(20)
0.3600(16)

0.00988(11)
0.00988(11)
0.01026(11)
0.01055(13)
0.01039(12)
0.01047(10)

extrapolation 0.2419(19) 0.3605(15) 0.010497(92)

improved
algorithm

0.001
0.00075
0.0005
0.00025
0.0001

0.2410(27)
0.2391(20)
0.2426(25)
0.2415(34)
0.2407(23)

0.3593(21)
0.3579(15)
0.3606(19)
0.3604(26)
0.3593(18)

0.01046(13)
0.01037(10)
0.01053(12)
0.01048(17)
0.01044(11)

average 0.2407(11) 0.35921(84) 0.010443(53)
e (LTt U) (L T rC /-1) (Ln)

lowest
order
algorithm

0.001
0.00075
0.0005
0.00025
0.0001
0.00005

0.00381(71)
0.00351(67)
0.00156(69)

-0.00029(80)
0.00094(80)
0.00056(58)

0.00644(70)
0.00528(66)
0.00270(68)
0.00027(78)
0.00109(79)
0.00068(57)

0.000159(33)
0.000152(32)
0.000065(33)

-0.000018(38)
0.000043(38)
0.000026(27)

improved
algorithm

0.001
0.00075
0.0005
0.00025
0.0001

0.00008(74)
0.00079(60)

-0.00017(74)
0.0004(12)
0.00053(69)

0.00001(72)
0.00049(59)

-0.00036(71)
0.0001(12)
0.00026(68)

-0.000014(35)
0.000022(28)

-0.000024(35)
0.000001(58)
0.000010(33)

Table 1: Stepsize dependence for /i =  1 (disordered phase), (5 = 0.125 and 
h =  0.02 on a lattice of size 103.
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e (Tr U) (T rf /-1 ) (n)

lowest
order
algorithm

0.001
0.00075
0.0005
0.00025
0.0001
0.00005

1.69646(39)
1.69872(35)
1.70165(40)
1.70475(46)
1.70442(36)
1.70586(42)

1.73658(35)
1.73883(31)
1.74158(35)
1.74450(41)
1.74427(32)
1.74561(37)

0.67976(16)
0.68066(14)
0.68184(16)
0.68308(18)
0.68295(15)
0.68352(17)

extrapolation 1.70615(27) 1.74590(24) 0.68364(11)

improved
algorithm

0.001
0.00075
0.0005
0.00025
0.0001

1.70605(40)
1.70514(27)
1.70629(43)
1.70597(29)
1.70596(39)

1.74571(36)
1.74486(24)
1.74598(38)
1.74571(26)
1.74576(35)

0.68360(16)
0.68324(11)
0.68370(17)
0.68357(12)
0.68356(16)

average 1.70576(15) 1.74549(13) 0.683485(60)
e (LT t U) (L T r f / -1) (L n)

lowest
order
algorithm

0.001
0.00075
0.0005
0.00025
0.0001
0.00005

0.0480(10)
0.03198(86)
0.01944(98)
0.0084(14)
0.0055(11)
0.0020(12)

0.05258(97)
0.03488(85)
0.02119(96)
0.0092(13)
0.0058(10)
0.0021(12)

0.01922(40)
0.01281(34)
0.00779(39)
0.00335(55)
0.00219(42)
0.00081(50)

improved
algorithm

0.001
0.00075
0.0005
0.00025
0.0001

0.0070(11)
0.00624(88)
0.0044(12)
0.00285(67)
0.0020(10)

0.0056(11)
0.00443(85)
0.0026(12)
0.00100(65)
0.0001(10)

0.00189(43)
0.00169(35)
0.00096(48)
0.00040(27)
0.00006(42)

Table 2: As in Table 1, for fi = 3 (ordered phase).
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Chapter 7

Conclusion

7.1 Problem s w ith com plex Langevin dynam 
ics

The main problems with complex Langevin dynamics have long been known 
to be the issue of runaway solutions in numerical simulations and the more 
serious problem of convergence to the wrong limit. Of these, the first prob
lem, of runaways, can be cured with an adaptive stepsize. The algorithm 
for the im plem entation of such a scheme has been outlined in this document 
and has been shown to be sufficiently robust to prevent runaways in all mod
els examined thus far and, crucially, the simulations do not get stuck. The 
algorithm is also general to non-abelian groups, so th a t the same adaptive 
stepsize algorithm can be employed in, for instance, both U( 1) and SU(S)  

models with no loss of generality. The adaptive stepsize algorithm can also, 
with little modification, be applied to the improved integration algorithm 

described in this work.

The adaptive stepsize algorithm can be recast as the introduction of a ker

nel. However, in order for the associated Fokker-Planck equation to have the 
same equilibrium solution, an extra term  must be included into the Langevin
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equation. In a field theory, this extra term  is only relevant to a single site and 

its neighbours, therefore its effect is suppressed by the inverse of the lattice 

volume. However, it is less clear th a t neglecting the term  in simple models 
of a single degree of freedom is correct. Nevertheless, empirical studies, such 

as the SU(3) toy model considered in Chapter 6, produce correct results.

Convergence to  the wrong limit remains a more vexing problem. The XY 
model exhibits this behaviour in a peculiar manner: the complex Langevin 

results are correct in the region of large ft, which corresponds to the part of 

the phase diagram where the nearest neighbour spins are correlated (the or
dered phase). As the coupling ft is reduced, the complex Langevin simulation 
converges to an incorrect distribution and gives wrong results. Importantly, 
it is the part of the phase diagram  which dictates whether correct results are 
produced or not, rather than  the severity of the sign problem. This implies 
tha t it is a property of the disordered phase, and therefore the physics, of 
the XY model which is causing the simulation to  give incorrect results. This 
is distinct from other approaches at finite density.

An im portant test for convergence is to identify whether the simulation 
is a ttracted  to the real axis when ji = 0. Although in this there is no sign 
problem, by comparing two simulations in which the initial conditions are 
either on the real axis or spread in the complex plane, it is possible to identify 
whether the complex Langevin dynamics is restoring to the real axis. If the 

simulation which starts in the complex plane does not restore to the real axis 
then it is clear th a t the complex simulation is converging incorrectly and will 

give wrong results. W ith the XY model in the disordered phase, if even a 

single angle has initially an imaginary part, the simulation does not converge 
to  the real axis at // =  0. Instead, the therm alised distribution is very wide in 

the imaginary direction with slowly decaying tails. The formal justification 

of complex Langevin dynamics show th a t this is indicative of non-vanishing 

boundary term s and therefore incorrect convergence. However, the SU(3) 
spin model converged back to  the real axis a t n  = 0 in both phases and did
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not display any slow decay in histograms.

7.2 Success w ith  com plex Langevin dynam ics

The evidence from numerical studies shows th a t the failure of complex Langevin 
dynamics is independent of the strength of the sign problem, which means 

th a t the problem must have a different origin [77]. This work considers 

two models: the XY model, which suffers from incorrect convergence, and 
the SU(3) spin model, for which complex Langevin dynamics works w ith

out problem. Prom these studies, we have developed a set of tests which a 
correctly converging complex Langevin process must satisfy and have shown 
th a t the origin of incorrect convergence enters from distributions which are 
wide in the imaginary direction.

W hen the chemical potential is small, methods other than  complex Langevin 
can be applied so th a t the issue of incorrect convergence can be tested against 
reliable results in this region. The two main methods which can be used here 
are imaginary chemical potential and Taylor series expansion.

In order for the complex Langevin process to converge correctly for all 
//, it is necessary for the process to  converge correctly in the special case 
of (i = 0. Note th a t in this case the action is real, meaning th a t complex 
Langevin is strictly speaking not required. However, by starting w ith an 
initial configuration which is in the complexified space, the dynamics will 
nevertheless be complex. Since there is no chemical potential, the complex 

Langevin process must relax to  the real axis and same distribution as the 
real Langevin process. Unless the hot s ta rt process converges correctly when 
\i =  0, it will definitely not converge correctly when n  ^  0 and the action is 

complex. Indeed, in the case of the XY model, the hot and cold s tarts  do 

not match, meaning th a t the complex Langevin process does not converge to  

the correct distribution.

Ideally, one would like to know whether a complex Langevin simulation
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of a full lattice field theory will converge to the correct distribution and give 

trustw orthy results. Since for theories of interest the correct results will not 

yet be known, one would ideally like a quantitative test to  ascertain the va

lidity of the results of the complex Langevin simulation. Simple toy models, 

in which the nearest neighbours of the full theory are w ritten as arbitrary  

complex param eters, can be used for such a test. Since these models will 

generally be zero-dimensional, the correct results can be calculated directly. 
By scanning over a wide grid of complex param eters and comparing with 
the exact results, it is possible to  see whether complex Langevin dynamics 

converge correctly. Indeed, correct convergence for all complex param eters 
guarantees th a t the full theory will also converge correctly. One can see this 
by considering each site coming into equilibrium with a heat bath  th a t rep

resents its neighbours. However, this is perhaps too strong a requirement, 
since it is possible th a t some complex param eters, which are actually combi
nations of the nearest neighbour interactions, will not occur in the full theory 
because of the physics of the theory.

One of the major problems with the complex Langevin method is th a t 
the formal proofs which show real Langevin dynamics converges to the cor
rect distribution cannot be applied when the action is complex. However, as 
outlined in C hapter 5, the method can be justified by comparing the evolu
tion of a complex density which represents the original problem and a real 
and positive density which represents the complex Langevin process. The 
argument shows th a t provided the decay of the real density is sufficiently 
fast to  allow a partial integration w ithout boundary term s, then the complex 

Langevin process is justified, meaning th a t i t ’s results are correct.
The formal justification also provides a direct test for correct convergence. 

Prom the requirement th a t the boundary term s on the integration by parts 
vanish, it follows th a t a set of identities also vanish. These can be checked 

numerically in a complex Langevin simulation. This means th a t when the 
complex Langevin simulation goes wrong, the symptoms can be identified.
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This means th a t when the simulation produces wrong results, the tests and 

criteria thus developed can be used to identify when this occurs.

Although the probability distribution cannot generally be computed di

rectly from the Fokker-Planck equations, it is possible to compute a his

togram  of the configurations generated by the complex Langevin process. 
By analysis the decay of this, one can infer whether the criteria for the jus

tification are satisfied.

In conclusion, the complex Langevin m ethod offers great hope for simu
lating theories with a complex action and a severe sign problem. Although 

the problem of incorrect convergence as yet does not have a cure, the tests 
and criteria for correctness discussed in this document provide the basis for 
a self consistent mechanism for validating results from complex Langevin 
dynamics. Furthermore, the insights which have been discussed in this doc
ument show th a t there is still much to be learnt about complex Langevin 
dynamics.
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