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Abstract

The steel industry has been encouraged to develop high strength and good formability 

strip steels in order to address the needs of the automotive sector and address the 

competition from lightweight materials such as aluminium alloys. In order to meet 

these stringent requirements, high strength interstitial free steels have been developed. 

High strength interstitial free steels are characterised by high elongation values, high 

r-value, low yield strength and tensile strength higher than the conventional interstitial 

free steel. This study has focussed on two different grades of experimental high 

strength interstitial free steels.

The literature review provides the details of the processing route applied to obtain 

appropriate mechanical properties on high strength IF strip steels and the investigation 

of these properties for each microalloying element and also the various types of 

precipitates forming, including carbides, nitrides, carbonitrides and sulphides, which 

could be present in High Strength IF steels relevant to the present study.

In recent years, thermomechanical processing of strip steels has become the preferred 

processing route to produce high quality strip steel products and satisfy the 

requirements of the automotive industry. Experimental simulation is one way of 

obtaining an optimum processing route for subsequent application during 

thermomechanical heat treatment. In this part of the study, two experimental grades of 

high strength IF steels were studied a titanium stabilised and a titanium-vanadium 

stabilised grade, which were subjected to thermomechanical simulation via the 

Gleeble 3500 machine. Following Gleeble testing,-a microstructure examination has 

been performed, coupled with hardness testing, grain size evolution, as well as with 

MT-Data thermodynamic calculations of precipitate formation.

This study identified the critical parameters for processing titanium and titanium- 

vanadium alloyed experimental HS-IF steels grades. These included, the identification 

of the effect the reheating, roughing, coiling and finishing temperatures. The 

recommendation of the optimised processing route is offered as part of this thesis.



Chapter 1

Introduction

Steel is one of the material which has been known from antiquity [1]. In China, steel was 

reported during the Han dynasty (202BC-220AD), produced by melting wrought iron 

together with cast iron and gaining an ultimate product with an intermediate carbon 

content, which was identified as “steel”. Chinese had also developed methods for the 

production of creating wootz steel along with their original methods of forging steel, an 

idea imported from India to China during the 5th century AD [2]. In the 11th century, the 

production of steel using two techniques has taken place with evidence during the Song 

dynasty in China, and these two techniques reported to be the a precursors to the modem 

Bessemer process. The first techinique is reported to use partial decarburisation by 

repeated forging under a cold mount and the second technique is similar to the 

“berganesque” method that produces inferior, inhomogeneous steel [3].

In order to make steel, first we must make iron. Unlike other noble metals such as silver 

and gold, iron is never found as a pure element in the earth’s crust but exists normally as 

an oxide. Originally, iron is extracted from iron ores and following the removal of 

oxygen, it is then combined with a preferred chemical partner such as carbon. This 

process is acknowledged as “smelting”, this process was the first theoretical method 

applied to metals with lower melting points [4]. Different metals have a variety of 

melting points. For example; copper melts at 1082°C. However, these temperatures can 

be reached with established methods that have been used for more than 6000 years from 

the Bronze Age [4]. Compared to copper, the melting point of iron is quite high, therefore 

smelting results in a ferrous alloy that contains mainly iron and called steel [3]. Although,
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the composition of steel varies significantly, the combination of iron and carbon is 

responsible for the existence of a number of different crystal structures with very 

different properties. This allotropic transformation of steel is the reason that steel still has 

a large potential for research and development nowadays. Steel is widely used in many 

different fields, such as construction, aerospace, automotive or even used to produce 

some small products like spoons and forks. Many different grades of steel have been 

researched and produced to fulfill the requirements of different engineering fields.

Since thin sheet steel was first developed by the American Rolling Company at Ohio 

(ARMCO) in 1923, it was soon adopted by the automotive industry to replace the 

wooden frames as a material of building self-support car bodies [5]. There are many 

reasons that caused the replacement of wooden frames. First, is the safety, the ability of 

energy absorption of the car body made by steel is much higher. Thus, the safety of car 

body made by steel is much higher. Furthermore, steel is also easier to form into complex 

shapes. Due to the need of reducing harmful emissions coupled with the need of reducing 

consumption energy, the design of lightweight autobody vehicle has become necessary. 

To achieve this requirement, thinner sheet and highly formable steel grades have been 

developed. Today, A1 alloys are the main competitor of steels in the automotive market, 

due to their lightweight character that contributes in fuel saving, but for safety reasons 

and lower production costs steel is still the preferred material for the automotives market. 

Furthermore, it has been reported that [6 ], steel has better formability and elongation 

compared to A1 alloys as shown in Figure 1.1
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Figure 1.1- Yield strength vs total elongation of aluminum alloys and automotive steels 

[6]

Ultra low carbon (ULC) steels which are highly formable, non-ageing and suitable for hot 

dip galvanizing are firmly established to satisfy the demanding requirements of the 

automotive industry [7]. Traffic accidents are one of the severest social problems around 

the world. Thus, vehicles must not only be lightweight, but also must have improved 

safety performance. A high tensile strength, high r-value (Lankford value), good ductility 

and anti-aging property are the essential properties for a steel to be used in applications of 

deep-drawing parts of automobiles and appliances. To meet these requirements, High 

strength (HS) interstitial-free (IF) steels have been developed.

Low carbon and nitrogen contents are the main reason that interstitial free steels are 

highly formable. It is well known, that carbon can strengthen the steel but also decrease 

its ductility and formability. IF steels normally contain no more then 0.005 wt% carbon,

0.004 wt% nitrogen and 0.5 wt% of other intentional and microalloying elements, i.e. 

titanium, niobium, vanadium, sulphur and manganese. The high strength IF steel grades



contain higher amounts of manganese and/or phosphorus, boron and silicon [8 ]. The 

additional amount of microalloying elements is forming fine precipitated particles, in 

order to increase the formability and/or strength of the IF steel. High strength interstitial 

free steels are characterised with slightly lower elongation values and r-value, but have 

higher strength than conventional interstitial free grades.

The processing route and chemical composition are two major issues determining the 

properties of HS-IF steels. Precipitation of microalloying elements can affect the 

properties of HS-IF steels, such as the development of a strong {111} recrystallisation 

texture during annealing which is important in order to achieve high drawablility [9]. The 

process of removing interstitial elements with microalloying elements can promote the 

favorable {111} texture and produce highly drawable steels [9]. However, decreasing the 

interstitial atoms could cause Secondary Work Embrittlement (SWE) or Cold Work 

Embrittlement, since precipitates forming in the matrix from scavenging of the carbon 

and nitrogen atoms, control the hot band grain size which is important to the 

improvement of deep drawability [10]. The chemical composition of HS-IF steels can 

also be adjusted to meet and satisfy the different customer requirements.

Thermomechanical processing is the preferred process route in developing high quality 

steel products for automotive applications. In recent years, physical simulation is used to 

perform many thermomechanical tests. The Gleeble system is one of the most important 

tools in simulating thermomechanical processes. The Gleeble system is able to simulate 

most thermomechanical conditions, which are similar to those prevailing in the hotmill, 

including slab reheating temperature, heating and cooling rates, amount of deformation, 

strain rates, coiling temperatures, finishing temperatures and roughing temperatures. The 

Gleeble system could follow preset parameters to run a complete hot rolling simulation.

In this study, two experimental grades of HS-IF steels are studied, including a titanium 

stabilised and a titanium-vanadium stabilised grades. These have been studied using the 

Gleeble 3500 thermomechanical testing system. Both steel grades have been studied 

using carefully selected thermomechanical heat treatment cycles. Different heating

4



parameters are likely to have different effects on the obtained microstructures and 

mechanical properties. The parameters that could affect the properties include, the 

selected soaking temperature, finishing temperature and coiling temperature [11]. The 

Gleeble unit allows the designing of a suitable hot rolling processing route, in order to 

find the optimum processing route for HS-IF steel products.
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Chapter 2

Aims

1. Optimise the thermomechanical processing route for both a Ti only and a Ti-V 

HS-IF steels to take full benefit of microalloying additions.

2. Assess the potential and effect of vanadium additions on strengthening and 

formability characteristics in HS-IF steels.

3. Evaluate the effect of varying the various processing parameters during the 

thermomechanical processing of HS-IF strip steels.
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Chapter 3

3. LITERATURE REVIEW

3.1 AUTOMOTIVE STEELS

The excellent properties of steel have maintained its position as the predominant material 

for the automotive industry. This is due to strip steel’s characteristics of good formability, 

excellent elongation, high ductility, ease of welding and relatively low cost of production. 

Steels are also easier to recycle compared to plastics and other competitor materials, 

which makes its recycling environmentally friendly [6 ]. One of the main challenges of 

the automotive industry is facing in recent years is to increase fuel efficiency and reduce 

vehicle emissions by reducing the weight of vehicles. Car body is the main focus in this 

effort of reducing weight [12]. A very cost-effective method to accomplish weight 

savings is to decrease the thickness of automotive components and substitute mild steel 

by high strength steel grades.

Automotive steels can be classified into three main categories, which are conventional 

low-strength steels, conventional high strength steels (HSS) and advanced high strength 

steels (AHSS). Where interstitial free and mild steels are classified as conventional low- 

strength steels, carbon-manganese, bake hardening, high-strength interstitial free and 

HSLA steel are classified as conventional high strength steels and dual-phase, complex 

phase, transformation induced plasticity and martensitic steels are characterised as

7



advanced high strength steels (AHSS) [13]. Figure 3.1 shows this classification in 

relation to elongation and tensile strength [13].

70 

60 
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0

“ 20 
a 
° 10

o __
0 200 500 800 1100 1400 1700

Tensile Strength (MPa)

Figure 3.1: Classification of automotive steels [13].

Conventional low strength steels have yield strengths from 150-210 MPa and ultimate 

tensile strength less than 270 MPa, while conventional HSSs have yield strength from 

210-550MPa and ultimate tensile strength from 270-700 MPa; AHSSs have yield 

strength greater than 550 MPa and ultimate tensile strength greater than 700 MPa. 

Through their microstructures, HSS and AHSS can also easily be distinguished and 

classified. Conventional HSS are normally single ferritic phase steels, while AHSS are



principally multi-phase steels, which may contain the combination of ferrite, martensite, 

bainite and/or retained austenite in critical quantities in order to produce unique 

mechanical properties [14].

3.1.1 Mild Steels

Mild steels are typically ferritic in microstructure. Drawing Quality (DQ) and Aluminium 

Killed (AKDQ) steels which have widespread application and high production volume 

are two common reference grades [13].

3.1.2 Interstitial Free Steels

Interstitial free steels have the best formability characteristics in comparison to all other 

automotive steel grades. As shown in figure 3.1 IF steels exhibit the highest elongation 

values. IF steels contain very low carbon and nitrogen levels, while microalloying 

elements such as Mn, S, Ti and Nb are normally added to remove the carbon and nitrogen 

from the solution. These microalloying additions are responsible for the production of 

extra deep drawing quality IF strip steels [8 ]. EF steels have low yield strength, while the 

dent resistance of IF steels is quite low compared to other automotive grades.

3.1.3 Bake Hardening Steels

Bake hardening (BH) steels have an essentially ferritic microstructure, and primarily are 

strengthened by solid solution strengthening. During processing of BH steels, carbon in

9



composition is kept in solution, and subsequently precipitates out during the paint baking 

state [13]. This offers steel products with combination of high formability and high 

strength [15]. However, High-strength IF perform better in this aspect.

3.1.4 Carbon-Manganese Steels

Carbon-manganese strip steels were the first steel grade manufactured for the automotive 

car body, carbon-manganese steel attributes are its versatility, good formability and low 

cost [16]. These grades are primarily strengthened by solid solution strengthening.

3.1.5 High-Strength Low-Alloy (HSLA) Steels

High-strength low-alloy (HSLA) steels are principally strengthened by microalloying 

elements. Nb, V and Ti are added to form fine carbides when combined with carbon and 

fine nitrides when combined with nitrogen. This results in steels with fine-precipitates 

fine-grain size and good combination of strength and formability [17].

3.1.6 Dual-Phase (DP) Steels

Dual-phase (DP) steels have both ferrite and martensite in their microstructures. DP 

steels are produced by controlled cooling for the austenite plus ferrite (a + 7 ) stability 

field. By rapid cooling, austenite transforms to martensite. The presence of martensite 

increases hardenability of the steels. As shown in figure 3.2, the soft phase (ferrite) is 

surrounding the islands of martensite.
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Ferrite-Martensite DP

Ferrite

Martensite

Figure 3.2: Microstructure of DP steel [13].

This combination of microstructures the steel gives good ductility, and exhibits low yield 

strength but high work hardening rate (n value) [13].

3.1.7 Transformation-Induced Plasticity (TRIP) Steels

Transformation-induced plasticity (TRIP) steels have a primary ferrite matrix with a 

minimum of 5% volume fraction of retained austenite embedded in the matrix. The 

production o f TRIP steels requires the use o f isothermal hold at an intermediate 

temperature in order to produce some bainite [13]. To increase the strength o f the strip 

steel product, the retained austenite is progressively transformed to martensite. Thus,

11



TRIP steels exhibit mixed microstructure of ferrite, retained austenite, bainite and 

martensite, as shown in figure 3.3.

TRIP

—  Ferrite 
-Martensite
Bainite

Retained 
Austenite

Figure 3.3: Micro structure of TRIP steel [13].

It has been reported that [13], the TRIP steels have also good work hardening rate but 

lower than a similar strength grade of DP steel at initial stages of deformation. However, 

work hardening persists at higher strains, while work hardening of an equal strength DP 

grade begins to diminish.

3.1.8 Martensitic (MS) Steel

Martensitic steels (MS) consist of a martensitic matrix with small amounts o f ferrite and 

bainite. MS Steels are produced by rapid cooling from the austenite phase to transform 

almost completely austenite to martensite during hot-rolling or annealing [18]. MS steels

12



have the highest ultimate tensile strength levels within the family of automotive steels. 

Due to limitations on formability, MS steels are often subjected to further treatments to 

improve this property [18].

3.1.9 High Strength Interstitial Free (HS-IF) Steels

High strength interstitial free steels have an alloy content more variable in terms of 

microalloying elements than low strength IF steels do. In addition to Mn, Ti, Nb and V, 

they also consist P, B, Si. These elements may be used individually or in combination, in 

order to further strengthen and produce a range of high strength grades IF steels. Low 

strength IF steels have yield strength from 150-200MPa, while high strength IF grades 

have strength values that range from 250-300MPa [7]. High strength interstitial free 

steels are characterised with higher strength but slightly lower formability in order to 

meet the different market demands.

3.1.10 The Structure of Car Body

Figure 3.4 shows the exposed view of the ULSAB-AVC C-Class car body structure 

components and Figure 3.5 shows a pie chart of the percentage of each steel grades used 

in the ULSAB-AVC C-Class car body structure [19]. A car body structure is made by 

many different strip steel grades, each steel grade is designed to suit the specific part of 

the autobody, such as IF and HS-IF steels are designed for the complex and deep drawing 

parts and the MS grades are designed for the parts which need extra strengthening. Much 

effort has been paid recently to improve the performance of strip steels in order to meet 

the high demands of the market and the challenges from the competing materials, such as 

Al-alloys, plastic materials or even ceramic materials.
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Figure 3.4: C-Class Body Structure [19].
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3.2 Historical Development of HS-IF Steels.

Before the development of IF steels, Comstock [20] has observed that additions of 

titanium to a normal low carbon steel can promote the formation of TiC and TiN 

precipitates, when titanium has combined with carbon and nitrogen. He also noticed that 

this has made the low carbon steel become highly drawable. Due to the high price of 

titanium at that time when he made these characteristics, his observation could not be put 

into commercial practice [2 0 ].

It was in late 1960’s that Ti was first used to precipitate solute carbon and nitrogen. IF 

steels have appeared as the first commercial products [20]. Sufficient amounts of Ti have 

been added to low carbon steel and precipitate the solute elements (C, N and S) at grain 

boundary in order to achieve the term of “interstitial-free’, IF steels have then become 

one of the common steel grades in industry. In 1990’s, IF steels have widely developed 

for the automotive industry, since they exhibit the excellent press-formability i.e. stretch- 

formability, deep-drawability and uniform appearance after press-forming required for 

the auto exposure panels such as side-panel and fender [2 1 ].

Many types of high-strength steels were developed in recent years. In order to meet the 

market demands, high-strength IF steels (HS-IF) were subsequently developed and fill 

the deficiency of low strength IF steels. The production of HS-IF steel is much similar to 

the IF steels as the HS-IF steel is IF steel strengthened by adding P, Si and Mn in order to 

increase the strength of IF steel and achieve the HS-EF grades [22]. HS-IF steels are also 

located at a superb position in the yield strength-strain hardening exponent diagrams, as 

shows in figure 3.6, which means HS-IF also has excellent formability.

15



Strain hardening exponent, r>

O .30
High-strength IF

0.20

O .10

600

Figure 3.6: Comparison of IF and HS-IF steel in Yield Strength vs. Strain Hardening 

Exponent, n.

In the late o f 1980’s, HS-IF steels based on the IF steels and alloying with the solid 

solution strengthening elements have been developed, and commercialised achieving an 

increase in tensile strength from 230MPa and up to 440MPa grade in tensile strength.
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3.3 High Strength Interstitial Free Steels.

High Strength Interstitial Free Steels are basically low carbon and nitrogen steels with the 

yield strength between 250 to 300 MPa. HS-EF steels are conventionally hot rolled at the 

austenite state, followed by cold rolling and annealing at the ferrite phase [23]. Every 

processing stage strongly influences the properties of HS-IF steels, i.e. strength, ductility, 

formability and etc. HS-IF steel grades are developed based on the basic compositions of 

the IF grades. HS-IF steels are used in the automotive industry for producing the 

complicated components, which need a higher strength and good deep drawing, n-value 

and r-value.

HS-IF steels are designed to improve the safety, fuel economy and dent resistance of the 

conventional low strength IF steels without loss of formability. Mn, Si and P acted as 

solid solution hardening elements in order to achieve high strength grades. Ti and/or Nb 

are added to precipitate C, S and N and reach high deep drawability values. The 

precipitates that could form in HS-IF steel includ TiN, TiS, MnS, Ti4C2S2, TiC, NbC and 

FeTiP [24]. Previous studies [25] have indicated that, when two 60 x 60 mm square 

sections (Mild steel and HS-IF steel) were quasi-statically crushed using a servo- 

hydraulic compression machine, HS-IF was able to maintain the compact collapse modes 

at larger cross-sections, compared to the mild steel, as shown in figure 3.7. This 

demonstrates the excellent formability of HS-IF steel compared to a similar strength steel 

grade.
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Square sections 
Length: 350 mm

(a) IF ■ High strength steel (b) Mild steel

Figure 3.7: Quasi-Statically Crushed (a) HS-IF Steel (280 MPa Yield strength, 420 MPa 

Tensile Strength) and (b) Mild Steel (150 MPa yield strength, 300 MPa Tensile Strength) 

[24]

It has been reported [26] that, Phosphorus (P) is the most effective and economical solid 

solution strengthener to increase the strength of HS-IF steel without decreasing ductility 

and formability. Even though this look likes an easy and cost efficiency way to get 

outstanding properties, however, P segregates to grain boundaries could cause 

embrittlement to the steel. This could results in a catastrophic failure following forming. 

This phenomenon is called Secondary Work Embrittlement (SWE) or Cold Work 

Embrittlement [26].

To prevent this phenomenon, there are two basic methods. First, preventing or reducing 

the tendency o f P to segregate to grain boundaries by keeping the free carbon atoms in
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solution, as the solute carbon could segregate to the grain boundaries and therefore 

increase the resistance to SWE. However, the solute carbon is present before 

recrystallisation occurs and thus, the major drawback of this method is that it results in 

significant lowering of the r-value. When annealing is performed at high temperatures, 

the liberated carbon might again segregate to grain boundaries and strengthen them via 

the dissolution of Nb or Ti carbides [26] [27].

The second method is to add a small quantity of boron and causes significant 

improvement in SWE resistance. Where boron is added, it can prevent phosphorus 

segregation to grain boundaries. Therefore, boron addition has become a standard 

practice for IF steels. Boron is also one of the most effective elements to improve the 

hardenability and delay the recrystallisation of austenite. However, boron additions in IF 

steels could raise the recrystallisation temperature and decrease the r-value of steel. This 

are however secondary effects of boron additions in IF steels. The production of a B- 

added IF steels sheets with a high r-value is quite difficult [28]. Thus, increasing the 

strength, formability and resistance to SWE have been the matters of primary concern in 

IF and HS-IF steels grades.
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3.4 Microalloying Elements, Solid-Solution Hardening and 

precipitation hardening.

It is well known that, chemical composition and processing route are the main parameters 

to determine the mechanical properties and microstructure of steels, including HS-IF 

steels. Microalloying elements are either individually or combined additions into the HS- 

IF steels as the compositions of HS-IF steels. The elements that are normally added 

include Ti, Si, Mn, S, P, Nb, B and V. Precipitation of these microalloying elements with 

carbon and/or nitrogen to form carbides, nitrides or carbonitride can determine the 

microstructure and mechanical properties of steels.

The deep drawing property and high r-value of HS-IF steels are normally ascribed the 

existence of {111} recrystallisation texture during annealing. The process of scavenging 

interstitial elements (carbon and nitrogen) with microalloying elements are reported [29] 

to promote the development of {111} texture in order to increase the formability of HS- 

IF steels. In order to optimise the chemical composition and processing route, the 

removed of solute elements via formation of precipitates is required, during the 

production of IF steels. Thus, microalloying elements are playing a very important role to 

increase the drawability of steels.

Especially in the cold rolling process, during the processing of a cold rolled produce on 

any carbon content steel, dynamic strain ageing will result and this could lead to the 

formation of shear bands in microstructure. The formation of shear bands in {111} <TT2> 

orientation grains can cause the easy nucleation of unfavorable {110} orientation [30]. 

Elimination of all carbon and nitrogen from the matrix before the cold rolling process 

takes place, is important and an efficient way of improving the formability of steels.
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3.4.1 Carbon and Nitrogen

It is well known that the addition of carbon could increase the hardness and strength of 

the steel, but high carbon contents cause the steel to become brittle. HS-IF steels have 

normally very low carbon and nitrogen contents which are typically less than 0.005wt% 

carbon and 0.004wt% nitrogen. Most of the carbon and nitrogen in HS-IF steels is 

combined with the microalloying elements to form precipitates. These combinations have 

a major influence on the microstructure.

Carbide formers i.e. Ti, Nb and V would combine with carbon to form precipitates during 

hot rolling and coiling, this process promotes almost complete precipitation of carbon and 

makes all carbon to be present as precipitates in the ferrite matrix of IF steels [31]. A 

previous study has indicated that, if TiC does not form during this processing, the 

metastable compound e-carbide would form, in order to complete the precipitation of 

carbon [32]. Nitrogen most probably forms TiN or AIN in HS-IF steels.

The formation of Ti4C2S2 may stabilize IF steel in the austenitic range, when the 

temperatures are greater than 950°C. Normally, the presence of a minimum amount of S 

is requuired. The effective C stabilization is very much influenced by the processing of 

HS-IF steels. The effect of the Slab Reheating temperature (SRT) and the hot rolled strip 

Coiling Temperature (CT) on the r-value can be easily verified. Figure 3.8 shows the 

specific relation between thermomechanical processing parameters, composition and the 

formability, measured by rmean-value in Ti stabilized IF steels [33]. This confirms that 

solute carbon has a strong influence on the development of crystallographic texture and 

hence, influences the deep drawing property of IF steels.
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Figure 3.8: Improvement of the rmean -value by combination of a low SRT and a high CT 

for larger cold rolling reductions of Ti stabilized IF steel [33].

Removal o f carbon from the grain boundaries o f HS-IF could achieve an improvement in 

deep formability. However, lack o f interstitial carbon atoms at grain boundaries could 

promote the Secondary Work Embrittlement (SWE) or Cold Work Embrittlement [28]. 

However, keeping some free carbon atoms in solution and/or an addition of small 

amounts o f B, are two of the most efficient ways in preventing the formation of 

secondary work embrittlement [26].

3.4.2 Titanium

Titanium additions in HS-IF steels are made to lower the interstitial element contents 

during steelmaking, in order to produce strip products with good deep drawability.
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Previous studies have indicated that the higher the Ti or Nb content the lower the yield 

strength (YS) / ultimate tensile strength (UTS) ratio, which means an improved in terms 

of formability strip steel product [33]. The influence o f Ti and Nb on YS/UTS ratio is 

clearly reported in figure 3.9. It can be seen that TiC and TiN are very effective in 

delaying the recrystallisation of austenite after hot rolling and pinning the growth of 

recrystallised austenite grains [34]. This refinement leads to a finer ferrite microstructure 

and improvement of steels’ properties.

Takechi [22] has reported that the improvement of mechanical properties o f steel sheets 

in terms of the r-value can be achieved by reduction of C contents and additions of Ti. 

For instance, the critical amount o f Ti, effective Ti% (Ti* %) necessary for obtaining an 

excellent r-value can be expressed by:

Ti * = Ti (%) -  [4C (%) + 3.43N (%)] (in wt. %) equation 2.1 [22]

Where the %C is carbon content and the %N is the nitrogen content.
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Figure 3.9: The effect of Ti and Nb on YS/UTS ratio [33].
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Precipitates of TiN, TiS, Ti4C2S2 and TiC have been detected in previous studies [9] [31] 

[33] in Ti-stabilised IF steels, TiN particles are detected in the ferrite matrix and at grain 

boundaries. They form during solidification and during the addition of the FeTi alloy to 

the steel bath, which means that TiN is formed in both liquid and solid phases. TiS and 

Ti4C2S2 are identified in the austenite region, following reheating at approximately 

1250°C and hot rolling from 1250°C -  950°C of slabs. The presence of TiC precipitates is 

indicated following coiling at temperatures of approximately 700°C.

TiN precipitates could promote the growth of recrystallised ferrite grains with favourable 

{111} texture. In order to coarsen the ultrafine TiC precipitates that form in ferrite; it is 

advised to set a higher coiling temperature. Precipitation of TiS can be found in the 

higher austenite region, while Ti4C2S2 is present in the lower austenite region [9]. It has 

been reported that [35], Ti4C2S2 possibly removes carbon from the matrix at high 

temperature (austenite phase), and makes the IF steel to perform as a carbon-free matrix 

following finishing hot rolling. This in turn results in a very favourable texture for deep 

drawing applications.

However, Ti4C2S2 is not easy to form as this compound is less stable than the TiS in the 

austenite phase, which means that TiS is more likely to form than Ti4C2S2. It has also 

been reported that, almost no TLtC2S2 is found above 1200°C. The results are shown in 

figure 3.10. It has been proven that formation of TUC2S2 can be promoted through heat 

treatment [35].

24



>
c

*:ooo

35000 - Ti/S*2.0

3COOO

Ti/S*0.853 000

20000 -

•**5000-

Steel D 
RT 1150*C 

global Ti/S=1.56 
Ti4C2S2= 76 mass%

*0000

5000-

10000 15000

Sulphur Intensity (A.U.)
20000 25000

(a)

40000

35000-

9  co-precd  30000-
> - * •&)
3

25000 -c
3
5  2 0000 -  

3  15000-

r+-A3

>
C 10000 -

Steel D 
RT1200'C 

global Ti/S=0.85
5000

250002000015000100005000
Sulphur Intensity (A.U.)

(b)

Figure 3.10: EDX results o f individual particles in an IF steel, (a) reheated at 1150°C (b) 

reheated at 1200°C [35],

25



During the removal of interstitial elements by microalloying elements, precipitates that 

are left in the matrix may adversely affect the recrystallisation process, Ti left is excess in 

the matrix is far less effective than Nb in retarding the recrystallisation process. However, 

this is considered as a distinct advantage [9].

3.4.3 Sulphur

Sulphur acts as an interstitial element that is always present in IF and HS-EF steels grades. 

Previous studies, have detected TiS, Ti4C2S2 and MnS in IF and HS-IF steels, and much 

research carried out on the behavior of these precipitates of S in IF steels, have found the 

ability of these particles to influence the properties of IF grades steels [32][35][36]. With 

the precipitation of carbosulphides (Ti4C2S2), carbon in IF steels may be stabilised in the 

austenitic range. Promoting the formation of carbosulphide in the austenitic range, could 

reduce the formation of TiC during the annealing process, since large amounts of TiC 

formation could have a negative effect on the formation of favourable {111} texture [35] 

[36].

In other words, the promotion of the Ti4C2S2 formation would promote the {111} texture 

development and this could increase the formability of the IF steels. The nucleation of 

Ti4C2S2 is difficult because of the absence of sulfur supersaturation, and because the 

nucleation of Ti4C2S2 requires the simultaneous presence of three different elements 

which are titanium, sulphur and carbon [36]. The formation of Ti4C2S2 is strongly 

dependant on the process. Recently, many studies [35-39] have been carried out on the 

TiS- Ti4C2S2 transformation. However, the formation of Ti4C2S2 needs further particular 

analysis.
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3.4.5 Niobium

Niobium is one of the carbide forming elements that are normally present in IF steels 

grades. It can form NbC when combined with carbon. It is widely accepted that, solute 

Nb could segregate to austenite and ferrite grain boundaries, and increase the strength of 

the austenite [40]. It is also reported [41] that, additions of high amounts o f Nb could 

result in lowering of the r-value and ductility. Therefore, the Nb content should be kept to 

a minimum. The strength of austenite in IF steels can be enhanced by solute Nb, but this 

effect is reported to be relatively small, compared to Boron. Figure 3.11 has listed the 

overall behavior of austenite in terms of the effect o f B, Mo, Nb and C solutes [42]. As 

shown in figure 3.11, the effect o f 160 ppm of Nb addition is equal to 2000 ppm of Mo 

and 26 ppm C, but it is much less than the effect of B in an IF steel.
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Figure 3.11: Average Flow Stress (MPa) vs. Temperature (°C) for B, Mo, and Nb and C 

solutes in an IF steel [42].
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According to DeArdo [42], the most beneficial use o f solute Nb is present in 

galvannealed IF steels. It is well known that Ti + Nb stabilized IF steels show much 

higher resistance to powdering than Ti stabilized IF steels as shows in Figure 3.12.
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Figure 3.12: Powdering tendency for Ti and Ti + Nb galvannealed IF steels [42]

3.4.6 Vanadium

Ti and Nb are often added to the IF and HS-IF steels in order to increase their formability 

by formation of precipitates. The addition of Nb in IF and HS-IF steels grades results in 

severe retardation o f recrystallisation during the annealing process. This kind of 

retardation causes much extended annealing times and/or needs higher annealing 

temperatures and such problem often leads to alteration o f the strip during the continuous 

annealing cycle. Titanium additions are sufficient to stabilise the interstitial elements, but 

can cause problems during galvanizing. It has been advised that vanadium treated steels
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could exhibit the interstitial free characteristics without such a drastic retardation of 

recrystallisation [43].
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Figure 3.13: The effect o f Ti + Nb, Ti + V and V stabilised IF steels on the Temperature 

for Complete Recrystallisation in 30 Seconds [44].

Figure 3.13 shows the temperature needed to obtain complete recrystallisation in 30 

seconds, the vanadium only stabilised IF steel can recrystallise at lower temperatures than 

the Ti + Nb and Ti + V stabilised steel. The addition of vanadium could be made in steels 

containing sub-stoichiometric titanium and niobium levels as carbide and nitride 

stabilisers (VC and VN) [44], thus maintaining titanium content to lower levels, in order 

to avoiding the white powder defects seen in galvannealed steels.

For any microalloying element addition to exert its effect most efficiently it has to be 

dissolved into solution during processing, therefore solubility plays a key role for 

microalloying elements to be used most effectively. In hot rolled products, vanadium has 

been used with the combination of other microalloying additions for many years in high
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strength products, but yet is not commonly used in high strength Interstitial Free steels. 

Due to the great solubility o f V in austenite, it can provide efficient contributions either 

via ferrite grain refinement and/or precipitation strengthening [45]. During the 

thermomechanical processing of the steel while heating to the austenitic rolling 

temperature, VC solubility is much higher than TiC and NbC. Even if  VN is less soluble 

than VC, it is more soluble than AIN and TiN. The results are shown in figure 3.14. On 

the other hand, the strengthening effect of V in austenite is also much higher than Ti and 

Nb.
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Figure 3.14: Solubility products in austenite vs. temperature [45].
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In cold rolled products, vanadium provides only limited support to the steel compared to 

hot rolled products. This is due to the vanadium carbide coarsening rates reported to be 

greater than NbC or TiC.

3.4.7 Phosphorus

In order to achieve the weight reduction of the autobody, Manganese, Silicon and 

Phosphorus which act as solid solution strengthening elements are added to the IF steels 

and develop novel HS-IF grades steels. It is widely accepted that Phosphorus is the most 

effective strengthening microalloying element for use in HS-IF steels [46] [47]. It is also 

most cost efficient compared to Mn and Si. The effect of additions P and S on a Base 

steel is shown in figure 3.15. Increasing the amount of P from 20ppm to 600ppm results 

in a rise of the flow stress by about 8  MPa which is about 10% higher at 920°C than a S 

steel [42].

According to J. Rege [47], with additions of P, the yield strength and the ultimate tensile 

strength increase but the n-value and total elongation decrease. These are due to the 

segregation of P to the ferrite grain boundaries and the associated embrittlement caused. 

The failure of IF steel following cold forming is called cold working embrittlement 

(CWE) or Secondary Work Embrittlement (SWE). CWE or SWE is a critical problem in 

P alloyed IF steels [26].
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alloyed IF Steels [26].

According to recent studies [26] [47] [48], P not only is found at grain boundaries and in 

the matrix but also exist as FeTiP precipitates. It is acknowledged that [48 - 51], that the 

presence o f FeTiP leads to weakening of drawability and loss of strength. This effect is 

more marked in the case of batch-annealed rather than continuous-annealed HS-IF steels, 

due to the long soaking times allowing sufficient time for this unwanted precipitation

[50]. Figure 3.16 shows the presence of FeTiP precipitates in a Ti stabilised HS-IF steel

[51]. FeTiP has been reported to have better stability than TiC at the batch annealing 

temperature [52]. The consumption of Ti, results in the reduction of stabilizing elements 

in HS-IF steel to precipitate with C and N. The remaining C and N in the matrix have a 

direct effect on the development of the {111} recrystallisation texture [51].
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FeTiP precipitates may obstruct the growth of {111} favourable recrystallisation texture, 

and adversely influence the r-value of the HS-IF steels, thus lowering the drawability of 

the steel. Although P is an efficient strengthening and inexpensive element, when added 

in an excess amount could cause large volume fractions o f FeTiP precipitates to form 

which are harmful to the drawability and result in loss of strength.

P is an inexpensive element for solid solution hardening and hence it a useful element to 

increase steel strength. It should be added in an amount more than 0.03wt% for 

strengthening. Therefore, according to a recent study, the upper limit of the amount o f P 

should be 0.20wt%, preferably between 0.10 -0.15wt% [52].

P  1 9 . 9 0  2 8 . 5 6
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Figure 3.16: TEM micrograph of FeTiP precipitate found in Ti-IFHS steel annealed at 

700°C for 60min with EDS analysis [51].
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3.4.8 Manganese

Solid solution hardening is a widely used strengthening mechanism for high strength 

steels. Numerous studies have indicated that [53-55], Mn is an important microalloying 

element to provide sufficient level of solid solution strengthening. It is one of the 

hardening element which is normally added in the levels higher than 0.60wt% to HS-IF 

steel grades in order to achieve strengthening. Mn has a moderate solid solution 

strengthening effect in austenite and marked hardening effect in ferrite, as the solubility 

of Mn in ferrite is 10wt% higher than in austenite [12]. The amount of Mn addition in 

HS-IF steel is typically limited to 2wt% to prevent segregation problem [54].

Mn is an austenite stabilizing element, which implies that Mn additions could retard and 

lower the temperature of austenite transformation, and this retardation promotes the 

hardening effect in steels. By lowering the austenite heat treatment temperature during 

transformation to ferrite, Mn can help to promote the ferritic grain refinement in order to 

get finer grain size. Steels with Mn additions will be stiffer during rolling and forging, 

since Mn increases the strength of steels [56].

In HS-IF steels, Mn may be present as oxides (MnO), sulfides (MnS) and oxysulfides 

(2 Mn0 .Si0 2 ) [56]. Mn has a high affinity to oxygen and sulphur, and this characteristic 

could be used for deoxidisation and desulphurisation in steels. The affinity of Mn for 

sulphur to form MnS, implies that the presence of MnS in steel could counteract the 

embrittlement in HS-IF steels. Moreover, it has been reported [57] that, steel samples 

containing MnS exhibit no much significant change in hardness. With the introduction of 

some impurities i.e. AI2O3, SiC>2, MnO, CaO, CaS and FeS into steel samples containing 

MnS, it have been reported [55] an increase in both hardness and nominal yield strength. 

The affinity of Mn for oxygen could give rise to a favorable diffusion of Mn to 

precipitates and the formation of MnO towards the outer surface in order to reduce the 

thin layer of iron oxides, which means increased ability of steel to prevent corrosion [55].
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3.4.9 Silicon

The purpose of silicon additions in HS-IF steels is similar to that of manganese additions,

i.e. used as a strengthening element through solid solution strengthening, Si is also used 

as a deoxidizer. The precipitates of SiC>2 can also strengthen IF steels, however, 

strengthening with silicon has been found to be responsible for a reduction in formability. 

High silicon contents result in lowering of the ductility and could cause steels to 

becoming brittle [1 2 ].

Additions of Si could also improve the oxidation resistance with the formation of silicon 

dioxides (Si0 2 ). Even if Si is a stronger in oxygen stabilization than Mn, when Si and Mn 

are used together singly or in combination (silicomanganese) the effect would be much 

higher. The reason is that the joint deoxidation product of Si and Mn would be a 

manganese silicate that has a lower activity in silicon less than silica were to be the only 

product forming [58].

3.4.10 Aluminum

Aluminum is normally added to HS-IF steel for deoxidization and grain refinement 

purposes. A1 is a very strong deoxidizer, and it is added to the steel during steelmaking. 

The formation of skeletal like alumina crystals (AI2O3), which are removed from steel by 

flotation or by reaction with slag could create an oxygen free clean steel [59]. The main 

problem during steelmaking is that the density of A1 is very low, which could cause 

oxidisation at the steel interface when added in large amounts to the steel bath, resulting 

in quick oxidisation at the steel interface.
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It has been reported that, precipitation o f AIN which typically could take place during 

recrystallisation could obstruct the selective nucleation o f preferred orientations i.e. 

{111} and finer grain growth, leading to an unfavourable texture [60]. In order to obtain 

good formability, it is necessary to reduce the concentration o f AIN in the solid solution. 

Promoting formation o f TiN which is more stable than AIN is one o f the best way to do. 

However, addition o f A1 should be kept to a minimum.

3.5 Grain Refinement
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Figure 3.17: Metastable Fe-Fe3 C Phase Diagram. [74]
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The microstructure of HS-IF steels is typically ferritic. This can be seen in figure 3.17 

where the Fe-Fe3 C phase diagram is provided. In the early 1950s, Hall [61] and Petch 

[62] have set the groundwork for modem steel metallurgy. The creation of the Hall-Petch 

equation is perhaps the most important development in ferrous metallurgy, this 

relationship is given as:

Oy = Oi + kyd - 1/2 Equation 2.2 [61-62]

Where oy is the yield strength, a, is the frictional stress which opposes dislocation 

movement, ky is a constant which is normally called the dislocation locking term and d is 

the ferrite grain size. According to the equation, the outcome of the refinement of the 

ferrite grain size is an increase in yield strength. The relationship between ferrite grain 

size and yield strength is shown in figure 3.18 [63].
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Figure 3.18: Influence o f ferrite grain size on yield strength and impact properties [63].
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Typically, the strengthening effect in steels is proportional to the decrease in toughness, 

but the refinement of ferrite grain size also produces a concurrent enhancement in 

toughness [63]. The Petch equation links the grain size with toughness, the equation is as 

follows:

&T= Ini3 -  InC -  In d m Equation 2.3 [63]

Where /3 = constant

C = constant

T = ductile-brittle transition temperate (°C)

d = ferrite grain size (pm2)

As shown from the Petch equation, the reduction of ferrite grain size produces a decrease 

in the impact transition temperature [63]. Therefore, grain size refinement is one of the 

best options to increasing the toughness of a steel. Due to grain refinement increases in 

yield strength are noted, and these lead to lower n-value and r-value. The lowering of n- 

values and r-values result in a decrease of formability, which is an intrinsic drawback in 

IF steels.

3.5.1 Grain-Refined HS-IF Steels

HS-IF steels are developed as the basis of interstitial free steel and strengthened by 

microalloying elements like silicon, manganese and phosphorus. Strengthening by 

microalloying elements is subject to secondary work embrittlement, due to lack of grain 

boundary strength [64]. Grain refinement is an effective method to improve the resistant 

of secondary work embrittlement, as the finer grain can increases the strength of grain
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boundaries. As mentioned previously, the decrease in formability by grain refinement is 

an unfortunate drawback of HS-EF steels. The balancing and combination of grain 

refinement, precipitation hardening and microalloying hardening is a methodology 

reported in recent studies to locate the optimum solution for HS-IF steels.

In HS-IF grades steels, solid-solution hardening, grain-refinement and precipitation 

hardening are three main strengthening method. In conventional IF steel, a larger grain 

size is favorable for the mean r-value which was proven by the Petch equation and this 

could lead to a preferable growth of the < 1 1 1> texture in order to achieve excellent 

formability. However, in the case of HS-IF steels, coarse grains are not suitable for the 

surface quality of exposure panel in car-body and grain refinement is a good method to 

improving the surface quality [2 2 ].

On the other hand, the carbon content in HS-IF is much higher than that of the 

conventional IF steels. As a result, larger amounts of solid-solution hardening elements 

are needed to precipitate carbon in HS-IF steels. By promoting the fine precipitates and 

increasing tensile strength through both grain refinement and precipitation hardening, a 

reduction of the amounts of solid solution hardening elements is expected to take place. 

For example, in figure 3.19, the grain refined HS-IF steel (b) with fine precipitates of 

carbo-nitrides has replaced and reduced the total amount of solid-solution hardening 

elements (i.e. Si, Mn and P) compared to the coarse-grain HS-EF steel, even if the grain- 

refined EF HS steel and coarse-grain HS-EF steel have similar tensile strengths [22].
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Figure 3.19: Comparison of Grain-Refined HS-IF steel and Coarse-Grain HS-IF Steel in 

Strength, (a) Coarse Grain HS-IF Steel, (b) Grain-Refined IF HS Steel [22],

Even though, it has been reported by Hall and Petch that the outcome of grain refinement 

is an increase in yield strength which could lower the formability, it is has also been 

reported [22] that in the case of grain-refined HS-IF steels, the grain-refined HS-IF steels 

exhibit lower yield strengths than the solid-solution hardened HS-IF steel which have 

coarser grains. The result is shows in figure 3.20
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3.6 Formability

Formability is defined as the ability of metal to maintain its structural integrity while 

being plastically deformed into various shapes [65]. The performance of a metal in a 

formability test is normally measured by two concepts, which are stretchability and 

drawability. Stretchability and drawability are measurements of the ability of metal to be 

stretched and drawn to form shapes without any splitting or local necking. When a sheet 

steel is stationary clamped around its edges and stretched over a die or a formed block, 

this defines the stretching process. Drawing is a process where a blank sheet steel is 

pressed into a die cavity by using a punch while deep drawing is a drawing process which 

the depth of the part is greater than its diameter [6 6 ].

The parameter that normally measures the stretchability is called the work hardening 

coefficient (n value). High n value steels are characterised by low yield strength and high 

work hardening rate, and these represent properties good stretch forming characteristics. 

In steels, stretch forming grades are mainly those of the advanced high strength steel 

family (example: DP and TRIP steels) what are used to manufacture parts that high 

strength and reasonably formability are required, like aircraft wings, automotive door and 

window panels.

The parameter which is widely accepted as an indictor of the drawability is the plastic 

strain ratio or normally called as r-value. High r-value materials have the ability to form 

into complicated shapes. The r value is defined as the ratio of the true strain in the width 

direction to the true thickness strain which is usually 15 or 2 0 % in the uniform elongation 

region of a tensile test; this can be written as a function [67]:
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€w / €t [68] Equation 2.4 [68]

Where r value

True width strain

True thickness strain as measured in a tensile specimen

As shown in figure 3.21, IF and HS-IF steels have excellent r values, which means they 

are suitable for deep drawing applications.
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Figure 3.21: Comparison of r value for several grades for steels [68].
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Chapter 4

EXPERIM ENTAL PROCEDURES

Two experimental HS-IF steels grades were designed and used for the present study, 

which were a titanium only stabilised HS-IF grades and titanium-vanadium stabilised 

HS-IF grades. These steels were prepared using pure raw materials to control the level of 

unwanted alloying additions to a minimum. The composition of the experimental HS-IF 

steels is presented in table 4.1. Both HS-IF steels are based on controlled additions of 

carbon (42 -  43ppm), sulphur (50ppm), titanium (190 -  220ppm), silicon (50 -  160ppm), 

vanadium (up to lOOOppm) and trace amounts of niobium (lOppm). Sample designated 

for the experiments were provided as 35mm thick hot rolled blocks.
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Table 4.1: Chemical Composition of Experimental HS-EF steels (wt%)

Element / Steel code 1348 (Ti) 1349 (Ti-V)

C 0.0043 0.0042

Si <0.005 0.016

Mn 0.63 0.60

S 0.005 0.005

P 0.007 0.011

Ti 0.022 0.019

Nb <0.001 <0.001

V <0.001 0.10

Almet 0.003 0.010

Altot 0.004 0.007

N 0.0035 0.0032

4.1 Thermomechanical Processing

For the present study, the Gleeble unit was used to simulate (physically) the 

thermomechanical processing of experimental HS-IF steels. The Gleeble machine is a 

state of the art unit for physical simulation as it is able to simultaneously simulate the 

thermal and mechanical processes [73]. Some of the processes that can be simulated 

using the Gleeble system include [72]:

1. Heat treatment

2. Hot rolling

3. Sintering

4. Continuous casting
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5. Powder metallurgy

6. Upset butt welding

7. Diffusion bonding

8. Strip annealing

9. Continuous strip

10. Extrusion

11. Forging

The simulation process that is done by Gleeble systems is the reproduction of the thermal 

and mechanical condition of the process in the same time frames which exists under 

actual mill condition [72].

46



4.1.1 Grain Growth

Figure 4.1: Gleeble 3500 System located in the Materials Research Centre, Swansea 

University.

The Gleeble 3500 thermo-mechanical unit which is located in the Materials Research 

Centre, Swansea University (shown in figure 4.1) was used to study the thermo

mechanical testing of the two experimental steels. The soaking temperatures were chosen 

at 1200°C which is firmly in the austenite region. The heating rate is 5°C/s from room 

temperature to the soaking temperature. The holding time for each process is 300s at the 

soaking temperature. These processes were run under a partial vacuum atmosphere to 

avoid any significant decarburisation caused to the experimental low carbon steels. Each
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heat treatment is concluded with quenching via a water spray. The complete set of 

reheating experiments was designed to dissolve the majority of the precipitates present in 

the experimental steels upon soaking and determine the size of precipitates, controlling 

austenite grain growth and distribution of precipitates, upon the deformation temperature 

applied and cooling rates chosen.

4.1.2 Hot Rolling Studies

The experimental hot rolled steels which were a Ti stabilised HS-IF and a Ti-V stabilised 

HS-IF steels (as received condition) were machined into a number of suitable cylindrical 

samples and prepared for experiments. Each cylindrical sample is 10mm in diameter, and 

15mm in height as shown in figure 4.2. The thermocouples were then spot welded in to 

the mid section o f the samples. The thermocouples are used to detect the temperature of 

the sample and send a signal to the computer in order to control the heating and cooling 

rate o f the samples.

|*-------- 10 mm----------•]

Figure 4.2: Samples in as received condition.
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The prepared samples were located between two ISO-T anvils while some compression 

was applied; the assembled sample is shown in figure 4.3. The thermomechanical (hot 

rolling process) test parameters such as cooling rates, heating rates and varying finishing 

and coiling temperature were designed according to the metastable Fe-Fe3 C phase 

diagram as shown in figure 3.17. The variation of thermomechanical cycles was input 

preset in the QuikSim Software and saved in the computer before each process started to 

run. The two experimental steels experienced the same conditions of thermo-mechanical 

processing which included soaking, controlled multi-pass deformation, controlled cooling 

to a variety o f coiling temperatures and water quenching (water spraying) to room 

temperature.

Thermocouples j

Anvils

Sample

Figure 4.3: Assembled samples in the Gleeble 3500 system.
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The samples were heated to the peak soaking temperature which was set at 1200°C with a 

heating rate of 5°C/s, in order to dissolve most precipitates that are present in the steel 

microstructure; the samples were kept at the peak soaking temperature for 300s. After the 

holding time was completed, the samples were cooled to a roughing temperature 

(1100°C) with a controlled cooling rate of 10°C/s. Once the temperature has reached 

1100°C, samples were compressed at 0.3 true strain using a strain rate of 1/s.

After the compression, the samples were controlled cooled at 10°C/s again to a finishing 

temperature, the finishing temperatures studied were 950, 850 or 800°C. The samples 

were subjected to further deformation at a 2 x 0.2 true strains via is a double hit 

compression experiment, employing a strain rate of 1/s and an inter-pass time of Is 

between hits.

Coiling temperature is the temperature that the sheet steel coiled and stored which ready 

to supply to the demanders. The samples were coiled in a variety of temperatures of 750, 

650, 550 or 450°C at a cooling rate of 10°C/s from the finishing temperature. Once the 

samples reached the coiling temperature, the samples were directly quenched via a water 

spray to room temperature. The full thermomechanical cycles of these experiments is 

clearly shown in figure 4.4.
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Figure 4.4: Thermomechanical Cycles employed in the Present Study.

4.2 Microstructural Examination

The heat treated samples were collected and cut into two sections using the Struers 

Accutom 50 cutting machine. The finished samples produced with Struers Accutom 50 

provide a smooth cut without deformation applied to the cut surface in order to retain 

unaffected the actual micro structures. Heat treated sample following Gleeble testing are 

shown in figure 4.5 and a sectioned sample is show in figure 4.6.
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Figure 4.5: Comparison of untested sample and Gleeble tested sample.
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Figure 4.6: Comparison of tested sample and sectioned sample.

Sectioned samples (including the samples in the as received condition) are mounted into 

castable resins which consist of MetPrep Kleer-Set Type FF resin and MetPrep Kleer-Set 

Hardener as shown in figure 4.7. Mounted samples were subjected to grinding, starting 

with 240-, 320-, 600-, and finished with 1200 grit silicon carbide paper and followed by 

polishing using 6/mi and 1/rni diamond paste impregnated cloths, using paraffin as 

lubricant during polishing to produce a flat and scratch free surface.
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Figure 4.7: Sectioned sample mounted with resin.

Polished samples were etched using Nital solution, by immersing the sample into the 

solution o f 2% nital for around 10s until the surface o f samples became slightly cloudy. 

After etching was completed and dried with the dryer, the samples were studied in terms 

o f microstructures obtained.

4.2.1 Scanning Electron Microscopy

Philips XL 30 Scanning electron microscopy (SEM) was used in the present study to 

observe and classify the obtained microstructures. SEM microscopy was employed, using 

an accelerating voltage o f 20kV with the working distance of 10mm to obtain secondary 

electron images on all tested samples.
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4.3 Hardness Test

Following scanning electron microscopy (SEM) examination, samples were subjected to 

a hardness testing using a Vickers pyramid diamond indenter. A load of 10 kg was used 

with the impression time of 10 seconds on the surface of steel samples. 18 reading were 

been taken for each of steel sample tested.

4.4 Thermodynamic Calculations

MT-Data was used in present study to predict the dissolution and formation of 

precipitates particles in Ti only and Ti-V HS-IF steels grades during the hot rolling 

simulation applied.

MT-Data thermodynamic modeling can be performed via specific software with a range 

for thermodynamic databases of fundamental thermochemical calculations, for the 

prediction of phases forming at equilibrium in systems containing a number of 

components and phases [69]. MTDATA permits calculations of the amount of different 

phases that are possible to be present under equilibrium conditions and their composition. 

The equation is defined as the one to minimise the free energy and is given as [70]:

Gs = Na Ga + Nb Gb ... Equation 2.5 [70]

Where Gs = Molar free energy of the system

Ga = Molar free energy of phase a

Gb = Molar free energy of phase b

N = Constant
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The free energy of each phase can be written in as a function of its composition and of T 

and P:

Ga = Ga (T, P, xaj, xa2 . .. xa„) Equation 2.6 [70]

Where xaj, xa2 ... xan are the weight or mole fraction of each component in phase and T 

is the temperature and P is phase, in a system with a number of phases and a number of 

components all phases are consider will dissolve all the components, then the equation of 

free energy can be written as a function:

m*n+2 variables [70] Equation 2.7 [70]

Where m = number of phases

n = number of components

With abovementioned basics, MTDATA is able to calculate and work with many 

different elements and several phases together, in order to produce predictions and 

describe the fundamental properties of tested materials in phase diagram [71].

4.3 Grain Size Measurement

Grain size measurements have been carried out on the Ti only and Ti-V HS-IF steels for 

all samples at a finishing temperature of 850°C, using a variety of coiling temperature.
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Grain size measurements permit quantification of the effect of coiling temperature on 

grain the evolution.
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Chapter 5

Experimental Results

5.1 Microstructural Examination

5.1.1 As received condition

The effect on microstructure and hardness evolution of two experimental Ti only and Ti- 

V steels was assessed via the Gleeble 3500 themomechanical simulation unit. Due to the 

limited size of the samples tensile testing could not be carried out. The parameters that 

were studied were the choice of the finishing temperature and the choice of the coiling 

temperature on two experimental HS-IF grades. Figure 5.1 presents the as received 

microstructure of the Ti only and Ti-V steels. Both micrographs consist purely of coarse 

ferrite.
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Figure 5.1: Scanning electron Micrograph o f (a) Ti only Steel in the as received condition 

(b) Ti-V steel in the as received condition.
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5.1.2 Tested condition

Figure 5.2 shows the scanning electron micrographs representing the evolution of 

microstructures in relation to varying finishing temperature i.e. 950°C, 850°C or 800°C, 

followed by cooling at a rate of 10°C/s to a coiling temperature of 750°C in the Ti only 

HS-IF steel.

.Y Beh. School of Eng.'UWS

(a)
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(c)
Figure 5.2: Scanning electron micrographs recorded in the Ti only HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling
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at a coiling temperature of 750°C employing a cooling rate of 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.

In figure 5.3a set of micrographs for the Ti-V HS-IF steels are presented, employing 

variable finishing temperatures o f 950°C, 850°C or 800°C, and coiling at temperature of 

750°C followed by water quenching to room temperature.
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Figure 5.3: Scanning electron micrographs recorded in the Ti-V HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling
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at a coiling temperature of 750°C employing a cooling rate of 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.

With regards to establishing the effect of coiling temperature on the microstructure, 

several sets of micrographs were obtained on both the Ti only and the Ti-V HS-IF steels. 

Figure 5.4 presents a set of micrographs on the Ti only steel employing variable finishing 

temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling at a temperature of 

650°C with the cooling rate of 10°C/s and water quenching to the room temperature. 

Figure 5.6 and figure 5.8 are the micrographs for the Ti only steel employing the same 

testing parameters as those in figure 5.12, however, the samples were coiled at 550°C or 

450°C. Figure 5.4 present the micrographs for the Ti-V steel employing variable finishing 

temperatures (a) 950°C, (b) 850°C and (c) 800°C followed by a cooling rate of 10°C/s to a 

coiling temperature of 650°C and water quenching to room temperature. Figure 5.7 and 

figure 5.9 employed the same testing parameters as those on the Ti-V steels but involved 

coiling temperatures of either 550°C or 450°C.
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Figure 5.4: : Scanning electron micrographs recorded in the Ti only HS-IF steel 

employing variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed 

by coiling at a coiling temperature of 650°C employing a cooling rate o f 10°C/s and water 

quenched from the coiling temperature to room temperature. The arrow indicates the 

direction of deformation on all three samples.
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Figure 5.5: Scanning electron micrographs recorded in the Ti-V HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling 

at a coiling temperature of 650°C employing a cooling rate o f 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.
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Figure 5.6: Scanning electron micrographs recorded in the Ti only HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling 

at a coiling temperature o f 550°C employing a cooling rate o f 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.
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Figure 5.7: Scanning electron micrographs recorded in the Ti-V HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling 

at a coiling temperature of 550°C employing a cooling rate of 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.

71



(a)

72



(C)

Figure 5.8: Scanning electron micrographs recorded in the Ti only HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling 

at a coiling temperature o f 450°C employing a cooling rate o f 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.
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Figure 5.9: Scanning electron micrographs recorded in the Ti-V HS-IF steel employing 

variable finishing temperatures (a) 950°C, (b) 850°C and (c) 800°C, followed by coiling 

at a coiling temperature of 450°C employing a cooling rate o f 10°C/s and water quenched 

from the coiling temperature to room temperature. The arrow indicates the direction of 

deformation on all three samples.
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5.2 Hardness

5.2.1 Effect of Finishing Temperature

Table 5.1: Hardness (MPa) evolution for the Ti only HS-IF steel as a function of finishing 

temperature when variable coiling temperatures were applied.

Finishing

Temperature

(°C)

Coiling Temperature,(°C)

450 550 650 750

800 981.4+/-41.1 971.8+/-36.1 989.8 +/- 34.3 1023.6+/-35.7

850 902.5+/-11.8 904.7 +/-17.5 928.1 +/- 23.8 967.4+/-35.7

950 847.8 +/- 9.6 854.7 +/- 8.4 855.3 +/- 13.6 879.5 +/- 19.8
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Figure 5.10: Hardness evolution for the Ti only HS-IF steel as a function of finishing 

temperature following coiling at 750°C, 650°C, 550°C, and 450°C.

Table 5.2: Hardness (MPa) evolution for the Ti-V HS-IF steel as a function o f finishing 

temperature when variable coiling temperatures were applied.

Finishing

Temperature

<°C)

Coiling Temperature,(°C)

450°C 550°C 650°C 750°C

800 1079.5 +/- 22.6 1071.6+/- 18.7 1089.9+/-28.4 1066.3 +/-38.8

850 920.3+/- 10.1 916.5 +/- 14.7 939.9 +/- 18.8 911.6 +/- 11.8

950 855.7+/- 12.6 859.6 +/- 13.3 920.1 +/-10.1 861.3 +/-20.0
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Hardness Vs Finishing Temperatire
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Figure 5.11: Hardness evolution for the Ti-V HS-IF steel as a function o f finishing 

temperature following coiling at 750°C, 650°C, 550°C, and 450°C.
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5.2.2 Effect of Coiling Temperature

Table 5.3: Hardness (MPa) evolution for the Ti only HS-IF steel as a function o f coiling 

temperature.

Coiling 

Temperature (°C)

Finishing Temperature, (°C)

800 850 950

450 981.4 +/- 41.1 902.5 +/- 11.8 847.8 +/- 9.6

550 971.8 +/- 36.1 904.7+/- 17.5 854.7 +/- 8.4

650 989.8 +/- 34.3 928.1 +/- 23.8 855.3 +/- 13.6

750 1023.6 +/- 35.7 967.4+/-35.7 879.5 +/- 19.8

Hardness Vs Coiling Temperature

MPa
1078.8

105 1029.7

100 980.7

800
850
950

931.7

882.6

833.6

784.6

400 500 600
Coiling Temperature, (°C)

700 000

Figure 5.12: Hardness evolution o f the Ti only HS-IF steel as a function of coiling 

temperature.
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Table 5.4: Hardness (MPa) evolution for the Ti-V HS-IF steel as a function of coiling 

temperature.

Coiling 

Temperature (°C)

Finishing Temperature, (°C)

800 850 950

450 1079.5 +/- 22.6 920.3 +/- 10.3 855.7+/- 12.6

550 1071.6 +/- 18.7 916.5 +/- 14.7 859.6+/- 13.3

650 1089.9 +/- 28.4 939.9+/- 18.8 920.3+/- 10.3

750 1066.3 +/-38.8 911.6+/- 11.6 861.3 +/- 20.0

Hardness Vs Coiling Temperature

120 t 1176.8

1127.8

1078.8

105 1029.7 F
l e m p m l u i i  <‘C )

800
850
950

100 980.7

931.7

882.6

833.6

784.6

600 700 800400 500

Coiling Temperature (°C)

Figure 5.13: Hardness evolution for the Ti-V HS-IF steels as a function of coiling 

temperature.
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5.3 MT-Data Thermodynamic Calculations.

MT Data Calcultion of 71 only IF-HS Steel

0.0250
TiN

•J 4

MnS
TiC

0.0200

0.0150

0.0100

Temperature(0C)

Figure 5.14: MT-Data thermodynamic calculations of equilibrium phases on the Ti only 

HS-IF steel as a function of weight fraction versus temperature.

81



MT-Data Calculation of Ti-V IF-HS Steel
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Figure 5.15: MT-Data thermodynamic calculations of equilibrium phases on the Ti-V 

HS-IF steel as a function o f weight fraction versus temperature.

Figure 5.14 and 5.15 show the MT data calculations for Ti only HS-IF steel and Ti-V IF- 

HS steel. The thermodynamic calculations imply that titanium nitride (TiN), manganese 

sulphide (MnS), titanium carbide and 6 -carbide (FesC2 ) are predicted to be present in Ti 

only HS-IF steel. Since Ti-V HS-IF steel contains vanadium additions, vanadium carbide 

(VC) is predicted to be present as well as TiN and MnS.
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5.4 Grain Size measurements

Due to the complicated grain morphology developed during Gleeble simulation and the 

difficultly on performing accurate measurements, grain size measurements were only 

carried out on samples that were finished rolling at 850°C. The measurement was 

performed using the optilab software. The results are shown in table 5.5.

Table 5.5: Grain size evolution for samples tested at a finishing temperature of 850°C for 

(a) Ti only HS-IF steel and (b) Ti-V HS-IF steel.

Coiling Temperature Mean Area Standard Minimum Maximum
CQ (urn2) Deviation 2Area ([jm) 2Area (urn)

750.00 202.98 159.77 1.46 1207.43
650.00 211.27 242.84 1.80 1590.92
550.00 216.39 239.53 1.27 1304.55
450.00 291.49 340.95 2.05 1595.48

(a)
Coiling Temperature Mean Area Standard Minimum Maximum

Cc) (pm2) Deviation 2Area (pm ) 2Area (pm )
750.00 216.79 224.39 1.71 1163.37
650.00 149.95 152.02 2.56 970.56
550.00 231.95 194.36 5.41 898.50
450.00 211.93 216.86 1.60 1157.09

(M
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Chapter 6

Discussion

6.1 Hot Rolling Simulation.

The Gleeble 3500 thermomechanical simulation unit was used to perform the hot rolling 

simulation experiments on the Ti only and the Ti-V HS-IF steels during the present study. 

The scanning electron micrographs of the as received condition were presented in figure 

5.1, where figure 5.1a represents the Ti only steel and figure 5.1(b) the Ti-V steel. The 

presented micrographs reveal the presence of equiaxed ferritic only microstructures for 

both steel grades.

The hot rolling deformation during the present study took place at temperatures, within 

the austenite and/or austenite + ferrite stability field. Both the Ti only and the Ti-V HS-IF 

steel samples have undergone transformation from austenite to ferrite during the 

reheating and cooling sequences applied. The purpose of this exercise was to induce this 

transformation, so as to simulate conditions applicable in the hot mill. Essentially, this 

approach would lead to the production of refined ferrite for both steels grades. In 

addition, such a refined microstructure could lead to optimised mechanical properties i.e. 

strength, drawability and toughness for both steel grades.

At the beginning of the hot rooling sequences, specimens were heated up to the soaking 

temperature, which was set at 1200°C. In this condition, both the Ti only and the Ti-V
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HS-IF steel specimens have experienced the transformation from ferrite to austenite. 

When held at the soaking temperature, austenite grain growth and coarsening could take 

place. The dissolution of precipitate particles is time and temperature dependent, certain 

types of chosen precipitates (present in the steel microstructure) could totally dissolve at 

the soaking temperature chosen. Especially, TiC and VC which have been reported to 

dissolve at lower austentisation temperatures [74], and predicted to be present in the 

experimental Ti only or Ti-V steels studied by MT-Data thermodynamic equilibrium 

calculations as these were presented in figures 4.30 and 4.31. TiN is also predicted to be 

present in both the Ti only and the Ti-V steel and it is expected to partially dissolve at the 

soaking temperature chosen.

The first uniaxial compression took place, once the samples were cooling down to the 

roughing temperature of 1100°C, which is still within the austenite region. The equiaxed 

coarse austenite grains (formed and grown at the soaking temperature) of the Ti only and 

the Ti-V HS-IF steel specimens are deformed at this stage, the austenite grains are 

elongated and further defined.

6.2 Effect of finishing temperature

The steel samples have undergone controlled cooling to the finishing temperature 

following the first deformation at the roughing temperature. The finishing temperature is 

the temperature at which the deformation of the samples is completed. Mechanical 

properties of the steels are strongly affected by the finishing temperature, which consists 

of the final deformation (compression) during the hot rolling sequences. The samples 

have been subjected to further compression via a two stage ( 2  x 0 . 2  true uniaxial strain 

compressions) at the finishing temperatures.

The finishing temperatures were set at 950°C, 850°C, or 800°C. The micrographs 

presented in figure 5.2 have shown that in the Ti only steel, different microstructures
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have developed at the variable finishing temperatures employed such as (a) 950°C, (b) 

850°C, and (c) 800°C, followed by coiling at 750°C with the cooling rate of 10°C/s and 

water quenched to the room temperature. These micrographs reveal that when the 

finishing temperature was set at (a) 950°C, a purely recrystallised uniform ferrite 

microstructure has been obtained. Due to the finishing temperature set at the 

recrystallised austenite region; a fully recrystallised ferrite microstructure is subsequently 

obtained following the transformation from the austenite microstructure. Even if TiN 

particles are predicted (MT-Data calculation, figure 5.14) to be present in this state, they 

do not appear to be sufficient enough to inhibit recrystallisation from taking place. The 

ferrite grain size is fairly dependent on the recrystallised austenite grain size [75]. 

However, the obtained grain size is refined compared to the as received condition. Hagg 

carbide (e-carbide) (FesC2) [76] is predicted (MT-Data calculation, figure 5.14) to be 

forming at around 450°C or below, however, both the Ti only and the Ti-V HS-IF steel 

samples are water quenched from the finishing temperature which are above/equal to 

450°C, thus the Hagg carbide is predicted to play no major role in the development of the 

microstructures.

When the finishing temperature was further reduced to 850°C, the finishing temperature 

is now set below the recrystallisation start temperature for austenite. DeArdo [77] has 

reported that deformed austenite structure with deformation bands would be produced in 

microalloyed steels. Once the temperature has cooled down to the a region, ferrite 

nucleates not only on the austenite grain boundaries but also on the deformation bands as 

shown in figure 5.2b, The recorded micrographs have shown that mixtures of fine ferrite 

and elongated grains ferrite have found. In particular, the elongated grains are parallel to 

the rolling direction. Grain size measurements have revealed, further refinement of the 

microstructures compared to the finishing temperature of 950°C.

When the finishing temperature was set to 800°C, the finishing temperature is firmly 

within the a + 7  region. Priestner [78] has reported that when deformation has occurred in 

the two phase region this is responsible for a hardening of austenite and newly formed 

ferrite grains. In such a scenario, both austenite and ferrite grain would develop sub
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grains and ferrite would nucleates on the austenite grain boundaries and within austenite 

grains on dislocation. Panigrahi [79] has reported that the strain hardened ferrite (newly 

formed in a  + y  region) can recrystal lise to a finer ferrite, remaining in a recovered state 

or remaining in an unresolved state and this is depend upon the temperature, alloying 

elements present in steel and the amount of reduction. It is also reported that the 

recovered ferrite has no unfavourable toughness characteristics, the recrystallised fine 

ferrite could increase the toughness but the unresolved hardened ferrite would cause a 

negative effect on the toughness. The remaining austenite would transformed to ferrite 

when the temperature has drop below the a /y  transition temperature.

O<D

Q.

Figure 6.1: The microstructure development developing during finish rolling in the two- 

phase region o f HS-IF steels.

According to the micrographs shown in figure 5.2b, it can be deduced that finishing 

rolling in the a. + 7  region, results into markedly different microstructure from those 

developing at a higher finishing temperature, which consist of a very fine transformed 

ferrite grain with islands o f recrystallised ferrite, where recrystallised fine ferrite is shown
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to develop parallel to the deformation direction. The grain sizes when measured are 

proven to be refined compared to these observed in figure 5.2a, which indicates 

micrographs developed when the finishing temperature was set at 950°C or 850°C. The 

full process of development of such a microstructure when deformation was performed in 

the a + 7  stability field as shown in figure 6 .1 .

Similar microstructures has also been observed in the Ti-V HS-IF steel. In Figure 5.3 a 

set of micrographs is presented of the Ti-V HS-IF microstructures obtained when variable 

finishing temperatures (a) 950°C, (b) 850°C or (c) 800°C, were employed followed by 

controlled cooling at cooling rate of 10°C/s to the coiling temperature of 750°C, followed 

by water quenching to room temperature.

When samples were finished rolling at 950°C, a fully recrystallised ferrite grain is 

developed, as shown in figure 5.3(a), due to the finishing deformation carried out in the 

recrystallised austenite region.

When the finishing rolling temperature was set at 850°C, similar microstructures, as in 

the case of the Ti only steel were observed, i.e. a mix of ferrite and elongated ferrite 

grains. However, in terms of the grain size, the degree of grain refinement in the Ti-V 

steel is much higher than that observed in the Ti only steel. This provides direct 

experimental evidence that the vanadium addition in the steel is responsible for the 

absence of any retardation of recrystallisation. MT-data calculations presented in figure 

5.15 predict the presence of VC precipitates in the Ti-V steel. Through the experimental 

results obtained on this study, it is hypothesized that these VC particles are responsible 

for the ferrite grain refinement observed.

When the finishing temperature was further reduced to 800°C, the micrographs consisted 

of a very fine transformed ferrite with ‘islands’ of recrystallised ferrite. These 

recrystallised ferrite regions, however, appear to be more elongated than the 

recrystallised ferrite areas that were observed in the Ti only steel. This is attributed to the 

absence of any additional retardation effect by vanadium on the recrystallisation. Ferrite
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nucleates faster when vanadium additions are performed in HS-IF steels. The temperate 

drops below the Ar3 and large ferrite grains are produced which are elongated when the 

sample was deformed. This effect is demonstrated in figure 5.3(c), where large elongated 

ferrite grains are present parallel to the rolling direction.

One of the aims of the study is to establish the effect of finishing rolling temperature on 

the microstructures and grain size of the two IF studied steels. Several sets of 

micrographs are presented for both the Ti only and the Ti-V HS-IF steels. Figure 5.4 

presents a set of micrographs of the Ti only steel employing variable finishing 

temperatures (a) 950°C, (b) 850°C, or (c) 800°C, followed by coiling at 650°C at a 

cooling rate of 10°C/s followed by water quenching to room temperature. Figure 5.6 and 

figure 5.8 present the micrographs for the Ti only steel, which was finished rolled under 

the same conditions as that of figure 5.4 but coiled at 550°C or 450°C.

Figure 5.5 presents the micrographs for the Ti-V steel employing variable finishing 

temperatures, ie (a) 950°C, (b) 850°C, or (c) 800°C followed by controlled cooling at the 

rate of 10°C/s to a coiling temperature of 650°C, followed by water quenching to room 

temperature. Figure 5.15 and figure 5.17 present the micrographs of the Ti-V steel 

finished rolled under the same conditions as those described in figure 5.5 but coiled at 

either at 550°C or 450°C.

From the sets of these micrographs, it is evident that when the temperature was set at 

950°C, fully recrystallised ferrite grains were obtained. At 850°C, a mix of ferrite and 

elongated ferrite grains were obtained. Further lowering of the finishing temperature to 

800°C resulted in microstructures, which were significantly different. The micrographs 

consisting of very fine transformed ferrite grains with ‘islands’ of recrystallised ferrite, 

which are now evident. It is also evident that vanadium additions in the HS-IF steel is 

efficient in producing a refined ferrite microstructure.

Table 5.1 and figure 5.10 present the hardness evolution results versus the finishing 

temperature when variable coiling temperatures are employed, observed on the Ti only
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HS-IF steels. The curves in figure 5.10 show that higher hardness values are obtained 

when the finishing temperature is decreased from 950°C to 800°C, regardless of the 

applied coiling temperature. In the case of the Ti-V HS-IF steel, a gradual increase in 

hardness values is also observed, when the finishing temperature decreases form 950°C to 

850°C (table 5.2 and figure 5.11), irrespective of the coiling temperature employed. The 

effect of the finishing temperature on the hardness evolutions is believed to be directly 

related to the grain size and the associated microstructural changes observed. As 

observed in figure 5.2 -  4.9, the grain sizes of (a)s are coarser compared to (b)s and (c)s. 

It is revealed that hardness increases when a finer grain size is obtained. However, the 

standard deviation of hardness at a finishing temperature of 800°C is much higher than 

that obtained at lower finishing conditions as observed on both the Ti only and the Ti-V 

steels (tables 4.1 and 4.2). This is due to the uneven and complex grain sizes observed in 

the recorded microstructures at 800°C.

6.3 Effect of the Coiling Temperature.

The coiling temperatures employed during the hot rolling simulations studied, could 

influence the grain size and precipitate morphology of the steel product. In the present 

study all samples were coiled in the ferrite region, therefore, only pure ferrite 

microstructures were observed under all coiling temperatures. Barrett and Wilshire [80] 

have reported that lowering the coiling temperature could result in a finer grain, but the 

finest grain size have been observed at the highest coiling temperature for the Ti only 

steel (750°C) and second highest coiling temperature for Ti-V steel (650°C) in the present 

study (as shown in table 5.5).

This is attributed to the fact that samples were rapidly water quenched to room 

temperature once samples have reached the designated coiling temperate and also due to 

the fact that the controlled cooling rate (10°C/s) applied from the finishing temperature to 

the coiling temperature is lower than water spraying. Therefore, it has been proven in the
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present study that rapid cooling at a higher ferrite temperature region could produce a 

finer ferrite microstructure. According to the hardness results shown in table 5.3 and 

figure 5.12, it is evident that quenching from the higher coiling temperature increases the 

hardness, regardless of the applied finishing temperature. On the other hand, it is also 

demonstrated that the finer grains obtained, are responsible for the higher hardness values 

of the steels.

In the case of the Ti-V HS-IF steels samples, the finest grain sizes (table 5.5b) and 

highest hardness values (table 5.4 and figure 5.13) are obtained at a coiling temperature 

of 650°C. This result is associated with precipitation strengthening by vanadium carbide 

(VC) particles. As predicted by the MT-Data calculations (figure 5.15); there is lack of 

VC formation at 750°C, hence, rapid cooling from this coiling temperature provides 

insufficient time for VC to form and result in coarser grain sizes and lower hardness 

values which (table 5.5b and 4.4).

As predicted by MT-Data calculations, significant quantities of vanadium carbide (VC) 

particles are expected to have formed at 650°C. Water quenching from this coiling 

temperature could therefore result in an optimisation of grain refinement and 

precipitation strengthening. Consequently the optimum coiling temperature for the Ti-V 

steel has been found to be at 650°C. It is evident that the hardening mechanism and the 

mechanical properties of steels are not solely depend on the grain refinement but also due 

to the presence of alloying elements and the active precipitation strengthening 

mechanism.
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Chapter 7

Conclusions

1. It has been revealed that in both the Ti only and the Ti-V HS-IF steels that 

when the finishing temperature was set at (a) 950°C, a purely recrystallised 

uniform ferrite microstructure has been observed. It is considered that 

transformation has taken place within the austenite recrystallisation region. 

When the finishing temperature was set at 850°C, ferrite nucleates on the 

austenite grain boundaries and any present deformation bands. Hence, a mix 

of fine ferrite and elongated ferrite grains are observed. It is considered that 

the finishing temperature was set below the austenite recrystallisation start 

region. While, when deformation was carried out at a finishing temperature of 

800°C, markedly different micrographs consisting of very fine transformed 

ferrite grains with ‘islands’ of recrystallised ferrite were observed. It is 

considered that deformation has taken place within the a + 7  region.

2. It has also been revealed that the presence of vanadium additions in the steel is 

responsible for the interstitial free characteristics without any retardation of 

recrystallisation. The presence of vanadium carbide (VC) particles is 

hypothesized to have a positive effect in controlling the ferrite grain size, 

since the finest ferrite grains were obtained on the Ti-V HS-IF steel grade, 

regardless of the finishing and coiling temperatures employed.

3. Hardness is demonstrated to be increasing with lowering of the finishing 

temperature in both the Ti only and the Ti-V HS-IF steels and this is reflected 

in the finer grain sizes obtained. Standard deviation of hardness values for
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deformations carried out at a finishing temperature at 800°C are much higher, 

due to the uneven and complex grains observed in the microstructures.

4. Higher hardness values are obtained at higher coiling temperature due to 

faster cooling from the coiling temperature to room temperature for the Ti 

only steels. In the Ti-V HS-IF steels optimum hardness values were measured 

at a coiling temperature of 650°C. It is hypothesized that the presence of VC 

precipitates particles could efficiency contribute to a hardness increase, via a 

precipitation strengthening mechanism.

5. It is evident that the mechanical properties of HS-IF steels employed in the 

present study are dependent on the microalloying elements used, involving not 

only precipitation strengthening but also grain refinement.
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Chapter 8

Suggestions for Further W ork

In order to optimize further the processing route of HS-IF grades based on combined Ti- 

V additions, it would be advantageous to perform additional experimentation correlating 

the mechanical properties of cold rolled and annealed HS-IF strips, that have been 

subjected to the hot rolling processing route identified in the present study, and their 

obtained microstructures.

Thermomechanical processing can be further investigated with the effect of varying the 

various cooling rates. The control of cooling rates from the coiling temperature to 

finishing temperature and from the finishing temperature to room temperature plays an 

important role on the mechanical property and microstructures attained. The applied 

cooling rates could also determine the precipitation characteristics in the experimental 

steel studied.

The effect of deformation and strain rate are also important to determine the mechanical 

properties of steel. Applying variable amounts of deformation and strain rates could help 

to further refine the ferrite grain size of IF-HS steel and this in turn could lead to positive 

effect on the attained mechanical properties.

Additional work could focuses on above-mentioned processing parameters to enhance the 

quality of strip steel products and maximise the benefits of ferritic hot rolling.
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