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Abstract

Introduction: Obesity and asthma are associated but the mechanism is poorly understood. 
Enhanced systemic inflammation may underlie the obesity-asthma paradigm. Although there is good 

mechanistic data that obesity augments the immune response as well as promoting immune 

dysregulation by reducing regulatory T cell numbers, there is little work relating this to obesity and 

asthma.

Methods: A case-control study examined 6 groups of pre-menopausal women (n=84): non-obese, 
overweight and obese individuals with and without asthma. Measures of adiposity and lung function 

were taken and peripheral blood collected during the first 7 days of the menstrual cycle. Innate 

immune parameters measured included: full blood count and differential; chemiluminescence 

recorded whole blood reactive oxygen species; neutrophil related cytokines; neutrophil and 

monocyte activation markers by flow cytometry, and LPS induced whole blood cytokine responses. 
Insulin resistance, adipokine levels and free fatty acid levels were recorded. Dendritic cell and 

lymphocyte subtypes including FoxP3+ regulatory T cells (Tregs) were quantified by flow cytometry 

and PHA-induced cytokine responses measured in whole blood.

Results: Obesity and asthma appeared to have synergistic effects with regards to circulating 

neutrophil count, plasma IL-6 and leptin with obese asthmatics having the highest levels. Reactive 

oxygen species production followed a similar trend. Increasing BMI within asthmatics was associated 

with a reduction in eosinophils and myeloid dendritic cells, and increased PHA-induced IFNy. Obesity 

across the entire study group was associated with increased neutrophil counts and neutrophil 
related cytokines, reduced FoxP3+Tregs and increased PHA-induced IL-17 response.

Conclusions: Systemic changes in immunity occur in obesity and asthma; some of these are 

additive. Within asthmatics, obesity is associated with responses suggesting T helper 1 (Thl) rather 
than Th2 bias. Obesity-associated systemic changes in immunity might encourage a loss of immune 

tolerance. These findings suggest that obesity might mediate its effects in asthma through systemic 

inflammatory mechanisms.
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Chapter 1 

Introduction



1.1 Overview

Asthma is one of the most important and common chronic diseases in the UK affecting 1 in 9 adults
[I]. It is a chronic inflammatory disease of the conducting airways characterised by variable airflow 

obstruction, inflammation and bronchial hyper-responsiveness (BHR). The pathogenesis is far from 

well understood but involves complex gene-environment interactions. Atopy is the greatest risk 

factor for asthma development and is defined as a genetic pre-disposition towards a type I 
hypersensitivity reaction against common environmental antigens (allergens), manifested clinically 

by epithelial inflammation. However, aeroallergen sensitisation is only estimated to contribute 

towards 30% of the disease, suggesting that the remainder is an inflammatory response to an as yet 
unidentified trigger [2].

Whilst atopic asthma has been traditionally thought of as a T-helper 2 (Th2) mediated disease, it is 

increasingly recognised that changes in innate immune system priming and behaviour determine the 

resultant adaptive immune response. The hygiene hypothesis for allergy suggests that a lack of early 

childhood exposure to microbial triggers: pathogen associated molecular patterns (PAMPs), primes 

the innate immune system to promote a Th2 biased adaptive immune response [3]. Dendritic cells 

are important primers of the adaptive immune response and may play an important role in asthma 

pathogenesis [4]. Whilst Thl/Th2 skewing may play a role in atopic disease, it is increasingly 

recognised that other Th subsets are important [5], including regulatory T cells (Tregs) [6].

The heterogeneity of asthma is further highlighted by the existence of distinct clinical phenotypes. A 

phenotype is defined as "the visible characteristics of an organism resulting from the interaction 

between its genetic makeup and the environment" [7]. Although it has been apparent to clinicians 

for many years that different clinical presentations exist within the syndrome of asthma, recent 
cluster analyses have more clearly defined these entities [8]. These phenotypes differ in their clinical 
features in terms of age of onset, sex predominance, degree of symptoms and response to 

treatment. This is likely to reflect different underlying pathophysiological processes, with the type of 
airway inflammation and its concordance with patient symptoms varying between phenotypes [8]. 
Such distinct pathophysiological mechanisms underpinning different asthma phenotypes now 

termed "endotypes", warrant further exploration as this could lead to the development of more 

personalised and effective treatments [9].

Globally there is an obesity epidemic with 1.6 billion individuals affected in 2006 [10]; the situation is 

predicted to escalate and it is estimated that by 2050 up to 60% of adults in the UK will be obese
[ I I ] .  Asthma is a common co-morbidity amongst the morbidly obese with a comparable prevalence 

to more traditionally obesity-related disorders such as diabetes [12]. Cross-sectional and 

subsequently longitudinal studies have repeatedly shown that obesity is associated with increased 

asthma prevalence [13] and incidence [14] and the relationship appears to be stronger in women 

[13, 15]. Two cluster analyses have identified an obese female predominant phenotype 

characterised by an absence of eosinophilic airway inflammation [8, 16] and in keeping with this, 
studies suggests that these individuals have a poor response to inhaled corticosteroid (ICS), the 

cornerstone of traditional asthma therapy [17,18]. Therefore the underlying pathophysiology needs 

to be determined in order to adequately manage this increasingly common disease phenotype.
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The mechanism which underpins the obesity-asthma association is not well understood. Obesity has 

a number of systemic effects which could be of relevance to asthma and is associated with co
morbidities including gastro-oesophageal reflux disease and obstructive sleep apnoea which could 

mimic or exacerbate this disease [19]. However, over diagnosis of asthma is not a greater issue in 

the obese than the wider population [20]. In the obese state, adipose tissue becomes infiltrated with 

pro-inflammatory macrophages, and systemic changes are seen in the numbers and activation of 
cells derived from the innate arm of the immune system [21]. Hormones (adipokines) released by 

adipose tissue, the most studied being leptin can also impact on innate and adaptive immunity and 

more specifically regulatory T cells [22] adipokines may also have more direct effects on airway 

function [23]. Studies in humans to date suggest that whilst leptin may associated with asthma this 

appears to be independent of BMI [24].

The idea that obesity therefore mediates its effects on asthma through systemic inflammation is an 

appealing one, but work to date, whilst finding evidence of changes in systemic immunity with 

obesity and asthma, have shown them to co-exist rather than interact in a synergistic fashion [25]. 
The larger studies have not always used stringent asthma definitions [26], a potential limitation in a 

disease with a high rate of mis-diagnosis albeit independent of BMI [20]. In many cases these studies 

have not been able to control for a large number of confounders which is particularly important in 

asthma where disease activity will fluctuate, and in obesity which can be associated with a vast 
number of co-morbidities. The effects of sex hormones have also not been taken into account, which 

is of particular importance in a phenotype with a preponderance for pre-menopausal women. Small 
well-designed studies have tried to address this question and, for the limited number of parameters 

examined, have not shown evidence that systemic immunity plays a role [25]. However in perhaps 

the most tightly controlled of these studies, the majority of patients were exacerbating at the time 

of blood sampling and therefore work is needed to focus on these individuals during periods of 
disease stability [25].

What seems clear from clinical data is that whatever the underlying pathophysiology, at least within 

the airways, it is not typical eosinophilic inflammation as evident in atopic disease when measured 

using sputum cell counts [25] or exhaled nitric oxide (FeNO) [27-29], There is good mechanistic data 

that innate immune function is altered in obesity [21], including systemic changes in numbers and 

activation markers of neutrophils [30] and the monocyte/macrophage compartment [31] which 

could have relevance in asthma. Furthermore, the response of innate cells to danger signals such as 

PAMPs, including lipopolysaccharide (LPS) could also be enhanced in the obese [32] and to the 

candidate's knowledge innate immunity has not been examined in obese asthmatics. Dendritic cells 

could also play a role and early work suggests that obesity might modify numbers and function of 
these cells [33]. In addition, Tregs may also be down regulated in obesity and its related diseases 

[34] previous work to date suggests that this area of immune regulation is important in asthma 

pathogenesis, although studies have been limited by a lack of surface markers. These areas of 

immunity have not been addressed in this asthma subpopulation.
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1.2 Study aims
The aim of this work is to perform a case control study in normal, overweight and obese 

premenopausal women with and without asthma confirmed by objective criteria. It will attempt to 

control as far as possible for potentially confounding co-morbidities including the effects of cyclical 
hormonal changes. Whilst the participants are stable and free of exacerbation, the study will 
examine whether detectable changes in systemic immunity can be observed in the obese asthmatics 

compared to the other groups with a specific focus on the following areas which have not been 

examined to date.

1.2.1 Study hypotheses

1: Systemic changes in innate immunity are important in the obese asthma phenotype.

2: Obesity in asthma is associated with changes in adaptive immunity including a reduction in 

circulatory Tregs.

3: Changes in systemic immunity seen in obese asthmatics are associated with changes in adipokine 

levels.

1.2.2 Research objectives

•  To examine the innate immune system in obese females with and without asthma looking at 
whether there are changes in the number or percentage of circulating leukocytes, markers 

of neutrophil and monocyte activation, and the cytokine response to an inflammatory 

stimulus in the form of LPS.

•  To study systemic markers of long term oxidative stress (TBARS and TAOS) in these 

individuals as well as acute reactive oxygen species (ROS) response to a non-specific 

inflammatory stimulus.

•  To study metabolic parameters which might impact on immunity including; adipokines
encompassing those in which there has been very little work; insulin resistance and free
fatty acids.

•  To measure changes in dendritic cell populations.

•  To examine changes in adaptive immunity including the percentage of circulating Tregs.
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Chapter 2 

Background



2.1: Asthma overview

Asthma is a chronic, complex disorder of the airways. Salter, a London physician, in 1860 described a 

condition characterised by "Paroxysmal dyspnoea of a peculiar character with intervals of healthy 

respiration between attacks" [35]. There are no gold standard criteria for asthma and the diagnosis 

is a clinical one. Central to more modern definitions are the presence of chronic airways 

inflammation, recurrent and variable symptoms and airflow obstruction that is reversible either 

spontaneously or with treatment [36]. Asthma is a disorder of the conducting airways (bronchi and 

bronchioles) within the lungs, therefore affecting approximately the first 15 generations of these but 
the disease can spread proximally and distally with time [37]. Inflammation is a cardinal feature; the 

release of potent mediators causes constriction of the airway smooth muscle and airway wall 
oedema with thickening of up to 300%, accounting for the characteristic variable airflow obstruction 

seen. As this continues chronically, changes to the structure of the airway wall are seen in a process 

called remodelling [38].

Asthma is common with approximately 1 in every 9 adults in England and Wales affected [1]. 
Mortality rates from the disease are continuing to fall but it is estimated that 15 individuals per 
million die from the condition. Atopy is the greatest risk factor for asthma development, However it 
is estimated that aeroallergen sensitization contributes to only 30% of the disease [2]. This 

observation suggests that the vast majority of asthma results from inflammatory response to as yet 
unidentified triggers.

The aetiology of asthma is not well understood but it is clear that many sufferers have a genetic 

susceptibility which interacts with environmental factors at critical stages in early life (Table 2 taken 

from Pynn et al [39]), resulting in disease expression. Early twin studies provided evidence that 
genetics were important in asthma development with the observation that concordance rates are 

significantly higher in monozygotic than dizygotic twins [40]. Some studies estimate the heritability 

of asthma to be as high as 60-70%, particularly in pre-school children [41, 42]. No single gene has 

been identified that can explain the majority of asthma cases or determine severity, however linkage 

analysis and more recently, genome wide association studies have suggested that more than 100 

genes might contribute to asthma risk with the impact of each being relatively small [43]. Such gene- 
environmental interactions result in inappropriate activation of the immune defences within the 

lung resulting in perpetual inflammation.
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Allergens House dust mite Prospective •
•
•

Sensitization increases asthma risk
Early childhood exposure increases asthma risk
Minimal threshold level of allergen exposure [44]

Animal allergens: Prospective • Exposure decreases sensitization to other aeroallergens
Cat/Dog cohort • No protective effect on asthma [45]

Pollutants Nitrogen dioxide (N 02) Prospective • Proximity to  roads - elevated N 02, T  asthma risk [46]

Diesel exhaust particles Mechanistic •
•

Diesel exhaust particles promote dendritic cell maturation [47] 
Diesel exhaust particles cause airway epithelial activation and 
pro-inflam m atory cytokine release [48]

Viral
infections

Prospective
cohort

• Increased infant viral infections - -T risk of asthma and atopy [49]

Smoking Active smoking Prospective
cohort

• Smoking - T  risk of asthma development [50]

Second hand smoking Prospective
cohort

•

•

Prenatal maternal smoking - T  asthma risk [51]

Adult passive smoking - T  doctor diagnosed asthma [52]

Medication
use

Antibiotic use in 
childhood

Meta-analysis of 
prospective and 
retrospective 
studies

• Childhood antibiotic use in first year o f life- T  asthma risk [53]

Hormonal replacement 
therapy

Prospective • HRT use - T  asthma incidence [54]

Obesity Prospective •
•

Dose dependent effect between BMI and asthma risk [14] 
W eight loss studies improve disease control [55]

Early
menarche

Cross-sectional
Longitudinal

• Early menarche - Tasthm a risk [56]

Peri-natal Maternal diet Prospective
cohort

•
•

TM ate rna l vitam in E - -T child wheeze in second year o f life [57] 
Maternal vitam in D - T  wheeze [58]

Prematurity Retrospective
meta-analyses

• Prematurity - higher asthma risk [59]

Breast feeding Cross-sectional • Breast feeding - 4, non atopic wheeze, no effect on atopic 
wheeze [60]

Table 2.1: Summary of the main environmental factors implicated in the aetiology of asthma. The

findings listed here are taken from some of the main studies examining this area. The papers listed are 

predominantly observational and data in many o f these areas is conflicting, reflecting the complex 

nature of this area.
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2.2: The immune system and the lung
The immune system consists of physical barriers, specialised cells and molecules which protect the 

body from harmful environmental organisms (pathogens). This system is nowhere more pertinent 
than in the lung, which with a surface area of >100m2 comes into contact with >10,000 litres of 

inhaled air per day. The immune system can be divided into two arms. The innate immune system is 

evolutionarily ancient and provides an immediate response to potentially harmful pathogens. It 
recognises generic molecules (pathogen associated molecular patterns (PAMPs)) found in various 

types of micro-organisms through a limited number of germ-line encoded receptors termed pattern 

recognition receptors (PRR) [61]. The adaptive immune system provides a temporally delayed 

response which is highly specific, recognising peptides unique to a particular pathogen by the use of 
an almost infinite number of randomly generated, clonally expressed receptors [62]. Upon 

stimulation, clonal expansion of these cells results in immunological memory, enabling a much faster 
specific response on subsequent encounter of the same antigen. The two arms of the immune 

system therefore complement each others' strengths and weaknesses; the innate immune system 

with its fast yet non-specific response which can lead to collateral tissue damage and the acquired 

immune system with its highly specific response conferring memory and limiting neighbouring tissue 

damage at the expense of a temporal delay.

2.2.1 Innate immunity

The innate immune system encompasses physical and chemical barriers preventing the entry of 
noxious substances across surface epithelia. Via the use of PRRs, it produces non-specific responses 

in the form of inflammation and activates the adaptive immune system. PRRs detect the principal 
components of pathogens; pathogen associated molecular patterns (PAMPS). There are a number of 
families of PRRs expressed by cells of the innate immune system; these include those families that 
consist of trans-membrane receptors - Toll like receptors (TLRs) and C-type lectin receptors (CLRs), 
and those with cytoplasmic receptors such as nucleotide-binding oligomerisation domain receptors 

(NLRs) and retinoic acid-inducible gene (RIG) like receptors (RLRs) [63]. The most widely described 

family of PRRs are the TLRs. TLRs were originally identified as being important in the dorsal-ventral 
patterning of the fruit fly, Drosophila melanogaster, but were subsequently found to be important 
in recognising a variety of PAMPs [63]. In humans 11 TLRs have been identified to date [64]. 
Activation of these receptors initiates an extensive signal transduction cascade leading to activation 

of nuclear transcription factor kB (NFkB), and expression of pro-inflammatory cytokines including 

tumour necrosis factor alpha (TNFa), interleukin lp  (IL-ip), IL-6 and IL-8 [65, 66].

2.2.1 (i) The airways’ epithelium

At the most superficial level, surface barriers exist at environmental interfaces preventing pathogens 

entering the body. The conducting airways of the lung are lined by a stratified epithelium which is
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bound together by tight junctions: complexes consisting of interacting proteins and receptors which 

prevent noxious molecules from penetrating the epithelium [67]. Mucosal epithelia are wet surfaces 

lined with mucus, providing further protection [68]. The airway epithelium consists of ciliated 

columnar epithelial cells and secretory cells (Clara and Goblet cells) [69]. The secretory cells 

continuously produce mucin, a heavily glycosylated protein which forms a gelatinous layer which is 

removed through the continuous beating movement of cilia located on the columnar epithelia cells 

[70]. In the larger airways, sub-mucosal glands also contribute towards this mucous layer. The 

mucous layer forms a physical barrier which is up to 10pm thick; this glycoprotein rich substance 

prevents microbes recognising and binding to surface epithelial glycoproteins and contains 

antimicrobial products (lysozymes, defensins and IgA) and immunomodulatory molecules (cytokines) 
[69]. Diseases of abnormal mucous composition such as cystic fibrosis [71], and impaired mucous 

clearance, such as primary ciliary dyskinesias [72], result in chronic infection and inflammation 

within the airways leading to irreversible dilatation (bronchiectasis), illustrating the importance of 
this basic defence mechanism. The epithelium is also bombarded constantly with noxious 

substances, mediating their tissue damage through the generation of free radicals, and is well 
equipped to deal with such insults utilising antioxidant enzymes and free radical traps [73],

In addition to providing a mechanical and chemical barrier, the airway epithelium expresses TLRs 

[64]. Activation of these receptors on the epithelial surface results in the expression of inflammatory 

cytokines including TNFa and IL-8 [65, 66], placing the epithelium physically and functionally in the 

ideal position to coordinate an inflammatory response to noxious stimuli.

2.2.1 (ii) The inflammatory response

Inflammation is a protective response which promotes both the removal of pathogens and tissue 

healing [74]. It is characterised clinically by pain, swelling, erythema, heat and loss of tissue function. 
These clinical manifestations reflect increased vascular permeability and inflammatory cell infiltrate 

at the tissue level. Cytokines including TNFa, IL-lp and IL-6 orchestrate the inflammatory response 

and their production is regulated at a transcriptional level through the activation of PRRs. However, 
IL-lp goes through a two step process involving the synthesis of a pro-IL-ip form of the molecule in 

response to TLR signalling which is then cleaved to produce the active cytokine. Cleavage takes place 

via a complex containing the enzyme caspase 1, referred to as the inflammasome [75].

The inflammatory response involves the influx of a number of white blood cells, or leukocytes, 
derived from myeloid progenitors (Figure 2.1) which form part of the innate immune system.
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Figure 2.1: Schematic representation of haematopoeisis. M ulti-potentia l haemopoetic stem 

cells differentiate into common myeloid and lymphoid progenitors. Cells of the innate immune 

system are typically o f myeloid lineage (NK cells being the exception to this), whilst 

lymphocytes o f the adaptive immune system develop from lymphoid progenitors. B 

lymphocytes subsequently mature in the bone marrow whilst T lymphocytes mature in the 

thymus.

Macrophages are the most abundant immunologically active cell in the lungs. They are phagocytes 

and upon activation via PRRs serve to eradicate the lung of noxious substances, pathogens and 

debris. As well as resident macrophages in the lung, others are recruited from the blood from 

circulating pro-inflammatory CD16+ monocytes [76]. This mature subset o f monocytes accounting for 

5-8% o f all those circulating, is responsible fo r cytokine production in acute (e.g. sepsis) and chronic 

inflam matory (e.g. tuberculosis) processes [77]. Two classes o f macrophage reside in the lung and 

develop according to the cytokine environment to which they are exposed. Exposure to interferon 

gamma (IFNy), predominantly produced by T helper 1 cells (Th l) (see section 2.2.4), results in the 

development o f pro-inflammatory M l macrophages, which are efficient at phagocytosis and antigen 

presentation [78]. M l macrophages are im portant in the response to intracellular bacteria including 

Mycobacterium tuberculosis. The T helper 2 (Th2) cytokines IL-4 and IL-13 promote the development 

o f an Alternatively Activated Macrophage (AAM) or M2 macrophage which has traditionally been 

thought to have anti-inflammatory properties, but may also have a role in defence against parasites 

[79],
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Eosinophils are granulocytes and contain highly toxic granular proteins which are released upon 

their activation [80]. IL-5 along with IL-3 and granulocyte/macrophage colony stimulating factor 
(GM-CSF) are important in promoting recruitment of eosinophil progenitor cells from the bone 

marrow and their maturation [81]. Eosinophils are important in Th2 related immunity, they respond 

to helminth infections [82] and are also important in the pathophysiology of atopic conditions 

including atopic eczema [83], allergic rhinitis [84], and asthma (see section below (2.3.1 (ii)). Upon 

activation they release a plethora of active mediators including major basic protein, cationic protein 

and eosinophil peroxidise, as well as a number of cytokines and chemokines. Basophils are also 

important in the response to helminth infections and can function as antigen presenting cells 

initiating Th2 responses [85].

Mast cells, named "mastzellen" - meaning well fed cells reflecting their stuffed cytoplasm - by Erlich 

in 1876, reside in connective tissue in the skin and at mucosal surfaces including the lung; they do 

not circulate in the blood [86], Mast cells differentiate in the bone marrow in response to stem cell 
factor (SCF) and Th2 cytokines IL-4, IL-5 and IL-9 [87]. Upon activation mast cells release granules 

which containing preformed mediators including histamine, and newly synthesised arachidonic acid 

metabolites, including prostaglandins (PGD2) and leukotrienes (LTC4), as well as cytokines (TNF-a, 
IL-4, IL-5, IL-6, IL-13 and IL-13) [86].

Neutrophils are one of the most abundant cells of the innate immune response and have strong 

phagocytic and antimicrobial properties; they also recognise pathogens using PRRs. In addition, they 

are able to generate reactive oxygen species (ROS), which can damage DNA, proteins and 

lipoproteins and they arrive at sites of inflammation within a few hours [88]. The blood neutrophil 
count is tightly regulated by a number of cytokines including G-CSF, IL-17 and IL-23 [89] (see section
5.1.1 for more details). IL-23 is a cytokine produced by macrophages and dendritic cells in response 

to an inflammatory stimulus via NFk B and induces IL-17 expression by Thl7 cells (see section 2.2.3 

(ii)) [90]. IL-17 in turn is a potent inducer of G-CSF production which promotes neutrophil 
differentiation at the level of the bone marrow [91]. Humans deficient in G-CSF develop profound 

neutropenia [92],

ROS are molecules which contain unpaired electrons and react vigorously with other chemical 
compounds altering their structure and function [93]. ROS are generated as part of normal 
metabolism and are also produced by cells including neutrophils and monocytes as part of the innate 

immune response. Oxidative stress arises due to an imbalance between ROS production and 

counteracting antioxidants and can cause oxidative injury resulting in further inflammation [94].

2.2.2 Dendritic cells

Whilst the inflammatory response is immediate, it is also non-specific and if allowed to continue in 

an unregulated manner would result in widespread tissue damage. A more specific and targeted 

response by the adaptive immune system not only confers memory but also limits collateral
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damage. However, this requires cells which are activated quickly via PRR but then are able to 

present a specific peptide (antigen) to the adaptive immune system. Dendritic cells (DCs) are ideally 

placed for this role, being present in areas of the body in contact with the external environment, 
including the lungs and the gut. These cells, located just beneath the epithelial cell layer, are able to 

extend their finger-like processes through the epithelial junctions to directly sample the 

microenvironment [95]. Knowledge of the anatomical distribution of DCs in humans is incomplete. 
Conventionally they are divided into pro-inflammatory myeloid dendritic cells (mDCs), which consist 
of type I mDCs, type II mDCs and plasmacytoid dendritic cells (pDCs) and can be differentiated by cell 
surface markers (Table 6.2) [96], Myeloid dendritic cells constitute 0.5%-1.0% of mononuclear cells 

within the circulation and share a common lineage with macrophages and monocytes, whereas pDCs 

represent <0.3% of circulating mononuclear cells and express lymphoid development markers [97]. 

DCs also form part of the innate immune response and in the airways, are activated by inhaled 

substances through a variety of PRRs including TLRs [98]. Upon activation they are able to take up 

antigen, migrate to lymph nodes, and present antigen in association with Major Histocompatibility 

Complex (MHC) class I and II molecules thus activating the adaptive immune response [99]. They are 

also able to polarise the type of adaptive response generated through the release of instructive 

cytokines including IL-12, IL-10, transforming growth factor 3 (TGF-3) and IL-6, which influence the 

type of T cell polarisation seen [100] (see section 2.2.3 (i)). DCs therefore bridge the two arms of the 

immune system.

2.2.3 Adaptive Immunity

The adaptive immune system involves B and T lymphocytes, derived from lymphoid progenitors 

(Figure 2.1). These cells circulate through the blood and lymphatics to lymph nodes which they enter 

through high endothelial venules [101]. Here they encounter antigen presenting cells, including DCs 

which ordinarily reside in tissue. Unlike cells of the innate immune system they express highly 

specific receptors capable of recognising a discrete antigen in the context of MHC class I or class II.

2.2.3 (i) T lymphocytes

T cells are produced by the bone marrow but mature in the thymus as thymocytes. T cells express a 

T-cell Receptor (TCR) which is a heterodimer consisting of 2 subunits. The majority of T cells express 

an a3 receptor; however some, which are usually resident in mucosal tissue, express y6 receptors. 
Whilst in the thymus, DNA encoding the TCR undergoes somatic rearrangement [102], resulting in a 

vast repertoire of cells, each expressing a different TCR capable of recognising a discrete antigen. 
Conventional T cells recognise such peptides presented in the cleft of MHC molecules. Within the 

thymus, developing thymocytes encounter self antigen presented within MHC on thymic epithelial 

cells: thymocytes incapable of recognising any self antigen presented in MHC die (negative selection) 
whilst those which react too strongly to self antigen are also deleted (positive selection) [103]. T cells 

can be divided broadly into two major subsets according to expression of different surface 

glycoproteins; cluster of differentiation 8 (CD8) expressing T cells and CD4 expressing T cells. [104],

12



CD8+, or cytotoxic T (Tc) cells recognise antigen presented in the cleft o f MHC class I molecules which 

are expressed on all nucleated cells w ithin the body [104]. Ordinarily these molecules express self 

antigen generated through protein synthesis w ithin the cell, however upon infection w ith a virus 

they will begin to express foreign antigen which is recognised by a specific Tc cell. Through the 

production of mediators such as IFNy, perforin and granzyme, they destroy virally infected cells [105] 

and also respond to cancerous cells, such that novel treatments are being developed to augment 

the ir activity in malignancies [106].

IL21/IL-23
IL-6/TGF-0

CXCR3 CCR4 CCR8 CCR8 CCR4

IFN-Y

*
Macrophage

IL-4/IL-5
IL-9/IL-13

Eosinophil

IL-9

M ast cell

IL-10/
TGF-0

T-lymphocyte

IL-17
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Figure 2.2: Schematic of CD4+ T cell subsets. The local cytokine milieu (shown in red) leads to 

the activation of specific transcription factors (shown in white) which result in the 

d ifferentiation of different CD4+ subsets. These subsets express d ifferent CC-chemokine 

receptors (CCR, shown in green) and can be identified by the ir cytokine signature (shown in 

purple). These cytokines act on target cells (bottom row) which influence the type of 

inflammatory response seen.

CD4+, or T helper (Th) cells recognise antigen bound to HLA class II molecules expressed on 

professional antigen presenting cells, although some exceptions to this have been noted [107]. Class 

II molecules present proteins from bacterial, fungal and helm inth infections, degraded in endosomal 

compartments. CD4+ T cells lack any phagocytic or cytotoxic activity; rather they "help" other 

components of the immune system. They are fu rther subcategorised according to the ir cytokine
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expression (Figure 2.2); initially two main subsets were identified in animal models [108] and 

humans [109]. T helper 1 cells (Thl) differentiate in response to IL-12 produced by DCs [100] which 

causes up-regulation of the transcription factor T-bet [110]. They secrete IFNy which acts on 

macrophages to increase their phagocytic capacity, important in responding to bacterial infections. 
IL-4 stimulates T helper 2 (Th2) differentiation through the activation of transcription factors signal 
transducer and activation of transcription 6 (STAT6) and trans-acting T-cell-specific transcription 

factor 3 (GATA3). Th2 cells produce the cytokines IL-4, IL-5, IL-6, IL-9 and IL-13[110], a profile 

important in stimulating B cells to produce IgE and promoting maturation of eosinophils during 

helminth infections [111].

In recent years, further novel subsets, again defined by their cytokine expression, have been 

identified. T helper 17 (Thl7) cells discovered in 2005 [112] produce IL-17 [113], a cytokine 

important in neutrophilic inflammation [114]. The factors favouring Thl7 differentiation remain 

unclear (section 7.1.2), however IL-21, IL-23, IL-6, IL-lp and TGF-p play a role in promoting the 

expression of the retinoic-acid-related orphan nuclear receptor gamma T (RORyT) [115]. Thl7 cells 

are helpful in the clearance of extracellular pathogens including fungi and bacteria [116]. However, 
over-expression of these cells and IL-17 have been linked to a number of autoimmune conditions 

including inflammatory bowel disease, psoriasis and systemic lupus erythematosis as well as asthma 

[117].

T lymphocytes with regulatory or immunosuppressive properties, termed regulatory T cells (Tregs), 
are regarded as the principal mediators of immune tolerance, influencing cells of the innate and 

adaptive immune systems [118]. Naturally occurring Tregs exist to prevent an inappropriate 

response to self or harmless antigen and have thus been implicated in many disease states including 

type I diabetes [119]. Previously Tregs have been identified by the surface antigen CD25 (the alpha 

chain of the IL-2 receptor) however the majority of T lymphocytes Will express this surface marker 
upon activation [120]. A more specific marker, the transcription factor forkhead box P3 (FoxP3) has 

been identified and is postulated to have a critical role in Treg development [121]. The IL-7 receptor 
CD127, is also down-regulated in Tregs, and has been used in their identification [122]. Within the 

literature there is sufficient data to suggest that the use of CD25, CD127 and FoxP3 will identify most 
of the naturally occurring Treg population. Treg populations can also be induced during the course of 
the immune response and these include T rl and Th3 cells. T rl lymphocytes are identified by their 

production of IL-10 [123] and the absence of FoxP3 expression [124], whilst Th3 cells produce TGF-p 

in abundance [125]. Tregs exert their effects through a variety of mechanisms (see section 7.1.2 and 

Figure 7.1 for details). They produce IL-10, an immunoregulatory cytokine which suppresses effector 
T cell responses [126] as well as promoting Treg cell development [127]. Tregs also express high 

levels of the IL-2 receptor CD25, and along with other effector T cells require stimulation with this 

cytokine for proliferation and survival [128]. Tregs do not produce IL-2 and they limit the 

proliferation of other effector T cells by competing for this cytokine [129,130]. Tregs can also cause 

cytolysis of effector T cells [131] as well as raising the threshold for dendritic cell activation of T cells 

[132,133].

T-helper 9 cells (Th9) characterised by production of IL-9 [134] (Figure 1.2). Th9 cells differentiate in 

response to TGF-p, which causes upregulation of the transcription factor PU-1, and IL-4 which up- 

regulates the transcription factors STAT6 and subsequently GATA3 and interferon regulatory factor 
4 (IRF4), whilst suppressing FOXP3 expression [135]. Through IL-9 production, enhanced by IL-25
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exposure [136], Th9 cells stimulate proliferation of mast cells and may have a role in autoimmune 

and allergic diseases [137].

2.2.3 (ii) Innate-like T cell subsets

The rapid but non-specific innate immune system primes the slower adaptive response, however 
some T cells exist, which react rapidly to noxious stimuli and promote early recruitment of innate 

cells as well as functional polarisation of the adaptive response. These innate-like T cells include 

Natural Killer T (NKT) cells and y6 T cells. These differ from conventional T cells in the type of TCR 

they express and in that they are not MHC restricted. NKT cells express an invariant TCR 

(V a24 /V p ll) and are often termed invariant NKT (iNKT) cells. Unlike conventional T cells, those of 

iNKT cells recognise glycolipids presented by the MHC class l-like molecule, CDld rather than 

peptides presented by MHC. The TCR used by these cells is highly conserved between species 

suggesting it functions more as a PRR. In keeping with this, activation of iNKT results in an early rapid 

cytokine response forming an important bridge between the innate and adaptive immune systems 

and leads to the production of an array of cytokines, including IFNy and IL-4, which subsequently 

drive the adaptive response [138]. As discussed in 1.2.3 (i) T cells typically express a3 TCR or the less 

common y6 TCR. Like iNKT cells, y6 T cells also recognise non-peptide antigen and are not MHC 

restricted. They have a tropism towards epithelial surfaces where they reside and have a large 

number of roles including protection against pathogens, tumour surveillance, and modulation of the 

innate and adaptive immune responses [139].

2.2.3 (iii) B lymphocytes

B lymphocytes differentiate and mature in the bone marrow. These cells express immunoglobulin as 

a surface receptor and as with the TCR, DNA coding for this undergoes somatic rearrangement, 
leading to numerous B cells each capable of recognising a specific antigen [140]. Unlike T cells, B 

lymphocytes recognise the protein (antigen) in its natural state without any antigen 

processing/presentation. Upon recognition of antigen, B cells proliferate and undergo somatic 

hypermutation whereby the immunoglobulin produced is mutated slightly to increase 

specificity/affinity of binding [140]. Whilst the bulk of these B cells will die once the threat is 

removed, two critical populations survive: plasma cells and memory cells. Plasma cells produce and 

secrete vast quantities of immunoglobulin, and memory cells ensure a faster antigen-specific 

response on re-exposure to the same antigen [141].

Immunoglobulins or antibodies are Y-shaped protein structures with a variable region capable of 
recognising specific antigen (Fab) and a constant region (Fc) which is recognised by plasma 

membrane receptors on innate cells [142]. The specific antibody produced has a number of effects 

useful in immune defence including agglutination of pathogens and activation of the complement 

system which is a series of proteins synthesised by the liver and involved in the innate immune 

defence system. Antibodies also coat pathogens (opsinisation) via the Fab end of the molecule, and 

then bind via the Fc region to cells of the innate immune system to facilitate efficient phagocytosis 

[143].
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2.3 Overview of asthma immunology
Central to the definition o f asthma is the concept of chronic inflammation predominantly affecting 

the conducting airways, although it can spread more distally [37]. It is a multi-cellular process 

involving components of the innate (eosinophils, neutrophils, mast cells, dendritic cells) and the 

adaptive immune systems, namely CD4+ T cells and B cells. The two arms of the immune system 

interact in a bidirectional manner perpetuating a chronic inflammatory process (Figure 2.3 (taken 

from Pynn et al [39])) which in the smaller airways involves mainly the mucosa, spreading to the sub

mucosa in the larger airways [144].
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Figure 2.3: Schematic representation of the epithelial-mesenchymal trophic unit and 

inflammatory cells important in the pathogenesis of asthma. The epithelium releases a number of 

growth factors im portant in the coordination o f airway remodelling. Cytokines are also released 

which promote migration and activation of various inflammatory cells. Th2 cells are pivotal to 

orchestrating eosinophilic inflammation and IgE production; Th9 cells might play a role in local IL-9 

generation. IL-17, produced by T h l7  cells, and IL-8 could have roles in the development of 

neutrophilic disease. Regulatory T cells (Tregs) promote immunological tolerance and are 

decreased in number and function in asthmatics.
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2.3.1 Innate immune activation

2.3.1 (i) The lung epithelium

In asthma the physical barrier of the airway epithelium is compromised and renders the airway 

susceptible to further injury from allergens, pathogens, pollutants and other insults. The asthmatic 

airway epithelium is deficient in anti-oxidant defences [73], tight junctions are disrupted [145] and 

there are signs of epithelial shedding [146] with defective wound repair [147]. Changes in the 

epithelium may be instrumental to the development of the disease rather than a consequence of 

chronic inflammation [148].

Asthma is characterised pathologically by airway wall thickening, smooth muscle hypertrophy, 
goblet cell hyperplasia, mucus hypersecretion, basement membrane thickening and neoangiogenesis 

[110]. These structural changes are all encompassed by the term remodelling and occur due to the 

release of a number of growth factors, many from the epithelium upon insult, which stimulate the 

mesenchymal tissue. These growth factors include TGF-p, epithelial growth factor (EGF), vascular 
endothelial growth factor (VEGF) and neurotrophins [148]. The interstitium within the airway wall is 

dynamic, involving a balance between extracellular matrix (ECM) synthesis and degradation. In 

asthma this balance is tipped towards increased ECM deposition, and resident airway fibroblasts are 

the primary source of this. TGF-p, produced by the epithelium and eosinophils, along with cytokines 

such as IL-13, promote the transition of airway resident fibroblasts into myofibroblasts which 

deposit ECM resulting in sub-epithelial fibrosis [149]. TGF-p is also important in the proliferation of 
airway smooth muscle cells which further contributes to the airway wall thickening [150], whilst 
VEGF promotes neoangiogenesis [151]. Mucus production by the epithelium is also enhanced as a 

result of goblet cell hyperplasia and an increase in the size of submucosal glands [152]. The 

constituents of the mucus are altered and increased amounts of highly viscous mucins such as 5AC 

and 5B are observed [153]. Th2 cytokines such as IL-4, IL-9, and IL-13 are important in driving mucin 

gene expression and goblet cell metaplasia [154].

Through the activation of PRRs on the airway epithelium a number of chemokines and cytokines are 

produced which mediate the local inflammatory response (Figure 2.3). These include thymic stromal 
lipoprotein (TSLP) which promotes dendritic cell maturation, upregulating the expression of 0X40 

which interacts with its ligand OXO40L on CD4+ T cells and is instrumental in the differentiation of 
Th2 lymphocytes [155]. The epithelium also releases chemokines including C-C chemokine ligand 17 

((CCL17), or thymus and activation regulated chemokine (TARC)), and CCL22 which via their action 

on CCR4, promote Th2 accumulation (Figure 2.3). IL-8 and CCL11 (eotaxin) release result in the 

accumulation of neutrophils and eosinophils respectively, whilst IL-33, an alarmin, alerts the immune 

system to stress and expands the Th2 response [156].

2.3.1 (ii) The inflammatory response

Eosinophilic inflammation is considered to be the hallmark of atopic asthma and the quantification 

of eosinophils in sputum is useful in predicting steroid responsiveness and therefore guiding therapy 

or measuring treatment compliance [157]. Increased numbers of eosinophils are released from the 

bone marrow in response to cytokines, including IL-5 produced by Th2 cells and to a lesser extent by
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mast cells. The eosinophils "home in" to the airway in response to chemokines released locally by 

the epithelium including CCL5 (or Regulation on activation normal T cell expressed and secreted 

(RANTES)), CCL7 (previously named monocyte specific chemokine 3 (MCP-3)), and CCL11 [158] 
which act on CCR3 [159]. Through the release of toxic mediators, eosinophils cause significant tissue 

destruction and contribute towards bronchial hyperreponsiveness (BHR). Eosinophils also release 

potent bronchoconstrictors including the lipid derived LTC4, as well as producing cytokines 

fundamental to the remodelling process such as TGF-p [160]. Corticosteroid treatment induces 

eosinophil apoptosis as well as inhibiting their response to survival signals from IL-5 and 

GMCSF[161].

Mast cells promote bronchoconstriction in asthma through the release of pre-synthesised mediators 

including LT C4/ D4 and E4 and prostaglandin D2. Mast cells degranulate in response to cross linking: 
IgE bound to specific Fc receptors at the surface of mast cells bind specific antigen via the Fab region 

inducing cross-linking [86]. Mast cells also release a number of Th2 cytokines, including IL-5 and IL- 
13, which further fuel the inflammatory response and the presence of mast cells in airway smooth 

muscle has been linked with BHR [162]. Mast cells accumulate within the airways of asthmatics due 

to the release of SCF by epithelial cells which acts on mast/stem cell growth factor receptor (or cKIT 

receptor) expressed on the mast cell surface [163], as well as IL-9 produced by Th2 and Th9 cells.

Neutrophils can contribute towards airway inflammation by generating reactive oxygen species 

(ROS) and releasing proteases; this is important in the pathogenesis of lung conditions including 

adult respiratory distress syndrome [164], chronic obstructive pulmonary disease (COPD) [165] and 

severe asthma (see section 5). Elevated blood neutrophil counts are associated with certain asthma 

phenotypes characterised by chronic cough and sputum production [166]. Refractory asthma 

patients with persistent airways obstruction have also been shown to have higher levels of sputum 

neutrophils than those with reversible airways disease who have a sputum eosinophilia [167]. 
Furthermore sputum neutrophil levels are highest in those with severe disease compared with mild 

disease [168] and negatively correlate with lung function markers of airflow obstruction [169]. 
Neutrophils may be recruited to the airways by the chemoattractant IL-8, with sputum neutrophils 

correlating with IL-8 levels in non-smoking adults with persistent asthma [170]. IL-17 production by 

Thl7 cells may also contribute to neutrophil recruitment with increased IL-17 being reported in the 

sputum of asthmatic patients and correlating with IL-8 levels and sputum neutrophils [171].

Asthma is characterised by marked mucosal infiltration by macrophages which have many of the 

phenotypical characteristics of blood monocytes [172] and sufferers also have higher levels of 
circulating CD14+CD16+monocytes [173]. These observations coupled with the fact that local 
macrophage proliferation does not appear to contribute to the increase numbers seen suggests that 

these cells are recruited from the circulation [174]. IL-6 and TNFa, produced by 

monocytes/macrophages also have a direct impact on asthma. Severe asthmatics have higher levels 

of TNFa in BAL fluid, which promotes neutrophilic inflammation [175]. Circulating IL-6 levels are 

increased in atopic asthma and its presence in sputum inversely correlates with FEV1 [176].
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2.3.1 (iii) Oxidative stress

ROS generation is an important mediator of airway inflammation in COPD, smoking asthmatics and 

severe asthma. Asthma is associated with enhanced systemic oxidative stress in adults and children, 
evidenced by higher lipid peroxidation products, higher protein carbonyls, and higher superoxide 

production by isolated leukocytes [177, 178]. This background oxidative stress is further increased 

during exacerbations [179]. Asthma is also associated with enhanced oxidative stress locally in the 

airways as evidenced by increased exhaled 8-isoprostane in asthmatics compared to controls, with 

levels correlating with disease severity [180].

2.3.2 Dendritic cells

Dendritic cells (DCs) have an important role in asthma and are exquisitely placed beneath the 

respiratory epithelium to take up antigen, including allergens, and migrate to local lymph nodes 

where they present it on MHC molecules to antigen specific T cells. The production of TSLP by the 

lung epithelium, in response to ligation of PRRs, results in maturation of myeloid DCs (mDCs) priming 

them to promote a Th2 driven response. This is achieved by upregulation of OX40L which interacts 

with 0X40 on undifferentiated CD4+ T cells (ThO) cells in local lymph nodes promoting Th2 

differentiation [181]. Not only do DCs prime the immune response to allergen but they also 

perpetuate the inflammatory response by being the predominant source of CCL17 and CCL22 

following TSLP exposure [181]. GMCSF release by epithelial cells also promotes DC maturation 

resulting in a Th2 response [182] and is the mechanism by which diesel fumes and cigarette smoke 

may cause Th2 inflammation [183]. mDCs in animal models appear to be particularly important in 

mediating airway inflammation and have been shown to promote Th2 responses [184] whilst 
plasmacytoid dendritic cells may promote immunological tolerance to inhaled antigen [185]. Studies 

in humans have shown that during allergen challenges circulating DC levels decrease during the 

following 24 hours [186] and this corresponds to a rise in numbers in sputum, again emphasising 

their importance in antigen presentation [187] (see section 6.1.3 for more details).

2.3.3 Adaptive immunity

Inappropriate activation of the innate immune system leads to antigen presentation to T cells within 

local lymph nodes and a T cell effector response which propagates further airway inflammation. 
Historically, asthma has been thought of as Th2 mediated disease and certainly atopic disease has 

been characterised by the presence of increased numbers of Th2 cells within the airways [188]. 
Furthermore, the number of Th2 cells present correlates with disease severity [189]. The signature 

cytokines released by these cells have a number of effects relevant to disease pathogenesis. IL-4 is 

involved in immunoglobulin class switching in B cells leading to IgE expression important in the 

process of allergen sensitisation. IL-5 is fundamental to eosinophil differentiation and survival (see 

section 2.3.1 (ii)); IL-9 promotes mast cell survival and IL-13 causes many of the features of BHR 

[190]. Although the Th2 response plays a role in atopic/eosinophilic disease other phenotypes of 

asthma seen are not explained by this mechanism.
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Other CD4+ T cells have also been implicated in the disease process. Deficiency in Tregs number or 
function may result in an inappropriate inflammatory response to harmless antigen as seen in 

asthma. Tregs exert some of their effects via IL-10, and in asthma and allergy IL-10 is postulated to 

maintain immune homeostasis at environmental interfaces including the lung [191]. TGF-p is also 

produced by Tregs but plays a more complex role as it has both anti-inflammatory and pro-fibrotic 

actions [192]; mice deficient in TGF-0 have enhanced airway inflammation compared to wild-types
[193]. Studies examining the number of Tregs in the peripheral blood of asthmatics have been 

contradictory (Table 7.1) although this is likely to be due to the use of CD25, expressed on all 
activated T cell populations, without FoxP3 as the Treg marker [120]. In 2 paediatric studies using 

FoxP3, a reduction in FoxP3 mRNA [194] and FoxP3+ Tregs [195] was noted in peripheral blood and 

lavage samples of asthmatics compared to controls. In one of these papers by Hartl et al, restoration 

in FoxP3mRNA levels and Treg function occurred following 4 weeks inhaled corticosteroid (ICS) use
[194].

Interestingly, whilst Tregs number and function appear to be down regulated in asthma, bronchial 
biopsies of asthmatic individuals are infiltrated with Thl7 cells [196]. Associated with this, increased 

IL-17 levels have been found in the sputum of asthmatics correlating with neutrophil numbers [171]. 
Sputum neutrophilia and IL-17 are associated with steroid resistant disease. It is conceivable that 
there may be an imbalance in the differentiation of Tregs and Thl7 cells in severe neutrophilic 

asthma. A paediatric study looking at Thl7 and Treg expression in lavage fluid and peripheral blood 

of asthmatics (on ICS) vs. controls showed that the proportion of circulating CD4+CD25+FoxP3+ Tregs 

(expressed as a percentage of CD4+ cells) was significantly reduced in asthma compared with 

controls, yet the proportion of Thl7 cells increased, suggesting a Thl7/Treg imbalance [195]. In 

adults similar findings have been reported, with moderate to severe asthmatics showing increased 

Thl7 cells and decreased CD4+CD25+Tregs peripherally [197].

The discovery of Th9 producing cells has led to interest as to whether these may contribute towards 

asthma pathogenesis since IL-9 is found in abundance in bronchial lavage samples of patients with 

atopic asthma [198]. However evidence that Th9 cells are specifically involved in asthma is still 
lacking.

CD8+ cytotoxic T cells may also play a role in the asthmatic airway with increased numbers within the 

airways of those affected [199, 200]. Whether their presence is beneficial or detrimental is still 
debated. Animal models show enhanced airway inflammation and remodelling on depletion of 
CD8a+ cells suggesting that their presence may be protective [201, 202], however such studies are 

limited by the lack of specificity of CD8a+ as a marker of cytotoxic T cells. Contrary to these findings, 
more specific studies involving transfer of CD8 a(3 T cells to sensitised animals showed worsening of 
eosinophilic inflammation and BHR [203, 204]. In keeping with this, studies of patients who die from 

acute asthma show increased levels of CD8+T cells within the airways, again suggesting they have a 

detrimental effect [205].

B lymphocytes are important in the process of sensitisation, producing allergen specific IgE. This 

process requires the presence of IL-4 and IL-13 along with allergen presentation by Th2 cells and co
stimulation with CD40 and CD40L. IgE binds to high affinity receptors FceRI on mast cells and 

basophils and low affinity FceRIII (CD23) on B cells, eosinophils and macrophages [206]. Cross linking 

of these cells causes degranulation, releasing pro-inflammatory mediators (see section 2.3.1 (ii)).
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Whilst the description given here is particularly pertinent to atopic asthma, it is becomingly 

increasingly clear that different phenotypes of the disease exist with distinct clinical and 

inflammatory correlates.

2.4. Asthma: a clinical syndrome encompassing 
different phenotypes and endotypes
Most of the current understanding of asthma mechanisms is centred on an allergen driven process. 
In animals and humans, exposure to an allergen within the airways results in chronic Th2 

inflammation. However a different phenotype of disease which lacks an allergic component, referred 

to as intrinsic asthma, can have a very similar pathological appearance despite such different clinical 
presentations [207].

In terms of clinical presentations of asthma or "phenotypes", several recent cluster analyses 

highlighted that within the clinical syndrome, there are discrete populations of individuals each of 
which have different clinical characteristics in terms of the disease onset, lung function, 
inflammatory characteristics and treatment response, illustrating marked heterogeneity. A British 

study examining asthma patients within primary and secondary care identified 3 clusters of patients 

within the primary care setting [8]. Cluster 1 consisted of those with early onset, atopic disease and 

evidence of airways inflammation and dysfunction. Cluster 2 described a group of obese female 

patients with asthma symptoms and no evidence of eosinophilic inflammation, whilst cluster 3 

displayed a benign phenotype of asthma, with little evidence of active disease in terms of symptoms, 
eosinophilic airway inflammation, airflow obstruction or BHR. In secondary care clusters 1 and 2 

presented with the same phenotypes as primary care whilst cluster 3 consisted of a group of 
patients with early onset severe symptoms and little evidence of eosinophilic inflammation. Cluster 
4 consisted of a male predominant late onset disease with few symptoms but marked eosinophilic 

inflammation.

A European study looking at data from two cohorts (European and French cohorts), identified 4 

clusters of individuals. Two consisted of patients with active symptoms and were differentiated by 

age of onset and two groups with inactive disease differentiated by age of onset and presence of 

atopy [208].

Severe or refractory asthma encompasses 5-10% of individuals whose disease remains poorly 

controlled despite treatment [209]. The Severe Asthma Research Programme (SARP) has identified 5 

phenotypes [16]. Clusters 1 and 2 had early onset atopic disease with normal or near normal lung 

function. Cluster 1 used fewer controller medications with less health care utilisation, whereas 

medication use and healthcare utilisation were increased in cluster 2. In terms of biomarkers cluster 
2 had high levels of IgE. Cluster 3 described a female predominant obese phenotype with later onset 
disease of shorter duration. Despite this, cluster 3 had moderately impaired lung function at baseline 

and reported a higher burden of symptoms, greater medication usage (including oral steroids) and
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HDU attendance which appeared disproportionate to their lung function. Cluster 3 had the lowest 
degree of BHR and lowest IgE counts. Cluster 4 consisted of early onset atopic disease and cluster 5 

consisted of late onset non-atopic disease. Both clusters 4 and 5 had daily symptoms, use of multiple ! 
medications and a high chance of previous HDU attendances. Both of these groups had very 

abnormal lung function despite the use of multiple medications. Although cluster 4 had impaired 

lung function despite high levels of treatment, it was still reversible with beta-2 adreno-receptor ((32) 
agonist. This cluster also had high levels of IgE, marked BHR and eosinophilic inflammation. Cluster 5 

had the most severely impaired lung function which did not reverse well with a (32 agonist and 

exhibited marked BHR. Cluster 5 also had low levels of IgE and a greater degree of neutrophilic 

inflammation on sputum cell counts.

Whilst the methodology between the cluster analyses performed to date varies, there are some 

common phenotypes seen within the different study populations. These include an early onset 
atopic disease allergic type and two later onset phenotypes including non-atopic eosinophilic and a 

late onset obese female group. In addition, the SARP work has highlighted a neutrophilic phenotype. 

Such observations have fuelled a long standing debate as to whether asthma is a distinct disease or a 

syndrome encompassing multiple disease processes which all have some common clinical features 

referred to by the practicing physician as "asthma" [170]. It is therefore unsurprising that finding 

common genetics and environmental determinants has been such a challenge. Furthermore, using 

blanket approaches in terms of treatment is unlikely to optimally manage what may be multiple 

discrete disease processes. To address this issue there has been a move towards describing different 
asthma "endotypes", where an endotype is the underlying pathophysiological processes leading to 

the disease [9]. Such an approach should lead to more tailored therapies, which may tackle these 

more refractory phenotypes.

2.5 Obesity: a growing problem
Globally there is an obesity epidemic with approximately 1.6 billion people worldwide classified as 

overweight and 400 million as obese [10]. Obesity is now the most common metabolic disorder 
worldwide and this new threat to health is ever expanding; in Wales alone 57% of adults are 

classified as overweight and 22% obese (Welsh Health Survey 2008). In the UK it has been projected 

that by the year 2050 60% of men, 50% of women and 25% of children will be obese [11].

2.5.1 Defining obesity on an international scale

Obesity is defined as "abnormal or excessive fat accumulation that may impair health". The word 

obesity is derived from Latin - ob means "over" and esus, the past participle of edere "to eat"; 
translating to "have over eaten" [210].
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Body Mass Index 
(kg/m2)

Category

18.5-24.9 Normal weight
25-29.9 Overweight
30-34.9 Obesity class I
35-39.9 Obesity class II
>40 Obesity class III

Table 2.2: Classification of body mass
index.

Body mass index = 
(kg/m2)

Weight (kg) 

(Height (m))J

Figure 2.4: Calculation of body mass index.

Body mass index (BMI) (Figure 2.4) was previously termed the "Quetelet index" after its founder, the 

father of social sciences: Lambert Adolphe Jacques Quetelet and was first described in 1832 [211]. 
Quetelet observed that body weight was proportional to the square root of body height in lean 

individuals. Obesity is defined by the World Health Organisation as a BMI >30kg/m2 and may be 

further subcategorised into 3 classes (Table 2.2). Due to its simplicity of use it has been adopted on 

an international scale and referred to in many clinical guidelines [212]. However it has the limitation 

of inferring percentage body fat from weight leading to poor sensitivity and specificity in certain 

populations [213], and resulting in some studies using more direct measures of body fat composition 

or body fat distribution (see section 3.1)

2.6 Obesity and asthma: evidence behind the 
association
2.6.1 Epidemiological studies

Asthma prevalence is following a similar rate of growth to obesity [214], leading to speculation that 
there may be a direct relationship between the two conditions. The notion that obesity and asthma 

may be linked came from cross-sectional studies published in the 1990s which showed that the risk 

of being diagnosed with asthma increased with BMI, particularly in women, in a dose dependent 
manner. A British study of 8,960 adults demonstrated that the odds ratio (OR) for asthma was 1.51 

in women with a BMI of 25-30kg/m2 and 1.84 for those with BMI >30kg/m2 [215]. Cross-sectional 
studies cannot determine the direction of causality and some have argued that the manifestations 

and treatments of asthma (corticosteroids) may increase the subsequent obesity risk. However, 
longitudinal studies have helped define the temporal relationship and demonstrate that obesity 

significantly increased the risk of a future asthma diagnosis, again in a dose dependent manner 
[216]. A meta-analysis of 7 large prospective studies (summarised in Table 2.5, adapted from 

Beuther et al [14]) has confirmed these observations [14]. Compared to a BMI <25kg/m2, overweight 
or obese individuals had higher odds of developing asthma (OR 1.51). Interestingly, some of the 

individual studies have only found this association in women [15, 217]. In the context of severely 

obese individuals such as those undergoing bariatric surgery, it may be surprising to note that 
asthma is a very common co-morbidity with a similar prevalence to type II diabetes. A study by Belle 

et al on 2559 bariatric patients noted that the prevalence of asthma was between 21.2-32.7% 

amongst the various weight groups which was comparable to diabetes (31-41.8%) [12].
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Study Population Number of 
participants

Incident
asthma
cases

Follow
up
(years)

Measures Adjusted OR 
and 95% Cl 
(BMI >30 vs. 
<25kg/m2)

Camargo 
et al 
[216]

Nurses' Health 
Study

n= 85,911 
(all women)

1586 4 Asthma diagnosis 
(self reported) 
BMI
(self reported)

2.7 (2.3-3.1)

Chen [15] Canadian
National
Health
Population
Survey

n = 9,149 
Men = 4266 
Women 
=4883

202 2 Asthma diagnosis 
(self reported) 
BMI (self 
reported)

Men 1.0 
Women 1.9 
(1.1-3.4)

Ford et al 
[218]

US. National 
Health & 
Nutrition 
Examination 
Survey

n = 9,456 
Men = 3,621 
Women = 
5,925

346 10 Asthma diagnosis 
(self reported) 
BMI (measured)

Men: 1.5 (0.9- 
2.6)
Women: 1.4 
(1.0-1.9)

Gunbjorn 
dottir et 
al[219]

European 
Community 
Respiratory 
Health Survey

n = 16,191 
Men = 7604 
Women = 
8587

623 7.9 Asthma diagnosis 
(self reported) 
BMI (self 
reported)

Men 2.1 (1.4- 
3.2)
Women 1.6 
(1.1-2.1)

Huovinen 
et al 
[220]

Finnish same 
sex twin study

n = 10,597 
Men=4,449 
Women = 
5,552

130 9 Asthma diagnosis 
(self reported and 
national register) 
BMI (self 
reported)

Men 3.5 (1.6- 
7.7)
Women 2.3 
(0.9-6.1)

Nystad
[221]

Norwegian 
Health Survey

n = 135,405 
Men = 
66,723 
Women = 
68,682

4218 21 Asthma diagnosis 
(self reported) 
BMI (measured)

Men 1.8 (1.4- 
2.3)
Women 2.0 
1.7-2.4)

Romieu 
et al 
[222]

E3N French 
cohort Study

n = 67229 
(all women)

372 3
years

Asthma diagnosis 
(self reported) 
BMI (self 
reported)

2.2 (1.4-3.2)1

Table 2.3: Summary of key longitudinal studies examining the obesity-asthma association. Table 

adapted from Beuther et al. OR reported as odds of asthma diagnosis in obese (BMI>30kg/m2) vs. 
normal weight (<25kg/m2).

1: In this study OR comparing BMI >27kg/m2vs. the reference BMI category (20.2-21.4kg/m2).

In summary, obesity is a global issue and is rapidly increasing in prevalence, such that by 2050 50% 

of patients will be obese. A range of adult population studies have consistently demonstrated that 
obesity is a major risk factor for asthma development and increases risk in a dose dependent 
manner.
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2.6.2 Obesity and atopy

Whilst there are a number of studies that suggest that obesity increases subsequent asthma risk, the 

impact of obesity on atopy is less clear. Atopy is an important risk factor for the development of 
asthma. Whether obesity is associated with the broader syndrome of atopy is less evident. Some 

cross-sectional studies have shown an association between obesity and atopy in adults especially 

women [223], and some exclusively in females [224], whilst others have not shown an association 

[225]. The difference in findings between studies is likely to reflect the varying definitions of atopy, 
with some using clinical history of an atopic condition and others skin prick tests or RAST tests to a 

varying panel of potential allergens (see section 4.1.1 and Table 4.1 for details of studies). Whilst 
there is still debate as to whether obesity is associated with risk of atopy, what does appear clear 

from a large number of cross-sectional studies is that obesity increases risk of asthma in non-atopic 

individuals (see section 4.1.1 and Table 4.2 for a summary of the studies in this area).

2.6.3 Weight loss studies

Further evidence that obesity is associated with asthma development and severity comes from 

weight loss studies. To date, 16 studies have examined this relationship and all have demonstrated 

consistent improvements in markers of asthma control irrespective of whether weight reduction was 

achieved by medical or surgical methods.

In four studies weight loss was achieved by medical methods (low calorie diet/weight loss 

programmes) (Table 2.6, adapted from Eneli et al [55]). Each of these studies were small (n=10-58), 
and although a physician diagnosis of asthma was required in all, a stringent objective definition of 
this was only specified in two. The percentage weight reduction achieved during the follow up 

period (range 8 weeks to 1 year) was between 8-19%. Benefits of weight loss observed included 

improvement in standard spirometry, post bronchodilator forced expiratory volume in 1 second 

(FEV1), peak flow rate (PEFR) variability, exacerbation rates, symptom scores and medication use. 
The surgical studies were larger (n= 33-893 patients (Table 2.7, adapted from Eneli et al [55])), 
achieved higher degrees of weight loss (27-40%) within a longer follow up period (range 1-6 years) 
and resulted in more marked improvements in surrogate markers of asthma control. These included 

an 82-84% reduction in medication use with some individuals being able to discontinue asthma 

therapy.

Whilst the medical and surgical weight loss studies to date do suggest consistent improvement in 

markers of asthma control, many of the studies lacked objective definitions of disease identification, 
relying on previous physician diagnosis, self-reported diagnosis and medication use. In many of the 

surgical weight loss studies the asthma related parameters were measured as secondary outcomes 

and not the primary endpoint. Furthermore, many of the markers of asthma control within the 

surgical studies were more subjective, such as medication usage or symptom resolution. Such 

limitations leave these studies open to misdiagnosis of asthma (a considerable issue in this clinical 
syndrome, see section 2.7.1) and potentially incorrectly attributing improvements in obesity related 

symptoms to amelioration of asthma control.
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Study Subjects Diagnosis 1° or 2° 
outcome

Intervention Outcome
measures

Key findings ]

Aaron et Women = 58 Physician 2° 900kCal diet: 3 and 6 months: Mean weight loss 20kg (19%) ;
al [20] Men = 0 diagnosis - Over 6 weeks - Full lung function For every 10% weight loss: I

Asthma = 24 if BMI>30 - Methacholine - Improvement in FEV1 by 73ml
Mean weight - Over 12 weeks challenge - Improvement in FVC by 93ml
= 115kg if BMI >35 SGRQ - Improvement in respiratory 

symptoms
- No change in BHR

Hakala Women = 11 Physician 1° VLCD 2 weeks prior to diet Mean reduction in BMI 5.1kg/m2
et al Men = 3 diagnosis 1760kj/day and after 8 weeks Reduced PEFR variability from 5.5-
[226] Asthma = 14 

Mean BMI = 
37kg/m2

8 weeks -Twice daily PEFR 
monitoring
- Full lung function
- Raw
- ABG
- Dyspnoea score
- Rescue med use

to 4.5%
Improvement in FEV1, FVC, Raw 
No change in ABG 
Improvement in dyspnoea score 
(6.5)
Reduced rescue medication use (by 
0.2 doses)

Johnson Women = 8 Moderate 1° Alternate day - Asthma control 8% reduction in weight
et al Men = 2 persistent calorie questionnaires Improved asthma control
[227] Asthma = 10 asthma restriction 8 - Serum glucose, Improvement in PEFR by 14.4%

Mean weight 12% weeks insulin, lipids No change in spirometry
= HOKg reversibility 

in past 2 
years

- Leptin
- CRP,TNF, BDNF
- Markers of oxidative 
stress
-PEFR
- Spirometry with 
reversibility

Improvement in post 
bronchodilator FEV1 by 10.5% 
Reduction in TNF-a, BDNP, leptin 
and markers of oxidative stress

Stenius Total = 38 Positive 1° Randomised - Follow up 1 year 14.5% reduction in body weight
et Asthma = 38 bronchodilato control trial - Morning PEFR Improvement in FEV1 by 7.2% and
al[228] Mean weight r response Treatment - Spirometry FVC by 8.6%

= 98kg >15% or group: - Asthma symptoms Reduction in exacerbations
diurnal -VLCD - Number of (median 4 in control group vs. 1 in
variation (1760kj/day) 8 exacerbations treatment group)
>15% weeks - Steroid use

- Quality of life

Table 2.4: Summary of key medical weight loss studies. ABG-arterial blood gas, FVC-forced vital 
capacity; Raw-airways resistance; SGRQ-St George's respiratory questionnaire; VLCD-very low calorie 
diet.

More recently a study of 44 bariatric patients (23 asthmatics and 21 non asthmatic) with a much 

more stringent asthma definition, was performed [229]. All individuals were non smokers or had a 

<20 pack year history. Asthma was defined by evidence of significant reversible airways disease or 
BHR to methacholine. Weight loss was associated with a significant improvement in asthma control 
and BHR. The improvement in BHR was only seen in those with normal IgE levels. Weight loss was 

associated with a non-significant reduction in bronchoalveolar lavage (BAL) neutrophils and 

eosinophils but a significant increase in BAL lymphocyte count. BAL and serum adiponectin increased 

significantly with weight loss. Weight loss was associated with a paradoxical increase in the amount 

of IL-5, IL-6, IL-13, TNFa and IL-17 produced on blood CD4+ T cell stimulation with anti-CD3 and anti- 
CD28 antibodies.

In summary weight loss appears to be an effective treatment for the obese asthma phenotype, 
however studies to date have marked limitations and the mechanisms remain to be elucidated.
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Study Subjects Diagnosis 1° or 2° 
outcome

Intervention Outcome
measures

Key findings

Ahroni et 
al[230]

Women = 161 
Men = 34 
Asthma = 24 
Mean BMI 46 
kg/m2

Self reported 2° LAGB
Follow up 1 
year

Medication use 
Improvement in 
asthma symptoms 
Quality of life

Mean BMI post surgery = 
32.3kg/m2
4/17 patients on medication able 
to discontinue,
10/17 able to reduce dose 
79.2% "asthma much better"

Dhabuwala 
et al [231]

Women = 126 
Men = 31 
Asthma = 34 
Mean BMI 45 
kg/m2

History of 
asthma 
Medication 
use

2° SRGB
Median follow 
up 2.5 years

Reported
improvement/resoluti 
on of comorbidity

Mean BMI post surgery = 28 kg/m2 
50% resolution of asthma 
14% improvement 
84% reduced medication use

Dixon et al 
[232]

Women = 334 
Men = 46 
Asthma = 32 
Mean BMI 
46kg/m2

Physician
diagnosis

1° LABG
Follow up 1 
year

Symptom
questionnaire

Mean BMI post surgery= 
32.9kg/m2
Reduction in asthma score by 30.2 
points
Decreased daily med usage (82%) 
34% resolution of symptoms

Dixon et al 
[229]

Women =40 
Men =4 
Asthma = 23 
Mean BMI 
51.7kg/m2

Positive 
methacholine 
challenge or 
12%
bronchodilato 
r response

1° Follow up 1 
year

BHR
Spirometry 
Asthma control 
Medication use 
Adipokines 
BAL cell counts

Mean BMI post surgery = 
37.5kg/m2 
Decreased BHR 
Improved asthma control 
Increased sputum cell counts 
Increased cytokine production by 
CD4 cells

Hall et al 
[233]

Women =288 
Men = 22 
Asthma = 12 
Weight 110- 
115kg

History of 
asthma 
Medication 
use

2° Vertical Band 
Gastric Bypass 
(VBGB)
Follow up 3 
years

Medication use Median weight post surgery 76- 
93kg
Discontinuation of meds 50%

Macgregor 
et al [234]

Women = 32 
Men = 8 
Asthma = 40 
Mean BMI = 
46kg/m2

History of 
asthma 
Medication 
use

1° VBGB
Mean follow up 
4 years

Patient reported 
intensity of treatment 
and frequency of 
attacks

Mean BMI post surgery = 30kg/m2 
Complete remission in 48%

Murr etal 
[235]

Women = 48 
Men = 14 
Asthma = 6 
Mean weight 
125 kg

History of 
asthma 
Medication 
use

2° VBGB
&
BPD-DS
Mean follow up 
30 months

Medication use Mean weight loss 44kg at 1 year 
Decreased medication use (100%)

Narbro
[236]

Women = 893 
Men =401 
Asthma = 
unreported 
Mean BMI 
41kg/m2

History of 
asthma 
Medication 
use

2° Gastric banding 
Gastric bypass 
VBGP
Follow up 6 
years

Cost of asthma 
medications

Weight loss 16%
No reduction in cost of asthma 
medication used

O'Brien
[237]

Women = 603 
Men = 106 
Asthma = 33 
Mean BMI = 
45kg/m2

Medication
use

2° LAGB
Follow up 1 
year

Asthma severity score 
Medication use 
Hospitalisations

Mean BMI post surgery = 31kg/m2 
Asthma resolved in 30% 
Medications discontinued in 60% 
No hospitalisations or oral steroids 
needed

Simard et al 
[238]

Women = 279 
Men = 119 
Asthma = 34 
Mean BMI = 
50kg/m2

History of 
asthma 
Medication 
use

1° BPD-DS 
Follow up 2 
years

Asthma severity Mean BMI post surgery = 30kg/m2 
79% improved asthma severity

Spivak et al 
[239]

Women = 147 
Men = 16 
Asthma = 11 
Mean BMI = 
45kg/m2

History of 
asthma 
Medication 
use

2° LAGB
Follow up 3 
years

Asthma severity Mean BMI post surgery = 35kg/m2 
Resolution of symptoms in 82%

Sugerman Total = 33 History of 2° Gastric bypass Asthma severity Resolution in single case
et al [240] Asthma = 1 asthma

Mean BMI
52kg/m2

Table 2.5: Summary of key surgical weight loss studies. BPD-DS - biliopancreatic diversion with duodenal 
switch; LAGB - Laparoscopic adjustable band; SRGPB - silatstic ring gastric bypass; VBGP - vertical band 
gastroplasty.



2.6.4 Asthma and obesity: a distinct phenotype?

2.6.4 (i) Chronic disease

Obesity has not only been associated with a higher risk of asthma development but might also 

modify the disease phenotype. Obese asthmatic children are more symptomatic and have higher 
numbers of emergency hospital attendances [241], A study of adult asthmatics using a health plan 

found that obese patients experienced worse disease control and were more likely to require 

hospital admission for asthma [242]. Similarly obese individuals in a US asthma survey reported 

more continuous symptoms, missing more work days, using more medication and having a higher 
risk of developing severe persistent disease than normal weight individuals [243].

Obesity may also impair response to drug therapy. Two papers have pooled the results from double 

blinded randomised control trials (RCTS) of inhaled corticosteroids (ICS) to examine treatment 
efficacy according to patient weight [17, 18]. In one analysis of 5 RCTs looking at the effects of 
inhaled fluticasone vs. fluticasone with salmeterol, obese patients were less likely to achieve control 
than non-obese, particularly those with BMI >40kg/m2 [17]. The second, examining the effects of 

beclomethasone vs. monteleukast, also noted that obese patients were less likely to achieve control 
on ICS although no difference was seen in terms of response to the leukotriene receptor antagonist 
[18]. In keeping with this, retrospective analysis of data from 1,265 patients with well defined 

asthma revealed that this reduced benefit from ICS was associated with a smaller improvement in 

airway inflammation as measured by nitric oxide and lung function [244]. The mechanism behind 

reduced steroid effectiveness has not been elucidated, however steroid resistance (shown by 

dexamethasone-induced mitogen-induced protein kinase phosphatase-1 expression) has been 

demonstrated in vitro using mononuclear cells isolated from obese asthmatic subjects [245]. 
Reduced treatment efficacy is also reflected in worse asthma control and quality of life [242, 246]. 
Consistent with these findings two studies looking at acute exacerbations have noted that obese 

patients (children and adults) with asthma presenting to the emergency department are on higher 
doses of therapy [241, 247].

2.6.4 (ii) Acute exacerbations

Whilst obesity appears to adversely affect chronic disease control, its impact on acute exacerbations 

is less clear with several studies addressing this issue yielding conflicting results. However, there is 

some evidence that in severe asthma obesity may affect treatment response and 

hospitalisation/stay in the paediatric population and in female adults.

A large multicentre prospective study of 572 individuals presenting to the accident and emergency 

(A&E) department with all grades of asthma severity found that BMI did not affect severity, 
hospitalisations, requirement for intubation or number of departmental visits [248]. The groups 

were comparable in terms of bronchodilator response. Even when analysis was restricted to severe 

exacerbations no effect of BMI was seen. Similarly, a prospective study of 90 obese and non-obese 

adult asthmatics attending an emergency department in Cleveland, found no difference in 

exacerbation severity, response to p2 agonist, or admission rates. Interestingly, the obese 

individuals had a significantly higher PEFR at presentation [249].
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In contrast, two studies have shown BMI to have an effect in obese female adults presenting with 

severe asthma, and in acute severe episodes requiring intensive therapy unit (ITU) admission in 

paediatrics. A prospective study examining severe asthma exacerbations presenting to the A&E 

department found that BMI was positively associated with an increased stay in the department and 

higher rates of hospitalisation in women but not men [247]. The obese women showed a 

significantly smaller improvement in PEFR in response to treatment (systemic steroids and 

nebulisers) compared to those of normal weight. The study authors also noted that the clinical 
decisions made were due primarily to increased symptoms and wheeze, and not due to differences 

in spirometry, with baseline PEFR and FEV1 being higher in the overweight/obese group. The 

authors speculated that the decision to admit may be due to higher levels of baseline dyspnoea 

although it was interesting to note that at the end of treatment there was no difference in baseline 

dyspnoea between the obese and normal weight individuals. In keeping with this, data from a non 

A&E study also suggests that obese female asthmatics have worse exacerbations as evidenced by a 

higher rate of hospital attendance [216]. In the paediatric population a single retrospective study of 
209 children admitted to ITU with acute severe asthma found that obesity was associated with 

higher numbers of ITU admissions and hospital stay due to a slower rate of improvement in the 

obese children [250]. In this study, sex did not affect the primary outcomes.

In summary, obesity does affect chronic disease control and treatment response and in some 

individuals may affect acute treatment response. A recent cluster analysis examining asthma 

patients on a single primary care database and two secondary care registers suggests that obese 

asthma may be a distinct phenotype characterised not only by poor asthma control and treatment 
response but also by female predominance and absence of eosinophilic airway inflammation [8]. 
Furthermore an American cluster analysis (SARP) also identified an obese, predominantly female 

phenotype with a high degree of symptoms and only moderate airflow obstruction. They noted 

these individuals were on complex treatment regimes with 17 % requiring regular corticosteroids 

[16].

2.7 Obesity and asthma: potential mechanisms
There is a wealth of epidemiological data that strongly suggests that obesity modifies asthma risk 

and disease phenotype. A number of explanations (summarised in Figure 2.5, taken from Pynn et al 
[39]) have been proposed for this apparent association. Each of these potential mechanisms will be 

considered in turn.
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Figure 2.5: Diagram illustrating the potential mechanisms linking obesity and 

asthma. Some of these factors may interact w ith each other: adipokines are known to 

have many immunomodulatory effects and might promote reactive oxygen species 

generation; metabolic factors such as insulin resistance may have a part in systemic 

inflammation; whilst fa tty  acids might moderate inflammation via TLR signalling.

2.7.1 Misclassification bias: over-diagnosis

A potential explanation for the apparent obesity-asthma association is over-diagnosis. It is logical to 

suppose that the augmented metabolic and physical requirements needed to transport a heavy load 

would increase dyspnoea in obese individuals and lead to over diagnosis o f a respiratory pathology. 

However, a Canadian study of 540 self-reported physician diagnosed cases showed that over

diagnosis of asthma whilst very high was no more common in obese individuals [20], Patients w ith a 

physician diagnosis o f asthma were identified by random digit dialling. Lung function and 

reversibility testing were then used to confirm the diagnosis and in those who did not have evidence 

of reversible airflow obstruction, the authors performed bronchial provocation tests. If these were 

again negative the patients were weaned o ff the medication and the tests repeated. Overall the rate 

of misdiagnosis amongst the asthmatics identified was high; however this was statistically no more
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likely in the obese group with 31.8% incorrectly diagnosed versus 28.7% in the non-obese group. A 

paediatric study reported similar findings [251].

2.7.2 Co-morbidities

In 1892, the physician, Sir William Osier first postulated a link between gastro-oesophageal reflux 

disease (GORD) and asthma by advising patients that they should take their meal at noon to avoid 

nocturnal symptoms [252]. Gastro-oesophageal reflux symptoms are 4-5 times more common in 

asthmatics [253] and the condition is associated with BHR and symptoms of wheeze [254]. This is 

thought to be due to vagal nerve stimulation or microaspiration [255]. With the observation that 

the incidence of reflux increases with BMI even amongst those of normal weight, it is logical to 

propose that obesity may potentiate asthma through its effects on reflux [256]. A Dutch study 

examined 136 patients with persistent asthma symptoms, despite high dose ICS or oral 
corticosteroids and grouped them according to BMI. Obese patients had less signs of airway 

inflammation as quantified by exhaled nitric oxide (FeNO) and sputum eosinophils, and a statistically 

significant higher prevalence of reflux disease (65.5% vs. 44.9%) diagnosed by 24 hour pH monitoring 

or by a dependency on proton pump inhibitors [28]. However, large population studies found that 
the association between obesity and asthma persisted despite adjusting for the presence of GORD, 
suggesting that if GORD does contribute towards the obesity-asthma relationship it is not the only 

mechanism [219, 257]. More recently a study of 402 patients with inadequately controlled asthma 

despite high dose ICS showed that whilst obese patients were more likely to self-report reflux 

symptoms, pH monitoring showed the incidence of proximal reflux was no higher in these 

individuals than in lean asthmatics [258]. In addition the authors noted that reflux defined either by 

patient symptoms or pH monitoring did not correlate with lung function or asthma symptom scores. 
Finally, the weight loss studies performed to date have shown that although weight reduction was 

associated with significant improvement in reflux symptoms and asthma, the two parameters did 

not correlate [234, 239]. Improvement in reflux did not predict improvement in asthma symptoms, 
suggesting that it is not instrumental in disease development or control.

The prevalence of obstructive sleep apnoea (OSA) increases with BMI and is also more prevalent 
with increasing asthma severity independently of BMI [259]. The mechanisms by which obstructive 

sleep apnoea worsens asthma control are not fully elucidated but may include vagal nerve 

stimulation, upper airway inflammation exacerbating lower airway disease or changes in bronchial 
muscle tone. Studies suggest that treating OSA improves asthma symptoms although it does not 
appear to improve more objective measures such as spirometry or BHR [260]. In a study of severe 

asthmatics, symptoms of OSA were more common in the obese and were associated with worse 

asthma control [258]. However in other paediatric and adult studies, the association between 

obesity and asthma, whilst attenuated, remains significant even after adjustment for symptoms or 

signs of OSA [219, 261]. This suggests that whilst OSA may contribute to poor asthma control in the 

obese it is unlikely to be the sole explanation for the association.
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2.7.3 Mechanical effects

Obesity is associated with marked changes in lung volumes. During normal tidal breathing an 

individual exhales to a volume referred to as the functional residual capacity (FRC). This volume is 

determined by a balance between the inward elastic recoil of the lungs, the weight of the chest wall, 

and the outward recoil of the thoracic cage. In obesity this balance is tipped due to increasing weight 
of the chest wall resulting in a decrease in FRC. King and colleagues examined a cohort of 276 

randomly selected adults and demonstrated that obesity correlated negatively with FRC and airways 

resistance. However, in males the degree of airway narrowing was disproportionate to that expected 

from the reduction observed in lung volumes [262]. It was estimated that the reduction in lung 

volumes only accounts for 10% of the increased airways resistance seen, so although a decrease in 

FRC may contribute to the disease phenotype it does not fully account for the airway obstruction 

observed.

Obese individuals, breathing at lower tidal volumes [263], might suffer loss of the protective effect 
of breathing related airway distension, promoting increased BHR [264]. When normal weight non
asthmatics deep breathe, this protects them from developing bronchoconstriction to a noxious 

stimulus such as methacholine, whereas this protective effect appears to be lost in the obese [265]. 
Small airway closure is also a factor which compounds airway narrowing in the obese, especially 

when supine [266],

Although obesity may be associated with changes which promote airflow obstruction and BHR, this 

has not been found universally. Some studies have demonstrated no correlation between obesity 

and airflow obstruction [267], whilst others have shown a positive association but only in women 

[268]. Chinn et al examined the prevalence of BHR in 11,277 individuals and found that BMI was 

associated positively with BHR, although only statistically significantly in men [269]. Similarly a 

prospective male cohort study found that both low and high BMI were associated with BHR [270]. 
Three further studies have found a significant association in both sexes [271-273] whereas other 

studies, whilst finding a correlation between obesity and asthma diagnosis, have not observed a 

relationship with BHR [267, 274].

2.7.4: Metabolic effects

2.7.4 (i) Insulin resistance

Obesity is associated with a significant increase in insulin resistance (IR) and subsequent risk of type 

II diabetes. A study of bariatric patients undergoing surgery showed that the prevalence of asthma 

and diabetes were broadly similar (21.2 - 32.7% vs. 31.0 - 41.8% respectively) [12]. In addition, 
hyperinsulinaemia as seen in IR can cause airway smooth muscle contraction. The literature is 
inconsistent with two paediatric [275, 276] and one adult study [277] showing an association 

between IR and asthma whilst another adult study found no association [225] (see section 4.1.3 (i) 
for details). To date, studies examining this important area in both children and adults have lacked 

robust definitions of asthma relying on self reported diagnosis or typical symptoms. They have also 

not controlled for potential confounders including steroid treatment and in some cases used
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surrogate clinical markers for insulin resistance. Such deficiencies may explain the conflicting results 

reported.

2.7.4 (ii) Fatty acids

Obesity is also associated with elevated circulating levels of free fatty acids (FFA), which have a 

number of immunomodulatory effects. For example they can activate the innate immune response 

through ligation of PRRs including TLR2 and TLR4 [278, 279] resulting in the downstream release of 
pro-inflammatory cytokines [280]. Very little work has been done in this area but one study has 

suggested that even a single high fat meal can activate the innate immune system promoting 

sputum neutrophilia in asthmatics through the activation of TLRs [281].

2.7.4 (iii) Adipokines

Adipokines are cytokine-like hormones produced within adipose tissue. Their principal role is 

thought to be in regulating metabolism, however they also have profound effects on various 

components of the immune system. In the obese state, their levels are altered dramatically, 
promoting a pro-inflammatory milieu. The origins, functions and effects of adipokines are 

summarised briefly here with more detail in section 4.I.3.3.

Leptin is produced predominantly by adipocytes [282], has a similar structure to IL-6, promotes 

satiety and regulates energy expenditure [283, 284]. Despite these effects obese individuals have 

high concentrations of this adipokine, suggesting the possibility of relative leptin resistance [285- 
287]. It has a plethora of immunomodulatory effects which could have relevance in an inflammatory 

disorder such as asthma (summarised in Table 4.3) and impacts on multiple cell types from the 

innate and acquired arms of the immune system [288, 289] including monocytes [290], neutrophils 

[291], eosinophils [292], NK cells [293, 294], DCs [295] and Tregs [296].

Adiponectin is an insulin sensitising hormone and levels decrease in obesity [297]. This adipokine has 

anti-inflammatory effects including induction of IL-10 and IL-1 receptor antagonist expression by 

adipose macrophages [298]. Resistin, a less well studied adipokine is insulin desensitising and 

expression is elevated in obesity. As with leptin it has a number of pro-inflammatory effects [299]. 
Visfatin, also known as nicotinamide phosphoribosyltransferase, is produced by a number of cell 
types including adipocytes, lymphocytes, monocytes, neutrophils and pneumatocytes [300]. It has 

insulin mimetic and pro-inflammatory effects with circulating levels elevated in obesity [295, 300]. 
Conversely ghrelin, a gut rather than adipose tissue derived hormone, reduced in the obese state, 

has been shown to counteract the effects of leptin on monocytes/macrophages [301].

The association between adipokines and asthma are discussed in detail in section 4.1.3 (iii), however 
these are summarised here. Murine models examining the effects of leptin showed its promise as a 

potential mediator for airway disease with infusion augmenting allergen induced BHR without 
eosinophil influx or Th2 responses [23]. Human studies have yet to show convincing evidence that 
leptin is behind the obesity asthma association (see section 4.1.3.3 and Table 4.4 for details of the 

studies). Only a single paediatric study has found higher leptin levels in overweight asthmatics
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compared to normal weight asthmatics and controls, suggesting a role for leptin in the pathogenesis 

of obesity related asthma [302]. However, other paediatric studies which have shown an association 

have found this to be independent of BMI [303-305]. Similarly, whilst some adults studies find an 

association between leptin levels and asthma diagnosis, especially in pre-menopausal women [24, 
306], this again has been independent of BMI. Furthermore one paediatric [307] and two adult 
studies [308, 309] found no association between leptin and asthma. Many of the studies have been 

population based and therefore relied upon self-reported or physician diagnosis with only a handful 

using more objective diagnostic criteria (Table 4.4). Overall the current evidence suggests that if 
leptin does play a role in asthma it appears to be independent of BMI.

With regards to adiponectin, low levels were associated with increased prevalence of symptoms of 
atopic dermatitis, asthma and eczema in one paediatric study [305]. In adults, as with leptin, this 

adipokine may play a role in the pathogenesis of disease in pre-menopausal women. A large cross 

sectional study has suggested that high levels may be protective against current asthma in pre
menopausal women, although this effect was independent of BMI [310] and a follow up longitudinal 

study suggested low levels were a better predictor of subsequent asthma development in the pre
menopausal women studied [311].

Studies on the remaining adipokines have been few in number. A single paediatric study found that 
resistin levels were significantly lower in the atopic asthmatics studied compared to non-atopic 

asthmatics and healthy controls [307], whilst one adult cohort study found the converse with levels 

elevated in asthma, correlating with disease severity, and independent of BMI [312]. Visfatin is 

thought to have pro-inflammatory effects yet interestingly, a solitary paediatric case-control study 

found significantly lower levels in the asthmatics studied compared to healthy controls [313]. 
Ghrelin is thought to have anti-inflammatory effects and an adult study suggests levels may be 

reduced during asthma exacerbations [306],

In summary the bulk of the work to date has examined the relationship between leptin, adiponectin 

and asthma. Results have been conflicting, but those studies showing an association have 

predominantly been those of pre-menopausal women, have been independent of BMI and have 

shown leptin and adiponectin to have polar associations. Given that obesity is associated with 

changes in levels of multiple adipokines, further research is needed to examine the potential role of 
the others with relationship to asthma.

2.7.5: Differences between sexes: hormones and body fat 
distribution

2.7.5 (i) Epidemiological data

The impact of sex on the obesity-asthma relationship is not clear. Some studies suggest a 

relationship solely in women whilst others have found the opposite. A paediatric study reported that 

girls who became overweight or obese by the age of 11 were more likely to develop new asthma-like 

symptoms and to have increased BHR [314], This association was not seen in males and was most 
marked if menarche was before 11 years. Similarly, Gold et al found that a high baseline BMI or
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significant increase in BMI in girls aged 6-14 was associated with a higher risk of developing asthma 

during follow up (median 5 years), with a less convincing relationship in boys [315]. Longitudinal 
studies in adults have also found that increased BMI at baseline is associated with a higher incidence 

of subsequent asthma but only in women [15, 316]. In a Canadian cross-sectional study, a single unit 
increase in BMI in women was associated with a 6% increase in asthma risk versus only 3% in men 

[317]. A British cohort study noted a stronger association again in women [217]. In a cluster analysis 

of a primary care and two secondary care cohorts, Haider et al identified a specific asthma 

phenotype, which was obese, female, and characterised by an absence of eosinophilic inflammation 

[8]. However, in a larger longitudinal Norwegian study, although increased BMI was associated with 

future asthma risk of asthma no differences between sexes was found [221].

2.7.5 (ii) Possible mechanisms for the underlying sex association 

Hormonal influence

It is conceivable that any sex difference in the obesity-asthma association could be related to sex 

hormone levels. Observational data suggests that these hormones may impact on asthma. The pre
pubertal incidence of asthma is higher in boys, then through puberty the incidence increases in girls 

suggesting that female hormones have an important role [318]. After the menopause, the 

administration of oestrogen in the form of hormone replacement therapy, is also associated with 

increased asthma risk [54]. Other markers of hormonal abnormalities such as menstrual irregularity 

[319] and infertility [320] are also risk factors for asthma diagnosis and medication use, respectively.

Female sex hormone levels are altered with increasing adiposity. Circulating androgens are 

converted to oestrogen by aromatase, an enzyme located in adipose tissue which also expresses 

both oestrogen receptors (ERcx, ER(3). Not only might obese women have higher levels of oestrogen 

but they may be exposed for longer periods of time as it is well established that menarche occurs 

earlier in obese individuals [321].

Mechanistically oestrogen has been shown to increase peripheral blood mononuclear cell 
production of Th2 cytokines (IL-4 and IL-13) important in asthma pathogenesis [322]. Progesterone 

also has a number of effects which may be relevant to asthma including up-regulation of (32 

receptors on lymphocytes [323], and administration of exogenous progesterone increases the 

bronchodilatory effects of isoprenaline in pigs [324]. Weight loss increases progesterone levels and 

(32 receptor density in women [325] and clinically augments the bronchodilator effects of 

noradrenaline and terbutaline [326].

Differences in body fat composition

Most studies examining the obesity-asthma association use BMI as an adiposity measure, but this 

does not account for differences in muscle mass, particularly in men (see section 3.1). Using BMI as a 

surrogate marker may misclassify some men with higher muscle mass as obese. To address this 

hypothesis, McLachlan et al measured body fat percentage and BMI and found a correlation 

between adiposity and asthma in females but not in men [268]. There was a positive correlation
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between percentage fat composition and BMI in both sexes however this association was markedly 

reduced in men. Mean body fat composition was significantly higher in women than men but mean 

BMI was not significantly different between the groups, suggesting that for a given BMI, body fat 
composition was higher in the women. The authors concluded that either the relationship between 

obesity and asthma was confined to women or that the association is not seen in men because they 

would require a much higher BMI to achieve the same body fat composition.

Another potential explanation may be differences in body fat distribution. The ability to mobilise 

substances from fatty tissue varies with location in the body. For example with leptin, secretion from 

subcutaneous fatty tissue is 2-3 fold greater in comparison to visceral tissue and levels correlate 

more closely with adiposity in females than males [327, 328].

D ifferences in fatty acid m etabolism

Free fatty acids have important effects on innate immunity (see section 2.7.4). Post-prandial 
deposition of fatty acids differs between the sexes with females storing fat in the femoral gluteal 
region [329] and males in visceral fatty tissue [330]. Upon lipolysis, mobilised FFAs from visceral 
tissue pass through the portal venous system and into the liver stimulating TLR receptors on Kupfer 
cells (hepatic macrophages) resulting in the release of pro-inflammatory cytokines such as IL-6; this 

does not occur when FFA are mobilised from subcutaneous sites [331]. Such a mechanism would 

suggest that men would be more susceptible to obesity related inflammation, and therefore, this is 

unlikely to be responsible for the association seen in asthma.

2.7.6 Systemic inflammation

Another possible mechanism is that the systemic inflammatory state associated with obesity impacts 

on inflammation within the lungs. White adipose tissue functions as a source of energy storage and 

contains many different cell types, the most abundant being adipocytes. However, leukocytes are 

also present, particularly macrophages [332], as well as immunoregulatory cells including Tregs [333] 
and the relative abundance of these are altered with obesity, promoting a pro-inflammatory state. 
A number of inflammatory cytokines are therefore elevated in obese individuals and decline with 

weight loss, including IL-6, IL-8, TNFa and the acute phase marker C-reactive protein (CRP) [334, 
335]. The production of immunomodulatory adipokines is also altered in the obese state in favour of 
a pro-inflammatory profile (see section 2.7.4 (iii)).

The reasons as to why nutrition impacts on immunity remains largely unresolved but may be in part 
due to the fact that some of the key regulators of metabolism are also involved in controlling the 

inflammatory response. This would seem logical as the inflammatory response requires large 

amounts of energy for many of its processes. Some of the hormones, including adipokines, over 
expressed in the obese state have direct effects on the immune system (see section 2.7.4). Other 

possible explanations for the low grade inflammation observed is that the obese state inadvertently 

triggering PRRs in the innate immune system as seen with FFA (see section 2.7.4). Therefore some of 
the effects of obesity on aspects of both arms of the immune system will be considered.
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2.7.6 (i) Innate immunity and obesity 

M onocytes and m acrophages

In the obese state adipose tissue becomes infiltrated with pro-inflammatory M l macrophages and 

the level of infiltration correlates with BMI; these macrophages a source of circulating inflammatory 

cytokines including IL-6 and TNFa [332] (see section 6.1.1 for more details). Conversely, lean 

individuals express M2 macrophages within this tissue which express lower levels of pro- 
inflammatory cytokines [336]. The source of the M l  macrophages is not certain but adipose tissue 

necrosis may be a driving factor, or these cells may be recruited from the higher numbers of 
circulating pro-inflammatory CD14+CD16+ monocytes [31]. Systemic activation of the 

monocyte/macrophage compartment could have relevance in asthma (see sections 2.3.1 (ii) and
6.1.1 for details).

N eutrophils

The role of neutrophils in obesity related inflammation is not well understood, however studies 

suggest that obesity is associated with changes in numbers and activation of circulating neutrophils 

which could be of relevance in asthma (see section 4.1.2 for details). Higher circulating numbers 

have been documented in the morbidly obese, with a marked reduction following weight loss from 

bariatric surgery [30]. Obesity may also increase activation of these cells with differences in the 

surface expression of adhesion molecules (CD62L and C D llb ) in the those undergoing bariatric 

surgery compared to normal controls [31]. Other markers of neutrophil activation are elevated in 

the morbidly obese including calprotectin, a cytoplasmic bacteriostatic protein, and 

myeloperoxidase, one of the enzymes responsible for ROS generation [337] (see section 5.1.2 for 
more details). Neutrophils are associated with severe asthma (see section 2.3.1 (ii) and chapter 5) 
and therefore systemic activation of these cells in obesity may be important.

Pattern recognition receptor signalling

The obese state can lead to activation of the innate immune system through effects on PRRs and this 

may be of relevance in the pathogenesis of asthma (see section 6.1.2 (ii) for details). TLR4, the most 
studied of the PRRs, is activated by the PAMP, LPS which is a constituent of the cell wall in Gram 

negative bacteria. Elevated levels of LPS are found in the blood of overweight and obese individuals 

[338] and even after a single high fat meal, concentrations of LPS can increase sufficiently to activate 

innate immune cells [339]. Whilst each PRR is activated by a distinct PAMP, many PRRs including 

some of the TLRs [279] and NLRs can be activated by saturated FFAs [340] which are elevated in 

obesity. Recent studies suggest that the cytokine response in whole blood leukocytes upon 

stimulation with LPS may also be amplified in the obese [32]. Similarly atopic asthmatics have 

enhanced cytokine response on LPS stimulation of blood mononuclear cells (MNCs) [341] and 

therefore should obesity augment this response further this could promote a pro-inflammatory 

milieu in these individuals.
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O xidative stress

Obese individuals have increased levels of biomarkers of oxidative stress compared to their lean 

counterparts [342] and this is likely to be secondary to multiple factors (see section 5.1.3 and Table
5.3). Oxidative stress results in tissue and organ damage and is thought to be important in the 

pathogenesis of several obesity related disorders including fatty liver disease and atherosclerosis 

[343]. It is therefore possible that this enhanced oxidative stress could also cause end organ disease 

in the lungs, promoting airway inflammation and asthma.

2.7.6 (ii) Dendritic cells and obesity

Dendritic cells, as professional antigen presenting cells, are able to direct the immune response to an 

antigen or allergen (section 2.2.2) and therefore play an important role in asthma (sections 2.3.2 and
6.1.3). Dendritic cells express leptin receptor, and incubation with leptin promotes their survival and 

expression of cytokines promoting a Thl response, as well as downregulating immunoregulatory 

cytokines such as IL-10 [295]. Little work has been done on this area in humans, but a single study 

suggests that obesity in post menopausal women is associated with an increase in blood mDCs 

compared to normal weight individuals [33]. If obesity does modify DC survival and function, 
encouraging mDC development with a cytokine profile promoting a pro-inflammatory Th l response, 
then this could be of relevance in asthma.

2.7.6 (iii) Adaptive immunity and obesity 

R egulatory T cells

Obesity has been linked with autoimmune conditions characterised by impaired Treg cell responses 

[22, 344]. Neutralisation of leptin results in increased Treg proliferation and FoxP3 production 

within Tregs in murine models [345]. Leptin and leptin receptor deficiency produce similar findings 

[345, 346]. Whilst it is acknowledged that obesity is characterised by leptin resistance, murine 

models have shown that whilst there is leptin resistance related to eating behaviour and 

sympathetic activity in fat, there is no leptin resistance related to renal sympathetic activity 

suggesting the possibility that it can be selective [347]. In addition to leptin, IL-6 which is increased 

in obesity, also down regulates Tregs differentiation [348] (see section 7.1.2). Normal adipose tissue 

can be a site of Treg cell accumulation [333]. In humans, obesity is associated with a depletion in 

Treg numbers within visceral adipose tissue with a corresponding increase in pro-inflammatory 

macrophages and a skew towards a Th l bias [34, 333]. It has been suggested that high levels of 
leptin associated with obesity might mediate these effects [349]. Little work has been done on 

whether this depletion in Treg numbers within adipose tissue extends systemically to the blood and 

other body organs.

Changes in Treg populations are important in the context of other obesity related pathologies 

including non-alcoholic steatohepatitis [350]. Tregs in asthma may be down regulated in number or
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function systemically in the blood or locally in the airways [194] although studies have been 

contradictory (See Table 7.1 for full description of studies in this area). This may be due in part to a 

high percentage of the studies using non-specific Treg markers including CD25 rather than the more 

specific marker FoxP3 (see section 7.1.2 (iv)) However, if down-regulation of Tregs is important in 

asthma pathogenesis and obesity is associated with depletion in Treg numbers systemically, then 

this could provide a mechanism for the association between obesity and asthma.

Changes in other T helper populations

Obesity may be associated with changes in other CD4+ T cell populations of relevance to asthma. In 

murine models, leptin promotes Th l responses of peripheral blood lymphocytes to allogeneic 

mononuclear cells and suppresses Th2 responses [288]. In murine models, obesity is associated with 

a Thl7 bias [351] and, in keeping with this, obese females have higher levels of IL-17 than normal 
weight individuals [352] (see section 7.1.2 (v)). Given that Thl7 cells in murine models promote 

steroid resistant neutrophilic airway inflammation [353] and that serum IL-17 levels in human 

asthmatics correlate with disease severity [354] (see section 7.1.2 (iv)), an obesity-related Thl7 bias 

might promote a neutrophilic steroid-resistant asthma phenotype.

2.8 Immunity, obesity and asthma: current evidence
2.8.1 Systemic immunity

Although asthma is an inflammatory disease of the airways it is associated with systemic changes in 

the immune system (see section 4.1.2). There is evidence to suggest that low grade systemic 

inflammation has a detrimental effect on lung function with high sensitivity CRP (hsCRP), an acute 

phase reactant produced by hepatocytes upon stimulation by IL-6, correlating with worse lung 

function in young adults [355, 356]. Only a small number of studies in humans have examined 

systemic inflammation in obese asthmatics and these have focussed on traditional markers of 
inflammation, measuring CRP, although some have looked at circulating cytokine levels.

Van Veen et al studied 136 adults with persistent symptoms despite high dose ICS or oral steroids, 
grouped according to BMI, into obese and non-obese [28]. All had demonstrated reversible airways 

disease or BHR. They noted hsCRP was increased significantly in the obese patients however there 

was no control group and therefore it couldn't be determined whether this was more marked in 

asthmatics or simply an obesity related phenomena. Blood eosinophils, the only other systemic 

marker of inflammation measured, did not differ between groups. Similarly a study of 6000 adults 

found that CRP correlated positively with BMI but was not associated with a self reported asthma 

diagnosis after controlling for confounders such as smoking history [357]. This is in contrast to 

another large cross-sectional study of 1289 individuals which found that hsCRP was elevated in non- 
atopic physician diagnosed asthma but not atopic asthma. Interestingly, increasing BMI positively 

correlated with hsCRP, and BMI was associated with both atopic and non-atopic asthma. However, 
after adjusting for hsCRP the association between obesity and atopic asthma remained stable, whilst 
the association between obesity and non-atopic asthma was no longer significant suggesting that
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the pathophysiology of obesity related asthma may differ between atopic and non-atopic individuals 

and that systemic inflammation, as measured by hsCRP, may be important in obesity related asthma 

in non-atopic individuals [358].

Sutherland et al investigated systemic inflammation in 40 premenopausal female asthmatics (20 

obese, 20 non-obese) vs. 40 premenopausal controls (20 obese, 20 non-obese) [25]. Serum/plasma 

biomarkers measured included IL-ip, IL-2, IL-4, IL-5, IL-6, IL-10, TNFa, IFNy, MCP-1, hsCRP and leptin. 
Whilst asthma and obesity were both associated with increased systemic inflammatory markers 

these were largely independent of one another. They found significantly higher circulating levels of 
IL-4, IL-6, CRP and leptin in the obese subjects. CRP and leptin were higher in the asthmatics vs. non
asthmatics but were independent of BMI. None of the markers were higher in the obese asthmatics 

than the other groups. This led the authors to conclude either systemic inflammation was not 

responsible for the association or that this involved other areas of immunity such as innate immune 

system activation which had not been fully explored in their study. This paper was very strict in its 

inclusion criteria and diagnosis of asthmatics and controlled well for potential confounders. However 
it still had limitations; they tried to withdraw ICS from all participants prior to sampling but 28/33 

participants lost control of their asthma during this process and were sampled at this point. 
Therefore this was not a study of asthmatics in a stable state and asthma exacerbations may have 

masked any differences in phenotype.

More recently a study of 120 children examined 60 asthmatics (30 obese and 30 non obese) and 60 

controls (30 obese and 30 non-obese) [359] in whom asthma diagnosis was made by a primary care 

physician. The authors found significantly higher IL-4 and IL-13 in the blood of the non-obese vs. 
obese asthmatics consistent with a greater Th2 skewed response in the non-obese asthmatics. 
Obese asthmatics had higher levels of cytokines associated with neutrophilic inflammation including 

TNFa and IL-6 compared to normal weight asthmatics, although these levels did not significantly 

differ between obese asthmatics and obese controls. Using flow cytometric analysis of intracellular 
IFNy and IL-4, Th l and Th2 cell responses were measured after phorbol myristate 13- acetate (PMA) 
and tetanus toxoid stimulation. The authors observed that the Th l response in the obese asthmatics 

was significantly higher than non-obese asthmatics but did not differ from obese controls. This was 

accompanied by a significantly higher Th2 response in the non-obese asthmatics. The IFN-y/IL-4 ratio 

correlated positively with serum leptin levels. The authors concluded that obese asthma was 

associated with Thl rather than Th2 skewing and that leptin may be important in driving this.

Studies thus far have been relatively few in number but have shown evidence of changes in systemic 

immunity with obesity and in some cases in asthma but these have been largely independent of one 

another.

2.8.2 Systemic oxidative stress

A study by Sood and colleagues examined markers of systemic oxidative stress in 2,865 individuals 

taking part in the Coronary Artery Risk Development in Young Adults (CARDIA) study [360]; 8.1% of 

participants had a physician diagnosis of asthma. Increased plasma F2-isoprostanes was associated 

with BMI in women but not in men. Asthma diagnosis was also associated with markers of higher 
oxidative stress but this did not persist after adjusting for sex and BMI differences. The authors
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concluded that systemic oxidative stress as measured by F2-lsoprostanes may not explain the 

obesity-asthma association, although the work had weaknesses: there was no baseline information 

about asthma control or severity and a reported "physician diagnosis of asthma" rather than a more 

objective measure was used. A further study of plasma 8 isoprostane in 67 non-smoking asthmatics 

and 33 controls found that whilst levels increased with asthma they did not change significantly 

across BMI categories [361]. Therefore there has been no convincing evidence published that 
obesity in asthma is associated with a marked increase in systemic oxidative stress compared to non

asthmatics.

2.8.3 Airway inflammation

Work has also been undertaken focussing on whether obesity impacts on inflammation locally within 

the airways and studies have assessed this in a number of ways. These include measuring sputum 

cell counts and cytokines within sputum supernatants, surrogate markers of eosinophilic 

inflammation including FeNO, and exhaled biomarkers of oxidative stress.

2.8.3 (i) Sputum analysis

Current evidence suggests that obese asthma unlike atopic asthma is not associated with 

eosinophilic inflammation and increased neutrophilic inflammation has been suggested. A study of 
136 patients with persistent asthma showed that obesity was associated with a significantly lower 
sputum eosinophil count [28]. In a cluster analysis of a single asthma primary care cohort and two 

secondary care cohorts, the obese female asthma phenotype was characterised by an absence of 
eosinophilic airway inflammation [8]. A case control study examining 80 obese and non-obese 

women found no difference in the percentage of sputum eosinophils between the obese and non- 
obese asthmatics studied [25]. However, the obese patients had the highest mean percentage of 
sputum neutrophils, although this did not reach statistical significance. Sputum supernatants were 

also examined and it was noted that IL-ip, IL-6, IL-6 and IL-8 levels were significantly higher in 

asthmatics. Although IL-5 and IL-6 were highest in the obese asthmatics these were not significantly 

higher than the non-obese asthmatics. A retrospective study examined 727 adult sputum samples 

collected for the assessment of chronic cough, COPD and asthma [362]. Of these, 163 individuals had 

asthma and each BMI category was associated with an increasing sputum neutrophil count however 

this was not statistically significant.

2.8.3 (ii) Exhaled nitric oxide

Other indirect measures of eosinophilic inflammation have added further support to the suggestion 

that obesity in asthma is not associated with eosinophilic but rather neutrophilic airway 

inflammation. Exhaled nitric oxide (FeNO) is being used increasingly to measure eosinophilic airway 

inflammation in asthma with levels raised in atopic disease [363]. Large population studies of adults 

have not shown a relationship between BMI [364] or body fat[365] and FeNO overall. However
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smaller studies have suggested that obesity may be associated with declining FeNO in well defined 

asthma [27, 28].

Study Design Participants Number Outcome
de Winter- 
de-grot et 
al 2005 
[366]

Cohort Healthy adults n=24
Males = 10 
Females = 14

FeNO correlated positively with BMI.

Kim et al 
2011 [367]

Cohort Healthy adults n = 117 No correlation between BMI and FeNO.

McLachlan 
et al 2007 
[365]

Cohort
study

Birth cohort 
study 1037 
individuals, 
Dunedin 1972- 
73

n =925 
Males = 487 
Females = 438

No correlation between body fat 
composition and FeNO in men or 
women.
FeNO higher in asthmatics.
FeNO lower in cigarette users.

Olin et al, 
2006[364]

Cross- 
sectiona 
1 study

Random adult
population
sample

n=2200 
Males = 1,098 
Females = 
1,111

No association between BMI and FeNO. 
Height, age, atopy, asthma symptoms, 
ICS use positively correlated with FeNO.

Berg et al 
2011 [29]

Cohort
study

Randomly
selected
Swedish
cohort.

n=2,187 
Males = 1,074 
Females 
=1,133

In obese: FeNO lower in those with 
history of wheeze.
In non-obese: FeNO higher in those with 
history of wheeze or atopy.
In wheezing population negative 
correlation between BMI, WHR, 
percentage body fat and FeNO.

Komakula 
et al
2007[27]

Case
control
study

Moderate to 
severe asthma

Controls:
hospital
workers

n=114 
Cases= 67

Controls = 47

BMI, leptin/adiponectin ratio negatively 
associated with FeNO in asthmatics.

No association in control group.

Leung et al 
2004 [368]

Case
control

Asthmatic 
children 7-18 
years.

Healthy
controls

N=115 
Cases = 92

Controls = 23

Higher FeNO in asthmatics than controls.

No correlation between obesity and 
FeNO.

Van Veen 
et al 2008 
[28]

Cohort
study

Asthma 
patients with 
persistent 
symptoms 
despite high 
dose ICS/oral 
steroids

136 adults 

Female = 96 

Male 40

BMI negatively correlated with FeNO (r=- 
.30 p<0.01).

Table 2.6: Summary of the main studies examining FeNO and BMI in asthma.
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The observation that FeNO is lower in obese individuals with asthma is in keeping with the 

hypothesis that this is a non-eosinophilic disease. It has led some to argue that obesity does not 
mediate it effects in asthma through airway inflammation but other diseases such as cystic fibrosis, 
associated with profound airway inflammation, are also associated with low levels of FeNO [369]. It 
has been hypothesised that in environments of high oxidative stress the nitric oxide might be 

oxidised before leaving the airways and therefore low FeNO may still reflect airway inflammation 

and high oxidative stress, albeit non-eosinophilic [370].

2.8.3 (iii) Airway oxidative stress

Studies examining oxidative stress locally within the airways have also proven inconclusive. 
Komakula et al found that exhaled F2-isoprostane increased with BMI within their asthmatic group 

and negatively correlated with FeNO. This is in keeping with the concept that obesity in asthma is 

associated with enhanced oxidative stress locally in the airways and this may oxidise the nitric oxide 

accounting for the reduction in levels often reported [27]. However obese asthmatics did not have 

higher levels of F2 isoprostane than obese non-asthmatics. Similarly Holguin and colleagues found a 

correlation between exhaled F2 isoprostane and BMI in their 67 asthmatics studied but again 

asthmatics did not have significantly higher levels than control subjects [361].
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Chapter 3 

Materials and methods
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3.1 Study design

This was an observational case control study designed to test whether the obesity-asthma 

relationship could be explained by systemic changes in metabolic parameters, innate immune 

function, dendritic cells or adaptive immunity. The study population consisted o f Caucasian 

asthmatic and non-asthmatic pre-menopausal women (age 18-50 years) o f varying body mass index.

Only women were chosen as the relationship between obesity and asthma is more consistent in this 

group. Furthermore, this would control for any differences in body fat distribution and hormonal 

impact (see section 2.7.5). Pre-menopausal women were studied since asthma incidence is higher in 

this group [54] and the menopause affects the levels o f circulating pro and anti-inflam m atory 

cytokines [371]. Subjects and controls were divided into 3 groups on the basis o f body mass index 

(BMI), resulting in 6 groups in total (Figure 3.1).

Case Control (n=90)

Asthmatics (n=45)
(AMBU Health Board)

Controls (n=45)
(Staff/S lim m ing world)

Normal
(n=15)

Overweight
(n=15)

Obese Normal Overweight Obese
(n=15) (n=15) (n=15) (n=15)

Figure 3.1: Outline of study design.
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3.1.1 Measures of obesity

BMI was chosen as a marker of adiposity due to its simplicity of use and adoption on an international 
scale as well as in many clinical guidelines[212].

According to the World Health Organisation (WHO), normal weight is defined as BMI 18.5-25kg/m2, 
overweight as a BMI >  25kg/m2 and <  30kg/m2 and obesity as a BMI >  30kg/m2 [212]. Underweight 

patients were excluded as this group also has been reported to have an increased risk of asthma 

symptoms, BHR and asthma diagnosis compared to normal weight individuals and therefore may 

represent a different phenotype to normal weight individuals in the context of asthma [372, 373]. 
However, whilst participants were classified by BMI, this is only a surrogate marker of adiposity, 
making the assumption that excessive weight for given height is due to increased fat composition 

and thus failing to distinguish between lean mass and body fat. Therefore other measures were also 

taken, including body fat composition measured by biometric impedance, waist circumference (WC) 
and waist-hip ratio (WHR).

3.1.1 (i) Body fat composition

In the context of body fat composition, the WHO defines obesity as a body fat percentage of >25% in 

men and >35% in women [374]. Body fat composition can be estimated using two different models. 
The simpler two-compartment model partitions the body into fat mass and fat free mass, the latter 
consisting of water, protein and minerals [375]. The model assumes that the proportions of water, 
protein and mineral remains constant, therefore in certain states such as pregnancy, periods of 
growth, dehydration or sudden weight reduction, it may be inaccurate. The four component method 

is more precise and involves the measurement of total body mass, body volume, body water and 

bone mineral density. However the technique is cumbersome and expensive and therefore is not 
routinely used in population based studies [376].

A number of techniques based on the two compartment model have been developed. Biometric 

impedance measures resistance to a small electrical current passed through the body. It estimates 

total body water from which fat free mass is calculated based on assumption that 73% of this is 

made up of water. Initially the method involved using electrodes attached to the arms and legs, but 
this has since been replaced by leg to leg impedance measurements, which have similar 
performance characteristics especially when age, gender and WHR is taken into account [377]. This 

technique is limited by its inability to differentiate between intracellular and extracellular fluid 

compartments and therefore values derived are affected by hydration status. Dilution techniques 

involve estimating total body water and therefore fat free mass by administering radio labelled 

hydrogen or oxygen [378]. However these measures have the similar limitations. Other methods 

used include underwater weighing and air displacement plethysmography which measure body 

volume and fat mass by measuring the amount of water or air displaced [379], but are cumbersome 

to perform. Dual energy x-ray absorptiometry (DEXA) provides estimates of bone mineral density, fat 

free mass and fat mass. The technique requires radiation exposure and its estimates of fat mass 

decrease in accuracy with increasing trunk thickness [380]. Biometric impedance measurements
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were chosen for this study as they correlate well with measurements by DEXA scanning in obese 

hydrated subjects, whilst avoiding the whole body irradiation associated with the latter technique 

[381].

3.1.1 (ii) Body fat distribution

Central to the definition of obesity is the concept of excessive fat deposition in adipose tissue. 

Adipose tissue is distributed anatomically in two major areas: subcutaneous adipose tissue (SAT) and 

visceral adipose tissue (VAT). Visceral adiposity is characterised by increased tissue around intra
abdominal organs and this distinct pattern of fat deposition has been linked with specific pathologies 

including insulin resistance and diabetes [382]. Anthropometric techniques can provide an estimate 

of visceral and subcutaneous fat deposition which cannot be derived from BMI. Waist circumference 

reflects visceral fat whilst hip circumference reflects subcutaneous fat. A high WHR correlates with 

an increased in visceral adipose tissue to subcutaneous adipose tissue ratio on CT imaging [383]. A 

ratio <0.85 in women and <0.9 in men is defined as normal and in the elderly WHR predicts 

mortality more accurately than BMI or waist circumference [384]. However whilst anthropometric 

measures are cheap and non-invasive they are observer dependent and difficult to reproduce [385]. 
More accurate methods for estimating visceral adiposity have been developed. DEXA can be used to 

estimate visceral adipose tissue deposition but its accuracy decreases with increasing obesity due to 

difficult to accurately discern the waste circumference on the trunk [380].

3.1.1 (iii) BMI vs. other measures of adiposity

Studies have shown that BMI does not always correlate well with other measures of adiposity in 

certain populations, especially men or the elderly. A population based study of 13,601 adults in the 

United States measured the performance BMI in the diagnosis of obesity, as defined by excess body 

fat (>25% in men and 35% in women). They found that whilst BMI estimated 21% of men and 31% of 
women to be obese, body fat percentage measured using biometric impedance showed this figure 

to be significantly higher (50 and 62% respectively) [213]. In this study BMI was very specific but 
insensitive at diagnosing obesity by body fat composition in those with BMI>30kg/m2. In those with 

BMI of 25-30kg/m2 (overweight category), BMI was more sensitive but not specific due to its inability 

to discriminate between body fat and lean mass, especially in male and those over 60 years of age. 
However of relevance to this current work ,BMI correlated very well with body fat percentage in 

women and a cut off of >25kg/m2 in the overweight range was sensitive and specific in diagnosing 

obesity as defined by body fat composition. A large meta-analysis of 25 studies comparing BMI vs. 
body fat percentage using a variety of different methods encompassing 31,968 patients reported 

similar findings [386]. Based on the relatively good performance of BMI in women, patients were 

categorised using this variable to enable easy comparison with previously published works but body 

fat composition was also measured along with WHR as a marker of visceral adiposity.
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3.2 Ethical approval
Ethical approval was sought from the South West Wales Research Ethics Committee (REC reference 

number 10/W MW 02/4) and written informed consent obtained from all volunteers and patients 

(Appendix I). A written information sheet, approved by the local research ethics committee, was 

given to all interested patients (Appendix II) and controls (Appendix III).

3.3 Identification of potential participants
Asthmatic patients were identified from a number of local healthcare providers:

•  Local tertiary asthma clinic (Singleton Hospital, Abertawe Bro Morgannwg University Health 

Board (ABMU HB)).

•  Surrounding secondary care clinics (ABMU HB; Neath Port Talbot, Morriston and Bridgend 

hospitals).

•  Participating GP surgeries (Ty'r Felin surgery, Gorseinon).

Patients recruited from hospitals were initially identified by clinic letter and case note review 

against the study inclusion/exclusion criteria (Table 3.1). Primary care patients were identified by 

review of the practice data-base. Telephone contact was made with those asthmatics fulfilling the 

criteria and they were invited to a clinic appointment in the specialist asthma service.

Control patients were recruited from a number of sources:

•  Staff, ABMU HB

•  Staff, Swansea University

•  Women attending local Slimming World groups

Hospital and university staff were identified following response to an electronic advert, prepared 

with the aid of "Involving People" and approved by the local ethics committee. Involving people is 

part of the National Institute for Social Care and Health Clinical Research centre, and encourages 

public involvement in research. Through this organisation, lay people were involved in the design of 
the advert and information leaflets. Slimming World agreed to the lead researcher attending local 
classes and providing a 3 minute presentation on the study and distributing posters. Those 

considering taking part completed a standardised questionnaire recording basic demographics, co
morbidities, medication history, smoking history, presence of atopy, Epworth score and a validated 

Modified Bronchial Symptoms Questionnaire (Appendix IV) [387].
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3.4 Study participants: recruitment
All asthmatic subjects fulfilling the inclusion criteria attended an appointment at a tertiary asthma 

service. Asthma diagnosis was confirmed by a respiratory physician. This required consistent 
symptoms and demonstrable significant reversible airways obstruction to a beta 2 agonist (12% 

reversibility in FEV1), or significant PEFR variability or a positive methacholine challenge test (Table 

3.1). A challenge test was said to show significant BHR if a dose of <8|imol caused a >20% reduction 

in FEV1.

Inclusion criteria Exclusion criteria

Asthma:
1. Obstructive spirometry with 12% reversibility to a 

beta agonist
2. Peak flow with 20% diurnal variation
3. Positive methacholine challenge test

Amenorrhoea:
1. Postmenopausal
2. Hysterectomy
3. Depot contraceptive
4. Mirena coil

Female Diabetes
Pre-menopausal Current smokers or >10 pack year 

history
Obese: BMI >30Kg/m2 
Overweight: BMI 25-30Kg/m2 
Normal weight: BMI <25 Kg/m2

Systemic inflammatory disorder

Other cardio-pulmonary disease
Immunosuppression/systemic steroids

Table 3.1: Summary of the inclusion and exclusion criteria.

A number of potential confounding factors were exclusion criteria (Table 3.1). Since samples from 

patients were timed by the menstrual cycle (see section 3.5), any condition which rendered 

participants amenorrhoeic dictated exclusion. The diagnosis of diabetes was based on measurement 
of fasting glucose. Diagnosis of systemic inflammatory disorder or other cardiopulmonary diseases 

was based on interview and review of case notes in the asthmatic patients studied. In addition to 

these criteria, control subjects were not included if they had any respiratory symptoms determined 

by completion of a Modified Bronchial Symptom Questionnaire or history of clinical atopy [387]. All
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patients were either non-smokers or ex-smokers with <10 pack year history, having ceased more 

than 6 months previously. Patients who were on maintenance oral steroids or steroid sparing agents 

were excluded.

All asthmatic patients were assessed in clinic and their asthma control established. In those with 

very good control, therapy was stepped down to the lowest level to maintain this, in keeping with 

British Thoracic Society (BTS) guidelines.

3.5 Baseline measurements and sample collection
All asthmatics were considered stable if they had no exacerbations, oral corticosteroid therapy, or 
respiratory tract infection in the preceding 6 weeks. All participants were asked to attend during the 

first 7 days of their menstrual cycle, determined using the date of onset of menstruation between 

the hours of 07.00-09.00. This was to control for the effects of female sex hormones which can 

influence both asthma control (see section 2.7.5) and some of the parameters of interest including 

circulating neutrophils [388], lymphocyte subsets [389] and regulatory T cells [390].

3.5.1 Clinical phenotype

Asthmatics were asked to complete a modified European Respiratory Health Survey [391] (Appendix 

V) and the following information recorded:

•  Age of onset

•  Markers of symptom control in last 12 months

•  Medication usage

•  Emergency contact with healthcare providers (GP/clinic attendances, hospital and ITU 

admissions) in the preceding 12 months

•  Days off work

•  Co-morbidities

•  Epworth score

•  Details of menstrual cycle

Acute disease control at the time of recruitment was assessed using the Juniper Asthma Control 
Questionnaire (Appendix VI) [392]. Disease severity was graded according to the Global Initiative for 

Asthma (GINA) criteria [393] (Appendix VII) and also quantified by recording symptom severity, 
medication usage and degree of emergency contact with services in the previous 12 months.
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3.5.2 Spirometry

Spirometry was performed on all participants using a portable dry spirometer (Vitalograph) 
calibrated on the day of use. All asthmatics were asked to withhold medication for the preceding 24 

hours to control for any effects of long acting bronchodilators or immediate effects of inhaled 

corticosteroids (ICS). The best of 3 measurements was taken according to a standardised protocol 
[394] and expressed as percentage of the age, gender and stature predicted values. The following 

spirometric measurements were recorded: Forced Expiratory Volume in 1 second (FEV1), Forced 

Vital Capacity (FVC), FEV1/FVC ratio, Forced Expiratory Flow at 25%-75% of expired vital capacity 

(FEF25-75) and Peak Expiratory Flow (PEF).

3.5.3 Adiposity measures

On the morning of attendance the following measures were taken with the subject wearing light 
clothing without footwear:

•  Height; to 0.1cm by staediometer (Leicester; Chasmors, UK)

•  Weight; to 0.1kg and body mass index calculated

•  Body fat percentage to 0.1% (Body composition analyser, Tanita SC 240 MA; Tanita UK)

•  Waist and hip measurements to 0.1cm and ratio calculated

Waist and hip measurements were taken with the subject relaxed with their hands by their sides and 

feet relaxed at the end of tidal expiration. Waist measurements were taken at the midpoint between 

the last palpable rib and the iliac crests, and the hip measurement around the widest portion at the 

level of the buttocks [395]. This provides an estimate of visceral adiposity and has been shown to 

correlate with Computerised Tomography indices [383], whilst being less invasive, and not 
subjecting the volunteers to ionising radiation. A limit of anthropometric measurements is the 

difficulty in reproducibility [385], to address this issue, measurements were performed by the same 

study investigator and repeated until the difference between measurements was <lcm [396].

Body fat composition was estimated using biometric impedance using a leg to leg medically 

approved light weight portable analyser. A limitation of biometric impedance analysis is that it 
measures total body water to calculate fat and fails to take into account hydration status (see 

section 3.1). To control for this issue all participants were asked to remain starved from midnight, 
including water consumption and prior to attendance at the research clinic between 07.00-09.00 

am.

Fasting blood was then collected using lithium heparinised tubes and gel and clot activator tubes 

(Vacuette®, Greiner Bio-One) for the following investigation:
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• Full blood count analysis

• Flow cytometry to quantify major lymphocyte subtypes, markers of CD4+ maturation, CD4+ 
cells including Tregs, dendritic cell subsets, and surface markers of neutrophil and monocyte 

activation.

• Luminol enhanced chemiluminescence to measure reactive oxygen species (ROS) generation 

of participants' blood in response to Phorbol Myristate Acetate (PMA) stimulation.

• Whole blood cultures stimulated with lipopolysaccharide (LPS) +/- interferon gamma (IFNy) 
or phytohaemagluttinin-L (PHA) for cytokine analysis of supernatants, using enzyme linked 

immunosorbant assay (ELISA).

• Mononuclear cell (MNC) isolation for cryopreservation.

•  Plasma and serum archived for subsequent analysis of circulating adipokines, cytokines, 
insulin, glucose, free fatty acids, total and specific IgE total antioxidant status and 

thiobarbituric acid reactive substances (TBARS).

3.6 Full blood count analysis
Full blood count was measured using a CELL-DYN Ruby analyser (Abbott Diagnostics Germany). This 

provided haemoglobin (Hb), red blood count (RBC), mean corpuscular volume (MCV), white cell 
count (WBC) and differential and platelet count (PLT). A CELL-DYN Ruby is a multi-parameter 

automated haematology analyser designed for in vitro diagnostic use in clinical laboratories and 

utilises the technique of flow cytometry (see section 3.7). It contains a vertically polarised lOmW  

helium-neon laser. The sample is hydrodynamically focussed and passes through the laser beam 

generating forward and side scatter. Two angles of forward scatter are measured (0° and 10°) whilst 
the orthogonal scatter is passed through a beam splitter into two portions. One portion of the light is 

directed straight to a 90° photomultiplier tubes (PMT) whilst the other portion is directed through a 

horizontal polariser (depolarised) to a 90°D PMT. The PMTs convert the light into an electronic 

current. All 4 scatter signals are measured in a process termed as MAPSS™ (Multi-Angle Polarised 

Scatter Separation). In terms of leukocyte count the 0° is used to provide a total WBC, whilst a 

combination of the 4 scatter signals is used to provide a WBC differential; expressing the percentage 

of each subpopulation (lymphocytes, neutrophils, eosinophils, basophils and monocytes (Figure 3.2). 
The absolute numbers of leukocyte subpopulations (expressed as *109/l) are determined by 

multiplying the total leukocyte count by the percentage of each population.

Before each patient sample was analysed a set of three quality controls containing samples with 

known quantities of each blood parameter (low, normal and high) were run to ensure that the 

machine was calibrated and functioning correctly. The sample was then agitated gently at room 

temperature to ensure mixture and then run through the analyser. All samples were run manually.
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Figure 3.2: Generation of leukocyte differential using an automated haematology analyser.
A: Leukocytes are initially divided into mononuclear cells (blue) and granulocytes (yellow) using 10° FSC 
(cell complexity) and 90° SSC (lobularity).
B: By gating on the mononuclear cell population, the respective constituents are displayed using 0° and 
10°FSC into basophils (purple), monocytes (pink) and lymphocytes (blue). The red population below the 
lymphocytes contain cell fragments
C: The subpopulations of granulocytes, eosinophils (green) and neutrophils (yellow), are shown by plotting 
90° (lobularity) and 90°D (granularity).



3.7 Whole blood flow cytometry

3.7.1 Principles of flow cytometry

Although the basic principles of flow  cytometry can be traced back to the 1900s, the 1970s saw the 

advent of commercially available cytometers and the beginning of the ir widespread use in the 

laboratory setting. W ith the outbreak of the acquired immunodeficiency disease (AIDS) pandemic in 

the 1980's the use o f flow cytometers became routine in pathology laboratories [397].

Fluid Sheath

Hydrodynamic
focussing

Fluorescence

Forward & Side 
Scatter

Detector

Light source Detector

Figure 3.3: Schematic diagram of flow cytometer. Cells are brought 

into single file by hydrodynamic focussing and passed through a laser. 

Light is scattered according to size and complexity onto detectors.

Flow cytometry enables the analysis o f multiple characteristics of single cells or any particle at a high 

rate (thousands of events per second). Fundamental to this process is the ability o f the fluidic 

component o f the analyser to  focus samples into a single stream of cells (hydrodynamic focussing) 

which pass through one or more high energy light sources, each o f a single wave length. The light is 

then scattered in a forward direction according to the size o f the cells, and in a sideways direction 

according to cell complexity. Additionally fluorochromes/fluorescent dyes either alone or when 

conjugated to antibodies can bind to specific proteins on the cell surface or w ithin the cell. When 

these fluorochromes pass through a light source o f a certain wavelength (excitation wavelength), 

light of a d ifferent wavelength is em itted (fluorescence emission wavelength) which can be 

quantified by detectors. M ultiple fluorochromes w ith similar excitation wavelengths but differing

55



emission wavelengths can be used to measure multiple properties of a cell simultaneously [398]. 
This enables multiple research applications including the identification of specific cell types by 

staining against surface and intracellular markers, as well as measuring cytokine and other functional 
read outs[399]. The technique is also used in the clinical setting, providing CD4+ T cell counts for 
patients with Human Immunodeficiency Virus (HIV) and accurate phenotyping of 
lymphoproliferative diseases [398]. The basic flow cytometer consists of fluidics, optics (including 

light source), electronics (detectors) and a computer (Figure 3.3).

3.7.1 (i) Fluidics and hydrodynamic focussing

The principles of hydrodynamic focussing can be traced back to Bernoulli's experiments looking at 
the inverse relationship between pressure and velocity of fluid flowing through a constricted tube 

[400]. He noted that as fluid flowed through a narrowed section of tubing the fluid velocity increased 

at that region with a corresponding reduction in hydrostatic pressure. A colleague and friend, Enuler, 
noted that the velocity of flow in a stream follows a parabolic distribution with the fastest flow in 

the centre of the steam relative to the periphery [401]. Based on Bernoulli's work it can be 

appreciated that the pressure within the more rapidly moving centre of the stream must be lower 
and therefore particles introduced into a stream will slowly move towards the centre following the 

pressure gradient. Following on from this, Reynolds showed that laminar flow of fluid is dependent 
on a number of variables including the velocity and density of the fluid and diameter of the tube
[402]. As a tube suddenly narrows an area of turbulence will occur at the interface around the 

outside of the stream and particles flowing through the centre of the stream will be unaffected.

Using the principles outlined, Crossland-Taylor developed the first hydrodynamic focussing chamber
[403]. Sheath fluid enters the outer jacket of the chamber and a faster moving central jet carrying 

the sample passes through the centre. The pressure gradient between the two causes the particles 

of interest to move to the centre of the jet. By balancing the pressures and flow of the central jet 
and outer sheath of fluid and forcing the stream though a narrow nozzle, it is possible to focus the 

jet to a submicron width and bring cells or other particles of interest into single file.

3.7.1 (ii) Optics

The optical system consists of a light source and components needed to direct and focus the source 

onto the fine stream of cells as well as detectors and mirrors needed to focus light emissions onto 

the appropriate detectors.

Flow cytometers contain one or more lasers, which produce light at very specific wave-lengths. In 

the BD FACSAria™ I (BD Biosciences USA) used in this study, there are 3 lasers with emissions of 
407nm (violet), 488nm (blue) and 633nm (red). As cells pass through the laser source, light is 

scattered by the cells and picked up by detectors positioned at 180° and 90° to the source. Light 
scattered in the forward direction (forward scatter (FSC)), analogous to casting a shadow, correlates 

with cell size. Light scattered perpendicularly (orthogonal or side scatter (SSC)) corresponds to the
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complexity of the cell including cytoplasmic granularity [404]. By measuring these two parameters 

discrete cell populations can be identified.

3.7.1 (iii) Immunofluorescence

Fundamental to the principles of modern flow cytometry is the technique of immunofluoresence 

which involves labelling external or internal cellular structures of interest with a molecule which 

fluoresces. These chemicals, termed fluorochromes, have electrons within their structure that upon 

exposure to certain wavelengths (excitation spectra) become excited to a higher energy state. Upon 

returning to their resting energy level light of a separate wavelength is emitted (emission spectra). 
This difference between the maximum of the excitation spectrum (Exmax) and of the maximum 

emission spectrum (Ernmax) is termed "Stoke's Shift" after the Irish physicist [405]. As the cytometer 
contains lasers which only produce a very narrow spectrum of light, the fluorochromes used must be 

excited by the same spectra whilst having emission spectra of wavelengths distinct from the light 
source. Modern machines have multiple lasers; this enables excitation of a broader range of 
fluorochromes, but in order to simultaneously measure several features of a cell, each fluorochrome 

must still have discrete emission spectra. The principle fluorochromes used in the following analyses 

are summarised in Table 3.2.

Fluorochrome Exmax (nm) Emmax (nm)

APC (Allophycocyanin) 633 660
APC-eFluor780 633 780
Alexa Fluor 488 488 519

Alexa Fluor700 633 719
eFluor450 407 455
FITC (Fluoroscein 
isothiocyanate)

488 519

PE (R phycoerythrin) 488 578
PerCP-Cy5.5(Peridinin 
chlorophyll protein Cy5.5 
conjugate)

488 695

Table 3.2: Commonly used fluorochromes and their respective absorption and 
emission spectra.

As all the light from the excitation of different fluorochromes is emitted simultaneously, it must be 

separated into its various components for detection. This is achieved with the use of dichroic mirrors 

and filters. Dichroic mirrors permit light below a certain wavelength to pass through to a detector 
whilst reflecting light above the same length. Filters are also used to narrow the spectra of light 
falling on each detector. Short pass detectors allow only light below a specified wave-length to pass 

through whilst their counterparts, long pass filters, only allow light above a specified wavelength
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through. Band pass filters allow a specified band of wavelengths to pass through. Through the 

sequence of mirrors and filters, light of specific wavelengths from  each of multiple fluorochromes 

can be separated and detected individually allowing multiple components or properties of a cell to 

be measured simultaneously.

530nm band 
pass filter

1

585 nm band 
pass filter

1

Spectral
overlap

Emission I
518 wavelenth (nm) 578

Figure 3.4: illustration of spectral overlap between the fluorochromes FITC and PE. Whole 

blood is stained w ith CD4-FITC and CD8-PE. On passing through the 488nm laser these 

fluorochromes are excited producing the ir respective emission spectra. Despite the use of band 

filters there is still some overlapping of emission spectra. This is addressed using compensation
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Although the use of mirrors and filters is effective at isolating discrete emission spectra from 

fluorochromes, it still relies on the assumption that there is no overlap in spectra between them 

Unfortunately many fluorochromes have some breadth to their emission spectra meaning that 
emissions may overlap with one another: "spectral overlap" (Figure 3.4). Although filters go some 

way to addressing this issue it is often necessary to subtract a percentage of the observed emission 

from one fluorochrome on the basis that it is coming from another fluorochrome, a process termed 

compensation. Such compensation historically was performed prior to data acquisition, however 
with modern software it can now be performed retrospectively [406].

3.7.1 (iv) Electronics

The light emitted, having passed through filters and mirrors, falls on photomultiplier tubes (PMT), or 
photodiodes that convert the incident spectra of light into an electronic impulse. The impulse is 

amplified and converted into a digital signal for subsequent analysis by the computer software. The 

sensitivity each PMT can be altered by adjusting the voltage supplied to it.

3.7.2 Sample preparation for whole blood flow cytometry

Quantification of lymphocyte, dendritic cell subtypes and neutrophil/monocyte activation markers 

was performed by multi-parametric flow cytometry using the BD FACSAria™ I (BD Biosciences). All 
immunophenotyping was done on whole blood using the whole blood lysis method, where red cells 

are removed after staining with antibody by targeted red blood cell lysis, leaving the leukocytes for 

analysis. This technique compares favourably with performing flow cytometry on isolated MNCs 

separated by density gradient centrifugation [407].

3.7.2 (i) Surface staining

Predetermined volumes of monoclonal antibody were added to lOOpI of whole blood and the 

sample vortexed before incubation in the dark on ice for 30 minutes. A list of the antibodies used is 

summarised in Table 3.3. The samples were then treated with 3mls of red blood cell lysis solution 

(FACS lysing solution BD Biosciences) and incubated in the dark at room temperature for 10 minutes. 
Cells were collected by centrifugation (4°C, 515 x g for 7 minutes) and the supernatant discarded 

before washing in FACS buffer (PBS with 0.2% BSA and 0.05% sodium azide). The tubes were 

centrifuged, supernatant removed and then the samples for detecting T cell subsets, dendritic cells 

and neutrophil/monocyte activation markers were fixed using 200|il FACS fix (BD Biosciences, USA), 
unless intracellular staining was required.
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Antigen Fluorochrome Cell expression Clone Source

CDlc
(BDCA-1)

PE Myeloid dendritic cells Miltenyl Biotec: dendritic cell 
enumeration cocktail

CD3 e450 Pan T lymphocytes UCHT1 eBioscience, UK
CD4 e450 CD4+ T lymphocytes OKT4 eBioscience, UK

FITC S3.5 Life technologies (Caltag), UK
Alexa Fluor 488 OKT4 eBioscience, UK

CD8 PE CD8+T cells OKT8 eBioscience, UK
CDllb
(MACl-a)

APC Activation epitope of neutrophils 
and monocytes

CRBM1/
5

eBioscience, UK

CD62L
(L-selectin)

PE Low expression after shedding on 
chronically activated neutrophils 
and monocytes

DREG-
56

eBioscience, UK

CD14 PerCP-Cy5.5 High expression on monocytes 61D3 eBioscience, UK

PE-Cy5 Miltenyl Biotec: dendritic cell 
enumeration cocktail

CD15 e450 High expression on neutrophils H198 eBioscience, UK
CD16 APC High expression on NK cells and CB16 eBioscience, UK

FITC activated monocytes 3G8 BD Biosciences (Pharmingen), UK
CD19 Alexa Fluor 700 B lymphocytes HIB19 eBioscience, UK

PE-Cy5 Miltenyl Biotec: dendritic cell 
enumeration cocktail

CD25 APC Tregs, activated T lymphocytes BC96 eBioscience

CD45RA FITC High expression on naive T cells 
and terminally differentiated T cells

H1100 eBioscience, UK

CD56 APC High expression on NK cells MEM18
8

eBioscience, UK

CD127 PerCP-Cy55 Low expression on Tregs RDR5 eBioscience, UK

CD141 (BDCA3) APC Type 2 myeloid dendritic cells Miltenyl Biotec: dendritic cell 
enumeration cocktail

CD197
(CCR7)

APC High expression on central and 
effector memory T cells.

3D12 eBioscience, UK

CD303
(BDCA-2)

FITC Plasmacytoid dendritic cells Miltenyl Biotec: dendritic cell 
enumeration cocktail

FoxP3 PE Tregs (intracellular) PCH101 eBioscience, UK
HLADR FITC High expression on activated 

monocytes
G46-6 BD Biosciences (Pharmingen), UK

Mouse IgGl 
isotype control

APC/ PerCP- 
Cy5.5

P3.6.2.8
.1

eBioscience, UK

APC/FITC Miltenyl Biotec: dendritic cell 
enumeration cocktail

Mouse lgG2a 
isotype control

PE 20102 R&D systems

Miltenyl Biotec: dendritic cell 
enumeration cocktail

Mouse lgG2b 
isotype control

FITC eBMG2
b

eBioscience, UK

Rat lgG2a
isotype
control

APC/PE eBR2a eBioscience, UK

Table 3.3: Monoclonal antibodies and fluorochromes used.
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3.7.2 (ii) Intracellular staining

After surface staining for CD4, CD25 and CD127, 1ml of freshly prepared fixation/permeabilisation 

buffer (eBiosciences) was added to relevant samples followed by incubation on ice for 1 hour (this 

time was pre-optimised in preliminary investigations). These samples were then washed twice with 

2mls of permeabilisation buffer (eBiosciences). Antibody to FoxP3 was added to sample suspended 

in lOOpI permeabilisation buffer and then incubated at room temperature in the dark for 30 

minutes. The samples were then washed twice, with 2mls of permeabilisation buffer before being 

fixed with 200pl FACS fix (BD Biosciences, USA). All samples were analysed within 24 hours of 
processing.

3.7.3 Gating

One of the principle uses of flow cytometry is to analyse specific sub-populations of cells (e.g.CD4+ T 

cells) within a mixed sample e.g. whole blood, containing all forms of leukocytes. Gates can be 

applied to the acquired cells, allowing interrogation of discrete populations which may be based on 

their morphological appearance using scatter plots [408] (e.g. monocytes vs. lymphocytes), or by 

gating on surface markers using fluorescence (immunephenotyping) [409]. An example of a gating 

strategy for major lymphocyte subsets is outlined in Figure 3.5. The gating strategy for each of the 

populations of interest is shown in their respective results chapters.

61



Lymphocyte*.

;CD16/56+ NK A++ 
: cells

=CD19+ B 
lymphocytes

CD3+ T Lymphocytes

CD 3 elluor450 CD3e450 CD3 e450

lCD8+ C++
ICytotoxlc
JT cells

1c- CD4 +T helper cells
l
J
1
i

i .............

Figure 3.5: Gating strategy for phenotyping of major lymphocyte subsets.
A: Using forward scatter (FSC) and side scatter (SCC), lymphocyte population 
identified.
B: Gating on lymphocytes, CD3+ T lymphocytes identified.
C: Gating on CD3+ T lymphocytes, CD4+ and CD8+ populations identified.
D: Gating on lymphocytes, CD19+ B lymphocytes identified.
E : Gating on lymphocytes CD16+CD56+ positive NK cells identified.



3.8 Measurement of oxidative stress
Oxidative stress arises due to an imbalance between ROS production and counteracting antioxidants 

and can cause oxidative injury resulting in fu rther inflammation [94]. Oxidative stress can either be 

measured directly using electron spin resonance, or by measuring products o f oxidation [410].

3.8.1 Reactive oxygen species by luminol enhanced 
chemiluminescence

Phagocytosis is an important aspect o f innate immune defence. During this process, phagocytes 

suddenly increase the ir oxygen and glucose requirements in a process referred to as the "respiratory 

burst" [411]. This results in the generation of oxygen containing compounds which kill the 

phagocytosed pathogen (oxygen dependent intracellular killing) [412]. When phagocytes detect 

pathogen through the use of PRRs, the activity of the pentose-phosphate pathway escalates, 

increasing glucose consumption, resulting in NADPH production. The enzyme NADPH oxidase 

catalyses the reduction of oxygen form ing superoxide radicals [413] which are then acted upon by 

superoxide dismutase, producing hydrogen peroxide. Through the action of myeloperoxidase (MPO) 

contained in granulocytes, a highly toxic hypochlorite is formed [414], A number of MPO 

independent mechanisms also exist to produce reactive oxygen species (ROS) (Figure 3.6). Reactive 

oxygen species have a number of effects which are important in the killing of pathogens including 

DNA cleavage and modification, protein denaturation and lipid peroxidation.
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Figure 3.6: Generation of reactive oxygen species by phagocytes. In

response to pathogens or stress phagocytes generate superoxide ROS 

(shown in red) through the activity of NADPH. By reacting w ith other 

agents (green) in the presence of enzymes (blue), fu rther ROS are

generated. 63



Enhanced chemiluminescence is an effective method for measuring the release of respiratory burst 

products. ROS excite the chemical luminol (5-amino-2,3,-dihydro-1,4-phthalazinedione), which 

reacts in its oxidised form  and releases a photon of light (chemiluminescence) as it returns to its 

resting state [415] (Figure 3.7). The amount o f light released over a period o f time can be quantified 

as a measure o f the respiratory burst. Phorbol myristate acetate (PMA) was chosen to activate the 

neutrophil respiratory burst in the presence of luminol. PMA activates protein kinase C which 

stimulates NADPH oxidase in neutrophils [416].

Whole blood (diluted 1:10 in PBS; 25ql) was added to Krebs buffer (50ql) (Appendix VIII), luminol 

(25ql)(Sigma) and lq M  PMA (25ql)(Sigma). A control well in the absence of PMA was always 

included. The method was performed in trip licate in a white 96 well white plate (Greiner Bio-one, 

Germany). Once the activator PMA was added the plate was immediately placed into a pre-warmed 

(37°C)POLAR Star™ Omega plate reader (BMG Labtech, Germany). The plate reader was set at 

maximum gain (4095) to obtain chemiluminescence readings 20 times over 40 minutes. The 

maximum light units produced was measured to  quantify ROS generation.

Cyclo phthalhydrazide 
(luminol)

Chemiluminescence

.00

Cycle (3mins per cycle)

Figure 3.7: Typical output for luminescence measurement of ROS generation.
The peak light produced was used to quantify ROS generation.
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3.8.2 Thiobarbituric acid reactive substances

Lipid peroxidation is a consequence of high oxidative stress, thus the resultant products can be 

measured as a surrogate marker of the chronic state of this. Lipid peroxidation products of 
polyunsaturated fats are unstable and decompose to form a group of compounds which include 

carbonyl compounds such as malondialdehyde (MDA). The thiobarbituric acid reactive substances 

(TBARS) assay is a well established technique for measuring these products in plasma [417]. Under 
high temperatures (90-100°C) in acidic conditions MDA reacts with TBA to form MDA-TBA adduct 
which can be measured colourimetrically at 530-540nm.

A commercially available TBARS assay was used (Cayman chemicals) and standards, samples, and 

reagents bought to room temperature. Each measurement was performed in duplicate. 5ml vials 

were labelled with an identification number (for samples) or the standard concentration. A colour 
reagent was mixed containing 530mg of TBA mixed with 50ml of TBA acetic acid solution and 50mls 

of sodium hydroxide. lOOul of sample or appropriate standard concentration was added to the 

appropriate labelled vial. lOOul of sodium dodecyl solution (SDS) was added to each vial and the vials 

mixed. 4ml of colour reagent was added to each sample and then the vials were capped and placed 

upright in boiling water for 1 hour. They were then placed in an ice bath for 10 minutes to stop the 

reaction. Following this the vials were centrifuged (1600 x g at 4°C) for 10 minutes. The vials were 

allowed to come to room temperature over 30 minutes and then 150ul of each sample was added to 

clear plate and absorbance measured at 530-540nm using a POLAR Star™ Omega plate reader (BMG 

Labtech, Germany). The concentration of MDA in the sample was determined by plotting the mean 

absorbance against a standard curve of known MDA concentrations. All measurements were 

performed in duplicate

3.8.3 Plasma total antioxidant status

Oxidative stress occurs due to an imbalance between oxidant production and antioxidant defences 

[94]. There are two broad types of antioxidants in the body: enzymatic and non-enzymatic. Enzymes 

such as superoxide dismutase (SOD) located in the mitochondria convert superoxide radicals to 

hydrogen peroxide which can then be converted to water by other enzymes including glutathione 

peroxidise, glutathione S-transferase or catalase. Non-enzymatic antioxidants include vitamins (A, 
Bl, B6, B12, C and E), minerals (zinc, copper and selenium) and mitochondrial proteins [418]. Blood 

has a pivotal role in maintaining redox balance within the body, containing antioxidants defences, 
distributing them to different body sites. Plasma total anti-oxidant status (TAOS) is the net effect of 
different compounds previously described as well as systemic interactions.

Plasma TAOS was measured by a photometric micro-assay previously described by Sampson et 
al[419]. The TAOS of plasma from each patient was quantified by its capacity to inhibit the 

peroxidase-mediated formation of the 2,2-azino-bis-3-ethylbensthiazoline-6-sulfonic acid (ABTS+) 
radical. In the assay, the relative inhibition of ABTS+ formation in the presence of plasma is 

proportional to the antioxidant capacity of the sample. Therefore, there are two arms to the assay, 
a control arm and test arm. In the control arm phosphate buffered saline (PBS) is used instead of 

plasma. The assay was performed in a 96 well ELISA plate using 2.5 pi of plasma (in triplicate). In the
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control arm phosphate buffered saline (PBS) was used instead of plasma. A reaction mixture made 

up of (final concentrations) 20 pi ABTS (20 mmol/l)(Sigma), 20 pi horseradish peroxidase (30 m ll/m l) 
(Life technologies, UK), and 40 pi PBS (pH 7.4) was added to each well. The reaction was started by 

the addition of 20 pi hydrogen peroxide (final concentration 0.1 mmol/l) (Life technologies, UK). The 

plate was then covered in foil and incubated for 12 min at 37°C and then the absorbance measured 

at 405nm (POLAR Star™ Omega plate reader (BMG Labtech, Germany). The increase in absorbance 

due to the accumulation of ABTS+ in the test sample was read along with the control. The difference 

in absorbance (control absorbance minus test absorbance) was divided by the control absorbance 

and expressed as a percentage. This represents the percentage inhibition of the reaction. Plasma 

TAOS is inversely related to oxidative stress: the higher the oxidative stress, the lower the TAOS.

3.9 Whole blood cultures
Whole blood was cultured with ligands to activate the innate (LPS) and adaptive, mainly T cell, (PHA) 
compartment, and the cytokine responses to these stimuli in the various study groups were 

measured using ELISA (section 3.11).

LPS is a component of the cell wall of Gram negative bacteria and is crucial to its structural 
integrity[420]. LPS contains a hydrophobic domain (Lipid A) which is a potent endotoxin, able to 

trigger the release of pro-inflammatory cytokines via the LPS receptor complex, which includes 

receptor Toll-like receptor 4 (TLR-4), CD14 and MD2. Numerous cell types express components of 
this complex, including monocytes and macrophages, and the cytokine response to LPS can be used 

to measure the functional response of the innate immune compartment [421]. IFNy was added as it 
can augment LPS response by macrophages [422, 423] particularly the production of the Th l 
polarising cytokine IL-12p70 [424]. PHA is a lectin extract from the red kidney bean (Phaseolus 

vulgaris), with strong mitogenic properties [425]. PHA is a tetramer of 4 non-covalently bonded 

subunits of which there are 2 subtypes termed erythrocyte active (E) and lymphocyte active (L). 
PHA-L contains only L subunits which have a high affinity for lymphocyte surface receptors but little 

for those expressed by erythrocytes and therefore can been used to stimulate lymphocyte 

proliferation in cell cultures [426].

All culture work was undertaken in a class II tissue culture cabinet to maintain sterility. The media 

used for culture preparation was RPMI 1640/Glutamax (Life Technologies, Paisley, UK), which was 

supplemented with 50mM of 2-mercaptoethanol (ME; Life Technologies). This culture media (600pl) 
was added to each of 12 tubes (for 6 treatments in duplicate) and then 200pl of whole 

anticoagulated blood was added (Figure 3.8). ME is readily oxidised to a disulphide and is used to 

protect enzymes and other proteins from oxidative damage during culture. IFNy (lOng/ml); Miltenyl 
Biotec) was added to 4 tubes (tubes in duplicate) and the cultures incubated for 90 minutes at 37°C 

in 5% C02-in-air. Following this, LPS (lOng/ml; Ultrapure, Life technologies, UK) and PHA-L (5ug/ml; 
Sigma) were added to the appropriate tubes and incubated at 37°C in 5% C02-in-air. Blood incubated 

with LPS+/- IFNy or PHA was incubated for 24 and 48 hours, respectively. After incubation the tubes 

were centrifuged for 7 minutes at 4°C, 515 x g and cell free supernatants removed for storage at - 

20°C until analysis.
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Figure 3.8: Schematic diagram of whole blood cultures. Ligands were 

added to stimulate innate effector cells (LPS/IFNy) and T lymphocytes 

(PHA). They were then incubated for 24 and 48 hours respectively. The 

experiments were performed in duplicate.

3.10 Isolation of plasma and mononuclear cells
Mononuclear cells can be separated from whole anticoagulated blood by density gradient 

centrifugation (Figure 3.9). Blood (10ml) was gently layered onto an equal volume of Histopaque 

1077 (Sigma, UK) in a 50ml Falcon tube (Greiner Bio-one, Germany) and centrifuged at 805 x g for 20 

minutes (no brake). The plasma was then removed, filtered (0.2 pm polyethersulfone filter; Sigma, 

UK) and stored at -20°C until analysis. The layer o f mononuclear cells beneath the plasma was placed 

into a 30ml Universal tube (Greiner Bio-one, Germany), re-suspended in RPMI 1640/Glutamax (Life 

Technologies) and centrifuged at 515 x g for 10 minutes. Following centrifugation the supernatant 

was discarded and the cell pellet re-suspended in RPMI 1640/Glutamax before being centrifuged at 

515 x g for 7 minutes at 4°C. The supernatant was discarded and cells were gently re-suspended in 

20ml o f cryowash CTL and counted on a disposable haemocytometer (C-Chip; details o f supplier). 

The cells were then cryopreserved using the CTL-Cryo ABC kit (CTL™ Europe). Cryo A and B were 

warmed to room temperature and mixed together in a ratio o f 4:1. Cells were suspended in Cryo C 

at a concentration of 20 x 106/m l and an equal volume of the Cryo AB mixture was added. The cells 

were then placed in a freezing container (Nalgene M r Frosty, Sigma UK) containing isopropyl alcohol,
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which when placed in a -80°C freezer enables a critical and repeatable cooling rate of l°C /m inute. 

The vials were placed in the -80°C freezer fo r at least 24 hours before being transferred to liquid 

nitrogen.

CENTRIFUG
Plasma

Monocuclear
cells

Histopaque 

Red blood

Blood

Histopaque

cell pelet

Figure 3.9: Schematic diagram of plasma and mononuclear cell 
isolation by density centrifugation.

3.11 Cytokine analysis

3.11.1 Principles of ELISA assay

Circulating plasma cytokines and the cytokine response from whole blood cultures were quantified 

using a sandwich ELISA. This technique was developed by Peter Perlmann and enables the accurate 

quantification of a substance in a wet media [427]. There are several d ifferent variations in this 

technique including indirect, sandwich, and competitive methods. The sandwich technique was 

used throughout this study and the basic steps are outlined in Figure 3.10.
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Figure 3.10: Schematic diagram of sandwich ELISA.
1: Plate wells are coated w ith specific capture antibody (blue).
2: Non-specific binding is prevented by adding a blocker buffer (BSA).
3: Sample is added and the specific antigen (green) binds to the capture antibody.
4: Antigen specific detection antibody (red) is added and binds at a d ifferent site to capture antibody. 
5: An enzyme linked secondary antibody (Streptavidin horseradish peroxidise (Strep HRP)) is added 
which binds to the Fc region of the detection antibody.
6: Substrate is added which when acted upon by the enzyme produces a quantifiable colour change.

The advantage of this method is that it enables the very accurate quantification of a specific protein 

in an impure sample. A plate is coated w ith a highly specific capture antibody which w ill bind to  a 

portion of the protein of interest. A fter incubation, the plate is washed to remove any excess 

antibody and then a blocking buffer is added to prevent any of the subsequent sample from binding 

non-specifically to the plate. Again the plate is washed to remove excess buffer before the sample is 

added and incubated. The protein o f interest w ith in the sample will bind to the specific capture 

antibody and is retained on the plate whilst the remainder o f the sample is washed away. A further 

specific detection antibody is added which also recognises the protein o f interest but binds to a 

different site. This antibody has biotin attached to it which enable the binding o f a streptavidin- 

enzyme (in this case horse radish peroxidase (HRP)) complex. The plate is washed a final time before 

substrate solution is added. The clear substrate is catalysed by the enzyme (HRP) and changes 

colour. The degree of colour change is proportional to the amount o f cytokine bound to the plate.
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The absolute concentration can be quantified by adding a standard curve included on the plate 

which contains a dilution series of known amounts of the protein of interest.

3.11.2 ELISA method

A number of different commercially available cytokine kits were used as listed in Table 3.4; all used 

the sandwich ELISA methodology with minor differences in the protocol. For the assay of culture 

supernatants 34 area ELISA plates were used allowing half the volume recommended for standard 

ELISA plates to be used.

Cytokine Sample Sensitivity (pg/ml) Source

GCSF Plasma 39.063 Quantikine, R&D systems, Europe.
GMCSF Plasma 7.813 Quantikine, R&D systems, Europe.
IL -ip Culture supernatants 3.906 Duo Set, R&D Systems, Europe.
IL-6 Culture supernatants 9.375 Duo Set, R&D Systems, Europe.

Plasma 0.156 Quantikine, R&D systems, Europe.
IL-8 Culture supernatants 15.625 Duo Set, R&D Systems, Europe.

Plasma 1.0 Quantikine, R&D systems, Europe.
IL-9 Culture supernatants 1.563 Ready-SET-Go, eBioscience, UK
IL-10 Culture supernatants 7.813 Opt EIA, BD Biosciences, USA
IL-12p70 Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK
IL-13 Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK
IL-17A Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK

Plasma 1.563 Platinum, eBioscience, UK
IL-23 Culture supernatants 125 Duo Set, R&D Systems, Europe.

Plasma 39.063 Quantikine, R&D systems, Europe.
IFN-v Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK
SCD14 Plasma 62.5 Duo Set, R&D Systems, Europe.
sgpl30 Plasma 156.25 Duo Set, R&D Systems, Europe.
SIL-6R Plasma 156.25 Duo Set, R&D Systems, Europe.
TGF-P Plasma Duo Set, R&D Systems, Europe.
TNF-o Culture supernatants 7.813 Opt EIA, BD Biosciences, USA

Table 3.4: List of cytokines assayed, ELISA kits used and their sensitivities.

An example of a typical protocol from R&D Systems DuoSet is outlined as follows:

a. Dilution of capture antibody (1:180) into coating buffer (PBS) and 50pl added to each well 
(Costar 34 area 96 well plate; Sigma) and incubated overnight at 4°C.

b. Coating antibody tipped off, 150|il of blocking buffer added (1% Bovine Serum Albumin 

(BSA); Sigma UK) and incubated at room temperature for 1 hour.
c. Blocking buffer tipped off and washed 3 times with wash buffer (PBS with 0.05% Tween-20; 

Sigma UK).
d. Standard curve added in duplicate (50pl per well); created from stock with 1 in 2 dilutions in 

assay buffer (1%BSA in PBS) to give 7 points and a blank (buffer only).
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e. Samples diluted in assay buffer at dilution determined from pre-optim isation studies and 

added in duplicate (50pl per well). Plate incubated at room temperature for 2 hours.

f. Plate washed 4 times w ith wash buffer.

g. Dilution of biotinylated detection antibody (1:180) into assay buffer and 50pl added per 

well. Plate incubated for a fu rther 2 hours.

h. Plate washed 4 times w ith wash buffer.

i. Dilution of enzyme reagent; streptavidin-horseradish peroxidise (Strep HRP) (1:200) into 

assay buffer and 50pl added per well. Plate incubated fo r 20 minutes.

j. Plate washed 6 times w ith wash buffer.

k. Addition of substrate chromogen (tetramethylbenzidine (TMB), 50 p l/well; prepared 

according to the manufacturers' instructions; BD biosciences).

I. Blue colour allowed to develop.

m. The reaction was stopped w ith 1M H2S04 (50pl/well).

n. Subsequent colour intensity (yellow) was recorded as the optical density at 450nm using a 

POLAR star Omega™ plate reader (BMG Labtech, Germany).

o. A standard curve was plotted from the known concentrations of standard and the mean

absorbance measured (Figure 3.11). Using the equation derived from the standard curve,

concentrations of cytokine in each sample were calculated and means taken.

600

y = 2.4571X2 + 228.36x - 10.002 
R2 = 0.9997 >500

-  400
o>

200

100

0
0 0.5 1 1.5 2 2.5

OD 450 nm

Figure 3.11: Example of a standard curve. Known quantities of 

the cytokine are added to the plate in a Vi dilution series. The 

optical density (OD) is plotted against the dilution series and a 

line of best f it drawn. The equation derived from this line is 

used to calculate the concentrations of the cytokine in the 

samoles.
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3.12 Measuring metabolic parameters
3.12.1 Measuring serum adipokines with a Luminex xMAP assay

Quantification of adipokines was done using Luminex xMAP technology [428]. Central to the 

technique is the use of 5.6nm polystyrene microspheres which are dyed with differing amounts of 

red and infrared fluorophores, enabling the creation of up to 100 different microsphere sets. Each 

microsphere set can then be coupled with a different detection antibody enabling the measurement 
of multiple analytes simultaneously. However, a limitation of this technique is that all analytes of 
interest must be measured at the same dilution. The array reader applies the principles of flow- 
cytometry using a fluidics system to align the beads into single file before passing them through a 

green (532nm) and red (635nm) laser. The red laser excites the fluorophore dyed microspheres to 

determine their colour or "region" enabling identification of the bound antibody and thereby the 

analyte. The green laser excites the bound streptavidin-phycoerythrin (SA-PE) for quantification of 
the assay signal strength and, with the use of a standard curve, the concentration of the protein of 
interest.

Measurement of serum adipokines was undertaken using a Bio-Plex assay (Bio-Rad, USA). Leptin, 
ghrelin, resistin and visfatin were measured simultaneously in a 4-plex; adiponectin was measured 

alone due to its abundance and the dilution required for use in the assay. Experimental procedures 

for the assay were carried out at room temperature. Antibody-coupled beads were first incubated 

with antigen standards or serum samples for 1 hr. After washing using a handheld magnetic washer 
to remove unbound materials biotinylated detection antibodies were added and incubated for 30 

minutes. After washing away the unbound biotinylated antibodies, the beads were incubated with 

SA-PE for 10 minutes. Following removal of excess SA-PE, the beads were passed through the Bio- 
Plex™ 200 System array reader (Bio-Rad). Data analysis was performed using Bio-Plex Manager™ 

software version 4.1.1.

3.12.2 Serum glucose

Serum glucose was measured by an automated ILab 300 analyser (Instrumentation Laboratory UK 

Ltd). The analyser determines glucose concentration using the principles of a glucose oxidase assay 

(Figure 3.12). Glucose is oxidized to gluconic acid and hydrogen peroxide by glucose oxidase. The 

hydrogen peroxide generated reacts with reduced o-Dianisidine in the presence of peroxidase to 

form a brown coloured oxidised product. The oxidized o-Dianisidine reacts with sulphuric acid to 

form a more stable pink coloured product. The intensity of the pink colour measured at 540 nm is 

proportional to the original glucose concentration.

3.12.3 Plasma insulin

Plasma insulin was measured using a commercially available immuno-chemiluminescent assay 

(Invitron ltd, UK). The assay is a two-site sandwich immunoassay, utilising an insulin specific solid
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phase antibody immobilised on m icro-titre wells, and a soluble antibody labelled w ith an acridinium 

ester. Labelled antibody and samples, controls, or calibrators are incubated simultaneously in 

antibody-coated wells. This incubation leads to insulin being bound to the micro-well test plate 

between the two d ifferent antibody-molecules ("sandwiched"). Excess labelled antibody and other 

components from the sample are removed by washing. The bound luminescence is quantified by a 

m icro-titre plate reading lum inom eter (Centro, Berthold Technologies), capable of in situ reagent 

addition. The assay used a calibrator provided as part of the kit and blank to generate a standard 

curve against which the plasma insulin levels in the samples could be determined.

3.12.4 Free fatty acids

Serum free fa tty  acids (FFA) were analysed using a commercially available assay (Wako NEFA-C kit, 

Alpha Labs, UK). The Wako enzymatic method for determ ination o f NEFA relies upon the acylation of 

coenzyme A by the fa tty acids in the presence o f added acyl-CoA- synthetase (ACS). The acyl-CoA 

produced is oxidised by added acyl-CoA oxidase resulting in the generation of hydrogen peroxide. 

Hydrogen peroxide in the presence of peroxidase permits the oxidative condensation of 3-methyl- 

N-ethyl-N-(ll-hydroxyethyl)-aniline (MEHA) w ith 4-aminoantipyrine to form a purple coloured adduct 

which can be measured colorimetrically at 550 nm (Lab 300plus, Instrumentation Laboratories). The 

assay contains a calibrator against and blank to generate a standard curve.

D-Glucose + l-UO + 0 .

Glucose
Oxidase

D-Glucoronic acid + I-UO-,i-

Reduced + h 2o 2
Peroxidase

Oxidised
o-Dianisidine o-Dianisidine

Oxidised + 
o-Dianisidine

h 2s o 4 Oxidised
o-Dianisidine

Figure 3.12: Glucose oxidase assay. Glucose from a patient sample is oxidised generating 

hydrogen peroxide as a by-product, which in turn oxidises o-Dianisidine producing a 

coloured compound. The intensity o f the colour can be measured which will correlate 

w ith the concentration of glucose in the sample of interest. 73



3.13 Serum total and specific IgE
Serum samples were collected in serum separator tubes (Vacuette®, Greiner Bio-one) and 

centrifuged at 90 minutes after collection (2500 rpm, 4°C for 10 minutes). Serum total IgE (iu/ml) 
was measured using sandwich ELISA assay (Elecsys IgE assay, Roche Diagnostics, UK) at Morriston 

Hospital Department of Chemical Pathology. The principle is very similar to the sandwich ELISA 

method described previously except the antibody used is attached to magnetic particles which are 

separated by a magnet to allow quantification.

a. 1st incubation: IgE from 10 pi sample, a biotinylated monoclonal IgE-specific antibody and a 

monoclonal IgE-specific antibody labelled with a ruthenium complex form a sandwich 

complex.

b. 2nd incubation: After addition of streptavidin labelled micro-particles, the complex 

produced is bound to the solid phase via biotin-streptavidin interaction.

c. The reaction mixture is aspirated into the measuring cell where the micro-particles are 

magnetically captured onto the surface of the electrode. Unbound substances are then 

removed with ProCell.

d. Application of a voltage to the electrode then induces chemiluminescent emission which is 

measured by a photomultiplier.

e. Results are determined via a calibration curve. This curve is instrument-specifically 

generated by 2-point calibration and a master curve provided via the reagent barcode.

Serum IgE specific antibodies against 6 allergens (cat dander, dog dander, house dust mite, mixed 

moulds, mixed trees and mixed grasses) were measured at Morriston Hospital Department of 
Haematology and Immunology, using an ImmunoCAP Fluorenzyme assay. (Thermo Fisher). This assay 

captures IgE specific antibodies present in serum, with anti-lgE antibodies immobilised on a solid 

phase, known as 'ImmunoCAP': a sponge with a very large surface area. After washing, enzyme- 
conjugated antibodies directed against human IgE are added, and bind to the allergen specific IgE 

molecules captured from the serum sample. Following incubation, unbound enzyme anti-lgE 

conjugate is washed away and the bound complex is subsequently incubated with a substrate. The 

action of the enzyme on the substrate forms a fluorescent product and once developed, the reaction 

of enzyme upon substrate is stopped by the addition of a stop solution. The fluorescence measured 

is proportional to the concentration of allergen specific IgE in ach serum sample. Within every batch 

of samples, standards, controls and/or calibrators are run. A curve of fluorescence values against the 

known IgE concentration from the standards. The fluorescence values measured for patient samples 

are then interpolated in this graph in order to derive the values of total serum IgE concentration 

present.
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3.14 Statistical analysis

This was an observational study examining multiple immunological parameters. By adopting 

stringent inclusion criteria we sought to exclude many confounders, although in doing so limited the 

number of subjects suitable for the study dramatically. However, the sample size chosen (n=90) 
compares favorably with previous studies in this area (n=80-120) [25, 359, 429]. Furthermore, the 

study design enables the examination of associations between obesity and immune markers and 

asthma and immune markers as well as studying the associations with obesity within asthmatics.

The database was compiled using SPSS 19.0 software. Each of the variables of interest was examined 

visually using a histogram and the Kolmogorov-Smirnov (KS) goodness of fit test was performed to 

verify whether they were normally distributed. A variable was said to be suitable for parametric 

testing if the distribution approximated normality on visual inspection and passed the KS test 
(p>0.200). Where necessary, positively skewed data were logarithmically transformed before 

analysis and the resultant distribution re-inspected and a repeat KS test performed. Continuous data 

that was not normally distributed after logarithmic transformation was analysed using non- 
parametric tests: Mann Whitney U test between two categories or Kruskall Wallis analysis between 

3 or more categories. For normally distributed variables, differences between groups were analysed 

using an unpaired t-test or 1 way analysis of variance (ANOVA). Associations between normally 

distributed continuous variables were examined using a Pearson's correlation coefficient. Potential 
confounders were identified based on biological plausibility and evidence of correlation with the 

dependent variable of interest. A general linear model was used to look for the association between 

continuous covariates, categorical factors and the dependent variable of interest. Potential 
confounding covariates or factors were added sequentially to the model to see if they affected the 

significance of the association between the parameters of interest.

Relationships between factor variables were analysed using a Chi-Squared test of association. In 

some cases the cell counts fell below 5. However, in sample sizes over 40 where cell counts are 

greater than 1 the chi squared test is still valid [430, 431]. In some cases (e.g. plasma IL-17 levels), 
the dependent variable of interest was continuous however the majority of values were below the 

sensitivity of the assay and therefore reported a zero. In such cases the dependent variable was 

dichotomised into detectable vs. non-detectable and analysed using a chi-squared analysis.
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Chapter 4

Clinical data, circulating major cell types 
and metabolic parameters
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4.1 Introduction
In this chapter the clinical data from the study population will be examined to determine whether 

there are discernible differences in the clinical features of obese female asthma patients as 

compared to their normal weight counterparts. Full blood count and leukocyte differential data will 
be presented to explore whether shifts in systemic inflammation and immunity might be detectable 

at the level of major leukocyte cell types. Metabolic parameters will be described including markers 

of insulin resistance and fasting free fatty acids (FFA) levels to determine whether there are 

significant metabolic changes associated with this disease phenotype. Finally levels of adipokines in 

these individuals will be presented including those for which there is little existing clinical data in the 

literature yet some possible mechanistic role in the pathogenesis of an inflammatory airway disease.

4.1.1 Obese asthma: a distinct phenotype?

Obesity is associated with a higher risk of asthma development and also modifies the disease 

phenotype (see section 2.6.4). Obese children and adults with asthma have more severe symptoms 

and utilise more health care resources [241, 242]. The response to inhaled corticosteroids (ICS), the 

cornerstone of current asthma therapy, is reduced in this group of individuals [17, 18] resulting in 

patients presenting to secondary care on higher doses of therapy [241, 247]. Unsurprisingly this 

reduction in treatment efficacy is associated with poor disease control and quality of life [246]. 
Cluster analysis examining adult asthma patients in primary and secondary care has shown that this 

tends to be a female predominant, very symptomatic phenotype with no demonstrable eosinophilic 
airway inflammation [8,16]. The jury is out as to whether this poor response to treatment reflects a 

total absence of airway inflammation or whether obesity via systemic effects switches the type of 
airway inflammation seen.

Atopy is an important risk factor for the development of asthma. Whilst there are a number of 
studies that suggest that obesity increases subsequent asthma risk (Table 2.5), the impact of obesity 

on the broader diagnosis of atopy is less clear. The studies examining this area to date are 

summarised in Table 4.1. A number of large cross-sectional studies have shown an association 

between obesity and atopy in adults [432,433], with some finding this to be more marked in women 

[223]. However other population studies have not found a relationship [225]. The picture in children 

is as confusing: some studies have shown an association between BMI and atopy but only in females 

[224,434], whilst others have not [435,436].

The reason behind the conflicting findings with regards to obesity and atopy are likely to reflect 
differences in the study populations used: some investigators used the wider population and others 

targeted specific groups (attendees to allergy or difficult asthma clinics). Furthermore the definition 

of atopy has not been universal with the technique used to measure atopy (skin prick vs. RAST vs. 
clinical history) and the range of allergens screened for varying hugely between studies. In summary 

the association between obesity and atopy is still not certain. If there is an effect, it is likely to be 

modest and more marked in females.
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Study design Population Definition of atopy Outcome Reference

Cross-
sectional
study

1459 Taiwanese 
students, 13.2-15.5 
years.

Positive skin prick 
to >  1 of a panel of 
6 allergens.

odds of atopy (OR 
1.77) in girls within 
highest BMI quintile. 
No association in boys.

[224]

Cross- 
sectional 
cohort study

7370 children, aged 
14-17 years, mixed 
ethnicity.

Positive skin prick 
test to >  1 of a 
panel of 12 
allergens.

No association with 
atopy.
No difference in sexes.

[435]

Meta-analysis 
of 7 cross- 
sectional 
studies

5993 Caucasian 
children, aged 7-12 
years.

Positive skin prick 
test to >  1 of a 
panel of 8 allergens.

Positive association 
between BMI and atopy 
in girls.
No association in boys.

[434]

Longitudinal
study

536 school children 
followed at 4, 8 
and 10 years.

Physician diagnosed 
atopic asthma, 
eczema or allergic 
rhinitis.

No association with 
atopic conditions.

[436]

Cross-
sectional
study

4773 adults >20 
years.

Positive RAST test 
to >  1 of 15 
allergens.

No association with 
atopy.

[225]

Cross-
sectional
study

1,997 residents in 
Canadian town 18- 
79 years.

Positive skin prick 
test to >  1 of 4 
allergens.

odds of atopy in the 
obese (OR 1.5).
Higher odds in women 
than men.

[223]

Cohort study 2090 adults, >18 
years presenting to 
allergy clinic.

Atopy = Positive 
skin prick to one of 
10 allergens.

Atopic disease = 
condition + positive 
skin prick test.

No association between 
obesity and atopy.

Increased odds of atopic 
dermatitis (OR 1.43) or 
atopic asthma (OR 1.98) 
with obesity.

[433]

Case control 
study

798 Chinese adults 
266 cases 
532 matched 
controls.

1: Clinical diagnosis 
of atopic asthma, 
allergic rhinitis, 
atopic eczema or 
food allergy.

2: At least 1 positive 
skin prick to panel 
of 16 common 
allergens.

Increased odd of atopic 
disease with obesity (OR 
3.2).

No sex differences.

Only significant for 
rhinitis and eczema

[432]

Table 4.1: Summary of studies examining the association between obesity and atopy in children 

and adults. The studies are presented in chronological order.

In the context of obesity and asthma although a small study of patients presenting to an allergy clinic 

found obesity to be associated with an increased odds of atopic asthma but not non-atopic disease
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[433], the majority of large population based studies have shown obesity to be associated with 

asthma more in non-atopic than atopic individuals (Table 4.2, adapted from Sideleva et al [437]).

Study design Population OR for asthma in atopic and non-atopic obese 
individuals

Reference

Cross-
sectional

Canadian adults, 
n=86,144

^Asthma in non-atopic obese women (OR 2.5) 
vs. atopic obese women (OR 1.6).

[317]

Cross-
sectional

Swedish adults, 
n=570

Asthma in obese with history of allergic 
rhinoconjunctivitis (OR 1.53) vs. obese without 
history (OR 1.34).

[438]

Cross-
sectional

Danish adults, 
n=3609

Asthma non-topic asthma (OR 1.31) and 
atopic asthma (OR 1.38) with obesity.

[439]

Cross-
sectional

Canadian adults, 
n=1997

Asthma in non-atopic obese (OR 2.01), no 
significant association in atopic obese.

[440]

Cross-
sectional

US adult cohort, 
n=4773

'T'Asthma in non atopic obese (OR 2.5) vs. 
atopic obese (OR 2.04)

[225]

Cross-
sectional

US paediatric 
cohort (2-19 years), 
n=16,074

Asthma in non atopic obese (OR 2.46) vs. 
atopic obese (OR 1.34)

[441]

Table 4.2: Summary of studies examining the association between obesity and asthma in atopic 
and non-atopic individuals. The studies are presented in chronological order.

4.1.2 Systemic inflammation in asthma and obesity

Although asthma is an inflammatory disease of the airways, there is evidence to suggest that it is 

associated with changes systemically in the immune system. Mechanistically many of the 

inflammatory cell types involved in the airway are recruited from the bone marrow via the 

circulation.

A longitudinal study of male adults published in 1984 demonstrated that blood leukocyte count was 

inversely associated with markers of lung function at baseline including FEV1 and FVC. Increasing 

leukocyte count over 10 years was associated with decline in these parameters after adjustment for 

age, height, smoking history and baseline leukocyte count [442]. Schwartz et al in 1993 examined 

the basic leukocyte subsets in 6,913 adults taking part in the first US National Healthy Nutrition and 

Examination Survey [443]. They noted that "physician diagnosed asthma" was associated with a 

significantly higher peripheral eosinophil count whilst "chronic bronchitis" was associated with an 

increased neutrophil count. Furthermore, specific symptoms were associated with a different blood 

count picture with chronic cough and sputum production correlating with both eosinophil and 

neutrophil counts whilst significant dyspnoea was associated positively with neutrophil count. The 

findings persisted despite adjustment for age, race, sex and cigarette smoking. Expanding on this, in 

2001 Lewis et al in a British cross-sectional study examined other blood cell types and their 

relationship to respiratory symptoms as well as atopy, lung function and BHR. They also noted a
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correlation between eosinophil count, symptoms and diagnosis of asthma, atopy, IgE levels and 

airways hyper-responsiveness [444]. Basophil levels showed similar trends to eosinophils. 
Neutrophil counts were again associated with symptoms of dyspnoea as well as sputum production, 
and diagnosis of asthma, especially in the older individuals. In addition monocyte count positively 

correlated with dyspnoea, cough, sputum production and reduced FEV1.

A French cross-sectional study of well characterised asthmatics by Nadif and colleagues, reported 

that blood counts were associated with specific asthma phenotypes [166]. They dichotomised 

eosinophil and neutrophil counts into high and low and created 4 "inflammatory patterns" based on 

the various permutations of high and low cell counts. High blood eosinophil count (>250/mm3) 
across the asthmatic population studied was associated with lower FEV1, higher IgE and more active 

disease, whilst high neutrophil count (>5000/mm3) was associated with more significant dyspnoea. 
Amongst asthmatics with a high eosinophil count, a co-existing high neutrophil count was associated 

with more nocturnal symptoms and higher asthma symptom scores than those with a high 

eosinophil and low neutrophil count. In non-smokers "COPD-like" symptoms (chronic cough with 

sputum production and significant dyspnoea), particularly chronic sputum production, were more 

prevalent in those with a high neutrophil count. A more recently published cluster analysis looking 

at adult asthma also confirmed that blood counts were associated with the different phenotypes. 
Neutrophil count was highest in adult onset active disease and lowest in inactive or mild childhood 

onset allergic disease, whilst eosinophil counts higher in actively treated allergic childhood onset 
eosinophilic disease and low in inactive/mild adult onset disease [208].

Obesity is also associated with chronic low grade systemic inflammation detectable by changes in 

leukocytes and their basic subsets. In keeping with this, a study of 477 bariatric patients undergoing 

laparoscopic band surgery showed obesity to be associated with a higher number of circulating total 
leukocytes which was due to increased lymphocytes and neutrophils. Weight loss at 2 years was 

associated with a significant reduction in total leukocytes, neutrophils and lymphocytes [30]. In 

asthmatics within the airways, sputum neutrophil levels are associated with increased asthma 

severity [168] and negatively correlate with lung function and specifically markers of airflow 

obstruction [169].

Given that obesity is associated with increased circulating neutrophil counts and that neutrophilia in 

asthma is associated with a more severe and treatment refractory phenotype, it is plausible that 
obesity skews the asthma phenotype to a neutrophilic one. A recently published study examined 246 

atopic patients with and without asthma attending an immunology clinic in New York. In all of the 

individuals, a higher peripheral blood total leukocyte count with obesity compared to normal weight 
was due predominantly to increased neutrophils [445]. However, there was no healthy control arm 

in this study and so one cannot be certain as to whether this was just an obesity effect as seen in the 

bariatric studies or specific to the atopic patients.

Whilst it is clear that asthma and obesity are both associated with changes in the relative abundance 

of circulating leukocyte subsets, there is little work looking at the differential effects of BMI on this 

in asthmatic versus non-asthmatic individuals. Therefore peripheral blood count analysis was 

performed to determine whether obesity in the context of asthma is associated with changes in the 

relative proportions of leukocyte subsets at a systemic level.
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4.1.3 The metabolic effects of obesity: the missing link?

4.1.3 (i) Insulin resistance

Rising BMI is associated with insulin resistance (IR) and subsequent type II diabetes risk. The 

prevalence of asthma and type II diabetes in the morbidly obese are broadly similar [12] leading to 

speculation that insulin resistance may modify asthma risk. Mechanistically, pro-inflammatory 

mediators and adipokines observed in obesity are known to be involved in the pathogenesis of IR 

[446], and therefore hypothetically, the aetiology of another inflammatory disease such as asthma in 

obese individuals could follow a common pathway. In addition IR is associated with a compensatory 

hyperinsulinaemia and in vitro studies suggest that this may have a direct effect of airway smooth 

muscle enhancing contraction [447]. Several studies have examined this hypothesis in paediatric and 

adult populations with conflicting results. Two paediatric [275, 276] and one adult study [277] have 

shown an association between IR and asthma whilst another adult study has not [225]. However 
most of the studies have significant limitations specifically with regards to the clarification of an 

asthma diagnosis which will be highlighted below.

A study of children attending an obesity management centre observed an increased prevalence of IR 

calculated by a homeostasis model assessment (HOMA). in obese "physician diagnosed" asthmatic 

children compared to obese controls [275]. A more recent cross-sectional study of school aged 

children noted that parent reported asthmatics were likely to have higher levels of triglycerides and 

IR, evidenced by the presence of acanthosis nigricans, than those who did not have asthma [276]. 
This observation was independent of BMI but this study lacked a robust definition of IR using a 

clinical sign which is not specific in obese individuals. Furthermore both of these studies lacked a 

robust definition of asthma and neither controlled for the effects of steroid treatment which is well 
known to be associated with IR. A large adult cross-sectional study of 4773 US individuals found no 

association between IR and self-reported asthma [225]. However a prospective Danish adult 
population study of 3441 individuals observed IR was a greater risk factor than BMI for the 

development of wheezing and asthma like symptoms [277]. Common to both of these studies was 

the lack of a robust definition of asthma.

4.1.3 (ii) Fatty acids

Free fatty acids (FFAs), elevated in the obese state, have a number of immunomodulatory effects of 
possible relevance in asthma. Saturated FFAs can activate the innate immune response through 

ligation of pattern recognition receptors including Toll-like receptors (TLR) 2 and 4 [278, 279], 

resulting in upregulation of the transcription factor nuclear factor-icB (NFk B) [448] and the release 

of pro-inflammatory cytokines such as TNF-a and IL-6 [280]. Monounsaturated fatty acids inhibit this 

pathway [449]. Chronically high intake of fatty acids can lead to recruitment of circulating innate 

cells including neutrophils [450] and such diets have been associated with bronchial hyper
responsiveness [451] and asthma risk [452]. Excess FFAs could therefore explain the asthma obesity 

association especially the promotion of neutrophilic inflammation but there is little work in this area 

to date.
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4.1.3 (iii) Adipokines

Leptin

Obesity may modify its effects on asthma, through the production of adipokines; hormones 

produced by adipocytes with a number of metabolic and immunomodulatory effects. Leptin is the 

most well described of these; it has a similar structure to IL-6, promotes satiety [282] and regulates 

energy expenditure [283, 284]. Serum concentrations are markedly increased in obesity suggesting 

the possibility of relative leptin resistance [285-287].

Leptin has effects on several cell types from the innate and acquired arms of the immune system 

which would be of relevance in asthma [288, 289] (Table 4.3). Consistent with its 

immunomodulatory effects, leptin levels have been shown to be increased during the acute 

inflammatory response seen in sepsis syndrome [453]. A sexual diamorphism exists with regards to 

body fat composition with women carrying more fat subcutaneously and men viscerally. This leads 

to a different adipokine profile as leptin is released in greater quantities from subcutaneous tissue 

resulting in higher levels in females than males [327]. If adipokines were to play a role in asthma, 
gender differences in fat distribution and adipokine profiles could explain the female predominant 
obese asthma phenotype.

Innate Immunity

Neutrophil “TSurvival [291]
^Chemotaxis [454]
^Neutrophilic airway inflammation in murine models [455]

Monocytes/Macrophages ^Surface expression of activation markers (CD69, CD25, CD38, 
CD71, HLADR, CDllb) [290]
^Production of pro-inflammatory cytokines (TNF-a, IL-6) via 
NFkB

Reactive oxygen species production [456]
'f'leukotriene synthesis in alveolar macrophages [457]

Eosinophil ^Surface expression of adhesion molecules (ICAM-1, Cdl8) [292] 
Chemotaxis [292]

^Production of pro-inflammatory cytokines (IL-6, IL-8, MCP-1) 
[292]

NK cells ^Proliferation [294] 
^Differentiation 
'h Activation

Dendritic cells 'f* Survival [295]
^  Priming of Thl response

Adaptive immunity

T cells 'hActivation [458]
Proliferation [458]

'TThl polarisation [288]
>|^Treg proliferation [345]
^11117 response [459]

Table 4.3: Mechanistic effects of leptin on cellular components of the innate and 
adaptive immune system.
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Study
design

Population Asthma
definition

Outcome Reference

Case-
control

102 steroid naive
asthmatic
children.
33 controls.

Physician
diagnosed
asthma.

'T leptin in asthmatics, independent 
of BMI.
Only significant in males.

[303]

Longitudin 
al study

138 children 
followed up over 
12 years.

Physician
diagnosed
asthma.

leptin in overweight asthmatics 
vs. normal weight asthmatics and 
control group.

[302]

Case-
control

23 children with 
new diagnosis of 
asthma.
20 controls.

Physician
diagnosed
asthma

Newly diagnosed asthmatics had 
higher leptin levels than controls, 
independent of BMI.
Leptin levels dropped to levels 
comparable with controls after 4 
weeks of ICS.

[304]

Case-
control
study

186 asthmatic 
children.
54 controls.

BHRto 
methacholin 
e or 12 % 
reversibility 
to 32 
agonist.

No difference between asthmatics 
and controls.
Leptin negatively correlated with 
FEV1 and FEF25-75% in asthmatics.

[307]

Cross-
sectional

462 children. Parental
reported
asthma.

'T* leptin in asthmatics vs. non 
asthmatics, independent of BMI. 
More marked in girls.
More marked in non-atopics.

[305]

Interventio 
nal weight 
loss study

84 post-pubertal 
obese asthmatics.

Physician
diagnosed
asthma.

leptin levels with weight loss 
predictive of improvement in lung 
function.

[460]

Cross-
sectional
study

5876 adults. Self reported 
asthma.

'T' leptin levels in asthmatics, 
independent of BMI. 
Stronger association in 
premenopausal women.

[24]

Longitudin 
al study

Prospective 
cohort study: 
2620 adults.

Physician
diagnosed
asthma.

Weak association between leptin 
and asthma. Did not persist after 
adjusting for covariates.

[309]

Case-
control
study

35 steroid naive
female
asthmatics.

32 female 
controls

12%
reversibility 
to 32 agonist 
or diurnal 
variability in 
PEF >20%.

No difference in leptin levels 
between asthmatics and controls. 
Leptin correlated positively with 
asthma symptom score and 
negatively with FVC (%) and FEV1 

(%)•

[308]

Case-
control
study

37 stable female 
post menopausal 
asthmatics.
32 female 
asthmatics during 
exacerbation.

Physician
diagnosis.

Stable asthmatics: ^  leptin levels vs. 
controls.
Severe asthmatics: ' f  leptin levels 
vs. mild-moderate.
Atopic asthmatics higher leptin vs. 
non-atopics.
Leptin negatively correlated with 
FEV1 (%) and MEF25-75 (%). 

leptin levels in exacerbation.

[306]

Table 4.4: Summary of paediatric and adult studies examining the association between leptin and 

asthma. Studies are listed in date order.



In murine models , leptin infusion augments allergen induced airway hyper-responsiveness but 
without eosinophil influx or Th2 responses, suggesting it causes effects by an alternative 

inflammatory pathway [23]. There are similar findings in non-allergen induced airways inflammation 

models [461]. Despite the immunological effects of leptin and the promise in animal models of 
airways disease, human studies have not shown convincing evidence that leptin underlies the 

obesity asthma association (Table 4.4). A single paediatric study which examined leptin levels in 

normal weight and overweight children with and without physician diagnosed asthma found that the 

overweight asthmatics had significantly higher levels of leptin than normal weight asthmatics, 
overweight and normal weight controls [302]. However all other paediatrics and adult studies which 

have shown an association between leptin and asthma seem to suggest that its effects are 

independent of BMI. Some have suggested that leptin levels increase with severity of asthma and 

may correlate negatively with lung function.

A diponectin

Adiponectin is an insulin sensitising hormone and levels decrease with obesity [297]. It has anti
inflammatory effects including induction of IL-10 and IL-1 receptor antagonist expression by adipose 

macrophages [298]. It also inhibits production of pro-inflammatory cytokines (IL-6 and TNFa) by 

macrophages [462]. In mice, administration of adiponectin attenuates bronchial hyper
responsiveness, Th2 cytokine expression and neutrophilia [463]. In vitro studies suggest that 
adiponectin has direct effects on the bronchial epithelium promoting proliferation and wound repair 
[464].

In children low adiponectin levels have been associated with increased prevalence of symptoms of 
atopic dermatitis, asthma and eczema [305]. A large cross sectional study in adults has suggested 

that high levels of adiponectin may be protective against current asthma in pre-menopausal women, 
although this effect was independent of BMI [310]. However two other studies, one longitudinal 
[309], one cross-sectional [465], have not shown an association between this adipokine and asthma. 
Leptin to adiponectin ratios have been associated with more severe disease in female asthmatics 

and with periods of exacerbation independent of BMI [306]. A very recent longitudinal cohort study 

of 1450 women found that low levels of adiponectin were predictive of developing subsequent 
asthma in those that were pre-menopausal and was a stronger predictor than BMI. This was most 
marked in smokers[311].

R esistin , V isfatin  and G hrelin

Resistin is an insulin desensitising adipokine elevated in obesity [299]. It has pro-inflammatory 

effects including the up regulation of TNFa production by macrophages through activation of NFk B
[466]. A single paediatric study found that resistin levels were significantly lower in atopic asthmatics 

studied compared to non-atopic asthmatics and healthy controls. Furthermore, levels correlated 

positively with methacholine PC20 and negatively with blood eosinophil counts and IgE levels [307]. 
A single adult cohort study found that resistin is elevated in asthma and correlates with disease
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severity, independent of BMI [312]. More recently it has been suggested that high baseline levels 

may predict steroid responsiveness in steroid naive patients [308].

Visfatin also known as nicotinamide phosphoribosyltransferase, is produced by a number of cell 
types including adipocytes, lymphocytes, monocytes, neutrophils and pneumatocytes [300]. It has an 

insulin mimetic effect and circulating levels are increased in obesity [300]. It has a number of pro- 

inflammatory effects including activation of NFk B resulting in the production of inflammatory 

cytokines (TNFa, IL-lp and IL-6), inhibition of neutrophil apoptosis, increased ROS generation and 

promotion of B cell maturation [300]. Interestingly a single paediatric case-control study found 

significantly lower levels of this adipokine in the asthmatics studied compared to healthy controls. 
However no differences were seen between BMI groups within the asthmatics studied [313]. No 

studies to date have examined whether there are changes in this adipokine in adult patients.

Ghrelin, a gut rather than adipose tissue derived hormone, which is reduced in the obese state has 

been shown to counteract the effects of leptin on monocytes/macrophages [301]. Circulating levels 

are inversely correlated with IgE in obese children suggesting a mechanistic role in atopic asthma
[467]. In adults a single study has suggested that ghrelin levels may be reduced during asthma 

exacerbations [306].

In summary most studies to date have focussed on leptin and adiponectin and their potential role in 

the pathophysiology of asthma. Results are conflicting and whilst some mechanistic and population 

studies suggest a potential association between these adipokines and asthma, this appears to be 

independent of BMI. Very little work has been done on the other adipokines, but what little there is 

suggests that these may be associated with asthma.
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4.2 Methods
A detailed description of the recruitment process is described in chapter 3 but will be summarised 

here.

4.2.1 Study population

Pre-menopausal women with and without asthma were recruited. Subjects and controls were 

divided into 3 groups on the basis of body mass index (BMI), giving 6 groups in total (Chapter 3 

Figure 3.1). According to the WHO definition, normal weight is defined as BMI 18.5-25kg/m2, 

overweight as a BMI >  25kg/m2and <  30kg/m2 and obesity as a BMI >  30kg/m2.

Asthmatic patients were recruited from a number of local healthcare providers:

•  Local tertiary asthma clinic (Singleton Hospital, ABMU Health Board (HB))

•  Surrounding secondary care clinics (ABMU HB hospitals in Neath Port Talbot, Morriston and 

Bridgend)

•  Participating GP surgeries (Ty'r Felin surgery, Gorseinon)

After case note review, all asthmatic subjects fulfilling the inclusion/exclusion criteria (Table 3.1) 
attended an appointment at a tertiary asthma service. Asthma diagnosis was confirmed by a 

respiratory physician. The diagnosis required consistent symptoms and demonstrable significant 
reversible airways obstruction to a 02 agonist (12%), significant PEFR variability or if this was not 
present, a positive bronchial provocation test. Disease severity was graded according to GINA 

criteria. In those with very good disease control, therapy was stepped down to the lowest level to 

maintain this, in keeping with British Thoracic Society (BTS) guidelines. All asthmatics were 

considered stable if they had no exacerbations, oral steroid therapy or respiratory tract infection in 

the preceding 4 weeks.

Asthmatics were asked to complete a modified European Respiratory Health Survey [391] (Appendix 

V) and the following information recorded; age of onset; markers of symptom control in last 12 

months; medication; emergency contact with healthcare providers; days off work, co-morbidities; 
Epworth score; details of menstrual cycle.

Control patients were recruited from a number of sources:

•  Staff, ABMU HB

•  Staff, Swansea University

•  Women attending local Slimming world groups

Those considering taking part completed a standardised questionnaire recording basic 

demographics, co-morbidities, medication history, smoking history, presence of clinical atopy 

(history of atopic, asthma, eczema or rhinitis), Epworth score, details of menstrual cycle and a 

validated bronchial symptoms questionnaire (Appendix IV) [387]. Control subjects were not included 

if they had any respiratory symptoms determined by completion of a modified bronchial symptom
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questionnaire, history of clinical atopy, current smoking history or were ex-smokers with >10 pack 

year history.

4.2.2 Clinical measures

Participants were asked to attend during the first 7 days of their menstrual cycle, determined using 

the date of onset of menstruation, in the fasted state (from midnight) between the hours of 07.00- 
09.00am. Acute disease control at the time of recruitment in the asthmatics was assessed using the 

Juniper Asthma Control Questionnaire (Appendix VI) [392]. Chronic disease control was graded using 

the GINA criteria (Appendix VII) [393].

Spirometry was performed using a portable dry spirometer (Vitalograph) calibrated on the day of 
use. All asthmatics were asked to withhold medication for the preceding 24 hours to control for any 

effects of long acting bronchodilators or immediate effects of ICS. The best of 3 measurements were 

taken according to a standardised protocol [394] and expressed as percentage of the age, gender 
and stature predicted values. The following spirometric measurements were recorded: Forced 

Expiratory Volume in 1 second (FEV1), Forced Vital Capacity (FVC), FEV1/FVC ratio, Forced Expiratory 

Flow at 25%-75% of expired vital capacity (FEF25-75) and Peak Expiratory Flow (PEF).

Following this measures of adiposity were taken:

•  Height; to 0.1cm by staediometer (Leicester; Chasmores, UK)

•  Weight; to 0.1kg and body mass index calculated
•  Body fat percentage to 0.1% (Body composition analyser, Tanita SC 240 MA; Tanita UK)

•  Waist and hip measurements to 0.1cm and ratio calculated

Waist and hip measurements were taken with the subject relaxed with their hands by their sides and 

feet relaxed at the end of tidal expiration. Waist measurements are taken at the midpoint between 

the last palpable rib and the iliac crests, and the hip measurement around the widest portion at the 

level of the buttocks. Body fat composition was estimated using biometric impedance.

Fasting blood was collected into lithium heparin tubes and gel and clot activator tubes for serum for 

the following investigations:

•  Full blood count analysis using a CELL-DYN Ruby (Abbott Diagnostics, Germany).
•  Serum archived for circulating adipokines, insulin, glucose and free fatty acids.

4.2.3 Measurement of serum parameters (adipokines, insulin, 
glucose and free fatty acids, total and specific IgE)

Serum samples were collected in Vacuette® tubes (gel and clot activator tubes) and centrifuged 90 

minutes after collection (2500 rpm, 4°C for 10 minutes). Measurement of serum adipokines was 

done using a bioplex (multiplex) assay (Biorad USA). The principles behind this assay and the 

protocol used are summarised in section 3.12.1. On the first run of samples it was noted that leptin
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and resistin levels were higher than the range of the assay when diluted at % whilst many of the 

visfatin and ghrelin levels were below the detectable range. Due to resource limitations it was only 

possible to repeat the assay once and therefore leptin and resistin levels were repeated at 1/20 

dilution and the visfatin and ghrelin levels were dichotomised into detectable versus not detectable.

Serum glucose was measured by an automated ILab 300 analyser (Instrumentation Laboratory UK 

Ltd). The analyser determines glucose concentration using the principle of a glucose oxidase assay 

(see section 3.12.2). Plasma insulin was also measured using a commercially available immunoassay 

(Life Technologies, UK) (section 3.12.3). Insulin resistance (IR) and beta cell function was calculated 

using the homeostatic model assessment (HOMA). This is a mathematical equation which describes 

glucose regulation based on physiological studies [468, 469]. A computer programme (HOMA 

calculator version 2.2) was used to derive the values which is now the accepted standard [470].

Serum free fatty acids (FFA) were analysed using a commercially available assay (Wako NEFA-C kit, 
Alpha Labs, UK) (section 3.12.4). In addition serum total IgE (Ku/L) was measured using a sandwich 

ELISA (Elecsys IgE assay, Roche Diagnostics, UK) by the Department of Chemical Pathology at 
Morriston Hospital (section 3.13). In the asthmatics specific IgE antibodies were measured against 6 

common allergens (cat dander, dog dander, house dust mite, mixed moulds, mixed trees and mixed 

grasses). Evidence of atopy was defined as positive specific IgE (>0.35kU/l) to one or more of this 

panel.

4.2.4 Statistical analysis

Each the variables measured was examined visually using a histogram for evidence of deviation from 

normality and the Kolmogorov-Smirnov (KS) goodness of fit test was performed to verify the 

distribution. Positively skewed data were logarithmically transformed before analysis. Differences in 

normally distributed variables between groups were analysed using an unpaired t-test or 1 way 

analysis of variance (ANOVA). Associations between normally distributed continuous variables were 

examined using a Pearson's correlation coefficient. Potential confounders were added as a factors or 
covariates sequentially to a general linear model to see if they affected the significance of the 

association between the parameters of interest. Data that was not normally distributed after 

logarithmic transformation was analysed using non-parametric tests (Mann Whitney U and Kruskall 
Wallis tests). Categorical variables were analysed using a chi-squared test of association.
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4.3 Results
4.3.1 Demographics

In total, 84 female participants who fulfilled the inclusion criteria for the study were recruited. The 

target number of 90 was not reached because of difficulties in recruitment due to a number of 
factors. Exclusion of any significant smoking history or recent/current oral steroid use reduced a 

large number of potential patients in secondary care, as did the exclusion of patients with diabetes 

or other cardio-respiratory disease, especially within the obese subgroup. In addition many women 

were taking hormonal treatments which rendered them amenorrhoeic and therefore they could not 
be sampled at the required time within the menstrual cycle. Coordinating sampling around this 

whilst avoiding any recent episode of infection or oral steroid use (within 6 weeks) further added to 

the recruitment challenge.

The basic demographics are summarised in Table 4.5. All the parameters listed approximated a 

normal distribution and passed the KS test apart from day of sampling and Epworth score (p=0.133 

and p=0.02 respectively). Day of sampling was logarithmically transformed for analysis and Epworth 

score was analysed using a non-parametric (Kruskall Wallis) test. In addition, categorical data 

(number of patients on oral contraceptives) was analysed using a chi-squared test.

Although all women recruited were pre-menopausal, age did differ significantly across the 6 study 

groups, but did not between asthmatics and controls (p=0.298). Across the whole study group obese 

individuals (OB) were significantly older (mean 38.0 years) than normal weight (NW) (mean 33.2 

years) (p=0.033) and overweight individuals (OW) (mean 33.1 years), (p=0.08). However each BMI 
category was well matched in terms of age between asthmatics and non-asthmatics (Table 4.5).

The day of the menstrual cycle on which fasting blood and measurements were performed did not 
differ between groups (p=0.961). Patients with a history of sleep apnoea or Epworth score >11 were 

excluded from the study. There was no significant difference in Epworth score across the 6 

categories.

Every effort was made to exclude patients with significant cardio-respiratory disease, diabetes or 
other systemic inflammatory diseases. As expected, despite these efforts the obese patients had 

more co-morbidities than the other groups (Table 4.5). One patient in the NW controls had anxiety 

and one OW control was on dietary modification for raised cholesterol. Six OB controls had minor 
co-morbidities (anxiety =2, hypothyroidism=2, 1 irritable bowel syndrome (IBS) = 1, hypertension 

with raised cholesterol =1). In the asthmatics 2 OW patients (depression =1 and reflux =1) and 4 OB 

asthmatics (Gastro-oesophageal reflux disease (GORD) =3, depression =1, and hypothyroidism =1 

(who also had GORD)) had co-morbidities. However across the entire study group asthmatics did not 
have a higher number of comorbidities than controls (p=0.625). Obese individuals across the study 

group had significantly more co-morbidities (n=10) than OW (n=3) and NW individuals (n=l) 
(p=0.007). When comparing asthmatics and controls each BMI category was well matched in terms 

of the number of comorbidities (Table 4.5).
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Control
NW
n=15

s
OW
n=13

OB
n=15

Asthma
NW
n=14

tics
OW
n=12

OB
n=15

p value

Age (yrs)
Mean (SD)

33.27
(7.38)

33.38
(9.34)

39.27
(8.30)

33.21
(9.38)

29.17
(8.80)

36.8
(9.00)

All 6 groups: p=0.015(1) 
NW: Avs.C: p=0.987 
OW: A vs. C: p=0.258 
OB: A vs. C: p=0.440

Cycle day 
sampled
Geometric mean 
(SD)

4.80
(1.94)

4.23
(1-16)

4.27
(1.87)

4.36
(2.27)

4.33
(1.72)

4.40
(2.06)

All 6 groups p=0.961

Weight (kg)
Geometric mean 
(SD)

59.14
(6.18)

72.23
(7.70)

94.27
(18.4)

58.81
(5.13)

72.13
(4.58)

100.79
(25.4)

NW: A vs. C: p=0.458 
OW: A vs. C: p=0.968 
OB: A vs. C: 0.403

BMI (Kg/mz)
Geometric mean 
(SD)

21.61
(2.03)

27.53
(1.81)

36.09
(6.21)

22.46
(1.60)

27.34
(1.34)

38.84
(9.17)

NW: A vs. C p=0.264(2) 
OW: A vs. C p=0.781(2) 
OB: A vs.C p=0.278(2)

Body fat [% )

Mean (SD)
26.27
(4.32)

36.31
(3.38)

45.07
(4.73)

28.12
(4.73)

35.91
(4.32)

45.85
(7.07)

NW: A vs.C p=0.283(2) 
OW: A vs. C p=0.801(2) 
OB: A vs. C p=0.731(2)

WHR (%)
Mean
(SD)

76.8
(4.04)

81.0
(5.32)

87.1
(5.74)

80.2
(8.57)

81.5
(5.77)

87.5
(7.5)

NW: A vs. C: p=0.191(2) 
OW: Avs.C p=0.821(2) 
OB: A vs.C p=0.878(2)

Epworth score
Median (SD)

1.05
(3.27)

3.23
(3.93)

2.72
(2.97)

2.71
(1.76)

3.15
(3.94)

2.74
(2 .67)

All 6 groups: p=0.303

Co-morbidities
(n)

1 1 6 0 2 4 All 6 groups: p=0.041(3) 
NW: A vs. C: p=.326 
OW: A vs. C: p= 0.490 
OB: A vs. C: p=0.439

Contraceptive 
pill (n)

3 3 2 3 6 2 All 6 groups p=0.245

Other
medication (n)

1 1 5 0 2 7 All 6 groups: p=0.009(4) 
NW: A vs. C: p=0.326 
OW: Avs.C: p=0.469 
OB: A vs. C: p=0.709

Table 4.5: Basic demographic data of asthmatics and controls involved in the study according to 
BMI category.
Normally distributed data are expressed as mean and standard deviation (SD). Parameters not 
normally distributed are expressed as geometric mean and standard deviation and were 
logarithmically transformed before analysis.

1. Obese participants were significantly older than the other groups; however BMI categories were 
well matched in terms of age between controls (C) and asthmatics (A).
2. BMI categories were well matched in terms of BMI, body fat composition and WHR between 
asthmatics and controls.
3. Chi-squared analysis found that obese individuals had a greater number of comorbidities than 
the OW and NW. However BMI categories were well matched in terms of comorbidities between 
asthmatics and controls.
4. Chi-squared analysis found that obese individuals were on a greater number of medications than 
the OW and NW. However BMI categories were well matched in terms of medications between 
asthmatics and controls.
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The number of patients on medication in addition to the asthma medications is listed in Table 4.5. 
Across the study group a similar number of asthmatics (n=9) were on additional medications to 

controls (n=7) (p=0.508). The obese participants were on more medications (n=12) than OW (n=3) 
and NW groups (n=l) (p=0.01). One NW control was on a selective serotonin reuptake inhibitor 
(SSRI) and one OW control took orlistat. In the OB controls, two were on levothyroxine, two were on 

SSRIs and one patient took an antihypertensive and statin. Of the asthmatics one OW asthmatic took 

a proton pump inhibitor (PPI) and antihistamine and one took a tricyclic antidepressant. In the obese 

asthmatics three patients where on PPIs, one patient took orlistat, two patients took antihistamines 

and one an SSRI. However the BMI categories were well matched in terms of medication use 

between asthmatics and controls (Table 4.5).There was no significant difference in the percentage of 
patients on the combined oral contraceptive pill.

4.3.2 Adiposity measures

Weight and BMI did not pass the KS test (p=0.036 and p=0.067 respectively) and so data was 

logarithmically transformed for analysis. Each BMI group was well matched between asthmatics and 

controls (Table 4.5). Body fat composition and waist-hip ratio did pass the KS test (p=0.944, p=0.98) 
and did not differ significantly between asthmatics and controls across any of the BMI groups (Table 

4.5). There was a very strong correlation between BMI and body fat composition (r=0.882 p=<0.001) 
and also between BMI and waist to hip ratio (WHR) (r=0.572, p<0.001) (Figure 4.1).
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Scatter plot o f BMI and Body fat com position.
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Figure 4.1: Scatter plots of BMI and A: percentage 
body fat, B: waist-to hip ratio.

4.3.3 Spirometry

All measures taken from spirometry approximated a normal distribution, passing the KS test and are 

summarised in Table 3.6. When examining the 6 groups o f individuals there were significant 

differences in all of the spirometric values measured. FEV1 expressed as a percentage predicted (%) 

according to age, sex and height significantly differed across the 6 groups, being significantly lower in 

asthmatics (mean =79.54%) than controls (mean =100.30%) (p=0.003). FEV1(%) did not significantly
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vary with BMI category or BMI as a expressed as continuous variable across the entire cohort 
(p=0.299; r=-0.128, p=0.248) or within the control and asthmatic groups individually (p=0.268; 
r=0.013, p=0.771 and p=0.214; r=-0.163, p=0.136 respectively). No correlations between percentage 

body fat (%), WHR and FEV1 (%), were seen across the entire study group or in the asthmatics and 

controls separately.

FVC expressed as a percentage predicted (%) also significantly differed between the 6 groups. 
Asthmatics had significantly lower FVC (%) than controls and FVC (%) decreased significantly with 

increasing BMI category across (p=0.019) but not with BMI as a continuous variable across the 

entire study group (r=-0.168, p=0.129). When the asthmatics and controls were analysed individually 

no significant association between FVC (%) and BMI category or continuous BMI was seen in the 

asthmatics (p=0.090, r=-0.280, p=0.081) or controls (p=0.090; r=0.017, p=0.913). In addition no 

associations were seen between FVC(%) and percentage body fat, WHR and across the entire study 

group or in the asthmatics and controls separately.

FEV1/FVC ratio, a marker of airflow obstruction, significantly differed across the 6 groups and this 

with significantly lower levels in the asthmatics (mean =76.68%) than controls (88.87%) (Table 3.6). 
There was no significant associations with this parameter and BMI categories or continuous BMI 
over the entire study group (p=0.79; r=-0.563, p=0.569) or when controls (p=0.258; r=-0.196, 
p=0.208) and asthmatics (p=0.958; r=0.081, p=0.613) were examined individually. In addition no 

correlations was seen for FEV1/FVC ratio with WHR and percentage body fat across the entire group 

or in asthmatics/controls seperately.

PEFR expressed as a percentage predicted (%) was significantly lower in the asthmatics (mean 

=78.72%) than the controls (mean= 97.26%) (p<0.001). However, again no association with BMI 
category or continuous BMI were seen across the entire study population (p=0.560; r=-0.26, 
p=0.816) or when controls and asthmatic groups were analysed inividually (p=0.199; r=-0.196, 
p=0.208 and p=0.551; r=0.081, p=0.613 respectively). WHR and percentage body fat were not 
significantly correlated with this variable.

MEF25-75 expressed as a percentage predicted (%) and a surrogate marker of small airways disease, 
was also significantly lower in asthmatics (mean =57.38%) than control subjects (mean =90.40%) 
(p<0.001). No association was seen with BMI category BMI as a continuous variable across the 

entire cohort (p=0.985; r=-0.26, p=0.569) or when control and asthmatics groups were anaylsed 

inidividually ((p=0.407; r=-0.45, p=0.782) and (p=0.877; r=0.149, p=0.340) respectively).
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Controls
NW
n=15

OW
n=13

OB
n=15

Asthmati
NW
n=14

cs
OW
n=12

OB
n=15

p value

FEV1 (L)
Mean (SD)

3.16
(0.31)

2.80
(0.36)

2.85
(0.56)

2.49
(0.60)

2.39
(0.83;

2.17
(0.72;

6 groups: p<0.001 
A vs. C: p<0.001 
BMI: p= 0.156

FEV1 (%)
Mean (SD)

102.40
(8.98)

95.46
(14.72)

102.40
(11.06)

86.43
(15.33)

77.09
(25.49)

74.9
(18.34)

6 groups: p<0.001 
A vs. C p=0.003 
BMI: p=0.299

FVC (L)
Mean (SD)

3.69
(0.39)

3.16
(0.44)

3.24
(0.67)

3.23
(0.56)

3.09
(0.82)

2.79
(0.65;

6 groups: p=0.007 
A vs. C: p=0.014 
BMI: p=0.019

FVC (%)
Mean (SD)

102.87
(10.04)

9 2 .7 7

(14.60)

101.73
(13.46)

97.86
(12.17)

87.18
(20.89)

85.50
(13.92)

6 groups: p=0.004 
A vs. C: p=0.006 
BMI: p=0.042

FEV1/FVC [% )

Mean (SD)

91.53
(13 .28)

88.54
(3.21)

86.20
(5.75)

76.05
(11.40)

77.58
(16.19)

76.54
(13.15)

6 groups: p<0.001 
A vs. C: p<0.001 
BMI: p=0.709

PEF (L/min)
Mean (SD)

407.13
(44.90)

374.46
(58.45)

400.93
(86.90)

343.86
(74.00)

322.25
(97.19)

309.60
(119.40)

6 groups: p=0.008 
A vs. C: p=0.012 
BMI: p=0.499

PEF {%)

Mean (SD)

96.60
(12.15)

92.08
(14.13)

102.40
(17.87)

84.29
(17.06)

75.73
(23.65)

75.73
(24.81)

6 groups: p=0.001 
A vs. C: p<0.001 
BMI: p=0.560

MEF25-75
(V s )
Mean (SD)

3.39
(0.69)

3.38
(0.56)

3.42
(0.90)

2.24
(0.94)

2.51
(1.26)

2.07
(0.96;

6 groups: p<0.001 
A vs. C: p<0.001 
BMI: 0.747

MEF25-75 (%)
Mean
(SD)

87.67
(16.12)

87.69
(17.77)

95.47
(19.76)

59.00
(22.47)

59.0
(31.76)

54.68
(23.81)

6 groups: p<0.001 
A vs. C: p<0.001 
BMI: p=0.985

Table 4.6: Spirometry measurements of asthmatics and controls according to BMI category.

Data were normally distributed and therefore expressed as mean and standard deviation (SD). 
Differences between all 6 groups and between BMI categories across the entire study group were 

analysed using a one-way ANOVA and comparisons between asthmatics (A) and controls (C) made 

with an unpaired t-test.
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4.3.4 Clinical characteristics of the asthmatics studied

The variables regarding age of asthma onset and asthma duration passed the KS test and are shown 

in Table 4.7. The mean age of onset was 12.8 years and did not significantly differ between BMI 
groups (p=0.517). Similarly, mean asthma duration across the study was 21.7 years and did not differ 
significantly between groups (p=0.771). Percentage reversibility in FEV1 to p2 agonist did not pass 

the KS test (p=0.008) and so was logarithmically transformed before analysis. By definition, all 
participants had at least 12% reversibility to a 32 agonist (with the exception of 3 cases, 2 of which 

had significant diurnal variation on peak flow and the 3rd had a positive methacholine challenge 

test). The degree of reversibility observed did not significantly vary between BMI groups (p=0.843). 
The proportion of patients with a history of clinical atopy or a positive specific IgE to at > 1 of a panel 
of 6 airborne allergens was high across the asthmatics but did not vary across the 3 BMI groups.

NW
n=14

OW
n=12

OB
n=15

p value

Age of onset (yrs)
(Mean)

12.4 9.08 13.8 0.517(1)

Duration (yrs)
(Mean)

20.6 20.4 23.6 0.771(1)

Reversibility [% )

(Geometric mean)
19.64 22.24 22.4 0.843(2)

Atopy history (n) 12 9 12 0.833,4)
Atopy according to specific IgE panel (n) 9 9 10 0.827,4)
Asthma severity: GINA grading (n)

Grade 1: Intermittent 2 1 2 0.742(4)
Grade 2: Mild persistent 2 2 1
Grade 3: Moderate persistent 7 3 7
Grade 4: Severe persistent 3 6 5

(32 agonist use (puffs per month)
(Geometric mean)

44 66 97 0.175(2)

Inhaled corticosteroid dose (meg) 
(Beclomethasone diproprionate equivalent)
(Median)

1600 1600 1600 0.822(3)

LABA use (n) 10 12 12 0.137
Monteleukast use (n) 4 7 7 0.344(4)
Theophylline use (n) 1 4 4 0.244,4)
Asthma control score (0-6)
(Geometric mean)

1.74 2.22 2.29 0.435(2)

Emergency hospital attendances in last year
(Median)

0 0 0 0.875(3)

Emergency GP attendances in last year
(Median)

2 2 2 0.638(3)

Table 4.7: Clinical characteristics of the asthmatics studied.

1. Normally distributed are expressed as a mean and analysed using a one way ANOVA.
2. Positive skewed data are expressed as a geometric mean and were logarithmically transformed 
before analysis by ANOVA.
3. Multimodal data are expressed as a median and analysed using Kruskall Wallis analysis.
4. Proportional data are represented as an absolute number and analysed using a chi-squared test.



A high proportion of patients, n=31/41 had moderate or severe persistent disease (GINA grade %) 
with only a small number recruited from primary care practices having intermittent or mild disease. 
However the 3 BMI categories were matched in terms of the proportion of patients with each 

disease grading (p=0.742).

(32 agonist use did not pass the KS test (p=0.026) and so was logarithmically transformed for analysis. 
Whilst the obese group had higher (32 agonist use (geometric mean 97 puffs per month) than the 

normal weight individuals (44 puffs per month) this was not significant (p=0.110). When BMI was 

examined as a continuous variable there was a positive association with (32 agonist use (r=0.330, 
p=0.035). Inhaled corticosteroid dose expressed as micrograms (meg) of beclomethasone 

diproprionate equivalent, did not pass the KS test (p=0.045). As the majority of patients were 

recruited from a tertiary care asthma service it was not surprising to note that the median dose used 

was high at 1600mcg. However this did not differ between BMI groups (p=0.822). Similarly there was 

no significant difference in the proportion of patients using a long acting beta-2 agonist, leukotriene 

receptor blocker or theophylline (Table 4.7). Asthma control score passed the KS test (p=0.253). 
There was no clinically significant difference in asthma control score (>0.5) between the groups 

(Table 4.7). Similarly asthma control score did not correlate with BMI as a continuous variable 

(r=0.233, p=0.141) or other adiposity measures.

4.3.5 Haematology analysis data

Haematology analysis data across the 6 subgroups are summarised in Table 4.8. Total leukocyte 

count (p=0.064), eosinophil count (p<0.001) and basophil count (p=0.001) and did not pass the KS 

test as data was positively skewed, and so was logarithmically transformed for statistical analysis.

Leukocyte counts differed significantly across the 6 groups (p=0.001). Asthmatic patients had a 

significantly higher count than control subjects (p<0.001) when the categories were compared as a 

whole and when each BMI category was compared individually (NW asthma vs. NW control p=0.010, 
OW asthma vs. OW control p=0.034, OB asthma vs. OB control p=0.064). Leukocyte count increased 

significantly with BMI category across the entire study population (p=0.039) and with continuous 

BMI (r=0.288, p=0.008). When asthmatics (r=0.245, p=0.012) and controls (r=0.314, p=0.0410) were 

analysed separately significant correlations between BMI and leukocyte count were seen in both 

groups. Across the entire study group age was not associated with leukocyte count. Within the 

asthmatics, asthma duration, asthma control score, and spirometric values did not correlate with 

leukocyte count. Using a general linear model it was possible to see that leukocyte count had 

independent associations with BMI and asthma (p=0.011 and p<0.001 respectively, R2 = 0.228). 
Obese asthmatics had the highest white blood cell count which was higher than obese controls 

(p=0.053) and normal weight asthmatics (p=0.113) (Figure 4.2) although this was not significant. 
Across the entire cohort percentage body fat and WHR were also significantly correlated with 

leukocyte count (r=0.219, p=0.046 and r=0.224, p=0.043 respectively).
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Contro
NW
n=15

s
OW
n=13

OB
n=15

Asthma
NW
n=14

tics
OW
n=12

OB
n=15

p value

Red blood cells 
(xl09/l)
Mean (SD)

4.53
(0.44)

4.73
(0.32)

4.79
(0.28)

4.70
(0.24)

4.68
(0.40)

4.53
(0.37)

6 groups: p=0.229 
A vs.C: p=0.443 
BMI: 0.618

Leukocyte count(1> 
(xl09/l)
Geometric mean 
(SD)

5.08
(1.05)

5.39
(1.44)

6.13
(1.54)

6.34
(1.29)

6.73
(1.72)

7.23
(1.98)

6 groups p=0.001 
A vs.C: p<0.001 
BMI: p=0.039

Neutrophil count
(xl09/l)
Mean (SD)

2 .6 0

(0.86)

2.82
(0.79)

3.37
(0.75)

3.22
(0 .8 3 )

3.52
(1.05)

4.38
(1 .8 3 )

6 groups: p=0.001 
A vs.C: p=0.003 
BMI: p=0.005

Lymphocyte count
(xl09/l)
Mean (SD)

2.13
(0.48)

2.23
(0.82)

2.39
(0.92)

2.36
(0.74)

2.49
(0.79)

2.41
(0.50)

6 groups p=0.785 
A vs. C: p=0.277 
BMI: p=0.670

Monocyte count
(xl09/l)
Mean (SD)

0.30
(0.09)

0.32
(0.09)

0.30
(0.10)

0.39
(0.09)

0.44
(0.21)

0.34
(0.13)

6 groups: p=0.025 
A vs. C: p=0.05 
BMI: p=0.276

Eosinophil count(1> 
(xl09/l)
Geometric mean 
(SD)

0.10
(0.03)

0.12
(0.06)

0.14
(0.17)

0.32
(0.24)

0.20
(0.22)

0.18
(0.17)

6 groups: p<0.001 
A vs.C: p<0.001 
BMI: p=0.560

Basophil count(1) 
(xl09/l)
Geometric mean 
(SD)

0.07
(0.16)

0.07
(0.03)

0.08
(0.23)

0.08
(0.03)

0.09
(0.17)

0.08
(0.14)

6 groups: p=0.891 
Avs.C: p=0.390 
BMI: p=0.983

Platelets
(xl09/l) 
Mean (SD)

158.90
(78.36)

163.00
(103.10)

175.20
(32.72)

173.18
(7 1 .4 2 )

169.21
(62.83)

162.32
(141.52)

6 groups: p=0.993 
A vs. C: 0.924 
BMI: p=0.990

Table 4.8: Haematology analysis data in asthmatics and controls according to BMI category. Data 

unless otherwise indicated are displayed as mean and standard deviation (SD). Parameters not 
normally distributed were logarithmically transformed before analysis and expressed as geometric 

mean and standard deviation (SD).

Comparison across the 6 study groups made using one way ANOVA. Differences between 

asthmatics (A) and controls (C) determined using unpaired t-test. Comparison of the 3 BMI 
categories across the entire study group made using one way ANOVA.
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Figure 4.2: Total peripheral blood leukocyte count in asthmatics and 

controls according to BMI category.

Data shown as mean and error bars. Leukocyte count increased w ith 

each BMI group and w ith asthma such that obese asthmatics had the 

highest leukocyte count and this was greater than normal weight 

asthmatics (p=0.113) and obese controls (p=0.053), although this was 

not statistically significant.

Neutrophil count differed significantly across the 6 groups (p=0.010) (Table 4.8). Across the study 

group, neutrophil levels increased w ith increasing BMI category (p=0.005) and w ith BMI as a 

continuous variable (r=0.363, p=0.001). Neutrophils also correlated positively w ith body fat (%) 

(r=0.283, p=0.009) and WHR (r=0.262, p=0.017). Levels were significantly higher in asthmatics (mean 

= 3.73 x 109/l)  than controls (mean = 2.93 x 109/L) (p=0.034) when each group was compared as a 

whole. When each of the BMI categories was compared individually, asthmatics had higher levels 

than controls although this was only significant in the obese category (NW asthma vs. NW control 

p=0.058, OW asthma vs. OW control p=0.078, OB asthma vs. OB control p=0.050). When asthmatics 

and controls were analysed separately, neutrophils correlated positively w ith BMI in both groups 

(asthmatics: r=0.335, p=0.032, controls: r=0.410, p=0.006). Using a general linear model it was 

possible to see that neutrophil count was independently associated w ith BMI and asthma status 

(p=0.001 and p=0.003 respectively, R2 =0.222). Obese asthmatic patients had the highest mean
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neutrophil count (Figure 4.3) which was significantly higher than normal weight asthmatics (p=0.020) 

and obese controls (p=0.050). Across all o f the individuals age was not associated w ith neutrophil 

count. W ithin the asthmatics, asthma duration, asthma control score, and spirometric values did not 

correlate w ith neutrophil levels.

Given recent interest in fa tty  acids and neutrophils levels a correlation between these parameters 

was considered but none was seen (r=-0.139 p=0.207). In the asthmatics studied inhaled 

corticosteroid (ICS) use was not significantly associated w ith neutrophil count (r=0.279, p=0.078) and 

w ithin this group the association between BMI and neutrophil count persisted despite adjusting for 

ICS dose and FFA levels (BMI p=0.050, ICS dose p=0.135, R2= 0.25).

Leptin levels were associated w ith neutrophils levels (r=0.326, p=0.002), however the association 

between BMI, asthma and neutrophils remained significant after adjusting for the effects o f leptin 

suggesting that it is unlikely to be the only factor responsible fo r the observed neutrophil trend (BMI 

p=0.001, asthma=0.001, leptin=0.174, R2=0.253).
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Figure 4.3: Neutrophil count in asthmatics and controls according to BMI 
category.

Data shown as mean and error bars. Neutrophil count increased with each 

BMI group and w ith asthma such that obese asthmatics had the highest 

neutrophil count which was significantly higher than normal weight 

asthmatics (p=0.020) and obese controls (p=0.050).
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Eosinophil count differed significantly across the 6 groups (Table 4.8) as across the entire study 

population asthmatics had significantly higher counts than control subjects (p<0.001). However 

when each BMI category was compared individually NW asthmatics had significantly higher levels 

than NW controls (p<0.001) but OW and OB asthmatics did not d iffe r significantly from  the ir control 

counterparts (p=0.073 and p=0.478 respectively). Across the entire study group BMI category was 

not associated w ith a change in eosinophil count (p=0.569). However a significant interaction was 

seen between asthma status and BMI category (p=0.003), such that there was a trend towards 

decreased eosinophil count w ith increasing BMI category in the asthmatics (p=0.052) but not the 

controls (p=0.314) which was significant when BMI was examined as a continuous variable (controls: 

BMI r=0.182, p=0.242, asthmatics: BMI r=-0.316, p=0.044). Percentage body fat also significantly 

negatively correlated w ith eosinophils in the asthmatics (r=-0.388, p=0.031) but not in the controls, 

but no correlation was seen w ith WHR in either group. Across the entire study population age did 

not correlate w ith eosinophil count. W ithin the asthmatic group asthma control score, asthma 

severity, asthma duration and current ICS dose were not significantly associated w ith eosinophil 

count. Spirometric measurements did not correlate w ith eosinophil count either.
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Figure 4.4: Eosinophil count in asthmatics and controls according to BMI 
category.

Data shown as mean and error bars. Across the study group, mean 

eosinophil count was significantly higher in asthmatics than controls 

(p<0.001). W ithin the asthmatic subgroup increasing BMI category was 

associated with a trend towards a decrease in eosinophil count (p=0.052).
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4.3.6 Insulin resistance

Fasting glucose, insulin levels and their derivatives O-cell function and IR) are shown in Table 4.9. 
These did not pass the KS test (p<0.001, p=0.047, p=0.066, p=0.05 respectively) so were 

logarithmically transformed for analysis. Fasting glucose levels did not differ significantly between 

the 6 groups (p=0.356). Insulin levels did differ significantly between groups (p<0.001) and this was 

due to a significant increase in levels with rising BMI category (p<0.001) and BMI as a continuous 

variable (r=0.515, p<0.001). Percentage body fat (r=0.591, p<0.001) and to a lesser extent WHR 

(r=0.276, p=0.012) also correlated positively with this variable. Levels in asthmatics were not 
significantly different to those in controls (p=0.157) across the entire study or when each individual 
BMI category was compared. No obvious confounders were identified.

B-cell function did differ significantly across the 6 groups studied due to an increase with each BMI 
category (Table 4.9) and BMI as a continuous variable (r=0.399, P<0.001). p-cell function also 

increased with body fat composition (r=0.473, p<0.001) but not WHR (r=0.162, p=0.145). 3-cell 
function was not significantly higher in asthmatics vs. control subjects (p=0.088) across the study 

group. When each BMI group in the asthmatics was compared to their control group no significant 
differences in 3-cell function were observed, (asthma NW vs. control NW p=0.16, asthma OW- vs. 
control OW, p=0.799, asthma OB vs. control OB p=0.36). No obvious confounders in this association 

were identified.

IR significantly increased with each BMI category (p<0.001), also with BMI when examined as a 

continuous variable (r=0.506, p<0.001), percentage body fat (r=0.572, p=<0.001) and WHR (r=0.286, 
p=0.009). Asthmatics did not have higher degrees of IR than controls across the entire study or when 

each individual BMI category with in the asthmatic group was compared with its control 
counterpart.

4.3.7 Free fatty acid levels

Fasting free fatty acid (FFA) levels did not pass the KS test (p=0.037) and were logarithmically 

transformed for analysis. Mean FFA levels were similar across the 6 groups (Table 4.8) (p=0.736) and 

were not associated with asthma status (p=0.577), BMI category (p=0.449), BMI (r=-0.155, p=0.296) 
body fat composition (r=-0.082, p=0.456), or waist to hip ratio (r=-0.106, p=0.344). Given recent 
interest in the role of FFA in TLR signalling and neutrophil inflammation, an association between FFA 

and neutrophil count was examined for, but no correlation was seen (r=-0.139, p=0.207).
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Controls
NW
n=15

OW
n=13

OB
n=15

Asthma
NW
n=14

:ics
OW
n=12

OB
n=15

p value

Fasting glucose 
(mmol/l)
Geometric
mean
(SD)

4.62
(0.53)

4.58
(0.38)

4.83
(0.56)

4.51
(0.57)

4.51
(0.45)

4.64
(0.52)

All 6 groups 
p ^ .3 5 6 1

Insulin (pmol/l)
Geometric
mean
(SD)

42.09
(20.94)

56.61
(34.57)

85.00
(39.14)

52.15
(63.2)

63.18
(30 .70)

108.05
(223.95)

All 6 groups 
pcO.0011 
A vs. C p= 0.157 
BMI category
p=<0.001

Beta cell 
function (%)
Geometric
mean
(SD)

99.14
(34.07)

117.7
(50.69)

139.46
(59.26)

116.12
(32.36)

131.19
(48 .23)

161.95
(70.84)

All 6 groups
p ^ .0 1 1 1
A vs. C p=0.088 
BMI category 
p=0.03

Insulin
resistance
Geometric
mean
(SD)

0.83
(0.35)

1.02
(0.62)

1.55
(0.70)

0.96
(0.81)

1.14
(0.55)

1.86
(1.52)

All 6 groups 
pcO.0011 
A vs. C p=0.209 
BMI category 
PcO.001

FFA (mmol/l)
Geometric
mean
(SD)

0.36
(0.32)

0.46
(0.14)

0.48
(0.25)

0.40
(0.21)

0.40
(0.24)

0.42
(0.32)

All 6 groups 
p=0.7361

Table 4.9: Insulin resistance and free fatty acids levels in asthmatics and controls according to 

BMI category.

All the parameters were not normally distributed and are expressed as geometric mean and 
standard deviation. Data were logarithmically transformed for analysis. Differences between all 6 
groups were analysed using a one-way ANOVA . Differences between asthmatics (A) and controls 
(C) were analysed using an unpaired t-test and variation between BMI categories using one-way 
ANOVA.

(1) One-way ANOVA revealed that insulin levels, beta cell function and insulin resistance did differ 
across the 6 groups. This was due to a significant increase in these parameters with BMI 
category with no difference between asthmatics and controls within each BMI category.
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4.3.8 Adipokines

Serum levels of leptin, adiponectin and resistin, did not pass the K-S test (p=0.002; p=0.001, p=0.099 

respectively) and so were logarithmically transformed for analysis. Serum visfatin and ghrelin were 

only detectable in some samples processed and therefore not normally distributed. The variable was 

therefore dichotomised into detectable versus non detectable and analysed using a chi-squared test.

Serum leptin levels differed significantly across the 6 groups (Table 3.10). Across the entire study, 
leptin levels increased significantly with BMI category (p<0.001) and BMI as a continuous variable 

(r=0.734, p<0.001). Similarly, correlations were seen between leptin and WHR (r=0.359, p=0.001) 
and body fat (%) (r=0.52, p<0.001). Age of participant did not correlate with leptin levels. Across the 

entire study group, asthmatics (geometric mean = 39.1ug/l) had significantly higher levels than 

controls (geometric mean = 20.67ug/l) (p=0.006). When each of the BMI categories was analysed 

individually normal weight and obese asthmatics had significantly higher levels of leptin than their 

control counterparts (NW asthma vs. NW control p=0.020, OW asthma vs. OW control p=0.177, OB 

asthma vs. OB control, p=0.023). Using a general linear model it was observed that leptin levels 

were independently associated with BMI and asthma (BMI: p<0.001, Asthma: p=0.001, R2=0.557). 
This meant that obese asthmatics had the highest levels of leptin (Figure 3.5), significantly higher 
than normal weight asthmatics (p<0.001) and obese controls (p=0.023). Within the asthmatics 

studied, age of onset, asthma duration, asthma control, ICS dose and spirometric values did not 

correlate with leptin levels.

Adiponectin levels did not significantly vary across the 6 categories and were not significantly 

different in asthmatics and controls (Table 4.10). However levels did significantly decrease with BMI 
category and when BMI was examined as a continuous variable (r=-0.324, p=0.003). Furthermore 

adiponectin was also significantly negatively correlated with body fat (%) and WHR (r=-0.340, 
p=0.003 and r=-0.347, p=0.001 respectively). Age did not correlate with adiponectin levels. 
Furthermore, within the asthmatics, levels did not correlate with age of onset, asthma duration, 
asthma control, ICS use or spirometric values.

Resistin levels did not significantly differ across the 6 groups (Table 4.10). Levels did not vary 

significantly with BMI category (p=0.158) and when BMI was examined as a continuous variable 

(r=0.186, p=0.090). Across the population studied resistin levels were significantly higher in 

asthmatics than controls p=0.024 (Table 4.10). Age and date of menstrual cycle were not associated 

with resistin levels. When each of the BMI categories was examined individually, the asthmatics in 

each category had higher levels than the controls but none of these were significant (NW asthma vs. 
NW control p=0.104, OW asthma vs. OW control p=0.445, OB asthma vs. OB control p=0.150). 
Resistin levels remained higher in asthmatics than controls after adjusting for BMI (asthma status: 
p=0.033, BMI: p=0.122, R2=0.087). Within the asthmatics, levels did not correlate with age of onset, 

disease duration, ICS use or spirometric markers.

The proportion of patients with detectable ghrelin and visfatin levels did not vary across the 6 

groups (Table 4.10). Furthermore, neither of these parameters significantly differed with BMI 

category or between asthmatics and controls.
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Controls
NW
n=15

OW
n=13

OB
n=15

Asthmatu
NW
n=14

:s
OW
n=12

OB
n=15

p value

Leptin (pg/l)
Geometric
mean
(SD)

7.65
(11.19)

25.88
(18.20)

45.98
(41.61)

17.45
(12.65)

38.02
(35.64)

85.19
(73.03)

All 6 groups:
p=<0.001
A-C: p=0.006 
BMI: p<0.001

Adiponectin
(mg/l)
Geometric
mean
(SD)

5.94
(3.50)

5.31
(3.76)

3.37
(2.77)

5.41
(5.75)

4.47
(3.22)

4.03
(1.91)

All 6 groups: 
p=0.072 
A-C:p=0.206 
BMI: p=0.013

Resistin (pg/l)
Geometric
mean
(SD)

5.54
(1.84)

5.29
(2.37)

6.28
(2.98)

7.02
(3.14)

6.03
(2.15)

7.66
(3.18)

All 6 groups: 
p=0.114 
A-C: p=0.024 
BMI: p=0.158

Visfatin
No. of cases 
with detectable 
levels

11/15 7/13 7/15 9/14 7/12 13/15 All 6 groups: 
p=0.249 
A-C: p=0.229 
BMI: p=0.557

Ghrelin
No. of cases 
with detectable 
levels

9/15 4 /1 3 7 /1 5 7 /1 4 2 /1 2 5 /1 5 All 6 groups: 
p=0.249 
A-C: p=0.248 
BMI: p=0.062

Table 4.10: Adipokine levels in asthmatics and controls according to BMI category.

Data with regards to leptin, adiponectin and resistin levels were positively skewed and therefore 

logarithmically transformed for analysis. Data are shown as geometric mean and SD. Differences 

between all 6 groups and between the 3 BMI categories across the entire study population were 

analysed using a one way ANOVA. Differences between asthmatics (A) and controls (C) were 

analysed using an unpaired t-test.

Visfatin and ghrelin levels expressed as the proportion of individuals in each group with detectable 
levels. Data was analysed using a chi-squared test.
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Figure 4.5: Leptin levels (pg/l) in asthmatics and controls according to 

BMI category.

Data shown as mean o f logarithmically transformed values and error 

bars. Obese asthmatics had the highest levels which were significantly 

higher than normal weight asthmatics (p<0.001) and obese controls 

(p=0.023).

4.3.9 IgE levels

Total IgE levels did not pass the KS test (p<0.001) and therefore were logarithmically transformed for 

analysis. Total serum IgE levels for the 6 groups are shown in Figure 4.6. Total IgE levels did differ 

significantly across the 6 groups (p=0.002) w ith mean levels significantly higher in the asthmatics 

than control subjects (p<0.001 (unpaired t-test)). BMI category had no significant association w ith 

IgE levels across the entire cohort (p=0.528) neither did BMI as a continuous variable (r=-0.088, 

p=0.433). Although the normal weight asthmatics had the highest mean IgE levels (geometric mean 

= 191.69kU/L), and there was a trend towards a reduction in mean levels w ith increasing BMI w ithin 

the asthmatics this was not significant (r=-0.185, p=0.246). There was no significant association
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between IgE and body fat composition or WHR across the entire cohort or when asthmatics and 

controls were analysed separately.
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2 .00 -

Control Control Control Asthma Asthma Asthma
normal overweight obese normal overweight obese
(n=15) (n=13) (n=15) (n=14) (n=12) (n=15)

Subject group

Figure 4.6: IgE in asthmatics and controls according to BMI 
category.

Data shown as mean 95% of logarithmically transformed values and 
error bars. Across the study group, IgE count was higher in 
asthmatics than controls (p<0.001). W ithin the asthmatics group 
there was a trend towards reducing levels w ith increasing BMI but 
this was not significant (r=-0.185, p=0.246).
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4.4 Discussion
This study recruited premenopausal women with well defined asthma from a tertiary asthma clinic 

and surrounding secondary clinics as well as some primary care patients and compared clinical, 
haematological and metabolic parameters with a well matched group of premenopausal women 

with little comorbidity. As patients were predominantly recruited from a tertiary asthma service 

there was a high proportion with moderate or severe persistent disease (75.6%) with very few with 

intermittent or mild disease, however the BMI were relatively well matched with regards to severity 

grading. In this study, the patients had relatively early onset disease (mean age of onset 12.8 years) 
and all were on ICS treatment. Sixty eight percent had a clinical history of atopy and 80% had a 

positive specific IgE antibodies to a panel of 6 allergens with no significant difference between BMI 
groups. The high prevalence of atopy may be due to the pool that the patients were recruited from 

(predominantly a tertiary unit with an interest in allergy), or due to the focus on premenopausal and 

therefore younger subjects. Although the classical obese phenotype from cluster analyses of asthma 

is of a late onset obese female predominant phenotype, more recent work suggest that obese 

asthma encompasses two phenotypes distinguished by age of onset: an early onset disease with a 

higher incidence of atopy and second group with late onset disease and less atopy [437, 471]. In the 

study by Holguin et al, early onset disease had more airway obstruction, BHR and a higher incidence 

of ITU admissions in the previous year [471]. Similarly a cluster analysis identified 2 obese asthma 

clusters differing by age of onset, with the earlier onset phenotype having worse asthma control, 
higher FeNO and greater BHR [472]. The response to treatment in these two obese subgroups may 

also differ with a recent study showing weight loss following bariatric surgery improved BHR in 

obese asthmatics with no atopy and normal IgE levels, who tended to have late onset disease and 

marked comorbidity but not in those with atopy and high IgE levels who tended to have early onset 
disease [229]. Through the recruitment process we have yielded a group of obese asthmatics with 

early onset disease and high prevalence of atopy and this should be born in mid when interpreting 

the results.

We used 3 measures of adiposity throughout this works, BMI, body fat composition by biometric 

impedance and WHR. In our study BMI correlated strongly with both of these parameters, 
particularly percentage body fat. This is in keeping with large population data which suggests that 
whilst BMI is poorly sensitive and specific in diagnosing excess body fat in men and the elderly it 
performs well in women [213]. The correlation with body fat composition may have been higher 
than expected due to the selection of women in a narrow age range and by controlling for hydration 

status as all patients were asked to abstain from food and drink from midnight prior to the 

measurements being taken. Given the tight correlations between the various markers of adiposity it 
is perhaps not surprising that where various parameters were associated with BMI, they were also 

significantly associated with percentage body fat and to a lesser extent WHR.

4.4.1 Obesity increases circulating neutrophil count in asthma

These results show that increasing BMI and asthma diagnosis are independently associated with 

increased number of total leukocytes due to an increased neutrophil count in peripheral blood. 
Previous studies in non-asthmatics indicate that increasing BMI may be associated with these
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changes. A study of Saudi Arabian female university students also found BMI and WHR to be 

positively associated with increasing total leukocyte count, neutrophils and CD4 count [473]. 
Similarly a study of 477 bariatric patients (BMI >35kg/m2) undergoing laparoscopic band surgery 

showed obesity to be associated with higher circulating neutrophil counts, with weight loss causing a 

marked reduction in neutrophils (11.7%) at 2 years [30]. Similar findings have been reported in the 

paediatric obese population [474]. This thesis has shown that less dramatic adiposity has the same 

associations with neutrophils. The observation that asthma diagnosis is also associated with 

increased leukocytosis and neutrophilia is consistent with previously published work [442, 444]. 
However the findings from this current study suggest that these effects are additive such that obese 

asthmatics have the highest neutrophil counts, higher than both normal weight asthmatics and 

obese controls.

Neutrophils are highly relevant in airways diseases contributing towards localised inflammation 

through the generation of reactive oxygen species and release of proteases. Such processes are 

postulated to be important in the development of adult respiratory distress syndrome [164] and 

chronic obstructive pulmonary disease (COPD), a less steroid responsive smoking related pathology 

[165], as well as asthma. Studies also show higher levels of sputum neutrophils in refractory asthma 

patients with irreversible airflow obstruction compared to those with reversible airways disease who 

tend to have sputum eosinophilia [167]. Sputum neutrophil levels correlate positively with asthma 

severity [168] and negatively with lung function and markers of airflow obstruction [169]. Similarly, 
studies on bronchial tissue taken from patients with severe oral glucocorticoid dependent disease, 
found a 2-fold higher concentration of tissue neutrophils in those with severe disease compared to 

mild-moderate asthmatics and controls [475].

Recently published studies have suggested that obesity in asthma may be associated with 

neutrophilic inflammation in the airways, explaining the refractory nature of the disease phenotype 

to steroid treatment. Two showed a trend towards an increase in sputum neutrophil counts 

however neither reached statistical significance [25, 362]. Since undertaking this present works, a 

case-control study of obese and non-obese asthmatics, versus obese and non-obese controls found 

a significant positive association between obesity and asthma with regards to sputum neutrophils, 
with obese asthmatics have the highest percentage [429]. When stratified by sex, this observation 

was only seen in women. If obesity does mediate its effects on asthma through neutrophilic 

inflammation uniquely in women, this would explain the epidemiological findings of a stronger 
association in females. Bariatric surgery studies also support the concept of obesity promoting 

neutrophilic inflammation with trends, although non-significant, towards lower levels of airway 

neutrophils following surgery [437].

The findings herein of increased blood neutrophils in obese asthmatic women is in keeping with a 

recently published study which examined 276 well characterised asthmatics, 63 of whom where 

obese (mean age 45 years) [476]. Telenga et al, found that obese female but not male asthmatics, 
had significantly higher blood and sputum neutrophils than their lean counterparts. At follow up it 
was noted that the obese women had a blunted response to corticosteroid treatment which 

correlated with sputum neutrophil count. However this study lacked a control arm of non-asthmatic 

obese individuals and therefore it is not certain whether the observations were unique to asthma or 
just an effect of obesity. Unfortunately the authors did not give information on age of onset of
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disease. Our findings confirm in a slightly younger population that in the context of blood 

neutrophilia, obese asthmatics have higher neutrophils than obese control subjects.

The mechanism linking neutrophilic inflammation in sputum/airways and obesity needs clarification. 
Given the increase in peripheral blood neutrophils observed here this would appear to be due to a 

systemic, rather than local effect which seems logical in the context of a systemic condition such as 

obesity. Furthermore systemic changes in neutrophils, such as increased expression of genes 

associated with motility and survival [477], have been described in neutrophilic asthma suggesting 

there is a systemic component to the disease. There are a number of pro-inflammatory cytokines 

such as IL-17 [91], growth factors including G-CSF [92] and chemokines (e.g. IL-8 [478]), important in 

mediating neutrophilic responses which warrant further investigation in the context of obesity (see 

chapter 5).

Some investigators suggest that metabolic factors may mediate neutrophilic inflammation in 

asthma. FFA can stimulate the innate immune system through ligation of TLR2 and TLR4 [278, 279] 

activating NFk B [448] and causing the release of pro-inflammatory cytokines [280]. In view of this 

fasting FFAs were measured in the study participants. There was no significant association between 

fasting FFA levels and BMI, body fat composition or WHR, neither was there an association between 

fasting FFA and neutrophils suggesting that FFA are not promoting the neutrophilia seen. In a case 

control study examining sputum neutrophils, levels correlated with total fasting plasma saturated 

fatty acid levels and negatively with mono-unsaturated levels [429]. However this relationship was 

only seen in men and not women suggesting, together with the current presented findings, that the 

mechanism behind neutrophilic inflammation in women may not be mediated through fatty acid 

levels. Post-prandial deposition of fatty acids differs between the sexes with females depositing in 

the femoral gluteal region [329] and males in visceral fatty tissue [330]. Upon lipolysis and 
mobilisation from visceral fatty tissue, fatty acids will pass through the portal venous system and 

into the liver, potentially stimulating TLR receptors on Kupfer cells (hepatic macrophages) resulting 

in the release of pro-inflammatory cytokines such as IL-6 [331]. Mobilisation of fatty acids from 

peripheral sites would not have the same effect, explaining why men would be more susceptible to 

the inflammatory effects of free fatty acids than women.

It may be that peak FFA rather than fasting levels are more relevant. Wood and colleagues examined 

the acute effects of high fat feeding on male and female non-obese/obese asthmatics versus control 
subjects [281]. After a single high fat meal they noted that sputum neutrophils and TLR4 mRNA 

increased in all of the study patients. These changes mirrored levels of total plasma fatty acids and 

correlated negatively with lung function. The asthmatics also underwent a bronchoprovocation 

challenge with hypertonic saline followed by administration of the bronchodilator salbutamol. The 

authors noted that the degree and duration of recovery following this was significantly less in the 

asthmatics in the high fat feeding group and even worse in those who were obese. In terms of 
systemic inflammation, a small but significant increase in IL-6 and CRP was seen in the obese 

asthmatics who underwent high fat feeding but not in non-obese asthmatics or the control group. 
Furthermore all asthmatics undergoing this diet showed an increase in plasma TNFa. It was noted 

that the changes in systemic mediators were small compared to those in the airways, suggesting 

that the airway inflammation seen was not a simple overspill from systemic responses. With regards 

to the type of fat the investigators noted that trans-saturated fatty acid ingestion provoked a much 

greater neutrophil response than non-trans-unsaturated fatty acids. This is consistent with previous
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work which has shown trans-unsaturated fatty acids to have systemic pro-inflammatory effects 

[479]. Therefore it is possible that if peak fatty acid levels or the subtypes of FFA had been measured 

in this study an association with neutrophil levels might have been seen. This warrants further 

investigation.

Leptin is known to play a role in promoting neutrophil survival and chemotaxis. However, although a 

significant association between leptin and neutrophils was seen, the relationship between BMI, 
asthma status and neutrophils remained significant after adjusting for leptin levels suggesting that 
they are not the sole mediator responsible for the neutrophil trend observed.

Hormonal factors may also play a role. Women have higher neutrophil counts than men, and 

peripheral blood levels fluctuate throughout the menstrual cycle [388]. We tried to control for this 

variation by timing the blood sampling to a two hour window between 07.00-09.00am during the 

first 7 days of the menstrual cycle determined by clinical history. A recent cross-sectional study 

examined the peripheral white blood cell count in 36 women with polycystic ovary syndrome (PCOS) 
versus 77 control patients, and noted it was the presence of PCOS not the associated adiposity 

which predicted increased neutrophils [480]. We excluded patients with known PCOS from our 
study and due to the difficulties of predicting menstrual dates accurately patients with erratic cycles 

(a known feature of PCOS), were also excluded.

It is often argued that co-morbidities confound the obesity asthma relationship. Obstructive sleep 

apnoea is a common pathology in obese individuals and may be associated with worse asthma 

control in these individuals [258]. Patients with known OSA were excluded and an Epworth score 

was also determined on all potential subjects in an attempt to exclude undiagnosed individuals. 
Furthermore recent studies on patients with confirmed OSA have shown that it does not appear to 

affect peripheral blood counts [481]. GORD is also a comorbidity which increases with BMI [256] and 

is more common in asthmatics [253]. Three obese and one overweight asthmatic were on treatment 
for reflux and the resultant mucosal injury could propagate a systemic inflammatory response. 
However a study examining the effect of varying degrees of mucosal injury from reflux on the 

peripheral leukocyte count showed a positive association between the degree of reflux and 

eosinophil count but did not show any correlation with other components of the blood count 
including neutrophils [482].

Corticosteroids inhibit neutrophil apoptosis and therefore increase survival [483]. All patients 

involved in this study were free of oral corticosteroids for at least 6 weeks prior to enrolment. There 

was also no difference in ICS dose taken by the asthmatics across the BMI groups and therefore the 

association between BMI and neutrophils within the asthmatics persisted after adjusting for ICS dose 

at the time of sampling. However, the asthmatics were all on ICS treatment whilst the controls were 

clearly not. It is therefore not possible to exclude the possibility that the higher neutrophil count 
seen in the asthmatics as a group may be in part due to ICS use. Studies in healthy volunteers 

suggest that administration of inhaled beclomethasone can increase blood neutrophil count, peaking 

at 6 hours and returning to baseline by 24 hours, although interestingly this was not seen with 

inhaled budesonide [484]. It is interesting to note that only two of the asthmatics taking part were 

on beclomethasone, the remainder on either budesonide or fluticasone. The transient effects of ICS 

on blood counts were controlled for by asking with all patients to withhold their ICS treatment for 24 

hours prior to sampling. Furthermore, the finding that asthmatics had higher neutrophil counts than
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controls is in keeping with previously published work. The only way to fully exclude the possibility 

that ICS use was increasing blood neutrophils between asthmatics and controls would be to 

administer ICS to the control group, which we did not have the ethical approval to do, or to wean all 
asthmatics off their inhaled therapy which is a limitation of this work and has its own shortcomings 

(see chapter 8).

4.4.2 Eosinophils decline with increasing BMI in asthma

The data from this study also show that the eosinophil count was elevated in the lean asthmatics but 

normal in the overweight and obese individuals. Eosinophilic inflammation is associated with atopic 

asthma and is more steroid responsive [485]. This study suggests that any inflammation in obese 

asthmatics is not eosinophil related. This is interesting given animal models show that obesity 

enhances eosinophil trafficking from the bone marrow to the lung tissues [486]. In addition, a study 

looking at 26 obese patients undergoing gastric bypass and 10 controls, found obesity to be 

associated with higher levels of eosinophils [31].

Most human studies have focussed on eosinophilic inflammation locally within the airways 

measured directly with sputum cell counts or indirectly measuring fractional exhaled nitric oxide 

(FeNO), a surrogate marker of eosinophilic airway inflammation. Work to date has suggested either 
no difference or a reduction in eosinophils with increasing BMI in asthma. In a study of 80 women 

with and without asthma and of varying BMI, the asthmatic patients had a significantly higher mean 

percentage of sputum eosinophils than the control groups, however there were no significant 
differences between the obese versus non-obese groups [25]. A cluster analysis of a single primary 

care cohort and two secondary care cohorts suggested that obese asthma is a female predominant 
disease characterised by the absence of eosinophilic airway inflammation [8]. In a study by Van Veen 

of 136 patients with persistent asthma despite high dose corticosteroid treatment, obesity was 

associated with a significantly lower sputum eosinophil count than lean patients [28]. More recently, 
the cluster analysis by Sutherland et al also found both obese clusters to be characterised by an 

absence of sputum eosinophilia [472].

Studies of FeNO in obese individuals have yielded conflicting results but some have shown a 

reduction in this surrogate marker of eosinophilic airway inflammation with rising BMI. In a study of 
67 individuals with moderate to severe asthma, rising BMI and leptin /adiponectin ratio were 

associated with declining FeNO [27]. In a Dutch study of patients with persistent asthma symptoms 

despite high dose treatment, BMI negatively correlated with FeNO [28]. More recently a study of 
Swedish adults with or without symptoms of wheeze found that in non-obese individuals the 

presence of wheeze was associated with higher rates of atopy and FeNO but that obese patients 

who reported wheeze had lower levels of FeNO than obese individuals without wheezing 

irrespective of atopic status [29]. Within the wheezing obese group BMI, percentage body fat, and 

WHR all correlated negatively with FeNO.

ICS therapy has been shown to affect peripheral blood eosinophil counts [487]. However there was 

no significant difference in ICS dose between groups and furthermore ICS dose did not correlate with 

eosinophil count in the asthmatics. In summary our results are consistent with previous studies
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showing no evidence of eosinophilic inflammation at a systemic level in obese asthma and 

complement those revealing similar findings in the airways.

4.4.3 Obesity is associated with insulin resistance

As expected, insulin resistance increased significantly with BMI. However there was no association 

between insulin resistance and asthma diagnosis in this study and obese asthmatics did not have 

higher levels than their control groups. There are mechanistic data that hyperinsulinaemia might 

promote airway hyper-responsiveness [447] and some population studies have revealed an 

association between insulin resistance and asthma diagnosis [277], although data are conflicting 

[225]. Patients with confirmed diabetes were excluded from this presented work and study numbers 

may not have adequately powered for the detection of a difference in this parameter. Given that our 
study cohort included patients from a difficult asthma service who were on relatively high doses of 
inhaled steroids and may have used oral steroids previously, a higher degree of insulin resistance in 

the asthmatic group might have been expected at least due to treatment effects but this was not 

observed

4.4.4 Leptin levels increase with obesity and asthma

Leptin is an adipokine with multiple effects on the immune system (Table 4.3) and murine models 

have suggested that it may augment airways inflammation and hyper-responsiveness [23]. In this 

present study, leptin levels correlated positively with BMI, percentage body fat and WHR with higher 
levels in asthmatics, such that the highest levels were found in the obese asthmatics, suggesting a 

possible role for this immunomodulatory adipokine in the obesity-asthma association. A single 

paediatric study also found leptin levels to be higher in overweight physician diagnosed asthmatics 

compared to normal weight asthmatics and controls [302], although others have not replicated this 

finding (Table 4.4). Large population studies have been contradictory: a large cross-sectional study 

found an association between leptin and self reported asthma diagnosis, independent of BMI [24] 
whereas another longitudinal study did not note any association with asthma [309]. However these 

studies whilst large lacked an objective asthma diagnosis, relying on self reporting. A recently 

published study examining airway inflammation found a trend towards increased leptin levels in 

obese asthmatics compared to the other groups but this was not significant [429].

The current study differed from previous work as the focus was exclusively on pre-menopausal 
women. In the large British study mentioned above the association between leptin and asthma 

diagnosis was stronger in women, especially if pre-menopausal [24]. Mechanistically, leptin 

secretion is 2-3 fold higher from subcutaneous than visceral adiposity, thus correlating more strongly 

with adiposity in women [327, 328]. If leptin does play a role in obese asthmatics this could explain 

why this association is stronger in females. Leptin increases in situations of acute inflammation 

including sepsis, and in the context of asthma levels increase during exacerbations. A study by 

Sutherland also focussed on premenopausal females and leptin levels in the obese asthmatics 

compared to the groups did not significantly differ [25]. However, these investigators attempted to
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wean the 40 asthmatics off ICS treatment, resulting in 28 patients being sampled during an 

exacerbation which may have masked subtle differences in leptin levels between groups. Acute 

changes in leptin levels were controlled for in this study by recruiting patients who were free of 
recent infection or exacerbation (>6 weeks) and of note, markers of current asthma control were not 
different between groups, suggesting that the differential leptin levels seen were not due to acute 

changes in their disease activity. Hormones may also impact on leptin, with levels rising in the luteal 
phase of the menstrual cycle or with administration of exogenous oestrogen with progesterone 

[488]. Sampling all volunteers during the first 7 days of their menstrual cycle limited these effects, 
and this may also explain why the current results differ from those previously published.

Leptin has a number of effects on neutrophils (Table 4.3) and in mouse pneumococcal pneumonia, 
administration of leptin increased neutrophils and IL-6 in BAL fluid [455]. In the study herein, serum 

leptin was strongly positively correlated with neutrophil count however the association between 

BMI, asthma and neutrophil count remained significant after adjusting for leptin suggesting that it is 

unlikely to be the sole mediator in this relationship. Given the multitude of immunomodulatory 

effects of leptin and its association with obesity and asthma in this study group, its correlation with 

various cell types and cytokines will be examined throughout the remaining results chapters.

Adiponectin has a number of anti-inflammatory effects, so it was of interest to see if serum 

concentrations were significantly reduced in the obese asthmatics. Although as expected, increasing 

BMI was associated with a reduction in adiponectin, asthmatics and specifically obese asthmatics did 

not have significantly different levels to their respective controls. Interestingly resistin, an adipokine 

with pro-inflammatory effects, was significantly elevated in the asthmatics compared to controls 

although there was no difference with BMI category. Only a few studies have examined this 

adipokine in relationship to asthma with contradictory results. In paediatrics Kim et al reported 

lower levels of resistin in atopic asthmatics than controls [307], whilst Arshi et el found no difference 

between children with asthma and healthy controls [489]. The results presented here support those 

of Larochelle et al who found significantly increased levels of resistin in the severe adult asthmatics 

studied compared to healthy controls [312]. Resistin is a natural TLR4 agonist which results in the 

activation of NFk B and induction of a number of pro-inflammatory cytokines [490] which would be 

of relevance in asthma. Recently a study of 35 steroid naive female adult asthmatics versus controls, 
found pre-treatment resistin levels to be predictive of a fall in pro-inflammatory blood markers 

(eosinophil cationic protein, eosinophil protein X and myeloperoxidase) following 8 weeks of 
inhaled steroids [308]. Steroids exhibit many of their effects via suppression on NFkB and therefore 

the authors hypothesised that patients with high resistin levels had high NFkB activation and 

therefore would be sensitive to steroid effects. Certainly if resistin is involved in asthma 

pathogenesis, our study and that of others suggests this is independent of BMI.

4.4.5 Increasing BMI is associated with a trend towards reduction in IgE 
levels in asthmatics

In this study, markers of adiposity were not associated with IgE levels in non-asthmatic or asthmatic 

individuals, although there was a non-significant trend towards a reduction in IgE levels in the 

asthmatics with increasing BMI. These findings are consistent with a recently published study of 666
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patients with severe asthma on the National UK registry dedicated to difficult asthma services [491]. 
In this study serum IgE levels and specific IgE levels to aspergillus decreased with increasing BMI in 

the severe asthmatics studied. In contrast to this, a study of inner city adults attending an asthma 

and immunology clinic showed a positive association between obesity and serum IgE levels [445], 
however only atopic individuals were included in the study. It is increasingly recognised that there 

might be two sub-phenotypes of obese asthma differentiated by age of onset but also IgE levels. A 

study of asthmatics undergoing bariatric surgery suggested that early onset disease with higher IgE 

levels did not experience improvements in BHR unlike those with later onset non-atopic disease with 

normal IgE levels [229]. Although the obese patients in the study herein did not have as high levels 

of IgE (geometric mean =82.02 kU/L) as in the atopic group of the bariatric surgery study (mean = 

305.3 kU/L).

4.5 Summary
The findings described indicate a switch from systemic eosinophilia to neutrophilia with increasing 

BMI in asthma. This is in keeping with evidence in the literature showing that obese asthmatics lack 

significant eosinophilic inflammation but have evidence of neutrophilic inflammation, including in 

the airways. Despite some good mechanistic and other data in the literature suggesting a role of free 

fatty acids in mediating neutrophilic airway inflammation in males, this current study suggests 

fasting free fatty acid levels in women are not associated with obese asthma. Similarly, despite 

documenting evidence of insulin resistance with increasing BMI there was no association with the 

obese asthma phenotype. However, leptin, an adipokine associated with numerous immunological 
effects, was highest in the obese asthmatics, suggesting that it could be playing a role in this disease 

phenotype. In chapter 5 other potential mechanisms will be explored in more depth, including more 

detailed investigation of the functional consequences of elevated neutrophil counts and whether 

there is evidence of neutrophil activation. In addition given the multitude of immunological effects 

the relationship between leptin and other immunological parameters will be examined.
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Chapter 5

Neutrophils and oxidative stress in obesity
and asthma
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5.1 Introduction
Neutrophils may have an important role in severe asthma phenotypes. In the cluster analysis 

performed as part of the Severe Asthma Research Programme (SARP), one of the phenotypes 

described included non-atopic individuals with late onset disease, severely impaired lung function 

with poor reversibility and higher levels of sputum neutrophilia [16]. Additionally, sputum neutrophil 
levels are significantly higher in those with severe disease [168] and correlate negatively with lung 

function and markers of airflow obstruction [169]. In acute severe asthma requiring intubation, the 

predominant leukocyte in tracheal aspirates is the neutrophil which can be up to ten fold higher 
than normal levels [492].

Blood neutrophil counts in females have been shown to increase with BMI and work presented in 

chapter 4 suggests this also occurs in asthmatics, resulting in obese asthmatics having higher levels 

than normal weight patients and obese controls. This has been noted by one other group [476] and 

could be due to either increased production of cells, reduced marginalisation and/or delayed 

apoptosis. In this chapter some of the potential cytokines important in neutrophil regulation will be 

explored. Furthermore, the association between increased neutrophil count and neutrophil 
activation and function will be considered.

5.1.1 Cytokines regulating neutrophil levels

5.1.1 (i) Overview of blood neutrophil regulation

Neutrophils are one of the most abundant cell types of the innate immune response and have strong 

phagocytic and antimicrobial properties, arriving at sites of inflammation within a matter of hours 

[88], Part of their activity is based upon an ability to generate reactive oxygen species (ROS), which 

damage proteins, lipoproteins and DNA. They develop from common myeloid progenitors 

(CD34+CD38+CD123medCD135+CD45 ) which in turn are derived from CD34+ multipotent progenitor 
cells [493]. Neutrophil turnover is rapid, with their life span short at 7-10 days; the bone marrow 

contains approximately 2.3 x 109 neutrophils with 1 x 109 cells per kg body weight leaving the bone 

marrow every day [494, 495]. The blood compartment of neutrophils is only 1/3 the size of the bone 

marrow and levels are tightly controlled with a mean neutrophil count for Caucasian females of 

4.3*109/L[496].

The blood neutrophil count is regulated predominantly by granulocyte colony stimulating factor (G- 
CSF), interleukin 17 (IL-17) and IL-23. Briefly, IL-23 is produced by macrophages and dendritic cells on 

encountering an inflammatory stimulus via activation of the pro-inflammatory transcription factor 

NFkB. IL-23 in turn is a potent inducer of IL-17 expression by CD4+ T helper cells termed Thl7 cells 

[90] (see section 2.2.3 (i)). IL-17 then induces IL-1, IL-6, IL-8, G-CSF and GM-CSF production by 

epithelial, endothelial and other stromal cells which leads to the production, recruitment and 

activation of neutrophils [91,497]. Following migration of neutrophils into tissue, apoptotic cells are 

engulfed by phagocytes and IL-23 is down-regulated therefore forming a negative feedback loop 

[498]. There are some published data examining these key cytokines in the context of obesity and 

asthma which will be summarised in the following section.
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5.1.1 (ii) Colony stimulating factors (G-CSF & GM-CSF)

The colony stimulating factors are a group of cytokines essential for haematopoiesis. They include G- 
CSF and macrophage colony stimulating factor (M-CSF), which are lineage specific and important in 

the differentiation and proliferation of neutrophils and macrophages respectively. They also include 

GM-CSF and multi-colony stimulating factor (multi-CSF/IL-3) which along with IL-6 and stem cell 
factor (SCF) act earlier in promoting differentiation of common myeloid progenitors 

(CD34+CD38+CD123medCD135+CD45) into granulocyte macrophage progenitors 

(CD34+CD38+CD123medCD135+CD45+) [493, 499].

GM-CSF is therefore important in the differentiation and proliferation of macrophage, eosinophil 
and neutrophil progenitors in the bone marrow and is produced by a vast number of cell types 

including structural cells (endothelium, osteoblasts, fibroblasts), innate cells (neutrophils, 
macrophages), and both B and T lymphocytes [499]. Elevated circulating levels of GM-CSF have been 

observed in the morbidly obese undergoing bariatric surgery compared to healthy controls [500]. 

GM-CSF is produced locally within the lung and levels within the sputum are increased in patients 

with asthma, correlating with disease severity [501]. The presence of GM-CSF in the context of 
asthma correlates with sputum eosinophilia rather than neutrophilia, and animal studies have 

shown that neutralisation of this factor results in reduced eosinophilic airway inflammation [502], 
However GM-CSF is also increased locally in COPD, a more neutrophilic airway disease, where it may 

be important in promoting neutrophil chemotaxis and inhibiting apoptosis [503].

The major cytokine in neutrophil proliferation and survival is G-CSF: humans deficient in this develop 

profound neutropenia [92]. Although many cells are capable of its expression, macrophages and 

monocytes are the primary producers [499]. Although IL-3, SCF and GM-CSF can support the early 

growth of neutrophil progenitors, G-CSF is required for their terminal differentiation [499]. In 

addition, upon differentiation these cells remain tethered to the bone marrow through the 

interaction of C-X-C chemokine receptor 4 (CXCR4) and its ligand, C-X-C chemokine ligand 12 

(CXCL12). G-CSF down regulates expression of CXCR4 resulting in release of neutrophils into the 

blood [504]. Old neutrophils circulating in the blood are thought to start re-expressing CXCR4 and 

home back to the bone marrow [505]. There is little published work on G-CSF in the wider context 
of obesity or in studies examining obesity in asthma.

5.1.1 (iii) IL-17

The IL-17 family consists of 6 members designated A-F. IL-17A is produced by Thl7 cells [90] and its 

main function is to promote neutrophilic inflammation through the induction of IL-8 and GCSF by 

other structural cells [91]. There is evidence to suggest that IL-17A may be important in neutrophilic 

asthma and elevated in the obese state. Airway inflammation traditionally has been thought to be a 

Th-2 mediated process, however, murine models have shown the importance of Thl7 cells. Unlike 

Th2 cells, Thl7 cells do not show steroid responsiveness in vitro and passive transfer of OVA specific 

Thl7 cells to mice with severe combined immune deficiency has been shown to cause increased G- 
CSF expression leading to neutrophil influx of the airways and promotion of steroid resistant BHR to 

methacholine [353]. Interestingly, in human studies, serum levels of IL-17 are elevated in severe
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asthma compared to mild-moderate disease with levels >20pg/ml shown to be an independent risk 

factor for severe disease after controlling for more traditional covariates [354]. Furthermore, 
sputum IL17A mRNA levels have been shown to correlate with IL-8 and sputum neutrophil counts in 

asthmatics [171] and correlate clinically with the presence of BHR [506].

Animal models have suggested that obesity results in Thl7 bias through an IL-6 dependent process 

[351]. Circulating IL-17 levels are elevated in obese compared to normal weight women [352]. 
Despite the weight of evidence suggesting an important role for IL-17A in asthma and the potential 
for obesity to favour a Thl7 bias, to date there has been little work in this area in relation to the 

obesity asthma association. A Thl7 bias in the obese state might be responsible for the enhanced 

number of neutrophils seen and in the context of asthma, could skew the disease towards a more 

neutrophilic, treatment refractory phenotype.

5.1.1 (iv) IL-23

IL-23 is a pro-inflammatory cytokine, produced by antigen activated macrophages and DCs. It is 

important in promoting Thl7 differentiation (see chapter 7) and therefore IL-17 mediated 

neutrophilic inflammation [115]. Evidence suggests that obesity may be associated with Thl7 bias. In 

keeping with this, circulating IL-23 levels have been shown to be elevated in obese women [352] but 
little work has been done on this cytokine in the context of obesity and asthma.

5.1.1 (v) IL-6

IL-6, first discovered in the 1980s, is produced by a broad range of cells including structural cells 

(epithelial, endothelial cells and fibroblasts), and cells of the innate (macrophages, dendritic cells 

and mast cells) and adaptive (B lymphocytes and some CD4 effector cells) immune systems [507]. It 
acts on the IL-6 receptor (IL-6R) which is expressed on leukocytes and hepatocytes in a process 

known as "classic signalling". The IL-6 receptor has a short cytoplasmic domain and therefore is 

associated with another large trans-membrane protein, glycoprotein 130 (gpl30), to enable signal 
transduction. Unlike IL-6R, gpl30 is expressed ubiquitously and is not a specific partner to IL-6R. The 

existence of soluble IL-6 receptor (slL6R) enables cells which express gpl30 but not IL-6R to become 

responsive, a process known as "trans-signalling"(see Figure 5.1) [508]. Soluble IL6R is produced by 

neutrophils, macrophages and CD4+T cells. A soluble form of gpl30 also exists (sgpl30) and this can 

bind to the IL-6/slL6R complex preventing it from interacting with surface bound sgpl30 and thereby 

specifically blocking IL-6 trans-signalling (Figure 5.1)[508].
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Figure 5.1: Schematic diagram of IL-6 signalling.
Classic signalling: IL-6 binds to surface IL-6 (IL-6R) receptor coupled w ith 
membrane gpl30.
Trans-signalling: IL-6 binds to soluble IL-6 receptor (slL-6R). This associates 
w ith membrane gp l30  on cells which do not express IL-6 receptor enabling 
them to respond to IL-6.
Soluble g p l3 0  (sgpl30) inh ib ition : IL-6 binds to siL-6R. This associates w ith 
soluble gp l30  and prevents it interacting w ith membrane gpl30.

IL-6 has a range of effects on the immune system (Figure 5.2). Mechanistically IL-6 is im portant in 

regulating neutrophil trafficking during the acute inflammatory response [509], as well as inhibiting 

apoptosis [510]. In the context o f the lung, murine models show that it enhances neutrophil 

dependent killing of pulmonary pathogens [511]. IL-6 can also indirectly promote neutrophilic 

inflammation through its ability to promote Th l7  d ifferentiation whilst inhibiting Treg d ifferentiation 

(see section 7.1.2 (iii)). Recent therapeutic studies o f anti-IL-6 therapy in rheumatoid arthritis have 

shown a transient drop in neutrophil count w ith blockade of IL-6 again emphasising its importance in 

mediating neutrophilic inflammation [512].

In the setting of allergic asthma, plasma IL-6 levels have been shown to be elevated compared to 

control subjects [176] and locally, sputum levels inversely correlate w ith FEV1 [513]. Furthermore, 

slL6R receptor levels are elevated after allergen challenge [514]. A single nucleotide polymorphism 

(SNP) in the IL-6R has been identified which promotes receptor shedding, increasing slLR-6 levels 

and thereby promoting trans-signalling. This SNP is more prevalent in patients w ith severe asthma 

and in this group serum siL6R levels inversely correlate w ith FEV1 and FVC [515].

Circulating IL-6 levels consistently have been shown to be elevated in the obese [516] and it is 

thought that as much as 25% of circulating IL-6 is derived from adipose tissue [517]. Soluble forms of
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IL-6R and gp l30  have not been studied extensively in obesity but a single study measuring serum 

levels in lean and obese pre-menopausal women with and w ithout polycystic ovary syndrome 

(PCOS) found that serum slL-6R levels did not d iffer between BMI groups but that levels were lower 

in the women w ith PCOS [518]. However, serum sgpl30 levels were significantly higher in the obese 

subjects and in those w ith PCOS.

Despite the compelling evidence that IL-6 is increased in both obesity and asthma, there has been 

little  work on this cytokine w ith regards to obesity in association w ith asthma. A single study to date 

showed no significant difference in plasma levels in obese compared to normal weight asthmatics. In 

a study examining 80 premenopausal women aged 18-50 years w ith and w ithout asthma, IL-6 levels 

were higher in the obese and highest in the obese asthmatics, however this did not reach statistical 

significance [465]. Furthermore, there is no published data on the levels of SIL-6R or sgpl30 within 

this asthmatic phenotype.
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Figure 5.2: Summary of the effects of IL-6 on the innate and adaptive 
immune response.

5.1.1 (vi) IL-8/CXCL8

IL- 8 was first isolated from the supernatant o f LPS stimulated mononuclear cells [519]. It is 

produced by a number of leukocyte types including neutrophils, monocytes, NK cells and T cells as 

well as structural cells including fibroblasts, endothelial and epithelial cells [520]. Production is 

induced following ligation of pattern recognition receptors (PRRs) by microbial products or via 

exposure to other pro-inflammatory cytokines including TNFa and IL-1 [521]. The cytokine mediates 

its effects through two receptors - chemokine C-X-C receptor 1 (CXCR1) and CXCR2 - and is important
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in neutrophil migration into tissues including the pulmonary epithelium. These migratory effects of 
IL-8 are mediated by downregulating CD62L (L-selectin) and upregulating the integrins C D llb  and 

CD llc. IL-8 also induces neutrophil degranulation and respiratory burst leading to ROS production as 

well as leukotriene and platelet activation factor synthesis [520].

In severe asthma, sputum IL-8 levels correlate with airway neutrophilia [522] and bronchial smooth 

muscle cells have been shown to upregulate expression of this cytokine [523]. In individuals with 

acute severe exacerbations requiring intubation, tracheal aspirates yield high levels of IL-8 up to 19 

times normal [492]. Therapeutic advances have also suggested an important role for IL-8 in the 

pathogenesis of chronic asthma. Macrolide antibiotics reduce neutrophil accumulation in the 

airways in refractory asthma and this could be due to reduced IL-8 production [524].

In the context of obesity, studies have shown elevated serum levels of IL-8 in the blood of obese 

children [525] and adults [526] compared to their normal weight counterparts, with a reduction in 

serum levels seen following weight loss [527]. Only a single study has examined plasma IL-8 levels in 

obese and non-obese females with and without asthma, finding no association with either obesity or 
asthma [25]. However when the same group examined sputum, they observed higher levels in 

asthmatics but no effect with obesity.

In summary a number of cytokines are important in the regulation of neutrophil numbers, activation 

and trafficking. Studies in asthma and other airway diseases have suggested an importance of some 

of these in promoting neutrophilic inflammation, especially IL-6, IL-8 and IL-17. Studies to date in 

obesity have suggested that these same cytokines may be elevated at a systemic level. Therefore it 
was hypothesised that in the context of asthma, obesity causes changes in these circulating 

cytokines at a systemic level and these may be responsible for the changes in neutrophil counts seen 

in the study cohort. If this was found to be the case then this may identify novel therapeutic targets 

for this specific asthma phenotype

5.1.2 Surface markers of neutrophil activation

Margination of neutrophils to sites of inflammation results from the altered expression of adhesion 

molecules. CD62L (L-selectin) recognises carbohydrate structures on vascular adhesion molecules 

and initiates tethering and rolling along the vessel wall surface, whilst C D llb  and CD18 facilitate 

final adhesion to the endothelial surface so that diapedesis can begin [528]. Chemokines such as IL-8 

cause shedding of CD62L and upregulation of C D llb , encouraging neutrophil migration into tissue 

[520]. Therefore, in states of chronic inflammation such as malignancy or chronic renal failure, 
CD62L is shed whilst C D llb  levels increase [529, 530].

Obesity alters expression of neutrophil adhesion molecules. A study of 26 obese patients undergoing 

gastric bypass and 10 controls examined C D llb  and CD62L expression at the cell surface. Consistent 
with the view that obesity represents a state of chronic inflammation, CD62L was downregulated in 

the obese patients compared to controls and levels increased following weight loss to supra-normal 

levels; C D llb  levels were unchanged [31]. Using another surface marker of activation, CD66b, a 

glycoprotein which is translocated from secondary granules to the cell membrane upon activation, 
Nihjuis et al [337] showed that levels were elevated in obese bariatric patients at baseline compared
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to healthy controls. Myeloperoxidase (MPO), the enzyme responsible for ROS generation, was also 

elevated in the obese but did not change with surgery. However calprotectin, a cytoplasmic 

bacteriostatic protein which is released on neutrophil activation was found to be elevated in obesity 

and reduced at 2 years with subsequent weight loss.

In the context of asthma neutrophil activation, has also been shown to be increased at a systemic 

level. In a study of 30 patients of varying asthma severity and 10 controls, patients with severe 

disease had higher mean fluorescence intensity of C D llb  on circulating neutrophils compared to 

those with mild-moderate disease and control subjects, although no difference in CD62L expression 

[531].

In summary there are data that obesity and asthma can both lead to systemic activation of 
neutrophils. To date there are no published data on these activation markers in obese asthmatics. It 
postulated that obesity and asthma may interact in an additive manner resulting in not only 

increased neutrophil numbers but also enhanced cell activation systemically.

5.1.3 Reactive oxygen species production and oxidative stress

5.1.3 (i) Reactive oxygen species production

ROS are molecules whiclTcontain unpaired electrons, reacting vigorously with other chemical 
compounds including proteins, lipoproteins and DNA, altering their structure and function [93], 
During activation, neutrophils generate large amounts of ROS via the NADPH oxidase system. ROS 

are released into phagosomes containing ingested pathogens or into the extracellular space, 
damaging surrounding tissue and perpetuating inflammation.

In the context of asthma, ROS production by circulating neutrophils in response to an inflammatory 

stimulus is increased. In a study of asthmatics of varying severity, neutrophil ROS production 

(measured by flow cytometry using dihydrorhodamine in response to PMA stimulation) was noted to 

be higher in the asthmatics than controls. This suggested again that changes in the function of 
circulating neutrophils were seen at a systemic level in these individuals. Interestingly there was no 

difference in production between those with severe versus mild disease [531]. Studies in obese 

individuals examining neutrophil PMA-induced ROS activity using a flow cytometry based 

dihydrofluoroscein oxidation assay and chemiluminescence, show that circulating neutrophils 

derived from obese individuals have a higher ROS production than their lean counterparts, again 

suggesting systemic neutrophil activation [532].

Despite these findings there has been little work examining the ROS response of circulating 

neutrophils in obese asthmatics. It was hypothesised that the effect may be additive with 

neutrophils derived from these individuals exhibiting greater ROS activity than lean asthmatics and 

obese controls at a systemic level which may then contribute towards local airway inflammation.
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5.1.3 (ii) Oxidative stress

Oxidative stress occurs when there is an imbalance between ROS generation and antioxidant 

defences. A number of mechanisms may promote oxidative stress in obesity [533] and some of 

these will be summarised here (Figure 5.5). Obesity is associated w ith chronic inflammation with 

activation of the innate immune system, resulting in leukocyte activation and resultant ROS 

generation (see previous section). Hyperleptinaemia is associated w ith a number of pro- 

inflammatory effects (Table 4.3) indirectly promoting the generation of ROS. Furthermore, leptin can 

directly induce ROS production by endothelial cells [534] and monocytes [456]. Obesity is also 

associated w ith hyperglycaemia which can promote oxidative stress through several pathways [533]. 

Chronic hyperglycaemia leads to glycosylation of proteins, lipids and nucleic acids (advanced 

glycosylation end products (AGE)) which bind to surface receptors (RAGE) promoting NFk B 

activation and ROS production [535]. Hyperglycaemia also results in activation of NADPH oxidase, 

resulting in increased NADPH production and therefore ROS generation especially by endothelial 

cells. Finally glucose can auto-oxidise producing free radicals. Elevated lipid levels may also play a 

role in oxidative stress through a variety of mechanisms [533]: increased intracellular triglycerides 

can interfere w ith the mitochondrial electron transport chain causing enhanced superoxide 

production and increased FFA can also activate the respiratory burst in leukocytes. The obese state is 

also associated w ith reduction in the levels of dietary antioxidants and in the action o f antioxidant 

enzymes including SOD. Finally, increased muscle activity due to higher load carrying can lead to 

more ROS generation through heightened electron transport chain activity and greater production of 

the purine derivative hypoxanthine which is converted to urate form ing superoxide radicals as a bi

product.
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Figure 5.3: Summary of the mechanisms in obesity which promote oxidative 
stress by increasing ROS production and decreasing antioxidant defences.
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A large number of cross-sectional studies have shown obesity to be associated with markers of 
oxidative stress systemically [94]. Four of these studies have focussed on obese otherwise healthy 

women using a variety of different measures have all shown evidence of increased oxidative stress 

in obesity (Table 5.1), particularly with visceral adiposity[536].

Study design Number of 
participants

Age range Outcome Reference

Obese: mean BMI = 
36.7 kg/m2
Non-obese: mean BMI 
= 21.9kg/m2

39 Pre-menopausal ^plasma TBARS in obese 
vs. non obese women.

[537]

Obese: mean 
BMI=39kg/m2 
Non-obese: mean BMI 
22.5kg/m2

73 38-45 years ^  urinary 8 Isoprostanes 
in obese vs. non-obese, 
higher levels in android 
vs. gynoid obesity.

[536]

Obese: mean BMI = 
37.1kg/m2
Non-obese: mean BMI 
= 19.1kg/m2

73 33.8-36.9 years 'fserum MDA in obese 
vs. non-obese.

[538]

Obese: mean BMI = 
45.3kg/m2
Non-obese: mean BMI 
= 20.1 kg/m2

43 31.5-38.2 years "Tlipid hydroperoxides in 
isolated HDL and LDL in 
obese vs. non obese.

[539]

Table 5.1: Summary of cross-sectional studies examining the association between obesity and 
oxidative stress in women.
The studies are listed in chronological order. A number of different measures were used including 
the lipid peroxidation product MDA directly in serum, indirectly using TBARS (see section) or 
another lipid peroxidation production 8 isoprostane in urine or lipid hydroperoxides in HDL and 
LDL.

Asthma is also associated with increased oxidative stress systemically as evidenced by enhanced ROS 

production by stimulated blood leukocytes [177], including neutrophils [531], and higher levels of 
blood markers of lipid peroxidation (plasma TBARS [177] and plasma isoprostanes [540]), and 

increased protein carbonyls [177], suggesting that novel asthma therapies could be developed 

focussing on antioxidant defences. During exacerbations systemic oxidative stress increases further, 
evidenced by higher levels of plasma lipid peroxidation products (measured by TBARS) and a 

reduction in plasma total oxidant status (TAOS) [179].

Enhanced oxidative stress may modify disease behaviour in asthma. Increased levels of biomarkers 

of oxidative stress in lavage fluid of patients with severe disease have been associated with a 

decrease in reduced glutathione and an increase in the oxidised form [541]. Furthermore, in animal 
models, increasing the ratio of reducedioxidised glutathione skews T helper responses towards a T h l 
bias through IL-12 production. It is therefore conceivable that changes in the redox balance of 
glutathione within the airways may potentiate a Th l response and enhanced airway inflammation.
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There is also some evidence that enhanced ROS activity may result in glucocorticoid resistance 

through inactivation of histone deactylase 2 (HDAC2)[542] and therefore any process which 

promoted oxidative stress could enhance glucocorticoid resistance.

Over time, chronic oxidative stress in obesity can lead to end organ damage and this is thought to be 

important in the development of atherosclerosis [343] and non-alcoholic steatohepatitis [543]. Little 

work has been done on whether this cumulative effect may also impact on the airways, explaining 

the obesity-asthma association. A study by Sood examined 2,865 individuals taking part in the 

Coronary Artery Risk Development in Young Adults (CARDIA) study [360]. Of these, 8.1% of had a 

physician diagnosis of asthma. BMI in women but not men was associated with increased plasma 8- 
isoprostanes. Asthma diagnosis was also associated with higher levels, however this did not persist 
after adjusting for gender and BMI differences. Although increasing BMI in women was associated 

with asthma diagnosis this association was unaffected by adjusting for isoprostane levels, leading 

the authors to concluded that the BMI-asthma association was not statistically explained by 

oxidative stress. This study had a number of limitations, including a self reported "physician 

diagnosis" of asthma rather than objective diagnostic markers and also the authors had no 

information on asthma control or severity. A further study of plasma 8 isoprostane in 67 non
smoking asthmatics and 33 controls found that whilst plasma isoprostane levels increased with 

asthma, they did not significantly change across BMI categories [361]. The same group found that 
increasing BMI was associated with increased exhaled 8 isoprostanes and declining exhaled FeNO, 
although levels did not differ between asthmatics and controls [27]. However, the study populations 

used in both these publications had high levels of co-morbidities in the asthmatics (18% diabetic, 
12% OSA, 45% hypertensive) which may have confounded results.

In the current study population of exclusively female asthmatics and controls with very little 

comorbidity it was decided to re-address this question by examining the oxidative stress markers 

thiobarbituric acid reactive substances (TBARS) and TAOS.

!
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5.2 Methods
A detailed description of the recruitment process is described in section 3.1 but will be summarised 

here.

5.2.1 Study population

Pre-menopausal women with and without asthma were recruited. Subjects and controls were 

divided into 3 groups on the basis of body mass index (BMI), giving 6 groups in total (Figure 3.1). 
Normal weight was defined as BMI 18.5-25kg/m2, overweight as a BMI >  25kg/m2 and <  30kg/m2 
and obesity as a BMI >  30kg/m2.

Asthmatic patients were recruited from a local tertiary clinic, 3 surrounding secondary care clinics 

and a participating GP practice.

After case note review, all asthmatic subjects fulfilling the inclusion/exclusion criteria (Figure 3.1) 
attended an appointment at a tertiary asthma service where asthma diagnosis was confirmed. The 

diagnosis required consistent symptoms and demonstrable significant reversible airways obstruction 

to a 32 agonist (12%) or if this was not present, significant PEFR variation or a positive bronchial 
provocation test. Disease severity was graded according to GINA criteria (Appendix VII) and in those 

with very good disease control, therapy was stepped down to the lowest level to maintain this. 
Asthmatics were considered stable if they had no exacerbations, oral steroid therapy or respiratory 

tract infection in the preceding 6 weeks.

Asthmatics were asked to complete a modified European Respiratory Health Survey [391] (Appendix 

V). Healthy control subjects of varying BMI were recruited from the local university, hospital staff 
and a Slimming World weight loss club.

5.2.2 Clinical measures and blood collection

Participants were asked to attend during the first 7 days of their menstrual cycle, determined using 

the date of onset of menstruation, in the fasted state between the hours of 07.00-09.00am. Acute 

disease control at the time of recruitment in the asthmatics was assessed using the Juniper Asthma 

Control Questionnaire (Appendix VI) [392].

Spirometry was performed using a portable dry spirometer (Vitalograph) calibrated on the day of 
use. All asthmatics were asked to withhold medication for the preceding 24 hours. The best of 3 

measurements was taken according to a standardised protocol [394]. Following this measures of 

WHR and percentage body fat composition were taken.

Fasting blood was collected into lithium heparin tubes and gel and clot activator tubes for serum.
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5.2.3 Plasma cytokines

Plasma was separated from whole blood by density gradient centrifugation (see section 2.6 for 
details). Blood (10ml) was gently layered onto Histopaque 1077 (10ml) (Sigma, USA) in a 50ml Falcon 

tube (Greiner Bio-one, Germany) and centrifuged at 805 x g for 20 minutes (no brake). The plasma 

was then removed, filtered (0.2 |im polyethersulfone filter, low protein binding; Sigma, USA) and 

stored at -20°C prior to analysis. Circulating IL-6, IL-8, IL-17A, IL-23 G-CSF and GM-CSF were 

measured using enzyme linked immunosorbant assay (ELISA). The principles and methods of this 

technique are outlined in section 3.11. Table 5.2 outlines the commercially available kits used and 

their respective sensitivities. Note that in this case the sensitivity is set as the least concentrated of 
the standards included in each assay.

Cytokine Sample Sensitivity (pg/ml) Source

GCSF Plasma 39.063 Quantikine, R&D systems, Europe.
GMCSF Plasma 7.813 Quantikine, R&D systems, Europe.
IL-6 (HS) Plasma 0.156 Quantikine, R&D systems, Europe.
IL-8 Plasma 1.0 Quantikine, R&D systems, Europe.
IL-17A Plasma 1.563 Platinum, eBlosciences, UK
IL-23 Plasma 39.063 Quantikine, R&D systems, Europe.

Table 5.2: ELISA cytokine kits and their respective sensitivities.
HS: A high sensitivity IL-6 kit was used.

5.2.4 PMA-mediated reactive oxygen species production in whole 
blood

The principles behind reactive oxygen species production by phagocytes and the use of 
chemiluminescence in their detection is summarised in section 3.8.1. Whole blood was diluted in 

PBS (1:10 dilution) and 25pl added to each well. Blood was stimulated using 25pl phorbol myristate 

acetate (PMA; lu M  Sigma), which was added to each well. Luminol (5-amino-2,3,-dihydro-1,4- 
phthalazinediane 2mmol/l; Sigma) 25|il/well was added to each well to amplify the reaction. The 

samples were measured on a plate reader within 5 minutes and the peak light emitted measured.

5.2.5 C D llb  and CD62L expression on neutrophils

Neutrophil expression of C D llb  and CD62L was measured using flow cytometry. Measurement of 
monocyte activation markers was done on the same samples (see section 6.2.3). The principles 

behind this technique are outlined in section 3.7. The antibodies, conjugated fluorochromes and 

their appropriate isotype controls used are listed in Table 5.3.
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Heparinised whole blood (100pl) was added to 4 tubes. Tube 1 contained no additional antibodies. 
Tube 2 contained anti-CD15:e450 to identify neutrophils, anti-CD14:PerCPCy5.5 to identify 

monocytes, and isotype controls for the activation makers present in subsequent tubes (mouse 

lgGl:APC and mouse lgG2a:PE)(see section 5.2.5). Tube 3 contained anti-CD15:e450 and anti- 
CD62LPE along with antibodies for the monocyte activation experiments (anti-CD14:PerCP-Cy5. 5 

and anti-HLA-DR:FITC. Tube 4 contained anti-CD15:e450 and anti-CDllb:APC along with antibodies 

for the monocyte experiments (anti-CD14:PerCP-Cy5.5 and anti-CD16:FITC). The samples were 

vortexed before incubation on ice for 30 minutes. Samples were then treated with 3ml of red blood 

cell lysis solution (FACS lysing solution; BD Biosciences, USA) and incubated in the dark at room 

temperature for 10 minutes. Cells were collected by centrifugation (4°C, 515 x g for 7 minutes) and 

the supernatant discarded before washing in 3ml of FACS buffer (PBS with 0.2% BSA and 0.05% 

sodium azide). The tubes were centrifuged, supernatant removed and then the samples were fixed 

using 200pl FACS fix (BD Biosciences, USA).

The stained samples were refrigerated and acquired within 24 hours on a BD FACSAria I flow 

cytometer: 10,000 events were recorded for each sample. The gating strategy used to measure 

C D llb  and CD62L expression is shown in Figures 5.4 and 5.5, respectively. Neutrophils were 

identified as a population of cells with high side scatter and by CD15 expression. After gating on this 

population, CD62L and C D llb  expression were measured by median fluorescence intensity. To 

control for non-specific antibody binding, median fluorescence intensities were also measured in the 

neutrophils stained with the respective isotype control antibodies. The signal index was calculated 

from the ratio between median fluorescence intensity in the sample containing the specific antibody 

(anti-CDllb or anti-CD62L) and the isotype control.

Antigen Fluorochrome Cell expression Clone Source

CDllb
(MACl-a)

APC Activation epitope of neutrophils 
and monocytes

CRBM1/
5

eBioscience, UK

CD62L 
(L-se lectin)

PE Low expression on chronically 
activated neutrophils and 
monocytes

DREG-
56

eBioscience, UK

CD15 e450 High expression on neutrophils H198 eBioscience, UK
Mouse IgGl 
Isotype control

APC P3.6.2.8
.1

eBioscience, UK

Mouse lgG2a 
Isotype control

PE 20102 R&D systems

Rat lgG2a
Isotype
Control

APC eBR2a eBioscience, UK

Table 5.3: List of antibodies and fluorochromes used to measure surface markers of neutrophil 
activation.
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Figure 5.4: Gating strategy for measuring neutrophil CD62L 
expression.
A: Neutrophil population was identified by side scatter (SCC) and 
CD15:eFluor450 expression.
B: Neutrophils gated. Mouse lgG2a:PE isotype control used to 
set gating and control for non-specific binding.
C: Median fluorescence intensity measured using histogram for 
isotype control.
D: Neutrophils gated. CD62L positive neutrophils identified using 
gate set by isotype control.
E: Median fluorescence intensity measured using histogram for 
CD15+CD62L+ neutrophils.
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5.2.6 Statistical Analysis

Each of the parameters measured was examined visually using a histogram and a KS test for 

normality was performed. Positively skewed data were logarithmically transformed before analysis. 
Differences between normally distributed groups were analysed using an unpaired t-test (between 2 

categories) or 1 way analysis of variance (ANOVA) (between 3 or more). Associations between 

normally distributed continuous variables were examined using a Pearson's correlation coefficient. 
More complex relationships were explored through general linear models. Proportional data were 

analysed using a chi-squared test of association.

5.3 Results
5.3.1 Circulating plasma cytokines

Plasma cytokine levels were measured in all of the 84 participants in the study. Data regarding IL-6, 
IL-8 and GCSF levels did not pass the KS test (p=0.001, p<0.001 and p=0.01) as they were positively 

skewed so values were logarithmically transformed for analysis. Levels of GM-CSF, IL-23 and IL-17 

were only above the sensitivity of the ELISA used in a small number of cases and therefore data were 

dichotomised into detectable vs. non-detectable.

5.3.1 (i) GM-CSF

Only 38 individuals had detectable levels of GM-CSF in the plasma so data were categorised into 

whether levels were detectable or not. When analysing GM-CSF as a categorical variable there was 

no significant difference in the proportion of individuals with detectable levels across the 6 groups 

(Table 5.4.). Analysing the cohort by BMI category (p=0.793) or by asthma diagnosis (p=0.843) did 

not reveal any associations. No differences in the proportion of participants with detectable levels 

according to BMI category was seen when asthmatics (p=0.605) and controls (p=0.276) were 

analysed separately.

5.3.1 (ii) G-CSF

G-CSF levels did differ significantly between the 6 groups (Table 5.4) but were not significantly 

different in asthmatics compared to controls across the entire study population (p=0.334) or when 

each BMI category was compared individually. However, they did increase significantly with BMI 
category (p=0.005) and continuous BMI (r=0.278, p=0.010) across the entire population. G-CSF levels 

also significantly positively correlated with percentage body fat (r=0.341, p=0.002) but not with WHR 

(r=0.203, p=0.067). Levels were not associated with participant age. When asthmatics and controls 

were analysed separately G-CSF levels correlated significantly with BMI and percentage body fat in 

the asthmatics (r=0.395, p=0.011; r=0.500, p=0.001, respectively) but not the controls (r=0.147, 
p=0.345; r=0.184, p=0.236). However when an interaction between BMI and asthma status with
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regards to BMI was formally tested for this was not seen (p=0.291). Within the asthmatics studied, 
GCSF did not correlate with various markers of asthma control, medication usage , FEV1 (expressed 

as percentage predicted) (r= -0.298, p=0.062), or PEFR percentage predicted (r=-0.280, p=0.080).

As G-CSF levels are associated with neutrophil differentiation and release from the bone marrow the 

association between neutrophil levels and GCSF was explored. There was no association (r=0.114, 
p=0.301) and using a general linear model the association between blood neutrophil count, asthma 

and BMI was not significantly affected by adjusting for GCSF (Asthma p=0.003, BMI p=0.001 

respectively, p=0.901 respectively R2 value =0.222).

Contro
NW
n=15

S

OW
n=13

OB
n=15

Asthma
NW
n=14

tics
OW
n=12

OB
n=15

p value

GM-CSF
Number of cases 
where GMCSF 
detectable

6/15 4/13 9/15 6/14 7/12 6/15 All 6 groups p=0.606 
A vs. C p=0.843 
BMI category p=0.793

G-CSF (pg/ml)
Geometric mean
(SD)

30.45
(12.68)

36.86
(19.60)

34.67
(5.61)

31.15
(5.50)

36.41
(14.14)

39.96
(8.05)

All 6 groups p=0.041 
A vs. C: p=0.334 
BMI category: p=0.005

IL-17
Number of cases 
where IL-17 
detectable

2/15 2/13 5/15 7/14 7/12 6/15 All 6 groups p=0.081 
A vs. C p=0.007 
BMI category p=0.886

IL-23
Number of cases 
where IL-17 
detectable

7/15 7/13 8/15 7/14 4/12 7/15 All 6 groups p=0.922 
A vs. C p=0.552 
BMI p=0.903

IL-6 (pg/ml)
Geometric mean 
(SD)

0.57
(1.57)

0.82
(0.22)

1.13
(0.95)

0.93
(1.71)

1.26
(0. 78)

1.79
(0.89)

All 6 groups p<0.001 
A vs. C: p=0.001 
BMI category p<0.001

slL6R (ng/ml)
Mean
(SD)

216.63
( 78.22)

274.06
(143.80)

254.98
(84.58)

189.89
(101. 71)

216.22
(90.15)

227.26
(84.98)

All 6 groups p =0.285 
A vs. C p=0.098 
BMI category p=0.219

sgpl30 (ng/ml)
Mean
(SD)

183.09
(40. 72)

162.83
(29.58)

183.87
(27.89)

168.81
(26.45)

177.09
(44. 73)

182.75
(30.26)

All 6 groups p=0.462 
A vs. C p =0.903 
BMI category p=0.306

IL-8 (pg/ml)
Geometric mean 
(SD)

4.18
(1.62)

3.59
(0.99)

4.30
(1.14)

4.00
(0.89)

5.76
(15.1)

4.45
(2.62)

All 6 groups p=0.134 
A vs. C p=0.144 
BMI category p=0.702

Table 5.4: Plasma cytokine levels in asthmatics and controls according to BMI category.

Normally distributed data are expressed as mean and standard deviation (SD). Parameters not 
normally distributed are expressed as geometric mean and standard deviation and were 

logarithmically transformed before analysis. IL-17, IL-23 and GM-CSF data are represented as the 

number of patients who had detectable levels. Differences between all 6 groups and between BMI 

categories were analysed using a one-way ANOVA. Differences between asthmatics (A) and controls 

(C) were analysed using an unpaired t-test. Differences between proportional data were analysed 
iKinp a rhi-<;miarprl analv<;i<;
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Plasma IL-17 levels were only detectable in 29 individuals. Therefore IL-17 was analysed as a binary 

variable (detectable vs. non-detectable). There was a significant difference in the proportion of 
patients who had detectable levels across the 6 groups (Table 5.4). This was due to a significantly 

higher proportion of asthmatics (20/41) having detectable levels than controls (9/43) (p=0.007). No 

differences were seen with BMI category across the entire study group (p=0.886) or when 

asthmatics (p=0.635) and controls (p=0.340) were analysed separately.

5.3.1 (iv) IL-23

40 individuals within the cohort had detectable levels of IL-23 and therefore it was converted to a 

binary variable (detectable vs. non-detectable). The proportion of individuals with detectable levels 

did not significantly vary across the 6 study groups (Table 5.4) or with asthma status (p=0.552) or by 

BMI category across the entire study group (p=0.903) or when asthmatics (p=0.670) and controls 

(p=0.991) were analysed separately.

5.3.1 (v) IL-6, sIL-6R and sgpl30

Plasma IL-6 levels varied significantly across the 6 study groups (Table 5.4). Levels were significantly 

higher in asthmatics than controls (p=0.001) and increased significantly with each BMI category and 
continuous BMI (r=0.424, p<0.001) across the entire study population. Using a general linear model, 
IL-6 levels were independently associated with asthma status and BMI (p=0.001 and p<0.001 

respectively, R2=0.279). The associations appeared to be additive such that obese asthmatics had the 

highest level (1.79pg/ml) which was significantly higher than normal weight asthmatics (0.93pg/ml, 
p=0.012) and obese controls (1.13pg/ml, p=0.02). IL-6 also correlated positively with percentage 

body fat (r=0.370, p=0.001) but not significantly with WHR (r=0.184, p=0.098) across the entire study 

group. IL-6 levels did not significantly correlate with age. When asthmatics and controls were 

examined separately IL-6 increased significantly with BMI category (p=0.025 and p=0.007 

respectively) and continuous BMI (r=0.992, p=0.002 and r=0.358, p=0.022 respectively). In the 

asthmatics studied IL-6 levels were not associated with asthma duration, any of the spirometric 

measures, markers of asthma control or medication usage.

Given that leptin increases with BMI and was higher in asthmatics than controls the relationship 

between leptin and IL-6 was explored. Leptin did correlate with IL-6 (r=0.430, p<0.001). However 
using a general linear model, the relationship between BMI, asthma and IL-6 levels was not 
significantly affected by retaining leptin levels within the model (BMI p=0.029, subject p=0.005, 
leptin p=0.46, R squared value =0.284). As FFA can activate TLR and high dietary fat intake has been 

shown to enhance systemic IL-6 levels, correlation between FFA levels and IL-6 was considered but 
none was seen (r=-0.04, p=0.972).

As IL-6 can affect neutrophil survival; possible associations between levels and neutrophil count 
were explored. There was a significant association between IL-6 and neutrophil count (r=0.460, 
p<0.001). Using a general linear model it was possible to see that the association between BMI,
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asthma and neutrophil count was not significantly affected by retaining plasma-IL-6 levels in the 

model (BMI p=0.013, asthma p=0.046, IL-6 p=0.008 R2 = 0.314).

Soluble IL-6 receptor did not differ significantly across the 6 groups (Table 5.4). Levels were lower in 

the asthmatics than controls although this was not significant (p=0.098). When asthmatics and 

controls were compared for each BMI category no significant differences were seen in SIL-6R levels. 
Across the whole study group SIL-6R was not associated with BMI category (p=0.219) or continuous 

BMI (r=0.171, p=0.119). Similarly, levels were not significantly associated with WHR (r=0.169, 
p=0.129) or percentage body fat (r=0.176, p=0.109). When asthmatics and controls were analysed 

separately no significant associations were seen with slL-6R and any of the adiposity measures.

Soluble gpl30 did not differ significantly across the 6 groups and was not significantly associated 

with asthma status (p=0.903), BMI category (p=0.306), continuous BMI (r=0.097, p=0.379), WHR or 
body fat composition. No associations were seen with adiposity measures when asthmatics and 

controls were analysed separately.

5.3.1 (vi) IL-8

IL-8 levels did not differ significantly across the 6 groups (Table 5.4). Plasma IL-8 levels did not 
significantly vary with asthmatic status, BMI category, or BMI as continuous variable (r=0.069, 
p=0.534). Levels were not associated with percentage body fat (r=0.047, p=0.673) or WHR (r =0.134, 
p=0.230) across the entire study group or when asthmatics and controls were analysed in isolation.

5.3.2 C D llb  and CD62L expression by neutrophils

CD62L expression on neutrophils (measured as a signal index) was recorded in 36 individuals (20 

controls and 16 asthmatics) and data passed the KS test (p=0.62). No significant difference in signal 
index was seen across the 6 groups (p=0.880) (Figure 5.6). Asthma status was not associated with 

CD62L expression (p=0.661) and neither was BMI when examined categorically (p= 0.491) or as a 

continuous variable across the entire study group (r=0.074, p=0.394). Other markers of adiposity 

including body fat composition and WHR were not associated with CD62L expression (r=0.198, 
p=0.246 and r=0.290, p=0.096 respectively). When asthmatics and controls were analysed 

separately, no correlation between CD62L expression and markers of adiposity were seen in either 

group.

Neutrophil expression of C D llb  (measured as signal index) was examined in 31 individuals (15 

controls and 16 asthmatics) and was not normally distributed so was logarithmically transformed for 
analysis (p=0.096). C D llb  expression did not vary significantly across the 6 groups (p=0.368). 
Asthma status (p=0.644), BMI category (p=0.925) and BMI as a continuous variable (r= 0.124, 

p=0.506) were not associated with C D llb  expression, neither were other markers of adiposity 

including body fat composition and WHR (r=0.055, p=0.768; r=0.162, p=0.403 respectively). When
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asthmatics and controls were analysed separately no associations between C D llb  expression and 

adiposity measures were seen.
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Figure 5.6: CD62L and C D llb  expression on neutrophils in 
asthmatics and controls according to BMI category.
Data displayed as mean and error bars. Neutrophil C D llb  
expression was not normally distributed and therefore was 
logarithmically transformed before analysis.
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5.3.3 Oxidative stress

5.3.3 (i) PM A-mediated reactive oxygen species production

PMA-induced ROS production was examined in 80/84 participants; due to equipment failure it was 

not measured in 1 NW control, 2 OW controls and 1 OB asthmatic. Values, expressed as maximal 

light units produced did not pass the KS test (p=0.012) and were logarithmically transformed for 

analysis. Whole blood PMA-induced ROS production varied significantly across the 6 groups (Figure 

4.7). Asthmatics had significantly higher levels than controls and across the entire cohort levels 

increased w ith each BMI category (p=0.012) and when BMI was analysed as a continuous variable 

(r=0.347 p=0.002). Body fat composition also significantly correlated w ith ROS production (r=0.388, 

p<0.001) however, WHR did not (r=0.155, p=0.174). Age was not associated w ith a significant change 

in ROS production.

When asthmatics and controls were analysed separately, the association between BMI category and 

ROS response was only significant in the controls (p=0.015; r=0.491, p=0.001) and not in the 

asthmatics (p=0.140; r=0.244, p=0.129), however when a formal interaction between asthma status 

and BMI w ith regards to ROS generation was tested for no significant interaction was seen (p=0.120, 

R2=0.243). W ithin the asthmatics studied, asthma duration, indicators o f disease control, ICS usage 

and spirometric values did not correlate w ith ROS production. Using a general linear model it was 

noted that ROS production was independently associated w ith BMI and asthma status (p=0.009 and 

p=0.002 respectively, R2=0.196). Obese asthmatics had the highest ROS activity, higher than non- 

obese asthmatics (p=0.054) and obese controls (p=0.106) although this was not significant.
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Figure 5.7: Whole blood reactive oxygen species production 
following PMA stimulation in asthmatics and controls 
according to BMI category.
Data shown as mean and error bars. ROS production 
significantly differed across the 6 groups (p=0.002), w ith ROS 
production increasing w ith BMI category (p=0.012) and higher 
levels being observed in the asthmatics (p=0.006). Obese 
asthmatics had the highest ROS production in response to PMA 
stimulation but this was not significant.



Neutrophil count had a very significant association with ROS production (p<0.001) and the 

association between ROS production, BMI and asthma was less significant when neutrophil count 
was retained in a general linear model (BMI p=0.047, asthma p=0.120, neutrophils p<0.001, 
R2=0.303) suggesting that the increased neutrophil count is at least partly responsible for the 

increased ROS activity seen.

5.3.3. (ii) TBARS

Plasma lipid peroxide levels (expressed in terms of concentration of MDA (pMol/l)) and plasma TAOS 

(expressed as a percentage inhibition of the formation of the peroxidase-mediated reaction of the 

2,2-azino-bis-3-ethylbensthiazoline-6-sulfonic acid (ABTS+) radical compared to control (PBS)), were 

measured in the 84 participants. Both parameters passed the KS test. The mean levels in each of the 

6 categories are summarised in Table 5.5. Plasma MDA levels and TAOS did not vary significantly 

across the 6 categories (Table 5.5), and levels did not differ between the asthmatics and controls 

(p=0.734 and p=0.390 respectively) across the entire population or when each BMI category was 

examined individually. Levels did not vary with BMI category (MDA levels: p=0.488, TAOS: p=0.205) 
or BMI as a continuous variable across the entire population (MDA: levels r=0.220, p=0.191, TAOS: 
r=0.162, p=0.143) or in the asthmatics and controls when analysed separately. Furthermore, levels 

did not correlate with other measures of adiposity (WHR and body fat percentage). When 

asthmatics and controls were analysed separately no associations were seen with any of the 

adiposity measures. Age did not correlate with this variable and within asthmatics, age of onset, 
asthma duration, ICS use, control score, and spirometric measures were not associated with this 

variable.

Control
NW
n=15

s
OW
n=13

OB
n=15

Asthma
NW
n=14

tics
OW
n=12

OB
n=15

p value

Plasma MDA  
levels (pM ol/l)
Mean
(SD)

14.52
(6.83)

13.13
(4.61)

14.14
(4.02)

12.38
(2.50)

14.57
(5.01)

15.82
(4.90)

All 6 groups: p=0.521
A-C: p=0.734
BMI category: p=0.488

Plasma TAOS
(%)
Mean
(SD)

48.57
(8.20)

52.66
(9.85)

52.02
(7.74)

47.23
(6.58)

49.77
(7.79)

51.09
(9.98)

All 6 groups: p=0.0.534
A-C: p=0.309
BMI category: p=0.205

Table 5.5: Plasma MDA levels and TAOS in asthmatics and controls according to BMI category.

Data was normally distributed data and therefore expressed as mean and standard deviation (SD). 
Differences between all 6 groups were analysed using a one-way ANOVA. Differences between 

asthmatics (A) and controls (C) were analysed using an unpaired t-test. Differences between BMI 
categories were analysed using a one-way ANOVA
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5.4 Discussion
5.4.1 Circulating cytokines

5.4.1 (i) IL-6 increases significantly with obesity and asthma

Data presented in chapter 4 show that the peripheral blood neutrophil count is higher in asthmatics, 
and increases with BMI, resulting in obese asthmatics having higher neutrophil counts than the 

other study groups. By measuring circulating cytokines important in neutrophil regulation, 
investigation of some of the mechanisms which may be responsible for this was initiated. IL-6 has 

direct effects on neutrophil survival [510], function [511] and trafficking [509] as well as indirectly 

promoting neutrophilia through the induction of Thl7 cells (see section 7.1.2 (ii)). A high proportion 

of circulating IL-6 is derived from adipose tissue and in keeping with this, studies have shown 

elevated levels in the obese [517]. Data herein confirms that IL-6 significantly increases with BMI and 

the findings suggest that IL-6 may be important in obese asthma as these subjects had the highest 
circulating levels.

A previous study has shown elevated IL-6 levels in obese compared to non-obese asthmatics, 
however with no control group, it was not possible to determine if these levels differed from obese 

non-asthmatics [544]. In a study by Sutherland et al, circulating IL-6 levels were also highest in the 

obese female asthmatics compared to non-obese asthmatics and obese controls, however this was 

not significant [25]. The current study was similar in size and design, however in the Sutherland 

study an attempt was made to wean subjects off ICS, resulting in loss of asthma control in 28/40 

patients. This resulted in recruitment of these patients during an exacerbation which may have 

partially masked differences in circulating inflammatory markers. It also prevented the investigators 

from timing their sampling around the menstrual cycle. The observation of highest circulating IL-6 

levels in the obese asthmatics has recently been confirmed by a study examining airway and 

systemic inflammation in obese men and women with and without asthma [429]. In that study 

circulating IL-6 and C reactive protein (CRP) levels increased with obesity and asthma such that 
obese asthmatics had significantly higher levels than non-obese asthmatics and obese control 
subjects.

The obese asthma phenotype is characterised by female predominance [8] and in a recently 

published study by Scott et al, the relationship between circulating IL-6, obesity and asthma was only 

significant in women [429]. The differential sex effect may be due to hormonal factors. Some 

circulating cytokines are significantly affected by cyclical hormone changes; plasma IL-8 levels are 4 

fold higher in the follicular vs. luteal phase [545] making it imperative to control for this fluctuation. 
However data suggest that plasma IL-6 levels do not fluctuate with the menstrual cycle [546]. 
Another explanation may be differences in body fat composition. Body fat deposition tends to occur 
in the subcutaneous compartment in women which leads to higher levels of leptin release than in 

men [327]. Leptin was associated with increasing BMI and asthma such that obese asthmatics had 

significantly higher levels than the other groups (section 4.3.8) and leptin strongly correlated 

positively with IL-6 levels. This led to the hypothesis that leptin may be important in mediating the 

observed changes in IL-6. However, the association between BMI, asthma and IL-6 was not
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significantly affected by including leptin as a covariate in a general linear model, suggesting that 
leptin is unlikely to be the sole mediator for the increased IL-6 levels seen.

The mechanism behind the changes in IL-6 levels needs further exploration. A major source of 
circulating IL-6 is adipose tissue, with as much as 25% derived from this [517]. In obesity adipose 

tissue contains a much higher proportion of M l macrophages which produce pro-inflammatory 

cytokines such as IL-6 [332]. The increased IL-6 production may simply be due to increase in the cell 
type. The precise mechanism which leads to M l  macrophage accumulation within adipose tissue has 

yet to be elucidated but mechanisms proposed include changes in local numbers due to response to 

adipocyte death, activation of common genes important in metabolism and macrophage activation, 
and local changes in T cell populations [21]. Another potential source of adipose tissue macrophages 

is increased numbers of circulating activated CD16+ monocytes [31], which are programmed to 

differentiate down a pro-inflammatory M l phenotype within tissue. This potential mechanism is 

explored in chapter 6.

IL-6 production may be increased due to changes in PRR signalling, rather than relative cell numbers. 
FFA can activate TLRs resulting in enhanced IL-6 production acutely after a high fat meal [280]. 
However FFA levels did not differ significantly between study groups (see section 4.3.7) and there 

was no significant association between fasting FFA and IL-6. Other TLR ligands including LPS have 

been shown to be elevated in the obese state [338]; it would be of interest to measure these in this 

cohort. The response of circulating cells to PRR stimulation may also be altered and this mechanism 

is explored in chapter 6.

The consequences of increased IL-6 levels may include neutrophilic inflammation through direct and 

indirect effects via Thl7 cells. Neutrophil count did follow a similar pattern to IL-6; levels increased 

with each BMI category with highest levels in the obese asthmatics (see section 4.3.5). Furthermore 

IL-6 levels were strongly associated with neutrophil count, however, the association between 

neutrophil count, BMI and asthma was not significantly altered by retaining IL-6 levels in the model 
suggesting that IL-6 is unlikely the only mediator in this relationship.

5.4.1 (ii) sIL-6R and sgpl30 were not associated with BMI or asthma status

The existence of soluble IL-6 receptor (slL-6R) enables cells which do not ordinarily express the 

receptor to respond to IL-6 through trans-signalling (Figure 5.2). The little published work on this 

receptor in the context of obesity to date has shown no association between serum levels and BMI 
[518] but a single nucleotide polymorphism (SNP) which promotes IL-6R shedding, increasing slL-6R 

levels, has been associated with severe asthma [515]. This presented work is the first to examine sIL- 
6R in the context of asthma and obesity. Although levels correlated positively with BMI across the 

entire cohort and were also lower in asthmatics than controls, this was not significant, suggesting 

that slL6R is not important in the obesity-asthma association. Trans-signalling with SIL-6R is inhibited 

by sgpl30 (Figure 5.1) and a single study has suggested that sgpl30 levels are increased in the obese 

[518]. The current study showed no association between BMI or other measures of adiposity and 

sgpl30 and no association with asthma diagnosis. These results differ from those of Nikolajuk et al, 
who examined serum sgpl30 in women with and without PCOS categorised according to BMI into 

lean (BMI<25kg/m2) and overweight/obese (BMI>25kg/m2), showing the latter group to have
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significantly higher levels [518]. Even on combining overweight and obese categories, or when 

examining percentage body fat or WHR, a significant difference in sgpl30 levels was not found in the 

work presented herein. Both studies were similar in design including the sampling window within 

the menstrual cycle, however, there were significant differences in methodology namely serum 

versus plasma and different upper BMI cut offs, which might explain the disparity in these results.

5.4.1 (iii) IL-8 levels are not associated with obesity or asthma

Interleukin 8 levels (IL-8) locally within the sputum and airways have been associated with severe 

neutrophilic asthma [522] and are also increased in acute severe exacerbations of the disease [152], 
Circulating levels also increase with BMI [526], Despite a clear association between obesity, asthma 

and blood neutrophil count there was no association between plasma IL-8 levels and these 

parameters. This result is consistent with a previous study examining the obesity-asthma association 

[25]. The lack of association between BMI and circulating plasma IL-8 levels differs from another 
previous study [526], however the current study restricted the analysis to pre-menopausal women 

and controlled for the effects of cyclical effects of hormone changes which have been shown to 

cause 4 fold changes in the levels of plasma IL-8 [545]. Measurement of levels locally within the 

airways might have yielded differences but in the single study in which sputum levels was examined, 
no association was seen [25]. Furthermore whilst basal levels do not differ between groups it may be 

that levels released on TLR stimulation differ in obese asthmatics; a hypothesis explored in chapter 
6.

5.4.1 (iv) IL-17 is more frequently detectable in asthmatics but not in 
obesity

IL-17A is important in neutrophilic processes and levels are elevated in severe asthma [354] and 

obesity [352]. Therefore the association between obesity, asthma and levels of this cytokines was 

explored. The levels of circulating IL-17A in the study participants were generally lower than the 

detection limits of the ELISA kit used and were only detected in 29/84 participants. However the 

proportion of patients with detectable levels was significantly higher in the asthmatics than the 

controls. This is consistent with current literature suggesting higher levels in severe asthma [354]. 
However we did not observe any association with markers of adiposity, and IL-23 important in Thl7  

regulation, was not associated with BMI category either. This differs from a previous study which 

showed elevated IL-17 levels in obese women compared to normal-weight controls [352]. The levels 

of IL-17 detected in the current study (range 0-7.54pg/ml) are much lower than those in the other 

cited works (0-22.5pg/ml) [352]. The BMI and age of women within this cohort was similar to that of 
the previous study, which also took fasting morning samples. This study did differ in the timing of 
sample in terms of the menstrual cycle with all women recruited early in the follicular phase. There 

is no literature on whether IL-17 and Thl7 levels fluctuate within the menstrual cycle however 
related cell types - including regulatory T cells which have a reciprocal relationship with Thl7 cells in 

terms of their differentiation - peak in the follicular phase [390]. It seems likely that Thl7 cells may 

follow a reciprocal pattern and therefore may explain the low levels we observed during the early
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follicular phase of the menstrual cycle in the women in this study. As for IL-8, whilst basal levels of IL- 
17 did not differ between BMI groups it will be of interest to see whether levels differ upon 

stimulation of T cells and this is reported in chapter 7.

5.4.1 (v) G-CSF levels increase with obesity

G-CSF is fundamental to terminal neutrophil differentiation and release from the bone marrow 

[499]. Despite its importance in neutrophil biology there has been little work on this cytokine in 

relation to obesity or asthma. Data presented here suggests that G-CSF levels increase with BMI in 

women, with stronger positive correlations with percentage body fat than BMI or WHR suggesting 

that the total amount of body fat is important rather than its distribution; an observation not 
described previously. However this seems unlikely to be the mechanism for the increased neutrophil 
count observed since G-CSF levels did not correlate with this parameter and the association between 

asthma, BMI and neutrophil count was not significantly affected by retaining G-CSF in a general 

linear model.

5.4.2 Neutrophil activation

5.4.2 (i) CD62L and C D llb  are unaffected by obesity and asthma

Whilst blood neutrophil levels increase with obesity and asthma, surface markers of neutrophil 
activation appear unaffected. CD62L (L-Selectin) expression, down regulated in chronic 

inflammation, was unaffected by obesity or asthma status in the study population. This contrasts 

with previous reports in the literature which have shown reduced neutrophil expression of this 

marker in obese patients undergoing bariatric surgery versus lean individuals [31]. However, the 

mean BMI of the obese patients studied herein was significantly lower (obese group mean BMI= 

38kg/m2 versus 52kg/ m2, respectively); it may be that such changes are only observed at very high 

BMIs. CD62L signal index was only measured on 16 asthmatics and 20 controls (12NW, 10 OW, 14 

OB) as this was not part of the initial study plan, only added following an interim analysis suggesting 

that neutrophils may be important in obese asthma. The confidence intervals were therefore very 

wide and it might be that a more adequately powered study is required to detect a difference. 
There was also no association between BMI and C D llb  expression which is consistent with previous 

work [31]. Asthmatics had no difference in neutrophil CD62L surface expression than controls, an 

observation also made by another group [531]. However there was also no association between 

C D llb  expression and asthma. Previous work has shown that steroid dependent severe asthmatics 

have increased levels of this marker on neutrophils compared to mild-moderate asthmatics and 

healthy volunteers. Whilst this study had similar patient numbers, their patients differed those here 

in that they were on long-term oral steroids [531], although in the study administration of oral 
Prednisolone for 1 week did not affect neutrophil C D llb  surface expression in the mild-moderate 

asthmatics. As for CD62L the work herein may have been underpowered to detect a difference in 

this parameter, only measuring C D llb  expression in 15 controls and 16 asthmatics (10NW, 9 OW, 12 

OB).
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5.4.3 Oxidative stress

5.4.3 (i) Reactive oxygen species generation increases with BMI and asthma

Reactive oxygen species generation from whole blood increased significantly with BMI and 

asthmatics had higher levels than controls. Obese asthmatics had the highest ROS activity upon PMA 

stimulation although this was not statistically significant. This is of interest as it suggests 

systemically that obese asthmatics may be exposed to enhanced oxidative stress when encountering 

an inflammatory stimulus. This may be of particular relevance to asthma exacerbations, although it 
is should be noted that the association between BMI and ROS generation was only significant in the 

controls. Neutrophil count was strongly associated with ROS activity suggesting that these were 

potentially the source of this increased activity seen. It would be of interest to examine ROS activity 

by flow cytometry as this would enable identification of the specific source of increased ROS activity 

seen. These data are consistent with previous studies that have shown that PMA-induced oxidative 

burst in whole blood from asthmatics is higher compared to control subjects [531]. In this current 
works, the association did not remain significant after adjusting for neutrophil count, suggesting that 
the enhanced ROS activity seen may be simple due to increased neutrophil numbers rather than 

enhanced activity at a cellular level.

Similarly our data showed a strong association between markers of adiposity and ROS activity, an 

observation also noted by others [532]. Adjusting for neutrophil count reduced the significance of 
this association, however it was still of borderline significance. Dietary intake may be of relevance to 

the increased ROS activity seen with in vitro work showing that certain food groups may inhibit ROS 

activity[532] and in vivo work showing high glucose intake[547] and high fat meals are both 

associated with enhanced ROS activity in mononuclear cells.

5.4.3 (ii) Plasma markers of oxidative stress were not associated with 
asthma or obesity

Asthmatics in the study presented herein did not have significantly different markers of oxidative 

stress compared to control subjects as quantified using plasma TBARS or TAOS. This was an 

unexpected find as previous studies have shown asthma diagnosis to be associated with increased 

lipid peroxidation products [177, 540]. There are several possible explanations for the lack of any 

association. Firstly asthmatic patients were recruited when stable and exacerbation free withholding 

their regular treatment for only 24 hours prior to sampling; loss of asthma controls is associated with 

higher plasma levels of oxidative stress [179]. However other studies have also sampled patients 

when exacerbation free whilst still on inhaled treatment and still found a positive association [177]. 
It may be that oxidative stress plays more of a role in male asthmatics although from other literature 

this would also appear unlikely as a study of predominantly women (77-79%) versus controls of 
varying B M I, found higher plasma 8-isoprostanes in the asthmatics than controls [27]. Sampling at a 

specific point in the menstrual cycle may have diluted differences between groups, although in 

otherwise healthy women oxidative stress does not vary across the cycle [548, 549]. It was also not 
anticipated that BMI and other markers of adiposity would not be associated with markers of 
oxidative stress. Interestingly a study on obese, predominantly female (77-79%) asthmatics and
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controls versus lean individuals (asthmatics = 33kg/m2) also did not find a detectable difference 

when quantifying oxidative stress using plasma 8-isoprostanes. It may be that this current work was 

not adequately powered to difference, however from the data presented here there is no supportive 

evidence that the obesity asthma association is due to changes in systemic oxidative stress.

5.4 Summary
In this chapter, circulating levels of some key cytokines important in neutrophil regulation have been 

examined. Strong associations were seen between IL-6, obesity and asthma with obese asthmatics 

having higher levels than the other groups, an observation seen by another group [429]. 

Furthermore a higher proportion of asthmatics had detectable levels of plasma IL-17 than controls. 
Interestingly increasing G-CSF levels were seen with obesity, an observation not previously reported. 
However the association between obesity, asthma and neutrophil count remained significant after 

adjusting for these variables suggesting other factors must be at play in this complex relationship. 
Whilst neutrophil levels are increased in obese asthmatics, resulting in enhanced ROS activity to a 

non-specific stimulus, the markers of activation appear not to change, although the study might be 

underpowered to detect this. These results suggest that changes in circulating cytokine levels are 

seen in obesity and asthma. In the next sections differences in dynamic innate and adaptive immune 

function on stimulation with pattern recognition receptors (chapter 5) and T cell mitogens (chapter 
6) will be explored.
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Chapter 6

Monocytes, LPS response and dendritic 
cells in obesity and asthma
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6.1 Introduction

The innate immune system provides a non-specific response to potential pathogens through the 

activation of a limited number of pattern recognition receptors (PRR). These receptors recognise 

generic molecules present in various types of microorganisms (pathogen associated molecular 
patterns (PAMPs))[61] (see section 2.2.1). In contrast to the adaptive immune system, this 

evolutionarily ancient system does not require prior antigen exposure. During this process the 

inflammatory cytokine profile released shapes the immune response and there is an influx of 
myeloid derived leukocytes each of which has important functions in the initial response to insult 
(see section 2.4.1). Beyond the response to the acute stressor the innate immune system 

coordinates resolution of inflammation and healing. In addition, tissue resident innate immune cells 

such as macrophages and dendritic cells (DCs) survey the microenvironment, sampling antigen and 

presenting it to specific T cells to activate the adaptive immune response (see chapter 7). These 

interactions and the cytokine environment generated, dictate the type of adaptive immune 

response.

Traditionally, allergic asthma is considered a disease of the adaptive immune response characterised 

by Th2 biased activity (see chapter 7.1.1). It is now understood that skewing of the adaptive immune 

response is due to changes in innate immune system priming and behaviour. The hygiene hypothesis 

for allergy suggests that a lack of early childhood exposure or response to PAMPs primes the innate 

immune system to promote a Th2 biased adaptive immune response [3]. The innate immune 

response may also differ in asthmatics with enhanced response to PAMPs such as LPS observed 

locally and systemically. Finally, the chief coordinators of the adaptive immune response, dendritic 

cells, have the ability to promote sensitisation or tolerance to environmental exposures depending 

on the relative abundance of their subtypes (see section 6.1.3).

There is accumulating evidence that obesity is associated with activation of the innate immune 

system with increased circulating levels of pro-inflammatory cytokines including IL-lp, IL-6, TNF-a 

and CRP in the obese compared to normal weight individuals [334]. The pro-inflammatory cytokine 

profile seen in the obese is similar to that of critically unwell patients in the intensive care unit [550]. 
The predominant source of these pro-inflammatory mediators is thought to be adipose tissue; as 

much as 25% of circulating IL-6, is derived from visceral adipose tissue [517]. Obesity is associated 

with changes in the populations of innate immune cells within adipose tissue but also systemic 

changes in numbers including neutrophils (see section 4.1.2) and monocytes/macrophages (see 

section 6.1.1). There is some evidence that on encountering PAMPs the response in obese 

individuals is also augmented.

In this chapter the effect of obesity and asthma on the response to LPS will be explored. This will be 

complemented by analysis of the phenotype of circulating monocytes, especially their expression of 
activation markers. Finally, the relative abundance of circulating dendritic cell subtypes will be 

determined, an area not well studied to date in the obesity setting.
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6.1.1 Monocytes and macrophages in obesity and asthma

6.1.1 (i) Monocytes and macrophages

Monocytes and macrophages play a critical role in innate immunity including phagocytosis, secretion 

of pro-inflammatory cytokines, and the production of ROS, nitric oxide and myeloperoxidase (see 

section 2.2.1). Monocytes are classically divided into 2 subsets according to CD16 expression; 
CD14+CD16+ and CD14+CD16' populations [551]. The CD16+ subset comprise 5-8% of circulating 

monocytes and has a macrophage-like phenotype with augmented phagocytic ability and 

endothelial affinity promoting tissue migration. They are also potent producers of pro-inflammatory 

cytokines such as TNFa [552]. As such this subset is increased in pro-inflammatory states including, 
sepsis, rheumatoid arthritis [552], and ischaemic heart disease [553].

Resident tissue macrophages derived from circulating bone marrow derived monocytes are found in 

most tissues. These phagocytes are the most abundant haematopoietic cell in the lungs and upon 

activation of PRRs, serve to eradicate the lung of noxious substances, pathogens and debris. Similarly 

adipose tissue hosts a population of resident macrophages and the numbers are increased in obesity 

[332, 554]. As with the Thl/Th 2 paradigm (see section 7.1.1), a model has been proposed whereby 

two broad populations of macrophages develop depending on exposure to prototypic Th l and Th2 

cytokines [555]. Pro-inflammatory macrophages are activated by IFNy either alone or in combination 

with PAMPS, such as LPS leading to high IL-12 and IL-23 production resulting in polarisation towards 

a Th l adaptive immune response; hence these pro-inflammatory cells are referred to as M l  
macrophages. In contrast exposure to IL-4 and IL-13, results in the development of anti
inflammatory macrophages (M2, or AAMs alternatively activated macrophages).

6.1.1 (ii) Monocytes and macrophages in obesity

Obesity is characterised by an increase in M l macrophages within adipose tissue [556]. The 

mechanism behind this remains unclear, however the obese state is characterised by areas of 
adipose tissue necrosis and M l macrophages accumulate around these foci in obese mice and 

humans suggesting that this as a driving factor [554]. Additionally M l macrophages can also be 

derived de novo from circulating activated CD16+monocytes [76]. Interestingly levels of CD16+ 
monocytes are increased in patients undergoing bariatric surgery, suggesting that obesity is also 

characterised by systemic activation of the macrophage/monocyte compartment and that these 

circulating cells may contribute to the changes seen within adipose tissue [31].

6.1.1 (iii) Monocytes and macrophages in asthma

Similarly to in adipose tissue, M l and M2 macrophages reside in the lung and develop according to 

the cytokine environment they are exposed to. M l macrophages in this environment are important 
in the response to intracellular bacteria including Mycobacterium tuberculosis [78], whilst M2 

macrophages may also have a role in host defence against parasites [79].
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Studies of circulating monocytes in asthmatics indicate that, as with obesity, there is systemic 

activation of this compartment. A study of 11 untreated asthmatics versus 9 controls, showed 

increased percentage of CD14+ CD16+ monocytes derived from peripheral blood mononuclear cells 

in the asthmatics [173] and functionally this resulted in increased PMA induced superoxide anion 

release. In concordance, a study of 10 stable asthmatics showed increased MFI of CD16+ expression 

on peripheral blood mononuclear cells compared to controls [557]. Locally within the airways 

asthma is characterised by marked infiltration of macrophages which share many phenotypic 

characteristics of blood monocytes [172]. As local macrophage proliferation is not a major 
contributor to the increased numbers seen [174], recruitment of systemically activated monocytes is 

the likely source.

Despite the abundance of macrophages in asthmatic airways, the role of different macrophage 

subtypes in asthma has not been studied widely [558]. Theoretically the typical Th2 environment in 

atopic asthma should promote the development of M2 macrophages. A study examining ovalbumin 

induced airway inflammation in a murine model noted increased M2 macrophages in the lung tissue 

of ovalbumin sensitised mice after exposure compared to controls; adoptive transfer increased the 

severity of allergen induced disease [559]. In adults with atopic asthma, an increased percentage of 
M2 macrophages are seen, correlating with PEFR variation [560]. However, whilst M2 macrophages 

might be involved in the development of allergic airway disease, M l macrophages could be 

important in severe or corticosteroid resistant phenotype. A study of 18 asthmatics (divided into 

steroid responsive and resistant depending on their response to a 1 week course of Prednisolone) 
and 10 healthy controls examined gene expression of cells from BAL samples. They showed that 
steroid sensitive asthmatics had up-regulation of genes associated with an M2 macrophage 

phenotype whilst resistant asthmatics had increased expression of genes associated with an M l  
phenotype [561].

In summary, obesity and asthma are associated with systemic activation of the monocyte 

compartment. Obesity is associated with increased of M l macrophages within adipose tissue and in 

asthma accumulation of these cells lungs could be associated with severe disease. The presence of 
increased numbers of macrophages in the lungs and adipose tissue may be in part due to 

recruitment from the circulating activated monocyte pools. Therefore markers of systemic activation 

of monocytes were examined to see if the effects of the two disease states were additive.

6.1.2 LPS response and soluble CD14 in obesity and asthma 

6.1.2. (i) LPS signalling

LPS or endotoxin, a constituent of the cell wall of Gram negative cell bacteria, is the most studied of 
PAMPs. Early detection of this molecule through stimulation of PRRs on innate cells, causes pro- 
inflammatory cytokine release alerting the host to a bacterial infection (see section 2.2.1). However, 

an exaggerated response can trigger an overwhelming inflammatory cascade, causing marked tissue 

damage, organ failure and even death. There is accumulating evidence to suggest that PRR signalling
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and response to PAMPs such as LPS may be modified in obesity and asthma yet there has been little 

work examining this area in the context of obese asthmatics.

CD14 is a pattern recognition receptor and recognises LPS as well as other PAMPs including, 
lipoteichoic acid, peptidoglycan and phospholipids. Membrane bound CD14 (mCD14) functions as a 

co-receptor along with TLR4 and MD2 for the detection of LPS [562]. It is expressed in high levels on 

monocytes, macrophages, DCs and neutrophils. CD14 is also produced by the liver and monocytes in 

a soluble form, soluble CD14 (sCD14) which can have pro-inflammatory and anti-inflammatory 

effects depending on its concentration and location [563]. At low concentrations sCD14 can augment 
LPS responses by transferring monomeric LPS to mCD14 [564] or by interacting directly with 

MD2/TLR4 complex on cells that do not express mCD14 [565]. In keeping with this, murine models 

have shown that low levels of sCD14 in cerebrospinal fluid enhance the inflammatory cytokine 

response in experimental meningitis [566]. Systemically, high levels of sCD14 appear to have an anti
inflammatory role by preventing or limiting LPS interaction with mCD14 [567] and in vivo studies 

have shown that at administration of human recombinant sCD14 can protect mice from the lethal 

effects of LPS [568].

6.1.2 (ii) LPS response and sCD14 in asthma

Evidence suggests that asthmatics have an enhanced response to LPS at a systemic and a local level. 
LPS stimulation of blood mononuclear cells from asthmatics results in increased production of IL-10 

and GM-CSF compared to controls [341]. Furthermore challenging asthmatics with inhaled LPS 

causes a measurable increase in systemic inflammatory cells (neutrophils) and mediators; CRP and 

TNFa [569]. Functionally there is also evidence of increased BHR in asthmatics following inhalation 

of LPS which is not seen in controls [570]. Alveolar macrophages isolated from asthmatics and 

stimulated with LPS have increased production of TNFa and GM-CSF compared to controls [341].

Altered systemic LPS responsiveness in asthmatics may in part be due is due to increased numbers of 
circulating pro-inflammatory monocytes as discussed above, however changes in levels of sCD14 

may also play a role. Induced sputum from atopic asthmatics has higher levels of sCD14 than 

controls and levels correlate with neutrophil count after challenge with inhaled LPS [571]. Therefore 

it has been hypothesised that the enhanced response to LPS seen is as a result of increased CD14. A 

number of mechanisms have been suggested to account for this including genetic factors, increased 

vascular permeability and allergen exposure. Not only is the LPS response increased in asthmatics 

but levels of LPS exposure during childhood and systemic levels of sCD14 may actually modify 

disease risk. Population studies have examined LPS exposure and a single nucleotide polymorphism 

(SNP) in the gene encoding for CD14 which modify resultant sCD14 levels and the relationship 

between these parameters and asthma risk [572]. SNPs exist at two sites on the CD14 gene both 

resulting in a C to T transition and are associated with changes in sCD14 levels with levels being 

highest in the TT and lowest in the CC homozygotes respectively. Half of the population are 

heterozygous for this SNP whilst the remaining 50% are evenly divided between CC and TT 

homozygotes. Studies of endotoxin exposure and asthma risk have been contradictory with some 

suggesting a protective effect [573] and others not [574]. Similarly, studies examining SNP in the
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CD14 gene have also suggested that CC homozygotes have enhanced risk of atopy and BHR [575] in 

childhood whilst others have not shown this [576]. The contradiction in these population studies is 

now thought to be due to an interaction between LPS exposure and CD14 polymorphisms, with 

increased LPS exposure having a protective effect on atopy risk but only in the CC homozygotes 

(group with the lower sCD14 expression) [572].

6.1.2 (iii) LPS response and sCD14 in obesity

Animal models of sepsis have shown an increased inflammatory response in obese vs. normal weight 
subjects [577]. Adipose tissue itself is capable of reacting to PAMPs including LPS [578], but obesity 

might also modify systemic reactivity to the same triggers. A study of obese African American 

women showed that those with a BMI>40kg/m2 had a higher TNFa release in response to LPS 

stimulation of whole blood compared to normal weight individuals [32]. The authors postulated that 
this was due to systemic activation of monocytes in the obese state (see section 6.1.1) [31]. Similarly 

a Japanese study of 34 obese adults (mean BMI=38.4 kg/m2) versus 50 healthy controls also noted 

an increased LPS stimulated TNFa response in peripheral blood mononuclear cells from the obese 

group [579]. Mononuclear cells derived from peripheral blood of obese patients have increased 

activation of the pro-inflammatory transcription factor NFkB, reduced levels of its inhibitor IkB-0 and 

increased mRNA expression of pro-inflammatory cytokines [580]. If obesity is characterised by 

enhanced responsiveness to PAMPs, especially LPS, then this may be compounded further by higher 
background levels of circulating LPS which has been demonstrated in obese pregnant women [581] 
and LPS binding protein in obese but otherwise healthy Chinese adults [582]. The increased LPS level 
is postulated to be due to changes in the gut; increased chylomicrons favouring LPS transport, 
changes in intestinal permeability and gut microbiota [583]. Interestingly sCD14 levels are also 

associated with BMI and levels are significantly reduced on weight loss and sCD14 has been shown 

to correlate with insulin sensitivity in the obese [584].

6.1.2 (iv) Cytokine response to LPS stimulation

Stimulation of many cell types with LPS results in the release of a number of cytokines including IL- 

lp , IL-6, IL-8, IL-10 and TNFa. LPS stimulated whole blood cultures therefore serve as an ideal model 
to compare LPS responsiveness. Circulating levels of many these same cytokines are altered in 

obesity and asthma and have biological effects of relevance in the latter, they are summarised in 

Table 6.1 and will be discussed below.

IL-10 is produced by many cells including monocytes/macrophages, mast cells, basophils, structural 
cells (endothelium and smooth muscle), and lymphocytes [585]. IL-ip production is a two step 

process involving the synthesis of a pro-molecule in response to a first signal which upon further 

signalling is then cleaved, producing the active cytokine via a complex containing the enzyme
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caspase 1, referred to as the inflammasome [75]. The cytokine has a multitude of effects of 
relevance to asthma. Instillation of the cytokine into the trachea of ovalbumin sensitised rats given 

inhaled acetylcholine and bradykinin resulted in enhanced neutrophilic inflammation and BHR [586]. 
In addition to this levels of IL-1(3 are increased in the BAL fluid of patients with symptomatic asthma 

compared to control subjects [587],

IL-6 has a multitude of effects on innate and adaptive immunity which are summarised in Figure 5.2. 
Plasma levels are increased in obesity [516] and higher in asthmatics than controls [176]. Evidence 

presented in this thesis suggests that the effects of obesity and asthma are additive; plasma IL-6 

levels increasing with BMI and higher levels in asthmatics than controls with obese asthmatics 

having the highest levels (see section 5.3.1 (v)). This might be of relevance to neutrophilic disease, 
and this finding has been confirmed by another group [429]. However the source of this increased IL- 
6 needs clarification. Potential sources include adipose tissue [588] and the airways [513]. Release 

from stimulated circulating leukocytes remains another potential source and this was explored in 

this study.

IL-8 is a pro-inflammatory chemokine important in neutrophilic inflammation (see section 5.1.1 (iv)) 
and some groups have shown plasma levels to be increased in obesity [526]. IL-8 is increased in the 

sputum of patients with severe asthma [522]. Total plasma levels were measured in this thesis and 

no detectable difference were seen across the 6 groups (see section 5.3.1 (vi)). Therefore it would be 

of interest to see whether stimulation of whole blood with LPS resulted in a differential response in 

IL-8 release.

IL-10 is a cytokine with anti-inflammatory properties produced by monocytes [589] and regulatory T 

cells (Tregs) [126]. It has a number of effects including reducing the production of pro-inflammatory 

cytokines [589] and promoting Treg development [126] (see section 7.1.2 (i)). The adipokine, 
adiponectin (see section 4.1.3 (iii), reduced in the obese state [297], promotes IL-10 production and 

obesity is associated with reduced plasma levels [590]. IL-10 is important in maintaining immune 

homeostasis at environmental interfaces [191] and may play a role in atopic asthma, with reduced 

levels seen in the BAL fluid of such individuals and upon stimulation of peripheral blood 

mononuclear cells with LPS [591].

TNFa is produced by a number of different cell types including monocytes/macrophages, 
eosinophils, mast cells and epithelial cells [592]. Circulating levels are increased in obesity [593]. 
TNFa is important in promoting neutrophilic inflammation within the airways with inhalation of the 

cytokine promoting BHR and airway neutrophilia in rodents [594] and humans [592] and levels are 

increased in the BAL fluid of those with severe corticosteroid dependent disease [175]. In the same 

study, treatment with anti-TNFa antibody improved lung function and markers of asthma control 
suggesting an important role for this cytokine, although unfortunately latter studies did not replicate 

this [595]. One study has examined circulating TNFa levels in obese asthmatic women and they were 

not significantly different to normal weight asthmatics or controls [25]. In a study of African women, 
obese individuals had enhanced TNFa production following LPS stimulation of whole blood [32] and 

in asthma an augmented response in alveolar macrophages derived from asthmatics has been 

observed [341].
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Cytokine Source Principal effects Findings in obesity Findings in 
asthma

IL-lp Monocytes/macrophag  
es, mast cells 
basophils, structural 
cells [585].

Up-regulation of adhesion 
molecules.

Production of other 
inflam m atory cytokines e.g. 
IL-8 and GMCSF.

Stimulation of myeloid 
precursors: neutrophilia.

Co-stimulator of T cells.

serum levels in 
the obesity [596].

T* levels in BAL 
fluid of 
asthmatics 
versus, controls 
[587].

IL-6 Structural cells, 
monocytes/macrophag 
es, DCs, mast cells 
[507].

Neutrophilic inflammation.

Macrophage activation.

T h l7  proliferation.

Down-regulation o f Tregs 
(Figure 5.2).

T'plasma levels in 
obesity [516].

'T plasma 
levels in atopic 
asthma [176].

IL-8 Structural cells, 
neutrophils, 
monocytes, NK cells 
and T cells [520].

Neutrophil migration and 
activation [520].

‘f  plasma levels in 
obesity [526].

/T‘ sputum  
levels in severe 
asthma [522].

IL-10 Monocytes [589], 
Tregs [126]

4 ' Pro-inflammatory 
cytokine production.

t  IL-1RA.

4" T cell effector responses. 

'TTreg development [126].

4* plasma levels in 
obese [590].

4 ' levels in BAL 
fluid of atopic 
asthmatics.
4/ production 
on LPS
stimulation by 
mononuclear 
cells of atopic 
asthmatics 
[591].

TNFa Monocytes/macrophag  
es, structural cells 
[597]

Promotes airway 
neutrophilic inflammation.

T* plasma/serum  
levels in obesity 
[579, 593].
'T Response in vitro  
to LPS 
[32, 579].

'Tlevels in BALF 
of patients with  
severe disease 
[175].

IL-12p70 Monocytes/macrophag  
es, DCs [424].

Promotes T h l  
differentiation [424].

'Tserum levels with  
obesity [593].

T* plasma 
levels in atopic 
asthma [176].

IL-23 Monocytes/macrophag  
es, DCs [115].

Promotes T h l7  
differentiation.

'T circulating levels 
in obesity[352].

'T Serum IL-17 
levels in 
asthma. 
Correlates with  
disease severity 
[354].

Table 6.1: Summary of cytokines related to the innate immune system and related findings in 
studies on asthma and obesity.
The principal cellular sources of these cytokines are shown together with their main effects.
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IL-12 is produced by phagocytes, particularly monocytes/macrophages, dendritic cells and 

neutrophils. It is a potent inducer of a Th l response (see section 7.1.1.), resulting in IFNy production 

as well as promoting cytotoxicity by NK cells and cytotoxic T cells [424]. Biologically active IL-12p70 is 

a heterodimer of two covalently bonded molecules, IL-12-p35 and IL-12-p40. The former is 

expressed ubiquitously at low levels whereas the latter is inducible and only manufactured by IL- 
12p70 producing cells. Maximum IL-12p70 release by monocytes and DCs require dual stimulation 

with ligation of pattern recognition receptors with a PAMP such as LPS as well as stimulation from a 

T cell derived cytokine such as IFNy [424]. Allergic asthma is characterised by Th2 predominance 

[176] whereas there is some evidence of Th l skewing in obesity [288] (see section 7.1.1). Very little 

is known about systemic levels of IL-12p70 in obesity however a single Mexican study has suggested 

that serum levels are increased [593]. Although atopic asthma is associated with a Th2 skewed 

response and IL-12 is important in Th l priming increased plasma levels have been reported in atopic 

asthmatics [176].

IL-23 is produced by activated monocytes/macrophages and DCs and is important in the promotion 

of Thl7 differentiation [115]. Activation of the Thl7 axis may be important in severe asthma and 

studies have suggested increased activity of the IL-23/II-17 axis in obese women (see section 5.1.1 & 

7.1.2). Plasma IL-23 plasma did not differ significantly between the groups in this thesis (see section 

5.4.1). Therefore it is of interest to see if there is enhanced expression of this cytokine in response to 

an innate stimulus (LPS).

Given that asthma and obesity are associated with changes in LPS response the possibility that there 

are additive effects is of interest. To date there has been very little work on this area. It was 

hypothesised that obese asthmatics may have activation of their monocyte compartment and that 
this could result in a greatly exaggerated response systemically which may perpetuate the 

inflammatory response on LPS exposure. The cytokines of particular interest were those with roles in 

promoting neutrophilic inflammation (IL-1, IL-6, IL-8 and TNFa), and Th l (IL-12p70) or Thl7 (IL-23) 
skewing.

6.1.3 Dendritic cells

DCs are perfectly placed functionally and anatomically to link the innate and adaptive responses. 
Functionally they express the innate PRRs and are activated upon encountering microbial ligands, 
yet at the same time they are able to take up antigen, migrate to lymph nodes and present this on 

major histocompatibility class I and II molecules enabling recognition by T cell receptors (TCR). DCs 

produce almost all of the Th polarising cytokines (IL-12, IL-10, TGFp, IL-23 and IL-6) with the 

exception of IL-4 [100]. Anatomically they are located at epithelial surfaces where they can sample 

the micro environment. DCs are divided into two main groups: myeloid (mDCs) or conventional 
(cDCs) dendritic cells share the same lineage as monocytes/macrophages which are further divided 

into type I mDCs and type II mDCs, whilst plasmacytoid (pDCs) express lymphoid development 
markers [97]. Identification of DC subtypes in humans has been made easier by the identification of 
specific surface markers blood dendritic cell antigens (BDCA) (which are summarised in Table 6.2) 

and studies of lung digests have shown all 3 to be present in the human lung [96].
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Antigen Expression

BDCA-l (CDlc) Type 1 myeloid dendritic cells and B lymphocytes (low level)
BDCA-2 (CD303) Plasmacytoid dendritic cells
BDCA-3 (CD141) Type II myeloid dendritic cells and monocytes (low level)
BDCA-4 (CD123) Plasmacytoid dendritic cells

Table 6.2: Summary of antigens expressed on human dendritic cells.

6.1.3 (i) Plasmacytoid dendritic cells

The development of pDCs is not well understood but they are constantly produced by the bone 

marrow throughout life. The cytokine, Fms-like tyrosine kinase receptor-3 ligand (Flt3L), is the only 

one known to be fundamental to their development [598]. At rest pDCs express low levels of MHC 

class I and II molecules and the co-stimulatory molecules CD80/CD86 [599]. Unlike mDCs, they are 

able to prime naive CD4+ cells to differentiate into IL-10 producing Tregs in their resting state [600]. 
Upon stimulation, depending on the environment and type of antigen encountered, pDCs may be 

important in fuelling the immune response to viral and parasitic pathogens. Plasmacytoid DCs 

express the PRRs, TLR7 and TLR9 within intracellular endosomal compartments which are capable of 
recognising single stranded RNA and double stranded DNA, respectively. Stimulation of the TLRs 

causes production of large amounts of type I interferons, particularly interferon-a (IFNa) and TNFa. 
IFNa is important in fuelling the innate response against viral infection. IFNa and TNFa, production 

in an autocrine fashion also causes these cells to differentiate into mature DCs which upregulate 

expression of the MHC class I and II molecules as well co-stimulatory molecules CD80 and CD86. 
These cells then prime the adaptive response promoting the differentiation of CD4+ T cells to 

produce IFNy and IL-10. In parasitic infection, pDCs mature and upregulate MHC class II and CD40L 

expression and prime a Th2 adaptive response in a IL-3 dependent fashion [599].

6.1.3 (ii) Myeloid dendritic cells

Myeloid DCs express TLR2, -4, -5 and -6 which are important in recognising bacterial constituents. 
Whilst pDCs are thought to be important in innate viral and parasitic immunity as well as promoting 

immunological tolerance, mDCs are professional antigen presenting cells; they reside in tissues, 
respond to microbial products and present them to T lymphocytes within regional lymph nodes. 
They are capable of producing large amounts of IL-12p70, thereby promoting Th l responses [601]. 
Two types of mDCs are now known to exist which can be differentiated by surface markers [602].

6.1.3 (iii) Dendritic cells in asthma

In the lung mDCs, are present beneath the epithelium in a prime position to sample the micro
environment and are also found within the lung parenchyma itself [4]. In the context of atopic
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asthma, mDCs are thought to play an important role, directing the immune response to allergen and 

determining the development and perpetuation of allergic inflammation [4, 184]. Work from 

patients with allergic asthma has shown that within 4-5 hours of allergen challenge there is an influx 

of mDCs into the bronchial mucosa with a corresponding reduction in blood levels, suggesting that 
these cells are recruited from the blood to the airways following allergen challenge [603]. In a similar 
study, an increase in both populations of DCs were observed in the BAL fluid of patients with allergic 

asthma after antigen challenge, this persisted for 24 hours and was associated with a reduction in 

blood levels [604]. More recently it has been suggested that type II mDCs have a role in allergic 

asthma with higher levels seen in BAL fluid [605] and blood of atopic asthmatics [606].

The recruitment of DCs to the airways occurs due to interactions with the airway epithelium. 
Stimulation of PRRs on airway epithelial cells results in the release of chemokines, including CCL2 

[607] and CCL20 [601] which act on CCR2 and CCR6 respectively, expressed on dendritic cells, 
facilitating their recruitment to the airway epithelium to sample antigen. Production of matrix 

metaloproteases (MMP) such as MMP9 promotes the migration of these cells through the basement 
membrane [608]. Upon exposure to antigen and ligation of PRRs, mDCs increase their phagocytic 

and migratory capacity as well as upregulating surface expression of MHC molecules and co
stimulatory molecules. The epithelium also releases other cytokines which affect DC function 

including TSLP which causes DCs to release Th2 chemokines (CCL17 and CCL22) [609], as well as 

upregulating DC expression of the TNF-superfamily protein, OX40L. Upon migration to the local 
lymph node down a chemokine gradient, DCs present antigen/allergen on MHC class II molecule to 

CD4+ T cells. The interaction of MHC-TCR and of co-stimulatory molecules CD80/CD86 with their 

ligand, CD28 on T cells, promotes activation and differentiation of CD4+ T cells. In the context of 
allergy up-regulated OX40L interacts with its receptor 0X40 on naive T cells promoting Th2 

differentiation [181].

Although pDCs can promote Th2 responses in the context of parasitic infection [599], there is 

evidence to suggest that in the airways they may also play a role in promoting immunological 
tolerance. Systemic depletion of these cells results in sensitisation to the normally inert antigen, 
ovalbumin and the development of classical airways changes of asthma [185]. In the same study 

adoptive transfer of pDCs to pDC-depleted mice prevented sensitisation. Flt3L abolishes the cardinal 
features of asthma on allergen challenge in sensitised mice and its mode of action might be by 

altering the balance of mDCs and pDCs in the lung, favouring accumulation of pDCs [610]. 
Furthermore, depletion of pDCs abolished the protective effects of Flt3L administration in these 

mice. Mechanisms for the inhibitory effect of pDCs on allergic airway inflammation remain to be 

fully elucidated but the production of IFNa may be important. On stimulation of TLR7 and TLR9 

during viral infection, pDCs release large amounts of IFNa [599], which inhibit development of Th2 

cells through suppression of the transcription factor GATA 3 as well as stopping production of IL-4 

and IL-5 by Th2 committed cells [611]. IFNa/p have also been shown to inhibit Thl7 development 
[612]. It may be that the IFNa producing ability of pDCs leads to their ability to promote immune 

tolerance and loss of this may be important in asthma. A study using pDCs derived from atopic 

asthmatics have shown a reduction in IFNa production in response to influenza exposure compared 

to controls [613]. The same paper showed that serum IgE levels negatively correlated with in vitro 

IFNa production and that cross-linking of the IgE on pDCs (IgE bound to Fee receptors at the surface 

of pDC bind specific antigen via the Fab region inducing cross-linking) inhibits IFNa production.
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6.1.3 (iv) Dendritic cells in obesity

Obesity is associated with increased incidence of sepsis [614], pneumonia and wound infections 

[615]. Such observations have lead to some limited works examining changes in DC number and 

function with obesity. Murine studies have shown that leptin deficient obese mice at steady state 

have increased epidermal dendritic cells [616]. Interestingly the same group showed that 
administration of intradermal leptin restored DC numbers to those of controls, suggesting a role for 

this adipokine in DC regulation (see paragraph below). They also found that mature DCs from the 

obese mice were less able to stimulate allogeneic T lymphocyte proliferation, despite no differences 

in expression of surface markers (MHC class II molecules, CD40, CD80 and CD86).Culture 

supernatants from the DCs derived from obese mice showed increased levels of the 

immunosuppressive cytokine TGF-(3 with no differences in IL-12p70, and the authors hypothesised 

that the enhanced production of this cytokine was the mechanism behind the reduced ability to 

stimulate T cell responses. A study of obese/normal weight post-menopausal women with and 

without diabetes found that obesity was associated with increased type I mDCs whilst obese type II 
diabetics had an increase in circulating type I and II mDCs with no change in the percentage of 
circulating pDCs [33]. There are very few data on this area and the above findings need clarification, 
however there are mechanistic data arising suggesting leptin may affect dendritic cell functioning.

Myeloid DCs express leptin receptor, and incubation of blood derived DCs has been shown to 

protect DCs from spontaneous apoptosis associated with activation of NFk B [295]. Physiological 
levels of leptin increased DC production of IL-10, IL-6, IL-12, TNFa and M IP-la, whilst down 

regulating IL-10 expression. Leptin also primed DCs to polarise a Th l response from naive T cells. 
Leptin may also facilitates DC migration through the up-regulation of the chemokine receptor CCR7 

[617]; DCs from leptin receptor deficient mice express low levels of CCR7 [618].

In summary, the balance of DC subtypes appears important in the airways with pDCs promoting 

immune tolerance perhaps through IFNa production. Very little work has been done on the balance 

of DCs in obesity but mechanistic data suggest that adipokines may modify DC function and some 

observational data suggest increased mDCs in the obese. Therefore DC subsets and their possible 

association with the obese asthma phenotype was investigated.
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6.2 Methods

6.2.1 Study population

Pre-menopausal women with and without asthma were recruited. Subjects and controls were 

divided into 3 groups on the basis of body mass index (BMI), giving 6 groups in total (Figure 3.1). 
Normal weight is defined as BMI 18.5-25kg/m2, overweight as a BMI >  25kg/m2and <30kg/m2 and 

obesity as a BMI >  30kg/m2.

Asthmatic patients were recruited from a local tertiary clinic, three surrounding secondary care 

clinics and a participating GP practice.

After case note review, all asthmatic subjects fulfilling the inclusion/exclusion criteria (see Figure 3.1) 
attended an appointment at a tertiary asthma service where asthma diagnosis was confirmed. The 

diagnosis required consistent symptoms and demonstrable significant reversible airways obstruction 

to a (32 agonist (12%) or if this was not present, significant PEFR variation or a positive bronchial 
provocation test. Disease severity was graded according to GINA criteria (Appendix VII). Asthmatics 

were considered stable if they had no exacerbations, oral steroid therapy or respiratory tract 
infection in the preceding 6 weeks.

Asthmatics were asked to complete a modified European Respiratory Health Survey [391] (Appendix 

V). Healthy control subjects of varying BMI were recruited from the local university, hospital staff 
and a Slimming World weight loss club.

6.2.2 Clinical measures and blood collection

Participants were asked to attend during the first 7 days of their menstrual cycle, determined using 

the date of onset of menstruation, in the fasted state between the hours of 07.00-09.00am. Acute 

asthma control at the time of recruitment was assessed using the Juniper Asthma Control 
Questionnaire (Appendix VI) [392].

Spirometry was performed using a portable dry spirometer (Vitalograph) calibrated on the day of 
use. All asthmatics were asked to withhold medication for the preceding 24 hours. The best of 3 

measurements was taken according to a standardised protocol [394]. Following this measures of 
WHR and percentage body fat composition were taken.

Fasting blood was collected into lithium heparin tubes and gel and clot activator tubes for serum.

6.2.3 Expression of CD16 and HLA-DR on peripheral blood 
monocytes by flow cytometry

Pro-inflammatory CD14+CD16+ cells account for 5% of circulating monocytes [552]. In contrast 
surface expression HLA-DR, vital for antigen presentation by monocytes, is down regulated in pro-
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inflammatory states [619]. Expression of CD16 and HLADR on CD14+ monocytes was measured using 

flow cytometry. The principles behind this technique are outlined in section 3.7. The antibodies, 
conjugated fluorochromes and their appropriate isotype controls used are listed in Table 6.3.

Antigen Fluorochrome Cell expression Clone Source

CD14 PerCP-Cy5.5 High expression on 
monocytes

61D3 eBioscience, UK

CD16 FITC High expression NK cells 
and activated monocytes

3G8 BD Bioscience 
USA

HLADR FITC High expression on 
activated monocytes

G46-6 BD Biosciences 
USA

Mouse lgG2b
Isotype
control

FITC eBMG2b eBioscience, UK

Table 6.3: Summary of antibodies used in monocyte activation marker experiment, their 
respective fluorochromes and sources.

Heparinised whole blood (lOOpI) was added to each of 4 tubes prepared with antibodies. Tube 1 

contained no antibody, tube 2 contained anti-CD14-PerCP Cy5-5 and isotype control (mouse lgG2b- 
FITC) along with antibodies for the neutrophil activation markers experiment (anti-CD15-e450 and 

mouse lgG2a-PE (see section 4.2.5). Tube 3 contained anti-CD14 PerCP-Cy5-5 and anti-CD16 FITC 

along with the neutrophil antibodies (anti-CD15-e450 and anti-CD62L-PE). Tube 4 contained anti- 
CD14-PerCP-Cy5-5 and anti-HLA-DR-FITC along with the neutrophil antibodies (anti-CD15-e450 and 

anti-CDllb-APC). The samples were vortexed before incubation in the dark on ice for 30 minutes. 
Samples were then treated with 3ml of red blood cell lysis solution (FACS lysing solution; BD 

Biosciences, USA) and incubated in the dark at room temperature for 10 minutes. Cells were 

collected by centrifugation (4°C, 515 x g for 7 minutes) and the supernatant discarded before 

washing in 3ml of FACS buffer (PBS with 0.2% BSA and 0.05% sodium azide). The tubes were 

centrifuged, supernatant removed and then the samples were fixed using 200pl FACSFIX (BD 

Biosciences, USA).

The samples were refrigerated and acquired within 24 hours on a FACSAria I (BD Biosciences, USA) 
flow cytometer: 10,000 events were recorded from each sample. The gating strategies used to 

analyse CD16 and HLA-DR expression are shown in Figures 5.1 and 5.2 respectively. Monocytes were 

identified as a population of cells with low side scatter and by CD14 expression. After gating on this 

population the percentage of CD16 positive cells was measured in tube 3 and HLA-DR expression 

was measured by median fluorescence intensity (MFI) using tube 4. To control for non-specific 

antibody binding the same measurements were made using the isotype control antibody. The signal 
index (for HLA-DR expression) was calculated from the ratio between median fluorescence intensity 

in the sample containing the specific antibody (anti-HLA-DR) and the isotype control.
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Figure 6.1: Gating strategy used to quantify CD14+CD16+ 
monocytes by flow cytometry.
A: CD14+ monocytes were identified as a population of cells w ith 
low side scatter (SSC) and high CD14 expression.
B: Gating on CD14+ monocytes CD16 expression examined and the 
percentage of CD14+CD16+ cells expressed as a percentage.
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Figure 6.2: Gating strategy for quantifying CD14+HLADR+ 
monocytes by flow cytometry.
A: Identification of CD14+ monocytes as a population of 
cells w ith low side scatter and high CD14 expression.
B: Gating on this population, non-specific binding 
controlled for using an isotype control.
C: Median fluorescence intensity measured in the 
isotype control tube.
D: Gating on CD14*monocytes percentage of cells 
expressing HLADR quantified.
E: Median fluorescence intensity o f HLADR-FITC 
measured.

6.2.4 Measurement of plasma sCD14

Plasma sCD14 was measured using a specific ELISA. The methodology o f this technique is detailed 

previously (section 3.11) and the kit used summarised in Table 6.3. Plasma was separated by density 

gradient centrifugation: 10ml o f heparinised blood was gently layered onto an equal volume of 

Histopaque (Sigma, USA) in a 50ml Falcon tube (Greiner Bio-one, Germany) and centrifuged at 805 x 

g for 20 minutes (no brake). The plasma was removed carefully, filtered (0.2 pm polyethersulfone 

filter; Sigma, USA) and stored at -20°C prior to analysis.
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6.2.5 Whole blood culture response to LPS stimulation

The process of whole blood culture is discussed in more detail in section 2.5. The media used for 

culture preparation was RPMI 1640 + glutamax (Invitrogen UK), supplemented w ith 50mM of 2- 

mercaptoethanol (ME; Invitrogen, UK). Culture media (600pl) was added to 8 tubes (4 tests in 

duplicate) and mixed gently w ith 200pl o f heparinised blood. All culture work was undertaken in a 

class II tissue culture cabinet. Maximal IL-12p70 is only produced after stimulation of PRRs 

supplemented by stimuli from activated T cells such as IFNy [424], therefore IFNy (lOng/m l; M iltenyi 

Biotec) was added to 4 tubes (2 to act as controls and 2 to be subsequently stimulated w ith LPS) 

(Figure 5.3) to measure IL-12p70 response. The cultures were incubated for 90 minutes. Following 

this LPS (lOng/m l; Ultrapure, Invivogen) was added to the appropriate tubes and all 8 tubes were 

incubated at 37°C in 5% C02-in-air for 24 hours. After incubation the tubes were centrifuged for 7 

minutes at 4°C, 515 x g and cell free supernatants removed for storage at -20°C until analysis.

Stimulus: Unstim IFNv LPS LPS
IFNy

RPMI + 
G lutamax + 
2ME(600ul)

W hole blood 
(200ul)

Incubation:

Figure 6.3: Schematic diagram of whole blood cultures examining LPS + /- 
IFNy response.
4 tests were set up in duplicate. Control tubes containing no stimulus and 
IFNy only were used to look at background levels o f the cytokines of

Cytokine responses to culture w ith the LPS+/- IFNy were quantified using ELISA. The principles 

behind this method and the basic protocol are detailed in section 3.11. The commercially available 

cytokine ELISA kits used, their sources and sensitivities are summarised in Table 6.4.

24 hours
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Cytokine Sample Sensitivity (pg/ml) Source

IL-10 Culture supernatants 3.906 Duo Set, R&D Systems, Europe.
IL-6 Culture supernatants 9.375 Duo Set, R8iD Systems, Europe.
IL-8 Culture supernatants 15.625 Duo Set, R&D Systems, Europe.
IL-10 Culture supernatants 7.813 Opt-EIA, BD Biosciences, USA
IL-12p70 Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK
IL-23 Culture supernatants 125 Duo Set, R&D Systems, Europe.
IFNy Culture supernatants 7.813 Ready-SET-Go, eBioscience, UK
SCD14 Plasma 62.5 Duo Set, R&D Systems, Europe.
TNFa Culture supernatants 7.813 Opt-EIA, BD Biosciences, USA

Table 6.4: Summary of cytokines measured following LPS stimulation of whole blood, the 
commercially available kits used and their respective sensitivities.

6.2.6 Dendritic cell subtypes identified by flow cytometry

The major dendritic cell subtypes were quantified using flow cytometry, the principles of this 

technique are outlined in section 3.3. A commercially available human dendritic cell kit was used 

(Miltenyi Biotec UK). Two tubes were set up each containing 300pl of whole blood. Anti-BDCA 

cocktail was added to tube one (20pl) (containing antibodies to BDCA-1, BDCA-2, BDCA-3, CD14 and 

CD19) (Table 6.5) and control cocktail (20pl) was added to the other tube (containing the respective 

3 isotype controls and antibodies to CD14 and CD19). Dead cell discriminator (10pl) was added and 

the samples were incubated on ice under a 60W light (3-5cm away from sample) for 10 minutes. On 

exposure to light, the dead cell discriminator binds covalently and irreversibly to nucleic acids of 
dead cells. Following this, 4ml of red blood cell lysing solution was added to each sample and they 

were incubated in the dark for 10 minutes. Cells were collected by centrifugation (4°C, 515 x g for 7 

minutes) and the supernatant discarded before washing in 3mls of FACS buffer (PBS with 0.2% BSA 

and 0.05% sodium azide). The tubes were centrifuged and the supernatant removed before dead cell 
discriminator stop reagent was added to each sample. The samples were fixed using 200pl FACSFIX 

(BD Biosciences, USA). The gating strategy used to identify the dendritic cell subsets is shown in 

Figure 6.4.

Antigen Fluorochro
me

Cell expression

BDCA-1 (C D lc) PE Myeloid dendritic cells
BDCA-2 (CD303) FITC Plasmacytoid dendritic cells
BDCA3 (CD141) APC Type II myeloid dendritic cells
CD14 PE-Cy5 High expression on monocytes
CD19 PE-Cy5 B lymphocytes
Mouse IgGl Isotype control APC
Mouse IgGl Isotype control FITC
Mouse lgG2a Isotype control PE

Table 6.5: Antibodies and their conjugated fluorochromes contained within the 
human dendritic cocktail set (Miltenyi Biotec UK).
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Leukocytes

Exclusion of B lymphocytes, 
monocytes, granulocytes and 
dead cells

Type II mDC's

Type I mDCTs

r
r .......... .

10° 10’ to1 io3 ----- t .......... . . ■
10° 10' 102 io3

BDCA-2 (CD303)-FITC D BDCA-2 (CD303)-FITC

Figure 6.4: Gating strategy for identifying dendritic cell subsets by flow cytometry.
A: Identification of leukocytes using forward (FSC) and side scatter (SSC).
B: Gating on leukocytes, exclusion of granulocytes (high SSC), B lymphocytes (CD19+), 
monocytes (CD14+), which also express low levels o f BDCA1 and dead cells.
C: Identification of Type I mDCs (BDCA-1+) and pDC's (BDCA-2+).
D: Identification of Type II mDCs (BDCA 3+).
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6.3 Results

6.3.1 Monocyte activation markers

6.3.1 (i) HLA-DR expression

Analysis of monocyte activation using flow cytometry was not included in the range of tests 

implemented at the outset of this study. It was added, along with evaluation of neutrophil activation 

status, when interim analysis highlighted the relationship between neutrophils and obesity/asthma. 
The decision was made to investigate neutrophil phenotype in more detail and as the available 

literature highlights potential effects on monocyte phenotype this was also added to the revised 

range of tests. This does mean that only a subset of the cohort was analysed.

HLA-DR expression as signal index on CD14+ monocytes was measured in 33 individuals and data 

gathered passed the KS test (p=0.847). There was no significant difference in HLA-DR expression on 

CD14+ monocytes between the 6 groups (p=0.453). Across the entire study group BMI category and 

BMI as a continuous variable were not association with HLA-DR expression (p=0.818; r=-0.72, 
p=0.694), neither was percentage body fat or WHR. Participant age did not correlate with this 

parameter. When the asthmatics and controls were analysed individually HLA-DR expression was not 
associated with BMI in either group (asthmatics: r=0.095, p=0.717; controls: r=-0.267, p=0.335) and 

neither were the other markers of adiposity.

HLA-DR expression did not differ between asthmatics and controls across the entire study group 

(p=0.251) or when each BMI category was compared separately. Within the asthmatics, asthma 

duration, age of onset, control score, ICS use and spirometric markers did not correlate with this 

measure.

6.3.1 (ii) CD16 expression

CD14+CD16+ monocytes expressed as a percentage of circulating CD14+ monocytes were measured 

in 29 individuals and data passed the KS test (p=0.524). There was no significant difference in the 

percentage of CD14+CD16+ monocytes across the 6 groups (Figure 6.5) (p=0.719). This parameter 

was not associated with participant age. The percentage of CD14+CD16+ monocytes was not 
associated with BMI category across the entire cohort (p=0.803) or when BMI was examined as a 

continuous variable (r=-0.148, p=0.480). Similarly no associations were seen with percentage body 

fat or WHR.

When asthmatics and controls were examined separately no correlations were seen between 

CD14+CD16+ monocytes and BMI in either group (asthma: r=-0.264, p=0.361, controls r=0.057, 

p=0.868) and no associations were seen with the other markers of adiposity.

Overall levels were higher in asthmatics (mean=4.81%) than controls (mean=3.88%) but this was not 
significant (p=0.293). When each BMI category was compared individually no statistically significant
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differences were found although the numbers in each category were very small, as reflected by the 

wide error bars. CD14+CD16+ monocyte levels (%) did not correlate w ith age. W ithin the asthmatics 

the percentage of CD14+CD16+ monocytes did not correlate with asthma control score, ICS use, or 

spirometric markers.
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Control Control Control Asthma Asthma Asthma
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(n=3) (n=4) (n=6) (n=7) (n=4) (n=5)

Subject group

Figure 6.5: Percentage of CD14+CD16+ monocytes in the 
asthmatics and controls according to BMI category. Data 
shown as mean and error bars.

6.3.2 Plasma levels of soluble CD14

Plasma soluble CD14 levels were measured in all 84 individuals and data passed the KS test 

(p=0.948). There was no significant difference in sCD14 levels across the 6 groups and levels were 

not significantly higher in asthmatics than controls across the entire study group (Table 6.6). 

However when each group BMI category was compared, normal weight (NW) asthmatics had higher 

levels o f sCD14 than NW controls although this was not statistically significant (p=0.069). Overweight 

and obese asthmatics did not have significantly higher levels compared to their respective control 

groups (p=0.261 and p=0.711, respectively).

When BMI category was examined across the entire study group no significant difference was seen 

in sCD14 levels. However when BMI was examined as a continuous variable a significant positive 

correlation was seen with sCD14 levels (r=0.224, p=0.041). No significant association was seen with 

patient age. The correlation between BMI and sCD14 was only seen in the controls (r=0.37, 

p=0.027). There was no correlation between BMI and sCD14 was seen in the asthmatics (r=0.089, 

p=0.580). Therefore, the interaction between the BMI and asthma status w ith regards to sCD14 was
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formally tested. No significant interaction effect was was seen (p=0.134). Within the asthmatics no 

significant associations were seen between sCD14 levels and asthma duration, asthma control, ICS 

use, or spirometric markers. Given previous interest in sCD14 levels and insulin sensitivity in obese 

patients the relationship between these two variables was explored but no significant association 

was found (r=-0.166, p=0.289).

Controls
NW
n=14

ow
n=13

OB
n=15

Asthmat
NW
n=14

cs
OW
n=12

OB
n=15

p value

SCD14
(ng/ml)
Mean
(SD)

1170.45
(404.01)

1328.74
(257.59)

1434.32
(416.80)

1409.85
(261.72)

1193.26
(321.58)

1386.50
(264.07)

All 6 groups: 
p=0.156 
BMI category:
p=0.210
A vs. C: p= 0.709

Table 6.6: Plasma sCD14 levels in asthmatics and controls according to BMI category.

Data are expressed as mean and standard deviation (SD). Differences between all 6 groups were 

analysed using a one-way ANOVA Differences between asthmatics (A) and controls (C) were 

analysed using an unpaired t-test Differences between BMI categories were analysed using a one
way ANOVA.

6.3.3 Cytokine response to LPS stimulation on whole blood 
cultures

LPS stimulation of whole blood cultures was used to model and compare the responses by the 

different study groups. Cytokine responses (IL-lp, IL-6, IL-8, IL-10, and TNFa) to LPS were measured 

in 83 individuals and are summarised in Table 6.7. LPS-induced IL-1(3, IL-6, IL-8 and TNFa production 

in whole blood did not pass the KS test (p=0.202, p=0.076, p=0.032, P<0.001, respectively) so 

therefore data were logarithmically transformed for analysis. The LPS-induced response for all of the 

cytokines of interest did not vary with BMI category across the entire study group for any of the 

cytokines studied (Table 6.7). There were also no significant differences when BMI was examined as 

a continuous variable across the entire study group (IL-lp: r=-0.11, p=0.306; IL-6: r=0.068, p=0.583; 

IL-8: r=0.051, p=0.649; IL-10: r=-0.005, p= 0.996; TNFa: r= -0.672, p=0.579). No correlations were 

seen with body fat composition or WHR. Age of the participants was not associated with any of the 

LPS induced cytokine levels.

When the asthmatics and controls were examined separately, none of the LPS-induced cytokine 

responses were correlated with BMI ((Controls: IL-ip: r=-0.161, p=0.310, IL-6: r=0.204, p=0.196, IL-8: 
r=0.002, p=0.990, IL-10: r=-0.28, p=0.862, TNFa: r=-0.082, p=0.062) (Asthmatics IL-lp: r=-0.097, 

p=0.545, IL-6: r=-0.054, p=0.737, IL-8: r=0.094, p=0.558. IL-10: r=0.006, p=0.968, TNFa: r^-0.073, 
p=0.652)). Similarly none of the cytokine responses correlated with body fat composition or WHR in 

the asthmatics or controls.
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Across the entire cohort, asthmatics had greater LPS induced IL-lp response than control subjects 

(geometric mean = 1.63ng/ml versus 1.29ng/m I) but this was not significant (p=0.089). LPS induced 

TNFa response was also higher in asthmatics than controls however this was not significant 
(geometric mean =139.46pg/ml versus 108.28pg/ml, p=0.090). When comparing the individual BMI 
categories between asthmatics and controls no significant differences were seen for any of the 

cytokines studied. Within the asthmatics none of the LPS induced cytokine levels correlated with 

asthma duration, asthma control, ICS use or any of the spirometric markers.

Controls
NW
n=14

OW
n=13

OB
n=15

Asthmat
NW
n=14

cs
OW
n=12

OB
n=15

p value

IL-1P
(ng/ml)
Geometri 
c Mean  
(SD)

1.30
(1.90)

1.53
(0.98)

1.09
(1-30)

1.77
(0.80)

1.49
(0.83)

1.63
(0.57)

All 6 groups: 
p=0.387 
BMI category: 
p=0.678 
A vs. C: p=0.089

IL-6
(ng/ml)
Geometri
c
Mean
(SD)

9.21
(3.528)

10.65
(3.998)

9.66
(7.350)

10.82
(4.283)

11.95
(7.310)

10.14
(4.672)

All 6 groups: 
p=0.701 
BMI category: 
p=0.479 
A vs. C: p=0.265

IL-8
(ng/ml)
Geometri 
c Mean  
(SD)

2.87
(2.78)

2.57
(3.08)

2.63
(3.49)

2.58
(2.61)

3.85
(2.11)

3.40
(2.81)

All 6 groups: 
p=0.625 
BMI category: 
p=0.778 
A vs. C: p=0.264

IL-10
(pg/ml)
Mean
(SD)

91.44
(63.05)

114.32
(39.62)

101.21
(54.09)

107.07
(62.20)

118.08
(71.51)

100.02
(89.14)

All 6 groups: 
p=0.870 
BMI category: 
p=0.511 
A vs. C: p=0.641

TNFa
(pg/ml)
Geometric
Mean
(SD)

123.30
(313.12)

113.03
(200.02)

186.45
(93.37)

135.67
(390.17)

136.75
(124.60)

145.79
(420.46)

All 6 groups:
p=0.666
BMI category:
p=0.907
A vs. C: p=0.090

Table 6.7: Plasma cytokine levels from whole blood cultures in response to LPS stimulation in 
asthmatics and controls according to BMI category.

Normally distributed data are expressed as mean and standard deviation (SD). Parameters not 
normally distributed were expressed as geometric mean and standard deviation and were 

logarithmically transformed before analysis. Differences between all 6 groups and the 3 BMI 
categories were analysed using a one-way ANOVA. Differences between asthmatics (A) and 

controls (C) were analysed using an unpaired t-test
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Production of IL-12p70 requires stimulation with IFNy prior to PAMP exposure [424], therefore 

whole blood cultures were also exposed to IFNy (lOng/ml) 90 minutes prior to the addition of LPS. 

LPS/IFNy-stimulated IL-12p70 and IL-23 production did not pass the KS test (p=0.018 and p=0.040, 
respectively), therefore values were logarithmically transformed for analysis.

There were no significant differences in values across the 6 groups (Table 6.8) or with BMI category 

across the entire cohort for either cytokine response. When BMI was analysed as a continuous 

variable no correlation was seen (IL-12p70: r=-0.103, p=0.356; IL-23: r=-0.050, p=0.662) and no 

correlation was seen with percentage body fat or WHR. Cytokine production did not correlate with 

age.

When asthmatics and controls were examined individually, IL-12p70 (asthmatics: r=-0.138, p=0.391; 
controls: r=-0.91, p=0.571) and IL-23 (asthmatics: r=0.101, p=0.536; controls r=-0.219, p=0.174) did 

not vary significantly BMI, body fat composition or WHR. LPS/IFNy-stimulated levels of these 

cytokines did not significantly differ between asthmatics and controls across the entire cohort (Table 

6.8) or when each individual BMI category was compared. No correlations were seen between 

production of these two cytokines and asthma duration, control, ICS usage or any of the spirometric 

measurements taken.

Controls
NW
n=14

OW
n=13

OB
n=15

Asthmatic
NW
n=14

s
OW
n=12

OB
n=15

p value

IL12p70
(Pg/ml)
Geometri 
c Mean  
(SD)

204.72 
(529.20)

158.37 
(393.42)

162.05
(323.29)

248.12 
(207.3 6)

207.36
(319.36)

186.95
(272.85)

All 6 groups: 
p=0.847 
BMI category: 
p=0.578 
A vs, C: p=0.348

IL-23
(ng/ml)
Geometri
c
Mean
(SD)

1.59
(1.29)

1.52
(1.43)

1.05
(0.85)

1.11
(1.09)

1.10
(0.76)

1.26
(1-30)

All 6 groups: 
p=0.333 
BMI category: 
p=0.744 
A vs.C: p=0.333

Table 6.8: Plasma cytokine levels from whole blood cultures in response to LPS and IFNy 
stimulation in asthmatics and controls according to BMI category.

Normally distributed data are expressed as mean and standard deviation (SD). Parameters not 
normally distributed are expressed as geometric mean and standard deviation and were 

logarithmically transformed before analysis. Differences between all 6 groups and BMI categories 

were analysed using a one-way ANOVA. Differences between asthmatics (A) and controls (C) were 

analysed using an unpaired t-test.
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6.3.5 Circulating levels of dendritic cell subtypes

The percentage of circulating dendritic cell subtypes was measured in 39 controls (NW: n=13, OW: n- 
13, OB: n=13) and 34 asthmatics (NW: n=12, OW: n=10, OB: n=12).

6.3.5 (i) Type I myeloid dendritic cells

Data for the percentage of circulating type I myeloid dendritic cells (mDCs) were normally 

distributed (p=0.456). There was a significant difference in the mean percentage of circulating type I 

mDCs across the 6 groups (Figure 6.6) (p=0.002). This was due to NW asthmatics having significantly 

higher levels of type I mDCs than the overweight (OW) asthmatics (p=0.013) and obese (OB) 

asthmatics (p=0.002) and controls (NW asthma versus NW controls p=0.002, NW asthma versus OW 

control p=0.005, NW asthma versus OB control p=0.002).

70-

.60-

I -  .40-

.20 -

Control Control Control Asthma Asthma Asthma
normal overweight obese normal overweight obese
(n=13) (n=13) (n=13) (n=12) (n=10) (n=12)

Subject group

Figure 6.6: Percentage of type I mDCs in the asthmatics and 
controls according to BMI category. Data shown as mean and 
error bars.
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Examining the asthmatics and controls separately, increasing BMI category and continuous BMI was 

associated with a reduction in type I mDCs in the asthmatics (p=0.003; r=-0.568, p<0.001) which was 

not seen in the control group (p=0.837; r=-0.077, p=0.647). This was also seen with percentage body 

fat (asthmatics r=-0.529, p=0.001; controls: r=-0.145, p=0.384) but not WHR. When we tested for 
this formally a significant interaction was seen between BMI and asthma status with regards to type 

I mDCs (p=0.005). Within the asthmatics, age of onset, duration, asthma control score, ICS use and 

the spirometric markers were not associated with type I mDCs.

In view of the expression of leptin receptor on DCs, the correlation between type I mDCs and leptin 

levels was explored and revealed a non-significant negative correlation (r=-0.244, p=0.070). On 

examining asthmatics and controls separately neither correlation was significant (asthmatics: r=-
0.329, p=0.058; controls: r=-0.228, p=0.169). In addition the association between mDCs and within 

the asthmatics remained significant after retaining leptin the model suggesting that leptin levels are 

unlikely to be the only explanation for the association between BMI and type I mDCs (BMI p=0.002, 
leptin p=0.201, R2=0.358).

6.3.5 (ii) Type II myeloid dendritic cells

Data for the percentage of circulating type II mDCs did not pass the KS test (p<0.001) so was 

logarithmically transformed for analysis. There was no significant difference in the geometric mean 

levels of type II mDCs (%) across the 6 groups (p=0.518) (Figure 6.7). Levels were not associated with 

BMI category across the entire study group (p=0.723) or when BMI was examined as a continuous 

variable (r=-0.131, p=0.271). Similarly levels were not associated with percentage body fat or WHR.

Levels were not significantly different between asthmatics and controls across the entire study 

group (p=0.697), or when each BMI category was compared. Although normal weight asthmatics 

appeared to have higher levels of type II mDCs than normal weight controls and obese asthmatics, 
this was not significant (p=0.160 and p=0.083 respectively). Interestingly in the asthmatics, BMI and 

percentage body fat negatively correlated with type II mDC levels (%), although the latter was not 
significant (r=-0.371, p=0.031 and r=-0.311, p=0.074). Despite this finding, no correlation between 

leptin levels and Type II mDCs was seen in the asthmatics.

Type II mDCs may play an important role in the polarisation of Th2 responses and higher circulating 

levels have been described in atopic versus non-atopic individuals with levels rising during acute 

asthma exacerbations and falling during convalescence in adolescent atopic asthmatics [606]. Within 

the asthmatics no correlation was seen with asthma duration, asthma control, ICS use or any of the 

spirometric markers. Given recent findings suggesting that type II mDCs may be important in Th2 

response and atopy we looked for correlations between type II mDCs and eosinophils, IgE, PHA- 
induced IL-13 response and PHA-induced IFNy response. A negative correlation was seen PHA- 
induced IFNy response (r=-0.345, p=0.046) but with none of the other parameters.
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Figure 6.7: Percentage of type II mDCs in the asthmatics and 
controls according to BMI category. Data shown as logarithmic 
values, mean and error bars.

6.3.5 (iii) Plasmacytoid dendritic cells

Data for the percentage of circulating pDCs did pass the KS test (p=0.479). There was no significant 

difference in the mean levels o f pDCs (%) across the 6 groups (p=0.141) (Figure 6.8). Across the 

entire study group increasing pDCs (%) varied significantly between BMI categories (p= 0.026) 

(Figure 6.9), w ith overweight individuals and obese having lower levels o f pDCs than controls 

(p=0.011 and p=0.064 respectively), although the latter was not statistically significant. When BMI 

was examined as a continuous variable there was a significant negative correlation between this and 

percentage pDCs (r=-0.233, p=0.049). Negative correlations were also seen w ith percentage body fat 

and WHR but the latter was not significant (r=-0.212, p=0.049 and r=-0.202, p=0.093 respectively). 

There was no significant difference in circulating pDCs (%) between the asthmatics and controls 

(p=0.526).

When the asthmatics and controls were examined separately a negative correlation between BMI 

and pDCs was seen in both groups but neither was significant (asthmatics: r=-0.254, p=0.148; 

controls: r=-0.231, p=0.164). Similar findings were noted for percentage body fat and WHR.

W ithin the asthmatic group there were no significant associations between pDCs and age of onset, 

asthma duration, control score, ICS dose or any of the spirometric markers. Plasmacytoid DCs (%) 

were not associated w ith age, across the entire cohort; nor were they associated w ith IR and leptin 

levels.
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Figure 6.8: Percentage of pDCs in the asthmatics and controls 
according to BMI category. Data shown as mean and error bars.
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Figure 6.9: Percentage of pDCs across the 3 BMI categories.
Data shown as mean and error bars.
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6.4 Discussion

6.4.1 Obesity and asthma were not associated with increased 
expression of monocyte activation markers

Obesity is associated with an increase in pro-inflammatory M l  macrophages within the visceral 
adipose tissue compartment reflecting at least in part a systemic increase in pro-inflammatory bone 

marrow derived CD14+CD16+ monocytes [31]. These M l  macrophages are thought to contribute to 

the chronic systemic inflammation seen in obesity. There is also some evidence that they might have 

a role locally in steroid resistant severe asthma with the increased macrophage population seen in 

asthmatics also derived from increased levels of mature circulating CD16+ monocytes [173]. Given 

that some studies suggest that obesity and asthma are both associated with systemic monocyte 

activation the percentage of circulating pro-inflammatory monocytes in normal weight, overweight 
and obese individuals with and without asthma was measured in this study to see if there were 

discernible differences between the groups. There were no differences in the percentage of 
circulating CD14+ CD16+ cells or HLA-DR expression with increasing BMI or between asthmatics and 

controls suggesting that obesity in asthma is not associated with systemic changes in this marker of 
monocyte activation. Our results differ from those of Cottam et al, who showed that obese patients 

undergoing bariatric surgery had significantly higher percentages of circulating CD14+/CD16+ 

monocytes than control subjects [31]. Although their study was on almost exclusively females (25/26 

in the obese group), the mean BMI of the obese group was significantly higher than ours 

(mean=52kg/m2 vs. 37kg/m2) with no participants with a BMI of <40kg/m2. Detectable differences in 

CD16 expression by monocytes might only be seen at the extremes of obesity. Furthermore they did 

not control for the effects of fluctuating hormone levels which have been shown to affect other 

features of mononuclear cell activation such as the response to LPS [620].

These results also differ from those of Rivier et al, who showed significantly increased CD16 

expression on blood monocytes in terms of percentage circulating and mean fluorescence intensity 

in asthmatics than controls [173]. This thesis involved predominantly patients who had moderate to 

severe disease on ICS treatment, which when given long term may affect surface marker expression 

on monocytes. Thirty months of ICS treatment increased CD14 expression on peripheral blood 

monocytes compared to asthmatics not on treatment and controls [621], although patients on ICS 

treatment did not have detectable differences in CD16 expression compared to untreated 

asthmatics or controls. In another study, which also showed a higher expression of CD16 on 

monocytes of asthmatics compared to control subjects, ICS was withheld for 48 hours prior to 

sample collection unlike the study herein where it was withheld for 24 hours [557]. Tomita et al also 

withheld theophylline preparations and p2 agonists for 48 hours as these can potentiate monocyte 

differentiation [622].

Another major limitation of the study herein is that monocyte activation markers were only 

determined for 33 (HLA-DR) and 29 (CD16) individuals, so might not be adequately powered. 
Measurement of monocyte activation was not included in the original study design but following an 

interim analysis showing measurable differences in circulating neutrophils and monocytes between 

patient groups it was decided to investigate this area further. Cryopreserved mononuclear cells are
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available for the entire study cohort and these samples could be used to measure activation markers 

in all our individuals retrospectively. It would also be of great interest to look at markers of 
macrophage activation within the airways themselves by examining BAL fluid samples.

6.4.2 Soluble CD14 levels correlated with B M I in the control 
group

Soluble CD14 levels significantly positively correlated with BMI in the control group: the obese 

subjects amongst the controls therefore had the highest mean levels but this was not significantly 

higher than the normal weight controls. This is similar to findings in another study which also 

observed that weight loss was associated with a significant reduction in circulating sCD14 [584]. 
Levels also correlated with insulin sensitivity but this was not seen in the study herein [584]. The 

biological significance of the positive correlation between BMI and sCD14 levels is not certain. 
Soluble CD14 potentiates or inhibits LPS signalling depending on its levels and location: it can enable 

LPS responses by cells that lack mCD14 but can cause efflux of LPS already bound to monocytes and 

therefore limit the LPS response [567]. Despite the positive correlation between sCD14 and BMI in 

the controls, we did not see any differential effect on LPS response with BMI (see below). However 
one key difference between experiments with whole blood versus PBMCs (typically cultured with 

foetal bovine serum) is the presence of autologous plasma and the inter-subject variation in 

accessory molecules naturally present in this substrate. Although we measured sCD14 we did not 
take into account other soluble factors such as lipopolysaccharide binding protein (LBP) [563] and it 
would be of interest to see if this also changes with BMI.

Given that gene polymorphisms in the CD14 gene and resultant levels modify asthma risk in 

association with LPS exposure [572] and that asthmatics patients have a higher sCD14 levels in the 

airways [570], predicting neutrophil influx in response to LPS challenge [571], we measured systemic 

levels of sCD14 in the asthmatics. Although normal weight asthmatics had higher levels than their 
control counterparts the same was not seen for overweight or obese asthmatics. In fact in contrast 
to the observations in the control group, BMI had no correlation with sCD14 levels in the asthmatics.

6.4.3 Obesity and asthma were not associated with detectable 
differences in cytokine response to LPS stimulation of whole 
blood

Previous studies suggest that asthmatics have an increased response to LPS systemically [341] and 

locally in the airways [570]. Some studies suggest that obesity is also associated with increased 

inflammatory response to LPS systemically [32]. Therefore the response to LPS was measured using 

a whole blood culture model particularly to determine the response in obese asthmatics, an area 

which has not been explored previously. However, cytokine responses (IL-ip, IL-6, IL-8, IL-10, TNFa, 

IL-12p70 and IL-23) from whole blood exposed to LPS +/- IFNy did not vary with BMI or asthma 

status suggesting that at a systemic level, obese asthmatics do not have an increased cytokine
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response to endotoxin exposure, at least for the cytokines measured in this study. There was a trend 

towards an increase in IL-lp and TNFa production with asthma, however this was not significant. 
This would be of relevance to severe asthma as IL-10 increases GM-CSF production by bronchial 
epithelial cells [623] as well as IL-8 production [624], both of which are important mediators in 

neutrophilic inflammation and TNFa is increased in BAL of patients with severe corticosteroid 

dependent disease [175]. In a study by Hallsworth and colleagues, there was increased IL-ip 

production following LPS stimulation of peripheral blood mononuclear cells in asthmatics versus 

controls with no differences in TNF-a or IL-8 production [341]. Our study differed methodologically 

in that whole blood was used and the patients were on ICS treatment. Glucocorticoids have been 

shown to reduce IL-lp production within the airways; it is therefore possible that they may also 

inhibit production systemically [625]. In contrast to previous study of atopic asthmatics [591], IL-10 

production following LPS stimulation was not reduced in the asthmatics studied herein. This may be 

again due to the effect of ICS treatment; although in the study by Borish et al, in vitro use of 
methylprednisolone reduced LPS induced IL-10 production further. It may also be due to differences 

in methodology with Borish et al examining LPS response in isolated mononuclear cells rather than 

whole blood as used here. An advantage of whole blood cultures is that it contains circulating levels 

of proteins such as sCD14 and LPB, which modify the interaction between LPS and cell surface 

receptors [563]. Therefore this current work examined LPS responses in a more physiologically 

accurate environment taking into account these factors.

The lack of any association between BMI and LPS response is in keeping with a recently published in 

vivo study examining the systemic cytokine response to endotoxin infusion in otherwise healthy 

volunteers of varying BMI [626]. Healthy male volunteers (n=112) were given intravenous LPS and 

the cytokine responses (TNFa, IL-6, IL-10 and IL-1RA) were measured at time intervals up to 8 hours 

post administration. Patients who were overweight or obese (BMI>25kg/m2) did not have 

significantly different cytokine responses compared to normal weight individuals. Our study and that 
of van Eijk [626] contradicts the findings of Kueht et al [32] and Tanka et al [579] who found an 

increased TNFa response to LPS stimulation of whole blood and mononuclear cell cultures 

respectively in obese individuals. However, several key methodological differences exist between 

their work and ours. Firstly these two studies examined African-American and Japanese adults 

respectively, whereas our women were exclusively Caucasian. Secondly they did not control for the 

menstrual cycle. The in vitro response of human monocytes to endotoxin changes with the 

menstrual cycle, peaking in the luteal phase [620]. Furthermore other TLR responses vary with the 

menstrual cycle [627]. Failure to control for fluctuations in hormone levels may have confounded 

results. Thirdly it was interesting to note in the study by Kueht et al that whilst overweight and 

obese category III (BMI>40kg/m2) had in increased response to TNFa, obese category I and II 
patients did not [32]. The mean BMI of the obese women in our study was lower at 37kg/m2 and in 

the recent in vivo study van Eijk, all volunteers had a BMI of <35kg/m2 [626]. Differences in the 

systemic response to LPS might only become apparent when BMI exceeds 40kg/m2. Finally, in the 

Japanese study [579] in vitro responses to LPS were measured in mononuclear cell cultures rather 
than whole blood and therefore will lack the inter-subject variation in natural modulators of the 

response.

177



6.4.4 Increasing B M I is associated with a reduction in the 
percentage of circulating type I  and type I I  myeloid dendritic cells 
in asthmatics

Within the asthmatics but not controls increasing BMI category was associated with a reduction in 

the percentage of circulating type I mDCs; this reflected significantly higher levels of type I mDCs in 

normal weight asthmatics than in the other groups. Obese asthmatics had comparable levels of type 

I mDCs to the controls. Given that the levels of pDCs did not differ between normal weight 
asthmatics and controls, this suggests a change in the balance of mDCs versus pDCs. Myeloid DCs 

have been implicated to have a pathophysiological role in asthma. Airway allergen challenge of 
atopic asthmatics leads to an increase in mDCs within bronchial biopsies within 4-5 hours [603] and 

BAL fluid within 24 hours [604] with a concurrent reduction in blood levels [603, 604]. In animal 
models, upsetting the balance between pDCs and mDCs in favour of mDCs promotes allergen 

mediated airway inflammation [185] whereas tipping the balance towards pDCs abolishes the 

cardinal features of asthma in allergen sensitised mice [610]. Examining mDC subsets, type II mDCs 

are also found in the lung and they outnumber type I mDCs in lung digests [96] and BAL samples 

[628]. Type II mDCs may play an important role in the polarisation of Th2 responses and higher 
circulating levels have been described in atopic versus non-atopic individuals with levels rising during 

acute asthma exacerbations and falling during convalescence in adolescent atopic asthmatics [606]. 
Within the asthmatics, type II mDCs were highest in the normal weight individuals although this was 

not statistically significant. Levels did significantly negatively correlate with BMI with obese 

asthmatics having comparable type II mDC levels to the controls. This is in keeping with the 

observations in chapter 4 that eosinophils (typically associated with Th2 mediated disease), declined 

with increasing BMI in the asthmatics and not in the controls. However, in the asthmatics, no 

correlation between type II mDCs and eosinophils was seen. It will be of interest in chapter 7 to 

explore if this decline in type II mDCs with BMI in the asthmatics is associated with a T cell cytokine 

response favouring Th l skewing.

Differential effects with regards to BMI and DCs dependent on the underlying disease state have 

been seen in diabetes. Obese diabetics had significantly more circulating type I and type II mDCs 

than normal weight control patients in one study, however obese control patients did not have 

significantly increased levels compared to normal weight controls [33]. Leptin receptors are 

expressed on DCs and leptin has anti-apoptotic effects [295]. Therefore the relationship between 

leptin levels and type I mDCs was investigated. Perhaps unexpectedly a negative correlation was 

seen. A potential explanation for this is that a reduction in circulating type I mDCs in obese 

asthmatics is not due to a reduction in whole body percentages of these cells but actually represents 

increased migration into tissues, so their loss from peripheral blood. Given the ability of leptin to 

enhance the migratory capacity of dendritic cells this is a possibility [295]. This might not occur in the 

controls because the levels of leptin are lower (see chapter 4) or possibly due to leptin resistance, a 

phenomena associated with obesity, differing between asthmatics and controls. This would be 

particularly important in a disorder such as asthma that involves mucosal inflammation and, as 

discussed above, there is already evidence of migration of mDCs from blood to airways [603, 604]. 
In a murine obesity model induced by leptin deficiency, obesity was associated with increased 

numbers of dendritic cells locally within the epidermis with restoration in numbers following leptin 

injection [616]. It would be worthwhile examining local numbers of DCs within the airways as well as
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investigating whether leptin sensitivity differs between asthmatics and controls. Interestingly a 

general linear model incorporating BMI and leptin within the asthmatics showed that the association 

between BMI and type I mDCs (%) in the asthmatics remained significant whereas the association 

between leptin and type I mDCs did not, suggesting that whilst leptin may play a role in this 

relationship it is unlikely to be the sole mediator.

A study of obese but otherwise healthy adults published recently examined the percentage of 
circulating mDCs and their function compared to lean individuals [629]. In this study adults with a 

mean BMI of 51.7kg/m2, had significantly lower levels of blood mDCs than their lean counterparts. 
Although we did not find this in our control subjects, across the entire study group increasing BMI 
was associated with a reduction in myeloid dendritic cells (%) which was entirely due to the changes 

in the asthmatics. Our study differed from O'Shea et al in that the mean BMI was significantly lower 

(37.4kg/m2). It may be that a reduction in mDCs is only observed at extremes of BMI and if a leptin 

mediated mechanism is behind this then this would explain our data since our asthmatics had a 

higher leptin level compared to our controls in each BMI category.

6.4.5 Increasing B M I is associated with a reduction in pDCs

Increasing BMI as a continuous variable were associated with a reduction in pDCs across the entire 

study group with overweight and obese patients having lower levels than normal weight individuals, 
although the latter was not significant. Asthmatics did not have different levels to controls. 
Plasmacytoid DCs are important in immune regulation and the differentiation of regulatory T cells 

[599]. It is noteworthy that whilst overweight participants had significantly lower levels of pDCs than 

those of normal weight, the obese whilst also having lower percentages of pDCs, this was not 
significant. This suggests that the relationship between BMI and some of the immune parameters 

might follow a parabolic distribution; cytokine/adipokine resistance or homeostatic mechanisms 

start taking effect at higher levels of obesity and could explain such a phenomenon. There is very 

little published work on pDCs in obesity. Others have only examined mDCs [629] although in a study 

of obese patients with and without diabetes, the obese non-diabetics had lower levels of pDCs than 

normal weight controls, however as with the present study this did not reach significance [33]. 
Obesity is associated with a poorer outcome from viral infections [630] and poorer response to 

vaccination [614] and it has been hypothesised that this is due to changes in DC numbers and 

function. A reduction in pDCs shown herein might be a potential explanation.

6.5 Summary
In summary, the interaction between obesity and asthma with innate immunity was the theme of 
this chapter with a specific focus on circulating monocytes, LPS responsiveness, sCD14, and DCs. 
Obesity and asthma were not associated with significant monocyte activation and in keeping with 

this, endotoxin responses were not affected. DCs serve as a bridge between the innate and adaptive 

immune response and the findings reveal elevated type I and type II mDCs in normal weight 
asthmatics with a decline with increasing BMI in the asthmatics only. Furthermore, increasing BMI,
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especially being overweight was associated with a reduction in pDCs which are a cell type associated 

with immune tolerance and the promotion of regulatory T cells. In the next chapter, change.' in 

adaptive immunity in the study population will be explored with a focus on regulatory T cells. 
Particular consideration will be given to the possibility that changes in the DC compartment are 

mirrored by changes in regulatory T cells.
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Chapter 7

Adaptive immunity in obesity and asthma



7.1 Introduction
The adaptive immune system provides a temporally delayed response, which is highly specific; 
recognising peptides unique to a particular pathogen by the use of a seemingly infinite number of 
randomly generated, clonally expressed receptors [62], Upon stimulation, the clonal expansion of 
these cells results in immunological memory, enabling a much faster specific response on 

subsequent encounter of the same antigen (section 2.2.3).

Asthma, particularly atopic disease, has been traditionally thought of as a disease of the adaptive 

immune system, a T helper 2 driven inflammatory process (section 2.3.3). However it is increasingly 

recognised that the inflammation seen in asthma is a result of cross-communication between the 

innate and adaptive arms of the immune system. With the identification of new T helper subsets 

(section 2.2.3 (i)), it is now appreciated that the clinical heterogeneity of asthma may partly reflect 

the varied involvement of different components of both systems. Although studies suggest that 
obesity may also disturb the Thl/Th2 balance, there is good mechanistic data showing it may 

modulate other T helper subsets including regulatory T cells (Tregs). To date there is little work on 

this area in the context of obesity in humans or the obesity-asthma association. In this chapter 
obesity, asthma and systemic changes in the adaptive immune response will be examined to see 

whether they provide further insight into the obesity asthma association.

7.1.1 Thl/Th2 balance and cytotoxic T cells

7.1.1 (i) Thl/Th2 balance and cytotoxic T cells in asthma

T cells are produced by the bone marrow but mature in the thymus and express a T-cell receptor 
(TCR). T cells can be divided into two main groups according to the differential expression of surface 

glycoproteins; cluster of differentiation 4 (CD4) T cells or T helper (Th) cells and CD8 expressing T 

cells or cytotoxic (Tc) T cells [104].

CD4+ or Th cells recognise antigen bound to MHC class II molecules expressed on professional 
antigen presenting cells [107]. Their name is derived from their function of "helping" other 

components of the immune system. They are further subcategorised according to their cytokine 

expression (Figure 2.2). Initially, two main subsets were identified in animal models [108] and 

humans [109]. T helper 1 cells (Thl) secrete IFNy which acts on macrophages increasing their 
phagocytic capacity, important in responding to bacterial infections. They differentiate in response 

to IL-12p70 produced by dendritic cells [100] which causes up-regulation of the transcription factor 
T-bet [110]. Th2 cells produce IL-4, IL-5, IL-6, IL-9 and IL-13 [110]. IL-4 stimulates Th2 differentiation 

through the activation of transcription factors STAT6 and GATA3 [110]. The source of IL-4 is still 
under debate but there are two proposed mechanisms. The first suggests that upon antigen 

stimulation in the absence of Th l or Thl7 polarising cytokines CD4+T cells default to producing IL-4 

[631]. Alternatively IL-4 may arise from supporting cells including mast cells and basophils [632].
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Other novel subsets have since been identified including regulatory T cells, Th-17 and Th-9 cells (see 

section below).

Atopic asthma has been characterised by the presence of increased numbers of Th2 cells within the 

airways [188] and the number of Th2 cells present correlates with disease severity [189]. These 

changes also occur systemically with atopic asthmatics having lower percentages of Th l cells than 

controls with similar levels of Th2 cells suggesting Th2 bias [176], The signature cytokines released 

by these cells have a number of effects relevant to disease pathogenesis. IL-4 is involved in 

immunoglobulin class switching in B cells leading to IgE expression important in the process of 
allergen sensitisation. IL-5 is fundamental to eosinophil differentiation and survival IL-9 promotes 

mast cell survival and IL-13 results in BHR [190].

CD8+, or Tc cells recognise antigen presented in the cleft of MHC class I molecules (HLA-ABC) [104]. 
Through the production of cytokines such as IFNy, perforin and granzyme, they destroy virally 

infected [105] and cancerous cells [106]. CD8+T cells may also play a role in asthma with increased 

numbers seen within the airways of affected individuals [199, 200] particularly in those who die from 

acute asthma [205]. Furthermore the annual decline in FEV1 can be predicted by the number of 
CD8+ cells in the bronchial infiltrate [633]. Animal models have been contradictory with some 

showing enhanced airway inflammation and remodelling on depletion of CD8a+ cells, suggesting that 
their presence may be protective [201, 202], however such studies are limited by the lack of 
specificity of CD8a as a marker of cytotoxic T cells as this is also expressed on macrophages, NK cells 

and dendritic cell subsets. Contrary to these findings, more specific studies in which there has been 

transfer of CD8 ap T cells (see section 2.2.3 (i)) to sensitised animals, show worsening of eosinophilic 

inflammation and BHR [203, 204], These cells may be especially important in mediating the 

inflammatory changes seen during viral exacerbations of asthma with depletion in mice preventing 

BHR and eosinophilic inflammation in response to respiratory syncytial virus infection [634]. In 

humans rhinovirus infection is associated with accumulation of these cells within the airway [635]. 
Consequently there is ongoing debate as to whether their presence is beneficial, incidental or 
detrimental.

7.1.1 (ii) Thl/Th2 balance and cytotoxic T cells in obesity

Previous studies suggest that obesity may impact on the circulating levels of CD4+ and CD8+T cells, 
however findings have been contradictory. A paper looking at 34 obese Japanese adults and 50 

obese controls showed a significant reduction in the absolute count of CD3+ T cells as well as 

CD3+CD4+ and CD3+CD8+ subsets in obese compared to normal weight healthy adults [579]. No 

difference in NK cell or CD19+ B lymphocyte percentages was seen. Conversely a retrospective study 

of 322 women enrolled as a control group in a HIV study found that being overweight, obese or 
morbidly obese was associated with increased total lymphocyte count and CD4+ T cell count, whilst 
being morbidly obese was associated with a higher CD8+ T cell count [636]. In terms of T h l and Th2 

subsets, obesity is associated with increased leptin levels and in murine models leptin has been 

shown to augment Th l responses to allogeneic mononuclear cells [288]. This Th l skewing is 

abolished in leptin receptor deficient mice suggesting that obesity may promote a Th l bias through 

a leptin mediated mechanism.
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To date, very little work has been done on Th l and Th2 immunity in obese asthma. A paediatric 

study used intracellular flow cytometry to measure Thl (IFNy) and Th2 cell (IL-4) responses in 

peripheral blood, following stimulation with PMA and tetanus toxoid in 120 children: 60 asthmatics 

(30 obese and 30 non obese) and 60 controls (30 obese and 30 non-obese) [359]. Th l responses 

were significantly higher in the obese asthmatics than non-obese asthmatics but did not differ from 

obese controls. The non-obese asthmatics had higher Th2 responses. The Thl/Th2 ratio correlated 

positively with serum leptin levels. Contrary to this an adult study by Sutherland and colleagues 

examined circulating levels of cytokines associated with Th l (IFN-y) and Th2 (IL-4, IL-5, IL-13) in 

obese and non obese premenopausal women with and without asthma and did not find levels of 
these cytokines to be significantly higher in obese asthmatics vs. normal weight asthmatics and the 

control group[25]. However, there are new CD4+T cell subtypes which have been discovered and 

these might contribute to asthma but have not been examined in the obese asthma phenotype.

7.1.2 Regulatory T cells and T helper 17 cells

7.1.2 (i) Regulatory T cells

Regulatory T cells (Tregs), constitute 5-10% of circulating CD4+ T cells and are regarded as the 

principle mediators of immunological tolerance to foreign and self antigen [118]. Tregs were first 
identified in the mid 1990's when a population of CD4+ T cells which co-expressed CD25 (the alpha 

chain of the IL-2 receptor; IL-2Ra) were shown to be important in promoting immunological self 
tolerance in mice [637].

Although Tregs have traditionally been identified by the presence of CD25, the majority of T 

lymphocytes will express this surface marker upon activation [120]. As such, early studies using this 

alone for Treg identification may have been misleading. Recently a more specific marker, the 

transcription factor forkhead box P3 (FoxP3) has been discovered [638]. This is thought to have a 

critical role in the development of naturally occurring Tregs; mice lacking a functional FoxP3 gene 

develop a fatal autoimmune condition characterised by CD4+ T cell hyper-responsiveness [121]. The 

alpha chain of the IL7 receptor (CD127) is also down regulated on Tregs, and has been used to 

increase the specificity of identification [122]. Tregs can develop in the thymus (natural (nTregs)) or 
can be induced in the periphery (iTregs) during the course of the immune response. The latter 
include T rl and Th3 cells. T r l lymphocytes are induced by IL-10 and can be identified by their high 

expression of this cytokine [123], however unlike their naturally occurring counterparts murine 

models suggest they do not express FoxP3 [124]. Th3 cells are another antigen specific subset of 

CD4+T lymphocytes, induced by TGF-0. They also produce this cytokine in abundance and like nTregs 

these iTregs express FoxP3 [125].

Tregs exert their effects via contact dependent and independent mechanisms (Figure 7.1). 
Immunoregulatory cytokines produced by these cells include IL-10, a suppressor of effector T cell 
responses [126] and an inducer of peripheral Treg cell development [127]. In asthma and allergy IL-
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10 is thought to maintain immune homeostasis at environmental interfaces including the lung [191]. 

TGF-(3 is also produced by Tregs but takes a more complex role as it has both anti-inflammatory and 

pro-fibrotic actions [192] w ith mice deficient in TGF-(3 having enhanced airway inflammation 

compared to  wild-types [193]. Expression of high levels of the IL-2Ra (CD25), is a feature of Tregs 

and is required for T lymphocyte proliferation. Whilst Tregs do not produce IL-2, they do require it 

fo r survival [128] and it has been argued that Tregs partly mediate the ir effects by competing for IL- 

2, inhibiting the proliferation o f effector T cells [129, 130]. Other mechanisms used by Tregs include: 

cytolysis o f pro-inflammatory cells through the expression o f granzyme and perforin [131]; 

expression of CTLA-4 which provides an inhibitory signal to co-stimulatory molecules CD80 and 

CD86 on dendritic cells, for example by up regulation o f the enzyme indolaemine 2,3 dioxygenase 

(IDO), raising the threshold fo r dendritic cell activation of T cells [132,133].
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Figure 7.1: Mechanisms of regulatory T cell action.

1. Cytolysis o f effector T cells via granzyme and perforin mediated mechanisms.
2. Production of inhibitory cytokines.
3. Targeting dendritic cells. Down-regulation of CD80/86 via cytotoxic T-lymphocyte antigen-4 
(CTLA-4). CTLA-4 inducted production of indoleamine 2,3-dioxygenase (IDO), an 
immunosuppressive enzyme expressed by dendritic cells.
4. Competition w ith effector T cells fo r IL-2 using alpha chain (CD25) receptors.
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Although the existence of IL-17 as product of CD4+ T cells has been known since the mid 1990's 

[113], recognition of a distinct subset of Thl7 cells responsible for its production has been far more 

recent [112]. As a major source of IL-17A (see section 5.1.1 (iii)), these cells are important mediators 

of neutrophilic inflammation [91] and are therefore thought to be important in the defence against 
extracellular pathogens [116]. They are identified by the expression of the transcription factor 
retinoic acid related-orphan receptor gamma T (RORyT) and the surface expression of the IL-23 

receptor, the chemokine receptor CCR6 and the type II transmembrane glycoprotein CD161 [639].

7.1.2 (iii) Development of Tregs and Thl7 cells

Treg induction in vitro can occur after exposure to IL-2 and TGF-p [640, 641]. Interestingly there 

appears to be a reciprocal relationship between Treg and Thl7 induction. TGF-P is essential for both 

the induction of Tregs and Thl7 cells via the induction of the transcription factor FoxP3, in the case 

of Tregs and RORyt in Thl7 cells. In the absence of an inflammatory milieu FoxP3 suppresses the 

gene for RORyt, retinoic acid related orphan receptor C (RORC), promoting the formation of Tregs. 
However in the presence of pro-inflammatory cytokines including IL-6/IL-21, RORC is relieved from 

the suppressive effect of FoxP3 resulting in RORyt expression. The combination of TGF-P and IL-6/IL- 
21 also leads to the surface expression of IL-23R on Thl7 cells, enabling IL-23 responsiveness. IL-23 

subsequently synergises with IL-6 to promote Thl7 differentiation, stabilisation, and function [117].

7.1.2 (iv) Regulatory T cells and Thl7 cells in asthma

Animal models have shown an important role for Tregs in the development of airways diseases. In 

murine models, depletion of CD4+CD25+ Tregs promoted experimentally induced airway 

inflammation [642]. Furthermore the transfer of ovalbumin specific Tregs to sensitised mice 

prevents allergen induced airway hyper-responsiveness and inflammation [643]. The principle 

studies examining Tregs in asthmatic patients are summarised in Table 7.1.
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Study Population Tissue Treg findings Ref
Children 
(mean 
age= 5.9- 
6.8 years)

Severe allergic 
rhinitis or 
asthma: n=51

Controls: n=47

Blood 4̂  CD4+CD25+ T cells (%) in those with atopic 
disease vs. controls.
/f'CD4+CD25+ T cells (%) in those with severe vs. 
mild disease.
/TFoxP3mRNA in those with severe vs. mild 
disease.

[644]

Children Asthma: n=18

Chronic cough: 
n=10

Controls: n=13

Blood
&
BAL
fluid

4/ CD4+CD25+T cells (%) in both compartments 
(more marked in BAL fluid) in those with 
untreated asthma.
4/FoxP3 mRNA in both compartments (more 
marked in BAL fluid) in those with untreated 
asthma.
4 weeks of ICS treatment: CD4+CD25 T cells (%) 
and /T'FoxP3 mRNA in both compartments.
4/ Treg function BALF in untreated asthma. 
Restoration of function with ICS treatment.

[194]

Children 
(mean 
age =11.2 
years)

Atopic asthma: 
n=23

Controls: n=16

Blood 4^FoxP3 expression by CD4+CD25+ T cells in 
asthmatics vs. controls.
4/ Treg function in asthmatics vs. controls. 
Restoration of function with allergen specific 
immunotherapy.

[645]

Children 
(age = 6- 
13 years)

Controls: n=22 

Asthmatics: n=38

Blood
BAL
fluid

4/CD4+CD25+FoxP3+Tregs (%) in blood and BAL 
fluid of asthmatics vs. controls.

[195]

Children 
(age = 7-8 
years)

Intermittent 
asthma: n=13 
Mild persistent: 
n=15
Moderate to 
severe persistent 
n=20
Controls: n=93

Blood tCD4+CD25+CD127-FoxP3+ Tregs (%) in 
asthmatics vs. controls.

ICS steroid use whether intermittent or chronic 
was more strongly associated with Tregs than 
asthma severity.

[646]

Adults Asthmatics: n=52 

Controls: n=20

Blood /1'CD4+CD25+ Tregs (%) in mild asthma vs. 
controls.
4/4'CD4+CD25+ Tregs (%) in severe asthma 
compared to mild asthma and controls.

[647]

Adults Controls: n=6 
Mild asthmatics: 
n=15
Moderate to 
severe: n=13

BAL
fluid

/TVCD4+CD25+CD127- Tregs (%) in moderate to 
severe asthma compared with mild asthma and 
controls.
^CD4+FoxP3 Tregs (%) in moderate to severe 
asthma compared with mild asthma and controls.

[648]

Adults Controls: n = 20 
Mild asthma: n 
=22
Moderate to 
severe asthma: n 
= 17

Blood 4/ CD4+CD25+ FoxP3+ Tregs (%) in moderate to 
severe asthmatics.
FEV1 positively correlated with CD4+CD25+FoxP3+ 
T cells.

[197]

Adults Asthmatics: n=71 
Controls: n=15

Blood 4^Suppressive function of CD4+CD25+FoxP3+Tregs 
in the remission group compared to controls.

[649]

Table 7.1: Summary of studies examining Tregs in the blood and BAL fluid of paediatric and adult 
asthmatics. Studies are in chronological order.
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\AZStudies examining the number of Tregs in the peripheral blood of asthmatics have been 

contradictory. This is likely to be due to the use of CD25+ as the principle Treg marker, which is 

expressed on all effector T cell populations. Nevertheless, paediatric studies using this marker have 

shown reduced percentages of CD4+CD25+ Tregs in children with asthma and other atopic diseases 

[194, 644] compared to control subjects. In one of the studies examining levels in the blood and BAL 

fluid, the percentage of CD4+CD25+ T cells in the control group were significantly higher in the BAL 

fluid than peripheral blood [194]. Treated asthmatics had Treg levels in both compartments which 

were comparable to the control group. Compared to controls and treated asthmatics, untreated 

patients had a mild but significant reduction in CD4+CD25+ T cells in the blood and a marked 

reduction in the BAL fluid; these were restored with 4 weeks of ICS treatment. When they measured 

FoxP3 mRNA, the same observations were noted. Not only were the untreated asthmatics deficient 
in Tregs themselves but the cells present had impaired function and ICS treatment restored both 

Tregs number and function [194]. Another paediatric paper showed that whilst patients with atopic 

asthma and rhinitis had reduced blood levels of CD4+CD25+ T cells compared to control subjects, 
patients with severe disease had higher levels than those with mild [644]. In contrast a more recent 
study has shown increased levels of CD4+CD25+CD127*FoxP3+ Tregs in the blood of asthmatics. 
However the authors noted that ICS dose was more strongly associated with Tregs than disease 

severity suggesting that such discrepancies between studies could be due to the confounding effect 
of ICS treatment [646].

Studies in adults have also revealed impaired function of blood Tregs isolated in asthmatics [649]. 
Work suggests a reduction in blood CD4+CD25+ Tregs [647] and CD4+CD25+FoxP3+ Tregs [197] in 

patients with severe disease. However unlike the paediatric study a single adult paper found 

increased levels in the BAL fluid of patients with moderate to severe disease compared to mild 

asthmatics and controls [648]. It should be noted that unlike the mild asthmatics, patients with 

moderate to severe disease in this study were all on ICS treatment, which given the observations in 

the paediatric work (see above) may be responsible for the observation seen.

Thl7 cells may be important in neutrophilic asthma with transfer of OVA specific Thl7 cells to mice 

with severe combined immunodeficiency promoting a neutrophilic phenotype which is steroid 

resistant [353]. This is supported by studies which have shown evidence of enhanced Thl7 response 

systemically and locally within the airways of asthmatics. Serum IL-17 levels are elevated in asthma 

and correlate with disease severity [354]. Sputum levels have also been shown to be increased in 

asthmatics compared to controls [650] and IL-17 levels in asthmatic patients correlate with BHR 

[506].

7.1.2 (v) Regulatory T cells and T hl7 cells in obesity

Obesity has been linked with the autoimmune conditions characterised by impaired Treg responses 

[22, 344]. Leptin deficient mice have higher numbers of circulating Tregs and enhanced FoxP3 

expression with improved function of Tregs [296]; leptin receptor deficiency produces a similar 
profile [346]. Leptin neutralisation with antibody also results in enhanced Treg proliferation in an IL- 

2 dependent fashion [345]. Furthermore it has been shown that IL-6, which is significantly increased 

in obesity and asthma, inhibits the suppressive effect of Tregs [348] and promotes Thl7 over Treg

]
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differentiation [117]. Regulatory T cells play a role in other obesity related pathologies including 

non-alcoholic steatohepatitis and high fat feeding of mice has been associated with increased risk of 
endotoxin induced liver injury and a reduced number of Tregs [350]. This has been suggested by one 

group to be related to increased oxidative stress, whereas others have highlighted increased leptin 

levels as a potential mechanism [651].

Normal adipose tissue can be a site for accumulation of Tregs accumulation and the percentage 

CD4+CD25+FoxP3+ cells are reduced in lean vs. obese mice [34, 333]. In humans, obesity is associated 

with a depletion in Treg numbers within visceral adipose tissue, with a corresponding increase in 

pro-inflammatory macrophages and T h l bias [34, 333]. High levels of leptin associated with obesity 

may be mediating these effects [349]. Obesity is characterised by leptin resistance and it may be 

argued that Tregs would also be resistant to its effects. However murine models have shown that 
obesity related leptin resistance may be selective. For example there might be leptin resistance for 
eating behaviour but no resistance for renal sympathetic activity [347]. There has been little work 

on circulating Treg levels in obesity but it would be of interest to determine whether these mirror 
the changes seen in fatty tissue. If obesity does result in reduced numbers of Tregs this would be of 
relevance to asthma and could explain the obesity-asthma association. This area has not been 

explored to date.

Murine models indicate that obesity results in a Thl7 bias. In diet induced obese mice there were 

significantly higher levels of Thl7 cells than in lean animals; obese IL-6 null mice did not develop this 

expansion of Thl7 cells suggesting an IL-6 dependent process [351]. In obese women, circulating IL- 
17 levels have been shown to be elevated compared to normal weight women [352] so Thl7 bias 

seen in obese animal models might extend to humans.

7.1.2 (vi) Tregs/Thl7 cells: the new paradigm?

It is conceivable that there may be imbalance in the differentiation of these two cell types in severe 

asthma including in obese patients. A Thl7/Treg imbalance in asthma is supported by a paediatric 

study of Thl7 and Tregs in child asthmatics (on ICS) vs. controls. In both BAL fluid and peripheral 
blood of the asthmatics there was a significant reduction in circulating Tregs but an increase in Thl7  

cells [195]. This finding is supported by a Chinese adult study of patients with moderate to severe 

asthma versus mild asthma and healthy controls. Increased blood levels of Thl7 and plasma IL-17 

were found in the moderate to severe asthmatics compared with the other groups and these same 

patients also had a reduction in CD4+CD25+FoxP3+Tregs associated with a reduction in plasma IL-10, 
suggesting a Thl7/Treg imbalance [197]. To date there has been no published literature looking at 
whether such an imbalance may exist in obesity and asthma.

7.1.3 Th9 cells

Even more recently a subset of IL-9 producing CD4+T cells, Th9 cells, has been described [134]. These 

differentiate in response to TGF-p and IL-4, which firstly cause up regulation of the transcription 

factors PU-1 and STAT6, respectively, and then GATA3 and IRF4; expression of FoxP3 is suppressed
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[135]. Through IL-9 production, enhanced by IL-25 exposure [136], Th9 cells stimulate proliferation 

of mast cells and may have a role in autoimmune and allergic diseases [137], Their role in asthma 

remains to be clarified but PU-1 deficient mice exposed to allergen have reduced airway 

inflammation [652]. There has been little  work looking at IL-9 producing cells in the context of 

obesity or obesity and asthma.

7.1.4 T cell subsets

7.1.4 (i) Naive, memory and effector subsets

The fundamental immunological benefit o f the adaptive immune system is to provide a specific 

response to antigens, which whilst initially slow, confers long lived immunological memory. Antigen 

inexperienced (naive) versus antigen experienced (memory) CD4+ T helper cells can be identified by 

expression of various surface markers using flow  cytometry (Figure 7.2) [653]. T cells leaving the 

thymus, referred to as naive T cells, express the long splice variant o f CD45 (CD45RA) and the 

chemokine receptor 7 (CCR7). Naive T cells produce large amounts of IL-2, a cytokine that 

encourages T cell survival and growth [653]. A fter encountering a specific antigen these cells 

undergo proliferation and differentiation, losing CD45RA surface expression. Depending on the 

strength o f stimulation these cells acquire the ability to respond to homeostatic molecules, anti- 

apoptotic molecules, homing signals and to perform effector functions [654].

r~
Terminally 
differentiated: 
CCR7- CD45RA+

Naive:
CCR7+ CD45RA+

i
Effector
memory:
CCR7-CD45RA-

_ |

Central 
memory: 
CCR7+ CDRA-

CCR7

Figure 7.2: Classification of T helper (CD4+) subsets according to surface 

expression of CCR7 & CD45RA. With the use of these two surface markers, 

naive, central memory, effect memory and term inally differentiated cells can 

be quantified.
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Cells that develop into terminally differentiated effector cells (CCR7'CD45RA+) perform effector 

functions, producing cytokines such as IFNy in the case of Th l responses, to immediately clear 
antigen and then die. Those which are less well differentiated exist as central memory (CM; 
CCR7+CC45RA) and effector memory (EM; CCR7',CD45RA) cells. Ongoing expression of CCR7 

(CD45RA- CCR7+) enables CM cells to migrate in response to chemokines. CM cells also retain the 

ability to produce IL-2, enabling rapid proliferation. They are important in secondary immune 

responses and confer long term protection but their effector function is limited so on exposure to a 

second insult they will not provide immediate clearance. Upon a second encounter with their 

specific antigen, CM cells differentiate into EM cells. EM cells (CD45RA CCR7 ) lose their homing 

ability and produce much less IL-2, lacking the proliferative capacity of CM cells. Their ability to 

rapidly produce effector cytokines enables them to confer immediate protection on second 

encounter to a specific antigen which is short lived as they terminally differentiate [654].

A large pool of naive T cells with a diverse T cell receptor (TCR) repertoire is paramount to conferring 

protection against novel antigens. Throughout one's lifetime, continual exposure to different 
antigens and the generation of memory subsets erodes this pool. Additionally age related thymic 

involution occurs and so this diminished pool of naive T cells is not replenished [655]. Ageing is 

hence associated with a reduction in naive CD4+ and CD8+ T cells and therefore a reduced TCR 

repertoire with an impaired ability to respond to new antigen. Ageing is also associated with an 

increase in terminally differentiated and a slight increase in CM cells in the CD4 compartment but 
and does not appear to affect the proportion of EM cells in either compartment [655].

7.1.4 (ii) Asthma, obesity and T cell subsets

In asthma, the continual stimulation from environmental allergens might sustain effector 
populations and deplete naive cells. A single study has suggested that asthma may also be 

associated with a reduction in naive T cells as seen in the ageing process [656]. Obesity may also be 

associated with changes in T cell subsets typically associated with ageing. Diet induced obesity in a 

murine model has been associated with a reduction in lymphoid progenitors and accelerated thymic 

involution [657]. This resulted in a reduction in thymic output and T cell receptor repertoire. The 

same paper showed that obesity in humans was also associated with a reduction in thymic output.

Given that obesity and asthma both seem to have some association with changes in the T cell 
population reminiscent of ageing, it would be of particular interest to see whether obesity in asthma 

accelerates these. Such a finding would suggest that obese asthmatics may be vulnerable to 

infection and therefore exacerbations of their disease or may have an overactive effector 
component of their T cell compartment. To date this area has not been explored in the context of 

obesity and asthma.
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7.2 Methods

7.2.1 Identification of lymphocyte subsets, CD4+ T cell subsets 
and regulatory T cells by flow cytometry

Lymphocyte subsets, CD4+ T cell subsets and Tregs were identified using flow cytometry. The 

principles and methods of this procedure are detailed in section 3.11. The identification and 

quantification of basic lymphocyte subsets, namely CD3+ T lymphocytes, CD3+CD4+ T lymphocytes, 
CD3+CD8+ cytotoxic T cells, CD16+CD56+ NK cells and CD19+ B lymphocytes was performed using 

antibody-fluorochrome conjugates against their respective surface markers. Antibodies against CCR7 

and CD45RA were used to measure the major CD4 subsets (naive, CM, EM and terminally 

differentiated cells). Tregs were identified using surface staining against CD4, CD25 and CD127 as 

well as intracellular staining against FoxP3. The antibody-fluorochrome conjugates used are listed in 

Table 7.2

Antigen Fluorochrome Cell expression Clone Source

CD3 e450 T lymphocytes UCHT1 eBioscience, UK
CD4 e450 CD4 positive T lymphocytes OKT4 eBioscience, UK

FITC (Thl, Th2, Thl7, Th9 Tregs) S3.5 LifeTechnologies(Caltag), UK
Alexa Fluor 488 OKT4 eBioscience, UK

CD8 PE Cytotoxic T cells OKT8 eBioscience, UK
CD16 APC High expression NK cells and CB16 eBioscience, UK

FITC activated monocytes 3G8 BD Biosciences (Pharmingen), UK
CD19 Alexa Fluor 700 B lymphocytes HIB19 eBioscience, UK

CD25 APC Tregs, activated T lymphocytes BC96 eBioscience

CD28 PE 10F3 Life Technologies(Caltag), UK

CD45RA FITC High expression on naive T cells 
and Terminally differentiated T 
cells

H1100 eBioscience, UK

CD56 APC High expression on NK cells MEM18
8

eBioscience, UK

CD127 PerCP-Cy55 Low expression in Tregs RDR5 eBioscience, UK

CD197
(CCR7)

APC High expression on central and 
effector memory T cells.

3D12 eBioscience, UK

FOXP3 PE Tregs PCH101 eBioscience, UK
Mouse IgGl 
Isotype control

PercP-Cy5.5 P3.6.2.8
.1

eBioscience, UK

Mouse lgG2a 
Isotype control

PE 20102 R&D Systems

Mouse lgG2b 
Isotype control

FITC eBMG2
b

eBioscience, UK

Rat lgG2a Isotype 
Control

APC eBR2a eBioscience, UK

Rat lgG2a Isotype 
control

PE eBR2a eBioscience, UK

Table 7.2: List of the monoclonal antibodies and fluorochromes used in lymphocyte subsets, T cell 
subsets and Tregs identification. The commercially available antibodies, respective fluorochromes 

and sources are listed.
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7.2.1 (i) Surface staining

Predetermined volumes of antibodies were added to lOOpI of heparinised blood on the day of 
collection. Isotype controls were also used to control for non-specific antibody binding. The 

antibodies used to identify the respective cell types are listed in Table 6.3.

Following addition of antibodies to each of the respective tubes, the samples were incubated on ice 

for 30 minutes. Red blood cell lysis solution (3ml) was then added (FACS lysing solution, BD 

Biosciences) before incubation in the dark at room temperature for 10 minutes. Cells were collected 

by centrifugation (4°C, 515 x g for 7 minutes) and the supernatant discarded before washing in 3ml 
of FACS buffer (PBS with 0.2% BSA and 0.05% sodium azide) by repeat centrifugation. The 

supernatant was removed and the cells fixed using 200pl FACS fix (BD Biosciences), except for those 

tubes used for the identification of Tregs which required permeablisation and intracellular staining 

to FoxP3.

Experiment Tube
number

Antibody added

Lymphocyte 1 No antibody
subsets 2 CD3 eFIuor 450, CD4 FITC, CD8PE, CD16 APC, CD56 APC, CD19 

AlexaFluor 700

CD4 subsets 1 No antibody
2 CD4 eFIuor 450.
3 CD4 eFIuor 450, mouse lgG2b FITC, rat lgG2a APC.
4 CD4 eFIuor 450, CD45RA FITC, CCR7 APC.

Regulatory T 1 No antibody
cells 2 CD4 AlexaFluor 488, rat lgG2a APC, mouse IgG l PerCP-Cy5.5.

3 CD4 AlexaFluor 488, CD25APC, CD127 PerCP-Cy5.5, rate lgG2a PE

4 CD4 AlexaFluor 488, CD25APC, CD127 PerCP-Cy5.5, FoxP3 PE

Table 7.3: Flow cytometry panel used to identify and/or phenotype lymphocyte subsets, 
CD4+ T cell subsets and Tregs. A sample was also used with no antibody added to control for 
autofluorescence. Samples were also stained with isotype controls to control for non-specific 
binding.

7.2.1 (ii) Intracellular staining

To identify circulating Tregs, cells were surface stained for CD4, CD25 and CD127 by the methods 

described above and, to increase the specificity of Treg identification, were also stained with 

intracellular FoxP3. After surface staining, 1ml of freshly prepared fixation/permeabilisation buffer 

(eBiosciences) was added to relevant samples followed by incubation on ice for 1 hour. The fixed 

cells were collected by centrifugation (4°C, 515 x g for 7 minutes) and the supernatant discarded, the 

samples were then washed twice with 2mls of permeabilisation buffer (eBiosciences) by 

centrifugation. Anti-FoxP3 antibody and the respective isotype control were added to the
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appropriate samples suspended in lOOpI permeabilisation buffer for incubation at room 

temperature in the dark for 30 minutes. The samples were then washed twice w ith 2ml of 

permeabilisation buffer as before then fixed w ith 200pl FACS fix (BD Biosciences, USA). All samples 

were analysed within 24 hours of processing. The gating strategy used to quantify the percentage of 

basic lymphocyte subtypes, CD4+ T cell subsets and regulatory T cells are shown in Figures 7.3, 7.4 

and 7.5 respectively.

•Lymphocytes

CD16/56+ NK 
cells

ICD19+ B 
lymphocytes

CD3+ T cells

CD3+ T Lymphocytes

CD3 efluor450 CD3e450

1CD8* 
:Cytotoxlc 
IT cells

-

o +

!c-
1
J

i

CD4 »T helper cells

Figure 7.3: Gating strategy to identify lymphocyte subsets.
A: Using forward scatter (FSC) and side scatter (SCC), lymphocyte population 
identified.
B: Gating on lymphocytes, CD3+ T lymphocytes identified.
C: Gating on CD3+ T lymphocytes, CD4+ and CD8+ populations identified.
D: Gating on lymphocytes, CD19+ B lymphocytes identified.
E : Gating on lymphocytes CD16+CD56+ positive NK cells identified.
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CD4+ lymphocytes

Q  10P 10’ 10=

CD4 eflour 450

Term inally Naive cells 
d iffe ren t..

Central memory

CCR7 APC

Figure 7.4: Gating strategy to identify CD4+T cell subsets.
A: Using forward scatter (FSC) and side scatter (SCC), lymphocyte population 
identified.
B: Gating on lymphocytes, CD4+ lymphocytes identified.
C: Gating on CD4+ lymphocytes, CCR7+ CD45RA+ (naive), CCR7+ CD45RA (central 
memory), CCR7 CD45RA (effector memory) and CCR7 CD45RA+ (terminally 
d ifferentiated) cells identified.
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CD4+ T cells

200-

10* 10*10’

CD4 Alexaftuor 488

CD4+CD25+CD127- T cells
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CD25 APC

CD4+CD2' IZfTcSV P3+ T cells
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10110’
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Figure 7.5: Gating strategy to identify regulatory T cells.
A: CD4+ lymphocytes identified.
B: Gating on CD4+ lymphocytes, population of CD25+CD127 lymphocytes 
identified.
C: Gating on CD4+CD25+CD127 lymphocytes, using isotype control gate 
placement determined for FoxP3+cells.
D: Gating on CD4+CD25+CD127‘ lymphocytes, CD4+CD25+CD127'FoxP3+ cell 
identified.



7.2.2 Whole blood phytohaemagluttinin stimulated cytokine 
responses

All culture work was undertaken in a class II tissue culture cabinet. The process of whole blood 

culture is discussed in more detail in section 2.9. The media used for culture preparation was RPMI 
1640+ glutamax (Life Technologies, UK), supplemented with 50mM of 2-mercaptoethanol (ME; Life 

Technologies, UK). Culture media (600|il) was added to 4 tubes (2 tests in duplicate) and mixed 

gently with blood (200pl). Phytohaemagluttinin-L (PHA 5pg/ml; Sigma) is a lymphocyte mitogen 

[426] and was added to two of the 4 tubes prior to incubation of all tubes at 37°C in 5% C02-in-air 
for 48 hours. The other two tubes were left unstimulated to control for background levels of the 

cytokines. After incubation the tubes were centrifuged for 7 minutes at 4°C, 515 x g and cell free 

supernatants were removed for storage at -20°C until subsequent cytokine analysis.

The cytokines measured in response to PHA stimulation, the respective kits used, and their 

sensitivities are summarised in Table 7.4.

Cytokine Principle lymphocyte 
source

Sensitivity
(pg/ml)

Kit source

IFNy Thl 7.813 Ready-SET-Go, 
eBioscience, UK

IL-13 Th2 7.813 Ready-SET-Go, 
eBioscience, UK

IL-9 Th9 1.563 Ready-SET-Go, 
eBioscience, UK

IL-10 Tregs 7.813 Opt EIA, BD Biosciences, 
USA

IL-17 A Thl7 7.813 Ready-SET-Go, 
eBioscience, UK

Table 7.4: Cytokines measured in response to PHA stimulation. Cytokines representing 
each T helper subset were assayed. The commercially available kits used and their 
respective sensitivities are shown.
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7.3 Results
7.3.1 Lymphocyte subsets

The percentage of circulating major lymphocyte subsets was measured in 79 individuals (41 controls 

and 38 asthmatics) and the results are summarised in Table 7.5. The percentage of CD16+CD56+NK 

cells did not pass the KS test (p=0.002) and therefore data were logarithmically transformed before 

analysis.

There was no significant difference in the percentage of CD3+ T lymphocytes (expressed as a 

percentage of total lymphocytes) across the 6 groups (Table 7.5). Across the entire study population 

levels did not differ significantly with BMI category (p=0.4456) or when BMI was examined as a 

continuous variable (r=-0.44, p=0.703) and no correlation was seen with WHR or percentage body 

fat. Levels did not correlate with participant age. When asthma and controls were analysed 

separately no association was seen between CD3+ T lymphocytes (%) and BMI category, continuous 

BMI, percentage body fat, or WHR in either group. Levels were not higher in asthmatics versus 

controls across the entire study group (p=0.812) or when each BMI category was compared 

individually. Within the asthmatics there were no correlations between this variable and age of 
onset, asthma duration, control, ICS use or any of the spirometric markers.

CD4+ T lymphocytes and CD8+ T lymphocytes expressed as a percentage of CD3+ T lymphocytes did 

not differ significantly across the 6 groups or across BMI categories (p=0.283 and p=0.368 

respectively) within the entire cohort (Table 7.5). When BMI was examined as a continuous variable 

no association was seen with either parameter (r=0.030, p=0.794 and r=0.56, p=0.625 respectively) 
and no correlations observed with WHR or percentage body fat. Similarly no associations were seen 

with CD4:CD8 ratio. When asthmatics and controls were analysed separately no correlations with 

either CD4+ (%) or CD8+ (%) T cells and any markers of adiposity were seen. Percentages of either cell 
type were not significantly different in asthmatics versus controls across the entire study group 

(CD4+ T cells: p=0.275, CD8+T cells: p=0.197) or when each BMI category was compared individually. 
Within the asthmatics neither cell type correlated with age of onset, asthma duration, asthma 

control, ICS use or any of the spirometric measures.

There were no significant differences in the percentage of CD16+CD56+ NK cells across the 6 groups 

(Table 7.5) or across the 3 BMI categories (p=0.118). When BMI was examined as a continuous 

variable, no correlation was seen with NK cells (r-0.52, p=0.652) across the whole study group or 
when asthmatics and control were examined separately. Similarly no correlations were seen 

between CD16+CD56+ NK cells and WHR or body fat across the entire study group or in the 

asthmatics and controls when analysed separately. Levels were not higher in asthmatics versus 

controls (p=0.684) across the entire group or when each BMI category was compared individually. 
Within the asthmatics the percentage of CD16+CD56+NK cells was not associated with age of onset, 
asthma duration, asthma control, ICS use or spirometric measures taken.

The percentage of B lymphocytes (expressed as a percentage of total lymphocytes) significantly 

differed across the 6 groups (Table 7.5). B lymphocytes were significantly higher in asthmatics than 

controls (p=0.005). When the individual BMI categories were compared normal weight (NW)
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asthmatics (mean =11.77%) had significantly higher levels than NW weight controls (mean=8.89%) 
(p=0.029), although there was a trend towards higher levels in the obese asthmatics (OB) 
(mean=11.31%) than OB controls (mean=9.77%)/ this was not significant (p=0.162). No association 

with BMI category was seen across the entire cohort (p=0.722), continuous BMI (r=0.155; p=0.179), 
percentage body fat or WHR. Across the entire cohort, age did not correlate with this variable. 
Within the asthmatics there was no association between B lymphocytes (%) and BMI category 

(p=0.720), BMI as a continuous variable (r=0.155, p=0.179), WHR or percentage body fat. Similarly in 

the controls no adiposity markers were associated with this variable. Furthermore there was no 

association between B lymphocytes and age of onset, disease duration, asthma control score, ICS 

use or any of the spirometric measures.

Control
NW
n=15

s
OW
n = l l

OB
n=15

Asthma
NW
n=13

tics
OW
n = l l

OB
n=14

p value

CD3+T
lymphocytes

(%)
Mean (SD)

71.11
(5.58)

68.66
(6.26)

69.91
(11.28)

69.95
(6.63)

74.48
(6.12)

67.71
(7.71)

All 6 groups: p=0.381 
BMI category: p=0.456 
A vs. C: p=0.812

CD4+T
lymphocytes
(%i
Mean (SD)

64.40
(7.08)

60.95
(8.54)

63.50
(9.11)

60.68
(8.08)

58.39
(9.63)

63.35
(9.63)

All 6 groups: p=0.515 
BMI category: p=0.283 
A vs. C: p=0.275

CD8+T
lymphocytes
{%)
Mean (SD)

26.13
(5.31)

30.44
(8.49)

29.09
(10.3)

30.27
(6.39)

32.27
(8.16)

29.98
(9.42)

All 6 groups: p=0.534 
BMI category: p=0.368 
A vs. C: p=0.197

CD4:CD8 ratio
Mean (SD)

2.58
(0.66)

2.26
(1-15)

2.49
(1.03)

2.12
(0.64)

1.95
(0.68)

2.39
(0.97)

All 6 groups p=0.477 
BMI category: p=0.389 
A vs. C: p=0.139

CD16+CD56+ NK 
cells (%)
Geometric mean 
(SD)

11.00
(3.74)

10.41
(3.20)

12.12
(10.6)

11.17
(5.34)

8.65
(3.45)

11.21
(7.57)

All 6 groups: p=0.448 
BMI category: p=0.118 
A vs. C: p=0.684

CD19+ B 
lymphocytes 
(%>
Mean (SD)

8.89
(2.58)

9.22
(2.36)

9.77
(2.45)

11.77
(3.37)

10.61
(3.61)

11.31
(3.21)

All 6 groups p=0.092 
BMI category: p=0.722 
A vs. C: p=0.005

Table 7.5: Percentage of circulating lymphocyte subsets in asthmatics and controls according to 
BMI category.
Normally distributed data are expressed as mean and standard deviation (SD). CD16+CD56+NK cells 
(%) data were positively skewed and therefore expressed as a geometric mean and standard 
deviation and were logarithmically transformed before analysis. Differences between all 6 groups 
were analysed using a one-way ANOVA. Differences between asthmatics (A) and controls (C) were 
analysed using an unpaired t-test. Differences between BMI categories were analysed using a one
way ANOVA. CD3+ T cells, CD16+CD56+ NK cells and CD19+ B cells are expressed as a percentage of 
total lymphocytes. CD4+ and CD8+cells were expressed as a percentage CD3+T cells.
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Given the importance of B lymphocyte production of IgE and associations reported between B 

lymphocyte and eosinophils, correlations between B lymphocyte (%) and these variables was 

examined for but none significant were seen were seen across the entire cohort (IgE: r=0.174, 
p=0.130; eosinophils: r=0.103, p=0.371). Similarly no correlations were observed when asthmatics 

and controls were analysed separately.

7.3.2 Regulatory T cells

Data regarding the percentages of CD4+CD25+CD127' T cells and CD4+CD25+CD127'FoxP3+ T cells 

were collected on 79 patients (40 controls, 39 asthmatics). Using flow cytometry, cells were gated as 

shown in Figure 7.5 to give the percentage of CD4+ T cells which were CD4+CD25+CD127" and 

CD4+CD25+CD127'FoxP3+. Both parameters passed the KS test (p=0.675 and p=0.950 respectively) 

and the data are shown in Table 7.6.

With regards to CD4+CD25+CD127 T cells (expressed as a percentage of CD4+ cells), there was no 

significant difference in percentages across the 6 groups (p=0.063). There was an apparent reduction 

in the percentage of CD4+CD25+CD127‘ T cells in the asthmatics (mean =5.89%) versus controls 

(mean= 6.36%) (p=0.040). Over the entire cohort, increase in BMI category from NW to OW and 

obese was associated with a reduction in CD4+CD25+CD127'T cells, although this was not significant 
(NW mean=6.55%, OW mean=5.86, OB mean=5.90% p=0.068). The overweight and obese individuals 

had significantly lower levels of CD4+ CD25+CD127' T cells than the normal weight group (p=0.034 

and p=0.032, respectively). When BMI was analysed as a continuous variable there was a trend 

towards a reduction in CD4+CD25+CD127'T cells with increasing BMI but this was not significant (r=- 
0.181, p=0.110). Although percentage body fat was negatively correlated with CD4+CD25+CD127' T 

cells across the entire group this was not significant (r=-0.126, p=0.267). No correlation was seen 

with WHR. Across the entire population age did not correlate with this parameter.

The trend towards a negative correlation between CD4+CD25+CD127‘ T cells and BMI was more 

apparent in asthmatics (r=-0.247, p=0.130) than controls (r=-0.520, p=0.748) although neither was 

significant. A similar trend was seen with percentage body fat in the asthmatics only but not WHR. 
Obese asthmatics had the lowest level of CD4+CD25+CD127' T cells, which was lower than obese 

controls (p=0.059) and normal weight asthmatics (p=0.084) although this did not reach statistical 
significance. Across the cohort, age was not associated with CD4+CD25+CD127' T cells. Within the 

asthmatic group CD4+CD25+CD127' T percentage did not correlate with age of onset, disease 

duration, asthma control, ICS use or any of the spirometric measures.

In terms of the percentage of circulating CD4+CD25+CD127' FoxP3+T cells there was no significant 
difference across the 6 groups (p=0.203) (Table 7.6). Levels decreased with increasing BMI category 

across the entire cohort, however this was not statistically significant (p=0.087). Obese participants 

across the whole cohort had the lowest percentage of CD4+CD25+CD127' FoxPB^T cells (Figure 7.6), 
which was significantly lower than normal weight individuals (NW=5.29%, OW= 4.78%, OB=4.73%), 
(p=0.038). Even being overweight appeared to be associated with a reduction in this cell type (Figure 

7.6), however this was not significant (p=0.113). When BMI was examined as a continuous variable it
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was negatively associated with CD4+CD25+CD127'FoxP3+T cells but this was not significant (r= -0.183 

p=0.107). Percentage body fat also negatively correlated with CD4+CD25+CD127' FoxP3+ T cells but 
this was also not significant (r=-0.126, p=0.267). Across the entire cohort age did not correlate with 

CD4+CD25+CD127' FoxP3+T cells.

When asthmatics and controls were analysed separately, a non-significant correlation between CD4+ 
CD25+CD127' FoxP3+T cells and BMI was only seen in the asthmatics (r=-0.227, p=0.165) and not the 

controls (r=-0.105, p=0.553). Similar trends were seen with percentage body fat but not WHR. 
Asthmatics had lower levels of Tregs than controls (mean=4.785% versus mean=5.114%) however 

this was not significant (p=0.161). Similarly when each BMI category was compared individually no 

significant differences were seen between asthmatics and controls. Obese asthmatics had the lowest 
levels of circulating CD4+ CD25+CD127" FoxP3+T cells of all the six groups but this was not significantly 

lower than obese controls (p=0.094) or normal weight asthmatics (p=0.124). Within the asthmatics, 
age of onset asthma duration, control, ICS, and spirometric measures did not correlate with CD4+ 
CD25+CD127' FoxP3+T cells.

As leptin and IL-6 can negatively modulate Tregs, association between CD4+CD25+CD127' 
FoxP3+Tregs and these parameters was explored across the entire cohort. No significant correlation 

was seen with leptin (r=-0.038 p=0.305) or IL-6 (r= -0.109 p=0.399) and no significant correlation was 

seen when asthmatics and controls were analysed separately. In chapter 6, plasmacytoid dendritic 

cells (pDCs) were noted to negatively correlate with BMI and in their resting state can promote 

differentiation of Tregs, however no correlation was seen between pDCs (%) and CD25+CD127' 
FoxP3+T cells (r=0.038, p=0.756). Furthermore as there has been recent interest in the role of these 

cells in insulin resistance, correlations with fasting glucose and insulin resistance were considered, 
however none were seen (r=-0.007, p=0.953 and r=-0.56, p=0.626 respectively).

Control
NW
n=15

s
OW
n=12

OB
n=13

Asthma
NW
n=14

tics
OW
n=12

OB
n=13

p value

CD4+CD25+CD127‘
lymphocytes
Mean
(SD)

6.77
(0.91)

5.95
(0.74)

6.28
(1.04)

6.33
(1.38)

5.76
(1.51)

5.54
(0.87)

All 6 groups:
p=0.063
BMI
category: 
p=0.040 
A vs. C:
p=0.068

CD4+CD25+CD127‘FoxP3+ 
lymphocytes [%)
Mean
(SD)

5.48
(1.06)

4.82
(0.84)

4.97
(0.91)

5.09
(1.31)

4.74
(1.33)

4.49
(0.35)

All 6 groups:
p=0.203
BMI
category: 
p=0.087 
A vs. C:
p=0.161

Table 7.6: Percentage of circulating CD4+CD25+CD127' and CD4+CD25+CD127' FoxP3+ Tregs across 
the 6 study groups. Normally distributed data are expressed as mean and standard deviation (SD). 
Differences between all 6 groups and BMI categories were analysed using a one-way ANOVA. 
Differences between asthmatics (A) and controls (C) were analysed using an unpaired t-test. 
CD4+CD25+CD127' and CD4+CD25+CD127 FoxP3+ Tregs are expressed as percentage of CD4+ cells.
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Figure 7.6: Percentage of circulating CD4+CD25+CD127 FoxP3+ Tregs in 
the 3 BMI categories across the entire study group.
Data displayed as mean and error bars. Obese patients had the lowest 
levels o f CD4+CD25+CD127 FoxP3+ Tregs which was significantly lower 
than normal weight individuals (p=0.038). CD4+CD25+CD127 FoxP3+ are 
expressed as a percentage o f CD4+ cells.

7.3.3 CD4+ T cell differentiation

Data was collected on the percentage of circulating CD4+T cells at d ifferent stages of d ifferentiation 

in 77 subjects (38 controls and 39 asthmatics) and these are displayed in Table 7.7. Data on the 

percentage of circulating naive CD4+ T cells passed the KS test (p=0.765). Data for the percentage of 

central memory (CM), effector memory (EM), and term inally differentiated (TERMA) CD4+ T cells did 

not pass the KS test (p=0.185, p=0.222, and p=0.154), so was logarithmically transformed for 

analysis.

Circulating naive (CCR7+CD45RA+) CD4+T cells expressed as a percentage of CD4+cells significantly 

differed across the 6 groups (Table 7.7) w ith  the percentage o f these cells decreasing w ith increasing 

BMI category across the entire study population (p=0.013) (Figure 7.6). Obese participants had the 

lowest percentage of circulating naive CD4+ T cells (NW= 44.7%, OW 37.0%, obese 35.3%) and this 

was significantly lower than normal weight individuals (p=0.007). When BMI was analysed as a 

continuous variable this negative association was also significant (r=-0.307, p=0.007); negative 

correlations were also seen w ith percentage body fat (r=-0.295, p=0.009) but not WHR. Age 

correlated negatively w ith the percentage of circulating naive CD4+ T cells (r= -0.355, p=0.002), 

however the association between BMI and circulating naive CD4+T cells persisted after retaining age
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in a general linear model (BMI p=0.025, age p=0.006, R2 value =0.183). When asthmatics and 

controls were analysed separately a negative association between BMI category and percentage of 
naive CD4+ cells was more apparent in the asthmatics than the controls (p=0.052 and p=0.062 

respectively). Similar observations were noted with other adiposity markers

Asthma status had no association with the percentage of circulating naive CD4+ T cells across the 

entire cohort (p=0.982) or when each of the BMI categories was compared individually. The 

percentage of circulating naive CD4+ T cells correlated negatively with asthma duration (r=-0.380, 
p=0.017) however this did not remain significant after adjusting for patient age (asthma duration 

p=0.153, age p=0.153, R2=0.192). Asthma control score, medication use including ICS, and 

spirometric measures were not associated with the percentage of naive CD4+ T cells.

Central memory (CM; CCR7+CD45RA) CD4+ T cells expressed as a percentage of CD4+ T cells 

significantly varied across the 6 groups (see Table 7.7) (p=0.022). This was due to an apparent 
increase in this cell type with each BMI category across the entire cohort (Figure 7.6; NW = 19.5%, 
OW = 24.0%, Obese=24.8% (p=0.006)). Obese women had significantly higher levels than normal 
weight individuals (p=0.004). When BMI was examined as a continuous variable this positive 

association remained significant (r= 0.379, p=0.001). Percentage body fat but not WHR also 

correlated with this variable (r=0.369, p=0.021). Age was positively associated with the percentage 

of CM CD4+ T cells (r=0.275, p=0.015), however the association between BMI and CM CD4+ T cells 

remained significant after including this covariate in a general linear model (BMI p=0.002, age 

p=0.057, R2= 0.185). When asthmatics and controls were analysed separately the positive 

association between this variable and BMI category was less convincing and only significant in the 

asthmatics (p=0.012, and p=0.065 respectively). Similar observations were made when examining 

the other adiposity markers,

Asthma status across the entire cohort was not associated with the percentage of CM CD4+ T cells or 
when each individual BMI category was compared. Asthma duration, asthma control score, 
medication usage and spirometric measures were not associated with this variable.

Circulating effector memory (EM; CD45RA CCR7 ) cells expressed as a percentage of CD4+ T cells, 
differed significantly across the 6 groups (Table 7.7). This was due to a positive association between 

this variable and BMI category across the entire study population (Figure 7.6; NW=22.8%, 
OW=27.3%, OB=28.9% (p=0.055)). Obese had significantly higher levels of this cell type than normal 
weight individuals (p=0.025). When BMI was analysed as a continuous variable there was also a 

significant positive association with EM CD4+ T cells (r=0.256, p=0.025), as with percentage body fat 
(r=0.342, p=0.033) but not WHR. Age was positively correlated with this variable (r=0.288, p=0.011) 
and the association between BMI and the percentage of EM CD4+T cells became less significant after 

retaining patient age in the model (BMI p=0.068, age p=0.031, R2=0.124).

When asthmatics and controls were analysed separately the positive association between BMI 
category and EM cells was less convincing and not statistically significant in either group (p=0.094 

and p=0.060 respectively). Asthma status was not associated with the percentage of EM CD4+ T cells 

across the entire population (p=0.554) or when each BMI category was compared individually. 
Within the asthma patients EM CD4+ T cells correlated positively with asthma duration (r=0.363, 
p=0.023), however this did not remain significant after adjusting for age (asthma duration p=0.125, 
age p=0.445, R2=0.146). Interestingly within the asthmatics FEV1 (% predicted) (r =-0.4, p=0.013) and
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FEF25-75 (% predicted) (r=-0.407 p=0.011) were both negatively associated with the percentage of 
EM CD4+T cells.

Terminally differentiated (TERMA; CCR7 CD45RA+) CD4+ T cells, expressed as a percentage of CD4+T 

cells varied significantly across the 6 groups (Table 7.7) (p=0.018). This was due to trend towards a 

reduction in this cell type with each BMI category (NW = 9.45%, OW= 8.05%, OB=6.86%; p=0.097) 

(Figure 7.7); obese individuals having lower levels than normal weight individuals (p=0.029). BMI as a 

continuous variable(r=-0.361, p=0.001) and percentage fat (r=-0.342, p=0.02) also correlated 

negatively with CCR7'CD45RA+CD4+ T cells. Age was not associated with the percentage of 
terminally differentiated cells. When analysed separately the association between increasing BMI 
category and CCR7'CD45RA+CD4+ T cells was only seen in the controls (p=0.016) and not the 

asthmatics (p=0.206). Similar findings were noted when examining correlations between the other 

adiposity measures and CCR7'CD45RA+CD4+ T cells in the asthmatics and controls separately.

Contro
NW
n=13

s
OW
n=10

OB
n=15

Asthma
NW
n=13

tics
OW
n=12

OB
n=14

p value

CD45+CCR7+ 
CD4 (naive) 
lymphocytes
(%)
Mean
(SD)

43.9
(9.06)

33.6
(8.77)

38.1
(11.4)

45.5
(13.6)

39.7
(11.5)

32.3
(15.0)

All 6 groups: p=0.038 
BMI category: p=0.013 
A vs.C: p= 0.982

CD45CCR7*
(CM)
lymphocytes
(%)
Geometric mean 
(SD)

19.4
(7.43)

22.1
(6.97)

26.6
(8.15)

19.6
(4.6)

25.6
(9.63)

23.0
(5.12)

All 6 groups: p= 0.022 
BMI category: p=0.006 
A vs. C: p=0.899

CD45CCR7'
(EM)
lymphocytes
Geometric mean 
(SD)

22.5
(5.21)

30.72
(9.01)

25.5
(9.97)

23.1
(11.0)

25.5
(9.52)

32.8
(14.9)

All 6 groups: p= 0.060 
BMI category: p=0.055 
A vs. C: p=0.554

CD45+CCR7
(TERMA)
lymphocytes
(%i
Geometric mean 
(SD)

10.4
(7.49)

10.9
(4.58)

5.93
(3.91)

8.61
(3.27)

6.26
(3.87)

8.0
(4.54)

All 6 groups: p=0.018 
BMI category: p=0.097 
A vs. C: p=0.417

Table 7.7: Percentage of CD4* lymphocyte subsets in asthmatics and controls according to BMI 
category.
Normally distributed data are expressed as mean and standard deviation (SD). Positively skewed 
data are expressed as a geometric mean and standard deviation and were logarithmically j
transformed before analysis. Differences between all 6 groups and BMI categories were analysed j
using a one-way ANOVA. Differences between asthmatics (A) and controls (C) were analysed using 1
an unpaired t-test. Data are expressed as a percentage of CD4+ cells with the respective surface '
markers detailed.
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Asthma status was not associated w ith the percentage of circulating term inally differentiated CD4+ T 

cells (p=0.417) across the entire study population or when each BMI category was compared 

individually. Asthma duration, age of onset, control score, ICS use and spirometric measures were 

not associated w ith this variable.

-p Term inally  
d ifferen tia ted

Ci - n i y  
BMI <M*gory

m em ory

BMI c t t r y o i  y

Naive

3
u
2
I
U
/
S

I

Central
m em ory

i
11

— i—
tfcvrul L W M ( h

B M I c a te g o ry

Figure 7.7: Percentage of naive, central memory, effector memory and terminally 
differentiated CD4+ lymphocytes in the three BMI categories across the entire study 
group. Flow cytometry was used to identify CD4+ T cells expressing various 
combinations of CD45RA and CCR7, giving the 4 cell populations (see Figure 6.2). 
Across the entire study group, increasing BMI category was associated w ith decreasing 
naive CD4+ cells (p=0.013) and increasing central memory (p=0.006) and effector 
memory cells (p=0.055).
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7.3.4 Cytokine responses to (PHA) stimulation

Cytokine responses to PHA from whole blood cultures were analysed in 83 individuals (controls n 

=43, asthmatics n=40) and are summarised in Table 7.8. PHA-induced IFNy (p=0.001), IL-13 

(p<0.001), IL-9 (p<0.001), IL-17 (p=0.001) and IL-10 (p=0.001) were positively skewed and therefore 

data was logarithmically transformed for analysis.

Controls
NW
n=15

OW
n=13

OB
n=15

Asthmat
NW
n=14

cs
OW
n=12

OB
n=14

p value

IFNy (Thl) 
(ng/ml)
Geometric
mean
(SD)

10.47
(14.83)

10.37
(35.05)

11.02
(15.02)

6.44
(4.28)

18.6
(26.00)

17.73
(14.69)

All 6 groups: 
p=0.025 
BMI category: 
p=0.052 
A-C: p=0.398

IL-13
(Th2)
(pg/m l)
Geometric
mean
(SD)

393.77
(482.62)

179.24
(190.07)

382.89
(910.30)

219.26
(169.51)

265.50
(558.89)

305.12
(393.82)

All 6 groups: 
p=0.259 
BMI category: 
p=0.532 
A-C: p=0.164

IL-9 (Th9) 
(Pg/ml)
Geometric
mean
(SD)

63.81
(43.70)

86.26
(152.39)

61.53
(146.22)

60.87
(51.81)

145.37
(158.31)

103.08
(181.23)

All 6 groups: 
p=0.189 
BMI category: 
p=0.129 
A-C: p=0.164

IL-17
(Thl7)
(pg/ml)
Geometric
mean
(SD)

349.90
(336.87)

816.27
(784.79)

646.74
(709.43)

397.20
(250.84)

497.57
(664.83)

647.09
(645.59)

All 6 groups:
p=0.011
BMI category: 
p=0.003 
A-C: p=0.510

IL-10
(Treg)
(Pg/ml)
Geometric
Mean
(SD)

251.31
(220.14)

384.13
(281.47)

256.20
(164.45)

289.20
(147.61)

274.51
(209.86)

288.39
(167.88)

All 6 groups: 
p=0.429 
BMI category: 
p=0.374 
A-C: p=0.634

Table 7.8: Cytokine responses to PHA stimulation of whole blood in asthmatics and controls 
according to BMI category.
Data were positively skewed, expressed as a geometric mean and standard deviation (SD) and was 
logarithmically transformed before analysis. Differences between all 6 groups and the 3 BMI 
categories were analysed using a one-way ANOVA. Differences between asthmatics (A) and controls 
(C) were analysed using an unpaired t-test.
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PHA-stimulated IFNy response significantly differed between the 6 groups (Table 7.8). This was due 

to normal weight asthmatics having a significantly lower geometric mean PHA-stimulated IFNy 

response than the overweight and obese asthmatics (OW asthma p=0.002 and OB asthma p=0.001) 
and the control groups (NW control p=0.01, OW control p=0.07, OB control p=0.005) (Figure 7.7). 
When BMI was examined as a continuous variable an asthma-BMI interaction was observed 

(p=0.095, R2=0.231) such that BMI was not associated with PHA-stimulated IFNy response in the 

control individuals (r=0.005, p=0.976) but in the asthmatics BMI was positively correlated with this 

parameter (r=0.405, p=0.009). A similar trend was seen with body fat composition but not WHR. 
Obese asthmatics had the highest PHA-stimulated IFNy response (mean=17.73ng/ml) which was 

significantly higher than normal weight asthmatics (mean=6.44ng/ml) (p=0.001) and higher than 

obese controls (mean=11.02ng/ml) although this was not significant (p=0.148). Similarly overweight 
asthmatics also had significantly higher levels than normal weight asthmatics (p=0.002) but not 
overweight controls (p=0.142). Age was associated with increasing PHA-stimulated IFNy response 

(r= 0.194 p=0.078). However the association between IFNy PHA response and BMI persisted in the 

asthmatic group after retaining age in a general linear model (BMI p=0.017, age p=0.488, R2= 0.178,). 
The PHA-stimulated IFNy response was not associated with asthma duration, age of onset, asthma 

control score, ICS use or any of the spirometric measures.

As leptin has been associated with Th l skewing a correlation between leptin and PHA-stimulated 

IFNy was considered. Across the whole study population no association was seen (r=0.138, p=0.213) 
but there was an asthma-leptin interaction. Leptin had different associations with the PHA- 
stimulated IFNy response in asthmatics versus controls (p=0.011, R2=0.101). Leptin was not 
associated with PHA-stimulated IFNy response in the control group (r=-0.121, p=0.439), however 
there was a significant association between BMI and PHA-stimulated IFNy in the asthmatics (r=0.413, 
p=0.008) and this persisted when adjusting for the affects of age (leptin p=0.004, age p=0.195, 
R2=0.238). Interestingly, in a general linear model, the association between BMI and PHA-stimulated 

IFNy, in the asthmatics did not remain significant when leptin levels were incorporated (BMI 
p=0.970, leptin p=0.110 R2 value=0.171). This could suggest that leptin levels may be involved in the 

association between BMI and PHA-stimulated IFNy response.

PHA-stimulated IL-13 levels did not differ significantly across the 6 groups (Table 7.8). There was no 

association with BMI category across the entire cohort (p=0.532) or when BMI was examined as a 

continuous variable (r=-0.060, p=0.586). Levels were not significantly different in asthmatics vs. 
controls across the entire cohort (p=0.164) or when each of the BMI categories was compared. 
Across the entire study group, age did not correlate with this variable and within the asthmatics no 

correlation was seen with asthma duration, control score, ICS use or any of the spirometric 

measures.

PHA-stimulated IL-9 response did not differ significantly across the 6 groups (p=0.189). Levels did 

not vary significantly across the entire cohort with BMI category, continuous BMI (r=0.164, p=0.139), 
or the other adiposity measures. No associations were seen with adiposity marker when asthmatics 

and controls were analysed separately. Levels were not different for asthmatics vs. controls 

(p=0.164) across the entire cohort or when each BMI category was compared. No correlations were
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seen w ith age across the entire study group or w ith asthma duration, control score, ICS use or 

spirometric measures w ithin the asthmatics.
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Figure 7.8: IFNy (IFNG) PHA response in asthmatics and controls 
according to BMI category. Data was logarithmically transformed and 
shown as mean and error bars. Levels significantly differed between 
the 6 groups (p=0.025) as normal weight asthmatics had significantly 
lower levels than the other groups.

PHA stimulated IL-17 response was not normally distributed (p=0.001) and did significantly differ 

across the 6 groups (p=0.011) (Table 7.7). This was due to a significant increase w ith BMI category 

which was seen across the entire cohort (p=0.003). Obese individuals had the highest IL-17 PHA 

response (geometric mean = 647.00pg/ml) which was higher than NW (geometric mean = 

371.00pg/ml) (p=0.002) (Figure 6.9). Similarly OW individuals also had higher responses (geometric 

mean=497.57pg/ml) than NW (p=0.006). When examined as a continuous variable, BMI was also 

associated w ith the IL-17 PHA response (r= 0.032, p=0.092) although this was not statistically 

significant. Similarly percentage body fat (r=0.193, p=0.080) and WHR (r=0.202, p=0.071) were 

correlated w ith this variable but neither was significant. Participant age was not associated w ith IL- 

17 levels. When levels were analysed in the asthmatics and controls separately the association 

between IL-17 and BMI category was only significant in the controls (p=0.002) and not the 

asthmatics (p=0.206), similar trends were seen when BMI was examined as a continuous variable 

(controls: r=0.255, p=0.099; asthmatics: r=0.139, p=0.391). However when an interaction was looked
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for between asthmatic status and BMI w ith regards to  PHA induced IL-17 response, this was not 

significant (p=0.569, R2=0.047).

Levels were not significantly higher in asthmatics than controls and no differences were seen when 

each BMI subgroup was compared. As IL-6 is thought to be im portant in the development of Th l7  

cells a correlation between plasma IL-6 levels and IL-17 PHA response was considered, but no 

significant association was seen (r=0.159, p=0.150). Similarly no correlation was observed between 

leptin levels and IL-17 PHA response (r=0.093, p=0.389).
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Figure 7.9: PHA-induced IL-17 response according to BMI category.
Data was logarithmically transformed and shown as mean and error 
bars. Cytokine response was significantly increased in the overweight 
(p=0.006) and obese compared to normal weight participants
(p=0.002).

PHA-induced IL-10 response did not d iffer across the 6 study groups. Levels did not vary significantly 
w ith BMI category across the study population and did not correlate w ith BMI (r=0.012, p=0.912) or 
the other adiposity markers. No associations were seen between IL-10 response and adiposity 
markers when asthmatics and controls were analysed separately. Responses were not significantly 
d ifferent between asthmatics and controls as a whole or when each BMI category was compared. 
Age was not associated w ith this variable and w ithin the asthmatics: asthma duration, asthma 
control, ICS use and spirometric measures did not correlate w ith this variable.
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7.4 Discussion

7.4.1 Obesity was not associated with systemic changes in major 
lymphocyte subsets

The percentage of CD3+ T cells, CD3+CD4+ T cells, CD3+CD8+ cytotoxic T cells, NK cells and B 

lymphocytes were explored in 79 premenopausal women with and without asthma categorised 

according to BMI. No significant different differences were seen in the percentage of these cells with 

BMI category. Asthmatics had a higher percentage of B lymphocytes, but no other differences were 

seen. Increase in the number of B lymphocytes has been noted locally in the sputum of asthmatics 

compared to control subjects and correlated with eosinophilia [658]. Normal weight asthmatics had 

the highest B lymphocyte percentage, IgE level and eosinophil count however no correlations 

between B lymphocyte (%) and these variables were found.

Previous studies have been contradictory in terms of the effects of obesity on T lymphocytes and 

their main subtypes. A Japanese group showed a reduction in the absolute count of T cells as well as 

CD4+ and CD8+ subsets in obese compared to normal weight healthy adults [579]. In contrast a study 

in women found that being overweight, obese or morbidly obese was associated with increased 

total lymphocyte count and CD4+ T cell count, whilst being morbidly obese was associated with a 

higher CD8+ T cell count [636]. A recently published paper from the Netherlands found an increase in 

the circulating absolute count of CD4+T cells in obese individuals with no change in the CD8+ T cell 
count [659].

Our study differed from previous work in several aspects. Firstly, only Caucasian women were 

included unlike two of the previous in this area [579, 636]; racial differences in lymphocyte subsets 
have been documented in the literature [660, 661] Secondly, sample collection was limited to the 

first 7 days of the menstrual cycle; levels of CD3+, CD3+CD4+ T cells and NK cells can fluctuate 

throughout the menstrual cycle [389], Thirdly, the mean BMI was lower in our obese group than in 

some of the previous work [659] and it may be that only participants with a higher BMI have 

detectable differences. Finally, although major concomitant diseases were excluded by clinical 
history some of the other studies were more rigorous in examining all patients as well as performing 

chest radiographs, electrocardiograms, urinalysis and liver function tests to rule out major end organ 

disease [579, 659]. It is possible that occult conditions were not fully excluded in our control 
patients, and this may be a limitation of this work potentially masking subtle differences in the 

lymphocyte subtypes.

7.4.2 Obesity individuals had reduced numbers of 
CD4+CD25+CD 127'F oxP3+ Tregs

Obese individuals had significantly lower percentages of regulatory T cells compared to normal 
weight individuals and there was a trend towards a reduction in this cell group in the overweight 
category. When BMI was examined as a continuous variable a negative correlation although non
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significant was seen with CD4+CD25+CD127'FoxP+ Tregs. The suggestion that obesity may be 

associated with reduced Tregs has also been noted recently by a German study of 30 obese (defined 

as BMI >27kg/m2) and 13 non-obese adults; Wagner et al found reduced percentages of circulating 

CD4+CD25+FoxP+ Tregs in the obese group but a significant proportion of the obese patients had 

coexisting diabetes mellitus (23% of the obese vs. 0% of the controls) [662]. Changes in Tregs have 

been noted in diabetes [663]. Our results suggest that the obesity might be associated reduction in 

Tregs which cannot be explained by the confounding effects of diabetes.

In contrast to our findings, a single paediatric study looking at FoxP3 positive CD4 populations has 

found that levels were not different in obese vs. normal individuals [664]. In this study by Svec et al, 
12 obese children and 10 control subjects were enrolled and the percentage of CD4+CD25+FoxP+ T 

cells measured within the mononuclear cell compartment derived from whole blood. This thesis 

differed methodologically in that flow cytometry was performed on whole blood directly and that 
using the additional marker CD127, increased the specificity of Treg identification. The work 

presented herein recruited a greater number of participants and the authors of the former study 

acknowledged that they might have been underpowered to detect a difference.

A recently published adult study from the Netherlands also contradicts our findings. They examined 

CD4+CD25+FoxP3+ Tregs in previously cryopreserved mononuclear cells from morbidly obese 

individuals with no other comorbidity and lean individuals [659]. Morbid obesity was associated 

with an increase in the absolute count of regulatory T cells. The authors hypothesised that in 

otherwise healthy obese individuals this was to counteract the systemic activation of the 

macrophage/monocyte compartment seen in obesity. They also postulated that in disease states 

associated with obesity, such as diabetes and heart disease, this compensatory increase in 

regulatory T cells is lost leading to a T h l/T h l7  biased system.

There are several explanations for the difference in findings between this thesis and that of van der 
Weerd [659]. Firstly, their methodology differed, as they used cryopreserved mononuclear cells 

rather than whole blood. Secondly the mean BMI of their obese group was higher (42.4kg/m2 vs. 
37.4kg/m2). It was interesting to note that in the study herein, the overweight group (BMI 25- 
30kg/m2) had a reduced percentage of Tregs, although not statistically significant. It is possible that 
Tregs may follow a parabolic distribution where levels fall with increasing BMI moving from normal 
weight to overweight and obese category I, whilst at higher levels of obesity they increase. Leptin 

resistance could explain such a phenomenon. Tregs express leptin receptors, and in animal models 

receptor deficiency/neutralisation has been associated with increased Tregs [344, 346]. Given that 
obesity is associated with relative leptin resistance in terms of its effects on satiety, it is conceivable 

that with increasing BMI leptin reduces the proportion of circulating Tregs but at extreme BMI leptin 

resistance may again play a role. Given the interest in leptin and its immunomodulatory effects the 

relationship between leptin levels and Tregs was examined. There was no significant association, 
suggesting leptin levels are not the main mechanism for the reduction in this cohort. It would be of 
great interest to examine leptin resistance in regulatory T cells and other T cell subsets (see section 

8.3).

Another reason for the difference between our findings and those of previous studies could be that 
this study better controlled for the confounding effects of cyclical hormone changes. The menstrual 
cycle dramatically affects numbers of circulating Tregs, with levels peaking in the follicular phase

211



(6.14%) and dropping dramatically (3.77%) within the luteal phase [665]. A strong correlation 

between FoxP3+ Tregs and oestrogen levels was noted in this study and the authors hypothesised 

that the peaking of Tregs during the late follicular phase of the cycle may be important in promoting 

immune tolerance to implantation. Therefore failure to control for stage of cycle might confound 

results significantly.

It would be of interest to investigate which subtype of circulating Tregs were reduced in our obese 

individuals. Naturally or thymus derived Tregs (nTregs) can be differentiated from induced Tregs 

(iTregs) by the expression of Helios, an Ikaros-family transcription factor [666]. In the setting of 
diabetes, FoxP3+ mRNA was reduced in the fat of obese insulin sensitive patients and not in those 

with insulin resistance. When the authors looked for Helios+ mRNA, this was reduced in the visceral 
adipose tissue of all obese individuals suggesting that obesity leads to reduced nTregs in visceral 
adipose tissues and that iTregs accumulate in those with insulin resistance [667]. In view of these 

findings it would be of interest to look at whether the reduction in Tregs observed in our study were 

nTregs or iTregs and whether asthma is associated with a change in the relative abundance of these 

subtypes.

IL-6 has been shown to negatively modulate Tregs and given that levels increased significantly with 

BMI, it was hypothesised that this would be associated with a reduction in Tregs. Whilst a negative 

association was seen, this was not significant. These findings were also noted in a recent publication 

[662].

7.4.3 Asthma is not associated with a significant difference in 
CD4+CD25+CD127 FoxP3+ Tregs

Regulatory T cells (Tregs) have been of great interest in the asthma field with some studies showing 

a reduction in the percentage of such cells in the blood or lungs of asthmatics individuals (Table 7.1). 
Although a trend towards lower levels of circulating Tregs was observed in asthmatic participants, 
this did not reach significance. There are several explanations for this. Firstly our study may not have 

been adequately powered to detect a significant difference. At the time the study was designed, it 
was not known whether obesity or asthma in adults would be associated with Tregs and there were 

few data on which to base a formal power calculation. Sample size was therefore based on a 

pragmatic approach to the number of patients that realistically could be recruited in the time 

available and on previous work. The final sample size of 79 patients compares favourably to previous 

studies in this area [194, 644, 647, 648].

Another potential reason is the effect of ICS as patients in this study were not weaned off this 

medication. Again, this was a pragmatic decision based on adverse findings from other studies. For 
example, in a study of similar design, patients were weaned off ICS before sampling but 28/33 on 

treatment exacerbated and were therefore sampled during an exacerbation [25]. As it was likely that 
a similar problem would occur if patients were weaned off ICS and any exacerbations might bias 

results, the decision was made to not undertake weaning off ICS. Furthermore markers of Tregs can j
be increased transiently on activated T cells [668] as occurs during exacerbations and so sampling 1
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patients during exacerbation would not best represent baseline levels of this cell type. However, 
levels of blood Tregs might be affected by ICS use. Reduced blood levels of Tregs in untreated 

paediatric asthmatics were restored to normal levels following 4 weeks of ICS treatment [194], and 

ICS dose was associated more strongly with numbers of Tregs than asthma severity in a study of 66 

asthmatic children [646]. A study of adults with moderate asthma not on ICS and moderate and 

severe asthmatics on ICS +/- oral glucocorticoids, noted that the treated patients had higher levels of 
FoxP3 mRNA expression within the CD4+ T cell compartment of freshly isolated mononuclear cells 

[669]. In the same study, in vitro addition of dexamethasone resulted in increased FoxP3 mRNA 

expression by CD4+ T cells isolated from healthy non-atopic donors [669]. Another study that used 

CD4+CD25+CTLA4+ to identify Tregs found that low dose fluticasone proprionate increased the 

percentage of cells in induced sputum at 14 days [670].

Despite these observations, ICS dose was not associated with Treg levels in the asthmatics studied in 

this thesis. If steroids do restore numbers of Tregs in asthmatics, it is worth noting that in our study, 
the obese asthmatics had a lower mean level of Tregs compared to normal weight asthmatics, 
although this was not statistically significant (p=0.084), despite being on the same level of ICS 

treatment. There are several possible explanations for this. It could be that the obese patients were 

all under treated, but this seems unlikely given that there was no statistically significant difference in 

asthma control score, spirometric markers on the day of sampling, or other markers of asthma 

control. Secondly, the restorative ability of ICS might be less efficacious in obese asthmatics. This 

would fit clinically as obese patients are less responsive to ICS treatment [17, 18]. It would be of 
great interest to perform a longitudinal study looking at whether the changes in the numbers of 
Tregs described with the initiation of ICS treatment are seen to the same extent in asthmatics of 
differing BMI.

Our attempts to control for the fluctuations in Treg levels with menstrual cycle may also explain the 

lack of difference observed between asthmatics and controls. Sampling our individuals just once 

within their menstrual cycle assumes that the behaviour of Tregs across the menstrual cycle is the 

same in asthmatics and controls. A study examining the percentage of CD4+CD25+CD127'FoxP3+ 
across the menstrual cycle in asthmatic and non-asthmatic women found differences between the 

two groups. Tregs increased across the menstrual cycle (by 3%/day) within the asthmatics but not in 

the control group and levels correlated more strongly with oestrogen in the asthmatics than in the 

non-asthmatics. [390]. This study was very small (13 women) and their findings need clarification 

with a longitudinal study in greater numbers.

An additional explanation of the contradictions between published studies is the use of different 
markers to identify the Treg population. To date, FoxP3 is widely regarded as the most specific 

marker of regulatory T cells. However it is not a unique marker of Tregs, as levels can be increased 

transiently during CD4+ and CD8+ T cell activation [671]. A combination of surface markers and the 

transcription factor Foxp3 was used to be as specific as possible with regards to identification of 
Tregs, however without functional assays we cannot be sure whether the observed reduction in 

percentage of CD4+CD25+FoxP3+ Tregs translates to a reduction in suppressor activity. After sample 

collection mononuclear cells were collected and cryopreserved from the entire cohort. Tregs 

isolated from this banked material could be used to verify whether increasing BMI is associated with 

reduced cell function.
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7.4.4 Obesity is associated with reduction in naive CD4+ T cells 
and increase in memory CD4+ subsets

Obesity was associated with a significant reduction in the percentage of circulating naive T cells, an 

association which persisted after adjusting for the effects of age. The ability to provide an effective T 

cell response to new pathogens depends on having a broad TCR repertoire established by having a 

large pool of thymic generated naive T cells. Ageing is associated with thymic involution and a 

reduction in the percentage of naive CD4+T cells, restricting TCR repertoire [672]. A reduction in the 

circulating pool of naive T cells could explain why, as with ageing, obesity is associated with 

increased risk of certain infections [615]. Obesity was associated with an increase in the memory 

CD4+ T cell compartments (CM and EM) again a change traditionally associated with ageing. This is 

similar to observations in diet induced obesity in mice [657]. In the same paper Yang et al, examined 

T cell receptor excision circles (TRECs), which are extrachromosomal DNA generated during 

rearrangement of DNA encoding for TCRs and are non-replicable so dilute during T cell proliferation. 
They are therefore most abundant in truly naive T cells leaving the thymus. Associated with the 

reduction in naive T cells, the percentage of TRECs was reduced in obese mice and humans again 

suggesting a reduction in thymic output of naive T cells.

The findings in this thesis are contrary to those recently published by van der Weerd et al who found 

that morbidly obese individuals had higher levels of circulating CD4+ T cells with increased numbers 

of naive, and central and effector memory cells [659]. Van der Weerd et al also found TREC content 
to be reduced in ap T cells and their subsets from obese individuals and the authors concluded that 
the changes seen in these cell compartments were due to increased proliferation rather than thymic 

output. The methodological differences between this and our study have already been highlighted. 
It remains unclear whether the phenotypic changes observed in the current study translate to 

functional outcome but the availability of cryopreserved mononuclear cells from this cohort will 
enable this to be investigated.

7.4.5 Increasing B M I is associated with increased PHA stimulated 
IFNy response in asthmatics but not controls

The amount of IFNy produced into whole blood culture supernatants in response to the T cell 
mitogen PHA was significantly lower in normal weight asthmatics than all of the other groups. This is 

consistent with published data where IFNy producing Th l cells are reduced in the blood of allergic 

asthmatics compared to control subjects, in keeping with it being a Th2 mediated disease [176]. 
Conversely the data presented here suggests that overweight and obese asthmatics have a Thl 
skewed response to PHA as they had the highest PHA-stimulated IFNy response which was 

significantly higher than normal weight asthmatics. This finding is supported by a previous study of 
children, where the percentage of IFNy producing CD4+ cells identified by flow cytometry was 

significantly higher in the obese than normal weight asthmatics and the authors concluded that 
obesity skewed asthma to a Th l disease [359]. Although as with this current work the Thl response 

was not significantly higher in the obese asthmatics than the obese controls [359]. It would be useful
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to clarify whether the changes in PHA stimulated IFNy response seen in the asthmatics with 

increasing BMI are due to increased abundance of Th l cells in the blood and cryopreserved 

mononuclear cells are available for this.

Higher leptin levels may promote a Thl response in obese asthma. A murine model had increased 

Thl responses (in a mixed lymphocyte reaction) to allogeneic mononuclear cells which was 

abolished in leptin receptor deficient mice [288]. Additionally, in a paediatric paper where 

stimulation of whole blood with PMA resulted in a enhanced Th l response in the obese children 

studied, the degree of Thl/Th2 skewing correlated with leptin levels [359]. It was of interest to note 

that leptin levels in the asthmatics sampled herein also correlated with the IFNy PHA response, yet 
no association was seen in the control subjects. There may be a differential effect in terms of leptin 

responsiveness between obese asthmatics and controls: increasing BMI might be associated with 

leptin resistance in the control group but not in the asthmatics. It would be of great interest to 

examine leptin responsiveness of the T cell compartment in these two groups. PHA-stimulated IFNy 

also varies with the menstrual cycle, dipping in the peri-menstrual period compared to mid-cycle but 
the potential effects of the menstrual cycle were taken into account [673].

Although normal weight asthmatics had the lowest PHA-induced IFNy levels of all groups, IL-13 PHA 

response was no higher than controls or obese asthmatics. This is in keeping with previous 

observations noting that allergic asthmatics have lower percentages of circulating Th l cells but 
similar percentages of Th2 [176]. ICS can also down-regulate IL-13 expression, at least in the airways, 
so ICS use might explain the lack of differences in PHA-induced IL-13 response across the study 

groups [674]. There is evidence that atopic asthma is associated with enhanced IL-9 production in 

the lungs but we did not find such changes systemically in the blood on PHA stimulation. Increasing 

BMI was not associated with changes in PHA-stimulated IL-9 suggesting at a systemic level that 
obesity might not impact on Th9 activity.

7.4.6 PHA-stimulated IL-17 response increases with obesity but 
not asthma

The PHA-stimulated IL-17 response was highest in obese patients across the entire study, 
significantly higher than normal weight participants and correlated with BMI as a continuous 

variable, although this was not statistically significant. This is consistent with murine models of diet 
induced obesity, where expansion of Thl7 pools and resultant IL-17 production are described [351]. 
Circulating plasma levels of IL-17 were not more likely to be detectable in the obese in this current 
work (see section 5.3.1 (iii)), suggesting that only upon stimulation of the T cell compartment is an 

augmented IL-17 response seen in obese individuals. Mechanistically an increase in the numbers of 
circulating Thl7 cells with escalating BMI would explain this. Thl7 cells and Tregs develop in an 

antagonistic manner [117] and we found that the latter were reduced in the obese group and a 

Thl7/Tregs imbalance may exist. Although we can speculate that the enhanced PHA-stimulated IL- 
17 response might represent an increase in the percentage of circulating Thl7 cells this needs 

confirmation which could be achieved using flow cytometry on the cryopreserved samples.
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The expansion of Thl7 pools with diet induced obesity is abated in IL-6 null mice suggesting this 

cytokine is important in the differentiation of Thl7 cells in this context [351]. Given this association, 
a correlation between IL-6 and the PHA-stimulated IL-17 response was considered but no significant 
association was found. This is in keeping with a murine study of zymosan induced peritonitis where 

peritoneal levels of IL-17A were significantly higher in the obese mice than their lean counterparts 

but neutralising IL-6 had no effect on IL-17 levels suggesting IL-6 may not be as crucial as previously |
thought [675]. However in this particular model the principal source of IL-17A was neutrophils so the j

lack of effect of IL-6 on IL-17A production needs to be interpreted with caution with regards to Thl7  

cells.

Recently published work suggests that Thl7 cells express leptin receptor and that leptin promotes 

their differentiation in vitro and in vivo in murine experimental arthritis [459]. Also obese mice 

genetically deficient in leptin have reduced numbers of Thl7 cells with levels restored upon 

administration of exogenous leptin [676]. Such observations prompted consideration of an 

association between leptin levels and PHA-stimulated IL-17 but no significant correlation was seen. 

This suggests that raised leptin levels in isolation are not responsible for the association between 

BMI and the increased IL-17 response.

PHA-stimulated IL-17 was not increased in the asthmatics in our study but plasma levels of IL-17 

were detectable in a significantly higher percentage of asthmatics than controls, a finding confirmed 

by others [354]. Plasma IL-17 could be derived from multiple tissue sites and one could hypothesise 

the airways as a potential source. IL-17 levels are higher in the sputum and bronchoalveolar lavage 

fluid of asthmatics [506] and some have suggested that the predominant source of IL-17 in the 

airways may be neutrophils [650]. Few studies have looked at the percentage of circulating Thl7  

cells in the blood of asthmatics but a single paediatric study did show an increase in Thl7 cells as 

identified by flow cytometry compared to the control group. Although our findings do not suggest a 

systemic increase in Thl7 cells within asthma it must be emphasised that this needs clarification by 

measuring the proportion of these cells directly.

7.4.7 PHA stimulated IL-10 was unaffected by B M I or asthma

PHA-stimulated IL-10 responses did not differ significantly between BMI categories or in asthmatics 

vs. controls. This was an unexpected finding given the observed reduction in Tregs with increasing 

BMI. IL-10 production is an important aspect of Tregs function [126] and has a role in mediating 

immune homeostasis at environmental interfaces [191]. However within the broad classification of 
Tregs, there are different subtypes. Naturally occurring (nTregs) and some inducible Tregs (iTregs) 
are both characterised by FoxP3 expression and the former by Helios expression, exert their main 

effects by cell-to-cell contact. Other types of suppressor T cells also exist including regulatory T cells 

type I (Trl) which predominantly function by producing immunomodulatory cytokines including IL-
10. The lack of specific surface markers for these makes them difficult to fully characterise [677]. 

Whilst a reduction in FoxP3 positive Tregs was shown, these other regulatory T cells have not been 

quantified. Furthermore, as noted above, Tregs function was not examined and this would be of 

great interest.
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7.5 Summary

Obesity was associated with a reduction in the percentage of circulating regulatory T cells. Although 

obese asthmatics had the lowest mean level of these cells this was not significantly lower than obese 

controls. IL-17 PHA response increased with BMI suggesting that obesity might also be associated 

with increased Thl7 cells. The idea that obesity promotes a Tregs/Thl7 imbalance is appealing but 
further work is needed to clarify that the PHA-stimulated IL-17 response observed is related to 

changes in Thl7 numbers. For normal weight asthmatics, the PHA response was skewed away from 

a Th l type response, evidenced by a lower IFNy output but this was not seen in the obese 

asthmatics who had the highest response. Leptin may play a role in this observation with levels 

correlating with PHA-induced IFNy response in the asthmatics but not the controls. Finally obesity 

not only appears to skew the adaptive immune system away from regulation and towards a pro- 
inflammatory phenotype, but might also cause changes typically associated with ageing. Further 
work is needed and planned to clarify whether these changes in the relative abundance of cell types 

are associated with functional outcomes.
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Chapter 8 

Conclusions and future work



8.1 Summary of study aims

The overarching aim of this study was to examine pre-menopausal women with and without asthma 

of varying BMI to see whether detectable changes in systemic immunity in obese asthmatics might 
explain the association between obesity and asthma and the obese asthma phenotype observed. 

The main aims of this study were:

•  To examine whether a distinct immunopathological phenotype was linked to the clinical 
phenotype observed.

•  To study metabolic parameters which could impact on immunity including: adipokines, 
insulin resistance and free fatty acids.

•  To investigate the innate immune system including: leukocyte cell counts, markers of 
neutrophil and monocyte activation and the cytokine response to an inflammatory stimulus 

in the form of LPS.

•  To look at systemic markers of oxidative stress (TBARS and TAOS) as well as acute ROS 

response to a non-specific inflammatory stimulus.

•  To measure changes in dendritic cell populations.

•  To explore changes in adaptive immunity including the percentage of circulating regulatory T 

cells and markers of T cell ageing.

8.2 Summary of main findings
8.2.1 A phenotype within a phenotype

Premenopausal asthmatic women of varying BMI with minimal co-morbidity were recruited for this 

study predominantly from a local asthma service with a special interest in allergy. Various immune 

parameters were compared to that of a well-matched group of women with little comorbidity 

without asthma. Due to the inclusion criteria used and the pool of patients available, asthmatics 

with relatively early onset disease were recruited; these had a high degree of atopy across all of the 

BMI groups. Cluster analyses have suggested obese asthma to be a late onset female predominant 
disease, however it is increasingly recognised that two phenotypes may exist within the umbrella 

term of obese asthma; the aforementioned late onset phenotype but also a second characterised by 

earlier onset disease with higher incidence of atopy [437]. The clinical features of these two sub
phenotypes differ with the early onset disease exhibiting worse disease control, more airflow 

obstruction and BHR [471, 472]. The response of these two sub-phenotypes to weight loss, differs 

with a recent study of asthmatics undergoing bariatric surgery showing that those with late onset 

disease who tended to have more comorbidities less atopy and normal IgE levels, experienced 

improvements in BHR with weight loss, whereas those with early onset disease who were more 

atopic and had less comorbidity did not experience an improvement [229]. The pathogenesis of j
these two phenotypes is likely to differ, so any study must differentiate between them. The profile j
of obese asthmatics in this study and thus any conclusions drawn reflect an early onset more atopic j

obese phenotype.
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8.2.2 Leptin was independently associated with B M I and asthma, 
with obese asthmatics having the highest fasting levels

Adipocytes produce a number of hormones, so-called adipokines, which have immunomodulatory 

effects (section 4.1.3 (iii)). Leptin has a wide range of impacts on innate and adaptive immunity 

which are of relevance to asthma (Table 4.2). Murine models have shown that infusion of this 

adipokine augments BHR and inflammation [23, 461]. Large population studies, limited by the lack of 

robust definitions of asthma, have yielded contradictory results on the role of leptin in asthma. 
Leptin levels can be elevated as part of the acute inflammatory response in conditions such as sepsis 

[453] and acute asthma exacerbations [306]. Levels correlate more specifically with adiposity in 

women [327] are also affected by cyclical hormonal changes [488] making it a challenging adipokine 

to measure in a controlled manner, especially in women. However in the current study it was found 

that in fasted, pre-menopausal, stable female asthmatics sampled during the first 7 days of their 

menstrual cycle, leptin levels increased with BMI with higher levels in asthmatics such that obese 

asthmatics had higher levels than obese controls and normal weight asthmatics suggesting that in 

premenopausal obese women with early onset asthma, this adipokine may play a role. 
Methodological differences including controlling for exacerbations, cyclical hormonal influences and 

recruiting a specific female obese asthma phenotype sets this study apart from previous and may 

explain why a positive association has been found when other studies have not observed this (see 

section 4.4.4). Throughout this current work, given the diverse effects of leptin, the association of 
this adipokine with other changes in immunity observed was examined and will be discussed in the 

relevant sections.

Adiponectin has anti-inflammatory properties and is reduced in the obese. In this study, asthmatics 

did not have significantly different levels of this cytokine compared to the control group. Several 
other adipokines not well studied in the context of obesity and asthma were also measured. Resistin 

levels were significantly higher in asthmatics than in controls, however this appeared independent of 
BMI, a finding supported by another study [312]. These findings support a role for this pro- 
inflammatory cytokine in asthma, however it seems unlikely that it contributes to the obese asthma 

phenotype.

8.2.3 Obese asthmatics have a peripheral blood profile 
characterised by higher levels of circulating neutrophils and IL-6, 
with low eosinophil counts

Neutrophils are important mediators of airways diseases, playing a role in adult respiratory distress 

syndrome [164], COPD [678] and asthma. Their presence in asthma is associated with less reversible 

disease [167], poorer lung function [169] and as a result is associated with greater disease severity 

[522]. In keeping with previous studies, increasing BMI was associated with higher blood neutrophil 
counts in the controls. However asthmatics had higher levels than controls resulting in obese 

asthmatics having the highest neutrophil counts (see section 4.3.5). Although this finding is in 

peripheral blood, since commencing this study another group has reported similar findings in the 

airways of obese women [429] and a further group has shown increased neutrophilic inflammation
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in both compartments [476]. Functionally in this current work, this trend was mirrored by an 

increase in ROS production measured in peripheral blood in response to a non-specific stimulus 

(PMA) which was not seen when adjusted for neutrophil count suggesting that neutrophils were the 

source of this (see section 5.3.4 (ii)), although this warrants clarification. Despite the obese 

asthmatics having the highest levels of neutrophils, these cells did not express higher levels of 
surface markers associated with activation, however as this was only performed on a subset of the 

population, it is possible that the study was not adequately powered to detect this. Although 

neutrophil count increased with BMI within the asthmatics, eosinophil conversely declined 

suggesting that eosinophilic inflammation may not play a role in this disease phenotype an 

observation noted by others when measuring counts locally in the airway [8,472].

The mechanism behind the increase in neutrophils with BMI and asthma was examined and several 
key cytokines and adipokines which promote neutrophilic inflammation were measured. IL-6 has 

several direct effect on neutrophils including inhibiting apoptosis [510]and promoting migration (see 

section 5.1.1 (v)). When measuring plasma levels a trend that mirrored that of the neutrophil count 
was observed: IL-6 levels increased with BMI category with higher concentrations in asthma, 
resulting in obese asthmatics having the highest circulating levels (see section 5.3.1 (v)). In fact there 

was a very strong association between plasma IL-6 and neutrophil count in keeping with mechanistic 

data. However, the association between BMI, asthma and neutrophil counts remained significant 
after retaining IL-6 as a covariate in a general linear model, suggesting that it may not be the sole 

explanation for the change in neutrophil count. IL-6 is produced by many cells of the innate immune 

system upon stimulation of PRRs. In chapter 6, the response of whole blood upon stimulation with 

the well-studied TLR ligand LPS resulted in an elevated IL6 (and other cytokines) response, but an 

enhanced IL-6 response was not seen with increasing BMI and/or asthma (see section 6.3.3). The 

source of the increased IL-6 therefore may not be circulating innate cells and other likely sources 

include adipose tissue, which is thought to contribute up to 25% of IL-6 in the obese [517], or the 

airways as levels have been shown to be increased in sputum and correlate with markers of airflow 

obstruction [513]. It would be of interest to examine IL-6 expression locally in these tissues (see 

further works). The possibility that this increase in total IL-6 was associated with changes in slL-6R, a 

molecule capable of enabling cells which do not express the receptor to respond to IL-6 (trans
signalling) and/or sgpl30, a molecule capable of blocking trans-signalling was also examined. Little 

work has been published on this area in the wider field of obesity or in asthma; there were no 

significant associations with either of these molecules and BMI and/or asthma (see section 5.3.1 (v)).

IL-6 can also indirectly promote neutrophilic inflammation by promoting Thl7 development [117]. 
On measuring plasma IL-17, levels were more frequently detectable in asthmatics than controls 

which may be in part responsible for the increased neutrophil levels seen with asthma, although 

there was no association with BMI (see section 5.3.1 (iii)). However when whole blood was 

stimulated with the T cell mitogen PHA, increasing BMI category was associated with an increase in 

IL-17 levels in cell culture supernatants. The overweight and obese categories had significantly 

higher IL17-responses compared to normal weight categories suggesting that obesity may be 

associated with increased Thl7 cells (see section 7.3.4), although this warrants clarification by 

measuring the percentage of circulating Thl7 cells across the 6 groups (see future works). If this is 

the case, it is therefore conceivable that the increased plasma IL-6 seen in obesity favours Thl7  

development promoting neutrophilic inflammation, although there was no correlation between IL-6 

and PHA-stimulated IL-17 response. Interestingly, IL-23, another cytokine important in Thl7
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development, was not detectable in a higher proportion of obese vs. normal weight individuals 

although the results may have been limited by sensitivity of the assay. Asthmatics did not have a 

higher IL-17 response to PHA stimulation than controls (section 7.3.4), suggesting that the increased 

plasma IL-17 observed with asthma (section 5.3.1 (iii)) may not be derived from blood Thl7 cells. 
The source of the increased plasma IL-17 could be inflammatory cells within the airways. Doe et al, 
found increased levels of IL-17 in bronchial biopsies of moderate asthmatics compared to controls 

but it was noted that the predominant source was neutrophils rather than T cells [650].

Other cytokines associated with neutrophilic inflammation include G-CSF, which is fundamental for 

terminal differentiation in the bone marrow [499]. Levels of G-CSF were increased with increasing 

BMI category, an observation not previously reported to the author's knowledge, suggesting that the 

higher number of blood neutrophils seen with obesity are likely due to a multitude of effects.

Free fatty acids (FFA) through their action on TLRs can activate the innate immune system and 

promote neutrophilic inflammation. A high fat meal in asthmatics is associated with increased 

sputum neutrophils and impaired bronchodilator induced recovery after a bronchoprovocation test 
[281]. Therefore a correlation between neutrophils and FFA levels (section 4.3.7) was considered, 
however none was seen. A recently published study did find an association between FFA and 

sputum neutrophils in obese asthmatics but only in men [429], supporting the findings herein that 
FFA may not contribute to the obese female asthma phenotype.

8.2.4 Obesity in asthma was associated with skewing towards a 
T h l response

Allergic asthma is characterised by a shift in the Thl/Th2 balance towards a Th2 bias. Studies of the 

peripheral blood of allergic asthmatics have demonstrated a reduction in the percentage of Th l cells 

compared to control subjects with no change in the percentage of Th2 cells resulting in a reduction 

in the Thl/Th2 ratio, favouring Th2 immunity [176]. Prototypical Th l (IFNy) and Th2 (IL-13) 
responses to the T cell mitogen PHA in whole blood were examined and it was noted that normal 
weight asthmatics had a reduced PHA-stimulated IFNy response in keeping with a reduction in Thl 

immunity. The PHA-stimulated IL-13 response did not differ from that of controls meaning the ratio 

of PHA-stimulated Thl/Th2 response favoured Th2 skewing in the normal weight asthmatics 

compared to controls as expected [176]. This was not seen in the overweight and obese asthmatics 

who had a higher IFNy response than normal weight asthmatics but a similar IL-13 response, in 

keeping with Th l bias as seen in the control group. In fact the obese asthmatics had the highest IFNy 

response although this was not significantly higher than the control groups. Whilst these results 

suggest skewing to T h l predominance in obese asthmatics, this needs clarification by measuring the 

percentage of circulating Th l vs. Th2 cells in these patients (see future works). The findings are 

supported by a similar paediatric study [359] suggesting that obese asthma is not characterised by 

Th2 bias which may explain the lack of eosinophilic inflammation. This is particularly interesting 

given that the phenotype of the obese asthmatics in this study was early onset disease with high 

prevalence of atopy.
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Leptin levels correlated positively with PHA-induced IFNy response in the asthmatics, a finding also 

noted in two paediatric studies [302, 359], although no correlation was seen in the control group. 
Leptin resistance is an obesity related phenomena which has effects on appetite [285]. Murine 

studies have shown that whilst obese mice may be resistant to the effects of leptin on appetite 

suppression and body weight, they are not resistant to the impact of hyperleptinaemia on other 

physiological effects such as sympathetic excitatory actions with regards to blood pressure, 

suggesting that leptin resistance in obesity may be selective [347]. It is possible that the differential 
associations between leptin and the PHA-stimulated IFNy response in asthmatics versus controls 

may be due to differences in leptin resistance and this warrants further study (see future works).

8.2.5 Obesity is associated with a reduction in cells promoting 
immunotolerance: regulatory T cells and plasmacytoid dendritic 
cells

The development of Tregs and Thl7 cells are closely linked. Tregs differentiate on exposure to TGF-p 

[640], whereas in the presence of pro-inflammatory cytokines such as IL-6 and IL-21, Thl7 cells 

develop [117]. Obesity is associated with a reduction in regulatory T cells in adipose tissue in both 

murine models and humans [34, 333]. Similarly several studies have suggested that obesity is 

associated with increased levels of IL-17, a product of Thl7 cells [352]. Therefore the percentage of 
circulating CD4+CD25+FoxP3+ Tregs (as a percentage of CD4+ cells) was determined in the study 

groups with obese participants being found to have significantly lower levels than normal weight 
participants. When BMI was examined as a continuous variable there was a trend towards a 

negative correlation although it was not significant. Although asthmatics had lower levels of 
CD4+CD25+FoxP3+ Tregs than controls this was not significant; similarly obese asthmatics had the 

lowest levels but again this was not significantly lower than obese controls. As already mentioned 

above, obese women had a higher PHA-stimulated IL-17 response than normal weight women, 
suggestive of increased numbers or responsiveness of Thl7 cells. Given the mechanistic data 

suggesting the importance of IL-6 in mediating Treg vs. Thl7 development, the possible correlation 

between plasma IL-6, Treg percentages, or IL-17 PHA response was examined but no significant 
association was found.

Leptin deficient mice have higher numbers of circulating Tregs, enhanced FoxP3 expression with 

improved Treg cell function [296]; leptin receptor deficiency produces similar effects [345]. Very 

recent work suggests that leptin receptors are expressed on Thl7 cells, that the adipokine promotes 

their differentiation in murine models [459] and that leptin deficiency results in reduced Thl7 cells 

[676]. This prompted consideration of the relationship between leptin levels, FoxP3+ Tregs (%), and 

PHA-stimulated IL-17 but no correlations were seen.

Dendritic cells are professional antigen presenting cells and secrete most of the Th polarising 

cytokines, with the exception of IL-4. Myeloid dendritic cells (mDCs) are important in sensitisation 

[184] and are recruited to the lung rapidly following allergen challenge [603], whilst plasmacytoid 

DCs (pDCs) are able to prime regulatory T cells and promote tolerance (see section 6.1.3). Type II 
mDCs may play an important role in Th2 polarisation and higher circulating levels have been noted in
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atopic individuals with levels rising during acute atopic asthma exacerbations [606]. Normal weight 
asthmatics were found to have higher levels of type I mDCs than overweight or obese asthmatics 

and the control group, again emphasising a different endotype. These cells may play a role in 

promoting the inflammatory response seen in normal weight asthmatics but not in obese 

individuals. Furthermore, in the asthmatics type II mDCs were significantly negatively correlated with 

BMI. Given that these cells are important in promoting Th2 responses, associations between type II 
mDCs and PHA IFNy and IL-13 responses, as well as blood eosinophils, were examined for. A 

significant negative correlation was seen with PHA IFNy response suggesting that the lack of Th2 

response seen in obese asthmatics may be driven by changes in dendritic cell profile. Interestingly, in 

keeping with the FoxP3+ Treg findings, pDCs were negatively correlated with BMI across the entire 

study group, but no significant association between pDCs and Tregs was seen. It is also noteworthy 

that the greatest difference in pDC percentages was between overweight and not obese participants 

compared to controls. Similarly with PHA induced IL-17 PHA response across the entire cohort and 

IFNy response in the asthmatics, significant detectable differences were noted in the overweight 
individuals compared to the normal weight category with no further increases in these cytokine 

responses in the obese. It is likely that the assumption that BMI correlates with such markers in a 

linear fashion is an oversimplification and that some immune parameters follow a parabolic 

distribution with homeostatic mechanisms of cytokine/adipokine resistance coming into play at 
higher degrees of adiposity.

8.2.6 Obesity is associated with a reduction in naive CD4+ T cells

As with ageing, epidemiological data suggest that obesity is associated with risk of infections 

including post-operative and other nosocomial infections [615]. Using flow cytometry obese women 

across the study groups were found to have reduced numbers of CCR7+CD45RA+CD4+ naive T cells 

with a corresponding increase in memory T cells (both central and effector memory). Such changes 

could limit T cell repertoire diversity reducing the number of novel antigens the obese immune 

system can respond to. Atopic asthma is characterised by repeated immune response to specific 

environmental allergens and therefore it was speculated that this might be associated with an 

increase in memory subsets, however this was not seen. The data are consistent with murine models 

which have also shown a reduction in naive T cells with diet induced obesity [657]; this was 

associated with a reduction in T cell receptor excision circles (TRECs) which are a measure of thymic 

output. It would be of interest to explore this further in the current cohort but it must be stressed 

that whilst obesity may be associated with a reduction in the expression of surface markers 

associated with naive T cells we cannot be certain as to whether this has any functional 

consequences.

8.3 Study strengths and limitations
Studies examining the mechanisms underpinning the association between obesity and asthma are 

fraught with difficulty. Asthma is a disorder characterised by reversible airways obstruction, 
therefore at times between exacerbations objective clinical and spirometric signs may be absent
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leading to difficulties in confirming or refuting the diagnosis. This can lead to over diagnosis of the 

condition which is as high as 30% in some studies [20]. Many large population studies on the 

obesity-asthma association have lacked robust definitions of asthma, a potential problem given the 

high levels of over diagnosis, although this appears to be no more of a problem in the obese than 

normal weight patients [20]. This issue was addressed by recruiting patients with definite evidence 

of airways obstruction with significant reversibility or in two case clear variable airflow obstruction 

on peak flow recording and in one evidence of BHR to methacholine. It is also becoming increasingly 

accepted that obese asthma may contain two distinct phenotypes [437]; by recording data with 

regards to age of onset and atopy status it could be seen that this study predominantly examined 

obese asthmatics with earlier onset disease with a high prevalence of clinical atopy and so provides 

some insight into this sub-phenotype.

This study was mainly a hypothesis generating work. Sample size was based on previous studies in 

this area and also on what was practically feasible from the source of patients available. The aim was 

to recruit 90 individuals but this target number was not met due to the challenges in recruitment. 
Obesity is also associated with a number of co-morbidities which may confound any associations 

found and it was attempted to control for this by excluding patients with co-existing sleep apnoea, 
cardio respiratory disease, malignancy, diabetes, or other systemic inflammatory disorders. This 

presented a particular challenge in the obese category as many potential recruits had co-existing 

disease, especially diabetes, which made achieving the planned numbers very difficult. In addition 

all of the volunteers underwent Epworth scoring to try and clinically exclude undiagnosed sleep 

apnoea and the controls completed a modified bronchial symptom questionnaire in an attempt to 

exclude occult respiratory disease.

Asthma is a fluctuating chronic condition characterised by exacerbations interspersed with periods 

of disease control. This was addressed by recruiting patients who were 6 weeks free of exacerbation 

or infection. Evidence suggests that the obesity asthma association may be stronger in women [15] 
and cluster analyses have identified an obese phenotype which is female predominant [8]. 
Furthermore, body fat distribution and resultant release of adipokines differs between the sexes 

[328]. Therefore exclusively premenopausal women were recruited. A number of innate immune 

cells studied are known to be affected by the menstrual cycle including neutrophils, monocytes, 
eosinophils, basophils [388] and NK cells [389]. The responses of these cells to stimulation with 

PAMPs also fluctuate across the cycle [620, 627]. In terms of adaptive immunity, levels of CD3+ T 

cells, CD3+CD4+T cells [389] and Tregs [665] more specifically have been shown to significantly vary 

throughout the cycle, making it important to control for this. Venepuncture of all the participants 

was undertaken when they were in the fasted state during the first 7 days of the menstrual cycle. 
Further to control for diurnal variation in the level of cells and asthma control, blood was taken 

within a very narrow two hour time window (0700-0900). Recruiting patients who were 

exacerbation/infection free and not taking oral steroids within the correct time within their 

menstrual cycle was a real challenge and in some cases required many months of regular phone 

contact to achieve the optimal sample timing.

In terms of the laboratory methodology, with the exception of the metabolic parameters 

(adipokines, insulin, glucose and FFA), IgE, and TAOS/TBARS all of the laboratory work was 

bperformed exclusively by the candidate so there was no inter-person variation in the methods 

applied or interpretation of data.
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Despite these efforts the study does have a number of limitations. As a cross-sectional study, 
although associations can be observed between obesity, asthma and various immunological 
parameters and hypotheses generated, no causal link can be inferred from the current data. Without 
performing a longitudinal study - which was outside the resources and time constraints of this study 

- any direction of causality cannot be determined.

In terms of recruitment, whilst all of the asthmatics had documented reversible airways disease to a 

(32 agonist, or significant PEFR variability or positive methacholine challenge test if no evidence of 
airway obstruction, the controls were recruited on the basis of no clinical history of asthma or atopy, 
no symptoms on a modified bronchial symptom questionnaire and no airflow obstruction on 

spirometry. However due to resource limitations they were not subjected to clinical tests for atopy 

(IgE or measurement of specific IgE) and they did not undergo bronchoprovocation challenges which 

might have detected undiagnosed BHR. However such omissions may lead to the recruitment of 

undiagnosed asthmatics or atopies in the control group and are likely to increase the chances of a 

false negative rather than a false positive result. Questionnaires were used to exclude significant co
morbidities in the asthmatics and controls and an Epworth score to look for undiagnosed OSA. 
However in the obese group in particular this may not have been sufficient. Due to measurements of 
fasting glucose we can be confident that all diabetics were excluded, however we cannot be certain 

with regards to occult heart disease, obstructive sleep apnoea, or malignancy. Furthermore, given 

that the majority of patients were recruited from secondary care or tertiary care and local practices, 
some were on treatment for possible coexisting gastro-oesophageal reflux (GORD) which may have 

confounded results (see chapter 4). Ideally all recruited participants should be subjected to a more 

intensive medical assessment including ECG, echocardiography, plain film radiology, limited channel 
sleep studies and oesophageal pH monitoring to ensure that potential confounding co-morbidities 

were further addressed, but with the resources available this was not feasible. Similarly whilst every 

effort was made to control for hormonal fluctuations by sampling patients within the first 7 days of 
their menstrual cycle this was based on the onset of menses and not on measured hormone levels 

which would have clarified that all patients were sampled at the same time within the cycle.

Asthma is an inflammatory disease and especially in the context of a tertiary asthma clinic, all 
patients were on ICS and a high number of maintenance oral steroids or steroid sparing 

immunosuppression. Given the significant systemic immunological effects of oral steroids and other 

immunosuppressants such patients were excluded from the study which severely limited potential 
participants and those who did need intermittent steroids courses were required to be at least 6 

weeks clear prior to recruitment. At the outset of the study it was planned to wean all subjects off 
ICS treatment prior to sampling. However it immediately became clear that this limited recruitment 
severely as many patients were understandably reluctant to do this. Review of previous studies in 

this area revealed that a high number of patients would end up being sampled during an 

exacerbation, and, in fact, the first two asthmatic recruits both exacerbated on weaning off their 

treatment. A study by Sutherland and colleagues also tried to examine the obesity asthma 

association whilst controlling for confounders including hormonal fluctuation [25]. They weaned 

patients off therapy and noted that 28/33 patients on ICS lost control of their disease within 30 days 

meaning that they were sampled during exacerbation. Therefore it was decided to wean patients 

down to the lowest dose able to achieve disease control, which should be the aim of any asthma 

service, and once stable recruit them into the study. Whilst there were no differences in the daily 

dose of ICS between BMI categories and whilst all subjects were 24 hours off therapy at the timing
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of venesection, this means that all patients were on ICS treatment at sampling which limits the 

results. ICS therapy has an impact on a number of cell types; they have been shown to inhibit 
neutrophil apoptosis and increase their survival [483] and in healthy volunteers beclomethasone 

(but not budesonide) has been shown to increase neutrophil counts at 6 hours, returning to normal 
at 24 hours [484]. ICS therapy has been shown to restore peripheral blood Treg numbers in 

asthmatic children [194] and in adults increased FoxP3 mRNA expression has been seen in freshly 

isolated CD4+T cells from the blood of moderate to severe asthmatics treated with ICS compared to 

those not on therapy[669]. Such a phenomenon may explain why the study asthmatics did not have 

significantly lower levels of Tregs than the control group. The acute effects of ICS treatment were 

limited by withholding therapy for 24 hours prior to blood sampling, however it is possible that this 

still may have affected the results, although adjustments for ICS dose were made when potential 
confounding could have been an issue.

Our laboratory techniques also have some potential limitations. Firstly, whilst the majority of 
techniques were performed by the candidate ensuring consistency in the methods applied this 

meant that the candidate was not blinded to study subject and this could have biased results. 
Initially it was planned for other blinded individuals to analyse the data, especially the flow 

cytometry data where gating is open to some subjectivity, however due to lack of local resources 

this was not possible. Whilst the data underwent an interim analysis in bulk and then final analysis, 
prior knowledge of the patient identifiers could have introduced bias. Looking in more detail at 
specific techniques, a multiplex assay was used to be measure the levels of serum adipokines. This 

requires all the proteins of interest to be measured at the same dilution. Adiponectin, which is 

known to be abundant, is not included in the multiplex assay for this reason. It became clear after 

running the study samples for the first time that the leptin and resistin levels obtained in the dilution 

recommended by the manufacturer fell above the optimal range of the assay, whilst the visfatin and 

ghrelin levels obtained fell below the optimal range. Due to resource limitation the assay could only 

be repeated once and the decision was made to focus on optimising the leptin and resistin results. 
This means that the visfatin and ghrelin results could only be expressed as a binary variable 

(detectable vs. non detectable) which may limit interpretation. It was also demonstrated that 
reactive oxygen species production in response to a non-specific stimulus (PMA) increased with BMI, 
however as chemiluminescence of whole blood was the chosen technique, it is not possible to clarify 

the cellular source of this. One can speculate that as this trend was abolished on correcting for 
neutrophil count that the neutrophils were the likely source. However, this needs confirmation (see 

future works) and in response to the findings of this study a flow cytometry based approach which 

enables cellular production of ROS to be determined has been optimised in the laboratory.

Asthma is predominantly a disease of the airways yet the local inflammatory response is associated 

with measurable changes systemically, with many of the cells involved recruited from the 

circulation. Obesity is clearly a systemic disorder and this and other work has demonstrated that it is 

associated with detectable changes in systemic immunity. Therefore the possibility that detectable 

changes in innate and adaptive immunity could be observed at a circulatory level in obese 

asthmatics was investigated. Clearly this does not provide information about the airways of such j 
individuals and ideally simultaneous investigation of cellular changes in the airways by measuring 

cell counts within sputum or BAL samples would be pursued but local resources did not allow this.
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8.4 Future work
The study was a hypothesis generating work and has yielded a number of results which require 

further exploration. As mononuclear cells were cryopreserved from all participants at the time of 
recruitment the research group will continue some of this investigation in the very near future. Also, 
ethical approval has been obtained to examine other areas such as the effects of weight loss on the 

immune changes observed and collecting sputum and BAL samples from the participants for 
analysis. Detailed below are the areas which the research group will be taking forward.

8.4.1 Quantification of other CD4+ T helper cell subsets, common 
myeloid and common lymphoid progenitors using cryopreserved 
material

The current work showed that increasing BMI is associated with increased PHA-stimulated IFNy in 

asthmatics and IL-17 in obesity. This may be due to increased circulating Th l and/or Thl7 cells in 

these individuals however this warrants clarification. The use of intracellular flow cytometry for IFNy, 
IL-4, and IL-17, and more detailed analysis of surface phenotypes on cryopreserved CD4+cells will 
enable evaluation of a genuine shift in the relative abundance of Thl, Th2, or Thl7 cells with asthma 

and/or obesity.

It was also found that circulating neutrophil counts increased with BMI. A number of important 
cytokines have been shown to vary with BMI, however after incorporating these in a general linear 
model the association between BMI and neutrophils persisted suggesting that other factors may 

play a role. Neutrophils develop from common myeloid progenitors and more specifically 

granulocyte/macrophage progenitors (see section 5.1.1). Using antibodies against cell surface 

markers human common myeloid (CD34+CD38+CD123medCD135+CD45‘) progenitors, more specifically 

granulocyte macrophage progenitors (CD34+CD38+CD123medCD135+CD45+) as well as common 

lymphoid progenitors (CD34+CD10+CD7+) can be identified [493], Studies in diet induced obese mice 

have shown that obesity was associated with an increase in common myeloid progenitors and a 

reduction in lymphoid progenitors [657]. Such changes could explain an expansion in neutrophil 
numbers in the obese whilst noting a reduction in the percentage of naive CD4+ T lymphocytes. 
Cryopreserved MNCs will be used to explore the relative abundance of common myeloid and 

lymphoid progenitors by flow cytometry.

8.4.2 Tregs subtype and function

Findings suggest that obesity in women across the BMI range measured is associated with a 

reduction in percentage of circulating regulatory T cells. Studies of Treg percentages in the adipose 

tissue of obese patients have suggested that obesity is associated with a reduction in nTregs whilst 
insulin resistant individuals have an increase in the number of iTregs [667]. Again, the cryopreserved 

mononuclear cells could be used for flow cytometry using antibodies against the Ikaros-family 

transcription factor Helios, enabling differentiation of the relative abundance of nTregs and iTregs.
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The obese asthmatics had the lowest levels of Tregs of the 6 groups however this was not 
statistically significant. It may be that the study was not sufficiently powered to detect a difference j
(see limitations), or that differences are only seen in the morbidly obese. Given the known effects of 1
corticosteroids as discussed above, it would be of interest to isolate CD4+ T cells from the 

cryopreserved mononuclear cells and determine the effect of in vitro steroid exposure on FoxP3 

expression and whether this differs with BMI. Some studies have shown asthma to be associated 

with changes in Treg function. A paediatric study has shown a reduction in the ability of BAL Tregs to 

suppress in vitro proliferation and cytokine response of autologous T cells in untreated asthmatics 

compared to controls [194]. A study in adults showed that Tregs isolated from peripheral blood of 
asthmatics also had impaired ability to suppress in vitro effector T cell proliferation [649]. The 

cryopreserved mononuclear cells could also be used to examine Treg suppressor function.

8.4.3 T cell ageing

In this current work obese individuals were found to have a reduced percentage of naive 

(CD45RA+CCR7+) CD4+ T cells and an increase in memory (CM and EM) subsets, changes classically 

observed with ageing. Obesity is associated with a number of conditions classically connected with 

ageing including cardiovascular disease. Telomeres are non-coding, repeat sequences of DNA at the 

end of chromosomes which protect the coding sequences of DNA from enzymatic degradation. 
Telomere length is lost with each mitosis due to the inability of DNA polymerase to completely 

replicate terminal sequences of DNA and so decreases with ageing and eventually results in cellular 
apoptosis (the Haylick effect) [679]. Within the literature, leukocyte telomere length has been 

shown to reflect systemic telomere length and therefore ageing [680]. The association between 

obesity and telomere length has not been clarified. A study of 309 Caucasian men and women aged
8-80 years showed a negative association between BMI and telomere length which was more 

marked in the younger ages [681] whilst a longitudinal study of 435 obese post menopausal women 

showed no association between BMI and telomere length and no effect with weight loss [682]. 
Other inflammatory conditions such as systemic lupus erythematosis are also associated with 

telomere shortening, however little work has been done on this area in asthma. Real time PCR can 

be used to measure telomere length in the cryopreserved mononuclear cells to see if the changes in 

surface markers on CD4+ T cells, reflect a more general ageing of the immune system in obesity and 

also explore whether telomere shortening is seen in asthma. Similarly, analysis of T receptor excision 

circles (TRECS ) can be considered to determine if the observed reduction in naive CD4+ T cells is due 

to a reduction in thymic output, which has been suggested in animal models [657]. The functional 
consequences of changes in the relative abundance of naive and memory CD4+ T cell populations 

could also be explored using intra-cellular flow cytometry of cytokines such as IL-2, IFNy, and TNFa.

8.4.4 Leptin resistance

Obesity is characterised by a state of leptin resistance with regards to its effects on satiety. Leptin I
levels increased with BMI category in both asthmatics and controls with highest levels in the obese j
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asthmatics (section 4.3.8). Given the multitude of immunomodulatory effects, possible relationships 

between leptin and other immune parameters were considered throughout this work. Correlations 

were seen with some parameters which differed between asthmatics and controls. Examples of 
these included PHA-stimulated IFNy which correlated with leptin in the asthmatics and not the 

controls and also correlation between leptin and mDCs which was more marked in the asthmatics 

than controls. In addition, in the context of PHA-stimulated IFNy within the asthmatics the transition 

from normal weight to overweight category was associated with an increased response but no 

further escalation was seen in the obese asthmatics. Differences in leptin sensitivity may explain 

such observations and this should be explored in more detail. Leptin has a number of effects on the 

phenotype and function of mononuclear cells and these could be explored to identify differences in 

the leptin response within each of the groups. In vitro leptin has been shown to promote Thl 
polarisation, increasing the production of Th l cytokines (IL-2 and IFNy) when monocyte depleted 

lymphocytes are cultured with leptin and the T cell mitogen PHA [458]. It would be of interest to 

repeat this experiment with lymphocytes isolated from the 6 study groups see if there are 

differential effects with regards to Th l polarisation ability of leptin.

8.4.5 Weight loss

A number of weight loss studies of obese patients, by either bariatric surgery or diet, have shown 

benefits in asthma control (see Tables 2.6 and 2.7), however the mechanisms remain to be 

elucidated. One well designed study of bariatric patients with asthma (defined as demonstrable BHR 

or significant reversibility to p2 agonist) showed a clear improvement in asthma control, quality of 
life and BHR [229]. Interestingly the improvement in BHR was only seen in those with a normal IgE. A 

rise in lymphocytes in the BAL fluid with weight loss was noted but there were no other changes in 

the cellular constituents. An increase in cytokine outputs (IL-5, IFNy and IL-6) on T lymphocyte 

stimulation was also noted but this may have been confounded by treatment effects, with the 

patients on significantly less ICS post surgery. As of October 2013 another MD student will explore 

the effects of bariatric surgery on asthma and immunity. It would be of great interest to look at 
whether weight loss leads to an increase in Tregs and whether this was responsible for the increased 

lymphocytes seen in the BAL fluid in the study by Dixon and colleagues. Furthermore a number of 
controls in the study described herein were recruited from weight loss groups (Slimming World) and 

therefore it would be feasible and of interest to resample these women to examine whether weight 
loss by dietary modifications has any immunomodulatory effect.

8.4.6 Examining airway inflammation

A limitation of the work as previously discussed is the lack of simultaneous examination of the 

airways. This was due to the unavailability of suitable resources. Given the systemic changes in a 

number of immune cells in obese asthmatics it would be of great importance to determine whether 

these are mirrored in the airways; ethical approval has been obtained to gather sputum samples 

from these individuals and BAL samples from the asthmatics. Two groups have recently shown 

neutrophils to be increased within sputum samples of obese asthmatics [429, 476] suggesting that 
the systemic changes seen herein are also apparent within the airways. However, it would still be of
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value to verify this finding in this very well matched study group. It would also be interesting to 

determine whether the systemic changes in IL-6 observed were mirrored in the airways. Flow 

cytometry on BAL samples would enable investigation of whether changes in Thl, Thl7, and Tregs as 

observed systemically occur locally within the airways. As the presence of detectable plasma IL-17 

did not correlate with PHA-stimulated IL-17 analysis for IL-17 expression within the airways would be 

worthwhile. Finally as there were no differences in terms of LPS responsiveness with obesity or 
asthma and specifically no augmented response in the obese asthmatics and that, at least in terms 

of asthma such changes have been seen locally within the airways [341], BAL derived macrophages 

could be used to examine LPS responsiveness locally.

8.5 Final summary
This case control study examined systemic immunity in obesity and asthma and more specifically 

whether obese asthmatics had detectable differences which may explain their different clinical 
phenotype. By choosing a very specific population of premenopausal women and controlling 

stringently for comorbidity and cyclical hormonal changes, an area not addressed well in previous 

studies, confounders which might impair the interpretation of results were limited. Furthermore this 

study focuses on a specific phenotype of obese asthma; an earlier onset atopic phenotype.

Several novel areas were the focus of investigation including the role of innate immunity, changes in 

dendritic cells populations and regulatory T cells. Results suggest that obesity in asthma is associated 

with systemic changes in innate immunity with increased numbers of neutrophils observed, and 

higher levels of circulating pro-inflammatory mediators including IL-6 and leptin. Within asthmatics 

obesity was associated with changes in the percentage of mDCs and a PHA-stimulated cytokine 

response more in keeping with Th l skewing. Such observations support the notion that systemic 

immunity may play a role in this increasingly common disease phenotype.

Finally obesity itself was observed to be associated with a number of changes in innate immune 

function including increased neutrophilia, and increased levels of neutrophil related cytokines 

including IL-6 and G-CSF, as well as sCD14. In addition obesity is associated with changes in pDCs and 

adaptive immunity including a reduction in regulatory T cells, increased PHA-induced IL-17 and 

increased surface expression of CD4+ T cell markers associated with immune ageing. Such changes 

may explain why this disease state promotes the development of inflammatory conditions such as 

asthma and provides a gateway for further research to target these areas with the aim of modifying 

the detrimental effects of this endemic disease.
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APPENDIX I

GIG
C Y M R U

NHS
W A L E S

Bwrdd lechyd Prifysgol
Abertawe Bro Morgannwg
University Health Board

Patient Identification Number for this trial:

CONSENT FORM -Study Participants
10/W M W 02/4 Version 3 14.09.2011

Title of Project: Asthma and Immunity -  effect of adipokines on immune function 

Name of Researchers: Dr M Pynn, Dr GA Davies, Dr CA Thornton, Prof JM Hopkin

Please initial box
I confirm that I have read and understand the information sheet dated ---------------
13.09.2011 (version 4) for the above study. I have had the opportunity to 
consider the information; ask questions and have had these answered 
satisfactorily.

I understand that my participation is voluntary and that I am free to w ithdraw 
at any time, w ithout giving any reason, w ithout my medical care or legal rights 
being affected.

I understand that I w ill have blood and sputum samples which may be stored 
for futuretesting, w ith data being anonymised.

I understand that all samples will be fully anonymised and I w ill not be identifiable.

I understand that if it is fe lt to be useful in the future, I may be contacted again to 
give a further sample (blood/sputum test).

I agree to take part in the above study. I understand that the results o f the research 
may appear in a medical journal in an anonymised fashion.

Name o f Patient/Volunteer Date Signature

Name of Person taking consent Date Signature
(If d ifferent from researcher)

Researcher Date Signature
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APPENDIX II

Bwrdd lechyd Prifysgol
Abertawe Bro Morgannwg
University Health Board

Patient Information Sheet

10/W M W 02/4 Version 3 26.11.2010

Asthma and Immunity -  effect of adipokines on immune function

You are invited to take part in a research study. Before you decide it is im portant fo r you to 
understand why the research is being undertaken and w hat it w ill involve. P lease take tim e 
to read the follow ing inform ation carefully. D iscuss it w ith your friends, fam ily and GP if you 
w ish. Ask us if there is anyth ing you do not understand or if you would like further 
in form ation. Take tim e to decide w he ther or not you w ish to take part.

Part 1 te lls you about the purpose o f this study and w hat will happen if you decide to take 

part.

Part 2 gives you more detailed inform ation about the conduct o f the study.

6 GIG 
o q oV  NHS

W A L E S
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Part 1

W hat is the purpose of this study?

As you are aware, you have asthma, which is an inflammatory condition affecting the lungs. 
W e know that certain types of allergic immune cells are involved in the inflammation we see 
in asthma. Recently, there is evidence that there may be reduced numbers of protective or 
regulatory immune cells in asthma, so that there is less control over the allergic cells.

In recent years there has been a worldwide increase in the number of asthma sufferers and 
there is some evidence to suggest that this may be linked directly to a corresponding 
increase in occurrence of obesity although why this should be so is still unclear. This study 
sets out to explore this further by comparing test results from a group of asthmatics with 
those obtained from a group of healthy females with similar physical characteristics. In 
particular the study will look at the role played by a specific class of immune cells (regulatory 
T cells) and whether immune function is linked to measures of weight such as body mass 
index.

W hy have I been chosen?

Because you have been diagnosed as having asthma and fulfil the criteria for entry to the 
study.

Do I have to take part?

No. It is up to you to decide whether or not to take part. If you do, you will be given this 
information sheet to keep and be asked to sign a consent form. You are still free to withdraw 
at any time and without giving a reason. A decision to withdraw, or a decision not to take 
part, will not affect the standard of care you receive.

W hat will happen to me if I take part?

You will initially be assessed in Chest Clinic by a specialist doctor as you have been 
previously. The diagnosis of asthma will be confirmed by performing a breathing test (as you 
have done on previous clinic visits). W e will record whether you are on any steroid treatment 
and if your asthma is controlled. If it is stable we will decide whether it is appropriate to 
consider step-down of this treatment (as would be done as part of your usual asthma care) 
and treatment. An investigator will ask some simple questions to make sure you don’t have 
sleep apnoea (a disorder of abnormal breathing at night). Measurements will be taken of 
your height, weight, waist circumference and body fat (on digital scales). You will be asked 
to give a blood sample in the morning after fasting overnight. As we want to control for the 
effects of hormones on the immune system we would like to take the blood sample during 
the first 7 days of your menstrual cycle.
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In addition to your usual clinical assessments, taking part in the study will mean one further 
visit for blood and body mass measurements. Other visits and tests would be part of your 
usual asthma management. As further information becomes available, it may be helpful to 
ask patients to return in the future to give a further sample and we would seek your consent 
to have the option to contact you again if needed.

W hat samples are we measuring in the study?

W e are taking blood samples to measure cells relating to asthma and immune regulation. 
W e are also measuring the protein products of fat cells (adipokines) in the blood to see 
whether these are linked to immune regulation.

W hat are the other possible disadvantages and risks of taking part?

Blood test may cause minor discomfort.

W hat are the possible benefits of taking part?

There will be no direct benefit to you from taking part in this study. However, the results may 
give us a better understanding of your condition which in turn may help patients in the future.

W hat happens if new information becomes available?

Sometimes during the course of a research project, new information becomes available 
about the disease being studied. However, we do not feel that this is likely with this study as 
it does not involve any new or experimental drugs, nor does it involve any change in the 
standard of your care.

W hat if there is a problem?

Any complaint about the way you have been dealt with during the study or any possible 
harm you might suffer will be addressed. The detailed information on this is given in Part 2. 
The telephone number to contact if you wish to lodge a complaint is 01792 703410.
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W ill my taking part in the study be kept confidential?

Yes. All the information about your participation in this study will be kept confidential. Any 
information which leaves the hospital will have your name and address removed so that you 
cannot be recognised from it. The details are included in Part 2.

Contact Details:

Dr M Pynn 

Chest Physician 

Department of Respiratory Medicine 

Singleton Hospital 

Swansea SA2 8PP 

Tel: « ■ ■ ■ ■ ■ *

If this information in Part 1 has interested you and you are considering participation, 
please continue to read the additional information in Part 2 before making any 
decision.

This completes Part 1 of the Information Sheet.
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Part 2

W hat will happen to any samples I give?

Samples will be processed in the laboratory for analysis. Appropriate samples will be stored 
so that further tests may be carried out in the future as more information about asthma 
becomes known. Cell samples and biopsy samples will be frozen and stored in a tissue 
bank. There are strict rules regarding storage of samples and tissue banks are certified to 
show they are compliant with these. Research samples will be anonymised and researchers 
will not b able to identify you from these samples.

Will my taking part in this study be kept confidential?

All information which is collected about you during the course of the research will be kept 
strictly confidential. Any information about you which leaves the hospital will have your name 
and address removed so that you cannot be identified from it.

Procedures for handling, processing, storage and destruction of your data are compliant with 
the Data Protection Act 1998.

You will have the right of access to your results at any time.

W hat will happen to the results o f the research study?

The results may be published as a conference presentation to other medical personnel 
involved with the management of asthma patients. You will not be identified in any 
publication arising from your participation in this study. You will have ready access to the 
results from the study if you wish by contacting the principal study investigator.

W hat if there is a problem?

If you have a concern about any aspect of this study, you should initially ask to speak with 
the researchers who will do their best to answer your questions. If you remain unhappy and 
wish to complain formally, you can do this through the NHS Complaints Procedure. Details 
can be obtained from the hospital.

The test procedures are routine and pose negligible risk to those taking part. In the very 
unlikely event that something does go wrong and you suffer harm during the research study 
there are no special compensation arrangements. If you are harmed and this is due to 
someone’s negligence then you may have grounds for legal action for compensation against 
Abertawe Bro Morgannwg University Health Board but you may have to pay your legal costs. 
The normal National Health Service complaints mechanisms will still be available to you.
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W ho is organising and funding the research?

The study is being organised by Dr GA Davies in the Asthma Clinic at Singleton Hospital, 
Swansea. The doctors conducting the research are not receiving any payment for the 
project.

W ho has reviewed the study?

The South West Wales Research Ethics Committee.

Will I receive a copy of this Information Sheet and the consent form?

Yes, a copy of both the information sheet and a signed consent form will be given to you to 
keep.

Thank you for taking the time to read this information sheet and considering taking part in 
this study.



APPENDIX III

Bwrdd lechyd Prifysgol
Abertawe Bro Morgannwg
University Health Board

Healthy volunteer - Information Sheet

10/W M W 02/4 Version 5 14.09.2011

Asthma and Immunity -  effect of adipokines on immune function

You are invited to take part in a research study. Before you decide it is im portant fo r you to 
understand why the research is being undertaken and what it will involve. P lease take tim e 
to read the fo llow ing inform ation carefully. D iscuss it w ith your friends, fam ily and GP if you 
wish. Ask us if there is anyth ing you do not understand or if you would like fu rther 
inform ation. Take tim e to decide w he ther or not you wish to take part.

Part 1 te lls you about the purpose of this study and what will happen if you decide to take 
part.

Part 2 gives you more deta iled in form ation about the  conduct of the study.

277



Part 1

W hat is the purpose of this study?

In recent years there has been a worldwide increase in the number of asthma sufferers and 
there is some evidence to suggest that this may be linked directly to a corresponding 
increase in weight gain although why this should be so is still unclear. This study sets out to 
explore this further by comparing test results from a group of asthmatics with those obtained 
from a group of healthy females with similar physical characteristics. In particular the study 
will look at the role played by a specific class of immune cells (regulatory T cells) and 
whether immune function is linked to measures of weight such as body mass index.

W hy have I been chosen?

Because you are a healthy person of a similar age to the patients with asthma that we are 
studying.

Do I have to take part?

No. It is up to you to decide whether or not to take part. If you do, you will be given this 
information sheet to keep and be asked to sign a consent form. You are still free to withdraw 
at any time without giving a reason.

W hat will happen to me if I take part?

An investigator will ask some simple questions to make sure you don’t have asthma, 
significant allergy or sleep apnoea (a disorder of abnormal breathing at night). 
Measurements will be taken of your height, weight, waist circumference and body fat (on 
digital scales). Your lung function will be assessed by a simple blowing test (Spirometry). 
You will then be asked to give a blood sample (in the morning) after fasting overnight. As we 
want to control for the effects of hormones on the immune system we would like to take the 
blood sample during the first 7 days of your menstrual cycle.

W hat samples are we measuring in the study?

W e are taking blood samples to measure cells relating to asthma and immune regulation. 
W e are also measuring the protein products of fat cells (adipokines) in the blood to see 
whether these are linked to immune regulation.
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W hat are the other possible disadvantages and risks of taking part

Blood tests may cause minor discomfort.

W hat are the possible benefits of taking part?

There will be no direct benefit to you from taking part in this study. However, the results may 
give us a better understanding of asthma which may help patients in the future.

W hat if there is a problem?

Any complaint about the way you have been dealt with during the study or any possible 
harm you might suffer will be addressed. The detailed information on this is given in Part 2. 
The telephone number to contact if you wish to lodge a complaint is 01792 703410.

W ill my taking part in the study be kept confidential?

Yes. All the information about your participation in this study will be kept confidential. The 
details are included in Part 2.

Contact Details:

Dr M Pynn

Respiratory Registrar and Clinical Lecturer 

Immunity and allergy 

Institute of Life Science 

Swansea University 

Email: m.c.pvnn@swansea.ac.uk 

T e l : f H S

If this information in Part 1 has interested you and you are considering participating, please 
continue to read the additional information in Part 2 before making any decision.

This completes Part 1 o f the Information Sheet.
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Part 2

W hat will happen to any samples I give?

Samples will be processed in the laboratory for analysis. Appropriate samples will be stored 
so that further tests may be carried out in the future as more information about asthma 
becomes known. Cell samples and biopsy samples will be frozen and stored in a tissue 
bank. There are strict rules regarding storage of samples and tissue banks are certified to 
show they are compliant with these. Research samples will be anonymised and researchers 
will not be able to identify you from these samples.

W ill my taking part in this study be kept confidential?

All information which is collected about you during the course of the research will be kept 
strictly confidential. Any information about you which leaves the hospital will have your name 
and address removed so that you cannot be identified from it.

Procedures for handling, processing, storage and destruction of your data are compliant with 
the Data Protection Act 1998.

You will have the right of access to your results at any time.

W hat will happen to the results of the research study?

The results may be published as a conference presentation to other medical personnel 
involved with the management of asthma patients. You will not be identified in any 
publication arising from your participation in this study. You will have ready access to the 
results from the study if you wish by contacting the principal study investigator.

W hat if there is a problem?

If you have a concern about any aspect of this study, you should initially ask to speak with 
the researchers who will do their best to answer your questions. If you remain unhappy and 
wish to complain formally, you can do this through* the NHS Complaints Procedure. Details 
can be obtained from the hospital.

The test procedures are routine and pose negligible risk to those taking part. In the very 
unlikely event that something does go wrong and you suffer harm during the research study 
there are no special compensation arrangements. If you are harmed and this is due to 
someone’s negligence then you may have grounds for legal action for compensation against 
Abertawe Bro Morgannwg University Health Board but you may have to pay your legal costs. 
The normal National Health Service complaints mechanisms will still be available to you.
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W ho is organising and funding the research?

The study is being organised by Dr GA Davies in the Asthma Clinic at Singleton Hospital, 
Swansea. The doctors conducting the research are not receiving any payment for the 
project.

W ho has reviewed the study?

The South West Wales Research Ethics Committee.

W ill I receive a copy of this Information Sheet and the consent form?

Yes, a copy of both the information sheet and a signed consent form will be given to you to 
keep.

Thank you for taking the time to read this information sheet and considering taking part in 
this study.
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APPENDIX IV
| M O D IFIED  IU A T L D  B R O N C H IA L  SY M PTO M S Q U ESTIO N N A IR E'

Questionnaire-Volunteers without Asthma
To answer the questions, please choose the appropriate box; IF YOU 

ARE UNSURE OF THE ANSWER, PLEASE CHOOSE ‘NO’ 

All answers are strictly confidential

Asthm a

1. Have you ever had asthma? No Yes
11 [ ]

H ayfever and eczem a

2. Have you ever had any nasal allergies including hayfever?
No Yes
[ ] [ ]

If yes to 2a/b. If no to 3
No Yes

2a) Do you still have it? [ ] [ ]
b) Are you currently on any medications

Including tablets, nasal sprays [ ] [  ]

3. Have you ever had eczema? No Yes
[ ] [ ]

If yes to 3a/b
. If no to 4

3 a) Do you still have it? No Yes
[  ] [  ]

3 b) Are you currently on any medication for it
Including tablets or topical treatments [  ] [  ]

Sm oking

4. Have you ever smoked for as long as one year?
No Yes
[ ] [ ]

If yes to 4a:
If no to 5

4a. Do fdid) vou usuallv smoke:
cigarettes? [ ]
pipe? r  1

283



cigars? [ ]
Other (precise please)_________

4b. How many cigarettes do (did) you smoke each day, on average?__

4c. Have you:
continued to smoke? [ ]

given up smoking altogether, but less than 4 weeks ago? [ ]
given up smoking altogether, at least 4 weeks ago? [ ]

4d. For how many years have you smoked (did you smoke)________

O ther conditions

5. Do you have any other medical conditions including diabetes or reflux disease?
No Yes
t ] 11

If yes to 5a:. If no 6 

5a) Please list medical conditions

Sleep apnoea

6. Do you have a history of Obstructive sleep apnoea? No Yes
[ ] [ ]

7. In the following situations please grade from 0-3 your chances of falling asleep.

(0=would never dose, 1= slight chance of dozing, 2= moderate chance of dozing, 
3= high chance of dozing

Sitting reading [ ]
Watching TV [ ]
Lying down to rest in the afternoon when circumstances permit [ ]
Sitting inactive in a public place [ ]
Sitting and talking to someone [ ]
Sitting after lunch without alcohol [ ]
As a passenger in a car for an hour without a break [ ]
In a car whilst stopped for a few minutes in the traffic [ ]

TOTAL SCORE [ 1

284



8. Are you on any medication?
No Yes
t ] t ]

If yes to 8a:
If no to 9

8a) Please list medications

W heeze and tightness in the chest

9. Have you, at any time in the last 12 months, had wheezing or whistling 
in your chest? No Yes

[ ] [ ]
If yes to 9a/9b/9c. If no, go to question 10.

9a. Have you been at all breathless when the wheezing noise was present?
No Yes 
[ ] [ ]

9b. Have you had this wheezing or whistling when you did not have a cold?
No Yes 
[ ] [ ]

9c. Have you, at any time in the last 12 months, woken up with a feeling of 
tightness in your chest first thing in the morning?

No Yes 
[ ] [ ]

Shortness o f  breath

lO.Have you, at any time in the last 12 months, had an attack of shortness of 
breath that came on during the day when you were not doing anything 
strenuous?

No Yes
[ ] t ]

11 .Have you, at any time in the last 12 months, had an attack of shortness of 
breath that came on after you stopped exercising? No Yes

[ ] [ ]
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12.Have you, at any time in the last 12 months, been woken at night by an 
attack of shortness of breath?

No Yes
[ ] t ]

C ough and Phlegm  from  the chest

13.Have you, at any time in the last 12 months, been woken at night by an attack 
of coughing?

No Yes
[ ] t ]

14.Do you usually cough first thing in the morning?
No Yes
[ ] t ]

If yes to 14a/14b. If no to 15.

14a.Do you have a cough like this most mornings for as much as 3 
months per year?

No Yes
t ] [ ]

14b.How many years have you had this cough?  YEARS

15.Do you usually bring up phlegm from your chest first thing in the morning?

If yes to 15a. If no to 16.

No Yes 
[ ] [ ]

15a. Do you have phlegm like this most mornings for as much as 3 
months per year?

No Yes
t ] [ ]

15b.How many years have you had this phlegm? YEARS

Ireathing_________________________________________________________________________

16. Which of the following statements best check only one:
describes your breathing?
I never or only rarely get trouble with my breathing [ ]
I get repeated trouble with my breathing but it always
gets completely better [ ]
My breathing is never quite right [ ]
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M o r e  a b o u t y o u r s e lf

17. When were you bom

18. What was the date of your last period day month year

19. How long is your menstmal cycle □days

20. What is the anticipated date of your next period day month year

21. What is today’s date? day month year

22. Are you a student (undergraduate/postgraduate)? No Yes
[ ] [ ]

23. What is your height and weight (approximately)?

24. What is your ethnic group?

a) White [ ]
b) Black African [ ]
c) Black Caribbean [ ]
d) Black other [ ]
e) Indian [ ]
f) Pakistani [ ]
g) Bangladeshi [ ]
h) Chinese [ ]
i) Arab [ ]
j) Turkish [ ]
k) Other ethnic group [ ]
1) If other, please state [e.g. a) and b)]
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Contact details:

NAME:_____________________  _____________________  ______
(Last) (First) (Middle initial)

CONTACT ADDRESS:

PHONE NUMBER:_____________________

EM AIL:______________________________

Original questionnaire prepared for the Respiratory Disease Committee o f  the 
International Union Against Tuberculosis and Lung Disease (UNION)

Study reference for UNION questionnaire and validation:

Burney PG, Laitinen LA, PerdrizetS, HuckaufH, Tattersfield AE, Chinn S, etal. Validity and 

repeatability of the IUATLD (1984) bronchial questionnaire: an international comparison. Eur Respir 
J,1989; 2:940-5



APPENDIX V
I

10/WMW02/4 Version 2 30.11.2010
MODIFIED ECRHSII QUESTIONNAIRE

Questionnaire-Volunteers with asthma

A sthm a

1. Have you ever had asthma?

1.1 Do you still have it?

1.2 Was it confirmed by a doctor? 
Yes

1.3 At what age did it start?

1.4 If you no longer have it, at what age did it stop?

No Yes
[ ] [ ]

No Yes
[ ] [ ]

No

[ ] [ ]

Age in years 

 Age in years

2. Have you had an attack of asthma at any time in the last 12 months?
No Yes
[ i 11

If yes:

2.1 How many attacks of asthma have you had in the last 12 monthsl

Attacks

2.2 How many attacks of asthma have you had in the last 3 monthsl
Attacks

Years

1.3 How old were you when you had your most recent attack of asthma?

3. How many times have you woken up because of your asthma in the last 3 months?

Tick one box only
every night or almost every night 1
more than once a week, but not most nights 2
at least twice a month, but not more than once a 3
week
less than twice a month 4
not at all 5
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4. How often have you had trouble with your breathing because of your asthma 
in the last 3 months?

Tick one box only
continuously 1
about once a day 2
at least once a week, but less than once a day 3
less than once a week 4
not at all 5

A sthm a treatm ent

5. Are you currently taking any medicines (including inhalers, aerosols or tablets) for
asthma?

No Yes
[ ] t ]

6. Have you used any inhaled medicines to help your breathing at any time No 
in the last 12 monthsl ____

IF 'YES':
Which of the following have you used in the last 12 monthsl

No Yes
6.1 short acting beta-2-agonist inhalers___________________________ _____  ____

(Please include combinations that include beta 2 and steroids in section 6.5)
6.1.1 If used, which one?

6.1.2 What type of inhaler do you use?

6.1.3. What is the dose per puff (in micrograms)?

6.1.4. In the last 3 months, how have you used them:

TICK ONE BOX ONLY
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to 6.1.4 is when needed:
6.1.5 Number of puffs per month

I f  answer to 6.1.4 is in short courses
6.1.6 number of courses

6.1.7 number of puffs per day
6.1.8 average number of days per month
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I f  answer to 6,1.4 is continuously
6.1.9 number of puffs per day

6.2 long acting beta-2-agonist inhalers

(Please include combinations that include beta 2 and steroids in section 76.5)

6.2.1 If used, which one?

6.2.2 What type of inhaler do you use?

6.2.3. What is the dose per puff (in micrograms)?

6.2.4. In the last 3 months, how have you used them:

a) when needed
b) in short courses
c) continuously
d) not at all

I f  answer to 6.2.4 is when needed:
6.2.5 Number of puffs per month

I f  answer to 6.2.4 is in short courses
6.2.6 number of courses

6.2.7 number of puffs per day______________________________________ _____
6.2.8 average number of days per month
I f  answer to 6.2.4 is continuously---------------------------------------------------- ---------
6.2.9 number of puffs per day-------------------------------------------------------------------

No Yes
6.3 non-specific adrenoreceptor agonist inhalers

6.3.1 If used, which one?

No Yes

6.4 anti-m uscarinic inhalers --------  -------

6.4.1 If used, which one?________________________________

6.4.2 What type of inhaler do you use?

6.4.3. What is the dose per puff (in micrograms)?

Tick one box only
1
2 ___
3 ___
4
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6.4.4. In the last 3 months, how have you used them:

Tick one box only
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to 6.4.4 is when needed:
6.4.5 Number of puffs per month

I f  answer to 6.4.4 is in short courses
6.4.6 number of courses

6.4.7 number of puffs per day
6.4.8 average number of days per month 

I f  answer to 6.4.4 is continuously
6.4.9 number of puffs per day

6.5 inhaled steroids No Yes
{if combined B2 and steroid please insert inhaled steroid dose) _____ ____

6.5.1 If used, which one?

6.5.2 What type of inhaler do you use?

6.5.3. What is the dose per puff (in micrograms)? -----------------------

6.5.4. In the last 3 months, how have you used them:

Tick one box only
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to6.5.4 is when needed:
6.5.5 Number of puffs per month

I f  answer to 6.5.4 is in short courses
6.5.6 number of courses

6.5.7 number of puffs per day
6.5.8 average number of days per month
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I f  answer to 6.5.4 is continuously
6.5.9 number of puffs per day

6.6 inhaled crom oglycate/nedocrom il
Yes□

6.6.1 If used, which one?
| |

6.6.2. What is the dose per puff (in micrograms)?

6.6.3. In the last 3 months, how have you used them

a) when needed
b) in short courses
c) continuously
d) not at all

Tick one box only 
1 
2
3
4

I f  answer to 6.6.3 is when needed:
6.6.4 Number of puffs per month

I f  answer to 6.6.3 is in short courses
6.6.5 number of courses

6.6.6 number of puffs per day
6.6.7 average number of days per month

I f  answer to 6.6.3 is continuously
6.6.8 number of puffs per day

6.7 inhaled com pounds No Yes

n  □
6.7.1 If used, which one?

6.7.2 What type of inhaler do you use?

6.7.3. What is the dose per puff (in milligrams)?

7. Have you used any pills, capsules, tablets or m edicines, other than 
inhaled medicines, to help your breathing at any time in the last 12 monthsl

IF ’N O ’ G O  TO  Q U ESTIO N  8, IF ’Y E S ’:
Which of the following have you used in the last 12 monthsl

No Yes□
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7.1 oral beta-2-agonists

7.1.1 If used, which one?_____

7.1.2. What is the dose of tablet?

7.1.3. In the last 3 months, how have you used them

Tick one box only
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to 7.1.3 is when needed:
7.1.4 Number of tablets per month

I f  answer to 7.1.3 is in short courses
7.1.5 number of courses

7.1.6 tablets per day
7.1.7 average number of days per month

I f  answer to 7.1.3 is continuously
7.1.8 tablets per day

7.2 oral m ethylxanthines

7.2.1 If used, which one?

7.2.2. What is the dose of tablet?

7.2.3. In the last 3 months, how have you used them

TICK ONE BOX ONLY
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to 7.2.3 is when needed:
7.2.4 Number of tablets per month

I f  answer to 7.2.3 is in short courses
7.2.5 number of courses

7.2.6 tablets per day
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7.2.7 average number of days per month

I f  answer to 7.2.3 is continuously
7.2.8 tablets per day

7.3 oral steroids NC YES

7.3.1 If used, which one?

7.3.2. What dose of tablet?

7.3.3. In the last 3 months, how have you used them

TICK ONE BOX ONLY
a) when needed 1
b) in short courses 2
c) continuously 3
d) not at all 4

I f  answer to 7.3.3 is when needed:
7.3.4 Number of tablets per month

I f  answer to 7.3.3 is in short courses
7.3.5 number of courses

7.3.6 tablets per day
7.3.7 average number of days per month

I f  answer to 7.3.3 is continuously
7.3.8 tablets per day

7.3.9. Have you used them in the last 3 monthsl

1A oral anti-leukotrienes
NO YES

7.4.1 If used, which one?

7.4.2. What is the dose of tablet?

7.4.3. In the last 3 months, how have you used them
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a) when needed
b) in short courses
c) continuously
d) not at all

Tick one box only 
1 
2
3
4

I f  answer to 7.4.3 is when needed:
7.4.4 Number of tablets per month

I f  answer to 7.4.3 is in short courses
7.4.5 number of courses

7.4.6 tablets per day
7.4.7 average number of days per month

I f  answer to 7.4.3 is continuously
7.4.8 tablets per day

7.5 ketotifen No Yes

7.5.1 If used, which one?

7.5.2. What dose of tablet?

7.5.3. In the last 3 months, how have you used them

Tick one box only
1 rz
2 ___
3 ___
4

I f  answer to 7.5.3 is when needed:
7.5.4 Number of tablets per month

I f  answer to 7.5.3 is in short courses
7.5.5 number of courses

7.5.6 tablets per day
7.5.7 average number of days per month 

I f  answer to 7.5.3 is continuously

a) when needed
b) in short courses
c) continuously
d) not at all
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7.5.8 tablets per day

No8. Have you ever used inhaled steroids (show list)?

IF NO GO TO QUESTION 9, IF YES

8.1. How old were you when you first started to use inhaled steroids?

8.2. Have you now stopped using inhaled steroids? No 

IF NO, GO TO Q8.3, IF  YES

Yes

Years

Yes

8.2.1 How old were you when you stopped using inhaled 
steroids?
8.3 Have (did) you used inhaled steroids every year since you 
started using them?

Years

No Yes

IF NO GO TO QUESTION 8.4, IF YES
8.3.1. On average how many months each year have you taken 
them (or did you take them)?

NOW GO TO Q9

8.4 How many of the years since you started using them have you taken 
inhaled steroids?

Months

Years

8.5 On average how many months of each of these years have you 
taken them?

Months

A sthm a Severity

9. Have you visited a hospital casualty department or emergency room 
because of asthma, shortness of breath or wheezing in the last 12 monthsl 

IF YES
9.1 How many times in the last 12 monthsl

No Yes

Times

10. Have you spent a night in hospital because of asthma, shortness of 
breath or wheezing in the last 12 monthsl

No Yes

IF YES
10.1 How many nights have you spent in hospital because of 

asthma, shortness of breath or wheezing in the last 12 monthsl

10.1.1 Have you spent a night in ITU because of asthma, shortness 
of breath or wheezing in the last 12 monthsl

Nights

No Yes
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IF  YES
10.1.2 How many nights have you spent in ITU because of asthma,shortness 
of breath or wheezing in the last 12 monthsl

11. Have you been seen by a general practitioner because of asthma, n 0 Yes
shortness of breath or wheezing in the last 12 monthsl

IF YES
11.1 How many times have you been seen by your general practitioner 
because of asthma, shortness of breath or wheezing in the last 12 monthsl

12. Have there been days when you have had to give up work or other 
activities because of asthma, shortness of breath or wheezing in the last 12 
m onths?

IF YES Days
12.1 How many days on average each month?

No Yes

H ayfever and eczem a

13. Do you have any nasal allergies including hayfever?

If yes to 13a/b. If no to 14.

13 a) Do you still have it?
b) Are you currently on any medications 

Including tablets, nasal sprays

No Yes 
[ ] 1 1

No Yes
t ] 11 

t ] t ]

14. Have you ever had eczema?

If yes to 14a. If no to 15.

14a) Do you still have it?

14b) Are you currently on any medication for it 
Including tablets or topical treatments

No Yes
t ] [ ]

No Yes
t ] t ]

[ ] t ]

O ther conditions

15. Do you have any medical conditions including diabetes or reflux disease
No Yes

[  ]  [  i
If yes to 15a. If no to 16.
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15.a Please list medical conditions

Sleep apnoea

18. Do you have a history of Obstructive sleep apnoea? No Yes
[ ] t ]

19. In the following situations please grade from 0-3 your chances of falling asleep.

(0=would never dose, 1= slight chance of dozing, 2=  moderate chance of dozing, 
3= high chance of dozing

Sitting reading [ ]
Watching TV [ ]
Lying down to rest in the afternoon when circumstances permit [ ]
Sitting inactive in a public place [ ]
Sitting and talking to someone [ ]
Sitting after lunch without alcohol [ ]
As a passenger in a car for an hour without a break [ ]
In a car whilst stopped for a few minutes in the traffic [ ]

TOTAL SCORE[ ]

20. Are you on any medication?
No Yes 
[ ] [ ]

If yes to 20a. If no to 21

16.1 Please list medications including any hormonal or contraceptive 
medications

Sm oking

21. Have you ever smoked for as long as one year?
No Yes 
[ ] 11

If yes to 21a. If no to 22 
21a). Do (did) you usually smoke:

cigarettes? [ ]
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Other (precise please)

pipe?
cigars?

21b). How many cigarettes do (did) you smoke each day, on average?

21c). Have you: Check one:
continued to smoke? [ ]
given up smoking altogether, but less than 4 weeks ago? [ ]
given up smoking altogether, at least 4 weeks ago? [ ]

2 Id). For how many years have you smoked (did you smoke) 

M ore about you rself

22. When were you bom

23. What was the date of your last period

24. How long is you menstrual cycle

26. What is the anticipated date of your next period

27. What is today’s date?

28. What is your ethnic group?

a) White
b) Black African
c) Black Caribbean
d) Black other
e) Indian
f) Pakistani
g) Bangladeshi
h) Chinese
i) Arab 
j) Turkish 
k) Other ethnic group 
1) If other, please state [e.g. a) and b)]

day month year

day month year

| | days

day month year

day month year
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Contact details:

NAME:_____________________  _____________________  ______
(Last) (First) (Middle initial)

CONTACT ADDRESS:

PHONE NUMBER:

EMAIL:
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APPENDIX V I Juniper asthma control questionnaire [3921

Please answer questions 1-6
Circle the number of the response that best describes how you have been during the past week

1. On average, during the last week, how often were you woken by your asthma during the night?
0. Never
1. Hardly ever
2. A few  minutes
3. Several times
4. Many times
5. A great many times
6. Unable to sleep because of asthma

2. On average, during the last week, how bad w ere your asthma symptoms when you woke up in the morning?
0. No symptoms
1. Very mild symptoms
2. Mild symptoms
3. Moderate symptoms
4. Quite severe symptoms
5. Severe symptoms
6. Very severe symptoms

3. In general, during the past week, how limited w ere you in your activities because of your asthma?
0. Not limited at all
1. Very slightly limited
2. Slightly limited
3. Moderately limited
4. Very limited
5. Extremely limited
6. Totally limited

4. In general, during the past week, how much shortness of breath did you experience because of your asthma?
0. None
1. A very little
2. A little
3. A moderate amount
4. Quite a lot
5. A great deal
6. A very great deal

5. In general, during the past week, how much of the time did you wheeze?
0. Not at all
1. Hardly any of the time
2. A little of the time
3. A moderate amount of the time
4. A lot of the time
5. Most of the time
6. All of the time

6. On average, during the past week, how many puffs of short acting bronchodilator (e.g. Ventolin) have you used?
0. None
1. 1-2 puffs most days
2. 3-4 puffs most days
3. 5-8 puffs most days
4. 9-12 puffs most days
5. 13-16 puffs most days
6. M ore than 16 puffs most days

7. To be completed by a member of the clinic staff

FEV1 pre-bronchodilator:........................
FEV1 predicted.........................................
FEV1 % ......................................................
(Record the actual values on the dotted lines and score the FEV1 % predicted in the next column)

0. >95% predicted
1. 95-90%
2. 89-80%
3. 79-70%
4. 69-60%
5. 59-50%
6. <50% predicted
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APPENDIX VII

Global Initiative for Asthma (GINA) programme classification of asthma severity [393].

GINA
grading

Symptoms in the day Symptoms at night PEFR or FEV1 PEFR
variability

Step 1
Interm ittent

<1 time a week.

Asymptomatic and 
normal PEFR between 
attacks.

< 2 times a month. >80% <20%

Step II 
Mild
persistent

>1 time a week but < 1 
time a day.

Attacks may affect 
activity

>2 times a month >80% 20-30%

Step III
M oderate
persistent

Daily

Attacks affect activity

>1 time a week 60-80% >30%

Step IV 
Severe 
persistent

Continuous

Limited physical activity

Frequent <60% >30%

The presence of any one of the listed criteria is enough to place the asthmatics in the respective 
severity grade.

$it
1
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APPENDIX VIII

Krebs-Ringer bicarbonate buffer made up in distilled water:

• Na2HP04 (12.7 mM),

• NaH2P04 H20  (3.06 mM),

• NaCI2 (120 mM),

• KCI (4.8 mM),

• MgS04 7H20  (1.2 mM),

• Dextrose (11 mM)

• CaCI2 (0.71 mM)(Fisher Biosciences).

305


