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A bstract

Multiple input multiple output (MIMO) is an important technique 
of improving the spectral efficiency in wireless communications. In 
MIMO systems, it is usually required to jointly detect signals at the 
receiver. While the maximum likelihood (ML) MIMO detection pro­
vides an optimal performance with full receive diversity, its complexity 
grows exponentially with the number of transmit antennas. Thus, lat­
tice reduction (LR) and list based detectors are developed to reduce 
the complexity.
In this thesis, we first apply the partial maximum a posteriori prob­
ability (PMAP) principle to the list-based method for MIMO detec­
tion. It shows that the PMAP-based list detection outperforms the 
conventional list detection with a reasonably low complexity. To fur­
ther improve the performance for slow fading MIMO channels, we 
develop the column reordering criteria (CRC) for the LR-based list 
detection. It shows that with our proposed CRC, the LR-based list 
detection can provide a near ML performance with a sufficiently low 
complexity. Then, we develop a complexity efficient pre-voting can­
cellation based detection with pre-voting vector selection criteria for 
underdetermined MIMO systems and show that this scheme can ex­
ploit a near ML performance with full receive diversity.
An extension of MIMO systems is multiuser MIMO systems, where 
the user selection becomes an effective way to increase diversity (mul­
tiuser diversity). If multiple users are selected to access the channel 
at a time, the selection problem becomes a combinatorial problem, 
where an exhaustive search may leads to highly computational com­
plexity. Therefore, we propose a low complexity greedy user selection 
scheme with an iterative LR updating algorithm when a LR-based 
MIMO detector is used. It shows that the proposed selection scheme 
can provide a comparable performance to the combinatorial ones with 
much lower complexity.
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1

Introduction

1.1 A n O verview

In company with the growing requirement of the information technology in the 
modern society, wireless communications play an crucial role. However, the scarce 
wireless spectrum has posed a big challenge on wireless communication systems 
with the increasing data rate demands. To improve the spectral efficiency [1] 
in wireless communications, multiple antennas are employed at both transmitter 
and receiver, where the resulting system is called the multiple-input multiple- 
output (MIMO) system [2]. In MIMO systems, it is usually required to detect 
signals jointly as multiple signals are transmitted through multiple independent 
signal paths between the transmitter and the receiver. For coded MIMO sys­
tems, the diversity-multiplexing trade-off (DMT) [3] is widely used to measure 
the performance. A system is defined with spatial multiplexing gain r and spatial 
diversity gain d as the data rate R(SNR) achieves [3]

=  <“ >SNR—»oo log SNR 

and the average error probability Pe(SNR) achieves

Pe(SNR)
— hm -— ——— = d, (1 .2 )SNR—kx) log SNR v '

where SNR denotes the signal to noise ratio. If we consider uncoded systems, 
we can also use spatial diversity [1] as a performance metric, especially when
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1.1 An Overview

different MIMO detection methods are adopted. Note that a full receive diversity 
gain is considered with its diversity order equals the number of receive antennas 
in MIMO systems.

By using exhaustive search, maximum likelihood (ML) detector can be used 
to detect the joint signals to achieve an optimal performance with a full receive 
diversity order. Since the complexity of the ML detection grows exponentially 
with the number of transmit antennas, it is normally not used in practical sys­
tems. Instead, for MIMO detection, various computationally efficient approaches 
have been proposed. Learned as linear detectors, the zero-forcing (ZF) and the 
minimum mean square error (MMSE) detectors are considered which take the 
signals from the other antennas as the interference. In general, they have low 
complexity, but the performance is not good enough for some cases, specially 
at a high SNR. Since linear detectors can not provide a reasonably good per­
formance and a full receive diversity order from multiple receive antennas, other 
approaches are considered. For example, the vertical Bell laboratories layered 
space-time (V-BLAST), known as the successive interference cancellation (SIC), 
is proposed in [4]. It is shown that an MMSE detector with SIC can improve 
the performance, but suffers from the error propagation. By ordering the signal 
detection and cancellation, the error propagation can be mitigated.

Clearly, linear detectors and the ML detector have two desirable features 
we want to achieve, low computational complexity and optimal performance. 
This thesis aims to design good MIMO detectors with features of a comparable 
complexity to that of linear detectors and a near ML performance. To achieve the 
design goals, we rethink of several existing approaches and methods, including 
list and lattice reduction (LR) based detection.

With the ML detector, exhaustive search is performed for all the possible 
decision vectors. While the list-based detectors [5, 6 , 7, 8 , 9, 10, 11] construct 
a list of candidate decision vectors and then choose the best candidate as the 
final decision, the computational complexity can be considerably reduced. By 
regarding some bits/symbols as unreliable, the list is constructed in [6 ]. In [7], the 
list of the parallel detector is generated by employing a separate low-complexity 
detector for each possible value of the first symbol to be detected. In [10], a 
list sphere detection is proposed by considering the candidate list in a sphere.

2



1.1 An Overview

Furthermore, a family of list-based Chase detectors is proposed in [12 , 13, 14, 15, 
16,1. 7]. The principle of the Chase detection is to separate the detection procedure 
into two layers. In the first layer, one symbol is chosen to be detected separately 
and a list of candidates for this symbol will be constructed. On the second layer, 
the contribution from the detected symbol is treated as the interference and will 
be canceled from the received signal. The residual signal will be detected by 
the sub-detectors to decompose the remaining symbols. The final hard decision 
symbol vector is determined by MMSE over the concerned vectors. Note that 
different algorithms can be employed as the sub-detectors in the detection.

Taking the channel matrix as a basis for a lattice, various approaches based 
on the properties of lattice are considered. Since a lattice can be generated 
by different bases or channel matrices, in order to mitigate the interference be­
tween multiple signals, we can find a matrix whose column vectors are nearly 
orthogonal to generate the same lattice. Based on the Lenstra-Lenstra-Lovasz 
(LLL) algorithm [18], a lattice reduced matrix with a nearly orthogonal basis 
is generated. By employing various low complexity detectors (e.g., MMSE and 
MMSE-SIC detectors) with the lattice reduced matrix, the LR-based detection 
[19, 20, 21, 22, 23, 24, 25, 26] is carried out, which can provide a full receive 
diversity gain with a good performance. Furthermore, its complexity is signifi­
cantly lower than that of the ML detector using an exhaustive search. Although 
the LR can be performed with a complex-valued channel matrix as in [23, 24, 25] 
or a real-valued one converted from the complex-valued one as in [19, 22], they 
can provide the same performance as shown in [23, 25]. Since the LR with a 
complex-valued matrix has a lower complexity [23], in general, we consider the 
LR with a complex-valued matrix.

Some other approaches are also proposed to reduce the complexity for MIMO 
detection. By regarding the ML detection problem with a partial information 
of a posteriori probability (APP), the partial maximum a posteriori probability 
(MAP) principle is applied in [27] to reduce a higher-dimensional ML detection 
problem to two lower-dimensional subdetection problems to mitigate the inter­
symbol interference (ISI) and reduce the complexity. In [28], a complexity efficient 
LR-based list detection is studied to reduce a large MIMO detection problem into 
multiple small sub-detection problems.

3



1.1 An Overview

A channel matrix is called square or tall if the number of transmit antennas M  
is equal to, or smaller than the number of receive antennas N.  For most detectors, 
it is usually assumed that channel matrix is square or tall. However, there could 
be the cases where the channel matrices are fat (M > AT), which results in under­
determined or rank-deficient MIMO systems. Note that the LR-based detection 
is only considered for the cases of tall or square channel matrices. Although the 
list detection can be employed to such underdetermined MIMO systems, it can 
not provide a good performance with a full receive diversity. Therefore, some 
generalized sphere decoding (GSD) approaches [29, 30, 31, 32, 33] are developed 
for such MIMO systems. In [34], two sub-optimal group detectors are introduced. 
A geometrical approach based detection for underdertermined MIMO systems is 
studied in [35]. To further reduce the complexity, a computationally efficient 
GSD-based detector with column reordering is proposed in [36].

In MIMO systems, a rich spatial diversity gain can be obtained by employing 
various MIMO detectors (e.g., ML and LR-based detectors) to MIMO systems. 
Consider that multiple users are able to access the MIMO channel with different 
locations and channel conditions. Due to users’ different locations and channel 
conditions, it is possible to exploit another diversity gain, where the performance 
can be maximized by choosing the user of the best channel at a time. The re­
sulting system and its corresponding diversity gain are named as the multiuser 
MIMO system [37] with the multiuser diversity gain [38]. Conventionally, the 
SNR is used as a user selection criterion to investigate the multiuser diversity 
[39] [40], which highly depends on the channel capacity. Hence, the user which 
has the highest channel capacity is chosen, when multiuser MIMO systems are 
carried out. Although SNR-based or throughput-based optimal user selection 
schemes are adopted in user selection, the actual performance can be different 
from the expected one if non-ideal or suboptimal MIMO detectors are employed 
for joint detection. In [41], the error probability is considered as the user selection 
criteria, which choose the user who has the smallest error probability for given 
MIMO detectors. The user selection criteria with ML detector as well as other 
low complexity suboptimal detectors are derived. It is shown that a near opti­
mal performance with a full diversity gain (i.e., multiuser diversity and multiple

4
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antenna diversity) can be achieved using those user selection criteria proposed in 
[41] with LR-based detectors.

1.2 C ontributions

Although various complexity efficient MIMO detection schemes are proposed, in 
many cases, they can not provide a near ML performance. Furthermore, their 
complexity is still considerably high. In order to improve the performance and 
reduce the complexity, in this thesis, we first propose a complexity efficient partial 
MAP (PMAP) based list detection for MIMO systems. Then, an error proba­
bility based column reordering strategy is studied with the LR-based list MIMO 
detection to further improve the performance when slow fading MIMO channels 
are considered. For underdetermined MIMO systems, a pre-voting cancellation 
(PVC) based detection is developed which provides a near optimal performance 
with a low complexity. Furthermore, we consider user selection problems in mul­
tiuser MIMO systems, where an actual low complexity MIMO detection is em­
ployed. Using a LR updating method, we investigate a group of low complexity 
greedy user selection criteria for multiuser MIMO systems. The detailed contri­
butions are organized as follows:

• The PMAP principle can be applied to reduce the complexity of the MIMO 
detection through the SIC. In Chapter 3, we apply the PMAP principle to 
the list detection method for MIMO detection, where the SIC is performed 
with a list of candidates. The PMAP principle helps to choose candidate 
symbol vectors in the list detection. It is shown that the proposed method 
outperforms the conventional list detection method with a reasonable com­
plexity.

• A computationally efficient LR-based list detection is studied to reduce a 
large MIMO detection problem into multiple small sub-detection problems. 
In Chapter 4, based on the error probability analysis, we study column re­
ordering schemes for channel matrices to improve performance. It is shown
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that by employing our proposed column reordering, a significant perfor­
mance improvement can be obtained with a low complexity for slow fading 
MIMO channels.

• Various detection methods including the ML detection have been studied 
for MIMO systems. While it is usually assumed that the channel matrix 
is square or tall in most cases, there could be the cases where the channel 
matrices are fat, which results in underdetermined/rank-deficient MIMO 
systems. In Chapter 5, we employ the PVC-based detection for underde­
termined MIMO systems and show that the proposed detectors can exploit 
a full receive diversity. Furthermore, the post-voting vector selection (PVS) 
criteria for the proposed detectors are taken into account to further improve 
the performance. We also show that our proposed scheme has a lower com­
putational complexity compared to existed approaches, in particular when 
slow fading MIMO channels are considered.

• User selection plays a crucial role in multiple access channels (e.g., uplink 
channels of cellular systems). It is known that the multiuser diversity can 
be exploited in user selection to maximize a total throughput or achievable 
rate. While the achievable rate is adopted as a performance indicator to 
see an overall performance, it may not be proper if a suboptimal detector 
or decoder is employed. In particular, for MIMO systems, a low complex­
ity suboptimal MIMO detector can be used as optimal MIMO detectors 
require prohibitively high computing power. Under this practical circum­
stance, it may be desirable to derive user selection criteria based on the 
error probability for given MIMO detectors. In Chapter 6 , we propose a 
low complexity greedy user selection scheme with an iterative LR updat­
ing algorithm when a LR-based MIMO detector is used. We also analyze 
the diversity gain for combinatorial user selection approaches with vari­
ous MIMO detectors. From simulation results, we can confirm that the 
proposed greedy user selection approach can provide a comparable perfor­
mance to the combinatorial ones with much lower complexity.
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1.2.1 Publications

1.2.1.1 Journal Papers 

Published /  Accepted

(Jl) L. Bai, and J. Choi, “Partial MAP-based list detection for MIMO systems,” 
IEEE Trans. Vehicular Tech., pp. 2544-2548, June 2009.

(J2) L. Bai, C. Chen, J. Choi, and C. Ling, “Greedy user selection using a 
lattice reduction updating method for multiuser MIMO systems,” IEEE 
Trans. Vehicular Tech. (accepted)

(J3) L. Bai, C. Chen, and J. Choi, “Error probability based column reordering 
criterion for lattice reduction based list MIMO detection,” IET Electronics 
Letters, vol. 46, issue 12, June, 2010.

(J4) L. Bai, C. Chen, and J. Choi, “Pre-voting cancellation based detection for 
underdetermined MIMO systems,” EURASIP Journal on Wireless Com­
munications and Networking (JWCN). (accepted)

(J5) C. Chen, L. Bai, B. Wu, and J. Choi, “Downlink throughput maximization 
for OFDM A systems with feedback channel capacity constraints,” IEEE 
Trans. Signal Processing, (accepted) 1

(J6 ) C. Chen, L. Bai, K. Cai, J. He, and H. Xiang, “A network coding based in­
terference cancelation scheme for wireless ad hoc networks,” Wiley Journal 
on Wireless Communications and Mobile Computing (WCMC), vol. 10, 
August 2010?

1Lin Bai has improved the joint sub-carrier and power allocation algorithm in the paper 
with an iteratively search approach.

2Lin Bai has derived the geometrical relations between nodes in adjacent regions for the 
case of hexagonal region and presented numerical results to validate the derivations.

7



1.2 Contributions

Under Revision

(JR1) C. Chen, L. Bai, J. He, H. Xiang, and J. Choi, “On the capacity improve­
ment for multicast traffics with physical-layer network coding,” submitted 
to Journal of Communications and Networks (JCN). (minor revision) 1

Submitted

(JS1) C. Chen, L. Bai, B. Wu, and J. Choi, “Resource allocation for maximizing 
outage throughput in OFDMA systems with finite-rate feedback,” submit­
ted to EURASIP Journal on Wireless Communications and Networking 
(JWCN).2

(JS2) C. Chen, L. Bai, B. Wu, and J. Choi, “Signal beamforming and relay selec­
tion criteria for cooperative Bi-directional transmissions with physical layer 
network coding,” submitted to IE T  Communications.3

1.2.1.2 Conference Papers

(Cl) L. Bai, C. Chen, and J. Choi, “Lattice reduction aided detection for un­
derdetermined MIMO systems: a pre-voting cancellation approach,” IEEE. 
Vehicular Tech. Conf,  spring 2010.

(C2) L. Bai, C. Chen, J. Choi, and C. Ling, “Updated basis lattice reduction 
based sequential user selection for multiuser MIMO systems,” submitted to 
IEEE Globecom, 2010. (accepted)

(C3) C. Chen, L. Bai, B. Wu, D. To, and J. Choi, “Outage throughput maxi­
mization for OFDMA systems with feedback channel capacity constraints,” 
submitted to IEEE Globecom, 2010. (accepted)

1Lin Bai has made the proof of Lemma 4.8 with more scientific precision, where Lemma 4.8 
is a key point to generate the main results of this paper.

2 Lin Bai has improved the power allocation algorithm and provided the numerical results 
to validate the effectiveness of the algorithm.

3Lin Bai has derived the error probability of the second scenario and provided the numerical 
results to validate the derivations.
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(C4) C. Chen, L. Bai, J. He, H. Xiang, and J. Choi, “On the capacity improve­
ment of multicast throughput in wireless Ad Hoc networks with physical- 
layer network coding,” International Wireless Communication and Mobile 
Computing Conference (IWCMC)^ 2010.

(C5) B. Wu, C. Chen, L. Bai, W. Guan, and H. Xiang, “Resource allocation 
for OFDMA systems with guaranteed outage probabilities,” International 
Wireless Communication and Mobile Computing Conference (IWCMC), 
2010 .

1.2.2 Externally Funded Research Projects

(PI) Member, Project on “Wireless broadband access for high speed trains”, 
2009-2010. Funded by Huawei Technologies Co., Ltd. China1.

(P2) Member, Project on “Design of low complexity MIMO detectors”, 2007- 
2008. Funded by Huawei Technologies Co., Ltd. China2.

1In this project, we propose a new detection algorithm called LR based list detector which 
uses list detection and lattice aided detection techniques as the key ingredients to develop low 
complexity and high performance MIMO detector. The study of implementation possibility 
on hardware is also carried out. The study provides reference for implementing true silicon 
architecture. Finally, the proposed detector will be applied to the 3G systems for long-term 
evolution services. Lin Bai has improved the LR-based list detection algorithm and analyzed 
the performance and complexity trade-off, where simulation results are provided to validate the 
effectiveness of the algorithm.

2In this project, we study a wireless access system for high speed trains. A distributed 
antenna system is considered for wireless communications between trains and access points on 
ground. It is assumed that trains are equipped with two antenna arrays for efficient commu­
nications with road side access points. We focus on two key approaches, namely joint power 
allocation and cyclic beamforming. A joint two-point power allocation problem is formulated 
to allocate powers for wireless links between antenna arrays on trains and RSAPs. For cyclic 
beamforming, beamformer has been designed to provide a certain signal to interference plus 
noise ratio. Lin Bai has derived the cyclic beamforming in conjunction with the joint power 
allocation to minimize the intra and inter fluctuation, where the cyclic beamforming design is 
the key point to generate the main results of this work.
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1.3 Outline

1.3 O utline

The rest of this thesis is organized as follows. Background of conventional MIMO 
detectors and multiuser MIMO user selection is presented in Chapter 2. A com­
putationally efficient PMAP-based list detection for MIMO systems is shown in 
Chapter 3. Then, an error probability based column reordering strategy is studied 
for the LR-based list MIMO detection in Chapter 4. In Chapter 5, a pre-voting 
cancellation based detection is developed for underdetermined MIMO systems. 
The greedy user selection using an iterative LR updating method for multiuser 
MIMO systems is proposed in Chapter 6 . Some concluding remarks and future 
works are represented in Chapter 7. Finally, the appendices show the details of 
some derivations.



2

Background of MIMO Detection  
and User Selection

In this chapter, we provide a brief summary of the existing well-known MIMO 
detection approaches. Then, list detection and LR-based detection are presented. 
After that, we introduce the multi-user MIMO user selection.

2.1 C onventional A pproaches

2.1.1 System  M odel

Consider a MIMO system with M  transmit and N  receive antennas. Let H / 
denote an N  x M  channel matrix at symbol time Z, where I = 0 ,1 , . . . ,  L — 
1 and L is the length of a data packet. Define smti and ynj as the the data 
symbol transmitted by the mth transmit antenna and the received signal at the 
nth receive antenna during the Zth symbol interval, respectively. Assume that 
a common signal alphabet, denoted by S, is used for all sm. That is, sm G S, 
m  =  1,2, . . . ,M .  Then, the received signal vector over a flat-fading MIMO 
channel is given by

y i =  [2/1,1 2/2 ,1 ■ • • V n ,i ] T  U

= HjSj + nh I =  0 ,1 , . . . ,  L -  1,

where the manuscript T denotes the transpose, s 1 = [s^/, s2,i, . . . ,  Sm,i]T and 
ni — [n\,u ^2,h • • • 5 îv,z]T denote the transmit signal vector and the noise vec­

11



2.1 Conventional Approaches

tor which is assumed to be a zero-mean circular symmetric complex Gaussian 
(CSCG) random vector with £ [n n H] =  NqI. Note that H represents the Hermi- 
tain transpose, respectively. Furthermore, it is assumed that the channel state 
information (CSI) is perfectly known at the receiver.

According to [1], the MIMO channel capacity grows linearly with min(M, N). 
Note that there is a fundamental trade-off between receive diversity gain and
multiplexing diversity gain [3]. Thus, we may prefer that M  =  N  which results
in that H * is square.

2.1.2 ML D etection

For the sake of simplification, we omit the symbol-duration index I in (2.1) and 
rewirte the received signal as

y =  Hs +  n. (2.2)

Here, H  is the channel matrix which can also be written as

H =  [h!,h2, . . . , h M], (2.3)

where hm denotes the mth column vector of H. Define the number of the elements 
of § by K  = |S|, and SM denotes the M-dimensional Cartesian product of S, the 
maximum likehood function of the ML detection is given by

Smi =  arg m ax/(y |s)
sesM

= argmin | | y - H s | | 2. (2.4)
seSM

Since an exhaustive search is carried out to identify the ML vector and the number 
of candidate vectors for s is K M, the complexity grows exponentially with the 
number of transmit antenna M.

Let b denote the bit-level symbol vector of s, where the elements of b are 
binary and b = [bi b2 . . .  &m ]t , M  — M\og2K.  Denote apriori probability
(APRP) of b  by Pr(b), the MAP detection is given by

bmap =  arg max Pr(b|y) b
=  a rgmax/(y |b)Pr(b) .  (2.5)b
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Furthermore, the APP of each bit is given by

P r(bi = + l|y )  =  ^ 2  P r(% )
b e s t

Pr(6i =  — l|y ) =  ^ 2  Pr(%)> (2-6)
b e s r

where =  {[6i • • • &m)t  I &* = ±M m  € {+1, -  l},Vm ±  «}.
For the ML detection, although its performance is optimal, the extremely 

highly computational complexity makes it unrealistic to be employed in practical 
systems when M  is large.

2.1.3 ZF and MM SE D etection

For complexity reduction, linear detectors are considered. With linear detectors, 
the received signal y is multiplied by an estimator W .

The ZF estimator and the estimated transmit symbol vector are given by

W zf -  H (H H h ) -1  (2.7)

and

szf =  W zHfy 

=  (H H H)- 1H Hy

=  s +  (HHH)_1H Kn. (2.8)

It is shown that when H tends to zero, (HHH)- 1H Hn tends to infinity.
To reduce the impact from noise, the MMSE detector generates an estimator 

with taking account of the noise component. The MMSE estimator is found by 
minimizing the mean-square error as

W mmse =  arg mm E  [| |s -  W Hy 112]

=  (E [yyH] ) E  [ysH]

=  (H H h + iV0l ) - 1 H. (2.9)
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2.1 Conventional Approaches

The result estimated symbol vector is given by

Sm m se =  W m m sey

= H h (H H h +  iVol)-1  y (2.10)

and the mean-square error (MSE) follows that

MSE -  E (s -  W mmsey) (s ~ W Smsey)'

=  I -  H h (H H h + JV0I) 1 H
1 N _ 1  1 - t H i

=  [ i  + n 0h  h J  ■ ^

2.1.4 SIC D etection

Based on the QR factorization of the channel matrix H, a SIC method is proposed 
and analyzed in [42, 43]. For convenience, assume that H  is square or tall and 
M  < N,  H is factorized as

H  = QR, (2 .12)

where an N  x N  sized Q is unitary, an N  x M  sized R  =  [Rt  0]T, and a M  x M  
sized R  is upper triangular. By multiplying QH, (2.2) is rewritten as

x =  QHy

= Rs +  QHn, (2.13)

where QHn is a zero-mean complex Gaussian random vector. Since QHn and 
n have the same statistical properties, QHn can be used to denote n. We have 
(2.13) as

x =  Rs + n. (2-14)

Denoted by rp>g, Xk, and rik the (p, g)-th entry of R, kth element of x, and 
kth element of n, respectively. Since R  is upper triangular, we have

Xn -- tin

Xm  — Tm ,MSM +  n M 

%M- 1 — +  % - l

I (2.15)
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2.1 Conventional Approaches

This results in a sequential detection procedure. Firstly, Sm can be detected from 
Xmi since there is no interference. Then, the contribution of %  is to be canceled 
in detecting sm- i  from xm- i- This sequential detection procedure is terminated 
till all the elements in s are detected. The mth element of s, sm, can be detected 
after canceling M  — m  data symbols as

M

'U’m  =  ^   ̂ ^k ,m ^Tni k  £  { lj  2, . . . , M  1}, (2.16)
m = k + 1

where sm denotes the hard-decision estimate of sm from um. Note that when H 
is fat and M  > N,  the N  x M  sized matrix R after QR factorization of H is 
not upper triangular, thus, the sequential detection based SIC method can not 
be employed.

Since QH is used to perform nulling processing in (2.13), a ZF decision feed­
back equalizer (DFE) over ISI channels is considered. In order to improve the 
performance, by taking account of the background noise, the MMSE-DFE based 
SIC is carried out. From (2.2), with the MMSE-DFE based SIC, the MMSE 
estimator for symbol Si is given by

wmmse,i =  argm inE [|si -  w Hy |2lw J

= (H H h + iV0I ) _1 hi, (2.17)

where h*, denotes the kth column of H  and k G {1,. . . ,  M}. Then, a hard-decision 
is carried out to detect Si which is based on

l̂,mmse ~  Wmmse iy. (2.18)

Assume that Si is successfully detected and its contribution is canceled from y, 
we have

M

yi =  hmsm + n, (2.19)
m = 2

on which the MMSE method can be employed to detect s2. With the MMSE- 
based cancellation method repeated, the detection of the sm’s can be performed.

Note that the performance of the MMSE-DFE based SIC highly depends on 
the reliability of detected symbols in the early stages. To improve the perfor­
mance, a pre-ordering method for SIC detection is proposed and discussed in
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[43, 44]. Furthermore, a simple strategy is considered by selecting the first sym­
bol to be detected has the smallest MSE (i.e., equivalently, highest signal to 
interference plus noise ratio (SINR)) as

{fyi), w fe(1)} =  argm inm inE  [|sfc -  w Hy |2] , (2 .2 0 )

where fyi) and wk{1) denote the index of the first detected symbol and its corre­
sponding MMSE filtering vector, respectively. Then, the cancellation is carried 
out as

y = y — hfc(i)S*(1), (2 .2 1 )

where §fc(1) denotes a hard-decision of Sfc(1) from w ]?(1)y- With y ,  the next symbol 
to be detected is found as

{fc(2), wfc(2)} =  arg min min E  [|sfc -  w Hy | 2] , (2.22)

where I  — {1,2 , . . . ,  M} \  k(i) and \  denotes the set minus. The cancellation and 
MMSE filtering is repeated until all symbols are detected.

2.1.5 Simulation Results

We consider uncoded 16-quadratic amplitude modulation (QAM) 2 x 2  and 16- 
QAM 4 x 4  MIMO systems for the simulations. The elements of the MIMO 
channels are generated as independent complex Gaussian random variables with 
mean zero and unit variance. The SNR is defined by the energy per bit to the 
noise power spectral density ratio Eb/N 0. In Figs. 2.1 and 2.2, we show the 
bit error rate (BER) performance of the ML detector, the ZF detector, and the 
ZF-SIC detector. Since an exhaustive search is considered with the ML detector, 
the optimal performance with full receive diversity gain is obtained at the cost of 
high complexity. While the ZF has the lowest complexity, it provides the worst 
performance. We also note that the ZF-SIC detector has a trade-off between the 
performance and complexity.
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MIMO 2X2, 16-QAM
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Figure 2.1: BER performance of conventional detectors in a 16-QAM 2x2 MIMO 
system.

2.1.6 Conclusion and Remarks

In this section, we introduced 3 conventional approaches for MIMO detection. 
While an optimal performance is obtained by the ML detection, a prohibitively 
high complexity makes it unrealistic to be employed. There are some suboptimal 
approaches which can provide a relatively low complexity (e.g., ZF and ZF-SIC 
detectors). However, their performance is not comparable with that of the ML, 
especially at a high SNR. Therefore, some techniques are carried out to improve 
the performance of these conventional suboptimal approaches. In the following 
sections, we explain the list and LR-based detection.

2.2 List D etection

By dividing the symbol to be detected in two layers, a complexity efficient SIC- 
based list detection [5, 6 , 7, 8 , 9, 10, 11] is studied. In this section, we introduce a

17



2.2 List D etection

4 X 4  MIMO, 16-QAM
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Figure 2.2: BER performance of conventional detectors in a 16-QAM 4x4 MIMO 
system.

class of list-based detectors for MIMO channels, namely, list-based Chase detector 
[12, 13, 14, .15, 16, 17].

2.2.1 Chase Algorithms

In this subsection, we first review the list-based Chase algorithm using the linear 
filter to perform a two-step detection. Note that this class of Chase detection can 
be implemented with any M  and N.  Furthermore, for the case of M  < N,  the 
QR factorization-based Chase detection is studied to improve the performance. 

Consider the column swapping of channel matrix H, from (2.2), we have

y --- Hjcsx 4- n,

where the N  x M  channel matrix =
T

hfcd), • « ( M )

(2.23)

, the transmit sig­

nal vector ŝ c = (O' (M) . Note that h* , .  denotes the fym)th col-
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H u h*;(M)

umn vector of H ^  and the column reordering index set (CRIS) is denoted by
K =  (fyi)? • • • ? which is a permutation of {1,2, . . . ,  M}.

By defining the sub-CRIS as U — {fyi), . . .  k^M- 1)} > we have H^c =
r -| T

and S;x =  s j  s* • Then, (2.23) is rewritten as

y =  H usu +  h k{M) sk(M) +  n, (2.24)

where the size of sub-vector su is (M — 1) x 1 .
Based on the system models in (2.23) and (2.24), the linear filter-based Chase 

detection is summarized as follows [13]:

a) Select the sub-vectors su and sk{M) from s which fit the one in (2.24). Note

that the channel matrix = Hu h, i M) is generated accordingly.

b) Generate a list of Q candidate values for sk(M), say {sJ(M), s% sQ \
where Q < |S| and sj denotes the qth closest symbol to y,q  = 1 ,2 , . . . ,  Q.

• • > w k(M) represents the linear (ZFHere, y = wj? y and =
C( M )

Wfc
( 1) :

or MMSE) filter of H*.

c) By canceling the contribution of the symbol vector sk(M) to y using each 
candidate of sk(M) in the list, a set of Q residual vectors {yi, y2, • • •, yQ} is 
generated as

y q =  y ~ (2.25)

d) Apply an independent sub-detector to each y q and obtain decision of the 
remaining M  — K  symbols {s^, s ^ , . . . ,  s^} (MIMO detectors that work for 
square or tall MIMO channels can be used when K  > M  — N).  Let =
■ g<7 ]

gt  . As a result, the Q candidate hard decision vectors {s^, s ^ , . . . ,  s^}
. fc(M) J

can be obtained.

e) From the candidates {s^-, s^-,. . . ,  s^}, obtain the final hard decision vector 
ŝ c that best represents the observation vector y in the sense of the sum of 
squared error (SSE) as

sx  = arg min || y — H:*:^ | |2 . (2.26)
’®3cl
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Since a linear detector to obtain a list of candidate vectors for Sk{M) suffers 
from the interference, a good performance cannot be achieved with the Chase 
detector. In order to improve the performance by mitigating the impact from 
the interference, a class of QR factorization-based Chase detection is considered. 
However, it can not be used for underdetermined MIMO systems when M  > N.

Assume that the channel matrix is square and sized M  x M.  Using the 
QR factorization = Q R (i.e., M  x M  matrices Q and R  are unitary and 
upper triangular, respectively), from (2.23), we have x  =  QHy =  Rs^c +  n. Let 
x =  [xj* X2 ~\T and n =  [nj" n J]T (i.e., xi and ni are (M — 1) x 1 sub-vectors of 
x and n, respectively), x is rewritten as

X l

.  x 2  .

A C
0 • • • 0 vm,m

Su
+

n i

.  Sk(M) n 2 _
(2.27)

where sub-matrix A of sized (M — 1) x (M  -  1) is triangular from R  and vm,m 
represents the (M, M)-th entry of R.

Based on the system model in (2.27), the QR factorization-based Chase de­
tection is summarized as follows

a) Generate a list of Q candidate values for Sk(M), say o2C(M)’ k(M): ( M ) -

where Q < |S| and sj denotes the gth closest symbol t o x 2 , q =  1 ,2 , . . . ,  Q.
Here, x 2 =  rM]Mx 2

b) By canceling the contribution of the symbol vector S* to xx using each 
candidate of Sk(M) in the list, a set of Q residual vectors {xj, x f , . . . ,  x^} is 
generated as

(2.28)A QXI -  X i C si .k(M)

c) Apply an independent subdetector for each xf  and obtain decision of the

remaining M  — l symbols {s^, s ^ , . . . ,  s§}. Let =
sq

Hm) J
. As a result,

the Q candidate hard decision vectors {s^, s^-,. . . ,  s -̂} can be obtained.
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d) From the candidates {s^-, s^-,. . . ,  s^}, obtain the final hard decision vector 
ŝ c that best represents the observation vector x in the sense of the SSE as

ŝ c =  arg min || x  — R s^  ||2 . (2.29)

With the Chase detector, a low-complexity can be obtained with a small list
length Q. The performance of above detection highly depends on the reliability
of detected Sk{M).

2.2.2 Ordering

In order to avoid an error propagation, the first symbol s*( should be properly 
selected.

For the linear filter-based Chase detector, a simply strategy to choose Sk(M) is 
based on the maximum SINR or MSE, which is shown as

k(M) — arg min E st — w** y  , (2.30)
C > W O  «> <M> fc<M) J

where k^M) denotes the index of the first detected symbol that has the smallest 
MSE and w^ denotes its corresponding linear filter represented in step b) of
the linear filter-based Chase detection.

Note that although a correct detection for the first symbol (first layer de­
tection) is highly guaranteed with maximizing SINR, the performance of the 
sub-detection on reduced size sub-matrix (second layer detection) is not consid­
ered. In this case, a trade-off between the performance of the first and second 
layer detection is discussed in [13]. In [14], the S-Chase detector is proposed to 
improve the performance with reordering columns of matrix as

1) JVC =  { 1 , 2 , . . . ,  M }

2) if Q > 2H

3) p = - 1

4) else

5) p =  1
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6 ) end

7) for i = 1 to M

8) k {i) =  argmaxfc=lv..)Size(M) II h* \\p

9) M  =  JVC \

10) end

For the QR factorization-based Chase detection, we can rewrite that = 
Q x ^ x -  Define the effective SNR gain, Gq (which is illustrated in the next 
subsection), with respects to list length Q , the SNR of the first detected symbol, 
Sfc(M), and the remaining M  — 1 symbols become

SNR3C =  f o .k y . J  (2.3i)
No

and

SNR£ =  J % ^ ,  m € { 1 ,2 , . . . ,  M — 1}, (2.32)
0

respectively. Here, M and m represent the M th and mth diagonal elements 
of R/jc, respectively. According to the SNR, two strategies of ordering are carried 
out, namely B-Chase ordering [13] and BLAST ordering [45, 46].

With the B-Chase algorithm, the CRIS is found by maximizing the minimum 
SNR, which is shown as follows:

K =  a x g m a x m in (s N R f ,S N R f , . . . ,S N R j) ,  (2.33)
DC ^  J

where % represents a permutation of {1 ,2 , . . . ,  M}.  Since there are M! possible 
permutation CRIS, the computational complexity cost by B-Chase ordering could 
be high. Furthermore, when Q = 1 is considered with the B-Chase ordering, it
becomes the conventional BLAST ordering since there is no SNR gain enjoyed
for the detection of the first symbol and G\ =  1.
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2.2.3 Performance Analysis

For the list detection, the performance can be improved with a larger list length 
Q due to a higher possibility of successive cancellation is considered for the first 
symbol. Note that a larger Q leads to a higher computational complexity for 
detection.

Let d,Q denote the distance from the transmitted symbol to the nearest decision 
boundary when a length Q list detection is considered. In order to estimate the 
performance with the impact of the list length, in [13, 47], the effective SNR gain 
of the length Q list detection is considered and given by

G0 = ( J ) 2 . (2.34)

Denote by s = \a\eju; the transmitted symbol with 4-QAM as its modulation 
method, where uj € { ± |,± ^ -} . Suppose that s = is transmitted. With the 
list length Q =  1, the decision region of list detection becomes the conventional 
decision region, where \u — J | < J. Then, we can have di =  ^=. With Q = 2, 
the successive list detection in above happens when \u — \  | < | ,  where d2 =  1 . 
Therefore, compare to the conventional detection (Q = 1), the length Q = 2 list 
detection can provide an effective SNR gain of G2 = = 2 . Similarly, since
the same minimum distance from transmitted symbol to decision boundary is 
considered for Q = 2 and Q = 3, we can show that Gz = 2.

Using the same strategy, [13, 47] shows that for 16-QAM, we have G2 = 2, 
Gz =  2 , Gg = 8 , and Gio =  10; for 64-QAM, we have G4  = 4, Gg = 8 , Gig = 20, 
Gzz = 40, and G4% =  58. It is noteworthy that for the cases of Q =  1 (conventional 
detection) and Q = |S| (full length), the SNR gain leads to G\ =  1 and G\§\ = 0 0 , 
respectively, since there would be no decision boundary for the case of full length. 
Although the decision regions based SNR gain is considered as an approximate 
performance metric, as shown in [47], it provides an accurate result to a certain 
extend (for an error probability of 0.01, it is accurate within 1 dB for a 16- 
QAM list detector with Q € {1, . . . ,9} and for a 64-QAM list detector with 
Q iE{1,.. . ,41}).

The correlation between list length and SNR gain is further analyzed by Liu, 
Ling, and Stehle in [48]. By viewing the channel matrix as a basis for a lattice,
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2.2 List Detection

a list of candidate lattice points is built up, where the closest lattice point is 
found to perform the list-based detection. Taking the real-valued channel matrix 
transformation (as shown in (2.46)), the channel matrix in (2.23) is generated as 
a n x m  real-valued matrix and [48] shows that

/ 8  e m \ GQ,A
Q=Z\ ^ J  ’ G« < 8 m * (2-35)

It represents the relation between Gq and Q. Furthermore, in order to achieve a 
near-ML performance, one can be found in [48] that the list length follows

Q = (e/>o)2m/po (2.36)

under the condition that

PF r: G q  =  — , Po > 1, (2.37)
Po

where PF denotes the proximity factor in [49].
The computational complexity of Chase detection depends on the ordering, 

the list length, and the sub-detection methods. Without taking account of the 
ordering, the computational complexity of Chase detection is linearly proportional 
to the list length Q under the condition that an actual sub-detector is employed. 
Nevertheless, the complexity is mainly affected by the type of the sub-detector.

Denote by CSUb and Cse\ the complexity of the sub-detector (e.g., ML, MMSE, 
and MMSE-SIC) employed for the list detection and the complexity of the order­
ing, respectively. The overall complexity of Chase detection is given by

Cchase = QGSU b +  Cgel. (2.38)

Depending on different applications, we can choose different sub-detectors for list
detection (ML is used for good performance and MMSE is used for low com­
plexity), where the complexity and performance trade-off need to be considered. 
We should also note that the list-based detection can not provide a full receive 
diversity, which is illustrated through the simulation results.
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2.2 List D etection

2.2.4 Simulation Results

In Figs. 2.3 and 2.4, we show the BER performance of the various detectors 
in 2 x 2 and 4 x 4  uncoded MIMO systems, respectively. We use 16-QAM for 
signaling. Note that the ZF-SIC detector is used as the subdetector for the 
linear filter-based Chase detection, where the S-Chase is carried out to perform a 
symbol ordering. In general, it shows that the Chase detection has a significant 
performance improvement compared to conventional suboptimal detectors (e.g., 
ZF detector or ZF-SIC detector). In Fig. 2.3, we can show that the Chase 
detection with Q =  4 provides a sufficiently good performance compared to the 
ML detection. Fig. 2.4 shows that the Chase detection is not suitable to be 
employed in a large MIMO system, since there is a big gap compared to the ML 
performance. It is also noteworthy that the Chase detection can not exploit a 
full receive diversity.

MIMO 2X2, 16-QAM

-3—  ZF-SIC
-*—  Chase, ZF-SIC subdetector, Q = 2 
-b—  Chase, ZF-SIC subdetector, Q = 4 
 ML

10" '

DC
LU00

10'4
20

Figure 2.3: BER performance of different detectors in a 16-QAM 2 x 2 MIMO 
system.
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4X 4 MIMO, 16-QAM

e — ZF 
<—  ZF-SIC
■*—  Chase, ZF-SIC subdetector, Q = 2 
« —  Chase, ZF-SIC subdetector, Q = 4 
 ML10-’

IT
UJm

20

Figure 2.4: BER performance of different detectors in a 16-QAM 4 x 4  MIMO 
system.

2.2.5 Conclusion and Remarks

In this section, we introduced the list-based Chase detection for MIMO systems. 
It has been shown that the performance of conventional suboptimal detectors 
(e.g., ZF and ZF-SIC detectors) can be improved by using the list-based tech­
niques. However, the Chase detector can not exploit a full receive diversity, 
especially when a large MIMO system is considered (i.e., more layers of interfer­
ence).

2.3 Lattice R eduction  based D etection

In this section, we introduce the LR-based detection [19, 20, 21, 22, 23, 24, 25, 
26] for MIMO systems. Conventionally, the LLL algorithm [18] is developed to 
transform a basis to a near-orthogonal one. Taking the channel matrix as a basis 
for a lattice, using the LLL algorithm, LR-based detectors have been proposed
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2.3 Lattice Reduction based D etection

for MIMO systems.

2.3.1 MIMO System s w ith Lattice

Consider a basis B consists of M  real valued linearly independent basis vectors 
which is given by

(2.39)

Since a lattice can be generated from an integer linear combination of a basis, 
with B, we can have a lattice defined by

A = j u | u  =  ^  ] b m̂ rni Zm £ ? (2.40)

where Z denotes the set of integer numbers. Note that a lattice can be generated 
by different bases or matrices.

Denote by H  and G two bases that generate the same lattice, where each 
column vector of a basis is an integer linear combination of the column vectors 
of the other basis. For example, consider that

and

We can easily show that

and

H

G =

-  2 x

2 1 
1 1

1 0 
0 1

r i i r 1 1 f n 1i — 0 +
i

Thus, bases H  and G have the same lattice. It is also shown that

G =  HU,

where U is an unimodular matrix.

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)
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2.3 Lattice Reduction based D etection

By viewing the received signal as the lattice points spanned by the basis (i.e., 
a channel matrix), MIMO systems with lattice are developed.

Consider the system model of MIMO channels represented in (2.2). For con­
venience, in this section, we assume that the channel matrix H  is square of sized 
M  x M. Although the LR can be performed with a complex-valued H  as in 
[23, 24, 25] or a real-valued which is converted from H  as in [19, 22], there is 
no performance difference shown in [23, 25]. In general, the LR with a complex­
valued H is suitable for performance analysis, while that with a real-valued H 
is convenient to introduce the system. In this and next subsection, we use the 
real-valued channel matrix to introduce the MIMO system with lattice. Taking 
the real-valued channel matrix transformation, (2 .2 ) can be written as

’ &(y) "
.  ^(y) .

»(H ) -9 (H )  
9(H ) ft(H)

' »(s) ' + ' »(n) '
.  S(s) .

9(n) _ (2.46)

where 9fc(.) and 9(.) denote the real and imaginary parts operation, respec­
tively. Furthermore, we define that the real-valued vectors and matrix as yr — 
[3ft(y)T 9(y)T]T, sr =  [3ft(s)T 9(s)T]T, nr =  [9ft(n)T 9 (n )T]T, and

5R(H) -9 (H )  
9(H ) H(H) . Then, (2.46) is written as

y r = H rsr +  nr (2.47)

Suppose that A-QAM is used as the modulation method for s, we can show 
that

S —  ̂£ {—VA + 1, —%/A + 3 , . . . ,  —1,1 , . . . ,  V a  — 3, %/a —
(2.48)

and s G SM. Here, the symbol energy is represented by Es = . Thus, with a
proper scaling and transformation, we can have the real-valued transmit symbol 
vector sr € Z2M.

By taking the real-valued channel matrix H r as a basis of lattice, according to 
the definition in (2.40), the lattice and its applications can be applied to MIMO 
systems.
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2.3 Lattice Reduction based Detection

2.3.2 Lattice Reduction based MIMO D etection

Since a lattice can be generated by different bases or channel matrices, in order 
to mitigate the interference between multiple signals, we can find a matrix whose 
column vectors are nearly orthogonal to generate the same lattice. This technique 
is regarded as the LR. LR can be applied to MIMO systems, where the resulting 
detection methods are regarded as the LR-based MIMO detection [19, 20, 21, 22, 
23, 24, 25, 26]. In this subsection, we study the LR-based detection for MIMO 
systems.

Consider that real-valued matrix H r and G r span the same lattice, according 
to (2.45), we have

H r =  G rU r , (2.49)

where U r is unimodular. From (2.47), we can show that

yr =  G rU rsr +  nr =  G rcr +  nr , (2.50)

where cr =  U rsr . With the unimodular matrix U r which consists of integers, we 
have cr e Z2M.

Here, the LLL algorithm can be employed to generate G r from H r , which 
will be introduced in the next subsection. The matrix generated by the LLL 
algorithm is regarded as the lattice reduced matrix.

Based on (2.50), conventional low complexity detectors (e.g., linear detector 
and MMSE-SIC detector) are able to be carried out to detect cr. Note that 
although the ML detection can be applied to the lattice reduced matrices, there 
is no performance gain due to an exhaustive search is carried out.

The LR-based linear detectors [22] are carried out to detect cr as

Cr =  | W “y r l , (2-51)

where the linear filter W r =  G r (GrGj? ) _1 for the LR-based ZF detector and

W r =  ^GrG]? +  ^ 1 ^  G r for the LR-based MMSE detection. Here, [•] denotes 
the rounding operation. From cr , the estimation of sr is given by

sr =  U~1cr. (2.52)
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2.3 Lattice Reduction based Detection

For the LR-based MMSE-SIC detector [23], the system represented in (2.47) 
is rewritten as

r „  i  T FL 1 r m. 1
(2.53)

1 
1

£<=>
» 

i

H r

1---1

—

i
£CM

»

Sr + - 4/ K ,
V Esbr _

where y r =  [yj  0] , H r = H j  , / f  I2W , and nr — nT _  N& T
r V Es r Using

the LLL algorithm with H r , the lattice reduced matrix G r can be found as 
H r =  Gr\Jr, where Ur is unimodular. Then, (2.53) is rewritten as

yt — G^c," -(- n r , (2.54)

where cr = XJrsr.
Using the QR factorization of G r =  QrRr, the LR-based MMSE-SIC detec­

tion is carried out, where Qr and R,. are unitary and upper triangular matrices, 
respectively. Multiplying Qj? to yr in (2.54), we can have

Q r  y r  =  R ^ C r  +  n r . (2.55)

Since Qj?hr has the same statistical property as nr , we use nr to denote Qj?nr . 
Then, the MMSE-SIC detection represented in previous section is employed in 
(2.55) to estimate cr .

2.3.3 LLL and CLLL Algorithms

In order to find a matrix whose column vectors are nearly orthogonal to generate 
the same lattice, the LLL algorithm is proposed in [18]. Note that the conven­
tional LLL algorithm is performed with a real-valued matrix which is transformed 
from a complex-valued matrix using the method in (2.46).

Suppose that a real-valued matrix Gr is generated from the 2M  x 2M  matrix 
H r in (2.49) using the LLL algorithm, where H r is transformed from an M  x M  
complex-valued matrix H  using the method in (2.46). Then, G r of sized 2M  x 2M  
is named LLL-reduced matrix [18] if Gr is QR factorized as

Gr =  QrKr, (2.56)
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2.3 Lattice Reduction based Detection

where Qr of sized 2M  x 2 M  is an unitary matrix (QjFQr =  In)  and Ttr of sized 
2M  x 2M  is an upper triangular matrix. The elements of Hr satisfies the following 
inequalities:

I [Rrkp |< ^ I [Rr]^ I with 1 < £ < p < 2M (2.57)

and

5 [R r]?-i,p-i ^  [Rrlp.p +  [Rr]p-i,p with p = 2 , . . . ,  2M, (2.58)

where [Rr]p,g denotes the (p, qf)-th entry of R^. The parameter <5 is closely related 
to a quality-complexity trade-off [18]. Note that for the real-valued LLL and 
complex-valued LLL algorithms, 5 can be chosen from (J , l)  and ( |,1 ) , respec­
tively [25]. Normally, we define that S = |  to meet a good quality-complexity 
trade-off.

In order to generate the real-valued channel matrix H r to a lattice reduced 
matrix G r, the LLL algorithm [18, 22] is summarized as follows, where the input 
and output are given by {Hr} and { Q ^ R ^ U t.}, respectively.

INPUT: {Hr}

OUTPUT {Qr , R .̂, U r}

1) [Qr Rr] <- qr(Hr)

2) £ <— size(Hr , 2)

3) U r <- Ic

4) while p < C

5) for £ =  1 : p — 1

6 ) p, <- fRr(p -  £, p)/R r(p - £ , p -  £)\

7) if p ^  0

8 ) R,.(l : p -  £, p) «- R r (l : p -  £, p) -  pR r(l : p - i , p - t )

9) U r (:, p) <— U r (:, p) — pU r(:, p — £)
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2.3 Lattice Reduction based D etection

10 ) end if

11) end for

12) if £(Rr(p — 1, p — l ) ) 2 > Rr(p, p)2 +  Rr(p -  1, P?

13) Swap the (p — l)-th and pth columns in and U r

14) 0 a (3 
—(3 a

_  R r(p - l ,p - l)  

w ith 0  =
||Rr(p-l:p ,p -l)||

15) R r ( p -  1 : p , p -  1 : () <- © R r ( p -  1 : p , p -  1 : <)

16) Qr ( : , p - l : p ) ^ Q r ( : , p - l : p ) 0 T

17) p max{p — 1 ,2}

18) else

19) p < - p + l

2 0 ) end if

2 1 ) end while

With the unimodular matrix U r, linear detectors or SIC detector can be 
employed with the LLL-reduced matrix Gr =  HrU r to perform the LR-based 
detection. In [23, 25], the complex-valued LLL (CLLL) is proposed which can 
straightforwardly perform the LR on the complex-valued matrix with no extra 
transformation required. It shows that compared to the LLL, the CLLL can pro­
vide the same performance with a half complexity, approximately. Therefore, it is 
desired to consider the CLLL for LR-based detection with a reduced complexity.

Consider a complex-valued matrix G generated from an M  x M  matrix H 
using the CLLL algorithm. With the QR factorization of G = QR, where Q is 
unitary and R  is upper triangular, G is CLLL-reduced if the elements of R(m) 
satisfy the following inequalities [25]:
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and

<5|[R]p-l,p-i|2 < m PJ 2 +  I[Rjp-I.pl2 for p = 2 , . . . ,  M. (2.60)

Here, [R]p,q denotes the (p, <?)-th entry of R. Let S G ( |,  1), the CLLL algorithm 
[23, 25] is summarized as follows, where the input and output are given by {H} 
and {Q, R, U}, respectively.

INPUT: {H}

OUTPUT {Q,R,U}

1) [Q R] <- qr(H)

2) £ <- size(H, 2)

3) U Ic

4) while p < £

5)

6)

7)

8)

9)

10) 

11) 

12)

13)

14)

15)

for I  =  1 : p — 1

p 4- [ R (p -  I, p)/R(p - £ , p -  l)\ 

if p  ^  0

R(1 : p — £, p) <— R(1 : p — £, p) — p R ( l  : p — £, p — £) 

U(:, p) 4-  U r( : , p ) - p U ( : , p - £ )  

end if 

end for

if «S|(R(p -  1 > P -  l ) ) l2 >  |R(P,P)I2 +  |R(p -  M l 2

Swap the (p — l)-th and pth columns in R and U  

© = a* (3 
—(3 a with

_  R (p - l .p - l)
“  ~  ||R(p—l:p,p—1)|| 
0  _  R(p,p-i)

l|R(p—1:P>P—1)11

R(p -  1 : p, p -  1 : C) <- © R (p — 1 : p, p — 1 : C)
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16) Q ( : , P -  1 : P) <- Q(:,P — 1 : p)@T

17) p max{p — 1,2}

18) else

19) p +- p + 1

2 0 ) end if

2 1 ) end while

Compared to the LLL algorithm, the differences of the CLLL algorithm are 
shown as: a) the rounding operation at step 6 ) is carried out with complex
numbers; b) an absolute operation is carried out at step 12); c) the unitary matrix
0  is computed with complex numbers.

With the complex-valued unimodular matrix U, low-complexity detectors 
(e.g., linear and MMSE-SIC detectors) are carried out with the CLLL-reduced 
matrix G =  H U  to estimate c. Note that in order to convert c to s, a proper 
scaling and transformation is performed on both real and imaginary parts.

2.3.4 Performance Evaluation

In this subsection, we consider the error probability of the LR-based MIMO detec­
tion, where the elements of the complex-valued channel matrix H are independent 
and ~  CN(0,1), i.e., Rayleigh MIMO channels.

We can quantify the orthogonality of an M  x M  matrix H  using the following 
metric [25].

The orthogonality deficiency Dm of an M  x M  matrix H  =  [hi , . . . ,  Iim] is 
defined as

det (H hH)

n " i  iib.
The LR can find a new basis of the channel matrix that is more orthogonal (or 

less orthogonality deficiency) than the original channel matrix. Then, the system 
from (2 .2) can be written as

y — GUs + n, (2.62)

0 m(H) =  1 -  ^  / . (2.61)
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where U is unimodular. From the work by Ma and Zhang [25], we can find that

2
V 1 - 0 a/(G) > 2 T 2 5 - 1

M ( M + 1) 
4

(2.63)

M ( M + 1)

4 . Then, afterfor both real and complex LLL-LR. Define eg := 2~r (j^rr) 
the LLL-LR, E)m(G) is bounded by 1 — c$.

Now we derive the error probability, Pe,LR, for the LR-based linear detection. 
From [25], the error probability of the LR-based MMSE detector is equivalent 
to that of the LR-based ZF detector. Hence, for further analysis, we assume 
that the LR-based ZF detector is used for the MIMO detection. From (2.62), let 
x =  G*y denote the output of the LR-based ZF detector, where G* denotes the 
pseudoinverse of G. Then, it follows that

x =  Us +  G fn. (2.64)

The estimation of s can be expressed as

s =  I T 1 [x| =  s +  i r 1 LGfn l . (2.65)

Thus, the error probability in detecting s for given H  is upper bounded by

Pe,LR|H < 1 -  Pr f  LGtn] = 0 h )  . (2.66)

Let G* =  [pi,. . . ,  Pm]t , where gj, i = 1 ,2 , . . . ,  M , denotes the zth row of 
G* and let G =  [p1}. . . ,  Pm], where gi denotes the ith. column of G, and let hmin 
represent the vector of the minimum non-zero norm of all the vectors in the lattice 
generated by Hq. From (2.63) and the derivation in [25], we have

H

H

Pe trIH < Pr I max |p/n| > -e ) L R | W  -  I  I U i  I _  2

< Pr
n

   >  -
y/1 — Dn (G) • mini<j<M ||pj|| 2

1
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We have

E u [ P e , h R \ u \  <  E n  

= En

—  C M M

Pr n H

Pr ||h < n
— <$/2 

2 \ M (2M — 1)!

n

1

N~o

- M

(2 .68)
A )

where cmm and c2 are constants and c$ < 1. Thus, the upper bound on Pe,LR|H 
in (2.68) results from the M-th moment of Chi-square random variable, ||n ||2.

Note that M  is also the maximum receive diversity order for the M  x M  
MIMO system. Thus, a full receive diversity gain can be achieved by the proposed 
detectors with LR-aided linear detectors. For LR-based SIC detection, it can be 
deduced from [41] that the bound of its error probability results from the same 
moment of ||n | |2 as the LR-based linear detection.

Another more precise diversity analysis is studied by Gan, Ling, and Mow 
in [23], where the proximity factor [50] is used to derive the bound of error 
probability. Define the proximity factors for CLLL-based ZF detection by

V(A)
Pi, ZF =  SUp sin

(2.69)

where sup stands for the supremum that is taken over the CLLL-reduced bases G 
and $i denotes the angle between g* and the linear sub-space spanned by the rest 
M  — 1 basis vectors. Let p z F  = maxi<j<M p i , z f ,  from [50], the error probability 
of CLLL-based ZF detection with a given SNR is upper bounded as

Pe(SNR) < f > e,LD p ® )
Z i  \  Pi,ZF )

^  , . D ( SNRA
< M Pe>ld ( ------ I

V PZF )
(2.70)

where LD denotes the lattice decoding. Furthermore, Lemma 1 in [23] shows 
that

2 \  /  ,--- y 1 —71sim > (V5)' (2.71)
.2 +  s / 2 ,

where a =  (5 — | )  > 2 .  If M  =  2 and 6  =  1, we can have Pzf < 2, which
matches the result derived in [19] (the maximum loss of 3 dB). Using the sim­
ilar approach, the performance of LR-based SIC detection is also analyzed in
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Table 2.1: The average value of column swaps per iteration when the CLLL-based 
MMSE detector is used for MIMO systems with N  = 8 and M  = 2 ,3 , . . . ,8 .

A verage value of colum n swaps p e r ite ra tio n
M 2 3 4 5 6 7 8

CLLL 0.2909 0.9029 1.8022 3.0633 4.7711 7.2925 12.1228

[23]. From this, we can point out that the LR-based detection can exploit a full 
diversity with a countable SNR loss.

In [23, 51, 52], the complexity of CLLL is studied. It is shown that the 
average complexity of CLLL follows O (M3N  log M).  Moreover, the complexity 
of LR highly depends on the number of column swaps in step 13) of the LLL and 
CLLL algorithms. In Table 2.1, the average value of column swaps per iteration 
is shown when the CLLL-based MMSE detector is used for MIMO systems with 
N  = 8 and M  = 2 ,3 , . . . ,  8 .

2.3.5 Simulation Results

In Figs. 2.5 and 2.6, we compare the performance of the CLLL-based detection 
to conventional detectors for uncoded 2 x 2 and 4 x 4  MIMO systems, respec­
tively, where 16-QAM is used for signaling. It shows that the performance of the 
MMSE detection can be significantly improved by introducing the LR method. 
For large MIMO systems, the CLLL-based MMSE-SIC detection outperforms the 
LR-based MMSE detection, since the interference can be mitigated by using the 
SIC approach, which is illustrated in Fig. 2.6. Furthermore, simulation results 
show that the CLLL-based detection can exploit a full receive diversity order.

2.3.6 Conclusion and Remarks

In this section, we explained the LR and its application in MIMO detection. It 
has been shown that the LR can improve the performance of suboptimal detectors 
(e.g., MMSE and MMSE-SIC detectors) with a reasonably low complexity. More

37



2.4 Multiuser MIMO User Selection

MIMO 2X2,  16-QAM

-0— MMSE
- b —  CLLL-based MMSE 
-0—  CLLL-based MMSE-SIC 
 ML

CO -2a 10CD

10~4

Figure 2.5: BER performance of various detectors in a 16-QAM 2 x 2  MIMO 
system.

importantly, from theoretical and numerical results, we showed that a full receive 
diversity is exploited with the LR-based detectors.

2.4 M ultiuser M IM O U ser Selection

A rich spatial diversity gain can be obtained by employing various MIMO detec­
tors (e.g., ML and LR-based detectors) to MIMO systems. Consider that multiple 
users are able to access the MIMO channel with different locations and channel 
conditions, it is possible to exploit another diversity gain, where the performance 
can be maximized by choosing the user of the best channel at a time. The re­
sulting diversity gain is called the multiuser diversity gain [38] with multiuser 
MIMO systems [37], where the multiuser MIMO user selection [39, 40] becomes 
an effective way to increase the diversity. In this section, we introduce the user 
selection criteria for multiuser MIMO systems.
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4 X 4 MIMO, 16-QAM

-e— MMSE 
-a—  LR-based MMSE 
-6—  LR-based MMSE-SIC 
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Figure 2.6: BER performance of various detectors in a 16-QAM 4 x 4  MIMO 
system.

2.4.1 System  M odel

We consider the multiuser MIMO system shown in Fig. 2.7 with K  users in 
uplink channels, where each user is equipped with M  transmit antennas. The 
based station (BS) is equipped with N  receive antennas, where N  > M.  Each 
user has an N  x M  channel matrix and M  x L signal vector to be transmitted, 
which are denoted by Hfe and Sfe, respectively, where k 6  { 1 , 2 The 
channel is assumed to be a quasi-static block flat-fading channel with its channel 
matrix is not varying over a time slot duration of L symbols. Note that one user 
is selected to access the channel during one time slot. For uncoded signals, in this 
section, we can assume L = 1 (Note that this assumption is used to simplify the 
derivation of user selection criteria, while the length of slot can be any number). 
Consider that the kth user is selected to transmit signal to the BS. Then, over a 
slot duration, the received signal at the BS is given by

y k =  HjfcSfe + rife, (2.72)
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A id M

V  V  V
User 1
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Figure 2.7: Block diagram for multiuser MIMO uplink channels of K  users 
equipped per user with M  transmit antennas and the BS equipped with N  re­
ceive antennas.

where the background noise vector n*, is an independent zero-mean CSCG random 
vector with E  [nfcnj?] =  iV0I. Furthermore, we assume that the CSI is perfectly 
known at the receiver.

2.4.2 User Selection Criteria

In this subsection, we briefly introduce some existing user selection criteria for 
multiuser MIMO systems.

2.4.2.1 Maximum M utual Information Criterion

In [53], the maximum mutual information (MMI) criterion is proposed to select 
the user who has the maximum mutual information between the transmitter and
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receiver. The mutual information of the kth. user is given by

(2.73)

The MMI criterion is carried out to find the user index as

& M M i  = arg max (Ik). (2.74)

Although conventional user selection schemes [39, 40] are adopted to select 
user of the strongest channel gain at a time, the actual performance can be dif­
ferent from the expected one if non-ideal or suboptimal MIMO detectors are 
employed for joint detection. Therefore, it is desirable to derive a user selec­
tion criterion which can maximize throughput over fading channels by exploiting 
multiuser diversity as well as multiple antenna diversity depending on the actual 
MIMO detector employed. In [54], a geometrical-based criterion is developed for 
the LR-based linear detection to minimum the error probability. In [41], for the 
user selection in uplink channels, where a single user is selected to transmit signals 
to a BS at a time, the error probability is used for the user selection criteria to 
choose the user who has the smallest error probability for given MIMO detectors 
(i.e., ML, MMSE, LR-based detectors).

2.4.2 .2  Selection C rite ria  for ML and M M SE D etectors

In [41], the max-min distance (MDist) and the max-min eigenvalue (ME) criteria 
are derived for the ML and MMSE detectors, respectively. With the MDist and 
ME user selection, the user who can access the channel can be found as

respectively. Here, V  (A) and Amin (A) denote the length of the shortest non­
zero vector of the lattice generated by A and the minimum eigenvalue of A, 
respectively. Note that although these two criteria can be used for any MIMO 
detector, the MDist criterion has been derived to maximize the performance with 
the ML detector and the ME criterion suits for the MMSE detector.

^MDist =  arg max V  (H fc)
k = l , 2 , . . . , K

(2.75)

and
kME =  arg max Amin (Hj?Hfc) ,

k = l , 2 , . . . , K
(2.76)

41



2.4 Multiuser MIMO User Selection

2.4.2.3 Selection Criteria for LR-based Detectors

For the LR-based detection, from (2.72), the received signal vector is rewritten 
as

y k = G fccfe +  nfc, (2.77)

where G k =  H^U ^ 1 and ck = \Jksk- Here, is an integer unimodular matrix 
and Gfc is a CLLL-reduced matrix.

In [54], the optimal decision region (ODR) criterion for the LR-based linear 
detection can be simplified to the min-max mean square error (MMMSE) criterion 
with the lattice reduced basis Q k which is given by

&ODR/MMMSE =  arg ̂ _min ^  |__max^  || w fci(i) | |2 | . (2.78)

Here, vfk,(i) denotes the zth row of the linear filter Wj? from G^ and W k =
G* (GfcGj)-1.

In [41], two selection criteria are proposed for the LR-based MMSE and LR- 
based MMSE-SIC detectors, respectively. With the LR-based MMSE detector, 
the ME criterion is used as the user selection criterion by replacing H*. with G^ 
in (2.77). Then, the user index is selected as

kUE = arg max Amin (G^Gfc) . (2.79)

For the LR-based MMSE-SIC detection, H*, is replaced by an extended chan-
~ r /— ' ^nel matrix defined as H*, =  H T J  , while y k and are replaced by

t  r /—  " ITy k = [yk 0T] and rife =  n j  — , respectively. Using the LR with H*,,
the lattice reduced matrix G k can be found as H*, =  GfcUfc, where is an 
integer unimodular matrix. The LR-based MMSE-SIC detection is carried out 
with the QR factorization of G*, =  Q^Rfc, where Q*, is unitary and R^ is upper 
triangular. Multiplying Qj? to y k results in

y k =  RfcCfc +  Qfe rife, (2.80)

where ck = U ksk. The SIC-based detection is performed with upper triangular 
matrix Rjt in (2.80). The max-min diagonal (MD) criterion derived in [41] for
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the LR-based MMSE-SIC detector is given by

kUD =  arg max < min | rf]
fr—1 O ft" I n '

(2.81)

where denotes the (q, g)-th element of Rfc.

2.4.3 Performance Evaluation

In [41], the performance of user selection criteria with various MIMO detectors 
is analyzed in terms of the diversity gain.

2.4.3.1 Diversity Gain of M Dist Criterion with ML Detector

The average pairwise error probability (PEP) of the ML detector with the user 
selected from K  users under the MDist user selection criterion, denoted by PemI, 
is upper-bounded as [41]

where C\ > 0 is constant, and d = S (i) — S(2) (here, S(*) G SM and S (i) ^  S(2) ) .

This theorem shows that a full receive diversity gain of N  together with a 
full multiuser diversity gain of K  can be achieved by the ML detectors under the 
MDist user selection criterion.

2.4.3.2 Diversity Gain of ME Criterion with MMSE D etector

The average PEP of the MMSE detector with the user selected from K  users 
under the ME user selection criterion, denoted by Pemmse, is upper-bounded as

where c2 > 0 is constant.
This theorem shows that for the MMSE detector, the ME user selection cri­

terion cannot exploit a full receive diversity, however, a full multiuser diversity 
can be achieved.

K '  < d  ( lf^ !!!)  ~NK + o (  ( 14 £ !!!)  “iW+1)  , (2.82)

n m m s e

P e  <  C 2

,m m se (2.83)
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2.4.3.3 Diversity Gain of MD Criterion with LR-based MMSE-SIC  
Detector

The average PEP of the LR-based MMSE-SIC detector with the user selected 
from K  users under the MD user selection criterion, denoted by , is upper- 
bounded as [41]

i f  < c3 + o )~ ™ +1)  , (2.84)

where C3 > 0 is constant.
This theorem shows that a full receive diversity gain of N  together with a full 

multiuser diversity gain of K , as with the ML detector, can be achieved by the 
LR-based detector under the MD user selection criterion. From these results, we 
can see that the LR-based detector is as good as the ML detector with respect 
to the diversity gains.

2.4.4 Simulation Results

In order to illustrate the impact of the multiuser diversity gain to multiuser MIMO 
systems, we present the BER simulation results of various multiuser MIMO sys­
tems in Fig. 2.8. Three multiuser MIMO systems are considered with M  — 2 and 
K  =  {1,2}, namely i)\ MMSE detection under ME criterion, ii): CLLL-based 
MMSE-SIC detection under MD criterion, Hi): ML detection under MDist crite­
rion. Note that 16-QAM is used for signaling for all the systems. It shows that 
Systems ii) and Hi) with K  = 2 can provide a full diversity gain (i.e., multiuser 
diversity x multiple antenna diversity =  4), which outperforms that with K  = 1. 
Furthermore, we can see that Systems i) can not exploit a full multiple antenna 
diversity, however, a full multiuser diversity can be achieved which is K.

2.4.5 Conclusion and Remarks

In this section, we introduced multiuser MIMO systems and the multiuser MIMO 
user selection criteria. Using the error probability based selection criteria, we 
showed that the LR-based detection can exploit the same diversity as that of the 
ML detection in multiuser MIMO systems.
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Figure 2.8: BER performance of various multiuser MIMO systems with 16-QAM, 
Af = 2, and K  = {1,2}.
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3

Partial M AP based List 
Detection for MIMO Systems

3.1 Introduction

In [55, 56], it has been shown that the capacity of wireless channels can be signifi­
cantly improved by using MIMO systems. In MIMO systems, it is often desirable 
to use the ML detection to achieve the best performance. However, since the 
complexity of the ML detection grows exponentially with the number of trans­
mit antennas, the ML detection approach is not practical for higher dimensional 
detection problems of large MIMO systems.

To reduce the computational complexity of the MIMO detection, the V- 
BLAST approach [44] has been proposed by employing the nulling and cancella­
tion operations with the SIC in MIMO systems. In [27], the PMAP principle is 
considered to reduce the complexity of the MIMO detection. With the SIC, the 
PMAP detection can reduce a higher dimensional detection problem to multiple 
lower dimensional sub-detection problems.

Note that [27] discusses the PMAP solution with the chosen candidate that 
has the maximum APP among the candidate set in the first sub-detection, after 
separating the detection problem into two sub-detection problems, dimensionally. 
In this chapter, we use a list decoding approach [5, 6, 7, 8, 9, 10, 11] to extend 
the PMAP solution with any list of the candidates involved in the first sub­
detection, thus, the best candidate can be chosen among the list in the second
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sub-detection as the final decision. In particular, we focus on a family of list 
detection algorithms named the Chase detectors [12, 1.3, 14, 15, 16, 17] to work 
with the PMAP principle.

With the PMAP principle, the SIC can be implemented to reduce the com­
plexity of MIMO detection under certain condition and probability. In [27], the 
condition and probability is given out with a specific list length. In this chapter, 
we extended the condition and probability of the SIC with any list length. Note 
that the PMAP principle is used to choose candidate symbol vectors in the list 
detection. Using this, we propose a computationally efficient algorithm for the 
detection problem in MIMO systems. It can be shown that compared to the con­
ventional list detection which was proposed as the S-Chase detector in [14], the 
method we proposed has improved performance with a reasonable complexity.

This chapter is organized as follows. The MIMO system is presented in Section
3.2. The condition and probability of the SIC contributed by the PMAP based 
list detection are derived in Section 3.3. In addition, the proposed list detection 
algorithm based on the PMAP principle is explained. Simulation results are 
presented in Section 3.4. Finally, we conclude this chapter in Section 3.5.

3.2 System  M odel

Consider a MIMO system with N  transmit antennas and N  receive antennas. 
The received signal vector over a flat fading MIMO channel is written as

y =  H s + n, (3.1)

where the N x N  matrix H  is the channel matrix, the N x 1 vector s is the transmit 
signal vector, and the N  x 1 vector n  is a zero-mean white Gaussian noise vector 
with P[nnH] =  N0I. Using the unitary matrix Q from the QR factorization [57] 
of the channel matrix H, we have

QHy =  Rs +  QHn, (3.2)

where H  =  QR. With the upper triangular matrix R, the received signal vector 
from (3.2) becomes

r Ai A 2 Sl ' + ni
z 0 B

.  S2 .  n2 .

47



3.3 Partial M AP based List D etection

where the N\ x 1 vector r  and N2 x 1 vector z are the first and second sub-vectors 
of QHy, respectively, and N  — Ni +  N2. In addition, s* and are the i-th sub­
vectors of s and QHn, respectively, and Ai, A 2, and B are the sub-matrices of 
H. Furthermore, we can show that ni and n2 are the zero-mean Gaussian noise 
vectors and that

E
n 2

[ n f  n f ] =  iV0I. (3.4)

In addition, we assume that si E (3Nl and s2 E where (3 denotes the signal 
alphabet and (3N denotes the N  dimensional Cartesian product of (3.

From (3.3), the detection of s can be decomposed into the two sub-detection 
of Si and s2, which have N\ and N2 elements, respectively. Due to no interfer­
ence from Si, the sub-detection of s2 can be done independently, while the sub­
detection of Si is not straightforward as s2 becomes an interfering signal through 
A 2. In the next section, we study the sub-detection of Si with list decoding 
[5, 6, 7, 8] and PMAP principle [27] to deal with the interference effectively. Note 
that we have assumed that the number of receive antennas is identical to that 
of transmit antennas for convenience. The decomposition in (3.3) would also be 
possible when the numbers are different.

3.3 Partial M A P  based List D etection

As shown in [27], the PMAP principle can be applied to the sub-detection of si by 
using the APRP of s2, which can be obtained from the result of the sub-detection 
of s2. Here, we focus on the sub-detection of Si under the assumption that the 
APRP of s2 is available.

While the SIC is used to mitigate the interference of s2 in [27], we use the 
list decoding approach [5, 6, 7, 8] to effectively deal with the interference of s2. 
Basically, instead of exhaustive searching for all the possible decision vectors 
in the detection problem, the list decoding creates a list of candidate vectors 
and then chooses the best candidate within the list for the final decision. In 
this section, we drive the PMAP solution with the SIC, by generating a list of 
candidate decision vectors of s2 for the final decision.
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Let us define the finite set of all the possible candidate vectors for S2 as 
{S2, s2, • • • , s^}, where M  is the number of all the possible candidate vectors (for 
example, M  — 162 if the size S2 is 2 x 1 and 16-QAM is used), and the APRPs of 
the candidate vectors are denoted by Pr(s2 =  Sg), Pr(s2 =  s2), • • •, Pr(s2 =  s^). 
Furthermore, we assume that Pr(s2 =  sj) > Pr(s2 =  S2) > • • • > Pr(s2 — s^). 
Moreover, suppose that the partial APPs for each candidate are available and 
denoted by Pr(s2 =  S2 | r), where n E {1,2, • • • , M}.

3.3.1 The Case of List Length Q — 1

When Q — 1, the list detection is the same as the SIC in [27]. With the APRP 
of s2, the PMAP detection of Si and s2 with r in (3.3) is defined as

{si,s2} = a rg m in -L  || r -  (AiSi +  A 2s2) ||2
S l,S 2  N 0  

1

+ log
(3.5)

Pr(s2) ’

where Pr(s2) stands for the APRP of s2. Furthermore, the log - APP ratio [58] 
is defined as

L f a  [ r) = log Pr(V r S- ' r)„ |  v  (3-6)
m a x 8n # 8 i Pr(s2 = s£ | r)

If L ( s 2 | r) > 0, then we can have Pr(s2 =  S2 | r) > maxsn^si Pr(s2 =  sj | r). 
Therefore, Pr(s2 =  sj | r) becomes the maximum among all the partial APPs, 
and the PMAP solution of S2 becomes s .̂ According to [27], a sufficient condition 
to make sure that L(s2 | r) > 0 is as follows:

min || r -  (A ^ i +  A2s^) ||2< log (3.7)'
s i  i v o  P r ( S 2  —  S 2 )

If (3.7) is satisfied, the PMAP detection problem in (3.5) can be simplified as

s\ = argmin - i-  || -  A 1S1 ||2, (3.8)
S i iV  o

where =  r  — A 2S2- The condition in (3.7) is called the dimension reduction 
condition (DRC). It is to say, if we can have the DRC satisfied, then the N  
dimensional detection problem can be decomposed into an N\ dimensional and
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N 2 dimensional detection problems which can reduce the complexity, and we 
decide { s} ^ }  as the PMAP solution of {si,s2}.

Furthermore, the probability of dimension reduction (PDR) is defined as

Pcand =  Pr ( min -J- || r -  (A 1 S1 + A 2s )̂ 
\  si N0

Pr(s2 =  sj)
< l0g Pr(s2 =  s|) 

The lower bound of PC(md can be derived as

(3.9)

k\k=0

where Lt = log (see P?] for more details). Clearly, the PDR is the
probability that the computational complexity of an A  dimensional detection 
problem is reduced to the computational complexity of Ni dimensional and N2 
dimensional detection problems.

3.3.2 General Case

With the list length Q = m, where m  e  {1,2, • • •: , M  — 1}, a general case can be 
considered. Note that the case of m — M  will be explained later. With Q = m, 
the log - APP ratio can be given by

L i s ,  | r) -  log P_ l(g l- 4 | r )  + ;-p -fPr(Ŝ s n r)
maxs2" ^ ’2'-"’m Pr(s2 =  s£ | r)

If L(s2 | r) > 0, then we have Pr(s2 =  S2 | r) + • • • +  Pr(s2 =  | r) >
maxs„^si,2, - ,m Pr(s2 =  S2 | r). Therefore, Pr(s2 =  s^’2’"’’™ | r) = Pr(s2 =  S2 |
r) +  b Pr(s2 =  S21 | r) becomes the maximum, and the PMAP solution of s2
can be found from s2 € {S2 , • • • , S21}.

Using the max - log approximation [59] principle, we can have the modified
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log - APP ratio as

L(s2 | r) ~  min ( || r  -  (AiSi +  A2S2,2,"',m) ||2 
si [ N 0

+ log
Pr(S2 =  S22," ,m)  ̂ (3.12)

mlî  -  m ( W  II r “  (AlSl +  A2S2 ) IPSi,s?^s2’ ’ ’ [ Ao

+  log

2 7~°2
1

Pr(s2 =  s2)

More details about the derivation can be found in [60, 61, 62]. If L(s2 | r) < 0, 
then {s2, • • • , s™} becomes the list of candidates for the PMAP solution of s2. 
Here, we suppose that

min || r  -  (AiSi +  A2s2) ||2> C, (3.13)
Sl,S 2 i v 0

where C > 0 is a constant. Furthermore, we can show that

min < log *------ - l > l o g — -—  (3.14)
s? ^ - 2’ I Pr(s2 =  sg) J Pr(s2 = s - +1)

If

min \IT T  II r  — (AiSi +  A2S2,2,'”’m) ||2 si  ̂Jy o

+  loS ^  < g  +  }Og 1

(3.15)

Pr(s2 =  ŝ ’2, •m ) j  ~  6 Pr(s2 =  s ^ 1) ’

we can have L(s2 | r) < 0 and the PMAP solution can be found. Let C = 0, the 
DRC can be derived as

m in  TT II r  -  ( A 1S 1 +  A 2 S* ) f  ̂  l o 8  P r Ŝ2 ~~ ^N o"  v Pr(s2 =  s“ +1) ’ (3.16)
k = 1,2,*** , m.

Note that if any condition in (3.16) is satisfied with the PMAP solution of s2, 
denoted by s2 = s™, where m  G {1, 2, • • • , m}, then the PMAP detection problem 
in (3.5) can be simplified as

s?  =  arg min ~  || r™ -  A lSl ||2, (3.17)
si Jyo
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where r™ = r — A2s f . Thus, the N  dimensional detection problem can be de­
composed into N\ dimensional and N2 dimensional detection problems to reduce 
the complexity, and we decide {s™,s™} as the PMAP solution. Furthermore, for 
more than one of these conditions in (3.16) satisfied, the candidate of s2 whose 
minSl ^  || r — (AiSi + A 2s2) ||2 +log achieves the minimum value can be 
chosen as the PMAP solution.

Let
Dfn = min - i-  || r -  (AiSi +  A 2s^) ||2, (3.18)

si N 0
and

Pr(s2 = ffi)
Pr(s2 =  s” +1)

where fh G {1,2, • • • , m).  Therefore, the probability of each condition satisfied 
in (16) is Pr (Dm < Ltm), and the PDR is

LTm = \ogZ :  _ Z L  (3-19)

Pcond — Pr ((Di < LTi ) U • • • U (Dm < Lrm) ) > (3.20)

where U denotes the union.
Let P%£d denote the PDR under the assumption that the DRCs are statistical 

independent. In addition, let P££d denote the PDR for the case of fully correlated 
DRCs. Then, we have

P%L > Pcond > P ^ d- (3-21)

Furthermore, the lower bound of P ^ d and P ^ d can be obtained as

P !L  > P SL  = 1 -  nr=i ^  ( i  II n ||2> Ltj)

p£ S  > PS&  = 1 -  Pr ( i  II n ||2> Ltj)  ■

Since || n ||2 is a chi-square random variable with 2N  degrees of freedom, we 
have

P ^  = i - U 7 =1G(LTj,N)
P ^  =  l - G ( L T j , N ) ,  ^

where G(LTj , N ) =  e~L r XlfciTo1 h  > an(  ̂3 e {1,2, • - - , m}. Note that if

m = M,  it can be shown that L Tm  =  log =  0, thus, P ^ d = = 1.
(That is, since all the candidates have been on the list, then the condition must 
be satisfied, which is obvious.)
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Figure 3.1: Bounds of Pamd for different list length with N  = 2 and N  = 4, 
separately.

Since P££d and P££d are the cumulative density functions (cdf), they increase 
with L ti  and L t 2 and decrease with the number of receive antennas, N. The 
curves of P ^ 'd and P££d are showed in Fig. 3.1 with different list length Q and 
value of N. In these curves, we simply assume that LTi =  L t 2 = L t3 =  L t4- 
According to Fig. 3.1, we can see that the PDR increases with the list length. It 
can also be showed that the probability decreases with the number of antennas.

3.3.3 Algorithm for the Partial M AP based List D etection

Using the S-Chase detection [14], we can propose a PMAP based list detection 
which is called the PMAP-list algorithm. The algorithm is summarized as follows.

1) Among the N  data symbols in S2, we select N 2 symbols for S2. For con­
venience, let in2 denote the index of the ri2-th data symbols of S2, where 
n2 =  1,2, • • • , N2 and in2 G {1,2, • • • , N }. According to [14], the index in2
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has the property that it corresponds to the index of h j (the column vector 
of H and j  6 {1, • • • , N }), which has the n2-th minimum or n2-th maximum 
norm among all the columns, if Q < ^  or Q > respectively.

2) After ordering the symbols, the QR factorization of the channel matrix 
H is carried out as H II =  QR, where the N  x N  matrix II  represents 
the permutation matrix according to the symbol ordering. Here, the n2- 
th column of II  is the zn2-th column of the identity matrix. The final Ni 
columns of II  are decided according to the sorted-QR decomposition [63], 
which orders the weaker symbols to be detected later.

3) Then, with the received signal vectors as (3.3), we find the APPs of s2 as 
follows:

(a) for j  = 1 to N

(b) dj = || z — Bs^ ||2, s  ̂ €E (3N2. Note that s  ̂ is chosen with dj 
being the j-th  minimum among all the cases.

(c) Pr(s2 | z) = cexp(— || z — Bsg ||2), where c is the normalization 
constant.

(d) end

4) The APRP of s2 is updated by using the resulting Pr(s2 | z) in Step 3). 
With the APRP of s2, which is denoted by Pr(s2 =  sj), the DRC can be 
verified as follows:

(a) Let m =  l, the DRC in (3.16) is verified.

(b) If the DRC is satisfied, the PMAP solution of s2, which is denoted by 
s2 =  s™, where to G {1,2, • • • , to}, can be decided by choosing s2 that 
minimizes minSl ^  || r  -  (AiSi +  A2s?) ||2 +log pr(S2L'sm) amonS a11 
the conditions in (3.16).

(c) If the DRC is not satisfied, to =  to +  1 and go back to Step (b). Note 
that the iterative method (called the IM-PMAP-list) is terminated 
until either the DRC satisfied or all of the candidates have been on 
the list.
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5) From (3.17), the PMAP solution of{si,S2} is decided as {s™,s™}. The 
detected signals are re-ordered according to the original ordering.

To consider the computational complexity, let K  denote the number of the 
elements in /3, i.e., the size of the signal alphabet. The complexity of the ML 
detection that uses an exhaustive search is 0 ( K N). The V-BLAST which uses 
the nulling and cancellation has a detection complexity of O(NK)  excluding the 
complexity associated with computing nulling filters’ coefficients. The proposed 
PMAP-list algorithm has a detection complexity of 0 ( Q K Nl +  K Ni), because 
Si E j3Nl and S2 E /3N2. Since the S-Chase detector [14] chooses one symbol 
for the first sub-detector among the N  received symbols, i.e., N2 = 1, it has 
a detection complexity of 0 ( Q K N~l +  K),  because Si E (3N~l and S2 E (3. 
The proposed PMAP-list detector has a comparable complexity to the S-Chase 
detector when N2 =  1. It is noteworthy that the complexity can be lower if 
Ni = N2. Thus, if N  = 4, then the complexity for the case of Ni = N2 = 2 
is lower than that of N\ = 3 and N2 = 1. As shown in Table 3.1, when we list 
the empirical complexity of various detectors for each symbol vector detection, 
in terms of the average number of the floating point operation (flops), this can 
be confirmed1. Note that to compare with the sphere decoding, we also perform 
the sphere decoder as the sub-detector of the proposed approach in Table 3.1.

As shown above, the complexity of the list detector depends on the list length, 
Q. If Q approaches M  =  K N2, the complexity approaches that of the ML detec­
tor. Thus, it is desirable to have a small Q. As will be shown in Section 3.4, the 
list length of the proposed PMAP-list detector decreases with the SNR.

3.4 Sim ulation R esu lts

In this section, we consider 16-QAM 2 x 2  and 16-QAM 4 x 4  MIMO systems 
for simulations. The elements of MIMO channels are generated as independent 
complex Gaussian random variables with mean zero and unit variance. The SNR 
is defined by the energy per bit to the noise power spectral density ratio, E^/Nq.

1 We simulate these systems using MATLAB-V5.3 on a PC. The MATLAB command “flops” 
is used to count the number of flops.
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3.4 Simulation Results

Table 3.1: The average complexity of various detection methods for 16-QAM
2 x 2  system and 16-QAM 4 x 4  system, separately.

A v e ra g e  flo p s  (x lO a ) fo r 16 -Q A M  2 x 2  s y s te m
E b/ N a ( dB) 0.0 4.0 8.0 12.0 16.0 20.0

MMSE 0.240 0.240 0.240 0.240 0.240 0.240
V-BLAST 0.704 0.704 0.704 0.704 0.704 0.704

S-Chase, Q =  1, ML (exhaustive search) sub-detector 0.752 0.752 0.752 0.752 0.752 0.752
S-Chase +  P artia l M AP ML (exhaustive search) sub-detecto r 4.8719 3.6202 2.1472 1.3636 1.0822 1.0501
S-Chase +  P artia l M AP ML (sphere decoding) sub-detecto r 1.221 0.908 0.588 0.406 0.361 0.355

ML (sphere decoding) 0.614 0.598 0.568 0.556 0.551 0.549
ML (exhaustive search) 13.827 13.827 13.827 13.827 13.827 13.827

A v e ra g e  flo p s  (x lO a ) fo r  16 -Q A M  4 x 4  s y s te m
£j,/JV0 (dB) 0.0 4.0 8.0 12.0 16.0 20.0

MMSE 0.644 0.644 0.644 0.644 0.644 0.644
V-BLAST 2.0873 2.0873 2.0873 2.0873 2.0873 2.0873

S-Chase, Q =  1, ML (exhaustive search) sub-detector 565.9 565.9 565.9 565.9 565.9 565.9
S-Chase 4- P artia l MAP ML (exhaustive search) sub-detecto r (JVi =  3, JV2 =  1) 6291.8 4451.7 2429.1 1154.7 632.8 566.3

S-Chase 4- P artia l MAP ML (exhaustive search) sub-detecto r (JVj =  N? =  2) 1061.6 502.64 187.47 75.687 48.767 45.545
S-Chase +  P artia l M AP ML (sphere decoding) sub-detecto r { N i  =  3, N% =  1) 28.7475 19.9401 10.6409 5.1543 2.3321 2.2592

S-Chase +  P artia l MAP ML (sphere decoding) sub-detecto r (N , =  N 2 =  2) 41.775 19.779 7.3768 2.9783 1.9190 1.7922
ML (sphere decoding) 3.8933 3.2906 2.9496 2.7760 2.7058 2.6756

ML (exhaustive search) 11140 11140 11140 11140 11140 11140

According to the simulation results, we perform the MMSE decoder, V-BLAST, 
S-Chase, sphere decoding, ML to compare with the proposed approach (for the 
detail of the MMSE, V-BLAST, and sphere decoding, see [64], chp. 10).

In Fig. 3.2, we show the BER simulation results for the 2.x 2 system, where 
Ni — N2 =  1. It is shown that the proposed PMAP-list detector outperforms the 
conventional list detector [13, 14]. Note that the proposed PMAP-list detector 
uses the approximation in (3.12). Due to this approximation, the performance 
is worse than that of the ML detection. Table 3.2 shows the average list length. 
We can observe that the list length decreases with E^/Nq. Since the DRC can 
be satisfied with a shorter list length as E^/Nq increases, the list length can be 
shorter.

Moreover, in Fig. 3.2, the BER simulation results for the 4 x 4  MIMO sys­
tem are also shown. We can see that the proposed PMAP-list detector has an 
insignificant performance degradation from the ML detector and the SNR loss is 
less 0.5 dB at a broad range of BER (up to BER = 10-3). The performance of the 
proposed PMAP-list detector with N\ — N2 = 2 is better than that with Ni = 3 
and N2 = 1. Since the first sub-detector is performed with 162 =  256 candidates 
and 2-fold diversity gain when N 2 =  2, the reliability is better than that with 16
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• - O -  • MMSE (2X2 MIMO)
—<1- V-BLAST (2X2 MIMO)

■ — 1 S-Chase, Q = 1, ML subdetector (2X2 MIMO)
— • S-Chase + Partial MAP (2X2 MIMO)
• — • — • ML (realized by sphere decoding 2X2 MIMO)

©—  MMSE (4X4 MIMO)
V-BLAST (4X4 MIMO)
S+Chase, Q = 1, ML subdetector (N1 = 3, N2 = 1, 4 X 4 MIMO) 

S+Chase + Partial MAP (N1 = 3, Ng = 1,4 X 4 MIMO) 
S+Chase + Partial MAP (N, = N2 = 2, 4 X 4 MIMO)

ML (realized by sphere decoding 4X4 MIMO)

10 12 
Eh/Nn(dB)

Figure 3.2: BER performance of various detection methods for 16-QAM 2 x 2  
system (we have the partial MAP based S-Chase decoding with N\ — iV2 = 1 and 
the S-Chase detector with list length Q = 1 and Ni = iV2 = 1) and 16-QAM 4 x 4  
system (we have the partial MAP based S-Chase decoding with N\ = 3, iV2 = 1, and 
N\ = N2 = 2, and the S-Chase detector with list length Q = 1 and N\ = 3, N2 — 1).

candidates and 1-fold diversity gain when iV2 = 1. Thus, there would be less error 
propagation and the performance can be improved with a large iV2. The average 
list length for the 4 x 4  system is shown in Table 3.2. As E^/Nq increases, the 
average list length becomes shorter. This indicates that the proposed PMAP-list 
detector can be computationally efficient when the target BER is sufficiently low, 
say BER =  10-4 for the case of JVi =  jV2 =  2, where the corresponding Eb/N0 is 
14dB.
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3.5 Conclusion

T ab le 3.2: The average list length with different SNR and N\ = N2 obtained
from the simulation with 16-QAM 2 x 2  and 4 x 4  MIMO systems, separately.

A verage value of th e  list length
Eb/N0( dB) 0.0 4.0 8.0 12.0 16.0 20.0

2 x 2  MIMO 5.64598 4.00584 2.29326 1.29278 1.04493 1.01218
4 x 4  MIMO 23.3585 11.0593 4.1247 1.6653 1.073 1.0021

3.5 C onclusion

Since the complexity of the ML detection becomes prohibitively high for large 
MIMO systems, it is often impractical. We showed that the PMAP principle 
can be an effective means to reduce the computational complexity in conjunction 
with the list decoding for the MIMO detection. It was also shown that the 
PMAP principle based list decoding can perform better than the conventional 
list decoding. Furthermore, in terms of the performance and complexity, it is 
shown that the proposed approach with N\ = N2 = 2 outperforms the case of 
Ni = 3  and N2 = 1.

In order to improve the performance and reduce the complexity, we can con­
sider the LR in conjunction with list detection. In the next chapter, we represent a 
column reordering strategy for the LR-based list detection for slow fading MIMO 
channels.
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4

Error Probability based Column 
Reordering Criterion for Lattice 
Reduction based List MIMO 
Detection

4.1 Introduction

In MIMO systems, in order to achieve a good performance and a low complexity 
at the same time, LR-based [19, 20, 21, 22, 23, 24, 25, 26] and list-based [12, 
13, 14, 15, 16, 17] MIMO detectors are well investigated. To further improve the 
performance and reduce the complexity, a LR-based list detection is proposed 
in [28] by decomposing a large MIMO detection problem into multiple small 
MIMO sub-detection problems, where the complexity grows linearly with its list 
length. It is shown that the LR-based list MIMO detection can provide a near ML 
performance with a sufficiently large list length. However, a good performance 
is not guaranteed with a small list length (low complexity). Thus, it is desired 
to develop a strategy to improve the performance of the LR-based list detection 
when a small list length is considered.

Noting that column swapping of channel matrices can result in different per­
formance in the LR-based list detection, in this chapter, in order to obtain an



4.2 Lattice Reduction based List Detection

optimal order of columns in terms of the error probability of sub-detection, we pro­
pose column reordering criteria (CRC) for a given MIMO sub-detector employed. 
Through simulations, we show our proposed CRC can significantly improve the 
performance of LR-based list detection with a small list length (low complexity) 
for slow fading MIMO channels.

4.2 L attice R eduction  based List D etection

In this section, we briefly introduce the LR-based list detection [28]. Consider 
a MIMO system equipped with N  transmit and N  receive antennas (although 
the proposed approach is also valid when there are more receive antennas than 
transmit antennas, we assume they are the same for convenience). Let sn denote 
the data symbol to be transmitted by the nth transmit antenna, n = 1 , 2 , . . . , AT. 
Note that sn € S, where § denotes a common signal alphabet. Denote by yn 
the received signal at the nth receive antenna. The received signal vector over a 
flat-fading MIMO channel with signal reordering is given by

vector sx — Sk(i) > • • • 5 sk{N)

y =  [3/1, • • -, Vn V  =  H^cs^c 4- n, (4.1)

hfc(1), •. •, hk(N) , the transmit signal 

, and the noise vector n  =  [ni, . . . ,  n/v]T which is

where the N  x N  channel matrix =
T iT

a zero-mean CSCG random vector with S[nnH] = TVqI. Here, the superscript 
T and H denote the transpose and Hermitian transpose, respectively. Note that 
hfc(n) denotes the k(n)th column vector of and the CRIS is denoted by X  =  
{fc(i),. . . ,  fcpv)}, which is a permutation of {1,2, . . . ,  N}.  Throughout the chapter, 
we assume that the CSI is perfectly known at the receiver.

With the QR factorization Hjc =  QocRuc, where N  x N  matrices Q k and R x 
are unitary and upper triangular, respectively, from (4.1), we have x = Q ^y =  
R-ocSx +  n. By defining two sub-CRIS’s as = {&( 1), . . .  &(jv-m)} and X 2 =
{h(N- M+i)i • • • fyjv)}, where M  < N,  we have x = [x j xJ]T, =  [s^  s £ J T, 
and n  =  [n^ n j] (i.e., x2 and n2 are M x l  sub-vectors of x and n, respectively).
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4.3 Error Probability based Column Reordering Criteria

Then, x is rewritten as

Xl
x2

AKl C
0 ®3C2

SoCi
SX2

+ ni
n2

(4.2)

From (4.2), a two-layer detection is carried out, namely the LR-based list 
detection [28], which is summarized as follows:

a) Perform a LR-based detector on x2 to obtain u2, which is an estimated 
vector of sac2 in LR domain. Generate a list of candidate vectors U2 for u2, 
by choosing the Q closest vectors to u2, where U2 =  j u ^ ,  u22\ . . . ,  j

and U21} ~  U 2 || < | |  4 2) -  U 2 | <  • "  < | |  U o ^  — U 2

6) Denote by S2 the list of candidates for sac2, is mapped from tl2, where S2 =
and Q < |8|M. Let x ^ ] = x 1 -  C s ^ ,  q =  1 ,2 , . . . ,Q.

LR-based detector is performed on x ^  to estimate in the LR domain, 
the resulting vector is denoted by .

T

, the final hard decisionc) Mapping to s^j, let (s!^)

is obtain by
sac =  arg mm

ag)€{§g),...,sg?)}
x -  RocsS  ̂ ||2 (4.3)

Since the list in a) is generate in LR domain, with the LR-based detection 
employed to detect Soc2 and Soci in two layers, a low complexity and good perfor­
mance is guaranteed at the same time.

4.3 Error Probability based C olum n R eordering  
Criteria

Denote by A ^  and Boc2 the lattice reduced matrices of and Boc2, respec­
tively. The performance of the LR-based list detection highly depends on: i) 
the list length Q\ ii) the level of orthogonality of A ^  and Boc2; in) the per­
formance of LR-based sub-detectors employed to detect sxx and Soc2 in terms of 
the error probability. Since the impact of Q (on performance and complexity) is
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4.3 Error Probability based Column Reordering Criteria

well discussed in [28], in this chapter, we aim to improve the performance of the 
LR-based list detection with a fixed Q. We note that for a channel matrix H ^, 
different X  leads to different { A ^  > B 3C2 } j which results in different performance.

In order to obtain an optimal CRIS X  to improve the performance, based 
on the well-known Orthogonal Deficiency (OD) [25], we first introduce a CRC 
(OD-CRC) to generate the most orthogonal { A ^ B ^ } .  Then, by taking ac­
count into an actual employed sub-detector, we propose an error probability (EP) 
based CRC or EP-CRC. We will compare the performance of the two CRC in 
simulations. Since the performance of LR-based list detection highly depends on 
the reliability of the detected soc2 (e.g., the error probability of the first layer 
detection plays a key role in overall performance), both OD-CRC and EP-CRC 
perform into two-layer.

4.3.1 OD-CRC

Letting X  = {1,2, . . . ,  N},  the sub-CRIS X ®0 is obtained as

X!?D =  axg min OD(B%). (4.4)
3C2 C3C

With X  <= X  \  D, the sub-CRIS 3CpD is given by

3Cp° =  arg min O T^A xJ, (4.5)
JCiCOC

d e t (  D HD )where “ \  ” denotes the set minus and the OD function OD (D) =  1 — . Lv 7 nj=:ill<br
[25] for matrix D =  [di , . . . ,dj J .  Here, det(-) is the determinant. Take 
as an example. Although a better performance of LR-based detection could be 
obtained with a more orthogonal , since the sub-matrix is nearly orthogonal 
as OD (Bjca) ~  0 for any X 2 thanks to the LR, the use of OD-CRC may not 
improve the performance significantly.

4.3.2 Proposed Criterion: EP-CRC

By extending the vector selection criteria proposed in [41, 65], a two-layer selec­
tion strategy based EP-CRC can be proposed to minimize the error probability
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for a given MIMO sub-detector employed. Suppose the LR-based MMSE sub­
detector is used to detect both s ^  and sx2, in the first layer, the EP-CRC is 
carried out to obtain the sub-CRIS 3Cfp as

X?p =  arg max Amin (B j  B ^ ) . (4.6)
X 2C X

With X < = X \ 3Cfp, in the second layer, the 3Cfp is given by

DCfp =  arg max Amin ( A ^ A ^ ) , (4.7)
3CiC3C

where Amin (-) denotes the minimum eigenvalue. This criterion is regarded as the 
ME, which is known to minimize the error probability for a given lattice reduced 
matrix. Note that the MD criterion [41, 65] can also be given for the LR-based 
MMSE-SIC sub-detector.

4.4 Sim ulation R esults

We present simulation results with MIMO channels whose elements are generated 
as independent CSCG random variables with mean zero and unit variance. The 
SNR is defined as the energy per bit to the noise power spectral density ratio, 
Eb/NQ. We use 16-QAM for signaling with Gray mapping. Different MIMO 
detection methods are considered, namely I: MMSE detection, II: ML detection, 
III: LR-based MMSE detection [22], IV: LR-based list detection using LR-based 
MMSE sub-detection, V: OD-CRC employed for detection IV, VI: EP-CRC 
employed for detection IV.

In Fig. 4.1, in terms of BER versus SNR, we show simulation results of 6 
different detectors on 4 x 4 MIMO systems. Here, we assume M  = 2 and Q = 4 
for detection IV, V, and VI. It shows that by using OD-CRC, the performance 
of detection IV  cannot be improved. With our proposed EP-CRC, a more than 
2 dB improvement is observed at BER =  1CT4 compared to that without CRC. 
Moreover, we can see that detection V I has a SNR loss of half dB at a range of 
BER =  10-3 to 10-5 compared with the ML detection (i.e., detection II).
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4 X 4  MIMO, 16-Q A M .

-  *  -  D etection  I 
- O -  D etection  II

-  $  -  D etection  III
-  A  -  D etection  IV 
— b —  D etection  V 
— V—  D etection  VI

10'2

IT
LU
CD

14
Eb/No

F ig u re  4.1: BER versus Ef , /N0 of different MIMO detection for 16-QAM,
{iV, M , Q }  =  { 4 ,2 ,4 } .

Since the complexity for obtaining { A ^ B ^ }  is well discussed in [28], here, 
we analysis the computational complexity for EP-CRC only. Denote by C m e,a  

and Cme,b the complexity of ME operation on A ^  and , respectively. The 
overall complexity for EP-CRC is given by C e p - c r c  =  ~  m ) ^ m e ,b  +

n ^ M ^Cme,a- Note that EP-CRC is only employed once for a channel matrix. 
For slow fading channels, since the coherence time is long, the extra compu­
tational complexity required for EP-CRC per each symbol detection would be 
negligible. Under the assumption that the channel is not varying in the dura­
tion of 1000 transmitted symbol vectors, with the same MIMO system used in 
simulations, we compare the computational complexity for each symbol vector 
detection by employing detection V I and other detection methods in terms of 
the average number of flops1. The flops per symbol vector of different detection

1 We simulate these systems using MATLAB-V5.3 on a PC. The MATLAB command “flops” 
is used to count the number of flops.
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methods are listed as follows: Detection I: 458, Detection II: 11140, Detection 
III: 467, Detection IV: 957, Detection VI: 979.

4.5 Conclusion

In this chapter, we proposed EP-CRC for LR-based list detection. We com­
pared OD-CRC with our proposed EP-CRC. It showed that with our proposed 
EP-CRC, the performance of LR-based list detection is significantly improved. 
Furthermore, a near optimal performance can be achieved with a small list length 
by employing EP-CRC, where a low complexity is considered.

So far, we have developed two low complexity detection methods for MIMO 
systems with square or tall channel matrices. However, it is not straightforward 
to develop a detection method that can be adopted into underdetermined MIMO 
systems to achieve a good performance and a low complexity at the same time. 
For this sake, we propose a pre-voting cancellation based detection for such a 
system in the next chapter.
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5

Pre-voting Cancellation based 
Detection for Under deter mined 
MIMO Systems

5.1 Introduction

In MIMO systems, the channel matrix is called fat, square, or tall matrix if the 
number of transmit antennas M  is greater than, equal to, or smaller than the 
number of receive antennas N.  According to [1], the MIMO channel capacity can 
be approximated as C m im o  — min(M, N)Cs\ so,  where Csiso denotes the channel 
capacity of single-input single-output channels. Thus, with regard to capacity, 
we may prefer a square channel matrix (i.e., M  =  N) .  However, if we need to 
employ a lower order modulation due to a limited receiver’s complexity, we can 
consider a fat channel matrix (i.e., M  >  N) ,  because the spectral efficiency per 
transmit antenna can be lower as =  ^Csiso < Csiso- For this reason, in
this chapter, we focus on underdetermined MIMO systems1.

For the detection in underdetermined MIMO systems, various techniques can 
be considered. Instead of exhaustive searching for all the possible decision vec­
tors as in the ML detection, list-based detectors [5, 6, 7, 8, 9, 10, 11] create a 
list of candidate decision vectors and then choose the best candidate as their

throughout this chapter, it is assumed that different symbols transmitted by M  transmit 
antennas are linear independent with others within a time slot.
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5.1 Introduction

final decision. In [12, 13, 14, 15, 16, 17], a family of list-based Chase detectors 
are proposed. Since the Chase detection cannot achieve a full receive diversity 
order, especially when underdetermined MIMO systems are considered, GSD ap­
proaches [29, 30, 31, 32, 33] were developed. In [34], two sub-optimal group 
detectors are introduced and a geometrical approach based detection for under- 
dertermined MIMO systems is studied in [35]. To further reduce the complexity, a 
computationally efficient GSD-based detector with column reordering is proposed 
in [36], namely, “tree search decoder - column reordering” (TSD-CR). However, 
their complexity is still high. Moreover, the LR-based detector is only applicable 
to the case of tall or square channel matrices [22, 25]. Hence, we need to de­
velop a detector that can be employed for fat channel matrices and has a near 
optimal performance with a reasonably low complexity, especially for a low order 
modulation.

To apply MIMO detectors to underdertermined MIMO systems, in this chap­
ter, a PVC-based MIMO (PVC-MIMO) detection approach is proposed. The 
main idea of the proposed detector is to divide the transmitted symbols into two 
groups. First, one or more reference symbols are selected out of all the transmit­
ted symbols as the pre-voting vector (the residual symbols from the post-voting 
vector) and all the possible candidate symbols for the pre-voting vector are con­
sidered (e.g. for 2 symbols are selected for the pre-voting vector and 4-QAM 
method is used, there are 4 x 4 =  16 possible candidate symbol vectors to be 
considered). Then, for each candidate pre-voting vector, its contribution (as 
the interference) is canceled from the received signal and the remaining sym­
bol estimates are obtained by a sub-detector (which could be a linear detector 
or LR-based detector) operating on size-reduced square sub-channels. The final 
hard-decision symbol vector is obtained by taking the one that minimizes the 
Euclidean distance metric among the candidate vectors. Note that the size of 
pre-voting vectors is determined to generate square sub-channels (e.g., for a 2 x 4 
channel matrix, 2 symbols are selected for the pre-voting vectors and the size of 
sub-channel matrix is 2 x 2 square matrix). With a LR-based detector for the 
sub-detection, theoretical and numerical results show that the proposed approach 
can achieve a full receive diversity order.
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In [41], user selection criteria are considered for multiuser MIMO systems, 
where a single user is selected to transmit signals to a BS at a time. By viewing 
multiuser MIMO as virtual antennas in a single user MIMO system, the user 
selection problems can be regarded as the transmit antenna selection problems. 
In this chapter, we extend the selection criteria in [41] to support multiple an­
tennas (transmit symbols) at a time for the PVC-MIMO detection where there 
are more transmit antennas than receive antennas. This extension of the an­
tenna selection, namely the PVS, becomes a combinatorial problem. Using low 
complexity sub-optimal detectors (LR-based detectors or linear detectors) for the 
sub-detection, with an optimal PVS, it is also shown that a near ML performance 
can be achieved. For slow fading MIMO channels, through simulations, we show 
that the computational complexity of the proposed PVC-MIMO detection with 
PVS is lower than that of TSD-CR.

The rest of the chapter is organized as follows. The system model and our 
proposed pre-voting cancellation based MIMO detection are presented in Section
5.2. The optimal PVS is discussed in Section 5.3. The performance of the pro­
posed PVC-MIMO detectors is analyzed in Section 5.4. Simulation results and 
some further discussions are presented in Section 5.5. Finally, we conclude this 
chapter in Section 5.6 with some remarks.

Throughout the chapter, complex-valued vectors and matrices are represented 
by bold letters. We use Round-Gothic symbols to represent real-valued vectors 
and matrices. For a matrix A, AT, A H, and A* denote its transpose, Hermitian 
transpose, and pseudo-inverse, respectively. E[-] denotes the statistical expecta­
tion. In addition, for a vector or matrix, || • || denotes the 2-norm. \fi\ denotes 
the nearest integer to p. Denote by \  the set minus, by In an n x n identity ma­
trix, and by % = (fyi), 2), • • • } the collection set of k( 1), 2) ,__  The (p, q)-th
element of a matrix R is denoted by [R]p,g.
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5.2 Joint D etection for Underdetermined MIMO Systems

5.2 Joint D etection  for Under deter m ined M IM O  
System s

We consider underdetermined MIMO systems with a receiver of limited complex­
ity, where low order modulation is employed as mentioned earlier. This would 
be the case for downlink channels in cellular systems where the transmitter is a 
BS and the receiver is a mobile terminal which usually has a small number of 
receive antennas and a limited computing power for detection. In this section, we 
present the system model for this underdetermined MIMO system and introduce 
our PVC-MIMO detection after brief description of some existing approaches.

5.2.1 System  M odel

Consider a MIMO system with M  transmit and N  receive antennas. Let sm 
denote the data symbol to be transmitted by the mth transmit antenna. Assume 
that a common signal alphabet, denoted by 8, is used for all sm. That is, sm G 
8, m = 1,2, . . . , M .  Furthermore, let $A and |S| represent the A-dimensional 
Cartesian product and cardinality of S, respectively. Denote by yn the received
signal at the nth receive antenna, n = 1,2, . . . ,  iV. Then, the received signal
vector over a flat-fading MIMO channel is given by

y  =  [2 /i ,  2/2, - - - ,  2/ at]T  

= Hs + n, (5.1)

where s =  [si, s2, . . . ,  sm ]t  is the transmit signal vector, and n =  [ni, n2, . . . ,  71at]t  
is the noise vector which is assumed to be a zero-mean CSCG random vector with 
E[nnH] = Nol. Here, H  is the channel matrix which can also be written as

H  = [hi ,h2, . . . , h M], (5.2)

where hm denotes the mth column vector of H. Throughout this chapter, we 
assume that the CSI is perfectly known at the receiver. The impact of channel 
estimation error on the performance will be discussed in Subsection 5.5.2.
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5.2.2 Existing Approaches

Taking the equation in (5.1) as a linear system, various numerical algorithms can 
be used to estimate or detect s when the system is overdetermined (i.e., M  < 
N). In particular, in [19] and [22], the LR-based detectors, which can provide 
a good performance with a low computational complexity, have been proposed 
to detect s. However, if the MIMO system is underdetermined (i.e., M  > N),  
few approaches (including an exhaustive search for the ML detection, list-based 
detection, and GSD technique) could be applied to the MIMO detection.

In this subsection, we briefly review two existing approaches, namely, list- 
based Chase detection and GSD-based detection, which are comparable to our 
proposed PVC-MIMO detection. The PVC-MIMO will be introduced in the next 
subsection.

5.2.2.1 Chase D etection

By dividing the symbols to be detected into two layers, the list-based Chase 
detection [12, 13, 14, 15, 16, 17] is carried out. With the system model shown in 
(5.1), the sub-vector of sized (M  — N) x  1 to be detected in the first layer is 
selected from s as the one with the smallest MSE (i.e., equivalently the highest 
SNR) and a list of Q candidates for this sub-vector is constructed. In the second 
layer, the contribution from the detected sub-vector is treated as the interference 
and is canceled from the received signal. Then, the sub-detection is employed 
with the corresponding N  x N  sub-channel matrix to detect the residual N  x  1 
sub-vector1.

With the Chase detector, a low complexity implementation can be obtained 
with a small list length Q. The performance of the Chase detector in above 
highly depends on the reliability of detected sj. Note that when H  is square, a 
QR factorization-based SIC can be carried out to estimate sj without the impact 
of interference. However, for underdetermined MIMO systems, since a linear 
detector to obtain a list of candidate vectors for sj suffers from the interference, a 
good performance cannot be achieved with the Chase detector, which is studied 
by simulations in Section 5.5.

1For the details of the list-based Chase detection, please see Section 2.2
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5.2.2.2 G SD -based detection

To apply the well known sphere decoding (SD) to underdetermined MIMO detec­
tion, the GSD-based detection is proposed which provides a near ML performance 
[29, 30, 31, 32, 33, 34, 35, 36]. By viewing § as a 2lsl-PAM signal set, where a 
mapping strategy is considered, the GSD-based detection is carried out to detect 
s by solving the underdetermined integer least squares (UILS) problem as

sr =  arg min || yr -  H rsr II2, (5.3)
sres2M

where real-valued vectors y r = [yi,y2, • • • ,y2iv]T, sr =  [si,S2, .. • , s2m]T, and ma­
trix H r of 2N  x 2M, are transformed from complex-valued y, s, and H  in (5.1), 
respectively, by using the approach introduced in [36]. With the QR factorization 
of H r, we have H r =  QrR r , where real-valued 2N  x 2N  Qr and 2N  x 2M  Rr are 
unitary and upper trapezoidal, respectively. Letting y r = Q jy r , we have y r =

qR (̂!q ^  , and sr =  sJ{A) s^(CB) , where y r{A) =

[yi,y2,---,y2AT-i]T, r r =  [ri,r2, . . . ,  r2M-2Ar+i]T5 sr(./i) =  [si, s2, . . . ,  s2at-i]T, and 
sP(B) =  [s2AT, s 2a t+ i ,  • • • ,S2m]T- Note that M  > N.  Then, the following two-layer 
detection is carried out to solve the problem in (5.3) as

y2n
T

, R r =

sr — arg min II y r — TlrS
srGS2M

|2

+  arg  II (yr(>l) “  Rr(2)Sp(B)) -  R r(l)Sr(yi) ||2 [ •
sr(>l)G® J

To apply a GSD based detector, a radius A is chosen such that

|| y r — R ^  ||2< A2. (5.5)

From (5.4) and (5.5), we can also show that

(y2n  ~  r j s r(3))2 < A2. (5.6)

With a fixed sr(B), a conventional SD algorithm is carried out to solve the
problem in (5.4). The initial idea of GSD is proposed in [29], which takes every
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possible candidates of sr(®) to obtain the final decision. Note that the exhaus­
tive search leads to a high computational complexity. To reduce the complexity, 
various computationally efficient algorithms [30, 31, 32, 33] are proposed. Using 
a column reordering strategy, the TSD-CR is introduced in [36] to further re­
duce the complexity. Although the GSD-based detection can provide a near ML 
performance, its complexity is still high in some applications, which is studied 
through simulations in Section 5.5.

5.2.3 Proposed Approach: Pre-voting Cancellation based 
MIMO D etection

For underdetermined MIMO systems, since a low complexity and a good perfor­
mance cannot be obtained by existed MIMO detectors (i.e., MMSE detector, ML 
detector, list-based detectors [12, 13, 14, 15, 16, 17], and GSD-based detectors 
[29, 30, 31, 32, 33, 36]) at the same time, in this subsection, we propose the 
PVC-MIMO detection.

Let R = M  — N  and denote by T =  {pi,P2> • • • iPr] the index set for the 
pre-voting signal vector (the selection of this vector will be discussed in Section 
5.3), which is denoted by Sy = [sPl, . . . ,  sPfl]T. Then, (5.1) is rewritten as

y =  H ySy +  H qSq +  n, (5.7)

where H y =  [hPl, . . . ,  hPiJ is a sub-matrix of H  associated with sy, Sq =  [sqi, . . . ,  s9n]t  
is the post-voting signal vector, and Hq =  [hgi, . . . ,  h qN] is a sub-matrix of H  as­
sociated with sq. Here, the index set Q is given by Q =  { 1 , . . . , M } \ J \  Note 
that Hq is square, and sy  € S R and Sq € § n .

Define the finite set of all the possible candidate vectors for sy as {sy, Sj>,. . . ,  },
where K  =  |S|B [for example, K  =  42 if the size of sy is 2 x 1 and 4-QAM is 
used]. Assuming that Sy — Sy, h e  {1, . . . ,  K } : (5.7) is rewritten as

rk = HqSq +  n, (5.8)

where r fc =  y — HySj,. After the PVC in (5.8), we can apply any conventional
MIMO detector that works for a square MIMO channel for the detection of s q .
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Fcr convenience, denote by Sq the detected symbol vector of sq (by any means) 
foi given Sy =  Sj>. Let

With K  candidates of sfc, i.e., {s1, . . . ,  sK), based on the ML detection principle, 
the solution of the PVC-MIMO detection is given by

s =  arg min || y — H 'sfe ||2, (5.10)
s fce { s 1,...,sK}

where k E { 1 ,..., K }  and H ' =  [Hy H q].

5.3 Selection  for P re-voting V ectors D epending  
on Sub-D etectors

In the PVC-MIMO detection, we note that different post-voting vector results in 
different H q which may leads to different performance of sub-detection. In order 
to exploit the performance of the PVC-MIMO detection, in this section, we focus 
on the selection of the post-voting vector. For the sub-detection, we consider a 
few low complexity detectors including linear and LR-based detectors. Note that 
since a number of the sub-detection operations are to be repeatedly performed, 
the complexity of sub-detection should be low.

5.3.1 Selection Criterion w ith Linear D etector

As a linear detector, we consider the MMSE detector in this subsection. Under 
the assumption that of the pre-voting vector is correct, from (5.8), the output of 
the MMSE detector is given by

s ^ W L ^ r * ,  (5.11)

where W mmse is the MMSE filter that is given by W mmse =  THqH q +  f l „ )  H Q.
Here, Es represents the symbol energy with S.

The detection performance depends on the channel matrix. For a given chan­
nel matrix, as discussed in [41, 66], we can have the ME selection criterion for the
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selection of Q. Since Q G { 1 ,..., M}, the optimal set Q can be found by using 
the ME criterion as

Qme =  arg max Amin (H qH q) , (5.12)

where Amin( A )  denotes the minimum eigenvalue of A .

5.3.2 Selection Criteria w ith LR-based Linear and SIC 
D etectors

To determine Q for the PVS, we consider the case where LR-based MIMO detec­
tors, which can provide a near ML performance with low complexity [19, 22], are 
employed for the sub-detection.

Without loss of generality, we assume that the elements of s are complex 
integers [19, 22]. For the LR-based linear detection, from (5.8), the received 
signal vector can be rewritten as

rfc =  Gc + n, (5.13)

where G = H qU -1 and c =  U sq, while U is an integer unimodular matrix and
G is a LR matrix of a nearly orthogonal basis. The LR-based linear detection is
carried out to detect c a s c  =  [Wrfc], where W  =  G* for the ZF detector and
W  =  G H (G G H +  f l w) _1 for the MMSE detection.

For the LR-based MMSE-SIC detector, H q is replaced by an extended channel
/—  " ^Hq I/v , while rk and n are replaced by rex =

. t
matrix defined as H ex =

n T _  , /iY as T
Ea°  Q[(r*)T 0]T and nex = , respectively. Using the LR with H ex, the 

lattice reduced matrix G ex can be found as H ex =  G exU ex, where U ex is an integer 
unimodular matrix. The LR-based MMSE-SIC detection is carried out using the 
QR factorization of G ex =  QR, where R  is upper triangular. Multiplying QH to 
y results in

QHrex =  Rc +  n, (5.14)

where c =  U exSQ and n =  QHnex. The SIC is performed with (5.8). With the 
upper triangular matrix R, the last element of c, i.e., the N th  layer, is detected 
first. Then, in the detection of the (N  — l)th  layer, the contribution of the last
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element of c is canceled and the signal of the (N  — l)th  layer is detected. This 
operation is terminated when all the layers are detected.

With the LR-based MMSE and MMSE-SIC detectors performed on H q, where 
Q G { 1 ,..., Af}, the optimal set Q can be found by using the ME and the MD 
selection criteria [41], which are shown as

Qme =  arg max Amin (G qG q) (5.15)

and
Qmd = arg min { min | r | } , (5.16)

Q I r  ’ J

respectively, where G q is the lattice reduced basis from H q and rJJ? denotes the 
(r,r)th  element of R  from H q in (5.8).

5.4 Perform ance A nalysis

In this section, we consider the diversity gain of the proposed PVC-MIMO detec­
tor through the error probability under the assumption that the elements of H  
are independent CSCG random variables with mean zero and unit variance, i.e., 
Rayleigh MIMO channels. We also discuss the complexity of the PVC-MIMO 
detection.

5.4.1 Diversity Analysis

In order to characterize the error probability of the PVC-MIMO detection, let s° 
represent the original transmitted vectors, and S =  (s1, . . . ,  s*-} represent the set 
of the candidate solutions provided by the PVC, where each sk is generated from 
(5.9), i.e., s* =  [sj>T SqT]T, k =  1 ,2 ,. . . ,  K. Let s represent the final decision of 
the detector selected from the candidate solutions in § obtained in (5.10). Then, 
we can define two error probabilities as follows:

Definition 1 We define the probability that the transmitted symbol vector does 
not belong to the set of candidate solutions as Pe,PV =  Pr (s° ^ S) =  1—Pr (s° G §), 
i.e., Pr (s° G §) =  Pr (3sfe/ G § : sfc/ =  s°), kf = 1 ,2 ,. . . ,  K, where the event of 
{3:r : f (x)} denotes there is at least one x such that a function of x, f (x),  is 
true.
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Definition 2 We define the probability that the final decision is not the trans­

m itted  one provided that the transm itted vector belongs to the set of candidate 

solutions as Pe,sel- In other words, Pe,sel is the probability that the final decision  

is not correct conditioned on s° G S, i.e ., Pe,SEL = Pr (s ^ s°|s° G §).

Using these two probabilities, the error probability of the PVC-MIMO detec­
tion can be given by

=  1  ~  ( 1  — - ^ e ,p v ) ( ^  — ^ c.s e l )  =  -^e,Pv  +  P e ,SEL — -^ e .p v ^ e .s E L - ( 5 - 1 ? )

We will first discuss the error probability when a LR-based detector is em­
ployed for the sub-detection of PVC-MIMO without PVS. Since a LR-based de­
tector can provide a full receive diversity [25, 67], the PVC-MIMO detection can 
provide a reasonably good performance even without PVS. Next, we will consider 
the error probability when a linear detector is employed. In this case, the PVS 
plays a crucial role in achieving a good performance.

5.4.1.1 Error Probability with LR-based Detectors

Let us consider the case where LR-based detectors are used for the sub-detection 
of PVC-MIMO without PVS.

A sufficient and necessary condition for s° G § is given by {3sk> G S : sk' =  s°}. 
In the proposed PVC approach, noting that sk = [syT SqT]T and s° =  [syT SqT]T, 
we have Pr (s° G S) =  Pr (3sk' G S : Sy =  Sy, Sq =  Sq) . That is, we have s° G S 
if and only if there exists a candidate solution sk' (sk> G § and sk> =  [syT SqT]T), 
where the selected s? by the PVC approach, i.e., Sy in sfc/, satisfies Sy =  Sy, 
and the detected post-voting vector (see (5.8)) after this PVC, i.e., Sq in sk>, also 
satisfies Sq =  sj. Note that with the exhaustive search approach of PVC, we 
have Pr (3sfc/ G S : Sy =  Sy) =  1. Hence, we have

Pe,pv =  1 -  Pr(s° e  S) =  1 -  Pr ( i s 15' € § : 4  =  sy. Sq =  sq)

=  1 -  Pr (sf,' =  Sq|sj =  s5>) =  EHq [Pe|Ho] , (5.18)

where Pe|HQ denotes the error probability of the sub-detection that detects sq for 
given H q. That is, Pe,pv in (5.18) is equivalent to the (average) error probability 
of the sub-detection performed on the square sub-matrix, H q.

76



5.4 Performance Analysis

Based on the principle of LR, we derive Pe)PV f°r LR-based linear detectors. 
LR-based detectors can achieve a full receive diversity with a relative low com­
plexity by generating a nearly orthogonal basis for a given channel matrix [2*2] 
to mitigate the effect of (multiple antenna) interference. In the LLL-LR [18] al­
gorithm, we transform H q into a new basis, e.g., denoted by G in (5.13). Here, 
we have £(G ) =  £ (H q) G = H qT, where T  is an integer unimodular 
matrix and £(A ) denotes a basis of lattice generated by A. Then, G is called 
LLL-reduced with parameter 8  if G is QR factorized as

G -  QR, (5.19)

where Q is unitary (QTQ = I#), R is upper triangular, and the elements of R  
satisfy the following inequalities:

I [Rkp |< ^ I [R]^ I With 1 < I < p  <  N  (5.20)

and

<5[R]?-1,,-1<[R]L+[R]?-1,P with P =  2 JV, (5.21)

where 8  is a given parameter ( 8  (E ( |,  1)) [25].
From [25], the error probability of the LR-based MMSE detection is almost 

equivalent to that of the LR-based ZF detection. From (5.13), with the LR-based 
ZF detection, let x =  G^rfc. Then, it follows that

x =  U sq + G^n. (5.22)

The estimation of sq can be expressed as

S q  = U -1 IXI = S q  +  U "1 [ G ^ l . (5.23)

Thus, the error probability of detecting sq for given H q is upper bounded by

e|HQ < 1 -  Pr ( [Gfn] =  0 H q . (5.24)

Let G* =  [gi,. . . ,  gat]t , where g^, i = 1 ,2 ,. . . ,  AT, denotes the «th row of GL 
Let hmjn represent the vector of the minimum non-zero norm of all the vectors in
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the lattice generated by H q . Following the derivation in [25], it can be deduced 
tha t1

Pe|HQ < Pr ( max |gj n| > - H q  < Pr H q , (5.25)

and

Pe,pv =  ^HQ[-Pe|HQ] < ^Hq Pr |n||2 >

=  En Pr ||h :lmin _< n
<3/2

2
CNN 1 ~2 

2S

N (2N — 1)! 
(N  -  1)!

where c N n  and (?6 are constants, and e g  := 2 *

n

J _  

N~o
N(JV+1)

H<

—N

(5.26)

< 1. The upper
bound on Pe,PV in (5.26) results from the iV-th moment of Chi-square random 
variable, ||n ||2.

In addition, for LR-based SIC detection, it can be deduced from [67] that 
the bound of its error probability results from the same moment of ||n ||2 as the 
LR-based linear detection. Thus, for LR-based detectors, the upper bound on 
Pe,PV in (5.26) results from the iV-th moment of ||n ||2.

Next, we consider Pe,SEL- Noting that if the ML detector can choose the 
correct transmitted symbol vector, s, among all the possible candidate vectors in 
their alphabet S, the detection in (5.10) can also choose s (provided that s G S 
and S C S) and it is obvious to show that2

P  <  P
1  e , s E L  —  1  e ,M L > (5.27)

where Pe,ML is the error probability of the ML detection employed with an iV x M  
MIMO system. It is well known that a full receive diversity gain is achieved by 
this ML detector, which is N  [1]. That is, the upper bound on Pe,SEL can a ŝ0 
obtained from the iV-th moment of Chi-square random variable, ||n ||2.

Tor the details of the derivation in (5.25) and (5.26), please see Section IV-C in [25]. 
inequality (5.27) is correct if s° £ §. Note that the definition of Pe,SElj is the selection error 

probability when there is one correct candidate in the set S. We can use (5.27) to calculate 
Pe,sEL> while the error probability if s° is not in § is already calculated by Pe,PV-
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From (5.17), when the LR-based detectors are employed for the sub-detection, 
the error probability of the PVC-MIMO detection is given by

P  — P  -I- P  — P  P  < P  A- P  — P  P  <  P  4- P1 e -r e ,p v  i J e ,sE L  1 e , p v x c , s e l  —  1 e ,p v  ' 1 c ,m l  1 e .p v -*  e ,sE L  —  e ,p y  ' x e ,M L ‘

(5.28)
Since Pe pv, Pe SEL, and Pe ML in (5.28) are tail probabilities of a Chi-square random

(  \ ~ Nvariable with 2N  degrees of freedom, ||n||2, we can see that Pe ~  c ( *o) as 
N 0 —* 0, where c is a constant that is independent of N0. Note that N  is also 
the maximum receive diversity order for an underdetermined N  x M  MIMO 
system. Thus, a full receive diversity can be achieved by the proposed PVC- 
MIMO detection with LR-based sub-detectors.

5.4.1.2 Error Probability with Linear Detectors

If a linear detector (e.g., the MMSE detector introduced in Subsection 5.3.1) is 
used for the sub-detection, the ME criterion can be employed for PVS. Since a 
linear detector cannot exploit a full receive diversity, the diversity order of the 
PVC-MIMO detection is less than N. However, if the PVS is employed, the 
PVC-MIMO detection can achieve a higher diversity order.

It can be shown that for a given set Q, the error probability of the linear 
sub-detection that detects Sq for a given square sub-matrix H q is expressed as 
[41]

„  „  1 f / Amin(H gH Q)||A |P  ,ft|Ho < 2 c  I y  --------------------------- | .  ( 5 . 2 9 )

where A =  sq(i) — sq(2) (suppose that sq(i) is transmitted, while sq(2) is er­
roneously detected), and erfc(x) is the complementary error function of rr, i.e.,
erfc(x) =  J^°° e~z2 dz. Thus, under the ME selection criterion, the PEP for
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detecting s q  becomes:

P  (sQ(i) -► Sq(2)) =  -Pe|HQME < 2 erfc

----- -erfc 
2

= -erfc 
2

fmaxQAmin(HHHQ)HAlP 
4 N 0

^ | | A | | 2maxQA Q 
4 Nn

f̂ l |A |l2V 
4 An

(5.30)

where A q = Amin(HQHQ)/(j2, V =  maxaXo, and <r2 is the variance of the 
elements in channel matrix H q.

Similar to (5.18), we have

Pe,pv =  1 -  Pr ( is *  e  S : s£ =  4 ,  sg =  s j )

=  1 -  Pr (s£ = S°Q|s§,' =  Bj) =  £ Hq [ftlHa,

Then according to (5.30), we can obtain that 

Pe, PV =  ^Hq Pe|HQME

(5.31)

(5.32)

For the random matrix Hq, the pdf of X q is given by [6C

f x(x) = N e -Nx. (5.33)

If all the possible sub-matrices Hq (after PVS), which are the candidate channel 
matrices for the sub-detection, are assumed to be independent1, the pdf of V  is

f v (v) =  LN (  1 -  e- Nv)L- le~Nv

= L N lvl ~1 + o(vL~l+e), (v -> 0+), (5.34)

1This assumption does not hold in practical situation (the last paragraph of this subsection 
addresses the practical situation).
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where e > 0 and L =  C\5 denotes the number of possible candidates for Q (Cm 
is the number of combinations for selecting N  items in M  items).

The relation between the PEP in (5.30) and the pdf of variable V  can be 
deduced by Wang and Giannakis [68]. Thus, according to [68], we can show that

where 7a = cr2|| A ||2/iVo and C\ > 0 is constant.
Note that for M  > N  +  1, Cm = (M-n)\n\ — (m-n)\n(n-i) - 2

— (M-N)\ (M—i)(M—2)--(M—N+i)  =  (M-i)! =  ^  >  ^ a t  Ŝ’ ^  Edition,
(5.27) and (5.28) also hold for linear detectors. Hence, according to (5.35), a 
full diversity order N  can be achieved by the proposed detectors when the ME 
criterion for index set Q selection is employed.

In practice, different Hq’s are not independent (i.e., X q are correlated for dif­
ferent Q), and the minimum eigenvalues of HqHq’s are correlated in the proposed 
detection after PVS. Thus, (5.34) may not be valid (but just an approximation) 
and a full diversity order N  cannot be achieved. However, for a small sized matrix 
Hq, a near full diversity order may be achieved due to the low correlation of the 
minimum eigenvalues of different HqHq’s. The numerical results shown in the 
following section also confirm this observation. That is, with the optimal PVS, 
the linear detector based PVC-MIMO detection can achieve a higher diversity; for 
a small matrix Hq (e.g., a 2 x 2 matrix), a near-full receive diversity is achieved 
by the proposed detection.

5.4.2 Complexity Analysis

Denote by Csub the complexity of the sub-detection with a square channel matrix 
of N  x N. Excluding the complexity of the PVS, the complexity of the PVC-
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MIMO detection is given by

Cpvc = K e Sub. (5.36)

If an exhaustive search is employed to determine Q in (5.12), (5.15), or (5.16), 
because there are — i) possible index sets, the complexity for building
Q is — i)Cseb where Csei denotes the computational complexity for
each possible index set. For example, if the MD selection criterion is used when 
M  = 4 and N  = 2, we need 4 x 3 =  12 LRs of 2 x 2 complex-valued channel 
matrices and Csei becomes the complexity for each LR. We will list the complexity 
of Csei with different PVS’s for their corresponding sub-detectors in Section 5.5, 
empirically using the average number of flops.

For a block fading channel, assume that the channel is not varying for a 
duration of W  symbol vectors transmitted. Note that PVS is only performed 
once for a channel matrix. Then, including the complexity of PVS, the overall 
computational complexity of the PVC-MIMO detection per each symbol vector 
is given by

e PVC = n-i=° W —  +  ^ e Sub. (5.37)

For slow fading channels, where the coherence time is long, W  will be large. In 
this case, the extra computational complexity required for PVS per each symbol 
detection would be negligible, where we have Cpvc ~  ^C sub- In Section 5.5, 
we will compare the complexity of our proposed PVC-MIMO detectors to other 
MIMO detectors using flops.

5.5 Sim ulation R esults and D iscussions

5.5.1 Simulation Results

In this subsection, we present simulation results to compare our PVC-MIMO de­
tectors with other detectors (including the MMSE (linear) detector, ML detector, 
the Chase detector [12, 13, 14, 15, 16, IT]1, and the TSD-CR [36] which provides

1Two scenarios are considered for the Chase detection: i) MMSE +  Chase (MMSE sub­
detector used in Chase detection); i i) LR-based MMSE-SIC +  Chase (LR-based MMSE-SIC 
sub-detector used in Chase detection).
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the ML performance) for underdetermined MIMO systems. Six combinations of 
the PVC-MIMO detectors are considered as follows: a) MMSE + PVC-MIMO 
(MMSE sub-detector used in PVC-MIMO); 6) LR-based MMSE + PVC-MIMO 
(LR-based MMSE sub-detector used in PVC-MIMO); c) LR-based MMSE-SIC + 
PVC-MIMO (LR-based MMSE-SIC sub-detector used in PVC-MIMO); d) MMSE 
+  PVC-MIMO + PVS (MMSE sub-detector used in PVC-MIMO with optimal 
PVS (ME criterion)); e) LR-based MMSE +  PVC-MIMO + PVS (LR-based 
MMSE sub-detector used in PVC-MIMO with optimal PVS (ME criterion)); / )  
LR-based MMSE-SIC + PVC-MIMO +  PVS (LR-based MMSE-SIC sub-detector 
used in PVC-MIMO with optimal PVS (MD criterion)). As we are interested in 
the case where the receiver’s computational complexity is limited, we only con­
sider the cases of (M, N) £ {(4,2), (4,3), (3,2)}1. Note that elements of MIMO 
channel matrices in simulations are generated as independent CSCG random vari­
ables with mean zero and unit variance. The SNR is defined as the energy per 
bit to the noise power spectral density ratio, E^/Nq. We assume 4-QAM and 
16-QAM are used for signaling with Gray mapping.

With 4-QAM modulation, in Figs. 5.1 and 5.2, for channel matrices of size 
2 x 4  and 3 x 4, respectively, we show simulation results of BER for various 
detectors. In Figs. 5.3 and 5.4, with 16-QAM modulation, for channel matrices 
of size 2x3  and 3 x4, respectively, simulation results of BER for various detectors 
are presented.

From the simulation results, it is shown that a full receive diversity can be 
achieved by employing the PVC-MIMO detection approach with LR-based sub­
detectors. In Figs. 5.1 and 5.3, we can see that “LR-based MMSE/MMSE- 
SIC + PVC-MIMO” has a slight performance degradation from the ML detector 
and the SNR loss is a half dB at a broad range of BER. In all the simulation 
results, it is also shown that “LR-based MMSE/MMSE-SIC +  PVC-MIMO + 
PVS” has negligible performance degradation compared to the ML performance. 
Furthermore, we note that “MMSE +  Chase” and “LR-based MMSE-SIC 4- 
Chase” cannot provide a full diversity and good performance, especially when 
SNR is high.

1The case of a large M  — N  is discussed in Subsection 5.5.2.
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Figure 5.1: BER versus Eb/No of different detectors represented in Subsection 
5.5.1 for 4-QAM, M = 4, N  = 2.

In Figs. 5.2 and 5.4, we can see “MMSE + PVC-MIMO 4- PVS” can provide 
a reasonably good performance. For a 2 x 2 sub-matrix, we can observe that 
“MMSE + PVC-MIMO + PVS” can provide a near ML performance from Figs.
5.1 and 5.3, where the sizes of channel matrices are 2 x 4  and 2 x 3 , respectively. 
We note that the performance of “MMSE + PVC-MIMO + PVS” with N  = 2 is 
better than that with N  = 3. Since a low correlation of the minimum eigenvalue 
of H gH Q is obtained by employing a reduced-sized channel matrix Hq, a less 
error propagation is expected. This confirms that the PVC-MIMO detection 
with MMSE sub-detector could be effective when N  is sufficiently small.

In Table 5.1, we list the complexity of Csei for different detectors (i.e., “MMSE 
+  PVC-MIMO +  PVS”, “LR-based MMSE +  PVC-MIMO + PVS”, and “LR- 
based MMSE-SIC +  PVC-MIMO -1- PVS”) by using flops1, for the case of N  = 2

1 We simulate these systems using MATLAB-V5.3 on a PC. The MATLAB command “flops” 
is used to count the number of flops.
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Figure 5.2: BER versus Eb/No of different detectors represented in Subsection 
5.5.1 for 4-QAM, M  = 4, N  = 3.

and N  = 3, respectively. Since the computation for both LR and eigenvalue is 
considered in “LR-based MMSE +  PVC-MIMO + PVS”, the highest complexity 
is required.

Since the TSD-CR approach [36] can be applied to underdetermined MIMO 
systems with a reasonable low complexity and optimal performance, it is worthy 
to compare its complexity with our proposed schemes. In Table 5.2, we compare 
the complexity of our proposed PVC-MIMO detectors to other MIMO detectors 
including the ML detector (using an exhaustive search), MMSE detector, TSD- 
CR, and Chase detectors by using flops with W  = 1000, where slow fading 
channels are considered1. Note that for PVC-MIMO and TSD-CR, the PVS and 
Householder QR decomposition of channel matrix with minimum column pivoting 
are carried out once for 1000 symbol vectors transmitted, respectively, to make 
this comparison fair. The flops listed in Table 5.2 are obtained with Eb/No = 20

1The complexity of PVC-MIMO with fast fading channels is discussed in Subsection 5.5.2
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Figure 5.3: BER versus Eb/No of different detectors represented in Subsection 
5.5.1 for 4-QAM, M = 3, N  = 2.

dB.
Although the MMSE and Chase detectors have a low complexity, they do not 

suit for underdetermined MIMO systems. It is shown that the computational 
complexity of the proposed PVC-MIMO detectors with optimal PVS for the case 
of {M, N}  = {3,2}, {M, N}  = {4,2}, and {M,iV} =  {4,3} with 4-QAM is 
significantly lower than that of ML and TSD-CR. It is also shown that with 16- 
QAM, the proposed detectors can also provide a relatively lower complexity for 
the case of {M, N}  =  {3,2} and {M, N}  =  {4,3}. In addition, for different PVC- 
MIMO detectors in the same MIMO system, “MMSE 4- PVC-MIMO + PVS” 
has the lowest computational complexity among the PVC-MIMO detectors, since 
no LR is used in PVS and sub-detection.

Overall, “LR-based MMSE-SIC +  PVC-MIMO + PVS” is shown to be very 
attractive, because its performance is close to that of the ML detection and its 
complexity is low (the complexity is almost the same as that of “MMSE + PVC-
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Table 5.1: Complexity comparison of Csei for different detectors listed in Sub­
section 5.5.1.

Average flops of Csei

D etecto r N  = 2 N  = 3
MMSE +  PVC-MIMO + PVS 258 1608

LR-based MMSE + PVC-MIMO + PVS 678 3070
LR-based MMSE-SIC + PVC-MIMO + PVS 473 1587

Table 5.2: Complexity comparison of different detectors listed in Subsection
5.5.1.

A v e ra g e  flo p s  fo r e a c h  sy m b o l v e c to r  d e te c t io n

4-QAM 16-QAM
S y s te m { M , N }  =  {3,2} {M , IV} =  {4,2} [ M,  N }  =  {4,3} { Af, N }  =  {3,2} {M , N }  =  {4,3}
MMSE 78 109 112 302 411

ML 4484 22021 32773 286724 8388613
TSD -C R 753 1296 1226 3467 5546

M M SE +  Chase 168 623 239 1671 2479
LR-based M M SE-SIC +  Chase 170 626 255 1673 2490
MMSE +  PVC-M IM O +  PVS 193 770 325 3056 4645

LR-based M MSE +  PVC-M IM O +  PVS 201 783 377 3074 4697
LR-based M M SE-SIC +  PVC-M IM O  +  PVS 197 778 356 3060 4666
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Figure 5.4: BER versus Eb/No of different detectors represented in Subsection 
5.5.1 for 4-QAM, M = 4, N  = 3.

MIMO + PVS” , which is the lowest). From this, we can see that the combination 
of LR detector and optimal PVS is the key ingredient to build low complexity, but 
near ML performance, detection schemes for underdetermined MIMO systems.

5.5.2 Discussion

In Subsection 5.5.1, we have discussed the computational complexity of PVC- 
MIMO detection with slow fading MIMO channels where M  — N  is small (e.g., 1 
or 2). In this subsection, we discuss the complexity of the PVC-MIMO detection 
for fast fading channels and a large M  — N. Furthermore, the impact of channel 
estimation errors is considered.



5.5 Simulation Results and Discussions

5.5.2.1 Fast Fading C hannels

Previously, we have analyzed the complexity of the PVC-MIMO detection with 
PVS for slow fading MIMO channels, where W  is large (e.g., W  = 1000). Note 
that fast fading channels lead to a small W. With the overall complexity per 
each symbol vector of the PVC-MIMO detection in (5.37), Cpvc would be high 
due to the weight of Csei is high when W  is small (i.e., the complexity of Csei is 
given in Table 5.1). Therefore, the PVC-MIMO detection with PVS could have 
a high complexity with a small W.

For the case of W  = 10, where channel varies every 10 symbol vectors 
transmitted (i.e., reasonably fast fading channels), with { N , M}  = {2,3} and 
{iV, M} = {2,4}, the average computational complexity per each symbol vector 
for PVS of “LR-based MMSE-SIC + PVC-MIMO + PVS” is 155 and 310, re­
spectively, in terms of flops. In this case, compared to existing approaches (in 
Table 5.2), the complexity of the PVC-MIMO with PVS is still low.

5.5.2.2 Large M  — N

Since there are underdetermined MIMO systems with a large M  — IV, it is wor­
thy to discuss the complexity of PVC-MIMO detection employed in such MIMO 
systems. Consider a low order modulation (4-QAM), by using the same method 
that obtains the flops in Table 5.2, we compare the computational complexity of 
“LR-based MMSE-SIC + PVC-MIMO +  PVS” and TSD-CR [36] for the cases 
of {M, N}  = {5,2} and {6,2}, respectively, in terms of flops. For “LR-based 
MMSE-SIC + PVC-MIMO +  PVS”, the flops of {M,iV} =  {5,2} and {6,2} are 
3106 and 12263, respectively. For TSD-CR, the flops of {M, N}  = {5,2} and 
{6,2} are 5010 and 19564, respectively. It shows that the PVC-MIMO detec­
tion has a lower complexity than TSD-CR with a large M  — N  and a low order 
modulation.

We note that the PVC-MIMO detection is not suitable for the case of a large 
M — N  and a high order modulation (16-QAM or 64-QAM) due to the exhaustive 
cancellation of pre-voting vectors. However, it is noteworthy that the GSD-based 
detection (e.g., TSD-CR) has also high complexity [29, 30, 31, 32, 33, 34, 35, 36].
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5.5.2.3 Im perfect CSI E stim ation

In practice, the channel matrix has to be estimated and there could be estimation 
errors. Consider an N  x M  channel matrix H  represented in (5.1), whose elements 
are generated as independent CSCG random variables with mean zero and unit 
variance, with an imperfect CSI estimation, the estimated channel matrix is given 
by H  = H + E . Here, an iV x M  matrix E represents errors in the CSI estimation, 
whose elements are generated as independent zero-mean CSCG random variables 
with variance v%.

With {TV, M}  = {2,4} and 4-QAM modulation, in Fig. 5.5, we present simu­
lation results of BER for TSD-CR and “LR-based MMSE-SIC +  PVC-MIMO + 
PVS” with different CSI errors, where ve = 0, 0.02, and 0.05. Fig. 5.5 shows that 
the performance of TSD-CR and “LR-based MMSE-SIC + PVC-MIMO + PVS” 
degrades when ve increases in general. Nevertheless, it shows that our proposed 
PVC-MIMO detection with PVS (i.e., “LR-based MMSE-SIC + PVC-MIMO + 
PVS”) has a negligible performance gap from the ML performance (i.e., TSD-CR) 
with CSI estimation errors.

5.6 C onclusion

For underdetermined MIMO systems where a lower order modulation scheme can 
be employed, we considered low complexity MIMO detection approaches based 
on PVC in this chapter. It was shown that if a LR-based detector is used for the 
sub-detection, the PVC-MIMO detection can achieve a full receive diversity order. 
We confirmed this through simulations. It was also shown that the complexity of 
the proposed PVC-MIMO detectors is low and comparable to that of the MMSE 
detector when 4-QAM is used. Therefore, the proposed detection approach can be 
employed for underdetermined MIMO systems where the receiver’s computational 
complexity is limited such as mobile terminals.

An extension of MIMO systems is multiuser MIMO systems, where the user 
selection plays a key role to exploit the diversity. In the next chapter, we consider 
the user selection for multiuser MIMO systems with an actual employed MIMO 
detector.
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4-QAM, M=4 and N=2.
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— —  LR-based MMSE-SIC + PVC-MIMO + PVS (v# = 0.02) 

_  b  -  TSD-CR (vt  = 0.02)

— ^ —  LR-based MMSE-SIC + PVC-MIMO + PVS (v# = 0)

- ©  _  TSD-CR (v# = 0)

Eb/No

Figure 5.5: BER versus Eb/N 0  of “TSD-CR” and “LR-based MMSE-SIC + PVC- 
MIMO + PVS” represented in Subsection 5.5.1 for ve = {0,0.02,0.05} with 4- 
QAM, M  = 4, N = 2.
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6

Greedy User Selection using a 
Lattice Reduction Updating 
M ethod for Multiuser MIMO 
Systems

6.1 Introduction

In wireless communications, the spectral efficiency can be improved by exploiting 
the space domain when antenna arrays are used. In particular, space division 
multiple access (SDMA) [70, 71, 72] can be adopted with various beamforming 
techniques. If both transmitter and receiver are equipped with multiple antennas, 
the resulting channel becomes MIMO channels, which can provide a rich spatial 
diversity gain. Instead of performing an exhaustive search, tree search techniques 
(e.g., SD-based detection [10, 73, 74]) which can provide the optimal performance 
in some cases are developed with a reduced complexity. Furthermore, using the 
properties of lattice, the LR-based low complexity detectors [19, 20, 21, 22, 23, 
24, 25, 26, 75] are proposed which can provide a full receive diversity gain.

Due to users’ different locations and channel conditions, it is possible to ex­
ploit another diversity gain in a multiuser system, where the throughput can be 
maximized by choosing the user of the strongest channel gain at a time. The re­
sulting diversity gain is called the multiuser diversity gain [38]. Multiuser systems
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can be extended to the case of MIMO systems [37], where the multiuser MIMO 
user selection plays a key role in increasing the throughput of downlink channels 
[40]. It is noteworthy that by viewing multiuser MIMO as virtual antennas in a 
single user MIMO system, various antenna selection techniques can be applied 
to user selection [53, 54, 76]. A mutual information based criterion is proposed 
in [53] to select the antenna subset that maximizes the mutual information. In 
[54], a geometrical-based criterion is developed with a LR-based linear detector 
to minimum the error probability. In general, user selection problems are com­
binatorial problems and the complexity required to solve the problems could be 
prohibitively high for a large multiuser MIMO system. Thus, low complexity 
suboptimal selection strategies are considered in [39, 77, 78, 79, 80, 81, 82, 83, 84] 
at the expense of degraded performance. In [39, 77, 78, 79], a single antenna is 
selected at a time to maximize the throughput based on greedy selection schemes.

Although the achievable rate or related SNR can be used for the user selection 
criterion, it would be more practical to use a certain performance measure that 
is directly related to the performance of the actual detector or decoder employed. 
Therefore, it is desirable to derive a user selection criterion that can maximize 
the performance of the actual MIMO detector employed in a multiuser MIMO 
system. In [41], for the user selection in uplink channels of a cellular system, 
where a single user is selected to transmit signals to a BS at a time, the error 
probability is used for the user selection criteria to choose the user who has the 
smallest error probability for given MIMO detectors. Various user selection crite­
ria are derived with the ML detector as well as other low complexity suboptimal 
detectors. It is shown that a near optimal performance with a full diversity gain 
(i.e., multiuser diversity and multiple antenna diversity) can be achieved using 
those user selection criteria proposed in [41] with LR-based detectors.

In this chapter, we extend the user selection in [41] to support multiple users 
at a time. This extension of the user selection (i.e., multiple user selection) is not 
straightforward as the multiple user selection problem becomes a combinatorial 
problem. If an exhaustive search is used for multiple user selection when a LR- 
based MIMO detector is employed, LR needs to be performed for all the possible 
channel matrices composited by a group of sub-channel matrices of the selected 
users, which results in a highly computational complexity as the number of user
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combinations is large. Therefore, we propose a greedy user selection in uplink 
channels for the complexity reduction when a LR-based detector is used. More­
over, to further reduce the computational complexity, an iterative LR updating 
algorithm is investigated.

From a theoretical analysis in this chapter, we show that with the combina­
torial user selection, the LR-based detection can achieve the same diversity as 
the ML detector. Through simulations, we compare the performance obtained 
by our proposed selection criteria (i.e., combinatorial and greedy ones) to other 
existing approaches. With the LR-based detection employed, simulation results 
confirm that our combinatorial user selection can provide the best performance, 
while the performance of the greedy user selection scheme could approach that 
of the combinatorial one as the correlation between possible composite channel 
matrices decreases. It also shows that our proposed greedy user selection provides 
a better performance and a significantly reduced complexity compared to other 
approaches.

This chapter is organized as follows. In Section 6.2, a system model for mul­
tiuser MIMO is presented. Various user selection criteria are discussed in Section
6.3 for given multiuser MIMO system. The proposed greedy user selection ap­
proach is derived in Section 6.4 with an iterative LR updating algorithm. We 
present performance analysis and simulation results in Section 6.5. Finally, we 
conclude this chapter with some remarks in Section 6.6.

Throughout the chapter, vectors and matrices are represented by bold letters. 
For a matrix A, AT, AH, and A* denote its transpose, Hermitian transpose, 
and conjugate, respectively. A (a : b,c : d) denotes the submatrix of A with the 
elements obtained from rows a, . . . , b  and columns c ,. . . ,  d. Furthermore, A(:, n) 
and A (n ,:) denote the n-th column and n-th row vectors, respectively, 3ft(z) and 
9f(z) denote the real and complex parts of a complex number z, respectively. In 
addition, for a vector or matrix, || • || denotes the 2-norm. \fi\ represents the 
closest integer which is smaller than (3, while \(3\ denotes the nearest integer 
to j3. Denote by \  the set minus, by In an n x n identity matrix, and by X  
= {%), k(2),. • • } the collection set of k(i), 2) ,__
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6.2 System  M odel

Consider the multiuser MIMO system with K  users in uplink channels, where 
each user is equipped with P  transmit antennas and the BS is equipped with N  
receive antennas. Each user has an N  x P  channel matrix and a P  x L signal 
matrix, which are denoted by H& and S ,̂ respectively, where k E { 1 ,2 ,..., /C}. 
Here, L is number of symbols transmitted by a user. It is assumed that all the 
users share a common uplink channel and M  users can access the channel at a 
time, where M  < L^J1- The channel is assumed to be a quasi-static block flat- 
fading channel with its channel matrix is not varying over a time slot duration 
of L symbols. Here, a set of the M  users who can access the channel could be 
updated2 for every time slot interval. Note that this selection problem can also 
be regarded as that with virtual antennas in a single user MIMO system, where 
M P  antennas are selected out of K P  available antennas. Let fc(m) be the mth 
selected user’s index. For convenience, define the set of the selected users’ indices 
as % = {%), fe(2), • • •, &(m)}- Then, over a slot duration, the received signal at 
the BS is given by

Ygc =  H^Sx: +  N, (6.1)

where Hjc, Ŝ c, and N are the N  x M P  composite channel matrix, the M P  x L 
transmitted signal matrix, and the N  x L background noise matrix, respectively. 
We assume that each column vector of N is an independent zero-mean CSCG 
random vector with 2?[njnP] =  Nol, where n* denotes the I-th column vector of 

N. Note that U x  = H fc(1), . . . ,  H fe(M) and S* -  Sj(i), . . . ,  Sj(M) .
Throughout this chapter, we assume that the CSI is perfectly known at the 

receiver. Furthermore, the following assumptions are used to derive user selection 
methods.

1Note that if an ML or linear detector is employed to detect signal, there could be more
transmit antennas than receive antennas in multiuser MIMO systems, which results in M  >
L£j. However, consider that the LR-based detection is used as the detection method, in this 

N  
■ P .chapter, we have M  <  [^J.

2In this chapter, we only consider channel conditions to select users. However, this could 
be extended to include transmit optimization [85, 86], traffic conditions, and users’ priorities 
[87, 88], which are beyond the scope of the chapter.
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Al) The elements of have a common signal alphabet, denoted by §, and 
S C Z + jZ, where Z denotes the set of integer numbers and j  = y/—l. 
Furthermore, let 2>A represent the A-dimensional Cartesian product of S.

A2) The transmitted signals are uncoded. This implies that the user selection 
criteria in this chapter are based on uncoded BER. For uncoded signals, 
we can assume L =  1 (Note that this assumption is used to simplify the 
derivation of user selection criteria, while the length of slot can be any 
number). Thus, Y^c, Sgc, and N are vectors and will be denoted by y^, s^, 
and n, respectively.

6.3 U ser Selection  C riteria

To maximize the performance, if M  = 1, the user who can have the minimum 
BER is chosen for a given MIMO detector. In [41], a few user selection criteria 
are derived depending on the types of actually employed MIMO detectors. It 
has been shown that the user selection criteria with the LR-based MMSE-SIC 
detector [2, 22] can provide a good performance with a reasonably low complexity, 
compared to that with the ML detector. Note that only one user is selected (i.e., 
M  = 1) in [41]. To extend the user selection criteria to the case of M  > 1, in 
this and next sections, we consider the combinatorial and greedy user selection 
criteria.

6.3.1 ML and M M SE Selection Criteria

For convenience, we omit the user index set X. The estimated symbol vectors 
from the ML and MMSE detectors are given by

smi =  arg min || y -  H s ||2 (6.2)
sesMP

and
Smmse — W mmspy , (6-3)

respectively, where W mmSp is the MMSE filter that is given by
W mmse =  (H H h + ^ Ia tJ  H. Here, Es represents the symbol energy. The
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detection performance depends on the channel matrix. For a given channel ma­
trix, as discussed in [41], we can apply the MDist and the ME criteria for user 
selection.

For a given M  > 1, the set of the users who can access the channel can be 
found using the MDist or ME user selection criterion as follows:

respectively, where D(H;jc) denotes the length of the shortest non-zero vector of 
the lattice generated by and Amin(A) denotes the minimum eigenvalue of A. 
If the ML detector is employed, the MDist user selection criterion can be used to 
choose the M  users who can have the lowest BER, while the ME criterion is to 
choose the M  users who have the highest worst SNR (i.e., max-min SNR). Note 
that if P  — M  = 1, both the criteria choose the user of the highest SNR. The two 
criteria shown in (6.4) and (6.5) can be used with any MIMO detector, although 
the MDist criterion has been derived to maximize the performance with the ML 
detector and the ME criterion suits for the MMSE detector.

6.3.2 LR-based MM SE and MM SE-SIC Selection Criteria

In this subsection, the user selection criteria with LR-based detectors in [41] are 
extended to the case of M  > 1. Although the LR can be performed with a 
complex-valued H  as in [23, 24, 25] or a real-valued one converted from H  as 
in [19] and [22], there is no performance difference as shown in [23]. In general, 
since the LR with a complex-valued H  is suitable for performance analysis and 
deriving numerical algorithms, in this chapter, as in [23], we consider the LR with 
a complex-valued H.

For the LR-based MMSE detection, from (6.1), with omitting the user index 
set X , the received signal vector can be rewritten as

'K-MDist =  argmaxD (H^c)Jv (6.4)

or
3CMe =  a fg m ax A^n ( H ^ H x ) ,JC (6.5)

y =  Gc +  n, (6.6)

97



6.4 LR-based Greedy User Selection using an Updating M ethod

where G =  H U -1 and c =  Us. Here, U  is an integer unimodular matrix and G 
is a lattice basis reduced (LBR) matrix which has a nearly orthogonal basis. The 
LR-based MMSE detection is carried out to detect c as c =  fW ^mseyJ, where 

W mmM=  (G G H +  f l N) _1G.
For the LR-based MMSE-SIC detection, H  is replaced by an extended chan-

/—  1 ^H T , while y and n are replaced bynel matrix defined as H ex =
|T n A - J f - sT£jl

T
, respectively. Through LR withyex =  [yT 0T] and nex -  

H ex, the LBR matrix G ex can be found as H ex =  G exU ex, where U ex is an inte­
ger unimodular matrix. The LR-based MMSE-SIC detection is carried out with 
the QR factorization of Gex =  QexR ex, where Qex is unitary and R ex is upper 
triangular. Multiplying to yex results in

Q?xyex =  ReXc +  n, (6.7)

where c =  U exs and n =  Q^xnex. With the upper triangular matrix ReX, the 
element of the last row, i.e., the M P-th layer, is detected first. Then, in the 
second last row, its contribution is canceled and the signal of the ( MP  — l)th  
layer is detected. This operation is terminated until all the layers are processed. 
The MD criterion derived in [41] with M  = 1 for the LR-based MMSE-SIC 
detection can be extended to the case with M  > 1 as follows:

Kmd =  argmax | m9in I rq# I j  (6-8)

and the ME criterion for the LR-based MMSE detection can also be modified as

K me =  arg max Amin (G ljG x ), (6.9)JC
(JC\

where r^q1 denotes the (q, q)-th element of R ex in (6.7). The user selection based 
on (6.4), (6.5), (6.8), and (6.9) is called the combinatorial user selection as the 
users can be selected by combinatorial (or exhaustive) search.

6.4 LR -based G reedy U ser Selection  using an 
U pd ating  M ethod

The computational complexity of the user selection under the criteria derived in 
Section 6.3 grows rapidly with M  or K  as they are all combinatorial optimization
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problems. Thus, it is desirable to derive low complexity approaches for the user 
selection. In this section, we propose low complexity greedy approaches for the 
user selection. Note that we focus on the greedy user selection with a LR-based 
MIMO detector only as its performance is comparable to that of the ML detector 
and, more importantly, we can derive a computationally efficient LR updating 
method in conjunction with greedy user selection.

6.4.1 LR-based Greedy User Selection

The user selection approaches in Section 6.3 have the complexity that becomes 
prohibitively high as M  or K  increases, because there are U = — i)
possible user index sets1. For each user index set, a LR of an N  x M P  complex 
channel matrix is to be performed. For example, when i f  =  10, M =  iV = 4 
and P  = 1, 1 0 x 9 x 8 x 7  =  5040 LRs of 4 x 4 complex-valued channel matrices 
should be carried out.

To reduce the computational complexity in the user selection, we consider a 
greedy approach when a LR-based MIMO detector is employed. The resulting 
approach is called the LR-based greedy (LRG) user selection, which is of course 
suboptimal. The LRG user selection algorithm is summarized as follows:

1) Let m  =  1 and X  =  { 1 ,... ,  K}.  In order to select the first user, we can use 
any criterion. For example, if the ME criterion is used, we have

fc(i) =  argmaxAmin (G ^G a,) , (6.10)
keX

where G*, represents the LBR matrix of Hfc or HeX)A: =  H j n  (for 
the LR-based MMSE detector). Once the first user is chosen, we update X  
as X  4= OC \  {fyi)}. In addition, we let H(i) =  Hfc(1).

1For the LR-based combinatorial user selection schemes, we note that different order of user 
index leads to different decision, which results in different performance. In order to maximize 
the performance with the combinatorial user selection, the order of user index is considered in 
this chapter.
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2) Let m <= m + 1 and H(m))fc =  [H(m_i) H k] , k € X. The rath user can be 
chosen if the ME criterion is used as

(̂m) =  arg max Amjn (G(mjjfcG(m),fc), (6.11)
k€.0C

where G(m))fe is the LBR matrix of H(m)>fc or H ex,(m),fc = 
Once the rath user is found, we update as follows:

Hf»)> V t 1"

add fe(m) to the index set of the selected users, X,
X ^ X \ k ( m), (6 .12)

H(m) — H(m)tfc(m).

3) If ra =  M, stop. Otherwise, go to 2).

Note that in this algorithm, the N  x raP complex-valued matrix H(m) denotes 
the channel matrix for the first ra selected users, while the N  x P  complex-valued 
matrix Hfc(m) represents the channel matrix for the selected user in the rath selec­
tion with the index fym), where fc(m) e X  and X  = { 1 ,... ,  P '}\{fyi)>. . . ,  fc(m_i)}.

In the LRG user selection, the number of required LR operations is (K ~ 
i +  1) and the matrix size for LR in selecting the rath user is N  x mP. Us­
ing the upper bound on the average complexity of LR studied in [23, 51, 52], 
we can show that the complexity of LRG is upper-bounded as Y^iL\{K ~  * +
1)0 ((iP)3 N\og(iP)) (Note that when P = 1, no LR is required for the first user 
selection, where the complexity of LRG reduces to ^i+l)0 ((iP)3 N\og(iP ))).
On the other hand, the number of required LR operations in the combinatorial 
user selection according to (6.8) or (6.9) is YliLi(K — * +  1) and the matrix size 
for LR is always N  x M P, which leads to its complexity that is upper-bounded as 
r C i ( *  — i +  1)0 ((M P)3N log(MP )). This shows a significant computational 
complexity reduction. However, since the LRG user selection does not jointly 
select M  users, there will be performance loss.

Note that the ME criterion is used in above for illustration purposes. The 
MD criterion can also be used for the LRG user selection with the LR-based 
MMSE-SIC detector.
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6.4.2 A Com plexity Efficient M ethod for LR Updating

We note that in the LRG user selection, the LR operation is repeatedly performed 
for each updated channel matrix. For instance, at the mth user selection, a 
LR is carried out with the complex-valued channel matrix H(m) =  [H(m_i) H^] 
as shown in (6.11), where H* contains P  newly added column vectors and the 
other (to — 1 )P  column vectors in H(m) are already chosen and LBR. Instead of 
performing a new LR on all of the m P  column vectors in H(m), by utilizing the 
established (to — 1)P LBR vectors, we can derive a computationally efficient LR 
updating method with new P  column vectors, which is referred to as the Updated 
Basis LR (UBLR) in this chapter. The resulting user selection scheme is referred 
to as the UBLR-based greedy (UBLRG)1 user selection.

The UBLR algorithm is based on the CLLL algorithm [23, 24, 25]. Suppose 
that LR is performed by the CLLL algorithm in order to transform a given basis 
(a complex-valued channel matrix N  x m P  H(m)) into a new N  x m P  basis 
G(m) consisting of nearly orthogonal basis vectors (i.e., £(G (m)) =  £(H (m))
G(m) =  H(m)U(m), where U(m) is unimodular). A  basis G(m) is called a reduced 
basis of a lattice with parameter 5 if G(m) is QR factorized as G(m) =  Q(m)R(m), 
where Q(m) is unitary, R(m) is upper triangular, and the elements of R(m) satisfy 
the following inequalities [25]:

| 5K([R]<i()) |<  i  | [R]w | and | 3([R]«,P) |<  1 | [R]<,<: | for 1 <  I < p < m P
(6.13)

and

<5|[RJp-l,p-i|2 < |[R]p,p|2 +  |[R]p-i,p|2 for p = 2, . . .  ,toP. (6.14)

Here, [R]p,g denotes the (p, ^)-th element of R(m). The parameter is closely 
related to the quality of the reduced basis. In this chapter, we assume 6  = 
3/42 which is usually chosen for complexity and performance trade-off. For the

1 Since the performance of the LRG and UBLRG user selection schemes are the same (in 
fact, UBLRG is a computationally efficient version of LRG), we now only consider UBLRG and 
assume that LRG and UBLRG are interchangeable.

2 Here, S is a factor selected to achieve a good quality-complexity trade-off [18]. We note 
that S can be chose from (| ,  1) and ( | ,  1) for the real and complex LLL algorithms, respectively 
[25].
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initialization, let A ' ^  = R(m)> UJm̂ }, where the QR factorization H(m) =

Q (m )^(m ) an<̂  ^ (m ) =  1-mP- With { Q ( m), R (m), U ( m)}  — { Q ( m)’ ^ (m )’ ^ ( m)} an<̂  
p =  2, a version of CLLL algorithm is summarized as follows (note that since 
CLLL is used in UBLR, in Table 6.1, CLLL becomes part of UBLR).

a) To fulfill (6.13), a size-reduction is performed with the 1st to pth columns 
of R ( m) and U ( m) (see rows (15)-(21) in Table 6.1).

b) As the basis of R ( m) is size-reduced according to (6.13), let p <= p +  1 
and go to step a) if (6.14) is fulfilled. Swap the (p — l ) th and pth columns 
in R (m) and U ( m) if (14) is not satisfied and update { R ( m) ,Q ( m)} . Let 
p <= max(p — 1,2) and go to step a) (see rows (22)-(32) in Table 6.1).

c) The algorithm is terminated if p = mP. The output of the CLLL re­
duced matrix G (m) is given by the updated A ( m) =  { Q ( m ) ,  R(m)> U ( m)} , i.e., 
U ( m) Q(m )R(m ) =  H (m)U (m).

In our LRG user selection, at the mth user selection, the channel matrix of size 
N  x P(m — 1) (denoted by H(m_i)) is obtained from the previous user selections. 
Under the assumption that the CLLL has been performed with H(m_i) and its

whichCLLL reduced matrix G(m_i) is available, we have H(m) = 
is the channel matrix for the first m  selected users.

The UBLR algorithm is carried out to transform H(m) into a reduced basis 
G(m) by utilizing a given set of already available matrices 
A ( m- i )  — { Q (m- i ) ,  R (m- i ) , U ( m_ ! )}  associated with the CLLL reduced matrix 
G (m_ i)  in the previous m — 1 users selection, where G (m_ i) — Q (m -i)R (m -i)  — 
H(m_i)U(m_i). The unimodular matrix U(m_i) is employed to represent the col­
umn swaps in the CLLL, while R ( m_ i)  satisfies (6.13) and (6.14). The transfor­
mation algorithm for generating G(m) in UBLR is summarized as follows.

Instead of starting the size-reduction of R ( m) with the first two columns (the 
1st to pth columns, where p =  2 in a)), UBLR reduces the iteration by starting the 
size-reduction with p =  (m — 1 )P +  1. In this case, the iteration of size-reduction 
from that with p = 2 to that with p = (m — 1)P +  1 need to be obtained by 
updating A[m) from A(m_x).
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Table 6.1: The UBLR (based on the CLLL) algorithm at the mth user selection

INPUT: H*(to)}.
OUTPUT: {./l(m)>B(m)}.

(1)

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)

H(m) <— H(m_i) Hfc(m) 
u  <- size(H(m_1}, 2)
C size(H(m), 2)
[Q(m) R'(m)] *
U(m ) *

u (m)( l  • u 1 1 • w )   ̂ U (m_D

Q(m) 4 Q(m—1)
1 • < R(m—1)

for £ = 1 : 77(m_i)
^ (m ) (T(m—\,£) 1 • 1f(m—l , £) i^  "P 1 • C)

* ® (m —l,^)R(m) ( ry(m—l,£) 1 • '7(m—l,£)>k7 "P 1 : C)

(11) end for 
(14) p <— u  +  1
(13) 77(m) <— 0
(14) while p < C
(15) for  ̂=  1 : p — 1
(16) P +- [R(m)(p -  p)/R(m)(P -  A P -
(17) i f p ^ O
(18) R(m) (1 :p - t ,p )< r -  R (m)(l : p - t , p ) -  p R (m)(l : p - l , p - t )
(19) U(m)(:,p) * U(m)(:,p) — pU (m)(:,p — £)
(2 0 ) end if
(2 1 ) end for
(22) if 6 \(R{m)( p -  l , p -  1 ) ) |2 > |R (m)(p,p) | 2 +  |R (m)( p -  l ,p ) | 2

(23) Vim) * V(m) "P 1
(24) Swap the (p — l)-th  and pth columns in R(m) and U(m)

(25) ©

(26)

("1.77 (m))

7(m,T7(m)) p

a* 0
—j3 a

a:t h  ||R(m)(p -l:p ,p -l)||
W ltn  q _  R(m)(p.p—1)

P  _  l|R(m)(P—l:p.p—1)11

103



6.4 LR-based Greedy User Selection using an Updating M ethod

(27) I (̂m) (P 1 • Pi P 1 • C) ®(m,77(m))H'(m)(P
(28) Q(m) (-j P 1 : P) Q(m)(';P ~ 1 : P)®(m,ij(m))
(29) p <— max{p --1 ,2 }
(30) else
(31) p ^ - p + 1
(32) end if
(33) end while

Since R ^ .! )  of size N  x P(m — 1) and RJm) of size N  x Pm  are upper 
triangular, it is straightforward to obtain that R ^ . ^  =  R{m) (:, 1 : P(m  — 1)), 
which results in that the size reduction and column swapping performed on the 
first P(m  — 1) columns of RJm̂ are the same as those on R'(m_1). Using R(m_i), 
let A {m) = and R(m)(:, 1 : P(m  — 1)) =  R(m_i). Then, we have the 1st to 
P{m  — l)-th  column vectors of R(m) satisfying (6.13) and (6.14). Prom this, we 
can see that CLLL is partially performed on R(m) by employing UBLR. Similarly, 
with Q(m) =  Q(m—i) and U(m)(l i P(m  1),1 • P{m  1)) — U(m_i), {Q(m)jU(m)} 
can be updated with low computational complexity from {Q(m_!), U (m_i)}. Thus, 
from yi(m_i), UBLR is carried out to update the elements in A(m) as shown in 
rows (6)-(8) in Table 6.1.

In addition, we note that, in row (8 ) of Table 6.1, we do not consider updating 
R(m)(l : P(m  — 1), P(m  — 1) +  1 : Pm) in A(m). It can be observed that when 
we perform a CLLL on H(m) with the same operations of the CLLL for previous 
user selections, R(m)(l : P(m  — l) ,P (m  — 1) +  1 : Pm) will also be influenced. 
Hence, extra processing is necessary to recover R(m)(l : P(m  — 1), P(m  — 1) +  1 : 
Pm) in A(m). To this end, we define that £ (m_i) =  {©(m_i), i), »7(m—i)}, 
where ©(m—i) {®(m—i,i)> >®(m—1,77)}5 '7 (m—1) {T(m—1,1)’ »T(m—1,77)}) ^nd
r/(m_ 1) =  77. The operations of swapping and updating R(m_i) and Q(m_i) are 
kept in 77(m_i), 7 (m_i), and ©(m-i,??), where 77(m_i) keeps the number of swapping 
times, 7 (m_i) keeps those columns involved in the swaps, and ©(m_1)7?) keeps the 
operations of column swaps. From the CLLL (see row (27) in Table 6.1), we note 
that R(m)(l : P(m  — 1), P(m  — 1) +  1 : Pm) is generated by a transformation 
with @(m). Thus, using the information kept in we can generate R(m)(l :
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P(m  — 1), P(m  — 1) + 1 : Pm) as shown in rows (9)-(ll) of Table 6.1.
W ith an updated A(m), one CLLL can be carried out to generate the reduced 

basis G(m). The calculation of this new basis generation starts with p =  (ra — 
1)P + 1. Hence, the computational complexity of UBLR is evidently reduced as 
compared to employing one CLLL starting with p = 2. Note that since UBLR 
and CLLL generate the same LBR G(m), they provide the same performance. In 
Section 6.5, this performance of UBLRG is validated by simulations.

The UBLR algorithm of the mth user selection is summarized in Table 6.1. 
The inputs of the algorithm of the mth user selection are 
{yi(m_i), £ (m_i), H(m_i), Hfc(m)}, while the outputs are {A(m), ®(wi)}. Note that 
for the first user selection, with its channel matrix H*(1) as the input, instead of 
using the UBLR, one CLLL is carried out to generate {>1(1), ^B(i)} as the output. 
Since the outputs of the mth user selection are regarded as the inputs at the 
(m +  l)-th  user selection, the algorithm is recursively carried out from m = 2. 
The algorithm is terminated if m =  M.

The complexity of CLLL and UBLR algorithms highly depends on the number 
of column swaps, which is denoted by the output parameter 77. In Table 6.2, 
the average value of 77 per iteration is shown when the CLLL-based MMSE- 
SIC detector is used with the proposed LRG and UBLRG user selection. It is 
assumed that K  = 10 and N  = 8 for the two possible cases of (M, P) = (8,1) and 
(M, P) =  (4,2). Based on these results, we can observe that the complexity is 
significantly reduced if UBLR is employed. We also note that with the LRG, the 
complexity for the case of (M, P) = (8,1) is higher than that of (M, P) — (4,2) 
as expected (a large M  implies a higher complexity). We can also show that the 
complexity of UBLRG is upper-bounded as (K  — M + 1)0 ((M P )3N  log (M P)) + 
YliL71 O {{iP)3 Nlog(iP)). Compared to the complexity of LRG which is upper- 
bounded as J2 iii(K  ~ i  + 1)0 ((iP)3 Nlog(iP)), the UBLRG scheme has a lower 
complexity, especially when large K  and M  are considered.

By using the real-valued LLL algorithm which is proposed as the LLL-LR 
in [22], UBLR can also be performed with a real-valued channel matrix. Since 
its derivation is straightforward, we do not discuss it any further. However, the 
simulation results in Section 6.5 show that the approaches using the real-valued 
LLL provide the same performance as the CLLL-based approaches. As shown
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Table 6.2: The average value of rj in the LRG and UBLRG user selection with 
the CLLL based MMSE-SIC detector is used.

Average value o f r]
Number of columns in 2 3 4 5 6 7 8 Sum

LRG1 0.2909 0.9029 1.8022 3.0633 4.7711 7.2925 12.1228 30.2457
UBLRG1 0.2904 0.5851 0.8940 1.2708 1.7653 2.5620 4.7728 12.1404

LRG2 0.2926 n/a 1.7977 n/a 4.7663 n/a 12.0856 18.9422
UBLRG2 0.2879 n/a 1.4952 n/a 3.0191 n/a 7.3761 12.1783

Note that the superscript 1 denotes the case of K  =  10, N  =  8, (M, P ) =  (8,1) and the 
superscript 2 denotes the case of K  — 10, N  =  8, ( M, P)  =  (4,2), respectively.

in Table 6.3, the computational complexity can also be reduced if our UBLR 
algorithm is used with the LLL-LR.

Note that although the users are selected using a greedy method, we need 
to detect all the signals from the selected users jointly for a reasonably good 
performance1. As shown in [1.9, 22, 23, 24], the joint detection can be efficiently 
carried out by a LR-based detector.

6.5 D iversity  A nalysis and N um erical R esu lts

In this section, we consider the diversity gain of the combinatorial user selection 
approaches with various detectors, such as the ML, MMSE, and LR-based SIC 
detectors, in Section 6.3. We derive lower bounds on the diversity gain of them. 
Since the diversity gain analysis of the proposed greedy user selection approach 
is difficult, we rely on simulations, from which we can show that our proposed 
LRG/UBLRG user selection approach has a similar diversity gain and comparable 
performance to the combinatorial one. Throughout this section, we assume that 
the elements of the channel matrix axe independent zero-mean CSCG random 
variables with variance cr2.

xAs shown by simulation results in Subsection 6.5.2, the performance degradation due to 
the greedy user selection is not significant as long as joint detection is performed.
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6.5.1 D iversity Gain Analysis from Error Probability

Through the following diversity gain analysis, we can see the impact of the type 
of MIMO detectors on the performance of multiuser systems.

6 .5.1.1 Diversity Gain of Combinatorial User Selection with ML and 
MMSE D etectors

Using the PEP, we can show the diversity order from multiple receive antennas 
as well as multiple user selection.

Theorem 3 The average PEP of the ML detector with the M  selected users 
under the MDist user selection criterion in Section 6.3, denoted by P™1, is upper- 
bounded as

PT  < Cl ) _iVlf J + 0 ( ( ^ £ )" NL” J+I)  , (6.15)

where ci > 0 is constant, and d =  S(i) — S(2) (here, G SMP and S(i) 7  ̂S(2) .̂ 

See Appendix A.
This theorem shows that a full receive diversity gain of N  together with a par­

tial multiuser diversity gain of at least can be achieved by the ML detectors 
under the MDist user selection criterion. This result is derived under the fact that 
there are at least [~ J statistically independent alternative combinations of the 
composite channel matrix H^c for M  users. Hence, this result is a lower bound 
on the diversity gain. In fact, there are more combinations for H ^, which are 
not independent, that can increase the multiuser diversity gain. By simulations, 
we will further demonstrate the impact of the combinations of M  selected users 
that are not independent.

Theorem 4 The average PEP of the MMSE detector with the selected M  users 
under the ME user selection criterion in Section 6.3, denoted by p™mse, is upper- 
bounded as

P T  <  c, +  0 , ( 6 . 16 )

where c  ̂ > 0 is constant.
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See Appendix B.
This theorem shows that for the MMSE detector, the ME user selection cri­

terion may not be able to exploit a full receive diversity.

6 .5.1.2 Diversity Gain of Combinatorial User Selection with LR-based 
Detector

Theorem 5 The average PEP of the LR-based SIC detector with the selected M  
users under the MD user selection criterion in Section 6.3, denoted by P*, is 
upper-bounded as

P ire

where c3 > 0 is constant.

See Appendix C.
This theorem shows that a full receive diversity gain of N  together with the 

same partial multiuser diversity gain, 85 the ML detector, can be
achieved by the LR-based detector under the MD user selection criterion.

From these results, we can see that the LR-based detector is as good as the 
ML detector with respect to the diversity gains. These results are the extension 
of the performance analysis results in [41] for M  > 1 and the consistent with 
the diversity gain results derived in [41] when we set M  = 1 for the single-user 
case, for all the ML, MMSE detectors and the LR-based detector. That is, when 
M  = 1, the diversity gain lower bounds of the proposed user selection criteria for 
the ML, MMSE detectors and the LR-based detector are N K , (N  — P + 1 )K , 
and N K , respectively.

6.5.2 Numerical Results

In this subsection, we present simulation results with MIMO channels of a\ — 1. 
The SNR is defined by the energy per bit to the noise power spectral density 
ratio, Eb/Nq. 16-QAM is used for signaling with Gray mapping. Note that 
LLL and CLLL denote the real-valued LLL-LR and the complex-valued LLL-LR, 
respectively (where they provide the same performance). Nine multiuser MIMO
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systems are considered, namely I: MMSE detection under ME criterion, II: ML 
detection under MDist criterion, III: LR-based MMSE-SIC detection under MMI 
criterion [53], IV: LR-based MMSE-SIC detection1 under ODR criterion [54], V: 
LR-based MMSE-SIC detection under semi-orthogonal user group (SUS) selection 
criterion [39], VI: LR-based MMSE-SIC detection under incremental selection 
criterion [78], VII: LR-based MMSE-SIC detection under fast antenna selection 
criterion [79], VIII: LR-based MMSE-SIC detection under LLL/CLLL-based MD 
criterion, IX: our proposed LR-based MMSE-SIC detection under LLL/CLLL- 
based UBLRG criterion. Since the LLL and CLLL-based user selection schemes 
provide the same performance, in BER simulations, we use the same notation 
(i.e., Systems VIII and IX) to represent the system using LLL or CLLL-based 
selection approach (but, as shown in Table 6.3, the complexity can be different 
depending on the use of LLL or CLLL).

In Figs. 6.1 and 6.2, the BER results of the multiuser MIMO systems are 
shown for the cases of (M, P) = (4,1) and (M, P) = (2,2), respectively. We 
assume that K  = 5 and N  = 4. From the diversity gain analysis in Subsection 
6.5.1, we expect that the user selection methods with (M, P) = (2,2) in Fig. 6.2 
outperform those with (M, P) = (4,1) in Fig. 6.1. From the curve of System II 
with (M, P) = (2,2) in Fig. 6.2, it is shown that when BER drops from 10-5 to 
10“6, SNR increases by approximately 1.2 dB. Thus, an estimate of the diversity 
gain from the simulation becomes G ~  8.3, which is larger than the lower bound, 
Glow = = 8, derived from the theoretical analysis. Similarly, for the
system with (M ,P ) =  (4,1) in Fig. 6.1, when BER drops from 10-5 to 10-6, 
SNR increases by approximately 1.7 dB, which results in G & 5.9, which is larger 
than the lower bound Glow = 4. Moreover, it is shown that the user selection 
approach with the LR-based detector has the same diversity gain as that with the 
ML detector, while the approach with the MMSE detector has a lower diversity 
gain as expected in Subsection 6.5.1. In general, we can show that System IX can 
provide a reasonably good performance, which outperforms that of Systems III, 
V-VII and approaches that of System VIII. Note that compared to System IV,

Although the ODR criterion is developed for the LR-based linear detection, there are some 
performance gain by employing it with the LR-based MMSE-SIC detection. In order to make 
the comparison fair, we use the same detection method in Systems III-IX.
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6.5 Diversity Analysis and Numerical Results

the proposed System IX provides a similar performance, however, its complexity 
is lower by a factor of thousands as shown in Table 6.3. Although the proposed 
System IX has a slight performance improvement compared to Systems V-VII, 
as shown in Fig. 6.3, the BER gain of the proposed method can be significant 
with a large K.

10'

10-*

1 0 - S

2 4 6 8 10 12 14
E tV N o  ( d B )

Figure 6.1: BER versus E ^ /N q of the multiuser MIMO systems represented in 

Subsection 6.5.2 for the case of (M , P ) =  (4 ,1) (16-QAM, K  =  5, N  =  4).

In Figs. 6.3 and 6.4, we show the performance for different values of K  when 
Eb/No — 12 dB and N  = 4 for the two possible cases of (M, P) = (4,1) and 
(M, P) = (2,2), respectively. It is shown that the performance can be improved 
as K  increases in general. More importantly, we can observe in Fig. 6.3 that 
with a large K  (e.g., K  = 8), the proposed System IX can provide a much lower 
BER compared to Systems V-VII where throughput or capacity based selection 
criteria are considered.

In Table 6.3, we show the empirical result of the average number of flops 
for different multiuser MIMO systems to see the computational complexity. We

System I 
System II 

System III 
System IV 
System V 

System VI 
System VII 
System VIII 
System IX
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6.5 Diversity Analysis and Numerical Results
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to'8

F ig u r e  6 .2: BER versus E ^ /N q of the multiuser MIMO systems represented in 

Subsection 6.5.2 for the case of (M , P )  =  (2 ,2) (16-QAM, K  =  5, N  =  4).

simulate these systems using MATLAB-V5.3 on a PC. The MATLAB command 
“flops” is used to count the number of flops. We can observe that System IX 
can reduce the complexity by a factor of thousands compared to Systems IV  
and V III. Although the throughput-based greedy user selection methods (i.e., 
Systems V-VII) provide lower computational complexity, their performance is 
worse than the proposed approaches’ performance, especially when a large K  
is considered (which has been illustrated in Fig. 6.3). It is also shown that 
System V III with LLL-based user selection scheme has the highest computational 
complexity as a real-valued LR-based combinatorial approach is used for user 
selection. With the combinatorial user selection, the computational complexity 
for the case of (M, P) — (4,1) is higher than that of (M,P)  = (2,2), while a 
larger K  can also lead to a higher complexity (from the comparison of the cases 
of K  =  10 and K  = 15). Since CLLL provides the same performance with a 
nearly half computational complexity of LLL [23], in Table 6.3, it is shown that
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Figure 6.3: BER versus K  of the multiuser MIMO systems represented in Sub­

section 6.5.2 for the case of (M , P ) =  (4 ,1) (16-QAM, E ^ /N q =  12 dB, N  =  4).

the CLLL-based approaches are more effective in terms of complexity.
Overall, System IX  with CLLL-based detection is shown to be very attrac­

tive, because its performance is close to that of System V III with a much lower 
complexity. Furthermore, it is noteworthy that if we target on a low BER, er­
ror probability based selection criteria become more suitable than capacity or 
throughput based selection criteria. From this, we can see that our proposed 
UBLRG approaches with LR-based detection is a key ingredient to build an error 
probability based low complexity criterion for multiuser MIMO user selection.

6.6 C onclusion

In multiuser systems, in order to fully exploit the performance in terms of the 
BER, error probability based user selection methods have been considered. If 
the user selection is based on a fully exhaustive search (i.e., the combinatorial
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6.6 Conclusion

Table 6.3: The average complexity of multiuser MIMO systems represented in
Subsection 6.5.2.

A verage flops (xlO5) for 16-QAM, N  =  4.

K  = 10 K  = 15
System M  = 4, P  = 1 £ II *0 II to M  = 4, P  = 1 II to

I 339.02 3.6355 1780.1 8.2817
II 457.92 6.2495 2579.8 14.404
III 42.386 0.7569 275.51 1.7661
IV 459.84 6.3923 2688.5 14.975
V 0.1830 N/A 0.3005 N/A
V I 0.0739 N/A 0.1008 N/A
V II 0.0234 N/A 0.0309 N/A

V III1 589.12 8.0217 3413.1 18.600
V III2 405.51 5.4223 2335.3 12.711
IX 1 1.0129 1.0825 1.5474 1.6368
IX 2 0.6051 0.7189 0.9273 1.0834

Note that the superscript 1 and 2 denote the cases of LLL-based and 
CLLL-based user selection schemes used, respectively.
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Figure 6.4: BER versus K  of the multiuser MIMO systems represented in Sub­
section 6.5.2 for the case of (M,P) = (2,2) (16-QAM, E^/Nq = 12 dB, N — 4).

user selection), the complexity becomes prohibitively high. To avoid this heavy 
computational burden, in this chapter, we proposed an error probability based 
greedy user selection approach, called the LRG user selection, in conjunction with 
the UBLR algorithm which is a computationally efficient approach for LRG. 
With a combinatorial user selection, we showed that the LR-based detector is 
as good as the ML detector in terms of the diversity gains by the theoretical 
analysis and simulation results. From simulation results, it was also shown that 
the LR-based detection with our proposed UBLRG approaches can achieve a 
similar diversity gain and have a comparable performance to that based on a 
combinatorial approach.
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7

Conclusion and Future Work

In this chapter, we conclude the main contributions of this thesis and present 
some possible extension for the future work.

7.1 C onclusion o f C ontributions

In this thesis, we first reviewed and explained the well-known and recently pro­
posed MIMO detection schemes, including the list and LR based detection. The 
user selection for multiuser MIMO systems is introduced as an extension of MIMO 
systems. Then, we proposed a computationally efficient PMAP-based list MIMO 
detection. It showed that the proposed approach with Ni = N 2 = 2 provides 
a near ML performance with a reasonably low complexity (around 3 times of 
the MMSE detector) when SNR > 16 dB. For slow fading MIMO channels, we 
developed the CRC for the LR-based list detection to further improve the perfor­
mance. It showed that with our proposed CRC, the performance of LR-based list 
detection was significantly improved. It can provide a near ML performance with 
a sufficiently low complexity (around 2 times of the MMSE detector) when slow 
fading MIMO channels are considered. After that, we investigated a complexity 
efficient PVC-MIMO detection with optimal PVS for underdetermined MIMO 
systems. We showed that the proposed MIMO detection schemes can exploit a 
near ML performance with a full receive diversity gain. It was also shown that 
the complexity of PVC-MIMO detection is low and comparable to that of the 
MMSE detection (around 3 times of the MMSE detector) when 4-QAM is used.

115



7.2 Future Work

Finally, we extend the MIMO systems to multiuser MIMO systems and proposed 
a low complexity greedy user selection with an iterative LR updating algorithm 
when a LR-based MIMO detector is used. It showed that the proposed selection 
scheme can provide a comparable performance to the combinatorial ones (around 
0.5-dB SNR loss at a broad range of BER) with a similar diversity gain (i.e., mul­
tiple antenna diversity and multiuser diversity). More importantly, it was shown 
that our proposed scheme can reduce the complexity by a factor of thousands 
compared to the combinatorial schemes.

7.2 Future W ork

In this thesis, we only consider channel conditions to select users for multiuser 
MIMO systems. However, user selection is part of transmission optimization. It is 
possible to formulate more complicated optimization problem to further improve 
the performance. For example, the power allocation [85, 86], traffic conditions, 
and users’ priorities [87, 88] in conjunction with user selection can be considered. 
While the performance can be improved in this case, there should be more con­
trol information to users, which makes the resulting system more complicated. 
Therefore, we treat it as an extension of this work with some practical approach 
for associated power allocation, traffic conditions, and users’ priorities.
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Appendix A 

Proof of Theorem 3

With the selected M  users by the combinatorial user selection approach under 
the MDist criterion, suppose that we jointly detect M  users’ signals with the
N  x M P  channel matrix using the ML detector. The PEP in detecting M
users’ signals has the following upper bound:

Pr (s(1) -> s(2)) < erfc j  , (A.l)

where

a  =  a jg d S J H * di|2’

D =  {d =  s -  s' | s ±  s' G SMP} C ZMP +  j Z MP, (A.2)

and erfc(x) is the complementary error function of x , i.e., erfc(x) =  f*°° e~z2 dz.
Let D (H k) denote the length of the shortest non-zero vector of the lattice 

generated by H j .  Then, we have

Pr (s(1) -  s(2)) < erfc ’ (A’3)

where
D (H k ) =  ||HKd||. (A.4)
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For the case that the MDist criterion (as shown in (6.4)) is employed, we have 

Pr (S(1) — S(2)) <  erfc f  j - (A-5)

Note that
max D (H^c) — max min d HS-H^d, (A.6)

X K ' X d£D ,d /0  *  A '

Let wgc =  H ^d. Note that w^c is a zero-mean CSCG random vector and

E  [w3cw£] =  crg||d||2I. (A.7)

We can show that X% = 11 w^c 112 is a chi-square random variable with 2N  degrees 
of freedom and its pdf is

f v ( X ' v )  —  ______________ -  W V - i g - x x / K l I d H 2 ) / a  o n
Jx(XOC)  -  ( 0 .2 | |d | |2 )JV(i V _  e  • ( A -» )

The cumulative distribution function (cdf) is

F x ( x x ) =  1 -  2  ( ^ / ( ^ l l d ll2))g . (A.9)
</=0 q‘

To obtain an upper bound on the error probability, we note that the number 
of alternative combinations of the channel matrices, which are statistically inde­
pendent with each other, for selecting Hgc with the MDist selection in (6.4) is at
least |A J • Let , H x2,. •., K represent such independent alterna-L XT J
tive combinations of the channel vectors. Then, there are at least of w^, i.e., 
w 3Ci, W3c2 , • • •, > which are independent. Let V  =  max j.X i, X2, . . . ,  * j j ,
where X m = ||w 3cm||2. Using order statistics, the pdf of V  is given by

f v ( v )  =  K F ^ ^ ^ f x i v )  =  c[vN^  J—1 +  o{vN^ - 1+t), (A. 10)

where c[ > 0 is a constant, and e > 0. Thus, according to [68], we have

p :  < ^  e v
deD,d^0

, ! max̂ c dHHlJ H^d
2Nn



where C\ > 0 is a constant (dx and C\ are proportional to each other1). This 
completes the proof.

1For the details of the connection between c[ and ci, please see the derivation in [68].
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Appendix B 

Proof of Theorem 4

It can be shown that under the ME criterion, for a given H x , an upper bound 
on the error probability in detecting M  users’ signals is expressed as [41]

< erfc

=  erfc

=  erfc

maxx Amin(HgHWIIdlP
2Nq

°hl|d|l2 maxx X x  |
2 N 0 J

I M iM
2 Nq J ’ (B.l)

where X x  = and V = maxx X x .
According to [68], using the pdf of V  (with the same derivation for the ML 

case in the last subsection), it can be deduced that

P ; n”  =  £ H3c[Pr(s(1)- , s (2))]

erfc
2N0 I

(B.2)

For independent alternative combinations of the channel matrices
Hocx, H x2 , . . . ,  H^c K , similar to the proof of Theorem 3, we can follow the deriva-

120



tions in [681 and [691 and obtain that

<  E y erfc M\2v\
2 No J

' +  00 

< I erfc/ 'Jo

ai \ \d \ \2v
2Nn

fv(v)dv

= C2
r2 \ \ A  II2 \  ~(N~P+ 1 ) \ _ § \  (  ~(N-P+l)l£  J+ l'

+ 0
N 0 J  \ \  N 0

where c2 > 0 is constant. This completes the proof.

, (B.3)
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Appendix C 

Proof of Theorem 5

In the LR algorithm, we transform the given channel matrix, e.g., H, into a new 
basis, e.g., denoted by G. Here, we have £(G ) =  £(H ) <=> G =  H T, where 
T  is an integer unimodular matrix and -C(A) denotes the lattice generated by 
A. Then, G is called LLL-reduced with parameter 5 if G is QR factorized as 
G =  Q R  where Q is unitary, R  is upper triangular, and the elements of R  
satisfies satisfies (6.13) and (6.14) with m  =  M. We rewrite (6.14) as

8  I rp,p |2<| rPfP+i |2 +  | rp + h p + 1  |2, p =  1,2, . . . ,  M P  -  1. (C.l)

Then, we can obtain the following inequalities:

I »>+ 1,/H-i |2> /5"1 I I2 (C.2)

where (3 = ( 8  — J) 1 > | ,  and

mm | rp,p f>  p  ^  |2> p-MP+1 (C.3)
p

Since G =  QR, we have | r\,\ \2= ||g i||2 and

iigi"2^ d£,s:d%iiHdii2= v2^ - (C.4)

Thus, we have
min | rPiP |2> p~MP+1V2 (H).

P
(C.5)
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In the proposed user selection for selecting M  users with the LR-based SIC de­
tectors, (C.5) becomes

min | rM |2> /T MP+1V2(Hx ), (C.6)
P

where X  is the index set of the selected users.
Note that the LR-based SIC detection is performed with (6.7). Let np denote

the pth. element of n  in (6.7). Then, the LR-based SIC detection does not have
error across all the layers if we have |  or \np \2 < for all p. The
probability of no error can be lower bounded as [89] (see pp. 292)

MP  /  | | 2 \

Pr(no error) ^ n pr  w < ¥  ■ ( c -7>
p=i ^ *

Since \np \2 is a chi-square random variable with 2 degrees of freedom (or an 
exponential random variable), we have

Pr ( |„„ | <  IIm L ) =  i  -  e X p  ( - b ^ - )  ■ (C.8)

Thus, the error probability of the LR-based SIC detector can be given by
M P  /  /  i 12 \  \

Pr(error) < l -  R  ( l  -  exp ( — ^ ) )

MP  /  | | 2 \

- E exp ( - ^ | - )  (C.9)

In the MD user selection criterion, the M  users whose composite channel 
matrix (i.e., H ^) has the maximum minp |rP)P| are selected. Thus, the following 
approximation becomes accurate as No —> 0 (or high SNR):

g exp( - % f )  * (ai0)

Pr(error) ~  exp ( — min - ). (C .ll)
\  q 4iVo J

Substituting (C.6) into (C .ll), we have

Pr(error) < exp (—/?- mp+1S2(H/jc))

<  y ,  eXp f - / r » ^ » ma^ d; 5 H x d Y  (C.12)
v 2N° )
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Then, with the same approach used in the proof of Theorem 3, we can show that 
the upper bound on the average PEP is

<0,3,

where C3 > 0 is constant. This completes the proof.

124



Bibliography

[1] D. Tse and P. Vishwanath Fundamentals of Wireless Communications, Cam­
bridge University Press, 2005. 1, 12, 66, 78

[2] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V- 
BLAST: An architecture for realizing very high data rates over the rich- 
scattering wireless channel,” in Proc. International Symposium on Signals, 
Systems, and Electronics (ISSSE), Pisa, Italy, Sep. 1998. 1, 96

[3] L. Zheng and D. Tse, “Diversity and multiplexing: A fundamental tradeoff 
in multiple-antenna channels,” IEEE Transactions on Inform. Theory, vol. 
49, pp. 1073-1096, May 2003. 1, 12

[4] G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky, 
“Simplified processing for high spectral efficiency wireless communications 
employing multi-element arrays,” in IEEE J. Select. Areas Commun., vol. 
17, pp. 1841-1852, Nov. 1999. 2

[5] A. B. Reid, A. J. Grant, and P. D. Alexander “List detection for multi-access 
channels,” in Proc. IEEE Globecom., vol. 2, pp. 1083-1087, Nov. 2002. 2, 17, 
46, 48, 66

[6] H. Y. Fan, R. D. Murch, and W. H. Mow “Near maximum likelihood detec­
tion schemes for wireless MIMO systems” IEEE Trans, on Wireless Com­
munications , vol. 3, no. 5, pp. 1427-1430, Sep. 2004. 2, 17, 46, 48, 66

[7] Y. Li and Z. Q. Luo “Parallel detection for V-BLAST system” in Proc. IEEE 
ICC, vol. 1, pp. 340-344, 2002. 2, 17, 46, 48, 66

125



BIBLIOGRAPHY

[8] C. Windpassinger, L. H. J. Lampe, and R. F .H. Fischer “From lattice- 
reduction-aided detection towards maximum-likelihood detection in MIMO 
systems,” in Proc. IEEE Information Theory Workshop, pp. 144-148, Mar.
2003. 2, 17, 46, 48, 66

[9] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in 
lattices,” IEEE Trans. Inform. Theory, vol. 48, no. 8, pp. 2201-2214, Aug.
2002. 2, 17, 46, 66

[10] B. Hassibi and H. Vikalo, “On the sphere-decoding algorithm I. Expected 
complexity,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 2806-2818, 
Aug. 2005. 2, 17, 46, 66, 92

[11] A. B. Reid, A. J. Grant, and P. D. Alexander, “List detection for the K- 
symmetric multiple-access channel,” IEEE Trans. Inform. Theory, vol. 51, 
pp. 2930-2936, Aug. 2005. 2, 17, 46, 66

[12] D. Chase, “A class of algorithms for decoding block codes with channel 
measurement information,” IEEE Trans, on Information Theory, vol. 18, 
pp. 170- 182, Jan. 1972. 3, 18, 47, 59, 67, 70, 72, 82

[13] D. W. Waters and J. R. Barry, “The Chase family of detection algorithms 
for multiple-input multiple-output channels,” in Proc. IEEE Globecom., vol. 
4, pp. 2635- 2639, 29 Nov.-3 Dec. 2004. 3, 18, 19, 21, 22, 23, 47, 56, 59, 67, 
70, 72, 82

[14] D. W. Waters and J. R. Barry, “The sorted-QR Chase detector for multiple- 
input multiple-output channels,”in Proc. IEEE WCNC, vol. 1, pp. 538- 543, 
13-17 Mar. 2005. 3, 18, 20, 21, 47, 53, 55, 56, 59, 67, 70, 72, 82

[15] D. W. Waters, and J. R. Barry, “Partial decision-feedback detection for 
multiple-input multiple-output channels,” in Proc. IEEE ICC, vol. 5, pp. 
2668- 2672, 20-24 Jun. 2004. 3, 18, 47, 59, 67, 70, 72, 82

[16] D. J. Love, S. Hosur, A. Batra, and R. W. Heath, Jr., “Space-time Chase 
decoding,” IEEE Trans. Wireless Commun, vol. 4, no. 5, pp. 2035-2039, 
Sept. 2005. 3, 18, 47, 59, 67, 70, 72, 82

126



BIBLIOGRAPHY

[17] L. Bai and J. Choi, “Partial MAP-based list detection for MIMO systems,” 
IEEE Trans. Vehicular Tech., pp. 2544-2548, June 2009. 3, 18, 47, 59, 67, 
70, 72, 82

[18] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with 
rational coefficients,” in Math. Ann., vol. 261, pp. 515-534, 1982. 3, 26, 30, 
31, 77, 101

[19] H. Yao and G. W. Wornell, “Lattice-reduction-aided detectors for MIMO 
communication systems,” in Proc. IEEE Global Telecommunications Conf., 
pp. 424-428, Nov. 2002. 3, 26, 28, 29, 36, 59, 70, 74, 92, 97, 106

[20] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading chan­
nels,” IEEE Trans. Inform. Theory, vol. 45, no. 5, pp. 1639-1642, July 1999. 
3, 26, 29, 59, 92

[21] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in 
lattices,” IEEE Trans, on Information Theory, vol. 48, no. 8, pp. 2201-2214, 
Aug. 2002. 3, 26, 29, 59, 92

[22] D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “Near-maximum- 
likelihood detection of MIMO systems using MMSE-based lattice reduction,” 
in Proc. IEEE International Conf. Communications, pp. 798-802, June 2004. 
3, 26, 28, 29, 31, 59, 63, 67, 70, 74, 77, 92, 96, 97, 105, 106

[23] Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm 
for low-complexity full-diversity MIMO detection,” IEEE Trans, on Signal 
Proc., vol. 57, pp. 2701-2710, July 2009. 3, 26, 28, 29, 30, 32, 33, 36, 37, 59, 
92, 97, 100, 101, 106, 111

[24] W. H. Mow, “ Universal lattice decoding: a review and some recent results,” 
in Proc. IEEE International Conf. on Communications, vol. 5, pp. 2842- 
2846, Paris, France, 20-24 June, 2004. 3, 26, 28, 29, 59, 92, 97, 101, 106

[25] X. Ma and W. Zhang, “Performance analysis for MIMO systems with lattice- 
reduction aided linear equalization,” IEEE Trans, on Communications vol.

127



BIBLIOGRAPHY

56, pp. 309-318, Feb. 2008. 3, 26, 28, 29, 31, 32, 33, 34, 35, 59, 62, 67, 76, 
77, 78, 92, 97, 101

[26] A. M. M. Taherzadeh and A. K. Khandani, “LLL lattice-basis reduction 
achieves maximum diversity in MIMO systems,” in Proc. IEEE International 
Symposium on Information Theory (ISIT), Adelaide, Australia, 4-9 Sept.
2005. 3, 26, 29, 59, 92

[27] J. Choi “On the partial MAP detection with applications to MIMO channels” 
IEEE Trans, on Signal Processing, vol. 53, pp. 158- 167, Jan. 2005. 3, 46, 
47, 48, 49, 50

[28] J. Choi and H. Nguyen, “SIC-based detection with list and lattice reduction 
for MIMO channels,” IEEE Trans, on Vehicular Tech., vol. 58, No. 7, pp, 
3786-3790, Sep. 2009. 3, 59, 60, 61, 62, 64

[29] M. O. Damen, K. Abed-Meraim, and J. C. Belfiore, “Generalized sphere de­
coder for asymmetrical space-time communication architecture” IEEE Elec­
tronics Letters, vol. 36, pp. 166-167, 2000. 4, 67, 71, 72, 89

[30] M. Damen, H. El Gamal, and G. Caire, “On maximum-likelihood detection 
and the search for the closest lattice point” IEEE Trans. Inform. Theory, 
vol. 49, pp. 2389-2402, Oct. 2003. 4, 67, 71, 72, 89

[31] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank- 
deficient MIMO systems,” IEEE Vehicular Tech. Conf., 2004. 4, 67, 71, 72, 
89

[32] Z. Yang, C. Liu, and J. He, “A new approach for fast generalized sphere 
decoding in MIMO systems,” IEEE Signal Processing Letter, Vol.12, No.l, 
Jan. 2005. 4, 67, 71, 72, 89

[33] P. Wang and T. Le-Ngoc, “A low-complexity generalized sphere decoding 
approach for underdetermined MIMO systems,” IEEE International Con­
ference on Communications, vol. 9, pp. 4266-4271, June 2006. 4, 67, 71, 72, 
89

128



BIBLIOGRAPHY

[34] A. Kapur and M. K. Varanasi, “Multiuser detection for overloaded CDMA 
systems” IEEE Trans. Inform. Theory, pp. 1728-1742, July 2003. 4, 67, 71, 
89

[35] K. K. Wong and A. Paulraj, “Efficient near maximum-likelihood detection 
for underdetermined MIMO antenna systems using a geometrical approach” 
EURASIP Journal on Wireless Communications and Networking, Oct. 2007. 
4, 67, 71, 89

[36] X. W. Chang and X. Yang, “An efficient tree search decoder with column 
reordering for underdetermined MIMO systems” IEEE Globecom, pp. 4375- 
4379, 2007. 4, 67, 71, 72, 82, 85, 89

[37] M. Bengtsson, “From single link MIMO to multi-user MIMO,” Proc. IEEE 
ICASSP, 2004. 4, 38, 93

[38] R. Knopp and P. Humblet, “Information capacity and power control in 
single-cell multiuser communications,” in Proc. IEEE Int. Computer Conf, 
(ICC’95), Seattle, WA, June 1995. 4, 38, 92

[39] T. Yoo, N. Jindal, and A. Goldsmith, “Multi-antenna broadcast channels 
with limited feedback and user selection,” IEEE J. Sel. Areas Commun., 
vol. 25, no. 7, pp. 1478-1491, Sept. 2007. 4, 38, 41, 93, 109

[40] G. Dimic and N. Sidiropoulos, “On downlink beamforming with greedy user 
selection: Performance analysis and a simple new algorithm,” IEEE Trans. 
Signal Process., vol. 53, no. 10, pp. 3857-3868, Oct. 2005. 4, 38, 41, 93

[41] J. Choi and F. Adachi, “User selection criteria for multiuser systems with 
optimal and suboptimal LR-based detectors,” IEEE Trans, on Signal Proc. 
(accepted). 4, 5, 36, 41, 42, 43, 44, 62, 63, 68, 73, 75, 79, 93, 96, 97, 98, 108, 
120

[42] G. J. Foschini, “Layered space-time architecture for wireless communications 
in a fading environment when using multiple-element antenna,,” Bell Lab. 
Tech. J ., vol. 1, pp. 41-59, Autumn 1996. 14

129



BIBLIOGRAPHY

[43] G. J. Foschini, D. Chizhik, M. J. Gans, C. Papadias, and R. A. Valen­
zuela, “Analysis and performance of some basic space-time architectures,” 
IEEE J. Select. Areas Commun., vol. 21, pp. 303-320, Apr. 2003. 14, 16

[44] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, 
“V-BLAST: an architecture for realizing very high data rates over the rich- 
scattering wireless channel” in Proc. ISSSE, pp. 295-300, Sep. 1998. 16, 
46

[45] W. Zha and S. Blostein, “Modified decorrelating decision-feedback detection 
of BLAST space-time system,” in Proc. IEEE Int. Conf. Communications, 
vol. 1, pp. 335- 339, May 2002. 22

[46] H. Zhu, Z. Lei, and F. Chin, “An improved square-root algorithm for 
BLAST,”IEEE Trans. Signal Process., vol. 11, pp. 772-775, Sep. 2004. 22

[47] D. W. Waters and J. R. Barry, “The Chase family of detection algorithms 
for multiple-input multiple-output channels,”IEEE Trans. Signal Proc., vol. 
56, No. 2, pp. 739-747, Feb. 2008. 23

[48] S. Liu, C. Ling, and D. Stehle, “Randomized lattice decoding: Bridging 
the gap between lattice reduction and sphere decoding,” IEEE Int. Symp. 
Inform. Theory, Austin, US, June 2010. 23, 24

[49] C. Ling, “On the proximity factors of lattice reduction-aided decod­
ing,” IEEE Trans. Signal Process., submitted for publication. [Online]. Avail­
able: http://www.commsp.ee.ic.ac.uk/~cling/ 24

[50] C. Ling, “Towards characterizing the performance of approximate lattice de­
coding,” in Int. Symp. Turbo Codes/Int. ITG Conf. Source Channel Coding’ 
06, Munich, Germany, Apr. 2006. 36

[51] H. Daude and B. Vallee, “An upper bound on the average number of itera­
tions of the LLL algorithm,” Theoret. Comp. Sci., vol. 123, pp. 95-115, 1994. 
37, 100

130



BIBLIOGRAPHY

[52] C. Ling and N. Howgrave-Graham, “Effective LLL reduction for lattice de­
coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Nice, France, Jun. 
2007. 37, 100

[53] R. Nabar, D. Gore, and A. Paulraj, “Optimal selection and use of trans­
mit antennas in wireless systems,” presented at the Int. Conf. Telecom- 
m un.(ICT’OO), Acapulco, Mexico, May 2000. 40, 93, 109

[54] I. Berenguer and X. Wang, “MIMO Antenna Selection with Lattice- 
Reduction-Aided Linear Receivers,” IEEE Trans, on Veh. Tech, 53 (5), pp. 
1289-1302, 2004. 41, 42, 93, 109

[55] G. J. Foschini and M. J. Gans “On limits of wireless communications in a 
fading environment when using multiple antennas,” Wireless Personal Com­
munications, vol. 6, pp. 311-335, Mar. 1998. 46

[56] I. E. Telatar “Capacity of multi-antenna Gaussian channels, ” European 
Transactions on Telecommunications, vol. 10, no. 6, pp. 585-595, Nov.-Dee. 
1999. 46

[57] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge: Cambridge 
University Press, 1985. 47

[58] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error- 
correcting coding and decoding:Turbo-codes,” in Proc. IEEE ICC, vol. 2, 
pp. 1064-1070, 23-26 May. 1993. 49

[59] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and 
sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. 
IEEE ICC; vol. 2, pp. 1009-1013, 18-22 Jun. 1995. 50

[60] J. S. Hammerschmidt, N. Graef, and S. A. Mujtaba, “A maximum a poste­
riori MIMO detector using recursive metric computations,” IEEE Trans, on 
Signal Processing, vol. 54, pp. 3555- 3565, Sep. 2006. 51

[61] A. V. Zelst, R. V. Nee, and G. A. Awater, “ Turbo-BLAST and its perfor­
mance,” in Proc. IEEE VTC Spring, vol. 2, pp. 1282-1286, 2001. 51

131



BIBLIOGRAPHY

[62] B. M. Hochwald and S. T. Brink, “Achieving near-capacity on a multiple- 
antenna channel,” IEEE Trans, on Communications, vol. 51, pp. 389- 399, 
Mar. 2003. 51

[63] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. D. Kammeyer, “Efficient 
algorithm for decoding layered space-time codes,” Electronics Letters, vol. 
37, no. 22, pp. 1348-1350, 25 Oct., 2001. 54

[64] J. Choi, Adaptive and Iterative Signal Processing in Communications, Cam­
bridge University Press, 2006. 56

[65] L. Bai, C. Chen, and J. Choi, “ Lattice reduction aided detection for un­
derdetermined MIMO systems: a pre-voting cancellation approach” IEEE 
Vehicular Tech. Conf., Taipei, Taiwan, Spring 2010. 62, 63

[66] E. Biglieri, G. Taricco, and A. Tulino, “Performance of space-time codes 
for a large number of antennas,” IEEE Trans. Infor. Theory, vol. 48, pp. 
1794-1803, July 2002. 73

[67] M. Taherzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves 
the receive diversity in MIMO decoding,” IEEE Trans. Inform. Theory, vol. 
53, pp. 4801-4805, Dec. 2007. 76, 78

[68] Z. Wang and G. B. Giannakis, “A simple and general parameterization quan­
tifying performance of fading channels,” IEEE Trans, on Communications, 
no.51, pp. 1389-1398, Aug. 2003. 81, 118, 119, 120, 121

[69] A. Edelman, Eigenvalues and condition numbers of random 
matrices, Ph.D. Dissertation. MIT. May 1989 (http://www- 
math.mit.edu/edelman/homepage/papers/Eig.pdf, June 30, 2010). 80, 
121

[70] A. J. Paulraj and C. B. Papadias, “Space-time processing for wireless com­
munications,” IEEE Signal Processing Mag., vol. 14, pp. 49-83, Nov. 1997. 
92

132



BIBLIOGRAPHY

[71] L. C. Godara, “Applications of antenna arrays to mobile communica­
tions,Part I: Performance improvement, feasibility, and system considera­
tions,” Proc. IEEE, vol. 85, pp. 1031-1060, July 1997. 92

[72] L. C. Godara, “Applications of antenna arrays to mobile communications, 
Part II: Beam-forming and direction-of-arrival considerations,” Proc. IEEE, 
vol. 85, pp. 1195-1245, July 1997. 92

[73] H. Y. Fan, R. D. Murch, and W. H. Mow, “Near maximum likelihood detec­
tion schemes for wireless MIMO systems,” IEEE Trans, on Wireless Comm., 
vol. 3, no. 5, pp. 1427-1430, Sep. 2004. 92

[74] Y. Li and Z. Q. Luo, “Parallel detection for V-BLAST system,” in Proc. 
IEEE ICC, vol. 1, pp. 340-344, Apr. 2002. 92

[75] C. Windpassinger, L. H. J. Lampe, and R. F. H. Fischer, “From lattice- 
reduction-aided detection towards maximum-likelihood detection in MIMO 
systems,” in Proc. IEEE Information Theory Workshop, pp. 144-148, Mar.
2003. 92

[76] R. W. Heath, Jr., S. Sandhu, and A. Paulraj, “Antenna selection for spatial 
multiplexing systems with linear receivers,” IEEE Commun. Lett.,vol. 5, pp. 
142-144, Apr. 2001. 93

[77] A. Gorokhov, D. A. Gore, and A. J. Paulraj, “Receive antenna selection for 
MIMO flat-fading channels: Theory and algorithms,” IEEE Trans. Inform. 
Theory, vol. 49, pp. 2867-2696, Oct. 2003. 93

[78] A. Gorokhov, D. A. Gore, and A. J. Paulraj, “Receive antenna selection for 
MIMO spatial multiplexing: Theory and algorithms,” IEEE Trans. Signal 
Proc., vol. 51, pp. 2796-2807, Nov. 2003. 93, 109

[79] M. Gharavi-Alkhansari and A. B. Gershman, “Fast antenna subset selection 
in MIMO systems,” IEEE Trans, on Signal Proc., vol. 52, pp. 339-347, Feb.
2004. 93, 109

133



BIBLIOGRAPHY

[80] M. Fuchs, G. DelGaldo, and M. Haardt, “Low complexity space-time- 
frequency scheduling for MIMO systems with SDMA,” IEEE Trans, on Ve­
hicular Tech., vol. 56, no. 5, pp. 2775-2784, 2007. 93

[81] A. Bayesteh and A. K. Khandani, “On the user selection for MIMO broad­
cast channels,” IEEE Trans, on Information Theory, vol. 54, pp. 1086-1107, 
March 2008. 93

[82] Z. Shen, R. Chen, J. G. Andrews, R. W. Heath, and B. L. Evans, “Low 
complexity user selection algorithms for multiuser MIMO systems with block 
diagonalization,” IEEE Trans, on Signal Proc., vol. 54, pp. 3658-3663, Sept.
2006. 93

[83] T. Ji, C. Zhou, S. Zhou, and Y. Yao, “Low complex user selection strategies 
for multi-User MIMO downlink scenario,” IEEE WCNC 2007, pp. 1532-1537, 
11-15 March 2007. 93

[84] S. Lee and J. S. Thompson, “QoS-guaranteed sequential user selection in 
multiuser MIMO downlink channels,” IEEE VTC 2007, pp. 1926-1930, April
2007. 93

[85] R. Nabar, H. Bolcskei, and A. Paulraj, “Transmit optimization for spatial 
multiplexing in the presence of spatial fading correlation,” in Proc. IEEE 
Globecom, San Antonio, TX, pp. 131-135, Nov. 2001. 95, 116

[86] S. Nam and K. Lee, “Transmit power allocation for an extended V-BLAST 
system,” in Proc. IEEE PIMRC, pp. 843-848, Sept. 2002. 95, 116

[87] V. K. N. Lau, “Proportional fair space-time scheduling for wireless commu­
nications,” IEEE Trans, on Communications, vol. 53, pp. 1353-1360, Aug.
2005. 95, 116

[88] L. Yang, M. Kang, and M.-S. Alouini, “On the capacity-fairness trade off in 
multiuser diversity systems,” IEEE Trans, on Vehicular Tech., vol. 56, pp. 
1901-1907, July 2007. 95, 116

[89] J. Choi, Optimal Combining and Detection: Statistical Signal Processing for 
Communications, Cambridge University Press, 2010. 123

134


