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Abstract

This thesis is concerned with spreading speeds and linear determinacy for both discrete-
time recursion models uny1 = Q[u,] and reaction-diffusion-convection systems (PDE)
under a co-operative assumption. In this thesis we are interested in the role of con-
vection terms in propagation and linear determinacy. Such reaction-diffusion-convection
systems have monotone travelling-wave solutions of the form w(z — ct) that describe
the propagation of species as a wave with a fixed speed ¢, connecting two equilibria, a
stable equilibrium £ and an unstable equilibrium 0 of the reaction term. The concept
of spreading speeds was introduced by Aronson and Weinberger in [2] as a description
of asymptotic speeds of spread, and in fact they showed that this spreading speed can
be characterized as a minimal travelling wave speed. We discuss a characterization the-
ory of spreading speeds of the PDE system in terms of critical travelling wave speeds.
We present sufficient conditions involving both the reaction and convection terms of the
PDE system for spreading speeds to equal values obtained from the linearization of the
travelling-wave problem of the PDE system about the unstable equilibrium 0. These
conditions guarantee the linear determinacy for the discrete-time recursion models and
the PDE systems. As a result of the asymmetry in propagation that is caused by the
convection terms in the PDE system, and a corresponding lack of reflection invariance in
the abstract system u,,; = Q[u,], we present separate conditions for non-increasing and
non-decreasing initial data, called right and left conditions respectively, and we consider
right and left spreading speeds. Weinberger, Lewis and Li in [42] allowed there to be
more equilibria other than 0 and 3, in which case different components may spread at
different speeds. This implies the need for both slowest and fastest spreading speeds,
called right and left slowest (fastest) spreading speeds corresponding, to non-increasing
and non-decreasing initial data respectively. We also give sufficient conditions on the
reaction and convection terms such that right (left) slowest spreading speed equals right
(left) fastest spreading speed for the PDE system, which implies that the system has a
right (left) single spreading speed. Examples are included that illustrate the key propo-
sitions and theorems, for instance, the existence of reaction and (non-trivial) convection
terms for which the right and left linear determinacy conditions are simultaneously satis-
fied, as well as a system that is right (left) linearly determinate in absence of convection
terms, but it is not left linearly determinate in the presence of a convection term.
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Table 1: General notation

Symbol Definition
u>veERF | Foralli,1<i<k, u;>v;, the ith component of u is larger than or equal
the ith component of v
Note; if u, v are functions from R — R, then for all z and i, u;(z) > v;(x)
u>v € RF For all 7,1 <7 < k, wu; > v;, the ith component of u is strictly larger than
the ith component of v
Note; if u, v are functions from R — R¥, then for all z and i, u;(z) > v;(z)
[a, b] The set of z € R*¥ such that a < z < b
]R’jr The set of the positive cone in R* of non-negative vectors
[a, B] The set of all vectors v such that each ith component of v;, a < v; < 8
sup A, A € R¥ (supA); :=supA;, 1 <i<k
RExE The set of real k x k matrices
diag z; diag (21, 2k)
Pkxk The set of real k£ x k matrices with strictly positive off-diagonal elements
f () The Jacobian matrix of f : R¥ — R* at «
Sps (B) Perron-Frobenius eigenvalue of the matrix B
L>(I,R¥) {u:u— RF:u is Lebesgue measurable, ||u|| oo(s gy < 00}
where ||u| o0 (srr) = €58 suplu|, and I =R or I = [~00, o]
R
CP(I,RF) The space of functions f : R — R* such that f and its derivatives
for p > 1 are continuous on I where I = R¥ or I = [0, 1]
BUC(R,R¥) The space of functions f : R — R* such that f is bounded
and uniformly continuous on R
BUCP(R,R¥) The space of functions f : R — R* such that f and its derivatives
for p > 1 are bounded and uniformly continuous on R
Bgyei(0, R) {u € BUC* : ||u|l1,00 < R}
1wl o sup|u(z)|, where u : I — RF
zel
llull1,00 [ulloo + Il lloo




Table 2: Meaning of various speeds

Symbol Meaning
Co Minimal travelling wave speed of non-increasing travelling waves
for reaction-diffusion-convection system

4 ¢ (Right) linear value speed for reaction-diffusion-convection equation

¢ Left slowest spreading speed for reaction-diffusion-convection system
c Left linear value speed for reaction-diffusion-convection system
Cy Left fastest spreading speed for reaction-diffusion-convection system
et Maximum of left linear values for reaction-diffusion-convection system
¢ Right slowest spreading speed for reaction-diffusion-convection system
¢ Right linear value speed for reaction-diffusion-convection system
Cy Right fastest spreading speed for reaction-diffusion-convection system
X
ét Maximum of right linear values for reaction-diffusion-convection system
Clin Linear value corresponding to stable monotone eigenvalue
' Clin Linear value corresponding to unstable monotone eigenvalue
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Chapter 1

Introduction

The reaction-diffusion equation u; = dug, + f(u), = € R, is well-known as a simple model
of one-dimensional phenomena in, for instance, population growth, chemical reaction,
flame propagation, etc, where d > 0 is a diffusion coefficient and f is a reaction term. For
the classical Fisher case [18], f(u) = ru(l — u), Kolmogorov-Petrowsky and Piscounov
[24] showed that there exist non-increasing travelling waves, joining the equilibria 1 and
0, for all speeds ¢ > 2v/dr. A travelling wave solution has the form u(z, t) = w(z —ct) and
describes the propagation of a species as a wave with a fixed shape and a fixed speed ¢. It
was also shown in [24] that there are no such non-increasing waves of speed slower than
the speed c. The concept of asymptotic speeds of spread, known as spreading speeds,
was first introduced by Aronson and Weinberger [2] for reaction-diffusion equations. The
spreading speed is defined using initial condition ug(z) of the reaction-diffusion equation
that is identically zero at one end, but a wider class of initial conditions will also spread
at this spreading speed. Aronson and Weinberger showed also that the spreading speed
can be characterized as a minimal wave speed of a class of travelling wave solution (see
also [42], [26] and [29]). If the initial condition ug converges more slowly, the solution
u(z,t) may converge to a travelling wave of speed that is not the minimal wave speed.

In many applications, however, there is convective motion in addition to diffusion and re-
action, which can have a major impact on the behaviour of solutions. An example of such
convection terms arises in a simple one-dimensional model of the motion of chemotactic
cells, based on a model of Keller and Segel [23], that is presented in Benguria, Depassier

and Mendez [6], where p denotes the density of bacteria chemotactic to a single chemical



element of concentration s, the density evolves according to p; = [Dpy — pxSz)z+ f(p), D
is a diffusion constant and x is the chemotactic sensitivity. For travelling front solutions,
s = s(x—ct), p = p(x—ct), we have s; = —cs,, s, = Kp/c, and the problem then reduces

to a single differential equation for p, namely

Motivated by such models, we study systems of partial differential equations (PDE) in
the presence of convection terms under a co-operative assumption. The theory of spread-
ing speed and travelling waves is presented in [29], [42], [26], [43], and [40] in the context
of co-operative operators of a discrete time recursion u,,; = Q[u,]. Such recursions are
presented as an abstract tool that can be applied to study the spreading speed of reaction-
diffusion-convection systems. We present theory about the recursion u,,; = Q[u,], based
on [29], and others, and extend this theory to remove a reflection invariance assumption
to allow application to PDE systems involving convection terms and to consider both
non-increasing and non-decreasing initial conditions. Note that due to the presence of
convection terms, there is a lack of symmetry in propagation in the PDE system and a
corresponding lack of reflection invariance in the recursion u,; = Q[u,] that imposes us
to present separate conditions for non-increasing and non-decreasing initial data to ensure
that the spreading speeds equal values obtained from the linearization of the travelling
wave problem of the PDE system about the unstable equilibrium 0. These conditions
involve both the reaction and convection terms of the PDE system and are denoted by
right (left) conditions respectively. It is shown in Lui [29] that all components spread at
the same speed when there are only two equilibria 0 and S of the reaction term, whereas
Weinberger,Lewis and Li in [42] also considered more equilibria but they allowed that
these components spread at different speeds. This implies the need for another spread-
ing speed to take account of the fact that different components may spread at different
speeds. As a result and corresponding to non-increasing and non-decreasing initial data
we have right (left) slowest spreading speed and right (left) fastest spreading speed. Fur-
ther, we prove results about spreading speeds for the abstract operator ) which gives us

information about discrete recursion and later we apply it to continuous time systems



such as reaction-diffusion-convection systems by taking @ to be the time-t map of the

reaction-diffusion-convection systems.

A travelling wave of the form w(z — nc) and w(z — ct) is a special solution of recur-
sion upy1 = Q[u,] and of reaction-diffusion-convection systems, whereas the spread-
ing speed characterises the evolution of the solution with specific kind of initial condi-
tion, for instance, when the initial condition is identically zero at one end. Li, Wein-
berger and Lewis in [26] showed that the spreading speed of reaction-diffusion systems
with special linear convection term of the form Fu, where E is a constant diagonal
matrix, can be characterized as the slowest speed of a class of travelling waves. We
extend this characterization theory of spreading speed in terms of critical travelling
wave speeds to reaction-diffusion systems with non-linear convection term of the form
hi(ui)uiz = diag (hy(u1)uig, ..., by (ue)ur). Moreover, we give characterization prop-
erties of spreading speeds for the continuous time system, as well as a characterization
of slowest spreading speed in terms of travelling waves for the PDE system. Note that
in Chapter 2, we discuss non-increasing travelling wave solutions, the minimal speed
of which equals a slowest spreading speed for the reaction-diffusion-convection equation
as will be established in Chapter 5. We remark that in Chapter 2, we consider non-
increasing waves, the analogous results hold for non-decreasing waves, and some results

for such waves will be discussed in the context of the PDE system in Chapter 5.

Before presenting the theory of the operator @, in Chapter 2, we begin by considering

travelling-wave solutions of a reaction-diffusion-convection equation of the form
Uy + b (W)ug = Ugg + f(u), z €R, (1.1)

with a monostable reaction term f(u) in which 0 is an unstable equilibrium, there is a
stable equilibrium > 0, and there are no equilibria of f between 0 and 3. The defi-
nition of stable equilibrium « of f : R¥ — R is that all solutions of u; = f (a)u tend
to 0 as t — oo, whereas « is unstable if for some initial condition «(0), the solution

does not tend to 0. Hence in particular, this definition can be applied in the scalar case



when f : R — R and f'(«) is a number instead of a matrix. The monostable reaction
function f(u) thus satisfies f(0) = f(8) = 0 and f (8) < 0,f(0) > 0. Note that for
(1.1) with h'(u) = 0, there is, of course, reflection symmetry, which means that if u(z, t)
is a solution of (1.1), and we define 4(z,t) := u(—=z,t), then @ also satisfies equation
(1.1). Thus corresponding to a non-increasing travelling-wave solution w(z — ct), there
is a non-decreasing travelling wave w(z + ct) with @W(4o00) = 8,w(—00) =0,0< W < 8
and w(§) = w(—&), so that w(z — ct) = @W(x — (—c)t). On the other hand, it is clear that
the presence of the term h'(u)u, will break this symmetry between non-increasing and
non-decreasing waves, in the sense that 4(z,t) will be the solution of a different problem,
in which h'(u)u, is replaced in (1.1) by —h'(u)u,. Convection terms will clearly affect

the values of propagation speeds in comparison in the case when h'(u) =0.

When h'(u) = 0, Hadeler and Rothe [20] showed that there exist non-increasing travelling
waves u(z,t) = w(z — ct) of (1.1) with w(—o0) = B, w(+00) =0, 0 < w < B for (1.1)
of all speeds ¢ > ¢, and gave a formula for the minimal travelling wave speed cy. In
this chapter, we begin by presenting a generalization of this formula to the reaction-
diffusion-convection equation (1.1). This minimal speed ¢y is bounded below by a critical
parameter ¢ € R determined by the linearization of the travelling wave equation for (1.1).
This is because [38, Lemma 2.4, p.136] (see also Theorem 3.7 in [16]) implies that the
existence of a real negative eigenvalue for the linearization of the travelling wave equation
for (1.1) of speed c is a necessary condition for the existence of the travelling wave with
the same speed ¢, which then implies that ¢y > ¢. We refer to such a critical value as
the linear value, that is obtained from the linearization of the travelling-wave equation
for (1.1) about the unstable equilibrium 0 when we have a non-increasing travelling-wave
solution which converges to 0 at +00. We also present a sufficient condition to guarantee
that the minimal wave speed ¢y equals the linear value ¢ = h'(0) + QW, extending

[20, Corollary 9] to now involve both the functions f and h. This condition is

R () + % < h'(0) + v/ (0) for all u € (0,1), (1.2)

10



which generalises the classical Hadeler-Rothe condition,
f(u) <uf (0) forall uwe(0,1), (1.3)

that applies when A’ (u) = 0. The fact that condition (1.2) is not also a necessary condition
for ¢o = ¢ is illustrated in Example 2.3. Note that Benguria, Depassier and Mendez [7]
give an alternative sufficient condition to ensure that ¢y = ¢ which again involves both
functions f and h and is based on an alternative variational expression from which the
minimal travelling wave speed can be estimated. For more references on work in the same
direction, see [19], [31] and [28]. We mention also that Weinberger [41] recently followed
and extended the approach of Hadeler and Rothe [20] to introduce a new condition in
the case A’ (u) = 0 that involves replacing u in the right hand side of (1.3) by a suitable
choice of function K(u), and briefly discussed such generalised conditions in the presence

of h'(u), but we do not pursue this approach further here.

For (1.1), if we have ¢y = ¢, then we say that the problem is right linearly determinate.
Correspondingly, we say that (1.1) is left linearly determinate when the maximal travelling
wave speed for non-decreasing travelling waves u(z,t) = w(xz — ct) equals the speed
obtained from the linearization of the travelling wave equation (1.1) about the unstable
state, this time with the leading edge tending to the equilibrium 0 at —oo instead of +oc0,
in which case ¢é = h'(0) — QW . Linear determinacy for propagation into an unstable
state means that the spread rate in the fully nonlinear model equals the spread rate in
the corresponding travelling-wave problem linearized about the unstable state, which is
the speed associated with the leading edge of the wave. Note that in the absence of a
convection term, the right linear value is the negative left linear value. It is useful to
determine conditions that ensure (right and/or left) linear determinacy both because it is
easier to calculate a minimal wave speed if it equals the corresponding linear value which
is determined by an algebraic problem, and because the minimal wave speed, being equal
to a spreading speed, is important for applications to, for example, predicting the speed of
spread of biological invasions. For further background and results on linear determinacy,
that focusses mainly on problems without convection, see, for instance, [20], [42], and

also [9], [27], [28].
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On the other hand, we also present Proposition 2.3 that gives a sufficient condition for
(1.1) that ensures that there is a strict inequality between the right minimal travelling

speed cg and the right linear value ¢. This condition is

B
—h(0) + \/(h(ﬁ))2 + 2/0 f(w)du > 2/ (0) + A’ (0), (1.4)

which reduces to the condition of Berestycki and Nirenberg in [8, Remark 10.2] when

h =0,
B
\/2/0 f(u)du > 2+/f'(0). (1.5)

We give an example to illustrate that it is possible for a given function f to satisfy the
sufficient condition (1.3) to have ¢y = ¢, but with the addition of a function h, condition
(1.4) is sufficient to guarantee that ¢y > ¢. Moreover an example can be constricted an

equation which is right but not left linearly determinate is presented in [1, Example 2.7].

Weinberger-Lewis and Li in [42] (see also [29], [39], [26], [43], and [40]), showed that
the theory of spreading speeds and monostable travelling waves could be established for

discrete-time recursions of the form
Unt1 = Q[un) neN, (1.6)

This operator is order-preserving, which means that if we have u < v (in the sense of
Table 1), then Q[u] < Q[v], Q[0] = 0, and Q[S] = B, which says that 0, 3 are equilib-
ria. Moreover, translation and reflection invariance properties are also satisfied for this

operator,

Q[Tyv]] = T,[Qv]] where T,[v](z) :=v(z—y) foralz,yeR. (1.7)
Q[R[v]] = R[Q[v]] where R[v](z):=v(—zx) for all z € R. (1.8)

We will present this background theory in Chapter 3, extending the previous theory for
operator ) in (1.6) to remove the reflection invariance property (1.8), and consider left

and right spreading speeds for the recursion. Later in the thesis, in Chapter 5, we use this

12



operator () as a tool, taking @ to be the time-t map and apply it to reaction-diffusion-
convection systems. Note that we remove the reflection-invariance assumption (1.8) for @
since we want to consider applications to partial differential equation systems that have
convection terms, and if ¢ comes from a PDE system, then the system can only contain
derivatives of even order if () satisfies (1.8). The presence of convection terms with one

derivative u, breaks the symmetry between z and —z, because for @(z,t) = u(—z,t),

0
we have %'&(z, t) = (—1) pu(—:v,t), and when @ is the time ¢ map of recursion

a(—

Uns1 = Q[un] in (1.6), (1.8) does not hold in the presence of convection term h'(u)u,.

For the operator (), we generalize the definition of slowest spreading speed corresponding
to non-increasing initial data that is presented in [29], [42], and [26] to one that treats a
recursion that can later be applied to a PDE system with convection term (1.6), and we
refer to this slowest spreading speed as the right slowest spreading speed, ¢. Corresponding
to this right slowest spreading speed, there is the left slowest spreading speed, ¢ for (1.6)
with non-decreasing initial data up. In [26, Theorem 2.1], the right slowest spreading

speed ¢ is characterized by

lim [ sup {un}, (2:)] =0, nlgglo[ sup {5—un(:r)}} =0, (1.9)

N0 | x>n(é+e) z<n(é—e)

which says that there exists an index i such that the ¢th component spreads at a speed
no higher than ¢, and no component spreads at a lower speed. We modify [26, Theorem

2.1] to show that the left slowest spreading speed ¢é can be characterized by

n—oo Zgn(é—e) n—00 1‘21’1(6-{-6)

lim [ sup  {un}; (x)} =0, lim [ sup {,B—un(x)}] =0, (1.10)

which says that there exists an index 7 such that the jth component spreads at a speed no
less than ¢, and no component spreads at a higher speed. Note that for this modification

we do not need that the operator @ satisfies the reflection property (1.8).

We remark that an alternative way to obtain a left slowest spreading speed for the oper-

ator ) with non-decreasing initial data from the result that we have for non-increasing

13



initial data, is by defining a new operator Q by
QW](z) := Q[R[v]](-z)  for all , (1.11)

where R defined in (1.8) and we denote the right slowest spreading speed of Qbyé It
is clear that, in general, & # ¢ but if the reflection invariance (1.8) holds for the operator
@ in (1.6), then @ = Q and hence & = & On the other hand, we present a lemma to
show that the left slowest spreading speed ¢ for operator @ in (1.6) equals the value —¢
obtained from Q.

It is proved in [29, Theorem 3.1, 3.2] that when there are no extra equilibria other than 0
and B in vg, where ¥5 = {u € BUCR,R*): 0<u(z)<pB forallz € ]R} , there exists
a single spreading speed which means that all components spread at the same speed and
such a property (1.9) ((1.10)) that was hold for the ith component, it will hold for all
the components. This single speed in [29] is noted by ¢*. On the other hand, Weinberger,
Lewis and Li [42], discussed the case when there are extra equilibria in s other than
0 and (3, motivated by the fact that models of multiple species interaction, such as in
population genetics and in population ecology ['40], often have such extra equilibria. Qur
Hypotheses 3.1 allows there to be more than just the equilibria 0 and 8 in ¥g. Under
these conditions, as noted in [42], not all components of u,, necessarily spread at the same
speed, and as we mentioned before, it is natural to introduce a second speed, called the
right (left) fastest spreading speed, é¢(éy), in addition to the right (left) slowest spreading
speed ¢(¢). In biological terms, it clearly sometimes happens that different species spread
at different rates, which means that in general, there should be a right (left) slowest
spreading speed ¢(¢) and a right (left) fastest spreading speed ¢é¢(¢s). A characterization
theorem for the left fastest spreading speed ¢y can be shown via a modification of [26,

Theorem 2.2 ] for non-decreasing initial data for the operator @ in (1.6), that is

lim sup | inf {un}; (z)] >0, lim L sup un(w)] =0, (1.12)

n—o0 z>n(éf+e) N0 [ g<n(ér—e)

which says that there exists an index j such that the jth component spreads at a speed
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no higher than é;, and no component spreads at a lower speed.

Note that it might be more correct to use the ‘ velocity’ rather than ‘speed’, but that it is
common to use the word ‘speed’ for travelling waves when c is both positive and negative,
and we keep to this convention here. In [42], it is shown that the right fastest spreading
speed is larger than or equal the right slowest spreading speed, in our notation, é; > ¢,
whereas when we have non-decreasing initial data, we show that é; < ¢. The fact that
we use the word ‘fastest’ despite having é; < ¢ is because for both kinds of initial data,
non-increasing and non-decreasing, the characterization properties of spreading speed,
such as (1.9) and (1.10) for the slowest spreading speed and the similar two properties for
the fastest spreading speed, always involve the quantity x — nc, and so they give speeds
‘to the right’ if ¢ is positive and ‘to the left’ if ¢ is negative. It is thus natural to have
¢s < ¢, because for instance, in the case when the reflection invariance property (1.8) is
satisfied, for non-decreasing initial data, both spreading speeds é; and ¢ will be negative,
so we have |¢f| > |¢|. The fact that é; < ¢ means that the solution is going faster to the

left.

If the right fastest spreading speed equals the right slowest spreading speed, we say that
the recursion (1.6) has a single right spreading speed. Corresponding to this single right
speed, we present a result that gives a sufficient condition to guarantee that the recursion
(1.6) has single left spreading speed. Note that in the case when the recursion (1.6) has
right (left) single spreading speed, then this means that all components of u, spread
at the same speed. Hence the characterization properties of, for instance, (1.10), (1.12)
whenever there is a single spreading speed, the limits that in general only hold for com-

ponent ¢ must in fact hold for all components.

A linear operator M is the linearization of @ at 0 if for any ¢ > 0 there is a 6 > 0 such

that |jul|,, < 0 implies that ||Q[u] — M[u]||, < €||ull,,, and such as noted in [42] that

o0?
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lirr(l) I(1/p)Q[pu] — M[u]||oc = 0. This linear operator has the representation,
p—

(M[u](= Z / (& — y)mis (4, dy), (1.13)

where m;; is a bounded non-negative measure. We introduce the matrix B,, that is defined

in [42] by
Bo= ([ emotna)). (114

and it can be characterized using M as follows: for every positive p,
B,a = M[ae™]|z=0.

We assume that the entries of B, are finite for all u. Lui assumed that there is only
one block in the matrix B, and so it is an irreducible matrix, whereas Weinberger, Lewis
and Li in [42] reordered the coordinates of B, if necessary to put it into a block lower
triangular form, so it is in Frobenius form, in which all the diagonal blocks are irreducible.

See Theorem 3.1; we also assume that B, is in Frobenius form.

Similarly to the scalar case, in Chapter 4, we present sufficient conditions for right (left)
linear determinacy for the recursion u,41 = Q[u,] in (1.6). A recursion (1.6) is said to
be left (right) linearly determinate if the left (right) single speed equals a speed that is
obtained from the recursion (1.6) when the operator @ is replaced by its linearization M

at the unstable equilibrium 0, which we then call the left (right) linear value.

As an application of this operator @), in Chapter 5, we consider a co-operative system of

partial differential equations of the form
Uit + h;(u,)u,,m = diui,m + fz(’U,), 7= ]., 2, ceey k, (115)
u(0, z) = up(x) for all z € R,

where d; > 0, the reaction terms f1, fo, ...., fx are independent of z and ¢ and satisfy the co-
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operative assumption S—ZZ(U) >0, 3 # 7, the convection functions h;(u;) have the “diago-
nal” form of convection terms as diag (h;(u1), hy(u2), -, Ay (ur)), u = (u1, ug, ..., ug) € R,
and the initial condition uy € BUC!(R,R*). Note that the system (1.15) is order-
preserving by the Comparison Theorem 5.1, and Example 5.1 illustrates that if the co-
operative assumption on f is not satisfied, then such a comparison result could fail. Note
that in Chapter 3, we consider the recursion u,y; = Q[u,] defined in (1.6) with initial
condition uy € BUC(R,R¥), but in Chapter 5, which deals with the application to the
PDE systems, we will use this recursion as an abstract tool for the spreading speed of a
reaction-diffusion system with convection terms and we hence restrict the initial condi-

tion to be ug € BUC(R, R*) (the space of functions p : R — R¥ such that p and p are

bounded and uniformly continuous on R) because of the presence of the convection terms.

In order to apply the spreading speed and travelling wave theory based on the recursion
Un+1 = Q[un) in (1.6), to the PDE system defined in (1.15) under conditions that ensure
(1.15) satisfies the Comparison Theorem 5.1, we define an operator @;. If u(z,t) is a
solution of (1.15) and ¢ is any positive number, then the sequence of functions u,(z) :=

u(z,nt) is shown to satisfy the recursion (1.6) with an operator Q;[uo] that is defined by

Qt[uo](z) == u(, 1), (1.16)

This Q; is called the time t map of (1.15), where wuq is the initial data of the partial
differential equation system in (1.15) at time ¢ > 0. As noted in [26], Q; satisfies the

semigroup properties
(1) Q4 [Qr[v]] = Qeyat,[v], for all positive ¢; and ¢,
(2) lim Qo] = v,

where (2) is satisfied in the sense that ||Q:[v] — v||,, — 0 as ¢t — 0. We prove that Q;[v]
defined in (1.16) satisfies the hypotheses required for the operator @ in (1.6) with slightly
modified versions of Hypotheses 3.1 gy, g5, g7, which we call q;, q:,,, and q’7. The modifica-
tions involve requiring that the initial condition ug belongs to the set 13 N Bpye1 (0, R)

for some fixed R > 0, which we impose because of the presence of the convection terms.
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We want to be sure that the derivatives u;, are uniformly bounded all the way down to
t = 0, and hence choose an initial condition that not only lies between 0 and 3, but also
lies in a fixed bounded set in BUC!. The operator Q; in (1.16) links the discrete-time
system (1.6) and continuous-time system (1.15). Moreover, we show that the spreading
speed of the time 1 map of the PDE system (1.15) gives a spreading speed for solutions
of the system (1.15) itself where the initial condition is non-decreasing, in the sense that

the characterization properties in Theorem 5.5 are satisfied.

Lui [29] gave sufficient conditions for spreading speeds to equal linear values that are
obtained from the recursion u,,; = Q[u,] when the operator @ defined in (1.6) is replaced
by its linearization M at the unstable equilibrium 0 in the special case of a system with
only two equilibria 0, 5,8 > 0 and f/(O) an irreducible matrix. These results were
generalized by Weinberger, Lewis and Li [42] to systems where the Frobenius form of the
matrix B, may have multiple diagonal blocks and there may be more equilibria other
than 0 and S in [0, 8] provided any additional equilibrium v has v; = 0 for at least
one i € 1,2,...,k, and they gave a sufficient condition for linear determinacy for the

reaction-diffusion systems. This condition is

filp¢(m) < p(f(0)¢(R):  for all p> 0, (1.17)

where ((f) is a strictly positive eigenvector of the coefficient matrix C,,, defined in (5.33)
below, that is obtained from the linearization of the travelling-wave problem for the
system (1.15) about the unstable equilibrium 0 at 400, and [ is the value of u > 0
at which the infimum in definition (5.37) is attained. Note that in the scalar case,
(1.17) reduces to the well-known Hadeler-Rothe condition (1.3). On the other hand,
our sufficient condition for right linear determinacy for the reaction-diffusion-convection

systems (1.15), which generalises (1.2) in the scalar case, is that for all positive p € R,

F(C(R)) < ot [(0) = Ki(pG()| G(8) + (£ O)C(@)  1<i<k,  (118)

we refer to this condition as the right combined condition since it involves a combination
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of the functions f and h. Clearly (1.18) extends [42, (4.9)] and reduces to it when
h'(u) = 0. There is a corresponding condition for non-decreasing travelling-front solutions
of (1.15), called the left combined condition, that ensures the system (1.15) is left linearly

determinate, namely that for all positive p € R,

£ () < o [RilpG() = K(O)| GB) + p(£ (O)C(E):  1<i<h,  (119)

where {(f2) is a strictly positive eigenvector of the coefficient matrix C,,, defined in (5.39)
below, which is obtained from the linearization of the travelling wave problem for (1.15)
about 0 at —oco, and i is the value of 4 > 0 at which the infimum in definition (5.40)
is attained; see Theorems 5.7, 5.10. Note that, in the absence of the function h'(u),
the eigenvectors ((fi) and ¢ (i) are clearly equal. Moreover, in the scalar case, when the
eigenvectors both just equal one, we still have two conditions because the function A’ (u)
is still present and there is asymmetry between non-increasing and non-decreasing initial

data.

The rest of our work is organized as follows. In Chapter 6, we compare between two
different concepts of linear value. The linear value ¢y, () is defined as the minimum
(maximum) of the values of ¢ for which there exists a stable (unstable) monotone eigen-

value A for the matrix M (A, ¢) which is presented in [38] and [12], and is defined by
M(\ ¢) := N2A+ XcI — D) + B, (1.20)

where A is the positive-diagonal matrix of diffusion coefficients diag (dy,..,dx), D is the
diagonal matrix of convection terms diag (hy(0), ..., hx(0)), and B = f'(0). On the other
hand, the linear value ¢ (¢) is obtained from the linearization operator M at 0 of the time

one map ), which is defined in (5.37), ((5.40)) respectively by

¢:= inf {%('UJ)} , C:=inf {%EM)} ,
pu>0 Ji a>0 M

where 1 (1) (§1(f&)) is the principal eigenvalue of the matrix C, (éu) defined in (5.33)

((5.39)). Note that the right linear value ¢ is the same as ¢ in [42]. We focus in Chap-
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ter 6 mainly on the case when the Frobenius form of f (0) contains only one block and
for simplicity, we suppose that f (0) € P***  the set of matrices with strictly positive
off-diagonal entries, and in Lemma 6.3, we prove that ¢, (¢in) equals é (¢) respectively
when f has this form. Note that in the absence of a convection term, the reason that
¢ = —c is that (A2A+ Ael + B) ¢ = 0 if and only if ((—A)24 + (=A)(=c)I+B)gq =0,

where ¢ is the eigenvector for the matrix M (), ¢) without the convection term D.

In addition, in Section 6.2, we discuss the case when f (0) contains more than one irre-
ducible block. The proof of [38, Lemma 2.4, p.136] shows that for such f, a necessary
condition for the existence of a travelling wave converging to 0 at co (—o0) is the existence
of a stable (unstable) monotone eigenvalue corresponding to a non-negative eigenvector
X, but not necessarily a strictly positive eigenvector X. Hence when there is more than
one block in f'(0), we discuss two possible cases for the eigenvector, a non-negative eigen-
vector or a strictly positive eigenvector. In Lemma 6.7 we generalize parts (1), (2), (4)
and (5) of Lemma 6.2, only in the case when we keep the requirement that X > 0,
whereas when X > 0, X # 0, under certain additional conditions, we generalize the first
part of Lemma 6.2 only. Moreover, in Proposition 6.1, we have a partial generalization
of part (3) in Lemma 6.2 and we present an example, Example 6.1, that fully analyzes
eigenvalues and eigenvectors in the case when M (), c) € R?*2 in order to show the reason
for the partial generalization of part (3) of Lemma 6.2. This example illustrates that
for sufficiently large ¢, we do indeed have at least one stable monotone eigenvalue with
a strictly positive eigenvector (part (2) in Lemma 6.7), but also shows that if we have
a stable monotone eigenvalue A with a strictly positive eigenvector for some value of ¢,
then as c increases, this particular stable monotone eigenvalue A will necessarily persist
under small perturbation. Further, we give an example in the case when M(), c) € R3*3,
Example 6.2, to show that it is possible that for some values of ¢, there exists a sta-
ble monotone eigenvalue with a strictly positive eigenvector, but for larger values of c,
there does not exist such a stable monotone eigenvalue with a strictly positive eigenvector.
This example illustrates that the generalization of part (3) in Lemma 6.2 must be partial,

and thus we can not fully generalize Lemma 6.2 in the case of M (], ¢) has multiple blocks.
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Finally, Chapter 7 deals with examples for the PDE systems. Firstly we begin with a
PDE equation where f : R — R, or a PDE system where f : R> = R? and f'(0) € R?*?
has two irreducible blocks. For certain functions f, examples illustrate that we can find
functions h so that both the right and left combined conditions (1.18) and (1.19) are
satisfied, which implies that a single equation and a system of two equations are each
both right and left linearly determinate. We also present examples of a system of two
equations under some conditions on the parameters and convection terms that guarantee
the system has a right (left) single speed, meaning that the slowest spreading speed equals
the fastest spreading speed. Secondly, we present examples of a system of two equations
in the case when f'(0) is one irreducible block. We give an example of a system that is
left linearly determinate both in the presence and the absence of convection terms. On
the other hand, we give an example that shows that under a different condition on the
convection term, the system will not be left linearly determinate. Note that when there
is one irreducible block in f'(0), it is not easy to calculate explicitly the linear value in
spite of the fact it comes from the algebraic problem, but we succeed to estimate it. One
of the tools used in deriving our examples is the comparison between one of the equations

of the original system and a Fisher-type equation with convection term, of the form
U = ditgy — b (0)tg + u(w — ), (1.21)

where w > 0. Such Fisher type equations are obtained either from the first or/and the
second equation of the original system.

In the Appendix, we prove the Continuous Dependence Theorem 5.4. This result is needed
to allow us to show that a variation of Hypothesis g5 in Hypotheses 3.1 is satisfied by the
operator (Q;[v] that is defined in (1.16) in the case when we restrict the initial condition
up of the recursion u,41 = Quy,] to belong to BUC(R,R¥). This modified hypothesis
says that for a given sequence {v,},cy C %5 N Bpyci(0, R) and v € ¥3 N Bpyc:(0, R)
such that {v,} converges to v uniformly on every bounded set, Q;[v,] converges to Q:[v]

uniformly on every bounded set.
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Chapter 2

The minimal travelling wave speed
and linear determinacy for a
reaction-diffusion-convection

equation

This chapter deals with a reaction-diffusion-convection equation (2.2) with a monostable
reaction term f(u) in which 0 is an unstable equilibrium, 8 > 0 is a stable equilibrium, and
there are no equilibria of f between 0 and 3. Hadeler and Rothe [20] gave a formula for the
minimal travelling wave speed ¢ of the reaction-diffusion-convection equation (2.2) when
h'(u) = 0, and we present a generalization of this formula cy to the reaction-diffusion-
convection equation (2.2). This minimal speed ¢g is bounded below by a critical parameter
¢ € R, which we refer to as the linear value that is obtained from the linearization of
the travelling-wave equation for (2.2) about the unstable equilibria 0 when we have a
non-increasing travelling-wave solution which converges to 0 at +o00. Further, a sufficient
condition is presented to guarantee that the minimal wave speed ¢ equals the linear value

¢ which is also a generalization of the classical Hadeler-Rothe condition [20, Corollary 9]

f(u) <uf(0) forall we(0,1), (2.1)

22



that applies when A'(u) = 0, to now involve both the functions f and k. On the other
hand, a sufficient condition for a strict inequality between cq and ¢ for the equation (2.2) is
given in Proposition 2.3 below. In this chapter, we restrict our attention to non-increasing
travelling waves; analogues results hold for non-decreasing-travelling waves. Note that it
will be shown later, in subsection 5.3.2, that the minimal speed of such non-increasing
waves corresponds to the right slowest spreading speed of the reaction-diffusion-convection

equation (system).

2.1 A formula of the minimal travelling wave speed

Consider a reaction-diffusion-convection equation
Uy + b (W)ty = Ugg + f(u) z €R, te(0,00), (2.2)

where u : R x [0,00) — R. The functions h and f satisfy the following hypotheses:

Ey: f € C0,1] and h € C?[0,1].

Ey: f(0)=f(1)=0, f(u)>0forue(0,1).

Es: f(0)>0, f(1)<0.

A travelling wave is a solution u of (2.2) such that u(z,t) = w(z — ct), where w is here

taken to be a non-increasing function such that
w(—o0) =1, w(oco)=0 0<w<1, (2.3)

and the speed ¢ € R is a constant. Clearly w and c satisfy the ordinary differential

equation

—w' =cw —h'(w)w + f(w). (2.4)

The following preliminary lemma shows that w : R — R satisfying (2.3) and (2.4) must
have w'(4+00) = w'(—o0) = 0. To prove this, we use Landau’s inequality [22, Theorem
5.3.1.] which states that if w,w and w" are uniformly bounded on an unbounded interval
I C R, then

2 ’
lwllce < 4llwllollwlloos
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where [|yllo, = [|Yll oo (1 gry = Sup {|y(2)| : * € I} when either I = R or I = [, 00), (—00, ¢
for some a. Note that this inequality holds only when I is the whole line or a half line
but not when I is a bounded interval. A counter example for this is that, for I = [a, b]
such that a < b and a,b € R, if we have u(z) = z then v'(z) = 1, whereas u’ (z) = 0.
On the whole line R, however there is no M > 0 such that |z| < M for all z € R, so

Landau’s inequality does not apply for this choice of w.

Lemma 2.1. If w satisfies the equations (2.3) and (2.4), then
w'(+00) = w'(~00) = 0.
Proof. We first show that |w'(£)] is uniformly bounded on R. If £ < 0, then
o, 0 ’ '
WO -u(©)= [ u(@ds < = [ [ K wie)]wes,
since f(w(s)) >0, so [ f(w(s)) > 0, and hence
w'(0) — w'(§) < —h(w(€)) + cw(€) + h(w(0)) — cw(0). (2.5)

Since the right-hand side of (2.5) is bounded independently of & and w'(£) < 0, it follows
that |w'(€)| is uniformly bounded on (—oc, 0).

Now suppose, for contradiction, that there is a sequence &, — oo with |w'(£,)| = oo and

[ (£,)] = sup|w' (€)]. Define y, (&) = %’g’j—) Then v, satisfies
£<&n 2 \Sn
Y + (c — R (wn (€ + &J)) Yo + ! (wl’;,(f;)g")) =0, (2.6)

and sup|yn(€)] = 0 as n — oo, 1 = |y, (0)| = suply,(£)], so by (2.6) we get that there
£€<0 £<0
exists C' > 0 such that

sup |y, ()] <C  forall neN.
£<0
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But Landau’s inequality implies that

(suptin) < (suphicce)) (supt@n).

and hence 1 < 4C (sup|yn(§)|> — 0 as n — oo, which is a contradiction. So |w'(€)]
£<0

is uniformly bounded on R. It then follows from equation (2.4), that |w’ ()] is also
uniformly bounded on R.

Now we re-apply Landau’s inequality in the case when I = (—o00, —n]. Then

7 2 ”n
1 1 zo0((—c0,-n)y = 4T = Wl oo (o0, 1" | 20w (00,

which, since ||w"]|L°°( < M and 4|1 = W[ oo ((_oo—npy — 0 @8 n — 00 yields that

(_oov_n])

||w'||Lw((_m7_n]) — 0 as n — oo, and hence w'(—o0) = 0.

Moreover, in the case of I = [n,00), yields that |w|| = sup|w(z)| — 0 as n — oo so we
x>n

also get that ||w'||ioo([n,oo)) — 0 as n — oo which means that w'(+00) = 0. Thus the

lemma is proved. O

It is shown in Hadeler and Rothe [20] that when h = 0, a travelling wave satisfying (2.3)

exists for each ¢ > ¢y, with

co = inf sup {p’(w)-i-M}

PEA p<w<1

where the set of functions A is defined by

A= {p :[0,1] = [0,00) : pis continuously differentiable, p(0) =0, p (0) > 0, (2.7)

and p(w) > 0for we (0,1)}.

The following proposition characterizes the minimal speed cp, and its proof is similar to
that in [20, Theorem 8]. Gilding and Kersner [19, Theorem 8.2] also discuss this extension
of [20] and it additionally follows from the special case of [13, Lemmas 2.1, 2.2] when
there is only one equation using the fact that one can write w' = —p(w) for a function

p € A whenever w is a solution of (2.2) and satisfies (2.3).
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Proposition 2.1. There exists a decreasing travelling-wave solution of (2.2) that satisfies

properties (2.3) for all speeds ¢ > ¢y, where cy is characterized by

. / : f (w)}
co = inf su w)+h (w)+——= 7,
0 peEA 0<w121 {p( ) (w) P(w)
and A is defined in (2.7).
Proof. If such a wave solution u(z,t) = w(z — ct) exists for the reaction-diffusion-

convection equation (2.2) , then w solves the ordinary differential equation (2.2) with

boundary conditions (2.3). Applying the substitution w — 1 — w, we have

!

w =v=: M(w,v), - (28)

v =—cv+h(1—wv+ f(1-w)= Nw,v), (2.9)

where M, N : R?> — R are continuously differentiable functions. Suppose a function

6 = (61, 65) is such that 61,6, : R — R satisfy the following properties
1. 0< (91(t) <1, 0< eg(t), (911 =0,

2.6, 51,0, —>0fort— 400, 6, —=0,0,—8>0fort— —oo

/

3. 161 + 165 # 0, |6;] + 65| — 0 for |t| = 0o, —oco < lim -2 < 0.

t—o00 0’1

and

M (61,62)05 — N(61,6)0, > 0 (2.10)
M(0,v) >0 for0<wv <8, Nw,0)>0 for0<w< 1.

With M and N given by (2.8), (2.9), condition (2.10) becomes
020, — [—cBz + B (1 — 01)02 + f(1 — 61)]6; > 0. (2.11)

Since #, = 6, > 0 and 6, is a strictly increasing function, we can represent the function
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6 = (0:,6,) as 0 =: 5(6;), then from Properties 2 and 3 respectively, p satisfies
p(1)=0, 5(1) <0. (2.12)

It follows from the definition of p, that 6, = 5'(6,)0; = p (1) = 7 (61)5(61). Then

condition (2.11) becomes
p(61)5(61)7 (61) + cp(61)p(61) — B (1 — 61)3(61)5(61) — f(1 — 61)p(61) > 0.
Since #y = $(61) > 0, this implies
cp(6y) > —p(01)5 (61) + h'(1 —61)p(6)) + f1—6,) forallteR

which is equivalent to,

Since p satisfies (2.12) and p(w) > 0 for w € (0, 1), then the function p(w) := p(1 — w)
belongs to the set A defined in (2.7). Then (2.10) is satisfied if

’ ’ f(w)
c>p(w)+h(w)+——= w € (0,1),
pw)+iw) + I8 weo
and hence by [20, Corollary 6] we get
B )
co = })Ieljf\ Oiggl {p (w) + h (w) + o) ] (2.13)
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2.2 Sufficient conditions for linear determinacy

The variational formula (2.13) clearly yields upper bounds for ¢, using specific choices of

test functions p € A. In particular, if we define

L= s {2 = (W)},

O<w<1 w O<w<1

then as in the proof of [20, corollary 9], and noted also by Malaguti and Marcelli [31],
we can obtain estimates for the numerical value of ¢y by taking a particular family of
functions py € A, where A is defined in (2.7) and pi is defined by px(w) := kw, k > 0.

The minimum of the expression

: : f(w) }
su w) + h (w) + , 2.14
Sup {pk( )+ h (w) (@) (2.14)
with respect to k, yields that 1 — ()L = 0 if and only if
k> —L L .
R 0, which implies that & = V/L. (2.15)

Thus the minimum of (2.14) over k > 0 is attained at k = v/L, and (2.14) is thus bounded
L
above by VL + — + J = 2v/L + J. By Proposition 2.1 we thus obtain that

VL

co <2VL +J. (2.16)

Moreover, the value of the minimal speed ¢ is bounded below by a critical parameter
¢ € R known as the linear value, see [16, Theorem 3.7]'. This linear value can be defined
by the property that the non-linear travelling-wave problem (2.4) can be written as a

first-order system of 2 equations,

v —cv + B (w)v — f(w) N(v,w)
w v M(U’ ’LU)

1Note that, in fact ¢ = ¢, where ¢ is the right linear value introduced in (4.10) in Chapter 4, which is
a lower bound for the right slowest spreading speed ¢, but for clarity, we keep the simple notation ¢ in
Chapter 2.
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whose linearization about the unstable equilibrium 0 can be written as

= , (2.17)

~(c=H(0) —f(0)

and the definition of ¢ is that the matrix has a real negative
I 0

eigenvalue A if and only if ¢ > €. Such an eigenvalue ) satisfies the quadratic equation

A%+ A(c— h'(0)) + £ (0) = 0 which is obtained from

—c+Rh(0)=X —f(0)
1 —\

Now such X exist if c—h'(0) > 24/f'(0), and hence since ¢ is the smallest speed for which

such an eigenvalue exists, we have

24/f(0) + A (0) < co, (2.18)

l

C
and thus
c<co<2VL+J

This estimate clearly yields a set of sufficient conditions, which generalize the sufficient
condition (2.1) that is presented in [20, Corollary 9] to the case of (2.2) with h # 0, that

guarantee that the linear value ¢ equals the minimal wave speed ¢y, namely if
WL+ J < 2:/f(0)+h(0), (2.19)

then ¢y = ¢. In particular, ¢ = ¢ if

sup ic(—ll)z:f'(O) and sup h'(w) = h

o<w<l W O<w<1

’

(0). (2.20)

The following proposition gives an alternative sufficient condition (2.21) that ensures
¢ = ¢o. Note that if (2.20) holds then (2.21) is satisfied and we will show in Example 2.2
that (2.21) can hold even when (2.19) is violated.
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Proposition 2.2. A sufficient condition to guarantee that the linear value ¢ = 24/ f'(0)+

R'(0) for problem (2.2) is equal to the minimal travelling wave speed c, is that

B (w) + S <K (0)++/f(0),  forallw e (0,1). (2.21)

Proof. Define a function y : [0,1] — R by

! (w —f(w) orall w
J(w) = VIO +h( )+\/mw for all w € (0,1]
24/f(0) + A'(0) if w =0,

and note that (2.21) implies that y(w) < y(0) for all w € (0, 1).
By Proposition 2.1, and p € A defined by p(w) := 1/f'(0)w in (2.13), and (2.21) together

imply that
co < sup {y(w)} < y(0), (2.22)
O<w<1
and hence ¢y < 21/f'(0) + 1'(0) = ¢, so by (2.16), we get co = C. O

In particular, (2.21) holds if the condition (2.23) in the following lemma is satisfied, since

f(w)

condition (2.23) ensures that the function u — h'(w) + —===— is non-increasing on

V(0w
0,1).

Lemma 2.2. A sufficient condition to guarantee that the linear value ¢ = 2+/f (0)+h (0)

equals the minimal speed ¢y is that

" 1 {fll(uw) — fl(:;))} <0  forallwe(0,1). (2.23)

Proof. Define y(w) := h'(w) + _fgw_) for w € (0,1), therefore
f (0w

N LI
vi = ”{ 7O f'(O)w?}'

Since (2.23) implies that A" (w) + { ];,((u(;;w — \/%wz} <0,y (w) <0forallwe
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(0,1), and hence we obtain the condition (2.21), that is

K (w) + —’;\/(—lo))—w < H(0) + VFT0).

O

An alternative condition that ensures ¢y = € is given by Benguria, Depassier and Mendez
in [7], namely

% +h"(w)>0  forallw e (0,1). (2.24)

This condition is derived using a different variational characterization of cq for their equa-
tion wy + pp(w)wy = wee + f(w), > 0, where the reaction term f satisfies Hypotheses
E, — E5 and with a non-increasing wave w(z — ct) joining the stable equilibrium w = 1

to the unstable equilibrium w = 0. This characterization is that

co = sup &(g),
geSs

with

i {2VF@g@ g @] + po(wie(w) | du
fol g(w)dw

where S is the set of all positive decreasing functions g(w) for which this integral exists

£(9)

bl

and g(1) = 0. Note that our convection term h'(w) is replaced in [7] by pu@(w), where ¢
is a C!-function such that, for simplicity, it is assumed that ¢(0) = 0, but this restriction
on ¢(0) clearly only affects the numerical value of ¢, not the condition (2.24), and can be

removed.

2.2.1 Illustrative examples

The following two examples compare our condition (2.21) with (2.24), (2.19) and (2.20),
and in particular, illustrate that functions f and h can be found which satisfy (2.24) but
not (2.21) and, vice versa, that there exist functions which satisfy (2.21) but not (2.24).

Example 2.1. Choose f(w) = w(l —w) and h(w) = (g)w2, d € R. Then f satisfies
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|
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l
|

Hypotheses E; — E3, and for this function f, condition (2.23) says that

W () < _W% {f’fuw) ) ff;;})}
lsz_l;w}

=-1

=1 for all w € (0,1),

which holds if and only if § < 1. On the other hand, condition (2.24) requires that

R (w) < — f;é}(z), which is satisfied if 6 = h"(u) < 2 for all w € (0,1). Hence if
d € (1,2), then (2.24) satisfied but (2.23) is not, and moreover, it is easy to check that

our weaker condition (2.21) is also not satisfied for such 4. O

The next example shows that functions f and A can be found which satisfy the condition

(2.21) but not (2.24).

Example 2.2. Choose f(w) = w(l —w)(e+w), where € > 0. Then f satisfies Hypotheses
E; — Ej3, and for this function f, condition (2.23) says that

Mmg—%{

1 w — ew — 2w?
=- ”

1
=—{e—-1+2 for all 1
\/E{E +2w} for allw € (0,1),

€+ 2w —2ew — 3w?  w(l—w)(e+w)
w w?

whereas condition (2.24) is satisfied if

f'(w)

p 1
h (w) < — 70) = ﬁ{%_

2+ 6w} forallw e (0,1).

Thus to have that condition (2.23) is satisfied but (2.24) is not, we need that for some
w e (0,1),
1—
2¢ —2+6w < e—1+2w if and only if Te>w. (2.25)

So in particular, if we choose € = 1, then (2.25) holds for w € (0, 1), and (2.23) is then
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satisfied provided
" 1 1
h (w) < % {e-—1+2w} = \/5(211} — 5) for all w € (0,1), (2.26)

and (2.24) is not satisfied provided

1

V2(6w —1) = NG {26 — 2+ 6w} < b (w) for some w € (0, 1). (2.27)
" 1
For instance, (2.26) and (2.27) are clearly both satisfied by taking h"(w) = v/2(2w — 3)

and thus

=£w3——1—w2+Aw+B A BeR.

3 22

We conclude that the chosen functions f and h satisfy condition (2.21) but not condition

h(w)

(2.24). Note that for this function A(u), neither the Benguria-Depassier-Mendez nor
the Malaguti-Marcelli alternative conditions (2.24) and (2.19) are satisfied. Moreover, if
€ < 1, the function f does not satisfy the classical Hadeler-Rothe condition (2.1), while
condition (2.23) does hold for a pair of functions f and h if h satisfies (2.26). O

The next example illustrates that there exist functions f and h such that the sufficient
condition for linearly determinate (2.21) is not satisfied, but the minimal travelling speed

is linear determinacy.

Example 2.3. Consider the equation
Uy = Uy — Puty +yu(l — uw)(1 + 29u), (2.28)

where the functions f and h satisfy Hypotheses £y — E3, 8 =2(,/y—7),and 0 <y < L.
Since the linear value of (2.28) is ¢ = 2,/7, the left-hand inequality in (2.22) becomes

2v/7 < ¢ < sup y(u),

O<u<l1

where

_L( =27 +u(B + 277 —7) — 27,



For a function wegpiicit(€) := (1 + exp(,/7€)) ! which is a solution of (2.28), the travelling

wave speed iS Cegpricit = 2+/7. We observe that because v € (0,1), sup y(u) > 2,/7,
o<u<1

which implies that

c=2/7<co < sup y(u) and sup y(u)>2/7.
O<u<1 O0<u<1

Thus the minimal travelling wave speed ¢y is linearly determinate. O

2.3 A sufficient condition for not linear determinacy

In this section we present a proposition that gives a sufficient condition for strict inequality
between cq and ¢. This result is a modification of a result of Berestycki and Nirenberg
[8, Remark 10.2] to include the extra term h'(w)w’. It shows that when the functions f
and h satisfy Hypotheses F; — E5 and condition (2.21) is not satisfied, then the minimal

speed and the linear value do not necessarily coincide.

Proposition 2.3. Consider the equation
w +ew — Rk (ww + flw) =0 (2.29)

w(—o0) =1, w(+o0) =0 for all we (0,1)

where the functions f and h satisfy Hypotheses Ey — E3 and w is a non-increasing trav-

elling wave solution. Suppose in addition that the function h satisfies
h(w) >0 forall we (0,1) and h(1l) > h(0). (2.30)

Then a sufficient condition to have cy > C is that

—h(0)+\/(h(1))2+2 /0 fw)dw > 2¢/F(0) + ' (0). (2.31)

Proof. To show that ¢ > 0 for functions f and h that satisfy F; — E5 and (2.30), we
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integrate equation (2.29) to get
+oo ’ too " too ’ ’ too
—c/ wd€ = / w d€ — / h (w)w d€ + f(w)dg,

which implies that

, , w(+00) , +o0
—e[w(+00) — w(—o00)] = w (+00) — W' (—o0) ~ / Bwdw+ [ flw)de.

w(—o0) —00

Then by Lemma 2.1, we have w'(+00) = w'(—00) = 0, and hence

c=— /1 B (w)dw + _+°° f(w)dé = /0 B (w)dw + _+°° f(w)de¢
= h(1) — h(0) + _+°° f(w)dé.

So by (2.30) and Hypothesis F», it follows that ¢ > 0.

. . +00 ! 2 . .
Now we want to obtain an estimate of the term [~ c(w (€))?d¢ by firstly, multiplying
equation (2.29) by w’ and integrating the obtained equation, and secondly, multiplying
(2.29) by 1 — w and integrating the obtained equation. After that we will compare be-

tween the two estimates of [ c(w'(€))2d¢ that we have obtained.

Multiplying equation (2.29) by w’ and integrating over R yields
+w " 7 +w i +w 7 ! +m 7
/ w wdf +/ c(w (€))%d€ — / R (w)(w)?d€ + fw)wdé=0. (2.32)

(o ¢] —00 —0Q

By evaluating some terms in equation (2.32) separately we have the following:

1. The first term in equation (2.32) with applying Lemma 2.1 yields

oo
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2. The third term in (2.32) is
} +00 , , ) +o00 , ,

_ h dé = — h d
{ | Hwwre-- [ K
r

=— [h(w).w'] :i: + /_-:0 w' h(w)dé = [:o w” h(w)de.
Since w"' = —cw' + k' (w)w' — f(w),
/+oo w h(w)dé
- +oo +oo +o0
=—c /_ . h(w)w' dé + /_ _ B (w)w h(w)dé — » f(w)h(w)de
. 0 +ooi (h(w))? B +00
; _ c/l h(w)dw + /_oo . ( . ) st~ [ stwpnu)ds
’ =c /0 1 h(w)dw + —;— [(7(0))* = (h(1))?] - _:o f(w)h(w)dg.
Thus we have
+co , , 1 1 +o0
- [ K @ =c [ b+ 5 0P = 107] - [ fwhwide.

3. The fourth term in (2.32) gives us

w(+00

/_:0 flw)w'dg = )f(w)dw = /lof('w)dw = —/01 f(w)dw.

w(—00)

E Thus the three integrations together give,
l
|

c/_ Oo(u/(f))%iﬁ—l—c/o h(w)dw + h—(O)Q;—h(l—)—z

]
]

+o00

— f(w)h(w)d€ —/0 f(w)dw = 0. (2.33)

Then by (2.30) and Hypothesis E,, we obtain that fjozo f(w)h(w)d¢ > 0. Note that we

need to estimate this term because we do not know the explicit form of the function w

and as a result of this we cannot evaluate this term. We estimate it since the integration
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is with respect to d¢ not dw. This give

c/_ oo(w/(f))zd{ + C/O h(w)dw > h—(l%w +/(; f(w)dw = 0. (2.34)

We now multiply equation (2.29) by 1 — w to get
w(l—w) +ecw(l—w) —hww(l-w)+ fw)(l—w)=0, (2.35)

and then integrate each term separately over R.

1. The first term in (2.35) gives us

[:71_wmmm=[M@X1_wam+z—/fww@x_¢@»%
= [Ty

oo

2. The second term in (2.35) is

0 w(+o00 1
C/_Jr wl(l—w)d§=c/ " )(l—w)dw=c/10(1—w)d'w=—c[w—y;] =-—§.

o w(—00)

3. The third term in (2.35) is

[ TR - g = [ Hwwder [ wuvde
= - [ Wewyiwr [ o
= bl + { el + [ hw)in
= )~ o+ [ Al

=—Mm+/%mmw

4. Since the function f satisfies Hypothesis Es, integration of the last term gives us the
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following estimate
+o0
/ Fw)(1 = w)de > 0.
Thus

“+o0

—00 —00

So by (2.36), equation (2.37) gives

| w©rds+ [ awiw < § + o)

and since ¢ > 0, this implies
~+00 , 1 c?
c / (w'(€))2dg + / h(w)dw < & + ch(0).
—00 0

Then comparing (2.38) with (2.34) yields that

= v an(o) - M ROF —/Olf(w)dw > 0.

[ werdes [ hwiao=E+n0)- [ sw)0-wie

(2.36)

(2.37)

(2.38)

(2.39)

In order to understand what inequality (2.39) tells us about ¢, we study the roots of

5% +2sh(0) — (h(1)? — h(0)%) — 2 /01 flw)dw =0,

which is a quadratic equation in s, that has solutions

5= —h(0) T \/h(1)2 + 2/01 f(w)dw.

Using Hypothesis F,, we obtain that (2.40) has a positive root which is

sy = —h(0) + \/h(l)2 + 2/01 f(w)dw,

(2.40)

Thus since ¢ > 0, (2.39) implies that ¢ > s, and by definition of the minimum value of
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Co, it follows that

co > —h(0) + \/h(1)2 L2 /0 ' Fw)dw.

Since the linear value for equation (2.29) is ¢ = 24/ (0) + &'(0), a sufficient condition to

have cg > ¢, is thus that

—h(0)+\/ (h(1))2 + 2 /O 1 flw)dw > 2/F(0) + 1 (0). (2.41)

O

Note that condition (2.41) reduces to the condition of Berestycki and Nirenberg in [§]
when h = 0 namely, that

”2/0 f(w)dw > 24/f'(0) if and only if /0 fw)dw > 2f(0). (2.42)

The following example illustrates the fact that it is possible for a given function f to

satisfy the sufficient condition (2.42) for ¢y = ¢ when h = 0, but one can find a function

7

h so (2.41) will be sufficient to ensure that ¢y > ¢ when we add the term h'(w)w’.

Example 2.4. Choose f(u) = u(l — u) and h(u) = du?, § > 0, so (2.41) says that
36% 4+ 1
3

1
h = 0, (2.42) clearly fails since \/g > 2, is false, and in fact, this function f satisfies

> 2, which is satisfied for § > /4. Hence (2.41) holds for such é. But when

the condition

'

f(u) < f(0)u for all uw € (0,1), (2.43)

which ensures that ¢y = ¢ if h = 0. Note that (2.43) implies that

[ fius 0 [ utu=1 0 [“7} -0
and hence ,
/0 1 Flw)du < @. (2.44)

Clearly no function f can satisfy both (2.44) and (2.42).
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Chapter 3

A discrete-time recursion system

This chapter is mainly background material, that describes and slightly extends the work
in [29], [42], [26], [39], [26], [43], and [40]. We consider a discrete-time recursion system
of the form

Uny1 = Qus] nEN, (3.1)

with an initial condition uy € BUC(R, R¥) (the space of functions p : R — R such that p
is bounded and uniformly continuous on R), and where u,(-) = ((un)1(*), .-, (un)x(*)) is a
vector-valued function such that u, € BUC(R, R*) which represents the population den-
sities at time n of k interacting species or age classes. The operator Q : BUC(R, R¥) —
BUC(R,R*¥) in (3.1) is assumed to be an order-preserving operator, which means that
if we have u < v € BUC(R,R¥), in the sense that the vectors u(z),v(z) € RF satisfy
u(z) < v(z) for each z € R, then this implies that Qu](z) < Q[v](z) for each z € R.

The linear operator M is the linearization of @) at 0 if for any € > 0 there is a § > 0 such

that [u], < & implies that [|Qlu] ~ M{ulll, < ellull,, where Mfu] = Lm{(1/p)Qlpull. As

described in [42], this linear operator has the representation,

E oo
M@= [ wle - vmtu,dy) 32)

where m;; is a bounded non-negative measure which allows us to introduce the matrix
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B, by
B, = ( | e“ymz-,-@,dy)) , (33)

—o0

which can characterized by
B,a = M[ae ™#]|,—o  for every constant o € R¥. (3.4)

We assume that the entries of B, are finite for all u. Since the m;; are non-negative,
the entries of the matrix B, are non-negative, and an entry of B, is 0 if and only if
m; is identically zero, which means that either all the B, are irreducible or they are all
reducible. The matrix B, is said to be reducible if it can be put into lower block triangular
form by re-ordering the coordinates, whereas if this can not be done, the matrix is said to
be irreducible. If a reducible matrix is in lower block triangular form and all the diagonal
blocks are irreducible, the matrix is said to be in Frobenius form. The statement of

Perron - Frobenius theorem is the following.

Theorem 3.1. (Perron-Frobenius theorem[35]) Any non-zero irreducible matriz with
non-negative entries has a unique positive eigenvalue, called the principal eigenvalue,
which has a corresponding strictly positive principal eigenvector. In addition, the abso-

lute values of all the other eigenvalues are less than or equal the principal eigenvalue.

A useful corollary about an irreducible matrix with non-negative off-diagonal entries is

the following.

Corollary 3.1. Given any irreducible matrix with off-diagonal entries non-negative, there
erists a unique real eigenvalue, called the principal eigenvalue with a corresponding strictly
positive principal eigenvector. In addition, the real parts of all other eigenvalues are

strictly less than the principal eigenvalue.

Proof. Let M be an irreducible matrix with non-negative off-diagonal entries. Then there
exists & > 0 such that M +a/l is a non-zero irreducible matrix with non-negative entries.
By Theorem 3.1, there exists a positive eigenvalue A with positive eigenvector ¢ such that
(M + al)q = Ag, and the absolute values of all other eigenvalues of M + al are less
than or equal A. Then Mq = (A — a)q, so M has a real eigenvalue A — a with positive
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eigenvector q. Moreover, if u is an eigenvalue of M + al other than A, then |u| < A,
so if v is an eigenvalue of the matrix M other than A — a, then |v + a| < X and hence

Re(v) < A — a. O

3.1 Hypotheses of discrete-time recursion system

We start with some notation. Here 0 denotes the constant vector in which all components

are 0. If 8 > 0 such that 3 € R¥, we define the set of functions,
Ys = {u€ BUC(R,R*): 0 <u(z) <B forallz € R}. (3.5)

If Q[w] = w, the function w(-) is said to be an equilibrium of @, so that if u; = w in
the recursion (3.1) for some [ € N, then u, = w for all n > . Note that the operator
Q satisfies the translation invariance property (1.7), but it is not assumed to satisfy a
reflection invariance property (1.8) as was assumed in [42].

The reason for removing the reflection invariance assumption is due to the fact that we
will consider applications to partial differential equation systems that have convection
terms in Chapter 5, and the presence of these convection terms, which involve first-order
derivatives, means that we do not have a symmetry between x and —z. In fact when @
is the time ¢ map of the recursion (3.1), then property (1.8) does not hold in the presence

of a convection term.

We make the following assumptions about the operator @ in the recursion (3.1):

¢1- Q[0] = 0, there is a constant 8 > 0 such that Q[8] = B, and there is no constant
vector v € R¥, v # 8 such that Q[v] = v where 0 < v < 8.

g2. The operator @) is order-preserving on non-negative functions, in the sense that if

u > v > 0 are any two functions in g, then Qu] > Q[v] > 0.
g3. @ satisfies the translation-invariance property (1.7).
¢s- If (vp)nen such that v, € 14 converges to v uniformly on each bounded subset of

R, then Q[v,] converges to Q[v] uniformly on each bounded subset of R.

42



gs-

ge-

q7-

Given a sequence (v, )nen such that v, € 13, there exists a subsequence vy, such

that Q[vn,] converges uniformly on every bounded subset of R.

a) The matrix B, in (3.3) has finite entries for all 1 and is in Frobenius form, with
As () the principal eigenvalue of the oth diagonal block from the top of B,,.

b) 1 < A1(0), and A1(0) > A, (0) for every o > 1.

c¢) The matrix By has at least one nonzero entry to the left of each of its diagonal

blocks other than the uppermost one.

There exists a family of bounded linear order-preserving operators on R¥*-valued
functions M which satisfies the following properties:

(i) For every sufficiently large x > 0 and v : R — RF, there is a constant vector
w > 0 such that

Qv] > M™[y] when 0<v<w.

(ii) For every positive p the matrices Bff) that can be characterized by
B{Ma := M [exp(—pz)allz=o

converge to B, as kK — 00.

3.2 Slowest spreading speed for discrete-time recur-

sion system (3.1)

In this section we firstly present some results that will be useful for the definition of the
right (left) slowest spreading speed. The following proposition shows that if the initial

condition v for the recursion (3.1) lies between 0 and £, so Q[uo] also does.
Proposition 3.1. An operator Q) that satisfies Hypotheses 1 — gz maps Vg into itself.

Proof. Let ug € 1, since @) is an order-preserving operator, 0 and 3 are equilibria and
the initial condition ug lies between 0 and 8, thus 0 < Q[ug] < B, from which it follows

that Q[uo] € 5. 0
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Note that it follows from Hypothesis g (a), (c) we can say there is an eigenvector {(0) > 0
of By corresponding to the principal eigenvalue A;(0), Bo¢(0) = A;(0)¢(0). We prove the
strict positivity of the eigenvector later, in the simple case when we have only two blocks
of £'(0) in Chapter 5, and in the general case when we have multiple blocks in Chapter
6. The following lemma shows that for any positive constant vector ug, the constants u,
defined in (3.1) converge to 8. In biological terms, this means that S is a globally stable
coexistence equilibrium. A coexistence equilibrium is one in which all of the components
are strictly positive. A globally stable equilibrium means that, for some set of initial
conditions are not necessarily that close to the equilibrium, the solution u, tends to this

equilibrium as n — oo.

Lemma 3.1. Suppose that ug € [0,8],up > 0 is any constant vector, then limu, =
n—o0

where (un), oy 15 the sequence of constant vectors obtained from the recursion (3.1).

Proof. From (3.4) we have By((0) = M[((0)], recall that M[u] = Li{‘r(l)[(l/p)Q[pu]]. Then

ZQUC(0)] — MICO)) = 2(0)(0) asp =0, (3.6)

Then (3.6) and the fact that A;(0) > 1 together imply that for p > 0 sufficiently small,

we have

%mmwn>am. (3.7)

Now let a := p{(0). Then a > 0, and (3.7) says that Q[a] > a, so if we define a constant

vector ap = a and then a,, by

Ont1 = Q[a'n]’ (38)

we have a; > ap, and since @) is an order-preserving operator, it follows by induction that
Qani1 > ay for all n € N. We also have that 0 < a < f, and since @ is order-preserving,
it follows that 0 = Q[0] < o, < Q[B] = B for all n € N and hence we get o, < S for all n.
So a, is a non-decreasing sequence that is bounded above by 8. Thus v = nlggo Qu, exists,
and by (3.8) we have v = Q[v]. Since 0 < a < a,, < v < 3, it follows by Hypothesis ¢
that v = 3.

Then given any constant vector ug € [0, 5], ug > 0, there exists p > 0 small enough that

both (3.7) holds and p¢(0) < up. Then since Q[p¢(0)] < Quy], it follows that the sequence
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defined by u,41 = Q[u,] must also converge to f as n — oo because a, < u, < f§, and

the lemma is proved. O

The following lemma is a crucial tool needed to define the left slowest spreading speed
for the recursion (3.1) with a non-decreasing initial function ug = ¢(-). The definition of
this slowest spreading speed in (3.12) below is a modification of the definition presented
in [26, (2.4)] with a non-decreasing initial function uy = ¢ instead of a non-increasing

initial function.

Lemma 3.2 (Comparison Lemma). Let Q : BUC(R,R¥) — BUC(R, R¥) satisfy Hypoth-
esis q2. If the sequences u, and vy, satisfy the inequalities unt1 < Qun] and vni1 > Q[un)

for all n respectively, and if uy < vg, then u, < v, for all n.

Proof. Suppose that v, > u,. Since we have

Unt1 > Q[va], and upyr < Qun), (3.9)

and by Hypothesis ¢, we obtain

Un+1 Z Q[Un] Z Q[un] 2 Up+1-

Since we also know that uy < vy, it follows by induction that u, <wv, foralln e N. [0

Now choose a continuous vector-valued function ¢ € BUC(R,R*) with the following

properties:
e1. ¢(z) is non-decreasing in z,
es. ¢(z) =0 forallz <0,
e3. 0 < p(+00) < B.

Letting ao(c; s) := ¢(s), we define the sequence a,(c; s) by the recursion

ant1(c; 8) = max {¢(s), Qlan(c; )l(s + o)}, (3.10)
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where the operator () satisfies Hypotheses g1 —g7. By definition, a;(c; s) > ¢(s) = ag(c; s).

Suppose that agi1(c; s) > ax(c; s) is true for some k£ > 0. Then

ax42(¢; 8) = max {¢(s), Qlart1(c;)](s + ¢)}
> max {¢(s), Qlar(c; -)I(s + ¢)}

= ar11(c; ).

So, since ag < a3, by induction we have a,(c;s) < any1(c;s) for all n. Moreover, since

ao(c; s) = ¢(s) < B, and if we assume that a,(c;s) < B for all s is true, then

ans1(6; 8) = max {(s), Qlan(c; )](s + )} < B

from which it follows by induction that a, < a1 < 8 for all n. Since a,(c; s) is a non-
decreasing function in s for all n, the translation s — s+ ¢ applied to a non-decreasing
function is non-decreasing in ¢, from which it follows that a,(c; s) is also non-decreasing in
c for all n. The fact that the vectors a(c; Fo0) are equilibria of @ follows using arguments

similar to these in [29, Lemma 2.6], and Hypothesis ¢; then implies that a(c; +00) = 5.

In order to show that the function a(c;s) does not depend on s for sufficiently positive
¢, we first prove the following lemma which shows that the function a(c;s) = § for all
s if (3.11) is satisfied, and then we use this lemma to obtain that a(c;s) = B, which
is equivalent to showing that a(c; —oo) = B since we already know that a(c; +o00) = B.
Note that this following result is a modification of [39, Lemma 5.3] when a i/s NOw a

non-decreasing function of s and c instead of a non-increasing function.

Lemma 3.3. a(c; —o0) = B if and only if there exists n € N such that
an(c; 0) > ¢(o0). (3.11)

Proof. Suppose that a(c; —00) = S, then we can say that a(c;s) = 8 for all s, since we
already know that a(c;00) = B, and in particular, a(c;0) = 8. By Property ez and the

fact that a,(c; 0) converges to a(c; 0) when n — o0, there exists an n € N such that (3.11)
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holds. Suppose, on the other hand, that there exists ng such that

no(c;0) > ¢(00).

Since we also know that a,,, ¢ are non-decreasing functions, and that ¢ =0 for all s <0
and ¢ < ¢(+00), it follows from the continuity of a, and ¢ that there exists § > 0 such
that

ano(c; 8 — 8) > &(s) = ao(c;s) for all s € R.

Now suppose that any+k(c;s — &) > ag(c;s) is true for some k > 0. Then an 4x+1(c; 8 —
6) = max{any(c;s — 8), Qlany+k(c;-)|(s — 6 + )} and since Qany+x(c;-)](s — 6 +¢) =
Qlang+k(c;- — 0)](s +¢) > Qlax(c; )] (s + ¢), thus

Unotk+1(; 8 — 0) > max {§(s), Qlar(c;)|(s + ¢)} = arsi(c; 5).

So, by induction we have shown that apy+k(c; s—38) > ax(c; s) for all k € NU{0}. Letting
k — oo, which then shows that a(c;s — §) > a(c; s) for all s. But since § > 0, and a is

non-decreasing in s, we also know that a(c; s — 6) < a(c; s). Thus

a(c;s —9) = a(c;s) for all s,

and therefore a is a constant, because the only non-decreasing periodic functions are
constant. It follows that the function a does not depend on s. Since a(c;o00) = S,

a(c; s) = B for all s. O

To define a slowest spreading speed, we will next show that a(c; s) = 8, or equivalently
that a(c; —oo) = B for a sufficiently positive ¢. It follows from [39, Lemma 5.2] that for
n sufficiently large, a,(0, 00) = @, where ag = ¢(00) and a,+1 = Qay).

Since 0 < ap = ¢(o0) < B, we know that @, — B as n — oo and so for some 7
sufficiently large, we have a7 (0, 00) > ¢(c0). Hence for ¢t > 0 sufficiently large and from

the monotonicity of ¢, we have az(0,t) > ¢(c0) > ¢(t), and thus

a5(0,t) = max {¢(t), @[aa-1(0,- +1)](0)} = Qaa-1(0,- +)](0),
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whereas

aﬁ(ta 0) = max {¢(O)> Q[aﬁ—l(t> )](0 + t)} = max {0’ Q[aﬁ—l(t? )](t)} >

by Hypothesis g3, we have a;(t,0) = Q[an—1(t, -+%)](0) and since a,(c; $) is non-decreasing
in ¢, thus

Q[aﬁ_l(t, -+ t)](O) Z Q[aﬁ_l(O, -+ t)](O) = a,-,(O, t) > ¢(OO)

By Lemma 3.3 we thus have a(t, —oo) = 8, which implies that a(c; —oc0) = f for all ¢ < t.
Note The function a(c;-) clearly depends on the choice of the initial function ¢, but the
vector a(c; —oo) is independent of the initial function ¢. To prove this, we define a new
function c,b with the same Properties e; — e3 for ¢, then we obtain a different sequence
dn(c;-) and a different limit function a(c;-). Again, by Hypothesis ¢, nll»nolo an(c;00) =
B > $(00). Then there exists N € N and a translation 7 such that ay(c;z —7) > b(z) =
ao(c; z) for all z € R. By the definition of a in (3.10), and using the Comparison Lemma
3.2 with the operator Q defined by Q[v(-)](s) := Q[v(-)](s + ¢), we obtain a(c;z — 7) >
a(c;z) for all z € R. In particular, a(c; —o0) > a(c; —00). By exchanging the role of ¢
and &, we also obtain that a(c; —o0) < a(e; —oo) and hence a(c; —o0) = a(c; —o0), which
means that the vector a(c; —00) is independent of the initial function ¢.

So the left slowest spreading speed é > —oo of (3.1) can be defined as

¢ :=inf{c: a(c; —o00) = B}. (3.12)

3.2.1 Characterization properties of the slowest spreading speed

The following theorem is a characterization of the left slowest spreading speed ¢ in (3.12)
where the initial condition ¢ is a non-decreasing function. This theorem is a modification
of Theorem 2.1 in [26] for the characterization the left slowest spreading speed ¢* in [26,

2.4] where the initial condition is a non-increasing function.

Theorem 3.2. Suppose that the initial function ugy satisfies ug(x) = 0 for all sufficiently
negative =, and that there are positive constants 0 < p < o < 1 such that 0 < up < off

for all x and ug > pB for all sufficiently positive x. Then there exists an index j such
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that for any positive €, the solution u, of the recursion (3.1) has the properties

b | s o) <0 o
and

lim { sup {ﬂ—un(x)}] =0. (3.14)

=00 | r>n(éte)

That is, the jth component spreads at a speed no less than ¢, and no component spreads

at a higher speed.

Proof. Since up = 0 for z < 0 and ug < o3, we can choose a function ¢(x) with properties
e; — ez and a number § such that ug(z) < ¢(z — §).
Recall that a,41(c;s) > Qlan)(s + ¢), so if we define the function vy such that vy :=

ag(c; T — 8) = ¢(x — ), and v, such that v, = a,(c;z — & — nc), then
Unt1 = Ony1(c;z — 8 — (n+ 1)c) > Qfas](x — 6 — ne) = Qluvy)-

So, we have up 11 = Qun], Unt1 > Q[u,] and ug < ¢(z—§) = vy, which means that we can
apply the Comparison Lemma 3.2 to get that u, < v,, and hence u,(z) < an(c;z—d—nc)

for all z € R. Then sup [un(z)] < sup [an(c;z— 8 —nc)], so since a, is non-
z<n(é—e) z<n(é—e)

decreasing of x and by letting ¢ = ¢ — %, we have

3
sup [un(z)] < an(c;ne — =ne — 6 — ne) = ax(c; —§ne —9),
zgn(c—%e) 2 2

and since a, is non-decreasing sequence in n, we thus obtain ~ sup [un(z)] < a(c; —3ne—
mgn(c—%e)

d), from which it follows that

3
lim|[ sup wu,(z)] < lima(c; —=ne —§) = a(c, —00).
n—00 xSn(c—%e) n—00 2

. R . . € N . R
Now a(c; —00) is an equilibrium, and since ¢ = ¢ — 5 < ¢, a(c; —o0) is an equilibrium

other than 5. So by Hypothesis ¢, a(c; —o0) has at least one zero component, say the
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j-th component is zero, and therefore

lim[ sup {un};(z)]=0.

n—=00 p<Ln(é—e)
To derive the second property (3.14), assume firstly that @ has the additional properties
(1) If & is a constant vector that satisfies 0 < a < 3, then Qo] < B.

(2) If u(z) vanishes for z < 7, then there is a number +y such that
Qul(z) =0 forz <n+1.

Choose a function ¢ that satisfies Properties e; — e3 with ¢(z) < up(z) and let ¢ > &
By the definition of the left slowest spreading speed ¢ in (3.12), a,(c; 0) increases to 3 as
n — co. Thus there exists an index N such that ay(c;0) > ¢(oc). Since both ay and ¢
are non-decreasing in z and ¢ vanishes for z < 0, it follows that ay(c;z) > ¢(z) for all
z € R.

Let b, be the solution of the recursion b,.1(+) = Q[b,](-) with the initial condition by(z) =
¢(x) for all z € R. Since ug > ¢(z), by the Comparison Lemma, 3.2, we have u,(z) >
by (x) for all n and z € R, and Lemma 3.1 implies that b,(co) converges to 8 as n — oo.
Moreover, ag = i), there exists a < f such that quS < a by Property e3, and Property (1)
says that Q[a] < 8. So by the Comparison Lemma 3.2, Q[a] > Q[d] = Q[ac], and the
definition of a in (3.10) implies that

a1(e;s) = max { @(s), Qao(c; )](s + 0) } < max {o, Qla]} < 8.

Suppose that ax(c;s) < S is true for some k£ > 0. Then it follows by Hypotheses g, and
q1 that Qax(c;-)](s) < Q[B] = B for all s. Then

ar1(c;8) = max {9(s), Qlail(s + )} < B,

50 an(c;00) < B, since we already know that a;(c;-) < B. Thus there exists M > N

such that by(00) > ay(00). Property (2) then gives an(c;z) = 0 for z < N(y + ¢) for
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|

some v € R, and hence there is a number 7 such that by (-) > an(c;- + 7). Since a, is

non-decreasing in 7, so a,(c; z) > an(c;z) > ¢(z) = ao for n > N and z € R. Then

ans1(¢55) = max {(5), Qlan(c; (5 + ) } = Qlan(c; (s + €) = Qan(es (),

and by following the same procedure for by we get that

bni1(c; 8) = Q[bn(c; )]s + ¢) = Qlba(c; -)](5)-

Therefore both the functions b, (- + nc) and a,(c;- + 7) satisfy the same recursion (3.1)
for n > N. By applying the Comparison Lemma 3.2 with the operator Q we get b, (- +

(n— M)c) > ansn-m(c;- + 7) when n > M. Therefore
un(z + nc) > by(z +nc) > anyn-m(c;z +7),

it follows that 8 —un(z +nc) < 8 — anyn-m(c;z +7) which is equivalent to 8 — u,(y) <

B — anin-m(c;y —nc+ 7).

Since ay(c; s) is non-decreasing in s and by letting ¢ = é + 2e we obtain that

sup {B—un(y)} < sup {B — anin-m(c;y—nc+7)}
y>n(c—e) y>n(c—e)

=B — ansN-m(c;nc —me —nc+7)
=B — Gnyn-m(c; —ne+T)

=B — anyN_m(¢+ 2¢; —ne + 7).

From the definition of the recursion in (3.10) we have 8 — anyn_nm (¢ + 2¢; —ne + 7) =
B — anin-m(¢+€;7) and as n — oo we get nll)r{.loﬂ —nin-Mm(E+&T) =B —a(é+ €T).
Since we have that a(c,+00) = £ and the definition of the left slowest spreading speed
¢ in (3.12) says that for all ¢ + ¢ > ¢ we have a(c,—00) = f, then this means that

a(é +¢€71) = B since a(é+ ¢;-) is monotone and a(é + €;00) = a(é+ €;—00) = S, so

51



a(é + €; ) = B. So the right-hand side converges to zero, which yields

lim [ sup {ﬁ—un(m)}:l = 0.

n=00 | x>n(é4e)

Secondly, we show that (3.14) holds even in the case when we do not have these additional
two properties (1) and (2) for the operator @, by defining a new operator Q such as that
considered in [26], [40], by

Qi) =min{Q |¢ (M=) o0 @, - 90 ¢ (Y1) 00| 0 + 8o}
(3.15)
where o and ¢ are two positive parameters and we define the cut-off function {(s) to be

a smooth scalar function with the following properties
e ((s) is non-negative and non-increasing for s > 0;
e ((s)=0for s>1;

e ((s)=1for0<s<

b=

First we need to show that the two properties (1) and (2) hold for Q. Let v be a
constant vector such that 0 < v < 8. Then 0 < ¢ (k‘la;|> v(-) < B, which implies

0<@ {C ('io—_t—l) v()] < Q[B] = B. By definition of @ in (3.15) it follows that Q < 3,
and Property (1) holds.

In order to prove Property (2), we need to show that if v vanishes for z < 5, then there

exists a; such that Q[v](y) = 0 for y < 1 — a;. Choose v(z) = 0 for z < n. Then

z <

¢ ('-y—_f"-') v(r) =0 if ly — ;|

Q1 >1 ifand only if |y—z|> o

a

For y < n — a; we have two cases, (a) if z > 7, then |z — y| > «; which implies that

¢ ('%;1—”") v(z) = 0 and (b) if z < 7, then ¢ (Iy;l:vl) v(z) = 0. So from (a) and (b)

we conclude that if y < n — ay, then ¢ (|y_a—:_r_|) v(z) =0 for all z € R.
1
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Then if we define 9,(-) := ¢ Lya_—‘) v(-), then 9,(-) = 0if y < 7 — o, and thus

Q[v,(-)] = 0 and then Q[v,(-)](y) =10 for such y. Thus Q[v](y) = 0if y <7 — a4, and so
Property (2) also holds for Q.

Therefore the operator ) satisfies the two Properties (1) and (2), and since the operator
Q is order-preserving, it follows that @ is order-preserving also. We can follow the same
idea in the proof of [40, Lemma 5.1] (see [26, Theorem 2.1]) in order to prove that
when a; — oo and § — 0, the operator Q[v] converges to Q[v]. Firstly we need to

show that as a; — oo the operator @ [C (b) 'u()] converges uniformly on each
ay

bounded set to the operator Q[v]. Since ¢ (|y — xl) = 1 if and only if Ly;_x| < 3, it
ay 1
-z
follows that ¢ M) v(z) = v(z) whenever |y — z| < a;/2, and hence as a; = 00,
aq
¢ B;—.| v(+) converges uniformly on each bounded set to v and by Hypothesis g4, we

get that Q[¢ <|ya_ |) v(+)] converges uniformly on each bounded set to Q[v]. Therefore
1 -—
as a; — oo and for fixed § we have shown that Q[v](y) converges uniformly on each

bounded set to
Q] (y) = min {Q](v), (1 — 6)Q[](y) + v(y)} . (3.16)

Secondly we want to show that when & goes to 0, we have Q[v] — Q[v]. By the definition
of Q[v] in (3.16) we have either that the minimum is equal to Q[v](y), in which case
there is nothing to do, or the minimum is equal to (1 — 8)Q[v](y) + dv(y), in which case

(1-0)Ql(y) +dv(y) < Qv](y), so & [v(y) — Qv](y)] < 0, and thus Q[v](y) = v(y) since
6 > 0. So the difference between Q[v](y) and Q[v](y) gives

~

—Q](y) + Qvl(y) = 8 [Q](y) — v(y)],

and since we know that Q[v](y) and v(y) are bounded between 0 and f, this difference

tends to 0 uniformly on R as ¢ tends to 0. Then by applying the above argument with
@ instead of Q we obtain as in ([40],[26]) that (3.14) is valid, and hence the theorem is

established. 0

Note that for the recursion (3.1) with non-decreasing initial data ¢ and operator @), we
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have defined the left slowest spreading speed ¢, which we call the left slowest spreading
speed. On the other hand, for non-increasing initial data with the same operator ), we
have the right slowest spreading speed, that we denote by ¢, the existence of which follows
straightforwardly the proof of the existence of the slowest spreading speed in [26, (2.4)]
under the same assumptions on the operator (). Note that ) is not assumed to satisfy
the reflection property (1.8). The following theorem justifies the use of the terminology
‘slowest spreading speed’, because it shows that all components spread at least this speed,
and at at least one component spreads at exactly this speed. This result characterizes
the right slowest spreading speed ¢, and it is exactly the same as Theorem 2.1 in [26]

with the notation ¢ instead of c¢*.

Theorem 3.3. Suppose that the initial function ug satisfies uo(z) = 0 for all sufficiently
large z, and that there are positive constants 0 < p < o < 1 such that 0 < uy < of for
all z and ug > pPB for all sufficiently negative x. Then there exists an index ¢ such that

for any positive €, the solution u, of the recursion (3.1) has the properties

lim [ sup {un}, (a:)] =0, (3.17)
R0 | p>n(é4e)
and
lim [ sup {,B—un(x)}] = 0. (3.18)
N0 | p<n(é—¢)

That is, the ith component spreads at a speed no higher than ¢, and no component spreads

at a lower speed.

Next, as an alternative approach for getting the left slowest spreading speed ¢ for non-
decreasing initial data ¢ with operator ), we can consider non-increasing initial data )

defined by ¢(z) = ¢(—z), with a new operator Q which is defined by
Q)(z) := Q[R[]](—z) for all z, (3.19)

where R[v](z) := v(—z) for all z. By applying [26, Theorem 2.1 | with ¢ and @, we can
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define a right slowest spreading speed ¢ by
¢ =sup{c: a(c,o0) = B}, (3.20)
such that a, is the non-increasing sequence in n and defined by the recursion

lns1(6;8) = max { §(s), Qlan(c5 )](s + )}

where the initial condition is d@g(c;s) = ¢(s) and é satisfies the following properties
e;. gg(:z:) is non-increasing in z,
ey p(z) =0 forallz >0
€. 0 < (—o0) < B.

The following lemma is an important tool and shows that Q satisfies Hypotheses ¢1 — g7
provided that @) satisfies these hypotheses. This lemma will allow us to characterize the

slowest spreading speed ¢ using [26, Theorem 2.1].

Lemma 3.4. If the operator Q[v] in the recursion (3.1) satisfies Hypotheses g1 — qz, then

the operator Q[v] does also.

Proof. (1) We need to prove that the operator Q is order-preserving, so we to show that
if v > wu, then Q[v] > Q[u]. By the definition (3.19), we have Q[v] = Q[R(v)](—=z),
Q] = Q[R(w)](—z), and if v(z) > u(z) for all z, then v(—z) > u(—z) and
hence R(v)(z) > R(u)(z) for all z. Since @ is an order-preserving operator by
Hypothesis g, then Q[R(v)](z) > Q[R(u)](z), so Q[R(v)](—z) = Q[R(u)](—x), for
all z. Therefore Q[v] > Q[u], as required.

(2) We need to show that Q[0] = 0 and Q[8] = 8. Since Q[0](z) = 0, so Q[0](—z) =0
for all . Then Q[R(0)](z) = 0 implies that Q[R(0)](—z) = 0 for all . Thus
Q[0] = 0 for all z. By following the same steps we can prove that Q[8] = 8 for all

x.
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(3) We need to show that Q[T,[v]](z) is translation invariant operator. We have

QT [])(z) = QIRIT(-2) = QT [R(v)])(~=)
= T [Q[RO)]](—2) = QIR(V)](-z +y) = Q[R(v)l(—(z — ¥))
= Ql(z - y) = T,Q)(x)-

Therefore @ is a translation invariant operator.

i (4) We need to show that Q[v,] converges uniformly on every bounded set to Q[v] when
v, converges uniformly on every bounded sets to v as n — oco. Let M > 0. Then
for all € > 0, there exists N € N such that for all n > N,z € [-M, M], we have
|Qlva)(z) — Qv](z)| < e if and only if |Q[R[vn]](—z) — Q[RR]](—=)| < e which
implies that

|Q[R[vn]](z) — Q[R[v]](z)] < e  forallz € [-M, M].

Now we need to prove that R[u,] converges uniformly on bounded sets to Rv].
Suppose that the sequence v, € 13 is such that for each § > 0 and M > 0, there
exists N such that for n > N implies that |v,(z) — v(z)| < § for all z € [-M, M],
which is equivalent to |R[v,](z) — R[v](z)| < § for all z € [-M, M]. Therefore the
sequence R[v,] converges uniformly on bounded sets to R[v], and hence Q[R][v,]]
converges uniformly on bounded sets to Q[R[v]]. Thus for all ¢ > 0 and M > 0,
there exists N such that n > N which implies that |Q[R[v,]](z) — Q[R[v]](z)| < € for
all z € [~ M, M] which yields |Q[R[v,]](—z) — Q[R[v]](—z)| < € for all z € [-M, M],
which is equivalent to |Q[v,)(z) — Q[v](z)| < € for all z € [~ M, M]. So the property

is proved.

(Uny ) Such that Q[v,,] converges uniformly on each bounded set. Take a sequence
(vn),n € N such that (v,) € 3. Then R(vy),y is a sequence in vg. Thus there
exists a subsequence R(vy,),.y such that Q[R[vy]] converges uniformly on each

bounded set [—M, M]. So there exists a function L € 15 such that L : R — R*

|
|

|

|

(5) We need to prove that given a sequence (vn),cn; Un € ¥, there exists a subsequence
|
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such that for all § > 0 and M > 0, there exists N such that for n > N implies that
|Q[R[vn]](z) — L(z)| < 6 if and only if |Q[R[vu]](—z) — L(—z)| < é

for all z € [—M, M], which is equivalent to |Q[vn](z) — L(z)| < & for all z €
[—M, M].

We need to characterize the matrix B to prove Hypothesis gg((a), (b), (c)) for the
operator Q. Define the linear operator M to be the linearization of the operator
Q at 0. Then to characterize M in terms of M note that if for any € > 0 there is

& > 0 such that if {|u| < 6, then ||Q[u] — M[u]||,, < €]|ull.,, then we have

oo
Q] ~ MTulll,, = igﬂgl@[U] (z) - Mul(z)| = sup|Q[R[ul)(-z) - Mlu)(z).

Since [|R[u]||,, = sup |R(u(z))| = sup [u(—z)| = sup [u(—2)| = ||lul,, We get
z€R z€R —z€R

sup|Q[Ru])(-z) - Mu)(z)| = sup |Q[R[ul)(~z) — Mu)(z)|

—z€R

= suplQURLul}1) — Mlal(~1)
= sup|QI(t) — M[Rl(~1)l,
where v = Ru. Now ||lu|| = ||v]l, < 6, and u(z) = v(—z) = (Rv)(z), so u = Ru,

and hence sup [Q[u](9) — MIRRI)(—0)] = 1Qb] — RIAD]
€
Thus for all € > 0, there exists § > 0 such that if ||v|| < J, then

IQk] — RMIRRl < €llvll0,

and because of the uniqueness property for the Fréchet derivative for the linear
operator, we conclude that M[u] = RM R[u], and hence M = RMR. It follows that

M has the same representation for the linear operator M in (3.2) which allows us
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to introduce the matrix Bﬁ corresponding to the matrix B, in (3.4) by

Bua = Mlae™]|,—0 = RM[Rlae™#]]|z=0 = RM[ae"]|s=0 = M[ae*]|5=.

(3.21)
Thus since B), is in Frobenius form by Hypothesis gs(a), then the matrix Bﬁ is in
Frobenius form, and the Perron-Frobenius Theorem 3.1 says that for each block
there is a principal eigenvalue :\(ﬁ) with a corresponding strictly positive principal
eigenvector ((fi). It is clear that Hypothesis gs (c) is satisfied for By, and By = By,
from which it follows that Hypothesis g¢ (), (b), (c) hold for B whenever it holds
for B,.

(7) We need to prove that a family of bounded linear order-preserving operators on
R*-valued functions, M*) satisfies the properties (i) and (ii) in Hypothesis g; for
Q and B}f). Hypothesis g; (i) says that for every sufficiently large x > 0, there is
a constant vector w > 0 such that Q[u](z) > M®[u](z) when 0 < u < w. So from

the definition of @ in (3.19) and the information of M we get that
Q[R[u]](—z) > M®W[R[u]](—z) if and only if Q[u](z) > M®[u](z),

when 0 < u < w, and Property (i) of g7 holds for Q. Moreover, equation (3.21) implies
Property (ii) of g7, and thus Hypothesis g(2), (i) is satisfied for ). This finishes the

proof of the lemma. O

We remark that in the notation of [26, (2.4)], c* is the slowest spreading speed with
operator () and non-increasing initial data, which corresponds here to the right slowest-

spreading speed ¢ with operator Q. Note also that, if the reflection property (1.8) is

~ satisfied, then the earlier operator Q equals the operator Q, because for all z we have

QIR)(x) = RIQW)(z) < QIR[]](x) = Q[v)(—z) which implies that Q[R[v])(~z) =
Q) & Gll(z) = Qhi(a).

The following theorem characterizes the right slowest spreading speed ¢. This result is

~ the same as Theorem 3.3 with the notation & and Q instead of & and Q. In general, & # ¢,

* but if the reflection invariance property (1.8) holds, then &= ¢ since Q = Q.
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Theorem 3.4. Suppose that the initial function vy satisfies vo(z) = 0 for all sufficiently
large =, and that there are positive constants 0 < p < ¢ < 1 such that 0 < vg < af for
all x and vg > pB for all sufficiently negative x. Then there exists an index i such that

for any positive €, the solution v, of the recursion v,y = Q[vn] has the properties

lim l: sup {vn}; (x)} =0, (3.22)
N0 | g>n(E+e€)
and
lim [ sup {ﬁ—vn(x)}} =0. (3.23)
N300 | z<n(é—e)

That 1s, the ith component spreads at a speed no higher than ¢, and no component spreads

at a lower speed.

Proof. This follows from [26, Theorem 2.1] with @ replaced by Q. O

Clearly there is a relationship between the left slowest spreading speed ¢ which is defined
in (3.12), and the right slowest spreading speed ¢ that is defined in (3.20). The following

lemma explains this relationship.

Lemma 3.5. The left slowest spreading speed ¢ equals the value —¢, where ¢ is the right

slowest spreading speed.

Proof. From the characterization properties (3.22), (3.23) for the left slowest spreading

speed ¢ for v,, we will first extract information for the sequence u,, that is obtained from

- non-decreasing initial data with the operator @) to obtain equivalent characterization

- properties for u,,.

Define u,(—z) := v,(z) for all n, where v, is the sequence as in Theorem 3.4. Then we
have vo(z) = uo(—z) and upi1(—2) = Vpt1(z). SO Uni1(—z) = Q[u,](—z), and by the
definition of @ in (3.19) we have Q[vq](z) = Q[un)(—z). By Lemma 3.4, the operator Q

satisfies ¢; — g7. Since the initial function vo(z) satisfies the conditions of Theorem 3.4,

~ we have

lim | sup {w.};(z)| =0.
N0 | e >n(é+e)
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Therefore we have

Since we know that {v,}, (z) = {un}, (—z), we obtain

sup {v.};(z) = sup {un},;(—2)= sup {un},(—z)= sup {un},(z).
z>n(é+e€) z>n(C+e) —r<—n(c+e) z<—n(é+e)

lim [ sup  {un}; (:v)} =0 (3.24)
N0 | p<n(—i—e)

Statement (3.23) in Theorem 3.4 says that lim [ sup {6 — vn(m)}] = 0. Then

n—o0 Sn(c’:—e)

sup {B—v(z)} = sup {B—un(—2)}= sup {B—u.(—2)}

z<n(é—e) z<n(é—e) —z>—n(C—e)
= sup {B—ua(2)}
z>—n(é—¢)
Thus we get
lim [ sup {5——un(m)}] =0. (3.25)
N0 [ p>n(—é4e€)

Now we complete the proof by comparing (3.13) with (3.25), and (3.14) with (3.24). First
we compare between the statements (3.13) in Theorem 3.2 and (3.25). From equation

(3.13) we know {us}; (n(é—€)) < sup {un};(z), so

z<n(é—e)

lim [un,(n(é—¢€))] =0. (3.26)

n—oQ

On the other hand, from equation (3.25) we have

{B—un(n(—=C+¢€)} < sup {B—un(z)},so li_)m {8 — un(n(—¢+¢€))} =0.
z>(n(—&+e)) n—eo
Suppose that ¢ > —¢. Then —é+ € = ¢ — ¢, so (3.25) gives

lim
n—oo

sup {8 —un(z)}| =0, (3.27)
r>n(é—e)
from which it follows that lim {8 — u,(n(é —¢€))} = 0, and hence

lim {un}; (n(é—¢€)) =B; #0 for each index j € {1,...,k}.
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This is a contradiction with (3.26), so ¢ < —¢.
It can be shown similarly that —¢ < ¢ by comparing (3.14) with (3.24). Thus we have

—¢ = ¢ and the lemma is proved. O

3.3 Fastest spreading speed for discrete-time recur-
sion system (3.1)

It is shown in Lui [29, Theorem 3.1, 3.2] that there exists a single spreading speed when
there are no extra equilibria other than 0 and § in 1, in the sense that (3.13) in Theorem
3.2 in fact holds for all components of u,, not only the jth component, which, together
with (3.14), shows that all components spread at the same speed. Lui also assumed that
there is only one diagonal block in B,. In biological terms, it clearly sometimes happens
that different species spread at different rates. If the assumption of there being no extra
equilibrium is dropped, then there may be an equilibrium v other that 0 and 8 in 3.
This possibility of extra equilibria was first discussed in Weinberger, Lewis and Li [42],
motivated by the fact that models of species interaction often have such extra equilibria.
Our Hypothesis g; allows there to be more than just the equilibria 0 and 3 in 3. Under
these conditions, as already noted in [42], not all components of u, necessarily spread
at the same speed, and it is natural to introduce a second speed, called the left fastest
spreading speed ¢;. Thus in general, there should be right (left) slowest spreading speed
and right (left) fastest spreading speed. A single right (left) spreading speed means that

~ the right (left) slowest-spreading speed of the recursion (3.1) equals the right (left) fastest

- spreading speed.

Corresponding to the left slowest spreading speed ¢, we have the left fastest-spreading
speed ¢y and similarly for the right slowest spreading speed ¢, we will introduce the right

fastest-spreading speed, ¢;.

~ Now in order to define the left fastest spreading speed ¢¢, we use a similar argument to

" that used previously with a, by choosing a function ¢ that satisfies Properties e; — e3
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and letting b,(z) be the solution of the recursion

bn+1 = Q[bn]
with bo(z) = ¢(z). Define a function
B(c;z) := lim sup bn(z + nc). (3.28)

Since b,(z + nc) is a non-decreasing function in z and c¢ for each n, hence B(c;z) is
a non-decreasing function of z and c also. The following lemma is an important tool
for the definition of the left fastest spreading speed. The purpose of this lemma is to
show that B(c; —o0) = B for sufficiently positive ¢, from which it follows that the set
- {c: B(c; —00) # 0} is not empty. Note that the following result is a modification of [39,

" Lemma 5.3] which involves the sequence a,, whereas here we adapt the argument of [39]

is a non-increasing function of z and s. Note that we prove the following lemma with
more details than the proof of the corresponding lemma [39, Lemma 5:3], and we use a

similar argument to that used in the proof of Lemma 3.3.

Lemma 3.6. B(c; —o0) = S if and only if there is an n € N such that
by (0 + nc) = by(nc) > ¢(0).

|
|
i
‘ to treat the sequence b,, and b, is now a non-decreasing function of z instead of a,, which
Proof. 1If B(c;—o00) = 3, then B(c;s) = S for all s. In particular, for s = 0, B(c;0) =
‘ B > ¢(o0). Thus by the definition of B in (3.28) we have b,(nc) > ¢(co) for some n
- sufficiently large.

On the other hand, suppose that b,(nc) > ¢(co) holds for n = ng. Since by, and ¢
" are non-decreasing functions, ¢ = 0 for all s < 0, and ¢ < ¢(o0), it follows from the

continuity of b,, and ¢ that there exists 4 > 0 such that

bro(Moc + 8 — &) > ¢(s) = bo(s) for all s € R.
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Suppose that by, x((no + k)c + s — &) > br(kc+ s) is true for some k > 0. Then

brgtk+1((no + k+ 1)c+ s — 0) = Qbng+x(-)]((no + k + 1)c+ s — d)
= Qlbno+x((n0 + k)c+ - — 8)](s + ¢) = Qlbx(kc +-)](s +¢)
= Qbx()]((k +1)c+s) = bea((k+ 1)c+ s).

So, by induction we have shown that

brgrks1((no +k+1)c+s—0) > byri((k+1)c+s) forallk>0.

For fixed s, letting k& — oo through a subsequence on each side we find

B(c;s —6) > B(c;s) for all s.

But the function B is non-decreasing in s and 6 > 0, so B(c; s —d) < B(c; s) for all s. It
follows that B(c;s —d) = B(c;s) for all s. Therefore B(c; s) is constant because the only
non-decreasing periodic functions are constant. Since B(c;o00) = 8, then B(c; s) = 8 for

all s. In particular,

B(c; —o0) = .
0

The fact that B(c; Foo) are equilibria of @ follows by using similar arguments to these
in [29, Lemma 2.6], and Hypothesis ¢; then implies that B(c; +00) = S.
To show that B(c; —0o) = 8 for a sufficiently positive ¢, define P,(c; z) := b,(z + nc), so

we have

P.(c; ) = bp(z+nc) = Q[bn1(-)](z+nc) = Q[bn_1(-+(n—1)c)](z+c) = Q[Pr-1(c; -)](z+c).

It follows from [39, Lemma 5.2] that for n sufficiently large, P,(0,00) = a, where o =

gb(OO) and Qny1 = Q[a’n]'
Since 0 < ap = ¢(o00) < B, we know that o, — B as n — oo and so for some 7

sufficiently large, we have P;(0,00) > ¢(00). Hence for ¢ > 0 sufficiently large and from
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the monotonicity of ¢ we have P;(0,t) > ¢(00) > ¢(t), thus Py(0,t) = Q[Pa-1(0,-+1)](0).
On the other hand

P5(t,0) = Q[Fa-1(t, )]0 + 1) = Q[P (2, )] (B),

by Hypothesis g3, we have P(t,0) = Q[Ps-1(t, -+t)](0) and since P, (c; -) is non-decreasing
in ¢, thus

Q[Pa-1(t,- +1)](0) 2 Q[P (0, - +1)](0) = Fa(0,2) > ¢(o0).

By Lemma 3.6 we thus have B(t, —oo) = 3, which implies that B(c; —oco) = fforallc < t.

~ To prove that the function B(c; —o0) is independent of the initial function ¢, we use the

~ same argument that was used for the function a by defining a new function ¢* and having

a different sequence PZ(c;-), to obtain that P*(c; —o0) = P(c; —00), which means that

the vector P(c; —o0) does not depend on the initial function ¢(x).

It follows that B(c;—o0) is independent of ¢ also and thus we define the left fastest

spreading speed ¢; by
¢s :=1inf {c: B(c; —o0) # 0}. (3.29)

Note that we define the left slowest spreading speed ¢ in (3.12) to be the infimum of
the set where for each ¢, a(c; —00) = f such that a,(c;s) is the sequence that is defined
in (3.10) with an initial condition that satisfies Properties e; — e3, whereas we define
the left fastest spreading speed in (3.29) to be the infimum of the set where for each c,
B(c; —00) # 0 such that B(c; ) is a function that is defined in (3.28). The reason for the

definition of a,; in (3.10) to be the maximum of two objects is to ensure that we have a

non-decreasing function in 7, in the sense that a,; > a,, which means that lim a, exists.
n—oo

We also present an alternative ‘fastest’ spreading speed ¢y in (4.1), defined as the infimum

of the set where for each ¢, a(c; —00) # 0 such that a,(c; s) is the sequence with an initial

condition that satisfies Properties e; — e3. Then ¢y is a modification of the quantity that

was introduced in [42, (2.9)] with non-decreasing initial data instead of non-increasing

initial data. In fact the reason for presenting (3.29) instead of the alternative formula ¢;
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is due to the fact that it was noted in [43] that ¢; is not, in fact, a good definition for
fastest spreading speed, because one of the characterization properties (3.30) and (3.31)
does not necessarily hold with the definition (4.1) of the fastest spreading speed ¢; using
an, as presented in [42, (2.9)]. However, in [43, Theorem 4.1] an extra hypothesis is added
under which for the formula ¢; of the fastest spreading speed in [42], both characterization
properties (3.30) and (3.31) hold. Note that ¢; is also a convenient tool for the proof of

Theorem 4.1, that characterizes spreading speeds in terms of travelling-wave speeds.

3.3.1 Characterization properties of the fastest spreading speed

The following theorem is to characterize the left fastest spreading speed ¢; where the ini-
tial condition ¢ is a non-decreasing function. This result is a modification of [26, Theorem
2.2] where the initial condition is a non-increasing function. Only a brief justification was

given in [26], and we prove it with full details here.

Theorem 3.5. Suppose that the initial function ug satisfies up(x) = 0 for all sufficiently
negative x, and that there are positive constants 0 < p < o < 1 such that 0 < uy < off
for all x and ug > pB for all sufficiently positive x. Then there exists an index | such

that for each positive €, the solution u, of the recursion (3.1) has the properties

nlg{.lo sup Lzé(rgﬁ) {un}, (:1:)} > 0, (3.30)
and
lim | sup wu,(z)| =0. (3.31)
n—0o0 z<n(és—e)

That is, the lth component spreads at a speed no higher than ¢s, and no component spreads

at a lower speed.

Proof. Choose a function ¢ which has Properties e; — e3 and satisfies ¢ < ug. By the
Comparison Lemma 3.2 we have u,(z) > b,(z). Since b, is a non-decreasing function in
T, we have

inf  up(z) > _inf  ba(z) = ba(n(és +¢)),

z>n(és+e) z>n(és+¢)
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which implies that

lim sup [ inf un(z)] > lim sup by (n(és +€)) = B(¢s + €;0).

n—oo >n(és+e)

Since é; < ¢é5 + € and by the definition of & in (3.29), it follows that

: : > B(a L
lim sup Lzégﬁ)un(m)] > B(éf + €, —00) # 0,

and thus there exists an index ! such that Bi(é; + €¢; —o0) > 0 and

lim sup[ inf  {un), (x)] > 0.

n—oo z>n(8s+e)

In order to prove the second statement (3.31), we choose a function ¢ that satisfies
Properties e; — e3 with an additional property that ¢(x —n) > ug(z) for some n > 0. The
Comparison Lemma 3.2 implies that, u,(z) < b,(z — n), and since b, is non-decreasing

function, we have

1 1 1
sup  un(z) < by (n(éf - —2-6) ~ gne = 77) < b, (n(éf - 56) + 7') )

z<n(és—e)

1
for 7 = —gne— " and a sufficiently large n. Thus we get that

1
lim sup [ sup wu,(z)| < lim supb, (n(éf ——€)+ T) ,
n—00 z<n(és—e) n—00 2
for each s < —n, and since b, is non-decreasing function in n, we have

1 n 1
. NSRS ORI LU R , 1
Jl’ngosup bn <n(cf 26) 7€ 77) < nll)ngo sup by, (n(cf 26) + s)
1
=B ((éf — 56);8) ,

SO
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Since we know that ¢; — 3€ < ¢y, then for each ¢, éf — e < inf {c: B(c; —o0) # 0}, so

¢r — 3€ ¢ {c: B(¢; —00) # 0} which implies B(c; —o0) = 0. Therefore we obtain

lim sup [ sup un(x)] =0.
n—00 z<n(és—e)
Then the theorem is proved. O

Note that in the proof of Theorem 3.5 we use a similar argument that used in the proof
of Theorem 3.2 concerning the characterization properties for the left slowest spreading
speed ¢, but without assuming the additional properties (1), (2) for @ or defining a new

operator () that defined in (3.15).

Similarly to what we did earlier, we can define the right fastest spreading speed ¢y, now
using non-increasing initial data ¢ that satisfies Properties €] — e; and the corresponding

function B defined in (3.28) by
¢s :=sup{c: B(c;00) # 0} . (3.32)

The following theorem characterizes the right fastest spreading speed é;. This result is a

straightforward consequence of Theorem 2.2 in [26] with the notation c} replaced by Cy.

Theorem 3.6. Suppose that the initial function ug satisfies ug(z) = 0 for all sufficiently
large x, and that there are positive constants 0 < p < o < 1 such that 0 < up < o8 for
all z and ug > pB for all sufficiently negative x. Then there exists an index j such that

for each positive €, the solution u, of the recursion (3.1) has the properties

lim sup <i(r}f ){un}j (x)} >0, (3.33)
n—00 | z<n(és—e
and _
lim | sup wu,(z)| =0. (3.34)
n—00 | z2n (85 +e)

That is, the jth component spreads at a speed no less that ¢¢, and no component spreads

at a higher speed.
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The following proposition shows that ¢; < ¢. Note, as we mentioned before, that the
following convention, we use the word ‘speed’ when it might be technically more accurate
to use the word ‘velocity’ because it is possible to have either ¢ > 0 or ¢ < 0. Moreover,
in the case of using non-decreasing initial data, we have ¢; < ¢, which ensures that ¢é; is
going faster to the left than ¢, whereas, in the case of using non-increasing initial data,

we have é; > ¢, as shown in [42], which ensures é; is going faster to the right than ¢.

Proposition 3.2. For non-decreasing initial data of the recursion (3.1), the left fastest

spreading speed Cy is less than or equal the left slowest spreading speed ¢.

' Proof. The idea of the proof depends on comparing (3.14) in Theorem 3.2 and (3.31) in

Theorem 3.5 and using a contradiction argument. Thus we compare

lim [ sup {8 - un(z)}} =0, (3.35)
=00 | g>n(é4€)
lim | sup wuy(z)| =0. (3.36)
n=00 | z<n(és—e)
In (3.35) we have {f —u,(n(¢+¢€))} < sup {8 —un(z)}. Thus asn — oo we get
z2>n(é4+¢)
le {B —un(n(é+¢)}=0. (3.37)
& — ¢

Suppose ¢¢ > ¢ and let € = . Then é5 — € = & + ¢, so (3.37) becomes

lim {8 — un(n(é; — €))} = 0. (3.38)

n—roo

On the other hand, we know that u,(n(éf —€)) < sup wu,(z), which implies from
z<n(és—e)
equation (3.36) that as n — oo, limu,(n(éf —€)) = 0, and this contradicts (3.38).
n—00

Therefore ¢y < €. O

68



Chapter 4

Characterization of slowest
spreading speeds using travelling
waves and linear determinacy for

discrete-time systems

In this chapter we begin by presenting a theorem that shows that the left slowest spreading
speed ¢ defined in (3.12) can be characterized as the left slowest speed of a class of
travelling waves ¢. We will then present sufficient conditions that ensure the recursion

(3.1) is right (left) linearly determinate.

4.1 Characterization of slowest spreading speed ¢ as
slowest speed of a family of travelling waves

A travelling wave is a solution of the recursion u, 1 = Qu,), n € N, which has the form
un(z) = w(z — nc) z €R,

for some ¢ € R. The value c is called the speed of the wave. The following lemma is an

important tool for the next theorem, since it explains the relationship between the fastest
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spreading speed ¢y that is defined in (3.29), and the alternative fastest speed ¢; defined
by
¢s = inf {c; a(c, —00) # 0} . (4.1)

This quantity ¢; is a modification of the fastest spreading speed that was introduced
in [42, (2.9)] with non-decreasing initial data satisfying Properties e; — es instead of

non-increasing initial data.

Lemma 4.1. Suppose that the operator Q) satisfies Hypotheses 3.1. Then
¢r < ¢y

Proof. The idea of the proof is to exploit the relationship between the definition of ¢; in

| (4.1) and the definition of ¢ in (3.29). Consider v, = b, (- + nc) with vo = by = ao. Then

Unt1(8) = bnya (- +(n+1)e)(s) = Q[ba(-+(n+1)c)l(s) = Q[ba(-+nc)](s+c) = Qlunl(s+c),
whereas from the definition of the sequence a, in (3.10), we have

any1(s) = max {¢(s), Qlan(c,)|(s + ¢)} = Qlan(c, )](s + ¢).

Define an order-preserving operator 9 by Q[w](s) := Q[w](s + ¢), so we have v,41(s) =

| Q[va](s) and an41(s) > Qlan)(s). The Comparison Lemma 3.2 with operator ) then

implies that v, < a, for all n, and hence b,(- + nc) < au(c,-) < a(c,-). Then by
the definition of B(c;z) in (3.28), namely nl_l_)IIolo sup bp(z + nc) =: B(c;z), and since we
know that nli)r{.lo an(c,z) = ac;x), it follows that B(c,z) < a(c,z) for all z, from which
it follows that if we have B(c, —00) # 0, then a(c,—oo0) # 0. Therefore, as sets, we
have {c; B(c, —0) # 0} C {c;a(e, —00) # 0}, which yields that inf {¢; a(c, —00) # 0} <
inf {¢; B(c, —00) # 0}, which is equivalent to saying that

¢p < éy. (4.2)
by the definitions of ¢ in (4.1) and the definition of é; in (3.29). O
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The following theorem relates the left slowest spreading speed to non-decreasing travelling
waves and gives a condition that is sufficient to guarantee that the recursion has a single
left spreading speed. This result is similar to [26, Theorem 3.1] but we adapt the proof
to present the case when the profile w of the travelling wave solution w(z — nc) is non-
decreasing instead of the non-increasing.

It is useful for the next theorem to recall the definition of a lower semicontinuous real-
valued function f : I — R, (see, for example, [21, p.89]), that is, for every real number o
and o such that o < f(zy), there is a neighbourhood U of zy such that a < f(z) for all
zeU.

Theorem 4.1. Suppose that the operator () satisfies Hypotheses g1 — g7, and let ¢, ¢y be
the left slowest and left fastest spreading speeds respectively. Then

(i) If c < ¢, there is a non-decreasing travelling wave solution w(z —nc) of speed ¢ with

w(oo0) = B and w(—o0) an equilibrium of Q other than (.

(1) If there is a travelling wave w(z — nc) with w(oco) = B such that

liminf w;(z) =0  for at least one component ¢, (4.3)
IT——00

then ¢ < é.
(iii) If (4.3) holds for all components of w, then ¢ < é5.

(iv) If there are no constant equilibria of @ other than 0 and B in g, then ¢ = &5, which
says that the recursion (3.1) has a single left spreading speed.

Proof. (i) Choose a fixed vector-valued initial function ¢(s) with Properties e; — es.

We can define a sequence a,(c, [, s) for each [ > 0 by the recursion

anyi1(c, 1, 8) = max {ld(s), Qlan(c, I, x)](s + ¢)} (4.4)

where ag(c, 1, s) = l¢(s). Since an(c,l,s) is a non-decreasing function in n as well
as in s and ¢, it follows that as n — oo, lim a,(c,l,s) = a(c, !, s), which is non-
n—co

decreasing in ¢ and s. This means that a(c,!,s) is the limit of a non-decreasing
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family of continuous functions in n, so it is a lower semicontinuous function of c.
Now when ¢ < ¢, it follows from (3.12) and [29, Lemma 2.6] that a(c,!; —o0) is
a constant equilibrium other than 3, and since a(c,l; —00) is a lower semicontin-
uous function of ¢, that a(é,l; —o0) is also a constant equilibrium other than 5.
Since a(c,l, —00) does not depend on the initial function as shown before (p.47)
when we define the slowest spreading speed ¢ in (3.12), then a(c,, —00) is, in fact,

independent of .

By Hypothesis g5, there is a sequence n; such that Qas,(c, ;- + ¢)](y) converges
uniformly for y on bounded sets. Since a, is a non-decreasing sequence in n and
@ is an order-preserving operator, the whole sequence Q[a,(c, l;x +¢)](-) converges
uniformly on bounded sets. It shown in the proof of [26, Theorem 3.1] that we can

take the limits (n — o00) in (4.4) to get
a(c,l;s) = max {l¢(s), Qa(c, I;)](s + ¢)} - (4.5)

Since B is the only equilibrium in the interior of 4, by Hypothesis ¢;, we can
choose n > 0 so small that there is no constant equilibrium other than £ in the
set {u € ¢p:|B—ul <n}. Since 0 < n < |B — 7|, there exists € > 0 such that
0<e<n<|B—n|—¢e<|B—mn|and since the continuous function |5 — a(c, ; s)|
decreases from |8 — v| > 7 to 0, there exists M such that for s < —M, we have
|8 —alcl;8)| > |8 —v|—¢, and for s > M, |8 —a(c,;8)| <e.
The intermediate value theorem on [-M, M| then says that there exists L(l) €
[—M, M] such that |8 — a(c,; L(1))| = n.
Now by (4.5) and Hypothesis gs, there is a sequence l; — 0 such that a(c, l;; -+ L(l;))
converges uniformly on bounded sets to a function w(-). Thus we can take limits
in (4.5) by replacing [ by I; and s by y + L(I;) — (n + 1)c and Hypothesis g3 to get
that

w(y — (n+1)c) = Qw(- —no)ly), yeR (4.6)

Therefore, u,(z) = w(zx — nc) is a travelling wave solution of the recursion (3.1),

with |8 — a(c,l; L(1))| = |8 — w(0)| = . Again following the same approach as in
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(iii)

the proof of Theorem 3.1 in [26], we find that lim inf w;(z) = 0.

T——00
Suppose that there is a wave w(- — nc) with w(oo) = . Choose a function ¢(-)
with Properties e; — ez such that ¢(z) < w(z) for all z. If we define a sequence a,
such in (3.10) with ao(c;z) = ¢(z) and since ¢(z) < w(z), then ao(c;z) < w(x).
Suppose that ax(c;-) < w(-) is true for some £ > 0. Then Qla,(c;-)](s) < Qw](s),
since

Qlw(- —ne)l(s) = Qlw(-)](s —ne) =w(s — (n+1)c) for all s,

it follows that Q[w(+)](s) = w(s — ¢), which implies that Qa.(c;-)](s +¢) < w(s —
¢+ ¢) = w(s). Thus axy1(c; 8) = max {@(s), Qlax(c;-)](s + )} < w(s) for all s.

It follows by induction that a(c;-) < w(-) for all x, which yields a(c; z) < w(z) for
all z, and when £ — —oo we have a(c, —00) < lglcr_rg _1£1c)f w(z). Then from assumption
(4.3) it follows that a;(c; —oo) = 0 for some ¢, which implies that a(c; —o0) # S.
The definition of ¢ in (3.12) says that ¢ = inf {c: a(c; —00) = B}, so the fact that
a(c; —o0) # [ implies that we must have ¢ < é& However, if (4.3) holds for all

components, we must have ¢ < ¢¢, and by Lemma 4.1, we then obtain that

(& S éf S éf. (47)

If we have a travelling wave w with velocity ¢ that satisfies (4.3) for all ¢, then
we get ¢ < ¢ by (4.7). On the other hand, we know from parts (i)-(iii) that for
all ¢ < ¢, there exists a travelling wave w with velocity ¢ that satisfies (4.3) for
some ¢, and then since the only equilibrium in g other than g is 0, we must have
w(—o00) = 0. In particular, there exists a travelling wave w with velocity ¢ such

that (4.3) holds for all i. Then we obtain that
¢ < ¢y. (4.8)
But we already know from Proposition 3.2 that

(4.9)

(e}
-

A

o}
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Thus from (4.8) and (4.9) together yield that ¢ = ¢é;. Thus the recursion (3.1) has single
left spreading speed and the theorem is established. O

4.2 Sufflicient conditions for single speed and linear
determinacy

The recursion (3.1) is said to be linearly determinate if the right (left) slowest spread-
ing speed equals the right (left) fastest spreading speed, so there is a right (left) single
spreading speed, and this right (left) single speed agrees with the speed that obtained

from the recursion (3.1) when the operator @ replaced by its linearization M at 0.

We refer to a speed that is obtained from the linearization as a linear value speed. Since
we have non-increasing and non-decreasing initial data, so we consider two kinds of lin-
ear determinacy, namely the right linear determinacy and the left linear determinacy
corresponding to the two initial data respectively. It is presented in [42] that there are
conditions on the recursion (3.1) where @ satisfies Hypotheses ¢; — g; with non-increasing
initial data wg, that ensure that the recursion has right linear determinacy. We can ex-
tract from this information on right linear determinacy sufficient conditions to ensure left

linear determinacy for non-decreasing initial data with the same operator @ in (3.1).

A first tool to find sufficient conditions for right linear determinacy will be given in the

following lemma. This result is exactly [42, lemma 3.1] where we refer the notation é; to

" be the right fastest spreading speed, ¢ to be the right slowest spreading speed and ¢ is

the right linear value for the recursion (3.1), which is defined in [42, (2.19)] as

¢:=inf {p~ InX(p)}, (4.10)

©>0

where Ay (u) is the principal eigenvalue of the first diagonal block in B, defined in (3.3),
this matrix B, being assumed by Hypothesis ¢ (a) to be in Frobenius form. This linear

value ¢ is denoted in [42] by the slower speed. There is also a faster speed, ¢*, that is
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defined in [42, (2.20)] as

ot . : -1
¢" = max llglg{u In A, ()}, (4.11)

g

where A,(u) is the principal eigenvalue of the oth diagonal block in B,,, and we define &,

by &, := inf {u"tIn A, (u)}.
pn>0

We prove the following lemma, which corresponds to [42, Lemma 2.2 (2.11)], giving more
detail here. The proof depends on characterizing the spreading speed using the projection
operator P,. We define P, by saying that P,[v] has the same components as v in the
directions corresponding to the oth diagonal block of the matrix By, whereas in the other

directions the components are zero. Note that Hypothesis ¢; used to show that ¢, > ¢c,.

Lemma 4.2. Suppose that the operator Q) satisfies Hypotheses g1 — g7 and let ¢, é5 be the
right slowest and right fastest spreading speeds respectively. Then

é>¢ and é; > &t 4.12
f

Proof. Let [, be the dimension of the oth diagonal block of By. For any I, vector,
w(-) € Rl we define the vector-valued function @ € R* by saying that the components
of @ are those of the function w, and its other components are zero. Then we define the

auxiliary operator by

Q. [w] := the I, vector whose entries are those coordinates of @[] which correspond to

the oth block.

It follows from [29, Theorem 3.5] that @, has the right single speed ¢, and that Hypothesis
g7 implies that ¢, > ¢, for each o, then by [42, Lemma 2.2 (2.11)] we have

0= lim [ sup Pl[un](x)] = lim [ sup PlQ[un——l](I)jla

N0 | x>n(é+e) N=00 | p>n(é+e)

where wu,, satisfies (3.1). Since u,_; > 0 and by the definition of P, we have u,_; >
Pl[un_l]. Then
PQ[un—1](z) > PQ[Pr[un-1]l(z),
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which implies that

0= lim [ sup PlQ[un_l](z)] > lim [ sup PIQ[Pl[un_l](x)]} > 0.

N0 | z>n(84€) N=00 | p>n(84e)

By the definition of @, this implies that 0 = lim [ sup Ql[Pl[un_l]](x)]. Hence

n—o0 Zn(c"—l—e)

&> ¢; < & = ¢ where ¢1,¢; are the speeds for the operator ;. Thus we have é > ¢.

Now to show that ¢; > é*, from [42, Lemma 2.2 (2.10)] we have

0= lim l sup un(x)] = lim ! sup Q[un_l](m)} anim l: sup Q[Pa[un_l]](x)] > 0.

N0 [ >n(df+e) =00 | g>n(8f+e) 00 | x>n(éf+e)

Since u,—1 > 0, it follows that u,—1 > P,[up—1]. This yields

0= lim [ sup Q[Pa[un_l]](z)}.

N0 | 2>n(8f+e)

By definition of @),, for all € > 0, we can say that

0 = lim [ sup Qa[Po[un_l]](a:)].

N0 | z>n(és+e)

Therefore
Cf>Cr=0Cr= }g%u“l In Ay (1) for each o,
and hence
& > max {‘iggu‘l In /\a(u)} =ct,
and the lemma is proved. O

The following theorem is [42, Theorem 3.1] and gives a simple condition under which the
recursion (3.1) has right linear determinacy and we omit the proof (see [42], Remarks
after Theorem 3.1 and Theorem 4.2). Note that to obtain this result we do not need the

reflection invariance for the operator () that was assumed in [42].

Theorem 4.2. ([42, Theorem 3.1]) Suppose that the operator @ satisfies Hypotheses
q1 — q7 and the infimum in (4.10) is attained at i € (0,00]. Assume that either

76



1. [ is finite,
(@) > Ao(m) forallo>1 and Q[min {e ™ ((n),B}] < e H=e=A¢ (),

or

2. There exists a sequence v — i such that
M) > Ao(iy)  forallo>1 and Q[min {e**¢(u,), B,}] < e =8¢ (w,)].

Then

=&t

Ole

G ==
which means that (3.1) has a single right speed and is right linearly determinate.

Note that the condition A;(fi) > A\, () for all o > 1 is only used to prove that ¢ = é*.

We re-apply Theorem 4.2 for right linear determinacy to obtain a result about sufficient
conditions for left linear determinacy for the recursion (3.1) by using the operator Q
that is previously defined in (3.19). Let A; (/) denote the principal eigenvalue of the first
diagonal block in Bj defined in (3.21). Then we can define the right linear value for the
recursion U,y = Q[un] by

&= inf {[fl In Z\l(ﬁ)} , (4.13)

- and we define the speed & by

& = max [mf {[rl In X,(ﬁ)}] , (4.14)

o n>0

where A\, (&) is the principal eigenvalue of the oth diagonal block in Bﬁ. Then we will get
a result that gives a condition under which the recursion u,4; = Q[uy] has a single right

speed and the recursion is right linearly determinate. Moreover, since we know & > ¢ and

- Lemma 3.5 implies that, ¢ = —¢, so we obtain that —¢ < —¢. Then we define the left
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linear value for @ and its linearization M with non-decreasing initial data by

S ~—1 S /7~
c:= ﬂ;%f {u In Al(u)} , (4.15)
and it follows that
At e [0 % (7
¢" 1= —max [}gg {u ln)\a(u)}] . (4.16)

Therefore, in the case when the initial condition for the recursion (3.1) is non-decreasing
with the same operator @, we get from Lemma 4.2 that ¢ < ¢ and ¢ < ¢ét. From
the definitions of @ in (3.19), the assumption Q[min{e‘f“"’f (ﬁ),B}] < e PE-9¢(f) is
equivalent to assume that Q[min {ef“’C~ (), B }] < ef==9¢(f), and hence Theorem 4.3

below gives sufficient conditions for the left linear determinacy for the recursion (3.1).

Theorem 4.3. Suppose that the operator Q) satisfies Hypotheses ¢, — q; and the infimum
in (4.15) is attained at fi € (0,00]. Assume that either

1. [i is finite,

M(E) > M) for allo>1 and Q[min{emf(ﬁ),ff}]Se"“’”‘é)f(ﬁ)-

or

2. There exists a sequence v — [i such that
M(fiy) > Ao(fi)  for allo > 1 and Q[min {e"”ﬂc"(;fu),ﬁu}] < e,

Then

=&t

(1

éf ==
which means that the recursion (3.1) has a single left speed and is left linearly determinate.

Theorems 4.2, 4.3 will be used to establish results for the PDE systems in Chapter 5,

and illustrative examples will be given in Chapter 7.
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Chapter 5

Applications to

reaction-diffusion-convection systems

In this chapter we discuss a continuous-time model that can be studied with the help of

the recursion (3.1). We consider a system of partial differential equations (PDE), namely

. a co-operative system of reaction-diffusion-convection equations of the form

U ¢ + h;(uz)um = diui,m + fl(U) 7 = 1, 2, ceey ]C, (51)

u(0, z) = uo(z) for all z €'R,

| where d; > 0, the reaction terms fi, fa, ...., fi are independent of z and ¢ and satisfy the

co-operative assumption 6fl (u) > 0,14 # j, the convection functions h;(u;) give the “diag-
Uj
 onal” form of convection term diag (k) (u1), ho(ts), ..., Ay (ur)), u = (w1, ug, .., ux) € R¥,

- and the initial condition uy € BUC*(R, R*) (the space of functions p : R — R¥ such that

- p and p are bounded and uniformly continuous on R).

For T > 0, denote 't = {u :R x [0,T] — RF : u is bounded, continuous, us, Uz, Uz

exist and are continuous on R x (0,7}, and for (z,t) € R x (0,T] and u € I'r, define
N(u)(z,t) := —w(z,t) + Auge(z,t) — b (w)u,(z,t) + f(u)(z, 1),

where the reaction term f : R* — R* A = diag(dy,ds, ...,ds), and the convection term
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h'(u) := diag(h(u1), hy(uz), ..., R} (uk)). We say that the function @ € I'r is a superso-
lution of (5.1) if N(u)(z,t) < 0 for all (z,t) € R x (0,7}, and the function u € I'r is a
subsolution of (5.1) if N(u)(z,t) > 0 for all (z,t) € R x (0,T].

The following theorem is an useful tool for system (5.1). Note that, of course, a reaction-
diffusion-convection system does not, in general, possess a comparison principle. But the
diagonal structure of h'(u) and the co-operative assumption on f together ensure that

such a principle does hold here.

ofi

>
6Uj (U) -
0, i # 7, and u,u € 't be such that u,@ are continuous on R x (0,T], u,,u, are
bounded and uniformly continuous on R, and N(@)(z,t) < 0, and N(u)(z,t) > 0 for
(z,t) € R x (0,T). Suppose that @(z,0) > u(z,0) for all z € R. Then u(z,t) > u(z,t)

for all (z,t) € R x (0,T).

Theorem 5.1. (Comparison principle) Let the function f € C1(R¥, R¥) satisfy

Proof. Suppose that u is a subsolution and % is a supersolution for (5.1) for all (z,t) €

R x (0,T], and we have

u(z,0) < a(z,0), (5.2)

for all z € R. Then u;, 4; satisfy
gi,t < di@i,xz - h;(ui)yi,x + fi(t_l')’ (53)
Uit > dilly gz — h;(ai)ai,z + fi(a), (5.4)

for each i € {1,2, ..., k}, and we can re-write equation (5.4) as
~Up < —dilljze + h;(ﬂi)ai,z — fi(a),
which together with equation (5.3) gives that

(u—1%)iz < di(u — Wi ze — h;(gz)ym + h;(az)'azx + fi(u) — fi(@).
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Define w; := (u; — ;). Then

Wit < diWigy — h;(yi)gm + h;(ﬂi)ﬂi,x + fi(u) — fi(@). (5.5)

In order to relate f;(u) and f;(@), we can define a function ¢;(6) to be ¢;(6) = fi(fu +
(1 —6)a), so that

10) = 5L 00+ (1~ @) - ) = (L 0w + 0 - 0@ .

Therefore
fi(w) = fi(@) = (1) — ¢:(0) = (/0 dfi[0(u) + (1 — 6)(u)] d9> w; =: B;(z, t)w;.

We can re-write the term k()i — h;(u;)y; , 8s

! ’

()1 — ()i = (i) = hifw) | s = Bi(u) [t = Ta]
and by using the same procedure we have
1
B(E) = hiw) = [ B05 + (1 = )i~ )
= ( /0 1 h; (0; + (1 — 0)u,) d0> w; =: Mi(z, t)w;.
Let h;(u;) =: as(z,t) and R;(z,t) := M;(x,t) G;z. Then (5.5) implies
Wi < diw; zz + Ri(z, t)w; — a4z, t)w; 5 + Bi(z, t)w;. (5.6)
If we let €;(z,t) = (Bi(z,t) + Rz, t)), then (5.6) can be written as
Wit < dwi o — (T, )W, + €(z, t)wy,

for i = 1,2,....,k. Applying [38, Theorem 5.3] with the initial condition (5.2) gives us
w; = u; — %; < 0 which implies that u,(z,t) < 4;(z,t) for all (z,t) € R x (0,T]. Then the

result is proved. O
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The following example illustrates that the Comparison Theorem 5.1 does not necessarily
hold if the co-operative assumption is not satisfied. Note that a related example, that is
presented in [13], illustrates that without the diagonality assumption on the convection
term, which means that when u, appears in the v-equation or v, appears in the u-

equation, a comparison result could fail.

Example 5.1. Consider the system below for z € (0,1), ¢t € (0,7),

!

U = Ugy — Ay (Wuy — v,

’

Vg = Vg — ho(V)Vy. (5.7)

We seek candidate sub u,v and super @, solutions, for (z,t) € (0,1) x (0,7), for the

system (5.7), in the form

_ 2 L 1

w(z,t) =1 —t(z — z°), u(z,t) = 3 O(z,t) =¢, and wu(z,t) = —57. (5.8)
Then u satisfies

!

Uy — Tgg + hy (@) + 0 = —(z — ©2) — 2t + By (@)(~t + 2tz) + € (5.9)

1 ,
> i 2t + hy(w)t(2z — 1) +€ > 0,

if e > 1 +2t—hy(@)t(2z — 1) = 1 +¢[2— hy(@)(2z — 1)]. Since for z € (0,1), the

= supremum value of |2z — 1| = 1, it follows that 2 — h'1 (@)(2z—1) <2+ |h'1 (@)|, and thus

t[2 — hy(@)(2z — 1)] < t[2 4 |h1(@)]], SO @y — Uge + hy(@)Tz + T > 0 provided hi(@) and €
 are chosen such that & > i + t[2 + |h}(@)]]-

. Now for u, we clearly have

3

/ 1
Uy — Uy, + Ry (W)u, +v = —52 <0 forallz € (0,1),¢t€(0,T).
By following the same procedure for v and o, we obtain

Ty — Ugg + ho(T)0, = 0 (> 0)  for all (z,¢),

82




and

U — Uy + hy(0), = —%h;(y) <0 provided that hy(v) > 0.

If the Comparison Theorem 5.1 held, we would have @(z,t) > u(z,t) and o(z,t) >
v(z,t) for (z,t) € (0,1) x (0,T) whenever (u,v) and (@, ?) are sub/super solutions on

(0,1) x (0, T) respectively, so in particular
a(z,t) — u(z,t) >0, (5.10)

which says that t(z —z?) < 7. However, for = 3, (5.10) does not hold for ¢ > 2, whereas

for ¢ € (0, 3] we have

. T2 - K@) - 1] < 1 + 32+ @]
|

for all z € (0,1). So for ¢ = 8, and assuming that h; is such that |h;(a@)] < 11/12,

(0,1) x (0,3], and provided we also have hy(v) > 0, (u,v) is a subsolution of (5.7) on
(0,1) x (0,3]. Thus the Comparison Theorem 5.1 does not hold for system (5.7).

5.1 Hypotheses of the reaction-diffusion-convection
systems

We assume in the following that the functions f : R¥ — R* and h : R* — R* in system
(5.1) satisfy the hypotheses:

i > 0 for i # j;

8uj

S9: f(0) = 0 there exists § > 0 such that f(8) = 0, and there is no v > 0 other than j3

such that f(v) =0and 0 < v < f3;

Sy

s3: Neither f nor h depends explicitly on either z or ¢, and d; > 0 is constant for
i=1,2,..,keR;
s4: h has the diagonal form of convection terms diag (h;(u;)) for i = 1,2, ...,k € R;

ss: The functions f and h are continuously differentiable at « for each 0 < a < ;

then (5.9) holds, and hence (@, ) is a supersolution of the system (5.7) for all (z,t) €
“



se: The Jacobian matrix f (0) is in Frobenius form (see, Theorem 3.1) and such that

the principal eigenvalue v;(0) of the upper left diagonal block of f'(0) is positive and is

strictly larger than the principal eigenvalue of the other diagonal blocks, and there is at

least one nonzero entry to the left of the each diagonal block other than the first one.

Remark 5.1. (i) Property s; says that the system 5.1 is co-operative, which ensures

(i)

(iii)

that it is order-preserving by the Comparison Theorem 5.1.

In the general case of Property sg, for a system of k equations that satisfy Hy-
potheses s; — s5, when there might be more than two diagonal blocks in f’ (0),
[36, Theorem 2.1], which we quote in Chapter 6 as Theorem 6.3, ensures that the
eigenvector of f'(0) corresponding to the principal eigenvalue of the first block is
strictly positive (we will discuss in Chapter 6, the strict positivity of the eigenvector

of f'(0) corresponding to the principal eigenvalue of its first block).

In most of our examples in Chapter 7, we consider a system of two equations.

' , a 4 A
Thus f (0) has the form, f(0) = where 4,90 > 0. In the case when
0 o
, a 0 s
f(0)= where «, 0 > 0 and o > o, it is easy to show, by an elementary
0 o

calculation, that the eigenvector of f’(0) corresponding to the principal eigenvalue
a of the first block is strictly positive. Indeed, suppose the principal eigenvector of
f/(0) corresponding to the principal eigenvalue « is z = (z,4)”. Then gz + oy =
ay & or = (a—0)y. Since o > ¢ and g > 0 it follows that z and y have the

same sign, and thus can be chosen so that z = (z, y)T 1s strictly positive.

5.2 Important results for the PDE system (5.1)

In this section we present results that are important tools for the PDE system (5.1) and

- will be used to show that the operator @; defined in (5.18) satisfies Hypotheses q; — gs.

The following proposition shows the existence of a unique solution of (5.1) and continuous

dependence in BUC*(R, R¥) on the initial data u for time ¢ such that 0 < ¢t < 7(uo).

See [15, Proposition A.3] with ¢ = 0 and —h'(u)u, + f(u) in place of f(u, ug).
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Proposition 5.1. Suppose that f and h satisfy Hypotheses s; — sg and the initial con-
dition ug € BUCY(R,R¥). Then there ezists a mazimal 7(uy) € (0,00] such that
there ezists a function U% € C* ((0,7(uo)), BUCHR,R¥)) such that u* defined by
u¥(z,t) = U%(t)(z) for each x € R,t € [0,7(uo)) satisfies (5.1) and its initial data.
Moreover, there is a unique function U™ : [0, 7(up)) — BUC(R,R*) with these proper-
ties. In addition, given 0 < T < 7(uy), there exist r, K > 0, depending on ug and T, such
that if up € BUCY(R, R¥) is such that ||ug — pll1,00 < T, then T(1dp) > T and

u (-, t) — 4™ (-, )|l 1.00 < K|lttg — to||1,00 for each 0 <t <T. (5.11)

The next proposition gives a condition under which a unique solution of (5.1) exists for

all time t. See [15, Proposition A.4].
Proposition 5.2. Suppose that that f and h satisfy Hypotheses s; — sg. Let ug €

BUCY(R,R¥) be such that

sup  J|[u(-, )]l = K < 00, (5.12)

0<i<T(ug)

where u*® and T(up) are as in Proposition 5.1. Then T(ug) = o0o.

The following theorem shows the existence of a unique solution of (5.1) for all time
t provided the initial condition lies between the equilibria 0 and £, in which case the
solution still lies between these values by the Comparison Theorem 5.1, which allows

Proposition 5.2 to be applied. This result is a'modification of [15, Theorem A.7].

Theorem 5.2. Suppose that f and h satisfy Hypotheses s;—sg. Then if ug € BUC(R, R¥)
is such that

0<uy<pB for allz € R, (5.13)

then T(up) = 0o, and

0<u"(z,t)<p forallz € R, t > 0. (5.14)
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Proof. Let ug € BUC'(R,RF) satisfy (5.13). Since 0 and S are equilibria, if we have
initial data uy = 0, the solution of (5.1) is u(z,t) = 0 and similarly, if we have an initial
data @y = @, the solution of (5.1) is @(z,t) = 8. Then the Comparison Theorem 5.1

implies that, if 0 < wug < 8, then
u(z,t) < u(z, t) < u(z,t), (5.15)

where u(z,t) is the solution of (5.1) with u(z,0) = uo(z). Thus 0 < u(xz,t) < 8 for
z € R,0 <t < 7(ug). Hence condition (5.12) in Proposition 5.2 is satisfied and the
results follows by applying the Comparison Theorem 5.1. 0

Note that in the following we will always assume that ug satisfies (5.13).

The following theorem states that for given initial data ug € g N Bgyc:(0, R), where
Bpyc:(0, R) = {u € BUC" : ||lull1,.0 < R}, there is a uniform bound for ||ju,(-,t)||«. We
will always assume in the following that the initial condition uy belong to a set s N
Bpyci(0, R) for some fixed R > 0, because we have convection terms and the initial

condition ug lies between 0 and 5, and we want to be sure that the derivatives u;, are

uniformly bounded all the way down to ¢ = 0. This result follows from [25, Theoren 3.1,

' p.437], and we omit the proof.

Theorem 5.3. If u is a solution of (5.1) with initial condition uo € g N Bpyea (0, R),

~ then for given R > 0, there exists M > 0 such that

flug (- t)]|oo < M for allt > 0.

The following theorem shows the continuous dependence in a weighted norm for diffsrent,

- solutions u, i of the PDE system (5.1) corresponding to different initial conditions %, i,

- (see [30, p.263-265]). This controls differences between u(-,t) and 4(-,t) in the suprenum

" norm on bounded sets, which is needed to fit the PDE system into framework of Q. In

particular, this theorem will be useful to prove Hypothesis g, in Lemma 5.2 below. We

give the proof of Theorem 5.4 in the Appendix.
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Theorem 5.4. (Continuous Dependence Theorem) Given R > 0, T > 0, there exists
C > 0 such that if u, @ are solutions of (5.1) with initial data wo, %o € g N Bpye: (0, R),
then for each 0 <t < T,

lu(,8) = A, Olloon + 2 [lul, ) ~ A, Ollyon < Clluo(-,8) = Go(, t)lloo,  (5.16)

where

1

n(z) = 1+ 22 l[2lloo,n == sup [n(z)z(z),  [|2ll1,00m = lI2lloon + |zzllocs-  (5.17)
z zeR

We also include the following lemma which shows that if the initial condition wuy of the

system (5.1) is non-increasing, then the solution of this system remains non-increasing.

Lemma 5.1. If the initial condition vy € BUCY(RF,R*) of the system (5.1) is non-
increasing, then the corresponding solution u(z,t) of (5.1) remains non-increasing in

for all t.

Proof. The proof depends on the Comparison Theorem 5.1. Suppose that ug is the initial

condition of (5.1) for the solution u(z,t), and consider the initial condition ug(- + Ax)

where Az > 0, so that, by translation invariance, the corresponding solution of (5.1)

is u(- + Az,t). Since ug is non-increasing and Az > 0, then uo(- + Az) < wuo(-). The

Comparison Theorem 5.1 implies that u(- + Az,t) < u(-,t), and hence u(- + Az, t) —

u(-,t) < 0. Since Az > 0 was arbitrary, it follows that uz(-,¢) < 0 since u,(-,t) =
u(- + Az, t) — u(-, t)

Alglglo Az ' -

5.2.1 Results for the abstract tool @); for the PDE system (5.1)

In the absence of the convection terms in (5.1), it is shown in [42] that such a PDE system

can be related to (3.1) by taking @ to be its time-t map, that is,

Qu[uo](z) := u(z, 1), (5.18)

where u(z,t) is the solution of the problem (5.1) at time ¢ > 0 and the sequence of

functions u,(z) := u(x, nt) satisfies the recursion (3.1) with @ replaced by @Q;. We note
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that @, as noted in [26], satisfies the following semigroup properties

(91) Q4 [@1,[v]] = Qi 44,[v] for all positive ¢; and ¢,
(92) %1_1;% Qt[v] =,
in the sense that ||Q;[v] —v|, — 0ast — 0.

The following lemma shows that the operator @Q; defined in (5.18) satisfies Hypotheses
q1 — g3, modified Hypotheses g, q'5, Hypothesis gg, and modified Hypothesis ¢;. We will
modify versions of Hypotheses g4 and g5, denoted by q;, q;, by assuming that the initial
condition ug belongs to the set 13N Bpyc1(0, R) for some fixed R > 0. This is because of
the presence of the convection terms, as a result of which it is useful that the derivatives
u; » are uniformly bounded all the way down to ¢ = 0. Later we will also prove a modified
version of Hypothesis g7, denoted by g, in Lemma 5.4, whereas in subsection 5.3.1 we
discuss Hypothesis g for @;. This result connects the discrete recursion (3.1) and the

continuous-time system (5.1). The modified hypotheses g, and g; are:

q;- For a given sequence {v,}, .y C %5 N Bpyc1(0, R) and v € 95 N Bpyc: (0, R) such
that {v,} converges to v uniformly on every bounded set, then Q:[v,] converges to

Q¢[v] uniformly on every bounded set.

gs. For a given sequence {vn}nen C s N Bpuci(0, R), there exists a subsequence

{¥n }n,en Such that Q¢fv,,] converges uniformly on each bounded set.

Lemma 5.2. The operator Qy[v] that is defined in (5.18) satisfies Hypotheses g1 — q3 and
Q4> Gs-
Proof. (g1) We need to prove that the operator ) is order-preserving, which means that
if v > u, then Q:[v] > Q:[u].
Since we have from the definition of @, that Q:[v] = v(z,t) and Qifu] = u(z,?)

for all z,t € R, then by the Comparison Theorem 5.1 we get Q:[v] > Q4[u] for all
z,t € R.

(g2) Since f(0) = f(8) =0, then Q;[0] = 0 and Q;[3] = B.
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(g3s) We need to prove that the translation invariance property (1.7) holds for the oper-
ator Q. For the initial data uo there is a corresponding solution u(z,t) of (5.1) and
Proposition 5.1 says that this solution is unique. Suppose that ug(z) := vo(z — y).
From the definition of @; in (5.18) and the translation invariance in (1.7) we have
that Q:[Ty[v]](z) = v(x — y,t). If we consider vo(z) as initial data, the function
v(z — y,t) is a solution of (5.18) which by Proposition 5.1 is the unique solution
v(r — y,t) of (5.1) with initial condition vy(z). Since v(z — y,t) = uo(z), then the
solution that we have is a translation of u(z,t) which means that we have got the

solution Ty, [Q:[v]](z) and it follows that Q¢[Ty[v]](z) = T[Q:[v]](z).

(¢) Inequality (5.16) in Theorem 5.4 says that, for C > 0

1Q:[va](-) = Qelv] (Moo + /21 Qelvn] (1) = Qelv) (V00 < Cllvn () ~ () looum,
and in particular,
1Qelvn](-) = @u[v](Nloom < Cllval-) = v()lloo- (5.19)

Consider [-L, L]. Then we want to show that Q;[v,] — Q:[v] uniformly on (-L, 1),

which means that for a given € > 0, there exists N such that n > N implies that

sup [Qufel(#) ~ Qo)) < (5.20)

xz€[—-L,L

Since [|@ulvn](-) = Qulv](-)lloon = sup 1(2)|Qc[vnl(z) = Qe[v]()], then

sup | Qi[va](x) — Qe[v)(®)] = sup (1+2°)7 1 2 Qo] (2) = Qo))

z€[-L,L] z€[-L,L)

|
<SO+L) swp s lQdnl(@) - Q(e)]
|
z
l

(5.21)

For 6 > 0, (5.19) and (5.21) give

sup |Qe[va(z) — Qev](z) < (1+L7)S i [lon — vlleoyy < 6/C.

z€[-L,L]
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Therefore

sup [ Qefvn](2) — Qevl(z)] <€ if [lon — vllooy < €/C(1+ L7).

z€[-L,L]

Now since we know that for a given B > 0, sup |vn(z)—v(z)| = 0 as n — oo,
z€[-B,B|

and from Proposition 5.1 we have that if |z| > B, then |n(z)v(z)| =

M <
1422~ 14 B?

(@) <

where M is a constant. We know that

sup|n(z) (va(z) — v(z))|

z€eR

= max { sup 7)(z)|va () — v(2)|, sup [n(z)(va(z) — v(w))l} :

lz|<B lz(>B

where

1 1 2M 2M
sup |——= (vp(z) —v(z))| < sup —— (|v,(z)] + |v(z)]) < su < .
|x|§9|1+w2( n(T) — v( ))I_|z|>%1+:r2 (lvn(2)] + |v(2)]) S TR ST B

Now choose Ny sufficiently large such that for n > Ny,

ze?}gﬂ In(z) (vn(z) — v(z))| < ca+Iy

2M €
h < if B >
then 175 = G+ 1) 1fB—\/

know that |n(z)| < 1, we have that

2MC(1+ L?)
€

. For fixed such B, and since we

sup 7(z)|vn(z) — v(z)| < sup [vn(z) —v(z)],
|lz|<B |z|<B

and since sup |v,(z) — v(z)] = 0 as n — oo, there exists Ny such that
z€[—B,B]

sup |un(z) — v(x)

€ ~
< ———— when n > N,. Thus
z€[-B,B] | C(1+ L?) °

max {Iilt;%n(w)lvn(w) —o(z)], l:g;ln(w)(vn(w) - v(I))I} e L)
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and hence Q;[v,] = Q:[v] uniformly on [—L, L].

(g5) Define 2, := Q4[v,). Then we want to show that {2,},,.y is uniformly bounded and
uniformly equicontinuous on each bounded set in R.
Fix t > 0. Since 0 is an equilibrium, (5.11) in Proposition 5.1 implies that
1(zn)zllo < M, and ||zx]lec < M, for some constant M independent of n € N.

So sup |z(z)| < M, and hence [|Q:[vn]|lc < C for a constant C' > 0, for all
zeR,neEN

n € N. So Q¢[v,] is uniformly bounded.

Moreover, since Q;[vn] = un(-,t) where u,(-,0) = v,. By the Mean-Value Theorem,

there exists ¢ € (z,y) such that

[un(2,8) = un(y, D)oo < [|(un)z (e 8)(z = Y)lloo < [|(Un)e(c; lloo|z — y| < Mz —y].

Therefore for € > 0, |un(z,t) — un(y,t)| < € when |z — y| < IG/I_ for z,y € R,t > 0, which
 means that Q;[v,] is uniformly equicontinuous on [—L,L]. Thus we have that Q;[v,)
~ is uniformly bounded and uniformly equicontinuous on R. Then, for a given bounded
- set [=L, L], Q¢[vs] is uniformly bounded and uniformly equicontinuous on [—L, L], so
;A Arzela-Ascoli’s Theorem (see for instance [34, Theorem 2.5, p.49]) implies that there
exists a subsequence {v, }, y Such that Q:[v,] converges uniformly on [~L, L]. By a
diagonal subsequence argument, there exists a sub-subsequence {vm,c }mk ey Such that

Q¢[vn,, ] converges uniformly on each bounded set. O

The following important theorem shows that the left slowest spreading speed of the time
1 map of the PDE system gives a spreading speed for solutions of the system (5.1) itself
where the initial data is non-decreasing in the sense that (5.22) and (5.23) are satisfied.
This result gives us important information about the continuous-time problem (5.1) using
the discrete recursion (3.1). This theorem is a modification of [42, Theorem 4.1], with
non-decreasing initial data instead of non-increasing and with the introduction of the
- convection term A'(u)u,. Note that here we use Theorem 5.2 and Theorem 5.3 to ensure

~ that A'(u)u, and f(u) both are uniformly bounded.

Theorem 5.5. Suppose that the function f satisfies Hypotheses E1 — E3 and let QQ; be the

time t map in (5.18). If the left spreading speed corresponding to non-decreasing initial
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data ¢é in (3.12) is defined to be é1, then the left spreading speed for Q; map, é = té, and
for any initial function ug(z) € g N BUC!, the solution u of (5.1) has the properties

- that for each € > 0

lim [ max u;(, t)] =0  for some indez j, (5.22)

t5500 [ 2<t(c—e)

tli)rglo Lg({g{e) {8 - u(x,t)}} =0. (5.23)
Proof. Since 3 is closed and bounded and we know by the Comparison Theorem 5.1
that 0 < u(z,t) < B for all (z,t), then u is bounded. Since f and A'(-) are continuous
then |f(u)] < M and |h'(u)] < M for all u € 4. Since uy € BUC", so Theorem 5.3
implies that |uz(z,t)| is bounded for all z € R, ¢ > 0. It follows that h'(u)u, is uniformly
bounded for (z,t) € [0,1] x [0,T]. Thus there exists p > 0 such that

If(u) + A (wug| <p  foru € g (5.24)

Let ¢(0) be a positive principal eigenvector of By. For any €, > 0, there exists a large

integer [ such that
p/l < (6/4)¢(0). (5.25)

Now we are using the left spreading speed ¢ for ) to be applied to the time 1 map @1,
so Property 3.13 which holds for the index 7, can be apply to the time 1 map ¢); and the
time 1/l map Q. of the system (5.18) gives ¢/, = a.-c Property 3.13 for Q1 with

l l
e replaced by €/2 shows that there exists a number Nj such that

wi(y,n/1) < (6/2)¢;(0)  wheny < n(¢/l — g) and n > Nj. (5.26)

Since we have (5.24), so we have that u;; — d;u; ., < p. We now compare this equation
with the heat equation v;; — d;v;,, = p. Since u; is a subsolution of the heat equation
with the same non-decreasing initial condition (ug);, then the Comparison Theorem 5.1

gives u; < v;. The standard formula of solution of the heat equation is the following, see
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[5, Theorem 9.1,p.249].

t
vj(z,t) :/RFj(az—y,t—n/l)uoj(y)dy+p//l/RFj(a:—y,t—n/l)dydl,

1 2
where I';(z,t) = ————e~% /44!, Suppose that for the index j, and a constant R € R,

ug, (y) < 6/2¢;(0) if |y| < R, whereas uq,;(y) < B; if |y| > R. Since we know that
[Tt wtidy = [ 1o =yt — /iy =1,
R R
thus for (z,t) € (0,1) x (0,7, we have

uj(z,t) < /Rfj(fr — 9, (t — n/1))uo, (y)dy + p[t — n/l]
S/ Li(z —y, (t = n/1))(8/2)G( )dy+/ Lj(z —y, (t —n/l))Bdy + p[t — n/I]
lyI<R

ly|>R

< (6/2)6(0) / Ty(z — 9, (¢ — n/0))dy + B, / Iy(z — g, (t = n/1))dy + plt — n/i]
ly|<R ly|>R
< (6/2)¢;(0) + 'Bj/ll RFJ(ZE —y, (t—n/l))dy+plt —n/l].

Now we want to evaluate the term fl Lj(z —y, (t — n/l))dy by substituting the form

y|>R

of I'; to estimate u;(0,¢) and then apply the shift to estimate u;(z,t) as follows,

o sy e =920

= Ty o (00}

that gives

/_;o mexp{ )?/4d; t—n/l}dy
+/ Y r— (tl_ o exp {—(y)?/4d;(t — n/l)} dy

R

=2/R°°mexp{ )2/4d;(t — n/l)} dy. (5.27)
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Since fooo e—ayzdy = % g, soifweletb=y— R, a= m

b2 + 2bR + R? > b? + R?, we obtain that

° b+ R)2 © b2+ R2 R2 o0 b2 R2 ]. T
/ e~ R gp < / e~ e R gp — om0 / eWdb=e"" . =4[ —.
0 0 0 2Va

Thus (5.27) becomes

, then since (b+ R)? =

)(b+R)2} db

1 foo {_ 1
Vadt —nji) 70 TP\ ad, (¢ —n/l

1 1 —R? T
= JrdGoni) [5 P (4dj<t2— n/l)) 1d;(t - n/z>J

This means that if u;(y,n/l) < (6/2)¢;(0) for y < R and u;(y,n/l) < B; for all y, then
for 0<t—n/l <1/,

(0,0 < plt =/ + (6/260)+ 85 | (@t~ /) ewp (s )] (629

2

" Then if we choose R = R; sufficiently large, we get that §; exp (——) is bounded
- by (6/4)¢;(0) when 0 < ¢ —n/l < 1/l. Thus (5.28) implies that

ad;(t — n/l)

u;(0,8) < p[t —n/l] + (6/2)¢;(0) + (6/4)¢;(0).
By (5.26) we get that for z < £(é — %) —R;,
uj(z,t) < (6/4)¢;(0) + (6/2)¢;(0) + (6/4)¢;(0) = 6¢;(0),
which means that u;(z, t) is bounded by 6¢;(0) when

z < té— g) _R;, (5.29)

0<t- n/l < 1/l, and n > Ns. So (5.29) is implied by the inequality z < #(é — €), since
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z < t(¢ —¢), and if ¢ > max {N;/l,2Rs/e}, then it implies that z < ¢(¢ — ¢/2) — Ry if
t > 2Rs/e. Since 6 is arbitrary, for the index j we have

im | max us(2.0)| < 3G,0)

t—00 | z<t(é—e)

By applying the same procedure to the function 8 — u(z, t), the theorem is proved. Note
that in this theorem and in contrast to [42], we are allowing that ¢ # é;, since we apply
the characterization property (3.13) for the left spreading speed that holds only for the

index j but not for all the components of in(ax )uj (z,t). O
z<t(é—e

The following theorem establishes the existence of travelling waves for the continuous-

time recursion, introduced on [26, p.91], satisfying

u(z, t1 + t2) = Qe lul-, t1)](x). (5.30)

This theorem extends Theorem 4.1 from the discrete-time recursion (3.1) to the continuous
time recursion (5.30). It is important for the following theorem to note that, in terms of

Q:, Theorem 5.2 implies that Q;[tys N BUC?| C 9. This result is a modification of [26,

- Theorem 4.1] for non-decreasing travelling wave solutions instead of non-increasing.

Theorem 5.6. Suppose that Q; is a family of operators defined on the set g that satisfy

the semigroup properties (g1) and (g2) and such that Lemma 5.2 holds for Q. for each
t > 0. Let the left slowest spreading speed of the recursion (3.1) be ¢ with Q) replaced by
Ql- Then

(i) If c < ¢, there is a non-decreasing travelling wave solution Q¢[w](z) = w(x — ct) of

(5.30) of speed c with w(oo) = B and w(—o0) an equilibrium other than f.

(i) If there is a travelling wave w(z — ct) with w(oo) = B such that

liminf w;(z) =0  for at least one component i, (5.31)
T——00

tien ¢ < é.
(iii) If (5.31) holds for all components of w, then c < ¢y, where &5 is defined in (3.29).
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(iv) If there isto > O such that the recursion (3.1) with @ replaced by Q, has no constant
equilibria other than 0 and B in g defined in (3.5), then the left spreading speed
for the time t map Q:, €[Q:] = &f[Q¢] = tés[Qn] for all t > 0 which means that the

recursion has a single left spreading speed.

Proof. For the proof of the first three statements (i) — (i¢z), we can follow the proof of
the corresponding three statements in [26, Theorem 4.1].

(iv) We want to prove that é;[Q;] = ¢[Q;]. We proved in Theorem 5.5 that ¢[Q] = t&[Q,],
and by using the same argument for é;[Q;], we get that éf[Q:] = téf[Q1]. Thus for
to, we have &f[Qy,] = toés[Q1] and ¢[Qy,] = to¢[@1]. From Theorem 4.1 (iv) we have
toéf[Q1] = toc[@1], which implies that é;[Q1] = é[@Q1]. Since ¢ is arbitrary, then we obtain
that ¢¢[Q:] = ¢[Q:] and the theorem is proved. 0

Note that in subsection 5.3.2 we will present results for the PDE system (5.1) showing
that the left slowest spreading speed ¢ can be characterized in terms of a class of travelling

waves, and give a condition that guarantees that (5.1) has single left speed.

5.3 Single speed and linear determinacy for the PDE
system (5.1)

We can use Theorems 4.2, 4.3 from Chapter 4, that contain conditions for single right
(left) spreading speed and right (left) linear determinacy for the discrete recursion (3.1),
I to deduce results for the continuous-time system (5.1). Again, we need to consider both
i right linear determinacy, corresponding to non-increasing initial data, and left linear
|

determinacy, corresponding to non-decreasing initial data.

5.3.1 Linearization operator M for the PDE system (5.1)

The linearization operator M at 0 of the time 1 map @), is the time 1 map of the linearized

system (5.1) at 0, which is

Uit =+ h;(O)Uz,x = diui,m -+ (f/(O)’U,)“ ] = 1, 2, ..k (532)
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In order to derive an explicit characterization of M, we seek a solution of (5.32) of the

form u(z,t) = e #*n(t), where p € R. For each i, we have
me = (u® diag d; + p diag hi(0) + £ (0)) e n(t),

thus
C, = p? diag d; + p diag h;(0) + £ (0). (5.33)

By Property s, the off-diagonal entries of C), are nonnegative.
The vector-valued function 7 is a solution of the system of ordinary differential equation

with constant coefficients C), that satisfies
n. = C,n withn(0) = a € R, (5.34)

Since we have 7(t) = exp(Ct)n(0), see [4, p.169], then u(z,t) = e ** exp(C,¢)n(0), which
implies that the time 1 map M is

M[e ™" a] = e ** exp(Cyt)a. (5.35)

Then the using characterization of the matrix B, in (3.4) and (5.35) with ¢ = 1,z = 0,
provided that n(0) = «, we find that

B,a =exp[C,] a, (5.36)

and hence B, = exp[C,]. Since C,, defined in (5.33), is in Frobenius form, so [37, p.86,
Theorem 8.1, p.257] with an induction argument imply that exp[C,] = B,, is in Frobenius
form. Moreover, by [10, Theorem 2.52, p.168], we have A, () = €7 where +, denotes
the principal eigenvalue of the oth block of the matrix C,, defined in (5.33). Hence we
deduce that Hypothesis gg holds for Q.

Corresponding to the definition of linear value in (4.10), we can define the linear value
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for the first block of the matrix C,,, called the right linear value, by

&= inf {71(“) } . (5.37)

u>0 M

Note that we use the notation ¢ here, as in Chapter 2, because in the case when f’(0)
is actually irreducible (so has only one irreducible block in the Frobenius form), it is
easy to see that this definition of ¢ coincides with the natural extension to the system
(5.1) of the definition of ¢ in the scalar case discussed in Chapter 2, namely that the
travelling-wave problem linearized about the unstable equilibrium 0 has a real negative
eigenvalue corresponding to a strictly positive eigenvector if and only if ¢ > ¢. In fact,
(5.37) yields an alternative characterization of ¢ in the scalar case as well. When there
are two or more blocks in the Frobenius form of f’(0), which we will discuss in Section

6.2, we cannot conclude that these two definitions of ¢ necessarily coincide.

In order to consider linear determinacy for non-decreasing initial data as well as non-
increasing initial data, note next that if we define 4(z,t) = u(—=z,t) where u is a solution

of system (5.1), then @ is a solution of the system

S

Gy p — (1) 0 2 = dithy gz + fi(u:) (5.38)
for which the related coefficient matrix is
C, = 2 diag d; — i diag h,(0) + £'(0). (5.39)

Clearly system (5.39) is obtained from system (5.1) simply by replacing h by A := —h,
where f and h satisfy Hypotheses s; — s¢ if and only if these hypotheses hold for f and
h. So results for non-decreasing initial data of (5.1) can be deduced immediately from

results on non-increasing initial data of (5.38).

For fi which is defined to be the value of 4 > 0 at which the infimum in the definition of ¢
in (5.37) is attained, the following lemma shows that in the case when we have a system

of two equations, as in most of our examples, there is a sufficient condition for fi to equal
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the value at which the infimum in the definition of the linear value corresponding to

i,
C’ﬁ, that we called left linear value

O

=t {21, (5.40)

a>0 i

is attained, where 4; is the principal eigenvalue of the first block of Oﬂ. Note that for
such f, (5.37) and (5.40) become

(5.41)

Here and in the following, we denote by ((&) an eigenvector of C, corresponding to the

eigenvalue 7 () and by é (i) an eigenvector of éﬂ corresponding to the eigenvalue 4 (f).

Lemma 5.3. In the case that (5.1) is a system of two equations, if f and h satisfy

, a 0

Hypotheses s; — sg, and f (0) = where o, 0 > 0 and o > o, then (i) i = i,
0o o

and (i) the eigenvector ((i) of C, corresponding to v1(@x) can be chosen equal to the

eigenvector C(fi) of é’ﬁ corresponding to 41 (1) if and only if h;(0) = hy(0).

Proof. Part (i) is immediate from the definitions of ¢ and ¢. For (ii), let '(0) = diag(a, b)
T
and ((@) = ( 1 a ) . Then equation (5.33) yields

dip® +ap+ 0
c,=| . (5.42)
0 dop® + ub + o
e dplftap+to vy a . :
Let E(u) := i p . Then E (p) = dl—ﬁ = 0Oifand only if 4 = \/a/d;.

So i = \/a/d;, and therefore

2a + av/a/d; 0

0 dgg +by/a/d;+ 0o
d;

(5.43)

In order to find the principal eigenvector ((fi) corresponding to the principal eigenvalue
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Y1(f), we have

200+ av/a/d 0 1 1
1 . = (2a +a\/a/d1> , (5.44)
o d2d—1 +b O.’/dl +0o Qg Qg

which yields that

d
as = —p/ (x/a/dl(b —a)+ Oz(d—2 -2)+ a) .
1
On the other hand, since part (i) holds, then equation (5.39) yields

. dip? —ap+a 0
C, = , (5.45)
0 dop® — pb + o

which implies that

é 2a — av/a/d; 0
B a
do— —b d
o 2 d dl (8] / 1 + 0o
. T
The second component of the principal eigenvector (i) = ( 1 & ) corresponding to

the principal eigenvalue 4;(f) is

Gy = —p/ (\/a/—d](a—b)+a(g%—2)+0).

1

~

It is then clear that {(z) = ((&) if and only if a = b. O

For a system with only two equilibria 0, 8 with 8 > 0 and f'(0) an irreducible matrix,
Lui [29] gave sufficient conditions for spreading speeds to equal linear values, and these

' results were generalized by [42] to systems where the Frobenius form may have multiple

any additional equilibrium v has v; = 0 for at least one ¢ € 1,2,...,k. Note that in
- Chapter 2, we discuss the case of a single equation, and have only two equilibria ( and g,

|
! diagonal blocks and there may be more equilibria other than 0 and 3 in [0, 5] provided
|
i whereas in this chapter, we have a system, which, by Hypothesis so, may have ecuilibria,

' in addition to 0 and S if they have at least one component equal to zero.

!
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The following lemma proves that a modification of Hypothesis g7, denoted by q/7, is
satisfied by the time 1 map of the system (5.1). We modify Hypothesis g; to the case

when the initial condition v € BUC"! of (5.1) is small enough not only in ||- || but also in

- ll; o~ The reason for this modification is to control h'(u)u, in the proof of Lemma 5.4.

- Since the role of q'7 is to ensure that ¢, > ¢, it is sufficient to consider initial conditions

that are small in ||-||;0 in order to estimate the spreading speed c,. Lemma 5.4 is a

modification of [42, Lemma 4.1] to include the convection terms h;(u,)u” It is needed

to ensure that the right spreading speed of the recursion (3.1) is bigger than or equal to

the right linear value. The modified hypothesis g, is :

;. A family of bounded linear order-preserving operators on R*-valued functions M)

satisfies the following properties:

(i) For every large x > 0 and v : R — R, there is a constant vector w > 0 and § > 0

such that Q[v] > M*[v] and ||v||1,00 < 6.

(ii) For every positive u, the matrices B,(f) that can be characterized by B,(f)a =

M*[exp(—pz)a]|z=o converge to B, as k — 0.

Lemma 5.4. If the functions f and h satisfy Hypotheses s; — sg, then there exists a
family of bounded linear order-preserving operators on RF-valued functions M*) which

satisfies Hypothesis q,.

Proof. Choose p > 0 such that the diagonal elements of the matrix f'(0) + pI are strictly
positive. Hypothesis s; then ensures that all the entries of this matrix are non-negative.

For any x > 1 and p > 0 we define M 1(”) [v] to be the time one map of the linear system
Wi = diag diwi,wa: - diag h;(o)wi,m + (1 - K—l)f/ (O)w‘t - K,_l’w,;(p + 1)7 (546)

w(z,0) = v(z).

That is, M(®[v](z) := w(z,1). The idea of the proof is to show that for a sufficiently

small initial condition v, we get @Q[v] > M*[v]. As a tool, first consider the case when
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v is instead given by v = e"#*« with p > 0, v is non-increasing. The solution w of the

system (5.1) is w(z,t) = e #*n(t), where 7 satisfies that

n = | diag d; + p diag (0) + (1 — £7)F (0) — k™ (p+ 1)I| m(t).

For the initial condition v = e #*q, and with B,(f) that is defined in Hypothesis ¢; (ii),

we have that

B;(f)a — M® [e7%q] = eH* oh? diag di+p diag h;(0)+(1—~“‘)f/(0)—f€“(p+1)1a,

and at z = 0, BYY) = e#” dieg di+p diag R (O)+(1=r"1)f (0)~k"1(p+1) When 5! — 0, the matrix
B,(f”) converges to the matrix B, as kK — oo. Thus we have proved Property (ii) of
Hypothesis q’7.

Now in order to establish Property ¢ of q/7, we define for each ¢ the projection

if {f(0)+plI},;>0

Milal}; = ,
el 0 if {f(0)+pl};=

Note that since p > 0, {II;[e]}, = o, and that II;[a] < o when o > 0. Hypothesis s;
ensures that

fila) > fi(II;[a]). (5.47)

- Moreover,

ILo] - V£(0 Z{H[ afl() (5.48)

 and since {IL[a]}, = aj if {f(0)+ pI}ij > 0, then (5.48) becomes

IL;[a] - V£(0) = z”: gqf; (f/ (O)a)i for all a. (5.49)

Suppose that o is a positive lower bound for the strictly positive terms { f '(0) + pl }i]. > 0,
that is 0 < o < {f'(0) + pI}ij, which implies that 1 < o= {£'(0) + pI}ij. Since
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|IT;[a]| = (Z;;l {Hz'[a]}f-)l/2 <> {IL[e]},, and

n

> il <o {(FO) + o) o} =07 3 (£ O +01)

so for all & > 0 we have

el < 30 (lall, <07 3 (FO) 1) e =™ Il 95 (0)+ ],

i=1 N

(5.50)
If we let ((0) > 0 be the eigenvector of By with ||§(0)||; = 1, there is §,, > 0 such that if

0 < a < 6,((0), then for all ¢, the differentiability of f; at 0 shows that for given x > 1
and for € = o/k, there exists § > 0 such that if || < 6, then |V f;(0)- IT;[o] — f,(IT;[0])| <
(o/k)|II;[a]|. By substituting (5.47), (5.49) and (5.50) into this inequality, we get that

(f (0)a); — (1/) [(f’(0>a)z- + pai] < f(a), (5.51)

when 0 < a < 6,{(0). Now we observe that the solution of the system (5.46) with initial
condition v = 6,e~"(0¢(0) is 5,96‘71(O)e[(l""_1)71(0)_"'"-1”]t((0) and for 7;(0) > 0, « large,
we have (1 — £71)y,(0) — k™' p > 0. Therefore for 0 < ¢ < 1 we have

5,{6—71(O)e[(1—n'1)71(0)—~‘1p]t<(0) < 5,.:6—’“(O)e[(l_“_l)"’l(o)_"_l”]C(O)

= b= MO+(0) < 5,¢(0).

- Thus if we take the initial data [[v]]; ., small enough such that 0 < v < §,e=1(0¢(0),

~ then the corresponding solution w; of (5.46) satisfies 0 < w; < 6,{(0) for 0 < ¢ < 1.

- Then we show that w; is a subsolution of the system (5.1), as follows. Since we know

that w;; = diag djw; oo — diag h;(0)w; o + (1 — k1) f (0)w; — £ w;(p + 1), which implies
that w;; < diag djw; », — diag h;(wi)wi,z + fi(w) holds if and only if

— diag h;(0)w; . +(1—x1) (f/(O)w)i — & wi(p+1) < —diag hy(w;)w; . + fi(w). (5.52)

~ Since 0 < w; < 6,¢(0) and (5.51) holds for 0 < o < §,((0), so taking a = w; in (5.51),
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(ding A (w) — diag ki(0)) wiz + (1= &™) (£ O) = &7 (pw)i = filw) — 7', < 0.

1

Now the Mean Value Theorem implies that h;(w;) — h;(0) = h; (€)w;, therefore | (w;) —
h;(0)] < M|w;|, where M is a constant such that |h; ()| < M for £ € [0, B]. Moreover,
by Proposition 5.1 with @y = 0 and T" = 2, there exists K such that (5.11) implies that

lwi(-, ) |l1,00 < Klvl]1,00 for each 0 <t <2,

from which it follows that_1||w,||1°o < K||v|1,00 < % if ||v]l1,00 < K;I’ and hence for
all ¢ € [0,1], ||wigll, < EJ\T Thus we can choose d,, smaller if necessary to ensure that
if |]l} oo < Ox, then |(Bg(0) — hy(wi)) wig| < Mlwi| - €71 /M = k™ w; for all ¢ € [0,1].
Therefore

(diag b, (w) — diag h;(o)) wig + (1 — k1) ( f (O)w) — kY pw)i — fi(w) — kL,

1

< |diag h;(wi) — diag h;(O)Hwi,xl — K w+ (1 — k71 (f/(O)w) — K (pw); — fi(w)

1

<k 'wy— kTt + (1 — K7 )(f (0)w ) — k1 (pw); — fi(w)

(0)w). - K7 (pw)i - fi(w) <0, (5.53)

K3

= (- (¢

Then (5.53) shows that w; is a subsolution for the non-linear system (5.1). By applying
the Comparison Theorem 5.1 with the initial condition v and noting that w(z,1) =

M®[w](x), it follows that Q[v] > M™[v], and the lemma is proved. N

5.3.2 Travelling waves and spreading speeds for the PDE sys-
tem (5.1)

The following theorem shows that the left slowest spreading speed ¢ can be characterized
as the maximum speed of a class of travelling waves. This result gives a condition to

(5.52) becomes
guarantee that the PDE system (5.1) has single left speed. This result is a modification

of [26, Theorem 4.2] to the case of non-decreasing initial data.

|
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Theorem 5.7. If the system (5.1) satisfies Hypotheses s; — sg, then for every ¢ < ¢,
the system (5.1) has a non-decreasing travelling wave solution w(z — ct) of speed ¢ with
w(oo) = B and w(—o0) a zero of f other than B. If there is a travelling wave solution
w(z — ct) with w(oo) = B such that for at least one component i,

lim inf w;(z) =0,

T——00
then ¢ < ¢é. Moreover, if this property holds for all components of w, then ¢ < ¢;.

If there are no constant equilibria other that O and 8 in g, then ¢ = ¢é¢, which means

that the system (5.1) has single left spreading speed.

Proof. 1t is shown in Lemma 5.2 and Lemma 5.4 that (); satisfies Hypotheses ¢; — g3,
44 — s, 6, @7, and since Q; defined as the time ¢ map of the PDE system (5.1), so we
can apply Theorem 5.6 for @; which corresponds to [26, Theorem 4.1] to get the results

and then the theorem is proved. O

For non-increasing initial data of system (5.1), the analogue of Theorem 5.7 for charac-
terizing right spreading speed as the minimum speed of a class of travelling waves and

gives a sufficient condition for (5.1) to have single right speed is the following.

Theorem 5.8. If the system (5.1) satisfies Hypotheses s, — Sg, then for every ¢ > ¢, this
system has a non-increasing travelling wave solution w(x —ct) of speed ¢ with w(—oo) =
and w(oo) a zero of f other than (. If there is a travelling wave solution w(zx — ct) with
w(—00) = B such that for at least one component i,

lim inf w;(z) = 0,
r—Cc0o

then ¢ > é. Moreover, if this property holds for all components of w, then c > é;.
If there are no constant equilibria other than 0 and B in ¢z defined in (3.5), then é = éy,
which means that the system (5.1) has single right speed.
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5.3.3 Sufficient conditions for linear determinacy for (5.1)

A simple combined condition, involving both f and h, that ensures that (5.1) is right
linear determinate, will be given in Theorem 5.9. The following lemma shows that the
solution u(z,t) of (5.1) with continuous and piecewise C? initial condition uy, exists under

a certain condition. Lemma 5.5 is an important tool for Theorem 5.9.

Lemma 5.5. If the initial condition ug is continuous and piecewise C' and satisfies that
ug € [0, 8], then the solution u(z,t) of the PDE system (5.1) exists and is such that there
ezists M > 0 such that |u,(z,t)] < M for allz € R, t > 0, and u(z,t) € [0,8] for all
r € R t>0.

Proof. Since ug is continuous and piecewise C!, there exist £, €2, ..., €™ such that ug is C*
on R\ {¢}, €2, ...,€™}, and continuous on R, so there exists a sequence u, € Bgyc1(0, R)N
g, for some R > 0, such that ||u, —uo||,, = 0 as n — oco. Then for each n, there exists a
solution v™ of the PDE system (5.1) with v"(z,0) = u,(z). Moreover, there exists M > 0,
independent of n, such that |[v7(z,t)] < M for all z € R,t,n > 0, and v"*(z,t) € [0, ]
for all x € R,¢,n > 0. Then there exists a subsequence v¥ and limit u € C(R x [0, c0))
such that v¥ = u in C ([-M, M],[0,T]), v* — u in C*telte([—M, M], [8,T]) for each
0, T > 0, some o > 0, and |uz(z,t)] < M for all z € R,¢ > 0, and u is a solution of the
PDE system (5.1) on R x (0,00), that satisfies that u € [0, §]. O

The following result uses a modification of the ideas in [42, Theorem 4.2]. This result
corresponds to Theorem 4.3 for the discrete-time recursion (3.1). It gives simple condition
to guarantee that the system (5.1) with non-increasing initial data, has the right linearly

determinacy.

Theorem 5.9. Suppose that the functions f and h in system (5.1) satisfy Hypotheses

$1 — S¢. Assume that either

(i) [ is finite,
N(R) > v.(R),  for allo > 1, (5.54)

and

FioC(R)) < pin [Bi(0) = KiloG(m)] G(@) + o(F (OB for allp> 0, (5.55)
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or

(i1) For some sequence v — [, for each v the two inequalities in part (i) hold with p

replaced by p, .

Then

=&t

Ole

Gp=t=

where [i defined in p.98, and these speeds defined in (3.32), (4.10) and (4.11) respectively.

Thus the system is right linearly determinate.

Proof. The key to the proof is to show that S(z,t) := min {e-ﬂ@-ét)g (), B } is a super-
solution of (5.1). First note that S(z,0) = min {e #*{(&z), 8}, Then we will show that

for each 1,

Sit 2> diSigx — h;(Si)Si,z + fi(S), (5.56)

at each (z,t) at which S; is smooth. There are four possibilities of S(z,t), namely
(1) when S(z,t) = e A*=&)¢() in a neighbourhood around the point (zo,%), then
Sit = e~ ™M==&)¢, () for each i, and thus

d;Sizz — h;(Si)Si,x + fi(S)
= d;(n)* - e_ﬁ(x_ét)@'(ﬁ) + ﬁh;(e_ﬂ(m—ét)@(ﬁ))(e_ﬁ(m_ét)@(ﬁ)) + fz’(e_ﬁ(x_ét)g(ﬂ))-

Then (5.55) can be re-written as

/

Fi(pC(R)) + pBhi(pG)G(E) < pBh;(0)G(R) + p(f (0)C(R)): o> 0,

' so taking p = e~#(==&  (5.55) implies that

di(R)? - e M= G (7)) + (e PCG(R))e PG (7) + fi(e P (7))
< di(1) %@~ 4 5hi(0) - e G (1) + e P (£1(0)C (7))
= e7le “){[du + R0+ F O] @)},

I ()G(B)
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where ¢ is defined in (5.41), and hence (5.56) holds.
(2) Since f(8) = 0 and S is a solution for (5.1), then when S(z,t) = § in a neighbourhood
around the point (g, %), (5.56) holds.

Now we consider the cases when S; is given by either e=#==4)¢,(z) or f; in a neighbour-
hood around the point (zg, tp), but S is neither e~ Rle-&)¢ (@) nor 8. Thus we have

(3) S; = e e=&)¢,(), and S; = B; for some j. From the definition of S(z,t), (5.56)
holds for such ¢ if and only if

[

fce PG (1) > di(7)?e PG () — k(S (—me MG (R) + £i(S). (5.57)

Since we know that S < e~Ale—é&)¢ () and S; = e"ﬁ(z‘ét)(i(ﬁ), by Hypothesis s;, we have
that £;(S) < fi(e"Pe=#)¢(f)), so if we know that

!

e "= (n) > di(B)2e P (R) — hy(S:)(—R)e PG (B) + file P (m)),

then (5.57) holds, which is the same inequality that we have in case (1), and hence (5.56)
holds.

- (4) S; = Bi, and S; = e "=, () for some j. (5.56) is satisfied if and only if

0 > fi(S) and by the definition of S we know that S < 8, whereas S; = ;. There-
= fore f;(S) < fi(B) = 0, and hence (5.56) holds.
'~ Thus (5.56) holds whenever S; is smooth.

Now define 2(z,t) := S(z,t) — u(z,t), where u(z,t) is the solution of the PDE system
(5.1) with initial condition ug(z) = S(z,0). Then z(x,0) = 0, and at (z,t) where S; is

smooth, we have

!

(8 = hifw) ) i — (Sie = wi)i(S5) + (S) = £i(w)

= d,-zi,m + Hi(.’L', t)zi,:r + (F(l’, t)Z)Z y (558)

Zit 2> di%ige — (h

 where H = diag (Hy,..., Hy) is diagonal and bounded, and F' € R*¥** is bounded with

non-negative off-diagonal elements.

108



Since (5.58) only holds at points where S; is smooth, we need to modify the proofs of
[38, p.245-247, Lemma 5.1, Lemma 5.2, Theorem 5.3] to show that z(z,t) > 0 for all
(z,t) € R x (0,T) for each fixed T. It suffices to extend [38, Lemma 5.2] to cover the
case where we want to show that z(z,t) > 0 everywhere, but we have (5.58) only at the
points for which z; is smooth.

Choose z1, x5 so that all points (z,t) € R x (0,T) at which z is not smooth are contained
in [z1,29] % (0,T). Then [38, Lemma 5.1], which concerns the points outside this bounded
interval, will hold as in [38].

We need to show that, for e > 0, p = (1,1,...,1), if

(2 +ep)yy > di (2 4 €p); oo + Hi(2,8) (2 + ep),; , + (F(2, 1) (2 + €p)); (5.59)

when 2; is smooth, and z(zx,t) > 0 (k = 1,2) for ¢t € [0,T], then z+ep > 0in A =

[z1, z2] X [0, T]. We will use a contradiction argument. Suppose that there exists a point

(xo, to) such that z(z,t) +ep > 0 for 0 <t < ¢y, z; < z < 79, and for some component %,

(2(zo,t0) + €p); = 0. Then (zo,t0) € (z1,22) X (0,T]. Now for such a component %, and

~at (zo,t0), S; is either given by e‘ﬁ(m‘a)g}(ﬂ) or ;. Since we know, by Lemma 5.5, that
| u(z,t) € [0, ], it follows that 0 < u; < ;. If S; = S;, then 2; = S; —u; = B; —u; > 0,

~ which implies that (z + ep); > 0, and hence we cannot have (z + ep); = 0 at a point

(zo,t0) at which S;(zg,t0) = Bi- Then at (zo,%o), S; is equal to e"_‘(z"ét)gi(ﬁ) but not
equal to f3;, then there must be a neighbourhood around (zo, to) where S; is also given by
e‘ﬁ(“_a)g(ﬁ), and hence S; is smooth on a neighbourhood of (g, ¢o), so the proof of [38,
Lemma 5.2] applies to show that z + ep > 0 on [z1, z2] X [0, T], because from (5.59) and
at (zo, ), we have (z +ep);; <0, (z +€p), ,, > 0 and (z + €p), , = 0. Moreover, since F

has non-negative off-diagonal elements and (z + ep), (%o, to) = 0, then

(F(z,t) (z+€p)); = Y, Fila,t) (z+ep); > 0.
J#

So the right-hand side of (5.59) is non-negative, whereas the left-hand side is non-positive,

~ which is a contradiction.

Then since H is diagonal and bounded, F' is bounded with non-negative off-diagonal
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elements, [38, Theorem 5.3] implies immediately that z(z,t) > 0 for all (z,t) € Rx (0,T).

Thus we have u(z,t) < S(z,t), and in particular, u(z,1) < S(z, 1), which implies that

- Q[min {e~=¢ (i), B}] < e"M==&)¢ (@), and the theorem is proved. O

- Note that in the following we refer to (5.55) as a right combined condition correspond-

- ing to non-increasing initial data, and there is also a left combined condition, (5.61),

corresponding to non-decreasing initial data.

The next theorem gives a sufficient condition to ensure that system (5.1) is left linearly
determinate. To prove this, we can use the same argument that used in proof of Theorem

5.9 but corresponding to non-decreasing initial data.

Theorem 5.10. Suppose that the functions f and h satisfy Hypotheses s; — sg. Assume
that either

(i) i is finite,

(i) > 4,(i2), forallo > 1, (5.60)
and

A

F(pC (@) < pis [i(pGl)) = ()] Gi(B) + p(f' ©)C(@): for allp >0, (5.61)

or

(i) For some sequence v — [, for each v the two inequalities in part (i) hold with i

replaced by p, .

- Then

& =t="c=2¢"

where [i defined in p.99, and these speeds defined in (3.29), (3.12), (4.15), and (4.16)

respectively. Thus the system has single left speed and is left linearly determinate.

The following lemma gives a sufficient condition to guarantee that (5.54) and (5.60) hold
for the matrices C,, and C), respectively in the particular case that (5.1) consists of two

equations which means that f (0) has two blocks.
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Lemma 5.6. If (5.1) consists of two equations, for given matrices f (0) and h'(0) as
in Lemma 5.3, a sufficient condition to have that (5.54) and (5.60) are satisfied for the

matrices C,, and C,, respectively is that

o—a(2—d) <a—b<a(2—d2)_0.

NG 7 (5.62)

Furthermore, if (5.62) holds, then the eigenvectors C (i), C(fi) corresponding to 11 (&), %1 (i)

are stricily positive.

Proof. Note that Lemma 5.3 yields that fi = fi, and straightforward calculation shows
that for d; = 1, i = it = v/a. Then we have v, (i) = 2a+a+/a and % (f) = ady+by/a+o.

- It follows that 71 (&) > Y2(f) if 2a+av/a > ady+by/a— o, which implies that a(2—dy) +
- Vala—1b) +0>0. Sovi(@) > v2(p) if and only if a — b > (0 — @(2 — d3))/+/a. On the

other hand, % (&) = 2a—a+/a and % (t) = a(d2) —by/a+o. It follows that 4 (iz) > Jo(jz)
if 2a—ay/a—ads+by/a—o > 0, which implies that —a(2—ds) ++/a(a—b)+0 < 0. Thus
1(R) > “(i) if and only if a—b < (@(2—dy) —0)/+/a. Then straightforward calculation

IAIPPN

shows that (5.62) ensures the eigenvectors ((f), (i) are strictly positive, since ¢ > 0 and

- (5.54), (5.60) hold (note that the analogous observation for eigenvectors of f'(0) = Cj

already mentioned in Remark 5.1 (ii)). O

Remark 5.2. Since (5.55) in Theorem 5.9 applies to a system of k equations, so in partic-
ular, when there is only one equation in (5.1), & = \/m , () = 1, and then condition
(5.55) is 2quivalent to (2.21) in Proposition 2.2, because setting p = p{(ii) = v in (2.21)
gives )

W (p) + %’? < B(0) + w, for all p € (0,1),

=I

which is precisely the scalar analogue of (5.55).

~ The next proposition gives a necessary condition for the existence of a function h satisfying

both the ‘right combined condition’, (5.55),

fi(pl(R)) < pit [hQ(O) - hé(pCi(ﬁ))] G(a) +p(f (0)¢(R);  forallp>0,  (5.63)
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and the ‘left combined condition’, (5.61),

~

FilpC (1)) < pit [hé(p@(ﬁ)) - h;(O)] G +p(f(0)¢(m):  forallp>0.  (5.64)

Proposition 5.3. Suppose that the functions f and h are such that i = fi, (&) = C(),
and C(i), C(R) are strictly positive. Then a necessary condition for both the right combined
condition (5.63) and the left combined condition (5.64) to be satisfied is that the function
f satisfies

Filp¢(m)) < p(£'(0)¢(m))s  for all p>0. (5.65)

~ Proof. Introduce the notation

!

Ai(p) := p(F (0)¢(R)): — fi(pC(m)) P >0, (5.66)

and note that both (5.63)' and (5.64) are satisfied if and only if

—Ai(p) < o [F(0) = Ki(pC()| G(B) < Aip) forallp>0.  (5.67)

The result is then immediate from the fact that (5.67) can only hold if A;(p) > 0 for all
p > 0, which is equivalent to (5.65). O

Remark 5.3. Lemma 5.3 shows that when (5.1) is a system of two equations, i = i if the
function f is as in Remark 5.1 (iii), and ¢() = C(@) if we also have that k7 (0) = hy(0).
Lemma 5.6 gives conditions that ensure ¢(jz), {() are strictly positive. Note that in the
scalar case, it is obvious we have ¢(i) = ((z) = 1, and & = [i because the term h'(0)
~ does not play a role in the value of fi = fi, and from (2.15), we have i = i = 1/f(0).
Thus this means (5.65) in the scalar case is clearly equivalent to the classical condition

- (2.1) when h = 0.
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Chapter 6

Correspondence between different

concepts of linear values of f,(O)

In this chapter we discuss the correspondence between two different concepts of linear
value in the case when the Frobenius form of f(0) contains only one block. For simplicity,
we will suppose that f (0) € P**¥, the set of real k x k matrices with strictly positive
off-diagonal elements. In addition to the right (left) linear value ¢ (5) that was introduced
in Chapter 5 (5.37) ((5.40)), we will define an alternative right (left) linear value speed,
Cin (G1in), determined by the values of ¢ such for which there exists a monotone eigenvalue,
in a sense defined in Definition 6.1, of the linearization of the travelling wave problem for

this ¢ about the unstable equilibrium 0, (see (6.2)).

- We can write the system (5.1) as

Uir + byt g = dithige + fi(w)  fori=1,2,.. k.
By substituting the travelling wave u(z,t) = w(z — ct), we get

—cw; + hi(w;)w; = dyw; + fi(w) fori=1,2,...,k,

~ of which the linearization about w = 0 is

—cw + hy(Ow;, = dyw; + f;(0)w  fori=1,2,..,k
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* The eigenvalue A of the matrix I:

Let us define a matrix D as
D := K (0) = diag (h;(O) ho(0) ... h;(O)) , (6.1)

and recall that A = diag (d, do, ...dx). Then the linearization of travelling wave problem
becomes

Aw" + (I — D)w' + f (0)w = 0. (6.2)

Let v = w'. Then (6.2) becomes Av' + (cI — D)v+ f (0)w = 0,50 v = —A~*(cI — D)v —

A1 (0)w, and hence (6.2) can be re-written as

v | | ~ANcI-D) —A7'f(0) v
w | I 0 w |

—AYcI - D) —A71f(0)

corresponding to the
I 0

 eigenvector (y, z)7 satisfies

—aet =) Ao | [o]_ [v
I 0 z z ’

~ which holds if and only if —A~!(cI — D)y— A~'f(0)z = Ay and y = A\z. Then —A~}(cI—
- D)\z ~ A1 f'(0)z = A2z, and hence

()\QA + Al - D)+ f’(o)) 2=0.
If z > 0, then it follows by the Perron-Frobenius Theorem 3.1 that
For (NPA+ Al = D)+ £(0)) =0,

where §ps is defined in Table 1. Note that if we seek a solution of (6.2) of the form
w(€) = exp(A€)q, ¢ > 0, then (A2A + A(cI — D) + f'(0)) ¢ =0.
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Define the matrix M (A, ¢) that depends on A and ¢ by

M(\,c) := AN?A+ XcI — D) + f(0). (6.3)

 Now it is useful to introduce a definition of stability and instability of an eigenvalue X of

the travelling wave problem (6.2) linearized about the equilibrium point 0.

Definition 6.1. Given c € R, we say that an eigenvalue X is a stable (unstable) monotone
eigenvalue of the travelling wave problem (6.2) linearized about 0, with corresponding

eigenvector X, if:
1. M(\, )X =0,
2. X is real and strictly negative (positive), and

3. the eigenvector X of M (], c) has strictly positive components.

- Note that X is a stable monotone eigenvalue of (6.2) if and only if §pr (M (A, ¢)) = 0.

In the case when the Frobenius form of f (0) contains only one block, an alternative right

(left) linear value speed can be defined as follows.

~ Definition 6.2. &, (éun) is defined as the infimum (supremum) of the values of ¢ for

- which there exists a stable (unstable) monotone eigenvalue A of (6.2) for this value of c.

- We will later establish directly from Definition 6.2, in Theorem 6.2 and Lemma 6.2, the

existence of éun (Gin) € R. Note that [38, Lemma 2.4, p.136] (see also, [16, Theorem
3.7]) shows that the existence of a stable (unstable) monotone eigenvalue is a necessary
condition for the existence of a travelling wave that converges to 0 (8) at +o00 (—o0). In
addition, because it is a necessary condition and we have seen earlier in Theorem 5.6,

that the minimal non-increasing travelling wave speed exists, so it immediately tells us

that the minimum speed cq > Cin.

- Clearly, the definition of &;, (éy) is different from the definition of the right (left) linear

- value ¢ (¢) that is defined earlier in (5.37) ((5.40)) respectively. However, the definitions

- being different does not automatically mean that the values are different. Here we focus

~ on the case when we have only one block for the Frobenius matrix f'(O), which means
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that we also will have one block for the Frobenius matrix M (A, ¢) that is defined in (6.3),
and suppose f (0) € P¥** for simplicity. From Hypothesis sg, it follows that the Frobe-
nius eigenvalue §,7(f (0)) > 0. We will then prove that &, (&) equals é (¢) in Lemma

6.3.

6.1 Eigenvalues and eigenvectors if M (), c) has a sin-
gle irreducible block

The following lemma gives a condition on a matrix N € P¥** that ensures that F,s(N) >

0, which is useful for Lemma 6.2. This result is the same as [12, Corollary 1.6].

Lemma 6.1. If the matric N € P*** and there ezists u € R¥\ {0}, —u ¢ RX such that
Nu > 0, then §ps(N) > 0.

Proof. Since Nu > 0, there exists § > 0 such that Nu > Su. There exists a > 0 such
that for the matrix N+al all entries are strictly positive (> 0) and (N+al)u > (a+8)u.
By [32, Theorem 2.3] we have §ps(N + af) > o+ 3, which means that

Spr(N) > 8> 0.

We also quote a related result, which is a variant [36, Theorem 1.6].

Theorem 6.1. Let N € P*** and suppose that there exists u € RE and u ¢ {0} such

that if Nu < 0, then Fps(N) < 0.

The following lemma shows whether 0 is the Perron-Frobenius eigenvalues of M (), ¢) in
(6.3) or not. This result is an adaptation of [12, Lemma 3.4] to treat the case when we

have a diagonal matrix D in (6.1).
Lemma 6.2. Let f (0) € P**. Then

1. When c 1is sufficiently negative, there are no stable monotone eigenvalues A of the

linearized travelling-wave problem (6.2).
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2. When c is sufficiently positive, there exists a stable monotone eigenvalue A of the

linearized travelling-wave problem (6.2).

3. If there exists a stable monotone eigenvalue when ¢ = c,, then for all values c with

¢ > ¢g, a stable monotone eigenvalue exists.

4. When c is sufficiently positive, there are no unstable monotone eigenvalues of the

linearized travelling-wave problem (6.2).

5. When c is sufficiently negative, there ezists an unstable monotone eigenvalue of the

linearized travelling-wave problem (6.2).

6. If there exists an unstable monotone eigenvalue when ¢ = ¢, then for all c < ¢, an

unstable monotone eigenvalue exists.

Proof. 1) Suppose ¢ > 0 is a Perron-Frobenius eigenvector of f'(0). Then

(RA+£(0) g = X2Ag+ Gy (1 (0)g > 0.

For ¢ sufficiently negative, (cI — D) is a diagonal matrix with strictly negative diagonal
entries, in which case whenever A < 0, then A(c/ — D) is a diagonal matrix with strictly
positive diagonal entries. Thus we have M(\, c)g = (AX? + A(cI — D) + f(0))g>0. By
Lemma 6.1, we get that Fps (M(A,c)) > 0 for such A < 0. ¢I — D is a diagonal matrix
with strictly negative diagonal-entries for such c¢. So Fps (M(A,c)) # 0, and it follows

~ that there is no stable eigenvalue for such c.

2) Take A = —1. Then
M(~1,c)=A—(cI-D)+ f(0)=A+D+ f(0) —cl.

Since Fps(M(—1,¢)) = Fps(A+ D+ f(0)) — ¢, then Fpp(M(—1,¢)) < 0 if ¢ is sufficiently
large and positive. So since Fpr(M(0,¢)) = Fps(f (0)) > 0, the continuous dependence of
M(), ¢) on X implies that there exists v such that —1 < v < 0 where §,s(M(v,c)) =0,

which means that « is a stable monotone eigenvalue.
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3) Assume that there is a stable monotone eigenvalue A < 0 at ¢ = ¢, with corresponding
eigenvector X > 0. Then (A2A+ A(c — D)+ f'(0)) X = 0. But for § > 0 and ¢ =

¢, + 0, we have

(4232 + Ml - D)+ £ (0)) X = (AA2 + Xcal = D)+ £(0)) X + 26X

=XMX <0,

~ since X > 0, A < 0. Then Theorem 6.1 implies that

Sor (AN + AT = D) + £ (0)) < 0.

Since we know Fp¢(M(0,c)) > 0, then there exists a stable monotone eigenvalue v € (), 0)

such that §ps(M (7, c)) = 0, by the continuous dependence of M (A, c) on A and c.

To prove parts (4), (5) and (6), we can follow the same procedure as in the proof of parts
(1), (2) and (3) respectively, but for unstable monotone eigenvalues instead of stable

eigenvalues, and the lemma is proved. O

6.1.1 An alternative linear value speed ¢&;, (¢i,) for (6.2)

For the existence of ¢, (én) € R, it is useful to define a set V by
V.= {CER: (A)\2+)\(CI—D)+f’(O))y=Ofor Some/\<0andy€Rk,y>0}.

Note that ¢ € V' if and only if there exists a stable monotone eigenvalue for this ¢, and
that V' is non-empty and bounded below by Lemma 6.2 (1), (2). So &, = infV € R

exists. Likewise, for the existence of é&;,, we define a set 1% by

V= {cER: (A)\Q—I-)\(cl—D)+f/(0))y:()forsome/\>Oandy€Rk,y>0}-

Note again that ¢ € V if and only if there exists an unstable monotone eigenvalue for
this ¢, and that V € R is non-empty and bounded above by Lemma 6.2 (4), (5). So

Ciin = — inf V' exists.
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The following lemma shows that the alternative right (left) linear value é, (é1n) equals

the right (left) linear value ¢ (¢) that is defined in (5.37) ((5.40)) respectively.

Lemma 6.3. The right linear value ¢ defined in (5.37) equals the alternative right linear

value G-

Proof. We can re-write the matrix C, in (5.33) in terms of matrix D in (6.1) as C, =
Ap? + pD + £'(0) and compare this with (6.3), to obtain that C, = M(—u,c) + pcl. It
follows that Sy (Cy) = pr(M(—p, ¢))+pc, and hence 5 Fpy (C) = 5™ g (M(—p, ) +
¢, for all 4 > 0 and c.

Suppose that there exists a stable monotone eigenvalue A = —uy, gy > 0, then

Spf(M(—p1,c1)) = 0, which implies that
17 s (Cui) = 17 B (M (=g, 1)) + 1 = ¢,

and since ¢ = ll};f(‘) ,u_ISpf(CM), so ¢ < ¢;. Let &;, be the minimal value of ¢ which a
stable monotone eigenvalue exists, so we have ¢ < &;,. We need to show that ¢ > &;,.
Since ¢ = Lr;% L 8,5 (Cy), then for i that is defined to be the value of p at which the
infimum in the definition of ¢ in (5.37) is attained, we have

é = infﬂ_lgpf(cu) = ﬁ_lgpf(cﬁ) = ﬁ_lgpf(M(_ﬂa é)) + é

u>0

- Therefore F,s(M(—[,¢)) = 0, thus —fi is a stable monotone eigenvalue at ¢. Hence

¢ > . It follows that ¢ = &;,. The lemma is established. O

Note that we can follow the same procedure to prove that ¢ = .
The following theorem is a generalization of [12, Theorem 3.5] to treat both right ¢ and

left ¢ linear values.
Theorem 6.2. Let f (0) € P***. Then

(i) For each c > ¢, there is a stable monotone eigenvalue \ of the linearized travelling

wave problem (6.2), whereas for c < ¢, there is no such .
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(i1) For each c < ¢, there is an unstable monotone eigenvalue \ of the linearized travel-

ling wave problem (6.2), whereas for ¢ > ¢, there is no such \.

Proof. (i) Recall that ¢ = &;, = inf V. For any ¢ € V and for § > 0, Lemma 6.2 (3)
says that we have c+ ¢ € V, which implies that (¢,00) C V. Now we use a contradiction
argument to prove that ¢ € V. Take a sequence ¢; — ¢ with eigenvalues \; < 0 with

corresponding eigenvectors 2! > 0 such that
(AA;? +N(aI - D) + f’(O)) A=0,

where 2! is a positive Perron-Frobenius eigenvector with ||2!||c = 1. Then for a sub-
sequence we can let 2! — 2z such that ||z]|c = 1. Since for each I, A\, # 0, then

as | = oo, (AN — D+ N'f(0)) 2 — —é and thus {\},y is bounded sequence in

R, beceuse if it were not, then A\, — —oo, and since Az —+ Az, A is a positive di-

agonal matrix and z > 0 but z # 0 because ||2||c = 1, then when )\, — —o0, we
have ;' (AN — D+ )1 f'(0)) 2 — 0 which implies that A2! — 0 which contradicts
Azl — Az > 0. Hence there is a convergent subsequence, say \; — A < 0. Taking the

limit asl — oo gives

(AA2 + MG - D)+ f’(O)) 2=0,

~ Now z > 0, but since the off-diagonal elements of the matrix f (0) are strictly positive,

and z is a Perron-Frobenius eigenvector, so we have z > 0. It follows that if A = 0, then

~ f(0)z =0 for z > 0, which contradicts the fact that s (f (0)) > 0. Thus ¢ € V, which

is equivalent to saying that the set V contains all ¢ > ¢.

(ii) We zan follow the same procedure for unstable eigenvalues to prove that é € V. Thus

the thecrem is proved. ]

The folbwing lemma shows that the Perron-Frobenius eigenvalue of the matrix M (), c)
in (6.3) is a convex function of A. This result is a modification of [12, Lemma 3.7] to
treat th: case when we have a diagonal matrix D in (6.1). Cohen in [11] proves that, Fp¢

is a comvex function of a diagonal matrix D, in the sense that, given diagonal matrices
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D, and Dy and M € P™*" then for 0 < a < 1,
Spf (aD1 + (]. - a)Dz + M) < aSpf (D1 + M) + (1 - a) Spf (Dz + M) . (64)

Lemma 6.4. If f (0) € P™", A is positive diagonal matriz, D is a diagonal matriz,
and ¢ € R, then the Perron-Frobenius eigenvalue of M(),c) in (6.3) is a strictly convex

function of .

Proof. Let A1, A2 € R be such that A\; # Ay, and note that for 0 < t < 1 we have
(A1 + (1 — £)Ag)? < tA2 4 (1 — t)AZ. Since A is positive diagonal matrix, then

| For (AW + (L= X + (A + (1= o) el - D) + £ (0))

< pr (A + (1= )X) + (B0 + (1= Do) (el — D) + £(0))
= Fpr (HAX] + Ni(el = D))+ (1 = )(AN} + s(el — D)) + £ (0))

< tF,r (AN + Mi(el = D)+ £(0)) + (1 = 1) (AN + dalel = D)) + £ (0))

~ since for k = 1,2, AXZ+ i (cI— D) are diagonal matrices, so (6.4) gives the last inequality.

O

The following lemma shows that we cannot have the case that both stable and unstable

eigenvalues exist for a given value of c.

Lemma 6.5. There is no value of ¢ for which both a stable and an unstable monotone

etgenvalue exist.

Proof. Suppose, for contradiction, that there exists a stable monotone eigenvalue A; < 0
and an unstable monotone eigenvalue Ay > 0. Then Fpr(M (A1, ¢)) = 0 = Fpr(M( g, ¢)),
and by Lemma 6.4 it follows that F,s(M(0,c)) < 0, which contradicts the fact that

- Bor(M(0,0) =B (£(0)) > 0. O

- The following lemma shows the relationship between the right linear value ¢ defined in

- (5.37) and the left linear value ¢ defined in (5.40), using the relationship between the

alternative right linear value ¢, and the alternative left linear value ¢j,. Note that

A

Lemma (6.3) ensures that ¢ = ép, ¢ = Gin.
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Lemma 6.6. The linear value ¢y, for which there exists a stable monotone eigenvalue
of (6.2) is strictly larger than the linear value éyu, for which there exists an unstable

monotone eigenvalue of (6.2).

Proof. Tt follows from Theorem 6.2 that there exists a stable monotone eigenvalue for
¢ € [¢,00) and an unstable monotone eigenvalue for ¢ € (—o0,¢]. Hence by Lemma 6.5,
which says that we cannot have both a stable and an unstable monotone eigenvalue for
any value of ¢, we conclude that the linear value for which there exists a stable eigenvalue

Clin > Ciin, and the lemma, is proved. a

Note that Lemma 6.3 implies that ¢ > ¢, and we can use the analogue of Lemma, 4.2

in Chapter 4, to obtain é < ¢. Thus Lemma 4.2 together with Lemma 6.6 implies that

&> ¢ > ¢ > ¢ and hence é > & That is, the right slowest spreading speed is strictly

| larger than the left slowest-spreading speed.

6.2 Eigenvalues and eigenvectors if M (), c) has mul-
tiple irreducible blocks

Suppose now that f'(0), which is in Frobenius form by Hypothesis sg, contains more
than one irreducible block. In this case, [38, Lemma 2.4, p.136] (see also, [16, Theorem
3.7]) shows that if there exists a travelling wave, then there exists a stable (unstable)
monotone eigenvalue A < 0 (A > 0) such that M(A,¢)X =0 for X > 0,X # 0. The
proof of this lemma suggests that in the case when f'(0) has more than one block, it is
natural to allow the eigenvector X of M(\,c) be X > 0, X # 0 instead of X > 0. This
is because, when there are multiple blocks in M (), ¢), the argument that the existence of
a travelling wave implies the existence of a stable (unstable) monotone eigenvalue yields

that it is necessary to have a non-negative eigenvector but not necessarily a strictly pos-

- itive eigenvector.

" In such a case, when the Frobenius form of f'(0) has more than one block, one can thus

 define the stable (unstable) monotone eigenvalue similarly to Definition 6.1 (2), but it is

now natural to ask that the eigenvector is non-negative and non-zero but not necessarily
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strictly positive.

- We can thus consider two possibilities for the eigenvector X, either X > 0, X # 0, or we

~ keep that X > 0 as in the case when f (0) is one irreducible block. So we will discuss

these two cases. We can generalize the parts (1), (2), (4) and (5) of Lemma 6.2 just in the
case when we keep that X > 0, whereas when X > 0, X # 0, under certain condition on
the Perron-Frobenius eigenvalue of the first block of f'(0), we can generalize the first part
of Lemma 6.2 only. In addition, we give a partial generalization of part (3) of Lemma,

6.2, that is proved later in Proposition 6.1.

The proof of the generalization lemma, Lemma 6.7, depends on considering the first block

" of the matrix M (), ¢), which we refer to as M. In addition, F* denotes the first block of

f'(0), and the parts of matrices A, D corresponding to the first block of f'(()) are denoted

by Al, D! respectively, and similarly for the oth block, we define the matrices A%, I, D?,

and F7 for ¢ > 1. We first quote the following theorem because it is useful to the proof

of Lemma 6.7.

Theorem 6.3. /36, Theorem 2.1]. Suppose N is a non-negative irreducible matriz, with
Perron-Frobenius eigenvalue r. A necessary and sufficient condition for a solution X, X >
0, X # 0, to the equation

(sI-N)X =Y,

~ to exist for Y > 0,Y # 0 is that s > r. In this case there is only one solution X, which

is strictly positive and given by

X=(sI-N)'Y.

6.2.1 Eigenvalues corresponding to an eigenvector X > 0

Suppose we keep the condition that X > 0. Then the generalization of parts (1), (2), (4)
and (5) of Lemma 6.2 is the following.

Lemma 6.7. Let f (0) have more than one block. Then

1. When c 1is sufficiently negative, there are no stable monotone eigenvalues A\ of the

linearization of the travelling-wave problem (6.2).
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2. When c is sufficiently positive, there exists a stable monotone eigenvalue A of the

linearization travelling-wave problem (6.2).

3. When c is sufficiently positive, there are no unstable monotone eigenvalues of the

linearization of the travelling-wave problem (6.2).

4. When c is sufficiently negative, there exists an unstable monotone eigenvalue of the

linearization travelling-wave problem (6.2).

Proof. 1) Suppose X! > 0 is the Perron-Frobenius eigenvector of F1. Then

(WA + FY) X' = A X + §pp(FH)X' >0  for any A < 0.

So by Lemma 6.1, F,;(A?A' + F*) > 0. For c sufficiently negative, (cI' — D) is
a diagonal matrix with diagonal elements strictly negative, whenever A < 0 and I!

is the first part of identity matrix I corresponding to F!, so A(cI! — D!) is a di-
agonal matrix with strictly positive diagonal entries. Thus we have (M'(\ ) X! =

(A2AY + A(cI' — D)+ F*) X' > 0. By Lemma 6.1, we thus get that
For (M'(X\,0)) >0 for A <O, (6.5)

- where c is chosen such that cI! — D! is a diagonal matrix with strictly negative diagonal-
entries. Now since we suppose that the eigenvector X for the Frobenious matrix M(, c)
satisfies X > 0, so the part of X corresponding to the first block of M (), ¢), which we re-
fer to as X! satisfies X! > 0. Since we know that if there is a stable monotone eigenvalue
A < 0 with X' > 0, then (A\2A' + A\(cI' — D') + F') X! = 0, thus Fpr (M'(A,¢)) =0,
which is a contradiction with (6.5). Therefore it follows that there is no stable monotone

~ eigenvalue.

: (2) Choose 6 > 0 sufficiently small and let A = —4. Since we suppose that X > 0, so

|

Theorem 6.3 implies that for any A such that |A| < § we have

For (A2AY — A(cI' = DY) + F1) > §p5 (A2A° — A(cI’ — D°) + F°),
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for each o > 1. Then we have
Ml(—é,c) = §%2A — 5(011 — Dl) + F1 = §2A' + 6D + F! — §el.

Since Fpr(M*(—6,c)) = Fps(62A* + 8D + F*') — cI?, then Fpr(M*(=6,¢)) < 0 if c is
sufficiently large and positive.

Since Fps(M*(0,¢)) = Fps(F') > 0 and by the continuous dependence of Fps(M(A,c))
on ), there exists v such that A < v < 0 where F,;(M*(v,c)) = 0. Since we know that

[A| <4, so |y| < 6, and we have
For (VA  + (eI = D)+ F') > Fps (Y’ A° +4(cI” — D7) + F7).

Then by Theorem 6.3, there is a strictly positive eigenvector X for M (v, ¢) corresponding
to the eigenvalue 0, and thus =y is a stable monotone eigenvalue for M (A, ¢).
We can follow the previous procedure for unstable monotone eigenvalues instead of stable

eigenvalues to prove the parts (3) and (4). The lemma is proved. O

In place of the third part of Lemma 6.2, we have the following proposition. Note that a

corresponding result holds for the sixth part of Lemma 6.2.

Proposition 6.1. If there exists a stable monotone eigenvalue when ¢ = ¢4, then there ex-

~ists &g > 0 such that a stable monotone eigenvalue ezists corresponding to the eigenvector

- X, for each ¢ € [cq, Ca + o).

~ Proof. Assume that there is a stable monotone eigenvalue A* < 0 at ¢ = ¢, corresponding

~ to the eigenvector X,, > 0 such that

(d:(A\)*+A*(cal = D)+ F) X, =0, F=f(0). (6.6)
Then since X, > 0, (6.6) implies that

For (MI(N*,¢0)) > Bps (M7 (X, c,)) for o > 1,
if and only if Fpr (M (N*, ¢)) > Fps (M(A*,¢)) for all c. Then there exists € > 0 such
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that
For (MH(X,€)) > Fps (M7(X,0)) when |A— X\ <e. (6.7)

Now (6.6) implies that ((A\*)2A' + X*(c.J* — D') + F') X} = 0,X! > 0, from which it
follows that Fps (A*)2A' + X*(c It — DY) + F') = Fpp(MY(M*,¢,)) = 0.

Since Fpr(M*(\, c,)) is a strictly convex function of A by Lemma 6.4, then either

Spr (MY (A, cp)) > 0 when A < X*, or Fps(M*(\, cp)) > 0 when A > A*, or both.

Suppose that F,s(M* (X, ¢;)) > 0 when A < X* (similarly for A > A*). Then choose §, > 0
small enough that Fps(M'(A\* — £,¢,)) > —0o(A\* — £), which implies that Fpp(M*(A* —
£,¢)) > 0 whenever ¢ = ¢, +6, 0 < 8 < . But Fpp(M'(X*,¢)) = dA* <0, so there exists
v € (A" — £, A") such that Fps(M*(7,c)) = 0. Since |y — A*| < ¢, we know that

Sor (M (7,€)) > Bps (M7 (1,0)) o >1,

and hence there is a strictly positive eigenvector X, > 0 of M(~,c), corresponding to
the eigenvalue §ps(M*(7,c)), by Theorem 6.3. Therefore if there exists a stable mono-
tone eigenvalue with corresponding eigenvector strictly positive at some c,, then there
exists dp > 0 such that there exists a stable monotone eigenvalue with strictly positive

eigenvector for each ¢ € [c,, ¢, + do) - O

Note that this does not, however, show that if a stable eigenvalue with positive eigenvector
exists for some ¢,, then a perturbation of this eigenvalue exists for all ¢ > ¢,. In Example
6.1, we will consider a 2 x 2 matrix to illustrate part (2) of Lemma 6.7, as well as to show
that for all values of ¢ sufficiently large, there exists at least one, and sometimes, two

stable monotone eigenvalues, depending on the structure of the matrix and the value of c.

6.2.2 Eigenvalues corresponding to an eigenvector X > 0

In the following proposition we generalize the first part of Lemma 6.2 in the case when
the eigenvector X > 0, X s 0. In this result we assume that for each oth block, we have
Sps(F7) >0, ¢ > 1. We already have F,¢(F') > 0 from Hypothesis s,.

126



Proposition 6.2. Suppose that Fp;(F°) > 0,0 > 1. Then when c is sufficiently negative,
there are no stable monotone eigenvalues A of the linearization of the travelling-wave

problem (6.2) corresponding to an eigenvector X satisfying X > 0, X # 0.

Proof. Suppose X! > 0 be the Perron-Frobenius eigenvector of F'!, then we have
(RA'+ F) X' = NAX + 5 (FH)X' >0 for any A < 0.

So by Lemma 6.1, Fps(A\2A' + F') > 0. Choose c sufficiently negative to ensure that
(cI' — D') is a diagonal matrix with strictly negative diagonal elements, whenever \ < 0,
so M(cI' — D?') is a diagonal matrix with strictly positive diagonal entries. Thus we have

(M*(\, ) Xt = (A?Al + A(cI' — D') + F') X' > 0. By Lemma 6.1, we get
3ps (M'(X\,¢)) >0 forany A <0. (6.8)

For the other blocks, we can replace X! by X° where X7 is the Perron-Frobenius eigen-

vector of F'?, and repeat the same argument for X7 to get that
Spr (M7(X,¢)) >0 forany A <0,0>1, (6.9)

when c is sufficiently negative such that for each o, (cI? — D?) is a diagonal matrix with
strictly negative diagonal entries.
Now suppose that there exists a stable monotone eigenvalue A\g < 0 corresponding to the

eigenvector X > 0, X # 0, but not X > 0, such that M(Xg,c)X = 0. Note first that if

- for the oth block and X7 > 0, X7 # 0 we have M?(\g,c)X? = 0, so by [36, Theorem

1.6], we get that
X?>0 and 0=F,(M7(Xo,c)),

which contradicts (6.9) for this o.
Now if X! #£ 0, s0 0 = Fps(M*(Ag,c)) which contradicts (6.8). However, if X! = 0, then

- M2()g,¢)X? = 0 which implies Fps (M?(Xo,c)) = 0 provided that X? > 0,7 0, which is

a contradiction with (6.9) when ¢ = 2. Again if X? = 0, then we will get a contradiction

with (6.9) when o = 3, etc. This means that since X > 0,X # 0, there must be a
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part of X that is non-zero, which gives us a contradiction with (6.9). Thus we prove the

generalized first part of Lemma 6.2. O

Note that when considering the second part of Lemma 6.2, if we do not know that
the Perron-Frobenius eigenvalue of M!(),c) is strictly larger than the Perron-Frobenius
eigenvalues of the other diagonal blocks of M (A, c), we cannot in fact have even a non-

negative and non-zero eigenvector X. This is because, if we suppose that

B 0 ... 0
St B2 0 0
M()\, C) = ’
S? 8 B3 0
Bk
where B1,...., B* are irreducible diagonal blocks, each of S, ..., S* contains at least one

positive entry by (ii) in Remark 5.1, and n' is the Perron-Frobenius eigenvalue for B!

with a strictly positive eigenvector X!, and such that n' > 7° for ¢ > 1. Then

B 0 ... 0 ( X \ ( X \

S' B* 0 0 X 1 X

S22 s§3 B3 0 )(.'3 - X.PB ,
P \x

~and S1X! + B2X? = n'X? which is true if and only if (p! — B%) X? = S'X!. Since

81X >0, # 0, then by Theorem 6.3 , we get X2 > 0. Using Theorem 6.3 again, gives

us X3 > 0, since we have (n! — B%) X3 = (S1X! + §2X?%) X3, and S'X! + S52X2 > 0.

Thus by repeating this argument of Theorem 6.3, k£ times, we get that the eigenvector

X = (X L. ¢ ")T of M(n', c) is strictly positive. Moreover, if we have a strictly positive

- eigenvector X, then the Perron-Frobenius eigenvalue of M'(),c) is strictly larger than

the Perron-Frobenius eigenvalues of the other diagonal blocks of M (A, c).

The following example illustrates the reason for the need of the extra condition Fp¢(F7) >

0,0 > 1 in Proposition 6.2, and shows what happens concerning the existence of stable
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monotone eigenvalues with strictly positive eigenvector and with non-negative eigenvector
when we increase the value of c. We will discuss the possibilities for A in three cases, and
we show that for a large value of ¢, there exists at least one stable monotone eigenvalue

A < 0 with strictly positive eigenvector.

Example 6.1. Consider, for simplicity, the 2 x 2 matrix M(A,c) that contains two

irreducible blocks

)\2(1,1 +/\(C—d1) +b1 0

M(\c) =
e A2(12 + )\(C — d2) + b2

where b; > by, and a1, ag, by, e > 0. Thus the eigenvalues are A\2a;+\(c—d;)+b;, i=1,2,

- and to have that the eigenvalue of M(}, c) is 0, we need either

(i) A%a;+A(c—d;)+b; =0 and M\2ay+ A(c—dp) +by < 0, in which case the eigenvector

is strictly positive, or

(ii) A%ay 4 A(c — dy) + by = 0, in which case the eigenvector is (0,1)" and X\%a; + A(c —

d;) + by can be any value.

 Now i be > 0, (ii) has a solution for all ¢ sufficiently large, whereas if by < 0, (ii) has

a solution for all ¢. This means that if we allow b, < 0, then allowing a non-negative

eigenvector yields that we have the existence of a stable monotone eigenvalue for any c,

 and thus the condition in Proposition 6.2 is necessary.

dg—c

If b, = 0, the solutions of A\2as +A(c—dy) =0are A\=0and A = which is strictly

a2
negative (< 0) for c large. Thus (ii) has solutions at least for all ¢ > ¢, for some cs.
To have solutions of (i), we need A2a; + A(c —d;) + b = 0 and Aap + A(c—dy) + by < 0,

which is equivalent to
Ma;+Mc—dy) +b,=0 and M(ay —ay) — A(dy —dy) +by — by <O0. (6.10)

The inequality in (6.10) defines a range of A for which, if A2a;+A(c—d;)+b; = 0, then A is a

~ stable monotone eigenvalue with strictly positive eigenvector. Since Naj+A(c—dy)+b, =
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0 is a quadratic equation in A, the solutions are

\ = —(C — dl) F \/(C — d1)2 — 4a1b1
2(11 ’

and hence it has a negative solution A for all ¢ > d; + 2v/a1b,. Thus if ¢ = dy + 2v/a1by,
/b

there is one stable monotone eigenvalue, Apey such that A, = — a—l, whereas if
1

c > di + 2v/a1b;, there are two negative values A, Ay with Ay < Apey < Ay, and

Al — —00,Ay = 0 as ¢ — o0.

There are three possible forms for \ — A2(ay — a1) — A(ds — d1) + by — by depending on
the parameters. The roots, Py, Py, of A2 (az — a;) — A(dz — d;) + by — by = 0, are given by

(da — di) F y/(da — d1)? — 4(az — ay) (b2 — b)
2(az — a1) ’

~ so we will discuss the three cases (a), (b) and (c) as follows.

|
|
E
i
E
' (a) (b) (c)
I
|
l
i

no root < 0 one root < 0 two roots < 0

Firstly, in case (a), the inequality (6.10) is satisfied for any A < 0, so whenever \%a; +
Ac—dy) + b =0, )\ is a stable monotone eigenvalue with strictly positive eigenvector.

Therefore, there exists a stable monotone eigenvalue with strictly positive eigenvector for
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all ¢ > dl + 2\/ alb]_.

Secondly, in case (b), what happens depends on whether A,ey < Py or Ay > P If

~ Aneg < Py, then for c close to di + 2v/a;1b;, there is no stable monotone eigenvalue, but

- when c is large enough that A; > Py, then A; is a stable monotone eigenvalue.

Finally, in case (c), what happens depends on how A4 relates to P, and P,. In particu-
lar, for Aney < Pi, both Aq, g are stable monotone eigenvalues for ¢ close to d; + 2v/a, by,
but when A, reaches Py, it stops being a stable monotone eigenvalue.

Moreover, different things happen when P; < Apey < P, or Py < Apey. Note that it is
clearly not true that if A is a stable monotone eigenvalue with strictly positive eigen-
vector for some ¢, then as ¢ increases to 0o, a perturbation of X is a stable monotone
eigenvalue with strictly positive eigenvector. This is a contrast with Proposition 6.1. The
fact that each of the curves in (a), (b) and (c) is negative close to zero, and Ay — 0 as
¢ — 00, tells us that there is a stable monotone eigenvalue with strictly positive eigen-

vector, close to zero when c is large enough. This illustrates the proof in Lemma 6.7 (2).00

The structure of the 2 x 2 matrix, as we explained above, implies that when ¢ increases,
there is at least one stable monotone eigenvalue with strictly positive eigenvector. In the
following example, Example 6.2, we consider a 3 x 3 matrix M (], ¢) to illustrate that it is
possible that there exists a stable monotone eigenvalue with strictly positive eigenvector
for some values of ¢, but for a larger value of ¢, there is no such stable monotone eigenvalue

corresponding to strictly positive eigenvector.

Example 6.2. Consider the 3 x 3 matrix M (), ¢) such that

)\201+>\(C—d1)+b1 0 0
M()\, C) = € )\2(1,2 + )\(C - dg) + b2 0
f 0 Aaz + Ae— d3) + b3

Then, similarly to before, we have a stable monotone eigenvalue with strictly positive
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eigenvector if
/\20,1 + )\(C - d]_) + bl = O, )\20,2 + )\(C - dg) + b2 < 0, and A2a3 + )\(C — d3) + b3 < O,
which is equivalent to

A2a1 + )\(C — dl) + b] =0 and )\2((12 — a1 — /\(d2 — dl) + b2 — bl < 0, and
)\2(CL3 — al) — )\(dg — dl) + b3 —b; <0.

The curves

/\ — )\2((12 — a; — )\(dz — dl) + b2 —_ bl, )\ — )\2(613 —_ al) —_ )\(d3 —_ d]) =+ b3 ol bl,

- where by — by, b3 — by < 0, depend on the parameters and could have a number of forms.

| In particular, the root P, — P, could be in the form

P, WAL

In this case, where Ay, Ay and Ay are as in Example 6.1, if Py < Apey < Py, then for
c close to d; + 24/a1b;, there exists a stable monotone eigenvalue with strictly positive
eigenvector. But since \; — —oo and A, — 0 as ¢ — oo, there exist cf, c® > d; + 2v/a1b;

such that for ¢! < ¢ < ¢, we have P; < Ay < Py and P, < A\; < P,, so neither is a stable

~ monotone eigenvalue with strictly positive eigenvector nor a stable monotone eigenvalue

with non-negative eigenvector. Il
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As a conclusion, note that we cannot directly generalize the third part in Lemma 6.2. As

seen in Example 6.1 earlier, in a 2 X 2 matrix, when c increases, there is at least one stable

 monotone eigenvalue with strictly positive eigenvector, whereas in Example 6.2, in a 3 x 3

matrix, because of the structure of the cases for the eigenvalues that we have here, it is

- possible that there exist such eigenvalues for some ¢, and for ¢ very large, but for some

values of ¢ in between such stable monotone eigenvalue with strictly positive eigenvector
do not exist. Example 6.2 thus shows that the generalization of part (3) of Lemma 6.2
in Proposition 6.1, must be partial, and hence we cannot fully generalize Lemma 6.2 in

the case of M (A, c¢) having multiple blocks.
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Chapter 7

Examples

In this chapter we present some examples that illustrate key propositions and theorems.
For instance, we illustrate Proposition 5.3, that gives a necessary condition for both right
and left combined conditions for linear determinacy to be satisfied, Theorem 5.7, Theorem
5.8 about single right and single left spreading speeds, Theorem 5.9, and Theorem 5.10
concerning right and left linear determinacy.

Some examples illustrate that for a chosen function f and under some condition on the
convection term h, an equation (scalar case) and a system (containing two equations) are
each both right and left linearly determinate. We present examples of a system of two
equations under some conditions on the parameters and convection terms that guarantee
that a system has a right (left) single speed, which means that the right (left) slowest
spreading speed equals the right (left) fastest spreading speed. We give examples to
illustrate that a system is right (left) linearly determinate in the presence and absence of
convection terms. On the other hand, there is an example showing that under a condition

on the convection term, the system will not be left linearly determinate.

7.1 Examples illustrating sufficient conditions for both
left and right linear determinacy

The first example considers the scalar case for a given choice of reaction term f, and illus-

- trates conditions on the convection term h under which both the right and left conditions
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for linear determinacy (5.63) and (5.64) are satisfied.

Example 7.1. Choose f : R — R such that f(u) = (1 — u)(u + &), where § > 0 (see
also Example 2.2 in Chapter 2). If § > 1, this function f satisfies properties E; — E3 and
(2.1). Then with & = v/8,¢(i) = 1, (5.67) becomes

—A(p) < pV3 [K(0) = K (p)| <Alp), p>0, (7.1)

where A(p) = pf'(0) — f(o) = pd — (p* + pd — p* — p?6) = p* + (6 — 1)p* > 0. An

example of a function h satisfying (7.1) can be constructed by, for instance, taking

’ ' . . ' ’ A(p) ’ p2 + p(5 - 1)
V3 [R(0) — ' (p)] = A(p), in which case h'(p) = h'(0) — —2 =K' (0) - —— -/
pVé [R(0) — H'(p)] = Alp) 5() (0) 3 (0) 75
which implies that h'(p) = A + p_(l—\/_pT—)’ where A := h/(0), and hence a function A
that satisfies (7.1) is
1-9)p* ¢
h(p) = — + Ap + B, A, BeR.
N/ A/ 4

Thus by Proposition 5.3, the equation

us + h(p) = Uz + u(l — u)(u + 6), (7.2)

where § > 0, is both right and left linearly determinate. On the other hand, if 0 < § < 1,
the function f does not satisfy condition (2.1), and thus by Proposition 5.3, it is impossible
to find a function h which satisfies both the right and left combined conditions (5.63)
and (5.64). O

- Our second example employs a function f : R? — R? also used in [42, Example 4.1, that

falls into the second category in Remark 5.1 (iii) and so has two blocks in the Frobenius
form of f’(0). This reaction function f is obtained from a competition nonlinearity

using a well-known change of variables that converts competition systems to co-operative

 systems; see [42]. Here we derive conditions on the diffusion coefficient dy and a,b € R

which are sufficient to allow the construction of a function h = (hi(u;), ha(us)) such that
h'(0) = diag(a, b) and both (5.63) and (5.64) are satisfied for f and h. Two separate cases

are treated: first, when h’(0) = diag(a, a) for some a € R, in which case the eigenvectors
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¢(i), (i) are equal, and second, when h/(0) = diag(a,b) with a # b, in which case
¢(m) # S(m)- O
Example 7.2. Choose

3U1 — 4’LL2 + UrUs
flug,ug) = ' )
5U% — Ug + 8U1 — 41&% — 8’LL1U2

so that

3 — 8’LL1 + Uo Uy ' 3 0
fl(ul,U'?) = ’ f (0) = ’
8 — 8uy 10uy — 1 — 12u2 — 8y, 8 —1

and denote h'(0) = diag(a,b), where a,b € R with possibly a # b. There are four
solutions of f(u1,uz) = (0,0) with u, us > 0, namely the four equilibria (0,0), (0, 1), (0, 1)
and (1,1). Taking 8 = (1,1), Hypotheses s; — sg are clearly satisfied with the minor
modification that hypothesis s; holds for all (u,us) € [(0,0),(1,1)] rather than for all
(u1,ug), which is easily seen to be sufficient for the above theory to apply because all

solutions (uy,us) of (5.1) considered here lie between the equilibria (0,0) and 8 = (1, 1).

Then /i = ji = /3, and the coefficient matrices C; and C’ﬁ respectively are

c dii? +afi+3 0 6+ a3 0
g 8 dofi® 4+ b — 1 8 3dy +bv3—1 ]

é dii® —ap+3 0 B 6 —av3 0
g 8 doji® — bji — 1 8  3d—b/3-1)

and

Thus the eigenvectors ((a), f(ﬂ) for y1() = 6 + v/3a, %1(i) = 6 — v/3a are

_: 1 Pt 1
‘W (8/(7+¢§<a—b>—3d2>) (a)
&) = ! !
YT\ st vBa-v-3a) | \a )
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Provided dy < 7/3, it follows from Lemma 5.6 (and by inspection) that if a, b satisfy

— (7 3dy) (7 — 3ds)
—\/—g— <a—-b< T,

then the eigenvectors ¢ (i), {(i) are strictly positive and (5.54), (5.60) are satisfied.

Now define 7 := a — b and consider the cases n = 0 and 7 # 0. If n = 0, the eigenvectors
¢(i), C(i) are equal (¢f. Lemma 5.3), and provided dj satisfies the stricter restriction
that dy < 2/3, the function f satisfies the necessary condition (5.65) of Proposition 5.3,
in which case it is clearly possible to construct functions h;, hy for which both (5.63),
(5.64) hold by using a similar method to that in our explicit construction of ~ in Example
7.1.

For n # 0, to have that both conditions (5.63), (5.64) are satisfied for a given h;, we

writing ¢t = p in (7.3) and (7.4) respectively, so we obtain that

/ t
H<H(t)—a< —=(—ag+4), t>0,

L
Ve V3

which can be satisfied if oy —4 < —as + 4, which holds if

8 8
+ <8,
7—V3(a—b)—3dy T++V3(a—b)—3dy

1 1
+
7—v3(a—b)—3dy 7++3(a—0b)—3dy

< 1, which yields

7430 —3dy +7— /30— 3d,
<1
(7 — /31 —3dy)(T+V3n—3dy) ~
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and gives

14 — 6d,
<1
49 + 7v/3n — 21dy — 7v/3n — 312 + 3v/3ndy — 21da — 3+/3ndy + 9d3

That is equivalent to requiring
9d3 — 36dy + 35 — 3n* > 0. (7.5)

Since (7.5) holds if dy < (6 — /1 + 31?)/3, a function h; satisfying the first inequality in
each of (5.63), (5.64) can be constructed for such dy,n. Note that the larger values of d,
that satisfy (7.5) violate the additional requirement that ds < 7/3, and that it is clearly

necessary to have n? < 35/3 to be able to construct h; for some dy > 0.

~ Now for the existence of a function hy such that both (5.63), (5.64) are satisfied, we need

- for p > 0 that

Mpos) = Hpoal = Bplen) _ - (Bleoal Mol 28) | (1)

ra{poa) < b= ( V3pay V3

| and

5(po3)? — 4(po3)® 8p2a;) e (5(pa;) — 4(poi)® - 80) @)

h,(pak) > b+
2(p 2) ( \/gpa; \/g

Writing ¢t = pas and t = paj in (7.6) and (7.7) respectively, so we obtain that

5t — 4t? — 8t/al . (5t — 4t% — 8t/a2)
< hy(t) —b< — , t>0,
5 Shat) < =

which can hold if

10t—8t2—8t<7_\/§n_3d2) —8t(7+\/§8n_3d2> <0,

8

and hence it holds if —8t? — 4t + 6td, < 0. Thus we need that —2¢(2 + 4t — 3dy) < 0
for all ¢ > 0, which holds if do < (2 + 4t)/3 for all ¢ > 0. Hence a function h, satisfying

- (5.63), (5.64) can always be constructed, regardless of the value of 7, provided d; < 2/3.
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Therefore we have shown that for this choice of f : R? — R2? if 0 < |a — b| < V/5,

a sufficient condition to be able to find a function h = (hy, he) so that both combined
conditions (5.63), (5.64) are satisfied and h'(0) = diag(a,b), is d2 < 2/3, whereas if
V5 < |a—b| < /35/3, a function h = (hy,hy) for which (5.63), (5.64) both hold and
h'(0) = diag(a,b) can be constructed provided

_ AV
d2§6 V1+3(a b).

3

Thus this implies that for this chose of functions f and h, the system is both right and
left linearly determinate by Theorem 5.9 and Theorem 5.10. O

7.2 Examples about the single right (left) spreading
speed and right (left) linear determinacy

The following example illustrates [26, Theorem 3.1] and [42, Proposition 2.1] about the
single speed of a system that has more than two equilibria in the absence of the con-
vection terms, and the generalized result, Theorem 5.8. We consider the system that
was discussed in [42, Theorem 4.4] with the addition of convection terms and with a
non-increasing initial condition ug. This example illustrates that the linear value for a
co-operative system with convection terms may equal the linear value for a Fisher-type
equation with convection term (1.21). Note that a sufficient condition for the right linear
value of Fisher equation with convection (1.21) to be equal the right spreading speed for

such equation is h;(u;) < h1(0); see (2.20).

Example 7.3. Consider the co-operative system with convection terms
ULt = Ul gg — hll (u)ure +r1ur(l — a1 — ug + ague),

Ugs = doUp gy — h;(u2)u2,z +72(1 — ug)(aguy — ug), (7.8)

with a non-increasing initial condition ug, where r;,a; > 0, u; > 0, fori = 1,2, r1(1—a;) >
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0,as > 1 and the convection terms satisfy that
hi(u;) < hy(0)  fori=1,2.

~ Now, since the convection terms do not affect the number of equilibria, we can apply
* Theorem 5.8 to show that the sufficient condition is satisfied for system (7.8). If will be
shown that (7.8) has four equilibria and then we will conclude that the system has right
single speed. First, we find the equilibria as follows. We want to find (u;,us3) such that

f(u1,u2) = 0 which holds if and only if

rui(l — ap — ug + ajug) =0, (7.9)
7'2(]. — uz)(agul — ’LLQ) =0. (710)

From equation (7.10) we obtain, us = 1 or u; = Y2 Substituting these values in (7.9) we
az
1—
get u; = 0,u; = 1, and rl(%)(l —a; — % + ajuz) = 0. This yields u; = Sl and so
2

2 1—aa,

1 —aiay’ 1—ajas

(ul,u2)=< 1-a “2(1_‘“>>. (7.11)

~ Thus the four equilibria are (0,0),(0,1),(1, 1), (u1, uz). Since ag > 1, our equilibria will
be (0,0) and 8 = (1,1), which means we are left with just two equilibria, not more, and
- thus by Theorem 5.8, the system has single right speed. In other words, é = é;.

Now to evaluate the right linear value for the system (7.8) we have

/ r1—a1ry — 2r1u; + a1rup T101U)
f (ul,uz) = )
7'20,2(1 — Ug) —T9 + 27’2%2 — QoT2Uy

) ri—ary 0 . . .

and hence f(0,0) = . Thus the coefficient matrix in equation (5.33)
T202 ) '
is
o p+ap+r(l—a) 0
b= )
T202 dopi® + by — 73
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|

where h;(0) = a,hy(0) = b. Therefore from the definition of & in (5.37), in which the

infimum is attained at i, we have

° ma
E=p' (W +ap+n(l-a)) = N+"'+;_171

2
LetE(,u)—,u—i-a—l———Iﬂ then E()zl—r—_1 +C1jﬂ—01fandonly1f,u—
T Lo B

r1(1 — a;), and hence fi = y/71(1 — a1). Therefore the right linear value for (7.8) is

Tl(]. — al)

+a=2yr(l—a)+a.
rl(l—al)

(23 = 7'1(1 - (11) +
On the other hand, the Fisher equation with convection term is
uti,t = ug,zz - hl (ug)ug,z + rlug(l —a — u§)> (712)

and since we have uy,uq > 0, then

Uit = Uy gp — hll(ul)ul,m +7ru (1 —a; — uy + ajuy)

Z U,z — h;(ul)ul,z + T1’LL1(1 —a; — ul).

- Consider (7.12) with initial condition given by the first component (up); of the initial

condition ug of (7.8) such that 0 < (up); < 1 — a;. We choose the initial condition
(ug); in this way because the upper equilibrium of (7.12) is u} = 1 — a;. Thus the first
component converges to 1 — a;e < 1. This is a special case of the condition in Theorem

3.3, so it will spread at a speed no slower than the right slowest spreading speed é.

Thus the first component u; of the solution u of the system (7.8) is a supersolution of
(7.12), and hence by the Comparison Theorem 5.1, is bounded below by the solution
u¥ of (7.12) with initial condition (ug);. The right fastest (slowest) spreading speed for

the system ¢é;(¢) is thus bounded below (>) by the right spreading speed for the Fisher
4

- equation with convection (7.12), which we refer as cj, so

é>cl.
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Since hj(u;) < h’(0), then we have ¢} = ¢ where ¢, is the linear value for (7.12) which
defined in (2.18). Thus we have é > ¢;.

Now in order to evaluate ¢;, since we have from (7.12) that f;(uf) = ru*(1 — a; — u*),
- then fi(u!) = r; — ayr; — 2ru* which yields f1/(0) = r1(1 — a;) and from (2.18) we get
& = 2y/r1 — a1 + h;(0). It is clear that & = ¢, so as a conclusion, we have

bp=¢>é=¢ =l

O

The following example illustrates that it is possible for the right fastest spreading speed
to be strictly larger than the right slowest spreading speed for a system that involves con-
vection terms, provided the convection terms satisfy a sufficient condition. This example
is a modification of [26, Example 4.1] with the addition of convection terms h;(u;)u; , for

i1 = 1,2 and with a non-increasing initial condition uyg.

Example 7.4. Consider the cooperative two-species Lotka-Volterra model

Ure = Ul gy — hl1 (ur)uyz + riug(l — ug + ajus) (7.13)

Ugs = dolly gy — h;(u2)u2,x + roug(l — ug + aguy) (7.14)

with a non-increasing initial condition ug, where all parameters are positive, ajas < 1,
the reaction term f, and convection term h satisfy Hypotheses s; — sg, and the additional
condition that the convection terms satisfy h;(u;) < h;(0) for all u; € [0,1], i = 1,2. By
following the previous procedure for calculating the equilibria, we find that the system

(7.13), (7.14) has four equilibria (0,0), (0,1), (1,0), (u}, u}), with

1-|—a1 1+CL2
—alaz’ 1 — a102 -

(U’I’ u;) = (1

Since there are four equilibria, and by Theorem 5.8, the system does not necessarily have
a right single speed. Note first that the right linear value for system (7.13), (7.14) equals

the right linear value for a Fisher equation with convection term, ¢;, which is obtained
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from equation (7.13), namely
ug,t = ug,mz - hll (ug)ug,z + Tluti(l - un)‘ (715)

From (2.18), we get & = 2+/f,(0) + h1(0) = 2,/r1 + a where a = h;(0), whereas the
right linear value for the system is ¢ = fi+a+ 7"}, where i = /T1, which implies that
c=2/ri+a=a.

Since we know that

Upp = Uy g — By (ur)uy o 4 m1un (1 — ug + aqus)

2 Ulge — hll(ul)ul,a: +rur (1 —uy),

and since ug,u; > 0, then u; is a supersolution for (7.15) with the initial condition
uo(z) = (ug)1, and by the Comparison Theorem 5.1, we have u;(z,t) > u*(z,t) where u*
is the solution of (7.15) with initial condition 0 < uy < 1. We choose an initial condition
ug such that the first component of the system (7.13) converges to 1 — € for some € > 0,
so [26, Theorem 3.1] implies that (ug); will spread at a speed no slower than the right
slowest spreading speed ¢. Since us > 0, and by the Comparison Theorem 5.1 we have
that w; can not spread more slowly than it would if we replaced us by 0 in (7.13), and

we conclude that

(7.16)

Do

éf Z 51 -
and since h;(u1) < h;(0), so & = ¢!, where ¢ is the right spreading speed for (7.15).
1 1 1 1

Likewise, since we know that u; < u}, we obtain

Ut = d2u2yz1’ — h;(UQ)Q,x =+ T2U2(1 — Ug + agul) (717)
' 1 +a
S d2u2,:1;x — h2(’U/Q)U2,z + raUsg (1 — Uy + a2(1—1)) R (718)
— 109

SO us is a subsolution for the equation

’ ]. + a
uﬂQ,t = d2uﬁ2,xz‘ - h2 (U’g)ug,z + T2uﬁ2 (1 - uﬂ2 + a‘2(1__ai)> ) (719)
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and hence, by the Comparison Theorem 5.1, uy < u}, where v} is the solution of (7.19)

with initial condition (ug)s. We choose an initial condition ug for (7.13)-(7.14) such that
1+ a9

1-— ai1ds ’

and it follows that (ug)s will spread at a speed no slower than the right slowest spreading

the initial condition of the second component (7.19), (ug)2, satisfies 0 < (ug)a <

speed é. The Comparison Theorem 5.1 shows that uy can not spread more rapidly than it
~ would if we replaced u; by u} in (7.14). Since hy(us) < ho(0), the spreading speed of the
equation (7.19) equals the linear value &, for equation (7.19) and & = 21/daf5(0)+h5(0) =
2+/daroul + b, where b = hy(0). So since us, ul are non-increasing in x, the fact that
ug < un2 implies that

¢ S Cy = 2\/ d2r2u3 + b. (720)

Therefore if 2,/r1 + a > 2,/daroul + b, it follows from (7.16) and (7.20) that
¢ F > C.
In particular, this implies that if a is sufficiently larger than b, then we have that the

right fastest spreading speed is strictly bigger than the right slowest one. O

The following example considers a system that is discussed in [14]. It has four equilibria,
but two of them will be outside the rectangle [T, S] such that T' = (0,0),S = (1,1) pro-
vided certain conditions are satisfied. Note that in this example, S is a stable equilibrium

and T is an unstable one (note that, in contrast, S is unstable and T is stable in [14]).

Example 7.5. First consider the system without convection terms
Ut = Ul gz — a1Uq + a1U9g + rl(ul - ’U,%), (721)

Ut = U gz + Qolly — Qs + To(ug — U%)a (7.22)

with non-decreasing initial condition ug, and where all parameters are positive. Following
the same procedure to find the four equilibria as previously, we find that from equation

(7.22) we have
uy = a5 gy — ro(uy — u2)] = up — o e (ug — ud). (7.23)
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Substituting this value in (7.21) we get
(ug — u3) [C\!]Oé2_1’r2 + 71— 05 'y + 205 roriug — ay iy ey (up — ug)] =0,

which gives us us = 0,us = 1, and

1 - _ 1 - _ _
U = 5 [(1 — 20515, F \/(2a21”2 Y12 — 4(ayonry it + adry? — aoryt)

This implies that u; = 0,u; = 1 respectively. Now if r;7y > 4a;jas (as presented in [33],
and noted in [14]), then (20975 —1)2 — 4(0yagry 'r ! + a2y 2 — agry ') > 0, which means

that the values of uy are

1 1 1 oo
Up = = — QT - — .
2= 3 2Ty~ F 4 Ty
1 s . . . 1 o
Let s = R If we substitute these values of us in (7.23) we obtain u; = 3 —F+/s.
172 T1

So the four equilibria are (0,0), (1,1), E_ := (u],u; ), Ey := (uf,u]), where

1 (03] 1 (6]
-2 o224 ).
(u1,u2) = (5 TI:F\/§,2 o V's)

Now to prove that E: are outside the rectangle [T,S], it is enough to show that one

1
component of (uj,us) is less than zero, such as u; < 0. Thus we need 5~ & Vs <0,
1
which occurs if and only if

1 an 1 o
- — > - — —. 7.24
4 [ DY) 2 ™ ( )

1
The inequality in (7.24) is satisfied in three cases, (i) when 5~ SRS 0, (ii) when
™
1 1 1
=~ 2 < 0 which implies that = — % _ Vs < 0, and (iii) when = — c > 0 and
% Ty 2 T 2 1
& > 0 which implies that 1 > k| + %.
2 1y T T2

So E+ are outside the rectangle and we are left with just two equilibria (0,0), (1,1). Thus
the system (7.22) has left single speed by Theorem 5.7, which means that é; = ¢.

Now we want to show that the function f(u;,us) satisfies the sufficient condition in

Theorem 5.10, which is a straightforward modification of [42, Theorem 4.2] for non-
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decreasing initial condition and in addition of convection terms, from which it follows
that the single left spreading speed ¢ for the system equals the left linear value ¢ for the
system. Since condition (5.60) is trivially satisfied here, because we have only one block

of f'(0), a sufficient condition for left linear determinacy is
fi(’u,l,’u,g) < f; (0, 0) ('I.Ll ’U/Q)T for all Ui, Ug > O,Z = 1, 2. (725)

Note that a generalization of condition (7.25) is the condition in [42, Theorem 4.2], that
is
£ (pC(m) < pf (0)¢(R). (7.26)

But (7.25) is easier to check since we do not need to evaluate fi, ((f), and it happens to

be true here. Condition (7.25) is

—ayuy + aqguy + 1 (ug — u?) - —aqg 411 o Uy

QU] — QU9 -+ T‘z(Ug — U%) Qo —Q9 + T2 U2

which it holds if and only if —ayu; + aqus + 11(u; — u?) < (—aq + 71)us + cqug. It is
require that —rju? < 0, which is true since r; > 0, and agu; — agug + To(uy — u3) <
(agu; + (—ag + T2)us, which requires that —TzU% < 0, which is true since ro > 0. Thus

we have

(e}
-~
Il
o
Il
o

a

The following example modifies the system (7.21), (7.22) by the addition of the terms
—h'l(ul)ul,m, —h;(ug)ug,x. Using Theorem 5.10 we will show that the system has single
left spreading speed that equals its left linear value, which means that the system is

left-linearly determinate.

Example 7.6. Consider the system below
Uiy = Ulzs — h; (u1)ure — a1ur + aqug + 7 (ug — ul) (7.27)

Ut = U2z — hlg(u2)u2,x + asu — g + To(us — u%),
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with non-decreasing initial data, where all parameters are positive, rry > 40, and

r1 > a;. The reaction term

—oUy + arUe + 11 (ul — u2)
f = (filu,us), folwr, up)) = Y, (7.28)
Qg — Qg + To(us — ul)
and convection term h satisfy Hypotheses s; — sg and the function h; is supposed addi-

tionally to satisfy
h;(0) < hi(w;)  foru; € [0,1], i =1,2.

As we showed above, the system (7.21), (7.22) has only two equilibria and since the
convection terms do not effect the number of equilibria provided the condition riry >
4oy guarantees that there are only two non-negative equilibria, (0,0) and (1,1). So the
system (7.27) has single left spreading speed é; = é. A sufficient condition for left linear

determinacy involving functions f and h is
filur, ug) = £:(0,0) (ur,uz)” < i [h;(ulaUQ) - h;(O,O)] (ur,u9)", w,up >0, (7.29)

since (7.29) implies (5.61). Note that the condition (5.61) is trivially satisfied here since
we have only one block in f'(0).

The condition (7.29) is equivalent to

—QiU + QU + rl(ul - U%) -1+ 711 [63] Uy <
QU — Qg + To(ug — u3) Qs —Qg + Ty uy |
R (u 0 a 0 U
/-—1' 1( 1) , - ' ’ (730)
0 h2(U2) 0 b U2

which is true if and only if —rju? — fiuy (hy (u;) —a) < 0, and —roud — fiug(hy(ug) —b) < 0.
Since h;(0) = a < h;(w1), hy(0) = b < hy(up), and since 1, 79, Uy, ug, i > 0, it follows
that (7.30) holds provided h;(u;) —a > 0, and hy(ug) —b > 0. Then Theorem 5.10 implies

that é; = ¢ =¢ for the system (7.27), which means that it is left linearly determinate.
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We will use an argument similar to those used above to estimate the linear value ¢ of
(7.27) provided that h}(0) < h(u;). The argument depends on comparing with a Fisher
equation with convection term (1.21) that is obtained from the first equation in the
system but with uy = 0 and with the non-decreasing initial condition 0 < (up); < r;— oy

for the system (7.27) which is the same initial condition as for the Fisher equation
u%,t = ug,xz - hl(ug)uq,z - aluq + Tl(ug - (uﬁ)?) (731)
Since uy > 0, we have

ULt = Ul ge — h’l(ul)ul,x —oquy + aqug + (U — Uf)

2 Ul gz — hll (ul)ul,w —oquy + 7 (ur — ’UJ%)

So wu; is a supersolution of (7.31), and hence the Comparison Theorem 5.1 implies that
up > uﬂ, where u§ is the solution of (7.31). Choose an initial condition 0 < (ug); < r1—ay
such that the initial condition of the first component of (7.31) converges to 1, — oy < 1,
so (ug); will spread at a speed no faster than the left slowest spreading speed. Hence

because the initial condition is non-decreasing, we get

<& =h(0)—24/f1(0)=a—2vr —ai, (7.32)

OB

Gp=é=

where ¢, denotes the linear value of (7.31), f;(0) denotes the first component of f : R? —
R?, and because f (0) does not have any zero off-diagonal entries, if it were possible to
find such X and ¢, then we would know that &; < é. If, however, it is not possible to find
such X and ¢, then ¢ < ;. It is not straightforward to calculate the linear value of the
system (7.27) in this case, in contrast to previous examples. Thus we will estimate it by
taking ¢ = ¢;, and we investigate whether or not it is possible for this value of ¢ that
there exists an unstable monotone eigenvalue A > 0 and a vector ¢ > 0 that satisfy
rL— oy (o)

M\ c)g= |[A?+ e — A diag (a,b) + g=0,
Q2 T2 — Qo2
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which is equivalent to

TH — & «
A+ Ma— 2V —ai)] — Mdiag (a,b)+ [+ 0 0 g=0. (7.33)

Qg To — Qg

For a positive vector ¢ = (z,y)”, where z,y > 0, (7.33) becomes two quadratic equations

for A,

()\2 — 2)\\/ T — o+ (T] - 01)) T+ a1y = 0,
(A =A2vVri—ai—a+b)+ (rs —a2)) y + asz = 0. (7.34)

By letting y_ z, the two equations become
x

A2 - 2)\\/ TN — Q1+ 7T — Qo= O, (735)
M- A2Vri—a1—a+b)+re—ayt+ ozt =0. (7.36)

Then from (7.35), we find that

)= 2T — a1 F \/4(7"1 —ay) —4(r —oq + ay2) _ 211 — a1 F v/ —4a;z
2 2 ’

and since —4a,z < 0, we can not have a real solution such that A > 0,z > 0. Therefore

we must have the strict inequality, ¢ < & = a — 2v/71 — 0. O

7.3 Example illustrating a sufficient condition on the
convection term for no linear determinacy

The final example considers the previous system (7.27) but when the convection term
does not satisfy h;(0) < h;(u;),i = 1,2. We suppose here that the convection term is
such that A7 (0) = hy(0), and will show that under certain additional conditions on the

convection term and parameters, this system is not left linearly determinant.

149



Example 7.7. Consider the co-operative system
ULt = Ul gy — h'1 (ur)ur,z — oqug + ayug + 7r1(ug — u%) (7.37)

Uzt = U2,gx — h,z (ug)Ug z + 2Us — U + To(up — U%),

with non-decreasing initial condition ugy, where all parameters are positive, r17s > 4a;an
and 7, > ;. The functions f in (7.28), and A satisfy Hypotheses s;—sg and h; (0) = hy(0).
As we showed above, the system (7.37) has single left spreading speed ¢; = ¢.

Since it is not straightforward to calculate the left linear value ¢ of the system, we again
will estimate it using a Perron-Frobenius eigenvalue argument as follows. The Perron-

Frobenius eigenvalue F,;(f (0)) =: vy satisfies
Y = [(r1 — a1) + (r2 — @2)] + (11 — a1)(r2 — @) — qay = 0,
which, letting R; := r; — a;,2 = 1,2, says that
v* — y(Ry + Ry) + RiRy — oqas = 0,

which is a quadratic function in 4. Thus

(Rl + Rz) + \/(Rl + R2)2 — 4(R1R2 — alaz)
2 )

and since we are interested in the unstable eigenvalue , so

(R1 + Ry) + /(R1 — Ro)? + 4oz
5 )

For this positive eigenvalue, there exists a positive eigenvector ¢ = (z, y)T ,Z,y > 0 that

satisfies f'(0)g = Fps (f (0)) ¢. Then for this g, the equation

M(X, c)g = [N + AcI — X diag (a,b) +vI] ¢ =0,
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is equivalent to the two quadratic equations in A,

(M¥+X—Aa+7)z=0, (7.38)
(M +Xc=Ab+7)y=0. (7.39)

Since h1(0) = a = hy(0) = b, dividing (7.38) and (7.39) by =z, y respectively yields a

single quadratic equation in A,

(Rl + RQ) + \/(R] - R2)2 + 401&2
2

M+ Ac—a)+ =0,

and hence

2

—(c—a)F,|(c—a)2—-4 ((Rl +Ry) + \/(Rl — Ry)? + 4ala2>
\

)\ =

Since we are interested in positive A, the critical value of ¢ for which such A exists satisfies

(c—a)?=2 [(Rl + Ry) ++/(Ry — Rp)? + 4a1a2]. It follows that to obtain such positive

1/2
A, weneed ¢c—a = — <2 [(Rl + Ry) ++/(R1 — Ro)? + 4a1a2]) . Thus we have shown
that for this value of ¢ given by

ex = hy(0) — (2 [(R1 + R+ (RBi— Ro)2+ 4a1a2])1/2, (7.40)

we get an unstable monotone eigenvalue A corresponding with the positive eigenvector g,

and then by the definition of the linear value ¢ of the system (7.37), we have

Now recall a Fisher equation with convection terms
u?l,t = ug,xa: - h’l(uﬁ)ug,z - alu% +7m (u’g - (uﬁ)%)’ (742)

where fi(u1) = r1(u; —u?) — ayu; = u; (1 — @1 — ruy), so the equilibria of fi(u;) are 0
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— R
N7A _ M Then the proof of Proposition 2.3
T1 !

and

0| (o (2) 2 = o o (2]

gives an upper bound for the left spreading speed c’i of scalar equation (7.42), that is

< —hy(0) + \/ (hl (%))2 + 3%. (7.43)

Suppose the function A is chosen such that

o (n (B)) 4 B <o, (ra

holds (note that, for instance, (7.44) will hold if A;(0) is sufficiently large). Since we

know from Example 7.6 that u; is a supersolution of (7.31), hence u, > u!, where u!

is the solution of (7.31) with initial data (ug);. So (ug); will spread at most the left
slowest spreading speed ¢&, thus since (up); is non-decreasing, we get that the left slowest
spreading speed for the system ¢ is a lower bound for the left slowest spreading speed c’{

of the scalar problem (7.42). That is, ¢ < c‘i, hence using (7.43), we obtain that

) R\\® R}
é<ch < —hi(0) + \/<h1(—1)> + 3—7"12’

and if (7.44) holds, we get

.y R.\\*> R} .
e<A < —m0)+/{h(—)) +5 <o Lc (7.45)
71 3ry{

Hence (7.45) shows directly that the system is not left linearly determinate since single

left speed of the system is strictly less that its left linear value. O
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Appendix A

Proof of Continuous Dependence

Theorem 5.4

Here we prove the Continuous Dependence Theorem 5.4.

The idea of the proof depends on estimating both [ju(-,t) — @(-,t)||con and t/2|jug(-, 1) —
Uo(+, t)||1,00,n, using the definition of n(z) in (5.17) and Peetre’s inequality (A.1), in order
to show that there exists C' > 0 to satisfy the required inequality for all t € [0, 7.

A useful inequality for this following proof is Peetre’s inequality (see {3, p.99]), which
implies that, for any 4 € R, and z,y € R,

G:;) <2 (14 (z—y)2)". (A.1)

Proof. (Theorem 5.4) Note first that the solution u of (5.1) with initial data ug satisfies

u;(z,t) = /R T'i(z—y,t)(uo)i(y)dy + /0 /R Li(z—y,t—s)% (u(y, s), uz(y, 5)) dyds, (A.2)

where

Yi(u, ug) = —hi(w)uiz + fi(u), and Ti(z,t) = exp (—z*/4d;t) .

ﬂ'dit
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So if u, % denote solutions of (5.1) corresponding to initial data wy, tig, we have

u;(z, t)

t) — iz, 1) = / Lo — 9, 8) ()i (y) — s (v) dy+
/ / =8 b (s 8), w0, 8)) — % () ), ), )]

so that if we define w := u — @, wp := up — Ug, and ¢ := y(u, u,) — (4, 4,), we have

wi(a,t) = [ Tife — ytunu)dy + / [ o=t -satns)duds, (13)

and hence

n(z)wi(z,t) = n(z) / i(z — y, hwo;(y)dy + n(x / / (z —y,t — 8)¢s(y, s)dyds.

Now to prove the continuous dependence Theorem 5.4, we need to estimate both ||w(:, t)||con

and t/2||w(-,t)||1,c05- Note first that

(@) [ Tite — v un(u)is] = | [ Tis = v,0)] § ()i (v)dy|

()
< sup ) un (o) / )2 (A4)

Hence by Peetre’s inequality (A.1),

n(@) _1+y’ _ (1+92)_152(1+(:r—y)2)a

nly) 1+ a2 1+ 22
and thus
| rie=u t)%dy <2 [ Na—3.0) (1+ @) dv (A.5)

Now since [, I'i(z — y,t)dy = 1, and by letting £ — y = 2, we have

1 —2z2
Ti(z —y,8)(z —y)2dy = [ T} 2=/— 2
/R (z -y, O)(z — y)°dy / (0= [ 5 sz_te><p(4dit)zczz,
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then dv = ﬂ—, and it follows that

- 4d;t’ Wit
=22\ L, 4dit [ , ,
/R2\/7F (4d t) iz = 77 Je” exp(—v%)dv,
gives that
/R Li(z -y, t)%dy <C(1+1), (A.6)

for some constant C depending only on d;. Then (A.4) and (A.6) together give that

In(z) / Pi(z — , two(v)dy] < C(L+ 1) sup [n(y)wes()] (A7)

yeR

Next

0
5= | Tila = v undy = / L@ — 3, )i (w)dy

_ —(z — y)?
- [gengmmer () wto
_ 1 —2(z—y) —(z —y)?
B /R o/mdit  4dit exp (th> wo;(y)dy
L —(z—y)?
T T 4/w(dt)P /R(‘” —y)-exp (Tﬂt) wo; (y)dy,

(o) [ 52Tilo = thunu)dy
= WU}R y) exp (_(fld_ity) ) Zgzgﬂ(y)wm( )dy|

< sup n(s)uns()l 5 7= g Jelt — vlexe (520 ) (1 (@ = )i, (48)

yeR
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and since

T Lot exp( ) o+ (o vy
2\/_(dt3/2 /2\/_|v|exp (1+4dtv)2\/_dv

= W /]R|v| exp(—v?) (1 + 4d;tv®) dv

C(1+1)

S Thar (A.9)

where C' is a constant (again, depending only on d;). Then (A.8) and (A.9) together give
that

0 C(l+1t)
1/2 v N < 1/2 .
@) gz [ e = v D] < 02D sup n(u)uny)
= C(1+t) sup |n(y)wo;(v)|- (A.10)
yeR
Now we need to estimate both
1) [ [ =ty s)duds, and ()2 [ [ ot o)y, o)duds.

To do this, note first that

Gi(y, 8) = Yi(u, uz)(y, s) — Yi(@, Us) (v, s)

!

= (i)t — hy(:)Tie + fi(u) — fi(@)
= hifw) (i — ) + T (ilts) = i) ) + i) — fil@),

Define ;(0) := fi(fu + (1 — 0)a), and ((6) := h;(0u; + (1 — 0)@;). Then
70~ (@ = [ dhlo) + (1 - @) (w - )0,

and

B () — B (us) = /O B! (Bt + (1 — 6)us) (s — us)do,
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so we have

¢i(y’ 3) = C(y) S)wi,x + (’L/J(y: S)w)i ’

where ¢, 9 are bounded uniformly on R x [0, 00). Hence

(W) ¢i(y, s) = C(y, s)n(y)wiz + (¥(y, s)n(y)w); -

Since we know that u,% € 1, which means that 0 < u,@ < B, and [lv|,,, =

ax [lwill o, = max||will o, + lwiell it follows that

1< <k 1<i<k 00,1’

1<(w, 8)In(y)|wiz] < Cllw(:, 8)lly 00, and [y, $)n(y)w);| < Cllw(:, 8)lloo s

thus
n(W)1¢i(y, $)| < Cllw(s )1 00 for some constant C > 0.

Then

// (@ =yt — )iy, s dydsl<// y,t—s%um(y, )\dyds

<20 [l [ o= vt = )0+ (o~ )0 ) ds

<c e )y (1 (£ — 5)) ds,
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for some constant C. Since Jeliz—y,t—s)(1+ (z—y)*)dy <C(1+ (t—s)), where

C is a constant, we have

m(a) [ [ o =0, )6, )l < € [ Il )l (1 (6= ) s
¢ / (L+ (t - 5)) 57252 8)|| oo

t
¢ (5o s 5)lhony ) [ (141 5) 57
0

0<s<t

IA

< C(1+t)tl/? ( sup s'/2||w(., s)||1’oom) : (A.11)
0<s<t
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for some constant C. On the other hand,

o t
g [ [re-ut-9nt.s dyds| / | 3T = wt = )6y, s)duds

< Ji el mTio =yt )%i () l6u(v,9)ldyds
3}
<20 f; ||w(-,s)||1,oo,,7 Jo U+ (@ = 9)?) |5-Ti(w — vt — 5)|dyds.
(A.12)
Then since
s, 0 (x —y)?
G 3932\/7rd t—s) <4d t—s))
N
2/md;(t — s) 4di(t — s) 4di(t —s) /)’
and we have
3}
| @+ @ =9) 15T it = s)dy
—(z—y)”
C/ (t—s)3/2 (1+(z~9)?) .eXp(4di(t—s)>dy
C/ 2y t ) 3/2|v| (1 +4d;(t — s)v*) - exp(—v?)24/d;(t — s)dv
:(75—_3)17/]R|U| 1+ 4d;(t — s)v?) - exp(—v?)24/d;(t — s)dv
< (t_—CsW for some constants C, C. (A.13)
Then (A.12) and (A.14) together give
)5 / / $)¢i(y, s)dyds|
<C+1) / (t = &) P52 )y s, (AL4)

—1

~1/2
t t
and since [y (t — s)™/2s7V/2ds < 2f0t/2 5712 (§> ds =2 (5) 2t1/2 = C, for some
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constant C, we have

8 [t .
In(av)a—gc/0 AFi(x—y,t—s)¢i(y,s)dydsl <C+1) sup %[ w(, 8100 (A-15)

which implies that

t
§1/2 ln(:v)(% /0 / Ti(@ — y,t — 8)¢i(y, 5)dyds|

<140 (sup ol y)- (A6

0<s<t

Then (A.11) and (A.16) give that

mex{ne)5 [ [ Tia = vt - o, s)duds,
tl“ln(ﬂ:)(% Jo JaTilz = y,t = 9)8:(y, S)ddeI} :

< Ct'2(1 + t) (sup sY2||lw(., s)|]1mm> , (A.17)

0<s<t

for some constant C, whereas (A.7) and (A.10) give that

max {In(w) /R Ti(z — y, t)wo; (y)dyl, tl/QIn(a?)B% / Ti(z — y,t)wm(y)dyl}

R

<C(1+t) (Osgigt In(y)wm(yﬂ)

< C(1+1)||lwoll (A.18)

oo,n?

for some constant C. It then follows from (A.3), (A.17) and (A.18) that

||’LU(-, t)”oo,n + t1/2”w(" t)”l,oo,n

0
= . 1/2 )
max sup [(z)wi(z, t)| + £ max sup |n(z) 5 wi(z,t)]

< O+ 1) ol g+ C(1 + 82 51D 82 (5)
LS

which implies that
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up. ([, 8)llagyy + 21w, 8)ls o)

0<s<t
< CU+T) ol + C1+T)V? sup. (1, ooy + 572110, )y )
S8
and hence

(1= 00 +1)”) sup ([l oy + 5700l 0y) < CA+ D]y (A:29)

Then (A.19) yields that there exists 6 > 0, depending only on T, R and the constants
and functions in (A.2), such that if ¢ < 4, then 1 — C(1 + T)t"/2 < 1/2, and hence

sup ([w(,8)llsos + 8720 8) ) < 201+ Dlfwtlle  (A20)

0<s<t

Then for /2 < s < 3§/2,

sup (105 + 5 = 510,y ) 200+ T8/l

§/2<5<35/2
< (20(1 4 T))? [lwollo,,» (A-21)

and since for s € [0, 376], s < 2(s— g), so s1/2 < 21/2 (s — g) , it follows from (A.21)
that

sup (||w(-, 8) ooy + ()2 [|w(-, s)lll,w,n)

§/2<5<38/2
6
<212 gup (||w(-, 3)||Oo’n + (s — 5)1/2||w(., 3)“1,00,7])
§/2<s<35/2
<2Y2(2C(1+T))* |lwollop, (4.22)

Since T' < Nyd for some Ny € N, it follows similarly, by considering the intervals

36 50
(8, 26], [?, ?], etc, that there exists C' > 0 such that Sup (Hw(, Mooy + sY2||w(-, 3)”1,00,77) <
RS
Cllwoll o > as required, and the theorem is established. O
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