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A bstract

This thesis is concerned with spreading speeds and linear determinacy for both discrete­
time recursion models un+1 =  Q[un] and reaction-diffusion-convection systems (PDE) 
under a co-operative assumption. In this thesis we are interested in the role of con­
vection terms in propagation and linear determinacy. Such reaction-diffusion-convection 
systems have monotone travelling-wave solutions of the form w(x — ct) that describe 
the propagation of species as a wave with a fixed speed c, connecting two equilibria, a 
stable equilibrium (3 and an unstable equilibrium 0 of the reaction term. The concept 
of spreading speeds was introduced by Aronson and Weinberger in [2] as a description 
of asymptotic speeds of spread, and in fact they showed that this spreading speed can 
be characterized as a minimal travelling wave speed. We discuss a characterization the­
ory of spreading speeds of the PDE system in terms of critical travelling wave speeds. 
We present sufficient conditions involving both the reaction and convection terms of the 
PDE system for spreading speeds to equal values obtained from the linearization of the 
travelling-wave problem of the PDE system about the unstable equilibrium 0. These 
conditions guarantee the linear determinacy for the discrete-time recursion models and 
the PDE systems. As a result of the asymmetry in propagation that is caused by the 
convection terms in the PDE system, and a corresponding lack of reflection invariance in 
the abstract system un+1 =  Q[un\, we present separate conditions for non-increasing and 
non-decreasing initial data, called right and left conditions respectively, and we consider 
right and left spreading speeds. Weinberger, Lewis and Li in [42] allowed there to be 
more equilibria other than 0 and /?, in which case different components may spread at 
different speeds. This implies the need for both slowest and fastest spreading speeds, 
called right and left slowest (fastest) spreading speeds corresponding, to non-increasing 
and non-decreasing initial data respectively. We also give sufficient conditions on the 
reaction and convection terms such that right (left) slowest spreading speed equals right 
(left) fastest spreading speed for the PDE system, which implies that the system has a 
right (left) single spreading speed. Examples are included that illustrate the key propo­
sitions and theorems, for instance, the existence of reaction and (non-trivial) convection 
terms for which the right and left linear determinacy conditions are simultaneously satis­
fied, as well as a system that is right (left) linearly determinate in absence of convection 
terms, but it is not left linearly determinate in the presence of a convection term.

2



Contents

A bstract 2

C ontents 3

Table 1: G eneral notation  5

Table 2: M eaning o f various speeds 6

1 Introduction 7

2 The m inim al travelling wave speed and linear determ inacy for a reaction- 

diffusion-convection equation 22

2.1 A formula of the minimal travelling wave s p e e d ...........................................  23

2.2 Sufficient conditions for linear determ inacy ..................................................... 28

2.2.1 Illustrative ex am p le s ..............................................................................  31

2.3 A sufficient condition for not linear determ inacy ...........................................  34

3 A discrete-tim e recursion system  40

3.1 Hypotheses of discrete-time recursion sy stem .................................................  42

3.2 Slowest spreading speed for discrete-time recursion system ( 3 . 1 ) .............. 43

3.2.1 Characterization properties of the slowest spreading speed . . . .  48

3.3 Fastest spreading speed for discrete-time recursion system (3.1)   61

3.3.1 Characterization properties of the fastest spreading speed .............. 65

4 Characterization o f slowest spreading speeds using travelling waves and 

linear determ inacy for discrete-tim e system s 69

3



4.1 Characterization of slowest spreading speed c as slowest speed of a family

of travelling waves ..............................................................................................  69

4.2 Sufficient conditions for single speed and linear determ inacy ...................  74

5 A pplications to  reaction-diffusion-convection system s 79

5.1 Hypotheses of the reaction-diffusion-convection sy stem s.............................  83

5.2 Important results for the PDE system (5 .1 ).................................................... 84

5.2.1 Results for the abstract tool Qt for the PDE system (5 .1 ) ................ 87

5.3 Single speed and linear determinacy for the PDE system ( 5 .1 ) ................  96

5.3.1 Linearization operator M  for the PDE system ( 5 .1 ) ........................ 96

5.3.2 Travelling waves and spreading speeds for the PDE system (5.1) . 104

5.3.3 Sufficient conditions for linear determinacy for (5 .1 ) .......................  106

6 Correspondence betw een different concepts o f linear values of /  (0) 113

6.1 Eigenvalues and eigenvectors if M(A, c) has a single irreducible block . . 116

6.1.1 An alternative linear value speed cun (cun) for (6.2) .......................  118

6.2 Eigenvalues and eigenvectors if M(A, c) has multiple irreducible blocks . . 122

6.2.1 Eigenvalues corresponding to an eigenvector X  > 0 .......................  123

6.2.2 Eigenvalues corresponding to an eigenvector X  > 0 .......................  126

7 Exam ples 134

7.1 Examples illustrating sufficient conditions for both left and right linear 

determ inacy ...........................................................................................................  134

7.2 Examples about the single right (left) spreading speed and right (left) 

linear determinacy ..............................................................................................  139

7.3 Example illustrating a sufficient condition on the convection term for no 

linear determinacy ..............................................................................................  149

A ppendix 152

A Proof of Continuous D ependence Theorem  5.4 153

Bibliography 161

4



Table 1: General notation

Symbol Definition

u > v e R k For all z, 1 < i < k, Ui>Vi , the zth component of u is larger than or equal
the zth component of v 

Note; if w, v are functions from R —> Rfc, then for all x  and z, U{(x) > Vi(x)

u > v G R k For all z, 1 < z <  k, Ui > vi} the zth component of u is strictly larger than
the zth component of v 

Note; if u, v are functions from R —> Rfc, then for all x  and z, Ui(x) > Vi(x)

[a, b\ The set of x  G Rk such that a < x < b

R k+ The set of the positive cone in Rk of non-negative vectors

The set of all vectors v such that each zth component of Vi, a < Vi < (3

sup A, A £ R k (supA)j := sup Ai, 1 < z <  k

R kxk The set of real k x k matrices

diag Zi diag (zu ...,zk)

p k x k The set of real k x k matrices with strictly positive off-diagonal elements

/ ( « ) The Jacobian matrix of /  : Rk —> Rfc at a

S p f  (B) Perron-Frobenius eigenvalue of the matrix B

L ° ° ( J ,  R k) {u : u —>■ Rk : u is Lebesgue measurable, |M | L ° ° ( / , R fc) <  oo} 
where | | u | | Lo o ( / )IRfc) =  ess  sup|zz|, and I  = R  or I  = [—oo,a]

R

Cp( I ,Rk) The space of functions /  : R  —>■ R fc such that /  and its derivatives 
for p > 1 are continuous on I  where I  = Rk or I  =  [0,1]

BUC(R,Rk) The space of functions /  : R  —> R fc such that /  is bounded 
and uniformly continuous on R

BUCp{ R,R*) The space of functions /  : R —> R k such that /  and its derivatives 
for p > 1 are bounded and uniformly continuous on R

B b u c1 (0, R) { u e B U C 1 : | M | i j00 < R}

IMloo sup|w(x)|, where u : /  —> Rk
xEl

IM|l,oo Halloo T  \\u 11oo



Table 2: Meaning of various speeds

Symbol Meaning

co Minimal travelling wave speed of non-increasing travelling waves 
for reaction-diffusion-convection system

c (Right) linear value speed for reaction-diffusion-convection equation

c Left slowest spreading speed for reaction-diffusion-convection system

c Left linear value speed for reaction-diffusion-convection system

Cf Left fastest spreading speed for reaction-diffusion-convection system

c+ Maximum of left linear values for reaction-diffusion-convection system

c Right slowest spreading speed for reaction-diffusion-convection system

c Right linear value speed for reaction-diffusion-convection system

°cf Right fastest spreading speed for reaction-diffusion-convection system

c+ Maximum of right linear values for reaction-diffusion-convection system

Clin Linear value corresponding to stable monotone eigenvalue

Clin Linear value corresponding to unstable monotone eigenvalue
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Chapter 1

Introduction

The reaction-diffusion equation ut =  duxx + f{u),  x  E M, is well-known as a simple model 

of one-dimensional phenomena in, for instance, population growth, chemical reaction, 

flame propagation, etc, where d > 0 is a diffusion coefficient and /  is a reaction term. For 

the classical Fisher case [18], f (u)  = ru{ 1 — it), Kolmogorov-Petrowsky and Piscounov 

[24] showed that there exist non-increasing travelling waves, joining the equilibria 1 and 

0, for all speeds c > 2y/dr. A travelling wave solution has the form u(x , t) = w(x — ct) and 

describes the propagation of a species as a wave with a fixed shape and a fixed speed c. It 

was also shown in [24] that there are no such non-increasing waves of speed slower than 

the speed c. The concept of asymptotic speeds of spread, known as spreading speeds, 

was first introduced by Aronson and Weinberger [2] for reaction-diffusion equations. The 

spreading speed is defined using initial condition uq(x) of the reaction-diffusion equation 

that is identically zero at one end, but a wider class of initial conditions will also spread 

at this spreading speed. Aronson and Weinberger showed also that the spreading speed 

can be characterized as a minimal wave speed of a class of travelling wave solution (see 

also [42], [26] and [29]). If the initial condition uq converges more slowly, the solution 

u(x, t)  may converge to a travelling wave of speed that is not the minimal wave speed. 

In many applications, however, there is convective motion in addition to diffusion and re­

action, which can have a major impact on the behaviour of solutions. An example of such 

convection terms arises in a simple one-dimensional model of the motion of chemotactic 

cells, based on a model of Keller and Segel [23], that is presented in Benguria, Depassier 

and Mendez [6], where p denotes the density of bacteria chemotactic to a single chemical
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element of concentration s , the density evolves according to pt = [Dpx — P X s x]x + f{p), D 

is a diffusion constant and x  is the chemotactic sensitivity. For travelling front solutions, 

s ■= s(x — ct), p = p(x — ct), we have st =  — csx, sx = K p /c , and the problem then reduces 

to a single differential equation for p, namely

Pt  = Dpxx -  ^ - { p ) 2x +  /(p).

Motivated by such models, we study systems of partial differential equations (PDE) in 

the presence of convection terms under a co-operative assumption. The theory of spread­

ing speed and travelling waves is presented in [29], [42], [26], [43], and [40] in the context 

of co-operative operators of a discrete time recursion un+1 =  Q[un\. Such recursions are 

presented as an abstract tool that can be applied to study the spreading speed of reaction- 

diffusion-convection systems. We present theory about the recursion un+1 =  Q[un], based 

on [29], and others, and extend this theory to remove a reflection invariance assumption 

to allow application to PDE systems involving convection terms and to consider both 

non-increasing and non-decreasing initial conditions. Note that due to the presence of 

convection terms, there is a lack of symmetry in propagation in the PDE system and a 

corresponding lack of reflection invariance in the recursion un+1 =  Q[un] that imposes us 

to present separate conditions for non-increasing and non-decreasing initial data to ensure 

that the spreading speeds equal values obtained from the linearization of the travelling 

wave problem of the PDE system about the unstable equilibrium 0. These conditions 

involve both the reaction and convection terms of the PDE system and are denoted by 

right (left) conditions respectively. It is shown in Lui [29] that all components spread at 

the same speed when there are only two equilibria 0 and ft of the reaction term, whereas 

Weinberger,Lewis and Li in [42] also considered more equilibria but they allowed that 

these components spread at different speeds. This implies the need for another spread­

ing speed to take account of the fact that different components may spread at different 

speeds. As a result and corresponding to non-increasing and non-decreasing initial data 

we have right (left) slowest spreading speed and right (left) fastest spreading speed. Fur­

ther, we prove results about spreading speeds for the abstract operator Q which gives us 

information about discrete recursion and later we apply it to continuous time systems



such as reaction-diffusion-convection systems by taking Q to be the time-t map of the 

reaction-diffusion-convection systems.

A travelling wave of the form w(x — nc) and w(x — ct) is a special solution of recur­

sion un+1 =  Q[un\ and of reaction-diffusion-convection systems, whereas the spread­

ing speed characterises the evolution of the solution with specific kind of initial condi­

tion, for instance, when the initial condition is identically zero at one end. Li, Wein­

berger and Lewis in [26] showed that the spreading speed of reaction-diffusion systems 

with special linear convection term of the form E u x where E  is a constant diagonal 

matrix, can be characterized as the slowest speed of a class of travelling waves. We 

extend this characterization theory of spreading speed in terms of critical travelling 

wave speeds to reaction-diffusion systems with non-linear convection term of the form 

h'^UijUi^ — diag ..., h'k(uk)ukjX) . Moreover, we give characterization prop­

erties of spreading speeds for the continuous time system, as well as a characterization 

of slowest spreading speed in terms of travelling waves for the PDE system. Note that 

in Chapter 2, we discuss non-increasing travelling wave solutions, the minimal speed 

of which equals a slowest spreading speed for the reaction-diffusion-convection equation 

as will be established in Chapter 5. We remark that in Chapter 2, we consider non­

increasing waves, the analogous results hold for non-decreasing waves, and some results 

for such waves will be discussed in the context of the PDE system in Chapter 5.

Before presenting the theory of the operator Q, in Chapter 2, we begin by considering 

travelling-wave solutions of a reaction-diffusion-convection equation of the form

ut +  h'(u)ux = uxx +  f(u) ,  i £ R ,  (1.1)

with a monostable reaction term f (u )  in which 0 is an unstable equilibrium, there is a 

stable equilibrium (3 > 0, and there are no equilibria of /  between 0 and fd. The defi­

nition of stable equilibrium a  of /  : Rfc —» M.k is that all solutions of ut = f ( a ) u  tend 

to 0 as t —y oo, whereas a  is unstable if for some initial condition «(0), the solution 

does not tend to 0. Hence in particular, this definition can be applied in the scalar case
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when /  : R —> R and /  (a) is a number instead of a matrix. The monostable reaction 

function f(u)  thus satisfies /(0 ) =  /(/?) =  0 and f'(/3) < 0 , / ( 0 )  > 0. Note that for

(1.1) with t i  (u) =  0, there is, of course, reflection symmetry, which means that if u(x,t)  

is a solution of (1.1), and we define u(x,t)  := u(—x, t), then u also satisfies equation

(1.1). Thus corresponding to a non-increasing travelling-wave solution w(x — ct), there 

is a non-decreasing travelling wave w(x  +  ct) with w(+oo) = (3, w(—oo) =  0, 0 < w < (3 

and iu(f) =  w(—£), so that w(x — ct) = w(x  — (—c)t). On the other hand, it is clear that 

the presence of the term t i  (u)ux will break this symmetry between non-increasing and 

non-decreasing waves, in the sense that u (x , t) will be the solution of a different problem, 

in which t i  (u)ux is replaced in (1.1) by —ti(u)ux. Convection terms will clearly affect 

the values of propagation speeds in comparison in the case when t i  (it) =  0.

When t i  (u) = 0, Hadeler and Rothe [20] showed that there exist non-increasing travelling 

waves u(x,t)  = w(x  — ct) of (1.1) with w(—oo) - /?, w(+oo) =  0, 0 <  w < (3 for (1.1) 

of all speeds c > Co, and gave a formula for the minimal travelling wave speed Cq. In 

this chapter, we begin by presenting a generalization of this formula to the reaction- 

diffusion-convection equation (1.1). This minimal speed Co is bounded below by a critical 

parameter c. G R determined by the linearization of the travelling wave equation for (1.1). 

This is because [38, Lemma 2.4, p. 136] (see also Theorem 3.7 in [16]) implies that the 

existence of a real negative eigenvalue for the linearization of the travelling wave equation 

for (1.1) of speed c is a necessary condition for the existence of the travelling wave with 

the same speed c, which then implies that Cq > c. We refer to such a critical value as 

the linear value, that is obtained from the linearization of the travelling-wave equation 

for (1.1) about the unstable equilibrium 0 when we have a non-increasing travelling-wave 

solution which converges to 0 at +oo. We also present a sufficient condition to guarantee 

that the minimal wave speed Co equals the linear value c = t i (0 ) + 2 y J f  (0), extending 

[20, Corollary 9] to now involve both the functions /  and h. This condition is

+  'a f L v  ^  h'(°) +  > //'(° )  for a11 u e  (°> !)> (L2)
u y / f  (°)
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which generalises the classical Hadeler-Rothe condition,

f (u )  < u f  (0) for all u E (0,1), (1.3)

that applies when t i  (u) = 0. The fact that condition (1.2) is not also a necessary condition 

for Co =  c is illustrated in Example 2.3. Note that Benguria, Depassier and Mendez [7] 

give an alternative sufficient condition to ensure that Cq = c which again involves both 

functions /  and h and is based on an alternative variational expression from which the 

minimal travelling wave speed can be estimated. For more references on work in the same 

direction, see [19], [31] and [28]. We mention also that Weinberger [41] recently followed 

and extended the approach of Hadeler and Rothe [20] to introduce a new condition in 

the case t i  (u) = 0 that involves replacing u in the right hand side of (1.3) by a suitable 

choice of function K(u),  and briefly discussed such generalised conditions in the presence 

of t i  (u), but we do not pursue this approach further here.

For (1.1), if we have Cq =  c, then we say that the problem is right linearly determinate. 

Correspondingly, we say that (1.1) is left linearly determinate when the maximal travelling 

wave speed for non-decreasing travelling waves u(x,t )  = w(x — ct) equals the speed 

obtained from the linearization of the travelling wave equation (1.1) about the unstable 

state, this time with the leading edge tending to the equilibrium 0 at —oo instead of +oo, 

in which case c =  t i  (0) — 2yJf'(0).  Linear determinacy for propagation into an unstable 

state means that the spread rate in the fully nonlinear model equals the spread rate in 

the corresponding travelling-wave problem linearized about the unstable state, which is 

the speed associated with the leading edge of the wave. Note that in the absence of a 

convection term, the right linear value is the negative left linear value. It is useful to 

determine conditions that ensure (right and/or left) linear determinacy both because it is 

easier to calculate a minimal wave speed if it equals the corresponding linear value which 

is determined by an algebraic problem, and because the minimal wave speed, being equal 

to a spreading speed, is important for applications to, for example, predicting the speed of 

spread of biological invasions. For further background and results on linear determinacy, 

that focusses mainly on problems without convection, see, for instance, [20], [42], and 

also [9], [27], [28].
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On the other hand, we also present Proposition 2.3 that gives a sufficient condition for

(1.1) that ensures that there is a strict inequality between the right minimal travelling 

speed Co and the right linear value c. This condition is

-h{0)  +  > 2 v 7 7(0) +  h'(0), (1.4)

which reduces to the condition of Berestycki and Nirenberg in [8, Remark 10.2] when 

h =  0,

J 2 ^  f (u ) d u > 2 y / f ( & ) .  (1.5)

We give an example to illustrate that it is possible for a given function /  to satisfy the 

sufficient condition (1.3) to have Co =  c, but with the addition of a function h , condition 

(1.4) is sufficient to guarantee that Co > c. Moreover an example can be constricted an 

equation which is right but not left linearly determinate is presented in [1, Example 2.7].

Weinberger-Lewis and Li in [42] (see also [29], [39], [26], [43], and [40]), showed that 

the theory of spreading speeds and monostable travelling waves could be established for 

discrete-time recursions of the form

Un+1  =  Q[Un] n  G N, (1.6)

This operator is order-preserving, which means that if we have u < v (in the sense of 

Table 1), then Q[u] < Q[u], Q[0] =  0, and Q]fi\ =  0, which says that 0,/? are equilib­

ria. Moreover, translation and reflection invariance properties are also satisfied for this 

operator,

Q P iM ] =  where Ty[v](x) := v(x — y) for all x , y  G R. (1.7)

Q[R[u]] =  i?[(2[u]] where R[v](x) := v(—x) for all i G l .  (1.8)

We will present this background theory in Chapter 3, extending the previous theory for 

operator Q in (1.6) to remove the reflection invariance property (1.8), and consider left 

and right spreading speeds for the recursion. Later in the thesis, in Chapter 5, we use this
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operator Q as a tool, taking Q to be the time-t map and apply it to reaction-diffusion- 

convection systems. Note that we remove the reflection-invariance assumption (1.8) for Q 

since we want to consider applications to partial differential equation systems that have 

convection terms, and if Q comes from a PDE system, then the system can only contain 

derivatives of even order if Q satisfies (1.8). The presence of convection terms with one

derivative ux breaks the symmetry between x  and —x, because for u(x,t)  = u(—x , t ),
d d

we have —— u(x.t)  = (—1)p- t̂---- r-u(—x.t).  and when Q is the time t map of recursion
dxP v v ' d(-x)P  v J

Un+i = Q[un\ in (1-6), (1.8) does not hold in the presence of convection term h (u)ux.

For the operator Q, we generalize the definition of slowest spreading speed corresponding 

to non-increasing initial data that is presented in [29], [42], and [26] to one that treats a 

recursion that can later be applied to a PDE system with convection term (1.6), and we 

refer to this slowest spreading speed as the right slowest spreading speed, c. Corresponding 

to this right slowest spreading speed, there is the left slowest spreading speed, c for (1.6) 

with non-decreasing initial data ito- In [26, Theorem 2.1], the right slowest spreading 

speed c is characterized by

lim sup {un}i (x) =  0, lim sup {/3 - u n(x)}
n- too x>n(c+e) n—¥ oo x<n(c—e)

=  0 , (1.9)

which says that there exists an index i such that the zth component spreads at a speed 

no higher than c, and no component spreads at a lower speed. We modify [26, Theorem 

2.1] to show that the left slowest spreading speed c can be characterized by

lim
n—>oo

SU p {Unjj (x)
x<n(c—e)

= 0, lim sup {/3 -  un(x)}
x>n(c+e)

=  o , (1.10)

which says that there exists an index j  such that the j th  component spreads at a speed no 

less than c, and no component spreads at a higher speed. Note that for this modification 

we do not need that the operator Q satisfies the reflection property (1.8).

We remark that an alternative way to obtain a left slowest spreading speed for the oper­

ator Q with non-decreasing initial data from the result that we have for non-increasing
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initial data, is by defining a new operator Q by

Q[v\(x) := Q[R[v]](—x) for all x, (1-11)

where R  defined in (1.8) and we denote the right slowest spreading speed of Q by c. It 

is clear that, in general, c ^ c  but if the reflection invariance (1.8) holds for the operator 

Q in (1.6), then Q = Q and hence c = c. On the other hand, we present a lemma to 

show that the left slowest spreading speed c for operator Q in (1.6) equals the value — c 

obtained from Q.

It is proved in [29, Theorem 3.1, 3.2] that when there are no extra equilibria other than 0 

and (3 in ^g, where ^  =  {uG BUC(  R,Mfc) : 0 < u(x) < (3 for all x G f t} ,  there exists 

a single spreading speed which means that all components spread at the same speed and 

such a property (1.9) ((1.10)) that was hold for the zth component, it will hold for all 

the components. This single speed in [29] is noted by c*. On the other hand, Weinberger, 

Lewis and Li [42], discussed the case when there are extra equilibria in ^  other than 

0 and /3, motivated by the fact that models of multiple species interaction, such as in 

population genetics and in population ecology [40], often have such extra equilibria. Our 

Hypotheses 3.1 allows there to be more than just the equilibria 0 and f3 in ipp. Under 

these conditions, as noted in [42], not all components of un necessarily spread at the same 

speed, and as we mentioned before, it is natural to introduce a second speed, called the 

right (left) fastest spreading speed, c/(c/), in addition to the right (left) slowest spreading 

speed c(c). In biological terms, it clearly sometimes happens that different species spread 

at different rates, which means that in general, there should be a right (left) slowest 

spreading speed c(c) and a right (left) fastest spreading speed c/(c/). A characterization 

theorem for the left fastest spreading speed df can be shown via a modification of [26, 

Theorem 2.2 ] for non-decreasing initial data for the operator Q in (1.6), that is

lim sup
n—>oo

inf {unjjfa;)
x>n[Cf+e)

> 0, lim sup un{x)
x < n (c f—e)

=  o , (1.12)

which says that there exists an index j  such that the j t h  component spreads at a speed
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no higher than c/, and no component spreads at a lower speed.

Note that it might be more correct to use the ‘ velocity’ rather than ‘speed’, but that it is 

common to use the word ‘speed’ for travelling waves when c is both positive and negative, 

and we keep to this convention here. In [42], it is shown that the right fastest spreading 

speed is larger than or equal the right slowest spreading speed, in our notation, Cf > c, 

whereas when we have non-decreasing initial data, we show that df < c. The fact that 

we use the word ‘fastest’ despite having df < c is because for both kinds of initial data, 

non-increasing and non-decreasing, the characterization properties of spreading speed, 

such as (1.9) and (1.10) for the slowest spreading speed and the similar two properties for 

the fastest spreading speed, always involve the quantity x  — nc , and so they give speeds 

‘to the right’ if c is positive and ‘to the left’ if c is negative. It is thus natural to have 

Cf < c, because for instance, in the case when the reflection invariance property (1.8) is 

satisfied, for non-decreasing initial data, both spreading speeds df and c will be negative, 

so we have |c/| > |c|. The fact that df <  c means that the solution is going faster to the 

left.

If the right fastest spreading speed equals the right slowest spreading speed, we say that 

the recursion (1.6) has a single right spreading speed. Corresponding to this single right 

speed, we present a result that gives a sufficient condition to guarantee that the recursion 

(1.6) has single left spreading speed. Note that in the case when the recursion (1.6) has 

right (left) single spreading speed, then this means that all components of un spread 

at the same speed. Hence the characterization properties of, for instance, (1.10), (1.12) 

whenever there is a single spreading speed, the limits that in general only hold for com­

ponent i must in fact hold for all components.

A linear operator M  is the linearization of Q at 0 if for any e > 0 there is a 6  > 0 such 

that IÎ Hqq < S implies that ||Q[it] — ^  and such as noted in [42] that
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lim]| (1 /p)Q[pu] — MMHoo =  0. This linear operator has the representation,

K poo

(M[u](x))i = ^ 2  U j{x -y )m i j {y ,d y ) f (1.13)
I j  =  1 J -o o

| where is a bounded non-negative measure. We introduce the matrix B^  that is defined 

in [42] by

B» =  ( /  , (1-14)

and it can be characterized using M  as follows: for every positive n,

B^a = M[ae-^x]\x=0.

| We assume that the entries of B M are finite for all (i. Lui assumed that there is only
!
| one block in the matrix BM and so it is an irreducible matrix, whereas Weinberger, Lewis

j and Li in [42] reordered the coordinates of B^ if necessary to put it into a block lower

J  triangular form, so it is in Frobenius form, in which all the diagonal blocks are irreducible,

j See Theorem 3.1; we also assume that BM is in Frobenius form.

Similarly to the scalar case, in Chapter 4, we present sufficient conditions for right (left) 

linear determinacy for the recursion un+1 =  Q[un\ in (1.6). A recursion (1.6) is said to 

be left (right) linearly determinate if the left (right) single speed equals a speed that is 

obtained from the recursion (1.6) when the operator Q is replaced by its linearization M  

at the unstable equilibrium 0, which we then call the left (right) linear value.

As an application of this operator Q , in Chapter 5, we consider a co-operative system of 

partial differential equations of the form

Uij “b h^U^Ui^ djUi^xx "F fi{y)i  ̂ 1^2,..., kj (1.15)

u{0, x) =  Uq(x) for all x G IR, 

where di > 0, the reaction terms / i ,  / 2 , ••••, /fc are independent of x and t and satisfy the co­
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operative assumption ——l-(u) >  0, i ^  j , the convection functions hAuA have the “diago-
OlLj

nal” form of convection terms as diag (/^(ui), h'2 (u2 ) , tik(uk)), u =  (iq, rq, i fcfc)  G Mfc, 

and the initial condition Uq G Mfc). Note that the system (1.15) is order-

preserving by the Comparison Theorem 5.1, and Example 5.1 illustrates that if the co­

operative assumption on /  is not satisfied, then such a comparison result could fail. Note 

that in Chapter 3, we consider the recursion un+1 =  Q[un\ defined in (1.6) with initial 

condition uq G BU C(M, Rfc), but in Chapter 5, which deals with the application to the 

PDE systems, we will use this recursion as an abstract tool for the spreading speed of a 

reaction-diffusion system with convection terms and we hence restrict the initial condi­

tion to be Uq G B U C 1^ ,  M.k) (the space of functions p : R —» M.k such that p and p are 

bounded and uniformly continuous on R) because of the presence of the convection terms.

In order to apply the spreading speed and travelling wave theory based on the recursion 

un+i — Q[un] m (1-6), to the PDE system defined in (1.15) under conditions that ensure 

(1.15) satisfies the Comparison Theorem 5.1, we define an operator Qt. If u(x,t)  is a 

solution of (1.15) and t is any positive number, then the sequence of functions un(x) := 

u(x , n t ) is shown to satisfy the recursion (1.6) with an operator Qt[uo] that is defined by

Qt[u0](x) := u(x,t) ,  (1.16)

This Qt is called the time t  map of (1.15), where Uq is the initial data of the partial 

differential equation system in (1.15) at time t > 0. As noted in [26], Qt satisfies the 

semigroup properties

(1) QtAQtiM] =  Qti+t2M> for a11 positive ti and t2,

(2) Jim Qt[v\ = v,

where (2) is satisfied in the sense that ||Qt[v] — l̂loo ~^ 0 as t 0- We prove that Qt[v] 

defined in (1.16) satisfies the hypotheses required for the operator Q in (1.6) with slightly 

modified versions of Hypotheses 3.1 #4, #5, #7, which we call q4, q5, and q7. The modifica­

tions involve requiring that the initial condition Uq belongs to the set -0/3 n  B BUc1 (0, R) 

for some fixed R > 0, which we impose because of the presence of the convection terms.



We want to be sure that the derivatives u^x are uniformly bounded all the way down to 

t = 0, and hence choose an initial condition that not only lies between 0 and /?, but also 

lies in a fixed bounded set in B U C 1. The operator Qt in (1.16) links the discrete-time 

system (1.6) and continuous-time system (1.15). Moreover, we show that the spreading 

speed of the time 1 map of the PDE system (1.15) gives a spreading speed for solutions 

of the system (1.15) itself where the initial condition is non-decreasing, in the sense that 

the characterization properties in Theorem 5.5 are satisfied.

Lui [29] gave sufficient conditions for spreading speeds to equal linear values that are 

obtained from the recursion un+1 =  Q[un] when the operator Q defined in (1.6) is replaced 

by its linearization M  at the unstable equilibrium 0 in the special case of a system with 

only two equilibria 0, /5,/? > 0 and /  (0) an irreducible matrix. These results were 

generalized by Weinberger, Lewis and Li [42] to systems where the Frobenius form of the 

matrix B M may have multiple diagonal blocks and there may be more equilibria other 

than 0 and in [0, (3\ provided any additional equilibrium v has — 0 for at least 

one i G 1, 2, ...,/c, and they gave a sufficient condition for linear determinacy for the 

reaction-diffusion systems. This condition is

< p(/(0)C(/x))i for all p > 0, (1.17)

where ((p)  is a strictly positive eigenvector of the coefficient matrix C^, defined in (5.33) 

below, that is obtained from the linearization of the travelling-wave problem for the 

system (1.15) about the unstable equilibrium 0 at +oo, and J1  is the value of p, > 0 

at which the infimum in definition (5.37) is attained. Note that in the scalar case, 

(1.17) reduces to the well-known Hadeler-Rothe condition (1.3). On the other hand, 

our sufficient condition for right linear determinacy for the reaction-diffusion-convection 

systems (1.15), which generalises (1.2) in the scalar case, is that for all positive pG  R,

M p C ( P ) )  <  P P  K ( ° )  -  h i ( p C i ( p ) )  <»(£) +  P(/(0)C(A))* 1 <  i  <  k , I1-18)

we refer to this condition as the right combined condition since it involves a combination
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of the functions /  and h. Clearly (1.18) extends [42, (4.9)] and reduces to it when 

t i  (u ) = 0. There is a corresponding condition for non-decreasing travelling-front solutions 

of (1.15), called the left combined condition, that ensures the system (1.15) is left linearly 

determinate, namely that for all positive p G M,

fi(pC(p))  <  PM KipCiifr)) ~  h ' M  Ci(P) +  p (/(0 )C (A ))i 1 <  i < k , (1-19)

where ((p) is a strictly positive eigenvector of the coefficient matrix defined in (5.39) 

below, which is obtained from the linearization of the travelling wave problem for (1.15) 

about 0 at —oo, and p is the value of p > 0 at which the infimum in definition (5.40) 

is attained; see Theorems 5.7, 5.10. Note that, in the absence of the function t i (u), 

the eigenvectors £(//) and ((p) are clearly equal. Moreover, in the scalar case, when the 

eigenvectors both just equal one, we still have two conditions because the function t i  (it) 

is still present and there is asymmetry between non-increasing and non-decreasing initial 

data.

The rest of our work is organized as follows. In Chapter 6, we compare between two 

different concepts of linear value. The linear value cun (&un) is defined as the minimum 

(maximum) of the values of c for which there exists a stable (unstable) monotone eigen­

value A for the matrix M ( A, c) which is presented in [38] and [12], and is defined by

M( A, c) := A2A +  A (cl -£ > ) +  £ , (1.20)

where A  is the positive-diagonal matrix of diffusion coefficients diag ( di , cf o) ,  D is the 

diagonal matrix of convection terms diag (/^(O),..., /^(O)), and B  = f  (0). On the other 

hand, the linear value c (8) is obtained from the linearization operator M  at 0 of the time 

one map Q, which is defined in (5.37), ((5.40)) respectively by

M>0 ( p, J £>0 { p J

where 'ji(p) (71(A)) is principal eigenvalue of the matrix C^ (C/t) defined in (5.33) 

((5.39)). Note that the right linear value c is the same as c in [42]. We focus in Chap-
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t
I
| ter 6 mainly on the case when the Frobenius form of /  (0) contains only one block and

| for simplicity, we suppose that /  (0) E the set of matrices with strictly positive
1

off-diagonal entries, and in Lemma 6.3, we prove that cun (cun) equals c (c) respectively|
| when /  has this form. Note that in the absence of a convection term, the reason that

| c = —c is that (A2 A  +  A cl  + B )q  = 0 if and only if ((—X)2A  +  (—A)(—c)I + B )q  = 0,

| where q is the eigenvector for the matrix M (A, c) without the convection term D.

In addition, in Section 6.2, we discuss the case when /  (0) contains more than one irre­

ducible block. The proof of [38, Lemma 2.4, p. 136] shows that for such / ,  a necessary 

condition for the existence of a travelling wave converging to 0 at oo (—oo) is the existence 

I of a stable (unstable) monotone eigenvalue corresponding to a non-negative eigenvector

i X , but not necessarily a strictly positive eigenvector X .  Hence when there is more than
I
j one block in /  (0), we discuss two possible cases for the eigenvector, a non-negative eigen­

vector or a strictly positive eigenvector. In Lemma 6.7 we generalize parts (1), (2), (4)

■ and (5) of Lemma 6.2, only in the case when we keep the requirement that X  > 0,

whereas when X > 0, 1 ^ 0, under certain additional conditions, we generalize the first 

; part of Lemma 6.2 only. Moreover, in Proposition 6.1, we have a partial generalization

of part (3) in Lemma 6.2 and we present an example, Example 6.1, that fully analyzes 

' eigenvalues and eigenvectors in the case when M(A, c) E K2x2 in order to show the reason 

for the partial generalization of part (3) of Lemma 6.2. This example illustrates that 

for sufficiently large c, we do indeed have at least one stable monotone eigenvalue with 

a strictly positive eigenvector (part (2) in Lemma 6.7), but also shows that if we have 

a stable monotone eigenvalue A with a strictly positive eigenvector for some value of c, 

then as c increases, this particular stable monotone eigenvalue A will necessarily persist 

under small perturbation. Further, we give an example in the case when M(A, c) E M3x3, 

Example 6.2, to show that it is possible that for some values of c, there exists a sta­

ble monotone eigenvalue with a strictly positive eigenvector, but for larger values of c, 

there does not exist such a stable monotone eigenvalue with a strictly positive eigenvector. 

This example illustrates that the generalization of part (3) in Lemma 6.2 must be partial, 

and thus we can not fully generalize Lemma 6.2 in the case of M(A, c) has multiple blocks.
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Finally, Chapter 7 deals with examples for the PDE systems. Firstly we begin with a 

PDE equation where /  : R —» R, or a PDE system where /  : R2 —>■ K2 and f ' ( 0) G R2x2 

has two irreducible blocks. For certain functions / ,  examples illustrate that we can find 

functions h so that both the right and left combined conditions (1.18) and (1.19) are 

satisfied, which implies that a single equation and a system of two equations are each 

both right and left linearly determinate. We also present examples of a system of two 

equations under some conditions on the parameters and convection terms that guarantee 

the system has a right (left) single speed, meaning that the slowest spreading speed equals 

the fastest spreading speed. Secondly, we present examples of a system of two equations 

in the case when f  (0) is one irreducible block. We give an example of a system that is 

left linearly determinate both in the presence and the absence of convection terms. On 

the other hand, we give an example that shows that under a different condition on the 

convection term, the system will not be left linearly determinate. Note that when there 

is one irreducible block in /  (0), it is not easy to calculate explicitly the linear value in 

spite of the fact it comes from the algebraic problem, but we succeed to estimate it. One 

of the tools used in deriving our examples is the comparison between one of the equations 

of the original system and a Fisher-type equation with convection term, of the form

ut = duxx — h (u)ux +  u (lj — u), (1-21)

where uj > 0. Such Fisher type equations are obtained either from the first or/and the 

second equation of the original system.

In the Appendix, we prove the Continuous Dependence Theorem 5.4. This result is needed 

to allow us to show that a variation of Hypothesis q5 in Hypotheses 3.1 is satisfied by the 

operator Qt[v] that is defined in (1.16) in the case when we restrict the initial condition 

uo of the recursion un+1 =  Q[un] to belong to B U C 1̂ ,  R k). This modified hypothesis 

says that for a given sequence {un}neN C D B buci(0, R) and v G i/jp D B buci(0, R) 

such that {vn} converges to v uniformly on every bounded set, Qt[vn] converges to Qt[v] 

uniformly on every bounded set.
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Chapter 2

The minimal travelling wave speed  

and linear determ inacy for a 

reaction-diffusion-convection  

equation

This chapter deals with a reaction-diffusion-convection equation (2.2) with a monostable 

reaction term f (u)  in which 0 is an unstable equilibrium, (3 > 0 is a stable equilibrium, and 

there are no equilibria of /  between 0 and (3. Hadeler and Rothe [20] gave a formula for the 

minimal travelling wave speed Co of the reaction-diffusion-convection equation (2.2) when 

t i (u) = 0, and we present a generalization of this formula Co to the reaction-diffusion- 

convection equation (2.2). This minimal speed Co is bounded below by a critical parameter 

c e l ,  which we refer to as the linear value that is obtained from the linearization of 

the travelling-wave equation for (2.2) about the unstable equilibria 0 when we have a 

non-increasing travelling-wave solution which converges to 0 at +oo. Further, a sufficient 

condition is presented to guarantee that the minimal wave speed cq equals the linear value 

c which is also a generalization of the classical Hadeler-Rothe condition [20, Corollary 9]

f (u)  < u f ' ( 0) for all u G (0, 1), (2.1)
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that applies when t i (u) =  0, to now involve both the functions /  and h. On the other 

hand, a sufficient condition for a strict inequality between cq and c for the equation (2.2) is

given in Proposition 2.3 below. In this chapter, we restrict our attention to non-increasing 

travelling waves; analogues results hold for non-decreasing-travelling waves. Note that it 

will be shown later, in subsection 5.3.2, that the minimal speed of such non-increasing 

waves corresponds to the right slowest spreading speed of the reaction-diffusion-convection 

equation (system).

2.1 A  form ula o f th e  m inim al travelling wave speed

where u : R x [0, oo) —»■ R. The functions h and /  satisfy the following hypotheses:

A travelling wave is a solution u of (2.2) such that u(x,t)  = w(x — ct), where w is here 

taken to be a non-increasing function such that

and the speed c E 1  is a constant. Clearly w and c satisfy the ordinary differential 

equation

Consider a reaction-diffusion-convection equation

ut +  h'(u)ux = uxx +  f (u )  i E K ,  t e  (0, oo), (2 .2 )

Ei. f  € C %  1] and h € C2[0,1],

E 2: m = / ( I )  =  0, f (u )  > 0 for u € (0, 1) . 

E3: / '(0 )  > 0, / ( l )  < 0.

w(—oo) =  1, w(oo) =  0 0 < w < 1, (2.3)

w" =  cw — h' (w)w' +  f(w). (2.4)

The following preliminary lemma shows that w : R -» R satisfying (2.3) and (2.4) must 

have u/(+oo) =  w'(-oo) = 0. To prove this, we use Landau’s inequality [22, Theorem 

5.3.1.] which states that if w, w and w" are uniformly bounded on an unbounded interval
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where WyŴ  = IMILoo(/iMjt) =  sup{|y(x)| : x  G 1} when either I  = R or I  =  [a,oo), (—00, a] 

for some a. Note that this inequality holds only when I  is the whole line or a half line 

but not when I  is a bounded interval. A counter example for this is that, for I  = [a,b] 

such that a < b and a, b E M, if we have u(x)  =  x  then u(x)  =  1, whereas u" (x) = 0. 

On the whole line R, however there is no M  > 0 such that \x\ < M  for all x  G R, so 

Landau’s inequality does not apply for this choice of u.

L em m a 2.1. I f  w satisfies the equations (2.3) and (2.4), then

u/(+oo) =  w (—00) =  0.

Proof We first show that |u/(f)l uniformly bounded on R. If f  <  0, then

/
0 n0 p -.

w'(s)ds — ~ J  (c ~ h ' ( w (s ))) w {s)ds,

since f (w(s))  >  0, so f(w(s)) > 0, and hence

u/(0) — w'(£) < —h(w(£)) +  cw(£) +  h(w(0)) — cw(0). (2.5)

Since the right-hand side of (2.5) is bounded independently of £ and w'(£) < 0, it follows 

that |u/(£)| is uniformly bounded on (—00, 0).

Now suppose, for contradiction, that there is a sequence £n —» 00 with |u/(£n)| 0 0  and

|w(fn)l  = sup |u /(f)|. Define yn(f) =  • Then yn satisfies
£<£n ^n(sn)

" 1 (  u' ( I t  1 C \NA ' 1 f  f,n)) n (o £.\Vn +  ( c -  h  (™n(£ +  £n)) ) 2/„ +  --------T 7 ^ -----  =  0, (2.6)
V 7 wn\^n)

and sup|?/n(£)| —> 0 as n  —> oo, 1 =  |j/^(0)| =  sup |^(£ )|, so by (2.6) we get that there 
£<o £<o

exists C > 0 such that

sup |2/n(£)l <  C  for all n  G N.
£<o
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| But Landau’s inequality implies that
i!

! ( s u p |^ (5 ) |)  <  4 (sup|?/"(£)|) (sup |j/„(£)|) ,
\ \ f < 0  /  \ 5 < o  /  \ £ < 0  /
I

I and hence 1 <  4C I sup|yn(£)| ) -> 0 as n -» oo, which is a contradiction. So |u /(f) |
j U<o /

is uniformly bounded on M. It then follows from equation (2.4), that |w (£)| is also

uniformly bounded on R.

Now we re-apply Landau’s inequality in the case when I  = (—oo, — n\. Then

I IIl ° ° ( ( - o o - 7 i ]) —  “  H I l ° ° ( ( - oo Hl ° ° ( ( —o o , —n ] )  ’
I
f
| which, since _n]) < M  and 4||1 -  u;||LOO((_00 _n]) ->• 0 as n —>> oo yields that
j

j _n]) —> 0 as n —)■ oo, and hence w (—oo) =  0.

I Moreover, in the case of I  = [n, oo), yields that ||u;|| =  sup|u;(x)| —» 0 as n —> oo so we
? x>n
j also get that ||u/||x,oo([noo)) —>■ 0 as n -» oo which means that w '(+oo) =  0. Thus the
\
j lemma is proved. □
j
t'
I It is shown in Hadeler and Rothe [20] that when h =  0, a travelling wave satisfying (2.3)

\ exists for each c > Co, with
f

Co = inf sup < p (w) +  z r >
A 0<^<1 t p ( w ) J

where the set of functions A is defined by

A := jp  : [0,1] —> [0, oo) : p is continuously differentiable, p(0) — 0, p (0) > 0, (2.7)

and p(w) > 0 for w E (0,1)} .

The following proposition characterizes the minimal speed Co, and its proof is similar to 

that in [20, Theorem 8]. Gilding and Kersner [19, Theorem 8.2] also discuss this extension 

of [20] and it additionally follows from the special case of [13, Lemmas 2.1, 2.2] when

there is only one equation using the fact that one can write w =  —p{w) for a function

p E  A whenever w is a solution of (2.2) and satisfies (2.3).
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| Proposition 2.1. There exists a decreasing travelling-wave solution of (2.2) that satisfies
t

j properties (2.3) for all speeds c > Cq, where Co is characterized by
fI

| Cq = inf sup i p  (w) +  t i(w)  +  ,
peA o<u><i L p(w) J

and A zs defined in (2.7).

Proof If such a wave solution u(x,t )  = w(x — ct) exists for the reaction-diffusion- 

convection equation (2.2) , then w solves the ordinary differential equation (2.2) with 

boundary conditions (2.3). Applying the substitution w 1 — w, we have
I
j
| w = v = : M ( w , v ) ,  (2.8)
Iif
j v = —cv +  fi {1 — w)v +  / ( I  — w) =: N(w,  v), (2.9)
[j
j where M, Af : R2 —> R are continuously differentiable functions. Suppose a function

i 0 =  (0 i, O2 ) is such that 01} 02 : M ;► M satisfy the following properties
[
[

I 1. 0 < 0i (t) < 1, 0 < 02(t), 0; =  02
I
j
I 2. 0i —» 1, 02 —>• 0 for t —»• + 00, 6 \ —>■ 0, 02 —>■ 0  > 0 for t —>■ —oo

f
i 3. |0i| +  |021 7̂  0, 10j| -I- |021 —> 0 for |£| —>• 00, —00 < lim -£ < 0.
i t->OO t'l
! 1

' and

I M(0!, 02)02 -  Af(01} 02)0i > o (2.10)

Af(0, u) > 0 for 0 < v < 0, N(w,  0) > 0 for 0 < w < 1.

With M  and N  given by (2.8), (2.9), condition (2.10) becomes

02̂ 2 “  [ ~ c @2 + A (1 — 01 )02 + /( I  — 0l)]01 ^  0* (2-11)

Since 0[ =  02 > 0 and 0i is a strictly increasing function, we can represent the function
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6  = {6 1 , 0 2 ) as 6 2  =: p{0\), then from Properties 2 and 3 respectively, p satisfies

It follows from the definition of p , that 0'2 = p {6 1 )6  ̂ = p {6 1 ) 6 2  = p' {6 \)p{6 \). Then 

condition (2.11) becomes

p{6 i)p{6 i)p {6 1) +  cp{6 i)p{6 i) -  h’{ 1 -  6 i)p(6 i)p(6 i) -  / ( I  -  6>i)p(6»i) >  0.

Since 6 2 = p{6 \) > 0, this implies

cp{6 \) > — p{6 \)p {6 \) + h '{1 — 0 i)p{6 i) +  / ( l  — 6 1 ) for all i € R

which is equivalent to,

Since p satisfies (2.12) and p{w) > 0 for w G (0,1), then the function p{w) := p{ 1 — w) 

belongs to the set A defined in (2.7). Then (2.10) is satisfied if

p(l) =  0, p (1) < 0. (2 .12)

cp(w) > —p{w)p{w) +  h' {1 — w)p{w) +  / ( I  — w)

c > —p {w) +  h (1 — w) +

and hence by [20, Corollary 6] we get

Co =  inf sup
PeA 0<i/;<l

(2.13)

□
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2.2 Sufficient conditions for linear determ inacy

The variational formula (2.13) clearly yields upper bounds for Co using specific choices of 

test functions p G A. In particular, if we define

L =  SUp /  \   ̂ J — gUp
0<to<l t ^  J 0<w<l f

then as in the proof of [20, corollary 9], and noted also by Malaguti and Marcelli [31], 

we can obtain estimates for the numerical value of Co by taking a particular family of 

functions pk G A, where A is defined in (2.7) and pk is defined by pk(w) := kw, k > 0. 

The minimum of the expression

sup { pk(w) + h \w )  + , (2.14)
CXuKl [  P k \ W )  J

with respect to k , yields that 1 — (p )T  =  0 if and only if

k 2 — L
k 2

=  0, which implies that k = y/Z.  (2.15)

Thus the minimum of (2.14) over k > 0 is attained at k = y/L, and (2.14) is thus bounded

above by y/L +  — +  J  =  2y/L +  J. By Proposition 2.1 we thus obtain that 
y/L

c0 < 2  y/L + J. (2.16)

Moreover, the value of the minimal speed Co is bounded below by a critical parameter 

c G M known as the linear value, see [16, Theorem 3.7]1. This linear value can be defined 

by the property that the non-linear travelling-wave problem (2.4) can be written as a 

first-order system of 2 equations,

—cv + h'(w)v — f(w)  \  I N(v,w)

v I \  M(v ,w)

1Note that, in fact c  =  c, where c is the right linear value introduced in (4.10) in Chapter 4, which is 
a lower bound for the right slowest spreading speed c, but for clarity, we keep the simple notation c in 
Chapter 2.
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whose linearization about the unstable equilibrium 0 can be written as

v

w

-(c-fc '(O )) - / ' ( 0 )  

I  0
(2.17)

w

, - ( c - t i ( 0)) - / ' ( 0) , 
and the definition of c is that the matrix I | has a real negative

I  0
eigenvalue A if and only if c > c. Such an eigenvalue A satisfies the quadratic equation 

A2 +  A(c — h' (0)) +  /  (0) =  0 which is obtained from

■c +  h (0) — A —/  (0) 

1 -A
=  0 .

Now such A exist if c — K{0) >  2y j / '(0 ), and hence since c is the smallest speed for which 

such an eigenvalue exists, we have

c =  2v // ' ( 0) +  h’(0) < c0, (2.18)

and thus

c ^  Cq ^  2 y/~L -f- J.

[ This estimate clearly yields a set of sufficient conditions, which generalize the sufficient

| condition (2.1) that is presented in [20, Corollary 9] to the case of (2.2) with h ^  0, that
ir

1 guarantee that the linear value c equals the minimal wave speed Cq, namely if

2 V Z +  J <  2 / n o )  +  fc'(0), (2.19)

then cq = c. In particular, c =  Cq if

sup — f ' ( o) and sup h'(w) = h' (0).
0<u;<l U7 0<w<l

(2 .20)

The following proposition gives an alternative sufficient condition (2.21) that ensures 

c = Co. Note that if (2.20) holds then (2.21) is satisfied and we will show in Example 2.2 

that (2.21) can hold even when (2.19) is violated.
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Proposition 2.2. A sufficient condition to guarantee that the linear value c — 2 \J f ' (0) +  

h '(0) for problem (2.2) is equal to the minimal travelling wave speed Cq is that

h'(w) +  -  h>(°) +  V/77(0)? f ° r allw e  (0, 1). (2.21)
V /  (O)w;

Proof Define a function y : [0,1] —> R by

i V f ( 0) +  t i  (w) H J S W\ for all w G (0,1]

2 y/ f (Q )  + h'(0 ) if w =  0,

and note that (2.21) implies that y(w) < y(0) for all w G (0,1).

By Proposition 2.1, and p G A defined by p(w) := yj f '(0)w  in (2.13), and (2.21) together 

imply that

c0 < sup {y(w)} < ?/(0), (2.22)
0< ty< l

and hence Co < 2 y / f ( 0 ) +  h (0) =  c, so by (2.16), we get Co =  c. □

In particular, (2.21) holds if the condition (2.23) in the following lemma is satisfied, since
f  (w')

condition (2.23) ensures that the function u \— > h' (w) H  is non-increasing on
V7'(0)w

(0 , 1).

L em m a 2 .2 . A sufficient condition to guarantee that the linear value c = 2 ^ /  f  (0) + ti  (0) 

equals the minimal speed Co is that

h"(w)-\ 2 -  - I  ^  Ŵ  ̂ \  <  0 for allw e ( 0,1). (2.23)
y / T { o) I  w W2 j  -  V ; V ;

P ( y j \
Proof. Define y(w) := hi(w) H   — for w G (0,1), therefore

v / ' (  0)w

7 1 h"( U I  r ( w )  f ( w )y (w) = h (w) +
V f '(°)w V f ( ° ) w2  j

Since (2.23) implies that h" (w) +   ̂ ^ --------------------- \  <  0, y (w) < 0 for all w G
v ' v y / m w *  f J -
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(0,1), and hence we obtain the condition (2.21), that is

h ' M  +  <  h ' ( o) +  v /7 (o).
V f  {Q)w

□

An alternative condition that ensures Co = c is given by Benguria, Depassier and Mendez 

in [7], namely

/  (w) (w\ >  q for all w G (0 ,1) . (2.24)
y / m

This condition is derived using a different variational characterization of Co for their equa­

tion wt +  ii(j){w)wx =  wxx +  f(w),  \x > 0, where the reaction term /  satisfies Hypotheses 

E\ — Es and with a non-increasing wave w(x — ct) joining the stable equilibrium w = 1 

to the unstable equilibrium w = 0. This characterization is that

c0 =  sup £(g),
9 € S

with
/o ( 2 y/f(w)g(w)[-g'(w)]  +  n<j>(w)g(w)\dw

f (p )  =  71 T~Tj 5
Jo g(w)dw

where S  is the set of all positive decreasing functions g(w) for which this integral exists 

and g(l) =  0. Note that our convection term h'(w) is replaced in [7] by /j,(j)(w), where (j) 

is a Cbfunction such that, for simplicity, it is assumed that 0 (0) =  0, but this restriction 

on 0(0) clearly only affects the numerical value of c, not the condition (2.24), and can be 

removed.

2.2.1 Illustrative exam ples

The following two examples compare our condition (2.21) with (2.24), (2.19) and (2.20), 

and in particular, illustrate that functions /  and h can be found which satisfy (2.24) but 

not (2.21) and, vice versa, that there exist functions which satisfy (2.21) but not (2.24).
£

E xam ple  2.1. Choose f(w)  =  w(l — w) and h(w) = (~)w2, S G ®L Then /  satisfies
z
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Hypotheses E \  — E 3 , and for this function / ,  condition (2.23) says that

1 f  /  M  f ( w )h ( w )  <  -  - - - - - -  .
y / ' (  0) 1

1 — 2w  1 — w
=  - 1

u; w

=  1 for all w G (0,1),

which holds if and only if 6  < 1. On the other hand, condition (2.24) requires that 

h"(w) < — ^  which is satisfied if S = h"(u) < 2 for all w G (0,1). Hence if
vTTo) v ; ^

<5 G (1,2), then (2.24) satisfied but (2.23) is not, and moreover, it is easy to check that 

our weaker condition (2.21) is also not satisfied for such S. □

The next example shows that functions /  and h can be found which satisfy the condition 

(2.21) but not (2.24).

E xam ple  2 .2 . Choose f (w)  = w(l  — w)(e+w),  where e > 0. Then /  satisfies Hypotheses 

Ei — E3, and for this function / ,  condition (2.23) says that

. 1 f e +  2w — 2ew — 3w2 w(l  — w)(e +  w)
h (w ) < -----

y/e \  w w*
1 f w — ew — 2 w 2

I w

=  {e — 1 +  2w} for all w G (0,1), 
v e

whereas condition (2.24) is satisfied if

h"(w) < — ^ — J _  | 2 e — 2 +  6 w} for all w G (0 ,1).
y f m  y/e

Thus to have that condition (2.23) is satisfied but (2.24) is not, we need that for some 

w G (0,1),

2e — 2 +  6 w < e — 1 +  2w if and only if  ̂ > w. (2.25)

So in particular, if we choose e =  then (2.25) holds for w G (0, |) ,  and (2.23) is then
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satisfied provided

h (w ) <  —p {e — 1 +  2w} = y/2(2w — - )  for all w G ( 0 ,1), (2.26)
y  £ 2

and (2.24) is not satisfied provided

y/2(6 w — 1) =  —p {2e — 2 +  6 w} < h (w) for some w G (0 ,1). (2.27)
v e

For instance, (2.26) and (2.27) are clearly both satisfied by taking h"(w) — y/2(2w — - ) ,  

and thus
\p2* 1

h(w) = —-w3 ------  - w 2 +  Aw  +  B A, B  G M.
3 2y2

We conclude that the chosen functions /  and h satisfy condition (2.21) but not condition 

(2.24). Note that for this function h(u), neither the Benguria-Depassier-Mendez nor 

the Malaguti-Marcelli alternative conditions (2.24) and (2.19) are satisfied. Moreover, if 

e < 1, the function /  does not satisfy the classical Hadeler-Rothe condition (2.1), while 

condition (2.23) does hold for a pair of functions /  and h if h satisfies (2.26). □

The next example illustrates that there exist functions /  and h such that the sufficient 

condition for linearly determinate (2.21) is not satisfied, but the minimal travelling speed 

is linear determinacy.

i E xam ple 2.3. Consider the equation
i|
| ut = uxx -  /3uux +  7it(l -  it)(l +  27u), (2.28)
!
\
i

where the functions /  and h satisfy Hypotheses E\ — £ 3 ,  f$ =  2(y /7 — 7 ), and 0 < 7 <  1.

| Since the linear value of (2.28) is c =  2^/7 , the left-hand inequality in (2.22) becomes

2 ^ / y < c 0 < sup y(u),
0 < u < l

where

y ( u ) '■= v7 '(0) + h'(u) + = 2\/7 + u(P + 27y f i  -  7) -  27u2.
W f  (°)
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For a function wexpiicit(f) := (l +  exp(y7£)) \  which is a solution of (2.28), the travelling 

wave speed is cexpuCit = 2^/7 . We observe that because 7 G (0,1), sup y(w) > 2 ^^ ,
0 < u < l

which implies that

c = 2-^/7 <  Co < sup 2/(14) and sup ?/(u) > 2.̂ /7 .
0<u<l 0<«<1

Thus the minimal travelling wave speed Cq is linearly determinate. □

2.3 A  sufficient condition  for not linear determ inacy

In this section we present a proposition that gives a sufficient condition for strict inequality 

between Co and c. This result is a modification of a result of Berestycki and Nirenberg 

[8, Remark 10.2] to include the extra term h' (w)w . It shows that when the functions /  

and h satisfy Hypotheses E\ — E 3 and condition (2.21) is not satisfied, then the minimal 

speed and the linear value do not necessarily coincide.

Proposition 2.3. Consider the equation

w + cw — h (w)w +  f (w )  =  0 (2.29)

w(—00) =  1, ic(+oo) =  0 for all w G (0,1)

where the functions f  and h satisfy Hypotheses E\ — E% and w is a non-increasing trav­

elling wave solution. Suppose in addition that the function h satisfies

h(w) > 0 for all w G (0,1) and h( 1) > h(0). (2.30)

Then a sufficient condition to have cq> c. is that

-h(0 )  + J ( f c ( l ))2 +  2 j (  f{w)dw > 2 7 7 ( 0 )  + h'(0). (2.31)

Proof To show that c > 0 for functions /  and h that satisfy E\ — E 3 and (2.30), we
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integrate equation (2.29) to get

p+oo p+oo p+oo p+oo
—c j  w d £ =  j  w"d£ — j  h'(w)wd£ + /  f (w )d£,

J —oo-oo —oo J —oo

which implies that

'*w(+oo) /*+oo
—c[u;(+oo) — w(—oo)] - w (+ 00) — w (—00) — h (w)dw +  I f(w)d£.

J w ( —00) J — OO

Then by Lemma 2.1, we have ti/(+oo) =  w {—00) — 0, and hence

/*0 /* + o o  p i  p + 00

c — — /  h (w)dw +  /  f(w)d£>= /  h/(ic)drc+ / f(w)d£)
J 1 J —00 J  0 J —00

/ + 0 0

/M d £ .
•00I

j So by (2.30) and Hypothesis E2, it follows that c > 0.

if
j Now we want to obtain an estimate of the term f*°° c(w'(£))2 d£ by firstly, multiplying
! , °°
[ equation (2.29) by rc and integrating the obtained equation, and secondly, multiplying
t
i

i (2.29) by 1 — w and integrating the obtained equation. After that we will compare be-
i  + o o  t
( tween the two estimates of f_™c(w'(t;))2dt; that we have obtained.
j

! Multiplying equation (2.29) by w and integrating over R yields

/ + 0 0  p + 00  /•+00 p + 00

w w dt; +  / c(w (t;))2 d{; — /  h (w)(w )2d£ +  /  f (w )w d t ;=  0. (2.32)
■00 J  — 00  J —00 « /— 00

By evaluating some terms in equation (2.32) separately we have the following:

1. The first term in equation (2.32) with applying Lemma 2.1 yields

/+00 1 p+00 j  1
w " w d t = - ]  ^ ( w y d t = - [ { w \ + ™ ) Y - { w \ - OO))

=  0 .
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2. The third term in (2.32) is

/ +oo p+oo
h (w)(w (t;))2 dt; — ~ h (w)w'w'dt; 

■oo J —oo

h{w).w
^ = + 0 0  r+°°

+  I w
£= — 00 J — oo /+OO

w h(w)d£
■00

Since w" = —cw +  t i  (w)w' — /(ic),

/+00
w h(w)d£>

-00
p+oo p+oo p+oo

' h(w)w'dlc +  /  h (w)w h(w)d£ — / f(w)h(w)d£
—00 J —00 J — 00

f  ̂ + 0  ( ^  ■«■- / r

=  — c

=  — c

/»1 1 /*+oo
=  c /  /i(w)efa; +  -  [(h(0))2 -  (h (l))2] -  /  f(w)h(w)d£.

JO z  J - 0 0

Thus we have

* + 0 0 /*1 1 /*+oo
h'(u;)(u/(£))2d£ = c h(w)dw +  -  [h(0)2 -  h ( l)2] -  /  f(w)h(w)d£.

Jo Z J - 00

3. The fourth term in (2.32) gives us

/ +00 p w (+ 00) /*0 /*1
f (w )w  d£= f{w)dw — I f(w)dw = — I f(w)dw.

-00 J  w (—00) J 1 J  0

Thus the three integrations together give,

r ° ,  * z-1. ,  ^  m o)2 - / » ( i )2c I  (w (£)) d£ + c h(w)dw H-------------------
-OO r0

/+00 /»1
f(w)h(w)d£ -  /  f (w)dw  =  0. (2.33)

-00 «/o

Then by (2.30) and Hypothesis E2, we obtain that f(w)h(w)d£ > 0. Note that we 

need to estimate this term because we do not know the explicit form of the function w 

and as a result of this we cannot evaluate this term. We estimate it since the integration



is with respect to d£ not dw.  This give

C / +° V ( £ ) ) 2̂  +  C [ l h(w)dw >  -  ^ 1- +  f  f { w ) d w  =  0. (2.34)
J -oo Jo 2 J  0

We now multiply equation (2.29) by 1 — w  to get

(1 — w)  +  c w \ l  — w) — t i  (w)w' (1 — w)  +  f ( w ) (  1 — w) = 0, (2.35)w

and then integrate each term separately over

1. The first term in (2.35) gives us

/ H“00 i- -| -j-(X)
(1 - w ) w " d £ =  w ( £ ) ( 1  -  w(£))

■oo
»+oo
v2,

/+oo 

■oo

/ -(-OO 

•oo
■ d f .

2. The second term in (2.35) is

=  — c
/ +oo rw{- i-ooj pv

w (1 — w)d£ = c  (1 — w)dw = c j  (1 — w)dw
-oo J w ( —oo) J 1

3. The third term in (2.35) is

/ +oo p+oo p+oo
h (w)w (1 — w)d^ = — h (w)w d£ +  / h (ly)iy wdt; 

-oo J  —oo J —oo

/
0 /*0

h, (w)dw + h (w)wdw

=  [ f c H lo  +  +  Jo h(w)d
- [/i(tu)]J — [h(w)w]l +  f  h(w)dw

Jo

- —h(0) +  I h{w)dw.
Jo

4. Since the function /  satisfies Hypothesis E 2, integration of the last term gives us the
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following estimate
»+oo/ -t-oo

f (w)(  1 — w)d£ > 0. (2.36)
-oo

Thus

/ +oo p i  r+OO

(w(€))2 d£+ h(w)dw = -  + h(0) -  /  /(iu )(l -  u;)df. (2.37)
■oo J 0 ^ J —oo

So by (2.36), equation (2.37) gives
/ +oo p i

{w(£>))2 d£+  /  h(w)d
oo «/0

and since c > 0, this implies

/+°° r1 c2
(iy/( 0 ) 2̂  +  c /  h(w)dw < — +  ch(0). (2.38)

- o o  J o  2

Then comparing (2.38) with (2.34) yields that

< « . )

In order to understand what inequality (2.39) tells us about c, we study the roots of

s2 +  2sh(0) -  (h (l)2 -  h(0)2) - 2  f  f(w)dw = 0, (2.40)
J o

which is a quadratic equation in s, that has solutions

s =  —h{0) =F \ j h { l )2 +  2 J  f(w)dw.

Using Hypothesis E 2 , we obtain that (2.40) has a positive root which is

■h(0) +  ^Jh(l )2 +  2 J  f (w )dw ,

Thus since c > 0, (2.39) implies that c > s+, and by definition of the minimum value of
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Cq, it follows that

Co > —h(fy + ^h(l)2 + 2 J  f(w)dw.

Since the linear value for equation (2.29) is c = 2 a // '(0 )  +  t i  (0), a sufficient condition to 

have Co > c, is thus that

-h{0)  + J ( h ( l ) y  + 2 ^  f(w)dw  > 2 v/ / 7(0) +  fc'(0). (2.41)

□

Note that condition (2.41) reduces to the condition of Berestycki and Nirenberg in [8] 

when h =  0 namely, that
I

j

f(w)dw  > 2y j f ' ( 0 ) if and only if J  f(w)dw  > 2/  (0). (2.42)

| The following example illustrates the fact that it is possible for a given function /  to
|
j satisfy the sufficient condition (2.42) for Co =  c when h =  0, but one can find a function

| h so (2.41) will be sufficient to ensure that Co > c when we add the term t i  (w)w'.

E xam ple  2.4. Choose f ( u ) =  u( 1 — u ) and h(u) = 8 u2, 8  > 0, so (2.41) says that
I | ,—

y  — -—  > 2, which is satisfied for 6 > y  y .  Hence (2.41) holds for such 8 . But when

» ,  0, (2.12) * - * ,  M .  > 2, »  t *  -  I .  >«*, /  - « * .

; the condition

\ f ( u) < /  (0)u for all u G (0,1), (2.43)

which ensures that Cq =  c if h =  0. Note that (2.43) implies that

■2?1 /'(0)f ( u ) d u <  f(Q) f  udu = f ( 0) 
Jo

and hence

£  f  (u)du < J j p - .  (2.44)

Clearly no function /  can satisfy both (2.44) and (2.42).
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Chapter 3

A discrete-tim e recursion system

This chapter is mainly background material, that describes and slightly extends the work 

| in [29], [42], [26], [39], [26], [43], and [40]. We consider a discrete-time recursion system

I of the form

! un+1 =  Q[un\ n  G N, (3.1)
I
| with an initial condition uq G B U C(R, Rfc) (the space of functions p : R —>■ R k such that p

j is bounded and uniformly continuous on R), and where un{-) = ((un)i(-) ,..., (un)*,(•)) is a

| vector-valued function such that un G BUC(R,  Mfc) which represents the population den-

I sities at time n of k interacting species or age classes. The operator Q : BUC(M, Rfc) —►
i
| BUC(M, M.k) in (3.1) is assumed to be an order-preserving operator, which means that
!
I if we have u < v G J5J7C(R, Mfc), in the sense that the vectors u(x),v(x)  G satisfy

! u(x) <  v(x) for each x  G R, then this implies that Q[u](x) <  Q[v](x) for each i g M .

The linear operator M  is the linearization of Q at 0 if for any e > 0 there is a <5 > 0 such

that ||u|| <  8 implies that ||Q[u\ — M[w]|| < e||u|| where M[u] = lim [(l/ p)Q[pu]\. As
p\ o

described in [42], this linear operator has the representation,

k roo
(M[u](x))i = ^ 2  ui { x - y ) m ij{y,dy), (3.2)

j=i J ~™

where is a bounded non-negative measure which allows us to introduce the matrix



which can characterized by

B^a = M[ae for every constant a  £ Mfc. (3.4)

We assume that the entries of B^ are finite for all / i .  Since the m ^  are non-negative, 

the entries of the matrix B M are non-negative, and an entry of B M is 0 if and only if 

rriij is identically zero, which means that either all the B M are irreducible or they are all 

reducible. The matrix B M is said to be reducible if it can be put into lower block triangular 

form by re-ordering the coordinates, whereas if this can not be done, the matrix is said to 

be irreducible. If a reducible matrix is in lower block triangular form and all the diagonal 

blocks are irreducible, the matrix is said to be in Frobenius form. The statement of 

Perron - Frobenius theorem is the following.

Theorem  3.1. (Perron-Frobenius theorem[35]) Any non-zero irreducible matrix with 

non-negative entries has a unique positive eigenvalue, called the principal eigenvalue, 

which has a corresponding strictly positive principal eigenvector. In addition, the abso­

lute values of all the other eigenvalues are less than or equal the principal eigenvalue.

A useful corollary about an irreducible matrix with non-negative off-diagonal entries is 

the following.

Corollary 3.1. Given any irreducible matrix with off-diagonal entries non-negative, there 

exists a unique real eigenvalue, called the principal eigenvalue with a corresponding strictly 

positive principal eigenvector. In addition, the real parts of all other eigenvalues are 

strictly less than the principal eigenvalue.

Proof. Let M  be an irreducible matrix with non-negative off-diagonal entries. Then there 

exists a  > 0 such that M  +  a l  is a non-zero irreducible matrix with non-negative entries. 

By Theorem 3.1, there exists a positive eigenvalue A with positive eigenvector q such that 

(M +  al)q  = Aq, and the absolute values of all other eigenvalues of M  + oil are less 

than or equal A. Then Mq = (A — a)q , so M  has a real eigenvalue A — a  with positive
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eigenvector q. Moreover, if /x is an eigenvalue of M  +  a l  other than A, then |/i| < A, 

so if v is an eigenvalue of the matrix M  other than A — a, then \v +  a\ < A and hence 

Re(v) < A — a. □

3.1 H yp oth eses o f d iscrete-tim e recursion system

We start with some notation. Here 0 denotes the constant vector in which all components 

are 0. If (3 > 0 such that [3 G Rfc, we define the set of functions,

ipp = {u E BUC(R,M.k) : 0 < u(x) < (3 for all x  G R} . (3.5)

If Q[w] = w, the function w(-) is said to be an equilibrium of Q , so that if ui = w in

the recursion (3.1) for some I G N, then un = w for all n > I. Note that the operator 

Q satisfies the translation invariance property (1.7), but it is not assumed to satisfy a 

reflection invariance property (1.8) as was assumed in [42].

The reason for removing the reflection invariance assumption is due to the fact that we 

will consider applications to partial differential equation systems that have convection 

terms in Chapter 5, and the presence of these convection terms, which involve first-order 

derivatives, means that we do not have a symmetry between x  and —x. In fact when Q 

is the time t map of the recursion (3.1), then property (1.8) does not hold in the presence 

of a convection term.

We make the following assumptions about the operator Q in the recursion (3.1):

0.1 - Q[0] =  0, there is a constant (3 > 0 such that Q[(3\ = (3, and there is no constant 

vector v  G Kfc, v ^  (3 such that Q[v] = v  where 0 < v < (3.

q2. The operator Q is order-preserving on non-negative functions, in the sense that if 

u > v > 0  are any two functions in then Q[u] > Q[v\ > 0.

q5. Q satisfies the translation-invariance property (1.7).

g4. If (un)nGN such that vn G ^  converges to v uniformly on each bounded subset of 

R, then Q[vn] converges to Q[v] uniformly on each bounded subset of R.
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| q5. Given a sequence (un)ne^ such that vn G i/jp, there exists a subsequence vni such

that Q[vnJ converges uniformly on every bounded subset of R.

q§. a) The matrix B M in (3.3) has finite entries for all /x and is in Frobenius form, with 

Aa(fi) the principal eigenvalue of the crth diagonal block from the top of B^.

b) 1 < Ai(0), and Ai(0) > Aa(0) for every a > 1.

c) The matrix B q has at least one nonzero entry to the left of each of its diagonal 

blocks other than the uppermost one.

q7. There exists a family of bounded linear order-preserving operators on Revalued 

functions M ^  which satisfies the following properties:

(i) For every sufficiently large k > 0 and v : R —» Rfc, there is a constant vector 

uj > 0 such that

Q[v\ > M ^[v]  when 0 < v < lo.

(ii) For every positive /x the matrices B ^  that can be characterized by
i

B ^ a  := M {K)[exp(-fix)a ] \ x = 0  

converge to B^ as k  —» oo.

3.2 Slow est spreading speed  for d iscrete-tim e recur­

sion sy stem  ( 3 . 1 )

! In this section we firstly present some results that will be useful for the definition of the 

right (left) slowest spreading speed. The following proposition shows that if the initial 

, condition xx0 for the recursion (3.1) lies between 0 and (3, so Q[uq\ also does.

j Proposition 3.1. An operator Q that satisfies Hypotheses q\ — q7 maps ifjp into itself.
\I
| Proof. Let u0 G ^  since Q is an order-preserving operator, 0 and j3 are equilibria and
(

the initial condition uq lies between 0 and j3, thus 0 < Q[uq] < f3, from which it follows



Note that it follows from Hypothesis q6 (a), (c) we can say there is an eigenvector £(0) > 0  

of Bo corresponding to the principal eigenvalue Ai(0), #oC(0) — Ai(0)^(0). We prove the 

strict positivity of the eigenvector later, in the simple case when we have only two blocks 

of f ' ( 0) in Chapter 5, and in the general case when we have multiple blocks in Chapter 

6. The following lemma shows that for any positive constant vector u q , the constants un 

defined in (3.1) converge to (3. In biological terms, this means that (3 is a globally stable 

coexistence equilibrium. A  coexistence equilibrium is one in which all of the components 

are strictly positive. A globally stable equilibrium means that, for some set of initial 

conditions are not necessarily that close to the equilibrium, the solution un tends to this 

equilibrium as n —> oo.

L em m a 3.1. Suppose that u0 G [0,/?], u0 > 0 is any constant vector, then lim un = (3n—►oo
where (wn)neN is the sequence of constant vectors obtained from the recursion (3.1). 

Proof. From (3.4) we have -BoC(O) =  M[(( 0 )], recall that M[u] = lim[(l/ p)Q[pu]\. Thenp\o

—Q[pC(0)] —  ̂ -^IC(O)] — Ai 3 as p —y 0. (3-6)
P

Then (3.6) and the fact that Ai(0) > 1 together imply that for p > 0 sufficiently small, 

we have

- Q K ( O ) ]  >  C(0). (3.7)
p

Now let a \= /of (0). Then a > 0, and (3.7) says that Q[a\ > a, so if we define a constant 

vector ao = a  and then a n by

OLn-f-1 ~  Q[^n]? (T8)

we have ai > cco, and since Q is an order-preserving operator, it follows by induction that

<an_|_i > a n for all n G N. We also have that 0 < a < /3, and since Q is order-preserving,

it follows that 0 = Q[0\ < a n < Q[/3] = (3 for all n G N and hence we get an <  (3 for all n. 

So a n is a non-decreasing sequence that is bounded above by /3. Thus 7 =  lim an exists,n-> 00
and by (3.8) we have 7 =  Q[7]. Since 0 < a < a n < 7 < /?, it follows by Hypothesis qi 

that 7 =  p.

Then given any constant vector uq G [0,/?], Uq > 0, there exists p >  0 small enough that 

both (3.7) holds and pC(0) < uo■ Then since Q[pC(0)] < Q [ uq \ ,  it follows that the sequence
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defined by un+1 =  Q[un\ must also converge to ft as n  —>• oo because a n < un < (3, and 

the lemma is proved. □

The following lemma is a crucial tool needed to define the left slowest spreading speed 

for the recursion (3.1) with a non-decreasing initial function uq = </>(•). The definition of 

this slowest spreading speed in (3.12) below is a modification of the definition presented 

in [26, (2.4)] with a non-decreasing initial function Uq = (j> instead of a non-increasing 

initial function.

L em m a 3.2 (Comparison Lemma). LetQ  : BUC(R,M.k) —> j9f/C(R, Rfc) satisfy Hypoth­

esis 52- I f  the sequences un and vn satisfy the inequalities un+1 < Q[un] and vn+i > Q[vn] 

for all n respectively, and if uq < Vq, then un < vn for all n.

Proof Suppose that vn > u n. Since we have

^n+l ^  and U n -\.\

and by Hypothesis q2 , we obtain

^n+l ^  ^  Q[^n] ^  ^n+l*

Since we also know that Uq < Vq, it follows by induction that un < vn for all n  E N. □

Now choose a continuous vector-valued function <f> £ B U C (R ,R k) with the following 

properties:

e\. 4>(x) is non-decreasing in x,

e2 - (j>(x) = 0 for all x < 0,

e 3 . 0  <  4>(+oo) <  P.

Letting ao(c; s) := </>(s), we define the sequence an(c; s) by the recursion

an+i(c; s) = max {</>(s), Q[an(c; -)](s +  c)} , (3.10)
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where the operator Q satisfies Hypotheses qi—qi- By definition, ai(c; s) > <j>(s) = ao(c; s). 

Suppose that a*;+i(c; s) > a,k(c\ s) is true for some k > 0. Then

afc+2(c; 5) =  max {<£(«), Q[ak+i(c; -)](s +  c)}

> max (</>(s), Q[ak{c; *)](s +  c)}

=  ak+i (c, s ) .

So, since a0 < ai, by induction we have an(c;s) < an+i(c;s) for all n. Moreover, since 

ao(c; s ) =  < (3, and if we assume that an(c; s) < (3 for all s is true, then

an+i(c;s) =  max {^(s), Q[an(c; -)](s +  c)} < (3

from which it follows by induction that an < an+1 < (3 for all n. Since an(c; s) is a non­

decreasing function in s for all n, the translation s i-)- s +  c applied to a non-decreasing 

function is non-decreasing in c, from which it follows that an(c; s) is also non-decreasing in 

c for all n. The fact that the vectors a(c; Too) are equilibria of Q follows using arguments 

similar to these in [29, Lemma 2.6], and Hypothesis q\ then implies that a(c; + 00) — (3.

In order to show that the function a(c; 5) does not depend on s for sufficiently positive

c, we first prove the following lemma which shows that the function a(c; s) = (3 for all 

s if (3.11) is satisfied, and then we use this lemma to obtain that a(c; s) =  /?, which

is equivalent to showing that a(c; —00) =  j3 since we already know that a(c;+oo) =  (3.
/

Note that this following result is a modification of [39, Lemma 5.3] when a is now a 

| non-decreasing function of s and c instead of a non-increasing function.

; L em m a 3.3. a(c; — 00) = J3 if and only if  there exists n G N such that

[

j an(c; 0) > 0(oo). (3-11)
I[

Proof. Suppose that a(c; —00) =  /?, then we can say that a(c; s) = f3 for all s, since we 

already know that a(c; 00) =  /3, and in particular, a(c; 0) =  /?. By Property e% and the 

fact that a n(c; 0) converges to a(c; 0) when n —> 00, there exists an n G N such that (3.11)



holds. Suppose, on the other hand, that there exists no such that

ano(c;0) > <p(oo).

Since we also know that ano, (p are non-decreasing functions, and that (f) = 0 for all s <  0 

and (f> <  0(+oo), it follows from the continuity of an and (j) that there exists (5 > 0 such 

that

ano(c; s — 8 ) > </>(s) =  ao(c; s) for all s G M.

Now suppose that ano+k(c; s — 8 ) > ak(c; s) is true for some k > 0. Then ano+k+i(c; s — 

8 ) = max {ano(c; s -  8 ), Q[ano+k(c; -)](s -  8  +  c)} and since Q[ano+fc(c; -)](s -  8  + c) =  

Q[ano+k(c] • -  8 )](s +  c) > Q[ak(c; -)](s +  c), thus

ano+fc+i(c;5 -  (5) > max{0(s),Q[afc(c;-)](s-|-c)} =  afc+i(c;.s).

So, by induction we have shown that ano+k(c; s — 8 ) >  ak(c; s) for all k G NU{0}. Letting 

A: -> oo, which then shows that a(c; 5 — £) >  a(c; 5) for all 5. But since 8  > 0, and a is

non-decreasing in s, we also know that a(c; s — 8 ) < a(c; 5). Thus

a(c; s — 8 ) = a(c; s) for all s,

and therefore a is a constant, because the only non-decreasing periodic functions are 

constant. It follows that the function a does not depend on s. Since o(c; 00) =  /?, 

a(c; s) = P for all s. □

i

To define a slowest spreading speed, we will next show that a(c; s) =  /3, or equivalently

that a(c; —00) =  ft for a sufficiently positive c. It follows from [39, Lemma 5.2] that for

n sufficiently large, an(0, 00) =  a n where ao =  4>(oo) and a n+1 =  Q[an].

| Since 0 < = (p(oo) < f3, we know that an —>■ ft as n —> 00 and so for some n

sufficiently large, we have a^(0, 00) > </>(oo). Hence for t > 0 sufficiently large and from

the monotonicity of </>, we have a^(0,t) > (f>{oo) > <p(t), and thus

an(0, t) = max { 4>{t), Q[a#i_i(0, • +  t)](Q)} = <2[an_i(0, • +  £)](0),
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!■
whereas

i

ah(t , 0 ) = max {</>(0), Q[a,n-i(t, -)](0 + 1 )} = max {0, Q[an-i(t, •)](*)} ,

by Hypothesis g3, we have a^(t, 0) =  Q[an-\(t, -+t)](0) and since an(c; s) is non-decreasing 

in c, thus

Q[an-i(t, • + 1 )](0) > Q[ah- i ( 0, • +  t)}(0) =  a„(0, t) > </>(oo).

By Lemma 3.3 we thus have a(t, —oo) =  ffi which implies that a(c; —oo) =  (3 for all c < t .  

Note The function a(c; •) clearly depends on the choice of the initial function 0, but the

! vector a(c; — oo) is independent of the initial function 0. To prove this, we define a new
|

! function (ft with the same Properties e\ — e3 for </>, then we obtain a different sequence 

an(c;-) and a different limit function a(c; •). Again, by Hypothesis gi, lim an(c;oo) =; n—>oo
! ft > < (̂oo). Then there exists A  G N and a translation r  such that a^j(c;x — r) > (j>(x) =

| ao(c; x) for all i G l .  By the definition of a in (3.10), and using the Comparison Lemma

| 3.2 with the operator Q defined by Q[v(-)](5) := Q[V(*)KS +  c)> we obtain a(c\x — r)  >

a(c]x) for all i G M .  In particular, a(c; —oo) > a(c; —oo). By exchanging the role of (f) 

and (/>, we also obtain that a(c; —oo) < a(c; —oo) and hence a(c; — oo) =  a(c; — oo), which 

means that the vector a(c; — oo) is independent of the initial function 4>.

So the left slowest spreading speed c > — oo of (3.1) can be defined as

c := inf {c : a(c; —oo) =  /3} . (3.12)

3.2.1 Characterization properties of the slowest spreading speed

The following theorem is a characterization of the left slowest spreading speed c in (3.12) 

where the initial condition 0 is a non-decreasing function. This theorem is a modification 

of Theorem 2.1 in [26] for the characterization the left slowest spreading speed c* in [26,

! 2.4] where the initial condition is a non-increasing function.

Theorem  3.2. Suppose that the initial function Uq satisfies Uo(x) =  0 for all sufficiently 

negative x, and that there are positive constants 0 < p < a < 1 such that 0 <  uq < crfi 

for all x and Uq > p{3 for all sufficiently positive x. Then there exists an index j  such
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that for any positive e, the solution un of the recursion (3.1) has the properties

lim
n—>00

SUp { u n }j. ( x )
x<n(c—e)

=  0, (3.13)

and

lim
71—► OO

sup { P  -  u n ( x ) }
x>n(c+e)

=  0 . (3.14)

That is, the j th  component spreads at a speed no less than c, and no component spreads 

at a higher speed.

Proof Since Uq — 0 for x < 0 and Uq < aft, we can choose a function <j>(x) with properties 

ei — e3 and a number 8  such that Uo(x) < (j>{x — 5).

Recall that an+i(c;s) > Q[an](s +  c), so if we define the function Vq such that vq := 

ao(c;x — S) = 6 {x — (5), and vn such that vn = an(c;x — 8  — nc), then

vn+i =  an+i(c; x - 8 - ( n +  1 )c) > Q[an](x -  8  -  nc) = Q[vn\.

So, we have un+\ = Q[un], vn+\ > Q[vn] and Uq < (p(x — 8 ) = Vo, which means that we can 

apply the Comparison Lemma 3.2 to get that un < vn, and hence un(x) < an(c;x — 8  — nc) 

for all x E R. Then sup [un(x)] < sup [an(c; x  — 8  — nc)], so since an is non-
x<n(c—e) x<n(c—e)

decreasing of x  and by letting c. = c — ^ , we have

3 3
sup [un(x)] < an(c;nc — -ne  — 8  — nc) =  an(c; —~ne — 8 ),

x<n(c— |e)

and since an is non-decreasing sequence in n, we thus obtain sup [un(x)] < a(c; — | ne—
x<n(c— |e)

(5), from which it follows that

lim [ sup u n ( x ) ]  <  lim a ( c ; — n e  — 8) =  a ( c ,  — 00). 
n-*°°*<n (C-§e) n^ °°  2

Now a(c; —00) is an equilibrium, and since c  =  c — -  <  c, a(c; —00) is an equilibrium
*

other than (3 . So by Hypothesis q i ,  a(c; —00) has at least one zero component, say the
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j - t h  com ponent is zero, and therefore

lim [ sup {un} ■ (x)] =  0.
n^ ° °  x <n (c—e) J

j

To derive the second property (3.14), assume firstly that Q has the additional properties

(1) If a  is a constant vector that satisfies 0 < a < (3, then Q[a\ < /3.

(2) If u(x) vanishes for x  <  77, then there is a number 7 such that

Q[u\(x) = 0 for x < 77 +  7 .

Choose a function that satisfies Properties e\ — e3 with (j>(x) < uq(x ) and let c > c.

By the definition of the left slowest spreading speed c in (3.12), an(c; 0) increases to /3 as

n —»■ 00. Thus there exists an index N  such that a^{c\ 0) > 0(oo). Since both ajq and <fi 

are non-decreasing in x  and (p vanishes for x < 0, it follows that ajv(c;x) > <p{x) for all 

x  G M.

Let bn be the solution of the recursion bn+1(-) =  Q[bn](’) with the initial condition bo(x) = 

<f>(x) for all Since u0 > <p(x), by the Comparison Lemma 3.2, we have un(x) >

bn(x) for all n  and x e R ,  and Lemma 3.1 implies that bn(oo) converges to (5 as n —► 00. 

Moreover, ao = </>, there exists a < (3 such that <fi < a  by Property e3, and Property (1) 

says that Q[a\ < /3. So by the Comparison Lemma 3.2, Q[a\ > Q[<p\ = Q[ao], an(i fhe 

definition of a in (3.10) implies that

i

ai(c; s) =  max |0 (s ) ,  Q[a0(c; -)](s +  c ) |  < max {a, Q[a]} < p.

1
Suppose that a,k(c; s) < (3 is true for some k > 0. Then it follows by Hypotheses q<i and 

i qi that Q[dk(c\ -)](s) < Q\/3\ = (3 for all s. Then

ak+i(c;s) = m ax{0(s),Q [afc](s +  c)} < (3,

so a^v(c; 00) < /5, since we already know that ai(c;-) < (3. Thus there exists M  > N  

such that 6m(oo) > ajy(oo). Property (2) then gives a^r(c;x) =  0 for x < N (7 +  c) for
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some 7 G 1 , and hence there is a number r  such that 6m(*) > ajv(c; • +  t) . Since an is 

non-decreasing in n, so an(c; x) > ajq{c\x) > (j>(x) =  ao for n > iV and i G R .  Then

an+i(c;s) =  max | 0 (s),Q[an(c;-)](s +  c ) j  =  Q[an(c; -)](s +  c) =: Q[an(c; -)](s),

and by following the same procedure for bo we get that

bn+i(c; s) = Q[bn(c; -)](s +  c) =  Q[bn(c; -)](s).
|

Therefore both the functions 6n(* +  nc) and an(c; • +  r)  satisfy the same recursion (3.1) 

for n > N.  By applying the Comparison Lemma 3.2 with the operator Q we get bn(- +  

(n — M)c) > an+^_Af(c; • +  r) when n > M. Therefore

un(x +  nc) > bn(x +  nc) > an+Ar-M(c; x  +  r),

it follows that ft — un(x +  nc) < f3 — an+jv-M(c; x +  r)  which is equivalent to /? — nn(?/) < 

P -  an+N- M(c; y - n c  + r).

Since an(c; s) is non-decreasing in s and by letting c =  c +  2e we obtain that 

sup { P ~ u n(y )}<  sup {ft -  an+N- M{c\y -  nc + r)}
y>n(c—e) y>n(c—e)

= ft — an+N-M(c; nc — ne — nc + r)

= (3 -  an+N- M(c; - n e  +  r)

=  P -  an+N-M(c +  2e; -n e  +  r).

From the definition of the recursion in (3.10) we have P — an+N-M(c +  2e; —ne +  r) —

P — an+Ar_M(c +  e; r )  and as n —» oo we get lim p — an+j/v-M(c +  e; r)  =  P — a(c +  e; r).
n—KX)

Since we have that a(c, +oo) =  P and the definition of the left slowest spreading speed 

c in (3.12) says that for all c +  e > c we have a(c, —oo) =  /?, then this means that 

a(c +  e; r)  =  P since a(c +  e; •) is monotone and a(c +  e; oo) =  a(c +  e; —oo) =  P , so

51



a(c + e; -) = p. So the right-hand side converges to zero, which yields

lim
n—¥ oo

sup { f i - u n(x)}
x>n(c+e)

= 0.

Secondly, we show that (3.14) holds even in the case when we do not have these additional 

two properties (1) and (2) for the operator Q, by defining a new operator Q such as that 

considered in [26], [40], by

Q[v](y) := min < Q c  ( ]  v(-)
« i (w). (i -  S ) Q c i 1 ) « ( . )

Oil
(y) + 8 v ( y ) j  , 

(3.15)

where an and S are two positive parameters and we define the cut-off function £(s) to be 

a smooth scalar function with the following properties

• f(s) is non-negative and non-increasing for s > 0;

•  £(s) — 0 for s > 1;

•  C(s ) — 1 f ° r 0  <  s  <  2 -

First we need to show that the two properties (1) and (2) hold for Q. Let v be a

constant vector such that 0 <  v < (3. Then 0 < C

0 < Q

I y -
a

v ( ’) < ft, which implies

a
< Q[P\ = p. By definition of Q in (3.15) it follows that Q < P,

and Property (1) holds.

In order to prove Property (2), we need to show that if v vanishes for x < rj, then there 

exists ai  such that Q[v](y) = 0 for y < rj — a\. Choose v(x) =  0 for x <rj. Then

( I  t i l W ) . o  a  I |V’J ’
Oil

O il
> 1 if and only if \y — x\ > a\

I For y < r) — ai  we have two cases, (a) if x  > 77, then \x — y\ > a\  which implies that 

C ( —------   ) v(x) = 0 and (b) if x  < 77, then (  f — — — ] v(x) = 0. So from (a) and (b)
Oil

we conclude that if y < rj — an, then ( \ y ~ A
a  1 
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Then if we define vy(-) := C v(*)> then ^y(') =  0 if 2/ < 77 — aq, and thus

Q[vy(')} = 0 and then Q[vy(')](y) = 0 for such y. Thus Q[v](y) = 0 if y < 77 — oq, and so 

Property (2) also holds for Q.

Therefore the operator Q satisfies the two Properties (1) and (2), and since the operator 

Q is order-preserving, it follows that Q is order-preserving also. We can follow the same 

idea in the proof of [40, Lemma 5.1] (see [26, Theorem 2.1]) in order to prove that

when ol\ —y 00 and <5 —> 0, the operator Q[v\ converges to Q[v\. Firstly we need to

show that as Qi cx) the operator Q converges uniformly on each

(
\ y  — X \ 77 — X
 ) =  1 if and only if ---------  < i  it

ai J ai
f \y — X\\

follows that £ ( ---------  ) v(x) = v(x) whenever \y — x\ < ol\/2 , and hence as a\  —¥ 00,
\  J

(  ( —-----  ) v(') converges uniformly on each bounded set to v and by Hypothesis #4, we
y a  J

get that Q[£ ( —------ j u(-)] converges uniformly on each bounded set to Q[v]. Therefore
V J _

as fti -> 00 and for fixed 5 we have shown that Q[v\(y) converges uniformly on each 

bounded set to

Q[v\(y) = min{Q[u](?/), (1 -  6 )Q[v](y) + 6 v(y)} . (3.16)

Secondly we want to show that when 6  goes to 0, we have Q[v] —>■ Q[v\. By the definition 

of Q[v\ in (3.16) we have either that the minimum is equal to Q[v](y), in which case 

there is nothing to do, or the minimum is equal to (1 — S)Q[v](y) +  Sv(y), in which case 

(1 -  8 )Q[v](y)+6 v(y) < Q[v]{y), so 8  [v(y) -  Q[v](y)] < 0, and thus Q[v](y) > v(y) since 

8  > 0. So the difference between Q[v\(y) and Q[v](y) gives

-Q[v](y) + Q[v](y) = S[Q[v](y) -  v(y ) \ ,

and since we know that Q[v](y) and v(y) are bounded between 0 and /?, this difference 

tends to 0 uniformly on R as S tends to 0. Then by applying the above argument with 

Q instead of Q we obtain as in ([40],[26]) that (3.14) is valid, and hence the theorem is 

established. □

Note that for the recursion (3.1) with non-decreasing initial data 0 and operator Q , we
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have defined the left slowest spreading speed c, which we call the left slowest spreading 

speed. On the other hand, for non-increasing initial data with the same operator Q , we 

have the right slowest spreading speed, that we denote by c, the existence of which follows 

straightforwardly the proof of the existence of the slowest spreading speed in [26, (2.4)] 

under the same assumptions on the operator Q. Note that Q is not assumed to satisfy 

the reflection property (1.8). The following theorem justifies the use of the terminology 

‘slowest spreading speed’, because it shows that all components spread at least this speed, 

and at at least one component spreads at exactly this speed. This result characterizes 

the right slowest spreading speed c, and it is exactly the same as Theorem 2.1 in [26] 

with the notation c instead of c*.

T h eo rem  3.3. Suppose that the initial function u 0 satisfies U q { x ) = 0 for all sufficiently 

large x, and that there are positive constants 0 < p < a < 1 such that 0 < u$ < cr/3 for  

all x  and Uq > p/3 for all sufficiently negative x. Then there exists an index i such that 

for any positive e, the solution un of the recursion (3.1) has the properties

lim
71—» OO

sup K } .  (x)
x>n(c+e)

=  0, (3.17)

and

lim
71—> 0 0

sup {/3 - u n(x)}
x<n(c—e)

= 0. (3.18)

That is, the ith component spreads at a speed no higher than c, and no component spreads
\
; at a lower speed.

Next, as an alternative approach for getting the left slowest spreading speed c for non­

decreasing initial data </> with operator Q , we can consider non-increasing initial data 

defined by (j>{x) =  4>(—x), with a new operator Q which is defined by

1 Q[v\(x) := Q[R[v]](—x) for all x, (3.19)

1

i where R[v](x) := v{—x) for all x. By applying [26, Theorem 2.1 ] with <fi and Q , we can
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define a right slowest spreading speed c by

c = sup {c : a(c, oo) =  (3} , (3.20)

such that an is the non-increasing sequence in n and defined by the recursion

an+i(c;s) =  max |0 (5 ), Q[an(c;-)](s +  c ) |

where the initial condition is ao(c; s) = <j>(s) and </> satisfies the following properties 

ev <j>(x) is non-increasing in x, 

e2- 4>{x) = 0 for all x  > 0 

e3. 0 < 0 (—00) < /3.

The following lemma is an important tool and shows that Q satisfies Hypotheses q\ — qi 

provided that Q satisfies these hypotheses. This lemma will allow us to characterize the 

slowest spreading speed c using [26, Theorem 2.1].

Lem m a 3.4. I f  the operator Q[v] in the recursion (3.1) satisfies Hypotheses q\ — qi, then 

the operator Q[v\ does also.

Proof. (1) We need to prove that the operator Q is order-preserving, so we to show that 

if v > u, then Q[v] > Q[u]. By the definition (3.19), we have Q[v\ = Q[/?(u)](—x), 

Q[u] = Q[R(u)](—x), and if v{x) > u{x) for all x, then v(—x) > u(—x) and 

hence R(v)(x) > R(u)(x)  for all x. Since Q is an order-preserving operator by 

Hypothesis <72, then Q[i?(u)](x) > Q[R(u)](x)i so Q[i?(u)](—x) > Q[R(u)](—x), for 

all x. Therefore Q[v\ > Q[u], as required.

(2) We need to show that Q[0] =  0 and Q[j3] = (3. Since Q[0](x) =  0, so Q[0](—x) =  0 

for all x. Then Q[i?(0)](x) =  0 implies that Q[i2(0)](—x) =  0 for all x. Thus 

Q[0] =  0 for all x. By following the same steps we can prove that Q[(3] = (3 for all 

x.
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(3) We need to show that Q[Ty[v]\(x) is translation invariant operator. We have

Q[Ty[v]](x) =  Q [flp ;H ]](-x )  =  Q[T-y[R(v)]](-x)

= T - y[ Q [R (vm -x )  = Q[Jl(t>)](-z +  y)  =  Q[R(v)](-(x -  y))

= <2M(z -  y) = TyQ[v\(x).

Therefore Q is a translation invariant operator.

(4) We need to show that Q[vn] converges uniformly on every bounded set to Q[v] when 

vn converges uniformly on every bounded sets to v as n  —»■ oo. Let M  > 0. Then 

for all e > 0, there exists N  e N such that for all n > N, x  G [—M, M], we have 

\Q[vn\(x) — Q[v](x)| < e if and only if \Q[R[vn]\(—x) — Q[R[v]\(—x)\ < e which 

implies that

|Q[R[vn]](x) — Q[R[v]](x)| < e for all x  G [—M, M\.

Now we need to prove that R[vn] converges uniformly on bounded sets to i?[u]. 

Suppose that the sequence vn G ^  is such that for each S > 0 and M  > 0, there 

exists N  such that for n > N  implies that |un(x) — ^(z)! < 5 for all x  G [—M, M], 

which is equivalent to \R[vn](x) — R[v](x)\ < S for all x  G [—M, M]. Therefore the 

sequence R[vn\ converges uniformly on bounded sets to i?[u], and hence £2[-R[̂ n]] 

converges uniformly on bounded sets to Q[i?[i>]]. Thus for all e > 0 and M  > 0, 

there exists N  such that n >  N  which implies that \Q[R[vn]\(x) — Q[R[v]](x)\ < e for 

all x G [—M, M] which yields \Q[R[vn]\(—x) — Q[R[v]\(—x)\ < e for all x  G [—M, M], 

which is equivalent to |Q[vn](®) — Q H W I < e f°r x  ^  l~M, M\. So the property 

is proved.

(5) We need to prove that given a sequence (vn)neN, vn G there exists a subsequence 

(vrn)ie?q SUĈ  Q[vrn\ converges uniformly on each bounded set. Take a sequence 

(■vn) ,n  G N such that (vn) G i/jp. Then R(vn)neN is a sequence in ipp. Thus there 

exists a subsequence R(vni)n€N such that Q[R[vni\] converges uniformly on each 

bounded set [—M, M}. So there exists a function L G ^  such that L : R —>
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such that for all S 0 and ./W > 0, there exists N  such that for n > N  implies that

\Q[R[vni]](x) -  L (x )| < S if and only if \Q[R[vni]](-x) -  L ( -x ) \  < S

for all x  G [—M, M], which is equivalent to \Q[vni\(x) — L(x)\ < S for all x  G 

[—M, M}.

(6) We need to characterize the matrix B^ to prove Hypothesis qe((a), (b), (c)) for the 

operator Q. Define the linear operator M  to be the linearization of the operator

Q at 0. Then to characterize M  in terms of M  note that if for any e > 0 there is

(5 > 0 such that if IMloo <  s, then ||Q[u] -  < cHuH^, then we have

WQM ~ . ...oo =  sup|Q[w](x) -  M[u\(x)\ = sup|Q[i2[u]](-x) -  M[u\(x)|.
z G R  x G R

Since =  sup |i?(u(x))| =  sup \u(—x)\ = sup \u(—x)\ = IMI^, we get
a ; e M  x e R  — x G R

sup|Q[i2[w]](—x) — M[u\(x)| =  sup \Q[R[u]](—x) — M[u](x)\
x G M  — £ € R

=  sup|Q[i?[u]](t) -  M[u](- t )|

= sup|Q[v](t) -  M[R[v]](-t)|,

where v - Ru.  Now WuŴ  =  IMI^ < <5, and u(x) =  v(—x) =  (Rv)(x), so u = Rv, 

and hence sup |Q[v](t) — M[R[v]](-t)\ = ||Q[v] -  RM[R[vJJH^.
£ £ M

Thus for all e > 0, there exists <5 > 0 such that if IHI^ < <5, then

||Q H -i? M [.R H ]||00< e |M |00,

and because of the uniqueness property for the Frechet derivative for the linear 

operator, we conclude that M[u] = RMR[u \, and hence M  = RM R .  It follows that 

M  has the same representation for the linear operator M  in (3.2) which allows us
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to introduce the matrix B^ corresponding to the matrix in (3.4) by

B fia  = M[ae - * * ) \ x = 0  = RM[R[ae- ^ \ \ | I=0 =  i?M [aeAl] |x=0 =  M[aer]\x=0.

(3.21)

Thus since B M is in Frobenius form by Hypothesis q^{a), then the matrix Bp, is in 

Frobenius form, and the Perron-Frobenius Theorem 3.1 says that for each block 

there is a principal eigenvalue A(/2) with a corresponding strictly positive principal 

eigenvector ((/I). It ls clear that Hypothesis qe (c) is satisfied for B 0, and B 0 = B 0, 

from which it follows that Hypothesis q6 (a), (6), (c) hold for Bp whenever it holds 

for B^.

(7) We need to prove that a family of bounded linear order-preserving operators on 

Revalued functions, M ^  satisfies the properties (i) and (ii) in Hypothesis q-7 for 

Q and . Hypothesis q7 (i) says that for every sufficiently large k > 0, there is 

a constant vector w > 0 such that Q[u\(x) > M^[u](x)  when 0 < u < w. So from 

the definition of Q in (3.19) and the information of M  we get that

Q[R[u]](—x) > M^[R[u]](—x) if and only if Q[u](x) > M ^ [u ] (x ) t

when 0 < u < w, and Property (i) of q7 holds for Q. Moreover, equation (3.21) implies 

Property (ii) of #7, and thus Hypothesis 97(2), (ii) is satisfied for Q. This finishes the 

proof of the lemma. □

We remark that in the notation of [26, (2.4)], c* is the slowest spreading speed with 

operator Q and non-increasing initial data, which corresponds here to the right slowest- 

spreading speed c with operator Q. Note also that, if the reflection property (1.8) is 

satisfied, then the earlier operator Q equals the operator Q, because for all x  we have 

Q[R[v]\(x) =  R[Q[v]\(x) Q[R[v]\(x) =  Q[v](—x) which implies that Q[R[v]](—x) =

Q[v](x) Q[v](x) = Q[v\(x).

The following theorem characterizes the right slowest spreading speed c. This result is 

the same as Theorem 3.3 with the notation c and Q instead of c and Q. In general, c ^ c ,  

but if the reflection invariance property (1.8) holds, then c = c since Q = Q.
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T h eo rem  3.4. Suppose that the initial function vq satisfies Vo(x) = 0 for all sufficiently 

large x, and that there are positive constants 0 < p < a < 1 such that 0  < Vo < a/3 for 

all x and Vq > p(3 for all sufficiently negative x. Then there exists an index i such that 

for any positive e, the solution vn of the recursion vn+i =  Q[vn] has the properties

lim sup {vn}i (x)
x>n(c+e)

=  o , (3.22)

and

lim
n —► oo

sup {/3 - v n(x)}
x<n(c—e)

=  0 . (3.23)

That is, the ith component spreads at a speed no higher than c, and no component spreads 

at a lower speed.

Proof. This follows from [26, Theorem 2.1] with Q replaced by Q. □

Clearly there is a relationship between the left slowest spreading speed c which is defined 

in (3.12), and the right slowest spreading speed c that is defined in (3.20). The following 

lemma explains this relationship.

L em m a 3.5. The left slowest spreading speed c equals the value —c, where c. is the right 

slowest spreading speed.

Proof. Prom the characterization properties (3.22), (3.23) for the left slowest spreading 

speed c for vn, we will first extract information for the sequence un that is obtained from 

non-decreasing initial data with the operator Q to obtain equivalent characterization 

properties for un.

Define un(—x) := vn(x) for all n , where vn is the sequence as in Theorem 3.4. Then we 

have v q { x ) =  U q ( — x ) and un+i(—x) — vn+i(x). So un+i(—x) = Q[un](—x ) 1 and by the 

definition of Q in (3.19) we have Q[vn](x) = Q[un\(—x). By Lemma 3.4, the operator Q 

satisfies qi — q-j. Since the initial function Vq ( x ) satisfies the conditions of Theorem 3.4, 

we have

' ‘ = 0 .lim
n —> oo

sup {vn}i (x)
x>n(c+e)
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Since we know that {v n}f (x) =  {wn}i (—x), we obtain

sup {un}i (x )=  sup {un}i { - x ) =  sup {un} i { - x ) =  sup {un}. (x).
x>n(c+e) x>n(c+e) —x<—n(c+e) x<—n(c+e)

Therefore we have

lim sup {un}- (x)
x<n(—c—e)

=  0 (3.24)

Statement (3.23) in Theorem 3.4 says that lim sup {/3 -  un(x)}
x<n(c—e)

=  0. Then

sup {/3 -  vn(x)} = sup {/3 -  un(-x )}  =  sup {/3 -  un( - x ) }
x<n{c—t) x<n(c—e) —x>—n(c—e)

=  sup { /3 - u n(x)}.
x>—n(c—e)

Thus we get

lim
n—>• oo

sup { /3 - u n(x)}
x>n(—c+e)

=  0 . (3.25)

Now we complete the proof by comparing (3.13) with (3.25), and (3.14) with (3.24). First 

we compare between the statements (3.13) in Theorem 3.2 and (3.25). From equation 

(3.13) we know {wn}7- (n(c -  e)) < sup {un} (x), so
x<n(c,—e)

lim [unj(n(c -  «))] =  0. (3.26)

On the other hand, from equation (3.25) we have

{(3 -  un(n ( - c  + e))} < sup {/3 -  un(x)} , so lim {/? -  un(n ( - c  +  e))} =  0.
x>(n(—c+e)) n^°°

Suppose that c > —c. Then — c +  e =  c — e, so (3.25) gives

lim sup {/3 -  un(x)}
x>n(c—e)

=  o , (3.27)

from which it follows that lim {{3 — un(n(c — e))} =  0, and hence
n—>oo

lim {un} i (n(c — e)) =  /T ^  0 for each index j  € {1,..., fc}n— J
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This is a contradiction with (3.26), so c < —c.

It can be shown similarly that — c < c by comparing (3.14) with (3.24). Thus we have 

—c = c and the lemma is proved. □

3.3 Fastest spreading speed  for d iscrete-tim e recur­

sion system  (3.1)

It is shown in Lui [29, Theorem 3.1, 3.2] that there exists a single spreading speed when 

there are no extra equilibria other than 0 and (3 in ipp, in the sense that (3.13) in Theorem 

3.2 in fact holds for all components of wn, not only the j th  component, which, together 

with (3.14), shows that all components spread at the same speed. Lui also assumed that 

there is only one diagonal block in BM. In biological terms, it clearly sometimes happens 

that different species spread at different rates. If the assumption of there being no extra 

equilibrium is dropped, then there may be an equilibrium v other that 0 and /3 in xpp. 

This possibility of extra equilibria was first discussed in Weinberger, Lewis and Li [42], 

motivated by the fact that models of species interaction often have such extra equilibria. 

Our Hypothesis q\ allows there to be more than just the equilibria 0 and in ipp. Under 

these conditions, as already noted in [42], not all components of un necessarily spread 

at the same speed, and it is natural to introduce a second speed, called the left fastest 

spreading speed Cf. Thus in general, there should be right (left) slowest spreading speed 

and right (left) fastest spreading speed. A single right (left) spreading speed means that 

the right (left) slowest-spreading speed of the recursion (3.1) equals the right (left) fastest 

spreading speed.

Corresponding to the left slowest spreading speed c, we have the left fastest-spreading 

speed df and similarly for the right slowest spreading speed c, we will introduce the right 

fastest-spreading speed, Cf.

Now in order to define the left fastest spreading speed C/, we use a similar argument to 

that used previously with an by choosing a function (p that satisfies Properties e\ — e$
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and letting b n ( x )  be the solution of the recursion

bn+l Q[^n]

with bo(x) = <j>{x). Define a function

B(c;x)  := lim sup bn(x +  nc) . (3.28)n—> oo

Since bn(x +  nc) is a non-decreasing function in x  and c for each n, hence B(c;x)  is 

a non-decreasing function of x  and c also. The following lemma is an important tool 

for the definition of the left fastest spreading speed. The purpose of this lemma is to 

show that B(c ; — oo) =  ft for sufficiently positive c, from which it follows that the set 

{c : B(c\ —oo) 7̂  0} is not empty. Note that the following result is a modification of [39, 

Lemma 5.3] which involves the sequence an, whereas here we adapt the argument of [39] 

to treat the sequence bn, and bn is now a non-decreasing function of x  instead of an which 

is a non-increasing function of x  and s. Note that we prove the following lemma with 

more details than the proof of the corresponding lemma [39, Lemma 5.3], and we use a 

similar argument to that used in the proof of Lemma 3.3.

L em m a 3.6. B(c\ — oo) =  (3 if and only if there is an n £ N such that

bn{0 +  nc) = bn(nc) > </>(oo).

Proof If B(c\ —oo) =  /?, then B(c\s) = f3 for all s. In particular, for s = 0, B(c\ 0) =  

P > 4>{oo). Thus by the definition of B  in (3.28) we have bn(nc) > </>(oo) for some n 

sufficiently large.

On the other hand, suppose that bn(nc) > </>(oo) holds for n = n0. Since bno and (p 

are non-decreasing functions, </> =  0 for all s < 0, and <p < </>(oo), it follows from the 

continuity of bno and <p that there exists S > 0 such that

bno{noc + s — 5) > <p(s) = b0(s) for all s G R.
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Suppose that 6no+fc((no +  k)c +  s — S) > bk(kc +  5) is true for some k >  0. Then

bno+k+l ((n0 +  k +  l)c +  s — 8 ) — Q[6no+fc(-)]((no T k +  l)c  T s — 5)

= Q[bn0+k( (no  +  k)c-\----- S)](s T c) > Q[bk(hc + -)](s + c)

= Q[h(')]((k T 1 )c + s) = bk+1((k T 1 )c +  s).

So, by induction we have shown that

bno+k+i((n0 +  k +  l)c  +  s -  5) > bk+i((k +  l)c  +  s) for all k > 0.

For fixed 5, letting k —>■ 00 through a subsequence on each side we find

B(c; s — 5) > B(c ; s ) for all s.

But the function B  is non-decreasing in s and S > 0, so B(c\s  —8 ) < B(c;s)  for all s. It 

follows that B(c\ s — 8 ) = B(c; s) for all s. Therefore B(c\ s) is constant because the only 

non-decreasing periodic functions are constant. Since B(c ; 00) =  /?, then B(c\ s) = /3 for 

all s. In particular,

B(c\ —00) =  /3.

□

The fact that B(c\ Too) are equilibria of Q follows by using similar arguments to these 

in [29, Lemma 2.6], and Hypothesis q\ then implies that B(c\ Too) =  (3.

To show that B(c; —00) =  (3 for a sufficiently positive c, define Pn(c; x) := bn(x T nc), so 

we have

Pn(c;x) =  bn(x+nc) = Q[bn-i(-)\(x+nc) =  Q[6n_ i(-T (n-l)c)](xT c) =  Q[Pn-i(c; -)](®+c).

It follows from [39, Lemma 5.2] that for n sufficiently large, Pn(0,oo) =  a n where a 0 =  

0(oo) and an+i = Q[an].

Since 0 < «o — 0(oo) < /3, we know that an —> j3 as n —>• 00 and so for some h 

sufficiently large, we have Pn(0, 00) >  (j>(00). Hence for t >  0 sufficiently large and from
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the monotonicity of (f) we have Pn(0, t) > <j)(oo) > (f){t), thus Pn(0, t) =  Q[Pn- 1 (0, -+£)](0). 

On the other hand

Ph{t,0) = Q[Pn-i(t, ■)](()+ t) = Q[Pn-i(t,-)](t),

by Hypothesis #3, we have Pn(t, 0) =  Q[Pn_i(£, (0) and since Pn(c; •) is non-decreasing

in c, thus

<2[Pn_i(£, • +^)](0) > Q [ P n - 1(0, • +01(0) =  Pn(0,t) > 0 (oo).

By Lemma 3.6 we thus have B ( t , —00) =  /3, which implies that P(c; —00) =  /3 for all c < t.

To prove that the function P(c; —00) is independent of the initial function </>, we use the 

same argument that was used for the function a by defining a new function </>* and having 

a different sequence P*(c;-), to obtain that P*(c;—00) =  P(c; — 00), which means that 

the vector P(c; —00) does not depend on the initial function <p(x).

It follows that P(c; —00) is independent of $  also and thus we define the left fastest 

spreading speed c/ by

Cf : =  inf {c : P(c; —00) ^  0} . (3.29)

Note that we define the left slowest spreading speed c in (3.12) to be the infimum of 

the set where for each c, a(c; —00) =  such that an(c; s) is the sequence that is defined 

in (3.10) with an initial condition that satisfies Properties e\ — e3, whereas we define 

the left fastest spreading speed in (3.29) to be the infimum of the set where for each c, 

P(c; —00) 7̂  0 such that P(c; x) is a function that is defined in (3.28). The reason for the 

definition of an+1 in (3.10) to be the maximum of two objects is to ensure that we have a 

non-decreasing function in n, in the sense that an+\ > an, which means that lim an exists.
n —> 0 0

We also present an alternative ‘fastest’ spreading speed df in (4.1), defined as the infimum 

of the set where for each c, a(c; —00) ^  0 such that an(c; s) is the sequence with an initial 

condition that satisfies Properties e\ — e$. Then df is a modification of the quantity that 

was introduced in [42, (2.9)] with non-decreasing initial data instead of non-increasing 

initial data. In fact the reason for presenting (3.29) instead of the alternative formula df
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is due to the fact that it was noted in [43] that df is not, in fact, a good definition for 

fastest spreading speed, because one of the characterization properties (3.30) and (3.31) 

does not necessarily hold with the definition (4.1) of the fastest spreading speed df using 

an, as presented in [42, (2.9)]. However, in [43, Theorem 4.1] an extra hypothesis is added 

under which for the formula C/ of the fastest spreading speed in [42], both characterization 

properties (3.30) and (3.31) hold. Note that df is also a convenient tool for the proof of 

Theorem 4.1, that characterizes spreading speeds in terms of travelling-wave speeds.

3.3.1 Characterization properties of the fastest spreading speed

The following theorem is to characterize the left fastest spreading speed df where the ini­

tial condition 0 is a non-decreasing function. This result is a modification of [26, Theorem 

2.2] where the initial condition is a non-increasing function. Only a brief justification was 

given in [26], and we prove it with full details here.

T h eo rem  3.5. Suppose that the initial function Uq satisfies uq(x ) =  0 for all sufficiently 

negative x, and that there are positive constants 0 < p < a < 1 such that 0 < Uq < cr(3 

for all x and uq > p/3 for all sufficiently positive x. Then there exists an index I such 

that for each positive e, the solution un of the recursion (3.1) has the properties

lim sup
n—>oo

inf {u„},(x)
x > n ( C f + e )

> 0, (3.30)

and

=  0. (3.31)lim
n—» oo

sup un(x)
x <n (d f—e)

That is, the Ith component spreads at a speed no higher than Cf, and no component spreads 

at a lower speed.

Proof. Choose a function <j> which has Properties e\ — e3 and satisfies (j) < Uq. By the 

Comparison Lemma 3.2 we have un(x) > bn(x). Since bn is a non-decreasing function in 

x , we have

inf Un(x) > inf bn(x) = bn(n(cf  +  e)),
x >n (c f +e ) x>n(d f +e )
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which implies that

lim sup inf un(x)
x>n{cf-\-e)

> lim sup bn(n(cf +  e)) =  B(df  +  e; 0).

Since df < df +  e and by the definition of Cf in (3.29), it follows that

lim sup
71—> OO

inf un{x)
x>n(df  +e)

> B(df +  e; -o o ) ^  0,

and thus there exists an index I such that Bi(df +  e; — oo) > 0 and

lim sup inf {u„},(x)
x>n(Cf+e)

> 0.

In order to prove the second statement (3.31), we choose a function (f> that satisfies 

Properties e\ — e3 with an additional property that <j>(x — 77) > u0(x) for some 77 > 0. The 

Comparison Lemma 3.2 implies that, un(x) < bn(x — 77), and since bn is non-decreasing 

function, we have

sup Un(x) < b n (n(c f -  ^e) -  \ n e  — 77) < bn ( n(cf  -  ^e) +  r  ) ,
X <n(cf - e )  \  1 1 J  \  1 J

for t  =  ~ 2 ne ~  ^  and a sufficiently large n. Thus we get that

lim sup
71—> 0 0

sup un(x)
x < n (c f—e)

< lim sup bn ( n(cf  -  ^e) +  r  ) ,
71—^ 0 0  \  2 J

for each s  <  —77, and since bn is non-decreasing function in 71, we have

lim sup bn ( n(df -  ^e) -  -  77] <  lim sup bn ( n(cf  -  ^e) +  s
71—>00 \  2 2 J  71—too \  2

=  B ((c/ -  >

so

lim sup bn ( n(cf  -  \e)  -  -  77) < lim B  ( cf  -
n—>00 \ 2 2 )  s—►—00 \  2
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Since we know that df  — \e < c.f, then for each c, df — \e < inf {c : B(c\ —oo) ^  0}, so 

Cf — £ {c : B(c; —oo) ^  0} which implies B(c; — oo) =  0. Therefore we obtain

lim sup
n—>oo

sup
x <n (c f—e

Un(x) = 0.

Then the theorem is proved. □

Note that in the proof of Theorem 3.5 we use a similar argument that used in the proof 

of Theorem 3.2 concerning the characterization properties for the left slowest spreading 

speed c, but without assuming the additional properties (1), (2) for Q or defining a new 

operator Q that defined in (3.15).

Similarly to what we did earlier, we can define the right fastest spreading speed c/, now 

using non-increasing initial data (j) that satisfies Properties ex — e3 and the corresponding 

function B  defined in (3.28) by

&f := sup {c : B{c\ oo) ^  0} . (3.32)

\ The following theorem characterizes the right fastest spreading speed c/. This result is a

| straightforward consequence of Theorem 2.2 in [26] with the notation c*f replaced by Cf.
\

j T h eo rem  3.6. Suppose that the initial function Uq satisfies Uo(x) = 0 for all sufficiently 

| large x, and that there are positive constants 0 < p < o < 1 such that 0 <  Uq < a(3 for  

I all x and Uq > pfi for all sufficiently negative x. Then there exists an index j  such that 

’ for each positive e, the solution un of the recursion (3.1) has the properties

lim sup
71—> 00

inf  ̂{un} j  (x)
x < n ( c f —e)

> 0 , (3.33)

and

lim
Tl—^OO

sup un(x)
x>n(c f+e)

= 0. (3.34)

; That is, the j th  component spreads at a speed no less that Cf, and no component spreads 

\ at a higher speed.
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The following proposition shows that df < c. Note, as we mentioned before, that the 

following convention, we use the word ‘speed’ when it might be technically more accurate 

to use the word ‘velocity’ because it is possible to have either c > 0 or c < 0. Moreover, 

in the case of using non-decreasing initial data, we have C/ <  c, which ensures that df is 

going faster to the left than c, whereas, in the case of using non-increasing initial data, 

we have c/ > c, as shown in [42], which ensures Cf is going faster to the right than c.

Proposition 3.2. For non-decreasing initial data of the recursion (3.1), the left fastest 

spreading speed df is less than or equal the left slowest spreading speed c.

Proof The idea of the proof depends on comparing (3.14) in Theorem 3.2 and (3.31) in 

Theorem 3.5 and using a contradiction argument. Thus we compare

lim sup { ( 5 - u n(x)}
x>n{c+e)

lim sup Un(x)
x < n (c f—e)

=  0, (3.35)

=  0. (3.36)

In (3.35) we have {/? — un(n(c + e))} <  sup {/? — un(x)}. Thus as n  —► oo we get
x>n(c+e)

lim {(3 — un(n(c +  e))} =  0. (3.37)

Cf  — c
Suppose Cf > c and let e =  — . Then c/ — e =  c +  e, so (3.37) becomes

lim {P — un(n(df — e))} =  0. (3.38)

On the other hand, we know that un(n(df — e)) < sup un(x), which implies from
x< n( d f —e)

equation (3.36) that as n —> oo, lim un(n(df — e)) =  0, and this contradicts (3.38).
n—y oo

Therefore Cf < c. □
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Chapter 4

Characterization of slowest 

spreading speeds using travelling  

waves and linear determ inacy for 

discrete-tim e system s

In this chapter we begin by presenting a theorem that shows that the left slowest spreading 

speed c defined in (3.12) can be characterized as the left slowest speed of a class of 

travelling waves c. We will then present sufficient conditions that ensure the recursion

(3.1) is right (left) linearly determinate.

4.1 C haracterization  o f slow est spreading speed  c as 

slow est speed  o f a fam ily o f travelling waves

A travelling wave is a solution of the recursion un+1 =  Q[un], n G N, which has the form

un(x) =  w(x — nc) i G l ,

for some c G l .  The value c is called the speed of the wave. The following lemma is an 

important tool for the next theorem, since it explains the relationship between the fastest

69



spreading speed cy that is defined in (3.29), and the alternative fastest speed cy defined 

by

Cf — inf {c; u(c, —oo) 7̂  0} . (4.1)

This quantity cy is a modification of the fastest spreading speed that was introduced 

in [42, (2.9)] with non-decreasing initial data satisfying Properties e\ — e3 instead of 

non-increasing initial data.

L em m a 4.1. Suppose that the operator Q satisfies Hypotheses 3.1. Then

C f  <  Cf .

Proof. The idea of the proof is to exploit the relationship between the definition of cy in

(4.1) and the definition of cy in (3.29). Consider vn = 6n(- +  nc) with vq = ho = a0. Then

vn+i(s) =  6n+i(- +  (n+ l)c)(s) =  <2[6n(- +  (ra+l)c)](s) =  Q[bn(-+nc))(s+c) = Q[vn](s+c)t

whereas from the definition of the sequence an in (3.10), we have

a„+i(s) =  max (0(s), Q[an(c, -)](s -1- c)} >  Q[an{c, -)](s +  c).

Define an order-preserving operator £} by £j[iy](s) := Q[w](s +  c), so we have un+i(s) =  

£}[un](5) and an+i(5) > n [a n](s). The Comparison Lemma 3.2 with operator O. then 

implies that vn < an for all n, and hence 6n(- +  nc) < an(c, •) < a(c, •). Then by 

the definition of B(c\x)  in (3.28), namely lim sup bn(x +  nc) =: B(c;x ), and since we
n—»00

know that lim an(c,x) = a(c;x), it follows that B(c,x)  < a(c,x) for all x, from which
n—>00

it follows that if we have B(c, —00) ^  0, then a(c, —00) ^  0. Therefore, as sets, we 

have {c; B(c , —00) =£ 0} C {c; a(c, —00) 7̂  0} , which yields that inf {c; a(c, —00) 7̂  0} < 

inf {c; B(c, —00) 7̂  0} , which is equivalent to saying that

C f  <  C f .  (4.2)

by the definitions of cy in (4.1) and the definition of cy in (3.29). □
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The following theorem relates the left slowest spreading speed to non-decreasing travelling 

waves and gives a condition that is sufficient to guarantee that the recursion has a single 

left spreading speed. This result is similar to [26, Theorem 3.1] but we adapt the proof 

to present the case when the profile w of the travelling wave solution w(x — nc) is non­

decreasing instead of the non-increasing.

It is useful for the next theorem to recall the definition of a lower semicontinuous real­

valued function /  : I  —» M, (see, for example, [21, p.89]), that is, for every real number a  

and x 0 such that a < f ( x o), there is a neighbourhood U of Xq such that a < f ( x )  for all 

x e U .

T h eo rem  4.1. Suppose that the operator Q satisfies Hypotheses q\ — qj, and let c, df be 

the left slowest and left fastest spreading speeds respectively. Then

(i) I f c < c ,  there is a non-decreasing travelling wave solution w(x — nc) of speed c with 

w(oo) = (3 and w(—oo) an equilibrium of Q other than (3.

(ii) I f  there is a travelling wave w(x — nc) with w(oo) =  (3 such that

lim inf wfix) = 0 for at least one component z, (4.3)
X — t  —  OO

then c < c.

(Hi) I f  (4.3) holds for all components of w, then c < df.

(iv) I f  there are no constant equilibria of Q other than 0 and (3 inifjp, then c = df, which 

says that the recursion (3.1) has a single left spreading speed.

Proof. (i) Choose a fixed vector-valued initial function 4>(s) with Properties e\ — e$.

We can define a sequence an(c, /, s) for each / > 0 by the recursion

an+1(c,l,s) = max {l(t)(s),Q[an(c, I, x)](s + c)} (4.4)

where ao(cJ,s) = l<f(s). Since an(c,l,s)  is a non-decreasing function in n  as well

as in s and c, it follows that as n —»■ oo, lim an(c,l,s) = a(c, Z, s), which is non-
n—>oo

decreasing in c and s. This means that a(c, Z, 5) is the limit of a non-decreasing
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family of continuous functions in n, so it is a lower semicontinuous function of c. 

Now when c < c, it follows from (3.12) and [29, Lemma 2.6] that a(c, Z; — oo) is 

a constant equilibrium other than (3, and since a(c, Z; —oo) is a lower semicontin­

uous function of c, that a ( c , o o )  is also a constant equilibrium other than /3. 

Since a(c, Z, —oo) does not depend on the initial function as shown before (p.4 7 )  

when we define the slowest spreading speed c in (3.12), then a(c, Z, — oo) is, in fact, 

independent of Z.

(ii) By Hypothesis g5, there is a sequence n* such that Q[ani(c, Z; • +  c)\(y) converges 

uniformly for y on bounded sets. Since an is a non-decreasing sequence in n and 

Q is an order-preserving operator, the whole sequence Q[an(c, l;x-\-c)](-) converges 

uniformly on bounded sets. It shown in the proof of [26, Theorem 3.1] that we can 

take the limits (n —> oo) in ( 4 . 4 )  to get

a(c, Z; s) = max (Z</>(s), Q[a(c, Z; - ) ] ( s  +  c)} . ( 4 . 5 )

Since (3 is the only equilibrium in the interior of 'ipp, by Hypothesis qi, we can 

choose 77 > 0 so small that there is no constant equilibrium other than (3 in the

set {u G : \(3 — u\ < 77}. Since 0 < y < \/3 — 77], there exists e > 0 such that

0 < e < 77 < |/5 — 77I — e < \/3 — 77|,and since the continuous function |(3 — a(c, Z; s)| 

decreases from \(3 — v\ > rj to 0, there exists M  such that for 5 < — M, we have 

|f3 — a(c, Z; s)\ > \fi — v\ — e, and for s > M, \(3 — a(c, Z; s)| < e.

The intermediate value theorem on [—M, M] then says that there exists L ( Z )  G 

[—M, M] such that |(3 — a(c, Z; L(l)) \ = 77.

Now by ( 4 . 5 )  and Hypothesis <7 5 , there is a sequence Z* —> 0  such that a(c, Ẑ ; - +  L ( Z j ) )  

converges uniformly on bounded sets to a function w(-). Thus we can take limits 

in ( 4 . 5 )  by replacing Z by Ẑ  and s by y + L(li) — (n +  1 )c and Hypothesis qs to get 

that

w(y -  (n +  1 )c) =  Q[w(- -  nc)](y), J /GK.  ( 4 . 6 )

Therefore, un(x) = w(x  — nc) is a travelling wave solution of the recursion (3.1),

with |/3 — a(c, Z; L(Z))| =  |(3 — tc(0)| =  77. Again following the same approach as in
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the proof of Theorem 3.1 in [26], we find that liminf Wi(x) =  0.
x—►—oo

(iii) Suppose that there is a wave w(- — nc) with w{oo) = (3. Choose a function <£(•) 

with Properties e\ — es such that <j>(x) < w(x) for all x. If we define a sequence an 

such in (3.10) with ao(c;x) =  </>(x) and since </>(x) < w(x), then ao(c;x) < w(x). 

Suppose that aK(c; •) <  w(-) is true for some n >  0. Then Q[aK(c; *)](s) <  Q[w](s), 

since

Q[w(- — nc)](s) =  Q[iu(-)](s — nc) = w(s — (n +  l)c) for all 5,

it follows that Q[u>(')](s) =  w(s — c), which implies that Q[aK(c; -)](s +  c) < w(s — 

c + c) = w(s). Thus aK+i(c; s) = max (0(s), Q[aK(c; -)](s +  c)} < w(s) for all s.

It follows by induction that aK(c; •) < w(-) for all «, which yields a(c;x) < w(x) for 

| all x, and when x  —oo we have a(c, —oo) < liminf w(x). Then from assumption
I X—► — oo

I (4.3) it follows that di{c\ — oo) =  0 for some i, which implies that a(c; —oo) ±  /3.

j The definition of c  in (3.12) says that c  = inf {c : a(c; —oo) =  /3}, so the fact that
jj

j a(c; —oo) 7̂  p implies that we must have c < c. However, if (4.3) holds for all

j  components, we must have c <  c/, and by Lemma 4.1, we then obtain that

|
i C < c f  < c f . (4.7)
{
I
\s
j (iv) If we have a travelling wave w with velocity c that satisfies (4.3) for all z, then 

| we get c < Cf by (4.7). On the other hand, we know from parts (i)-(iii) that for

i  all c < c, there exists a travelling wave w with velocity c that satisfies (4.3) for

some z, and then since the only equilibrium in ipp other than ft is 0, we must have 

w(—oo) =  0. In particular, there exists a travelling wave w with velocity c such 

that (4.3) holds for all i. Then we obtain that

l C <  Cf .

i
J But we already know from Proposition 3.2 that

C f <  c.

(4.8)

(4.9)
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Thus from (4.8) and (4.9) together yield that c =  df. Thus the recursion (3.1) has single 

left spreading speed and the theorem is established. □

4.2 Sufficient conditions for single speed  and linear 

determ inacy

The recursion (3.1) is said to be linearly determinate if the right (left) slowest spread­

ing speed equals the right (left) fastest spreading speed, so there is a right (left) single 

spreading speed, and this right (left) single speed agrees with the speed that obtained 

from the recursion (3.1) when the operator Q replaced by its linearization M  at 0.

We refer to a speed that is obtained from the linearization as a linear value speed. Since 

we have non-increasing and non-decreasing initial data, so we consider two kinds of lin­

ear determinacy, namely the right linear determinacy and the left linear determinacy 

corresponding to the two initial data respectively. It is presented in [42] that there are 

conditions on the recursion (3.1) where Q satisfies Hypotheses qi — q7 with non-increasing 

initial data uq, that ensure that the recursion has right linear determinacy. We can ex­

tract from this information on right linear determinacy sufficient conditions to ensure left 

linear determinacy for non-decreasing initial data with the same operator Q in (3.1).

A first tool to find sufficient conditions for right linear determinacy will be given in the 

following lemma. This result is exactly [42, lemma 3.1] where we refer the notation c/ to 

be the right fastest spreading speed, c to be the right slowest spreading speed and b is 

the right linear value for the recursion (3.1), which is defined in [42, (2.19)] as

(4.10)

where Ai(/x) is the principal eigenvalue of the first diagonal block in B M defined in (3.3), 

this matrix B^  being assumed by Hypothesis qe (a) to be in Frobenius form. This linear 

value c is denoted in [42] by the slower speed. There is also a faster speed, c+, that is

c := in f{ /x  lnA i(//)},
u> 0
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defined in [42, (2.20)] as

c+ := max inf { n  1 \ n X a ( f i ) }M>0 (4.11)

where Xa(pf is the principal eigenvalue of the crth diagonal block in B and we define ca 

by ca := inf {pL~l In Aa(/i)}.ŷ >0

We prove the following lemma, which corresponds to [42, Lemma 2.2 (2.11)], giving more 

detail here. The proof depends on characterizing the spreading speed using the projection 

operator Pa. We define Pa by saying that Pa[v] has the same components as v in the 

directions corresponding to the crth diagonal block of the matrix B 0, whereas in the other 

directions the components are zero. Note that Hypothesis qj used to show that c0 >  ca.

L em m a 4.2. Suppose that the operator Q satisfies Hypotheses q\ — qj and let c, C/ be the 

right slowest and right fastest spreading speeds respectively. Then

c >  c and Cf > c+. (4.12)

Proof. Let la be the dimension of the crth diagonal block of B0. For any la vector, 

cj(-) G MZct, we define the vector-valued function Co £  by saying that the components 

of Q are those of the function lj, and its other components are zero. Then we define the 

auxiliary operator by

Qa[oj] := the la vector whose entries are those coordinates of Q[u\ which correspond to

the crth block.

It follows from [29, Theorem 3.5] that Qa has the right single speed ca and that Hypothesis 

qj implies that ca > ca for each cr, then by [42, Lemma 2.2 (2.11)] we have

0 =  lim sup Fi[un](x) = lim sup PiQ[un_i](x)
n—> oo x>n(c+e) n—>-oo x>n(c+e )

where un satisfies (3.1). Since un-\ > 0 and by the definition of P\ we have wn_i >
|
j Pi[un-i]. Then

| P i Q [ w „ _ i ] ( x )  >  PiQ[Pl[Un-i]](x),
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which implies that

0 =  lim sup PxQ[un-i\(x) >  lim SUp PiQ[Pi[Un-i](x)]
n —►oo x>n{c+e) n —>oo x>n(c+e)

> 0.

By the definition of Qa, this implies that 0 =  lim sup Qi[Pi[un-i]](x) . Hence
r w o ° x>n(c+e)

c > Ci < ci =  c where ci, C\ are the speeds for the operator Qi. Thus we have c > c. 

Now to show that Cf >  c+, from [42, Lemma 2.2 (2.10)] we have

0 - lim sup un(x) =  lim sup Q[un_ i](z) >  lim sup Q[Pa[un-i]](x)71—>00 x>n(c f+e ) 71—►OO x>n(cf+e) 71—̂OO x> n(c f+ e )
>

Since wn_i > 0, it follows that un-1 >  Pa[un-i\. This yields

0 =  lim
n—* oo

SUp Q[Pa[Un-i ] ] ( x )
x>n(cf+e)

By definition of Qa, for all e > 0, we can say that

0 =  lim
n—>oo

SUp Q a [ P < T [ U n - l ] ] ( x )
x>n(cf+e)

Therefore

and hence

Cf > ca =  ca = inf/i lnAa(/x) for each a,fi> o

Cf > max < inf /x 1 In A(7(/x) > =  c+,
er I M >0 J

and the lemma is proved. □

The following theorem is [42, Theorem 3.1] and gives a simple condition under which the 

recursion (3.1) has right linear determinacy and we omit the proof (see [42], Remarks 

after Theorem 3.1 and Theorem 4.2). Note that to obtain this result we do not need the 

reflection invariance for the operator Q that was assumed in [42].

T h eo rem  4.2. ([42, Theorem 3.1]) Suppose that the operator Q satisfies Hypotheses 

qi — qj and the infimum in (4.10) is attained at E (0, oo]. Assume that either
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1. H is finite,

Ai(//) > Aa(fi) for alia > 1 and Q[min {e ^  £(//),/3}] < e

or

2. There exists a sequence v —> p, such that

XiifjLv) > for alia > 1 and Q[min {e^vX C,{pv), (3„}] < e ~ ^ x~Cv)C,{pf)}.

Then

Cf  — c = c = c+.

which means that (3.1) has a single right speed and is right linearly determinate.

Note that the condition Xi(fi) > Xa(p) for all a > 1 is only used to prove that c = c+.

We re-apply Theorem 4.2 for right linear determinacy to obtain a result about sufficient 

conditions for left linear determinacy for the recursion (3.1) by using the operator Q 

that is previously defined in (3.19). Let X\{p) denote the principal eigenvalue of the first 

diagonal block in B^ defined in (3.21). Then we can define the right linear value for the 

recursion un+\ = Q[un] by

c := inf | / i _1 In A i( / i ) |, (4-13)

and we define the speed c+ by

c+ := max inf {A"1 In * .(£ )} (4.14)

where Aa(jT) is the principal eigenvalue of the a th  diagonal block in B Then we will get 

a result that gives a condition under which the recursion un+\ = Q[un] has a single right 

speed and the recursion is right linearly determinate. Moreover, since we know c >  c and 

Lemma 3.5 implies that, c — —c, so we obtain that — c < —c. Then we define the left
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linear value for Q and its linearization M  with non-decreasing initial data by

d := — inf | / i _1 In A i( / i ) |, (4-15)
£> 0

and it follows that

c+ := — max (4.16)r n f f / r 1 In *„(£)}

Therefore, in the case when the initial condition for the recursion (3.1) is non-decreasing 

with the same operator Q, we get from Lemma 4.2 that c < c and Cy <  c+. Prom 

the definitions of Q in (3.19), the assumption (§[min j e _^xC(/2), ydj] <  e~^x~ĉ ((ft) is 

equivalent to assume that Q[min ^ ^ ( ( f t ) ,  /?j] < e ^ x~ĉ ( ft) ,  and hence Theorem 4.3 

below gives sufficient conditions for the left linear determinacy for the recursion (3.1).

j T h eo rem  4.3. Suppose that the operator Q satisfies Hypotheses q\ — q-j and the infimum 

| in (4.15) is attained at ft, £ (0, oo]. Assume that either

1. ft is finite,

\i{ft) > \ a(ft) for alia > 1 and Q[min ^e^x£(ft),/3^] < e ^ x~ĉ ((ft).

or

f 2. There exists a sequence v —>■ ft such that
\

! ^i(ftv) > K{ftv) for all a > 1 and Q[min A/}] <  e^-cu)Cif iv ) •

I Then
t
1 Cf  = c = c = c+,
II
j which means that the recursion (3.1) has a single left speed and is left linearly determinate.I
s
| Theorems 4.2, 4.3 will be used to establish results for the PDE systems in Chapter 5, 

] and illustrative examples will be given in Chapter 7.

78



Chapter 5 

A pplications to  

reaction-diffusion-convection system s

In this chapter we discuss a continuous-time model that can be studied with the help of 

the recursion (3.1). We consider a system of partial differential equations (PDE), namely 

a co-operative system of reaction-diffusion-convection equations of the form

Ui t -)- hfizii^Ui x — diUi^Xx +  fiiof)  ̂— 15 2, ..., fc, (5.1)

w(0, x) = u q ( x )  for all x  G'R,

where d* > 0, the reaction terms A, / 2, ••••, A are independent of x and t and satisfy the
^  fco-operative assumption — ^(u) >  0 /  j ,  the convection functions hfiui) give the “diag-

/ / /
onal” form of convection term diag (h'fiui), ti2(u2) , ...., tik(uk)), u =  (iq, u 2, ..., uif) G Rfc,

| and the initial condition uq G J5C/C1(M, Rfc) (the space of functions p : R —>• Rfc such that
i-I
f p and p are bounded and uniformly continuous on R ) .
!

For T  > 0, denote VT = {u  : R x [0, T] —> M.k . u is bounded, continuous, Ut,Ux,Uxx 

exist and are continuous on R x (0, T]}, and for (x,t)  G R x (0,T] and u G T t, define

N(u)(x , t )  := - u t (x,t)  +  Auxx{x,t) -  t i(u)ux(x, t) +  f {u ) ( x , t ),
i
!

| where the reaction term /  : M.k —> Rfc, A = diag(di,d2, ..., A ), and the convection term



h'(u) := 6ia,g(hf1{ui), h’̂ iu f ) , ..., h'k(uk)). We say that the function u G Tt  is a superso­

lution of (5.1) if N(u)(x , t )  < 0 for all (x,t) G M x (0,T], and the function u G IV is a 

subsolution of (5.1) if N(u)(x , t )  >  0 for all (x,t) G R  x (0, T].

The following theorem is an useful tool for system (5.1). Note that, of course, a reaction- 

diffusion-convection system does not, in general, possess a comparison principle. But the 

diagonal structure of h'(u) and the co-operative assumption on /  together ensure that 

such a principle does hold here.

3 fT h eo rem  5.1. (Comparison principle) Let the function f  G C 1(Mfc,Mfc) satisfy - ^ ( u )  > 

0, i 7̂  j ,  and u ,u  G IV be such that u ,u  are continuous on R x (0, T\, ux,ux are 

bounded and uniformly continuous on M, and N(u)(x , t )  < 0, and N(u)(x , t )  > 0 for  

(x,t)  G l x  (0, T). Suppose that u(x^ 0) >  u(x ,0)  for all x  G R. Then u(x,t)  > u(x,t)  

for all (x,t) G l x  (0 ,T\.

Proof Suppose that u is a subsolution and u is a supersolution for (5.1) for all (xt t) G 

R x (0, T], and we have

u(x, 0) < u(x, 0), (5.2)

for all i G l .  Then u,j, Ui satisfy

Ui,t < diU.i,xx ~ h'i(Ui)Ui,x +  / i f e ) ,  (5-3)

^ i,t ^  diUi,xx h^itijUi'X +  fii^jfi (5-4)

for each i G {1, 2,..., k}, and we can re-write equation (5.4) as

^ i,t — di^i^xx T h^ufjUi'X fiilL),

which together with equation (5.3) gives that

(U 'u)i,t — di(u lf)i,xx h^uf)Ui^x T h^UijU^x “h fi{u) fi(lt).
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Define Wi := (Ui — Ui). Then

Wi,t < diWitXX -  h'^uf ju^  +  h'iiu^Ui'X +  f i(u) -  fi(u). (5.5)

In order to relate f i(u) and fi(u), we can define a function <pi(9) to be ipi(9) := fi(9u + 

(1 — 9)u), so that

v M  =  ^  \ 6 { u )  +  (1 -  0 )(u )]  (Mi -  Ui)  =  ( ^  [ 0 ( a )  +  ( ! - ■ ; ;  Wi-

Therefore

fi(u) ~  fi{u) = ¥i{ 1) -  ¥?i(0) =  ( ^J  dfi[9(u) +  (1 -  9)(u)] dÔ j w{ =: 53i(x, t)wi.

We can re-write the term h'^u^u^x — ti^u^Uix as

hi(di)Ui,x — — hjfUi) — h^Ui) U^x “ ' — Ui,x\ j

and by using the same procedure we have

K fa )  ~ = [  K(9ui  +  ( 1  -  9)uf)(ui -  uf)d9
J o

ti((6ui +  ( 1  — 9)uf) dd ĵ Wi = :  fflti(x,t)wi.

Let h'i^Ui) =: ati(x,t) and *Ki(x, t) := $Jli(x,t) UiyX. Then (5.5) implies

Wi,t < diWijXX +  JHi(x, t)wi -  ai(x, t)witX +  Q3i(x, t)wi. (5.6)

If we let £i(x,t)  =  (53j(x, t) +  ^ ( x ,  £)), then (5.6) can be written as

t — diWijXX OLi(X)t}Wi x̂ T  (x, t)Wi,

for i = 1,2, Applying [38, Theorem 5.3] with the initial condition (5.2) gives us 

Wi = ui —U i< 0  which implies that u^x ,  t ) < w*(rr, t) for all (x, t) E R x  (0, T]. Then the 

result is proved. □

81

^



The following example illustrates that the Comparison Theorem 5.1 does not necessarily 

hold if the co-operative assumption is not satisfied. Note that a related example, that is 

presented in [13], illustrates that without the diagonality assumption on the convection 

term, which means that when ux appears in the v-equation or vx appears in the in­

equation, a comparison result could fail.

Exam ple 5.1. Consider the system below for x  G (0,1), t  G (0,T),

We seek candidate sub u ,v  and super u ,v  solutions, for (x, t) G (0,1) x (0, X), for the 

system (5.7), in the form

if £ >  \  +  2i -  /ii(w)i(2x -  1) =  \  +  t[2 -  h[{u)(2x -  1)]. Since for x  G (0,1), the 

supremum value of |2x — 1| =  1, it follows that 2 h^{u){2 x  — 1) <  2 +  |hj(u)|, and thus

t [2 -  h,1(u)(2x -  1)] <  t [2 +  |/ii(w)|], so ut -  uxx +  h[{u)ux + v > 0  provided h ^u )  and e

Ut — uxx h-^{zi^ux v , 

Vt — rvxx h2 (v')vx. (5.7)

Then u satisfies

ut -  uxx +  h[(u)ux +  v = - ( x  -  x 2) -  2 t +  h[(u)(- t  +  2tx) +  e (5.9)

> —i  — 21 + h[(u)t(2 x — 1) +  e > 0,

are chosen such that e > -  + t [2 +  |/ii(w)|]

Now for u, we clearly have

By following the same procedure for v and v, we obtain

Ut ~ uxx +  h'2 (v)vx = 0 (> 0) for all (x,i),
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and

V-t -  V-xx +  h'2 {v)Vj, = - ^ h ' 2 (v) < 0 provided that ti2 (y) > 0.

If the Comparison Theorem 5.1 held, we would have u{x,t)  > u(x,t)  and v(x,t )  >

y(x,t)  for (x,t)  G (0,1) x (0, T) whenever (u,y) and (u,v) are sub/super solutions on

(0, 1) x (0, T ) respectively, so in particular

u(x,t)  — u(x,t)  > 0, (5.10)

which says that t(x — x 2) < However, for x = (5.10) does not hold for t > 2, whereas

for t G (0,3] we have

i  + 1{2 -  h[(u)(2x  -  1)] <  ~ +  3[2 +  |fc i (« ) |] ,

for all x  G (0,1). So for e — 8, and assuming that hi is such that |/ii(w)| <  11/12, 

then (5.9) holds, and hence (u,v) is a supersolution of the system (5.7) for all (x ,t) G 

(0, 1) x (0,3], and provided we also have h'2 {y) > 0, (u ,y) is a subsolution of (5.7) on 

(0 ,1) x (0, 3]. Thus the Comparison Theorem 5.1 does not hold for system (5.7).

5.1 H y p oth eses o f th e  reaction-d iffusion-convection  

system s

We assume in the following that the functions /  : —> M.k and h : Rfc —> in system

(5.1) satisfy the hypotheses:

si- > 0 for i /  j ;  
duj

^2: /(0 ) =  0 there exists (3 > 0 such that /(/?) =  0, and there is no v  > 0 other than 

such that f{y)  =  0 and 0 < v < (3\

s3: Neither /  nor h depends explicitly on either x  or £, and di > 0 is constant for 

i =  l , 2 , .., fcGM;

54: h has the diagonal form of convection terms diag (hi(ui)) for i =  1,2,..., k G R;

55: The functions /  and h are continuously differentiable at a  for each 0 < a  <  /?;
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s6: The Jacobian matrix / ( 0 )  is in Frobenius form (see, Theorem 3.1) and such that 

the principal eigenvalue 71 (0) of the upper left diagonal block of / ( 0) is positive and is 

strictly larger than the principal eigenvalue of the other diagonal blocks, and there is at 

least one nonzero entry to the left of the each diagonal block other than the first one.

Remark 5.1. (i) Property Si says that the system 5.1 is co-operative, which ensures

th a t it is order-preserving by the Comparison Theorem 5.1.

(ii) In the general case of Property s6, for a system of k equations that satisfy Hy­

potheses Si — s5, when there might be more than two diagonal blocks in / ( 0),

[36, Theorem 2.1], which we quote in Chapter 6 as Theorem 6.3, ensures that the 

eigenvector of f ' ( 0 ) corresponding to the principal eigenvalue of the first block is 

strictly positive (we will discuss in Chapter 6, the strict positivity of the eigenvector 

of / ' ( 0) corresponding to the principal eigenvalue of its first block).

(iii) In most of our examples in Chapter 7, we consider a system of two equations.

/  ( a  ̂\Thus /  (0) has the form, /  (0) =  I where <5, g > 0. In the case when
\ Q  * J

(  a  0 \
/  (0) =  I I where a , g > 0 and a  > cr, it is easy to show, by an elementary

V Q o j
calculation, that the eigenvector of / ' ( 0) corresponding to the principal eigenvalue 

a  of the first block is strictly positive. Indeed, suppose the principal eigenvector of 

/ '(0 ) corresponding to the principal eigenvalue a is z = (x ,y )T . Then gx +  ay = 

ay &  gx = (a — a)y. Since a > a and g > 0 it follows that x  and y have the 

same sign, and thus can be chosen so that z =  (x, y)T is strictly positive.

5.2 Im portant resu lts for th e  P D E  system  ( 5 . 1 )

In this section we present results that are important tools for the PDE system (5.1) and 

will be used to show that the operator Qt defined in (5.18) satisfies Hypotheses qi — q5. 

The following proposition shows the existence of a unique solution of (5.1) and continuous 

dependence in B U C 1̂ ,  R k) on the initial data u0 for time t such that 0 < t < r (u 0)- 

See [15, Proposition A.3] with c = 0 and —h'(u)ux +  f (u )  in place of f ( u : ux).
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Proposition  5.1. Suppose that f  and h satisfy Hypotheses s i — S6 and the initial con­

dition Uq G B U C l {R, R fc). Then there exists a maximal t (uq) G (0, oo] such that 

there exists a function UUo G C l ((0, t(«o)),  B U C l (R, R fc)) such that uUo defined by 

uUo(x,t)  = UUo(t)(x) for each x  G R, t G [0,r(wo)) satisfies (5.1) and its initial data. 

Moreover, there is a unique function Uuo : [0, t (u 0)) —> with these proper­

ties. In addition, given 0 < T  < t (uq), there exist r , K  > 0, depending on Uq and T, such 

that if Uq G B U C l {R, R fc) is such that ||uo — i2o||i,oo < r , then t (uq) > T  and

||wu°(-,t) -  wuo(-,t)||i,oo <  K\\tLo -  Mo 111,00 for each 0 < t  < T .  (5.11)

The next proposition gives a condition under which a unique solution of (5.1) exists for 

all time t. See [15, Proposition A.4].

Proposition 5.2. Suppose that that f  and h satisfy Hypotheses Si — sq. Let Uq G 

B U C 1 (M, Mfc) be such that

sup ||uUo(*, t)||oo =  AT < oo, (5.12)
0<t<r(uo)

where uUo and t {uq) are as in Proposition 5.1. Then t {uq) = oo.

The following theorem shows the existence of a unique solution of (5.1) for all time 

t provided the initial condition lies between the equilibria 0 and /3, in which case the 

solution still lies between these values by the Comparison Theorem 5.1, which allows 

Proposition 5.2 to be applied. This result is a'modification of [15, Theorem A. 7].

Theorem  5.2. Suppose that f  and h satisfy Hypotheses Si~Sq. Then ifuo G B U C1(R, Rfc) 

is such that

0 < uq < (3 for all x  G R, (5.13)

then t (uq) = oo, and

0 < uUo(x,t) < /3 for allx  G R, t > 0. (5-14)
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Proof. Let u0 € B U C 1 (R ,Rk) satisfy (5.13). Since 0 and f3 are equilibria, if we have 

initial data u0 = 0, the solution of (5.1) is u{x,t)  = 0 and similarly, if we have an initial 

data u0 = (3, the solution of (5.1) is u(x,t)  = (3. Then the Comparison Theorem 5.1 

implies that, if 0 < u0 < (3, then

u(x , t) < u(x , t) < u(x, t), (5.15)

where u(x, t)  is the solution of (5.1) with u(x, 0) =  Uo(x). Thus 0 < u(x ,t )  < (3 for 

x  G R, 0 < t < t ( u q ) .  Hence condition (5.12) in Proposition 5.2 is satisfied and the 

results follows by applying the Comparison Theorem 5.1. □

Note that in the following we will always assume that uq satisfies (5.13).

The following theorem states that for given initial data % G ^  fl P b u c 1^ ,  R),  vhere 

Bb u c1^ ,  R) = {u e  B U C 1 : |M |i>00 < R}  , there is a uniform bound for ||w*(-, t ) ^ .  We 

will always assume in the following that the initial condition uq belong to a set ^  n

B buc1^ ,  R) f°r some fixed R  > 0, because we have convection terms and the initial

condition uq lies between 0 and (3, and we want to be sure that the derivatives Uix are 

uniformly bounded all the way down to t =  0. This result follows from [25, Theorem 3.1, 

p.437], and we omit the proof.

T h eo rem  5.3. If  u is a solution of (5.1) with initial condition Uq 6  fl R),

then for given R  > 0, there exists M  > 0 such that

\\ux(',t)\\oo < M  for all t >  0.

The following theorem shows the continuous dependence in a weighted norm for different 

solutions u, u of the PDE system (5.1) corresponding to different initial conditions %0 j u0 

(see [30, p.263-265]). This controls differences between u(-,t) and ft(-, t) in the suprenum 

norm on bounded sets, which is needed to fit the PDE system into framework of Q. In 

particular, this theorem will be useful to prove Hypothesis qA in Lemma 5.2 below. We 

give the proof of Theorem 5.4 in the Appendix.
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Theorem  5.4. (Continuous Dependence Theorem) Given R  > 0, T  > 0, there exists 

C > 0 such that i f u , u  are solutions of (5.1) with initial data Uq,Uq G ^  fl B buci (0, R), 

then for each 0 < t < T ,

IIu{-,t) -& (-,£)||00jt7 +  £1/2||u(-,£) - u { - , t ) ||i)00)?7 < C\\u0 (',t) -uo(- ,  (5.16)

where

T](x) .= ||-̂ || 00,77 •— sup \t]{x ẑ{x) 1, 11 ̂  111,00,77 *=  11 ̂ || 00,17 T \\zx 1100,77 • (5.17)
i- ~r x  cceK

We also include the following lemma which shows that if the initial condition Uq of the 

system (5.1) is non-increasing, then the solution of this system remains non-increasing.

Lemma 5.1. I f  the initial condition u0 G B U C 1 (Mk, R k) of the system (5.1) is non­

increasing, then the corresponding solution u(x,t)  of (5.1) remains non-increasing in x 

for all t.

Proof. The proof depends on the Comparison Theorem 5.1. Suppose that Uq is the initial 

condition of (5.1) for the solution u (x , t ), and consider the initial condition uo(- +  Ax)  

where Ax > 0, so that, by translation invariance, the corresponding solution of (5.1) 

is u (• +  Ax , t ) .  Since Uq is non-increasing and Ax > 0, then u0(- +  Ax) < Uo(-)- The 

Comparison Theorem 5.1 implies that u (• +  A x , t )  < u ( ' , t ), and hence u {• +  Ax , t)  — 

u(-,t) < 0. Since Ax > 0 was arbitrary, it follows that ux(-,t) < 0 since ux(-,t) =

Um □
Ax->0 A x

5.2.1 Results for the abstract tool Q t  for the PD E  system  (5.1)

In the absence of the convection terms in (5.1), it is shown in [42] that such a PDE system 

can be related to (3.1) by taking Q to be its time-t map, that is,

Qt[u0 ](x) := u(x,t) ,  (5.18)

where u{x,t)  is the solution of the problem (5.1) at time t > 0 and the sequence of 

functions un(x) := u(x,nt)  satisfies the recursion (3.1) with Q replaced by Qt. We note
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that Q t , as noted in [26], satisfies the following semigroup properties 

(.9 i ) Qt1 [Qt2[v\\ = Qti+t2H  for a11 positive t\ and t 2 

| ( 92 )  lim Q tH  =  v,' t—

| in the sense that ||Qt[v] — —> 0 as t —> 0.
i
! The following lemma shows that the operator Qt defined in (5.18) satisfies Hypotheses 

j qi — <?3, modified Hypotheses qA,q5, Hypothesis qe, and modified Hypothesis q7. We will

I modify versions of Hypotheses qA and #5, denoted by qA,%, by assuming that the initial
\
! condition uo belongs to the set xpp fl Bbuc 1 (0? R) f°r some fixed R  > 0. This is because of 

‘ the presence of the convection terms, as a result of which it is useful that the derivatives 

Uî x are uniformly bounded all the way down to t = 0. Later we will also prove a modified 

version of Hypothesis ^7, denoted by q7, in Lemma 5.4, whereas in subsection 5.3.1 we 

discuss Hypothesis qs for Qt. This result connects the discrete recursion (3.1) and the 

continuous-time system (5.1). The modified hypotheses qA and q5 are:

qA. For a given sequence {un}n(EN C xpp D B buc3 (0, R ) and v e  xpp D B buc 1 (0, R) such 

that {un} converges to v uniformly on every bounded set, then Qt[un] converges to 

Qt[v] uniformly on every bounded set.

q5. For a given sequence {un}neN C xpp H B buci (0, R), there exists a subsequence 

{unj}n;GN such that Qt[vni] converges uniformly on each bounded set.

Lem m a 5.2. The operator Qt [v\ that is defined in (5.18) satisfies Hypotheses qi — q3 and 

04>05-

Proof, (q 1) We need to prove that the operator Qt is order-preserving, which means that 

if v > u, then Qt[v\ > Qt[u].

Since we have from the definition of Qt that Qt[v] = v(x,t )  and Qt[u] = u(x,t )  

for all x , t  G R, then by the Comparison Theorem 5.1 we get Qt[v] > Qt[u] for all 

x, t E R.

(q2) Since /(0 ) =  f(/3) =  0, then Qt [0] =  0 and Qt[(3] = (3.
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(q3) We need to prove that the translation invariance property (1.7) holds for the oper­

ator Qt. For the initial data u0 there is a corresponding solution u(x, t) of (5.1) and 

Proposition 5.1 says that this solution is unique. Suppose tha t uq(x ) :=  v0(x  -  y). 

From the definition of Qt in (5.18) and the translation invariance in (1.7) we have 

that Qt[Ty[v]]{x) = v(x — y ,t). If we consider v0 {x) as initial data, the function 

V(x -  y , t )  is a solution of (5.18) which by Proposition 5.1 is the unique solution 

V(x — y , t )  of (5.1) with initial condition vq(x ). Since v(x — y , t )  = u 0 (x), then the 

solution that we have is a translation of u(x, t) which means tha t we have got the 

solution Ty[Qt[v]\(x) and it follows that Qt[Ty[v]\(x) = Ty[Qt[v]](x).

(q4) Inequality (5.16) in Theorem 5.4 says that, for C  >  0

Consider [—T, L\. Then we want to show that Qt[un]  ̂ uniformly on [ Z/, Z>], 

which means that for a given e >  0, there exists N  such that n > N  implies that

and in particular,

\\Qt[Vn](-) ~  0 tM(-)lloo,»7 < C\\vn(’) ~  u(') 1100,77 • (5.19)

sup IQt[vn](x) -  Qt[v](x)I < e. (5.20)
xe [ -L,L \

Since \\Qt[vn\(-) -  Q t H ( - ) l  0 0 , 7 7 sup ri(x)\Qt[vn](x) -  Qt[v](x)|, then

xe
sup \Qt[vn\{x) -  Qt[v\{x)\ = sup (1 + a;2) 1 ^  2 \Qt[vn](x) ~ Qt[v](x)\i 1 t 00

< (1 +  L?) sup r-^—t\Qt[v„](x) -  Qt[v](x)\.r  t . 9
xe[ -L,L ]  1 +  x

(5.21)

For S > 0, (5.19) and (5.21) give

xe [-L,L]
sup \Qt[vn\(x) -  Qt[v](x)\ < (1 +  L2)S if Wvn-vWoo^KS/C.
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Therefore

sup \Qt [vn](x) -  Qt [v](x)\ < e if \\vn -  v W ^  < e/C{l  + L 2).
xe[-L,L}

Now since we know that for a given B  > 0, sup \vn(x) — v(x)\ —» 0 as n -> oo,
xe [ -B ,B ]

and from Proposition 5.1 we have that if Ixl > B , then \rj(x)v(x)\ = --------\v(x)\ <
1 ■]" X

M  M
< ------— where M  is a constant. We know that

1 + x2 1 + B 2

sup|?7(x) (vn(x) -  u(x))|

=  max < sup77(x)|un(x) -  u(x)|, sup \rj(x)(vn(x) -  u(x))| \  ,
( j x |  < B  \x\>B

where

I 1 ,  .  .  ,  . . .  1 / .  /  M  I /  M N  2M 2 M
sup _  u(x ))l -  sup r ~ r z 2 A w )  I +  K x )l) ^  sup 7 T T 2 ^  -1 , 02|t|>5 1 T x PI>7?1 d* 1 +  x I T  B

Now choose No sufficiently large such that for n > N0,

sup |»j(i) (vn(x) -  u(z))| <
*€[-B,B] C ( l  +  i+ J

mi 2M  e r „  2MC(1 + L2) ^  „
Then  -----—-  <  — 7--------777- 11 B  > \   . For fixed such B , and since we

1 +  F?2 6 ( 1  +  L l ) V e
know that |?7(x)| <  1, we have that

sup rj(x)\vn(x) -  v(x)\ < sup \vn(x) -  u(x)|,
\x\<B \x\<B

and since sup |un(x) — u(x)| —> 0 as n —>■ 00, there exists N 0 such that
xe [ - B , B ]

sup |un(x) -  v(x)\ < , T0. when n > N0. Thus
x e [ - B , B ]  6(1 +  L z)

\   «max < sup?y(x)|un(x) — u(x)|, sup \rj(x)(vn(x) -  u(x))| > <
[ \ x \ <b ' k n  y J V \x \ > b  V " ' j  -6(1 + L2)’
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and hence Q t [ v n \ —> Q t [ v \  uniformly on [—L ,  L \ .

(q5) Define zn := Qt[vn]. Then we want to show that {^n}nGN is uniformly bounded and 

uniformly equicontinuous on each bounded set in R.

Fix t > 0. Since 0 is an equilibrium, (5.11) in Proposition 5.1 implies that 

II(^n)a;||oo < Af, and 11Zfi11oo < M, for some constant M  independent of n E N. 

So sup \zn(x)\ <  M , and hence ||Qt[i>n]||oo <  C  for a constant C  > 0 , for all
z€R,neN

77, E N. So Qt[vn] is uniformly bounded.

Moreover, since Qt[vn] — where un(-,0) =  vn. By the Mean-Value Theorem,

there exists c E (x, y) such that

| ||un(x,t) - u n(y ,t)||oo <  \\(un)x(c,t)(x -  y ) ] ^  < | | ( ^ ) x(c,£)||oo|x -  y\ < M \ x - y \ .
i

; Therefore for e > 0, \un(x,t) — un(y,t)\ < e when |x — y\ < for x , y  E R, t >  0, which 

! means that Qt[vn] is uniformly equicontinuous on [—L,L]. Thus we have that Qt[vn] 

j is uniformly bounded and uniformly equicontinuous on R. Then, for a given bounded 

: set [— L, L], Qt[vn] is uniformly bounded and uniformly equicontinuous on [—L, L], so 

; Arzela-Ascoli’s Theorem (see for instance [34, Theorem 2.5, p.49]) implies that there 

exists a subsequence {^nj}nz€N such that Qt[vni] converges uniformly on [—L, L\. By a 

diagonal subsequence argument, there exists a sub-subsequence {vnik}ni eN such that 

Qt[vmk] converges uniformly on each bounded set. □

The following important theorem shows that the left slowest spreading speed of the time 

1 map of the PDE system gives a spreading speed for solutions of the system (5.1) itself 

where the initial data is non-decreasing in the sense that (5.22) and (5.23) are satisfied. 

This result gives us important information about the continuous-time problem (5.1) using 

the discrete recursion (3.1). This theorem is a modification of [42, Theorem 4.1], with 

non-decreasing initial data instead of non-increasing and with the introduction of the 

convection term h' (u)ux. Note that here we use Theorem 5.2 and Theorem 5.3 to ensure 

that h!(u)ux and f (u)  both are uniformly bounded.

T h eo rem  5.5. Suppose that the function f  satisfies Hypotheses E\ — E 3 and let Qt be the 

time t map in (5.18). If  the left spreading speed corresponding to non-decreasing initial



data c in (3.12) is defined to be C\, then the left spreading speed for  Qt map, ct =  tc, and 

for any initial function Uq(x ) ipp(~1 B U C 1, the solution u of  (5.1) has the properties 

that for each e >  0

lim
t —>oo

max Uj(x. t )
x < t(c—e)

=  0 for some index j , (5.22)

lim
t —>oo

max — u(x.t )}
x> t(c+ e )

- 0 . (5.23)

Proof Since is closed and bounded and we know by the Comparison Theorem 5.1 

that 0 <  u(x,t)  < (3 for all (x, t), then u is bounded. Since /  and h'(•) are continuous 

then \f(u)\ < M  and \h!(u)\ < M  for all u G 4>p. Since u0 G B U C 1, so Theorem 5.3 

implies that \ux(x, t ) | is bounded for all x  G M, t > 0. It follows that h'(u)ux is uniformly 

bounded for (x,t)  G [0,1] x [0,T]. Thus there exists p > 0 such that

| f ( u)  +  h'(u)ux \ <  p for u G ipp. (5.24)

Let C(0) be a positive principal eigenvector of Bo. For any e, S > 0, there exists a large 

integer I such that

p/l < (<5/4)C(0). (5.25)

Now we are using the left spreading speed c for Q to be applied to the time 1 map Q i,

so Property 3.13 which holds for the index j , can be apply to the time 1 map Q\ and the
C\ c

time l / l  map Qip of the system (5.18) gives Cip = — := Property 3.13 for Qip with 

e replaced by e / 2  shows that there exists a number Ng such that

Uj(y, n/l)  < (S/2)(j(0) when y < n(c/l  — ^) and n > Ng. (5.26)
La

Since we have (5.24), so we have that Uj:t — djUjyXX < p. We now compare this equation 

with the heat equation Vjyt — djV^xx =  p. Since Uj is a subsolution of the heat equation 

with the same non-decreasing initial condition (uo)j} then the Comparison Theorem 5.1 

gives Uj < Vj. The standard formula of solution of the heat equation is the following, see
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[5, Theorem 9.1,p.249].

V i ( x , t )  =  /  r j ( x - y , t - n / l ) u 0j ( y ) d y  + p  /  /  T j ( x  -  y ,  t  -  n / l ) d y d l ,
J m. Jn/l J m.

where Tj(x.t)  — —.  ̂ —e a;2/4dJt. Suppose that for the index 7, and a constant R  6 R, 

U0j(y) < <5/2^j(0) if |?/1 < i?, whereas uo^y) < /3j if \y\ > R. Since we know that

/ T j ( x - y , t ) d y =  /  Tj(x -  y, t  -  n/l)dy = 1,
«/M J K

thus for (x, £) G (0,1) x (0, T), we have

WjOM) < /  I j ( x - 2/, ( t - n / / ) ) u 0.(7/)d?/ +  p ^ - n / / ]
J m

< [  F j ( x ~ y ,  ( t -n / l ) ) (6 /2 )C j(0 )dy+ [  Tj(x -  y, (t -  n/l)){3dy +  p[t -  n/l]
J \ y \ < R  J \ y \ > R

< (<V2)0(0) [  T j { x - y , ( t - n / i ) ) d y  + fa [  Tj(x -  y, (t -  n/l))dy  +  p [t -  n/l]
J \ y \ < R  J \ y \ > R

< (S/2 )Q(0 ) +Pj [  Tj { x - y , ( t - n / l ) ) d y  + p [ t - n / l ] .

Now we want to evaluate the term — y , ( t  — n / l ) ) d y  by substituting the form

of Tj to estimate 1^(0, t )  and then apply the shift to estimate Uj(x,t) as follows,

exp { - (x  -  y ) 2/ 4d j ( t  - n / l ) }  d y \x=0
J\y\>R 4?rd j ( t - n / l )

=  I  a^TTT— .T7nexP{-(2/)2/H ( i - « / 0 } < i ? / ,J \y \>R w d j ( t  -  n / l )

that gives

/ _  i i ^ h w ) e x p { ~ {y)2/4dj{t~ n / l ) } d y
1

+ J R Tm T ^ J T ) exp H ?/)2M V  -  « /0} dy
r°° 1

=  2 A  -  n/l)  exP -  n / l )}dy .  (5.27)
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Since fn°° e ay2dy = ^  , so if we let b = y — R, a = t , ---- 7—, then since (b + R ) 2 =
Jo y 2 \J a y 4d j ( t - n / i y  y J

b +  2bR +  R > b + R  , we obtain that

aR2 1 IK
poo poo poo
/  e -“(6+B)2d6 < /  e -a{b2+F?)db = e- a R 2  /  e~al,2db = e-

J o  J o  J o  2 V a

Thus (5.27) becomes
1 foo f 1

yjivdj(t -  n/l)  0 P l  4d j ( t - n / l )
{b +  R f  \ db

< 1
yjirdj(t — n/l)  

1

1
exp

-R? 7r
2 \4d j( t  — n/l)  J  y  — n/Z) 

i?2 \
exp '

This means that if U j ( y , n / l )  < (S/2)Q(0) for y < R  and U j ( y , n / l )  < /3j for all ?/, then 

for 0 < t  — n / l  <  I / I ,

U j ( 0 , t )  < p [ t -  n / l ]  +  ( 6 / 2 ) ( j ( 0 )  +  fdj t ( d j ( t - n / l )) 1 exp (
- R 2

4 dj(t — n/l)
(5.28)

Then if we choose R =  R$ sufficiently large, we get that (3j exp 

by (£/4)(j(0) when 0 < t  — n / l  < 1 / 1 .  Thus (5.28) implies that

- R 2

4 dj(t — n/l)
is bounded

U j ( 0 ,t ) < p [ t -  n/l] +  (<5/2)O(0) +  (<5/4)C,(0).

By (5.26) we get that for x < t(c — - )  — Rg,
Ld

Uj(x,t) < (<5/4)O(0) +  (<5/2)C,(0) +  (5/4)<j(0) =  SQ(0),

which means that Uj(x,t) is bounded by ^Cj(O) when

x < t { c -  - ) -  R s, (5.29)

0 < t  — n/ l  < 1 //, and n > Ng. So (5.29) is implied by the inequality x < t ( c  — e), since
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x < t(c — e), and if t > max { N s / l ,  2R s / e }  , then it implies that x < t{c — e/2) — R s  if 

t > 2R s / e .  Since <5 is arbitrary, for the index j  we have

lim
t —> oo

max Uj(x.t)
x < t(c—e)

<  % ( o ) .

By applying the same procedure to the function (3 — u(x, t ), the theorem is proved. Note 

that in this theorem and in contrast to [42], we are allowing that c ^  Cf, since we apply 

the characterization property (3.13) for the left spreading speed that holds only for the 

index j  but not for all the components of max Uj (x, t ) .  □
x < t ( c — e )

The following theorem establishes the existence of travelling waves for the continuous­

time recursion, introduced on [26, p.91], satisfying

u (x , t 1 + t 2) = Qt2 [u(-,ti)](x). (5.30)

This theorem extends Theorem 4.1 from the discrete-time recursion (3.1) to the continuous­

time recursion (5.30). It is important for the following theorem to note that, in terms of 

Qt, Theorem 5.2 implies that Qtfyp H B U C 1} C ^/3- This result is a modification of [26, 

Theorem 4.1] for non-decreasing travelling wave solutions instead of non-increasing.

T heorem  5.6. Suppose that Qt is a family of operators defined on the set 'ifp that satisfy 

the semigroup properties (g\ ) and {gf) and such that Lemma 5.2 holds for Qt for each 

t > 0. Let the left slowest spreading speed of the recursion (3.1) be c with Q replaced by 

Qi. Then

(i) if  c < c, there is a non-decreasing travelling wave solution Qt [w](x) = w(x — ct) of 

(5.30) of speed c with w{oo) =  jd and w(—oo) an equilibrium other than p.

(ii) If there is a travelling wave w(x — ct) with w(oo) =  (3 such that

liminf W{(x) =  0 for at least one component z, (5.31)
x —t — o o

then c < c.

(in) If  (5.31) holds for all components of w, then c < Cf, where df  is defined in (3.29).



(iv) I f  there is t 0 > 0 such that the recursion (3.1) with Q replaced by Qto has no constant 

equilibria other than 0 and (3 in 'ifp defined in (3.5), then the left spreading speed 

for the time t map Qt, c[Qt\ = Cf[Qt\ = tdf[Qi] for all t > 0 which means that the 

recursion has a single left spreading speed.

Proof. For the proof of the first three statements (i) — (Hi), we can follow the proof of 

the corresponding three statements in [26, Theorem 4.1].

(iv) We want to prove that Cf[Qt\ =  c[Qt\. We proved in Theorem 5.5 that c[Qt] = tc[Qi], 

and by using the same argument for Cf[Qt], we get that Cf[Qt] = tdf[Qi\. Thus for 

t0, we have Cf[Qto] = t 0 cf [Qi] and c[Qto] = t0 c[Qi]. From Theorem 4.1 (iv) we have 

toCf[Qi] = t 0 c[Qi], which implies that cfiQi] =  c[Qi]. Since t is arbitrary, then we obtain 

that Cf[Qt] = c[Qt] and the theorem is proved. □

Note that in subsection 5.3.2 we will present results for the PDE system (5.1) showing 

that the left slowest spreading speed c can be characterized in terms of a class of travelling 

waves, and give a condition that guarantees that (5.1) has single left speed.

5.3 Single sp eed  and linear determ inacy for th e  P D E  

system  ( 5 . 1 )

We can use Theorems 4.2, 4.3 from Chapter 4, that contain conditions for single right 

(left) spreading speed and right (left) linear determinacy for the discrete recursion (3.1), 

to deduce results for the continuous-time system (5.1). Again, we need to consider both 

right linear determinacy, corresponding to non-increasing initial data, and left linear 

determinacy, corresponding to non-decreasing initial data.

5.3.1 Linearization operator M  for the PD E  system  (5.1)

The linearization operator M  at 0 of the time 1 map Qi is the time 1 map of the linearized 

system (5.1) at 0, which is

'U'ij +  hfi0)uix — diUijXX +  ( f  (0)u)i, i — 1,2, ...k. (5.32)
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In order to derive an explicit characterization of M, we seek a solution of (5.32) of the 

form u(x,£) =  e-/iX?7(t), where fi 6 R. For each z, we have

=  (/i2 diag d* +  /x diag h-(0) +  / ( 0))

thus

=  fi2 diag di +  /z diag /z-(0) +  / ( 0 ) .  (5.33)

By Property si, the off-diagonal entries of are nonnegative.

The vector-valued function 77 is a solution of the system of ordinary differential equation 

with constant coefficients that satisfies

i)t =  C^r] with 77(0) =  a  E R k. (5.34)

Since we have 77(t) = exp(C^t)r](0), see [4, p .169], then u(x, t)  = e-/xx exp(C/xt)77(0), which

implies that the time 1 map M  is

Mi[e~^xa] =  e x p ( C ^ a .  (5.35)

Then the using characterization of the matrix BM in (3.4) and (5.35) with t =  l ,x  =  0,

provided that 77(0) =  a, we find that

B^a  =  exp [CJ a, (5.36)

and hence =  exp[Cy. Since C defined in (5.33), is in Frobenius form, so [37, p.86, 

Theorem 8.1, p.257] with an induction argument imply that expfCJ =  B M is in Frobenius 

form. Moreover, by [10, Theorem 2.52, p. 168], we have = ela^  where 7a denotes

the principal eigenvalue of the crth block of the matrix defined in (5.33). Hence we

deduce that Hypothesis q$ holds for Qt.

Corresponding to the definition of linear value in (4.10), we can define the linear value
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for the first block of the matrix CM, called the right linear value, by

<5'37)

Note that we use the notation c here, as in Chapter 2, because in the case when /'(0 ) 

is actually irreducible (so has only one irreducible block in the Frobenius form), it is 

easy to see that this definition of c coincides with the natural extension to the system

(5.1) of the definition of c in the scalar case discussed in Chapter 2, namely that the 

travelling-wave problem linearized about the unstable equilibrium 0 has a real negative 

eigenvalue corresponding to a strictly positive eigenvector if and only if c > c. In fact, 

(5.37) yields an alternative characterization of c in the scalar case as well. When there

are two or more blocks in the Frobenius form of /'(0 ), which we will discuss in Section

6.2, we cannot conclude that these two definitions of c necessarily coincide.[

In order to consider linear determinacy for non-decreasing initial data as well as non­

increasing initial data, note next that if we define u(x, t) = u(—x, t) where u is a solution 

of system (5.1), then u is a solution of the system

'U’ijt — diUi^xx "t" (5.38)

for which the related coefficient matrix is

Cp, = p 2 diag d i -  p, diag h[(0) +  /'(0 ). (5.39)
i
i

| Clearly system (5.39) is obtained from system (5.1) simply by replacing h by h := —h,

| where /  and h satisfy Hypotheses Si — s^ if and only if these hypotheses hold for /  and
!
I h. So results for non-decreasing initial data of (5.1) can be deduced immediately from 

results on non-increasing initial data of (5.38).
I
I For jl which is defined to be the value of / i  > 0 at which the infimum in the definition of c

| in (5.37) is attained, the following lemma shows that in the case when we have a system

| of two equations, as in most of our examples, there is a sufficient condition for p, to equal
i
f
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//, the value at which the infimum in the definition of the linear value corresponding to 

Cfi, that we called left linear value

is attained, where 71 is the principal eigenvalue of the first block of C^. Note that for 

such /x, (5.37) and (5.40) become

i  l i ( U)  s  7 1 ( A )C = — — , c — — — . (5.41)/x /x >

Here and in the following, we denote by £(/x) an eigenvector of C^ corresponding to the 

eigenvalue 71 (/x) and by £ (/x) an eigenvector of corresponding to the eigenvalue 7i(/x).

L em m a 5.3. In the case that (5.1) is a system of two equations, i f  f  and h satisfy

f a  0 \
Hypotheses s\ — Sq, and f  (0) =  I where a, g > 0 and a  > a, then (i) /x = p }

\ Q  * )
and (ii) the eigenvector £(/x) of corresponding to 71 (/x) can he chosen equal to the

eigenvector ((p) of corresponding to 71 (/x) i f  and only if  h\(0) =  h'2 (0 ).

Proof. Part (i) is immediate from the definitions of c and c. For (ii), let t i (0) = diag(a, h)

and C(aO =  ( 1 a 2 )  • Then equation (5.33) yields

d\ii2 +  a/i +  a  0
C» = \  ,  2 ,  I '  (5.42)

g a2pL +  fib +  a

Let E{p) := +  ^  +  a  Then E'(p)  =  d\ — =  0 if and only if fi = y/a jd i .
 P A4 A4

So Jl= yja/dli, and therefore

2a T a-\Jaj d\ 0
Cv =  | ^ a  , ) • (5.43)

Q d2 —— h hyjajd\  H- o

In order to find the principal eigenvector £(//) corresponding to the principal eigenvalue
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7 i (aOj we have

2 CL -|- CL y j a / d i  0

Q ^ 2 ~ r  b y / a j d \  +  a  j  \ a 2a\

which yields that

I =  ( 2 a  +  a y /a /d i j  f I , (5.44)
*2 )  \  0 L 2  )

a 2 = - q /  (^ fa jdk(b  -  a) +  a (^ -  -  2) +  cr̂ J . 

On the other hand, since part (i) holds, then equation (5.39) yields

di u2 — au + a  0
C „ = |  | ,  (5.45)

q  a  2(1 — j i b  +  <t

which implies that

2a — a y j a / d i  0

 ̂ 6 d2~^i—  b y / a / d i  +  a

The second component of the principal eigenvector f(/z) — ( 1 ch )  corresponding to 

the principal eigenvalue 71 (/i) is

a 2 =  - q /  ^ y / a / d i ( a  - b )  +  a{^  -  2 )  -b  o j

It is then clear that £(//) =  f(/x) if and only if a = b. □

For a system with only two equilibria 0, (3 with f3 > 0 and /  (0) an irreducible matrix, 

Lui [29] gave sufficient conditions for spreading speeds to equal linear values, and these 

results were generalized by [42] to systems where the Frobenius form may have multiple 

diagonal blocks and there may be more equilibria other than 0 and (3 in [0, (3] provided 

any additional equilibrium v has i/i = 0 for at least one i € 1,2,...,&. Note that in 

Chapter 2, we discuss the case of a single equation, and have only two equilibria 0 and /?, 

whereas in this chapter, we have a system, which, by Hypothesis S2 , may have equilibria 

in addition to 0 and [3 if they have at least one component equal to zero.
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The following lemma proves that a modification of Hypothesis q7, denoted by q7 , is 

satisfied by the time 1 map of the system (5.1). We modify Hypothesis q7 to the case 

| when the initial condition v E B U C 1 of (5.1) is small enough not only in || • but also in 

|| • ||i oc. The reason for this modification is to control t i(u)ux in the proof of Lemma 5.4. 

Since the role of q7 is to ensure that ca > ca, it is sufficient to consider initial conditions 

that are small in ||* || 1 ,0 0  in order to estimate the spreading speed ca. Lemma 5.4 is a 

modification of [42, Lemma 4.1] to include the convection terms h'^u^Ui^. It is needed 

to ensure that the right spreading speed of the recursion (3.1) is bigger than or equal to 

the right linear value. The modified hypothesis q7 is :

q7. A family of bounded linear order-preserving operators on valued functions 

satisfies the following properties:Ij

(i) For every large k > 0 and v : R —» Rfc, there is a constant vector w > 0 and 5 > 0 

such that Q[v) > M K[v\ and |M |i)0O < S.

(ii) For every positive //, the matrices B ^  that can be characterized by B ^ a  := 

M*[exp(—fix)a]\x=o converge to B^ as n —> 00.

L em m a 5.4. I f  the functions f  and h satisfy Hypotheses si — sq, then there exists a 

family of bounded linear order-preserving operators on Rk-valued functions which 

satisfies Hypothesis q7.

Proof Choose p > 0 such that the diagonal elements of the matrix f  (0) +  p i  are strictly 

positive. Hypothesis Si then ensures that all the entries of this matrix are non-negative. 

For any k, > 1 and p, > 0 we define M[K>) [i>] to be the time one map of the linear system

witt = diag diWiiXX -  diag fc-(0)u;i|!E +  (1 -  kT1) / ^ ) ^  -  n~lWi(p +  1), (5.46)

w(x , 0) =  v(x).
\

That is, M ^[v \ (x )  := w(x, 1). The idea of the proof is to show that for a sufficiently 

small initial condition v , we get Q[v\ > M K[v]. As a tool, first consider the case when



v is instead given by v = e Mxa  with p, > 0, v is non-increasing. The solution w of the 

system (5.1) is w(x, t)  = e_/iX77(t), where 77 satisfies that

77 = p? diag di +  p  diag h-(0) +  (1 -  k ^ /(O )  — k l (p + l ) / j  rj(t).

For the initial condition v = e ^ ol, and with B\f* that is defined in Hypothesis #7 (ii), 

we have that

B ^ a  = M ^ [ e -A4Xa ]  =  e _/iX e ^ 2 diag di+/x diag ^ ( o ) + ( i - « _ 1 ) / / ( o ) - k - 1( p + i ) / Q;^

and at x  =  0, =  eM2 diag di+Mdiag7ii(o)+(i-« 1) f  (o)-fc 1i ( p + i)̂  \y h en ^-1 q, the matrix

converges to the matrix as k —> 0 0 . Thus we have proved Property (ii) of 

Hypothesis q7.

Now in order to establish Property i of q7, we define for each i the projection

W M },- =
i f  { / ' (°) +  PI } ij >  0 

0 i f  { / '( 0 )  +  p / } . .  =  0.

■ Note that since p > 0, {IJi[a]}i = a*, and that 77* [a] < a  when a  > 0. Hypothesis Si
i
I ensures that

i / < ( < * )  > (5.47)

Moreover,

i7iH - V / i(0) =  f ^  (5.48)
j = l J

and since {77* [a] = aj if { /  (0) +  p i}  .. ^  0? then (5.48) becomes

77* [a] ■ V/*(0) =  ^  a.j • ^ ( 0 )  =  ( / ( 0 ) a )  for all a. (5.49)
j=i U"

| Suppose that a  is a positive lower bound for the strictly positive terms { / ( 0 )  +  p /} .. > 0,
i  ̂ J i-3

j that is 0 < <r < { /(0 )  +  p7}.., which implies that 1 < cr_1 { / ( 0 )  +  p i } ... Since

f!
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l^iHI = (E"=x WM}?) < E "=1 { n >ia ] } j , and

i t ,  {ffM ^ ff' I{ ( / ( ,))+PI) a}. = lr' 1 i t  ( f ' ( ° )  +  p l )  a j ,
j=i j=i

so for all a > 0 we have

n n

I f l i M  <  X  W H l j  ^ CT_1 X  ( / ( ° )  + P1) ai = ° '~1 nila] ■ V f ' ( o )  + poti
3 = 1  3 = 1

(5.50)

If we let C(0) > 0  be the eigenvector of Bq with ||<5(0)||i =  1, there is 6 K >  0 such that if 

0 <  a < SK( ( 0), then for all z, the differentiability of fa at 0 shows that for given k > 1 

and for e — u j /t, there exists S ^  0 such that if |<a| ^  S, then |\/ faifa'j • TIjfay.

(t7-//c)|77j[a]|. By substituting (5.47), (5.49) and (5.50) into this inequality, we get that

(f'(0)a)i ~ (1/ k) ( f  {0)a)i +  pai < f(a) ,  (5.51)

when 0 <  a < 6 K£(Q). Now we observe that the solution of the system (5.46) with initial 

condition v = ^ e _7l(0)C(0) is £ree_7l(0)e[(1-,c 1)7l(0)_K lp]‘f(0) and for 7x(0) > 0, n large, 

we have (1 — «-1)7i(0) — K~lp > 0. Therefore for 0 < t < 1 we have

^e-^oy ii-K -bT doi-K -M t^o) < ^ e _7l(o)e[(1- 'c_Ihl(o)-,' ' 1',]f(0)

=  ,5,te - '‘_I<'n<‘» + 7 (0 ) <  ^C (O ).

Thus if we take the initial data |M |loo small enough such that 0 <  v < <5Ke-7l^C(0), 

then the corresponding solution Wi of (5.46) satisfies 0 < < SK£(0) for 0 < t <  1.

Then we show that Wi is a subsolution of the system (5.1), as follows. Since we know 

that Wi,t =  diag diwi,xx ~  diag /i-(0)iui>x +  (1 -  ^“ ^ / ( O ) ^  -  n~lWi(p +  1), which implies 

that w^t — diag diWiyXX — diag h'^w^w^x +  fa(w) holds if and only if

-  diag + (/'(0 )iu ) - k t V O o + I )  <  -d iag  ^ ( w ^ w ^  + fa(w). (5.52)

Since 0 <  Wi <  5«C(0) and (5.51) holds for 0 < a  < <S«C(0)j so taking a = Wi in (5.51),
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(5.52) becomes

(diag h'^Wi) -  diag h-(0)) witX +  (1 -  « *) (f(O )w ) -  k 1 (pw)i -  f i(w)  -  k lWi < 0.

Now the Mean Value Theorem implies that — h-(0) =  h”(^)wi, therefore |h'^wi) —

h^(0)| < M\wi\, where M  is a constant such that |/k(£)l < M  for £ G [0,ft]. Moreover, 

by Proposition 5.1 with Uq = 0 and T  = 2, there exists K  such that (5.11) implies that

lk (-ft) |k o o  <  ^IM koo for each 0 <  t < 2,

K- i  K- i
from which it follows that | | ^ | | loo < K |M |i>00 <  -r-r if \\v\\hoo <  7777, and hence for’ M  K M

K~l
all t E [0,1], ||wt,x||<X) < Thus we can choose SK smaller if necessary to ensure that 

if IMIi,oo ^  6 *’ then l(^ (° )  “  K (wi)) wi,xI < M\wi\ • k~1/ M  = K,-lWi for all t  E [0,1]. 

Therefore

(diag h'^w) -  diag h '(0)) wijX +  (1 -  /sT1) (f'(O)w) -  K~1 (pw)i -  f i(w) -  K^Wi

<  | d i a g  h ^ W i )  -  d i a g  / i - ( ° ) I K , * l  -  k t V  +  ( 1  -  f t - 1 )  ( / ' ( 0 ) i u )  -  K ~ l ( p w ) i  -  f ^ w )

< K_1Wi -  k~ 1w1 +  (1 -  kT1) ( j ’(0 )w^j -  K~l (pw)i -  fi(w)

=  (1 -  kT1) (0)w) _ -  K~1 (pw)i -  f i (w ) < 0. (5.53)

Then (5.53) shows that is a subsolution for the non-linear system (5.1). By applying 

the Comparison Theorem 5.1 with the initial condition v and noting that w (1 , 1) =  

M U) [?.;] (x), it follows that Q[v] > M ^ [v \ ,  and the lemma is proved. □

5.3.2 Travelling waves and spreading speeds for the PD E sys­

tem  (5.1)

The following theorem shows that the left slowest spreading speed c can be characterized 

as the maximum speed of a class of travelling waves. This result gives a condition to 

guarantee that the PDE system (5.1) has single left speed. This result is a modification 

of [26, Theorem 4.2] to the case of non-decreasing initial data.
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T h eo rem  5.7. I f  the system (5.1) satisfies Hypotheses Si — Sq, then for every c < c, 

the system (5.1) has a non-decreasing travelling wave solution w(x — ct) of speed c with 

w(oo) = (5 and w(—oo) a zero of f  other than (3. I f  there is a travelling wave solution 

w(x — ct) with 10(00) =  p such that for at least one component i,

liminf wpx) = 0,
X — ¥ —  0 0

then c < c. Moreover, i f  this property holds for all components of w, then c < df.

I f  there are no constant equilibria other that 0 and (3 in ifp, then c = Cf ,  which means 

that the system (5.1) has single left spreading speed.

Proof It is shown in Lemma 5.2 and Lemma 5.4 that Qt satisfies Hypotheses 51 — 53, 

54 — #5) 57> and since Qt defined as the time t  map of the PDE system (5.1), so we

can apply Theorem 5.6 for Qt which corresponds to [26, Theorem 4.1] to get the results

and then the theorem is proved. □

For non-increasing initial data of system (5.1), the analogue of Theorem 5.7 for charac­

terizing right spreading speed as the minimum speed of a class of travelling waves and 

gives a sufficient condition for (5.1) to have single right speed is the following.

T h eo rem  5.8. I f  the system (5.1) satisfies Hypotheses si — Sq, then for every c >  c, this 

system has a non-increasing travelling wave solution w(x — ct) of speed c with w(—00) =  [3 

and w{00) a zero of f  other than p. I f  there is a travelling wave solution w(x — ct) with 

w(—00) =  P such that for at least one component i,

liminf Wi(x) =  0,
x—>oo

then c >  c. Moreover, i f this property holds for all components of w, then c > Cf.

I f  there are no constant equilibria other than 0 and P in 'ipp defined in (3.5), then c = Cf,

which means that the system (5.1) has single right speed.
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5.3.3 Sufficient conditions for linear determ inacy for (5.1)

A simple combined condition, involving both /  and h, that ensures that (5.1) is right 

linear determinate, will be given in Theorem 5.9. The following lemma shows that the 

solution u(x, t) of (5.1) with continuous and piecewise C 1 initial condition Uq, exists under 

a certain condition. Lemma 5.5 is an important tool for Theorem 5.9.

L em m a 5.5. I f  the initial condition uq is continuous and piecewise C 1 and satisfies that 

uq G [0,/3\, then the solution u(x,t)  of the PDE system (5.1) exists and is such that there 

exists M  > 0 such that \ux(x,t)\ < M  for all x  G R, t > 0, and u(x,t )  G [0, ft] for all 

x  G R , t  > 0.

Proof. Since uq is continuous and piecewise C 1, there exist £2, ..., such that uq is C 1 

on R \ l ^ 1, £2, ..., £m}, and continuous on R, so there exists a sequence un G B buci (0, R )fl 

for some R > 0, such that ||wn — wolloo —>• 0 as n —> oo. Then for each n, there exists a 

solution vn of the PDE system (5.1) with un(x, 0) =  un(x). Moreover, there exists M  > 0, 

independent of n, such that \v*(x,t)\ < M  for all x G R, t ,n  > 0, and vn(x,t)  G [0,/3] 

for all x  G R, t ,n  > 0. Then there exists a subsequence uj and limit u G C(R x [0, oo)) 

such that —> u in C  ([—M, M], [0, T]), v™ —>• u in C 2+OL,l+OL ([—M, M], [S,T]) for each 

5, T  > 0, some a > 0, and |ux(x, t)\ < M  for all x  G R, t > 0, and u is a solution of the 

PDE system (5.1) on R x (0, oo), that satisfies that u G [0, /5]. □

The following result uses a modification of the ideas in [42, Theorem 4.2]. This result 

corresponds to Theorem 4.3 for the discrete-time recursion (3.1). It gives simple condition 

to guarantee that the system (5.1) with non-increasing initial data, has the right linearly 

determinacy.

T h eo rem  5.9. Suppose that the functions f  and h in system (5.1) satisfy Hypotheses 

Si — sq. Assume that either

(i) fi is finite,

7i(£) > 7a(£)> for alia > 1, (5.54)

and

fi(pC(fi)) < Pfi U i(°) “  KipCiifi))] <*(£) +  p ( f  {0)((P>))i f ° r a l lp>  0, (5.55)
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or

(ii) For some sequence v —> p, for each v the two inequalities in part (i) hold with p  

replaced by p v.

Then

C f  = c = c = c+,

where p defined in p.98, and these speeds defined in (3.32), (4.10) and (4.11) respectively. 

Thus the system is right linearly determinate.

Proof. The key to the proof is to show that S(x , t )  := min ^ e ~ ^ x~ct\ ( p ) , /3 j is a super­

solution of (5.1). First note that S(x,  0) =  min {e~p,xCl(p), /?}, Then we will show that 

j for each z,

| Si,t > diSitXX -  h'fiS^Sfx +  f i(S),  (5.56)

} at each (x,t) at which Si is smooth. There are four possibilities of S(x, t) ,  namely
[ _  o

| (1) when S(x,t )  = in a neighbourhood around the point (x0,to), then

| S{jt = cpe~^x~ct\ i ( p )  for each z, and thus

|

| diSfxx ~  h'fiS^Sfx +  f i(S)

I
| Then (5.55) can be re-written as
!

f i ( K ( f i ) )  +  <  Pfih' i (0)Ci (f i)  +  p ( f  {0 ) C ( f i ) ) i  p >  0 ,

so taking p = e- P(x-c<)) (5.55) implies that

< d i i f l f e - ^ - ^  +  ph'ti0) • e ^ Q O i )  +  e - « * - fc)(/(0)C (A))i  

= { \ d p ?  + flh'(0) + / ( 0 ) ]  C(£)}.

=

=  s iit,
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where d is defined in (5.41), and hence (5.56) holds.

(2) Since / ( f t  = 0 and (3 is a solution for (5.1), then when S(x, t) =  (3 in a neighbourhood 

around the point (x0 ,to), (5.56) holds.

Now we consider the cases when f t  is given by either e~ ^x~ct^Q(ft) or f t  in a neighbour­

hood around the point (xofto), but S  is neither e- ^ x-ct)f(/z) nor f t  Thus we have

(3) Si — e- ^ x_ct^i(/i), and Sj = f t  for some j .  From the definition of S(x, t) ,  (5.56) 

holds for such % if and only if

&(fi) + M S ) .  (5.57)

o

| Since we know that 5  < e~^x~^( ( f i )  and Si = e~^x~ct') , by Hypothesis Si, we have

| that f i(S)  < f i (e~^x~ct>) (,(&)), so if we know that

|
| then (5.57) holds, which is the same inequality that we have in case (1), and hence (5.56)

| holds.I
; (4) Si = ft, and Sj = e~^x~ct^(j(p,) for some j .  (5.56) is satisfied if and only if 

! 0 > f i(S)  anb by the definition of S  we know that S  < (3, whereas Si =  ft. There- 

1 fore f i(S) < ft ( f t  = 0, and hence (5.56) holds.

| Thus (5.56) holds whenever f t  is smooth.

Now define z(x, t)  := S(x ,t )  — u(x, t), where u(x,t)  is the solution of the PDE system

(5.1) with initial condition uo(x) = S(x,  0). Then z(x, 0) =  0, and at (x , t ) where f t  is

smooth, we have

I %i,t ^  x 'U'iyX ( f t ,®  ^ i , ® ) f t ( f t )  T  f t ( f t  f t ( f t

! ft-̂ z,®® -|- Hi(x, t)ziiX T (F(x , t )z) i , (5.58)

where H  = diag ( i f t , ..., if t)  is diagonal and bounded, and F  E Mfcx/c is bounded with 

i non-negative off-diagonal elements.
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Since (5.58) only holds at points where f t  is smooth, we need to modify the proofs of 

[38, p.245-247, Lemma 5.1, Lemma 5.2, Theorem 5.3] to show that z(x ,t )  >  0 for all 

(x , t ) E M x (0, T)  for each fixed T. It suffices to extend [38, Lemma 5.2] to cover the 

case where we want to show that z(x, t )  > 0 everywhere, but we have (5.58) only at the 

points for which Zi is smooth.

Choose 2 i, X2 so that all points (x, t) E M x (0, T) at which z  is not smooth are contained 

in [xi, x 2] x (0, T). Then [38, Lemma 5.1], which concerns the points outside this bounded 

interval, will hold as in [38].

We need to show that, for e > 0, p = ( 1 , 1 , 1 ) ,  if

(z + t p \ t > di {z + ep)ixx +  Hi{x, t) (z + ep)ix +  {F(x, t) (z  +  ep))t , (5.59)

when Z{ is smooth, and z(xk,t)  > 0 (k = 1,2) for t E [0, T], then z  +  ep > 0 in A = 

[xi, x 2] x [0, T\. We will use a contradiction argument. Suppose that there exists a point 

(x0, ft) such that z(x, t) +  ep > 0 for 0 < t < to, X\ < x < x 2, and for some component i, 

(z(xo,to) +  ep)i =  0. Then (xo,^o) ^ (^1,^ 2) x (0, X1]. Now for such a component i, and 

at (xo, to)> Si is either given by e~^x~ct^(i(p,) or ft. Since we know, by Lemma 5.5, that 

it(x, t) E [0, f t, it follows that 0 < Uj < ft. If f t  =  ft, then Zi = f t  — Ui = f t — it* > 0, 

which implies that (z +  ep); > 0, and hence we cannot have (z +  ep); =  0 at a point 

(xofto) which Si(xo,t0) = ft. Then at (x0 , t 0), Si is equal to e~^x~ct>)̂ {ji) but not

equal to ft, then there must be a neighbourhood around (xo, to) where 5; is also given by

e-fi(x-ct) anc| hence 5; is smooth on a neighbourhood of (xo, ft), so the proof of [38, 

Lemma 5.2] applies to show that z  +  ep > 0 on [xi, x 2\ x [0, T], because from (5.59) and 

at (x0, ft), we have (z +  ep)i t < 0, (z + ep)i xx > 0 and (z +  ep)ix = 0. Moreover, since F  

has non-negative off-diagonal elements and (z +  ep) • (xo, ft) =  0, then

(F(x, t) (2 +  ep)\  = Fa ix < 0  (2 +  ep)j > 0.

So the right-hand side of (5.59) is non-negative, whereas the left-hand side is non-positive, 

which is a contradiction.

Then since H  is diagonal and bounded, F  is bounded with non-negative off-diagonal
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elements, [38, Theorem 5.3] implies immediately that z(x, t) > 0 for all (x, t) G R x (0, T). 

Thus we have u (x ,t) < S (x ,t) , and in particular, u(x, 1) < S(x, 1), which implies that 

Q[mm{e~p'x((p), j3}] < e~ ^x~ct̂  , and the theorem is proved. □

Note that in the following we refer to (5.55) as a right combined condition correspond­

ing to non-increasing initial data, and there is also a left combined condition, (5.61), 

corresponding to non-decreasing initial data.

The next theorem gives a sufficient condition to ensure that system (5.1) is left linearly 

determinate. To prove this, we can use the same argument that used in proof of Theorem 

5.9 but corresponding to non-decreasing initial data.

T h eo rem  5.10. Suppose that the functions f  and h satisfy Hypotheses Si — s$. Assume 

that either

(i) ]1 is finite,

7 i ( A )  > 7a ( A )  > f or > 1. (5.60)

and

/ i ( p C ( A ) )  < p A  KiPCiiA ) ) - ^ ( 0 )  C t ( A ) + P ( / ( 0 ) C ( £ ) ) t  f o r a l l p >  0 ,  (5.61) 

or

(ii) For some sequence v Ji, for each v the two inequalities in part (i) hold with \x 

replaced by pLu.

Then

Cf = c = c = c+,

where ji defined in p .99, and these speeds defined in (3.29), (3.12), (4.15), and (4.16) 

respectively. Thus the system has single left speed and is left linearly determinate.

The following lemma gives a sufficient condition to guarantee that (5.54) and (5.60) hold 

for the matrices and C( respectively in the particular case that (5.1) consists of two 

equations which means that /  (0) has two blocks.
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Lem m a 5.6. I f  (5.1) consists of two equations, for given matrices /  (0) and h '(0) as 

in Lemma 5.3, a sufficient condition to have that (5.54) and (5.60) are satisfied for the 

matrices and C f respectively is that

a - a ( 2 - d , )  < a _ b < a ( 2 - d z ) - a

Furthermore, if  (5.62) holds, then the eigenvectors ( (p )X(p)  corresponding to 7i(a0, 7i(a) 

are stricily positive.

Proof. Note that Lemma 5.3 yields that A — A? and straightforward calculation shows 

that for d\ = 1, ft = p = yra. Then we have 71(A) =  2a+ ay/a  and 72(A) =  ad2+byfa+cr. 

It follows that 71(A) > 72(A) if 2a + ay/a > ad2 + byfa —cr, which implies that a(2 — d2) + 

y/a(a — b) + a > 0. So 71(A) > 72(A) if an(f only if a — b > (a — a(2 — d2))/y /a . On the 

other hand, 71(A) — 2a —ay/a  and 72(A) — a {d2) — by/a+ a. It follows that 71(A) > 72(A) 

if 2 ol — a\foL — otd2 +  byfoL — <j > 0 ,  which implies that — a(2 — d2) + \fa (a  — b) + a  < 0 .  Thus 

71(A) > ^2(A) if an<̂  only if a — b<  (a(2 — d2) — a) /  y/a. Then straightforward calculation 

shows that (5.62) ensures the eigenvectors C(A)> C(A) are strictly positive, since g > 0 and

(5.54), (5.60) hold (note that the analogous observation for eigenvectors of / '(0 ) =  Cq 

already mentioned in Remark 5.1 (ii)). □

Remark 5.2. Since (5.55) in Theorem 5.9 applies to a system of k equations, so in partic­

ular, when there is only one equation in (5.1), A — y j / '(0 ), C(A) — 1? and then condition

(5.55) is equivalent to (2.21) in Proposition 2.2, because setting p = p((p)  — u in (2.21) 

gives

h'(p) +  < h '(0) +  —f- - , for all p G (0,1),
pp p

which is precisely the scalar analogue of (5.55).

The next proposition gives a necessary condition for the existence of a function h satisfying 

both the ‘right combined condition’, (5.55),

MpCfp)) < pp fe(0) -  A-(pCi(A))l Ct (A) +  A(/(0)C(A))i for a11 P > 0, (5.63)
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and the ‘left combined condition’, (5.61),

fi(pC{p)) < P P  KipCidi)) -  h'i(0) Ci(A) +  p ( /#(0)C(m))* for all p > 0. (5.64)

Proposition 5.3. Suppose that the functions f  and h are such that jl = p, C,{p) =  C(p), 

and C(p)> C(p) are strictly positive. Then a necessary condition for both the right combined 

condition (5.63) and the left combined condition (5.64) to be satisfied is that the function 

f  satisfies

fi(p((p))  <  p(/'(0)C(/x))» for all p >  0. (5.65)

Proof. Introduce the notation

Ai(p) ■= p(/(0)C (£))i -  M pC(P)) P>  0, (5.66)

and note that both (5.63) and (5.64) are satisfied if and only if

-A»(p) < pp h-(0) -  h-(pC(P)) Ci(P) < Ai(p) for all p > 0. (5.67)

The result is then immediate from the fact that (5.67) can only hold if Ai(p) > 0 for all 

p > 0, which is equivalent to (5.65). □

Remark 5.3. Lemma 5.3 shows that when (5.1) is a system of two equations, p = p if the 

function /  is as in Remark 5.1 (iii), and ((p) = ((p)  if we also have that /^(O) =  /^(O). 

Lemma 5.6 gives conditions that ensure C(P)> C(p) are strictly positive. Note that in the 

scalar case, it is obvious we have ((p)  =  ((p)  =  1, and p — p  because the term //(O) 

does not play a role in the value of p = p, and from (2.15), we have p = p = y/f'(ff).  

Thus this means (5.65) in the scalar case is clearly equivalent to the classical condition

(2.1) when h =  0.
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Chapter 6

Correspondence between different 

concepts of linear values of /  (0)

In this chapter we discuss the correspondence between two different concepts of linear 

value in the case when the Frobenius form of f  (0) contains only one block. For simplicity, 

we will suppose that /  (0) E the set of real k x k matrices with strictly positive

off-diagonal elements. In addition to the right (left) linear value t  (d) that was introduced 

in Chapter 5 (5.37) ((5.40)), we will define an alternative right (left) linear value speed, 

Qin (Cun), determined by the values of c such for which there exists a monotone eigenvalue, 

in a sense defined in Definition 6.1, of the linearization of the travelling wave problem for 

this c about the unstable equilibrium 0, (see (6.2)).

We can write the system (5.1) as

Uî t +  h (̂iLi)Ui^x diUî xx d~ fii.'u)  ̂ 1, 2, ..., fc.

By substituting the travelling wave u(x, t)  = w(x — ct), we get

—cw[ -I- h'^w^w'i = diw■ +  fi(w)  for i =  1,2,..., k ,

of which the linearization about w = 0 is

—cw +  h-(0)u;- =  diw'■ +  f i (0)w for z =  1,2,..., k.
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Let us define a matrix D  as

D  : =  t i ( 0) =  diag ^ ( O )  h'2 ( 0 )  . . .  h'k (6 .1)

and recall that A = diag (d\, d,2 , ...dk). Then the linearization of travelling wave problem 

becomes

Aw ” +  (cl — D)w  +  f ' (0)w = 0. (6.2)

Let v = w . Then (6.2) becomes Av  +  (cl — D)v  +  f ( 0 ) w  = 0,so v =  —A -1 (cl — D)v — 

A~l f ( $ ) w ,  and hence (6.2) can be re-written as

v

w

-A~l ( c l - D )  - A ~ l f (  0) 

I  0

v

w

The eigenvalue A of the matrix 

eigenvector (?/, z)T satisfies

- A - \ c I - D )  - A ~  7 '(0 )  

I  0
corresponding to the

y
=  X

y

z z

- A - ^ c I - D )  - A - 7 '(0 )  

I  0

which holds if and only if —A 1(cI — D)y — A 1f ( 0 ) z  = Xy and y =  Az. Then — A 1(cl —

D)Xz — i4-1/ /(0)^ =  A2z, and hence

( A M  +  A ( c l  -  D )  +  / ' ( 0 ) )  z  =  0 .

If z > 0, then it follows by the Perron-Frobenius Theorem 3.1 that

3W  ( A M  +  A ( c l  - D )  +  / ' ( 0 ) )  =  0,

where $pf  is defined in Table 1. Note that if we seek a solution of (6.2) of the form

w(£) =  exp(A^)^, q > 0, then (A2 A  +  A (cl — D) +  f ' (  0)) q = 0.
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Define the matrix M(A, c) that depends on A and c  by

M(A, c) := A2A +  A (cl — D) +  / ( 0 ) .  (6.3)

Now it is useful to introduce a definition of stability and instability of an eigenvalue A of 

the travelling wave problem (6.2) linearized about the equilibrium point 0.

D efin ition  6.1. Given c E  R, we say that an eigenvalue A is a stable (unstable) monotone 

eigenvalue of the travelling wave problem (6.2) linearized about 0, with corresponding 

eigenvector X ,  if:

1. M(A, c)X  = 0,

; 2. A is real and strictly negative (positive), and

3. the eigenvector X  of M(A, c) has strictly positive components.

Note that A is a stable monotone eigenvalue of (6.2) if and only if $pf  (M(A, c)) =  0.

: In the case when the Frobenius form of /  (0) contains only one block, an alternative right 

j (left) linear value speed can be defined as follows.

| D efin ition  6.2. cun (cun) is defined as the infimum (supremum) of the values of c for 

which there exists a stable (unstable) monotone eigenvalue A of (6.2) for this value of c.

We will later establish directly from Definition 6.2, in Theorem 6.2 and Lemma 6.2, the 

existence of cun (cun) £ M. Note that [38, Lemma 2.4, p. 136] (see also, [16, Theorem

3.7]) shows that the existence of a stable (unstable) monotone eigenvalue is a necessary 

condition for the existence of a travelling wave that converges to 0 (j3) at +oo (—oo). In 

addition, because it is a necessary condition and we have seen earlier in Theorem 5.6, 

that the minimal non-increasing travelling wave speed exists, so it immediately tells us 

that the minimum speed Co >  cun.

[ Clearly, the definition of cun (cun) is different from the definition of the right (left) linear 

; value c (c) that is defined earlier in (5.37) ((5.40)) respectively. However, the definitions 

being different does not automatically mean that the values are different. Here we focus 

on the case when we have only one block for the Frobenius matrix f ' ( 0), which means
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that we also will have one block for the Frobenius matrix M {A, c) that is defined in (6.3), 

and suppose f ' ( 0 )  G P kxk for simplicity. From Hypothesis 56, it follows that the Frobe­

nius eigenvalue $Pf { f  (0)) > 0. We will then prove that cun (cun) equals c (c) in Lemma 

6.3.

6.1 E igenvalues and eigenvectors if  M (A , c) has a sin­

gle irreducible block

The following lemma gives a condition on a matrix N  G P kxk that ensures that $Pf (N)  > 

0, which is useful for Lemma 6.2. This result is the same as [12, Corollary 1.6].

L em m a 6.1. I f  the matrix N  G P kxk and there exists u G Rfc \  {0}, — u ^ R+ such that 

N u  > 0, then 3P/ (N)  > 0.

Proof Since N u  > 0, there exists (3 > 0 such that N u  > (3u. There exists a > 0 such 

that for the matrix N + a l  all entries are strictly positive (> 0) and ( N + a I ) u  > (a+(3)u. 

By [32, Theorem 2.3] we have $Pf ( N  +  a l )  > a  -f /3, which means that

$ Pf { N )  >  P  > 0.

□

We also quote a related result, which is a variant [36, Theorem 1.6].

T h eo rem  6.1. Let N  G P kxk and suppose that there exists u G R+ and u {0} such 

that if N u  < 0, then $Pf (N)  < 0.

The following lemma shows whether 0 is the Perron-Frobenius eigenvalues of M(A, c) in 

(6.3) or not. This result is an adaptation of [12, Lemma 3.4] to treat the case when we 

have a diagonal matrix D  in (6.1).

L em m a 6.2. Let f  (0) G P kxk. Then

1. When c is sufficiently negative, there are no stable monotone eigenvalues A of the 

linearized travelling-wave problem (6.2).
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2. When c is sufficiently positive, there exists a stable monotone eigenvalue X of the 

linearized travelling-wave problem (6.2).

3. I f  there exists a stable monotone eigenvalue when c = ca, then for all values c with 

c >  ca; a stable monotone eigenvalue exists.

4. When c is sufficiently positive, there are no unstable monotone eigenvalues of the 

linearized travelling-wave problem (6.2).

5. When c is sufficiently negative, there exists an unstable monotone eigenvalue of the 

linearized travelling-wave problem (6.2).

6. I f  there exists an unstable monotone eigenvalue when c = q,, then for all c < Cb, an 

unstable monotone eigenvalue exists.

Proof. 1) Suppose q > 0 is a Perron-Frobenius eigenvector of /  (0). Then

(a 2AL +  / '(0 ) )  q = X2Aq +  Sp/( / (0 ) )g  > 0.

For c sufficiently negative, (cl — D) is a diagonal matrix with strictly negative diagonal 

entries, in which case whenever A < 0, then A (cl — D) is a diagonal matrix with strictly 

positive diagonal entries. Thus we have M ( A, c)q = (AX2 +  A (cl — D)  +  / ( 0 ) )  q > 0. By 

Lemma 6.1, we get that $Pf (M(A, c)) > 0 for such A < 0. cl  — D  is a diagonal matrix 

with strictly negative diagonal-entries for such c. So $pf  (M(A,c)) ^  0, and it follows

that there is no stable eigenvalue for such c .

2) Take A =  — 1. Then

M (—1, c) = A  -  (cl -  D)  +  /'(0 ) = A  + D + f ( 0) -  cl.

Since $ Pf ( M ( —1, c)) =  $Pf (A  +  D  +  f ' ( 0)) — c, then $Pf ( M ( —1, c)) < 0 if c is sufficiently

large and positive. So since $pf ( M ( 0, c)) =  $pf ( f  (0)) > 0, the continuous dependence of 

M(X,c)  on A implies that there exists 7 such that —1 < 7 < 0 where ^ Pf(M(^,c) )  = 0, 

which means that 7 is a stable monotone eigenvalue.
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3) Assume that there is a stable monotone eigenvalue A < 0 at c = ca with corresponding 

eigenvector X  > 0. Then (A2A + A(caI  — D) +  f ' ( 0)) X  = 0. But for 6 > 0 and c = 

ca 5, we have

(AA2 + \ ( cI - D )  + / '  (0)) X  =  ( a \ 2 + \(c aI  -£ > ) +  / '(0 ) )  X  +  A<5X

=  \ S X  <  0,

since X  > 0, A < 0. Then Theorem 6.1 implies that

dpf (^A 2 +  A {cl - D )  + / ( 0 ) )  < 0.

Since we know $Pf ( M ( 0, c)) > 0, then there exists a stable monotone eigenvalue 7 G (A, 0) 

such that 5p^(M(7 , c)) =  0, by the continuous dependence of M(A, c) on A and c.

To prove parts (4), (5) and (6), we can follow the same procedure as in the proof of parts 

(1), (2) and (3) respectively, but for unstable monotone eigenvalues instead of stable 

eigenvalues, and the lemma is proved. □

6.1.1 An alternative linear value speed cun (cun) for (6.2)

For the existence of cun (cun) G R, it is useful to define a set V  by

F  := jc  G M : ^AA2 +  A (cl — D) +  /  (0)^ y = 0 for some A < 0 and y G y > 0 j  .

Note that c G V  if and only if there exists a stable monotone eigenvalue for this c, and 

that V  is non-empty and bounded below by Lemma 6.2 (1), (2). So cun = inf V G R 

exists. Likewise, for the existence of dun, we define a set V  by

y  :=  | c  G M : ^AA2 +  A (cl — D) +  /  (0)^ y — 0 for some A > 0 and y G Mfc, y > 0 j  .

Note again that c G V  if and only if there exists an unstable monotone eigenvalue for 

this c, and that V  G M is non-empty and bounded above by Lemma 6.2 (4), (5). So 

cun = — inf V  exists.
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The following lemma shows that the alternative right (left) linear value cun (dun) equals 

the right (left) linear value 8 (8) that is defined in (5.37) ((5.40)) respectively.

Lem m a 6.3. The right linear value 8 defined in (5.37) equals the alternative right linear 

value Cnn.

Proof. We can re-write the matrix Cp in (5.33) in terms of matrix D  in (6.1) as = 

Aji2 +  fiD  +  /  (0) and compare this with (6.3), to obtain that Cp = M (—/x, c) +  pci. It 

follows that $pf{Cp) = c))+pc,  and hence ( - / / ,  c)) +

c, for all /i > 0 and c.

Suppose that there exists a stable monotone eigenvalue A =  —pi, p\ > 0, then 

/xi, Ci)) =  0, which implies that

Ti'SpfiCm) = ci)) + ci = ci,

and since c = inf (CM), so c < ci. Let be the minimal value of c which an>o
stable monotone eigenvalue exists, so we have c < cun. We need to show that c > cun. 

Since c = inf/i_15rp/(C'At), then for p, that is defined to be the value of (j, at which the 

infimum in the definition of c in (5.37) is attained, we have

c = inf i T l$pf (Cp) = fi~l$pf{Cp) = p~l^ pf{ M ( - p ,  c)) +  c.

Therefore $Pf ( M ( —p, c)) = 0, thus —p  is a stable monotone eigenvalue at c. Hence

c > Cun. It follows that c = bun. The lemma is established. □

Note that we can follow the same procedure to prove that 8 = dun.

The following theorem is a generalization of [12, Theorem 3.5] to treat both right 8 and

left 8 linear values.

T h eo rem  6.2. Let /  (0) G P kxk. Then

(i) For each c > 8 ,  there is a stable monotone eigenvalue X of the linearized travelling 

wave problem (6.2), whereas for c <8, there is no such X.
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(ii) For each c < c ,  there is an unstable monotone eigenvalue X of the linearized travel­

ling wave problem (6.2), whereas for c>  c, there is no such X.

Proof (i) Recall that c = cun = inf V . For any c 6 V  and for S > 0, Lemma 6.2 (3)

says that we have c + 5 G V, which implies that (c, oo) C V. Now we use a contradiction

argument to prove that c £ V . Take a sequence q —> c with eigenvalues A* < 0 with 

corresponding eigenvectors z l > 0 such that

( A \ f  + \ l(clI - D )  + f ' ( o ) z ‘ = 0,

where zl is a positive Perron-Frobenius eigenvector with ||^||oo =  1. Then for a sub­

sequence we can let zl —» z  such that ||z||oo =  1- Since for each /, A/ ^  0, then 

| as I —»• oo, (̂ 4A/ — D  +  Â-1/ '(0)) z l -» — cz and thus {A;}iGN is bounded sequence in 

M, because if it were not, then Ai —> — oo, and since A z l —> Az,  A  is a positive di­

agonal matrix and z > 0 but z ^  0 because Ĥ Hoo =  1, then when A; —> — oo, we

have Az_1 (AXi — D +  Â-1/ (0)) z l 0 which implies that A z 1 —>■ 0 which contradicts

i A z 1 —> Az > 0. Hence there is a convergent subsequence, say A* —» A < 0. Taking the
I
; limit as Z —> oo gives

^4A2 -(- X(cl — D) +  /  (0)^ z = 0,

Now z > 0, but since the off-diagonal elements of the matrix /  (0) are strictly positive, 

and z  is a Perron-Frobenius eigenvector, so we have z > 0. It follows that if A =  0, then 

f  (0)z = 0 for z > 0, which contradicts the fact that $Pf  (/'(0 )) > 0. Thus c G V,  which 

is equivalent to saying that the set V  contains all c > c.

(ii) We can follow the same procedure for unstable eigenvalues to prove that c £ V. Thus 

the theorem is proved. □

The folbwing lemma shows that the Perron-Frobenius eigenvalue of the matrix M ( A, c) 

in (6.3) is a convex function of A. This result is a modification of [12, Lemma 3.7] to 

treat the case when we have a diagonal matrix D  in (6.1). Cohen in [11] proves that, $pf  

is a convex function of a diagonal matrix D , in the sense that, given diagonal matrices
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D i  and D 2 and M  E P nxn; then for 0 < a  <  1,

$pf  (otD\ +  (1 — of)D2 +  M ) < cx^pf (D\ +  M ) +  (1 — a) $pf  (D2 +  M ) . (6-4)

L em m a 6.4. I f  f ( 0) E P nxn; A is positive diagonal matrix, D is a diagonal matrix, 

and c E l ,  then the Perron-Frobenius eigenvalue of M(X,c) in (6.3) is a strictly convex 

function of X.

Proof. Let Ai,A2 E M be such that Ai ^  \ 2, and note that for 0 < t < 1 we have

( t \ i  +  (1 — t)X2)2 < tX\ +  (1 — t)X\. Since A  is positive diagonal matrix, then

$pf (f^(tXi +  (1 — t)X2)2 +  (tXi +  (1 — t)X2)(cI — D) + f  (0))

< dpf (A(tX2 +  (1 — t)X2) +  (tXi +  (1 — t)X2){cI — D) +  /  (0))

=  S P f  +  A i ( c /  -  D )) +  (1 -  t ) ( A \ 22 +  X 2 ( c l  -  D )) +  / ' ( 0 ) )

— ( ^ ^ i  +  ~  D) + }  (0)) +  (1 — t ) ((AA2 + A2( c l  — D ) )  +  /  (0 ) )  ,

since for k = 1, 2, AX\+Xk(cI—D)  are diagonal matrices, so (6.4) gives the last inequality.

□

The following lemma shows that we cannot have the case that both stable and unstable 

eigenvalues exist for a given value of c.

L em m a 6.5. There is no value of c for which both a stable and an unstable monotone 

eigenvalue exist.

Proof. Suppose, for contradiction, that there exists a stable monotone eigenvalue Ai < 0 

and an unstable monotone eigenvalue A2 > 0. Then 3p/(M(Ai, c)) =  0 =  $pf (M(X2,c)), 

and by Lemma 6.4 it follows that 5rpy(M(0, c)) < 0, which contradicts the fact that 

; S p/ ( M ( 0 , c ) )  = $ , / ( / ' ( < ) ) )  > 0 .  □
i

; The following lemma shows the relationship between the right linear value c defined in 

; (5.37) and the left linear value t  defined in (5.40), using the relationship between the 

alternative right linear value Cun and the alternative left linear value Cun. Note that 

Lemma (6.3) ensures that c = cun, c = c.un.
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L em m a 6.6. The linear value cun for which there exists a stable monotone eigenvalue 

of (6.2) is strictly larger than the linear value cun for which there exists an unstable 

monotone eigenvalue of (6.2).

Proof It follows from Theorem 6.2 that there exists a stable monotone eigenvalue for 

c G [c, oo) and an unstable monotone eigenvalue for c G (—oo, d]. Hence by Lemma 6.5, 

which says that we cannot have both a stable and an unstable monotone eigenvalue for 

any value of c, we conclude that the linear value for which there exists a stable eigenvalue 

cun > Cun, and the lemma is proved. □

Note that Lemma 6.3 implies that c > d, and we can use the analogue of Lemma 4.2 

i in Chapter 4, to obtain c < c. Thus Lemma 4.2 together with Lemma 6.6 implies that 

i c > c > c > c, and hence c > c. That is, the right slowest spreading speed is strictly 

larger than the left slowest-spreading speed.

6.2 E igenvalues and eigenvectors if  M (A , c) has m ul­

tip le  irreducible blocks

Suppose now that f \ 0), which is in Frobenius form by Hypothesis s§, contains more 

than one irreducible block. In this case, [38, Lemma 2.4, p. 136] (see also, [16, Theorem

3.7]) shows that if there exists a travelling wave, then there exists a stable (unstable) 

monotone eigenvalue A < 0 (A > 0) such that M(A, c)X  = 0 for X  > 0, X  ^  0. The 

proof of this lemma suggests that in the case when f ' ( 0) has more than one block, it is 

natural to allow the eigenvector X  of M(A, c) be X  > 0, X  ^  0 instead of X  > 0. This 

is because, when there are multiple blocks in M (A, c), the argument that the existence of 

a travelling wave implies the existence of a stable (unstable) monotone eigenvalue yields 

that it is necessary to have a non-negative eigenvector but not necessarily a strictly pos- 

i itive eigenvector.

j In such a case, when the Frobenius form of f { 0 )  has more than one block, one can thus 

define the stable (unstable) monotone eigenvalue similarly to Definition 6.1 (2), but it is 

now natural to ask that the eigenvector is non-negative and non-zero but not necessarily
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strictly positive.

We can thus consider two possibilities for the eigenvector X , either X  >  0, X  ^  0, or we 

keep that X  > 0 as in the case when f ' {0) is one irreducible block. So we will discuss 

these two cases. We can generalize the parts (1), (2), (4) and (5) of Lemma 6.2 just in the 

case when we keep that X  > 0, whereas when X  > 0, X  ^  0, under certain condition on 

the Perron-Frobenius eigenvalue of the first block of / ( 0 ) ,  we can generalize the first part 

of Lemma 6.2 only. In addition, we give a partial generalization of part (3) of Lemma 

6.2, that is proved later in Proposition 6.1.

The proof of the generalization lemma, Lemma 6.7, depends on considering the first block 

of the matrix M { A, c), which we refer to as M 1. In addition, F 1 denotes the first block of 

f ' { 0), and the parts of matrices A, D  corresponding to the first block of /  (0) are denoted 

by A 1, D 1 respectively, and similarly for the crth block, we define the matrices A a ,1°, D a, 

and F a for o > 1. We first quote the following theorem because it is useful to the proof 

of Lemma 6.7.

T h eo rem  6.3. [36, Theorem 2.1]. Suppose N  is a non-negative irreducible matrix, with
i
; Perron-Frobenius eigenvalue r. A necessary and sufficient condition for a solution X , X  >

i 0 , 1 ^ 0 , to the equation
\

| {si -  N ) X  = Y,
i

: to exist for Y  > 0, Y  ^  0 is that s > r. In this case there is only one solution X , which

! is strictly positive and given by

X  = ( s l - N ) ~ 1Y.

6.2.1 Eigenvalues corresponding to  an eigenvector X  >  0

Suppose we keep the condition that X  > 0. Then the generalization of parts (1), (2), (4) 

and (5) of Lemma 6.2 is the following.

L em m a 6.7. Let /  (0) have more than one block. Then

1. When c is sufficiently negative, there are no stable monotone eigenvalues A of the

linearization of the travelling-wave problem (6.2).
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2. When c is sufficiently positive, there exists a stable monotone eigenvalue A of the 

linearization travelling-wave problem (6.2).

3. When c is sufficiently positive, there are no unstable monotone eigenvalues of the 

linearization of the travelling-wave problem (6.2).

4- When c is sufficiently negative, there exists an unstable monotone eigenvalue of the 

linearization travelling-wave problem (6.2).

Proof. 1) Suppose X 1 > 0 is the Perron-Frobenius eigenvector of F 1. Then

(A2̂ 1 +  F 1) X 1 =  A ^ X 1 +  ^ pf ( F 1) X 1 > 0 for any A < 0.
!

: So by Lemma 6.1, ^ Pf(X2A 1 +  F 1) > 0. For c sufficiently negative, (c l1 — D 1) is 

a diagonal matrix with diagonal elements strictly negative, whenever A < 0 and 11 

is the first part of identity matrix I  corresponding to F 1, so A (c l1 — D 1) is a di­

agonal matrix with strictly positive diagonal entries. Thus we have (M 1( \ , c ) ) X 1 =

(A2 A 1 +  A (c l1 — D 1) +  F 1) X 1 > 0. By Lemma 6.1, we thus get that

$Pf (M 1(X,c)) > 0  for A < 0, (6.5)

; where c is chosen such that c l 1 — D 1 is a diagonal matrix with strictly negative diagonal- 

entries. Now since we suppose that the eigenvector X  for the Frobenious matrix M ( A, c) 

satisfies X  > 0, so the part of X  corresponding to the first block of M ( A, c), which we re­

fer to as X 1 satisfies X 1 > 0. Since we know that if there is a stable monotone eigenvalue 

A < 0 with X 1 > 0, then (X2A 1 +  A (c l1 — D 1) +  F 1) X 1 = 0, thus $pf  ( M 1(X, c)) = 0,

which is a contradiction with (6.5). Therefore it follows that there is no stable monotone 

eigenvalue.

I

| (2) Choose £ > 0 sufficiently small and let A =  —(5. Since we suppose that X  > 0, so

I Theorem 6.3 implies that for any A such that |A| < S we have

d p,  (A2 A 1 -  A (c l1 -  D 1) + F 1) > d P,  (A2 A" -  \ { c F  -  D°) + F ° ) ,
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for each a  > 1. Then we have

M \ - S ,  c) =  -  SicI1 -  D 1) + F 1 = S2A l + SD1 +  F 1 -  $ c l \

Since fipf ( M 1(—8,c)) =  ^ pf(52A 1 +  SD1 +  F 1) — Scl1, then $pf ( M 1(—S,c)) < 0 if c is 

sufficiently large and positive.

Since ^ Pf ( M 1(0, c)) = d p f i F1) > 0 and by the continuous dependence of $pf (M( \ , c ) )  

on A, there exists 7 such that A < 7 < 0 where $ Pf ( M 1(7 , c)) =  0. Since we know that 

|A| < £, so |7 | < 5, and we have

3 pf (7 2A ' +  7 (c/ 1 -  D 1) + F 1) > $ pf {~12A°  +  7 ( c / <t -  D°) +  F ° ) . ■

Then by Theorem 6.3, there is a strictly positive eigenvector X  for M (y, c) corresponding 

to the eigenvalue 0, and thus 7 is a stable monotone eigenvalue for M ( A, c).

We can follow the previous procedure for unstable monotone eigenvalues instead of stable 

eigenvalues to prove the parts (3) and (4). The lemma is proved. □

In place of the third part of Lemma 6.2, we have the following proposition. Note that a 

corresponding result holds for the sixth part of Lemma 6.2.

P ro p o sitio n  6.1. I f  there exists a stable monotone eigenvalue when c = ca, then there ex­

ists £0 > 0 such that a stable monotone eigenvalue exists corresponding to the eigenvector 

X c, for each c G [ca, ca +  50).

Proof Assume that there is a stable monotone eigenvalue A* < 0 at c =  ca corresponding 

to the eigenvector X Ca > 0 such that

(di( y ) 2 + Y ( c aI - D )  + F ) X Ca = 0, F  = f ' (  0). (6.6)

Then since X Ca > 0, (6.6) implies that

$pf ( M l {A*, ca)) > dPf  ( Ma(A*, ca)) for a > 1,

if and only if $pf  (M 1(X*,c)) > $pf  (M a(A*,c)) for all c. Then there exists e > 0 such
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that

Spf (M x(A, c)) > S rf (M°{A, c)) when |A -  A*| < e. (6.7)
|

I Now (6.6) implies that ((A*)2̂ 1 +  A*(caI 1 — Z)1) +  F 1) X^a =  0, > 0, from which it

follows that $pf ((A*)2̂ 1 +  \ \ c a l 1 -  D l ) +  F 1) =  $ pf( M \ A*, ca)) =  0.

Since $Pf ( M 1(A, ca)) is a strictly convex function of A by Lemma 6.4, then either
!

5'p/(M1(A, c0)) > 0 when A < A*, or 5rp̂ (M 1(A, ca)) > 0 when A > A*, or both.

Suppose that $pf ( M 1(A, ca)) > 0 when A < A* (similarly for A > A*). Then choose So > 0 

small enough that $pf ( M 1(A* — f , ca)) > — <5o(A* — §), which implies that $ pf ( M l {A* — 

| ,  c)) > 0 whenever c = ca + 5, 0 < S < So. But $pf ( M 1(A*, c)) =  6A* < 0, so there exists 

7 G (A* — A*) such that $pf ( M 1(7 , c)) =  0. Since I7 — A*| < e, we know that

j 7 , c)) > dpf{Ma(7 , c)) a > 1,
I

| and hence there is a strictly positive eigenvector X c > 0 of M (7 , c), corresponding to 

the eigenvalue 5'P/(M 1(7 , c)), by Theorem 6.3. Therefore if there exists a stable mono­

tone eigenvalue with corresponding eigenvector strictly positive at some ca, then there 

exists £0 > 0 such that there exists a stable monotone eigenvalue with strictly positive 

eigenvector for each c G [ca, ca +  $0) • □
!I

Note that this does not, however, show that if a stable eigenvalue with positive eigenvector 

exists for some ca, then a perturbation of this eigenvalue exists for all c > ca. In Example

6.1, we will consider a 2 x 2 matrix to illustrate part (2) of Lemma 6.7, as well as to show 

that for all values of c sufficiently large, there exists at least one, and sometimes, two 

stable monotone eigenvalues, depending on the structure of the matrix and the value of c.

i

6.2.2 Eigenvalues corresponding to  an eigenvector X  >  0

In the following proposition we generalize the first part of Lemma 6.2 in the case when 

the eigenvector X  > 0, X  ^  0. In this result we assume that for each crth block, we have 

> 0, a > 1. We already have ^ / ( F 1) > 0 from Hypothesis s2.
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P ro p o sitio n  6.2. Suppose that $pf ( F a) > 0, a > 1. Then when c is sufficiently negative, 

there are no stable monotone eigenvalues X of the linearization of the travelling-wave 

problem (6.2) corresponding to an eigenvector X  satisfying I > 0 , 1 ^ 0 .

Proof Suppose X 1 > 0 be the Perron-Frobenius eigenvector of F 1, then we have

(A2̂ 1 +  F 1) X 1 = X2A 1X 1 +  ^ Pf ( F 1) X 1 > 0 for any A < 0.

So by Lemma 6.1, # pf(X2A 1 +  F 1) > 0. Choose c sufficiently negative to ensure that 

(c l1 — D 1) is a diagonal matrix with strictly negative diagonal elements, whenever A < 0, 

so A (c l1 — D 1) is a diagonal matrix with strictly positive diagonal entries. Thus we have 

( M x( A, c)) X 1 = (X2A 1 +  A (c l1 — D 1) +  F 1) X 1 > 0. By Lemma 6.1, we get

j

| $pf  ( M 1(X, c) )  > 0 for any A < 0. (6.8)

I
i

j For the other blocks, we can replace X 1 by X a where X a is the Perron-Frobenius eigen­

vector of F ° , and repeat the same argument for X a to get that

$pf  ( M a(A, c)) > 0 for any A < 0, a > 1, (6.9)

i

when c is sufficiently negative such that for each a , (c la — D a) is a diagonal matrix with 

strictly negative diagonal entries.

| Now suppose that there exists a stable monotone eigenvalue Ao < 0 corresponding to the 

! eigenvector X  > 0, X  ^  0, but not X  > 0, such that M (Ao, c)X  = 0. Note first that if 

for the <rth block and X a > 0, X a ^  0 we have M a(Xo,c)Xa = 0, so by [36, Theorem 

1.6], we get that

X a > 0 and 0 =  5rp/(M a(A0, c)), 

which contradicts (6.9) for this a.

Now if X 1 ^  0, so 0 — ^ pf ( M 1(Xo, c)) which contradicts (6.8). However, if X 1 = 0, then 

M 2(Ao, c ) X2 = 0 which implies $Pf  ( M 2(Ao, c)) =  0 provided that X 2 > 0, 0, which is

a contradiction with (6.9) when a = 2. Again if X 2 = 0, then we will get a contradiction 

with (6.9) when a = 3, etc. This means that since I  > 0 ,1  /  0, there must be a
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part of X  that is non-zero, which gives us a contradiction with (6.9). Thus we prove the 

generalized first part of Lemma 6.2. □

Note that when considering the second part of Lemma 6.2, if we do not know that 

the Perron-Frobenius eigenvalue of M x(A,c) is strictly larger than the Perron-Frobenius 

eigenvalues of the other diagonal blocks of M (A ,c), we cannot in fact have even a non­

negative and non-zero eigenvector X .  This is because, if we suppose that

\

M (A ,c) =

(  B 1 0 0

S 1 B 2 0 .. . .  0

S 2 S 3 B 3 . . .  0

^ : •. B k /

where B 1, B k are irreducible diagonal blocks, each of .S'1, S k contains at least one 

positive entry by (ii) in Remark 5.1, and r/1 is the Perron-Frobenius eigenvalue for B 1 

with a strictly positive eigenvector X 1, and such that r]1 >  r f  for cr >  1. Then

( B 1 0 .....

5 1 B 2 0

5 2 S 3 B 3

V

o

0

0

B k

\

J

X 2 

X 3

V X * y

f X i \

X 2 

X 3

\ xk /

and S'1X 1 +  B 2X 2 =  r f X 2 which is true if and only if (771 — B 2 ) X 2 =  S^X 1. Since 

S^X 1 >  0, 7̂  0, then by Theorem 6.3 , we get X 2 >  0. Using Theorem 6.3 again, gives 

us X 3 >  0, since we have (771 -  B 3) X 3 =  ( S ' X 1 +  S 2X 2) X 3, and ^ X 1 +  S 2X 2 >  0. 

Thus by repeating this argument of Theorem 6.3, k  times, we get that the eigenvector 

X  =  (X 1, ...., X k ^T  of M(?71, c )  is strictly positive. Moreover, if we have a strictly positive 

eigenvector X , then the Perron-Frobenius eigenvalue of M 1( X , c )  is strictly larger than 

the Perron-Frobenius eigenvalues of the other diagonal blocks of M (A ,c).

The following example illustrates the reason for the need of the extra condition d p f ( B a ) >  

0, a  >  1 in Proposition 6.2, and shows what happens concerning the existence of stable
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monotone eigenvalues with strictly positive eigenvector and with non-negative eigenvector 

when we increase the value of c. We will discuss the possibilities for A in three cases, and 

we show that for a large value of c, there exists at least one stable monotone eigenvalue 

A < 0 with strictly positive eigenvector.

E xam ple  6.1. Consider, for simplicity, the 2 x 2  matrix M(A, c) that contains two 

irreducible blocks

| where b\ > b2, and ai, a2, &i, e > 0. Thus the eigenvalues are A2a*+A(c—cij)+&*, i =  1,2, 

! and to have that the eigenvalue of M(A, c) is 0, we need either

a solution for all c. This means that if we allow b2 < 0, then allowing a non-negative
I

eigenvector yields that we have the existence of a stable monotone eigenvalue for any c, 

and thus the condition in Proposition 6.2 is necessary.

If b2 =  0, the solutions of X2a2 +  A(c — d2) = 0 are A =  0 and A =  — which is strictly

negative (< 0) for c large. Thus (ii) has solutions at least for all c>  c2 for some c2.

To have solutions of (i), we need A2ai +  A(c — d\) +  b\ =  0 and A2a2 +  A(c — d2) +  b2 < 0, 

which is equivalent to

I A2ai +  A(c — di) +  bi = 0 and A2(a2 — ai) — X(d2 — d\) +  b2 — b\ < 0. (6.10)

I
| The inequality in (6.10) defines a range of A for which, if A2ai+A(c—d\)-\-b\ = 0, then A is a 

| stable monotone eigenvalue with strictly positive eigenvector. Since A2ai+A (c—di)+b\ =

(i) A2ai +  A(c — d\) +  &i =  0 and A2a2 +  A(c — d2) + b2 < 0, in which case the eigenvector 

is strictly positive, or

(ii) A2a2 +  A(c — d2) + b2 =  0, in which case the eigenvector is (0 ,1)T and A2ai +  A(c 

d\) +  bi can be any value.

Now if b2 > 0, (ii) has a solution for all c sufficiently large, whereas if b2 < 0, (ii) has
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0 is a quadratic equation in A, the solutions are

- ( c  -  di) =F y / ( c -  di)2 ~  4ai^iA
2ai

and hence it has a negative solution A for all c > d\ +  2\/ai^i- Thus if c = d\ +  2-y/ai^i,rs
there is one stable monotone eigenvalue, Xneg such that Xneg := — w — , whereas if

V
c > di +  2y/aibi, there are two negative values Ai,A2 with Ai < Xneg < A2, and 

Ai —> — oo, A2 —̂ 0 as c —y oo.

There are three possible forms for A A2(a2 — ai) — A(d2 — d\) +  62 — 61 depending on

the parameters. The roots, Pi, P2, of A2(a2 — ai) — A(d2 — di) +  62 — &i =  0, are given by

(d2 — di) =F \ J (d2 — di)2 — 4(q2 — ai)(fe2 — b\)
2(a2 -  ai)

so we will discuss the three cases (a), (b) and (c) as follows.

(a) (b) (c)

A A A

no root < 0 one root < 0 two roots < 0

Firstly, in case (a), the inequality (6.10) is satisfied for any A < 0, so whenever A2ai +  

A(c — dx) +  b\ =  0, A is a stable monotone eigenvalue with strictly positive eigenvector. 

Therefore, there exists a stable monotone eigenvalue with strictly positive eigenvector for
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all c  >  d \  +  2 \ / a i b \ .

Secondly, in case (b), what happens depends on whether X neg <  P i  or X neg >  P i .  If 

X neg <  P i, then for c  close to d \  +  2 \ J a \ b \ , there is no stable monotone eigenvalue, but 

when c is large enough that A2 >  Pi, then A2 is a stable monotone eigenvalue.

Finally, in case (c), what happens depends on how Xneg relates to Pi and P2. In particu­

lar, for X neg <  P i ,  both Ai, A2 are stable monotone eigenvalues for c  close to d i  +  2 y / a i b i ,  

but when A2 reaches Pi, it stops being a stable monotone eigenvalue.

Moreover, different things happen when Pi <  X neg <  P2, or P2 <  X neg. Note that it is 

clearly not true that if A is a stable monotone eigenvalue with strictly positive eigen­

vector for some c, then as c  increases to 00, a perturbation of A is a stable monotone 

eigenvalue with strictly positive eigenvector. This is a contrast with Proposition 6.1. The 

fact that each of the curves in (a), (b) and (c) is negative close to zero, and A2 —)■ 0 as 

c  —y 00, tells us that there is a stable monotone eigenvalue with strictly positive eigen­

vector, close to zero when c is large enough. This illustrates the proof in Lemma 6.7 (2).D

The structure of the 2 x 2 matrix, as we explained above, implies that when c  increases, 

there is at least one stable monotone eigenvalue with strictly positive eigenvector. In the 

following example, Example 6.2, we consider a 3 x 3 matrix M(A, c ) to illustrate that it is 

possible that there exists a stable monotone eigenvalue with strictly positive eigenvector 

for some values of c, but for a larger value of c, there is no such stable monotone eigenvalue 

corresponding to strictly positive eigenvector.

Exam ple 6 .2 . Consider the 3 x 3 matrix M(A, c) such that

M(A, c )  =

^ A2ai +  A(c — d i )  +  b\  0 0 ^

e A2a2 +  A(c — d 2) +  62 0

^ /  0 A2a3 +  A(c — d3) +  fr3 j

Then, similarly to before, we have a stable monotone eigenvalue with strictly positive
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eigenvector if

\ 2a i  +  A(c — c/i) +  fri — 0, A2cj2 T  A(c — c/2) T  b2 ^  0? and X 2 d% H~ A(c — c/3) +  63 <  0,

which is equivalent to

A2ai +  A(c — c/i) +  bi  =  0 and A2(a2 — a \  — A(c/2 — d i )  +  b2 — b i  <  0, and

A2 ($3 — d i )  — A (c/3 — c/i) +  63 — 61 <  0.

The curves

A 1 )■ A2(a2 — ai — A (c/2 — c/i) +  b2 — b \ ,  A >—>• A2(a3 — d \ )  — A (c/3 — c/i) +  63 — 61,

' where b2 — b i , 63 — 61 <  0, depend on the parameters and could have a number of forms, 

j In particular, the root Pi — P4 could be in the form

In this case, where Ai,A2 and Xneg are as in Example 6.1, if P4 < Xneg < P i, then for 

c close to di +  2yJdibi, there exists a stable monotone eigenvalue with strictly positive 

eigenvector. But since Ai —> — 00 and A2 —> 0 as c —>■ 00, there exist <d, cb > di +  2y/dibi 

such that for $  < c < cb, we have P3 < A2 < P4 and P4 < Ai < P2, so neither is a stable 

monotone eigenvalue with strictly positive eigenvector nor a stable monotone eigenvalue 

with non-negative eigenvector. □
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As a conclusion, note that we cannot directly generalize the third part in Lemma 6.2. As 

seen in Example 6.1 earlier, in a 2 x 2 matrix, when c increases, there is at least one stable 

monotone eigenvalue with strictly positive eigenvector, whereas in Example 6.2, in a 3 x 3 

matrix, because of the structure of the cases for the eigenvalues that we have here, it is 

possible that there exist such eigenvalues for some c, and for c very large, but for some 

values of c in between such stable monotone eigenvalue with strictly positive eigenvector 

do not exist. Example 6.2 thus shows that the generalization of part (3) of Lemma 6.2 

in Proposition 6.1, must be partial, and hence we cannot fully generalize Lemma 6.2 in 

the case of M (A, c) having multiple blocks.
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Chapter 7 

Exam ples

In this chapter we present some examples that illustrate key propositions and theorems.
i

For instance, we illustrate Proposition 5.3, that gives a necessary condition for both right 

and left combined conditions for linear determinacy to be satisfied, Theorem 5.7, Theorem 

5.8 about single right and single left spreading speeds, Theorem 5.9, and Theorem 5.10 

concerning right and left linear determinacy.

Some examples illustrate that for a chosen function /  and under some condition on the 

convection term h , an equation (scalar case) and a system (containing two equations) are 

each both right and left linearly determinate. We present examples of a system of two 

equations under some conditions on the parameters and convection terms that guarantee 

that a system has a right (left) single speed, which means that the right (left) slowest 

spreading speed equals the right (left) fastest spreading speed. We give examples to 

illustrate that a system is right (left) linearly determinate in the presence and absence of 

convection terms. On the other hand, there is an example showing that under a condition 

on the convection term, the system will not be left linearly determinate.

7.1 E xam ples illu strating  sufficient cond itions for b o th  

left and right linear determ inacy

The first example considers the scalar case for a given choice of reaction term / ,  and illus­

trates conditions on the convection term h under which both the right and left conditions
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for linear determinacy (5.63) and (5.64) are satisfied.

E xam ple  7.1. Choose /  : M —> M such that /(u )  =  «(1 — u)(w +  <5), where <5 > 0 (see 

also Example 2.2 in Chapter 2). If 8 > 1, this function /  satisfies properties E\ — E3 and

(2.1). Then with p = y/8,((p) = 1, (5.67) becomes

- A ( p ) < p V 6  h ' ( 0 ) - h ' ( p )  < A (p), p >  0, (7.1)

where A(p) = p / '( 0) -  f (p)  = pS -  (p2 +  pS -  p3 -  p2S) =  p3 +  (5 -  l)p 2 > 0. An

example of a function h satisfying (7.1) can be constructed by, for instance, taking

pV~S [fc'(O) — h! (p)\ = A(p), in which case K (p) b!{0) — — =  ^(O) — ^ — —
/l r\

which implies that h'(p) =  A H-----------=.------ , where A  \= h'(0), and hence a function h
VS

that satisfies (7.1) is

=   ̂ 2-\A^ A , B e  R.

Thus by Proposition 5.3, the equation

+  h(p) =  +  w(l -  u)(u +  5), (7.2)

where S > 0, is both right and left linearly determinate. On the other hand, if 0 < S < 1, 

the function /  does not satisfy condition (2.1), and thus by Proposition 5.3, it is impossible 

to find a function h which satisfies both the right and left combined conditions (5.63) 

and (5.64). □

Our second example employs a function /  : R2 —>• M2, also used in [42, Example 4.1], that 

falls into the second category in Remark 5.1 (iii) and so has two blocks in the Frobenius 

form of /'(0 ). This reaction function /  is obtained from a competition nonlinearity 

using a well-known change of variables that converts competition systems to co-operative 

systems; see [42]. Here we derive conditions on the diffusion coefficient d2 and a, b G R 

which are sufficient to allow the construction of a function h = (hi(ui), ^2(^2)) such that 

h'(0) =  diag(a, b) and both (5.63) and (5.64) are satisfied for /  and h. Two separate cases 

are treated: first, when h/(0) =  diag(a, a) for some a G M, in which case the eigenvectors
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C(aOjC(aO are equal, and second, when h'(0) =  diag(a, b) with a /  b, in which case

cos) * m .  □
Exam ple 7.2. Choose

3iq — 4 u\  +  U\U2
f ( u i , u 2) =  .

5^2  —  U 2  +  8 u i  — A u l  —  8 U 1 U 2

so tha t

/ ' ( « ! ,« * )=  | 3 8“ 1 + “2 Ul J , / ' ( 0 ) =  ( 3 0
8 — 8u2 10^2 — 1 — 12^2 — 8^1 J I 8 —1

and denote ti  (0) =  diag(a, 6), where a, b E M with possibly a /  6. There are four 

solutions of / (u i ,  U2) =  (0, 0) with iq, U2 > 0, namely the four equilibria (0, 0), (0, ^), (0, 1) 

and (1,1). Taking (3 = (1,1), Hypotheses Si — 56 are clearly satisfied with the minor 

modification that hypothesis 5i holds for all (it, u2) E [(0, 0), (1, 1)] rather than for all 

(^1,^ 2), which is easily seen to be sufficient for the above theory to apply because all 

solutions (^1,^ 2) of (5.1) considered here lie between the equilibria (0,0) and (3 = (1,1).

Then p = jl = a/3, and the coefficient matrices Cp and Cp respectively are

d i / j ?  T cl/j, T 3 0 \  | 6 T a y / 3 0

8 d,2 p 2 +  bp — 1 /  I 8 3c?2 +  by/ 3 — 1

and

dip2 — ap + 3 0 \  / b  — a v ^  0
Cp =

8 d2 fJ? — b/j, — 1 J  y 8 3d — by/3 — 1

Thus the eigenvectors C(aO, C{p) for 71 (p) = 6 +  y/3a, 71 (p) = 6 — y/3a are



Provided d2 < 7/3, it follows from Lemma 5.6 (and by inspection) that if a, b satisfy

- ( 7  -  3d2) _  _  (7 -  3dt)
-------------7=--------- <  0, —  0  <  -----------7 =------- ,

7 3  7 3

then the eigenvectors C(aO»C(aO are strictly positive and (5.54), (5.60) are satisfied.

Now define rj := a — b and consider the cases p = 0 and rj 7  0. If 77 =  0, the eigenvectors 

C(aO» C(£) are equal (c/. Lemma 5.3), and provided d2 satisfies the stricter restriction 

that d2 < 2/3, the function /  satisfies the necessary condition (5.65) of Proposition 5.3, 

in which case it is clearly possible to construct functions hi, h2 for which both (5.63), 

(5.64) hold by using a similar method to that in our explicit construction of h in Example

7.1.

For 77 7  O5 to have that both conditions (5.63), (5.64) are satisfied for a given hi, we 

require
u' ( \ ^  ( P 2 ( ~ ^  +  ^ 2 ) ^  ( p ( — 4  +  ^  n  ( 1  q \

h M - a - \ — zp— / = a ~ — vl— /  P > ° ’ (7'3)
and

' / \ 1 P^(—4 "P Q!o)\ ( p(—4 -|- Oi.0) . . \h M  > a + [ F { * > ) = a + [ n  2 ) ) p >  0. (7.4)

writing t = p in (7.3) and (7.4) respectively, so we obtain that

- 4 )  < h\(i) - a  <  - / = ( - a 2 +  4), t>  0,

which can be satisfied if aX — 4 < — o;2 +  4, which holds if

7 -  %/3(a - b ) - 3 d 2 7 +  s/3(a -  b) -  3d2

th u s  7=------------------- 1--------- 7=------------------ <  1, which yields
7 -  ^3 (a  - b ) - 3 d 2 7 +  >/3(a - b ) - 3 d 2 ~

7 4- V37?— 3d2 +  7 — \/3??— 3d2 ^
(7 - V 3 r j -  3d2)(7 + s/3r) -  3d2) ~  ’
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and gives

__________________________14 -  6d2 < 1
49 +  7\/3?7 — 21c?2 — 7 \/3  77 — 3rj2 +  3\f3r)d,2 — 21c?2 — 3y/3rjd2 +  9c?2 —

That is equivalent to requiring

-  36d2 +  35 -  3?72 >  0. (7.5)

Since ( 7 . 5 )  holds if d2 < ( 6 — ^ /l  +  3?y2 ) / 3  , a function hi satisfying the first inequality in 

each of ( 5 . 6 3 ) ,  ( 5 . 6 4 )  can be constructed for such <̂2, 77. Note that the larger values of c?2 

that satisfy ( 7 . 5 )  violate the additional requirement that c?2 < 7 / 3 ,  and that it is clearly 

necessary to have rj2 <  3 5 / 3  to be able to construct hi for some c?2 > 0.

Now for the existence of a function h,2 such that both ( 5 . 6 3 ) ,  ( 5 . 6 4 )  are satisfied, we need 

for p > 0 that

h'2 ( p a 2 )  <  b  -  = b _ ^5(p«2) -  <W  -  ; (7 6)

and

h '2{pal) >  6 +  ( 5 (^ )2 - ^ g , ) 3 -  8^ )  =  0 +  ( 5 ( ^ ) - y ) 2 - 8^  (? 7)

Writing t =  pa.2 and t = poi\ in (7.6) and (7.7) respectively, so we obtain that 

51 — At2 — 8 t ja \

which can hold if

i >/ \  1 ( — At2 — 8t/ct2\h2( t ) - b < - ( --------- '  M , i > 0,

lot -  8t2 -  8t I 7-~ ^  ) -  St ( I <Q,

and hence it holds if —812 — At +  6^2 < 0- Thus we need that —2t(2 A- At — 3^2) < 0 

for all t > 0, which holds if <  (2 +  4£)/3 for all £ > 0. Hence a function h2 satisfying 

(5.63), (5.64) can always be constructed, regardless of the value of 77, provided d2 <  2/3.
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Therefore we have shown that for this choice of /  : M2 —> M2, if 0 < | a - 6| < V5,

a sufficient condition to be able to find a function h = (h i,h2) so that both combined 

conditions (5.63), (5.64) are satisfied and h'(0) =  diag(a, b), is d2 <  2/3, whereas if 

y/E < \a — b\ < ^/35/3, a function h = (h i,h2) for which (5.63), (5.64) both hold and 

h'(0) =  diag(a, b) can be constructed provided

6 -  y/1 +  3(a -  b)2
< k <    .

Thus this implies that for this chose of functions /  and h, the system is both right and 

left linearly determinate by Theorem 5.9 and Theorem 5.10. □

7.2 E xam ples about th e  single right (left) spreading  

sp eed  and right (left) linear determ inacy
i

S The following example illustrates [26, Theorem 3.1] and [42, Proposition 2.1] about the 

single speed of a system that has more than two equilibria in the absence of the con­

vection terms, and the generalized result, Theorem 5.8. We consider the system that 

was discussed in [42, Theorem 4.4] with the addition of convection terms and with a 

non-increasing initial condition uq. This example illustrates that the linear value for a
!

co-operative system with convection terms may equal the linear value for a Fisher-type 

| equation with convection term (1.21). Note that a sufficient condition for the right linear 

value of Fisher equation with convection (1.21) to be equal the right spreading speed for 

such equation is h[(ui) < h[(0); see (2.20).

Exam ple 7.3. Consider the co-operative system with convection terms 

ui,t =  ui ,xx ~  h [ ( u i ) u hx +  r i U i ( l  -  ai  -  tii +  cl\U2),

u2,t = d2u2yXx ~ h'2(u2)u2yX +  r 2(l -  t ^ X ^ i  -  w2), (7.8)

with a non-increasing initial condition ilq, where r*, a* > 0, Ui > 0, for i =  1, 2, r i ( l —ai) >
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0, a 2 >  1 and the convection terms satisfy that

h'i(u i) — f°r  « — 1,2.

Now, since the convection terms do not affect the number of equilibria, we can apply 

Theorem 5.8 to show that the sufficient condition is satisfied for system (7.8). If will be 

shown that (7.8) has four equilibria and then we will conclude that the system has right 

single speed. First, we find the equilibria as follows. We want to find (u i,u2) such that 

f ( u i, u2) = 0 which holds if and only if

r iu i( l  — ai — Ui +  a iu 2) =  0, (7.9)

r 2(l — u2)(a2ui -  u2) =  0. (7.10)

From equation (7.10) we obtain, u2 = 1 or u\ =  — . Substituting these values in (7.9) we
cl 2

get u\ = 0, U\ = 1, and r*i(— )(1 — ai — — +  aiw2) =  0. This yields U\ =   and so
a2 a2 1 — CL\a2

(U1, « , ) = ( - ! ( 7. n)
\ 1  — d\CL2 1 — a i a 2 J

Thus the four equilibria are (0,0), (0,1), (1,1), (wi,w2). Since a2 > 1, our equilibria will 

be (0, 0) and ft = (1, 1), which means we are left with just two equilibria, not more, and

thus by Theorem 5.8, the system has single right speed. In other words, c = Cf.

Now to evaluate the right linear value for the system (7.8) we have

f \ u i , u 2) =
ri — airi — 2r\Ui +  airiw 2 ridiUi

r2a2( 1 — u2) —r2 +  2r2u2 -  a2r2Ui

/ 1 — a iri 0 ,
and hence /  (0 ,0) =  I I . T h u s the  coefficient m atrix  in equation (5.33)

is
r2a2 —r2

_  . M2 +  a/z +  r i ( l  -  a i )  0
— J

r2a2 d2fi2 +  bji -  r2
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where /^(O) =  a,ti2{0) =  b. Therefore from the definition of c in (5.37), in which the 

infimum is attained at /x, we have

o. __ 1 / o / i  \ \  — *̂1 ^T^lc = fjL (/i +  a/x +  r i( l  -  ai)) =  /x +  a +  — ---- — .
/x /x

Let £(/x) =  /x +  a +  — — — -, then E' (fi) — 1 — ^  =  0 if and only if /x =
» V ______________ M A6

\A i( l  — ai), and hence /x =  \/V i(l — ai). Therefore the right linear value for (7.8) is

c =  v V i(l -  ai) +  fll)=  +  a = 2yJr i ( l  -  a : ) +  a.
V r i( l -  «i)

On the other hand, the Fisher equation with convection term is

I
u \,t  =  A , x x - h i ( u i ) u { x  +  r i u \ ( .1 - a i - u \ ) ,  (7.12)

and since we have xxi, u<i >  0, then

ui,t =  ^i,*x “  h '^u^u^x  +  ri?xi(l -  ai -  ui +  aixx2)

> u hxx -  h[(ui)uitX +  riXXi(l -  ai -  xxi).

Consider (7.12) with initial condition given by the first component (xxo)i of the initial 

condition xxo of (7.8) such that 0 < (ito)i < 1 — a\. We choose the initial condition 

(ito)i in this way because the upper equilibrium of (7.12) is u\ = 1 — a\. Thus the first

component converges to 1 — a\e < 1. This is a special case of the condition in Theorem

3.3, so it will spread at a speed no slower than the right slowest spreading speed c.

Thus the first component xxi of the solution u of the system (7.8) is a supersolution of

(7.12), and hence by the Comparison Theorem 5.1, is bounded below by the solution 

of (7.12) with initial condition (txo)i - The right fastest (slowest) spreading speed for 

| the system c/(c) is thus bounded below (>) by the right spreading speed for the Fisher 

equation with convection (7.12), which we refer as c}, so

c > c\.
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Since h[(ui) <  /q (0), then we have c\ =  C\ where c\ is the linear value for (7.12) which 

defined in (2.18). Thus we have c > c \ .

Now in order to evaluate ci, since we have from (7.12) that = r\U*(\ — ai — u*),

then /{(u**) =  ri — a iri — 2r\u* which yields / / ( 0) — r i( l  — ai) and from (2.18) we get 

Ci =  2^ 7*1 — ria i +  h[(0). It is clear that c =  ci, so as a conclusion, we have

Cf  = c > c = Ci  = c[.

□

The following example illustrates that it is possible for the right fastest spreading speed 

to be strictly larger than the right slowest spreading speed for a system that involves con­

vection terms, provided the convection terms satisfy a sufficient condition. This example 

is a modification of [26, Example 4.1] with the addition of convection terms h'^u^Ui^ for 

i =  l ,2 and with a non-increasing initial condition uq.

E xam ple  7.4. Consider the cooperative two-species Lotka-Volterra model

U\ t̂ — 'U/i,xx h/i(K'u>i')'u,i,x T *̂1^1 (l “I- CL1U2 ) (7.13)

U2,t = d2u2}XX -  h'2(u2)u27x +  r2u2( 1 -  u2 +  a2u x) (7-14)

with a non-increasing initial condition wo, where all parameters are positive, a\a2 < 1, 

the reaction term / ,  and convection term h satisfy Hypotheses Si — Sq, and the additional

condition that the convection terms satisfy h'^Ui) < 0) for all Ui £ [0,1], 2 =  1,2. By

following the previous procedure for calculating the equilibria, we find that the system

(7.13), (7.14) has four equilibria (0,0), (0,1), (1,0), ( u j ,^ ) ,  with

i * M ( 1 +  1 +  a2 ^K ,  u2) = (- ,   ).
1 — CL\(12 1 — CLiCL2

Since there are four equilibria, and by Theorem 5.8, the system does not necessarily have 

a right single speed. Note first that the right linear value for system (7.13), (7.14) equals 

the right linear value for a Fisher equation with convection term, ci, which is obtained
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from equation (7.13), namely

u i,t  = u{xx ~ h'i{u[)u\tX +  r iu \( l  -  u}). (7.15)

From (2.18), we get C\ — 2y j (0) +  /q(0) = 2y/ri +  a where a = /q (0), whereas the 

right linear value for the system is c — p, +  a +  where p  =  y/r[, which implies that

c =  2y/fi +  a = Ci.

Since we know that

ui,t = ui,xx -  h[(ui)uhx +  riUi(l - u i  + aiu2)

^  Ml,XX h[(ui)uliX + r1Ui(l -  Ui),

and since U2 ,U\ > 0, then U\ is a supersolution for (7.15) with the initial condition 

U q ( x ) = (u0)i, and by the Comparison Theorem 5.1, we have u \(x ,t)  > v?(x,t) where 

is the solution of (7.15) with initial condition 0 < Uq < 1. We choose an initial condition 

Uq such that the first component of the system (7.13) converges to 1 — e for some e > 0, 

so [26, Theorem 3.1] implies that (uo)i will spread at a speed no slower than the right 

slowest spreading speed c. Since U2 > 0, and by the Comparison Theorem 5.1 we have 

that U\ can not spread more slowly than it would if we replaced U2 by 0 in (7.13), and 

we conclude that

Cf > Ci = c, (7.16)

and since h[(ui) < 0), so C\ =  cj, where c[ is the right spreading speed for (7.15).

Likewise, since we know that U\ < we obtain

u2,t =  d2u2,xx ~  h'2(u2 )2 ,x +  r2u2(l - u 2 + a2u\) (7-17)

< d2u2,xx ~  ti2(u2)u2 ,x +  r2u2 ( 1 - U 2 + a2( - 1-+ - 1 ) ) , (7.18)
\  1 — aia2 J

so u2 is a subsolution for the equation

u 2,t = d2u{xx -  h2(ul)ul +  r2u\ ( l - u [  + a2( 1 +  Ql ) )  , (7.19)
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and hence, by the Comparison Theorem 5.1, u2 < u2, where u2 is the solution of (7.19)

with initial condition (140)2- We choose an initial condition Uq for (7.13)-(7.14) such that

the initial condition of the second component (7.19), (2/0)2, satisfies 0 < (2/0)2 < -————,
1 — a\a2

and it follows that (2/0)2 will spread at a speed no slower than the right slowest spreading 

speed c. The Comparison Theorem 5.1 shows that 2/2 can not spread more rapidly than it 

would if we replaced 2/1 by u\ in (7.14). Since h'2(u2) <  ^(O ), the spreading speed of the 

equation (7.19) equals the linear value C2 for equation (7.19) and C2 — 2y/d2f^(fi)-]-h2(0) — 

2\ / d 2r2u2 +  6, where b = h'2(0). So since 2/2, u\ are non-increasing in x, the fact that 

2/2 <  u\ implies that

c < c2 = 2\Jd2r2u\ +  b. (7.20)

Therefore if 2yfr{ +  a > 2yjd2r2u\ +  6, it follows from (7.16) and (7.20) that

cf  > c.

In particular, this implies that if a is sufficiently larger than 5, then we have that the 

right fastest spreading speed is strictly bigger than the right slowest one. □

The following example considers a system that is discussed in [14]. It has four equilibria,

but two of them will be outside the rectangle [T, S'] such that T  — (0,0), S = (1,1) pro­

vided certain conditions are satisfied. Note that in this example, S  is a stable equilibrium 

and T  is an unstable one (note that, in contrast, S  is unstable and T  is stable in [14]).

E xam ple  7.5. First consider the system without convection terms

ui,t = ui,xx ~  ociUi +  oliU2 +  n (u i  -  u\), (7-21)

2/2,/ =  u2,xx +  Oi2Ui -  a 2u2 +  r2(u2 -  u\), (7.22)

with non-decreasing initial condition 2/0, and where all parameters are positive. Following 

the same procedure to find the four equilibria as previously, we find that from equation 

(7.22) we have

2/1 =  a ^ 1[Q!22/2 -  r2(u2 -  u\)\ = u 2 — a 2lr2(u2 -  u\). (7.23)
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Substituting this value in (7.21) we get

(u2 -  ul) [otia2 V 2  +  r i  -  a 2  1rxr2 + 2a2 lr2rxu2 -  a 2 2r2 2ri(u2 -  v%)\ = 0,

which gives us u2 = 0, u2 =  1, and

(1 -  2a2r2 1) =F y j  (2 a 2r2 l -  l )2 -  4(o;iQ;2r^ 1r f 1 +  a \r 2 2 -  c ^ 1)u2 = — 
2

This implies that iq =  0, iq =  1 respectively. Now if r i r 2 > 4a \a 2 (as presented in [33], 

and noted in [14]), then (2a2r2 l — l )2 — 4(aiQ;2r^ 1r f 1 -f oi^r22 — a 2r2 l ) > 0, which means 

that the values of u2 are

1 1 ai a 2
u 2 — 0 OL2^2 “F \  A2 V 4 rir2

1 2 1Let s = ----------- . If we substitute these values of u2 in (7.23) we obtain U\-= --------- Ty/s.
4 ri r 2 2 n

So the four equilibria are (0,0), (1,1), E _ := (iq- , u2 ), E + := (lif, u2 ), where

2 ri 2 r 2

Now to prove that ET are outside the rectangle [T, 5], it is enough to show that one 

component of (u i,u2) is les 

which occurs if and only if

1 OLi
component of (u i,u2) is less than zero, such as U\ < 0. Thus we n e e d ------------- y f s  < 0,

2 ri

> i _ m .  (T.24)
4 a 2r2 2 rx

1 ol i
The inequality in (7.24) is satisfied in three cases, (i) w h e n ------------< 0 ,  (ii) when

2 ri
1 Ck 2 1 Q2 1
 -------- < 0  which implies that   y / s  < 0, and (iii) when  ------ > 0  and
2 r2 2 r2 2 r\
 — > 0 which implies that 1 > — +  — .
2 r2 r 1 r2
So ET are outside the rectangle and we are left with just two equilibria (0, 0), (1, 1). Thus 

the system (7.22) has left single speed by Theorem 5.7, which means that Cf = c.

Now we want to show that the function /(w i,u 2) satisfies the sufficient condition in 

Theorem 5.10, which is a straightforward modification of [42, Theorem 4.2] for non­
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decreasing initial condition and in addition of convection terms, from which it follows 

that the single left spreading speed c for the system equals the left linear value c for the 

system. Since condition (5.60) is trivially satisfied here, because we have only one block 

of /  (0), a sufficient condition for left linear determinacy is

fi{u i, u2) < /• (0,0) (ui u2)T for all u u u2 > 0, i = 1,2. (7.25)

Note that a generalization of condition (7.25) is the condition in [42, Theorem 4.2], that

is

—ol2 +  r  2

/  (pC(^)) <  pf(0)C(n). (7.26)

But (7.25) is easier to check since we do not need to evaluate //, C(/x), and it happens to 

be true here. Condition (7.25) is

—a iu i '+ a iu 2 + r i ( u i —ui) \  I - a i  + rx 

a 2Ui -  a 2u2 +  r2(u2 — uQ J  V <a2

which it holds if and only if — a\U\ +  a\U2 +  ri(u i — u\) < (—a\  +  T\)u\ +  a iu 2. It is

require that — r\u\ < 0, which is true since rq >  0, and a 2U\ — a 2u2 +  r2(u2 — u\) <

((a2U\ +  (—a 2 +  r2)u2, which requires that —r2ul < 0, which is true since r2 > 0. Thus 

we have

c/ =  c =  c.

□

The following example modifies the system (7.21), (7.22) by the addition of the terms 

—h[(ui)ui^x, — h'2(u2)u2yX. Using Theorem 5.10 we will show that the system has single 

left spreading speed that equals its left linear value, which means that the system is 

left-linearly determinate.

E xam ple 7.6. Consider the system below

Ul,t = Ul,xx -  ^ i(wl)wl,x “  +  a lw2 +  7*1 (lii -  u\) (7.27)

u2,t — u2,xx ~  h2{u2)u2̂x +  ol2 U \ — a 2u2 +  r2(u2 — u2),
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with non-decreasing initial data, where all parameters are positive, 7*172 > 4o1Q!2, and 

r\ > a.\. The reaction term

,  — QiWi +  a\Uo -f r\(u\ — w?) ,

f  = ( f 1(uu u2) J 2{uu u2)) = | U 1 | , (7.28)
a 2ui -  a 2u2 +  r2(u2 — u2)

and convection term h satisfy Hypotheses Si — Sq and the function hi is supposed addi­

tionally to satisfy

h'i(0) < h'i(ui) for Ui € [0,1], i = 1,2.

As we showed above, the system (7.21), (7.22) has only two equilibria and since the 

convection terms do not effect the number of equilibria provided the condition r \r2 > 

4oiq:2 guarantees that there are only two non-negative equilibria, (0,0) and (1,1). So the

system (7.27) has single left spreading speed Cf = c. A sufficient condition for left linear

determinacy involving functions /  and h is

f i (u i, u2) -  (0,0) (u i, u 2 ) t  <  p, h -(u i,u2) -  h-(0,0) (uu u2)T , u u u2 > 0,  (7.29)

since (7.29) implies (5.61). Note that the condition (5.61) is trivially satisfied here since 

we have only one block in /  (0).

The condition (7.29) is equivalent to

—aiUi + aiU 2 + r i(u i  — ul) \  I —ot\ +  r x \  I iq

a 2ui -  a 2u2 +  r 2(u2 -  u\) I \  a 2 - a 2 +  r2 I \  u2

(7.30)
h[(ui) 0 

0 h'2(u2)

which is true if and only if — riu\ — fiu^h '^u i)  — a) < 0, and —r2u^ — p,u2(h'2(u2) — b) < 0. 

Since ^ (0 )  =  a <  ^ ( u i) ,  ^(O ) — b < ti2(u2), and since 7*1, r2, iq, u2, jl > 0, it follows 

that (7.30) holds provided h[(ui) — a > 0, and h'2(u2) — b > 0. Then Theorem 5.10 implies 

that df = c = c for the system (7.27), which means that it is left linearly determinate.
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We will use an argument similar to those used above to estimate the linear value c of 

(7.27) provided that /^(O) < h'i(ui). The argument depends on comparing with a Fisher 

equation with convection term (1.21) that is obtained from the first equation in the 

system but with 112 = 0 and with the non-decreasing initial condition 0 < (ito)i < T\ — oq

for the system (7.27) which is the same initial condition as for the Fisher equation

“ i,t =  u i,xx -  h 'i(u i ) u \,x -  “ 1“ * +  r i ( u [  -  («*)?). (7.31)

Since U2 > 0, we have

ui,t = ui,xx -  h[(ui)uiiX ~ ol\Ui +  a iu 2 +  n (u i  -  u\)

> UitXX -  h '^u^u^x  ~  OL1U1 +  ri(ui -  u\).

So U\ is a supersolution of (7.31), and hence the Comparison Theorem 5.1 implies that 

ui > u\, where u\ is the solution of (7.31). Choose an initial condition 0 < (uo)i < r\ — ai 

such that the initial condition of the first component of (7.31) converges to rq — an < 1, 

so (uo)i will spread at a speed no faster than the left slowest spreading speed. Hence 

because the initial condition is non-decreasing, we get

Cf =  C =  c  <  C! =  t i ( 0) -  2 ^ //;(0 ) =  a  -  2V ri -  a i ,  (7.32)

where C\ denotes the linear value of (7.31), f[ (0) denotes the first component of /  : R2 —> 

R2, and because /  (0) does not have any zero off-diagonal entries, if it were possible to 

find such A and q, then we would know that C\ < c. If, however, it is not possible to find 

such A and 5, then t  < C\. It is not straightforward to calculate the linear value of the 

system (7.27) in this case, in contrast to previous examples. Thus we will estimate it by 

taking c = c 1, and we investigate whether or not it is possible for this value of c that 

there exists an unstable monotone eigenvalue A > 0 and a vector q > 0 that satisfy

M {\,  c)q =
o | T* 1 — OL\ OL\

A +  A c l — A diag (a, b) +
0.2 f  2 ~  &2

q = 0,
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which is equivalent to

A2 +  A(a — 2yVi — ol\ ) I  — A diag (a, b) +
r  i — a i a i

<̂2 T2 — 0̂ 2
9 =  0. (7.33)

For a positive vector q — (x, ?/)T, where x, y > 0, (7.33) becomes two quadratic equations 

for A,

(A2 -  2A\A’i -  Cii +  (ri -  a i))  x  +  a iy  =  0, 

(A2 -  A(2yVi -  ai -  a + b) + (r2 -  a 2)) y +  a 2x = 0. (7.34)

By letting — = z, the two equations become 
x

A2 — 2 \y /T\  — (Xi  T  T\  — Oil “1“ Oi\Z  — 0, 

A2 — A(2y/r*i — ct\ — cl -\~b) t 2 — ol2 ol2z   ̂ =  0.

(7.35)

(7.36)

Then from (7.35), we find that

2-\/Vi — Oi\ \J4(t'i — au) — 4(ri — oli +  oliZ) 2yjri — oli ^  yj—AoliZ

and since —4aiz  < 0, we can not have a real solution such that A > 0, z > 0. Therefore 

we must have the strict inequality, t  < Ci = a — 2y/ri — cq- D

7.3 E xam ple illu strating  a sufficient condition  on th e  

convection  term  for no linear determ inacy

The final example considers the previous system (7.27) but when the convection term 

does not satisfy h-(0) < /i-(w;),z =  1, 2. We suppose here that the convection term is 

such that h'i(0) =  ^ ( 0), and will show that under certain additional conditions on the 

convection term and parameters, this system is not left linearly determinant.
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E x am p le  7.7. Consider the co-operative system

ui,t = u itXX ~  hY{u{)ui'X -  aiUi +  a iu 2 +  77 («i -  u x) (7.37)

u2,t =  u2,xx ~  h'2(u2)u2,x +  a 2ui -  a 2u2 +  r2{u2 -  v$),

with non-decreasing initial condition it0, where all parameters are positive, 777*2 > 407 a 2 

and r \ >  oty. The functions /  in (7.28), and h satisfy Hypotheses s i—Sq and /q(0) =  ti2(0). 

As we showed above, the system (7.37) has single left spreading speed c/ =  c.

Since it is not straightforward to calculate the left linear value c of the system, we again

will estimate it using a Perron-Frobenius eigenvalue argument as follows. The Perron- 

Frobenius eigenvalue 0)) =: 7 satisfies

72 -  7 [(n -  a i)  +  (r2 -  a 2)\ +  (77 -  a x){r2 -  a 2) -  a xa 2 =  0,

which, letting Ri := 77 — 07, i = 1, 2, says that

72 — 7 ( ^ 1  T -R2) +  R \ R 2  — ol\Ol2 =  0,

which is a quadratic function in 7 . Thus

( R i  +  R 2) =F \/(-Ri +  .R2 ) 2 — ^ { R \ R 2 — 0 7  £*2)
7 = ------------------------2------------------------ ’

and since we are interested in the unstable eigenvalue 7 , so

(R \  +  R 2 )  +  \ J  ( R i  —  R 2 ) ^  +  4q7Q;2 
7 = ------------------ 2------------------ •

For this positive eigenvalue, there exists a positive eigenvector q = (x , y )T , x, y > 0 that 

satisfies /  (0)g = $Pf  ( /(0 ) )  g. Then for this g, the equation

M(A, c)g =  [A2 +  Ac/ — A diag (a, 6) +  7 /] q — 0,
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is equivalent to the two quadratic equations in A,

(A2 +  Ac — A a +  7) x  =  0, 

(A2 +  Ac — A b +  7 ) y = 0.

(7.38)

(7.39)

Since /^(O) = a — /4(0) =  b, dividing (7.38) and (7.39) by x, y respectively yields a 

single quadratic equation in A,

A2 +  A(e — a) (i?1 +  +  ^ (i?1 ~  fi2)2 +  4ai° 2 =  0,

and hence

~ ( c ~  a) T

A = \ (c — a)2 — 4 (i?i +  R 2) +  \/(i? i — -H2)2 +  4aqa'2

Since we are interested in positive A, the critical value of c for which such A exists satisfies 

(c — a )2 =  2 (Ri +  R 2) +  yj(R i — R 2 ) 2 +  4a 1a:2 • It follows that to obtain such positive

A, we need c — a = — ( 2  (Ri +  R 2) +  yj(R i — R 2 ) 2 +  4aiQ;2 ^ • Thus we have shown

that for this value of c given by

cx MO) — ^2 (i?i +■ i?2) +  x/(R \ — R 2 ) 2 +  40102  ̂ , (7.40)

we get an unstable monotone eigenvalue A corresponding with the positive eigenvector q, 

and then by the definition of the linear value c of the system (7.37), we have

cA < c. (7.41)

Now recall a Fisher equation with convection terms

5, t  =  u \,xx -  _  a i “5 +  r i (“ 5 -  M i ) . (7.42)

where fi(u i)  = r\(u\ — u\) — a\U\ =  u\ (7*1 — — riU\ ) , so the equilibria of f i(u i)  are 0
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and —— — =  — . Then the proof of Proposition 2.3 
n  n

\ ( / ! l ( ^ ) )  + 2 / n  / i ( “ i ) d“ i -  - fei(0) +  \ j  (h i  ( ^ ) )

gives an upper bound for the left spreading speed c} of scalar equation (7.42), that is

c» <  -fti(O ) +  +  | f  (7-43)

Suppose the function h is chosen such that

_M0)+/ ( fti ( t ) )  +ff <CAi (7-44)
holds (note that, for instance, (7.44) will hold if /^(O) is sufficiently large). Since we 

know from Example 7.6 that u\ is a supersolution of (7.31), hence U\ > u\, where u\ 

is the solution of (7.31) with initial data (uo)i- So (tto)i will spread at most the left 

slowest spreading speed c, thus since (ito)i is non-decreasing, we get that the left slowest 

spreading speed for the system c is a lower bound for the left slowest spreading speed cj 

of the scalar problem (7.42). That is, c. < c}, hence using (7.43), we obtain that

c < c [ <  —hi(0) +  ] j  + 3^ ’

and if (7.44) holds, we get

c < c \ <  - h i ( 0) +  < Ca -  ^  (7-45)

Hence (7.45) shows directly that the system is not left linearly determinate since single

left speed of the system is strictly less that its left linear value. □
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A ppendix A  

P roof of Continuous D ependence  

Theorem  5.4

Here we prove the Continuous Dependence Theorem 5.4.

The idea of the proof depends on estimating both ||it(-, t ) — u(-, £)|| 00,77 and £1//2||wo(-, t) — 

wo(*j £)|| 1,00,77* using the definition of r](x) in (5.17) and Peetre’s inequality (A.l), in order 

to show that there exists C > 0 to satisfy the required inequality for all t G [0, T\.

A useful inequality for this following proof is Peetre’s inequality (see [3, p.99]), which 

implies that, for any \i G R, and x, y  G R,

( Y ^ ) ^ 2 M ( l  +  ( x - y)a) M. (A.l)

Proof. (Theorem 5.4) Note first that the solution u of (5.1) with initial data Uq satisfies

Ui(x, t )= /  r i ( x - y i t)(u0)i(y)dy +
J  R

where

7i(u, ux) = -h i(u )u i>x +  fi(u), and T^x, t) = exp ( ~ x 2/4drf) .
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So if u, u denote solutions of (5.1) corresponding to initial data Uq,Uq, we have

Ui{x,t) -U i{x ,t )  = /  T i ( x - y , t ) { ( u 0) i { y ) - u 0i(y))dy+
Jr

n Ti(x - y , t -  s) [7i (u(y , s), ux(y, s)) -  7* (u(?/, 5), ux(y, s))] dy , 

so that if we define w \= u — u, := Uo — and <fi := 7 (u, wx) — 7 (w, wx), we have

Wi(x,t) =  /  r i ( £ - y , t ) u ; o i (?/)<&/+ /  /  r ^ x - ^ t - s ) ^ , * ) ^ ,  (A .3)
t/ M 0 v M

and hence

r}(x)wi(x,t) = rj(x) /  r i (x -y ,* )iu o i(2/)d2/ +  77(x) / /  r*(x -  y, t -  s)<j>i(y, s)dyds.
*J M v 0 v M

Now to prove the continuous dependence Theorem 5.4, we need to estimate both ||rc(-, i) Hoô  

and i1/21|«;(*,£)||ij00lT?. Note first that

l*?(z) r*(x -  y, t)ic0i(?/)d?/| =  Ti(x -  2/, i)^y .72(2/)^0i(2/)d2/|

<  sup |77(2/)^0i(2/)| [  Fi ( x - y , t ) . ~ ^ - d y .  (A.4)
yeM Jr r)(y)

Hence by Peetre’s inequality (A.l),

tj(x) _  1 +  y 2 _  ( l + J / 7  _1 . „ , , , 2\
rt(y) 1 +  x2 ( l  +  x2J  “   ̂ ^  V

and thus

[  r i( x - y , t ) T̂ - d y  <  2 [  T j x  -  y, t) ( l +  (x -  y)2) dy. (A.5)
Jr VyV) Jr

Now since f R I \(x  — y, t)dy =  1, and by letting x — y = z : we have

T*(x —  2 / ,  t)(x — y f d y  = t)z2dz = ^ y =  e x p  z 2dz,
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z2 dz
if we suppose that v2 =  ——, then dv = — and it follows that

4 dkt 2 y/djt

[  — 7 =  exP (  z t t~ \  z2dz = [  v2 exp(—v2)dv,
J R 2 V ^d ~ t y \ 4d i t J  0 F 7 m ;

gives that

[  Ti(x -  y, t ) 1̂ y \ d y  < C( 1 + 1), (A.6)
J r  Ti { y )

for some constant C depending only on d*. Then (A.4) and (A.6) together give that

|rj(x) [  Ti(x -  y, t)w0i(y)dy\ < C( 1 +  t) sup \r]{y)w0i(y)\. (A.7)
J r  y e  R

Next

d  f  f  ^
—  /  T i(x -y , t )w o i(y )d y =  /  —  I \ ( x  -  y, t)w0i{y)dy 

J r  J r

= L ̂  v b exp ( ^ r 1) W0iiy)dy 
= L 2 Jart~ % v)'exp {z^ - ) ^ v)dv
=  “ 4 V5F(U*/* /« ("  "  ^  ^  Wmiy)dy'

f  d
H x) J  fa.ri(x - y , t ) w 0i{y)dy\

1 . r  , . /  — ( x  — y ) 2 \  ry(x)  , , / \ i i

=  v W ^ I/k(x "  v) exp ( ^ T “ J  " ^ ( v W

< sup W y > 0i{y)\2^ lm m  JR\X -  y \exp (1 +  (x -  y f ) d y , (A.8)
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and since

Jjx -  ̂ -exp (^ S r 1- ) (1 + - ŷ dy
=  2y/ ^ ( d  t ) 3/2' I  2V ^ I - l exP ( - - 2) (l + ^ d i t v 2) 2y/d(tdv

■  J i i i t t y n  / h  = *p ( -” ')  (1 +  *

£  (*■»)

where C  is a constant (again, depending only on di). Then (A.8) and (A.9) together give

that

t 1/2\rj(x)^~ f  Ti{x -  y ,t)w 0i(y)dy\ < t 1/2—^ 7 ^  SUp \7]{y)w0i(y)\
O X  J R  t 1/ yGM

=  C( 1 +  t) sup \r}(y)w0i(y)\. (A.10)

Now we need to estimate both

77(a) [  [  Ti(x -y ,t-s )< l> i(y,s)dyds, and t 1/2r](x)^- [  [  r»(a -  y, t -  s)<j>i(y, s)dydt 
Jo J r  Ox j 0 j r

To do this, note first that

<t>i{y, s) = 7* (it, ux)(y, s) -  7*(u, ux)(y, s)

= h’iiu^Ui'X -  /i-(wi)wt>x +  /t(w) -  fi(u)

= h'ifai) (iii,x -  uitX) +  Ui,x (h ’̂Ui) -  h^Ui)^ +  fi(u) -  f i(u ),

Define ^ (0 )  fi{9u +  (1 — 0)w), and Q(9) := h[(0ui +  (1 — 0)?h). Then

/»(*0 -  fi{u) = [  dfi[9(u) +  (1 -  9)(u)](u -  u)d6,
J o

and

ti^Ui) -  ti^Ui) = / h-'(<9ui +  (1 -  0)tii)(wi -  Ui)dO,
J o
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so we have

<Mz/, s) = C(y, s)witX +  (0 (2/, s)w )i , 

where f , 0  are bounded uniformly on R x [0, oo). Hence

v{y)<t>i{y> s) =  C{y, s)rj(y)witX +  (0 (2/, s)r](y)w)i .

Since we know that u, u G 0/3, which means that 0 < u :u < ft, and ||iu||loo =  

maxjlwill! =  maxJItUjU +  ||u)i,x||0O,„, it follows thatl<t<k ’ ’ ' 1<Z<K ’' ’'

l<(y.s)l»?(3/)K*l < s)llll0o.7,> and |(ip(y, s)r](y)w)i \ < C |H - ,  s ) ^ ,

thus

v{y)\<f>i{y, 5)1 < C\\w(', s ) ||l 0O)7? for some constant C  > 0.

Then

\rj(x) [  [  Ti(x — y , t  — s)(f>i(y, s)dyds\ < [  [  T ^ x  -  y , t  -  s ) T̂ -r}(y)\(j)i (y, s)\dyds 
Jo J r Jo J r r}{y)

<  2 C  ( J ^ r i ( x - y , t - s ) ( l  +  ( x - y ) 2) d y \ d s

< C  [  ||w (-,s)||li00fl(l +  ( t - s ) ) d s ,
Jo

for some constant C. Since f R T ^a — y, t — s) (1 +  (x — y)2) dy < C  (1 +  (t — s ) ) , where 

C is a constant, we have

\v(x) [  [  r i(x -  y , t  -  s)(f)i(y,s)dyds\ < C [  ||w(-, s ) ^  ^  (1 +  (t -  5)) ds 
Jo J r  Jo

=  C f  (l +  ( t - s ) ) s " 1/2s 1/2||«)(-,s)||1 ds 
Jo

< C (  sup s1/2||w(-, s ) | | j  )  f  ( 1  + 1 -  s) s~1/2ds
\0<s<t V Jo

< (5(1 +  f)t1/2 (  sup s 1/2||ui(-, s) II , (A .ll)
\0<s<t /
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for some constant C. On the other hand,

\rj(x)^~ [  [  T i ( x - y , t - s ) (p i ( y ,s )d y d s \  = \ri(x) [  [  ^ - ^ ( x  -  y , t  -  s)</>i(y,s)dyds\ 
d x  j o 7m J o J r cfx

^  f o f n \ - ^ Ti(x  - y J -  s ) l ^ y  -v (y ) \M y ,s )\dyds

< 2C Jo lk(-> s) II 1,00,„ fa. (! +  ( * -  y f ) \§ ^ r i(x - V ’t -  s)\dyds.

(A. 12)

Then since

d d 1 /  — (x — y)2
- U x  _  y , t  - s )  =  T x 2 ^ d i ( t_ s) ■ exp

1 —2{x -  y) ^  f - ( x - y ) 2\
2y / n d i i t - s )  4di(t -  s) 6XP \  -  s) J  ’

and we have

J  (l + ( x - y ) 2) \ - ^ V i { x - y , t - s ) \ d y

=CL ( f e p (1 + (x ~ ^  ■exp ( w =%)dy
= q  f  2Vdi(t  ^  +  -  s)v2) • e x p ( -v 2)2y/di(t -  s)dv

J r  — s ) '
q  r _______

=  77- - - - - - - - - - - /  M  ( l  +  4 di(t -  s)v2) • exv{-v2)2yjdi ( t^s)dv
[t — s) / j M

(7 ~
< "7 ttttt for some constants C,(7. (A. 13)
~ { t - s ) 1/2 K J

Then (A. 12) and (A. 14) together give

\ ^ x )^~  f  [  Fi(x ~ y , t -  s)(j>i(y,s)dyds\ 
Jo Jr

< C(1 + t) f  (t — s)_1/2s_1/2s 1/2j|tii(-,s)!], ds, (A. 14) 
Jo

and since f*(t — s)~1̂ 2s~1̂ 2ds < 2 J ^ 2 s -1/2 ds = 2 211̂ 2 = C , for some
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max

d
t 1/2\r](x)—  f* f R Fi(x — y , t  — s)^(?/, s)dyds\

constant C, we have

[  [  T i (x -y , t - s )< l> i(y1s )d y d s \< C { l+ t )  sup s1/2\\w(-, s ) ^  (A.15)
ox Jo J r o<s<t ’ ’

which implies that

tl/2M x )~ ^  J  J  - V ’t -  s)4>i(y,s)dyds\

< C  i 1/2(l + t ) (  sup s1/2||it)(-, 5)111,00,,) • (A.16)
\ 0 < s < t  J

Then (A. 11) and (A.16) give that

/ / r i(x ~ y ^ t ~ s)(i)i(y^s )dyds l>

d
d x

< C tV 2(\ + t) (  sup s1/2|M -,s)H i )  , (A.17)
\ 0 <s<t J

for some constant C , whereas (A.7) and (A. 10) give that

max | \y(x) J  Ti(x -  y, t)w0i(y)dy\,t1/2\r)(x)-^ J  Ti(x -  y, t)w0i(y)dy\ j
< C(1 + t )  ( sup \rj(y)w0i(y)\ )

\ 0  <s<t J
< C,(l +  t)|K lloo,,, (A. 18)

for some constant C. It then follows from (A.3), (A.17) and (A. 18) that

d
= max sup \r](x)wi(x,t) \ + t 1/2max sup \rf(x)— Wi(x,t)\1 <i<k xe^ 1 <i<k OX

0 < s < t
<  C (  1 +  t ) | | i u 0 |li,oo,, +  C (i +  t)*1/2nsup S1/ 2 | |w (- ,s )H i,oo , , ,

which implies that
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sup (\\w(-, S)|| +  «1/2|k (- , s)lli,oo,i,)
\< s<t  '  '

< C(1 + T )||u )0||OOi,  +  <5(1 + T ) t 1/2 sup ( |k ( - ,s ) || + S 1/2||«)(-,s)||1 )  ,
0< s < t  '  /

and hence

i -  c ( i  + T ) t ^ )  « ip  ( lW -,« )IL ,, +  «1/8IW -.« )lli^ ,,)  <  c ( i + r ) |K I L , „ .  (A.i9)

Then (A. 19) yields that there exists 5 > 0, depending only on T, R  and the constants 

and functions in (A. 2), such that if t < 6,  then 1 — C(1 +  T ) tx!2 < 1 /2 , and hence

sup ( |k (- ,« )IL ^  +  s1/2||u)(-,s)||1 )  <  2C(1+T)||U)0|| . (A.20)
0< s< t  '  '

Then for 5/2 < s <  35/2,

sup ( |H - , s ) | |  +  (s -  ! ) 1/2|M -,s ) | | l 00t))  <  2C(1 +  r)||u;(-, 5/2)11
8/2<s<3S /2  \  Z J

< ( 2 C (1 + T ) ) 2 ||u;0||oo ,), (A.21)

3 S 6 (  b \  ^
and since for s G [5, — ], s < 2(s — - ) ,  so s1/2 < 21/2 ( s — — J , it follows from (A.21)

that

8/2<s<38 /2
sup (||u>(-,s)IL,, + (s)1/2|k(-,s)||lj00h

< 2 1/2 sup ( lH - ,s ) | |  + ( s -  ^ )1/2||w(-, sjll! A
5/2<s<38 /2  \  Z /

< 2 1/2 (2C(l +  r ) ) 2 |K | | 00i,. (A.22)

Since T  < N05 for some N q G N, it follows similarly, by considering the intervals 

[5, 25], [5^, ^ ] ,  etc, that there exists C  > 0 such that sup ( ||u/(-, s)\\ +  s1/2||it;(-, s ) ^
4  *  0< s < T  '  ’

CH^olloo^, as required, and the theorem is established. □
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