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Su m m a r y

in  appropriate constitutive model embedded in a finite element engine is the key to the 

uccessful prediction o f  the observed behaviour o f  geotechnical structures. However, to 

apture the behaviour o f  geomaterials accurately, the constitutive models have to be 

omplex involving a large number o f  material parameters and constants. This thesis 

resents a methodology for converting or recasting complex constitutive models for 

eomaterials developed based on any constitutive theory into a fu lly  trained A rtific ia l 

leural Network (ANN), which is then embedded in an appropriate solution code. The 

mgth o f  strain trajectory traced by a material point, also called ‘ intrinsic tim e’ is used as 

n additional input parameter in training. For the purpose o f  illustration, two constitutive 

lodels viz. Hardening Soil Model available in the commercial software, PLAXIS and a 

vo-surface deviatoric hardening model in the multilaminate framework developed by 

ee and Pande (2004) have been cast in the form o f  an ANN.
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CHAPTER 1. IN TR O D U C TIO N

1.1 G E N ER AL

Appropriate constitutive models o f  soils are the key to a successful prediction o f  the 

behaviour o f  geotechnical structures. A  large number o f  models based on various 

constitutive theories have been proposed in the last three decades. A ll o f  them assume a- 

priori, a mathematical framework o f  the model and the material parameters corresponding 

to the assumed framework have to be identified from physical material tests. Many 

material parameters in complex constitutive theories have no physical meaning, are

d ifficu lt to determine and have to be identified by tria l and error from numerical

simulations. In spite o f  this, many features o f  soil behaviour such as stiffness at small 

strains, higher stiffness on reversal o f  stress path, influence o f rotation o f  principal stress 

axes etc. have not been captured in a single model.

Thus, it is like ly that models o f  greater complexity w il l have to be developed in the

future. In recent years a number o f  applications o f  A rtific ia l Neural Networks (ANNs) 

leading to Neural Network based Constitutive Models (NNCMs) have been proposed by a 

number o f  researchers (Ghabbousi, et all 1991, Shin &  Pande, 2001, 2002).

The objective o f this thesis is to demonstrate how synthetic data from any constitutive 

model can be used to successfully train a NNCM . We choose the Hardening Soil Model 

(HSM) o f  the well-known commercial code PLAXIS and a complex Two-surface 

Deviatoric Hardening Model (TD H M ) in the multilaminate framework for cyclic loading 

developed by Lee &  Pande (2004) for the purpose o f  illustration.

1.2 L A Y O U T  OF THESIS

In Chapter 2.0 a general description o f  A N N  and the historical development o f  this 

achievement are presented. The relationship o f  linear regression and A N N  are brie fly  

analysed and the conclusions are shown. The A rtific ia l Neural Networks is a 

methodology which is applied by using computer software,

A t the Chapter 3.0 the application o f  A rtific ia l Neural Networks on the Constitutive 

Modelling is described. The advantage and the reasons o f  the N N C M  development are 

given. There are three different ways o f  using this methodology and these are presented in
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Chapter 3.0. A t the same Chapter the methodology o f  implementation o f  Conventional 

Constitutive model in N N C M  is fu lly  described.

Chapter 4.0 gives b rie f details o f  the HSM  and generation o f  ‘synthetic data’ along 

triaxial compression and extension paths under loading and unloading conditions. A t the 

same Chapter the response o f  a trained N N C M  w ith  the synthetic data are compared. 

Chapter 5.0 gives details o f  the TD H M  and generation o f ‘ synthetic data’ along one-way 

cyclic triaxial compression under specified volumetric strains. A t the end o f  the current 

Chapter the response o f  a trained N N C M  w ith  the synthetic data for a number o f  cycles o f  

loading and unloading are compared. Chapter 6.0 gives conclusions and indicates the 

implications o f  computational efficiency in practical problems.
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CHAPTER 2 G E N E R A L D ESC R IPTIO N S OF N E U R A L N E TW O R K S

2.1 IN T R O D U C T IO N

Over the last years, the use o f  artific ia l neural networks (ANNs) has increased in many 

areas o f  engineering. A rtific ia l neural network (AN N ) is a mathematical model or 

computational model based on biological neural networks. Actually is the advance o f  

regression analysis. From the one parameter linear regression analysis and later on the 

first development o f  Linear Perceptrons now the people are able to solve non-linear m ulti 

parameters problem.

A rtific ia l neural networks may either be used to gain an understanding o f  biological 

neural networks, or for solving artific ia l intelligence problems without necessarily 

creating a model o f  real biological system.

2.2 A R T IF IC IA L  N E U R A L N E T W O R K S

A  brain is composed o f  neurons, cells that receive a stimulus which triggers a response 

from the neuron. The response from the neuron can trigger other neurons, which trigger 

other neurons, etc. Eventually, this chain o f  neural activation results in some response 

from the body, such as recollection o f  a memory, identifying a sound, movement o f  a 

muscle, etc. More specific the human brain consists o f  an estimated 10 b illion neurons 

(nerve cells) and 6000 times as many synapses (connections) between them Haykin 

(1994). A ll information taken in by a human is processed and assessed in this particular 

part o f  the body.

As neurons in the nervous system interconnect, they form large clusters and u ltim ately 

form the brain. These large clusters inspired the development o f  neural networks. These 

networks model the connectivity o f  the brain w ith one major assumption. In  neural 

networks, it is assumed that the interactions between neurons in the brain can be 

represented mathematically. The connections are like synapses. The connections have 

different strengths, in terms o f  numerical values. Depending on the connection "strength," 

they w ill transmit stronger or weaker signals to the nodes (neurons). The structure o f  an 

artific ial neural network is described below. A rtific ia l Neural Networks sometimes be 

referred to as AN N  for brevity.
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2.3 TH E  SING LE NEURO N

Let us begin with a very simplistic description o f  the working o f  the human brain. A 

process begins when stimulus is received from the environment. The receptors transform 

this information to electrical impulses and transmit them to the neural network (neurons 

and synapses) (Fig. 2.1). After evaluation inside the network, actions are decided and 

impulses are sent out to the effectors. Both biological and artificial neurons are 

elementary information processing units. The artific ial neuron is best illustrated by 

analogy with the biological neuron.Fig. 2.2 depicts an artificial neuron. We see that the 

connections (synapses) Wj transfer the signals (stimulus) Uj into the neuron, w, can be 

interpreted as a weight representing the “ importance”  o f that specific input u,. Inside the 

neuron the sum o f  the weighted inputs w, u, is taken. Given that this sum u is greater than 

an externally applied threshold 9, the neuron emits an output z. z is either continuous or 

binary valued, depending on the activation function (or squashing function). In most cases 

an activation function can be chosen in order to leads the neuron’s output to a range o f 

the interval [0, 1 ] or [-1, 1 ].

Neuron A
A

Impulse

Neuron B

B L f
Mitochondrion - V - A

Figure 2.1. Biological neurons 

(http://www.alleydog.com/images/2neurons.gif)
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► L

2  w ,u, - e
i

z
w- ...... '►

►

Figure 2.2. The artific ia l neurons with a threshold function

2.4 BRIEF H ISTO R Y

The branch o f artificial intelligence called neural networks dates back to the 1940s, when 

McCulloch &  Pitts (1943) developed the first neural model. They made an attempt to 

understand and describe the brain functions by mathematical means. McCulloch and Pitts 

used their neural networks to model logical operators. Contemporary developments in the 

field o f computer science were closely related.

In 1949 Hebb proposed that the synaptic connections inside the brain are constantly 

changing as a person gains experience. In other words, synapses are either strengthened 

or weakened depending on whether neurons on either side o f  the synapse are activated 

simultaneously or not. Among psychologists Hebb made an instant impact but network 

modellers have generally shown little interest in his work. In the late fifties Rosenblatt 

introduced the concept o f the perceptron. Basically, the perceptron, which works as a 

pattern-classifier, is a more sophisticated model o f the neuron developed by McCulloch 

and Pitts. Depending on the amount o f  neurons incorporated, the perceptron can solve 

classification problems with various numbers o f classes. For a correct classification the 

classes have to be linearly separable which is a major setback.

M insky and Papert (1969) also raised the issue o f the credit-assignment problem related 

to the multi-layer perceptron. During the next decade the general interest in neural 

networks dampened, mainly as a direct consequence o f  the results reported in the late 

sixties. Certainly the lack o f  powerful experimental equipment (computers, work stations 

etc.) also had an influence on the decline. The interest in neural networks was to be 

renewed though in eighties.

In 1982 Kohonen introduced the Self-Organising Map (SOM). SOMs use an 

unsupervised learning algorithm for applications in specifically data mining, image 

processing and visualisation. As a basic description one can say that high-dimensional
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data is transformed and organised in a low-dimensional output space. The same year 

Hopfield (1982) built a bridge between neural computing and physics. A Hopfield 

network (consists o f  symmetric synaptic connections and multiple feedback loops) which 

is initialised w ith  random weights eventually reaches a final state o f  stability. From a 

physicists point o f  view a Hopfield network corresponds to a dynamical system falling 

into a state o f  m inimal energy. Two years later the Boltzmann machine was invented. A  

Boltzmann machine is the name given to a type o f  simulated annealing stochastic 

recurrent neural network by Geoffrey Hinton and Terry Sejnowski. Boltzmann machines 

can be seen as the stochastic, generative counterpart o f  Hopfield nets.

The discovery o f  the backpropagation algorithm in 1986 proved crucial for the revival o f  

neural networks. Rummelhart, H inton and W illiams got the credit but it showed that 

Werbos already in 1974 had introduced the error backpropagation in his PhD thesis. This 

learning algorithm is unchallenged as the most influential learning algorithm for training 

o f  multi-layer perceptrons. We conclude this Chapter w ith the Radial-Basis Function 

(RBF) network, which was brought forward by Broomhead and Lowe in 1988. The RBF 

network emerged as an alternative to the multi-layer perceptron in the search o f  a solution 

to the multivariate interpolation problem. By using a set o f  symmetric non-linear 

functions in the hidden units o f  a neural network new properties could be explored. W ork 

by Moody and Darken (presented in 1989) on how to estimate parameters in the basis 

functions has contributed significantly to the theory o f  Neural Network.

2.5 TH E  STRUCTURE OF N E U R A L N E TW O R K S

Preserving the analogy w ith  biological neural systems, an artific ia l neuron is defined as 

follows. Am artific ia l neural network consists o f  several neurons, but they are divided into 

layers. There is an “ input”  layer where the initia l “ stimulus”  is received. These neurons 

are connected to a layer o f  “ hidden”  neurons. This hidden layer can be connected to either 

another hidden layer, or the “ output”  layer. There can be any number o f  hidden layers 

between the input layer and the output layer, but typically the number o f  hidden layers in 

any particular A N N  is lim ited. Typically, a neuron o f  any layer is connected to each other 

neuron in adjoining layers. Thus, each neuron in the input layer is connected to each 

neuron in the first hidden layer. Each neuron o f  the first hidden layer is also connected to 

each neuron in the next layer (either another hidden layer, or the output layer). Each o f  

these connections between neurons has a “weight”  associated w ith  it, and each connection
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is treated individually — each connection can have a unique weight associated with it. As 

the network “ learns,”  these weights are adjusted to represent the strength o f  connections 

between neurons. Thus, the network might determine that a particular connection is o f  no 

value, and give it a weight o f  zero. To determine the output from any particular neuron, 

the neuron must first gather its input. For neurons in the input layer, this is tr iv ia l — the 

input is merely the value given as input to the network. For each other neuron, however, 

this is more complicated. The input for neurons not in the input layer is a function o f  the 

output from each neuron in the previous layer, and the weight o f  the connection to that 

neuron. Using Figure 2.4, the input to neuron Ho in the hidden layer is based upon the 

output o f  each neuron in the input layer, multiplied by the connection between that 

neuron and Ho. To get the total input to Ho, the input values from each connected neuron 

must be summed. Thus, the input to a neuron j  can be written as:

£(Oi * wu) 
(2.1)

where Oj is the output from neuron i and W y is the weight o f  the connection between 

neuron i and neuron j.  The total input to the neuron is then used to determine an output 

value from the neuron. Activations or transfer functions are used for this and introduce 

the nonlinearity into the network. Almost any nonlinear function can be used, although 

for learning procedure it must be differentiable and it is preferable i f  the function is 

bounded; the sigmoidal functions such as logistic and tanh and the Gaussian function are 

some common choices. These functions typ ica lly  fa ll into one o f  three categories:

1. linear (or ramp)
2. threshold
3. sigmoid

For linear Function, the output activity is proportional to the total weighted output.

F(x)=x

(2.2)

For threshold Function which, takes on a value o f  0 i f  the summed input is less than a 

certain threshold value 0, and the value 1 i f  the summed input is greater than or equal to 

the threshold value

7
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f (x )  =
i f  (x  > 0) 

i f  (x  < G)

(2.3)

For sigmoid Function, the output varies continuously but not linearly as the input 

changes. The sigmoid function is the most common used transfer function, and the output 

value from a neuron w ill be between 0 and 1. When a neuron is “ inactive”  its output w ill 

be close to 0. When a neuron is triggered or “ active”  then its value w ill be close to 1.

f ( x )  =
1 + e'

(2-4)

5 1515 10 -5 0 10

Figure 2.3. Sigmoid function

Hidden
Laver

Output
Layer

Figure 2.4. A neural network with 3 input neurons, one hidden layer w ith 4 hidden 
neurons, and 3 output neurons.
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2.6 T R A IN IN G  OF N E U R A L  N E T W O R K

In order to get an A rtific ia l Neural Network to successfully learn a relationship between 

input and output variables, it must first be trained. This requires that some training data be 

gathered. The training data must include the inputs to each input neuron, and the 

anticipated result from each output neuron.

Finding the right set o f  weights to accomplish a given task is the central goal. M any 

learning algorithms have been devised that can calculate the right weights for carrying out 

many tasks. One o f  the most w idely used o f  these training methods is called 

backpropagation. To use this method one needs a training set consisting o f  many 

examples o f  inputs and their desired outputs for a given task.

Backpropagation (BPNN) is a supervised learning technique used for training artific ia l 

neural networks.

The BPNN operates in two different phases: one for learning and the other for prediction. 

The learning phase is composed o f  forward and reverse paths. In the forward path, a set o f  

learning parameters is presented to the system and the system calculates the output values 

at output units (outputs) from the input cases given. In the reverse path, the system 

calculates the sum o f  the error squared the ‘error’ being the difference between the A N N  

output and the known target. The system follows a backpropagation process where the 

calculated error signals are propagated backward through the network and used to adjust 

the connection weights. I f  the error summed over all training cases converges w ith in  a 

certain lim it, the learning phase is terminated. On completion o f  this learning procedure, 

the weights are stored in the N N  for prediction phase. In the prediction phase, the network 

produces appropriate outputs for new input cases given. The symbolic description o f  the 

backpropagation procedure is given in Figure 2.5.

9
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2.7 A V E R A G E  SYSTEM ERROR, M A X IM U M  SYSTEM  ERRO R A N D  

G E N E R A L IS A T IO N  ERROR

During training o f  an ANN, input variables in training cases are allocated to input units, 

w hile  target variables in the training cases are compared w ith output values (calculated) at 

output units. Therefore, the difference between the target and output values for training 

cases is called the ‘ residual’ or ‘error’ . This is different from the value o f  an error 

function. Note that the residual can be either positive or negative, and negative residuals 

w ith  large absolute values are typically considered just as bad as large positive residuals. 

On the other hand, error functions are defined and their absolute values are used to correct 

the weight value allocated in each connection o f  a network. The bigger the absolute value 

o f  error function is, the greater the error becomes. Usually, an error function is applied to 

each case and is defined in terms o f  the target and output values. In this study, the 

maximum value o f  the error functions at output units for all the cases is called ‘maximum 

system error’ (MSE). In addition, the error function for an entire training set is usually 

defined as the sum o f  the case-wise error functions for all the cases in the training set. The 

value o f  the sum divided by the number o f  the cases and output units is called ‘average 

system error’ (ASE). The ASE calculated for a test set is called the ‘generalisation error’ 

(GE). The error measures (ASE and MSE) are defined as follow ing:

Where:

P: is the total number o f  training cases 

kmax: is the total number o f  input units 

k: range from 1 to kmax 

p: range from I to P 

Ep: is the pattern error:

Average System Error: (ASE) = — Z E p =
‘‘max P max

(2.5)

Maximum System Error: (MSE) = M A X (y (tk -  ok ) 2) p k

(2.6)

k
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(2 .7 )

And

Et: is the total system error:

E. =Z EP = |£ 2 > k~°k)2
P P k

(2.8)

Where ok is the output from the output layer K  and tk is the target case from the same 

layer.

2.8 G E N E R A L IS A T IO N  OF A  N E U R A L  N E T W O R K

During learning, the outputs from a supervised A N N  are adapted to approximate the 

target values corresponding to the inputs in the training set. This adaptation is the main 

concept o f  training o f  an ANN. However, the more important purpose o f  using an A N N  is 

to make it more general, i.e., to have the outputs o f  the A N N  approximate target values 

for inputs that are not in the training set. Such a generalisation o f  an A N N  may be more 

important than the training itself, because a trained A N N  should be able to produce output 

acceptable w ith in its population, otherwise output from the A N N  has no meaning.
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CHAPTER 3 N E U R A L N E TW O R K S  BASED C O N S T IT U T IV E  M O D E L

3.1 IN T R O D U C T IO N

Numerical methods such as the finite element method play an important role as a tool for 

analysing a variety o f  problems in engineering. One o f  the most crucial components o f 

the finite element analyses is the constitutive model used for representing the mechanical 

response o f the material(s) involved. Phenomenological models o f complex materials 

such as soils, concrete, composites etc. are formulated w ith in an assumed mathematical 

framework and involve determination o f  a multitude o f  material parameters. It is 

generally admitted that in spite o f  considerable complexities o f  constitutive theories 

proposed, it has not been possible to capture the material response universally along all 

complex stress paths under a wide range o f  confining pressures. Furthermore, the 

complexities o f  constitutive models, in many cases, have inhibited their incorporation in 

general purpose finite element codes; thus restricting their usefulness in engineering 

practice.

3.2 W H Y  A P P LY  TO M A T E R IA L  M O D E L L IN G

A rtific ia l Neural Networks (ANNs) are pattern recognition algorithms using which 

relationship between a set o f ‘causes’ and ‘ effects’ can be captured. Any set o f  numeric 

data can be used to discover the pattern in it, i f  it exists. In the past two decades, a large 

number o f  applications o f  this methodology in almost all disciples o f  physical and 

biological sciences have been reported. This thesis concentrates on developing nonlinear 

stress- strain relations for geo-materials.

The main advantage o f  the Neural Network based Constitutive Models (NNCMs) are the 

following:

Do not require a-priori stipulation o f  any mathematical framework

Do not require checking for yielding, computation o f  flow  vector, updating and

reconstitution tangential stress integration matrix

Do not require identification o f  any material parameters, although desired material 

parameters can be identified Shin &  Pande (2003).
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NNCMs simply learn the complex relationship between stresses and strains from 

the physical test data presented to it for training.

NNCMs enable us to develop FE programs w ith  artific ia l intelligence.

NNCMs can be trained from monitored data (stress and displacement profile) o f  

structures.

A  triaxial test w ith glued platens is a structure (non-uniform stress &  strain field) 

and it provides richer data along diverse stress paths.

3.3 W A Y S  OF USING

There are three different ways in which NNCMs can possibly be used by engineers w ith  

considerable advantage. These are:

1. Firstly, NNCMs can be developed for any material from the raw test data without 

invoking any constitutive theory Shin &  Pande (2002, 2001). This approach has 

many advantages, the most important being that one does not necessarily have to 

identify material parameters o f  the model. However, i f  one does need to identify 

them in order to have the knowledge o f  the conventional engineering parameters, 

they can be identified by carrying out what is known as ‘v irtual tests’ .

2. Secondly, NNCMs can be trained from incremental load and displacement data o f  

‘ structures’ . Here, by the term ‘structures’ , we mean solids o f  arbitrary shape 

subjected to monotonically increasing loads having a non-uniform states o f  strain 

and stress. Thus, a cylindrical specimen o f  a geo-material having glued rig id 

platens, subjected to uniaxial load is a structure. This application o f  NNCMs 

leads to ‘ intelligent finite elements’ as described by Shin &  Pande (2001a) and is 

available for condition monitoring o f  real structures. It can also be used to 

identify material parameters for complex materials such as masonry from 

structural tests, Shin &  Pande (2003).

3. Thirdly, since many constitutive models are very complex, incorporating them in 

a finite element code and using them for solving real life  problems may not be a 

triv ia l task. Here, using ‘ synthetic data’ generated from systematic exploration o f
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strain space and corresponding stress response, a N N C M  can be trained and 

plugged in a Finite Element (I E) code This w il l certainly leads to computational 

efficiency since the computation o f  stress increment for a strain increment from a 

trained N N C M  is almost instantaneous. W hilst the first two categories o f  

applications have been reported by a number o f  researchers, there appear to have 

been no applications in this category.

This thesis belongs to the third category o f  applications. The objective is to demonstrate 

how synthetic data from any constitutive model can be used to successfully train a 

NNCM . We choose two constitutive models for illustration. The first is a well-known 

model viz. the Hardening Soil Model (HSM) available in the commercial code PLAXIS. 

This model uses parameters obtained from established engineering practice and is suitable 

for situations o f  monotonic loading. The second model is a complex Two-surface 

Deviatoric Hardening Model (TD H M ) in the multilaminate framework for cyclic loading 

developed by Lee and Pande (2004).

3.4. IM P L E M E N T A T IO N  C O N S T IT U T IV E  M O D E LS  IN  N N C M

3.4.1 M E T H O D O L O G Y  A N D  A R C H IT E C T U R E

ANNs can be used to simulate stress-strain response o f  any material by using 

appropriate data. In this case, the components o f  strain rates become the causes w h ilst the 

resulting stress rates are the effects. Description o f  stress-strain behaviour by a N N C M  

does not require checking for plastic flow, computation o f  flow  vector, updating and 

reconstitution tangential stress integration matrix. Full details are contained in Shin &  

Pande (2001, 2002 and 2003). Here a b rie f description is given for completeness and 

continuity.

Incremental (as distinct from total) stress vector can be computed from the 

corresponding incremental strain vector as follow:

do = NNCM(ds) +(o)n-i (3.4.1)
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Where:

de={dex, dsy, dez, dyxy, dyyz, dyxz} (3.4.2)

do {dox,doy,doz,dTxy, diyz, dxxz}

(o)n-i : current components o f  stress (o)

(3.4.3a)

(3.4.3b)

Here, in the terminology o f  ANNs, N N C M  stands for a neural network based constitutive 

model trained from appropriate incremental stress-strain data at various strain/stress 

levels. Thus, the input parameters must include current components o f  stress (a) and 

increments o f  strain (ds) whilst the required outputs are increment o f  stress (do). In 

many geotechnical problems, soils are subjected to cyclic and transient loads. Even in 

quasi-static problems many elements are subjected to unloading and. reloading. For 

constitutive models to be valid, in such situations, it is proposed to adopt ‘ intrinsic tim e’ 

(Bazant, 1982, Valanis, 1982) or the current length o f  strain trajectory, £, as an 

independent input parameter. Mathematically, intrinsic time, £, is defined as follows:

£,, is a monotonically increasing positive parameter. The above definition can be changed

constitutive behaviour.

Keeping the above points in mind, the N N C M  adopted in this thesis has strain 

increments, stresses and ‘ intrinsic tim e’ are the input variables whilst increments o f  stress 

are the output variables. For two-dimensional analyses, the workable architecture o f  the 

N N  has been obtained by tria l and error and is presented in Figure 3.1. It is constituted by 

9 input nodes two hidden layer o f  18 and 8 nodes respectively and 4 output nodes. In 

order to train the neural network the resilient back-propagation (RPROP) algorithm is 

used o f  GDAP program Shin (2001). RPROP was first proposed by Reidmiller (1993)

S  = J d f

(3.4.4)

Where, d^ is an increment o f  deviatoric strain defined as 

(3.4.5)

to include volumetric strain as w e ll as real time as is the case in ‘endrochronic’ theories o f
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and it is a local adaptive learning scheme based on the standard back-propagation 

framework.

GXn Gyn Tn GZn

i t i  t

I I ! t I t I I t
cixn-i oyn-i Tn-1 ozh-i dcx  dr,y dy dr,z c

Figure 3.1: Architecture o f  NNCM  [9-18-8-4] for two-dimensional analysis 

3.4.2 D A TA  E N R IC H M E N T

The strain-stress pairs from the triaxial tests are actually principal stresses and strains 

since no shear stresses/strains are involved. I f  such data were used for training, NNCM  

would have to extrapolate wherever shear stress/strain components are involved. This 

would lead to large inaccuracies in stress-strain response o f the NNCM.

To overcome this limitation, Shin &  Pande (2002) proposed a data enrichment strategy. 

They created additional data by transformation o f stress and strain (figure 3.2) in which 

the shear components w ill naturally be non-zero. In the two dimensional case, the 

transformation o f  a principal stress vector by an angle 0 measured anticlockwise from the 

X axis is as follows:

g x= A + B cos(2 0 )

(3.4.6)

cy= A-Bcos(20)

(3.4.7)

Txy= Bsin(20)

(3.4.8)

Where:

A = 0 .5 (g i+ cj2)

(3.4.9)
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B=0.5(ai-o2)
(3.4.10)

For strains

ex=C+Dcos(20)

(3.4.11)

8y:=C-Dcos(20)

(3.4.12)

Yxy=2Dsin(20)

(3.4.13)

Where:

O 0 .5 (si+82)

(3.4.14)

D=0.5(£ i -£2)

(3.4.15)

This method produces a large amount o f  training data depending on the number o f 

transformations chosen to generate data. Among the expanded data there are many 

duplicated strain-stress pairs so an additional process o f  ‘data pruning’ is adopted. A  

special algorithm has been developed in this thesis in order to apply the strategy and an 

incremental angle, A0 equal to 5° was used in order to rotate the strain-stress axes from - 

45° to + 45°.
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ay

*Y)

(Tv

■A)

Figure 3.2: Transformation o f stress components in two-dimensional domain.
(Shin 2001c)
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C H A P TE R  4. IM P L E M E N T A T IO N  OF H A R D E N IN G  SO IL M O D E L  IN  A  
N N C M

4.1 IN T R O D U C T IO N

A t the current paragraph the objective is to demonstrate how synthetic data from the 

Hardening Soil model can be used in order to train a N NC M . According that validation 

test has been carried out in order to check the accuracy o f  the N N C M  using the strains 

results o f  a conventional Finite elements analysis. Two boundary problems have been 

solved and the results were compared w ith the original constitutive soil model.

4.2 H A R D E N IN G  SO IL M O D E L  (H SM )

The Hardening Soil Model is described in P LA X IS™  Manual is a nonlinear elastic- 

plastic model w ith  M ohr Coulomb failure criterion. It is an enhanced version o f  the 

nonlinear elastic hyperbolic model o f  Duncan &  Chang (1970) w ith  deviatoric hardening 

operating on M ohr Coulomb yield surface. A  non-associated flow  rule defined by a 

dilatancy angle smaller than the peak friction angle is adopted. It is generally applicable 

to loose to medium dense sands and normally consolidated to lightly overconsolidated 

soils. The model captures apparently strong nonlinearity prior to failure, which is a 

drawback o f  conventional linear elastic-plastic models. A  cap in deviatoric stress — mean 

effective stress space is also included. Figures 4.1, 4.2 and Table 4.1 illustrate the HS 

model.

Table 4.1.Description of Input Parameter for HS Model

Stress dependent stiffness according to power 
law

m

Plastic straining due to primary deviatoric 
loading

rj ref 
50

Plastic straining due to primary compression rj ref
npr!

Elastic unloading/reloading E,:ref ,v„r
Failure according to Mohr-Coulomb model c, cp,\j/
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“<*1

-o

Figure 4.1 HS model in stress space (Plaxis Manual)

deviatoric stress

|9i-CJ3|
asymptote

""  failure line

■50

axial strain -€

Figure 4.2 Hyperbolic law for deviatoric stress and axial strain in HS Model

(Plaxis Manual)

4.3 S YN TH E TIC  D A TA  G E N E R A TIO N

For heuristic purpose, we have chosen typical parameters for medium dense as given in 

Table 4.2. Though many parameters w ill be fam iliar to engineers, reader should refer to 

the P LA X IS IM software manuals for full details.
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Table4.2. Chosen parameters for sand for HSM

E50ret (fo r pref= lOOkPa), kPa 20000

Eurref (fo r Pref=100 kPa), kPa 60000

Eoedref (for prerTOO kPa), kPa 20000

Cohesion c', kPa 0.0

Friction angle cp', degrees 30

Dilatancy angle vp, degrees 0

Poisson ratio v 0.2

Power m 0.5

Konc 0.5

Tensile strength, kPa 0

Failure ratio 0.9

The data in Table 4.2 are used to generate stress-strain response o f  the sand under various 

experimental configurations, viz. Triaxial Loading in Compression (LC), Triaxial 

Loading in Extension (LE), Unloading in Compression (UC) and Unloading in Extension 

(UE). Data have been generated for stress controlled drained conditions. A  single fin ite 

element subjected to uniform stress conditions was used in analysis w ith PLAXIS™  

software (figure) w ith  HSM  model w ith  parameters given in Table 4.2. The left hand side 

and the bottom o f  the geometry are axes o f  symmetry. A t these boundaries the 

displacements normal to the boundary are fixed and the tangential displacements are kept 

free to allow for 'smooth' movements (figure 4.3). The remaining boundaries are fu lly  free 

to move. The stress paths, in deviatoric stress, q and effective mean stress, p , space are 

shown in figure 4.4.
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Three different confining pressures o f  50 kPa, 100 kPa and 150 kPa were used for each 

o f  the above stress paths. In engineering practice, i f  such test data were available for a 

soil, one would perhaps term them as ‘extensive’ . These stress-strain data obtained from 

these simulations were then used for training the NNCM .

A
v \L ■<Kc-

B

Figure 4.3 Simplified configuration o f  triaxial test. (Plaxis Manual)

Plots o f  q versus axial strain, Eyy, as predicted by the trained N N C M  and the original HSM 

data used for training, for various stress paths are shown in Figures 4.5 - 4.8. In figures 

4.5 and 4.6 the results from the analysis are presented without considering the strain 

trajectory. Poor accuracy was presented in that case. As follow ing the strain trajectory has 

been included in the training data and an excellent match is seen confirm ing that N N C M  

has been adequately trained. This, however, is not surprising since prediction o f  response 

is made for the confining pressure which was also used in training data. We need to 

check i f  the response at confining pressures w ith in  the training range as well as outside

23



A p p lica tio n s  o f  A rt if ic ia l In te llig en ce  in
C o n stitu tive  M o d e llin g  o f  Soils

that used in training is also reasonable. This issue is discussed in the next paragraph o f 

the thesis.

Unloading

H D F dor

Loading
q

+dca

-daa

Compression

Extension

Figure 4.4: Stress paths in q — p’ space used for generating synthetic data.
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/s '

\

/ /

\ / HSM
\ J ........  NNCM

J -------------- T----------------- T----------------- T-----------------
-0 .06  -0 .04  -0 .02 0.00 0.02 0 .04 0 .06 0.08

ryy

Figure 4.5: Graph o f  q versus £yy under LC and LE conditions for a confining pressure o f 

100 kPa. (No strain trajectory is considered)
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Figure 4.6: Graph o f q versus 8yy under UC and UE conditions for a confining pressure o f 
100 kPa. (No strain trajectory is considered)
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Figure 4.7: Graph o f q versus 8yy under LC and LE conditions for a confining pressure o f

100 kPa.
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Figure 4. 8: Graph o f q versus syy under UC and UE conditions for a confining pressure o f

100 kPa.
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4.4 M O D E L  V A L ID A T IO N .

In this part o f  the thesis, we present the prediction o f the trained N N C M  for two 

additional triaxial tests w ith confining pressures o f 10 kPa &  200 kPa which are out o f  the 

range o f the training data. For these tests the predictions o f  the NNCM  were poor 

(figures 4.9 and 4.10). NNCM  was then re-trained using additional data generated for the 

four stress paths described earlier and for confining pressures o f 1 kPa and 200 kPa. The 

graphs o f q versus syy are presented in the figures 4.9 and 4.10 for the HSM, trained and 

re-trained NNCMs. This confirms that extrapolation by NNCM  is always o f poorer 

quality than interpolation, Pande &  Shin (2004).

20

q
HSM

NNCM before 
retraining

NNCM after retraining

2.6E-027.2E-04 5.7E-03 1.1E-02 1.6E-02 2.1E-02
Eyy

Figure 4.9: Graph o f q versus syy under LC conditions for a confining pressure o f  10 kPa.
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350
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200
HSM

150
NNCM before retraining

100

 NNCM after retraining50

0 -f-------------1------------- 1------------- 1------------- 1------------- -
4.8E-03 2.5E-02 4.5E-02 6.5E-02 8.5E-02 1.0E-01

ty y

Figure 4 .10:Graph o f q versus Syy under LC conditions for a confining pressure o f  200 

kPa.
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4.5 STRESS PATHS IN  BO U N D A R Y  V A LU E  PR O BLEM S

The stress paths imposed in real problems are obviously different from those under the 

mentioned four stress paths. The aim o f the follow ing paragraphs is to compare N N M C  

and HSM predictions in typical geotechnical problems. For this purpose, we have chosen 

two examples. In the first example a foundation problem has been considered whilst in 

the second a problem o f  excavation has been studied. The soil parameters for a both 

problems are taken from table 4.2. PLAXIS FE code has been used in order to solve the 

above geotechnical problems. Plane strain and drained condition was assumed for the 

calculations.

4.5.1 F O U N D A T IO N  PR O BLEM

In Figure 4.1 1 the geometry o f  the foundation problem is presented. Six noded triangular 

isoparametric elements have been used for the analysis. A uniform load o f 150 kPa has 

been incrementally applied and the resulting strain -  stress curves at two monitoring 

points, A &  B, marked on the figure, for NNCM  and HSM are shown in Figs. 4.12 and 

4.13.

Figure 4.1 I : Geometry and m onitoring points o f  the foundation problem
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Figure 4 .12: Various stress paths at point A in foundation problem
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Figure 4 .13: Various stress paths at point B in foundation problem
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4.5.2 EXC A V A T IO N  PR O BLEM

In this example, analysis o f  a 10 m x 4 m deep excavation behind a sheet piled wall was 

carried out in one stage. A fter the calculation for the initial conditions o f the in situ stress 

due to the gravity load the excavation load is applied. The geometry o f the problem and 

the locations o f  monitoring points are presented in figure 4.14. As mentioned earlier, 

three confinement pressures were in itia lly  used to generate data for the training o f the 

NNCM. I f  this NNCM  is used for the prediction o f stresses corresponding to the strains 

at monitoring point A, predictions were found be inaccurate. However, when the NNCM  

trained w ith five sets o f  confining pressure data was used, accurate response 

corresponding closely to HSM was obtained, see Fig. 4.15 &  Fig. 4.16. In the excavation 

problem, at some points, the confining pressure is small. The in itia lly trained NNCM  had 

to extrapolate the response at low confining pressures whilst after re-training with five 

sets o f  pre-consolidation pressures, it had only interpolate or extrapolate only in a small 

zone beyond the data used in its training.

5

4

— B

\

Figure 4.14: Geometry and m onitoring points o f  the retaining problem
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5. IM P L E M E N T A T IO N  OF TW O -SU R FAC E M O D E L  IN  M U L T IL A M IN A T E  

F R A M E W O R K  (T D H M ) IN  N N C M

5.1 IN T R O D U C T IO N

A  multilaminate framework for modelling the behaviour o f  soils was presented by Pande 

&  Sharma [1983] almost two decades ago. Yield and failure criterion for most elasto- 

plasticity based models are written terms o f  stress invariants. This type o f  formulation 

inhibits development o f  plastic strains purely due to rotation o f  principal stresses. Such 

formulations also exclude plastic flow  induced anisotropy. Multilam inate formulation o f  

plasticity based models overcomes both the above mentioned short comings. Here, the 

yield .and failure criteria as well as plastic potential and hardening softening functions are 

written in shear stress/ normal stress space for randomly oriented micro-planes. A  

framework similar to multilaminate framework was presented by Bazant under the name 

‘micro-plane model’ . Practical applications o f  the multilaminate framework have been 

carried out by Schweiger &  his co-workers (2000). In the follow ing, a b rie f description 

o f  the formulation o f the new two-surface model in multilaminate framework is presented 

(Lee &  Pande (2004)) which is formulated for cyclic and transient loading. Some details 

o f  multilaminate formulation are given for completeness and continuity. I t  is noted that 

the objective here is to develop an N N C M  equivalent o f  this complex model.

5.2 M A T H E M A T IC A L  F O R M U L A T IO N

Let us adopt a set o f  local co-ordinate axes (n, s, t) for each sampling plane. The n-axis is 

normal to the sampling plane whilst axes s and t are arbitrarily chosen on the sampling 

plane as shown in Figure 5.1 below
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Z

X

Figure 5.1: Definition o f  a local system o f axes on a typical sampling plane

In the local system o f  co-ordinates, the normal and shear stress components can be 

defined as follows :

? r ^
CJn px

s
> = [ T } p y

r
n pz

(5.1)

px a
X X

CJ
xy

CJ
XL nl

p y
> =  < CJ

yx
CJ

y y
CJ

yz
><

n2
pz CJ

zx
CJ

zy
CJ

zz
n .

(5.2)

i  = + i f

(5.3)

Where

sin /  cos P sin /  sin P cos /

T =< si > - cos /  cos P cos /  sin P - s in  /

tL 1J -s in  p cos p 0

(5.4)
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I f  the yield and bounding surfaces for frictional materials are plotted in resultant x — on’ 

(all stresses are effective and prime on the symbols w ill be omitted henceforth) space, 

they are represented by a pair o f  straight lines. The angle between the pair o f  lines 

representing elastic domain is assumed as arbitrarily small while the angle between the 

lines representing bounding surface is related to the friction peak angle cp\ However, 

when two orthogonal components o f  shear stress on a sampling plane are considered, the 

yield and bounding surfaces are represented by two cones in i s -  xt— on space, the smaller 

one gyrating inside the larger one, see Fig 5.2.

Figure 5.2: Yield and bounding surfaces for a sampling plane in cTn - xs - i t  space.

A Ts

Yield Surface

Bounding Surface

Xt

(Lee. K and Pande, G. N . , 2004)

5.3 EQ U ATIO N S OF Y IE L D  AN D  BO U N D IN G  SURFACES

The equation o f the bounding surface is postulated below:

(5.5)

And
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y p

=  a n v-  ’  A +  y p

(5.6)

The yield surface is represented by the follow ing equation:

f  = r - ( 7] cr, = 0 = >  f  = A/ r f + r f  + ^ o -n = 0

(5.7)

Plastic potential surface is given by:

a n¥  = r  — r j  a n ln(—p ~ )  =  const 
e

< j
no

Where,

r \ \ : is the size o f  the yield surface, r \ \  « rjf=  constant 

nc: is the size o f  plastic potential surface

(5.8)

And

r p  = r p  - 7 o

(5.9)

y pand y0p are current and in itia l values o f  plastic shear strain on ith plane. I t  must be noted

that at first loading y v0 is equal to zero and its value is renewed at each change o f  load

increment sign. In the above, A  is a soil parameter (positive value), n f=  tanqjf (cpf: peak 

internal friction angle) w ith

= sin 1
f  -3 "N

/7f + 2
the ultimate friction angle

(5.10)

And

r ?    An
n f -  n

(5.11)
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5.4 T R A IN IN G  A N  E Q U IV A L E N T  N N C M  OF T D H M

TD H M  is for use in the situations o f  transient and dynamic loading. Here computation o f 

stress increment from stain increment is generally computationally intensive, especially 

for a complex model such as TDHM . In order to train the NNCM , strain-controlled 

triaxia l test data conforming to seven different specified constant volumetric strains were 

generated using TDHM . The results o f  (TD H M ) have been used to check the adequacy 

o f  the training o f  the equivalent NNCM . Additionally four new analyses which were not 

included in the training data have been used to compare and validate the N N C M  

equivalent to TDHM . The parameters o f  the analysis were the following: 

nf=0.52, ni=0.02, nc=0.43, Cohesion=0, shear modulus=40Mpa, A (so il parameter)=0.012. 

These parameters are described by Lee(2005).

5.5 S YN TH E TIC  D A T A  G E N E R A T IO N

Synthetic data o f  strain and stress increments in 7 hypothetical two-way strain-controlled 

cyclic triaxial configuration (dexx^dezz), have been generated using a point integration 

program o f TD H M  (DRIVER), described in the previous paragraph. Various ratios o f  

axial to radial strains have been chosen using the follow ing strain paths trajectories:

Table 5.1. Training cases

Strain Path Vertical

strain

increment

( d S y y )

Ratio o f  vertical 

strain increment to 

radial strain 

increment (dsyy/d£xx)

Incremental 

volumetric 

strain imposed 

(%)

SSTD1 -1.75E-4 -2.5 -0.0035

SSTD2 -1.6E-4 -2 0

SSTD3 -1.35E-4 -1.5 0.0045

SSTD4 -9.0E-5 -1 0.0090

SSTD5 -7.0E-5 -0.5 0.013

SSTD6 -1.5E-4 -2.5 -0.003

SSTD7 -6.0E-5 -0.5 0.018
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The NNCM  was trained using the above data and the architecture shown in Fig. 3.1 and 

was used to predict the strain-stress response paths. Figs.5.3 5.1 1 show stress paths in q- 

p space together with stress paths obtained from the original DRIVER program o f 

TDHM . In figures 5.3 and 5.4 the results from the analysis are presented without 

considering the strain trajectory. Poor accuracy was presented again in that case as we 

show in the previous chapter. As follow ing the strain trajectory has been included in the 

training data and the results were very accurate as we can see in the figures 5.5-5.1 1.

0 . 3 0

p (k p a )

Fig. 5.3: Stress path in q-p space for the test data SSTD1. 

(No strain trajectory is considered)

TDHM

NNCM

0.3

p(kpa)

Fig. 5.4: Stress path in q-p space for the test data SSTD2 

(No strain trajectory is considered)
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Fig. 5.5: Stress path in q-p space for the test data SSTDI
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Fig. 5.6: Stress path in q-p space for the test data SSTD2

S S TD 2 

-•— NNCM

SSTD1

NNCM

4 0



A p p lica tio n s  o f  A rt ii ic ia l In te llig en ce in
C o n stitu tive  M o d e llin g  o f  Soils
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S S TD 3
- 0,100
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Fig. 5.7: Stress path in q-p space for the test data SSTD3
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Fig. 5.8: Stress path in q-p space for the test data SSTD4
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Fig. 5.9: Stress path in q-p space for the test data SSTD5
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Fig. 5 .10: Stress path in q-p space for the test data SSTD6

4 2



A ppl icai ions o f  A rt if ic ia l In te llig en ce  in
C o n stitu tive  M o d e llin g  o f  Soils

0 ,150

0,100

0 ,050

co^ 0,000

cr
-0 ,0 5 0

-♦— SSTD7
- 0 ,100

NNCM

-0 ,1 5 0

0 ,50 0,600,00 0,10 0,20 0 ,30 0,40

p [KPa]

Fig. 5 .1 l : Stress path in q-p space for the test data SSTD7

It is obvious that the NNCM  has learnt the strain-stress response with great accuracy. It 

may be noted that TDHM  model is in a multilaminate framework where plastic strain 

contributions have to be computed from a large number o f sampling planes.
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5.6. V A L ID A T IO N  OF TH E  T R A IN E D  N N C M

In order to validate the model four new additional strain-stress data were generated using 

the DRIVER.

Table 5.1. Validation cases

Strain Path Vertical

strain

increment

( d C y y )

Ratio o f  vertical 

strain increment to 

radial strain 

increment ( d s y y / d £ x x )

Incremental 

volumetric 

strain imposed 

(%)

SSVD1 -1.5E-4 -2.3 -0.002

SSVD2 -1.4E-4 -1.6 0.0035

SSVD3 -1.08E-4 -1.2 0.0072

SSVD4 -0.91E-4 -0.7 0.0169

The results o f  the equivalent N N C M  prediction are compared w ith  the validation data in 

Figs. 5 .1 2 -5 .1 5 , where stress paths are plotted in q-p space. A  very good agreement is 

observed.
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C H A P TE R  6. CO N C LU SIO N S A N D  FU R T H E R  W O R K

Appropriate constitutive models o f  materials are the key to a successful prediction o f  the 

behaviour o f  engineering structures. A  vast number o f  models based on various 

constitutive theories have been proposed in the last three decades for geomaterials which 

show a large variation in their properties.

In this thesis a methodology for converting or recasting complex constitutive 

models for geomaterials developed in any mathematical framework into a fu lly  trained 

neural network equivalent is proposed without the needs o f  complex parameters.

The length o f  strain trajectory traced by a material point, also called ‘ intrinsic 

tim e’ is used as an additional new input parameter in training. This is essential for 

situations o f  cyclic and transient loading. For the purpose o f  illustration, two constitutive 

models viz. Hardening Soil Model (HSM) available in the commercial software, PLAXIS 

and a Two-surface Deviatoric Hardening Model in the multilaminate framework (TD H M ) 

developed by Lee and Pande (2004) have been cast in the form o f  an ANN. It  is seen that 

equivalents for both models can be easily trained and produce accurate results in a ll 

situations including a large number cycles.

The only lim itation o f  the methodology, as we shown, is that the extrapolation by 

N N C M  is always o f  poorer quality than interpolation.

This Neural Network based Constitutive M odel can be embedded in an 

appropriate finite element solution code as a further work.

It  is perceived that real life problems in future w ill have to be solved w ith  increasingly 

more complex constitutive models for geomaterials. This w il l lead to unacceptable 

computational processing times. The N N C M  which is provided in the current thesis, 

expected to overcome this problem since response o f  a trained N N C M  equivalent is 

instantaneous. Computational efficiency could be achieved even for simpler models.
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