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Abstract

Engineering systems are increasingly being developed with dimensions within the
micro to nano scale. Mature simulation schemes are available for large scale sys-
tems (> 0.5um) in the form of continuum mechanics, and for small scale systems
(< 50nm). However, there is to simulation scheme that covers the middle, meso
scale, range between them. The work presented in this thesis focuses on the
development of a computational framework focused on fluid systems on the nano-
meso scale, with characteristic dimensions between 50nm and 500nm. Existing
methods approach the meso scale either with approximated molecular behaviour
from the 'top down', or directly modelling molecular physics from the *bottom up’.
Top down approaches have the disadvantage of only including known behaviour
with some statistical variations to approximate chaotic behavior. Bottom up ap-
proaches model the fluid from a molecular physics model, but fail to capture bulk
fluid behaviour and are computationally expensive.

The approach developed in this thesis, covers the middle ground between contin-
uum and molecular simulation scales. A molecular physics model is used to govern
the behaviour of the fluid, and is surrounded by a set of meso scale boundary con-
ditions, providing an accurate and efficient fluid model. Bulk fluid behaviour is
extracted in the form of ensemble property distributions in a versatile grid-like
implementation, allowing the fluid properties to be calculated from first principles
accurately and efficiently.

Each part of the developed method is validated separately. The physics model
is compared with published results of simulations at molecular scales, as there is
insufficient information for meso scale fluid systems. The bulk ensemble property
collection scheme is fully explored by means of a parametric study.

Case studies are presented to highlight how bulk fluid properties, such as velocity,
temperature and pressure, can be examined as distributions in time and space over
the flow field in channel flow systems.

The approach developed in this thesis opens the door to accurate and efficient
meso scale fluid simulation. This work has also identified the next step to widen
and improve the abilities for meso scale fluids to be fully investigated.

iii



Declaration and Statements

Declaration

This work has not been previously accepted in substance for any degree and is not
being concurrently submitted in candidature for any degree.

Signed_______ ____ (Candidate)

Date

Statement 1

This thesis is the result of my own investigations, except where otherwise stated.
Where correction services have been used, the extent and nature of the correction
is clearly marked in a footnote(s).

Other sources are acknowledged by footnotes giving explicit references.
A bibliography is_appended.

Signed______________ ________ o ___ (Candidate)

Date 0;(5’;//7;/%

Statement 2

| hereby give consent for my thesis, if accepted, to be available for photocopying
and for inter-library loan, and for the title and summary to be made available to
outside organisations,

Signed (Candidate)

Date %;/LZ?ZQS{ ........

v



Contents

Contents

List of Figures

List of Tables

1 Introduction
1.1 Background . . . . ... ... ... ...
1.2 Scope of Work and Research Contributions . . . . . . .. . ..
1.3 Outlineof Thesis . . .. ... ... ... .. ..........

2 The Nature of Fluid Flow
2.1 Introduction . . . . . . . . . . . ...
2.2 Basics of Fluild Motion . . . . . . . . . . .. ... ... ....

221
2.2.2
223

Continuum/Bulk Properties . . . . . . ... ... ...
Continuum Approximations . . . . ... ... ... ..
Continuum Scale Simulation . . . . . . . ... .. ...

2.3 Molecular Mechanics . . . . . . . . ... ... ...

23.1
232

Molecular Properties . . . . . .. ... .. ... ....
Molecular Simulations . . .. .. ... ... ......

24 Typesof Simulation. . . . . . ... ... ... .........

241
242
243
244
2.4.5

Monte Carlo Simulation . . . .. ... ... ......
Molecular Dynamics . . . . .. . ... .. ... .. ..
Introduction to the Physics of MD Simulations . . . . .
Hard Sphere Model . . . . . . ... ... .. ......
Soft Sphere Model . . . . . . ... ... . .......

2.5 Effects at Molecular Scale . . . . . . . . . ... ... ... ..

25.1
252

Phase Change in Confined Systems . . . . . ... ...
Adsorption/Desorption in Pores . . . . . ... ... ..

26 Summary ... ... ... e e e e

viii

xXiv

B e

oMY »



CONTENTS vi

3 Fluid Physics at Meso Scales 55
3.1 Introduction . . . . . .. .. ... .. ... .. ... 55
3.2 Top down Approach for Meso Scale Computation . . . . . .. 56

3.2.1 Continuum Limit . . . . ... ... ........... 56
3.2.2 Top-Down Meso Scale Methods . . . . ... ... ... 60
3.3 Bottom Up Approach for Meso Scale Computation . . . . . . 67
3.3.1 Molecular Dynamics Model . . . . . ... ... .... 67
3.3.2 Boundary conditions . . . . ... ... ... ... 69
3.3.3 Bottom Up Meso Scale Methods . . . . ... ... ... 72
34 Summary . ... .. ... e e e e e e e 78

4 Meso Scale Model Based on First Principles 80
4.1 Introduction . . . . . .. .. ... ... ... ... ..., 80
4.2 Fluid Physics Model . . .. ... .. .. ... ......... 81

421 Bookkeeping .. ... .... ... ... . ...... 81
4.22 Forceinteractions . . . . . . .. ... ... 84
4.2.3 Time integration scheme . . . . . . . . .. .. ... .. 84
4.2.4 Boundary Conditions . . . . ... ... ......... 89
4.2.5 Modified Boundary Potential . . ... ... ... ... 95
4.3 Extracting local Bulk Properties . . . . . ... ... ... ... 96
4.3.1 Approximation Method . . . . . .. ... ... .. ... 97
432 BinAveraging . . .. .. ... ... ... ... ..... 97
4.3.3 Smooth Particle Hydrodynamics (SPH) . . . . . .. .. 98
4.3.4 Moving Least Squares . . . . .. ... ... ...... 101
4.3.5 Weight Functions . . . . . . ... ... ... ..... 107
4.3.6 Grid Structure Implementation . . .. ... ... ... 109
43.7 Sampling . ... .. ... ... ... ... .. 111
4.4 Verification of Proposed Meso Scale Model . . . . . .. .. .. 113
4.5 Summary . . . . oo e e e e e e e e e e 118

5 Enhancements to the Meso Scale Model 119
51 Introduction . . . . . ... .. ... ... ... ... ...... 119
9.2 Driving Forces. . . . . . .. ... oL 120
5.3 Thermostats . . . . . .. .. ... .. ... ... ... ..., 123

5.3.1 Gaussian Thermostat . . . . . .. ... ... ...... 123
532 NoséHoover. .. ... ... .. ... .......... 124
54 CaseStudies. . . . . . .. .. ... 126
54.1 Sampling . ... ... ... .. ... ... 126
542 Gradient Study . . ... ... ... ... ... 136

55 Summary . ... ... 142



CONTENTS

6 Modelling Fluid Regimes at Nano/Meso Scales
6.1 Introduction . . . . ... ... .. ... .. ...........
6.2 FlowRegimes . . . . . . ... .. ... ... ..
6.21 Laminar Flow . . . ... ... ... ...........
6.22 Turbulent Flow . . .. ... ... .. ... .......
6.3 Fluid Flow Characterisation from Molecular Simulation . . . .
6.3.1 Characteristics of Low Speed Molecular Flow . . . . .
6.3.2 Characteristics of High Speed Molecular Flow . . . . .
6.3.3 Comparisons and Data Analysis . . . . ... ... ...
6.4 Summary . ... .. .. ... ... ..

7 Performance of Proposed Meso Scale Model
7.1 Imtroduction . . . . . .. ... ... ... ... ...
7.2 Issues in Using Large Numbers of Molecules . . . . . . . . ..
7.2.1 Processing Large Number of Molecules . . . . .. . ..
7.2.2 Boundary Conditions . . . . . ... .. .........
7.2.3 Bulk Property Extraction . ... ... ... ......
7.3 Meso Scale Simulations . . . . . ... ... ... ... ....
7.3.1 Performance of Meso Scale Simulations . . . . . . . ..
74 Summary . .. .. ... ...

8 Conclusions and Future Work
8.1 Summary and Conclusions . . . . . ... ... .........
82 Future Work . . . . . . . . . .

References

144
144
145
148
149
150
152
153
155
160

162
162
162
163
169
170
171
175
178

179
179
181

183



List of Figures

1.1

21
2.2
23

24

2.5
2.6
2.7
2.8
2.9
2.10

2.11
2.12

2.13
2.14

2.15

2.16

Length scales of simulations, showing the targeted location of the
method proposed in this thesis. . . . . . . .. ... ... .. ...

Internal shear between fluid layers. . . . . . ... ... ... ...
Single molecules oscillating between twowalls . . . . . . ... ..
Viscous flow between parallel plates, the bottom plate is at rest,
and the top plate moves with velocity U . . . . ... .. ... ..
Left: Continuous and infinitely divisible Right: Finite number of
molecules, mass and energy localised and not continuously dis-
tributed. . . . . ...
Statistical variations in properties arising from finite number of
molecules in thesystem . . .. ... ... ... ..........
Simulation of complex fluid system [12] . . . . . .. ... ... ..
Illustrating the Finite Difference Methods calculations at point P
Governing equations evaluated at nodes surrounding fluid elements
Van de Waals potential, as the sum of attractive, London, and
repulsive, Pauli, forces. . . . . . . .. ... ... ... ...
Left: poor phase space sampling Right: Excelent phase space sam-
pling, resulting in excellent ensemble averages of bulk properties .
Monte Carlo integration . . . . ... ... .. ... ........
Monte Carlo integration, domain is interrogated by random points,
some lie within thearc . . . . . . ... .. ... ... .. .. ...
Control volume of fluid suspended away from any solid boundaries
Boltzmann factor derived from elemental change in height in the
atmosphere . . . . . . . . ..o
Maxwell distribution of velocity for temperatures of 300K, 400K,
500K and 1000K . . . . . . . . ... ... ... ...
Maxwell distributions at 500k, 300k and 100k which show the shape

10

12

15
16
17
20
21
23

27
30

30
33

35

37

of the distribution and how it changes at different temperatures [24] 38

viii



LIST OF FIGURES ix

2.17 Order parameter relative to lattice positions . . . . . . . ... .. 38
2.18 Hard Sphere Collision detection . . . . . . ... ... ... .... 42
2.19 Hard Sphere collision evaluation, momentum is transformed from

physical coordinates, along the line between the centres of the

molecules, along which they exchange momentum . . . . ... .. 43
2.20 Soft sphere interaction detection . . . . . . . ... ... ... ... 44
2.21 Confined geometry for simulation of liquid-liquid phase co-existence,

L=10.95, periodic boundary conditions along x and y axes. Two

parallel plates in the zy plane are separated by length L in the 2

direction . . . . . . . ... 47
2.22 Phase regions for adsorption filling of pore. . . . . . . . . ... .. 49
2.23 Cylinder oxygen atoms removed from system to create pore . .. 51
2.24 Infinite vs. Openpore . . . . . . ... .. ... .. ........ 52
3.1 Range of Knudsen Numbers for Gas systems . . . . ... ... .. o7
3.2 TIterative Procedure for Hybrid Coupling of Length Scales [53] . . 61
3.3 MAAD Handshake Region (FE/MD) [55] . . . . ... .. ... .. 62
3.4 Direct Simulation Monte Carlo used as the finest stage in an adap-

tive mesh and algorithm refinement method [56] . . . . . . .. .. 63
3.5 Lennard-Jones interaction potential for methane(CH4) . . . . .. 68
3.6 Periodic boundary conditions . . . ... ... ... .. ...... 70
3.7 Soft sphere cross boundary interaction . . . . ... .. ... ... 71
3.8 Constant Density molecular layer (Small dots) Overlaid with Equiv-

alent FEMesh . . . . ... ... ... ... ... 73
3.9 Lattice Structure of Molecules in Regions of Low Gradients. . . . 75
4.1 Interaction radius of cutoff potential R and neighbour search Ry 82
4.2 Verlet list book keeping scheme . . . . .. ... ... ... .... 83
4.3 Graphs showing the effect of increasing the time step from 0.5fs

to 25fs on kinetic energy (left) and potential energy (right) . .. 88
4.4 The diffuse boundary conditions . . . . . . ... .. ... ..... 89
4.5 Velocity distribution molecules in fluid system for a single compo-

nent of velocity . . . . . . . ... ... 90
4.6 Example of a solid lattice displaying the lattice spacing parameter

L, and wall molecule diameter o . . . . . . ... ... ... .... 92
4.7 Tangential momentum accommodation coefficient, f, plotted for

values of reduced roughness and reduced energy [67] . . . . . . .. 93
4.8 Calculating distance, d between molecule and wall, from position

vector, 7, boundary vector, b. d has unit vector v. . . . . . .. .. 93
4.9 Variation of dot product with molecular distance from wall . . . . 95
4.10 Total Lennard-Jones potential for three molecular layers . . . . . 96



LIST OF FIGURES be

4.11
4.12
4.13
4.14
4.15
4.16
4.17

4.18

4.19

4.20
4.21

4.22

4.23

4.24

5.1

5.2

5.3

Bin averaging scheme . . . . . . .. .. .. ..o 98
Smoothing Length, h . . . . . .. .. ... o000 100
Least squares neighbourhood approximation . . . . ... ... .. 101
MLS local to global approximation . . .. ... .. ... ..... 102
Basis function construction . . . . .. .. ... Lo 105

The difference between linear and quadratic basis functions for
a one dimensional example with 5 sample points (approximated
around centre point) . . . ... ... Lo 106
The three most common weighting functions: Quadratic spline,
Gaussian and Exponential . . . . . ... .. ... ... ... .. 110

Net of approximating nodes placed over the molecular flow region.
Molecules within each nodes sub-domain contribute to the property
average at that node with weighting W (r.), according to their
proximity, Reut - - - -« o v o e e e e e e e e e e 110
Highlighting the differences between samples collected to makeup
the ensemble averages, accumulated at points throughout the sim-
ulation time. . . . . . .. L. Lo 112
Cubic control volume considered away from any physical boundaries113
Top: Kinetic, potential and total energy for initial stages of equi-
libration. Bottom: Distribution of molecules at stages throughout
equilibration process, a. initial lattice. b. peak in potential energy.

c. stabilisation of randomised system . . . . . . ... ... ... 115
Distribution of velocities in molecular simulation compared to Boltz-
mann distribution, shown with 15% error bars . . . . . ... . .. 116
Potential (PE), kinetic (KE), and total energy during the equili-
bration and production stages of the simulation . . .. ... ... 116
Average potential energy per molecules verses number of molecules
inpertodiccell . ... ... ... .. ... ... 117

Schematic of molecules driven through test section by maintain-
ing two reservoirs at different pressures. Low pressure reservoir is
usually maintained at a vacuum . . . . . . .. ..o 120
Left: The reflecting particle method, molecules may pass freely
in one direction, but are reflected with probability p when exiting
the ‘high pressure’ region. Right: The RPM membrane used to
investigate channel flow. The test section must be clear of the
membrane . . . . . ... ... 121
Simulation of a periodic molecular system, modelling fluid at rest,
molecular properties are averaged by an array of one dimensional
nodes placed across the field. . . .. ... ... ... ....... 127



LIST OF FIGURES

5.4 A graph demonstrating the relationship between the interval be-
tween samples are taken, and the standard deviation of the result-
ing one dimensional velocity distribution. The equation of the best
fit ineisalsoshown . ... ... ... ... ... . ........

5.5 Graph showing the average value of velocity plotted against the
number of time steps between samples . . . . . ... ... .. ..

5.6 Graph standard deviation of velocity plotted against the number
of samples perensemble . . ... ... ... ............

5.7 Plot to demonstrate the effect of trading off the length of time
between samples against the number of samples per ensemble, for
a fixed ensemble length of 20,000 time steps . . . . .. ... ...

5.8 Two dimensional example of the radius of weighting function com-

pared to the number of molecules present, for the example simulation133

5.9 Standard deviation of velocity collected at the nodes, plotted against
the ratio of node radius to molecular diameter . . . . . . ... ..
5.10 Average ensemble velocity plotted against ratio of node radius to
molecular diameter . . . . . ... ... ... ... ... ...
5.11 Values of standard deviation for each of the weighting functions .
5.12 Schematic of fluid with temperature gradient. Wall on left is main-
tained at 300K, and the wall on the right at 250K. An array of one
dimensional least squared nodes crosses the fluid between them to
collect local values for temperature. . . . . . ... ... ......
5.13 Temperature gradient for methane between two parallel plates at
z = 0, maintained at 300K, and at x = 7.1nm maintained at 250K.
The black line shows the average temperature profile shown with
a05%wvariation. . .. .. ... ... .. ... ... ...
5.14 Cross section of an artificially created slit pore . . . . . . ... ..
5.15 Cross section of an artificially created slit pore . . . . . . . . . ..
5.16 Comparison between the presented model and results published by
Sokhan et al. [66]. Error bars are shown at +3m/s . . .. .. ..
5.17 Distribution of X, Y, and Z components of velocity, and distribu-
tion of resultant speed compared to distributions for temperature
of 300K with 15% errorbars . . . . ... ... ... ........
5.18 Velocity distribution of molecules thermalised by boundary, shown
against velocity distribution for 300K with 15% variation . . . . .

6.1 Apparatus used by Reynolds to study flow regimes . . ... ...

6.2 Parallel motion of a filament of dye within a laminar flow.

6.3 Chaotic mixing of filaments of dye within a turbulent flow. . . . .

6.4 Velocity profile for laminar flow in a cylindrical pipe of radius R,
as described by Hagen and Poiseuille . . . . ... .. ... ....

134
135



LIST OF FIGURES

6.5 System to test flow regimes between parallel plates . . . . . . ..
6.6 Average velocity in channel plotted against driving force (simulat-
ing pressure gradient) for low speed flows. . . .. ... ... ...
6.7 Average velocity in channel plotted against driving force (simulat-
ing pressure gradient) . . . ... ... ... .. ... . ....
6.8 Velocity profiles extracted from molecular simulations for driving
forces of 2. x 10?m/s? and 4. x 10*m/s%. Flows at the two speeds
show a variation of +25m/s . . . . . .. ... ..o L.
6.9 Initial and final distributions of molecules in centre of channel after
282fs (Flow is from left to right). Left: Low flow rate Right:
Highflowrate . . . . . . . . ... .. ... .. ... ........
6.10 Graph comparing the distributions of the molecules in low and high
flow rate simulations after 282 fs of simulation time. . . ... ..
6.11 Initial and final distributions of molecules in centre of channel after
282fs. (Flow is from left to right). Left: Low flow rate Right:
Highflowrate . . . . . . .. ... ... ... .. ..........
6.12 Graph comparing the distributions of the molecules in low and high
flow rate simulations after 282fs of simulation time. . . . . . . . .

7.1 Simulations performed at constant density, over a range of volumes
and numbers of molecules, to test computational requirements. . .
7.2 Plot of number of molecules against average number of neighbours
per molecule for the constant density simulations. . . . . . . . ..
7.3 Plot of total number of neighbours against number of molecules for
the constant density case . . . . . .. ... ... ... .......
7.4 Plot of number of molecules against time taken to reach 1ns of
simulation time for the constant density simulations. . . .. . ..
7.5 Simulations performed for different numbers of molecules at the
same volume, with varying densities to test the additional compu-
tational resources required for high density systems. . . . . . . ..
7.6 Plot of number of molecules against the average number of neigh-
bours permolecule. . . . . .. ... ... . oL oL,
7.7 Plot of number of molecules against time taken to reach lns of
simulation time for the constant density simulations for constant
volume simulations (solid line) and constant density simulations
(dashed line, Figure 7.4) . . . . . ... ... ... ... ......

156

164

165

165

166

168

7.8 Extracting bulk properties from systems with high number of molecules

(left) and low number of molecules (right) . . ... ... ... ..
7.9 Approximated slit pore - flow of methane molecules between par-
allel graphite planes. . . . . . .. ... ... .. ..........

170

172



LIST OF FIGURES xiii

7.10

7.11

7.12

7.13

7.14

7.15

8.1

Bulk ensemble velocity profiles taken at 2ps intervals. At ¢ = 0 the
fluidisatrest. . ... .. ... . ... ... ... ..., 173
Steady state velocity profiles for slit channel systems with 20, 000
(top) 40,000 (middle top), 60,000 (middle bottom) and 100,000
(bottom) molecules, corresponding to densities of 1.58, 3.15, 4.73,
and 7.89kg/m3. For clarity the average profile is shown with +7m/s174
Number of molecules plotted against number of neighbour pairs
per molecule for the meso scale density simulations. . . . . . . . . 176
Plot of number of time steps achieved per hour against the number
of molecules in the meso scale variable density simulations . . . . 176
Plot predicted from previous data of number of molecules plot-
ted against number of neighbour pairs per molecule for up to 1M
molecules . . . .. ... .. ... 177
Plot predicted from previous data of number of time steps achieved
per hour against the number of moleculesupto 1M . . . . . . .. 177

Left: Flow restriction modelled with current periodic boundary
conditions, molecular energy conserved Right: Modified bound-
aries allow a different type of problem to be simulated . . .. . . 182



List of Tables

3.1 Lennard-Jones potential parameters . . . . . . . . ... ... ...

4.1 Coefficients of the 5th order verlet algorithm . . . . . .. ... ..



Acknowledgements

Firstly, I would like to gratefully acknowledge the enthusiastic supervision
of, Dr. Rajesh Ransing. I could not have imagined having a better advi-
sor and mentor, providing me with expert knowledge support and enthusiasm
throughout this research.

A thanks to all my friends who have helped and supported me through-
out my time at Swansea, both in and around Swansea and back in Surrey.
You have all been a constant source of encouragement and support. A special
thanks to Jon, Sam and Dima for their support and technical discussions.

A very big thankyou goes especially to my Parents and to David and
Heather, for their constant enthusiasm, patience, love, and support.

XV



List of Symbols
and Abbreviations

The following notation will be used unless otherwise stated.

Critical Pressure
Prandtl number
Momentum

Volume flow rate
Universal Gas Constant

Abbreviation Description

A Area

a Acceleration

E Energy

Exg Kinetic energy

Epg Potential energy

F Force

bi Tangential momentum accomodation coeffi-
cient

g Gravitational acceleration

H Height

h Smoothing length

Kn Knudsen number

kp Boltzmann constant

l Characteristic length

L Mean free path

L, Slip length

m Mass

N Number of molecules

n Number of moles

P Pressure

F.

Pr

p

Q

R




LIST OF SYMBOLS AND ABBREVIATIONS

Abbreviation

Description

8% 39 39D AMET>SA2W®R BN QITTHNY
>

S
=
N

Reynolds number
Radius
Temperature
Critical Temperature
Time

Applied velocity
Potential energy
Velocity

Volume

Speed

Weighting function

Polynomial constants
Boltzmann factor
Strain

Well depth
Characteristic angle
Order parameter
Dynamic viscosity
Thermostat parameter
Ratio of the circumference to the diameter of
a circle

Density

Collision diameter
Shear stress

Molecular frequency scale
Dynamic viscosity
Cartesian coordinates
Average value
Ensemble average
Cartesian components
Identifiers

Unit vector

xvii



Chapter 1

Introduction

The overall aim of this work is the following:

“To develop a computational framework with the ability to capture
and characterise fluid flow properties in terms of useful engineering

quantities from molecular to continuum scales (50nm to 500nm)”

1.1 Background

Fluid simulation at nano/meso scale (100nm-1um) presents a current stum-
bling block for the numerical modelling community. The traditional considera-
tion of fluids assumes that the influence of molecular interactions is negligible,
however, at nano/meso scales this is not the case. The aim of the work pre-
sented in this thesis is to develop a simulation method with the ability to
capture and characterise fluid flow properties in terms of useful engineering
quantities from continuum to molecular scales (1um to 50nm ).

Current advances in nano and micro technology have allowed for engineering
to take place at smaller and smaller scales. For example, Ghosh et al. [1] have
developed a device to generate electrical current from the flow of water/blood
to power pacemakers and other bio-electronic devices. Other advances include
cooling channels etched into the surface of micro/nano chips, and nanofluidic
transistors [2] , flow through membranes used in controlled drug delivery [3]
and other fluid devices [4]. In the design of devices at such small scales, it
is critical to be able to simulate their behaviour accurately, especially as ex-

perimental measurement becomes prohibitively expensive at these scales. Un-
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Characteristic length scale (m)

g S S S SN AN S S
S EEE—— e _Small scale |
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: p it Molecular Dynamics
Modified boundary conditions Meso scale methods
Proposed method

Figure 1.1: Length scales of simulations, showing the targeted location of the
method proposed in this thesis

fortunately, it is precisely at this meso-scale that the conventional continuum
simulations become less effective, as they fail to capture all the key physical
interactions. Figure 1.1 shows the regimes of simulation methods over a range
of scales, existing meso scale methods such as Lattice Boltzmann (LB) [5] and
Dissipative Particle Dynamics (DPD) [6] tackle problem at the high end of
the meso scale region. This work focuses on the lower end of the meso scale
where molecular physics play a larger part.

All fluid is constructed of molecules under continuous motion and it is the
arrangement of these molecules that defines the bulk behaviour of a fluid. For
example, a fluid flowing over a solid boundary displays layers of fluid of dif-
ferent velocities at varying distances from the boundary. At a molecular level,
the constant molecular interchange between fluid layers causes slower layers to
exert a net drag force on faster layers, and vice versa. This causes a velocity
profile which can be used to quantify this molecular exchange effect in terms
of the macroscopic quantity of viscosity.

At meso scales, fluid displays macro scale effects such as viscosity, laminar
and turbulent flow regimes, boundary layers, etc. but at such small scales,
the number of molecules and molecular interactions is no longer effectively
infinite and the conventional continuum laws are not able to adequately de-
scribe them. The continuum laws are unable to include the localised molecular
physics which dominates the behaviour of the fluid at this scale.

Even though the conventional continuum laws do not apply in the meso scale
regime, modelling engineering problems at these scales require us to quan-
tify the macro scale effects resulting from the molecular interactions as these
properties are key to characterising fluid behaviour in engineering systems.
Addressing this challenge forms the kernel of this thesis, which is to be met
by looking at meso scale systems in terms of both bulk and molecular scale

physics.
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1.2 Scope of Work and Research Contributions

The work in this thesis presents a first step into mesoscopic modelling of fluid
from elementary principles of fluid behaviour. The aim of this research is
to develop a meso scale method with an appropriate physics model and the
ability to characterise fluid in terms of quantities relevant to the meso scale.

The main research activities were:

e Understand the basics of fluid motion, and methods for modelling fluid
on the extremes of the meso scale to appreciate the relevant issues for
simulation in this region. This includes reviewing existing methods for
meso scale simulation and methods for coupling continuum and molec-

ular scale methods.

e The main focus of this work is on the development of a method of extract-
ing mesoscopic broperties from the molecular model. Various methods
were reviewed to aid in the development of a robust meso scale method
that would accurately predict the behaviour of systems at the lower end

of the meso scale region.

e Implementation of computationally efficient methods into a meso scale
molecular model. Modelling meso scale systems requires an accurate
description of the physics of the system. Molecular boundary conditions
were simplified and simulated pressure gradients were assumed at input
and output boundaries so that the computational effort was focused on

modelling the fluid physics in the region of interest.

e A study of the performance of the molecular model was performed at
molecular scale dimensions to develop an understanding of the issues

that affect computational performance of the model.

e The developed method was applied to a large slit pore system at meso

scale to examine the behaviour of the fluid model.

Within these research tasks, the following research contributions were
made:

e Development of a novel meso scale method for simulating systems be-

tween 50nm and 0.1um. The focus of the development of this model
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was to describe meso scale systems in terms of useful engineering prop-
erties that could not be adequately described by continuum mechanics

equations. The developed method contains two components:

— Meso scale molecular model. A simplified molecular physics model
was developed with simplifications made for boundary conditions
to allow the focus of the computational effort to be on the fluid
physics.

— Bulk property characterisation. For systems within the meso scales,
bulk fluid effects are present and observable from molecular me-
chanics. However, due to the presence and importance of molecular
effects that cannot be characterised within the continuum govern-
ing equations, these properties are manifested from the molecular
model. A method has been developed within this thesis to extract
these properties from the fluid model to allow these bulk proper-
ties to be characterised. A full parametric study of the developed
method is presented in order to develop further insight into the
proposed methodology.

e A performance study has also been presented in this thesis that high-
lights the issue of the number of molecules used in the simulation par-

ticularly characterising the effect of density on system performance.

1.3 Outline of Thesis

This thesis is divided into eight chapters. The following is a synopsis of each.

o Chapter One. This chapter provides an introduction to the research
area and provides an outline of the thesis. An overview of the work

presented and research contributions made is also presented.

o Chapter Two. A discussion of fluid flow behaviour on scales between
the continuum and molecular scale is presented. This chapter presents
a background in the continuum view of fluid, and how it can be de-
scribed and modelled at these scales. The discussion then moves to the
molecular scale, and how fluid at these scales differs from the continuum

model. The basic outline of the construction of molecular simulation
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models is given and conditions when molecular scale effects dominate

the behaviour of fluid systems are discussed.

e Chapter Three. A review of existing meso scale modelling schemes is
presented in two sections, ‘top down’ and ‘bottom up’ approaches. Top
down methods operate by adding molecular information into a contin-
uum simulation, this includes a discussion of the limits and breakdown
of the continuum laws. Bottom up approaches tackle meso scale prob-
lems by using molecular physics, which are simplified in regions of low

activity.

e Chapter Four. A meso scale simulation method is developed based on
a ‘bottom up’ approach. This chapter shows the implementation of the
molecular model and the ups scaling of information to characterise the
bulk properties of the fluid system.

o Chapter Five. The developed method is extended to deal with flowing
fluids with the implementation of a flow generation method, balanced
by additional thermodynamic controls. Case studies are presented in
two sections, sampling and gradient studies. The sampling case studies
explore the parameters of the bulk property characterisation and explain
their use. The gradient studies show examples of use with thermally

driven and pressure driven flows, validated against published results.

e Chapter Siz. The developed method is applied to a molecular scale
flow through a slit pore to demonstrate the depth of information that
this method can extract from a the meso scale molecular model by look-
ing only at the distribution of velocity across the pore. Different flow
regimes are examined and shown to exhibit similar behaviour to lami-

nar/turbulent flow.

o Chapter Seven. The developed meso scale method is applied to large
scale systems containing between 20,000 to 100,000 molecules. An in-
vestigation is also performed to examine the behaviour of the method in

terms of performance with large numbers of molecules.

o Chapter Fight. Original research contributions are summarised, along

with recommendations for future work.



Chapter 2

The Nature of Fluid Flow

2.1 Introduction

The fundamentals of fluid flow on a wide range of scales are introduced in
this chapter. The éharacterising properties of a fluid and their relevance at
large scales (kilometre to millimetre scale) and small scale (nanometre and
angstrom scale) will be discussed. The continuum approach to describing the
behaviour of a fluid will be presented along with the methods of simulation
at the continuum scale. In contrast, the molecular scale is considered along
with fluid structure and simulation methods used at this scale. Examples of
the change in physics and fluid behaviour that occur as the scale is reduced
are presented, concentrating on the effect of confinement on a fluid.

This chapter highlights the special requirements of meso scale systems. Ele-
ments from both the continuum scale and the molecular scale are needed to
fully model and describe a fluid system.

2.2 Basics of Fluid Motion

The basic characteristic property that defines a fluid, is viscosity. Fluid, unlike
solids is unable to offer any permanent resistance to a shearing force. The fluid
will continue to deform as long as the force is applied, taking the shape of any
solid boundary it touches. The deformation of a fluid occurs from shearing
forces acting tangentially to any solid surface. The fluid can be considered as

layers parallel to a surface, which slide over each other as shown in Figure 2.1.



CHAPTER 2. THE NATURE OF FLUID FLOW 7

—i >
>

_

Figure 2.1: Internal shear between fluid layers

Each fluid layer applies a shear force to the next, and is in turn sheared by
those it touches.

The ability to deform continuously under an applied force makes fluids behave
differently from solids. Solid bodies are capable of maintaining an unsupported
shape and structure, and can resist finite shear.

Fluids themselves fall into two categories liquids and gasses. To a fluid dy-
namicist, who is interested in flows at macro scale there are two characterising

differences between them:

e Liquids have densities an order of magnitude larger than gasses

e Liquids and gasses respond very differently to changes in pressure and

temperature

Gasses can also be expanded and compressed much easier than liquids due
to the lower density and spacing between molecules. The motion of all fluids
relies on the interaction and internal shear between fluid layers, but the actual
interaction between layers occurs from collisions between many molecules on
the molecular scale (~ 107°m). In fact all fluid effects and properties occur
from molecular interactions, but at macroscale (~ 10~*m) the detailed molec-
ular physics of this behaviour can be neglected as the number of molecules
within the characteristic length can be considered as sufficiently large. At
these scales the fluid can be viewed as having physical properties correspond-
ing to the statistical averages of the underlying molecules and are known as
continuum or bulk properties. Molecular physics, manifested in a continuum
framework have the ability to be defined as continuous functions of time and

space.
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2.2.1 Continuum/Bulk Properties

Bulk or continuum properties such as velocity, density and pressure remain
constant at a point and changes due to molecular motion are assumed to be
negligible. These properties are also assumed to vary smoothly from point to
point with no jumps or discontinuities. This assumption is correct as long as
the characteristic distance of the system is of an order of magnitude greater
than the distance between molecules.

This assumption of bulk physical properties allows the behaviour of fluid sys-
tems to be approximated by a set of deterministic equations, that represent
the underlying infinite chaotic molecular motion on a much larger scales.
The definition and basis of these bulk properties will be of significant impor-
tance in later discussions, so it is necessary to explain the origin of some of

these bulk properties to clarify concepts.

Density

The density of a fluid is defined as the mass contained within a unit volume. It

is computed as a function of mass (m) and volume (V) of a sample as follows:

P=v (2.1)

This expression of density is represented in terms of mass per unit volume
(Kg/m3). Other expressions of density used are specific weight (weight per
unit volume, N/m3), relative density (relative to another density, dimensionless),
and specific volume (reciprocal of density, m®/Kg). Density can also be com-
puted from molecular properties, in terms of sample volume, V, containing NV

molecules of individual mass, Mmoiecute [7]-

N Mmolecule
= Toecue 2.2
p=—" (2.2)

This expression also has units of %g and can be defined from N =1 to
N = oo.

Temperature

The temperature (T") at any point in a fluid is derived from the internal kinetic
energy of the underlying, NV, molecules, each with velocity, v; and mass, m [8].
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N
1
Exkp=) §mv3 (2.3)

i=1
At continuum or bulk scales the number of molecules is assumed to be
infinite, but the distribution of the velocity of this (almost) infinite number of

molecules can be assumed to follow the Boltzmann distribution, which in one

1) = QWTZbTe;’TTz (2.4)

Where &, is the Boltzmann constant. This distribution can then be used to

dimension appears as

calculate the average squared velocity in the system to relate the velocity

distribution to the kinetic energy,

2y _ m % g gmet
(v*) = Sk T vie T dy (2.5)
b —00

(v?) = m_ V7 2T %_k_ﬂ:
“Nork,T 2 | m T m

The equation for the translational kinetic energy of the molecules can now be

which gives

(2.6)

related to the temperature of the system in one dimension.

o = BT

A2
Exp = 2m(v ) 5 (2.7)
For three dimensions, this simply becomes
1
Smiv?) = gNka (2.8)

which describes the temperature of a local system of N molecules.
In terms of bulk properties, where locally N — oo, the temperature is consid-

ered constant and varies smoothly from over the whole domain.

Pressure

The pressure is explained by kinetic theory as arising from the force exerted
by colliding gas molecules onto the walls of the container [9]. To explain the
mechanics of pressure, consider a single molecule with velo¢ity, v along the x

direction contained within two walls perpendicular to its direction of travel,



CHAPTER 2. THE NATURE OF FLUID FLOW 10

and separated by length, [, as shown in Figure 2.2.

QL.

N\ NN

Figure 2.2: Single molecules oscillating between two walls

By considering the collision between the molecule and one of the walls, the

momentum lost by the molecule and the wall is
AP = Pinitial — Pfinal = MUz — (—MVg) = 2mu, (2.9)

The time between successive collisions on this particular wall will be

At = 2;— (2.10)
)I

Force is the rate of change of momentum, so the force on the wall from the

single molecule is

[

Ap  2mv, muj
T e et (2.11)

Vz

F

For a large number (7) of molecules and collisions with the wall, this becomes

2
m Uz
F= % (2.12)
Now, by adding in collisions with walls in all six directions we obtain
F=225" (02 402, + 2 2.13
= TZ(sz+”jy+sz) (2.13)
J

For equilibrium conditions and a sufficiently high collision rate with the walls,

the force on all six walls can be assumed to be the same, therefore the force
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on a single wall becomes

r=l <2m2jv2> _my;v | (2.14)

6 l 3l

Where v; is the velocity of molecule j in three dimensions. It is now possible

to talk in terms of the average velocity of the molecules, (% Zj v?), which

can be represented by 7°

Nmv?
F = 15)
ey (2.15)
This can then be divided by the area, A, of the wall to give the pressure
F  Nmv?
== 314 (2.16)

The cross sectional area multiplied by length yields a volume, Al =V, which
when combined with Equation 2.2 yields

P= %pﬁ (2.17)

thereby describing pressure as a function of density and kinetic energy of
molecules which, as shown in Equation 2.8 is in turn directly related to the
temperature of the system. As with temperature, at continuum scales the
number of molecules tends to infinity, and any fluctuations or statistical differ-
ences become approximately zero. In this case both pressure and temperature
may be considered as constant at any point in the fluid domain.

Viscosity

Viscosity quantifies the resistance put up by a fluid undergoing finite shearing
forces and can commonly be perceived as internal fluid friction, or resistance
to pouring. This effect occurs from the drag forces occurring between adjacent
fluid layers moving and different velocities. The concept of viscosity is best
demonstrated by example.
Figure 2.3 shows a fluid trapped between two parallel plated separated by
distance H. The top plate moves with constant velocity U, and the bottom
plate is at rest. The fluid in between them adheres to both plates, so that the
fluid layers at each of the plates has the same velocity at the plate.

The velocity of the fluid changes linearly in this case, so the velocity at any
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Figure 2.3: Viscous flow between parallel plates, the bottom plate is at rest,
and the top plate moves with velocity U

point between the plates can be computed as follows,

u(y) = %U (2.18)

It is known from experiments that for Newtonian fluids, frictional force per
unit area, 7 is proportional to the difference in velocity between the two plates,
and inversely proportional to the separation H. Together, this is interpreted

as the frictional force being proportional to the velocity gradient, Z—;,

T ,u@ (2.19)

with the proportionality factor being fluid parameter p, which characterises
the drag between fluid layers and known as the dynamic viscosity. This is
known as Newtons law of viscosity, where a linear relationship between veloc-
ity gradient and shear stress is assumed. Whilst this is valid for most simple
fluids such as water and most gasses, non-Newtonian fluids such as plastics
and pseudo plastics, exhibit a more complex relationship and Newtons law
does not apply.

To obtain the coefficient of viscosity, u, for a Newtonian fluid, the situation
shown above in Figure 2.3 is used. The coefficient is then extracted by com-
paring the applied U, and the drag force on the opposite plate, 7.

The concept of kinematic viscosity is described in fluid systems where frictional

and inertial forces interact. It is defined as the ratio of dynamic viscosity, u,
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to the fluid density, p
i
v="=— 2.20
5 (2.20)

Causes of viscosity Viscous effects occur due to internal friction between
fluid layers, and it is important to consider the nature and cause of this drag.
The molecules in a fluid are continuously moving and have little, if any, struc-
ture. Consequently, they are in constant molecular exchange between fluid
layers. This exchange occurs via two mechanisms, the transfer of mass, by
a fluid molecule physically crossing between fluid layers, and the transfer of
energy via inter-layer collisions/potential energy interactions.

This constant exchange occurring over a sufficiently large number of collisions
causes energy and momentum to propagate smoothly throughout the fluid at
a rate governed by the physical properties of the molecular interactions, and
the conditions of the fluid. However, the condition of the fluid in terms of
pressure and temperature causes different effects in liquids and gasses.

Viscosity of Gasses In a gas, the molecules are widely spaced, and
interact relatively little, so an increase in temperature increases the kinetic
energy of the molecules and viscosity increases as a result of increased mass
transfer between layers.

According to the kinetic theory of gasses [9], the viscosity is proportional to
the square root of the absolute temperature. This however, is an exact solu-
tion to an approximate model and in reality, the rate of increase of viscosity
is much higher [7].

In gasses viscosity is found to be independent over the normal range of pres-
sures, with the exception of extremely high pressure.

Viscosity in Liquids In liquids, which have much higher densities, the
distance between molecules is much shorter and the cohesive/attractive forces
between them increases the viscous effect. The response to an increase in
temperature, and hence kinetic energy, decreases the effect of these cohesive
forces which reduces the viscosity. However, the increased molecular inter-
change between fluid layers increases the viscosity [7]. The net result is that
liquids show a reduction in viscosity for an increase in temperature.

Due to the close packing of the molecules in a liquid, high pressures also affect
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the viscosity. At high pressures, the energy required for the relative movement

of a molecule is increased, causing an increase in viscosity.

2.2.2 Continuum Approximations

At over distances in and above the micro-scale, approximately > 107%m, the
number of molecules in the system can in the order of millions! In these cases,
the number of molecular interactions occurring over length and time scales is
also huge. Because of this, it can be considered acceptable to assume that
the influence of any individual molecular exchange/interaction is negligible
as the number of molecules in any volume tends to infinity. The continuum
assumption considers an infinite number of molecules in a domain, and neglects

their individual contributions. The interpretation of continuum is given as;

Continuum A continuous thing, quantity, or substance; a con-
tinuous series of elements passing into each other [10].

If a fluid is considered as a continuum, then each part is considered as identical
(ie. fluid is homogenous) to the next and infinitely divisible, the molecular
structure of fluid is ignored. This means that the fluid is assumed to have the
same properties even if the domain dimensions are 100nm, 1mm or 1km.

By making the continuum assumption, molecular scale effects are neglected
and the bulk properties are defined by the physical observable relationships
between them. These properties can then be used to characterise fluid flows,
as done in experiments by Reynolds [11] whose number, the Reynolds number,

presents a criteria for dynamic similitude.
Re = — - (2.21)

The Reynolds number is the ratio of inertial (u/p) to viscous (u/L) forces,
where L is the characteristic length, of a flow with speed uw. This can be used
to both for determining kinematic and dynamic similitude for comparing scale
models to real applications, and can also be used to characterise the point of
transition between laminar and turbulent flow (critical Reynolds number).

A large Reynolds number indicates that the inertial forces dominate the sys-
tem, with a low viscosity causing the small scales of fluid motion to be rel-
atively undamped. Whereas a high Reynolds number flow has high viscous

forces, which damp out small scale motion.



CHAPTER 2. THE NATURE OF FLUID FLOW 15

The Reynolds number represents simple characterisation of the behaviour of
a fluid system. To look more in depth at the measure and description of
fluid behaviour, a set of continuum governing equations are used. However,
before these are considered it is important to set out the rules for the fluid
mechanics interpretation of a continuum, these are known as the continuum

assumptions/approximations.

Continuum approximations

e Infinitely divisible. The characteristic length of the fluid should be
several orders of magnitude larger than molecular diameters, such that
the number of molecules in the system is large enough to be considered
as approximately infinite. By assuming an infinite number of molecules,
the fluid is considered homogenous at all scales, and can be divided
up/decomposed into a infinite number of identical sections. If the fluid
was considered in terms of a finite number of molecules, when 1t 1s di-
vided up even in a finite number of sections, some will contain mass (a

molecule) and energy and some will not (Figure 2.4).

Figure 2.4: Left: Continuous and infinitely divisible Right: Finite number of
molecules, mass and energy localised and not continuously distributed.

e Thermodynamic equilibrium To maintain the assumption of contin-
uum mater with an infinite number of molecules, there must also be an
approximately infinite number of inter molecular interactions occurring
over length and time scales in the system. This means that an con-
tinuous propagation of energy throughout the system. Discontinuities
cannot occur as the fluid is continuous (infinitely divisible) and an infi-

nite number of infinitely small intermolecular energy exchanges smooth
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out and propagate fluid properties and energy through the system.

This is also essential to maintain the linear relationship between stress
and strain rate, and heat flux and temperature gradient. The thermo-
dynamic equilibrium condition also states that there are sufficient inter-
actions or collisions to smooth out any statistical variations occurring

from the molecular scale (Figure 2.5).

Continuum Molecular

/\/\/W

X X

Property
Property

Figure 2.5: Statistical variations in properties arising from finite number of
molecules in the system

If these conditions are met, the fluid system can be considered as a continuum.
This is an important classification, as it means the flow can be approximated
using continuum laws.

The continuum laws can be applied in both simple analytical form, as in the
Bernoulli equation(inviscid flows),

% + %2- + gh = constant (2.22)
or for more complex situations that require numerical solution. For cases
such as simple pipe flows, the Bernoulli equation can be of use where little
information is required. However in complex systems or geometries, a more
detailed analysis and interrogation is required. In this case, fluid behaviour
can be simulated using a set of conservative governing equations solved nu-
merically as shown in Figure 2.6. These simulation, based on the continuum
assumptions and continuum scale observations and laws, provide a detailed
and accurate model of fluid behaviour, where experiments are difficult, expen-

sive, or a greater amount of information is needed.
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Figure 2.6: Simulation of complex fluid system [12]

2.2.3 Continuum Scale Simulation

Both simple and complex fluid systems can be investigated, within the lim-
its of the continuum assumptions, by sets of governing differential equations
that describe fluid behaviour. The mathematical solution of these equations
throughout a fluid domain is known as Computational Fluid Dynamics (CFD).
The governing equations describe the mathematical representation of a phys-
ical model that is derived from experimental flow measurements and obser-
vations. These representative equations are then replaced with an equivalent
numerical description, which are solved using numerical techniques for the de-
pendant variables of velocity, density, pressure and temperature. One of the

most widely used sets of governing equations are the Navier-Stokes equations.

Navier-Stokes Governing Equations

The Navier-Stokes equations are a set of governing equations that describe the
behaviour of fluids in terms of continuous functions of space and time. They
state that changes of momentum in the fluid are based on the product of the
change in pressure and internal viscous dissipation forces acting internally.

The scheme works by not considering instantaneous values of the dependant
variables, but their flux, which in mathematical terms is interpreted as the
derivative of the variables. The equation set is separated into three conserva-

tion laws for mass, energy and momentum.

Mass The conservation of mass, known as the continuity equation, is ob-
tained by considering the mass flux into and out of any elemental control

volume within the flow field. In the cartesian coordinate system, x, y, z, with
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fluid velocities along those directions being u,v,w respectively. The continuity

equation then becomes

bp  8(pou) | 8(pv) | blow) _
s+ —— 7 65 =0 (2.23)

The first term accounts for any change in density over time, while rest of the

terms describe the change in density in the z, y, and 2 directions.

Energy The expression for the conservation of energy in a fluid system is

5(pe) , 8(pue)  S(pve)  d(pwe) _
st T e T sy T Ter

9 2 (V) (WD) £ (D)
oG 5) e (i)
[ @ @]

(B 5) G d) - (i) e

where ¢ is the bulk viscosity, @) is the heat added per unit mass, k is the
thermal conductivity, and e is the internal energy

Momentum The conservation of momentum equation is as follows:

S(pu) | S(pu?) | dlpwv)  Slpuw) _
ot ox oy 0z
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where X, Y and Z are components of body force.

Equations 2.23 to 2.27 represent the Navier-Stokes set of conservation equa-
tions used to numerically compute fluid properties. For these properties to be
used in to simulate a fluid system, then need to be localised at discrete points

within the flow domain before they are solved using a numerical scheme.

Solving Continuum Equations

There are a number of schemes for solving the fluid conservation equations
in a simulation environment, such as the finite difference, finite volume, finite
element, boundary element, etc.. However, the three most developed and
widely used of the bunch will be considered, the finite difference method, the
finite element method and the finite volume method.

Finite Difference Method (FDM) The finite difference method is a simple
and efficient method for solving the continuum governing differential equa-
tions. Instead of derivatives being computed over infinitesimal elements, in-
crements of finite width are used as an approximation. There are three vari-
eties of finite difference, the forward, backward and central difference, which
are highlighted in Figure 2.7 and are calculated as follows for parameter, p at
point P: ‘
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Figure 2.7: Illustrating the Finite Difference Methods calculations at point P

Forward difference:

Op Dij+1 — Dij
— = 2.28
(6"3 ) ij h (228)
Backward difference: 3
/4 Dij — Dij—1
ot/ 4 — 2t Pyl 2.2
(ax) ij h (2.29)
Central difference: 5
D Dij+1 — Dij—1
e = £Ir. S 2.
(6‘3:) id 2h (2:30)

Using this method the partial differential equations can be replaced with
simple algebraic equations that can be solved either iteratively or by matrix
inversion. This can be implemented for fluid flow simulations to yield the
values of the flow variables at discrete points in the flow field. Due to the
structures of the FDM, problems are limited to problems with simple bound-
aries where a structured mesh can be used. For more complex problems, the

finite element method allows for more versatility but is much more complex.

Finite Element Method (FEM) The aim of the finite element method is
to determine the values of the dependant variables of the conservative flow
equations. FEM achieves this by dividing the flow domain into a finite number
of cells or elements, each containing a small portion of the continuous fluid. At

points placed at the corners or sides of these elements, points which are known
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as nodes, the governing equations are evaluated. Instead of working with the

Figure 2.8: Governing equations evaluated at nodes surrounding fluid elements

differential equations directly, the FEM uses these nodes to discretise and

evaluate the governing equations in an integral form using weighting functions.

Finite Volume Method (FVM) Similar to the Finite Element Method,
FVM discretises the flow domain into elemental control volumes surround-
ing a node. Flow parameters are then treated as fluxes between control vol-
umes, and conservation is maintained in each element. This allows for better

treatment of flows with discontinuities such as shock waves.

Advantages

Continuum simulations are able to provide an accurate model for fluid be-
haviour in a wide range of applications and systems. The division of the flow
field into discrete elements allow for complex geometries to be simulated and
smaller elements can be used to refine the solution in areas of high gradient,
or where a greater accuracy is needed.

By approximating the fluid as a continuum, and ignoring the underlying molec-
ular behaviour saves a great deal of computational effort and accuracy has
been proved to be sufficient in many applications. The molecular information
can be approximated at these scales, as the molecular motion cancels out to
yield only bulk properties at this scale.

Continuum simulations also have the flexibility to prescribe a wide variety
of boundary conditions capable of replicating almost any system, whist still

maintaining global conservation laws.
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Limitations

Continuum mechanics hoWever, has its drawbacks. It is dependant on the gen-
eration of the mesh of elements and nodes it uses in the approximation. The
generation of these meshes can be almost as time consuming and challenging
as the actual simulation. These meshes can also have a significant effect on
the solution, either through resolution or the distribution of nodes, and must
be generated with consideration for the system of interest.

The scale of the system is also limited by the continuum approximations.
Because of the continuum approximations, the matter of interest must be uni-
form throughout and infinitely divisible. This removes the ability to deal with
discrete objects, such as, at the top of the scale extreme planetary systems,
and at the lower end molecules. As the continuum governing equations are
approximate relationships which are approximated in their solution, careful
validation and testing must also be performed , which is true of any simulation
method. Particular care must also be taken close to the continuum limit.
The breakdown of these approximations in the meso scale region between the
continuum and molecular scales was studied in detail and the transition from

continuum to molecular scale effects is explained in depth in later sections.

2.3 Molecular Mechanics

At very small scales (< 1078), the mechanics of fluid take on an entirely
different form. The continuum approximations and laws are not valid as the
number of molecules in the system is of the order of tens to thousands. At
this scale the molecular interactions dominate the physics of the fluid, and it
is debatable whether fluid is an accurate description as it is better described

as a molecular flow.

2.3.1 Molecular Properties

The properties at a molecular scale (~ 107°) are very different from those
considered at the bulk/continuum scale. At this scale, the characteristic length
of the flow is comparable to the diameters of individual molecules. There is no
concept of bulk properties, and fluid-like motion is in the form of the motion
of individual molecules. The fluid is now not continuous, as the molecular

centres represent discontinuities in both density and energy.
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The molecular chemistry of the making or breaking of bonds or changes to
the internal structure of molecules is not considered in this research, although
it is important to understand the mechanisms by which molecules interact in
a chemically stable fluid.

A molecule is formed of an aggregate of two or more atoms bonded together
by special bonding forces. The examination of interactions between bonded
molecules was first undertaken by a Dutch chemist Johannes Diderik van der
Waals whose studies into noble gasses lead to the characterisation of the forces
between molecules [13]. The Van de Waals force was originally considered to

describe the force between all molecules,

Aebr - Cﬁ

r 76

Ufr).= (2.31)
Where A, b, and Cg are characterising parameters for the molecules, and r
is the distance from the molecule centre. However it is now mainly used to
describe the polarisation of molecules into dipoles.

The interaction forces are characterised in two parts, a long range attractive

br .
A%, as shown in

force, %i, and a short range, but strongly repulsive force,
Figure 2.9.

The repulsive forces, or London forces [14], named after the physicist Fritz
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Figure 2.9: Van de Waals potential, as the sum of attractive, London, and
repulsive, Pauli, forces.

London, represent the weak forces that occur between transient dipoles/multipoles.

This occurs from an uneven distribution of electrons surrounding the nucleus
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of the molecule, creating a temporary multipole.

The electron density in a molecule’s electron cloud varies due to the finite num-
ber of electrons orbiting the atom, but the variation of density in the cloud
created hotspots of high charge, creating a temporary mulfipole that attracts
hotspots of opposite charge on other molecules. A molecule with a tempo-
rary multipole can also attract/repel electrons from neighbouring molecules,
thereby propagating the multipole effect. These short term multipoles pro-
duce the net affect of a weak attractive force between neutral molecules such
as nitrogen, methane and many others.

The London forces are higher for larger molecules with more dispersed elec-
tron clouds.

The attractive part of the potential comes from the strong short range re-
pulsive forces between two the overlap between negatively charged electron
clouds, based on the Pauli principle [15]. The Pauli principle states that as
the clouds of electrons of the two interacting particles intersect, the energy
increases dramatically.

The behaviour of a molecular system is defined by the properties of a system
of molecules. However, the individual properties of molecules can be combined
together to describe the state, or global properties of the system or region. An
analogy can be found with the macro scale ideal gas equation of state, which
relates the pressure, P, volume, V, and temperature, T, of an idea gas of n

moles,

PV =nRT (2.32)

The Van de Waals equation of state [16] describes a similar relationship
for molecular system

RT a n?

where n is the number of moles, and the gas law is corrected for the internal
volume of the molecules using correction factor b, and adjusted with parameter
a, which characterises the cohesion/attraction between molecules.

Parameters a and b can also be obtained from the critical properties of the
fluid [17],

_ 27R?T?
~ 64P,

(2.34)



CHAPTER 2. THE NATURE OF FLUID FLOW 25

_ RT,
~ 8P,

The equation of state approaches the ideal gas law as these correction fac-

b

(2.35)

tors appréach zero. This allows the description of the fluid in terms of state
of the fluid, rather than as a large number of chaotic molecules. The Van de
Waals equation is best suited to low temperature and pressure systems, how-
ever there are other equations of state that can be applied to other situations,
e.g. Lennard-Jones equation, Clausius equation, etc.

2.3.2 Molecular Simulations

Molecular simulations play a vital role in science today by providing a frame-
work on which to investigate theories and solutions in a relatively low risk and
low cost environment. At molecular scale, investigations and experiments are
very costly to perform, and in some situations it is not possible with current
technology. Because of this, molecular simulations are often thought of as
blurring the line between experiment and simulation, as they can be used to
investigate theories that otherwise could not otherwise be tested.

Molecular simulation is the study of material/fluid by considering the indi-
vidual interactions of atoms or molecules, as will be described in detail in
Chapter 3. General simulation schemes involve representative molecules in-
teracting with some sort of boundary, and each other to achieve a change
in position and momentum. There are many different forms of simulation
methods and techniques that can be applied to many different situations,
each offering different advantages. The basic mechanism behind almost all
molecular simulations is relatively basic, relying on a system of particles that

represent atoms or molecules that interact using Newton’s law,
F=ma (2.36)

where the force acting on a particle, F', is equal to its mass, m, multiplied
by its acceleration, a. The force acting on any one of the many particles in
the system is determined by the movement of those around it. There are two
branches of molecular simulation, stochastic and deterministic. The determin-
istic approach is in the form of Molecular Dynamic (MD) simulation, where
the outcome could theoretically be worked out. Stochastic methods, such
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as the Monte Carlo simulation method, have an element of unpredictabil-
ity and chance and the result cannot be exactly calculated in advance, these
will be discussed in more detail later. Despite the deterministic approach of
standard molecular dynamics, it remains a statistical mechanics method, as

system property values are developed from ensemble averages over the system.

Molecular simulations rely on representative molecules interacting with
each other, so each molecule must possess individual properties that determine
how it will move in the next time step; these are position, r, and momentum,
p, applied in the number of dimensions present in the simulation. It is from
these properties that interactions and collisions are found and evaluated, thus
proceeding the simulation. Given that the state of the whole system is gov-
erned by a function of the properties of all the individual particles, we can
introduce the concept of ‘Phase Space’. At any time in the simulation, the
state of the system can be defined by a single point in a 6 N-dimensional ‘Phase
Space’, where N is the number of particles in a 3-dimensional system. Each
3-dimensional particle contains information about its momentum (p;, py, p.)
and position (z, y, 2) in each of the three dimensions, so for N particles, there
are 6N variables. As the simulation progresses, the phase point will move
throughout phase space, sampling more of the regions accessible without vi-
olating any of the rules set at the start of the simulation, such as constant
energy, pressure or temperature.

In the following sections the basics behind simulations of molecular systems,
and then proceed to how it applies to real fluid flow problems and situations

is described.

2.4 Types of Simulation

The above sections have described the general form of molecular simulations
used to explore the constant energy surface of a system. However, the sim-
ulation so far can describe the positions and momentum of the molecules in
the system. These properties are useful within the simulation, but cannot
be compared with a real situation because such information is not available.
Available system properties such as temperature, entropy, pressure, etc. are
the result of the motion of many particles and not properties of individual

molecules. Such bulk properties are extracted from the simulation data with
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the use of statistical mechanics, by averaging the properties of a large number
of molecules over a specified period of time.

This method of property evaluation relies on Boltzmann’s ergotic hypothe-
sis [8]. The hypothesis assumes a quantum description of the system of parti-
cles, and for any system there are 7 different possible energy states conforming
to a constant energy E (proportional to system volume). Over a sufficiently
long period of time the hypothesis assumes that the phase space trajectory
will sample almost all of these energy state configurations resulting in an aver-
age value, known as the ensemble average and considered to be representative
of the system (over all state configurations, see Figure 2.10). The ergotic hy-
pothesis therefore states that over a sufficient period of time, the ensemble
average is equal to the statistical average obtained by simulation. This is a
reasonable assumption for most cases, however it does not apply when con-

sidering meta-stable phases or glasses.

Figure 2.10: Left: poor phase space sampling Right: Excelent phase space
sampling, resulting in excellent ensemble averages of bulk properties

The ergotic hypothesis leads to the construction of many different conser-
vation laws that can be applied to simulate different properties and situations.
These groups sample different ensemble averages and conserve different prop-

erties in molecular simulations, the most common of which are listed below.

e Microcanonical Ensemble (NVE) Constant number of particles, vol-
ume and energy. It is also common to control the temperature of the
simulation during the equilibrium stage so that the target system tem-
perature is reached within a suitable number of time steps. The simplest
form of temperature control is to periodically scale the velocities, how-
ever this is not a truly isothermal method and must be removed before

the properties are collected.
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Although energy is considered to be conserved, there will be slight fluctu-
ations and the possibility of a small drift due to truncation and rounding
errors from the calculations.

This type of ensemble is useful for predicting thermodynamic response
functions.

e Canonical Ensemble (NVT) Constant number of particles, volume
and temperature. As in the microcanonical ensemble, during the ini-
tialisation stage the velocities are scaled to the desired value for the set
temperature. Although useful for initialisation, velocity scaling is not
suitable to use as a control for a simulation as it is crude and not a
truly isothermal method. Therefore, other thermostatic methods must
be used to apply the temperature control, which will be explained in
detail in Chapter 4. This ensemble is used to perform conformational
(spatial arrangements of a molecule) searches of models evaluated in
a vacuum without periodic boundary conditions. Even when periodic
boundary conditions are used, this ensemble can be useful if pressure is
not a significant factor, as the constant temperature and volume provides
less perturbation due to the absence of pressure coupling.

¢ Isobaric-Isothermal Ensemble (NPT and NST)

— NPT Constant number of particles, pressure and temperature Tem-
perature is controlled using one of the thermostatic schemes de-
tailed in Chapter 4, and the pressure is controlled by varying the
volume of the system using the Berendsen, Anderson or the Parrinello-
Rahman schemes [18]. The Berendsen and Anderson schemes work
by varying the size of the system, while the Parrinello-Rahman
scheme is also capable of varying the shape of the system.

— NST Constant number of particles, stress and temperature This is
an extension to the constant pressure ensemble, which adds extra

control on the stress components zz, yy, 22, zy, yz, and zz.

Both methods are mainly used in structural applications. NST can be
used to evaluate stress/strain relationships and NPT is generally used

when the correct pressure, volume and temperature are important.
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¢ NPH and NSH

— NPH Constant number of particles, pressure and enthalpy. This
ensemble is similar to the NVT ensemble, only the size on the cell
is allowed to vary.

— NSH Constant number of particles, stress and enthalpy. The con-
trol of the stress of the system implies the use of one of the variable
volume schemes, of which the Parrinello-Rahman scheme is used to
vary the size and shape. This ensemble can only be used in fully
3D periodic systems.

In both ensembles, enthalpy, h, is conserved but it is also common, as
with many of these methods, to use temperature scaling in the initiali-
sation and equilibration stages to stabilise the system.

NPH and NSH are commonly used to investigate natural response func-
tions such as specific heat (at constant temperature), thermal expansion,
adiabatic compressibility, and adiabatic compliance tensors.

e Grand Canonical Ensemble (¢ VT) Simulations with constant chem-
ical potential y, volume and temperature is used widely to investigate

capillary phenomena, and other chemically driven effects.

These ensembles are used within statistical mechanics, both for stochastic
and deterministic approaches to investigate different environments and sys-
tems.

The Monte Carlo molecular simulation method represents the stochastic ap-

proach, which incorporates an element of randomness in the molecular model.

2.4.1 Monte Carlo Simulation

The Monte Carlo simulation method is a powerful tool for integrating com-
plex equations using a relatively simple probability theory [19]. This is best
illustrated by a simple example:

In this example, the value of 7 is calculated using a brute force approach to
Monte Carlo integration. To approach this problem, first consider an arc with

radius R, within a square domain of side [, as shown in Figure 2.11



CHAPTER 2. THE NATURE OF FLUID FLOW 30

Figure 2.11: Monte Carlo integration

The domain is probed using a number of test points, randomly distributed
over the area, as shown in Figure 2.12

The area of inside the arc is then estimated by the ratio of the number of

Figure 2.12: Monte Carlo integration, domain is interrogated by random
points, some lie within the arc

points inside its constraints (Red squares) and the total number of points (Red

squares + blue circles).

squares _area of arc (2.37)
circles + squares  area of square '
which becomes:
No. squares
Area of arc = : x Area of square (2.38)
No. circles + No. squares
The equation for the area of an arc is known as mR?, so this becomes,
R2
TR* squares 2 (2.39)

4 circles + squares
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Rearranging for 7 gives:

squares 41?
= o) 2.4
m circles + squares R2 (2.40)

Equation 2.40 relates the ratio of particles within the arc to the value of
p. The accuracy of the estimation is mainly dependant on the number of
points used to probe the domain. This approach is known as the brute force
approach, and is the less sophisticated form of Monte Carlo integration, where
there is an equal probability for a sample point to be taken from anywhére
within the domain.
Monte Carlo simulation uses elements from this technique to move the molecules
in the system in the following way.

1. A molecule is selected at random from the system
2. The molecule is then moved a random distance in a random direction

3. The resulting change in potential energy of the whole system is then

evaluated and if it is reduced, the move is accepted

4. Some failed moves are also accepted according to a probability value, P,

completely rejected moves are ignored

The distance a particle is moved is often scaled to alter the acceptance

ratio of moves making the simulation more efficient.

When applied to molecular simulation there is a need to improve compu-
tational efficiency by making certain approximations for solving equations on
relatively inactive regions. It is at this point Importance Sampling techniques
are introduced into the Monte Carlo method, as described by Metropolis et
al [20].

The Metropolis Monte Carlo method biases the contribution of each move to
the statistical average based on the Boltzmann factor. The probability of a
particle being selected is also influenced by the Boltzmann factor as follows.

1. The overall system energy is calculated, E;

2. From the system, one molecule is picked out. The probability of selection
for each particle is determined by the probability parameter A
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3. The molecule is assigned a small perturbation, such as a small displace-
ment in position, and the new system energy is calculated E;

4. If the new system energy is smaller than the old system energy, accept
the addition of the perturbation
5. If the new system energy is greater than the old system energy, accept
_E;-E B
the perturbation with probability: B = e %7 (note that 8 = e ®T is
the Boltzmann factor)

6. Repeat steps 1-5

This gives the probability value that an added perturbation will be ac-
cepted as, A multiplied by B. By allowing a small proportion moves that
increase the system energy to be accepted, provides a limited amount of pro-
tection against meta-stable configurations and quasi-equilibrium conditions.
By doing this, the system is pushed towards the configuration that is most
likely to occur, thus speeding up the simulation run time.

Another modified form of the Monte Carlo technique, is the force biased
method [21]. This adds some extra calculation overhead into each molecule
evaluation to determine the resultant force acting on the particle by its neigh-
bours, biasing the random move performed within the simulation. This also
improves the computational efficiency as statistical averages need to sample
fewer configurations.

Additional information on the Monte Carlo simulation method and its differ-
ent ensembles can be found in the book by Gould et al. [22]. Gould provides
examples of Monte Carlo methods, focusing on its advantages at simulating
phase changes, which has been used to good effect by Levesque [23] applied
to hydrogen storage in carbon nanotubes.

2.4.2 Molecular Dynamics

Molecular dynamic simulations model fluid in two ways, with molecules be-
ing represented as hard or soft spheres. Modelling with hard sphere models
provides a relatively simple approach to approximating a system of molecules
but still has valid applications, such as looking into the liquid-gas phase tran-
sition, diffusion and hard sphere fluids have a well defined critical point. The

drawbacks are mainly to do with the discontinuous nature of the model. The
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collisions are performed instantaneously and spheres only interact repulsively,
where as real systems have some form of attraction between particles. Be-
cause of this, it is also used for gas simulations where the distances between
molecules are far greater than their diameter, and inter-molecular interac-
tions occur rarely. Despite these disadvantages, the model is still widely and
successfully used, but care must be taken to ensure it is appropriate to the
situation being simulated.

A more realistic, but more complex and computationally demanding approach,
is the soft sphere model. In this model, the long range attractive and repul-
sive forces are modelled as a continuous function of the separation between
pairs of molecules. The use of a continuous interaction function improves the

accuracy of the simulation at the cost of increasing the computational load.

2.4.3 Introduction tc the Physics of MD Simulations

Molecular dynamic simulations work on the same basic principles regardless
of the actual interaction laws (hard or soft spheres) and rely on the following
three steps, initialisation, equilibrium and production. These stages are de-
tailed below following the example of a molecular scale cubic cell suspended

in a fluid away from any physical boundaries, as shown in Figure 2.13

Figure 2.13: Control volume of fluid suspended away from any solid boundaries

Initialisation

When the simulation is run, the first task preformed is to define the problem,
this is known as initialisation. This stage of the simulation accounts for only
one time step in the simulation and is used to create the system of spheres

based on a set of user defined parameters. In the example used, a control
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volume suspended in a fluid of set volume and density is simulated (Figure
2.13). The initialisation stage is where the dimensions of the considered vol-
ume of the system are defined and representative molecules are placed within.
Therefore a method is needed to position N spheres within the system. If the
spheres were to be randomly assigned positions, there is a quite high probabil-
ity that some of them may overlap, creating extremely high interaction forces,
disrupting the system with unnatural forces. It is therefore more practical to
assign positions based on a lattice or crystal structure.

However, this creates a problem, as fluid molecules do not conform to a static
lattice, but move constantly within the domain. This means that the fluid
molecules need to break out of the initial lattice structure and find a natural,
randomised, equilibrium position. A degree of randomisation is added to the
molecules to allow them to break out of this structure. This can either be done
by adding a degree of randomisation to the initial molecular positions, or to
assign random initial velocities. Randomised positions, however are generally
used for very large systems to reduce the simulation time taken to settle into
a random ‘cloud’. ‘

By assigning random initial velocities to the molecules it is also possible to
control the initial temperature of the system by assigning velocities based on
the Boltzmann velocity distribution (Equation 2.4).

Once all of the initial positions and velocities for the all the spheres have been
defined, the forces on each of the atoms must be evaluated giving the overall
force on the particle. The force calculations are used to perform changes to
the dynamics of the particles in the system, but these changes are performed
with in the time loops of the simulation. There are two time loops within the

simulation, one in the equilibrium stage and one in the production.

Equilibration

The simulation time allotted to the equilibrium period immediately follows
the initialisation stage. This provides a buffering/settling time for the parti-
cles to mix themselves up and reach a maintainable equilibrium state that is
sufficiently randomised. Once a stable, but randomised situation is reached,
the production stage can proceed, which provides all the useful information
about the run. A

While the simulation is proceeding, there needs to be some way to measure
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how well randomised the simulation has become and whether or not an equi-

librium state has been reached.

Monitoring Initially, the positions and velocities of all the molecules in the
system are defined, both of which need to be relaxed before the production
phase can take place. To ensure this has been completed, there needs to be
ways of detecting the state of the simulation. The state of the dynamics of the
particles are measured against the Maxwell-Boltzmann velocity distribution,
while the breakdown of the positions is evaluated using the Order parameter.

The Maxwell-Boltzmann velocity distribution is strongly linked to the
Boltzmann Factor, derived from the kinetic theory of gasses. By looking at a
small change in height of the atmosphere, and relating the pressure to kinetic
theory, the Boltzmann factor is derived from the change in pressure and can

be found as follows:

Figure 2.14: Boltzmann factor derived from elemental change in height in the
atmosphere

Boltzmann Distribution The force exerted on the boundary of a fluid
is described as m, the number density (no. of molecules divided by volume)
multiplied by the volume and the weight of each molecule (force due to mo-

mentum exchange at collision at boundary)

F = mgAnAh (2.41)
so pressure becomes
F mgAnAh
AP = 2 = S 2.42
I 1 (2.42)

AP = —mgnAh (2.43)
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The ideal gas law can be rearranged for n,

N P
which when substituted into the expression for AP to give
_ _mgAh
AP = TT P (2.45)
So for h — 0 )
mg
—dP = -~ .
/ pdP =12 / dh (2.46)
gives,
mgh
P =Py Rt (2.47)

mgh
Where e ®T is known as the Boltzmann factor. This form of the Boltz-
mann factor has been derived from potential energy, and as potential energy
can be written as mgh, we can re-write the factor as

8= BF (2.48)

where E is the energy. A similar derivation can be performed using kinetic

energy, resulting in a Boltzmann factor of

B=e RF (2.49)

This describes the probability that a molecule is a certain energy level
for a prescribed temperature, 7. By normalising probability values so they
add to a unit value, the Boltzmann factor can be evaluated over a range of

speeds to obtain the Maxwell-Boltzmann distribution for speeds. Where speed

v=,/v2 +vy§ + v?

2 mv2
f(v) = 4w (27:271) * v AT (2.50)

This velocity-probability distribution (Figure 2.15) can therefore be used
to asses the dynamics of a simulation, by comparing the distribution of the
resultant velocity of molecules with this distribution.

This is an important test as even for systems at steady state, as the velocity
of individual particles does not remain constant, as they are constantly in-

teracting and colliding with each other. It is sensible to consider the overall
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Figure 2.15: Maxwell distribution of velocity for temperatures of 300K, 400K,
500K and 1000K

distribution of velocities within the system to get a view of how the system is

behaving and how it is approaching equilibrium.

By monitoring the distribution of velocities and its resemblance to the
Maxwell-Boltzmann distribution, a measure of the approach to equilibrium
is developed. It is then used to identify stability in the simulation. If the
simulation is not stable, the temperature would fluctuate and the system would
not be in equilibrium. It is therefore necessary to observe the development
of the distribution over a period of time, ensuring that it converges with
minimal oscillations. The graphs below (Figure 2.16) show the examples of
the distribution at different temperatures.

The variations occur from statistical noise occurring from the finite number
of molecules in the simulation. The greater the number of molecules, the lower
the noise in the extracted distribution. For an infinite number of molecules,
the distribution would be followed perfectly, the possibility of a continuum
description.

Other measured thermodynamic properties, such as pressure and density are
also sensitive to the state of the system. By looking at these properties and
seeing how they behave is another tool in the identification of equilibrium,
and smooth running of the simulation. Properties are averaged over a period

of time, and need time to adjust themselves to the correct, stable value. If
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Figure 2.16: Maxwell distributions at 500k, 300k and 100k which show the
shape of the distribution and how it changes at different temperatures [24]

some instabilities are present and the properties are not converging, the sys-
tem cannot be in a steady state.

The stability of a property does not just imply that the value remains approx-
imately constant, but it should also be able to recover its value after a small

amount of perturbation, such as a temperature adjustment.

The Order Parameter The order parameter gives an indication of the
randomisation of the positions of the particles within the system. There are
many formulations of this parameter relating to different initial structures,
but only an example of an FCC lattice is considered here.

First, the system of particles is broken down and the three Cartesian coordi-
nates are considered independently. The form of the order parameter must
be such that it is possible to detect when a particle is on or near an original

lattice site.

Figure 2.17: Order parameter relative to lattice positions

The form of such a function is described for a single particle as:
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A = cos (4”xi) | (2.51)

a

where a is the spacing between lattice sites, and z; is the position of
molecule ¢. By summing this over.all particles the average value can be cal-

culated for all molec‘ules, for each of the three directions:

1 & drx; 1 & 4dTy; 1 & 4z,
Ay = N;cos (T) y Ay = N—;cos (T) , Ag = N;cos (—(—;—)
- B - (2.52)
The overall value can then be calculated from the three directional compo-
nents:
A= % Az + Ay + ) (2.53)

This is the order parameter for the system. After the initialisation of the
simulation, the order parameter can be used to confirm the lattice has been
constructed correctly, if A=1, all lattice sites are occupied. During the run the
particles move from their initial position, which alters their individual order
parameter to a value between -1 and 1 (Figure 2.17). for a fully randomised
simulation, the parameter should be approximately zero, indicating an even
distribution of particles between the bounds of the simulation. The order
parameter can also be used to determine the point of solidification and the
quality of the lattice, as used by Radhakrishnan and Gubbins [25]

A successfully equilibrated system should be sufficiently randomised and
have reached a stable equilibrium point from which the production phase can
begin. The stable point should have the same global properties regardless of
the initial positions of the molecules, and can be tested us by applying random
noise to the positions of the molecular lattice and examining several equilibra-
tion phases. A fully equilibrated system will have the following properties:

e Stable levels of kinetic, potential and total energy. Variations in energy
levels are to be expected, but there should be no drift in average values

of energy.

e Order parameter should be zero, indicating the molecules have suffi-

ciently randomised.
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e Velocities of all molecules should conform to velocity distributions for
the set temperature for the system.

e Stable state which is independent of initial positions of molecules.

Although the above criteria help identify equilibrium there is still a chance for
undetected instabilities to be present, so care must be taken to be certain that
steady state has been reached. After sufficient randomisation, the production
phase of the simulation can begin.

Production

After the successful randomisation of the system of molecules, the production
phase can take place. This is basically an extension of the equilibrium phase
to calculate the properties of the stable system over a set period of time. As
the system is assumed to be sufficiently equilibrated, some of the controlling
factors and adjustments are removed to allow the simulation to progress freely.
Although the controls are removed, the parameters such as the order param-
eter and velocity distribution are still monitored to check for anomalies. At
the end of the equilibration phase, all property averages are reset to zero so
that when the production phase starts, the properties are not affected by the
approach to equilibrium, and are the result of the production phase only.

This is the stage of the simulation where the interrogation and investigation
of the system may start. There are two main types of dynamic models used in
simulation to describe molecular dynamics, hard sphere and soft sphere. They
differ in the way they handle interactions between particles. The hard sphere
model considers interactions as binary collisions, whereas the soft sphere ap-
proach considers the molecules to be continually interacting via long range

potential functions with their neighbours.

2.4.4 Hard Sphere Model

Hard sphere simulations only interact by colliding with one another and ex-
changing linear momentum in a perfectly elastic way. The forces present in
the hard sphere model are relatively simple and easy to calculate. As there
are no long range interactions, spheres only interact when they are colliding.
The hard sphere models are generally event driven, where the simulation time
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only steps forward to the next event, or collision. This is based on the as-
sumption that all spheres have an initial position and velocity, and that sphere
travels along the same direction at a constant speed (as there is no accelera-

tion), such that the position at any time can be calculated as follows [8]:
ri(t) = ri(to) + (t — to)vi(to) (2.54)

Where 7; and v; are the position (of the centre of the sphere) and velocity
of particle i, ty is the start time and ¢ is the new time. As all molecules move
in this way the time until two spheres overlap, i.e. when a collision occurs, can
be predicted, highlighting the deterministic nature of the molecular dynamics
approach.

At any collision between two spheres each with diameter o , the distance be-
tween the centres will be o, therefore a collision occurs between two molecules

with position at time ¢, of r1(¢) and 75(t), when:
Iri(t) —ra(t)| =0 (2.55)
which can be calculated as:
(ri(t) — m2(2))? = o? (2.56)

At this time, ¢, a collision is occurring, and in a simulation of NV molecules
the molecules that are colliding next need to be determined. By substituting
1.3.1 for r; and 79 in Equation 2.54 and rearranging for ¢ , gives the time at
which the two spheres will collide:

((“UIZ -T12) £ v/ (V12 - 12)2 — v12(rd, — 02))

tc=1to + 5 (2.57)
V12
where
v12 = (tc —to)v1 — (tc — to)v2 (2.58)
T1g = r1(t) — 72(t) (2.59)

This gives the collision time, t., for two spheres providing they are moving to-
wards each other. Therefore, before ¢, is calculated, the state of the collision
for the colliding pair must be determined.

For example, take molecule number one from our simulation and consider the
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possibility that it may collide with molecule 37. There are two basic possi-
bilities, either they are moving towards each other or away. Mathematically,
this is described by the projection of the velocity difference along the line of
the centres of the spheres by finding the product of vy and r15. If the result

is less than zero, the spheres are moving togethef:
V12 T12 > 0 (2.60)

If the spheres satisfy this condition, they are said to be moving toward
each other but this does not guarantee a collision. To determine if they will
collide we need to consider the limiting case where they come in contact as
they pass each other.

;
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Figure 2.18: Hard Sphere Collision detection

T2

By considering the one sphere to be fixed and the other to have velocity
equal to the velocity difference, the above figure shows the limiting case for
collision. It can be seen that there must be a limiting value of 8 that if
exceeded, no collisions occur and the spheres pass each other 8].

This collision test is evaluated for every possible colliding pair within the
system by looping over all molecules, and calculating the next collision time
for each. From these times, a table of collision times is created containing
predictions for when each sphere will have its next collision. The calculation
of this table is the last step in the initialisation stage.

The table can then be used and updated in the equilibrium and production
stages to advance the simulation and evaluate the next collision.

Collisions are modelled as binary interactions, occurring instantaneously, where

the molecules exchange linear momentum.

Time Steps

The first task in the time step loop is to look at the table of predicted collision

times and find which collision will occur next. The first collision to happen
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is the only reliable prediction as the collisions afterwards may occur in a
different order. The simulation is then progressed by advancing to the time

of this collision and moving all spheres using a similar form of Equation 2.61
r(t+ At) = r(t) + v(t)At (2.61)

The new position for each sphere, r(t+ At) is calculated from the old position,
r(t) by adding the distance travelled at constant velocity, v(t), during At.
When all spheres have been moved, the two that are colliding will be in contact
and the momentum exchange can take place. As the masses of the spheres
are the same, the mass terms can be cancelled out of the momentum equation
completely leaving just an exchange of velocity. The velocities of the two
spheres are projected along the line of their centres, as in the two dimensional

example in Figure 2.19. At the collision, the component of velocity along the

Figure 2.19: Hard Sphere collision evaluation, momentum is transformed from
physical coordinates, along the line between the centres of the molecules, along
which they exchange momentum

line connecting the two centres is exchanged, while the component of velocity
perpendicular to this line, remains the same for both spheres. The velocities
of both spheres are updated and can be used to update the prediction table
for the next collision time for the pair. There is no need to update the table
for all the molecules, as only the colliding pair experience a change in velocity.
The updated tables can then be used to predict the time step to the next

collision.

2.4.5 Soft Sphere Model

The soft sphere model of molecular interactions, considers molecules to inter-

act by exerting a force on each other relative to the distance between them.
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These interactions occur continually, with each molecule having a ‘zone’ in
which, any other molecule present is influenced. Hard spheres will only inter-
act when contact is made.

The initialisation stage starts as stated above, where the initial positions and
velocities are been defined for all molecules in the system. Force calculation
for soft sphere models is more complex due to the addition of long-range inter-
actions. Particles in the system continually attract and repel their neighbours
through a predefined potential function as opposed to the instantaneous and
perfectly elastic collisions of the binary collisions described above.

This is best described with the use of the Figure 2.20 below, where the cen-
tre particle is interacting with particles within a set radius Rs. The most
common potential used is the Lennard-Jones 12-6 potential, which provides
an approximation of the attractive and repulsive forces experienced by non
bonded molecules.

The potential functions are continuous and become weaker as the distance

Figure 2.20: Soft sphere interaction detection

between molecules increases, so it is therefore convenient to set a limit to
the ‘zone of influence’(typically around 2-3 times the interaction radius of
the molecules) of any one molecule (outside which the potential is approx-
imately zero). This finite limit prevents molecules the simulation form in-
cluding unnecessarily small interactions which can be approximated by long
range correction factors [8], hence the simulation time is reduced. Despite this
streamlining, the process of finding a particles neighbours is time consuming
and there needs to be an effective method of storing the lists of neighbouring

particles for each sphere.



CHAPTER 2. THE NATURE OF FLUID FLOW 45

Soft sphere molecular dynamics provides an accurate model for molecular scale
fluids and generally used for dense fluids, where the cohesive part of the inter
molecular interaction plays a more important role. Travis and Gubbins [26],
and Tuzun et al. [27] show good examples of general molecular simulations.
Other applications include chemical gradient driven flows [28], and studies of

pore roughness [29] on flow parameters.

2.5 Effects at Molecular Scale

In this section, the effect of scale on the mechanics of a fluid at molecular
scale are discussed along with the different mechanisms that are present which
cannot be modelled on a continuum scale. The most obvious effects are present
in highly porous media, where there is a high mix of fluid and solid molecules.

2.5.1 Phase Change in Confined Systems

The process of changing phases is in some cases modelled relatively well with
hard spheres, however with soft sphere models when thawing, the melting
temperature is often over estimated by up to 30% [30]. The melting temper-
ature is the point at which solid and liquid can coexist, however for there to
be liquid present, there needs to be a section within the simulation domain
where the structure starts to break down (nucleation of the new phase). At
any phase change a good indication is a jump in caloric curve relating to the
adsorption of latent heat.

If the system comes close to a temperature and pressure at the phase bound-
ary, the dynamics of the system can change quite substantially, and this needs
to be taken into consideration. The change between liquid and gas is not
as drastic as the change between liquid and solid, where the molecules fall
into or out of a structured formation. As the temperature of the molecules is
lowered, molecules posses less energy and do not interact with each other as
strongly, and cohsequently they move less and less. The kinetic energy of the
particles then reaches a point where, for a given density, they.are kept in the
same position by all the other particles. At this point, the particles do not
possess enough energy to break out of their position, due to the proximity of
other molecules. During a phase change, energy is absorbed or discharged in
the form of latent heat at constant temperature, this is the extra amount of
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energy needed by the molecules to break out of the lattice and start moving
around the container.

Phase change is a well understood mechanism, but the molecules behave
slightly different when the solid/fluid is confined. Simulations of hard sphere
fluid confined between hard walls were found to exhibit quasi-one dimensional
motion near the wall [31], where the molecules near the walls were pushed up
against the container, and could only move approximately parallel to the wall.
This effectively creates different phase behaviour parallel and perpendicular
to the boundary. The compressibility factor parallel and perpendicular was
measured using the Radial Free Space Distribution Function (RFSDF) [32]
within a Monte Carlo simulation of hard spheres. The study showed that
as the distance between the plates was reduced from a separation to sphere
diameter ratio of 21 to 3, the difference between the compressibility factors
was increased between the parallel and perpendicular directions (with respect
to the wall). This indicates that there is also a difference in pressure between
the two components.

The RFSDF has components from both the compressibility factor and the
order parameter, so by looking at the order parameter the phase of the fluid
can be determined as a function of distance from the wall. Molecules away
from the walls are still in the liquid phase and are free to move, but molecules
closer to the wall are trapped between a non moving boundary and the moving
particles colliding against them.

The quasi-one-dimensional motion combined with the difference in pressure re-
sults in the phenomena, of anisotropic phases, where close to the wall, molecules
are in the solid phase perpendicular to the wall and in the liquid phase parallel
to the wall. Taking this quasi-one-dimensional theory one step further, and
constraining a fluid within a cylindrical pore only two molecular diameters
wide (between centres of molecules within the wall) freezing of the fluid is not
observed to occur. The study by Peterson et al [33] showed that no phase tran-
sitions are observed in a single nano pore with diameter of twice the molecule
~ diameter (between centres wall molecules), right down to absolute zero. How-
ever Radhakrishnan and Gubbins [34] showed that phase change was possible
when the nanotubes were arranged in a cluster, due to correlation effects. Us-
ing a Grand Canonical Monte Carlo (GCMC) simulation (Constant chemical
potential, volume and temperature) they firstly showed that a phase change
was not observed in a single pore, however this also highlighted the problem
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of fluctuations in thermodynamic properties due to the limited number of par-
ticles in the system. The investigation then turned to simulating a hexagonal
cluster of pores, and the same cluster surrounded by periodic images of its self.
The walls were oxygen molecules and the transported molecules were methane,
and the periodic pore model showed that clusters of pores do show evidence
of freezing at a temperature of about 40K. The simulation also replicated the
hysteresis effect of regular phase change, but highlighted the importance of
the correlation effect between pores.

In a Monte Carlo simulation of water, Meyer and Stanley [35] investigated the
coexistence of two liquid phases of water within a strongly confined geometry

shown if Figure 2.21. The theory of this is based on the fact that amorphous
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Figure 2.21: Confined geometry for simulation of liquid-liquid phase co-
existence, L=10.95, periodic boundary conditions along x and y axes. Two
parallel plates in the xy plane are separated by length L in the z direction

solidified water displays two distinct phases, one with a lower density than
the other and by extrapolating the transition line to a higher temperature to
the meta-stable liquid region, there is a possibility of two liquid phases being
present. This has been shown for bulk liquids, so Meyer and Stanley [35] in-
vestigated the same theory, when the geometry is confined as above. It was
found that the pressures normal and parallel to the wall were different and
furthermore, at temperatures below 230K the pressure parallel to the wall was
found to become density independent, typical of the coexistence of phases of
different densities in constant volume simulations [36]. The pressure normal
to the wall however, remained density dependant right down to absolute zero.
They concluded that it was possible for these high and low density phases to
coexist within the simulation.

A combination of these works was looked at by Gatica et al [37] to inves-

tigate the adsorption of fluids within carbon nanotubes. As with the work
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above, adsorbed fluid was expected to exhibit one-dimensional or quasi-one-
dimensional behaviour. The study found the corrugation experienced by an
adsorbed molecule to be much less when compared to planar graphite [37,38],
leading to fluid adsorbed on to the wall showing what is known as a cylindrical
shell phase. When the density within the nanotube is increased significantly,
the cylindrical shell phase solidifies and becomes similar to the incommensu-
rate monolayer solid film on graphite which is well known and studied [39]. At
some point there must be a transition between the solid and fluid and at this
threshold, there must also be the possibility of coexistence of the two phases.
The solid ‘axial phase’ is recognised when the fluid becomes confined close to
the axis of the tube as the number of molecules in the system is increased
(hence increasing the density of the fluid). This axial phase transition oper-
ates in a similar way to Capillary Condensation and Layering Transition. The
layering transitions are known to occur at higher temperature, however the
one dimensionality of the system limits the transition to occur at T=0°C.It
has also been shown that a bundle of adsorbing tubes exhibit correlation ef-
fects, which raises the transition temperature above zero [36,40]

Radhakrishnan and Gubbins [25] work agrees with the above discussion of
confined phase change, but applied to slit shaped pores. As with the cylindri-
cal pores, fluids confined within slit shaped pores showed strong evidence of
a third phase close to the walls. They investigated the effect of the wall-fluid
interaction strength on the phase change, varying it from strongly attractive
to repulsive, with respect to the fluid-fluid interaction strength.

Previous work by Miyahara and Gubbins [41] had already found that the
strength of the interaction affects the hysteresis loop of the freezing tempera-
ture, relative to bulk material. However, Maddox and Gubbins [42] also found
that the reduced confinement of the fluid in slit pores, as opposed to cylindri-
cal pores, leads to higher freezing temperatures.

The study found that for strongly attractive walls the layer of particles nearest
the wall froze at a higher temperature than those in the middle of the pore,
similar to many of the examples described above for cylindrical pores. How-
ever, as the interaction swings the other way, becoming repulsive, the freezing
effect also switches so that the centre of the pore freezes before the layer in
contact with the walls. This implies that there must be a level of attraction or
repulsion where the fluid freezes at one temperature, making the intermedi-



CHAPTER 2. THE NATURE OF FLUID FLOW 49

ate shell phase meta-stable, or disappear completely. The attractive/repulsive
interaction potentials at the walls represent the difference between graphite
carbon/silica walls, as carbon walls are strongly attractive and silica walls are
weakly repulsive, however most silica based porous materials have cylindrical
pores.

Kim and Steele [43] also looked at phase change at solid boundaries, studying
the effect corrugation had on the monolayer of methane on graphite. Their
small scale simulations of 289 molecules showed that increased corrugation
leads to pre-transitional effects that are not present in solidification against

smooth walls.

2.5.2 Adsorption/Desorption in Pores

Adsorption is the process by which a fluid adheres in a thin film to a solid
or liquid with which it has contact. As an example, the following will discuss
the effect of the conditions for filling and emptying of a silicate nanotube, as
studied by Gelb [44]. The first thing to remember, is that classical statistical
mechanics laws do not allow a first order phase transition to take place within
short range one dimensional systems, even for the case of meso-scale pores
which, despite their three-dimensionality. Bundles of pores or tubes, add to
the systems dimensionality which alters the behaviour due to the long-range
interactions. This can result in a first order change of phase within such a
cluster due to the presence of neighbouring tubes. These inter pore effects
are difficult to characterise in real materials and are therefore not, at present,
widely investigated by simulations [34]. The filling of a pore involves three
basic components, a high density phase representing the filled part of the
pore, a low density part representing the multi-layer adsorption, and interface

between the two, as shown in Figure 2.22.
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Figure 2.22: Phase regions for adsorption filling of pore.

As would expected from continuum scale observations of surface tension,

the interface between the ‘wet’ walls of the pore and the ‘filled’ region is almost
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hemispherical. Higher temperature adsorption results in a thicker layer at
the walls through the adsorption layer, resulting in a lower surface tension
and an increase in the number of interfaces within the pore. The effect of
inhomogeneity of phases along the length of a pore, becomes negligible when
there is no hysteresis present between adsorption and desorption,‘ and leads
to a rounding off of the phase transition, similar to the effect of periodic
boundaries on bulk fluid [44]. Tt is therefore acceptable to think of the phase
transition within nano-scale pores as almost first-order and apply standard
transition thermodynamics, as long as the temperature does not approach the
critical point and the distance between phase interfaces is comparable to the
pore diameter. The term critical point used in capillary confined fluids has a
different meaning to that of bulk fluid, and is used to describe the point at
which adsorption/desorption hysteresis disappears. As a consequence of the
inhomogeneity along the pore, it is not possible to observe a critical point
in the bulk fluid sense, or its associated properties. At lower temperatureé,
the adsorption layer is thinner and the interfaces are further apart so small,
periodic cells are used whereas for very high temperatures, the adsorption layer
grows to such an extent, and the interfaces are so close together, that only
one phase is present. The hysteresis, with respect to chemical potential during
filling and emptying, is present in both experiment and simulation, however
its effects are more pronounced in simulation, possibly due to the short time
scale accessible. Longer pores have more capacity to exhibit inhomogeneity
along their length which can present differences in nucleation on new phases
and hysteresis loops. Pores with closed ends, can have the effect of the closed
end acting as an already nucleated dense phase while filling and affect the
hysteresis loop.

The simulations performed by Gelb [44], were for adsorption of Xeon on
silica. A simplified model for silica was used, with the surface molecules mod-
elled by oxygen. Silicone molecules are not present on the surface of silica,
and are weakly interacting, and were therefore removed from the model. The
pore was created by defining a box, 5.4nm square at one end and a length
varying from 8nm to 108nm, full of a standard configuration of oxygen atoms
for silica, and removing a cylindrical volume of atoms from the centre to create
the desires pore geometry (Figure 2.23). A small amount of relaxation was
applied to the system after the removal of the cylinder, to remove some of the
translational symmetry experienced by the use of smooth continuum walls.
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Figure 2.23: Cylinder oxygen atoms removed from system to create pore

Although this was done at the cost of increasing the computational load of
the simulation. Three geometries were explored in this investigation, a finite
pore with two open ends, an infinite pore with periodic boundary conditions,
and a single ended pore. The geometries were also modified in diameter and
length for further comparison. The simulations were based on a Grand Canon-
ical Monte Carlo (GCMC) Method (constant chemical potential, volume and
temperature) as it samples the correct ensemble for adsorption/desorption
simulations and has been found to be reliable, despite inaccuracies when deal-
ing with transport to and from the interface.

During the filling and emptying of long pores (108nm) it was noted that equi-
libration became extremely slow at the top of capillary rise and the bottom
of desorption drop and required up to thirty times as many more moves than
usual. During the desorption of the long open ended pore, the interface be-
tween the two phases moves steadily away from the open end, and there was
no evidence on nucleation of either phase away from the interface. Desorption
within an open ended pore often results from the nucleation of the low density
phase within the high density region, resulting in ‘bubbles’ forming. But in
this case, the interface also moves at an almost constant velocity.

The filling of the single ended pore shows the reverse happening, the closed
end acts as an already nucleated phase and the interface moves up the pore,
toward the open end at a relatively steady rate. Open ended ‘infinite’ pores do
not have the ‘head start’ of the closed end and must nucleate the start of the
high density phase before the filling process can properly begin. This means

that capillary rise occurs at a higher chemical potential than closed ended
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pores. Because of this higher potential, the closed ended pore has a smaller
width hysteresis loop than the open ended tube, this also reduces the tem-
perature at which hysteresis disappears. It was also found that the reduced
hysteresis loop found with the single ended pore occurs at a chemical poten-
tial almost exactly in the middle of the larger loop of the open ended pore.
Gelb also noticed that at the ends of the pore, weaker repulsive interactions
could be affecting the stability of the simulation as the interface approached
the ends of the tube.

Open ended and infinite pores were also compared using two different pore
diameters, 4nm and 3nm. Although the hysteresis loop for the open ended

Finite Open Ended Pore Infinite periodic pore

Figure 2.24: Infinite vs. Open pore

pore was smaller than for the closed ended pore, it is still smaller than the loop
for the periodic pore. The effects of the open ended pore are more dramatic
for the 4nm diameter, as much higher chemical potential is needed to induce
nucleation of a new phase making the presence of the open end more impor-
tant. The hysteresis experienced by the open ended pores for both diameters,
is mainly on the desorption drop and not on the adsorption side, however the
capillary rise occurs at a slightly higher chemical potential, indicating that
the open ends may be stabilising the low density phase at the ends.

The final investigation performed by Gelb looked into the effect of changing
the length of the pore cell for the periodic/infinite pore. Three lengths were
tested, 8nm, 16nm and 108nm, and it was found that as the length was in-
creased, the width of the hysteresis loop was reduced. This was attributed to
the fact that the longer pores contained more density fluctuations, leading to
a higher probability of nucleation of a new phase. This however, could have
been due to poor sampling resolution as the difference is fairly small and is
most pronounced at a reduced temperature of T = 0.927. There was a fairly
close agreement between the two longest pores, the 8nm and 108nm, which
could indicate that the difference in the hysteresis loops is not affected when
the length becomes significantly greater than the pore diameter.

Gelb’s [44] observations have been summarised below:
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e Pore Léngth has little effect on the adsorption/desorption hysteresis de-
spite added probability of nucleation, but the effect is greatest when the
length is close to the pore diameter.

e Open ends on pores show much less desorption hysteresis for 3nm diam-

eter pores than 4nm diameter pores.

e Single ended pores show almost no hysteresis due to the nucleation of
phases at the end of the pores. Density also fluctuates greatly at pres-
sures near condensation.

e Inter-pore correlation effects could yield a ‘novel type of phase transition

in two dimensions’.

The effect of the length of the tube is a fairly expected result. As long as the
tube is long enough to separate the effects of the ends of the tube, the middle
section shows little variation along its length. The difference in desorption
hysteresis between pore sizes is mainly due to the nucleation of the ease of
progression of the new phase which is made easier by the effectively larger
particles, due to the narrower pore. The lack of hysteresis shown in single
ended pores is mainly due to the closed end acting as a dense phase, giving a

good start to phase nucleation.

2.6 Summary

In this chapter a general overview of fluid behaviour on continuum and molec-
ular scales was presented. The bulk, or continuum, properties have been
discussed along with their origins from molecular mechanics. Several meth-
ods for solving for these continuum properties were presented in terms of the
governing equations which quantify the relationships between them.

On the molecular scale, the origin of intermolecular forces and interactions has
been presented, and a wide variety of molecular simulation schemes have been
discussed from the deterministic molecular dynamics, to the stochastic Monte
Carlo method. Finally, the importance of these methods has been highlighted
by considering the molecular examples in Section 2.5.

This chapter has shown the different approached to fluid simulation that are
needed as the scale of the system changes. The meso scale lies in between the

continuum and molecular scale and must use elements from both to correctly
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capture the correct physics (from the molecular scale) and provide a descrip-

tion in terms of useful fluid properties (as characterised on the continuum

scale).



Chapter 3

Fluid Physics at Meso Scales

3.1 Introduction

The focus of this chapter will be to present and discuss methods for combining
information and physics from the continuum and molecular scales. The discus-
sion begins with methods that couple continuum with molecular simulations.
From this, two basic methods will emerge, where molecular simulations are
used either to couple to the continuum region as a boundary condition (and
vice versa), or by the molecular information being used to modify or enhance
the continuum solution in a particular region.

Many of these methods consider solid systems or sparse gas dynamics, both
of which can access larger length scales with molecular simulation than dense
gasses or liquids, due to the dynamics and distance between molecules.
Existing meso scale methods will then be discussed, such as dissipative par-
ticle dynamics and the lattice Boltzmann method. The meso scale methods
commonly used present a ‘top down’ approach, the benefits of which, and ap-
plications will be discussed.

The final section will discuss direct schemes from upscaling information from
the ‘bottom up’ approach, to look at schemes for extracting bulk properties
from molecular dynamics, with a view to not only extract the properties, but

the property distributions throughout the molecular domain.

%)
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3.2 Top down Approach for Meso Scale Compu-

tation

The meso scale region is defined as a scale in between the micro scale and
molecular scale (approximately between 10~8m and 107®m). The meso scale
exists to cover the change in physics between the continuum approximated
view, and the discontinuous molecular description. Hence, the upper limit of
the meso scale is set by the point at which the continuum approximating laws
are violated. This can occur at a range of scales, depending on the state and
properties of the fluid, for example a sparse gas invalidates the continuum

laws at larger scales than a solid.

3.2.1 Continuum Limit

For the fluid to be considered a continuum, the laws described in Section 2.2.2

are summarised as follows:
e Continuous and infinitely divisible fluid
¢ Fluid is in thermodynamic equilibrium

Because of the dependance of the continuum laws on the state of the fluid
characterised by the rarefaction and energy of the molecules, the point of
failure of these laws must be considered carefully. Travis et al. [45] show a
comparison between Navier-Stokes hydrodynamics and molecular simulation,
which displays different behaviour in terms of velocity profile and heat flux
profile. Due to the differences in density and kinetic theory, it is however
necessary to consider the continuum to molecular transition separately for
liquids and gasses.

Gasses have a very well developed kinetic theory, and consequently are better
able to describe the transition from continuum mechanics to fully molecular

flow.

Gas Flows

To asses the validity of the continuum or molecular model for a gas, it is
necessary to obtain a measure of the rarefaction of the gas at the scale of
interest.
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Figure 3.1: Range of Knudsen Numbers for Gas systems

To do this, the concept of mean free path is introduced. The mean free path
is the average distance travelled by a molecule before it collides/interacts with
another molecule. For an ideal hard sphere gas, the mean free path, L is a

function of pressure, P, and temperature, T, as follows.

kT

L= orpot (3.1)

This provides a measure of the rarification of the gas. This can then be
compared with the characteristic length of the flow field, {, which can either
be taken as the characteristic dimension, or the gradient of a bulk property,

such as density
p
l=— (3.2)
F4
The ratio of the characteristic length to the mean free path of the gas is known
as the Knudsen (Kn) number

Kn=— (3.3)

The value of which is used as a measure of the rarefaction of a gas with
respect to the scale of the system, in order to test the validity of the contin-
uum approximations. Typical values are shown in Figure 3.1 from the large
scale continuum to molecular systems. A very small Kn number (< 0.001),
describes a system that is well within the continuum laws, but as the Kn in-
creases the small scale effects of the fluid become more pronounced [?].

The first stage of the breakdown of the continuum approximations occurs at
a Knudsen number of greater than 0.001 where areas of high gradient, such
as boundaries, cannot maintain the continuous distribution of macroscopic
properties. This is a result of the deviation from thermodynamic equilibrium,
where there are insufficient collisions in the system for the energy to propa-
gate smoothly in areas of high gradient such as at the boundaries. The low
number of molecular interactions with the boundary means that the velocity



CHAPTER 3. FLUID PHYSICS AT MESO SCALES 58

and temperature of the solid and fluid are no longer the same at the interface,
causing a violation of the no-slip condition (similarly the no jump in temper-

ature condition) that is assumed in continuum mechanics [46].

To account for this initial deviation from the classical equations, the linear
Navier boundary condition [47] describes the slip and no-slip conditions by
relating the difference in velocity between the wall and fluid, (ufiuid — Ywan),
to the strain rate at the wall, (0u/0Y)wau

Ou
Ufluid — Uwall = L (—) (3.4)
¢ ay wall

With L, being the slip length. This slip condition can be included in
the continuum approximations as long as slip length L, is known or obtained
via molecular simulation or experiment. For normal large scale continuum
simulations L is so small that the fluid and wall move at the same speed
(no-slip condition), but as the Knudsen number of the system increases above
a value of 0.001, the slip effect becomes more pronounced. The amount of slip
that is allowed depends on the roughness of the surface over which the fluid
is flowing and the interaction rate between the fluid and solid molecules.

A similar equation for the slip at the boundary, that includes temperature
discontinuities, was presented by Smoluchowski [48]

2— Oy Ou 3 s or
o s 3 or 3.5
Ug Ywall Oy <ay>wall " 4pTgas‘ (a.’E )wall ( )

-0, is the momentum accommodation coefficient, and L is the mean free path

from above. The first term is the modified Equation 3.4 with the slip length
being replaced by a description of roughness and scale, 2—;‘)1111. The second
term represents the thermal creep, responsible for slip in the direction of in-
creasing temperature along the surface [49]. Similarly, the equation to account

for temperature discontinuities at boundaries is,

2—or | 2v L /0T
Ta = Ldwall = — | = | = 6
gas ~ Twal or [’H‘l] Pr (8y>wall (36)

where Tyqs and Toyan are the temperatures of the fluid and wall respectively, vy
is the specific heat ratio and Pr is the non dimensional Prandtl number. o7 is

the thermal accommodation coefficient, similar to the momentum coefficient
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of Equation 3.6, o1 characterises the material properties of the interface.
These equations can apply modifications to the continuum governing equa-
tions, but the violation of the no-slip condition is only the initial sign of the
failure of the .continuum laws and the approach to the limit of the contin-
uum laws. However, Bing-Yang et al. [29] demonstrated that the Maxwell slip
model fails as the surface roughness of the wall approaches the mean free path
of the fluid for gas systems.

For higher Knudsen numbers, the violation of the continuum laws becomes
more serious, as the effect finite numbers of molecules affects the propagation
of macroscopic properties further away from boundaries and wider areas of
high gradient. Also the localisation of mass and energy at molecular sites,
starts to bring statistical variations into the fluid properties. This type of
breakdown occurs in the transition region between the continuum and molec-
ular regions.

A transition region where continuum approximations cannot accurately pre-
dict the system behavior is between Knudsen numbers 0.1 to 10. In this region,
the mean free path and characteristic length of the gas are comparable, indi-
cating the importance of the underlying molecular physics of the system. In
these systems, the continuum equations cannot be applied, even with bound-
ary modifications.

For Knudsen number greater than Beyond a Kn of 10, the mean free path
of the gas is more than 10 times greater than the characteristic length of the
system, and the fluid is well within the limits of, and can only be described

by molecular physics.

Liquid Flows

The transition between the continuum and molecular region for liquids, goes
through the same stages as for gasses, however there is no parameter to act as
a guide throughout the transition. The Knudsen number cannot be defined,
as there is no concept of mean free path for liquid flows and molecules are in a
constant state of collision and move over much shorter distances [49,50]. The
kinetic theory for liquids is not as well advanced as for dilute gasses, making
the transition difficult to measure, however Loose and Hess [51] showed that
thermal equilibrium, and therefore Newtonian behavior, stops as the strain
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rate ¥ exceeds twice the molecular frequency scale, 7.

Ou
y=—>2r"" 3.7
V=g, 2 (3.7)
where the molecular time scale is derived from molecular properties of mass,

m, well depth, € and collision radius, o, as,
T =+v/mo?/e (3.8)

Where u is the longitudinal velocity normal to y, ¢ and € are the characteristic
length and energy scales for molecules of mass, m. However, under standard
conditions the extremely small molecular time scale for liquids such as water,
puts the continuum/Newtonian limit extremely high.

Other studies by Pfahler et al [52] showed the breakdown of the continuum
description by comparing experimental data for the friction factor in a micro-
channel liquid flow, with the continuum description. They varied the speed
and depth of the channel (100um wide by 0.8um and 1.7um deep) and plot-
ted the friction factor as a function of the Reynolds number, comparing the
results with those of Navier-Stokes predictions. They concluded that there
was a well defined point at which the behaviour of the liquid deviated form
the predictions.

Liquid flows however, remain difficult to classify in terms of the deviation from
the continuum description. However, when compared to gasses, the breakdown
occurs at smaller length scales, due to the closer packing of the molecules.
Equations 3.5 and 3.6 are also valid for fluids but, as described above, the
exact point at which they apply is difficult to determine.

The discussion above shows that there is a limit at which the continuum
approximations can no longer be considered accurate. Beyond this point it is
necessary to include information from the molecular scale. Methods for the

inclusion of this information will now be presented.

3.2.2 Top-Down Meso Scale Methods

This method of domain coupling has been mainly applied to structural prob-
lems where the particles of the molecular region are frozen with a near zero

mean square displacement. In the region of the interface, a finite element
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mesh is scaled to dimensions which coincide with the molecular lattice. The
boundary between the two regions must ensure that there is a connection be-
tween the degrees of freedom of in the continuum and molecular models that
maintains all dynamic and conservation laws. The thickness of the interface
is as small as possible so that the number of parameters linking the two do-
mains is kept to a minimum. The dorfnain coupling must also maintain the

thermodynamics, static elastic, and dynamic elastic responses of the material.

One method of coupling length scales in this way was developed to deal
with crack propagation was by Rafii-Tabar and coworkers [53] and resem-
bles an iterative variation of the serial approach (Figure 3.2) applied to crack
propagation problems. With this approach, the continuum region is used to

Comp the Suess } Factor (S[F) ncar the
—)—{ crack tip in the macroscopic plare, using the FEM
with arbitrary elemeny sizes, as the fire sep to
btaining the displ of the boundary atoms 10
the FPZ,

4

Uhe the computed SIF 1o obcain the stress Joad at the
boundary ot a ! i embrcacing the
FPZ. Then periorm a second FEM calculation wirhin
thes continuum, using refined ciements whose sizes
necar the up are comparable with the lattice constant,
to obtain the displ of the boundary atoms.

4

From the displacements obtain the boundary torces.
Then pertorm the MD simulauon, usmng these torces,
to drive the crack tp forward within the FPZ. Obtain
the critical velocity and che diffusi of the
crack nip.

w

Use the velocity and the diffusion constant in ito
stochastic equation to dnve the tip to 2 new
‘—4—{ macroscopic posmon. Rerurn to the first step by
defining 2 new FPZ.

Figure 3.2: Iterative Procedure for Hybrid Coupling of Length Scales [53]

calculate the boundary conditions for the molecular region, which calculates
the effective stochastic diffusion coefficient and growth at the crack tip for
a short time interval, using a zero temperature molecular simulation. The
average velocity that the tip travels is also calculated and all the molecular
information is fed back into the continuum simulation for the next iteration.
This approach uses a form of Langevin dynamics at the crack tip and FE
simulation for the continuum with the molecules at the interface between the

two representing the boundary conditions for the molecular region and have
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no dynamics and are thermally insulating. So far this method has been lim-
ited to two-dimensional simulations with an molecular region not around 5000
molecules.

This approach was also used by Ayton et al. [54], who used this approach to
simulate flow through biological membranes.

A similar coupling scheme was also described by Abraham [55] in the
MAAD program. In this method, finite element and molecular dynamic re-
gions are linked by defining a region between the two called the handshake
region with a Hamiltonian described by finite element cells and two/three
body interactions crossing the boundary, each contributing half weight. The
displacements in the finite element region are updated by a molecular dynamic
algorithm so ensure seamless transmission of displacements.

The Hybrid models are very computationally efficient and give almost seam-

MD-FE Handshaking

FE Region MD Region

chizophrenic

particles

mesh expands
away from the

interface

Eml(ruh) = 1I2{EFE(rM\) + Em(f.,u)}

Figure 3.3: MAAD Handshake Region (FE/MD) [55]

less coupling between areas of different length scales. However, direct coupling
between molecular sites and continuum meshes is not suitible for fluids, as the
molecular sites in a fluid move constantly throughout the domain (thermal
motion/diffusion) even if the fluid is at rest. Coupling between fluid do-
mains requires an interface between the two that allows for the movement
of molecules. For solids, the validity of the continuum equations can be ex-
tended, as the molecules are within a rigid structure and they move little, if

at all, allowing the continuum laws to be valid at smaller scales. In fluids
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however, the dynamic molecular structure cannot be treated in the same way.
Garcia et al [56] developed the coupling between the Navier-Stokes equations
and DSMC (Direct Simulation Monte Carlo) models for dilute gasses by us-
ing a Chapman-Enskog velocity distribution based current generation scheme.
This model considers only the scattering of molecules due to collisions and it is
the diffusion that is vital to the model, as opposed to the simulation of cracks
and solid systems, where diffusion is negligible and position is important.
The method they developed is based around an adaptive mesh and algorithm
refinement (AMAR) base, where they use DSMC is used to enhance the ac-
curacy of the final stage of refinement. The simulation is detailed as follows.
The continuum region covers the whole domain of the simulation, even over
laying the DSMC region. The DSMC region is contained within a number of

these cells, and surrounded by buffer cells. Buffer cells are controlled by the
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Figure 3.4: Direct Simulation Monte Carlo used as the finest stage in an
adaptive mesh and algorithm refinement method [56]

continuum solution at the end of a molecular time step, the molecules within
the buffer zone are deleted and a new set of molecules are created using the
hydrodynamic parameters of the continuum solution. The buffer cells are used
by the continuum part of the solution for two reasons, the first is to monitor
the flux through the boundary between the DSMC and continuum region, and
the second is to influence the DSMC region by assigning the density and ve-
locity of the created molecules. The time steps used are not the same in the
DSMC and continuum solutions, as this would lead to instabilities, however
they must both progress at the same rate. There are in general four molecular

time steps, tp.r, to every one continuum time step, t.on:, meaning that the
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DSMC simulation must perform four steps for every one of the continuum.

The method follows the following routine.

1.

8.

Continuum region performs one step in time, t.n:, through all cells
including those covering the DSMC region.

. Molecules in the buffer region are replaced with particles determined

by the hydrodynamic gradients (density/velocity/temperature) of the
continuum cells that cover them. Molecules places are given a velocity
assigned by a distribution, as in the initialisation stages of molecular dy-
namics, which is determined by the form of the continuum solver. If the
simulations are based on the Euler equations, the Maxwell-Boltzman dis-
tribution is used, and for Navier-Stokes equations the Chapman-Enskog
distribution is used.

. Momentum and energy corrections are made to all other particles, de-

termined by their overlying continuum cells.

. DSMC advances one molecular time step, tp.¢. Particles are allowed to

pass freely in and out of the buffer zone

. Particles crossing the boundaries between cells contribute to a correction

of the inter-cell flux between the continuum cells.

. Repeat DSMC time steps (4-6) until continuum time step, tcont, is reached

. Conserved quantities, such as density, are used to correct continuum

values.

Simulation then repeats steps 1-8 until total time is reached

This method uses molecular simulation overlaid over the continuum mesh

to refine the continuum solution. As the molecules are created in the buffer

zone at each time step, this causes problems of relaxation of the molecules at

the beginning of each molecular iteration, which could influence the results,

as the boundary conditions are essential to the solution of such a problem

A similar approach was developed by Nie et al. [57], where a navier-stokes

region was coupled to a molecular region to evaluate a channel flow with a

fixed obstacle. The molecular region was placed around the obstacle.
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The approach to the meso scale has been attempted in many ways, the
most publicised way is to couple continuum approximations with molecular
information. This allows for the minimum volume considered by molecular
simulation, thus improving the overall efficiency of the simulation. There are
however, some distinct problems associated with coupling these two simulation
schemes. Firstly, the continuum and molecular simulations have a different
frame of reference. That is to say that the continuum region models the fluid
in a steady state picture where variables like velocity, pressure and density take
values relative to fixed positions in the system (Eulerian approach), where as
the molecular model considers the dynamics of the molecules withing a fixed
region (Lagrangian approach). This presents a barrier to the coupling of the
two schemes that can be overcome, as will be shown, but can be especially
tricky for dynamic fluid systems.

Secondly, as there is a substantial gap in the between effective length scales
considered by continuum and molecular simulation, especially for dense gasses
and liquids. Consequently, the majority of coupling schemes have been de-
veloped for solid and fracture mechanics, which present a simpler problem as
molecules are fixed to lattice sites, allowing for a much simpler integration be-
tween molecular and finite element approximation. Other schemes work with
relatively rarefied gasses, with low Knudsen numbers, that allow the molecular
simulation to operate at to continuum dimensions, as the computational effort
of molecular methods scale with the number of molecules in the system.
Another branch of ‘top down’ simulations methods are those which define
new systems of governing equations which include a higher degree of molecu-
lar physics. These will be considered next.

Dissipative Particle Dynamics

A similar approach is known as Dissipative Particle Dynamics (DPD) intro-
duced by Hoogerbrugge and Koleman [6]. This is effectively similar in concept
to molecular dynamics, where the particles used move using newtons laws, but
the interaction laws are different from those used in molecular dynamics. Here,
a single particle represents a group of molecules moving throughout the do-
main, and to account for the internal degrees of freedom of each ‘area’ of fluid,
the interactions have fluctuating and diffusive components. DPD is typically
used for simulating colloids [58] and complex fluids [59, 60], as its particle
structure allows for the easy integration of large fluid particles and suspen-
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sions.

Dissipative particle dynamics was originally derived from a molecular dynamic
framework, but the bulk particle interaction laws are closer to continuum
equations and include modification to répresent the moleculér physics. This
method is widely used mainly for simulations in the high end of the meso
scales. Because of its representative particle approach, this method allows
easy coupling with continuum particle methods such as Smooth Particle Hy-
drodynamics.

Lattice Boltzmann Method

The LB method considers for the flow domain by solving the Boltzmann equa-
tion over a discrete lattice/mesh. In this method, molecules exist as numbers
possessed by each cell and flow is considered as the flux of molecules between
cells. These lattice based methods are mainly used to solve highly porous and
complex geometries [5,61] at meso scale and for multi-component flows [62].
Lattice Boltzmann simulations are best suited to simulations of sparse gas
systems where molecular interactions rarely occur. A similar approach using
the Boltzmann equation was developed by Naris et al. [63] which implemented
a simplification for the collision intégral.

The Lattice Boltzmann and Dissipative Particle Dynamics methods have
been combined with Smooth Particle Hydrodynamics to construct the DL
MESO [64] package. This combination of methods has been very successful at
modelling within the higher end of the meso scale. These methods allow fluid
to be modelled at meso scales, however they have their limitations. The LB
and DPD methods make assumptions about the distribution of the molecu-
lar physics occurring within their elements/particles, and the actual internal
molecular interactions are approximated. The molecular degrees of freedom

are removed to save computational load.

An alternative approach to investigating fluid behaviour and capture fluid
properties at meso scale is from first principles of molecular interactions, or
the ‘bottom-up’ approach. By directly modelling the molecular interactions
within a fluid, it is possible to model a fluid in an environment that is closer

to experimentation than simulation.



CHAPTER 3. FLUID PHYSICS AT MESO SCALES 67

3.3 Bottom Up Approach for Meso Scale Com-

putation

As has been demonstrated in the previous section, the continuum approxima-
tions begin to fail within the meso scale region (< 107%m). However, although
the continuum assumptions fail, the bulk properties are still observable and
have significant impact and meaning when a meso scale fluid is considered.
This section demonstrates how meso scale fluid systems can be modelled from
a ‘bottom up’ approé,ch, by considering the fluid physics from first principles
of molecular interactions. These molecular simulations also demonstrate bulk
behaviour, modelling the continuum properties from their molecular origins,
as described in Section 2.2.1. '

3.3.1 Molecular Dynamics Model

Molecular dynamic simulations model the individual molecules of a fluid by
representing each individual molecule as a coordinate point in space, with a
set of molecular properties attached to it which describe its mass, size and
interaction strength. The general scheme for molecular dynamics is presented
in Section 2.3 and this section will focus on the details of the simulation and

its relevance to meso scale systems. 1

Molecular Potential Model

The most commonly used potential model used in molecular dynamics is the
Lennard-Jones potential. Inter-molecular potentials are used as a simplified
 model of all the interactions that are present in real systems. The approxi-
mation is derived in different ways, either by experiment or derived from first
principles of molecular dynamics. Experimental based potential models are
generally based more on realism than provable mathematics. The actual po-
tential model represents, in general, the short range repulsive (Pauli/Coulomb
forces), and long range attractibe (Van de Waals/London) interactions how-
ever in all Lennard-Jones models electronic degrees of freedom are neglected.

There are two basic parts of the Lennard-Jones potential, an attractive part



CHAPTER 3. FLUID PHYSICS AT MESO SCALES 68

0.0045 -
0.0035 A [
0.0025 -
0.0015 |

0.0005 -

Potential energy

-0.0005 4 1 2 3 | 4 AN i 8 g 10

-0.0015 A

-0.0025 -
Radius from molecule centre

Figure 3.5: Lennard-Jones interaction potential for methane(CH4)

Well depth (e/k; (K)) | Collision diameter (o nm)
C 28 0.34
Ar 124 0.342
CH4 148 0.304
Kr 190 0.361
Xe 229 0.406

Table 3.1: Lennard-Jones potential parameters

and a repulsive part. This is described mathematically as:

S (ONO)

where U (r;;) is the potential energy between molecules 7 and j, with 7;; being
the distance between them. Parameters ¢ and e represent the collision radius
and well depth (strength of interaction) respectively. € is commonly refered
to in the form e/k;.

Some common values for Lennard-Jones interactions are shown in Table 3.1
When these soft sphere interactions take place in simulations it is necessary to
shorten the range of the potential to prevent overlapping in periodic systems
and to reduce the computational load. The cut-off is usually performed at

two and a half times the molecular diameter, but is dependant on the system
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and is generally limited in periodic system to a maximum of half the distance
between the two periodic boundaries.

The Lennard-Jones potential, despite its common use, should only be applied
where there are no electrons available for bonding and there are only weak
long range interactions. More complex materials such as metals and semicon-
ductors require a more complicated many-body potential model rather than
a pair-wise model such as the Lennard-Jones. Many bodied potentials are
affected by local environment density, assigning weaker bonding where many
molecules are present. Even in rare gasses, many body effects are present,

however they are much less pronounced.

For systems containing multiple types of molecules, for example fluid mix-
tures, there are rules that combine the Lennard-Jones parameters of the two
components, called the Lorenz-Barthelot mixing rules [65]. For the collision
radius, the parameters are combined to give a single value for the evalua-
tion of the Lennard-Jones potential between the two dis-similar molecules, for

example the radius for molecules numbered 1 and 2 is given as,

(3.10)

which takes the average of the two values. For the well depth, they are
combined as follows,

€12 = V€L X €2 (311)

For systems with many molecules, the searching through the flow domain
for pairs of molecules, close enough to interact with non-negligible Lennard-
Jones potentials, can take a significant amount of time to process. Efficient
schemes for searching for, and keeping lists of, neighbouring molecules will

now be presented.

3.3.2 Boundary conditions

In simulation of real systems, the molecules need to be contained in a con-
trolled environment. Either geometric or computational constraints can limit
the size of the simulation to a finite control volume, but molecules must be
contained within the simulation cell and must have the ability for the system

beyond the confines of the simulated volume to influence the system. The
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method by which this is done must be carefully designed and applied.
In molecular simulations where fluid boundaries are used, periodic boundaries

are frequently used.

Periodic Boundary Conditions

Molecular simulation is currently only practical on a very small scale due
to the computationally demanding particle based techniques. It is therefore
necessary is some situations to cut down the size of the simulation region
to decrease the run time, similar to the way finite element analyses take ad-
vantage of symmetry. Periodic boundary condition effectively surrounds the
simulation cell with identical copies of the main cell as shown in Figure 3.6.

As a molecule passes over the boundary and out of the primary cell and

Primary simulation cell

Primary cell surrounded by
copies/images

Figure 3.6: Periodic boundary conditions

into an adjoining image, at the same time an identical molecule with exactly
the same properties passes in from the image on the opposite side into the
primary cell. In the case of the soft sphere model, cross boundary interactions
also need to be taken into account by finding the nearest image of an interact-
ing particle. This is best illustrated by the one dimensional example in Figure
3.7 where it is shown that as the separation between two molecules becomes
greater than a/2, the particle 7 is nearest to the image of second particle, j.
At the boundaries of the main cell, the simulation sees and interacts with
the opposite side of the same cell, effectively looping itself and creating the

appearance of an infinite unconstrained simulation.
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Figure 3.7: Soft sphere cross boundary interaction

The Periodic boundary conditions allow for the automatic conservation of flow
properties. Mass is conserved perfectly as there is no molecule deletion or cre-
ation by the boundaries, the molecules simply pass through the boundary as
if it were not there. Similarly, energy is conserved, and the boundary presents
not obstacle to inter molecular interactions or molecule movement.

These periodic boundary conditions are for approximating a very large or in-
finite region of fluid with a relatively small simulation cell. There are also
situations where it is necessary to confine a fluid to a region using solid walls

or boundaries, and it is this situation that we will consider next.

Wall boundaries

For a molecular simulation of fluid with solid boundaries, it makes sense to
apply a solid molecular wall with a similar interaction model by simulating all
the frozen solid molecules in that wall. Although this is the most numerically
accurate approach, it is also the most computationally demanding. Even for
the case of a single walled carbon nano tube, where there is only one layer of
‘solid” molecules containing the flow, solid structures generally have a higher
density and add a large number of particles to the simulation. There are
several alternative strategies to save computation time, which we will now
discuss.

Fortunately, there are several strategies available to model solid boundaries,
while maintaining all the information about a molecular wall. To reduce the
computational load of a molecular wall, the wall molecules can be completely

frozen, removing all degrees of freedom from the wall. This allows the molec-



CHAPTER 3. FLUID PHYSICS AT MESO SCALES 72

ular walls to retain their roughness/corrugation, but they loose the ability to
absorb energy from the fluid [66] as the cost of reduced computation time.
This also results in a stiffer wall interaction model as wall molecules cannot
react to fluid molecule collisions, but significantly reduces the number of force
interactions that need to be evaluated. '

Over meso length and time scales, the collision rate with solid boundaries can
be very high, which allow the molecular behaviour at boundaries to be applied
as an approximation over many collisions. The main scheme for applying this
is the diffuse boundary condition [67], which will be considered in the next
Chapter

The above describes a molecular model for use at nano scales (= 10~°m),
however the scales of interest are between 10~5m and 10~8m. Therefore this
physics model must be able to provide information about the fluid, on these
larger scales. Methods for up scaling the physics and information from these

molecular simulations will now be discussed.

3.3.3 Bottom Up Meso Scale Methods

The main issue faced with Bottom up methods is the upscaling of information
from the molecular model, and the removal of degrees of freedom from the
system to save computational resources. The first approach considered is the
serial approach, where a very small molecular simulation describes the physi-
cal relationships behind a large scale fluid system.

A serial approach is used when the scales are only weakly linked together.
Parameters are calculated at the smallest scale and then the information is
then fed into the next scale up where it is used to calculate a larger scale
parameter, and so on until the large-scale analysis can be performed.

This approach is best described by an example. Clementi et al. [68] did a
study of the tidal circulation in Buzzards Bay by starting with the quantum-
mechanical simulation single water molecule. This information was then used
to model the behaviour of a small cluster of molecules and then a database
of interactions between the molecules was formed. The information contained
in the database could then be used to describe an empirical potential to be
used in a molecular dynamic simulation. The density and viscosity of water

could then be calculated and fed into a continuum scale computational fluid
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dynamic simulation to predict the tidal movement of the bay. This shows how
an accurate solution can be derived by up-scaling information from molecular
to kilometer scale. However, in the serial approach information only passes
one way through the calculation and therefore it use is limited to situations

such as the one described above where the scales are only weakly linked.

Derived Scaling

Coupling techniques previously described, involve coupling several regions of
different scales, now a method will be discussed that involves a single model
that has a varying density in the same way that varying mesh densities are
used in regular large scale FE simulations. This negates the need to couple
models together so the system can be simulated as a whole.

The best way to understand this approach is to imagine the simulation in two
layers, one containing molecular information and covering the whole system
at a fine scale, and the other as an mesh, similar to FE, scaled from nodes
corresponding to molecule sites close to region of interest up to large scales

where elements contain many molecule, Figure 3.8.
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Figure 3.8: Constant Density molecular layer (Small dots) Overlaid with
Equivalent FE Mesh

As the large-scale elements contain many molecules, there is a large amount
of information that is unnecessary as in a region of low activity a lot of the
data held by the parameters of each molecule is approximately the same.
Therefore degrees of freedom need to be removed from the system to cut
down on the processing of unnecessary information, and is done using the
quasi-continuum method, which is described below. The cut-down molecu-
lar properties are then used to obtain the equations of motion by averaging

molecules surrounding each node, resulting in the mean behavior represent-
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ing an area of molecules. This is similar to a standard FE simulation but
instead of the equations of motion being computed from a continuum model,
the molecular model is used. As the size of the elements reduces, the number
of molecules within each element reduces until the nodes of the mesh coincides
with the sites of the molecules, where the equations of motion are derived from
individual molecules and there is no longer a need to discard information. As
can be seen, the less demanding element based simulation gradually breaks
down into the more demanding molecular simulation as the scale is reduced,
providing almost seamless coupling.

Further away from a region of interest there is less ,acitivity and the resolution
of the solution can be reduced to cut down computation time. This is done by
increasing the size of the elements in the mesh, removing degrees of freedom
from the molecules, and averaging the properties to approximate the motion of
the area. It was found that in some statistical models the Hamiltonian keeps
its form as the degrees of freedom are removed, only the parameters change,
so the parameters can be redefined as the scale of the mesh is changed by the
use of an equation. The renormalization group equation [69] does just that
and can update the Hamiltonian at .any scale.

The method presented to reduce the number of degrees of freedom was cre-
ated by Tadmor et al. [70] and later developed by Phillips and Coworkers at
Brown [71-74] called the Quasicontinuum technique.

Quasicontinuum Technique In areas at a distance from the area of study,
where the displacement fields contain no steep gradients, the energy of the
molecules local to each other possess approximately similar values. It is this
approximation that is the key to the Quasicontinuum method which aims to
reduce the processing time of the mid to large-scale areas of the simulation.
Assuming that this is true, the local neighborhood of molecules can be repre-
sented by the value of just one molecule. By doing this the number of degrees
of freedom in the computation of the energy of the system can be dramatically
reduced. The standard method for computing the system energy involves the

summation of the energies of all molecules in the simulation, as below

N
Etotal = Z Ei (312)

i=1
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Where:
Eit = total energy
E; = energy of individual molecule 7
N = total number of molecules

However, by representing an area of molecules with a single node/particle can
reduce the computational demand dramatically. This is applied by choosing
an finite element mesh with nodes defined by a quadrature rule over the rele-
vant area at summing the energies of the molecules at the quadrature defined
sites multiplied by weights proportional to the volume of representation of
each representative molecule and the number of molecules in that area. This

reduced sum contains far fewer terms than the energy equation described

above.
M
Etotal = Z Ea (313)
a=1
Where:
Eit = total local energy
E, = energy of representative molecule o
M = total number of local representative molecules

The molecules that are not included do not possess any properties of their
own except their position vector. Only molecules local to the representative

node contribute to the properties of the node, as shown in Figure 3.9.

7‘ - Area of Representation

Figure 3.9: Lattice Structure of Molecules in Regions of Low Gradients

By assuming that the deformation gradient is also homogenous around the
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representative node, the local deformation gradient can by defined, F. The
deformed configuration has Bravais Lattice Vectors, b, that are obtained from

those in the reference configuration B as below.
Ba = Fba (3.14)

Once the Bravais Lattice Vectors are found, the formation of the energy
equation reduces to basic Lattice statics.
As the area of interest is approached, gradients increase causing the areas that
can be assumed to have uniform energy get smaller and smaller until there can-
not be any assumptions about the homogeneity of neighboring molecules. At
this point the nodes of the mesh occupy all molecular sites. It is at this point
that all quadrature weights become unity and every molecule is accounted for.
The computational cost of applying this method is relatively high, however
it stays constant throughout changing mesh sizes, however errors arise from
the lack of continuity between cells. This becomes more dominant near the
breakdown of the effective FE mesh where there are only a few molecules
per cell and the position of the molecules becomes important. This leads to
small added forces, which can be accounted for. This method is generally
used for two or three-dimensional tests to model defective systems (cracks,
dislocations and interfaces) and has recently been selected to study the effect
of nano-indentation. [72].
So far, studies have been limited to solid problems as the lattice structure of
a solid leads to an easily predictable deformation. This approach is difficult
to apply directly to fluids as new laws for the removal of degrees of freedom

will be needed.

Approximating Methods

A wide range of methods are also available for up scaling molecular infor-
mation from alternate applications. Molecular simulations rely on molecules
being represented by data points with properties associated to them. Point
approximating methods such as Smooth Particle Hydrodynamics (SPH) and
Moving Least Squares (MLS), are capable of averaging data spread over a
number of points. These methods show promise for the upscaling of informa-

tion from molecular models.
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Smooth Particle Hydrodynamics (SPH) SPH, first presented by Lucy [75],
is a continuum particle method that solves continuum equations over a sys-
tem of moving interpolation points [76,77|. The property values at any point
throughout the fluid relies on the properties of the surrounding points, and
it is the method of sampling these properties that has most significance to
this application. Instead of sampling the continuum properties, we seek to
use this approach to extract the local bulk properties from the molecular mo-
tion at discrete nodes placed throughout the flow domain. The SPH method
constructs average property values as a function of distance from each central
point with the use of a weighting, or kernel, function.

Moving Least Squares The moving least squares approximation scheme re- -
lies on the construction of many least squares approximations applied over a
large number of points [78]. This method is generally used for creating smooth
surfaces over mesh structures in computer graphics. This method is generally
applied as an approximation to all points in the system, taking each one in
turn and constructing an approximation from its neighbours. The approxi-
mation in MLS is more advanced than the kernel averaging approach of SPH,
where a polynomial function is fitted to the local property distribution.

This is similar to the approach taken by Liao and Yip [79], who used the
underlying molecular information to fit a continuous pre-determined temper-
ature function described over the flow field, to the molecular property distri-
bution. Also, the Equivalent Continuum Mechanics (ECM) {80] method used
the Meshless Local Petrov-Galerkin method to solve for the local displacement
in a solid molecular lattice.

Coarse Grained Molecular Dynamics Coarse Grained MD (CGMD) [81]
was developed to deal with dynamic and finite temperature systems. In the
cases concerning crack propagation, hybrid models work well and allow trans-
fer of strain fields and elastic waves from one region to another, with minimal
back scattering. However finite element based methods start to break down as
scales reach molecular dimensions. One of the basic principles behind finite el-
ement assumes that the energy of each element is evenly distributed, but when
the elements only contain a few molecules, the energies are localised in the
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nucleus (Kinetic energy) and in the covalent bonds between the molecules (Po-
tential energy). CGMD provides an alternative to finite element that is slightly
improved at large scales and greatly improves at small scales at the interface
with molecular dynamic simulation. In situations such as crack propagation,
~or very small systems, high frequency elastic waves have more of an effect;
CGMD provides improved methods to deal with these, however these waves
are negligible for larger systems and systems with less strong sources. CGMD
constructs the coarse-grained structure with statistical techniques evaluating
the interpolation of the displacement field of the molecules and their equilib-

rium position, resulting in a weighted sum. This method acts as a replacement
~ for the finite element method described before and shows significant improve-
ment in the treatment of the elastic wave spectrum and small-scale analysis.
The computational demand is higher than regular finite element techniques,
so it is used mainly where high performance is required or where the interface

region is close to an area of interest.

3.4 Summary

As has been shown in this and the previous chapters, the continuum equations
are unable to account for the molecular scale effects that become important
at meso scales. It is therefor necessary to include this molecular information
in the simulation model. This chapter has presented and discussed two ap-
proaches by which to include these effects, the ‘top down’ and ‘bottom up’
| approaches.
The top down approach uses molecular simulations only in regions where they
are needed, as the final level of refinement in a mesh. This approach is useful
when considering a large system possessing a few small areas where molecular
scale detail is needed. However, several issues arise especially when consid-
ering fluids. To couple a molecular region to a continuum mesh requires the
continuum analysis to be valid with only a small number of molecules in each
element. This is at the extreme of, and possibly past, the limits of the contin-
uum approximation. Also, problems occur at the boundary between the two
regions in fluid systems. The chaotic molecular motion of fluid molecules does
not allow for simple boundary treatment at fluid boundaries, as the surround-

ing continuum region will not allow the use of periodic boundaries.
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The chaotic nature of meso scale fluid systems leads to a bottom up scheme is
more suitable in most situations. Here, the physics of the system are governed
by a molecular model, and information is upscaled and areas of low activity
can be simplified. These methods are however, very computationally demand-
ing for large scale systems but can present a very accurate solution. The way
in which information is passed, and degrees of freedom are removed is critical
to the success of this approach. Approximation methods such as least squares
and SPH are well suited to this application as they provide a reliable and well
tested method for approximating information over many points.

The method developed in the next chapter is designed specifically to tackle
meso scale fluid systems.



Chapter 4

Meso Scale Model Based on First
Principles

4.1 Introduction

The meso scale represents the range of scales in between the scales that can
be defined by the continuum laws (typically = 107%m) and molecular physics
(typically < 107°m). The behaviour of fluid at these scales is neither fully de-
scribed by the bulk continuum, or the molecular scale properties and physics.
Continuum simulations are unable to model molecular scale effects, which
presents a lower limit to the scale at which these approximations can be used.
A molecular scale fluid model can predict the behaviour of fluid by considering
thousands of molecular interactions, but provides no method of quantifying
bulk effects, such as viscosity or temperature and velocity gradients through-
out the flow field.

Continuum mechanics, however, can describe and quantify these bulk proper-
ties, but molecular scale effects are ignored. The onset of molecular behavior
must understood to recognise the point at which the continuum approxima-
tions fail.

The molecular dynamics simulations are able to accurately predict the be-
haviour of the fluid, however in order to quantitatively describe the flow, the
bulk characterising properties, such as pressure, temperature and velocity need
to be extracted. Such properties arise from the molecular interactions intu-

atively modelled by the molecular simulation, but are not quantified locally

80
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as at molecular scales they are not well defined and have little meaning. At
meso scales, these have increased importance as the bulk effects are visible
and need to be considered in engineering applications. '

In this chapter a bottom up meso scale method is developed. A molecular
model is implemented to control the physics of the fluid, along with tools and
modifications to improve the efficiency when dealing with large numbers of
molecules. Also, areas of low activity are simplified (such as solid boundaries)
to further improve efficiency. This physics model then passes molecular in-
formation to the up scaling routines where it is used: to characterise the bulk
fluid effects in terms of useful engineering properties

4.2 Fluid Physics Model

To model meso scale fluid flows from first principles, the physics of the fluid
behaviour must be considered at a scale smaller than the meso scale. For this,
a molecular dynamics model is used to evaluate the system in terms of the
molecular interactions. As it is intended for the model to work with dense
as well as spares fluids, the molecules interact via a soft sphere model with
the non-bonded Lennard-Jones 12-6 potential. The use of molecular dynamic
simulations has been highlighted in Chapter 2.4 and will be used along with
the diffuse boundary conditions. The molecular model must be capable of
simulating large numbers of molecules to allow access to meso scale systems of
reasonable density(computational demand of a molecular simulation is heavily
dependant on the number of molecules in the system but also dependant on
the number of neighbours possessed by each molecule, which is related to the
fluid density).

To keep track of the neighbours of each molecule, an efficient book keeping

scheme, the Verlet lists, is implemented to the molecular dynamics model.

4.2.1 Book keeping
Verlet Lists

The most common method for searching for, and storing possible interactions
is known as the Verlet neighbour lists [82], and is described below.
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Figure 4.1: Interaction radius of cutoff potential R- and neighbour search Ry

This method works by using two arrays, one which stores the actual in-
teractions (nlist), and another which acts as an index(npoint), referencing the
start points for the neighbour lists of each individual molecule.

Once these arrays have been initialised, a full search is performed for every
molecule, 7, for all other molecules within Ry. The search is performed within
a radius that is larger than the cut-off radius R¢ for the potential to include
all particles that will interact with sphere i over the next n time steps (Figure
4.1). The difference between Ry and R¢ is limited by the root-mean-square

velocity of the simulation, with:
Ry — Rc < noh ‘ (4.1)

Where Re and Ry are the cut off radius for the list and the potential respec-
tively, n is the number of time steps between list updates, h is the time step
length and v is the root-mean-square velocity for the simulation. This limits
the thickness of the region so that a molecule from outside the neighbour list
cannot travel into a spheres interaction zone (R¢) without being included by
an update of the list. This removes the need for the complete neighbour list
to be repopulated at every time step, it is only updated periodically, saving a
significant amount of computational time.

For any molecule in the system, ¢, the neighbour search is performed over all
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molecules numbered > 7. This prevents the same pairwise interactions being
recorded twice, in an interacting pair, both will be in each others interaction
zone.

This method works by using two arrays, one which stores the actual interac-

npoint(l) 1 list(l1)] 2 neighbours
npomt(2)] 51 list(2)] 3 } for particle
npoint(3)] 104 list(3) #1

npoint(4)| 152 4

lis!(Sl)_l__ neighbours
list(52) 3 } forparticle
list(53)] 4 | #2
list(104)] S neighbours
: list(105)| 7 } for particle
npoint(N)| 1453 list(106) #3

Figure 4.2: Verlet list book keeping scheme

tions (list), and another which acts as an index (npoint), referencing the start
points for the neighbour lists of each individual molecule. For a system on N
particles, npoint contains N entries. The value stored for each molecule refers
to the entry number of npoint at which the neighbour list for that molecule
starts. Therefore, the number of entries in npoint is much higher as, depend-
ing on density, each particle has around 50 neighbours which leads to an array
of at least 15000 entries for a system of 300 particles. This is illustrated in
Figure 4.2.

An alternative to the Verlet lists was proposed by Sun and Ebner [83] where
arrays were used to achieve the same effect. This used no extra memory and
performance scaled with the number of molecules in the system. However, the
reference locality was broken in these lists, reducing the performance for large

systems.

Once the neighbour lists have been updated, they are used to evaluate the

net force exerted on each molecule by its neighbours.
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4.2.2 Force interactions

The Lennard-Jones potential function is used for energy calculations and the
force for each interaction is derived from the potential function as in Equation

4.2.
6U(rij)
877,-

Where F is the force acting between the two molecules (positive for molecule

F=- (4.2)

i and negative for molecule 7, Newton’s third law), and U is the potential func-
tion. This represents the force acting along the line between the centres of the
two molecules, and the resulting force is applied in opposite directions to both
molecules using Newton’s third law to save the same interaction being calcu-
lated again from the opposite direction. Applying the force of the collision
to both molecules halves the number of collisions that need to be processes
as each pair needs only to be evaluated once. This is done by only evaluat-
ing the entries in the list where ¢ > j. The forces are converted to units of

acceleration, the time step part of the simulation can proceed.

4.2.3 Time integration scheme

Given an initial resultant force for each molecule, the first step in the time
progression loop is to predict the new positions of all the molecules at the new
time. There are several methods [30] used to do this, and all are based on the

simple finite difference algorithm.

Verlet Algorithm This is the most commonly used algorithm in molecular
dynamic simulations, mainly because of its simplicity. The algorithm proceeds

as follows:

1. Perform a Taylor-series expansion of r(t) forward and backward in time:

r(t+A8) = r(t)+ 2 (t)At+21,g§t()At2 ;'gzt()At3+O(At4) (4.3)
r(t—At)=r(t)— (t)At+ 21' ggt( )At2—%g§t( t) AL +O(ALY) (4.4)

2. Add these two expressions together:

r(t+ At) =2r(t) +r(t — At) + %Z—( t)At2 + O(AtY) (4.5)
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Equation 4.5 is the general form of the Verlet algorithm

It is easy to see that the truncation error varies with At* making the
prediction accurate to the third order, despite the absence of any third order
terms. However, there comes a problem when starting off the algorithm, the
approximation for ¢t + At relies on the current and previous time steps, t — At
and . At t=0, it is common to use the backward Euler method to estimate a
value for r(—At). |

Gear's Predictor-corrector Algorithm The predictor corrector algorithm
devised by Gear [84,85] is used to describe the progression of the molecules
throughout the domain during the simulation time ¢, which is broken down
into a finite number of short time steps. The time step is sufficiently small,
so the forces and accelerations can be considered as constant. Forces and
accelerations are updated once every time step. There are three basic steps in
this algorithm, prediction, evaluation and correction.

e Prediction Position, velocity, acceleration, third, fourth and usually
fifth derivatives are predicted at ¢t + At from current time ¢ using a

simple Taylor series for each molecule in the time step:

ri(tHAL) = 1i(8)Fi(8) At (1) - (At) riif (1) 2 (At)3 B )(At) (1) (A;)
i . (4.6)
Fi(t+A) = n(t)+n(t)At+rm(t)( ) i) o (At) o) 8 (At) (47)
it + At) = () + ()AL + (1) S t') r?(t) (A;) (4.8)
Tt + At) = ri(t) + TP ()AL + 1P (t) —— (& )2 (4.9)
ri(t+ At) = ri¥(t) + 17 () At (4.10)
ri(t + At) =17 (t) (4.11)

e Evaluation The force evaluation at time ¢ yields an net force on each
particle, which is converted to acceleration (F = ma) and compared
with the predicted acceleration from the previous step, resulting in an

error signal.

=) ——"Lry (4.12)
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Where 77; is the unit vector between the centres of spheres 7 and j. this
force is then converted to an acceleration by dividing by the mass of the
particle and subtracting from it, the predicted value for acceleration,
7i(t + At) |, giving A7;

e Correction The error signal A7; from the difference between the accel-
erations is multiplied by a stability factor and used to adjust the posi-
tions. The stability factor set depending on the time step to maximise
the stability of the algorithm.

N _A_%!Aﬁ (4.13)
ri =17+ 0,AR (4.14)

P = rPAL + alAR (4.15)
r‘;(ﬁt)"’ _ fz‘”(QA!t)z + 0AR Sl
Tﬁ“(?ft)?’ _ Tfiw;!m)s +asAR (4.17)
Tﬁu(ﬁt)fx B T:WE;!N)4 + AR (4.18)
A C O AeC U (4.19)

The corrected positions are then fed back into the Taylor series approx-

imation for the next time step, and the simulation can proceed.

Values for stability factors, a; depend on the order of the Taylor series
expansion [8] and are shown in Table 4.1

These values can be derived from the studying the resulting stability matrices

Order | 3rd | 4th | 5th
a I 19 3

0 8| 1| &

& 6 1 | 360
as 1 1 1
1 1 11

R ERE:
g iD) §
as 50

Table 4.1: Coefficients of the 5th order verlet algorithm
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the accuracy of the prediction relies of the order, k, of the expansion, due to
truncation error, O(At*~1).

The main advantage of this method is its versatility. This method takes a
single step forward in time, but can be modified to become a multi step method
by combining it with the Verlet algorithm. The algorithm can be extended
by adding terms to the Taylor series or using the stability factor to maintain
stability for a larger or smaller time step.

Velocity Verlet The velocity verlet algorithm is similar to the verlet algo-
rithm, but is performed over two half time steps. The algorithm proceeds as

follows

1. Evolve velocities by half the total time step: §t/2

2. Use these projected half time step velocity values to evolve positions a
full time step, 6t.

ri(t + 6t) = ri(t) + v;(t)6t + a;(t)6t%/2 (4.21)

becomes

3. Update the intermolecular forces, and convert using Newtons law, F' =

ma, to achieve updated accelerations for all the molecules

4. Complete the velocity time step

The velocity verlet algorithm is the most compatible time integration method
with thermostats and temperature controls, and is implemented into the model
as described above. This method also requires less storage than the predictor-
corrector algorithm as only the position, velocity and acceleration vectors
need to be stored between time steps, reducing the computational resources
required. It is also simple, and easily integrated with a wide variety of ther-
mostating methods.
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Time step The selection of the optimal time step is crucial in molecular
dynamics simulations. A large time step will progress the simulation time
with minimal CPU time, however a time step which is too large can have two

effects:

e Large time steps - The integration scheme assumes that the forces on
each molecule are constant over the length of the time step, if the step
is too large the deviation from this assumption causes errors in the cal-

culation and conservation of energy.

e Very large time steps - Molecules may move large distances between
sucessive steps and when close to other molecules may jump from a low
interaction to an extremely high interaction forces where the molecules
overlap. This can cause un-physically high forces and instability in the
system. This behaviour often results in a complete breakdown of the

molecular behaviour and energies which tend to infinity.

The optimal time step will conserve energy, and provide the greatest leap
forward for the simulation time for each step. To cxamine this effect, the
results of a simple investigation are presented. The system contains 114
molecules in a 2nm wide periodic cube and the effect on average energy with

a range of time steps is evaluated.

2 > 3 <

" Kinstic Energy (a))

10 20 3 30 1

15
Length of time stop (fs) Length of time step (fs)

Figure 4.3: Graphs showing the effect of increasing the time step from 0.5fs
to 25fs on kinetic energy (left) and potential energy (right)

Figure 4.3 shows a plots for kinetic and potential energy against a range of
lengths of time step, varying from 0.5fs to 25fs. It was found that increas-
ing the time step beyond 25fs causes massive instabilities in the system and
energy levels become extremely unphysical. The kinetic energy of the system

is shown to drop by larger and larger amounts as the time step increases.
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The potential energy shows an slightly increasing trend (In terms of negative
values) but noise of 0.5% about the line of best fit.

As the time step approaches zero, the kinetic energy approaches a value of
0.7057ay, and the potential energy approaches approximately —1.0792aj. To
obtain the best and most stable results, the systems energy should be as close
as possible to these values. A time step of 2fs can be seen maintain energy
levels to within 0.02% for kinetic energy and 40.5% for potential energy, whilst
still progressing the simulation at an acceptable rate. A time step of 2fs is

used in all models presented in this thesis.

4.2.4 Boundary Conditions

Having achieved an efficient molecular physics model, the boundary conditions
surrounding the fluid should also be efficient and be appropriate to the scale
of the system of interest. This is done with the implementation of the diffuse

boundary conditions.

Diffuse boundary conditions.

The diffuse boundary condition replaces a dynamic/static molecular wall with
a smooth planar boundary with appropriate hydrodynamic conditions to repli-
cate the scattering occurring from the corrugation, or roughness, of the molec-
ular wall [67]. This effect is shown if Figure 4.4, where the figure on the left
shows a single molecules approaching a molecular wall, and depending on
whether it hits a wall molecule on its side or on top, it rebounds in a different
direction. The figure on the right, shows the effect of the diffuse boundary

Colliding

Collidi
Fluid Molecule t I’ f Aog ot etocton o ng

Fluid Molecule

Lennard-~Jones Continuous Wall

Solid molecular wall

Figure 4.4: The diffuse boundary conditions

conditions, where the same effect of the molecular scattering is replicated over

many molecular collisions.
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The scattering is performed by selecting a proportion of molecules, and re-
selecting their component of velocity parallel to the wall from the Maxwell-
Boltzmann distribution for the set temperature of the wall. The Maxwell-
Boltzmann distribution for velocity is different from the speed distribution
(Equation 2.50), and defined as

e T (4.24)

which is shown in Figure 4.5

0.0012

Probability

8-
-1500 -1000 -500 0 500 1000 1500
Molecule velocity (m/s}

Figure 4.5: Velocity distribution molecules in fluid system for a single compo-
nent of velocity

The proportion of molecules selected for this ‘thermalisation’ is set by the

tangential momentum accommodation coefficient, f, for the solid.

Tangential Momentum Accommodation Coefficient, f The tangential
momentum coefficient is the proportion of molecules that go through the ther-
malisation process in the diffuse boundaries. Its value can range from 0 to
1, to represent the degree of corrugation of the solid. Different degrees of

corrugation occur from the following cases:

o f=0
This is the extreme case, where none of the colliding molecules are ther-

malised by the solid. The colliding molecules maintain 100% of their
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momentum parallel to the wall and are only affected by the intermolec-
ular interaction potential perpendicular to the wall.
In this case the walls are perfectly smooth and there is no thermal ex-

change between the two.

o f==z
In the case of f = z, the proportion of colliding molecules, z, have their
velocities parallel to the wall re-selected from the Maxwell-Boltzmann
distribution. This effectively removes (z x 100)% from the momentum
of the fluid close to the wall (as the average of the Maxwell-Boltzmann
distribution is zero), thereby creating a drag‘ force between the fluid and
wall. '
The Maxwell-Boltzmann distribution is a function of wall temperature,
and the thermalised molecules, enable the addition or removal of thermal
energy from the fluid. This can be used as a method of thermostating
the system or applying a temperature gradient or boundary condition
to the flow.
The tangential momentum coefficient, therefore acts to vary the ex-
change that occurs between the fluid and wall in terms of thermal and
bulk kinetic energy.
The re-selection of the velocities also achieves molecular scattering of
colliding molecules, similar to the effect of a fully molecular wall, but

averaged over a large number of collisions.

o f=1

This is the extreme case of perfect stick between the fluid and the wall.
In this case, 100% of the colliding molecules undergo the thermalising
process, removing all of the linear momentum of the fluid at the wall (as
the average of the velocities applied will be zero). This represents the
condition of no slip between the fluid and boundary, and the condition
that the fluid and wall will be at the same temperature at the boundary.

- This is not to be confused with the no-slip condition used in contin-
uum mechanics, as this extreme case is unlikely and results from strong
interaction forces in a molecularly sparse solid, whereas the continuum
no-slip condition occurs from an approximation of scalé, as well as fric-
tional effects.
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Arya et al. [67] demonstrated that the tangential momentum accommo-
dation coefficient was dependant on two dimensionless variables, the reduced

roughness and the reduced energy. The reduced roughness

Ofw
i (4.25)

is the ratio of the fluid-wall Lennard-Jones interaction radius, oy,, and the

lattice spacing, L. L is the diagonal spacing between solid molecule sites,

shown in Figure 4.6. The reduced energy, is defined as the ratio of the Lennard-

® ®© @ & ©

Figure 4.6: Example of a solid lattice displaying the lattice spacing parameter
L, and wall molecule diameter o

Jones well depth, €y, to the thermal energy.

€fw

k:—T (4.26)
They also found that f was dependant on the bulk velocity of the fluid, but
this only has an effect at large velocities.
By studying a fully molecular boundary, Arya et al. [67] were able to plot
values for a wide range of f, as shown in Figure 4.7

Values for f are also confirmed by the work by Sokhan [66] who performed

similar investigations for the tangential momentum accommodation coefficient
for the flow between parallel plates. Values for carbon nanotubes have been
studied in depth by Cooper et al. [86] and Bhatia et al. [87].

Implementation Because of the separate treatment of the parallel and per-
pendicular components of the colliding molecule, the diffuse boundaries require

a more complex implementation than an interacting molecular wall.
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Figure 4.7: Tangential momentum accommodation coefficient, f, plotted for
values of reduced roughness and reduced energy [67]

Because of the soft sphere nature of the simulation, there are no instantaneous
collisions, only molecules that are interacting with the wall. It is therefore
critical to clarify the definition and criteria a molecule near a boundarv must
satisfy if it is to be considered as colliding. To be accepted as a colliding

molecule, a molecule must be:
e Within the repulsive zone of the walls interaction potential
e Experience a change of direction perpendicular to the wall

The first criteria is tested by calculating the perpendicular distance, d, between

the molecule and the wall, as illustrated in Figure 4.8. The section of boundary

Figure 4.8: Calculating distance, d between molecule and wall, from position
vector, 7, boundary vector, b. d has unit vector v.
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is defined by the line between two points, stored in the boundary vector b.

b= [ Tp2 — Tb1 ] (4.27)

Yb2 — Yb1

and the position vector r is defines the distance between the molecule (m) and
the start of the boundary, at point 1.

r= | LT m (4.28)
Yl — Ym
The unit vector, ¥, normal to the boundary is the found,
[ Yv2 — Yb1 ]
—(xp2 — x
= (Ty2 — Tp1) | (4.29)
Yv2 — Yb1

- (il?bz - $b1)

To find distance d, the dot product of the position vector and the unit vector

¥ is taken,
T |[(Zv2 — Zo1) (o1 — Ym) — (@51 = Tm) (Y2 — Y1) (4.30)
v (@s2 — T1)% + (Y2 — Yo1)?
which can be simplified to,
o= (Tm(y1 — Y2) + Ym(Tr2 — To1) + To2Yer + To1Ys2) (4.31)

V(@2 — To1)? + (Ys2 — Yo1)?

d can then be calculated by multiplying a by the direction ¢ and the magnitude
of r |
d=alr|d (4.32)

Distance d can then be used to calculate the strength of the interaction be-
tween the molecule and wall, which in turn can be used to detect the first
criteria for a colliding molecule, as described above,as well as calculating the
repulsive force.

The second criteria is evaluated in a similar way. By looking at the dot
product of velocity and the unit vector perpendicular to the boundary, and
monitoring its change between time steps, the point at which the molecule
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stops moving toward the boundary and starts moving away can be identified.
At this point, the sign of the dot product changes sign, as shown in Figure 4.9

If a molecule is considered to collide with boundary, by satisfying the criteria

N
N

Figure 4.9: Variation of dot product with molecular distance from wall

described above, it is then given a random number to be compared against
the tangential momentum accommodation coefficient, f. If this test is suc-
cessful and the molecule is accepted for thermalisation by the wall, the parallel
component of velocity is found, again by taking the dot product, but parallel
to the boundary. This velocity is then randomly picked from the Maxwell-
Boltzmann distribution (Equation 4.24) for the temperature of the wall.

This boundary method provides a good approximation for solid boundaries
right down to the molecular scale [88], and as the scale of the simulation in-
creases, and the number of collisions in the length and time scale of the system

increases, the accuracy of the approximation also increases.

4.2.5 Modified Boundary Potential

As these diffuse boundaries are modelled as smooth planes, a standard Lennard-
Jones interaction at the boundary does not take into account the depth of the
solid. If the solid is more than one layer of molecules thick, the fluid may
experience a stronger attractive force as the long range attractive part of
the potential of other solid layers reaches into the fluid domain. Figure 4.10
shows this effect, the smooth boundary is positioned at = 0 and the effect of
two layers within the solid are shown. The resulting potential shows a much
stronger attractive component. This must be taken into account by the inter-

action potential between the solid and fluid, and can be done so by modifying
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Figure 4.10: Total Lennard-Jones potential for three molecular layers

the parameters, o and € for the solid and fluid of interest.

This section has developed a molecular fluid model capable of efficient sim-
ulation of systems containing large numbers of molecules. However, this model
handles the motion of individual molecules. The information from this model
describes, but fails to characterise, the bulk fluid effects present in meso scale
fluid systems. The characterisation of theses bulk effects and the description
of the fluid in terms of its bulk properties is critical to engineering applica-
tions. The next section implements a method for extracting such information
from the molecular system using the ensemble properties described in Section
2.2.1

4.3 Extracting local Bulk Properties

The data possessed within the molecular flow model, is chaotic and adjacent
molecules can possess very different properties, that average out over a large
number of molecules at an approximately stable value. To allow the examina-
tion of bulk properties and their distribution throughout the flow domain, en-
semble properties are assembled from local averages at discrete points through
the flow field. Each point is assigned a sub-domain from which to draw its
information. The number of molecules within each sub-domain can vary sig-
nificantly for a large number to only a few. The approximating method must
therefore be able to deal with these potential problems. The bin averaging

method presents a crude approximation, that has no refinement or weight-
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ing parameter, which gives noisy local averages even with a large amount of
data, making it impractical for property distributions over short simulation
runs (time is critical, especially for simulations of large numbers of molecules,
within the meso scale). The Smooth Particle Hydrodynamics (SPH) method,
improves the approximation by applying a weighting (or kernel) function to
the approximation. The least Squares approximation uses the strength of the
SPH method to fit a predetermined polynomial to the underlying property
distribution. This is the most demanding of the three methods (and requires
a small matrix inversion), but provides good opportunity for high sampling

resolution in time and space.

4.3.1 Approximation Method

The up-scaling of information needs to be done in such a way that no impor-
tant information is lost or altered. During this process some information is
lost, as the point of up-scaling is to remove unnecessary detail and degrees
of freedom. Therefore, the information must be included into the assembly
of the bulk properties. There are several well known interpolating schemes
available, such as moving least squares and smooth particle hydrodynamics
that will be discussed along with the simple bin averaging scheme. The meth-
ods below aim to construct local ensemble averages of molecular properties at
points placed throughout the domain, that together can be used to study the
distribution of bulk properties over the whole domain.

The most simple method of assembling bulk property distributions is the bin

averaging scheme.

4.3.2 Bin Averaging

The simplest way of averaging and upscéling molecular properties is the bin
averaging scheme. This is where the molecular domain is divided into discrete
cells, and all the molecules in each cell are averaged to construct the ensemble
properties for that cell (Figure 4.11). The bin averaging scheme has signifi-
cant drawbacks. The resulting distributions can have significant variations, as
adjacent molecules could be in different cells, and two molecules on opposite
sides of the same bin could have completely different properties but contribute
equal weighting to the average. The result of which is that the resulting dis-

tribution is rough and contains a substantial amount of noise, and in order to
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Figure 4.11: Bin averaging scheme

be able to obtain smooth property distributions throughout the flow field, a
large sample time is necessary. This reduces the time resolution of the samples
that can be taken, and can increase the overall time of the system to get a
stable steady result.

The bin averaging is however, easy to implement and is still widely used to
investigate steady systems [66]. The drawbacks of this method lead to the
search for a more refined approach that will allow for better time resolution

and shorter sample times with less statistical noise.

4.3.3 Smooth Particle Hydrodynamics (SPH)

SPH, first presented by Lucy [75], is a continuum particle method that solves
continuum equations over a system of moving interpolation points (76, 77].
The property values at any point throughout the fluid relies on the properties
of the surrounding points, and it is the method of sampling these proper-
ties that has most significance to this application. Instead of sampling the
continuum properties, we seek to use this approach to extract the local bulk
properties from the molecular motion at discrete nodes placed throughout the
flow domain.

The sampling is done similar to the molecular dynamics searching, where the
molecules around each node are evaluated, but the properties of each node are
given a weighting as a function of their proximity to the node. This way the
molecules closest to the node contribute more than the molecules further away,
allowing the node to best represent the property value at that exact point in
the flow field. The resulting distribution is much smoother than the bin av-

eraging method, but is completely reliant on the strength of the weighting, or
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kernel function.

Approximation

- The approximation is constructed using an integral for the function based on
the delta function.

@) = / £(&)5(z — o')da! (4.33)
Q
, 1 z=2

This equation is exact as the function value is calculated at z, integrated over
its volume. The delta function however, is no use when approximating many
molecules so a weighting function is used instead. This replacement causes
the function to become representative, and therefore approximate.

(@) ~ / F@)w(z — o, h)ds' (4.35)
Q

Where w(z — ', h) is the kernel weight function with h being the smoothing
length, also known as to radius of the zone of influence. The kernel function
is of critical importance to SPH as there is no assumption made about the
distribution of data with which to form an approximation, it is solely the
strength of the kernel that governs the accuracy. The integral is converted
to a summation of a set of molecules to be used in a simulation, with the

approximation of property f(z) denoted by the addition of angled brackets

(f(2))

N

(F@)) =) f@yw(z— o', H)AV (4.36)

j=1
This sums the weighted contribution for all the particles, j = 1,2,3,--- |N
within the smoothing length, or the zone of influence of the approximated
point to achieve the approximate value at point 3. '

The derivative of a function, and hence the flux of a property, can also be
represented by the SPH approximation, by substituting f(z) with V- f(z) in
the above equation.

(v f(z) = / v F(&)| w(z - o, h)da (4.37)
Q
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Figure 4.12: Smoothing Length, h

Errors

As the approximation relies mainly on the strength of the kernel, to perform

an error analysis is expanded in a Taylor series within the integral form.

(F(z)) = / [f(@) + f(@)(@ — o) +r((z — 2))] w(z o By’ (4.38)

/w z—x', h)dr' + f'(x )/(:c’—;v)w(a:—m',h)d:r’+’r(h2) (4.39)

Q Q
Where r is the residual and the first integral, f(z) [ w(z — 2/, h)dz’ , can be

Q
simplified from the continuity conditions of the weighting functions discussed

previously, where the integral of the kernel is equal to 1

/w(a: -z’ h)dz' =1 (4.40)
Q
The kernel is also an even function, so

/(m' —z)w(z — 2, h)dz’ =0 (4.41)

Q
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This reduces the error function down to

(f(2)) = f(z) +r(h?) (4.42)

So the error of the SPH kernel approximation of a function is of the order h?.

The Smooth Particle Hydrodynamics (SPH) method, adds a weighting (or
kernel) function to the approximation, however as the SPH approximation is
only based on the kernel, it is best suited to stable property distributions,
where there is little noise and values change slowly and steadily throughout

the sub-domain.

4.3.4 Moving Least Squares
Method

The moving least squares approximation scheme relies on the construction of
many least squares approximations applied over a large number of points [78].
This method is generally used for creating smooth surfaces over mesh struc-
tures in computer graphics. This method is generally applied as an approxi-
mation to all points in the system, taking each one in turn and constructing an
approximation from its neighbours. This is best described in one dimension,

Figure 4.13. In the whole domain there are nodes distributed with positions,

x/xe—fx‘\x\x
X x
X
Node, i
T O— O O—O—O0—O0O—0CO—0O—0—O «'_}r«'_'jr O—0O
T x
( Zone of influence
Neighbourhood of points

Figure 4.13: Least squares neighbourhood approximation

x, so we start by selecting an arbitrary node, i. This node is then assigned

o
/=
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a ‘zone of influence’ and all neighbouring particles contribute to the local ap-
proximation of the function. The distance from the central node, 7, determines
the strength of the influence a neighbour has on the approximation so that
nodes closer to 7 have more influence than a node close to the limit of the
zone.

These approximations are performed on every node, so that the end result is
a system of particles with associated functions describing the approximation
at each node. The combination of all of the local approximations leads to a
global approximation over the whole simulation domain.

The moving least squares method applies a least squares approximation of the
neighbourhood, at points throughout the domain to construct a global approx-
imation, Figure 4.14. In the molecular up scaling framework, the molecular
properties are averaged at points defined by a coarse fixed grid over the do-
main, at each point the ensemble bulk properties are constructed as follows:

A set of N molecules within a system, with individual position z;, y; and z;

o e L ¢ B e

a) Local approximations

I -0~ OO OO 5 OO OO O - O - O~ O OO P OO OO -0

b) Global approximated function

Figure 4.14: MLS local to global approximation

have associated parameter value u; for = = 1 to N. The calculation will be
illustrated using two dimensions for the propose of simplicity and readability.
So for a system of n neighbouring points with positions x;, and y;, (i =

1,2,3,--- ,n) and the parameters are stores as

uT:{u1 Uy -+ ui} (4.43)
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The local approximation at the node (z, y) of U, U, is assumed to take
the form of a polynomial over the local sub-domain. For this example, the

approximation will use a quadratic basis function.
UM = ag + a1 + apy + asz® + aszy + asy? (4.44)
which can be written in matrix form as:
UM = PTa (4.45)

where P contains basis function (which is in this case quadratic) and a contains
the coefficients
PT={ 1z y 2® xzy y2} (4.46)

a={ Gy Qa1 G2 Q3 Qg a5} (4.47)

The coefficients must be found in order to complete the approximation, which
is done by considering the function describing the error in the approximation

at each molecule:
error = [U"(z,y) — U] (4.48)

over molecules i =1,2,3,--- | N
Substituting equation 6.3 and summing over N local molecules using a sum
weighted as a function of the molecules distance from the central node:
N
J= Z w(r — zi,y — yi) [U"(z,y) — U] (4.49)

i=1

Minimisation of the weighted error function, 6.6, leads to:
(wPTP)a = (wPT)u (4.50)

Aa = Bu (4:51)
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where:
(1 oz oy 22 zy oy ]
w(z — z1,y — yl) z 22 my 3 2Py P
o el A S A I
: ¢z Ty 2t zy zxy
w(z — T3,y — yi) gy oy zy® oy Yz’
] v oz P 1%y oy o |
w(z — 21,y — y1)
w(x — T2,y — Y2
B = ( 2'y ¥2) [1 T y 72 mYy y2] (4.53)
w(T — 73,y — ¥i)
a= { Qo a1 Az az a4 as } (4.55)
so the a coeflicients can be found by solving:
a=A"'uB (4.56)

Once the coefficients have been calculated, they can then be used in the orig-
inal approximation for the local parameter values, Equation 4.44, to yield the
approximated value of the bulk property U at the node at (z, y)

Basis Functions

The basis or approximating function used in the approximation depends on
two conditions, the dimensionality of the system and the order of the approx-
imation required. Basis functions are constructed using a form of Pascal’s
triangle as shown below.

The triangle is shown in three dimensions with the first two levels shown.
A linear basis function is constructed by summing all the components in the

linear level and above.
P(z,y,2)=1+z+y+z (4.57)

The quadratic basis function is constructed in the same way, by summing
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Figure 4.15: Basis function construction

all components in and above the quadratic level.
Plz,y,2) =1+z+y+z+22+ 2+ 2+ ay+yz+ 22 (4.58)

These are the full basis functions for three dimensional systems, so for
systems with fewer dimensions simple set the coordinates that are not needed

to zero and the basis reduces, for example to two dimensions.

for 2=0 (4.59)
P=1+x+y+x2+xy+y2 (4.60)

Higher order basis functions can provide improved accuracy, however as the
order increases the number of terms in the basis function substantially. Figure
4.16 demonstrates the difference between linear and quadratic approximations
for a sample data set. Comparing the above examples of three dimensional
basis functions above for linear and quadratic, shows an extra 6 terms in the
quadratic form. This may not appear as a great increase, but this increases
the size of the A matrix from a 4x4 to a 10x10 which can add a significant
amount of time to a simulation, especially when a large number of nodes are
being solved. For this reason, cubic basis functions are rarely used as the A
matrix is almost double the size of the quadratic version. A balance must be
reached between accuracy and practicality.
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Figure 4.16: The difference between linear and quadratic basis functions for a
one dimensional example with 5 sample points (approximated around centre
point)

Solving Equations

In order to determine the coefficients for the local approximation, Equation
4.44, we must find the solution of Equation 4.56. The equation is basically
the matrix form of a set of simultaneous equations, so the analytical solution
is fairly trivial and easy to solve by hand for one or two calculations by simply
inverting the A matrix. However, to be used in a simulation this solution
to this equation must be found many times for every time step, a task that
cannot be done by hand. There are many methods for solving such sets of
equations, but LU decomposition is used in this case because it provides an

efficient solution, without the need to inverting large matrices.

LU decomposition In order to solve a system of equations of the form:
Az =B (4.61)

where A is an NxN matrix, B is a vextor of size N, and X is the vector of
N unknowns. LU decomposition starts by decomposing matrix A into two

diagonal matrices, one upper and one lower as follows, for an N = 3 example:

A=LU (4.62)
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Ain Aip Aig Ly - Uiy Uip Us
Agy Agg Asz | = | Log Lop Uy Uss (4.63)
A3y Asp Asg L3y L3z L3g Us3
so that
An A Aig Li,Us LiaUv2 vuu, .
Agr Asg Az | = | LeaUin LooUiz + LaoUsg Us Uiz + LogUs

As1 Asp Asgs L3 Uia L3oUig + LaoUss L3 Uiz + LagUs s+ L3sUss
| (4.64)

This gives NxN equations for NxN + N unknowns as the decomposition is
not unique, but can be solved by Crout’s method as follows:

Az = LUz = L(Uz) =B (4.65)

B = Ly; y=Uz (4.66)

Now solve for y using back substitution

i—1 .
j=1

use the result of y to solve for x using forward substitution

_ 1
v L;;

N
1 .
r = _UT,Z (yz Z U,;J.l?j) 1= 1,2,3,"' ,N (468)

j=i+1

Which results in the values of the original unknowns, z.
LU decompositions however, are still unable to solve for matrices with

singularities (where the determinant is zero).

4.3.5 Weight Functions

The error function used to find the coefficients for the approximating function
is calculated at each point and added as a weighted sum. The weighting
function determines how important it is to get the error at that point to a
minimum so that points closer to the central point are approximated with
a higher accuracy than those further away. There are five criteria that all
weighting functions must satisfy:
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1. Must be > 0 within the sub-domain of centre particle. Particles within
the subdomain of the central point are allowed to influence the local

approximation.

2. Must be = 0 outside the sub-domain of centre particle. Particles outside

the sub-domain are not allowed to contribute to the local approximation.

3. Integral over sub-domain must be equal to one. This is known as the
‘consistency condition’ which is a condition that states that the weight-
ing function is sufficient to interpolate the minimum requirement (con-
stant function) exactly, for example:

f(x)=c  c¢=constant (4.69)
approximated as:
(f(z)) = f(z)=c (4.70)
S0,
() = [ @il = c (4.71)
Q
which becomes,
c/w(x)d:c =c (4.72)

So for this to be true, [ w(z)dr must be equal to one.

Q
When this condition is satisfied, the approximation is able to integrate,
at least, the minimum of a constant function exactly.

4. Must decrease as distance from centre increases The particles within the
sub-domain that are closer to centre point are given a higher weighting

in the approximation.

5. Must approach ‘Dirac’s delta function’ as the radius of the sub-domain,r —
0. ,
The delta function, accredited to Paul Dirac, is a function which has
the value of infinity at £ = 0 , and zero everywhere else. It is simple
to see that as the radius of the weight function decreases, the zone of
influence shrinks around the central point where it is a maximum, and

zero elsewhere.
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These conditions describe a weighting function that will give the best ap-
proximation close to the central point. The fifth condition is not always neces-
sary as it is difficult to find a function that fits the other four criteria and not
the fifth, but is included for completeness. An additional condition usually
added is that the function is positive over all the sub-domain; however there
are exceptions to this rule such as the weight functions used in Point Inter-
polation Methods (PIM). There are three basic weighting functions in general
use, the quadratic spline, Gaussian and exponential, all are a function of the
radius from the central node, 3. '

In one, two and three dimensions:

r = x — z; for one dimension (4.73)
r = /(z — ;) + (y — y;) for two dimensions (4.74)
r=+/(z — ;) + (y — ¥;) + (z — z) for three dimensions (4.75)
and the weighting functions are:
Quadratic spline: ‘
w(r) =1 — 6r + 8r% — 3r (4.76)
Gaussian:
w(r) = exp~ @5 (4.77)
Exponential:
1
= 4.
w(r) = (479)

The choice of weighting function has a substantial influence on the local ap-
proximation generated by the MLS method as will be shown in later chapters.
The profiles of the weighting functions is shown in Figure 4.17

4.3.6 Grid Structure Implementation

The least squares approximations are performed at nodes placed within the
flow field. The three dimensional molecular domain is overlaid with a grid of
nodes, in either one, two, or three dimensions, depending on the problem and
the distributions of interest or expected.

Figure 4.18 shows a representation of a molecular region overlaid by a two
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Figure 4.17: The three most common weighting functions: Quadratic spline,
Gaussian and Exponential

i
€
® @ & 1
|
|
R(u
& ® &

Figure 4.18: Net of approximating nodes placed over the molecular flow region.
Molecules within each nodes sub-domain contribute to the property average
at that node with weighting W (r.,), according to their proximity, R,

dimensional net of nodes, each having a zone of influence. Each molecule
within the zone of a node, contributes to the approximation at that node, and
is weighted as a function of is distance.

The molecular parameters are collected from the molecules at intervals during
the simulation. Ensembles for density, pressure, temperature, are stored in
separate A matrix and B (of the least squares approximation described above)

vector for each node. As described in Section 4.3.4, the matrices are used to
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form the vector of coefficients of the fitted polynomial basis function,
A= (wPTP); B=(wP?) (4.79)

Aa = Bu (4.80)

where P is the basis function (a function of position of molecule, relative to
node)'and w is the weighting function. For convenience, the B vector is com-
bined with the vector of property values, u, which is a function of phase space

(position and momentum of molecule) position of each molecule within the
* sub-domain. A
The sampling of the properties in no way influences the dynamics of the
molecules in the molecular system, they are used purely to extract infor-
mation from the molecular model. It is however important to consider the
way in which the sampling is done in order to present the best data for the
averages without losing information.It is also important to keep the number
of sampling points to a minimum.

4.3.7 Sampling

When ensemble averages are constructed it is important to make the distinc-
tion between samples and ensembles. In this method, a sample is taken as an
instantaneous snapshot of the local data at each node. Ensembles are gener-
ated using the data collected over a number of these samples over a period of
simulation time. Molecular data collected in different ensembles can construct
the different bulk fluid properties at these local points. A number of ensemble
averages can be taken over the duration of the simulation to capture time de-
pendant effects, as well as providing a measure of the approach to equilibrium
state.
Each individual sample is combined into the A matrix and B vector, and a
number of samples are used to make an ensemble average at the node, provid-
ing an approximate value for the parameter, over time as well as space in the
simulation (Figure 4.19). The length of simulation time between samples, and
length of time over which the approximations are computed is key to stability
and accuracy in the ensemble averages. ’
The objective of the sampling is to provide the ensemble with data about the
bulk state of the fluid, but information is not required about the behaviour of
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Figure 4.19: Highlighting the differences between samples collected to makeup
the ensemble averages, accumulated at points throughout the simulation time.

individual molecules. To ensure that it is the bulk behaviour and not individ-
ual molecular behaviour that is being fed into the ensemble, the information
is expressed in terms of the local phase space. Phase space is a function of
the position and momentum of all molecules in the system. For a local bulk
fluid property, there is a region that contains all of the available phase space
positions for the current state and time. By sampling as many points in the
phase space available to the local molecules, the best description of the state
of the fluid at that point can be found. If samples are taken too often, only a
narrow portion of phase space can be sample. Whereas if there is time for the
molecules to interact and move within the domain the next sample may con-
tain different data about the same available phase space volume. If the sample
time is too loug, the sampling becomes inefficient and reduces the amount of
useful data that is collected during a simulation.

Similarly, if the ensemble averages of the samples are taken over a short period
of time, there is insufficient sample data is available to represent the available
phase space to provide a stable ensemble average. If the averaging time is
too long, then an unnecessary amount of information is contributed to the
approximation and the time resolution is unnecessarily decreased.

In the next chapter, the effect of changing the sample and ensemble times is

investigated, and its effect on the resulting bulk properties that are extracted.

These two sections have shown the implementation of a method designed
to simulate meso scale fluid systems from a bottom up approach. The devel-
oped method relies on a molecular scale fluid model and bulk properties are
extracted from the underlying molecular motion. The next section examines

the operation of the molecular model in more detail.
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4.4 \Verification of Proposed Meso Scale Model

The information in the above section has discussed how fluid can be modelled
via the consideration of physics on a molecular scale. This section will provide
an example of a molecular dynamic simulation to demonstrate the operation
of the developed model.
For this, the example considered will be a cubic volume of methane molecules
suspended away from any boundaries to allow the use of periodic boundary
conditions in all three dimensions (Figure 4.20).

The 512 methane molecules (CH4) used in this example interact via using

Figure 4.20: Cubic control volume considered away from any physical bound-
aries

the soft sphere Lennard-Jones 6-12 potential and moved using Newtons law
via the verlet algorithm as described above. Although this is a simple steady
state system, this example can demonstrate the application of molecular dy-
namic simulations.

To start of the simulation, the number of molecules and their properties are
input into the initialisation stage of the simulation. This allows a lattice of
molecules to be created to fill the domain with the given number, to generate
the required density. The set temperature is then used to apply random ve-
locities to the molecules according to the Boltzmann distribution.

The next part of the simulation is to equilibrate, or settle, the molecules, as
the initial lattice is not a stable maintainable state, but a lattice makes for
easy initial placement. During the breakout of this lattice, there is also large
variations in molecular properties.

Figure 4.21 displays what happens when the molecules in the lattice are re-
laxed. Here, potential (PE), kinetic (KE), and total energy (E total) are
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plotted from ¢t = 0tat= 1ps. During the equilibration period, the kinetic
energy (and hence the temperature) is kept constant, this is because while
the molecules are settling down, they can be exposed to unphysical and high
interaction forces which can cause the energy of the system to become out of
control. For this, simple velocity scaling is used.

Velocity scaling is a crude method of temperature control in molecular sys-
tems, where the kinetic energy of the molecules calculated using

1
EKe,t = 5777/02 , (481)

and compared to the kinetic energy of the initial temperature,

3
Eket—0 = ENka : (4.82)
- The scaling factor is then
EK et
= : 4.83
EK e, t=0 . ( )

Which is then used to scale all the velocities of all the molecules in the system
using
v; = v (4.84)

to maintain global kinetic energy at each time step.

This is a crude and unphysical approach to temperature control and only
suitable for steady state simulations to achieve equilibrium. For more complex
simulation, such as those examined later, require a more refined approach to
temperature control.

Consequently, the only variation in energy comes from the potential energy
component in the simulation. The plot of energies shown in Figure 4.21 is for
the initial breakout of the lattice and three parts a, b, and c are identified.

e a: The initial lattice, the potential energy value computed from the

initial positions of molecules

e b: Molecules move with initial velocity, and slack across periodic bound-
aries is taken up. The peak in potential energy occurs from the momen-
tum of particles crossing empty spaces.

e c: Potential energy begins to stabilise, molecules are constantly moving,

colliding and exchanging momentum but global potential energy is con-
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Figure 4.21: Top: Kinetic, potential and total energy for initial stages of
equilibration. Bottom: Distribution of molecules at stages throughout equili-
bration process, a. initial lattice. b. peak in potential energy. c. stabilisation
of randomised system

served. Fluctuations occur from molecules changing state, but system

is in equilibrium state.

Equilibrium state can also be monitored using the order parameter described
previously, tending from one at point a, to zero at point c.

To check the thermodynamic state of the fluid, the velocity distribution in
each of the three dimensions can be compared to the Boltzmann distribution,
as shown in Figure 4.22. If the distributions match, then a stable thermody-
namics state could be present, and when combined with the other equilibrium
tests, can identify when the whole system is stable. Figure 4.22 shows the
instantaneous distribution of speeds of the molecules within the system and
is shown against the exact distribution with 15% error bars.

Once this equilibrium state has been reached, the production stage can start,
which collects all the useful properties of the simulation. At the start of the
production stage, the velocity scaling is removed, effectively freeing the simu-

lation of any constraints. At this point the global ensemble averages can start
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Velocity (m/s)

Figure 4.22: Distribution of velocities in molecular simulation compared to
Boltzmann distribution, shown with 15% error bars

to take data from the molecules in the system.

On the left of Figure 4.23 is a plot of the equilibrium stage, similar to Figure
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Figure 4.23: Potential (PE), kinetic (KE), and total energy during the equili-
bration and production stages of the simulation

4.21, but the time has been extended to 20ps. Here, the initial peaks are
present as the lattice structure breaks down, but then the potential energy
remains approximately constant. On the right, is the production run that
follows the equilibration stage. In this case the production run has also been
performed over 20ps but the velocity scaling is removed. With the kinetic
energy allowed to change, the constant exchange between potential and ki-

netic energy can be observed. In the equilibration stage, the fluctuations of
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the potential energy were directly translated onto the total energy because
the kinetic energy was being continually rescaled. Now the kinetic energy has
been released, the molecules exchange their kinetic and potential energy in
perfectly elastic collisions, such that the net energy in the system remains
constant.

It is during this period that the ensemble properties may be taken over the
desired simulation time, as this is the period where the system is in steady
state.

Our simulations so far have been using a control volume of 512 molecules.

Figure 4.24 shows a plot of the variation in the potential energy per molecule

0

200 400 600 800 1000 1200
-0.0005 4

0001 1t
-0.0015 4|
-0002 |
00025 { |
0003 4 *

-00035 4 o

Potential energy per molecule (ajimolecule)

-0.0045 -
Number of molecules

Figure 4.24: Average potential energy per molecules verses number of
molecules in periodic cell

with respect to number molecules in the simulation. All simulations have the
same density, and the volume per molecule remains constant, but the average
potential energy gathered in the simulation differs significantly. There is a
clear region where there are enough molecules to correctly predict the poten-
tial energy of the simulation, where the energy per molecule is approximately
constant. Also from this graph, it is clear that increasing the system size from
512 molecules to 1000, would not have a significant effect on the results, and
present a much higher demand on the computational resources.

[f this potential energy is to be accepted as correct, there needs to be a bench-
mark with which to test the results for the simulation. This can be done by
assembling an ensemble average for the pressure using a form of the virial

equation of state summed over all the interactions and molecules. This equa-
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tion of state allows the calculation of global pressure from the kinetic and
potential energy in the system. The simulation of the above system yielded a
global pressure of

Py = 44.28M Pa (4.85)

which can be compared the pressure obtained from an analytical equation of
state, in this case the Lennard-Jones equation of state, which yields

Py = 44.53M Pa (4.86)

This gives the difference in pressure between the simulation result and the
analytical pressure to be 0.58%, which gives confidence to the accuracy of the

simulation model.

4.5 Summary

This chapter has developed an implementation of molecular simulation specific
to meso scale fluid systems. The molecular model is capable of handling very
large numbers of molecules using processing power and memory requirements
efficiently. This is further improved by the implementation of the diffuse
boundary conditions, which allow the computational resources to concentrate
on the highly dynamic part of the simulation, the fluid.

The bulk property averaging scheme allows the fluid properties and fluid effects
displayed by the bulk of the fluid to be characterised as distributions within
the flow field. The implementation of this method is in the form of a versatile
node based structure. Property interrogation nodes can be placed throughout
the domain wherever needed, sample and ensemble times can be tuned to suit
the current application. These parameters are covered in more depth in the
case studies in the next chapter.

This new meso scale method provides a new insight into meso scale fluid

systems.



Chapter 5

Enhancements to the Meso Scale
Model

5.1 Introduction

This chapter focuses on the further development of the meso scale methed
presented in the previous chapter. The development starts by extending the
method to handle flowing fluids. When a fluid flows through a pipe or channel,
the interaction between the fluid and solid molecules causes the molecules close
to the wall to slow down, as has been discussed in the viscous fluid discussion
in Chapter 2. This, combined with the internal collisions of fluid molecules
causes a boundary layer to form. Capturing this boundary layer in the form
of a velocity profile can tell us a great deal about the fluid behaviour, as will
be seen in Chapter 6. This section discusses the generation and capture of
fluid flow behaviour in molecular systems. The first issue to be discussed is

the method of driving molecules to generate a flow.

This extended method is then explored and tested in a number of case
studies. The first case studies focus on the parameters of the bulk property
extraction scheme, examining the sample and ensemble length, radius of sub-
domain, and weighting function. These studies are performed on a fluid at
rest and do not employ the thermal control element of the method.

The second section of case studies look at the collected bulk properties as
distributions throughout the domain. A temperature gradient through a fluid

119
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confined between two parallel plates is considered on a fluid at rest. In this
example thermal energy is propagated by the thermal motion of the molecules
in the fluid. A study of a fluid flowing between parallel plates is also consid-
ered. This example employs both the thermostat and flow driving elements

of the model, and is compared with results published in literature.

5.2 Driving Forces

In order to generate a flow, there must be a driving force to push the molecules
between one point and the next. A flow can be generated in a number of
ways, varying in their complexity and computational demand. In the follow-
ing section, methods for generating fluid/molecular flows will be presented
and discussed, focusing on their application to meso scale systems.

The first method is the most demanding computationally, but presents the
simplest concept. It relies on three components, a high pressure reservoir, a
low pressure reservoir, and a test section that connects them, as shown in
Figure 5.1.

Figure 5.1: Schematic of molecules driven through test section by maintain-
ing two reservoirs at different pressures. Low pressure reservoir is usually
maintained at a vacuum

The high pressure reservoir is maintained at a constant high pressure, by recy-
cling the molecules that exit the test section into the low pressures reservoir.
This has the effect of keeping the low pressure reservoir at a vacuum, but the
high pressure reservoir must be sufficiently large to smooth out the effect of

molecules being inserted, which can lead to anomalies and discontinuities if
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they are inserted too close to the entrance of the test section, or overlapping
another molecule.

This approach to flow generation needs a very large number of molecules, most
of which are not within the test section and contribute little to the results of
the simulation. This method does however, allow pressure driven flows to be
directly modelled in a controlled and stable environment. However, in order
to model the flow of fluid or molecules through a meso scale test section, the
number of molecules needed would be prohibitively large.

Two similar, but reduced approaches were developed by Liao and Yip [79]
and Sun and Ebner [83]. The first, by Liao and Yip is known as the reflecting
particle method [79]. This method removes the large reservoir, and uses an
extended part of the test section, with periodic boundary conditions at each
end, to form a smaller reservoir in line with the flow. The high and low pres-
sures are generated by using a selective membrane at some point along the
flow, that allows molecules to pass freely across in one direction, but in the

other direction a proportion of the molecules are reflected back.

High Pressure | Low Pressure Test section
@ —m b
& Free pass i
@ | s
Periodic }
| boundaries bpounch:\n
Pass with
. probability
- / ~._ (p
eflected with / .
probability, pfj I Y’\
) N

Figure 5.2: Left: The reflecting particle method, molecules may pass freely
in one direction, but are reflected with probability p when exiting the ‘high
pressure’ region. Right: The RPM membrane used to investigate channel flow.
The test section must be clear of the membrane

Figure 5.2 demonstrates the application of the membrane to model pressure
driven flow along a test section. The pressure difference can be controlled by

altering the probability of reflection of the membrane.

The second approach is by Sun and Ebner [83] where the high and low pres-
sure regions are created by replacing the periodic boundary conditions with
a source region and a sink region. The sink is maintained at a vacuum by

removing from the system, all molecules which enter this region. The source
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region, at the opposite end of the cell, is a small volume with a moveable
boundary at the end. This boundary acts as a piston, reducing the volume
of the source region and pushing the molecules into the volume considered by
the simulation. Once the boundary has travelled a short distance, the density
of the system is measured and the boundary resets to its original position and
the void created, fills with enough molecules of the same density. Molecules
are added with velocities as described by the Maxwell velocity distribution
at the temperature of the wall. This approach maintains a pressure gradient
between the source and sink regions, causing a flow of molecules. The number
of molecules injected and the volume swept by the boundary is very small to
minimise oscillations occurring as the new particles breakout of the regular
lattice used to initially position the particles. Sun and Ebner applied this
successfully in two-dimensions to study compressible flow [83], and has the

potential to be applied in three-dimensions.

By using these methods of applying a pressure gradient to drive the flow
‘of molecules, force is transmitted in a very natural way, through the interac-
tions of the particles. This is useful in modelling the reaction of a fluid to
pressure gradients, as the pressure and density vary continuously along the
length of the test section between the source and sink regions. However, this
is not useful for considering steady, fully developed flows, which model the
flow-in channels with no density variation along their length (infinitely long
test section). These systems require a different approach.
To model fully developed flows, Sokhan et al. [66] modelled a driven flow
between parallel plates by applying a uniform acceleration, in the required
direction of flow, uniformly to all molecules in the system. The applica-
tion of an acceleration in way is similar to a gravitational effect pulling the
molecules along the test section, although. the acceleration is typically much
larger. This however, creates the problem that by applying an external force
to the molecules, adds energy to the closed system. As this external work is
being done on the system in order to approximate the effect a constant pres-
sure gradient (effectively applied over an infinitely long section), the energy
added to the molecules must be removed. The energy is removed by the ap-
plication of a thermostat.
The simplest form of thermostat, velocity scaling, has been described in Sec-

tion 4.4, but is far too crude for this application as temperature must be
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controlled throughout the duration of the simulation, even during the produc-

tion phase.

5.3 Thermostats

The aim of a thermostat is to maintain a control on the temperature, and
hence kinetic energy, globally within the system. However, the way in which
this is done is critical as controlling/altering the energy of molecules within
the system affects the dynamic behaviour of the whole system. Control must
be maintained without having an effect on the system behaviour. If energy
is being added to the system in the form of an acceleration to model the ef-
fect of a pressure gradient acting in one direction, it should have the effect of
influencing the proportions of energy within the system, but not change its

global value.

5.3.1 Gaussian Thermostat

The Gaussian thermostat aims to control the temperature of the system by
using Gauss’s principle of least constraint [89]. The principle of least constraint
states that the constrained trajectories actually followed, should deviate as
little as possible from the trajectories of unconstrained equations of motion.
In the motion of the molecules in the system, the equation of motion is simple
Newton's law,

F=ma (5.1)

which we wish to constrain to a constant global temperature, leading to the
formation of a constraint function which constrains the system temperature

to the set temperature, as,

N
g(r,v,t) = 3 ;=1 mv* — 51\,/ka =0 (5.2)

which is the difference between the system temperature and the temperature
set by value T'. Differentiating once with respect to time gives the equation
for the constraint plane

N
Zmivi ca; =0 (5.3)
=1
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Assuming that the unconstrained equations of motion lead the simulation
away from the constraint surface, the equations of motion are corrected by

considering the function of the square of the curvature [90], C,

1& F\?

=N 'm. Lt

C=3) m (a,z mi) (5.4)
=1

The physical accelerations in the system correspond to the minimum value

of C, so for an unconstrained system C' = 0 and the system evolves under

newtons equations.

This leads to the constrained equation of motion:
a;m; = F; — Avym; (5.5)

where A is the friction factor applied to the molecules as scaling by their

momentum, and defined as,

N
A= M (5.6)

Eil mv}

Equations 5.5 and 5.6 are known and implemented together as the Gaus-
sian isokinetic equations of motion. It is important to note that the scal-
ing/friction factor is different to that used in the velocity scaling approach,
and friction/scaling is applied as a function of the individual molecules mo-

mentum.

5.3.2 Nosé Hoover

The Nosé Hoover thermostat [91,92] is a method of temperature control that
is based on the inclusion of an extra parameter in Nosé Hoover dynamics
coordinate space [93]. This means the inclusion of thermostat parameter, &.
The second derivative of which is simply a function of the kinetic energy of

the system and the temperature,

(5.7)

N
g: —é— I:Zmi’viz - kabT
i=1

Where N is the number of degrees of freedom of the system. This equation

for § is the difference between the actual and set temperature of the system,
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which is multiplied by the reciprocal of a weighting function, @, and can be
defined as
Q = Nik T2 (5.8)

where 72 is the characteristic time scale of the motions of real particles [94].
This weighting function controls the application of the thermostat, and can be
adjusted for particular applications. A low weighting function can cause high

frequency oscillations in § , where as a high value can over constrain the system.

The Nosé Hoover thermostat is used in this method because of its level of
control can be tuned to the specific system of interest using the mass parame-
ter, allowing the thermostat to work effectively whilst applying the minimum
of constraint on the system. It is however more complex to implement in to

the equation of motion, the implementation will be considered next.

Implementation in the Proposed Meso Scale Model

The thermostat parameter therefore has its own equation of motion, and can
be included in the velocity verlet equations of motion of the molecules. The
equations of motion for the complete system proceed through simulation time

as follows:

1. Thermostat parameters, and mass (), are computed:

N |
£(t) = % [Z mvi(t)? — Nk, T
i=1

E(t+ 6t/2) = £(t) + £(t)dt/2
E(t+ 0t) = £(t) + £(t + 6t/2)6t

2. Molecular velocities and positions are updated, including the corrections

from the thermostat parameter, using the velocity verlet algorithm
vi(t + 6t/2) = vi(t) + [ai(t) — vi(t)E(t + 6t/2))6t/2
T'i(t + 5t) = T'z(t) + Ui(t + 6t/2)(5t

3. Molecular forces are updated using interaction and boundary forces,

F =ma
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4. Complete time step for velocity of molecules and thermostat parameter:
vi(t + 0t) = vi(t + 6t/2) + [ai(t + 6t) — vi(t + 6t)E(t + 6t)]6t/2

N
E(t + 8t) = £(t + 6t/2) + Zm,-v,-(t + 0t)2 — NikyT 2%

i=1

This coupled equation is then solved using the iterative Newton-Raphson
method.

These thermostats allow for the control of molecular systems, whilst pre-
senting the minimum effect on the dynamics of the system. This allows for
molecules to be driven by a pressure gradient, modelled by an acceleration
applied to the molecules. However, with such a complex system operating,
there needs to be careful benchmark tests made to make sure of the accuracy

of the simulated molecules.

5.4 Case Studies

To explore that capabilities of the developed approach, a number of case stud-
ies are presented. These are split into two sections, a study of the parameters
of the bulk property collection scheme and the examination of temperature
and flow driven systems. The initial simulations are performed with the ther-
mostat disabled, and temperature control is not necessary, but the simulation
of a driven flow has the thermostat feature enabled.

5.4.1 Sampling

To study the parameters for the extraction of the ensemble averages, a molec-
ular scale system is used to provide the most challenging for this bulk method.
The reason for this is two fold, to reduce the computational load of the simu-
lations to allow many simulations to be performed in a reasonable amount of
time, and secondly, with only a few molecules the least squared approximating
nodes are starved for data, providing an excellent test for the performance of

this approach at its weakest point, systems with low numbers of molecules.
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To test the operation and sensitivity of these parameters, a simple molec-
ular dynamics simulation is used as a demonstration, and is setup in a similar
way to the simulation presented in Section 4.4. For this application, the limits
of the system set to a 15 x 15 x 8.3nm, containing 5104 methane molecules in-
teracting with a Lennard-Jones 12-6 potential. Periodic boundary conditions
are applied in all three dimensions. The fluid is permanently at rest, with mo-
tion occurring only from internal thermal diffusion for the system temperature
of 300K . Within the molecular flow field a one dimensional line of nodes was
inserted along the y direction, at 0.5nm intervals (shown in Figure 5.3).

As mentioned, the simulated fluid is at rest, so by recording the bulk velocity
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Figure 5.3: Simulation of a periodic molecular system, modelling fluid at rest,
molecular properties are averaged by an array of one dimensional nodes placed
across the field.

of the fluid in the z direction, the molecular velocities occurring by thermal
diffusion should cancel out to yield and ensemble average of zero velocity at
each of the nodes.

With this knowledge, this system can be used to explore the effect of the
parameters used to gather the least square approximations of the molecular
behaviour. Investigations into the optimal number of time steps between sam-
ples, number of samples used in each ensemble average and the radius of the
weighting function for each node, are presented below. A study of the effect

of the different weighting functions is also presented.
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Case Study 1 - Length of Time Between Samples

This investigation looks into the effect of coherence between samples, and
will identify if the molecules local to each node have had sufficient time to
change their individual points in phase space so that the maximum number
of available configurations in phase space is covered by each ensemble. The
investigation proceeds as follows. The number of samples for each ensemble
average taken at each of the nodes is kept constant at 20. The length of sim-
ulation time that elapses between each sample is taken is varied between 25
and 400 time steps. The simulation time step is 2.0ps, which relates to gaps
between samples of 50ps and 800ps, respectively.

5104 molecules are placed in a lattice 15nm by 15nm by 83nm, which is equili-
brated to a stable point at rest at a temperature of 300K, and periodic bound-
ary conditions in all three dimensions. Temperature controls are removed, and
the molecules are left to maintain an equilibrium state. No external forces are
applied to the molecules, and only molecular motion/diffusion for the system
temperature is present. The local velocity is monitored at 29 nodes arranged
in a one dimensional array as shown in Figure 5.3. with each node having a
cutoff radius of 1.0nm. All simulations are performed from exactly the same
starting point, with identical molecular data at the beginning of the produc-

tion phase
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Figure 5.4: A graph demonstrating the relationship between the interval be-
tween samples are taken, and the standard deviation of the resulting one

dimensional velocity distribution. The equation of the best fit line is also
shown
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The fluid is at rest, so the bulk velocity of the fluid is zero. However, the
molecules of the fluid are constantly moving throughout the fluid diffusing
with thermal motion. Poor phase space sampling will yield a non-zero value
of velocity at the nodes, and lead to larger variation in the ensemble values at
the nodes. A good sample of a wider portion of phase space will lead for the
thermal motion of the molecules to cancel out, giving consistent values at the
nodes, all of which should approach zero.

Figure 5.4 shows a plot of the average standard deviation (averaged over all
nodes) of the values of velocity, plotted against the number of time steps be-
tween each sample. It is necessary at this point to remember that the same
number of samples are taken for each case so that every ensemble taken con-
tains the same amount of data. The results show an exponential decrease
in the standard deviation of the nodal values as the time between samples
increases. This leads to the conclusion that samples taken at more than 200
time step intervals (400ps) gives a good result, but the larger the time be-
tween samples the less variation there will be in the results. Increasing the
sample interval to 400 time steps reduces the variation 18% but the ensemble
time increases by 200%. The line of best fit is asymptotic to zero variation,
indicating that the sample length could be extended indefinitely whilst still
reducing the variation in the results. However, in practice the an acceptable
variation must therefore be accepted to allow for an acceptable resolution in
time. For these cases, the variation is considered acceptable at 200 time steps

or greater.

Figure 5.5 shows a plot of the average value of velocity (averaged over all
nodes) plotted against the interval between samples. This shows the accuracy
of the ensemble increasing as the time between samples increases, achieving
an average velocity closer to the zero velocity specified. However, the data
presented contains a significant level of noise making a relationship difficult to
determine, but the average velocity shows a definite trend to zero as the sam-
ple time increases, giving a very close approximation for sample times greater

than 250 time steps.

Both of these graphs demonstrate the same result. The more time molecules
are allowed in order to change state before being re-sampled, the better the
interrogation of the available phase space performed by each of the local ap-
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Figure 5.5: Graph showing the average value of velocity plotted against the
number of time steps between samples

proximations. In both cases, the improvement is exponential, although the
average velocity data is noisy. However, a longer time between samples re-
duces the resolution of the ensembles in terms of simulation time. This must
be considered when long sample times are used. A way of increasing the time
between samples is to take fewer samples per ensemble, which will be discussed

in detail in the next case study:

Case Study 2 - Number of Samples per Ensemble

By performing a similar study, the effect of the number of samples collected
per ensemble average can be investigated. Simulations were setup as described
above, with the samples taken at regular intervals of 75 time steps, but the
ensembles were constructed of between 2 and 40 samples.

Figure 5.6 shows a plot of the average standard deviation of the collected
ensemble velocity over all the nodes, against the number of samples collected
per ensemble average. The graph shows a similar relationship to sample tim-
ing study, with a slightly lower gradient where, as the number of samples
increases in each ensemble, the variation in the results of this steady state
system reduces to give more stable values. As the number of sample points
increases, more points throughout the available phase space are sampled, leads

to a better representation of the local ensemble by the approximation.
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Figure 5.6: Graph standard deviation of velocity plotted against the number
of samples per ensemble

Case Study 3 - Time Between Samples verses Number of Samples Per
Ensemble

The above study suggest that increasing the time between successive samples
of the molecular data should be as long as possible in order to sample the
widest available area of phase space. Similarly, to obtain bulk properties with
the least amount of noise, there must be the maximum number of samples
taken for each ensemble average, to sample as many different points in phase
space as possible. However, in a realistic simulation example, there is a limit
to the amount of simulation time that can be allowed between the ensemble
averages being taken. This could be a limit on an ensemble taken for a steady
system over a long period of time or short intervals for a dynamic system,
where greater resolution in terms of time is required. In these cases, there is a
maximum time over which an ensemble can be taken. This means that within
one ensemble a balance must be made between the number of samples used

in each ensemble, and the time between each sample taken.

To test the sensitivity of this tradeoff, the same example of fluid methane
at rest, as described above, was used. The total ensemble time is limited to
20,000 time steps, and the sample interval is varied between 100 and 1000
time steps to correspond to 200 and 20 samples per ensemble, respectively.

Figure 5.7 shows a plot of the standard deviation of the ensemble velocity,

averaged over three ensembles taken for the varying time between samples. In
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Figure 5.7: Plot to demonstrate the effect of trading off the length of time
between samples against the number of samples per ensemble, for a fixed
ensemble length of 20,000 time steps

the previous results, it has been shown that the best and most stable results
are obtained by leaving long periods between taking each sample, and taking
a large number of samples. However, for simulations with a finite time frame,
there is a limit on this behaviour. As the length between samples increases,
the number of samples that can be taken in the ensemble reduces, this causes
the variation in the results to increase as the time between samples increases.
The results shown in Figure 5.7 are dominated by the variation caused by the
reduced number of samples in the ensemble, and the variation expected to be
caused by the short sample times does not have an observable effect in the
sampled region.

From these results, it can be concluded that the largest acceptable time be-
tween samples between is approximately 400 time steps, for this case. To
generalise this, 400 time steps represents 2% of each ensemble time, allowing
for 50 samples to be taken in each ensemble. Although the variation in the
solution maintains a similar value for lower times between samples, the high-
est available values should be used to achieve the best representation of phase
space, saving on the computational time involved with processing a higher

number of samples.
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Case Study 4 - Radius of Weighting Function

The radius of the weighting function governs the area or volume over which
the approximation is constructed at each node. This parameter is critical, as
a smaller radius gives better resolution in space, at the cost of fewer molecules
within each sample. Simulations were performed as above for the same sample
times and number of samples per ensemble, and in this case only the radius
associated to the nodes was altered. To give a idea of scale, the 29 nodes
are spaced at 0.5nm intervals across the 15nm width of the simulation. The

radius at each node is changed from 0.2nm up to 2nm. Figure 5.8 gives an

R=20nm
R=10nm
R=5nm

Figure 5.8: Two dimensional example of the radius of weighting function
compared to the number of molecules present, for the example simulation

approximate idea of scale, showing the radius in two dimensions. Figure 5.9
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Figure 5.9: Standard deviation of velocity collected at the nodes, plotted
against the ratio of node radius to molecular diameter

shows a plot of the standard deviation of the velocity obtained at each of
the ensembles, against the ratio of the node’s radius to the diameter of the

underlying molecules (for methane o = 0.381nm). This shows an increasing
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accuracy as the radius is increased, with an abnormally large value for stan-
dard deviation at R/o = 0.5. This is due to the radius being so small that
only a single molecule can fit in the nodes ‘zone’ making the node very sensi-

tive to the properties of an individual molecule.

Average velocity (m/s)
IS

Radius/molecular diameter

Figure 5.10: Average ensemble velocity plotted against ratio of node radius
to molecular diameter

This is can also be highlighted in the plot of the average velocity, shown in
Figure 5.10. Which reinforces the fact that one of the nodes has sampled a
molecule with a speed that is on the higher side as given by the Maxwell-
Boltzmann distribution. This has had a dramatic effect on the value of one of
the nodes.

These results highlight that the radius of a node must be large enough to cap-
ture as many molecules as possible, but be small enough to be able to capture
any variations that may be present in the distribution of the property, leading

to a compromise between resolution, stability and statistical error.

Case Study 5 - Weighting Function

The weighting function plays a very important part in the property extrac-
tion, being the basis on which molecules are allowed to contribute to a nodes
ensemble average. By again performing the same test simulation, the effect
of the different weighting function highlighted in Section 4.3.5, (quadratic,
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exponential and Gaussian weighting functions) can be tested.
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Figure 5.11: Values of standard deviation for each of the weighting functions

Figure 5.11 shows the values of the average ensemble standard deviation for
the three weighting functions tested. From this, the Gaussian weighting func-
tion comes out on top, providing the most stable result, closely followed by
the exponential function. In this application, the quadratic weighting function

gives the most variation.

From these studies, we can conclude that in order for to obtain good stable
results for the bulk properties collected at the least squares nodes, each sample
must probe the available local phase space as comprehensively as possible. To
do this, the ensembles must be constructed from as many samples as possible,
and the samples must be taken with long intervals between them to allow the
molecules to select a new phase space position. For this, a sample interval
between 100 and 400 time steps should be used. However, these two parame-
ters must be selected with any the resolution of the distribution of properties
with respect to time in mind. Similarly, for the nodal radius a larger radius
will provide better phase space sampling but reduces the resolution in terms
of simulation space.

The parameters for the bulk property collection must therefore be carefully
chosen for the system of interest, especially for systems that include gradients,

and properties dependant on position and time within the simulation.
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5.4.2 Gradient Study

In the previous section, the local averages have been extracted and evaluated
for stable systems with approximately uniform properties throughout. This
was used to study the effect of the parameters of the bulk ensemble approxi-
mations, against a known value. In this section, systems involving properties
that vary a in space as well as time. These provide more of a challenge, as
spatial and temporal resolution of the nodes must be seriously considered and
traded off against the stability and accuracy of the ensemble averages collected
at the nodes.

Two distributed bulk properties will be considered. Firstly the distribution
of temperature, which will be studied in a fluid at rest, contained between
two parallel plates at different temperatures. The nodes will then monitor
the distribution of temperature throughout the field, as the thermal energy
propagates through the fluid via the molecular collisions. Secondly, velocity
distributions will be studied within a flowing fluid field. As will be shown, the
study of velocity distributions requires special treatment, as extra controls on
the system are needed, which will be presented and validated against existing

fully molecular simulations.

Case Study 6 - Temperature gradient

As an initial test of this method, the molecular simulation was performed on
a fluid at rest. The fluid is trapped between two parallel plates of different
temperatures as shown in Figure 5.12. The plates are separated by 7.1nm,
with the left hand wall having a temperature of 300K and the right hand wall
having a temperature of 250K. The fluid methane in the middle interacts
with the wall via the diffuse boundary conditions. The tangential momen-
tum accomodation coefficient was chosen to be f = 0.81, to simulate a sparse
solid lattice of carbon molecules. A large value of f was used to achieve a
large amount of variation of the temperature withing the simulation domain
to examine the ability of the bulk property extraction component to capture
details of a relatively high gradient property.

The fluid molecules were equilibrated from their initial lattice and temper-
ature of 275K and settled to an equilibrium state. The temperature of the
molecules were observed using 36 nodes placed at 0.2nm intervals within the
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molecular fluid
Wall Wall
300K 250K

Least square nodes
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Figure 5.12: Schematic of fluid with temperature gradient. Wall on left is
maintained at 300K, and the wall on the right at 250K. An array of one
dimensional least squared nodes crosses the fluid between them to collect
local values for temperature.

domain. The radius of interaction was set to 0.4nm, and ensembles were taken
over 50,000 time steps (2.fs time steps)

The molecules were free to interact with each other with the only temperature
control being applied by the boundary walls. The resulting velocity profiles
for the steady state result are shown in Figure 5.13. From this graph, the
temperature gradient extracted from the molecular model can be clearly seen
between the average ensemble temperature collected near the left hand wall,
and the value at the right hand wall. In the centre of the fluid section, the
temperature gradient is almost linear, however the gradient gets steeper in a
relatively wide region close to the walls. This is due to the slip and jump at
the boundary, where a discontinuity is allowed. Error bars are shown at 0.5%
indicating the variation between profiles extracted.

This simple example highlights how the least squares nodes can be imple-
mented and used to interrogate a molecular domain, providing distributions
of useful engineering properties. The next step is to move this method onto
a more challenging system that can aid in the validation of the molecular

mechanics model.
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Figure 5.13: Temperature gradient for methane between two parallel plates at
x = 0, maintained at 300K, and at x = 7.1nm maintained at 250K. The black
line shows the average temperature profile shown with a 0.5% variation.

Case Study 7 - Velocity

This method allows the molecular model to simulate engineering systems at
meso scale dimensions with large numbers of molecules. However, the accu-
racy of this model with its simplifications for boundary conditions and pressure
gradients needs validation with existing work to ensure the model is still accu-
rate. The performance of a molecular simulation can be tested in a number of
ways, and in this section validation results are presented to give an idea of the
accuracy of the method. There is almost no experimental data available for
meso scale systems, and computational restrictions limit comparisons on the
continuum scales, so tests are performed at high end molecular scales where
information on simulations is readily available. This also allows the testing of
the molecular model separately from the approximating (least squares) com-

ponents.

The molecular dynamics model was tested against the molecular simula-
tions performed by Sokhan et al. [66], whose simulations were performed using
model based on the DL_POLY [95] package. The system considers fully de-
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veloped poiseuille flow of methane through a graphite slit pore (Figure 5.14).

The system is simplified to methane molecules flowing between two par-

Figure 5.14: Cross section of an artificially created slit pore

allel plates of graphite, which contain the molecules in the y direction, and
periodic boundary conditions in the z and z directions. The system dimen-
sions are shown if Figure 5.15, with the graphite plates being separated by
7.1nm and the length of the simulating cell in x and z directions are 7.875nm
and 8.368nm in the z direction. Into this volume was put 5104 methane
molecules, corresponding to a reduced density of p’ = 0.61, and interacting
via a Lennard-Jones potential with collision radius ¢ = 0.381nm and well
depth €/k, = 148.1K .

The graphene plates were modelled in Sokhan’s simulation using two fully

7.Ann

8.368nm

T

Figure 5.15: Cross section of an artificially created slit pore

molecular solid lattices of carbon atoms (o = 0.34nm, and ¢ = 28K). The
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wall used in this simulation was modelled with diffuse boundary conditions,
with a tangential momentum accommodation coefficient of 0.029, which was
derived for this system in the same paper by Sokhan et al. [66], and confirmed
by the work of Arya et al. [67] for methane on graphite.

Typically, the solid-fluid interaction parameters are computed using the Lorentz-
Berthelot combining rule which between the carbon and methane molecules,
leads to parameters o = 0.3605 and €/k, = 64.39K. However, the work
presented by Sokhan et al. shows results for different strengths of interaction
between the wall and fluid molecules, so a stronger potential of €/k, = 148.1K

was used to simulate a higher degree of wetting.

70
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Figure 5.16: Comparison between the presented model and results published
by Sokhan et al. [66]. Error bars are shown at +3m/s

The fluid molecules are driven down the channel by applying a uniform accel-
eration to all molecules of 4 x 107''m/s. In Sokhan’s simulations with flexible
walls, the energy added via this acceleration could be removed and adsorbed
by the wall molecules. However, in the case of the rigid molecular walls, and
the diffuse boundaries used in our model, a Gaussian thermostat was used to

perform the same task.

The resulting velocity profiles are shown for comparison in Figure 5.16.

The results from Sokhan were taken over a 1ns period, whereas the results
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obtained by the presented method were constructed within a 0.1ns long ensem-
ble. The variation displayed by successive profiles extracted by the presented
method is less than +3m/s or 5% of the average velocity, the variation of
Sokhan’s comparison is not known. The two velocity profiles show very sim-
ilar curvature, however the results of Sokhan et al display a slightly lower
average velocity than the results of the presented method. The similarity be-
tween the profile shapes means that the fluid molecules propagate the fluid
energy in the same way, however the differences in the average velocity ap-
pear to be caused by differences in the boundary conditions applied. As an
additional check extra validation tests were performed to test the system con-
formity to the thermal distributions.

The molecular dynamics of the fluid molecules was checked against the
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Figure 5.17: Distribution of X, Y, and Z components of velocity, and distri-
bution of resultant speed compared to distributions for temperature of 300K
with 15% error bars

Maxwell-Boltzmann velocity distribution in each of the three dimensions, as
well as the total speed distribution.

Figure 5.17 shows the distributions from a short snapshot of the steady
state simulation above, along with the exact versions of the distributions.
All distributions show good agreement with the profile of the exact versions
within 15%, demonstrating that the molecules of the fluid are conforming to

the correct thermodynamic state and that the thermostat is not having ad-
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verse effects on the velocity distributions.

Valociy (m/s)

Figure 5.18: Velocity distribution of molecules thermalised by boundary,
shown against velocity distribution for 300K with 15% variation

The velocity distribution for the velocities assigned to the thermalised molecules
at the boundary were also tested, to ensure the thermalisation was being per-
formed correctly. This 1s shown in Figure 5.18 and shows the same level of

variation as the bulk temperature distributions within the fluid.

These results provide confidence in the developed meso scale molecular
model. The simplifications applied to allow larger molecular systems to be
accessed have not had an adverse effect on the mechanics, as shown by this
molecular scale example compared to existing molecular simulation data from

a well established and developed code.

5.5 Summary

In this chapter the method developed in the previous chapter has been ex-
tended to enable the simulation of flowing fluid systems. The generations of
a flow has been implemented in the form of applying a representative acceler-
ation to all molecules in the system. This addition of energy is balanced by a
thermostatting system designed to remove thermal energy from the simulation
without effecting the dynamics of the molecules.

A number of case studies have been presented to look at the behaviour of the

bulk property extraction scheme. These highlighted the importance of sam-
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ple length and the size of the ensemble and their effect on the stability and
resolution of the solution. Also highlighted was the tradeoff between sample
and ensemble time for simulations within a restricted time frame.

Case studies involving property gradients were also considered. The temper-
ature gradient simulation example highlights the thermal control that can be
imparted on the fluid by the boundaries. This also highlighted the methods
ability to capture bulk property distributions with .high accuracy and reso-
lution. The velocity profile case study results demonstrated good agreement .
with both published results and thermal distributions.



Chapter 6

Modelling Fluid Regimes at
Nano/Meso Scales

6.1 Introduction

In this chapter, the application of the developed method and how it may be
used to extract useful data and properties from a fluid system dominated by
molecular physics is discussed. To highlight its application, the bulk property
extraction method is used to investigate flow regimes present in nano scale
channel flows. |

In the first section, flow regimes and the characterisation of fluid flow in a
continuum framework are discussed as a background to existing knowledge
of fluid behaviour. Fluid flow from the molecular scale exists as a flow of
molecules, however in meso scale systems the behaviour of both bulk and
molecular flow becomes important. The second section presents a molecular
fluid model for flow in a slit pore, 15nm high. The method developed in
Chapters 4 and 5 is used to analyse the fluid at different flow rates by purely
considering the bulk velocity distribution of the fluid. From this information
the flow at high and low flow rates is compared allowing for the different flow

behaviour to be analysed. To begin, continuum flow regimes will be discussed.

144
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6.2 Flow Regimes

Fluid can flow in two basic forms, which were investigated by experiment, by
Reynolds (1842-1912) in the early 1880’s [11]. These experiments highlighted
the two different flows present in fluid systems, which will now be considered
with the same approach as this experiment.

Figure 6.5 shows the setup of Reynolds experiments. A large tank of water

Dye

Figure 6.1: Apparatus used by Reynolds to study flow regimes

has a long thin transparent tube, through which the water must pass to exit
via the valve. The water is driven down the tube by the pressure difference
between the pressure at the inlet to the tube in the tank and pressure of the
outlet. The flow rate of the water along the tube can then controlled by open-
ing and closing the valve.

Dye is released into the centre of the flow along the tube via a thinner tube
ending just inside the entrance. The dye is allowed to flow along the tube at
the same speed as the water, and is used to visualise the internal behaviour
of the fluid.

By altering the flow rate of water passing down the transparent tube, Reynolds
was able to study the way in which water flows through channels and tubes

at varying speeds.

If the valve is only partly open, restricting the flow in the tube to only a
small velocity, the thin stream of dye remains in the centre of the flow and is
almost completely undisturbed (Figure 6.2). This is the observable result, at

continuum scales, of the infinite molecular interchange occurring within the



CHAPTER 6. MODELLING FLUID REGIMES AT NANO/MESO SCALES146

fluid, as has been discussed in Chapter 2. If multiple dye streams were em-

Direction of flow

Figure 6.2: Parallel motion of a filament of dye within a laminar flow.

ployed at different places across the tubes section, none would be disurbed,
although those close to the boundary would move with a slower velocity. This
gives the effect of the fluid being composed of layers of fluid moving parallel
to each other, which is commonly refered to as laminar flow.

As the valve is opened further, the velocity of the fluid in the tube increases,
and at some point the stream of dye begins to oscillate. If the valve were to
be opened further, the comes a point at which the stream begins to diffuse at
a distance away from the inlet. Further opening the valve gives rise to a point
at which a sudden breakdown of the dye stream at a distance from the inlet
occurs, where the dye mixes almost completely with the water. Reynolds no-
ticed that these disturbances only occurred at high flow speeds, at a distance
away from the inlet, and that the mixing commenced suddenly.

The mixing of flow that occurs at these high flow rates is known as the

Direction of flow

Figure 6.3: Chaotic mixing of filaments of dye within a turbulent flow.

turbulent flow regime. At this point, the fluid cannot be described in terms
of fluid layers particles of fluid (in terms of the continuum description of a

fluid particle) a constant velocity along the channel, but mix throughout the
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width of the tube. The fluid particles in this flow regime have components of
velocity not just in the direction of flow, and their paths criss-cross over each
other in a seemingly unpredictable and chaotic way (Figure 6.3). In turbulent
flow, the motion is irregular and conforms to no pattern in terms of frequency
or formation of eddies, as the mixing occurs on a wide range of scales. How-
ever, there still remains a bulk average flow of fluid towards the outlet which
the fluid particles follow, but they do not follow as pure a trajectory as fluid

particles in a laminar flow.

Gotthilf Ludwig Hagen [96] a German physicist and hydraulic engineer,
was the first to notice that the transition occurred in a tube at a specific
velocity. He also noted that this velocity was dependant on the temperature
of the fluid flowing through the tube, directly related to which is the viscosity.
However, Hagen was unable to derive a general law to describe this behaviour.
Further experiments performed using the above apparatus by Reynolds [11],
who noticed the inverse relationship between the transition velocity and the

diameter of the tube. This lead to the construction of the Reynolds number,

Re= % - (6.)
I

which is a function of density p, viscosity u, velocity u, and characteristic
dimension ! (in this case the tube diameter). The relationship that Reynolds
came up with, a measure with which to judge the transition to turbulence,
but also take advantage of the similarity of flows.
Reynolds noticed that large scale flows, showed similar behaviour to that of
flows of the same geometry, but on a smaller scale with a higher viscosity. This
similarity of flows, is used extensively in experimental investigations, and sim-

ilar flows can be considered similar if they possess the same Reynolds number.

The smooth, predictable nature of laminar flow allow it to be easily anal-
ysed mathematically. However, the complex and chaotic behaviour of turbu-
lent flows does not allow for easy prediction. Turbulent flows are individual,
and the exact dynamics of a turbulent flow is unrepeatable and it is affected
by dynamics on many scales. However, the behaviour of the fluid on small
scales can be represented by statistical methods to provide an approximation

of the multi-scale mixing and eddy effects.
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There are three basic models used for turbulent flow simulation on the contin-
uum scale, DNS, LES and RANS. DNS (Direct Numerical simulation) presents
the fullest simulation model turbulence that can be very accurate, but is also
very computationally expensive. RANS (Reynolds Averaged Navier-Stokes)
is the most simple, where turbulent terms are approximated as a function of
Reynolds number. LES (Large Eddy Simulation, and Very Larger Eddy Sim-
ulation) presents a balance between the two, where the eddies on the scale of
the simulation are evaluated fully, and smaller scale eddies are approximated
using a diffuse term.

6.2.1 Laminar Flow

Laminar flow, can be described as fluid flowing in adjacent parallel layers,
or laminae. La,yersvof fluid that flow over each other, imposing shear or drag
forces on adjacent layers. Also the streamline followed by continuum fluid par-
ticles do not cross, but follow smooth predictable paths. This is the description
commonly used for laminar flow at continuum scales. This description how-
ever, is not valid at molecular scales as fluid layers and continuum particles
cannot be described through the chaotic thermal motion of the molecules. It
is therefore necessary to identify other distinguishing features to determine
weather a flow is laminar in a molecular system.

For laminar, low speed flows, both Hagen and Poiseuille (1799-1869) found,
through experimentation, a linear relationship between the head loss in a
length of pipe, and the flow rate of fluid. This head loss is the result of a
linear relationship between the friction force experienced by the fluid from the
wall imposing a velocity gradient on the flow. Here, the shear force between
fluid layers results in a velocity gradient across the channel or pipe. This is
quantified by the Hagen-Poiseuille equation for the flow rate ), in a cylindrical

pipe of radius R,

Q= —ﬁ (3—2) /(;R (R*r —r%)dr (6.2)

_ wR* (dp
=% (%) (63)

Which simplifies to,
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The velocity at any radius of the pipe can also be calculated as,

u(r) = —ﬁ (-Z—Z) (R - ?) (6.4)

Velocity profiles of flows can be extracted from molecular simulations using
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Figure 6.4: Velocity profile for laminar flow in a cylindrical pipe of radius R,
as described by Hagen and Poiseuille

the methods described in Chapter 5, and compared with those computed
from the above equations. These equations however, do not account for the
slip between the solid and fluid at molecular scales [46]. On the continuum
scale, it is assumed that there is no slip at the boundary and the fact that
slip is present may have an effect on the linear relationship between flow
rate and pressure head. The velocity distribution of the flow in a channel or
pipe, extracted from a molecular simulation, contains information about both
the conformity to the laminar profile described by Hagen and Poiseuille and
the flow rate in the tube. This information can be used to identify laminar

behaviour through the chaotic molecular motion.

6.2.2 Turbulent Flow

Turbulent flow occurs at high speeds, where the inertial terms of the Reynolds
number dominate the viscous terms. In a turbulent flow regime, there is a high
level of chaotic mixing and diffusion. From a continuum view point, the paths
followed by fluid particles are erratic and cross continuously as the flow is
mixed up. On a molecular scale, the dynamics of the molecules does not ap-
pear to significantly change, as the chaotic random motion is present in both
laminar and turbulent flows.

Experimental tests were performed by Henri Darcy(1803-1858) in 1857 [97]
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on turbulent flow in long pipes of different sizes, which resulted in the Darcy
law for head loss in turbulent pipes. Due to the chaotic unpredictable nature,
almost all models for turbulence contain some form of experimental results,
as pure numerical analysis is not currently possible.

To identify a turbulent flow, observations of chaotic behaviour is not sufficient
at molecular scales, as it is present in laminar flow as well in the form of ther-
mal motion. However, the mixing within turbulent flows occurs on a wider
range of scales which has the effect of increasing the energy losses internally
within the fluid, where energy is dissipated away from the direction of flow.
As a result, this increased instability in the fluid can be noted by observing
the relationship between pressure loss and flow rate. The relationship should
be similar to the laminar relationship, but with a lower gradient as the energy
needed to drive the flow is higher. The increased energy perpendicular to
the direction of flow should also increase the mixing of the fluid, leading to

a different velocity profile that is more uniform across the centre of the channel.

This section has introduced continuum scale behaviour of fluid in the form
of two flow regimes, laminar and turbulent flow. These regimes can be easily
observed, tested and simulated on at continuum scales. However, as these
simulation methods break down as the meso scale is approached, little is known
about the behaviour of molecular flows. In the next section, the method
derived in Chapter 5 is used to extract information from a molecular simulation
over a range of flow rates, to allow the behaviour of the flow to be analysed

at different speeds.

6.3 Fluid Flow Characterisation from Molecular

Simulation

In this section, a molecular simulation is used to model the physics of a fluid
passing through a slit pore of height 15nm. Least square nodes are used to
extract the bulk velocity distribution to provide information about the be-
haviour of the fluid at these scales. The slit pore is approximated by two
parallel plates with diffuse boundary conditions in the y direction, and peri-
odic boundary conditions in the x and z directions.

In the following case, the velocity profile of the flow is extracted to measure



CHAPTER 6. MODELLING FLUID REGIMES AT NANO/MESO SCALES151

the fluid response to increasing pressure gradients. The velocity gradient con-
tains information about the flow rate of fluid along the channel which, for
traditional laminar flows, should increase linearly with the increasing pressure
gradient. However, at molecular scales, there is a definite amount of slip be-
tween the fluid and the boundary. This will affect the velocity gradient by
raising the mean velocity in the chahﬁel, as the frictional effect of the wall
is reduced. The shape of the velocity gradient should maintain its Poiseuille
profile approximately, allowing for molecular variation, but with a non zero
velocity at the boundary, and shown in the validation tests in Chapter 5.

The system used in the tests is designed to replicate the flow of methane con-
fined within a graphite slit pore. A two dimensional schematic of the simulated
three dimensional system is shown in Figure 6.5. The pore walls are modelled
as two single layers of carbon molecules in a graphite lattice, interacting via
a Lennard-Jones potential. The Lennard-Jones parameters for methane were
a collision diameter of o = 0.381nm, a well depth of €¢/k;, = 148.1K, and with
a molecular mass of 16.043amu. The Lorentz-Berthelot mixing rules were
used for the collision diameter, giving o = 0.3605nm for the carbon-methane
interaction. The well depth used, was €/k; = 148.1K equal to the methane-
methane well depth, similar to the methane wall used by Miyahara [41, 66],
but the tangential momentum accomodation coefficient of the diffuse bound-
ary was derived from the parameters of the carbon lattice, f = 0.025 [66].
The boundaries are fixed and possess no momentum, and therefore need no

mass parameter.

The pore walls are 15nm apart, and infinite dimensions parallel to the pore
are replicated using periodic boundary conditions in the z and z directions,
with lengths 15nm and 8.5nm respectively.

Simulations were performed using a range of pressure gradients, simulated
by applying a uniform acceleration to all fluid molecules. All tests were per-
formed with the temperature at the wall maintained at 300K and as the
boundaries are solid and cannot remove sufficient energy from the system, the
fluid temperature was maintained at 300K using a Nosé Hoover thermostat.
The driving acceleration applied to the fluid was varied from 2 x 10''m/s? to
1 x 10'2m/s?, to test response of the fluid over a wide range of flow rates.
The fluid response was measured using a one dimensional array of nodes placed
across the domain in the y direction, at 0.5nm intervals. Samples of the z
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Figure 6.5: System to test flow regimes between parallel plates

component of velocity (along the channel) of the molecules were taken every
200 time steps, and ensemble averages were computed every 2000 time steps.
By taking ensemble averages at these relatively short intervals, the progress
of the simulation can be monitored using the velocity profile to check that a

stable solution is reached for each run.

6.3.1 Characteristics of Low Speed Molecular Flow

For the above model of a slit pore, the driving force along the pore was ranged
from 2 x 10"m/s? to 1 x 10'2m/s?. The resulting velocity profiles computed
from the ensemble averages were recorded, and the average velocity of the flow
in each case was found. Figure 6.6 shows a plot of the resulting stable average

velocity against the driving force applied to the flow.

The average velocity is plotted in Figure 6.6, as it is proportional to the flow
rate of the fluid in the channel, against the driving force applied to the flow.
The graph shows a linear relationship between average velocity and driving
force, which passes through point (0,0). A degree of deviation is present from
the linear line due to the short time over which the ensemble averages were
taken but a clear relationship is present.

In the chaotic molecular structure of a fluid, the molecules are continually
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Figure 6.6: Average velocity in channel plotted against driving force (simu-
lating pressure gradient) for low speed flows.

moving with their own thermal velocity, conforming to the Boltzmann distri-
bution. A useful comparison to draw, is between the average of the thermal
motion of the molecuies and the average ‘bulk’ velocity of the flow. The aver-

age speed of a molecule in on direction can be computed from the Boltzmann

[Tk
Vaverage — Fb (65)

For a system temperature of 300K, the average velocity due to thermal motion

equation as,

becomes (8],
Vaverage = 394.341m /5 (6.6)

The lowest driving force tested in this system gives an average bulk velocity
of 15m/s, corresponding to a total of 3.8% of the average thermal velocity of
molecules. Similarly, for the largest velocity of 65.5m/s corresponds to 16.6%,
both of which are very small compared to the magnitude of the motion of the

molecules.

6.3.2 Characteristics of High Speed Molecular Flow

By extending the range of driving forces applied the bulk velocity extracted

captured a change in the behaviour of the flowing molecules. Figure 6.7 shows
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a plot of the average velocity of the flow against the driving force for values up
to £ = 5.0 x 10"®*m/s?. On the left hand side of the graph, the same data as
the graph shown in Figure 6.6 is displayed. However, for iarger driving forces,

a change in the behaviour can be seen beyond this region.
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Figure 6.7: Average velocity in channel plotted against driving force (simu-
lating pressure gradient)

Beyond the linear, slow speed flow region (far left of graph), the same in-
crease in driving force causes less of an increase in the average velocity. The
fluid response reduces further until another approximately stable relationship
is displayed for driving forces of between 1.2 x 10¥m/s? to 5 x 103¥m/s?.
This high speed flow regime is present over a range of velocities from 190m /s to
254m/s, which to compared with the average thermal velocity of the molecules
is 48.2% and 64.4% respectively. The low gradient of the graph in the high
flow rate region of the graph indicated that a higher proportion of the energy
given to the fluid by the driving force is diffused away from the direction of
motion.

The range of driving forces tested was stopped at 5 x 10'¥m/s? because it was
found that at higher values the thermostat interfered with the dynamics of the
simulation. At values of 6 x 10'3m/s?, the molecular motion becomes unstable
causing clusters of molecules to form. This is due to the system becoming over
constrained and molecules settle into a quasi equilibrium state in which they

change energy states a little as possible, however they still maintain the global
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velocity distributions.

The results shown in Figure 6.7 demonstrate that the behaviour of differ-
ent flow regimes can be captured and identified from a molecular simulation,
where the high flow regime displays much higher losses than low flow rate
regime. The low speed flow can be likened to a laminar flow, where losses are
low meaning that the exchange between layers parallel to the direction of flow
should be minimal. In the high flow case, losses are higher and higher level of
interaction and exchange is expected perpendicular to the flow direction. This

can be examined by comparing further data extracted during the simulations.

6.3.3 Comparisons and Data Analysis

To further aid in the characterisation of these two regions, comparisons can be
drawn between their behaviour. The presented method for obtaining the bulk
properties has been used above to extract velocity profiles of the flow to plot
the average velocity of the flow against the applied driving force. From these
results, two regions have been identified one which displays significantly higher
losses than the other. Further analysis of these regions can be performed by
comparing the velocity profiles extracted from simulations performed in each
of the regimes. Figure 6.8 shows the velocity profiles extracted for driving
forces of 2 x 10'?m/s? and 4 x 10'¥m/s?, corresponding to flows within the
low and high flow rate regimes respectively. The velocity profiles were ex-
tracted using 29 nodes placed at 0.5nm intervals across the channel, sampling
at 75 time step intervals (2.0fs time step), and each ensemble was measured

over 0.4ps.

The extracted profiles are shown if Figure 6.8. The profile extracted from
the simulation with a low flow rate (bottom), displays a profile that is much
more curved than the high flow rate profile. Accounting for the slip between
the wall and the boundary, the profile is similar in shape to the analytical
Poiseuille profile for describing laminar flow in pipes and channels. The pro-
file is caused by the smooth propagation of energy throughout the system,
where a molecule diffusing across the channel experiences many low energy

collisions, altering its thermodynamic state as it passes each point. Both pro-
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Figure 6.8: Velocity profiles extracted from molecular simulations for driving
forces of 2. x 10'?m/s? and 4. x 10'3m/s%. Flows at the two speeds show a
variation of +25m/s

files show the same degree of variation, £25m/s. The variation is dependant
on the thermal motion of the underlying molecules and therefore the same for
high and low speed flows.

The High flow profile on the other hand, displays a markedly different shape.
For this flow regime, the molecules possess more energy and display a signif-
icantly flatter velocity profile, showing that there is less difference in kinetic
energy at neighbouring points through the simulation. This is in agreement
with the continuum description of a turbulent flow with a flatter profile, as
there is a higher degree of energy transfer between adjacent layers of fluid
(mixing of energy), causing this velocity profile to form. This highlights the
difference in the propagation of energy within the system, however, this does

not tell about the propagation of mass within the channel.

An examination of the diffusion of mass within the system was performed
using the following tests. The same simulation as above was setup and equi-
librated to steady state for driving forces of 2. x 10*m/s* and 4. x 10¥m/s?

corresponding to the same low and high flow rates between parallel plates used
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above. All the molecules falling within a vertical band between z = 3.0nm and
x = 5.0nm were selected and tagged at the start of the production stage. The
simulation then proceeded for a short 282fs period, to allow the molecules to
diffuse from their original positions, but not reach the periodic boundaries (for
clarity). After this short time period the final distributions of the molecules
can be plotted to determine the spread achieved as a result of diffusion.

Figure 6.9 shows the initial and final plots for the low and high flow rates, for
only the molecules tagged at the start of the simulation, all other molecules

have been removed from the images.

Figure 6.9: Initial and final distributions of molecules in centre of channel
after 282fs (Flow is from left to right). Left: Low flow rate Right: High
flow rate

From the images, it is clear that the molecules in the high flow rate stream
have moved further than those in the low flow rate stream. It is also noticeable
that the high flow molecules have not dispersed as much as those in the low
flow. This is confirmed by looking at a histogram plot of the distribution of

the molecules, as shown in Figure 6.10.

In this Figure, the frequency has been normalised for the number of molecules
in each band, as the low and high flow examples contained a slightly different
number of molecules. These results highlight that there is a substantial dif-
ference between the distributions of the two regimes. The standard deviation

of the low flow rate simulation is 0.0443, whereas the high flow value is sub-
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Figure 6.10: Graph comparing the distributions of the molecules in low and
high flow rate simulations after 282 fs of simulation time.

stantially lower, at 0.0302.

The same test performed with a horizontal band, between y = 6.0nm and
y = 9.0nm allows the examination of the way in which the molecules diffuse
vertically, perpendicular to the solid boundaries. Figure 6.11 shows the initial
and final plots. In these figures, the distribution of molecules in the low and
high flow rate in the y direction is visibly the same in both cases. Figure
6.12 shows a histogram of the data collected, along with the initial position
of the band. The graph shows that the majority of molecules have diffused in
different directions in the low and high cases, however the distributions of the
molecules after the short time is almost identical. The low flow rate gives a
standard deviation of 0.0320 and the high flow gives a value of 0.0304

These results give an indication over a small time frame, the diffusion of
mass within the molecular system in the z (streamwise) and y (perpendicular
to pore walls) directions. In the x direction, the molecules within the high
speed flow diffuse less than those travelling in the lower speed flow. However,
there is little change in the diffusion of the molecules in the y direction due to
the interaction with the solid boundaries. The molecules in the high flow case,

have a bulk motion that is a greater proportion when compared to the ther-
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Figure 6.11: Initial and final distributions of molecules in centre of channel

after 282fs. (Flow is from left to right). Left: Low flow rate Right: High
flow rate
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Figure 6.12: Graph comparing the distributions of the molecules in low and
high flow rate simulations after 282 fs of simulation time.

mal motion of the molecules which has the effect of ordering the molecules.
Also, the increased energy being diffused perpendicular to the direction of
motion has the effect of containing the molecules by the increased strength of
the neighbour interactions (due to the increased energy perpendicular to the

direction of flow). In the low flow case, the molecules have a much smaller
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component of bulk velocity, and have more freedom to drift within the fluid

domain.

The result is that as the speed of the flow increases, energy is distributed
internally within the fluid. This is shown in Figure 6.7, where the energy lost
identifies two regimes where a change of behaviour can be identified. Beyond
this point, it can be shown in the comparison between the two velocity profiles
in Figure 6.8 that for high flow rates the energy is diffused over a wider area
across the channel, however the mass diffuses less. This is due to the increased

molecular exchange between regions of fluid in terms of molecular interactions.

However, in the high flow case energy appears to be distributed in direc-
tions perpendicular to the direction of flow, showing turbulent behaviour. In
a continuum framework, this would be accompanied by an increase in temper-
ature across the channel. But in this case, the thermal constraints imposed
by the thermostat fix the average temperature of the channel. This over
constraining of the system could be a factor in the behaviour that has been
extracted from the molecular dynamics. This is an area of meso scale sim-
ulation that needs more investigation and comparison with experiments for
extra clarification and maybe the development of a new meso scale energy

constraint system.

6.4 Summary

In this chapter, it has been shown how bulk behaviour can be extracted from
the simulation of the internal molecular interaction, and how this information
can be used to investigate fluid flow systems. This chapter has concentrated
specifically on the extraction of bulk velocity of a fluid in a slit pore, but the
same principles can be implemented for pressure, density, and temperature
distributions, either independently or investigated together, depending of the
dynamics of the system of interest.

In the slit pore case study, the velocity profiles were extracted as ensembles of
average velocity at nodal sites placed at regular intervals across the channel.
The spacing of the nodes, together with the radius of influence associated with
each node allows for spatial resolution and clearly displays the curved velocity

profile in the low flow rate case. In all the extracted profiles, a degree of sta-
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tistical variation is present, and profiles are approximated as averages. This is
due to the short ensemble time allotted between ensemble profiles being taken
to provide good temporal resolution and allow the approach to steady state
to be monitored.

Using this approach, a change in behaviour could be captured, highlighting
the possibility of two flow regimes present. This combined with analysis of
the diffusion showed a reduction in the mass diffusion, but an increase in the
diffusion of energy within the fluid, which together with the consideration of
the system energy constraints goes to account for the high losses in the high
flow system. This example has highlighted how this method may be employed
to extract useful data from a molecular physics dominated system, and allow
the analysis and characterisation of a fluid system in terms of useful engineer-
ing properties and behaviour. Also highlighted, is the energy constraint issues

with the use of the current thermostat systems.



Chapter 7

Performance of Proposed Meso
Scale Model

7.1 Introduction

In this chapter, the computational issues associated with performing simula-
tions using the molecular model and bulk property extraction on meso scale
systems are discussed. The first section details the performance issued faced
with large scale molecular modelling and studies how the computational de-
mands change as the system size increases. This section also highlights the
importance of the consideration of density when considering large scale molec-
ular simulations.

The second section contains a study of the flow along a slit pore of meso scale
dimensions. Simulations contain between 20,000 and 100, 000 molecules and
the impact this increased number of molecules and increased density has on the

performance of the computation, and the behaviour of the fluid is discussed.

7.2 Issues in Using Large Numbers of Molecules

In general, as the number of moleculeés increases in the system the computa-
tional time and resources required also increases. The number of molecules in
a system can change in two ways, as a result in a change in density, as a change
in volume, or both. Up to this point in this thesis, molecular simulations have

been performed within cells of a maximum dimension of 15nm, with a max-

162
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imum of 5104 molecules. This has been to allow validation of the molecular
model, and the ability to explore the abilities of the bulk property extraction
method with low numbers of molecules, where the method is weakest. In this
section the resulting impact on the computational resources is discussed as
a result of increasing the size of the molecular system to achieve meso scale
dimensions. '

Firstly, the effect of an increase in the number of molecules at constant density

(increased volume) is discussed.

7.2.1 Processing Large Number of Molecules

An increase in the system size has a number of knock on effects within a molec-
ular simulation. By increasing the number of molecules, the time to process
the molecules and their interactions increases as well the memory needed to
store their positions and lists of neighbours. Additionally, information on each
molecules position, velocity, and resultant force in all three dimensions must
be stored during each time step.

In order to simulate meso scales systems which contain large (up to 100, 000)
numbers of molecules, the computational requirements of the simulation must
be fully understood. To explore the limits of a molecular model, performance
tests are performed to gain an understanding of the computational require-
ments in two ways. Firstly, the effect of a simple increase in system size is
tested by comparing the processing time of simulations with different numbers
of molecules of the same density (volume altered). Secondly these results will
be compared to simulations of varying density in systems of the same volume.
These tests will help our understanding of the issues important in simulating
large molecular systems, and the limits faced. These simulation tests are per-
formed with a small number of molecules, between 14 and 5104 molecules. It
is hoped that these small molecular numbers will display some overhead pro-
cessing time, of the standard computations and operations performed giving

a minimum computation time.

Constant Density Simulations

The simulations performed at constant density, were performed using a cubic

cell with periodic boundary conditions in all three dimensions. The side of the
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Figure 7.1: Simulations performed at constant density, over a range of volumes
and numbers of molecules, to test computational requirements.

cubes tested were 1nm, 2nm, 3nm, 4nm, 5Snm, 6nm, Tnm, which contained
14, 114, 385, 913, 1783, 3080, and 5104 molecules respectively, as shown in
Figure 7.1. This test explores the scalability of the molecular model, and the
extra requirements needed to simulate at large molecular numbers. For each
system, the time taken to reach 1ns of simulation time was recorded, along
with the average number of neighbour interactions per molecule. In a molec-
ular simulation, as the number of molecules increases, so does the size of the
arrays required to the store position, velocity of all the molecules. The size
of these arrays is a constant amount of memory required for every additional
molecule in the system and is of little interest. However, the size of the neigh-
bour list arrays depends on the number of neighbour pairs in the simulation
and changes with the number of molecules and the density of the simulation.
The neighbour lists can be far longer than the molecular properties arrays,
and because of their dependance on the number of molecules as well as the
system parameters, can capture behaviour that may further increase the com-
putational time and memory requirements.

Figure 7.2 shows a plot of the number of molecules against the average num-
ber of neighbours possessed by molecules within the system, over the different

system volumes at constant density.

This graph shows a constant 72.6 neighbours per molecule for simulations
with above 385 molecules, and hence for systems with sides greater than 3nm.
The low number of neighbours for 14 (1nm) and 114 (2nm) molecules are due
to the neighbour list cutoff radius being greater than 2 times the length of
the periodic cell, as only a one image buffer is considered in each dimension.

However, this constant relationship is to be expected beyond the 3nm system,
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Figure 7.2: Plot of number of molecules against average number of neighbours
per molecule for the constant density simulations.

due to the constant density. This presents a linear relationship between the
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Figure 7.3: Plot of total number of neighbours against number of molecules
for the constant density case

number of molecules and the total number of neighbour pairs (Figure 7.3),
steadily increasing the computational time needed to process all the neigh-

bour interactions.

Figure 7.4 shows a plot of the number of molecules against the time taken
for the simulation to reach 1ns. This graph shows a smooth relationship be-

tween the time needed to process the simulation and the number of molecules.
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Figure 7.4: Plot of number of molecules against time taken to reach 1ns of
simulation time for the constant density simulations.

The time increase added for each molecule added increases with the number of
molecules. As shown in Figure 7.2 the number of neighbours per molecules is
constant for the larger systems, however in this case extra time is spent search-
ing through the extra molecules constructing and processing the neighbour list
interactions. Neighbour searches are performed periodically as described in
Chapter 2 but the searches are performed over the whole system. By adding
one extra molecule to a system of N molecules, the number of search evalua-
tions being performed increases by N, and at this density the number of extra
interactions to process increases by approximately 72.

Such computational costs can be reduced by implementing another stage of
search /sorting that can be performed over smaller areas frequently, and over
the whole system less frequently. This however, would require more memory;,

trading off memory against computation time.

Constant Volume Simulations

To aid as a comparison with the above results for system sizes at constant
density, simulations were performed over a range of molecular numbers at
constant volume. Simulations were performed over a range of densities (Fig-
ure 7.5) within a constant volume cube of side 5nm, and periodic boundary

conditions in all three dimensions.
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Figure 7.5: Simulations performed for different numbers of molecules at the
same volume, with varying densities to test the additional computational re-
sources required for high density systems.

The densities tested were 2.984, 24.29, 82.05, 194.6, 380.0, 656.4, and 1087./€g/m3
with 14, 114, 385, 913, 1783, 3080, and 5104 molecules of methane, respec-
tively. In these simulations, the number of molecules increases which increases
the time required to process and move the system molecules, and are subject
to all the issues raised about computational time and resources as the constant
density tests above. However these simulations are performed at increasing
density, which when compared to the results above, isolate the effect of in-

creasing the length of the neighbour lists.

Figure 7.6 shows a plot of the number of molecules against the average
number of neighbours per molecule possessed by each molecule in the simula-
tion.

The graph shows a linear increase in the number of neighbours with the in-
crease in number of molecules present. This means that the neighbour lists
are no only getting longer due to the increased number of molecules, as was
shown in the constant density test results, but the length of the neighbour
lists is also increasing because the number of neighbours possessed by each
molecule in the system is increasing. This further increases the number on
pairwise force evaluations needing to be evaluated, extending the demand on
memory storage and CPU processing.

Figure 7.7 shows a plot of the number of molecules against the time taken for
the simulation to reach one nano second, for a range of system densities as
specified above. Simulations were performed on a 3GHz processor PC with
2GB RAM.

The graph for the constant volume simulations (Simulations of varying density,
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Figure 7.6: Plot of number of molecules against the average number of neigh-

bours per molecule.
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Figure 7.7: Plot of number of molecules against time taken to reach 1ns
of simulation time for the constant density simulations for constant volume
simulations (solid line) and constant density simulations (dashed line, Figure

7.4)

solid line) is shown against the results for processing time of the constant vol-

ume simulations (dashed line, Figure 7.4). The constant density simulations

were performed in a 5nm cube, and the range of numbers of molecules used

was the same in both constant density and volume simulations. As a result,

the two resulting curves intersect at the system containing 1783 molecules.

This however creates an interesting point on the graph in Figure 7.7, where
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systems larger than 1783 molecules (Constant density simulations performed
at 380.0kg/m?®) show the higher density simulations (solid line) to require
more computational time than the simulations containing the same number
of molecules at a lower density(from the constant density simulations). This
is due to the extended length of the neighbour lists and the number of extra
interactions needing processing per molecules. However, for the simulations
with less than 1783 molecules, systems with lower densities than the constant
density simulations, display a shorter length of processing time is needed to
process the interactions within the system, as the neighbour lists are shorter.
This demonstrated the importance of considering the density of a molecular

simulation when considering the resources required by a simulation.

The above study highlights this issues present in simulating large num-
bers of molecules. Although simulations have been using a maximum of 5104
molecules, they show the behaviour of the system at different volumes and den-
sities. It is particularly important to understand these concepts with small
system sizes, as the only difference between these tests and large-massive sys-
tems (apart from larger numbers) is the reduced proportion of time spent of
overhead calculations and linear operations.

These results highlight the importance of considering the density of the sim-
ulation as well as the number of molecules being processed, as a high density
simulation (or one with high density regions) can significantly increase the
processing time and memory requirements. Also highlighted, is the tradeoff
that is possible between CPU resources and memory, that can be made dur-
ing the search routines. This can utilise a larger memory usage to speedup
the time taken searching for neighbouring pairs within the simulation domain
with a tree like search structure.

These issues are key, as these results indicate that there is a limit on the avail-
able simulation domain at meso scales in terms of both molecular numbers

and density, which depend on the computing power available.

7.2.2 Boundary Conditions

In this molecular model, the solid molecular boundaries have been replaced
with an approximating continuous wall to remove solid molecules from the sim-

ulation in order to reduce computational cost. These diffuse boundary condi-
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tions replicate the scattering/corrugation effect of a molecular wall over a large
number of collisions by thermalising a proportion of the colliding molecules.
As the characteristic length and time of the system increases, the number of
collisions occurring with the wall over this time and length scale increases.
As a result, the wall approximation is being performed over a larger number
of collisions, and provides a much better approximation. The boundary con-
ditions have been validated against fully molecular walls at molecular scale
dimensions with results published by Sokhan et al [66], in Chapter 5. This
validation of the model with a low collision rate over the time and length scale
of the simulation, gives us the confidence in the validity of the boundaries at

larger scales where the collision rate is higher.

7.2.3 Bulk Property Extraction
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Figure 7.8: Extracting bulk properties from systems with high number of
molecules (left) and low number of molecules (right)

At meso scale dimensions, bulk properties become much more defined and
stable as their definition improves and importance rises, but are still below the
limit at which they can be evaluated by the continuum governing equations.
The parametric study performed in Chapter 5 highlights that the ensemble
averages of properties collected, is improved by sampling the widest range of
available phase space positions. A molecular system with meso scale dimen-
sions containing a large number of molecules allows for a greater number of

molecules to be included in the influence zone of each node as the resolution
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of the system moves up to meso scale resolutions, when compared to a system

of molecular scale dimensions of the same density (Figure 7.8).

7.3 Meso Scale Simulations

The small scale tests performed up to now have tested the lower limits of
this method for extracting bulk ensemble properties from molecular simula-
tions. The results may be less accurate because the ensemble averages have low
numbers of molecules. Never the less, the method provides a framework which
allows the characterisation of bulk effects from a molecular model. These bulk
fluid properties have a definitive meaning above the molecular scale over large
numbers of molecules. The bulk propertiés have a definite definition on a con-
tinuum scale, however there are a wide range of governing equations that can
predict bulk fluid behaviour at these scales. The aim of this method is to cap-
ture the behaviour of these properties at meso scales where they have meaning
but cannot be characterised by continuum equations. It is particularly impor-
tant to characterise fluid in terms of meaningful properties relevant to solving
engineering problems occurring at meso scale. In this section Simulations are
performed at meso scale dimensions to examine the way in which the be-
haviour of this method, and the dynamics of the molecular model, change

when a large number of molecules is used.

The system used is similar in form to the slit channel used previously to
aid with comparison with smaller systems, this is shown in Figure 7.9. The slit
channel is approximated by two parallel sheets of graphite separated by 93nm,
with modified boundary potentials to approximate an infinite solid comprised
of parallel graphite layers. The walls themselves were approximated using the
diffuse boundary conditions with a tangential momentum accommodation co-
efficient of f = 0.029 [66,67]. Periodic boundary conditions are applied in the
z and z at 93nm and 40nm respectively. An acceleration of 1 x 10'3m/s? is

used to simulate a pressure driven flow in the z direction.

The available volume between the graphite walls was filled with methane
molecules interacting with Lennard-Jones potential with a collision radius of
o = 3.81A and a well depth of € = 148.1K. A range of densities was inves-
tigated of 1.58, 3.15, 4.73, and 7.89kg/m?, corresponding to 20,000, 40, 000,
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60,000 and 100,000 molecules respectively. All simulations were performed
with a fluid and wall temperature equal to 300K . This model generates a flow
of molecules along the slit pore, the behaviour of which was observed using
a one dimensional series of 46 nodes placed perpendicular to the direction of
flow, in the y direction. The nodes, spaced at 2nm intervals captured the
streamwise component of velocity.

The nodes collected molecular properties of molecules within a radius of in-
fluence of 2.5nm, using the Gaussian weighting function in the least squares
approximation. The Gaussian weighting function was shown to be the most
capable in the parametric study in Chapter 5, and the nodal radius was chosen
to allow for high resolution, to allow the boundary layers at the solid interfaces
to be captured.

The time step used was 2 fs and samples were taken every 100 time steps. The
ensemble averages were calculated over all nodes every 2,000 time steps. The
parametric study also captured that larger times between samples and ensem-
bles gave the best results, but for these simulations relatively short times were
chosen to capture the development of the steady state solution.

Figure 7.10 shows the development of the solution for the low density system
containing 20, 000 molecules. This graph clearly shows the systems progress to
developing a steady state solution from ¢t = 0 where the velocity of the system

is zero, to the final equilibrium state after 90, 000 time steps at t = 180ps. At
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Figure 7.10: Bulk ensemble velocity profiles taken at 2ps intervals. At ¢ = 0
the fluid is at rest.

t = 0, the initial velocity increase in between ensembles is large and the data
contains a lot of variation, however as the simulation progresses the change
in velocity between successive profiles reduces until the equilibrium state is
reached. Once equilibrium has been reached, the successive velocity profiles
are almost identical and show significantly less variation than at the start of
the simulation, where diffusion is a higher component of the resultant velocity

of the molecules.

The above simulation was repeated for systems of the same volume con-
taining 40, 000, 60,000 and 100,000 to examine the effect that a density in-
crease had on large systems in terms of both the fluid behaviour, and the
performance of the simulation. All simulations were performed with the same
approximated pressure gradient of 1 x 10'3m/s?, and using the same param-
eters for collecting the ensemble properties.

The resulting steady state profiles are shown in Figure 7.11 for the four differ-
ent densities. The average of four extracted profiles is shown with variation in
each case of £7m/s. From this graph the difference between the simulations of
different densities can be seen. All of the results show boundary layer effects at
both walls, however the velocity at the wall is slightly higher on the right hand
side of the graph. This is due to the distance between the nodes and the solid
boundary, which is 1nm on the left of the graph and 3nm on the right. This
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Figure 7.11: Steady state velocity profiles for slit channel systems with 20, 000
(top) 40,000 (middle top), 60,000 (middle bottom) and 100,000 (bottom)
molecules, corresponding to densities of 1.58, 3.15, 4.73, and 7.89kg/m3. For
clarity the average profile is shown with +7m/s

has been done to highlight the errors that are introduced at the boundaries.
If a nodes ‘zone of influence’ extends beyond the boundaries of the fluid only
a proportion of its available area may contain molecules, hence there are fewer
molecules from which to sample the local behaviour. This leads to an increase
in the variation in the results, as fewer points in the available phase space are
sampled, an effect that can be clearly seen when comparing the results of the
four simulations on the left and right hand sides of the graphs. Here, the node
placed at 3nm from the boundary is has its 2.5nm ‘zone’ fully within the fluid
domain and shows a clear distinction between the four sets of results. The
final node on the left, placed at 1nm from the boundary shows more variation
as more of the nodes ‘zone’ is outside the fluid domain. However, this node
captures a lower velocity at the boundary than the node on the right. This
is an important effect to consider when placing nodes within the domain, as
nodes closer to the boundaries give better information about the behaviour
at the boundary but only if the information is within an acceptable tolerance.
This effect is minimised when the number of molecules is increased and as

the percentage difference between the number of molecules in boundary nodes
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and the number of molecules in other nodes is reduced.

As the density of the simulation is increased, the average velocity in the chan-
nel decreases. In continuum terms, increasing the density of a simulation
increases the Reynolds number however at molecular scales, the concept of
Reynolds number is not well defined due to the variation of flow properties.
A flow with a higher Reynolds number could potentially mean higher losses
within the system, and Chapter 6 highlighted that higher losses were found
in systems with high diffusion of energy and lower diffusion of mass. Higher
density simulations exhibit an increased number of collisions due to the in-

creased number of neighbouring molecules.

7.3.1 Performance of Meso Scale Simulations

These meso scale simulations at different densities contain large numbers of
molecules, from 20,000 to 100,000. The performance tests performed earlier
in this chapter highlighted the high demand of high density simulations, and as
a result these tests were performed at relatively low densities. All simulations
in this section were performed on a Xeon 3.2GHz processor with 6GB RAM.
To examine the performance similar data to previous tests was extracted, in
the form of neighbour pairs and simulation time.

Figure 7.12 shows a plot comparing the number of molecules'in the simulation
against the number of neighbour pairs per molecule. The graph shows the
same linear relationship to that shown by the smaller scale variable density
simulations in Figure 7.6, although in these tests the density is much lower
(small scale density simulations were performed at a density of 72.8kg/m?3).
Figure 7.13 shows a plot of the simulation rate of the variable density simu-
lations at meso scales. From this, an exponential decrease on the number of
time steps that can be performed per hour as the number of molecules in the
system increases. In the 20,000 molecule case 3483 time steps could be com-
pleted in an hour, but by increasing the number of molecules by a factor of 5,
the number of steps that can be processed decreases by a factor of 21.4 to 163
per hour. This demonstrates the high cost of large systems of molecules. The

computational cost could increase significantly for systems of higher densities.
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Figure 7.12: Number of molecules plotted against number of neighbour pairs
per molecule for the meso scale density simulations.
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Figure 7.13: Plot of number of time steps achieved per hour against the num-
ber of molecules in the meso scale variable density simulations

Predictions

Using the data collected in the above section, it is possible to predict the
consequences of dramatically increasing the number of molecules. Figure 7.14
shows a plot of the number of molecules against the number of neighbour pairs
for the same, constant volume, examples shown above. In this figure, the line
of best fit has been extended to predict the number of neighbours present if

there were one million molecules in the same volume. The figure shows that
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Figure 7.14: Plot predicted from previous data of number of molecules plotted
against number of neighbour pairs per molecule for up to 1M molecules

on average there would be approximately seven neighbour pairs per molecule.
As has been shown above, the density of the system impacts strongly on the
CPU time and resources required to complete each time step. Figure 7.15
shows a plot of the number of molecules against the number of time steps that
can be completed per hour. This figure has used the line of best fit to predict
the number of time steps completed per hour for a system containing one

million molecules. The plot shows that approximately 2.2 time steps can be

50 A

&~
(3]
I

8 % 8 & &

No. time steps per hour

(5, o (4,
L i L

o

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 100000
0
Number of molecules

Figure 7.15: Plot predicted from previous data of number of time steps
achieved per hour against the number of molecules up to 1M



CHAPTER 7. PERFORMANCE OF PROPOSED MESO SCALE MODEL 178

completed per hour. This dramatic reduction is due to the time processing the
movement of such a large number of molecules, the time searching through the
domain for neighbouring molecules, and the evaluation of the forces between
neighbour pairs (which is also increased as the high density of the system
generates a larger number of force interactions to be processed). To perform
the same 180ps equilibration time with a one million molecule simulation
would take approximately 4.6 years of continuous simulation time. This time
could be seriously reduced with the implementation of parallel processing, and
by performing searches for neighbour pairs over smaller subdomains rather

than over the global system.

7.4 Summary

This chapter has presented a large number of issues associated with modelling
meso scale systems with a molecular model. At meso scales, the number of
molecules begins to prohibit the range of systems that can be simulated. The
limit on the molecular model is no in terms of scale and dimensions but in
terms of the number of molecules and trherde'nsity of the éystem. The pénalty
in terms of increased computational cost increases exponentially as the number
of molecules or density increases. '

From the bulk property extraction method point of view, as the number of
molecules increases over the length scale of the simulation, the better the
definition and the more stable the ensemble averages of the bulk properties
become. A greater number of molecules improves the phase space sampling
at each of the nodes allowing for a better resolution in time as well as space

compared to the length scale of the simulation.



Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

The work presented in this thesis demonstrates the developed method for
“simulating fluid behaviour of meso scale systems. This method provides a
versatile environment with which to investigate fluid flow systems in the region
of 1um to 50nm where molecular physics play a substantial part in fluid
behaviour or complex molecular effects are present which cannot be considered
by generalised governing equations.

The work undertaken has focused on the following points:

e Mesoscopic description of fluid. Meso scale systems, by their nature,
can neither be fully defined by continuum not molecular mechanics.
The continuum governing equations and existing mesoscopic methods
fail to account for the in depth detail of the molecular scale effects that
alter the behaviour of the flow [45]. Molecular models include the cor-
rect physics for simulations of fluid systems but the bulk effects are not
characterised from the molecular behaviour. Several schemes have been
developed to couple molecular regions to continuum with some success
(Chapter 4) but these deal with small molecular regions, including the
molecular information into the boundary conditions or as a correction.
This approach deals with meso scale systems directly, using the ensem-
ble descriptions of large scale fluid properties to extract and characterise
the bulk effects occurring within the fluid.

In this method the molecular model for the fluid behaviour is over-

179
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looked by a system of nodes placed within the domain, which collect
local ensemble averages for bulk fluid properties. This presents a versa-
tile environment for meso scale fluid investigation, as any fluid property
which can be described as an ensemble can be extracted as a distribution
within the flow field. Examples have been shown for temperature and
bulk velocity, but other properties can also be easily implemented such
as density and pressure. _ |

The parametric study performed in Chapter 5 has demonstrated the
versatility of this approach, allowing for easy implementation for a wide
variety of different systems. For equilibrium systems, the bulk properties
can be initially taken over short time periods to observe the approach
to equilibrium, and then either lengthened to achieve stable property
distributions or averages taken of shorter ensembles. These sample and
ensemble parameters, along with the radius of the nodes can be used to

tailor the simulation to the exact requirements of the system of interest.

e Mesoscopic molecular fluid model The above bulk properties are ex-
tracted from a molecular model. The computation of the molecular
model represents a large computational load, and a fully molecular sim-
ulation would be very computationally expensive, especially for common
engineering applications the include complex geometries. A molecular
model was developed especially to operate in the meso scale region.
This model employed simplifications at the boundaries that allowed all
solid molecules to be removed from the simulation, allowing the com-
putational effort to focus more on the internal fluid interactions. Also
implemented was an approximation for a pressure driven flow, where
a uniform acceleration is applied to all molecules. This approximation
must be balanced by a thermostat to balance the system energy as the
application of the acceleration adds energy to the molecules artificially.
This approximation allows only the area of interest to be simulated where
all molecules are participating in the construction of the resulting en-
semble averages.

This mesoscopic model for fluid behaviour is however still limited by the
computation of the molecules within the system. The model has been
validated against existing work [66] using a well developed, fully molecu-
lar fluid model, and extensive testing has been performed to identify the
issues in using this model with large numbers of molecules. This high-
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lighted the importance of considering system density, and the increased
load associated with it. Theses studies showed that using this meso scale
molecular model systems within the meso scale could be reached with
up to 100,000 molecules being simulated easily on a server or high end

desktop machine.

These two tools combine to generate a powerful and versatile method for the
simulation of meso scale fluid systems. The method represents the first step to
developing a complete meso scale engineering simulation environment, which

presents a large scope for future work.

8.2 Future Work

The work presented in this thesis demonstrates how this method has been
developed and implemented. The focus had been on developing a versatile and
powerful engineering tool for meso scale systems, and presents large scope for
future work. Recommended directions for future development are discussed
below: .

e Search efficiency. Much of the time spent processing the molecular
model is spent searching for neighbours within the domain. As the sys-
tem size increases as compared to the interaction radius of the individual
molecules and the number of molecules increases, the proportion of time
spent searching throughout the domain for neighbour pairs. This effi-
ciency could be significantly increased by the implementation of a second
level of search routine, where frequent neighbour searches are performed

over smaller subdomains of the flow field.

e Parallel implementation. To allow the meso-molecular model access to
larger systems containing upward of 1,000,000 molecules, this method
would require parallelisation to take advantage of multiple processor
machines to allow the storage of more molecules, and longer neighbour
lists, and reduce the computation time per molecule. This is also com-
patible with methods of improving search routines as a form of domain
decomposition would be required.

e Meso scale boundary conditions For most engineering problems, the typ-
ical periodic boundary condition used in MD simulations, that the fluid
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properties must be identical on opposite sides of the simulation cell, is
unrealistic, as illustrated in Figure 8.1. The figure on the left shows the
type of system that can be simulated using periodic boundary condi-

tions. The limitation of these conditions is that the fluid at opposite

Figure 8.1: Left: Flow restriction modelled with current periodic boundary
conditions, molecular energy conserved Right: Modified boundaries allow a
different type of problem to be simulated

sides of the simulation cell must be at identical states to prevent vio-
lation of thermodynamic laws. In order to simulate the change in fluid
properties at intermediate sections e.g. a restriction, the inlet and outlet
conditions will need to be exactly same and hence, far away from the
restriction to apply periodic boundary conditions. This means that inde-
pendent conditions cannot be applied to the boundary to solve common
fluid flow situations that occur in engineering problems. For example,
the boundary condition as shown in Figure 8.1 (right), cannot be eval-
uated using periodic boundaries. However, maintaining the invisibility

of the boundary to the fluid molecules presents a significant challenge.

e [nvestigate and develop energy/temperature controls This thesis has iden-
tified that the current temperature controls are insufficient to deal with
increases in temperature due to changing internal dynamics. This needs
more investigation and possibly a new method for applying system con-

trols.
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